
Fast Alpha/Font Manager
Programmer's Manual

HP 9000 Series 300/800 Computers

HP Part Number 98592-90092

rli~ HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © 1989 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern
ment Department of Defense is subject to restrictions as set forth in para
graph (b)(3)(ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

September, 1989 ... Edition 1. Replaces part number 98582-90090 and all
previous updates.

iii

Contents

1. Overview of Fast Alpha/Font Manager
History of FA/FM 1-1

Outline 1-2
Chapter 1: Overview 1-2
Chapter 2: The Fast Alpha Library . 1-2
Chapter 3: The Font Manager Library 1-3
Chapter 4: Compiling, Linking and File Sets . 1-3
Reference: The Reference Pages for FA/FM 1-3
Where to Go for Further Information 1-3

Overview of FA/FM Routines 1-3
Fast Alpha Routines 1-3
Font Manager Calls 1-4

2. The Fast Alpha Library
Concepts 2-1

Programming Model 2-2
Get the File Descriptor 2-2
Initialize the Fast Alpha Environment 2-3
Close the Device Interface 2-3

Cursor Positioning . . . 2-3
Character Enhancements 2-4
Fast Alpha Rectangles 2-4

Initializing/Terminating the Fast Alpha Environment 2-6
Initializing the Fast Alpha Environment . 2-6
Terminating the Fast Alpha Environment 2-6
Example 2-6

Changing the Fast Alpha Environment 2-8
Getting Environment Information 2-8
Setting Environment Information. . 2-8

Contents-1

Performance Considerations 2-11
Example 2-12

Cursor Control 2-13
Procedure 2-13
Precautions 2-14
Examples 2-14

Writing Characters 2-15
Writing Character Strings 2-15
Filling a Rectangle 2-16
Example 2-16

Font Manipulation 2-18
Concepts 2-18
Loading a Font . 2-19
Activating a Font . 2-19
Removing a Font 2-19
Setting Font Colors 2-19
Precautions 2-20
Example 2-20

Clearing a Rectangle 2-21
Example 2-22

Scrolling a Rectangle 2-23
Example 2-23

3. The Font Manager Library
Concepts 3-2
Font Management 3-3

Concepts 3-3
Loading a Font . 3-4
Activating a Font . 3-5
Removing a Font 3-5
Example 3-6

Writing Characters 3-7
Writing Characters 3-7
Controlling the Write Direction 3-9
Example 3-10
Setting Colors 3-11
Example 3-11
Optimizing Character Generation 3-12

Contents-2

Determining String Length 3-12
Example 3-13
Writing Sixteen-Bit Font Strings 3-13

Character Clipping 3-14
Enabling/Disabling Clipping 3-14
Setting Clip Limits 3-15
Example 3-15

Font Information Routines. 3-17
Font Size 3-17
Getting Font Size Information 3-18
Example 3-19
Font Style 3-20
Getting Font Style Information. 3-20
Getting a Font's Name 3-21
Example 3-21

4. Compiling FA/FM Programs
Linking Window Libraries 4-1
Examples 4-2
Font and Icon Files 4-2
Header Files 4-3

A. Font Information
Getting Font Information A-I
Raster Fonts . A-2
Supported Fonts in Windows A-3

Windows Effect on FA/FM A-5
Changes to Text Operation A-5
Specific Changes to Fonts A-5

SNF versus non-SNF Fonts A-6
Which Font To Use . A-7

Contents-3

1
Overview of Fast Alpha/Font Manager

The Fast Alpha/Font Manager is two libraries. The fast alpha display library
provides high-performance alpha capabilites with bit-mapped displays and
graphics windows. The font manager library provides a high-performance, low
level textual interface to bit-mapped displays and graphics windows.

History of FA/FM

The Fast Alpha/Font Manager came from Windows/9000 as a way to write to
windows quickly and to merge alpha text (as opposed to graphics text) and
Starbase graphics. After the FA/FM libraries were in place, it became desirable to
expand them to work with bit mapped displays. This was done, and the libraries
remained fairly constant until the Series 800 was developed. Since the Series 800
does not use Windows/9000, FA/FM has been taken out of the Windows/9000
package and packaged with Starbase since FA/FM uses many of the parts of
Star base-drivers, color maps, etc.

There was no functionality change in FA/FM due to the Starbase repackaging.

Overview of Fast Alpha/Font Manager 1-1

Note Starbase graphics was not fully integrated into the initial release
of XlI. This initial release of X11 is designated by Hewlett
Packard as:

X11 revision A.OO.dd

The '00' indicates that this is the first release. The dd denotes
two decimal digits used internally by Hewlett-Packard; these can
be ignored. The release of X11 which supports Starbase graphics
in an X11 window is designated as:

X11 revision A.OI.dd

In this document, when X11 is referenced, it refers to the
release which supports Starbase in an X11 window (X11 revision
A.OI.dd). When the initial release is discussed, it is referred to
specifically as X11 revision A.OO. dd.

FA/FM has undergone changes to work in the X11 environment. What has
changed is:

• FA/FM uses font files in X11 Server Natural Format (SNF). Fonts in the
old Windows/9000 format can no longer be used. All Windows/9000 font
files are now shipped in SNF as well as the original Windows/gOO~ format .

• X11 fonts can now be used with the FA/FM libraries. This includes MIT
X11 16 bit font files. An additional entry point, fm_sixteen_bi t, has
been added to the FM library to accompany such functionality.

FA/FM works on Series 300/800 with X11 revision A.OI.dd, Windows/9000, and
raw bit mapped displays.

Outline

Chapter 1: Overview

Chapter 2: The Fast Alpha Library

This chapter describes the use of the fast alpha library. The fast alpha library
allows you to write alpha text to the display.

1-2 Overview of Fast Alpha/Font Manager

Chapter 3: The Font Manager Library

This chapter describes the use of the font manager. In addition to writing to the
display, the font manager allows you to select alternate fonts, place the characters
exactly on the display, and to alter the display.

Chapter 4: Compiling, Linking and File Sets

This chapter describes the various libraries needed for FA/FM and the order in
which they must be linked with the program.

Reference: The Reference Pages for FA/FM

The reference section contains an alphabetic listing and discussion of all the
functions in FA/FM. These pages can also be found on-line, using the man
command.

Where to Go for Further Information

The information contained in this manual refers occasionally to Starbase, Xlib,
and Windows/9000. For further information about these subjects, refer to the
associated manuals:

• Starbase Graphics Techniques, Vols. 1 and 2
• Windows/9000 Documentation
• HP- UX Reference
• Starbase Programming with Xll

Overview of FA/FM Routines

Fast Alpha Routines

fa

faclear

facolors

facursor

fafontactivate

fafontload

Summary of the fast alpha routines.

Clears a rectangle area of the display.

Sets the font foreground and background colors for the
currently activated fast alpha font.

Positions and enables/disables the fast alpha cursor.

Activates a fast alpha font.

Loads a font file into the font cache and activates it.

Overview of Fast Alpha/Font Manager 1-3

fafontremove

fagetinfo

fainit

farectwrite

faroll

fasetinfo

faterminate

fawrite

Removes a font from the font cache.

Gets information about the current fast alpha environment.

Prepares a fast alpha display for output, sets the display's
fast alpha environment to default values.

Fills a ret angular area with a character.

Rolls a rectangular area.

Sets information about the fast alpha environment.

Terminates the current fast alpha environment.

Writes characters in the active font.

Font Manager Calls

fm_clipflag

fm_cliplim

fm_colors

fm_fileinfo

fm_fontdir

fm_getname

fm_load

fm_opt

fm_rasterinfo

fm_sixteen_hit

fm_str_len

fm_styleinfo

fm_write

Activates a font.

Sets clipping flags.

Sets the clipping limits.

Sets the active font's foreground and background colors.

Returns the size of cells in a font file.

Sets the direction to write characters.

Translates a font ID to a filename.

Loads a font into memory.

Optimizes character generation if possible.

Returns the size of cells in a font.

Removes a font from memory.

Sets sixteen bit font string flag.

Determines the pixel length of a character string.

Returns style information about a font.

Writes characters to the display.

1-4 Overview of Fast Alpha/Font Manager

2
The Fast Alpha Library

The fast alpha display library provides high-performance alpha (textual) capa
bilities with bit-mapped graphics displays and graphics windows. For example,
you can write text and manipulate fonts, you can clear a portion of a display, or
you can scroll part of a display. The following topics are covered in this chapter:

• Concepts essential to using fast alpha routines.

• Initializing and terminating the fast alpha environment.

• Changing the fast alpha environment.

• Cursor control.

• Writing characters.

• Font manipulation.

• Clearing part of a di.splay or window.

• Scrolling part of a display or window.

This section discusses concepts essential to understanding the use of fast alpha
routines. The following topics are discussed:

• The fast alpha programming model.

• Cursor positioning.

• Character enhancements.

• Fast alpha rectangles.

The Fast Alpha Library 2-1

Note Definitions of fast alpha constants and structures are found in
the file /usr/include/fa. h.

Also, programs that call fast alpha routines require that both the
fast alpha and font manager libraries be linked.

Programming Model

You can use fast alpha routines with any bit-mapped display or graphics window.
In other words, you can call fast alpha routines to work with bit-mapped
displays or windows on bit-mapped displays. It's the same concept as using
Starbase graphics routines with either a bit-mapped display or graphics window.
(Throughout this chapter unless otherwise indicated, the term display is used to
indicate both bit-mapped display and graphics window.)

Note Fast alpha routines are supported on all bit displays but not on
all drivers. See the Starbase Device Drivers Library manual to
determine if fast alpha routines are supported by a particular
driver.

Certain tasks must always be performed in programs that call fast alpha routines.

1. Get the file descriptor.

2. Initialize the fast alpha environment.

3. Use the fast alpha environment.

4. Terminate the fast alpha environment.

5. Close the device interface.

Get the File Descriptor

Fast alpha routines require the file descriptor of the display's or the window's
opened device interface.

When using fast alpha routines you must obtain a file descriptor for the display by
performing a graphics open (gopen(3G)) on the display's device interface. The
file descriptor returned from the gopen function is the one used by fast alpha
routines.

2-2 The Fast Alpha Library

Note If you are using fast alpha routines to combine text and graphics,
you should obtain separate file descriptors for fast alpha routines
and Starbase routines; that is, you must open the display once
for fast alpha routines and once for Starbase routines.

Getting separate file descriptors ensures that fast alpha routines
work predictably. If you use the same file descriptor for both fast
alpha and Starbase routines, the results are unpredictable.

Initialize the Fast Alpha Environment

Before calling any other fast alpha routines, you must initialize the fast
alpha environment for the display on which the routines operate. Once
the fast alpha environment is initialized, you can call fast alpha routines
that manipulate the display. When you are finished using the fast alpha
routines with a display, the fast alpha environment must be terminated. (The
section "Initializing/Terminating the Fast Alpha Environment" contains more
information on how to do this.)

You can use window library routines on the window before, during, and after
initializing and terminating the fast alpha environment; however, you can use
fast alpha routines only between initializing and terminating the environment.

Close the Device Interface

The final task that must be performed in fast alpha programs is closing the device
interface of the display. Use the gClose(3G) on the display's device file.

Cursor Positioning

The position for placing characters is specified by character column and line,
rather than display pixels. The leftmost column of the display is column 0; the
topmost row is row O.

The pixel coordinate equivalents of column-row depend on the size of the current
font-the smaller the font, the smaller the pixel coordinates; the larger the font,
the larger the pixel coordinates. The results are unpredictable when you use
proportionally spaced fonts because fast alpha routines use the height and width
of the largest character for determining spacing.

The Fast Alpha Library 2-3

Character Enhancements

Each character may be enhanced with one or more video enhancements. Inverse
video and underlining are currently the only enhancements supported.

When you initialize the fast alpha environment, font colors default to white
foreground and black background-white characters on a black background.
Through fast alpha routines, you can redefine the font foreground and background
colors.

Fast Alpha Rectangles

Many fast alpha routines reference rectangles. Rectangles are your means of
specifying a particular subset of the display area (in columns and lines) for a fast
alpha operation involving more than one line. The rectangle structure is defined
in /usr/include/fa.h as:

struct fa_coordinate
{

int x. y;
};

struct fa_rectangle
{

struct fa_coordinate origin; /* included in displayed rectangle */
struct fa_coordinate corner; /* not included in rectangle */

};

2-4 The Fast Alpha Library

As the comment indicates, the lower-right-corner character is not included in the
rectangle as is consistent with C-language arrays. For example, fa_rect defined
as:

struct fa_rectangle fa_rect;

fa_rect.origin.x = 2;
fa_rect.origin.y = 1;
fa_rect.comer.x = 4;
fa_rect.comer.y = 4;

specifies the following rectangle:

columns

012345
0
1. .XX ..

rows 2 .. XX ..
3 .. XX ..
4
5

/* fast alpha rectangle structure */

This method of display access is fairly low-level, and you may want to build a
"friendlier" interface upon this base. The main purpose of the fast alpha routines
is to provide you with a fast and intuitive method for getting alpha information
on the display.

The Fast Alpha Library 2-5

Initializing/Terminating the Fast Alpha Environment

The fainit routine initializes the fast alpha environment for a display device; the
faterminate terminates a display's fast alpha environment-that is, it releases
resources allocated when faini t was called.

Initializing the Fast Alpha Environment

To initialize a display's environment, call faini t.

f aini t (gfd, driver)

Set the driver parameter to F AWINDOW. The gfd parameter is the file descriptor
for the display.

Initializing the fast alpha environment causes environment information to be
allocated for the display. This information affects how fast alpha routines work
with the display. You can inquire and change this information with fast alpha
routines (discussed in the next section, "Changing the Fast Alpha Environment").

Terminating the Fast Alpha Environment

To terminate f. display's environment, call faterminate.

faterminate(gfd)

Calling this routine deallocates fast alpha environment information for the display
device represented by gfd. (In order to use fast alpha routines again, you must
call f aini t again.)

Example

When compiling a fast alpha program, you must compile it with several libraries.
These libraries are described fully in the chapter "Compiling FA/FM Programs".
The following shell script is used to compile most of the example programs in this
manual. Remember to use the device driver for your display interface (98550 is
used in these examples).

PROG=$1
cc -0 $PROG $PROG.c -lfa -lfontm -ldd98550 -lsb1 -lsb2

2-6 The Fast Alpha Library

The following code segment exemplifies the structure of programs that call fast
al pha routines.

#include <fa.h>
#include <starbase.c.h>

main()
{

int gfd;

/* get fast alpha defs
/* get starbase defs

/* program "Structure.c"

/* file descriptors

/* open the device or window */
if «gfd = gop en (II/dev/crt ll

, OUTDEV, IIhp98550 1l
, INIT)) -1)

exit (1) ;

fainit(gfd, FAWINDOW); /* initialize the fast alpha env. */
/**/
/* Do writes and other things here */
/* */
/**/

}

faterminate(gfd) ;
gclose(gfd);

/* terminate the environment */
/* close the device */

The Fast Alpha Library 2-7

Changing the Fast Alpha Environment

As described in the previous section, fast alpha environment information is
allocated when you initialize the environment. This information affects the
manner in which fast alpha routines work.

The exact information maintained in the fast alpha environment is defined by the
fainfo structure in the header file fa.h. The table on the following page briefly
describes each of fainfo's fields; for more information on this structure and its
values, see fa.h and the reference pages for fasetinfo.

Getting Environment Information

To get the current fast alpha environment for a display, call fagetinfo.

fagetinfo(gfd, fainfoptr)

The fainfoptr parameter is a pointer to a fainfo structure as defined in fa.h. After
calling fagetinfo, the fields of the structure return the fast alpha environment
values specified by gfd.

Setting Environment Information

To set fast alpha environment parameters for a display, call fasetinfo.

fasetinfo(gfd, fainfoptr)

The fainfoptr parameter is a pointer to a fainfo structure containing the new
values for the environment. You can set only the following parameters with this
routine:

• defaultenhancements

• clearbeforewrite

• colormode

• makecurrent

2-8 The Fast Alpha Library

Table 2-1. The fainfo Structure!

Field Description Range

size This is a rectangle structure as defined in Limits of
the "Concepts" section; it defines the display display
size.

capabilities You may use the contents of this field to FAWINDOW
detect what additional capabilities are
available on a particular device.

enhancements This bit-mask defines the default (see fa. h)
enhancements that are supported on the
display device.

defaultenhancements2 Initially set to a value that optimizes the (see fa. h)
performance of the display (FAOFF).

cursor TRUE if the cursor can be physically removed TRUE/FALSE
from the display device and is FALSE
otherwise. Currently always TRUE.

fontcellheight Indicate the pixel height and width of the
fontcellwidth active font.

clearbeforewrite2 Determines whether the background TRUE/FALSE
is automatically cleared before writing
characters. The default value is TRUE, which
causes the background to clear before
writing.

