
Starbase Device Drivers
Library Manual

Volume 2

HP 9000 Series 300/800 Computers

HP Part Number 98592-90018

r/iDW HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort COllins, Colorado 80525

Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty te~ms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © 1989 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern­
ment Department of Defense is subject to restrictions as set forth in para­
graph (b)(3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

September 1989 ... Edition 1. This Edition supersedes manual part number
98592-90016.

iii

Contents

Printer Command Language Formatter
Overview
Printer Configurations

Non-Spooled Operation
Spooled Operation
Spooler Conflicts . . .

Software Structure . . .
Setting Up the Special Device File
The Configuration File . .
Configuration Files
Configuration File Template .

Example Configuration File
Printer Parameters .
Print Modes

Print Mode: color
Error Diffusion .
Print Mode: color2

Print Mode: primary
Print Mode: gray. .

Dithering in gray Mode (Half Toning)
Disappearing Lines in gray Mode . .

Print Mode: monochrome
Print Mode Differences When Printing Single Planes

Using the Graphics Print Procedures
Specifying the Formatter and Config Parameters
Using the bmprint Program
Direct Access Printing
Direct Access Using Redirection or Pipes
Spooling Examples

PCL-I
PCL-3
PCL-3
PCL-3
PCL-4
PCL-4
PCL-5
PCL-5
PCL-6
PCL-'9
PCL-9
PCL-IO
PCL-II
PCL-II
PCL-12
PCL-12
PCL-13
PCL-13
PCL-13
PCL-14
PCL-14
PCL-14
PCL-15
PCL-15
PCL-15
PCL-16
PCL-17
PCL-18

Contents-1

Controlling Print Orientation
Print Size and Clipping . . .

Linking and Running Your Program
Warning and Error Messages .

Warning Messages
Error Messages.

Setting Up the Spooler . . .
Special Considerations for Non-Spooled Serial Output .

Contents-2

PCL-19
PCL-19
PCL-20
PCL-21
PCL-21
PCL-21
PCL-23
PCL-24

\
~

pel
Printer Command Language Formatter

Overview

This section provides a quick overview of the Printer Command Language (PCL)
formatter. The PCL formatter is used with both monochromatic and color PCL
printers.

In this document, "bitmap" is used to denote a rectangular array of pixels, and
can be either a device's frame buffer or an image in memory created by the
Starbase Memory Driver. "Starbase bitmap file" is used to denote a bitmap file
created by the Starbase procedures bi tmap_to_file or dcbi tmap_to_file. The
key points are:

1. This formatter permits hard copies from a bitmap or a Starb~se bitmap
file to a color or monocromatic PCL format printer. The entire bitmap or
a subrectangle of the bitmap can be processed and printed. The chapter
"Storing Retrieving, and Printing Images" in the Starbase Graphics
Techniques manual (HP-UX Concepts and Tutorials) should be read prior
to reading this document.

2. The following monochromatic PCL printers are supported:
HP 2225A (ThinkJet)
HP 2235A (SprintJet)
HP 2227 A and HP2228A (QuietJet and QuietJet Plus)
HP 2563A, HP2564B, HP2565B, HP2566A, HP2567B
HP 2686A (LaserJet and LaserJet Plus)
HP 2932A, HP2933A, HP2934A
HP 33446A (Laser Jet II)
HP 33447 A (Laser Jet lID)
C 1200A Asian System Printer
C 1202A Asian Serial Printer

3. The following color PCL printers are currently supported:

PCL-1

HP 3630A color (PaintJ et)

HP C1602A color (PaintJet XL)

4. Prints can be done in gray scale, monochromatic (black & white), primary
(red, green, blue, cyan, yellow, magenta, black, white), or in color.

5. The PCL formatter is not a Starbase driver. In other words, you don't
do moves, draws, etc. to the PCL printer. What you can do is:

• Process and print an already existing image on the bitmap to a
color or monochromatic PCL printer with bitmap_print or the
HP-UX command screenpr (see the Starbase Reference manual).