1 All fields of the fainfo structure are 32-bit integers; this provides compatibility
with other languages.

2 You can change only these fields with fasetinfo.

The Fast Alpha Library 2-9

The fainfo Structure (continued)

Field Description Range

foregroundplanes Specifies the number of memory planes 0, 1, 4, or 8
backgroundplanes available for controlling the foreground and

background colors, respectively.

colormode2 Indicates color option currently in use. FAWONB,
Default is FAWONB (white on black). FACOLOR,

FABONW

makecurrent2 This bit-mask controls the updating of fast (see fa. h)
alpha operations to the display. Various bits
in the mask control when information is
displayed with fast alpha routines.

2 You can change only these fields with fasetinfo

2-10 The Fast Alpha Library

Performance Considerations

• You can set defaul tenhancements to a different value, however, it
initially contains the value that makes the fast alpha library work most
efficiently (that is, F AOFF). Therefore, changing the value of this parameter
may degrade system performance.

• The default value for clearbeforewri te is TRUE which clears the display
background before writing any characters. This ensures that the space
where characters are displayed is properly cleared, so that new characters
are readable. You can change this value to FALSE, in which case the
background is not cleared before writing, and you are responsible for
controlling the background area.

• Changing the colormode parameter to FACOLOR causes the fast alpha
routines to run slower. Black and white colors (the default) cause the
routines to run faster.

• To increase the speed of fast alpha routines, you may wish to suppress the
updating of the display until several write operations are queued. Then,
when updating is desired, signal the fast alpha environment to update
by setting the make current field to MCALWAYS. Queued operations are
displayed at that time. Then reset makecurrent so that operations are
queued up-that is, set the bits in makecurrent that suppress display
updates (see fa.h). By doing this you are making effective use of the
Starbase buffering facility.

The default value is MCALWAYS, which updates the display after every fast
alpha call and may degrade system performance (compared to queueing).

The Fast Alpha Library 2-11

Example

The following code segment sets clearbeforewrite to TRUE and sets makecur
rent so that the display won't be updated for any fawrite operations-that is,
writes are queued. Later on, makecurrent is reset so that all queued fawrite
operations are performed.

#include <fa.h>
#include <starbase.c.h>

main 0
{

1* get fast alpha defs
1* get starbase defs

1* program "Fainfo.c"

int gfd; 1* file descriptors *1
struct fainfo fa_env; 1* FA environment structure *1

1* open the device or window *1
if «gfd = gopen("/dev/crt". OUTDEV. "hp98550". INIT» == -1)

exit(l) ;

fainit(gfd. FAWINDOW); 1* initialize the fast alpha env. *1

if (fagetinfo(gfd. &fa_env) < 0) { 1* get the current environment *1
perror("fagetinfo gfd ll

);

exit(l);
}

1* Set the appropriate values in the structure and call fasetinfo:
Always clear the area before writing
Do not update area until the makecurrent field is reset *1

fa_env.clearbeforewrite = TRUE;
fa_env.makecurrent = (NOMCONFAWRITE I NOMCONFARECTWRITE);
if (fasetinfo(gfd. &fa_env) < 0) {

perror("fasetinfo gfd NOMCONFAWRITE(S)");
exit(l);
}

2-12 The Fast Alpha Library

/**/
/* Do writes and other things here */
/* */
/**/

/* Set make current to make current always to dispaly queued writes */
fa_env.makecurrent = MCALWAYS;

}

if (fasetinfo(gfd, &fa_env) < 0) {
perror("fasetinfo gfd MCALWAYS");
exit(1);
}

faterminate(gfd) ;
gclose(gfd);

Cursor Control

/* terminate the environment */
/* close the device */

With fast alpha routines, you can display and move a cursor on displays. The
facursor routine performs cursor control operations.

Procedure

To move and/or turn the cursor on or off, call f acursor.

facursor(gjd, column, line, cftag)

The column and line parameters specify the column and line at which to position
the cursor; the top line of the display is line 0, and the leftmost column is column
O. If either column or line is invalid (or equals FACURSORNOMOVE), the cursor's
position is not updated.

The cftag parameter determines whether or not the cursor is displayed. If cftag is
TRUE, the cursor is displayed; if FALSE, the cursor is turned off. Turning the cursor
on or off doesn't in itself change the cursor position as fast alpha remembers it.

If you specify invalid coordinates for column and line-specifically, F ACUR
SORNOMOVE as defined in ja.h-the cursor won't move, but cflag is still effective.
This is useful if you wish to turn on/off the cursor at its current position.

The Fast Alpha Library 2-13

If part of the window is off screen, the desired cursor position may also be off
screen. For example, if the upper-left corner of the window is off screen, 0,0 are
valid cursor coordinates, but the cursor is not be visible; it is off screen.

Also, you can specify a cursor position that might be occluded by windows higher
up in the display stack.

Precautions

The cursor is actually a displayable character taken from the currently active
font. Therefore, if no font is activated, the cursor is automatically turned off.
Attempting to turn the cursor on when no font is active results in an error.

Examples

The following program turns on the cursor at column 27 and line 12. It pauses
for 3 seconds and then turns off the cursor.

#include <fa.h>
#include <starbase.c.h>

main()
{

int gfd;

1* get fast alpha defs
1* get starbase defs

1* program "Cursor.c"

1* file descriptors

1* open the device or window *1
if «gfd = gopen("/dev/crt", OUTDEV, "hp9S550", INIT)) == -1)

exit(l);

fainit(gfd, FAWINDOW);

facursor(gfd, 27,12, TRUE);
sleep(3);

1* initialize the fast alpha env. *1

facursor(gfd, FACURSORNOMOVE, FACURSORNOMOVE, FALSE);

}

faterminate(gfd);
gclose(gfd);

2-14 The Fast Alpha Library

1* terminate the environment *1
1* close the device *1

Writing Characters
Fast alpha routines provide two kinds of writing operations. You can write a
string of characters, or you can fill a rectangle with a specific character. Following
are separate discussions for writing strings and filling rectangles.

Writing Character Strings

To write character strings, use the fawri te routine.

fawrite(gJd, column, line, charbuf, ebuJ, nchars)

The column and line parameters specify the character location where the string
should start in the display.

The charbuJ parameter is a pointer to the buffer of characters to be written. This
buffer contains nchars characters. That is, fawrite writes nchars characters,
taking characters from the address specified by charbuJ.

The ebuJ parameter is a pointer to a buffer of enhancements to be applied to
each character in charbuJ; ebuJ can be either NULL (no characters at all) or can
contain nchars characters:

• If ebuJ is NULL, then the enhancements specified in defaul tenhancements
are made to each character in the output string .

• Otherwise, each character in ebuJ defines the enhancement(s) (such
as inverse or underlining) to use when displaying the corresponding
character in charbuf. For example, the fifth character in ebuJ defines
the enhancement(s) to use when displaying the fifth character in charbuf.

Valid enhancements are:

FAOFF
FAINVERSE
FAUNDERLINE

(Q

B

D

You can use the full constant name or the letter.

The Fast Alpha Library 2-15

Filling a Rectangle

The f arectwri t e routine fills a rectangular area in the display that is specified
by a rectangle structure.

farectwrite(gfd, character, enhancement, rp)

The rp parameter is a pointer to a rectangle structure that defines the area to be
filled. The area is filled with the character specified by the character parameter,
and the enhancement parameter describes the enhancement(s) to use when
displaying the character. (If enhancement is NULL, then defaul tenhancements
are used when displaying character.)

Example

The following code segment fills a display rectangle with inverse video X's; the
rectangle's upper-left corner is at the origin (column 0, line 0). It then writes the
message:

What an exciting
rectangle this is!

and underlines the word exciting.

#include <fa.h>
#include <starbase.c.h>

mainO
{

int gfd;
struct fa_rectangle rp;

2-16 The Fast Alpha Library

/* get fast alpha defs
/* get starbase defs

/* program "Structure.e"

/* file descriptor
/* rectangle structure

/* open the device or window */
if «gfd = gopen("/dev/crt". OUTDEV. "hp98550". INIT)) -1)

exit(1);

fainit(gfd. FAWINDOW);

rp.origin.x 2;
rp.origin.y 5;
rp.comer.x 23;
rp.comer.y 9;

/* initialize the fast alpha env. */

/* define the area of the rectangle */

farectwrite(gfd. 'X'. FAINVERSE. &rp); /* write Xs into the rectangle */

/* Now write the first line into the rectangle:
@ --> FAOFF (no enhancements)

}

D --> FAUNDERLINE (underline the text)
B --> FAINVERSE (inverse the text) . */
fawrite(gfd. 4. 6. "What an exciting". "@@@@@@@@DDDDDDDD". 16);
fawrite(gfd. 3. 7. "rectangle this is!". NULL. 18); /* no enhancements */

fat erminat e (gfd) ;
gclose(gfd) ;

/* terminate the environment */
/* close the device */

The Fast Alpha Library 2-17

Font Manipulation

The fast alpha library contains font manipulation routines you can use to display
different fonts. See Appendix A for information about specific font descriptions.

Concepts

At fast alpha initialization time, a default font is established. If a font has
already been established with font manager routines (discussed in the next
chapter), that font is used. If there is no active font at initialization, a system
default font is activated (the font specified by the WMBASEFONT environment
variable). You can change the current font with fast alpha routines or font
manager routines; however, it is recommended that once you've started using
the fast alpha environment, you should make font changes using only the fast
alpha routines. This ensures that the fast alpha environment is always aware of
the current font attributes (such as height, width, and colors).

Unlike the termO font management model, there is no notion of base and alternate
fonts, there is only the active font. Any text written is always displayed in the
active font.

Fonts are loaded into the fast alpha font cache from the font directories described
in the termO font management model. Loading a font causes it to be the
active font. The fast alpha font cache is not the same one used by termO font
management routines. However, the fast alpha font cache is the same as the font
manager's. (In fact, to perform font management, the fast alpha routines call
font manager routines.)

When you are through using a font, you can remove it from the font cache.

Fast alpha fonts are often denoted by font ids. These are not the same as termO
font ids but are the same as font manager font ids. Attempting to intermix termO
and fast alpha font ids may result in unpredictable system behavior.

2-18 The Fast Alpha Library

Loading a Font

To load a font into your font cache, call the fafontload routine.

fafontload(gfd, path}

The path parameter is the path name of the font file to load. When the font
is loaded, it is automatically activated, and fafontload returns a font id that
identifies the font. This font id is required as a parameter to some other font
routines. This font id is local to the associated gfd. It is not a valid id for any
other gfd, nor is it valid to any other process.

Activating a Font

To activate a loaded font that isn't currently active, call fafontacti vate.

fafontacti vate(gfd, fontid}

This routine activates, as the current font, the font specified by fontid (Jontid is
the value returned by fafontload). After calling this routine, any text written
subsequently is displayed in the new font.

Removing a Font

When you are finished using a font, you can remove it from the font cache. The
fafontremove routine removes a font from the cache.

fafontremove(gfd, fontid}

After calling this routine, the font specified by fontid no longer exist in the font
cache. To use this font again, you must reload and reactivate it.

Setting Font Colors

You set the foreground and background colors used when displaying fonts with
the facolors routine.

facolors (gfd, foreground, background)

After calling this routine, the active font's foreground and background colors are
set to those specified by the foreground and background parameters. These colors
are indices into the Starbase color map.

The Fast Alpha Library 2-19

Supported values are determined by the display device: 0 or 1 for monochromatic
displays, 0 to 15 for 4-plane color, and 0 to 255 for 8-plane color.

If the colormode field of the fainfo structure is not set to FACOLOR, the system
ignores any color changes.

Calling this routine also causes the fast alpha environment to take note of the
current font attributes (that is, width, height, color, etc.).

Precautions

The cursor is actually a displayable character and is taken from the currently
active font. Therefore, if no font is activated, the cursor is automatically turned
off. Attempting to turn the cursor on when no font is active results in an error.

Example

The following code segment loads an 8 by 16-pixel bold font into the font cache,
activates the font, then writes "HELLO" several times in various colors.

#include <fa.h> /* get fast alpha defs */
#include <starbase.c.h> /* get starbase defs */

maine) /* program "Fonts.c" */
{

int gfd; /* file descriptor
int fid; /* font id
int i; /* index for looping
struct fainfo fa_env; /* FA environment structure

if «gfd = gopen("/dev/crt", OUTDEV, "hp98550", INIT)) == -1)
exit(1);

*/
*/
*/
*/

fainit(gfd, FAWINDOW); /* initialize the fast alpha env. */

fagetinfo(gfd, &fa_env);
fa_env.colormode = FACOLOR;
fasetinfo(gfd, &fa_env);

/* get the current environment */
/* set up the color mode */

/* Load the bold font into the font cache */
if «fid = fafontload(gfd,

"/usr/lib/raster/8x16/SNF/lp.b.8U")) == -1) {
perror("fafontload gfd");

2-20 The Fast Alpha Library

}

exit (1) ;
}

/* Activate the font
if (fafontactivate(gfd, fid) == -1) {

perror("fafontactivate gfd");
exit (1) ;

}

for(i=O; i<8; i=i+2){ /* Change colors and write message */

}

facolors(gfd, i, i+1);
fawrite(gfd, i,i, II HELLO " ,NULL,5);

/* Remove the bold font from the cache */
if (fafontremove(gfd, fid) == -1) {

perror(lIfafontremove gfd ll
);

exit (1) ;
}

faterminate(gfd);
gclose(gfd);

/* terminate the environment */
/* close the device */

Clearing a Rectangle
You can clear or erase any rectangular area of characters in a display. For
example, you could clear the entire display. The faclear routine is used for
this purpose.

To clear a rectangle, call the faclear routine.

faclear(gjd, enhancements, rp)

The rp parameter is a pointer to a rectangle structure that defines the rectangle
to clear.

The enhancements parameter is currently ignored by the system and is reserved
for future expansion. Leave this parameter set to FAOFF.

The Fast Alpha Library 2-21

Example

The following program fills a rectangle with Xs. It then calls a subroutine to clear
a different rectangle.

#include <fa.h> /* get fast alpha defs
#include <starbase.c.h> /* get starbase defs

maine) /* program "Clear.c"
{

int gfd; /* file descriptor
int fid; /* font id
int i; /* index for looping
struct fa_rectangle rp; /* rectangle structure

if «gfd = gopen(lI/dev/crt ll
, OUTDEV, II hp98550 II , INIT)) == -1)

exit (1) ;

*/
*/

*/

*/
*/
*/
*/

fainit(gfd, FAWINDOW); /* initialize the fast alpha env. */

rp.origin.x = 0;
rp.origin.y = 0;
rp.comer.x = 15;
rp.comer.y = 10;
farectwrite(gfd, 'X', NULL, &rp);

clear_gr(gfd, 5, 5, 10, 10);

faterminate(gfd);
gclose(gfd);

/* terminate the environment */
/* close the device */

} /* end of main */

/***/

clear_gr(gfd, row, col, x_chars, y_chars)

{

int gfd;
int row, col;
int x_chars, y_chars;

struct fa_rectangle rect;

rect.origin.x = row;
rect.origin.y = col;

2-22 The Fast Alpha Library

/*
/*
/*

/*

/*

gopened file descriptor
starting row and column
number of characters

rectangle to be cleared

define the rectangle to

*/
*/
*/

*/

be cleared */

rect.comer.x = row + x_chars;
rect.comer.y = col + y_chars;

if (faclear(gfd, FADFF, &rect)
returneD) ;

Scrolling a Rectangle

/* clear the rectangle */
-1) return (-1) ;

You can scroll any display area defined by a rectangle structure. The faroll
routine performs this task.

faroll(g/d, how, how/ar, rp)

The rp parameter points to a rectangle structure that defines the portion of the
display to scroll. The how parameter defines the direction to scroll, and the
how/ar parameter defines how many character units to scroll in the direction
indicated by how.

The following are valid values for how:

• FAROLLUP (' u')-roll the rectangle's contents up.

• FAROLLDOWN (' d')-roll the rectangle's contents down.

• FAROLLLEFT (' 1 ')-roll the rectangle's contents left.

• FAROLLRIGHT (' r')-roll the rectangle's contents to the right.

If you move text out of the rectangle area using scrolling, and then move it back
into the area, the text is not rewritten.

Example

The following code segment rolls a display's contents in all four directions: up,
right, down, left.

#include <fa.h>
#include <starbase.c.h>

mainO

/* get fast alpha defs
/* get starbase defs

/* program IRoll.c"

The Fast Alpha Library 2-23

{

int gfd; 1* file descriptor
int fid; 1* font id
int i; 1* index for looping
struct fa_rectangle rp; 1* rectangle structure

if «gfd = gopen(l/dev/crt", OUTDEV, II hp98550 II , INIT» == -1)
exit(1);

*1
*1
*1
*1

fainit(gfd, FAWINDOW); 1* initialize the fast alpha env. *1

rp.origin.x = 4; 1* outline the rectangle
rp.origin.y = 4;
rp.comer.x = 16;
rp.comer.y = 11;
farectwrite(gfd, 'X', NULL, &rp);

rp.origin.x = 5;
rp.origin.y = 5;
rp.comer.x = 15;

1* make the rectangle 1 unit smaller *1

rp.comer.y = 10;
farectwrite(gfd, 'Y', FAINVERSE, &rp);
sleep(1);

1* Roll the contents of the window up 1 line
if (faroll(gfd, 'u', 1, &rp) == -1) {

perror("faroll Upll);

exit (1) ;
}

sleep(1) ;

1* this data will move

1* Roll the contents of the window right 1 characters

if (faroll(gfd, 'r', 1, &rp) == -1) {
perror("faroll right");
exit(1) ;

}

sleep(1) ;
1* Roll the contents of the window down 2 line

if (faroll(gfd, 'd', 2, &rp) == -1) {
perror("faroll down");
exit(1);

}

sleep(1);

2-24 The Fast Alpha Library

/* Roll the contents of the window left 3 characters
if (faroll(gfd, '1', 3, &rp) == -1) {

perror("faroll left");

}

exit(1);
}

faterminate(gfd);
gclose(gfd);

/* terminate the environment */
/* close the device */

The Fast Alpha Library 2-25

3
T'he Font Manager Library

The font manager library provides a high-performance, low-level textual interface
to graphics windows and bit-mapped displays. This library's functionality
overlaps with the fast alpha library, and in fact, some fast alpha routines call font
manager routines. However, the font manager provides some powerful capabilities
not provided by the fast alpha library.

There are two main differences between the font manager and fast alpha libraries:

1. Font manager uses pixel units to specify character coordinates; fast alpha
uses character column and line addressing.

2. Font manager can operate with proportionally spaced fonts; fast alpha
cannot.

The following topics are discussed in this chapter:

• Concepts essential to using font management routines.

• Font management.

• Writing characters.

• Character clipping.

• Font information routines.

The Font Manager Library 3-1

Concepts
Font manager routines can be used with either bit-mapped displays or graphics
windows. The routines require the file descriptor returned from performing a
graphics open (gopen(3G)) on the device interface for the display.

Note Fast alpha routines are supported on all bit displays but not on
all drivers. See the Starbase Device Drivers Library manual to
determine if fast alpha routines are supported by a particular
driver.

The font manager is a distributed library that is controlled by the graphics
resource manager daemon (grmd) and a set data structure kept in shared memory
common to all users of the font manager. This holds true in all environments;
XII revision A.Ol.dd, Windows/gOOD, and raw bit mapped displays.

Font manager routines allow you to load, activate and remove fonts, and change
attributes that affect how a font is displayed. The font management model is
identical to that used by fast alpha routines. In fact, fast alpha routines call font
manager routines to perform font management tasks.

Fonts on the system will never be loaded more than once from the same font
file. Once a font is loaded by a process, any other process can open and share a
copy of that font. The shared copy will not be removed from the system until all
processes have released the font.

Note Definitions from the /usr/include/fonticon.h header file are
used throughout this chapter.

3-2 The Font Manager Library

Font Management
The font manager library contains font management routines used to display
different fonts on displays.

Concepts

Like the fast alpha routines, the font manager maintains a font cache (or font
table). The font table is an area of memory used by the font manager. Font
information is loaded into the font table from font files.

Windows/9000 font files are stored in the directory-subdirectory
/usr/lib/raster. See Appendix A for information about specific Windows/9000
font descriptions.

Fonts under /usr/lib/raster are in two formats-the original Windows/9000
format and Server Natural Format (SNF). The SNF versions are used by the
FA/FM libraries with the Series 300 6.5 release, Series 800 3.1 release, or later
releases. The SNF versions are always located in a subdirectory below the original
Windows/9000 version. The subdirectory is called SNF. For example, there is
a Windows/9000 format font /usr/lib/raster/8x16/1p. 8U; its corresponding
SNF font is /usr/lib/raster/8x16/SNF /lp. 8U. sef.

The Series 300 6.5 release, Series 800 3.1 release, or later releases of the FA/FM
libraries can also load X11 fonts. The X11 fonts are also in SNF and can be found
under the directory /usr/lib/X11/fonts.

When you load a font with font manager routines, it automatically becomes the
active font. Text is always displayed in the active font. You use font manager
routines to activate any font you have loaded.

In addition, when you load a font, a unique font id is returned. This font id is
used to identify the font to certain font management routines. Font manager font
ids are different than those used by termO font management routines; these ids
should not be mixed.

Loaded fonts can be different sizes. By using font manager routines, you can mix
different-sized fonts on the same display.

The Font Manager Library 3-3

When you are finished using a font, you must always remove it from the font
table. Loading and removing a font is analogous to opening and closing a file
after you open a file, you must eventually close it.

As mentioned previously, with windows the font table is shared by all users of
the font manager library. Therefore, several users may be using the same font
in the font table. The font manager takes care not to duplicate fonts in the font
table. When a user attempts to load an already-loaded font, the font manager
takes note that another user is using the font. It does not reload the font into
the table.

The same is true for removing fonts. If more than one user is using the same
font, the font manager doesn't actually remove the font from the table; it takes
note that one less user is using the font. If only one user is using a font, removing
the font causes the font manager to remove it from the table.

Never assume that a font exists in the font table unless you've loaded it and
haven't yet removed it. If you remove a font, there's no guarantee that it still
exists in the table because others using the font might remove it. Remember:
Don't make any assumptions about the shared memory. Load and remove fonts
as if you're the only user.

The foreground and background colors of the active font default to white on
black. On color systems, you can redefine the foreground and background colors
to any from the system color map.

Loading a Font

To load a font into the font table, call fID_load.

fID_load(gjd, path, jontid)

The path parameter points to the path name of the font file to load into the font
table. The jontid parameter returns the font's id.

The Series 300 6.5 release, Series 800 3.1 release, or later releases of the FA/FM
libraries will only load SNF font files. If the font to be loaded is. not an SNF
version, the FA/FM libraries will automatically try to load a font from the
subdirectory SNF. Fonts in standard Server Natural Format are suffixed by . snf.
The FA/FM libraries also know how to load compressed Server Natural Fonts.
These fonts are suffixed by . sef .

3-4 The Font Manager Library

If the Series 300 6.5 release, Series 800 3.1 release, or later releases of the FA/FM
libraries were told to load the font /usr/lib/raster/8x16/1p.8U, they would
try to open one of the following files:

/usr/lib/raster/8x16/1p.8U.snf
/usr/lib/raster/8x16/1p.8U.scf
/usr/lib/raster/8x16/SNF/lp.8U.snf
/usr/lib/raster/8x16/SNF/lp.8U.scf

In this order, the first file that was a valid SNF file would be loaded. Thus,
programs that used FA/FM libraries released before the Series 300 6.5 release,
Series 800 3.1 release, or later releases will not need to have their font paths
changed.

In addition to being loaded, the font automatically becomes the active font. So
if you want a font other than the one loaded to be the active font, you must
activate the other font.

When you are finished using a loaded font, you must remove i,t.

Activating a Font

To activate a previously loaded font, call fm_acti vate.

fm_acti vate(gJd, Jontid)

The font represented by the Jontid parameter is made the active font. All text is
displayed in the new font until the next call to fm_acti vate, or until you load a
new font.

When you activate a new font, the color is re-set to black and white.

Removing a Font

To remove a loaded font, call fm_remove.

fm_remove(gJd, Jontid)

After calling this routine, the font specified by Jontid is removed from the font
table (as far as your application is concerned).

If you've accidentally loaded a font twice, you must also remove it twice.

The Font Manager Library 3-5

Example

The structure of a font manager program is shown in the following example.

#include <starbase.c.h> /* get starbase defs */

main() /* program "FM_Struct.c ll */
{

int gfd; /* file descriptor */
int fid; /* font id */

if «gfd = gop en (II /dev/crt ll
• OUTDEV. Ihp98550". INIT» -1)

exit (1) ;

/* Load the font; the font is automatically activated */
fm_load(gfd. l/usr/lib/raster/8x16/SNF/lp.8U.scf". &fid);

/**
*
*
*

Do writes and other routines here
*
*
*

***/

}

fm_remove(gfd. fid);
gclose(gfd) ;

3-6 The Font Manager Library

/* Remove the font
/* Close the device

Writing Characters

With font manager routines, you can write text in the active font to any display.
By default, characters are written from left to right; however, characters can be
written in any direction-up, down, to the right, or to the left. You can write the
characters in any color supported on your system. In addition, you can optimize
the generation of characters on your particular display hardware.

Writing Characters

The fm_wri te routine displays character strings on a display.

fm_wri te(gfd, x,y, str, numchars, dump, colormode)

The str parameter points to the string to write, and numchars indicates the
number of characters in the string.

The pixel coordinantes indicating where to write the string are specified by x,y.
The upper-leftmost pixel in the contents area has coordinates 0,0.

Current write direction determines how the characters are positioned with respect
to the x, y coordinates. The next figure illustrates character positioning.

The dump parameter indicates whether or not to immediately update the display
after the write: TRUE means to update; FALSE means to let the system-imposed
buffering take care of the visual update.

The colormode parameter determines whether or not to use colors from the
previous call to fm_colors. If TRUE, the area where the characters are written
is cleared to the current background color, and the characters are written in
the foreground color. Setting this parameter to TRUE is analogous to setting
clearbeforewri te to TRUE in the fast alpha environment. This mode has the
side effect of leaving the colormode and write-enable masks set as needed.

If colormode is FALSE, the characters are displayed using the current Starbase
graphics replacement rule and write mask. For example, if the current
replacement rule is to OR the image onto the background, the characters are
placed over the background image without erasing it. Setting colormode to FALSE
is somewhat analogous to setting clearbeforewri te to FALSE in the fast alpha
environment.

The Font Manager Library 3-7

start of string
/

Left-to-Right:
X'YB~ cell x-advance in effect

X'YBt cell y-advance in effect
Top-to-Bottom:

Right-to-Left:
BX,Y

cell ~ x-advance in effect

Bottom-to- Top: Bt y-advance in effect

x,y

Figure 3-1. Character Positioning at x,y
Coordinates.

3-8 The Font Manager Library

Controlling the Write Direction

By default characters are written to the right. By using the fm_fontdir routine,
you can write characters in any horizontal or vertical direction.

fm_fontdir(gjd, direction}

After calling this routine, any characters written to the display with the fm_wri te
routine are written in the direction specified by the direction parameter. Valid
values for direction are:

• 'u'-upward,

• 'd'-downward,

• 'I'-to the left,

• 'r'-to the right (this is the default).

This routine affects only the direction of the write and not the characters
themselves-they are still displayed normally within each character cell. Also,
the write direction stays in effect until a different font is activated; at that point,
the direction returns to the default (' r').

The Font Manager Library 3-9

Example

The following example writes in all four directions. Remember that the x, y
location specifies different corners of the character cell depending on the direction
you specify. Because of this, the up, right and left directions can share the same
origin. However, the down direction (or right direction) must have a different
origin.

#inc1ude <starbase.c.h> /* get starbase defs

main 0 /* program "FM_Directions.c"
{

int gfd; /* file descriptor
int fid; /* font id

if «gfd = gopen(1I /dev/crt". OUTDEV. Ihp98550". INIT)) -1)
exit(l);

fm_1oad(gfd. l/usr /lib/raster/8x16/SNF/1p.8U.scf". &fid);

fm_fontdir(gfd. 'u') ;
fm_write(gfd. 80. 100. "Upward". 6. TRUE. FALSE);
fm_fontdir(gfd. 'd');
fm_write(gfd. 80. 120. "Down". 4. TRUE. FALSE);
fm_fontdir(gfd. 'r') ;
fm_write(gfd. 80. 100. "Right". 5. TRUE. FALSE);
fm_fontdir(gfd. '1');
fm_write(gfd. 80. 100. "Left". 4. TRUE. FALSE);

fm_remove(gfd. fid);
gclose(gfd) ;

/* to remove the font
/* close the device

} /* end of main */

3-10 The Font Manager Library

*/

*/

*/
*/

*/
*/

Setting Colors

To change the active font's foreground and background colors, call fm_colors.

fm_colors(gfd, foreground, background)

The foreground and background parameters specify the new colors to use; they
are indexes into the Starbase color map.

Supported values are determined by the display device: 0 or 1 for monochromatic
displays, 0 to 15 for 4-plane color, and 0 to 255 for 8-plane color.

The foreground and background colors return to the defaults (black and white)
whenever a font is activated.

Example

The following code segment loads an 8x 16-pixel bold font into the font cache,
activates the font, changes its colors to black on white, writes the word "HELLO",
and removes the font from the cache.

#include <starbase.c.h>
#define BLACK 0
#define WHITE 1

maine)
{

int gfd;
int fid;
int i;

/* get starbase defs

/* program IFM_Colors.c"

/* file descriptor
/* font id

if ((gfd = gopen(1I /dev/crt", OUTDEV, Ihp98550", INIT» -1)

}

exit(1);

/* Load the font; the font is automatically activated */
fm_load(gfd, l/usr/lib/raster/8x16/SNF/lp.b.8U.scf", &fid);

for (i=O; i<8; i=i+2){
fm_colors(gfd, i, i+1);
fm_write(gfd, i*10, i*10, II HELLO II , 5, TRUE, TRUE);

}

fm_remove(gfd, fid);
gclose(gfd);

/* Remove the font */
/* Close the device */

The Font Manager Library 3-11

Optimizing Character Generation

Some systems have specialized hardware for writing to bit-mapped displays.
This special hardware accelerates writing characters to the display. The fID_opt
routine allows you to take advantage of specialized display hardware.

fID_opt (gJd, optmode)

If optmode is 1, optimization is turned on; if optmode is 0, optimization is turned
off.

This routine fails if optimization hardware doesn't exist on the system or if too
many fonts have been optimized already. This should not be considered a fatal
error. Therefore, you should not abnormally terminate your program if this
routine fails.

Determining String Length

To determine if a character string will extend beyond the edge of a window or
display, use the fID_str_len routine to determine the pixel length of any character
string along the current direction of the active font.

fID_str_len(gJd, str, numchars)

The str parameter points to the character string containing numchars characters.

This routine is especially useful if character clipping is disabled (see the
"Character Clipping" section for details).

3-12 The Font Manager Library

Example

The following example writes the message "HELLO" upwards and to the left. The
origin of the string is determined by using the fm_str _len routine.

#include <starbase.c.h>

maine)
{

int gfd;
int fid;
int x,y;

/* get starbase defs

/* program "FM_length.c"

/* file descriptor
/* font id

if ((gfd = gopen("/dev/crt", OUTDEV, "hp98550", INIT)) -1)
exit (1) ;

fm_load(gfd, "/usr/lib/raster/8x16/SNF/lp.b.8U.scf", &fid);

fm_fontdir(gfd, 'u');
y = fm_str_len(gfd, "HELLO", 5);
fm_fontdir(gfd, 'I');
x = fm_str_len(gfd, "HELLO", 5);

fm_fontdir(gfd, 'u');

/* determine the length if writing */
/* upwards */
/* determine the length if writing */
/* to the left */

fm_write(gfd, x, y, "HELLO", 5, TRUE, FALSE);
fm_fontdir(gfd, 'I');
fm_write(gfd, x, y, "HELLO", 5, TRUE, FALSE);

fm_remove(gfd, fid);
gclose(gfd);

} /* end of main */

Writing Sixteen-Bit Font Strings

/* Remove the font */
/* Close the device

The fm_sixteen_bi t routine can be used to put the font manager In S'lX

teen_ biL mode.

fm_sixteen_bit(gfd, sixteen_biLmode)

If flag is 1, sixteen_biLmode is turned on; if flag is 0, sixteen_biLmode is turned
off.

When the font manager is put into sixteen_ biL mode, character strings are
interpreted 16 bits per character rather than the standard 8 bits per character.

The Font Manager Library 3-13

This should not be confused with the use of HP-15 font files, which are parsed
into mixed, 8-bit and 16-bit portions. Rather, the 16-bit capability here would
be used for writing pure 16-bit text. This is especially useful when using MIT
16-bit fonts. These fonts are not a mixture of 8-bit and 16-bit characters. They
are all 16-bit characters.

Character Clipping
Character clipping controls the area in which characters are written. When
character clipping is enabled, you cannot write characters outside the established
clip limits. You can enable or disable clipping and redefine clip limits with font
manager routines.

By default, when a graphics window is created, clipping is enabled and the clip
limits are always set to the current window size. The default clip limits of a
display are the phsical limits of the display.

Note Memory can become corrupted if clipping is not enabled. This
is because characters could inadvertently be written outside the
display memory established by the clip limits. Conceivably, you
could write spurious data into your data structures and your
program.