• Process and print an existing bitmap image from a Starbase
bitmap file to a color or monochromatic PCL printer with
file_print or the HP-UX command pcltrans (see the Starbase
Reference manual).

6. The color version of this formatter includes the full monochromatic
capabilities. The color version of this formatter works only with HP-UX
Release 5.5 and later versions (Series 300), and HP-UX Release 1.2 and
later on the Series 800. The monochromatic only version was available
with the HP-UX releases 5.2 and 5.3 (Series 300).

7. Graphics prints can be done in 3 ways:

PCL-2

• Use Starbase procedures to print from a bitmap or Starbase
bitmap file under the control of the program which originally
creates the bitmap or file.

• A program other than that which originally creates the bitmap or
file can be used in one of two ways.

a. Use the Starbase procedure gopen without INIT followed
by the Starbase procedure bitmap_print to print a
currently displayed bitmap.

b. Use the Starbase procedure file_print to print a previ­
ously created Starbase bitmap file.

HP provides an HP-UX command-screenpr-which can be used
to print a currently displayed bitmap.

• Use pcltrans, an HP-UX command (see the Starbase Reference
manual), to spool a Starbase bitmap file to the printer. This is

typically used when the printer is shared, although it can be used
on a single-user system to do graphics prints in background.

Printer Configurations

There are two fundamental printer configurations of interest, spooled and non­
spooled. The primary difference between the two configurations is that spooling
uses the system spooler (lp) in the raw (-oraw option) mode. This section gives a
quick overview of these two configurations so that you can focus in later sections
on the information you need for your application.

Non-Spooled Operation

In a non-spooled environment, the following Starbase procedures can be used in
your programs:

• bitmap_print, dcbi tmap_print-do a graphics print from the specified
bitmap. Remember that the bitmap can either be a display or a memory
buffer created by the Star base memory driver.

• file_print-do a graphics print using a file created previously by the
bi tmap_ to_file procedure.

Spooled Operation

In a spooled environment, the HP-UX command pcltrans (see the Starbase
Reference manual) is used as a filter to process a Starbase bitmap format file
(created previously using bitmap_to_file), which is then piped to the lp spooler
in raw mode. Spooling can either be done on a single-user computer or the file
can be sent to another computer if the printer is shared.

Alternatively the spooler can be accessed using bitmap_print or file_print.
With these procedures output can be directed to a special device file or redirected
through standard out depending upon parameters in the formatter's configuration
file. Spooler access can be accomplished by: processing a bitmap or file (using
bi tmap_print or file_print) with the output going to standard out. Then
redirect or pipe the resulting output to the lp spooler in raw mode.

PCL-3

Spooler Conflicts

Assume that you have a color or monochromatic peL printer connected to your
system and you (and possibly others) spool graphics prints to it. If you also use \
Starbase procedures to do graphics prints, the spooler and Starbase program may
conflict, producing interleaved/unusable output. Unusable output may occur in
both spooled text and the graphics prints. Thus, simultaneous usage of spooled
and non-spooled modes should not be used.

If your printer is used for spooling, it is recommended that all graphics prints be
done using spooling.

Software Structure
The following files are used for graphics prints on color peL printers:

/usr/lib/starbase/formatters/fmt_table.c
/usr/lib/starbase/formatters/pcl/libfmtpcl.a
/usr/lib/starbase/formatters/pcl/cfg.ctmplt
/usr/bin/pcltrans
/usr/bin/screenpr

The following files are used for graphics prints on monochromatic peL printers:

/usr/lib/starbase/formatters/fmt_table.c
/usr/lib/starbase/formatters/pcl/libfmtpcl.a
/usr/lib/starbase/formatters/pcl/cfg.template
/usr/bin/pcltrans
/usr/bin/screenpr

PCL-4

Setting Up the Special Device File
A special device file is required if you directly access a printer. If the printer has
already been assigned a node as system printer you may use that device file if
you are on a single user system and you have write permission for that device
file.

If a special device file for your printer has not been assigned, the mknod command
must be done before proceeding further. You must be superuser to use the mknod
command. Note that the Select Code is entered in hexadecimal format. For
example, if your Select Code is 22, this is entered as 16 hex. The following
example sets up a color serial printer (an HP 3630A) on select code 9.