If you do not use clipping, be sure to check the length of every
character string (with fm_str_len) to ensure that displaying the
string will not cause it to extend outside the display boundaries.

Enabling/Disabling Clipping

To enable or disable clipping for a given display, use the fm_clipflag routine.

fm_clipflag(gjd, flag)

The flag parameter indicates whether to enable or disable clipping: if flag is 1,
clipping is enabled; if flag is 0, clipping is disabled.

3-14 The Font Manager Library

Setting Clip Limits

To set clip limits for a display, use the fm_cliplim routine.

fm_cliplim(gjd, x,y, width,height)

The x,y parameters indicate the x,y location of the upper-left corner of the
clipping rectangle (with respect to the upper-leftmost pixel of the display);
the width,height parameters define the pixel width and height of the clipping
rectangle. After calling this routine, characters can be written only within the
defined rectangle.

Example

The following example writes "X"s across the window. It then sets the clipping
area to a portion of the window and writes blanks to show the clipped area.

#include <starbase.c.h>

main()
{

int gfd;
int fid;

/* get starbase defs

/* program "FM_clipping.c"

/* file descriptor
/* font id

if «gfd = gopen("/dev/crt", OUTDEV, "hp98550" , INIT)) == -1)
exit(l);

fm_load(gfd, "/usr/lib/raster/8x16/SNF/lp.8U.scf", &fid);

fm_write(gfd, 10, 10, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 20, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE) ;
fm_write(gfd, 10, 30, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 40, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 50, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 60, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 70, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 80, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);
fm_write(gfd, 10, 90, "XXXXXXXXXXXXXXXXXXXXXXXXX" , 25, TRUE, FALSE);

The Font Manager Library 3-15

fm_cliplim(gfd, 25, 25, 50, 50);
fm_clipflag(gfd, 1);

fm_write(gfd, 10, 10,
fm_write(gfd, 10, 20,
fm_write(gfd, 10, 30,
fm_write(gfd, 10, 40,
fm_write(gfd, 10, 50,
fm_write(gfd, 10, 60,
fm_write(gfd, 10, 70,
fm_write(gfd, 10, 80,

fm_remove(gfd, fid);
gclose(gfd) ;

} 1* end of main *1

3-16 The Font Manager Library

, 25, TRUE, FALSE);
, 25, TRUE, FALSE);
, 25, TRUE, FALSE);
, 25, TRUE, FALSE);
, 25, TRUE, FALSE);
, 25, TRUE, FALSE);
, 25, TRUE, FALSE);
, 25, TRUE, FALSE);

1* Remove the font *1
1* Close the device *1

Font Information Routines

The font manager library provides routines that obtain information about fonts.
In particular you can inquire:

• Font size information.

• A font's path name.

• Information on a font's style.

Before discussing how to obtain font information, a discussion of font sizes and
font styles is needed.

Font Size

Font size is actually comprised of three different attributes: width, height, and
baseline height.

Font width and height are straightforward. Each character in a font is displayed
in a font cell. The font cell is the same size for all characters. The font's width
and height represent the pixel width and height of the font cell.

All the characters of a given font "sit" on an invisible line called the baseline. The
"bottom" of each character is flush with this line. However, parts of characters
can extend below the baseline-for example, the descender that extends below the
circle on the letter p. The following figure illustrates each of these size attributes.

The baseline attribute allows you to align different-sized fonts on the same line.
For example, suppose you are writing a story that starts with "In the beginning,"
and you want the first letter, I, to be in a large font and the rest of the characters
to be in a normal-sized font. To make the text look more natural, you should
align the baseline of the big I with the baseline of the normal-sized font.

The Font Manager Library 3-17

I~ WIDTH

HEIGHT

WIDTH

BASELINE
HEIGHT

~----------~------------~~
Figure 3-2. Font Size Attributes.

Getting Font Size Information

Two font manager routines return font size information: fm_fileinfo and
fm_rasterinfo. The fm_rasterinfo routine gets size information for fonts in
the font table.

fm_rasterinfo(gfd, fontid, width, height, baseline)

This routine returns the font cell width and height (in pixels) and the baseline
height (also in pixels) for the font specified by fontid.

The fm_fileinfo routine gets size information for a font file.

fm_fileinfo(path, width, height, baseline)

This routine returns font size information for the font file whose path name is
pointed to by path.

3-18 The Font Manager Library

Note This routine does not accept a gfd parameter and has no way of
determining which file system fonts are being loaded from. Thus,
it is assumed that the font path specifies a font file on the local
file system.

Example

The following example writes the phrase "In the beginning" to a window. The
"I" is in a larger font than the rest of the phrase. To line up the rest of the
phrase, it is necessary to know the size of the first font used.

#include <starbase.c.h> /* get starbase defs

main() /* program "Font_size.c"
{

int gfd; /* file descriptor
int fid, fid2; /* font id
int big_width, big_height; /* big font cell size
int big_baseline; /* big font baseline
int small_width, small_height; /* small font cell size
int small_baseline; /* small font baseline
int offset; /* change in font size

if «gfd = gopen("/dev/crt" , OUTDEV, II hp98550 II , INIT)) -1)
exit (1) ;

fm_Ioad(gfd, "/usr/lib/raster/18x30/SNF/pica.8U.scf:, &fid);
fm_write(gfd, 10, 80, "I", 1, TRUE, TRUE);
fm_rasterinfo(gfd, fid, &big_width, &big_height, &big_baseline);

fm_Ioad(gfd, l/usr/lib/raster/l0x20/SNF/lp.8U.scf", &fid2);
fm_rasterinfo(gfd, fid2, &small_width, &small_height,

&small_baseline) ;
offset = big_height - big_baseline - (small_height - small_baseline);
fm_write(gfd, 10 + big_width, 80 + offset, lin the beginning", 15, TRUE,

TRUE) ;

fm_remove(gfd, fid);
fm_remove(gfd, fid2);
gclose(gfd);

/*Remove the fonts

/* close the device

} /* end of main */

The Font Manager Library 3-19

Font Style

Each font has certain attributes that define its style. These attributes are defined
by the escapecodes structure in the fonticon.h header file. The following table
briefly defines each of the fields in this structure.

Table 3-1.

Item Description

symbol_int Gives the numerical part of the font's
identification string; e.g., 8 for 8-bit Roman-8
(8U); 0 for 7-bit math font (OM). The value for
this field indicates whether the font is 8-bit (=8)
or 7-bit (=0).

typeface Specifies the kind of typeface, e.g. pica=l,
prestige=8, etc.

proportional Tells whether the font is uniform width (=0) or
proportional (= 1) .

hpitch Approximates horizontal characters per inch.

vheight Approximates vertical characters per inch.

boldness Indicates the boldness of the font. The lightest is
-7, the boldest is 7.

quality Describes the quality of the font: data processing
(=0), near letter quality (= 1), or correspondence
quality (=2).

Getting Font Style Information

To get font style information, call the fm_styleinfo routine.

fm_styleinfo(gfd, fontid, symboL char, escapecodes)

Range

0,7, or 8

o to 10

o or 1

Depends on font
width.

Depends on font
height.

-7 to 7

o to 2

The symboLchar parameter returns a character describing the font (that is, 'U'
for Roman-8 fonts, 'K' for Katakana fonts).

3-20 The Font Manager Library

The escapecodes parameter returns an escapecodes structure as defined in
fonticon.h. This structure contains style information for the font indicated by
fontid.

The Windows/9000 fonts all contain the necessary information to surpport the
fm_styleinfo routine, but not all SNF fonts contain this information. If for any
reason, any part of this information is missing from the font, a value of -1 will
be returned in the corresponding field.

Getting a Font's Name

The fm_getfontid routine translates a font id into its corresponding font name.

fm_getname (gfd, fontid, filename)

The filename parameter returns a character string containing the pathname used
to load the font represented by fontid.

Example

The following function gets font size, style, and name information for the font
specified by the fid parameter; it returns this information to the calling program.

#include <fonticon.h>
#include <starbase.c.h>

mainO
{

int gfd;
int fid;
struct escapecodes esc;
char symbol_char;
char pathname[80] ;

/* font manager definitions
/* get starbase defs

/* program "Style.c"

/* file descriptor
/* font id

*/
*/

/* font-specific style information */
/* character desribing the font */
/* pathname of the font */

if ((gfd = gopen("/dev/crt". OUTDEV. "hp98550". INIT») == -1)
exit(1);

fm_load(gfd. "/usr/lib/raster/18x30/SNF/pica.8U.scf". &fid);
fm_getname(gfd. fid. pathname);
printf("For the font in %s\n". pathname);

The Font Manager Library 3-21

fm_styleinfo(gfd, fid, &symbol_char, &esc);
printf("The symbol_char is %c\n", symbol_char);
printf("The escape codes are:\n");
printf(" symbol_int: %d\n", esc.symbol_int);
printf(" typeface: %d\n", esc.typeface);
printf(" proportional: %d\n", esc.proportional);
printf(" hpitch: %d\n", esc.hpitch);
printf(" vheight: %d\n", esc.vheight);
printf(" style: %d\n", esc.style);
printf(" boldness: %d\n", esc.boldness);
printf(" quality: %d\n", esc.quality);

fm_remove(gfd, fid);
gclose(gfd);

} 1* end of main *1

3-22 The Font Manager Library

1* Remove the font
1* Close the device

4
Compiling FA/FM Programs

Linking Window Libraries
When compiling a program that calls window, fast alpha, or font manager library
routines, link the libraries in the order shown below. You only need to link the
libraries that the program uses.

1. Iibfa. a-if the program calls any fast alpha routines, link this library
first.

2. Iibfontm. a-if the program calls any fast alpha or font management
routines, link this library.

3. Ii bdddriver . a-always link the device driver (or drivers) of the display
on which the programs run. Not all starbase drivers support FA/FM. See
the Starbase Device Drivers Library manual to determine which drivers
to use.

4. Iibddbyte. a or Iibddbi t. a-if the program performs graphics to
windows with retained rasters, and you want the raster to be maintained
in memory, load this driver, which writes to the retained memory. If the
program does not use windows, you do not need to link this library.

5. libXwindow. a, libXhpll. a, libXrll. a, libXll. a-these libraries should
be linked if the program calls X window routines or performs graphics (fast
alpha, font manager) output to an X window. If the program does not
use X windows, you do not need to link these libraries.

6. Iibwindow. a-this library should be linked if the program calls
HP Windows/9000 window routines or performs graphics (fast alpha,
font manager) output to an X window. If the program does not use
HP Windows/9000 or XII windows, you do not need to link this library.

7. libsbl. a-link this library if the program calls any Starbase graphics,
fast alpha, or font manager routines.

Compiling FA/FM Programs 4-1

8. libsb2. a-link this library immediately after libsbl. a if libsbl. a was
loaded.

Examples
The following examples should help clarify how the libraries are linked with the
main program.

A C program named xpg. c that creates and manipulates graphics windows calls
only font manager routines, and performs starbase graphics to a retained XII
window on an HP 98730 display would be compiled as:

cc xpg.c -lfontm -ldd9S730 -lddbyte -lXwindow -lsb1 -lsb2 -lXhp11 -lX11

A C program named faprog. c that creates and manipulates graphics windows,
calls fast alpha and font management routines, and performs graphics to a
retained HP Windows/9000 graphics window on an HP 98700 display would be
compiled as:

cc faprog.c -lfa -lfontm -ldd9S700 -lddbyte -lwindow -lsb1 -lsb2

A C program named gpr. c that calls fast alpha and font management routines
and performs graphics on an HP 98720 display would be compiled as:

cc gpr.c -lfa -lfontm -ldd9S720 -lsb1 -lsb2

Font and Icon Files

/usr/lib/raster/*

/usr/lib/raster/icons

/usr/lib/raster/dflt/b/h/$LANG

4-2 Compiling FA/FM Programs

Contains all font directories.

Icon definition files are stored here.

If this file is present, it is the default
base font (/usr/lib/raster/dflt),
(/b) for high-resolution displays (/h)
for the language defined by the $LANG
environment variable.

/usr/lib/raster/dflt/b/l/$LANG

/usr/lib/raster/dflt/a/h/$LANG

/usr/lib/raster/dflt/a/l/$LANG

If this file is present, it is the default
base font (/usr/lib/raster/dflt),
(/b) for low-resolution displays (/1)
for the language defined by the $LANG
environment variable.

If this file is present, it is the default al
ternate font (/usr/lib/raster/dflt),
(/a) for high-resolution displays (/h)
for the language defined by the $LANG
environment variable.

If this file is present, it is the default al
ternate font (/usr/lib/raster/dflt),
(/a) for low-resolution displays (/1)
for the language defined by the $LANG
environment variable.

Note The actual SNF versions of these font files are in SNF subdirec
tories.

Header Files
There are two files that contain information about the fast alpha and font
manager structures.

/usr/include/fa.h

/usr/include/fonticon.h

Fast alpha constant and structure def
initions.

Font constant and structure defini
tions.

Compiling FA/FM Programs 4-3

Table of Contents:
Fast Alpha/Font Manager Reference

Manual entries are arranged alphabetically by entry name. Section number follows the entry name and
is enclosed within parentheses.

Entry Name(Section) name Description
FA(3W): fa ... summary of fast alpha library routines
FACLEAR(3W): faclear .. clear the window area specified by the given rectangle
FACOLORS(3W): facolors set the fast alpha font foreground and background colors
FACURSOR(3W): facursor ... control the displayed cursor
FAFONTACTIVATE(3W): fafontactivate .. activate a fast alpha font
FAFONTLOAD(3W): fafontload load a font into the user's font cache and prepare it for activation
FAFONTREMOVE(3W): fafontremove ... remove a font from the user's font cache
FAGETINFO(3W): fagetinfo ... get information about the fast alpha environment
FAINIT(3W): fainit prepare a fast alpha window device for output, and set up all defaults
FARECTWRITE(3W): farectwrite fill an area of the window with the specified character
FAROLL(3W): faroll ... , _ roll a portion of the window
FASETINFO(3W): fasetinfo .. set information about the fast alpha environment
FATERMINATE(3W): faterminate .. terminate the current fast alpha environment
FAWRITE(3W): fawrite .. write a line of characters with their enhancements
FM_ACTIVATE(3W): fm_activate .. make a font active
FM_CLIPFLAG(3W): fm_clipflag .. set clipping flag
FM_CLIPLIM(3W): fm_cliplim ... set clip limits
FM_COLORS(3W): fm_colors .. set active font's foreground and background colors
FM_FILEINFO(3W): fm_fileinfo .. , return the size of cells in a font file
FM_FONTDIR(3W): fm_fontdir... set character direction
FM_GETNAME(3W): fm_getname .. translate font id to filename
FM_LOAD(3W): fm_load. load a font into memory
FM_OPT(3W): fm_opt optimize character generation if possible
FM_RASTERINFO(3W): fmJasterinfo return the size of cells in a font
FM_REMOVE(3W): fm_remove remove a font
FM_SIXTEEN_BIT(3W): fm_sixteen_bit set sixteen bit flag .br
FM_STR_LEN(3W): fm_str _len determine the pixel length of a character string
FM_STYLEINFO(3W): fm_styleinto return style information about a font
FM_WRITE(3W): fm_write .. write characters to the screen
FONTM(3W): fontm.. summary of font manager library routines

-1-

FA(3W) FA(3W)

NAME
fa - summary of fast alpha library routines

DISCUSSION
The fast alpha library, /usr/lib/libfa.a, provides high-performance alpha (textual) capabilities
with graphics windows and bitmapped displays. Fast alpha assumes uniform width fonts and
provides a row and column interface. Fast alpha also implements the concepts of a cursor and
display enhancements.

All fast alpha library calls require -a gopen(3G) file descriptor that may be for a bitmapped
display device or for a graphics window.

Programs that call fast alpha routines must link in the fast alpha library (-lfa). In addition, pro
grams that call fast alpha library routines must also link in the- font manager (-lfontm) and Star
base (-lsbl -lsb2) libraries.

The header file /usr/inc1ude/fa.h contains structure and constant definitions used by fast alpha
library routines. Programs should attempt to use these definitions when calling fast alpha
library routines.

Fast alpha library routines are summarized below. For more information on each routine, con
sult its reference page.

EXAMPLES

fadear(3W) Clear a window area specified by a fa_rectangle structure, defined
in fa.h.

facolors(3W)

facursor(3W)

fafontactivate(3W)

fafontload(3W)

fafontremove(3W)

fagetinfo(3W)

fainit(3W)

farectwrite(3W)

faroll(3W)

fasetinfo(3W)

faterminate(3W)

fawrite(3W)

Set the font foreground and background colors for the currently
activated fast alpha font.

Position and enable/disable the fast alpha cursor.

Activate a fast alpha font.

Load a font file into the font cache and activate it.