* mknod /dev/rp c 1 Ox090004

You may need to set owner, group, and mode (chown,chgrp,chmod) in an
appropriate manner.

When using major number 7 you should ensure that bit 0 of the minor number is
set for raw mode. Refer to the HP- UX System Administrator Manual, "System
Administrator's Toolbox" section for further details (in particular the section
that covers mkdev, and mknod).

The Configuration File
The parameters which control printing are specified in two ways:

1. By parameters in the bitmap_print and file_print procedures. These
parameters contain information about the source, e.g., information on the
size of the bitmap rectangle to process and print. Parameters are apt to
change during program execution. They are discussed in the Starbase
Graphics Techniques manual and are not discussed here.

2. By additional information contained in files called configuration files.

PCL-5

Configuration Files
Configuration files store information about the printer. e.g., resolution, page size,
pixel expansion, etc.

Storing printer information in a configuration file is done as a convenience so that
you don't need to type in this information each time you use the hi tmap_print
or file_print procedures. When you use these procedures, you only need to
provide the pathname of the configuration file.

Note All parameters must be present and in the exact order shown. If
parameters are missing or incorrect an error will be issued and
formatter action will be terminated.

The parameters in the configuration file are :

ENABLE STANDARD OUT

PRINTER DEVICE FILE

PRINT METHOD

PCL-6

If TRUE, output goes to standard out regardless
of the printer device file specified in the next
parameter. If FALSE, output goes to the
special device file or file specified in the next
parameter.

Specifies the special device file for the printer.
This parameter is read but ignored if standard
out enable is TRUE.

Specifies color, color2, primary (red, green,
blue, cyan, magenta, yellow, black, white),
gray scale, or monochromatic (black and
white). This parameter has allowable values
of "color", "color2", "primary", "gray",
"grey", "mono", and "monochromatic".

If PRINT METHOD is "color", each pixel is
converted to an appropriate color. If print
method is "color2", each pixel is converted
to an appropriate color plus a random noise
increment value.

If PRINT METHOD is "primary" then each pixel
is converted to the nearest primary color.

Note

If PRINT METHOD is "gray" (or "grey"), each
RGB pixel is converted to an appropriate gray
scale value.

If PRINT MODE is "mono" (or
"monochromatic"), each non zero value RGB
pixel is rendered black.

Monochromatic only formatters, map "color" to "gray" and
"primary" to "monochromatic". That is, the appropriate
monochromatic mode will automatically be chosen.

PIXEL EXPANSION Indicates the expansion for each pixel on the
bitmap and ranges from 1 to 8. For example,
to expand each pixel of the bitmap to a 3 x 3
cell, the expansion is set to 3.

RESOLUTION Indicates resolutions in dots/inch. This is
printer dependent. For example, the HP 3630A
has an available graphics resolution of 180
dots/inch, while the LaserJet and LaserJet
Plus printers have four resolutions as follows:

• 75 dots/inch
• 100 dots/inch
• 150 dots/inch
• 300 dots/inch

Note that this parameter and the subsequent
page_width and page_length parameters are
used to determine the output "page" for clip­
ping purposes.

SEND RESOLUTION If true, specifies that the graphics resolution
escape sequence will be sent to the output
file (printer). If false, no graphics resolutio:1
escape sequence will be sent. This parameter
should normally be set to true unless special
circumstances exist (such as spooling).

PCL-7

PRINT START POSITION

PAGE WIDTH

PAGE LENGTH

If this parameter is "current", raster graphics
rows start at the current text cursor position.
If this parameter is "margin", raster graphics
rows start at the left graphics margin. When
this parameter is margin, a formfeed is sent to
the printer at the completion of the graphics
data transfer. If this parameter is current,
no formfeed is sent upon completion of the
graphics data transfer. Note that the current
parameter is only useful for printers (such as
the LaserJet or SprintJet) which implement
this capability of peL.

Specifies the width of the printable graphics
area on the page in inches.

Specifies the length of the printable graphics
area on the page in inches.