Remove a font from the font cache.

Get information about the current fast alpha environment.
Return this information in an fainfo structure, defined in fa.h.

Prepare a fast alpha window for output; set the window's fast
alpha environment to default values.

Fill an area of a window, defined by an !aJectangle structure
from fa.h, with a character.

Roll (scroll) a portion of a window. The area to roll is defined by
an faJectangie structure from fa.h.

Set information about the fast alpha environment. Information is
set from an fa info structure, defined in fa.h.

Terminate the current fast alpha environment, which was initial
ized via fainit(3W).

Write characters in the active font.

The following example compiles a program, named fawinprog.c, that calls fast alpha routines to
display text in graphics windows. The program will run on a Series 300 high-resolution display
using retained graphics windows (thUS the -ldd300h and -lddbyte options).

cc fawinprog.c -lfa -lfontm -ldd300h -lddbyte -lwindow -lsb1 -lsb2

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FA(3W) FA(3W)

SEE ALSO
windows(1),fontm(3W),gopen(3G), window(3W).

Hewlett-Packard Company - 2 - Release 7.0: September 1989

FACLEAR(3W)

NAME
faclear - clear the window area specified by the given rectangle

SYNOPSIS
#include <fa.h>
int faclear(gfd,reserved,rp);
int gfd;
int reserved;
struct fa_rectangle *rp;

DESCRIPTION
gfd is an integer file descriptor for an gopened device interface.

reserved this field is reserved for future expansion

FACLEAR(3W)

rp

DISCUSSION

is the pOinter to the data structure which describes the rectangle to be cleared.

This routine clears the area bounded by the rectangle pointed to by rp.

By default, this routine clears the screen immediately. It is possible to get better performance
by buffering clear operations and updating the screen after several operations are buffered. See
fasetinfo(3W) and the fa.h header file for information on how to buffer-up writes, as opposed to
having them occur when this routine is called.

SEE ALSO
fagetinfo(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FACOLORS(3W) FACOLORS(3W)

NAME
facolors - set the fast alpha font foreground and background colors

SYNOPSIS
#inc1ude <fa.h>
int facolors(gfd,foreground,background);
int gfd;
int foreground, background;

DESCRIPTION
gfd is an integer file descriptor for an gopened device interface.

foreground

background

DISCUSSION

is the new foreground color.

is the new background color.

Sets the foreground and background colors of the activated font for all further fast alpha opera
tions. These colors are indices into the system color map. Valid values are: 0 and 1 for mono
chromatic displays, 0 to 15 for 4-plane color, and 0 to 255 for 16-plane color. The color table
index 0 is assumed to be black and the index 1 is assumed to be white. Note, that if colormode
is not set to FACOLOR, the system will ignore any color changes; see fagetinfo and fasetinfo.

Color values outside the acceptable range (Le., 0 or 1 for monochrome, 0 to 15 for 4-plane
color, and 0 to 255 for 8-plane color) will default to 1 (white).

SEE ALSO
fasetinfo(3W), fagetinfo(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FACURSOR(3W) FACURSOR(3W)

NAME
facursor - control the displayed cursor

SYNOPSIS
#inc1ude <fa.h>
int facursor(gfd,column,line,cflag);
int gfd;
int coIumn,line;
int cflag;

DESCRIPTION
gfd

column

line

cflag

DISCUSSION

is an integer file descriptor for an gopened device interface.

indicates the alpha column at which to do the operation.

indicates the alpha line at which to do the operation.

if cflag is TRUE, the cursor is made visible. If FALSE, the cursor is made
invisible (if possible). If column and line are valid coordinates, the cursor (visi
ble or invisible) is positioned accordingly. If either is invalid (i.e. -1), the cur
sor position is not affected. FACURSORNOMOVE is defined as -1 in
/usr/inc1ude/fa.h to provide a mnemonic for specifying invalid values. This
is useful for updating the cursor position without actually moving it.

This routine allows the user to position and turn on and off the cursor. It also allows the user
to "store" or change a cursor position without moving its physical position until a later opera
tion.

The cursor size is the character cell size of a I-byte character even if a HP-15 (2-byte) font is
used. The 2-byte characters are twice as wide as the I-byte characters. Thus they take up two
columns.

By default, fast alpha "writes" update the screen immediately. It is possible to get better per
formance by buffering writes and updating the screen after the writes are buffered. See
fasetinfo(3W) and the fa.h header file for information on how to buffer-up writes, as opposed to
having them occur when this routine is called.

SEE ALSO
fawrite(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAFONTACTIVATE(3W)

NAME
fafontactivate - activate a fast alpha font

SYNOPSIS
int fafontactivate(gfd,fontid);
int gfd, fontid;

DESCRIPTION

FAFONTACTIVATE(3W)

gfd

fontid

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the id of the font to activate.

This routine sets the specified font as the currently active font for the current window device.
The specified font must be one that was previously made available by fafontload or fm_load.

SEE ALSO
fa!ontload(3W), fm_Ioad(3W).

DIAGNOSTICS
A value of -1 is returned if gfd or fontid is invalid or a call to fainit was never executed on this
gfd. See errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAFONTLOAD(3W) FAFONTLOAD(3W)

NAME
fafontload - load a font into the user's font cache and prepare it for activation

SYNOPSIS
int fafontload(gfd,path);
int gfd;
char *path;

DESCRIPTION
gfd

path

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the path name of the font to be loaded.

This routine loads a font into the user's cache of available fonts. Any of these fonts are ready to
be activated as needed. A system-wide unique font id is returned unless gfd or path are invalid,
in which case -1 is returned. Like fm_fontload(3W), fafontload automatically makes the font
active when it is loaded. Note that font manager and fast alpha font ids are the same and can
be used with both fast alpha and font manager routines.

This routine will try to optimize the font if the font file header block indicates to do so.

SEE ALSO
fafontremove(3W), fafontactivate(3W), fm_Ioad(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

WARNING
When using either rectangular fonts (pixelformat = 1) or HP-15 fonts (pixelformat = 2) with a
low resolution display and retained rasters, the portion that gets obscured will lose every other
pixel of information. Also, 2-byte characters that are written to the obscured portion of the ras
ter will appear twice the size they should be when the area is unobscured.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAFONTREMOVE(3W)

NAME
fafontremove - remove a font from the user's font cache

SYNOPSIS
int fafontremove(gfd,fontid);
int gfd,fontid;

DESCRIPTION

FAFONTREMOVE(3W)

gfd is an integer file descriptor for an gapened device interface.

fontid a unique system id assigned to a font when the font is loaded with fafantlaad.

DISCUSSION
This routine deletes the font from the user's font cache. If this font was the currently active
font, an error will occur if further fast alpha operations are attempted without first activating
another font.

SEE ALSO
fafontload(3W), faterminate(3W).

DIAGNOSTICS
A value -1 is returned if gfd or fan tid is invalid or a call to fainit was never executed on this
gfd. See errna(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAGETINFO(3W) FAGETINFO(3W)

NAME
fagetinfo - get information about the fast alpha environment

SYNOPSIS
#include <fa.h>
int fagetinfo(gfd,fainfoptr)
int gfd;
struct fainfo *fainfoptr;

DESCRIPTION
gfd

fainfoptr

is an integer file descriptor for a gopened device interface.

is a pointer to the structure defined as follows:

struct fainfo {

};

struct fa_rectangle size;
int capabilities;
int enhancements;
int defaultenhancements;
int cursor;
int fontcellheight;
int fontcellwidth;
int foregroundplanes;
int backgroundplanes;
int clearbeforewrite;
int colormode;
int makecurrent;

Descriptions of each field in this structure are:

size a structure with one corner set to [0, 0] and the other set to [number of
columns, number of lines]. (See Fast Alpha Rectangles in the Fast
Alpha/Font Manager Programmer's Manual.)

capabilities
an integer assigned a value from a list in the header file. The contents
of capabilities may be used by a program to detect what additional
capabilities are available on a particular device. Currently defined capa
bilities are:

FAWINDOW - Device is a window or bitmapped graphics device.
More information may be obtained by calls to other window system
routines.

enhancements
is assigned to the bitwise ~Ring of the various enhancement bits (see
farectwrite) which are supported by the particular device.

defauItenhancements
is initially set to a value which optimizes the performance of the win
dow system. It is used by fawrite and faroll. It is a read/write field in
that it can be changed by calling fasetinfo.

cursor cursor is TRUE if the cursor may be physically removed from the win
dow device and is FALSE otherwise.

fontcellheight, fontcellwidth
indicates the size (in pixels) of the fontcell of I-byte characters. The
2-byte characters are twice as wide. The cursor size and the column

Hewlett-Packard Company - 1 - Release 7.0: September 1989

F AGETINFO(3W)

DISCUSSION

FAGETINFO(3W)

addressing are based on the size of I-byte characters.

clearbeforewrite
is TRUE if the fast alpha library routine is to clear the background of
the area to be written to before the characters are written. clear
beforewrite set to FALSE indicates that the user is responsible for clear
ing and desires no background clearing by the library routine. clear
beforewrite defaults to TRUE. clearbeforewrite currently pertains only to
FACOLOR mode; see colormode, below.

foregroundplanes, backgroundplanes
specifies the number of memory planes available for controlling the
foreground and background colors respectively. A value of 1 in fore
groundplanes and 1 in backgroundplanes indicates a monochrome sys
tem. Values> 1 indicate a color system.

colormode
when set to FAWONB (white on black - which is the default) indicates
that the user is not using the color options. This allows the fast alpha
routines to run somewhat faster than when color is incorporated.
When colormode is set to FACOLOR, the additional system operations
needed to incorporate color are performed. A third option is to set
colormode to FABONW (black on white) which inverses the previous
monochromatic option, FAWONB; see facolors.

make current
setting this field to bitwise ~Ring of values specified in the header file
(jusr/inc1ude/fa.h) controls the appearance of fast alpha operations
on the screen. For performance reasons, the user may choose to
suppress the updating of the screen until several operations are queued
up. When updating is desired, the user signals the fast alpha environ
ment to update the screen by setting the makecurrent value to MCAL
WAYS (make current always). Queued up operations will show up on
the screen at this time. The default value is MCALWAYS, that is,
update the screen upon every fast alpha operation.

This routine is used to find out information about the window device, or to get currently set
values in the fast alpha environment. Display information might include the size of the win
dow device and the video attributes it supports. Fast alpha environment values might include
the size of the current window device or the size of the currently active font.

fagetinfo is the counterpart of fasetinfo. It is used for inquiring the values of parameters in a fast
alpha environment.

SEE ALSO
fasetinfo(3W), fainit(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 2 - Release 7.0: September 1989

FAINIT(3W) FAINIT(3W)

NAME
fainit - prepare a fast alpha window device for output, and set up all defaults

SYNOPSIS
#inc1ude <fa.h>
int fainit(gfd,driver);
int gfd;
int driver;

DESCRIPTION
gfd

driver

DISCUSSION

is an integer file descriptor for an gopened device interface.

indicates the driver to be used for all subsequent fast alpha calls, i.e., indicates
a particular display device. See /usr/inc1ude/fa.h for all valid driver names.
The value FAWINDOW should be used for HP Windows/9000 Fast Alpha
Library.

This routine is used to set up the default values the fast alpha environment will use for future
fast alpha library calls. It assumes that a gopen(3S) has actually been performed, and that the
returned file descriptor is supplied as gfd.

These variables remain in effect until font or color changing library routines are invoked or until
an faterminate is encountered. Calls to fasetinfo with proper parameters can alter the state set
up by fainit.

SEE ALSO
faterminate(3W), fasetinfo(3W).

DIAGNOSTICS
A value of -1 is returned if gfd or driver is invalid or if fainit otherwise fails. See errno(2) for
further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

F ARECTWRITE (3W) FARECTWRITE(3W)

NAME
farectwrite - fill an area of the window with the specified character

SYNOPSIS
#include <fa.h>
int farectwrite(gfd,character,enhancement,rp);
int gfd;
int character;
int enhancement;
struct fa_rectangle *rp;

DESCRIPTION
gfd is an integer file descriptor for an gopened device interface

character is the character to be used to fill the given rectangle area. Only I-byte character
codes may be used; 2-byte characters cannot be used for the rectangle fill.

enhancement is the enhancement to be used in the rectangle fill operation.

rp

DISCUSSION

is the pointer to the data structure which describes the rectangle to be filled.

This routine writes what is defined by character and enhancement to all positions in the area
bounded by the rectangle pointed to by rp.

Legal enhancements are:

FAOFF
FAINVERSE
FAUNDERLINE

The set of enhancements supported by a particular device should first be determined by calling
fagetinfo. Legal enhancement values are formed from the bitwise ~Ring of the desired enhance
ments which are supported by the particular device. If no enhancement is given, i.e., enhance
ment is 0 (zero), defaultenhancements, from fasetinfo, is used. The user may indicate that no
enhancements are desired by using FAOFF for the enhancement.

By default, fast alpha "writes" update the screen immediately. It is possible to get better per
formance by buffering writes and updating the screen after the writes are buffered. See
fasetinfo(3W) and the fa.h header file for information on how to buffer-up writes, as opposed to
having them occur when this routine is called.

SEE ALSO
fagetinfo(3W), fasetinfo(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAROLL(3W) FAROLL(3W)

NAME
faroll - roll a portion of the window

SYNOPSIS
#inc1ude <fa.h>
int faroll(gfd,how,howfar,rp);
int gfd;
int how;
int howfar;
struct fa_rectangle *rp;

DESCRIPTION
gfd is an integer file descriptor for an gopened device interface.

how determines the direction the window is to be rolled. Valid directions are:

howfar

rp

DISCUSSION

FAROLLUP 'u'
FAROLLDOWN 'd'
FAROLLEFT '1'
FAROLLRIGHT'r'

the window is rolled howfar character units in the direction given by how.

is a pointer to the data structure which describes the rectangle to be filled.

This routine rolls the area bounded by the rectangle described by rp.

Any enhancements present are also rolled.

The area "uncovered" by the roll is filled as if farectwrite were called given the space character
and defaultenhancements as parameters, see farectwrite. This routine does not affect the cursor.

When 2-byte characters are displayed and the rolling is done, some 2-byte characters may be
split into two parts, or half of the character may be erased. This is because the rolling is done
based on columns, and each 2-byte character takes up two columns.

By default, the fast alpha rolling operation updates the screen immediately. It is possible to get
better performance by buffering roll operations and updating the screen after the roll operations
are buffered. See fasetinfo(3W) and the fa.h header file for information on how to buffer-up
rolls, as opposed to having them occur when this routine is called.

SEE ALSO
farectwrite(3W).

DIAGNOSTICS
A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FASETlNFO(3W) FASETlNFO(3W)

NAME
fasetinfo - set information about the fast alpha environment

SYNOPSIS
#include <fa.h>
int fasetinfo(gfd,fainfoptr);
int gfd;
struct fainfo *fainfoptr;

DESCRIPTION
gfd

fainfoptr

is an integer file descriptor for a gopened device interface.

is a pointer to the structure defined as follows:

struct fainfo {

};

struct fa_rectangle size;
int capabilities;
int enhancements;
int defaultenhancements;
int cursor;
int fontcellheight;
int fontcellwidth;
int foregroundplanes;
int backgroundplanes;
int clearbeforewrite;
int colormode;
int make current;

Descriptions of each field in this structure are:

size a structure with one corner set to [0, 0] and the other set to [number of
columns, number of lines]. (See Fast Alpha Rectangles in the Fast
Alpha/Font Manager Programmer's Manual.)

This parameter cannot be set by fasetinfo. It is used to obtain informa
tion via fagetinfo.

capabilities
an integer assigned a value from a list in the header file. The contents
of capabilities may be used by a program to detect what additional
capabilities are available on a particular device. Currently defined capa
bilities are:

FAWINDOW - Device is a window or bitmapped graphics device.
More information may be obtained by calls to other window system
routines.

This parameter cannot be set by fasetinfo. It is used to obtain informa
tion via fagetinfo.

enhancements
is assigned to the bitwise ~Ring of the various enhancement bits (see
farectwrite) which are supported by the particular device.

defaultenhancements
is initially set to a value which optimizes the performance of the win
dow system. It is used by fawrite and farol!. It is a read/write field in
that it can be changed by calling fasetinfo.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FASETINFO(3W) FASETINFO(3W)

DISCUSSION

cursor cursor is TRUE if the cursor may be physically removed from the win
dow device and is FALSE otherwise.

This parameter cannot be set by fasetinfo. It is used to obtain informa
tion via fagetinfo.

fontcellheight, fontcellwidth
indicates the size (in pixels) of the I-byte character fontcell. The 2-byte
characters are twice as wide.