The symbol # in configuration files starts a comment and is operative for the
remainder of the line.

PCL-8

\
I

Configuration File Template

A configuration file template for color pel printers is provided as file:

/usr/lib/starbase/formatters/pcl/cfg.ctmplt

This template contains values appropriate for the HP 3630A printer. A
configuration file template for monochromatic pel printers is provided as file:

/usr/lib/starbase/formatters/pcl/cfg.template

A following section details parameter values for supported Hewlett-Packard
printers which you may wish to refer to in deciding values for particular fields
of your configuration file. Note that parameters are position sensitive. That is,
each parameter is required to be present in the form and order listed.

Example Configuration File

#--
***** Example configuration file for a color peL printer *****
#--
TRUE

/dev/null
color
2

180
TRUE
current
8.0
10.5

PCL-9

Printer Parameters
This section provides information on each of the printers. It is meant to
supplement the documentation provided with your printer. The dots/row column
indicates maximum dots per row at maximum density, generally the printer will
truncate data exceeding the maximum dots per row. Refer to the applicable
printer documentation for the most current information and for dots per row at
other than maximum density.

Table PCL-1. Printer Resolution Information

Printer Resolution Dots/Row Comments
HP 2225A 96 640 square pixels only
HP 2227A 96, 192 2536 square pixels only
HP 2228A 96, 192 1536 square pixels only
HP 2235B/D 90, 180 2448
HP 2686A 75,100,150,300 t t
HP 256XA/B 70, 140 1848
HP 293XA/B 90 1024
HP 3630A 180 1440
HP C1602A 180 1440/1925:1:

t With the HP 2686A LaserJet and LaserJet Plus printers, the user can specify
several different print modes. You should be aware of the following:

+ With B-sized paper.

1. On the LaserJet, graphics memory is limited to approximately 59 Kbytes.
As a result, prints at greater than 75 dots per inch resolution are limited
by printer graphics memory. That is, output prints using higher densities
are smaller than the paper size. Attempts to print larger images than
graphics memory allows will probably cause the printer to display error
20 with unpredictable print results.

2. On the LaserJet Plus graphics memory size is dependent upon previous
actions such as down loading of fonts.

3. LaserJet Plus printers may not have enough available graphics memory
to handle a full page 300 dots per inch print. See the printer's technical

PCL-10

/

reference manual for further details. This note does not apply to Laser
Jet Plus printers with 2.0 Mbytes of memory.

4. This printer family can dynamically reconfigure graphics memory.

5. The formatter bases print dimensions on page length, page width, and
resolution. The results of attempting prints that are not supportable by
actual available graphics memory or physical paper size are undefined.

Print Modes
Four print modes are currently supported on color PCL printers. These modes
are color, primary, gray (parameter value "grey" or "gray") and monochrome
(parameter value "mono" or "monochrome"). The four modes are explained below:

Print Mode: color

The formatter enables PCL printers to provide the additive (red, green, blue) and
subtractive (cyan, yellow, magenta) primary colors. Other colors are generated
(by the formatter) by dithering the primary colors. An error diffusion algorithm
is utilized to develop the appropriate color cell. Each pixel on the bitmap is
expanded into a cell whose size is controlled by the PIXEL EXPANSION parameter
in the configuration file. Patterns of RG B dots are plotted in the expansion cell
to generate a color that the eye perceives as the desired color. The pattern of
dots within the expansion cell for each of three planes per row is a fairly complex
function of the desired color.

Expansion cell sizes range from 1 to 8. For example, if the size is set to 3, each
bitmap pixel is expanded to a 3x3 cell on the plot.

Color mode plotting can take a considerable amount of time depending on the
following:

• size of the image.

• number of bitmap planes.

• pixel expansion factor.

• printer interface type.

PCL-11

• error diffusion calculations.

Error Diffusion

The actual intensity of each dot in the output print is determined in a complex
manner. The output print is organized into planes (one for each primary additive
color). Each plane contains rows of output cells, with each row containing dots
equal to the number of source pixels times the PIXEL EXPANSION factor (or cell
expansion factor).The number of rows in the output is equal to the number of
source pixel rows times the PIXEL EXPANSION factor. Thus each pixel is expanded
to a larger cell in the output according to the PIXEL EXPANSION factor.

A color map index value is obtained for the source pixel currently being processed.
Residual errors which have accumulated from previously processed output dots
are added to the color map index value to obtain a desired color map index value.
The desired color map index value is then tested against a value equivalent to
half bright. If the desired value is greater than half bright, this output dot will
be turned on; otherwise it will be turned off. If this output dot is turned on,
a new error value equal to the desired color map index (minus full bright) is
accumulated in adjacent output dots. If the output dot is not turned on, only
the desired value is accumulated in adjacent dots. The result of this process is
that errors in dot intensity are diffused (or accumulated) over adjacent output
dots. This process is repeated for each dot being expanded from the source pixel.
When the source pixel expansion is complete a new color map index value is
obtained for the next source pixel, and the process is repeated.

The error diffusion method works well for most color intensities. Certain color
intensities result in generation of unwanted patterns. This is most noticeable
with gray (r=g=b) in the range of 0.3 to 0.7. Note that this unwanted pattern
problem is discussed in A eM Transaction on Graphics, vol. 6, no. 4, October
1987.

Print Mode: color2

The color2 mode uses the same algorithm as the color mode, with the addition
of random noise to each pixel. This random noise breaks up unwanted patterns
sometimes seen in large areas of gray. One result of the added random noise
is introduction of random (different) color dots, particularly in regions of low
luminosity.

PCL-12

\,

Print Mode: primary

While error diffusion is useful for solid images, it is not adequate for line drawings
since lines appear intermittent due to "holes" in the dither pattern. The primary
mode supports direct generation of lines using the primary colors (red, green,
blue, cyan, yellow, magenta, black, and white). White lines are mapped to black
in primary mode. The background is rendered as white.

In primary mode, the user's PIXEL EXPANSION factor dictates the size of a solid
cell for each pixel. PIXEL EXPANSION values of 1 to 8 are supported for primary
mode. For example, if a bitmap line is green and the configuration file specifies
an expansion of 4, then each green bitmap pixel is reproduced by a 4x4 array of
green dots.

Print Mode: gray

Gray mode maps each rgb pixel into a gray intensity value according to the
YIQ color model. The YIQ color model maps Y into the same chromaticity as
luminosity in the eIE color model according to the formula:

0.30 * red + 0.59 * green + 0.11 * blue

This formatter maps gray intensities into an 8 X 8 ordered dither pattern providing
65 shades of gray.

Dithering in gray Mode (Half Toning)

The actual intensity of each pixel on the output print is determined in a fairly
complex manner. Essentially the output print is organized into 8x8 dither cells
(a grid of rows and columns each eight dots across). Then each input pixel
is converted from rgb to YIQ yielding an index into a table of ordered dither
patterns. Next the input pixel is expanded to a larger cell according to the
PIXEL EXPANSION parameter. Finally, this cell is copied (tiled) from the ordered
dither pattern onto the output page. The actual portion of the 8x8 ordered dither
cell pattern copied is determined by the row and column position of the source
pixel and output print location. In large areas of similar color the actual dither
pattern achieved is 8 x 8. In areas of rapidly changing color the actual dither
pattern achieved may be some smaller size (minimum size = PIXEL EXPANSION
parameter) .

PCL-13

Disappearing Lines in gray Mode

One result of the dithering method used is that single pixel width lines can
disappear. When the pixel is copied from the ordered dither pattern (as discussed
above) portions of the source pattern are empty (white). With certain conditions
the slope of a single pixel line can be such that it intercepts all black or all white
pixels in the dither cell locations being copied. This results in a disappearing
line. A similar problem results in a line appearing as random size strings of dots.

This mode was designed to be used with solids and polygons rather than with
lines. If the bitmap you desire to print consists of lines you should use monochrome
mode, possibly with no background.

Print Mode: monochrome

The monochrome mode maps each nonzero pixel to black. This mode works well
for line drawings where a constant (black) intensity is desired for each line. This
mode does not work well for solids modeling or filled polygons as every nonwhite
pixel maps to black.