This parameter cannot be set by fasetinfo. It is used to obtain informa
tion via fagetinfo.

clearbeforewrite
is TRUE if the fast alpha library routine clears the background of the
area to be written to before the characters are written. clearbeforewrite
set to FALSE indicates that the user is responsible for clearing and
desires no background clearing by the library routine. clearbeforewrite
defaults to TRUE. cIearbeforewrite currently pertains only to FACOLOR
mode; see colormode, below.

foregroundplanes, backgroundplanes
specifies the number of memory planes available for controlling the
foreground and background colors respectively. A value of 1 in fore
groundplanes and 1 in backgroundplanes indicates a monochrome sys
tem. Values> 1 indicate a color system.

This parameter cannot be set by fasetinfo. It is used to obtain informa
tion via fagetinfo.

colormode
when set to FAWONB (white on black - which is the default) indicates
that the user is not using the color options. This allows the fast alpha
routines to run somewhat faster than when color is incorporated.
When colormode is set to FACOLOR, the additional system operations
needed to incorporate color are performed. A third option is to set
colormode to FABONW (black on white) that inverses the previous
monochromatic option, FAWONB; see facolors.

make current
setting this field to bitwise ~Ring of values specified in the header file
(jusr/iftc1ude/fa.h) controls the appearance of fast alpha operations
on the screen. For performance reasons, the user may choose to
suppress the updating of the screen until several operations are queued
up. When updating is desired, the user signals the fast alpha environ
ment to update the screen by setting the makecurrent value to MCAL
WAYS (make current always). Queued up operations will show up on
the screen at this time. The default value is MCALWAYS, that is,
update the screen upon every fast alpha operation.

This routine is used to set information regarding the window device, or to set new values in the
fast alpha environment. Parameters which are user-settable include: defaultenhancements, clear
beforewrite, makecurrent, and colormode.

fasetinfo is the counterpart of fagetinfo. It is used for changing certain parameters of a fast alpha
environment.

Hewlett-Packard Company - 2 - Release 7.0: September 1989

FASETINFO(3W)

SEE ALSO
fagetinfo(3W).

DIAGNOSTICS

FASETINFO(3W)

A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 3 - Release 7.0: September 1989

FATERMINATE(3W)

NAME
faterminate - terminate the current fast alpha environment

SYNOPSIS
int faterminate(gfd)
int gfd;

DESCRIPTION

FATERMINATE(3W)

gfd is an integer file descriptor for an gopened device interface.

DISCUSSION
This routine is the opposite of fainit. It frees up all system resources acquired during fainit and
discards all fast alpha state information associated with the current file descriptor.

faterminate has no effect on the currently active font. It remains active unless a fafontremove on
the active font was encountered prior to faterminate.

SEE ALSO
fainit(3w), fafontremove(3w), fafontactivate(3w).

DIAGNOSTICS
A value of -1 is returned if gfdf is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAWRITE(3W) FAWRITE(3W)

NAME
fawrite - write a line of characters with their enhancements

SYNOPSIS
#include <fa.h>
int fawrite(gfd,column,line,charbuf,ebuf,strlen);
int gfd;
int column, line;
char *charbuf;
ENH *ebuf;
int strlen;

DESCRIPTION
gfd

column

line

charbuf

ebuf

strlen

DISCUSSION

is an integer file descriptor for an gopened device interface.

indicates the alpha column at which to start the operation.

indicates the alpha line at which to do the operation.

points to the characters to write (a null character does not terminate this
string!)

points to the corresponding enhancements for each character (i.e. the third
character in charbuf receives the enhancement of the third element of ebuf).
ebuf may be NULL signifying that no enhancements are indicated. In this case,
the defaultenhancements (from fasetinfo) is used. The valid values for ebuf are
taken from the set described in farectwrite. Enhancement values are the bitwise
GRing of the values supported by the particular device.

Previously enhanced character positions lose their enhancement when
overwritten by a non-enhanced character (Le. ebuf is NULL).

is the number of bytes to write. If the string contains 2-byte characters, each
2-byte character is counted as two bytes.

This library call writes strlen characters on the window device starting at the locations described
by column and line.

fawrite does not affect the cursor position.

Attempts to use fawrite for wrapping or scrolling may produce undesired results.

The following processing is done only when the current active font is a HP-I5 (2-byte) charac
ter font:

* If the string to be output contains an undefined 2-byte character, the 2-byte galley character
is output instead of the undefined character.

* If the string contains an illegal 2-byte character, it outputs the two I-byte characters that
correspond to the code values of the illegal 2-byte character.

* If the last code in the string is the first code of a 2-byte character, it outputs the I-byte
character that corresponds to the code value.

By default, fast alpha "writes" update the screen immediately. It is possible to get better per
formance by buffering writes and updating the screen after the writes are buffered. See
fasetinfo(3W) and the fa.h header file for information on how to buffer-up writes, as opposed to
having them occur when this routine is called.

SEE ALSO
fasetinfo(3W), farectwrite(3W), facursor(3W).

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FAWRITE(3W) FAWRITE(3W)

DIAGNOSTICS

BUGS

A value of -1 is returned if gfd is invalid or a call to fainit was never executed on this gfd. See
errno(2) for further information.

If a rectangular font (pixelformat = 1) or a HP-15 (2-byte) font (pixelformat = 2) is used on a
low-resolution display with retained rasters, every other rectangular pixel will be lost when an
area is obscured. Also, 2-byte characters that are written to obscured area will be twice as big
as they should be when the area is displayed.

Hewlett-Packard Company - 2 - Release 7.0: September 1989

FM_ACTIV ATE(3W)

NAME
fm_activate - make a font active

SYNOPSIS
int fm_activate(gfd,fontid);
int gfd, fontid;

DESCRIPTION
gfd

fontid

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the id of the font to activate.

FM_ACTIVATE(3W)

Sets the specified raster font as the currently active font for the gopened device. All alpha out
put done by fm_write after this point will use this font.

fm_Ioad activates its font, so calling fm_activate is often not needed.

SEE ALSO
fm_load(3W),fm_ write(3W).

DIAGNOSTICS
A -1 is returned if gfd or fontid is not valid; otherwise, 0 is returned. See errno (2) for further
information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

NAME
fm_clipflag - set clipping flag

SYNOPSIS
int fm3lipflag(gfd,flag);
int gfd;
int flag;

DESCRIPTION
gfd

flag

DISCUSSION

is an integer file descriptor for an gopened device interface.

flag to indicate whether clipping is on (1) or off (0).

This routine enables clipping for raster alpha output as indicated by flag.

DEFAULTS
Clipping flag is off (0).

SEE ALSO
fm_cliplim(3W).

DIAGNOSTICS
A -1 is returned if gfd is not valid. If clipping is not enabled, it is possible to write outside of
the window boundaries, randomly change other user variables, destroy the executing program
itself, etc. It is recommended that clipping always be enabled for debugging. See errno(2) for
more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_ CLIPLIM(3W)

NAME
fm_cliplim - set clip limits

SYNOPSIS
int fm_cliplim (gfd,x,y,width,height)i
int gfdi
int X,Yi
int width,height;

DESCRIPTION

FM_CLIPLIM(3W)

gfd is an integer file descriptor for an gopened device interface.

x,y are the minimum (upper,left) x,y clip boundary, in pixels, relative to the win
dow described by gfd.

width,height are the size, in pixels, of the rectangle to clip.

DISCUSSION
This routine sets the clipping rectangle for raster alpha output as indicated by x, y, width, and
height.

SEE ALSO
fm_clipflag(3W).

DIAGNOSTICS
Returns -1 if gfd is not valid; otherwise, 0 is returned. See errno(2) for more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

NAME
fm_colors - set active font's foreground and background colors

SYNOPSIS
int fm30Iors(gfd,foreground,background);
int gfd,foreground,background;

DESCRIPTION
gfd is an integer file descriptor for an gopened device interface.

FM_COLORS(3W)

foreground

background

DISCUSSION

is the new foreground color; valid values are device dependent.

is the new background color; valid values are device dependent.

Sets the foreground and background colors as would be used by fm_write.

Though the colors are device dependent, it is generally safe to assume that 0 is black (off) and 1
is white (on).

SEE ALSO
fm_ write(3w).

DIAGNOSTICS
Returns -1 if gfd is not valid or the color is out of range. See errno(2) for more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_FILEINFO(3W) FM_FILEINFO(3W)

NAME
fm_fileinfo - return the size of cells in a font file

SYNOPSIS
int fm_fileinfo(path, width,height,baseline);
char *path;
int *width, *height, *baseline;

DESCRIPTION
path is the path name to the font file.

width of I-byte character cells in the font.

height of character cells in the font.

width

height

baseline baseline of character cells in the font; distance from the bottom of the character
cell to the bottom of a typical character image which does not have a des
cender.

DISCUSSION
For the designated font file, the width, height and baseline for the character cells are returned.
The returned cell width is the cell width of the I-byte characters, even if the designated font is
a HP-I5 (2-byte) character font that includes 1- and 2-byte characters. 2-byte characters are
twice as wide as the returned width. The baseline is also returned for the I-byte character cell,
regardless of whether a character is one or two bytes, and the baseline of the 2-byte characters
is equal to the descender line of I/2-byte characters.

For proportional fonts, width and height are the maximums, respectively, of the widths and
heights of the character cells in the font file. The baseline is sometimes useful for lining up
characters in different-sized fonts.

This library call is useful for determining what size to create a window that will contain fixed
text.

SEE ALSO
fm_rasterinfo(3W),fm_load(3W).

DIAGNOSTICS
A -1 is returned if path does not designate a font file; otherwise, 0 is returned. See errno(2) for
more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_FONTDIR(3W)

NAME
fm_fontdir - set character direction

SYNOPSIS
int fm_fontdir(gfd,direction);
int gfd, direction;

DESCRIPTION

FM_FONTDIR(3W)

gfd is an integer file descriptor for an gopened device interface.

direction

DISCUSSION

Direction for character printing, valid values are:

'u'
'd'
'1'
'r'

write characters upward
write characters downward
write characters to the left
write characters to the right

Sets the character printing direction as defined by direction. This write direction remains in
effect until a different font is activated.

SEE ALSO
fm_ write(3W).

DIAGNOSTICS
Returns -1 if gfd is not valid or direction is out of range; otherwise, 0 is returned. See errno(2)
for more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_GETNAME(3W)

NAME
fm_getname - translate font id to filename

SYNOPSIS
int fm_getname(gfd,fontid,filename);
int gfd,fontid;
char *filename;

DESCRIPTION
gfd

fontid

filename

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the font id as returned by fm_load.

array of characters to contain font filename.

FM_GETNAME(3W)

The filename that was given to fm_load to create fontid is returned in filename.

It is the responsibility of the caller to assure that filename points to a area large enough to con
tain the entire filename.

SEE ALSO
fm_load(3W).

DIAGNOSTICS
A -1 is returned if gfd or fan tid is not valid; otherwise, 0 is returned. See errno (2) for more
information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

NAME
fm_load - load a font into memory

SYNOPSIS
int fm_Ioad(gfd,path,fontid);
int gfd;
char *path;
int *fontid;

DESCRIPTION
gfd

path

fontid

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the path name of the font file to be loaded.

is the system wide font id returned upon successful load.

This routine loads a font file and updates the font manager's tables appropriately. The desig
nated font is made the active font, as if fm_activate was called. Hence, certain graphics parame
ters may be reset; see fm_activate for details. If the optimize bit is set in the font file fm_opt will
be called to optimize the font. A system-wide unique font identifier is returned.

Note that font ids (and hence fonts) are associated with a (gfd,process-id) pair. In particular, if
a font has been loaded using a gfd for one device, fm_write cannot be called with that font id
and a different gfd. Both the file descriptor and process id must match to use a font.

Note that fm_Ioad and fm_remove act much like open(2) and close(2), in that every font loaded
by fm_Ioad should be released by a call to fmJemove. If a font is loaded twice by separate calls
to fm_Ioad, two calls to fm_remove should be performed to release the font. If gfd or path is
invalid, -1 is returned by fm_Ioad. If the font is already loaded a new fontid will be returned.
A -1 is also returned if format of the font file is incompatible with the device architecture.

SEE ALSO
fm_remove(3W),fm_activate(3W),fm_opt(3W).

DIAGNOSTICS
A return of -1 indicates failure; otherwise, 0 is returned. See errno(2) for more information.

WARNING
If a rectangular font (pixelformat = 1) or a HP-15 (2-byte) font (pixelformat = 2) is used on a
low resolution display with retained rasters, every other rectangular pixel will be lost when an
area is obscured. Also 2-byte characters that are written to an obscured area will be twice as
big as they should be when the area is unobscured.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

NAME
fm_opt - optimize character generation if possible

SYNOPSIS
int fm_opt(gfd,optmode)i
int gfd, optmodei

DESCRIPTION
gfd is an integer file descriptor for an gopened device interface.

optmode

DISCUSSION

optimization mode, where 0 means unoptimize and 1 means attempt to optim
ize.

This routine causes the device driver to use any special hardware and/or routines it has avail
able for displaying characters for the active font. Not all fonts are optimizable. This is com
pletely device dependent; some devices may not support such a thing as optimization so all
character generation may be the same speed regardless.

If optimization is unsuccessful, it may be due to lack of internal table space. It may help to
release an optimized font and try again.

If the optimize bit is set in the font file, fm_load will call fm_opt, thereby attempting to optimize
the font as it is loaded.

Only the I-byte character portion of a HP-15 (2-byte) font will be optimized. The 2-byte char
acter portion will remain bit/pixel in memory and will continue to be expanded to byte/pixel at
display time.

SEE ALSO
fm_Ioad(3W).

DIAGNOSTICS
This routine will return -1 if the operation was unsuccessful (or not possible at this time due to
limited resources) or if there is no active font; otherwise, 0 is returned. See errno(2) for more
information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_RASTERINFO (3W) FM_RASTERINFO(3W)

NAME
fm_rasterinfo - return the size of cells in a font

SYNOPSIS
int fm_rasterinfo(gfd,fontid,width,height,baseline);
int gfd,fontid;
int *width, * height, *baseline;

DESCRIPTION
gfd

fontid

width

height

baseline

is an integer file descriptor for an gopened device interface.

font id as returned by fm_load.

DISCUSSION

width of I-byte character cells in the font.

height of character cells in the font.

baseline of character cells in the font.

For the designated font, the width, height and baseline for the character cells are returned. The
returned cell width is the width of I-byte characters, even if the designated font is a HP-15 (2-
byte) font that includes both 1- and 2-byte characters. The 2-byte characters are twice as wide
as the I-byte characters. The returned value for baseline is for the I-byte character cell. The
baseline of the 2-byte characters is equal to the descender line of 1/2-byte characters.

This library call is useful for determining what size to create a window that will contain fixed
text.

For proportional fonts, width and height are the maximums, respectively, of the widths and
heights of the character cells in the font. The baseline is sometimes useful for lining up charac
ters in different-sized fonts.

SEE ALSO
The "Font Manager" chapter of the Fast Alpha/Font Manager Programmer's Manual and the fol
lowing reference pages: fm_fileinfo(3W),fm_load(3W).

DIAGNOSTICS
A -1 is returned if gfd or fontid is not valid; otherwise, 0 is returned. See errno(2) for more
information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_REMOVE(3W)

NAME
fm_remove - remove a font

SYNOPSIS
int fm_remove(gfd,fontid);
int gfd,fontid;

DESCRIPTION
gfd

fontid

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the id of font to be removed.

FM_REMOVE(3W)

This routine deletes the font and makes it unavailable for further use by the user. All fonts
should be removed via fmJemove calls before gelose is called.

SEE ALSO
fm_Ioad(3W).

DIAGNOSTICS
A -1 is returned if gfd is invalid or fontid is not valid for this process/window; otherwise, 0 is
returned. See errno(2) for more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

NAME
fm_sixteen_bit - set sixteen bit flag

SYNOPSIS
int fm_sixteen_hit(gfd,flag);
int gfd;
int flag;

DESCRIPTION
gfd

flag

DISCUSSION

is an integer file desciptor for an gopened device interface.

flag to indicate whether sixteen bit mode is on (1) or off (0).

This routine enables sixteen bit mode for raster alph output as indicated by flag.

DEFAULTS
Sixteen bit mode is off (0).

SEE ALSO
XDrawString(3X).

DIAGNOSTICS
Sixteen bit mode allows for standard MIT XlI 16 bit raster fonts to be displayed. MIT XlI 16
bit raster fonts are not HP-15 fonts.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

NAME
fm_stclen - determine the pixel length of a character string

SYNOPSIS
int fm_str_Ien(gfd,str,strlen);
int gfd;
char *str;
int strlen;

DESCRIPTION
gfd

str

strlen

DISCUSSION

is an integer file descriptor for a gopened device interface.

is the string for which the length is to be determined.

is the length of str in bytes.

The return value of this function is the length, in pixels, of a character string along the current
character direction of the active font for this process. For example, this could be used to center
text in a proportionately spaced font.

Note that str is not null-terminated; instead, strlen is used to determine its length. Each 2-byte
character is treated as two bytes.

The following processing is done only when the active font is a HP-15 (2-byte) character font:

* If the string contains an undefined 2-byte character, the cell size of the 2-byte galley char
acter is used.

* If the string contains an illegal 2-byte character, the illegal character is treated as the two
I-byte characters that correspond to the two codes that compose the illegal2-byte character
code.

* If the last code of the string is the first code of a 2-byte character, the character is treated as
the I-byte character that corresponds to the code value.

SEE ALSO
fm_ write(3W).

DIAGNOSTICS
A -1 is returned if gfd is not valid; otherwise, 0 is returned. See errno(2) for more information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_STYLEINFO (3W) FM_STYLEINFO(3W)

NAME
fm_styleinto - return style information about a font

SYNOPSIS
#inc1ude <fonticon.h>
int fm_styleinfo(gfd,fontid,symboCchar,escapecodes);
int gfd;
int fontid;
char *symbo13har;
struct escapecodes *escapecodes;

DESCRIPTION
gfd

fontid

symboCchar

escapecodes

DISCUSSION

is an integer file descriptor for an gopened device interface.

is the font id as returned by fm_Ioad.

character describing font (e.g. 'U').

is a structure containing font information, see /usr/inc1ude/fonticon.h.

A font is sometimes designated by the (symboLint, symboL char) pair, especially in escape
sequences (see also termO documentation). For example, 8U is an eight-bit Roman font, OL is a
line drawing font, OM is a math symbol font, etc.

SEE ALSO
fm_rasterinfo(3 W),fm_Ioad(3W).

DIAGNOSTICS
A -1 is returned if fontid or gfd is not valid; otherwise, 0 is returned. See errno(2) for more
information.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FM_ WRITE(3W)

NAME
fm_ write - write characters to the screen

SYNOPSIS
int fm_ write(gfd,x, y,str,strlen,dump,colormode)i
int gfd,x, Yi
char *stri
int strlen,dump,colormodei

DESCRIPTION
gfd

x,y

str

strlen

dump

colormode

is an integer file descriptor for an gopened device interface.

location (upper left) to begin writing characters.

character string to be output.

is the length of str in bytes.

is a boolean indicator: update the screen immediately (TRUE), let the system
imposed buffering take care of the visual update (FALSE).

is a boolean indicator: use the colors from fm_colors (TRUE).

DISCUSSION
If colormode is not enabled, the string is written using the current values of drawing mode and
write enable mask for file descriptor gfd; the value of the background color index has no effect.
Neither the drawing mode, the write enable mask, nor the background color index is modified
by fm_write.

If colormode is enabled, the string is written with the foreground and background colors esta
blished by fm_colors. Neither the drawing mode, the write enable mask, nor the background
color index has any effect on the result. Neither the drawing mode nor the background color
index is modified by fm_write. A side effect of fm_write (in colormode) is that all planes are
enabled for writing.

The string str is not null-terminated, the parameter strlen determines how many bytes are writ
ten.

The following processing is done only when the current active font is a HP-15 (2-byte) charac
ter font:

* If the string to be output contains an undefined 2-byte character, the 2-byte galley character
is output instead of the undefined character.

* If the string contains an illegal 2-byte character, the two I-byte characters that correspond
to the codes of the illegal 2-byte character are output.

* If the last code of the string is the first code of a 2-byte character, the I-byte character that
corresponds to the code value is output.

SEE ALSO
fm_colors(3W),fm_load(3W),write_enable(3G),drawing_mode(3G), background_color_index(3G).

DIAGNOSTICS

BUGS

A -1 is returned if gfd is not valid; otherwise, 0 is returned. See errno(2) for more information.

If a rectangular font (pixelformat = 1) or a HP-15 (2-byte) font (pixelformat = 2) is used on a
low resolution display with retained rasters, every other rectangular pixel will be lost when an
area is obscured. Also, 2-byte characters that are written to the obscured area will be twice as
big as they should be when the area is unobscured.

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FONTM(3W) FONTM(3W)

NAME
fontm - summary of font manager library routines

DISCUSSION
The font manager library, /usr/lib/libfontm.a, provides a high-performance alpha (textual)
interface to graphics windows and bitmapped displays. The font manager can handle different
sizes of fonts and provides an x,y pixel interface (as opposed to the row and column interface of
fast alpha).

All font manager library calls require a file descriptor from gopen(3G) which may be that of a
bitmapped display device or of a graphics window.

Programs that call font manager routines must link in the font manager (-lfontm) and Starbase
(-lsbl -lsb2) libraries.

The header file /usr/include/fonticon.h contains type and constant definitions used by font
manager routines. Programs should use these definitions when calling font manager library
routines.

Font manager library routines are summarized below. For more information on each routine,
consult its reference page.

EXAMPLES

fm_activate(3W)

fm_clipflag(3W)

fm_colors(3W)

fm_fileinfo(3W)

fm_fontdir(3W)

fm_getname(3W)

fm_Ioad(3W)

fm_opt(3W)

fm_rasterinfo(3W)

fm_remove(3W)

fm_styleinfo(3W)

fm_ write(3W)

Make a loaded font the active font.

Set clipping flag. This enables or disables the ability to write out
side a window's boundaries.

Set the clip limits; that is, define the area of a window in which
clipping pertains.

Set the active font's foreground and background colors.

Given the path name of a font file, this routine returns size infor
mation (i.e., pixel width, height, and baseline) about the font's
character cells.

Set the direction for writing characters.

Return the path name of the font's definition file.

Load a font file into memory and activate it.

Optimize character generation if possible.

This routine returns size information (i.e., pixel width, height, and
baseline) about the font's character cells.

Remove a font from memory. Once a font is removed from
memory, it must be reloaded, via fm_load(3W), before it can be
used again.

Return the pixel length of a character string. The length is deter
mined from the font size of the active font.

Return style information about a font. This information is
returned in an escapecodes structure, as defined in
/usr/include/fonticon.h.

Use the active font to display characters.

The following example compiles a program, named fontmprog.c, that calls font manager routines
to display text in graphics windows. The program will run on a Series 300 low-resolution
display using retained windows (thus the -ldd3001 and -lddbyte options).

Hewlett-Packard Company - 1 - Release 7.0: September 1989

FONTM(3W) FONTM(3W)

cc fontmprog.c -lfontm -ldd3001 -lddbyte -lwindow -lsb1 -lsb2

SEE ALSO
windows(1),fa(3W),gopen(3G), window(3W).

Hewlett-Packard Company - 2 - Release 7.0: September 1989

Index:
Fast Alpha/Font Manager Reference

Manual entries are arranged alphabetically by entry name. Section number follows the entry name and
is enclosed within parentheses.

Description Entry Name(Section)
activate a fast alpha font .. FAFONTACTIVATE(3W)

activate a font ... FM_ACTIV ATE(3W)

activation, load a font into the user's font cache and prepare it for FAFONTLOAD(3W)

bit flag, set sixteen ... FM_SIXTEEN_BIT(3W)

cells in a font, return size of .. FM_RASTERINFO(3W)

cells in font file, return size of ... FM_FILEINFO(3W)

character direction, set ... FM_FONTDIR(3W)

character, fill area of window with specified .. FARECTWRlTE(3W)

character generation, optimize if possible .. FM_OPT(3W)

character string, determine pixel length of ... FM_STR_LEN(3W)

characters to the screen, write ... FM_ WRITE(3W)

characters with their enhancements, write a line of .. FAWRITE(3W)

clear the window area specified by the given rectangle .. FACLEAR(3W)

clip limits, set ... ;' FM_CLIPLIM(3W)

clipping flag, set .. FM_CLIPFLAG(3W)

colors, set active font's foreground and background .. FM_COLORS(3W)

colors, set fast alpha font foreground and background .. FACOLORS(3W)

cursor, control the displayed .. FACURSOR(3W)

direction, set character ... FM_FONTDIR(3W)

displayed cursor, control ... FACURSOR(3W)

environment, get information about the fast alpha ... FAGETINFO(3W)

environment, set information about fast alpha ... FASETINFO(3W)

environment, terminate the current fast alpha ... FATERMINATE(3W)

fa - summary of fast alpha library routines .. FA(3W)

faclear - clear the window area specified by the given rectangle .. FACLEAR(3W)

facolors - set the fast alpha font foreground and background colors FACOLORS(3W)

facursor - control the displayed cursor ... FACURSOR(3W)

fafontactivate - activate a fast alpha font ... FAFONTACTIVATE(3W)

fafontload - load a font into the user's font cache and prepare it for activation FAFONTLOAD(3W)

fafontremove - remove a font from the user's font cache .. FAFONTREMOVE(3W)

fagetinfo - get information about the fast alpha environment .. FAGETINFO(3W)

fainit - prepare a fast alpha window device for output, and set up all defaults FAINIT(3W)

farectwrite - fill area of window with specified character ... FARECTWRITE(3W)

faroll - roll a portion of the window ... FAROLL(3W)

fasetinfo - set information about the fast alpha environment ... FASETINFO(3W)

fast alpha environment, get information about .. FAGETINFO(3W)

fast alpha environment, set information about ... FASETINFO(3W)

fast alpha environment, terminate the current ... FATERMINATE(3W)

fast alpha font, activate .. FAFONTACTIVATE(3W)

fast alpha font foreground and background colors, set .. FACOLORS(3W)

fast alpha library routines, summary of ... FA(3W)

fast alpha window device, prepare for output, and set up all defaults .. FAINIT(3W)

faterminate - terminate the current fast alpha environment ... FATERMINATE(3W)

fawrite - write a line of characters with their enhancements ... FAWRITE(3W)

filename, translate font id to .. FM_GETNAME(3W)

fill area of window with specified character ... FARECTWRlTE(3W)

flag, set clipping .. FM_CLIPFLAG(3W)

flag, set sixteen bit ... FM_SIXTEEN_BIT(3W)

fm_activate - make a font active ... FM_ACTIVATE(3W)

fm_clipflag - set clipping flag ... FM_CLIPFLAG(3W)

fm_cliplim - set clip limits .. FM_CLIPLIM(3W)

fm_colors - set active font's foreground and background colors ... FM_COLORS(3W)

-1-

Index:
Fast Alpha/Font Manager Programming Reference

Description Entry Name(Section)

fm_!ileinfo - return size of cells in font file .. FM_FILEINFO(3W)

fm_fontdir - set character direction .. FM_FONTDIR(3W)

fm_getname - translate font id to filename ... FM_GETNAME(3W)

fm_Ioad - load a font into memory ... FM_LOAD(3W)

fm_opt - optimize character generation if possible ... FM_OPT(3W)

fm_rasterinfo - return the size of cells in a font ... FM_RASTERINFO(3W)

fm_remove - remove a font ... FM_REMOVE(3W)

fm_sixteen_bit - set sixteen bit flag ... FM_SIXTEEN_BIT(3W)

fm_str _len - determine the pixel length of a character string ... FM_STR_LEN(3W)

fm_styleinfo - return style information about a font .. FM_STYLEINFO(3W)

fm_write - write characters to the screen ... FM_WRITE(3W)

font, activate a fast alpha ... FAFONTACTIVATE(3W)

font, activate ... FM_ACTIVATE(3W)

font, fast alpha, set foreground and background colors ... FACOLORS(3W)

font file, return size of cells in ... FM_FILEINFO(3W)

font from the user's font cache, remove ... FAFONTREMOVE(3W)

font id to filename, translate .. FM_GETNAME(3W)

font into memory, load ... FM_LOAD(3W)

font, load into the user's font cache and prepare it for activation FAFONTLOAD(3W)

font manager library routines, summary of .. FONTM(3W)

font, remove .. FM_REMOVE(3W)

font, return size of cells in ... FM_RASTERINFO(3W)

font, return style information about ... FM_STYLEINFO(3W)

fontm - summary of font manager library routines ... FONTM(3W)

font's foreground and background colors, set active .. FM_COLORS(3W)

get information about the fast alpha environment .. FAGETINFO(3W)

id to filename, translate font .. FM_GETNAME(3W)

information about a font, return style .. FM_STYLEINFO(3W)

information about the fast alpha environment, get ... FAGETINFO(3W)

information about the fast alpha environment, set ... FASETINFO(3W)

length of a character string, determine pixel .. FM_STR_LEN(3W)

library routines, summary of fast alpha ... FA(3W)

library routines, summary of font manager .. FONTM(3W)

limits, set clip ... FM_CLIPLIM(3W)

load a font into memory ... FM_LOAD(3W)

load a font into the user's font cache and prepare it for activation FAFONTLOAO(3W)

memory, load a font into .. FM_LOAO(3W)

optimize character generation if possible ... FM_OPT(3W)

output, prepare a fast alpha window device for, and set up all defaults FAINIT(3W)

pixel length of a character string, determine .. FM_STR_LEN(3W)

rectangle, clear the window area specified by the given ... FACLEAR(3W)

remove a font from the user's font cache ... FAFONTREMOVE(3W)

remove a font .. FM_REMOVE(3W)

roll a portion of the window ... :; FAROLL(3W)

routines, summary of fast alpha library ... FA(3W)

routines, summary of font manager library .. FONTM(3W)

screen, write characters to ... FM_ WRITE(3W)

set information about the fast alpha environment .. FASETINFO(3W)

sixteen bit flag, set ... FM_SIXTEEN_BIT(3W)

size of cells in a font, return .. FM_RASTERINFO(3W)

-2-

Index:
Fast Alpha/Font Manager Programming Reference

Description Entry Name(Section)

size of cells in font file, return ... FM_FILEINFO(3W)

string, determine pixel length of chara'Cter ... FM_STR_LEN(3W)

style information about a font, return .. FM_STYLEINFO(3W)

summary of fast alpha library routines .. FA(3W)

summary of font manager library routines ... FONTM(3W)

terminate the current fast alpha environment .. FATERMINATE(3W)

translate font id to filename ... FM_GETNAME(3W)

window area specified by the given rectangle, clear ... FACLEAR(3W)

window, fill area of, with specified character ... FARECTWRITE(3W)

window, roll a portion of .. FAROLL(3W)

write a line of characters with their enhancements ... FAWRITE(3W)

write characters to the screen .. FM_WRITE(3W)

-3-

A
Font Information

Getting Font Information

A program is provided with the Fast Alpha/Font Managers libraries that will
enable you to extract information concerning the raster fonts. The following
steps will allow you to compile and execute the fontinfo program. The resultant
display will give you font information.

1. Log in as su peruser.

2. Type cd to /usr/lib/fa_fm_demo

3. Type make -f Makefile fontinfo

4. Type fontinfo /usr/lib/raster/(font directory)/(font name)
(See table A-I for font directories and names.)

For example:

fontinfo /usr/lib/raster/8x16/1p.8u

When you execute fontinfo on a Hewlett-Packard raster font, a summary of
font information is printed to the standard output.

Font Information A-1

Raster Fonts

This is a list of the fonts provided with the Fast Alpha/Font Manager libraries.
For each font size, the corresponding HP-UX directory path is shown.

Table A-1. Font Directories and Names

Font Directory Font Name Description

/usr/lib/raster/10x20 kana.8K Kat akana, 8 bit
Ip.8U Roman8, ascii, 8 bit
Ip.b.8U Roman8, ascii, 8 bit (bold)

/usr/lib/raster/12x20 cour.O Courier style, ascii, 8 bit
Ucour.b.OU Courier style, ascii, 8 bit (bold)

/usr/lib/raster/12x24 kana.8K Katakana (Japanese), 8 bit
kanji. 16K Kanji (Japanese), 16 bit

/usr/lib/raster/18x30 math. OM Greek letters, 8 bit
pica.8U Pica style, ascii, 8 bit

/usr/lib/raster/5x18 kana.8K Katakana (Japanese), 8 bit
kanji. 16K Kanji (Japanese), 16 bit

/usr/lib/raster/6x24 kana.8K Katakana (Japanese), 8 bit
kanji. 16K Kanji (Japanese), 16 bit

/usr/lib/raster/6x8 Ip.8U Roman8, ascii, 8 bit
Ip.b.81 Roman8, ascii, 8 bit (bold)
math. 8M Greek letters, 8 bit

/usr/lib/raster/7x10 Ip.8U Roman8, ascii, 8 bit

/usr/lib/raster/8x16 kana.8K Katakana (Japanese), 8 bit
linedraw.OL Line drawing characters, 8 bit
Ip.8U Roman8, ascii, 8 bit
Ip.b.8U Roman8, ascii, 8 bit (bold)
Ip. i.8U Roman8, ascii, 8 bit (italic)
math. OM Greek letters, 8 bit

A-2 Font Information

Table A-1. Font Directories and Names
Continued

Font Directory Font Name Description

/usr/lib/raster/8x18 kana.8K Katakana (Japanese), 8 bit
kanji. 16K Kanji (Japanese), 16 bit

/usr/lib/raster/8x2O kana.8K Katakana (Japanese), 8 bit
kanji. 16K Kanji (Japanese), 16 bit

/usr/lib/raster/L6x15 Ip.8U Roman8, ascii, 8 bit

Supported Fonts in Windows

The following table summarizes the font libraries, font characters, and font
file formats supported in the different window systems. Raw mode and
HP Windows/9000 are grouped together because the font capabilities are identi
cal.

Font Information A-3

Table A-2. Font Libraries, Font Character Sets and Font Formats

Supported
Window System Font Library Supported Fonts Font File Format

Pre-3.1/6.5 FA/FM Library 8-Bit: FA/FM fonts; FA/FM format
Raw Mode and HP-15: FA/FM fonts
Windows /9000

XlO XlO font 8-Bit: XlO fonts; XlO format
procedures HP-15: HP XlO Kanji

XII revision A.OO Xll font 8-bit: XII fonts; Server Natural
procedures l6-bit: XII Kanji; Format (SNF),

HP-15: HP XII Kanji BDF

XII XII Xlib font 8-bit: XII fonts, SNF,BDF
procedures, FA/FM fonts;
FA/FM Library l6-bit: XII Kanji;

HP-15: HP XII Kanji

3.1/6.5 Raw Mode FA/FM Library 8-bit: XII fonts, SNF,BDF
FA/FM fonts;
HP-15: HP XII Kanji

3.1/6.5 FA/FM Library 8-bit: FA/FM fonts; SNF,BDF
HP Windows/9000 HP-15: HP XII Kanji

A-4 Font Information

Note Only the XII font procedures can be used in an XII revision
A.OO window. Both the XII font procedures and the FA/FM font
procedures can be used in an X11 (post-revision A.OO) window.

In 3.1/6.5 raw mode, the FA/FM library can access either
the FA/FM fonts or the XII fonts. However, in 3.1/6.5
HP Windows/9000, only the FA/FM and HP-15 fonts can be
used.

Windows Effect on FA/FM

Changes to Text Operation

The 6.5 (Series 300) and 3.1 (Series 800) releases of HP-UX effect FA/FM text
operation in several ways.

• The FA/FM libraries can be used in an XII window. Prior to the 3.1
(Series 800) and 6.5 (Series 300) HP-UX releases, these libraries were
only usable in raw mode and with HP Windows/9000 (Series 300 only).
As with raw mode or HP Windows/9000 operation, the file descriptor
returned by the Starbase open of the XII window is used by the FA/FM
routines.

• The FA/FM libraries and the XII raster font procedures now share a
common font file format. This format is based on the XII format, not on
the FA/FM font file format. This permits any FA/FM font or XII font
to be used by either the FA/FM libraries or the XII font library.

Specific Changes to Fonts

The 3.1/6.5 FA/FM font loader (which loads fonts from disc into virtual memory)
has been modified to only load SNF fonts, not fonts in the pre-3.l/6.5 FA/FM font
format. Therefore, the FA/FM fonts have been converted to SNF and provided
with the 3.1/6.5 HP-UX releases. Note the following points:

• The font file format, and not the FA/FM library functionality, has been
changed. Access to XII fonts by the FA/FM libraries is only supported
in raw mode. HP Windows/9000 does not support use of XII fonts.

Font Information A-5

• The pre-3.1/6.5 FA/FM font files cannot.be loaded by a later FA/FM font
loader. To support pre-3.1/6.5 executables which reference FA/FM fonts,
the FA/FM font files are shipped with the 3.1/6.5 releases of HP-UX .

• When you compile a pre-3.1/6.5 FA/FM program (which references the
pre-3.1/6.5 FA/FM font files by name), link the program with the later
FA/FM libraries (which only know how to load SNF fonts), the following
support is provided to avoid changing the font file names in your source
code:

When the referenced FA/FM font file is not an SNF font, the FA/FM
font loader looks for a related SNF font in an associated subdirectory.
For example, if your pre-3.1/6.5 program accesses the FA/FM font
/usr/lib/raster/8x16/1p.8U, this font cannot be loaded by the 3.1/6.5
FA/FM font loader because it is not an SNF font. Therefore, the font
loader looks for the SNF font /usr/lib/raster/8x16/SNF/lp. 8U. scf
and loads it.

SNF versus non-SNF Fonts

The following diagram shows several examples of how the FA/FM SNF and non
SNF fonts are related:

pre-3. 1 /6.5

FA/FM fonts in

FA/FM fonts: /usr/lib/roster/8x16/

Ip.8U

moth.OM

3.1/6.5

FA/FM fonts in SNF

SNF /lp.8U.scf

SNF /moth.OM.scf

Figure A-1. FA/FM Fonts in FA/FM Format and in SNF

A-6 Font Information

Which Font To Use

The following table summarizes what font is used based on the nature of your
program:

Table A-3. FA/FM Font File Usage

Application Font File Used Example Font File

Pre-3.1/6.5 executable Pre-3.1/6.5 FA/FM usr/lib/raster/8x16/1p.8U
fonts in FA/FM
format

Pre-3.1/6.5 source which FA/FM font files in usr/lib/raster/8x16/SNF/
references pre-3.1/6.5 SNF Ip.8U.snf
FA/FM fonts but is linked (do not break line)
with later libraries

FA/FM program which FA/FM font files in usr/lib/raster/8x16/SNF/
references 3.1/6.5 FA/FM SNF Ip.8U.snf
fonts (do not break line)

Font Information A-7

Index

A

activating a fast alpha font 2-19
activating a font manager font 3-5
active font, fast alpha 2-18
active font, font manager 3-3
alternate font file, termO 4-3

B
backgroundplanes, of the fast alpha fainfo structure 2-8, 2-10
base font file, termO 4-3
baseline height of font 3-17
boldness, of font manager escapecodes structure 3-20

c
cache, font manger 3-3
cache for fast alpha fonts 2-18
capabili ties, of fast alpha fainfo structure 2-8, 2-10
changing the fast alpha environment 2-8
character clipping, font manager 3-14
character enhancements, fast alpha 2-4
clearbeforewrite, of fast alpha fainfo structure 2-8,2-11
clearbeforewrite, of the fast alpha fainfo structure 2-8, 2-10
clearbeforewrite, relation to font manager writes 3-7
Clear.c program 2-22
clearing a fast alpha rectangle 2-21
clip limits, font manager 3-14
clip limits, setting for font manager 3-15
clipping disabled, font manager 3-14
clipping enabled, font manager 3-14
clipping, font manager 3-14
color, setting for fast alpha fonts 2-19
color with font manager 3-7

Index-1

colormode, of fast alhpa fainfo structure 2-11
colormode, of fast alpha fainfo structure 2-8
colormode, of the fast alpha fainfo structure 2-8, 2-10
colors, font manager 3-4
compiling programs 2-6, 4-2
compiling window programs 4-1
controlling direction of font manager writes 3-9
cursor control, fast alpha 2-13
cursor, of the fast alpha fainfo structure 2-8, 2-10
Cursor.c program 2-14

D
defaultenhancements, of fast alpha fainfo structure 2-8, 2-11
defaultenhancements, of the fast alpha fainfo structure 2-8, 2-10
determining string length, font manager 3-12
device driver for CRT, linking with programs 4-2
direction of font manager writes, controlling 3-9
disabling clipping, font manager 3-14

E
enabling clipping, font manager 3-14
enhancements, of the fast alpha fainfo structure 2-8, 2-10
enhancements to fast alpha characters 2-4
environment variables

LANG 4-3
WMBASEFONT 2-18
WMFONTDIR 3-3

escapecodes structure 3-20
example

FM_clipping. c 3-15
FM_Colors. c 3-11
FM_Direction. c 3-10
FM_Struct . c 3-6
Font_size. c 3-19
Style.c 3-21

examples
changing the fast alpha environment 2-12
Clear.c 2-22
clear_gr. c 2-22
colors, setting for fast alpha font 2-20
disabling display of fast alpha cursor 2-14

Index-2

F

fast alpha cursor, disabling display of 2-14
fast alpha cursor positioning 2-14
fast alpha environment, changing 2-12
fast alpha, loading and activating a font 2-20
fast alpha rectangle, scrolling 2-23
fast alpha, writing characters 2-16
FM_length. c 3-13
font colors, setting for fast alpha 2-20
font manager, getting font information 3-21
font manager, loading a font 3-11
getting font information 3-21
initializing the fast alpha environment 2-7
loading a font manager font 3-11
loading and activating a fast alpha font 2-20
positioning the fast alpha cursor 2-14
scrolling a fast alpha rectangle 2-23
setting fast alpha font colors 2-20
terminating the fast alpha environment 2-7
writing fast alpha characters 2-16

FABONW 2-8, 2-10
faclear 2-21
FACOLOR 2-8, 2-10-11, 2-20
fa_coordinate structure 2-4
facursor 2-13
F ACURSORNOMOVE 2-13
fafontload 2-19
fagetinfo 2-8
fa.h header file 2-2, 4-3
Fainfo program 2-12
f ainf 0 structure 2-8
fainfo structure, description of fields 2-8, 2-10
fainit 2-6
FAOFF 2-11, 2-21
fa_rectangle structure 2-4
farectwrite 2-16
farol12-23
F AROLLDOWN 2-23
F AROLLLEFT 2-23
FAROLLRIGHT 2-23

Index-3

F AROLLUP 2-23
fasetinfo 2-8
fast alpha active font 2-18
fast alpha character enhancements 2-4
fast alpha character strings, writing 2-15
fast alpha cursor control 2-13
fast alpha environment, changing 2-8
fast alpha environment, getting information about 2-8
fast alpha environment, initializing 2-3, 2-6
fast alpha environment, setting 2-8
fast alpha environment, terminating 2-3, 2-6
fast alpha font, activating 2-19
fast alpha font cache 2-18
fast alpha font colors, setting 2-19
fast alpha font id 2-18
fast alpha font management 2-18
fast alpha font, removing from cache 2-18
fast alpha fonts, loading 2-19
Fast Alpha Library 2-1
Fast Alpha Library, linking with programs 4-2
Fast Alpha Library, relation to Font Manager Library 3-1
fast alpha, loading fonts 2-18
fast alpha protocol 2-2
fast alpha rectangle, clearing 2-21
fast alpha rectangle, filling with characters 2-16
fast alpha rectangle, scrolling 2-23
fast alpha rectangles 2-4
fast alpha, writing characgters 2-15
Fast Alpha/Font Manager differences 3-1
faterminate 2-6
FAWINDOW 2-6
FAWONB 2-8, 2-10
fawri te 2-15
filling a fast alpha rectangle with characters 2-16
fm_acti vate 3-5
fm_clipflag 3-14
fm_cliplim 3-15
FM_clipping. c example 3-15
FM_Colors. c example 3-11
FM_Direction. c example 3-10
fm_fileinfo 3-18

Index-4

fm_f ontdir 3-9
fm_getname 3-21
FM_length. c example 3-13
fm_load 3-4
fm_opt 3-12
fm_rasterinfo 3-18
fm_remove 3-5
fm_str_len 3-12
fm_str_len, relation to clipping 3-12, 3-14
FM_Struct . c example 3-6
fm_write 3-7, 3-9
font, activating fast alpha 2-19
font, baseline height 3-17
font cache, font manager 3-3
font cell 3-17
font color, font manager 3-4
font colors, setting for fast alpha 2-19
font directories 4-3
font file 3-3
font files 4-2
font height 3-17
font id, fast alpha 2-18
font id, font manager 3-3
font management, fast alpha 2-18
font management, font manager model 3-3
font manager, activating a font 3-5
font manager, active font 3-3
font manager, clipping 3-14
font manager, color 3-7
font manager, direction of write 3-9
font manager, disabling clipping 3-14
font manager, enabling clipping 3-14
font manager font cache 3-3
font manager, font color 3-4
font manager, font id 3-3
font manager font table 3-3
font manager, getting font size information 3-18
Font Manager Library 3-1
Font Manager Library concepts 3-2
Font Manager Library, linking with programs 4-2
font manager, loading fonts 3-3

Index-5

font manager, obtaining information about fonts 3-17
font manager, optimizing writes 3-12
font manager, removing a font 3-5
font manager, removing fonts 3-4
font manager, setting clip limits 3-15
font manager, string length 3-12
font manager, write direction control 3-9
font manager, writing characters 3-7
Font Manager/Fast Alpha differences 3-1
font name, getting with font manager 3-21
font size 3-17
font size, getting with font manager 3-18
font style 3-17, 3-20
font style, getting font manager information 3-20
font table, font manager 3-3
font width 3-17
fontcellheight, of the fast alpha fainfo structure 2-8, 2-10
fontcellwidth, of the fast alpha fainfo structure 2-8, 2-10
fonticon.h header file 3-2, 4-3
Fonts.c program 2-20
Font_size. c, example 3-19
foregroundplanes, of the fast alpha fainfo structure 2-8, 2-10

G
gclose(3G) when using fast alpha routines 2-3
getting a font's name with font manager 3-21
getting fast alpha environment information 2-8
getting font manager style information 3-20
getting font size information, font manager 3-18
gopen(3G), relation to Font Manager Library 3-2
gopen(3G) when using fast alpha routine 2-2
graphics window type, displaying text using Fast Alpha 2-1

H
header files

fa. h 2-2, 4-3
fonticon. h 3-2, 4-3

height of font 3-17
hpi tch, of font manager escapecodes structure 3-20

Index-6

icon definition files 4-3
icon files 4-2
initializing the fast alpha environment 2-6
initializing the fast alpha environment, example 2-7

L
LANG 4-3
libdddriver. a 4-2
libfa.a 4-2
libfontm. a 4-2
libraries, linking with window programs 4-1
libsb1. a 4-2
libsb2. a 4-2
libwindow. a 4-2
link order when compiling window programs 4-2
linking libraries 2-6, 4-2
linking libraries with window programs 4-1
loading fast alpha fonts 2-18
loading font manager fonts 3-4
loading fonts, font manager 3-3

M
makecurrent, of fast alpha fainfo structure 2-8, 2-11
makecurrent, of the fast alpha fainfo structure 2-8, 2-10
MCALWAYS 2-11

o
optimization of character generation 3-7
optimizing font manager writes 3-12

p

program
Cursor.c 2-14
Fainfo 2-12
Fonts.c 2-20
Structure 2-7

program Clear.c' 2-22
program FM_clipping. c 3-15
program FM_Colors. c 3-11
program FM_Direction. c 3-10

Index-7

program FM_length. c 3-13
program FM_Struct . c 3-6
program Font_size. c 3-19
program Style.c 3-21
proportional, of font manager escapecodes structure 3-20
protocol, fast alpha 2-2

Q

quality, of font manager escapecodes structure 3-20

R
rectangles, fast alpha 2-4
removing a font manager font 3-5
removing fast alpha fonts 2-18
removing font manager fonts 3-4

S
scrolling a fast alpha rectangle 2-23
setting fast alpha environment information 2-8
setting fast alpha font colors 2-19
setting font manager clip limits 3-15
shared memory, font manager 3-4
size, font 3-17
size, of fast alpha fainfo structure 2-8, 2-10
Starbase Library, linking with programs 4-2
string length, font manager 3-12
Structure program 2-7
style, font 3-17, 3-20
Style.c example 3-21
symbol_int, of font manager escapecodes structure 3-20

T
termina ting the fast alpha environment 2-6
terminating the fast alpha environment, example 2-7
text in a graphics window, using Fast Alpha 2-1
text, writing in graphics windows using Font Manager Library 3-1
typeface, of font manager escapecodes structure 3-20

U

/usr/include/fa.h 2-2,4-3
/usr /include/fonticon. h 3-2, 4-3

Index-8

/usr/lib/libdddriver. a 4-2
/usr/lib/libfa.a4-2
/usr/lib/libfontm.a 4-2
/usr/lib/libsbl.a4-2
/usr/lib/libsb2.a4-2
/usr/lib/libwindow.a4-2
/usr/lib/raster/* 4-3
/usr /lib/raster /dfl t/a/h/$LANG 4-3
/usr /lib/raster /dfl t/a/l/$LANG 4-3
/usr /lib/raster /dfl t/b/h/$LANG 4-3
/usr /lib/raster /dfl t/b/l/$LANG 4-3
/usr /lib/raster /icons 4-3

v
vheight, of font manager escapecodes structure 3-20

W

width of font 3-17
Window Library, linking with programs 4-2
WMBASEFONT 2-18
WMFONTDIR 3-3
writing characters with font manager 3-7
writing fast alpha character strings 2-15
writing fast alpha characters 2-15
writing font manager characters 3-7

Index-9

HP Part Number
98592-90092
Microfiche No. 98592-99092
Printed in U.S.A. E0989

r/in- HEWLETT
a!~ PACKARD

98592-90646
For Internal Use Only