Print Mode Differences When Printing Single Planes

The two modes, gray and monochrome have quite different effects when printing
from a bitmap which consists of monochromatic foreground and background.
Essentially gray mode tries to approximate the actual display as closely as
possible in shades of gray. As a result, a display that consists of white text
on a black background will be printed faithfully using gray mode. That is, the
black background will be printed full black while the white letters will not be
printed (white being the absence of subtractive color). Conversely, monochrome
mode will print the foreground (that is, the letters) in black and not print the
background. The resulting prints will (correctly) appear to be reversed images
of each other.

PCL-14

Using the Graphics Print Procedures
The Starbase Graphics Techniques chapter "Storing, Retrieving, and Printing
Images" should be read prior to reading this section. Briefly, the graphics print
procedures are:

• bitmap_print, debi tmap_print-print from a bitmap.

• file_print-print from a file created previously using bi tmap_to_file
or debi tmap_ to_file.

The. user controls the output using parameters of the bitmap_print and
file_print procedures and parameters in the configuration file. Except for
the formatter and eonfig parameters, all other parameters are discussed in the
Starbase Graphics Techniques manual.

Specifying the Formatter and Config Parameters

, The print procedures require specification of two parameters which are unique to
the peL formatter:

1. formatter-The name that is used is "pel".

2. config-This should be set to the desired configuration file.

Using the bmprint Program

The program bmprint. e has its source in /usr/lib/starbase/formatters/pel.
You may desire to customize it for your application environment or to make
multiple copies under different names that reference different configuration files.
Essentially this program executes the gopen call on a bitmap without initializing
it, allowing all or a portion of the bitmap currently displayed to be printed.

Run time parameters allow you to specify:

• start location (-1 option).

• size of the rectangle (- s option).

• rotation of the output print (-r option).

• color map mode full or other (-f option).

• print the background (-k option) (see note below).

PCL-1S

• set foreground and background indices (-c option).

• set the bitmap bank to print (-b option).

• set the display enable mask (-d).

• set the plane to print if single plane (-p).

You should make a copy of the source, modify it as required to reflect the
configuration file and defaults you desire to use, and then compile and link it
as described in the section of this chapter concerning linking.

The background (-k) option affects the resulting print in one of two ways
depending upon whether a single plane is being printed or not. If a single plane
is being printed and no background is selected, the foreground and background
index parameters are active and specify what is to be printed (foreground) and not
printed (background). In all other cases (not single plane), the actual background
color index used by the formatter (the index whose printing will be suppressed) is
obtained from one of two sources. In the case of a non-single plane being printed
from a bitmap opened with the gopen, the formatter uses the current Starbase
background index. In the case of a non-single plane being printed from a Starbase
bitmap file the background index is obtained from the Starbase bitmap file being
printed.

A final note on background indexes. If you decide to set the Starbase background
color index prior to a bitmap_print operation and the color map's shade mode
is CMAP _FULL with more than eight planes the resulting index is a 24-bit value.
The upper eight bits are used for red, the center eight bits are used for blue, and
the lower eight bits are used for gr~en. You may want to use background_color
rather then background_color_index providing the specific (float) red, green,
and blue values rather than computing the 24-bit index.

index25 = (red_index « 16) + (green_index « 8) + blue_index

Direct Access Printing

When using direct access the first parameter of the configuration file (output goes
to std out parameter) should be set to FALSE. The special device file parameter
of the configuration file should be set to the special device file of the printer (see
the section on setting up the special device file). You must have write permission
for the device file.

PCL-16

~\

~,
,)

The following examples assume that a bitmap has been created containing the
data you desire to print. In the case of bi tmap_print and dcbi tmap_print calls
fildes is the file descriptor of the bitmap opened with gopen. In the case of
file_print, myfile. dat is the Starbase bitmap file previously created. The
configuration file is config. prtr.

1. Example of bitmap_print and dc_bi tmap_print calls. Refer to the
Starbase Reference manual for parameter descriptions.

bitmap_print(fildes, "pcl" , "config.prtr" ,ALL_PLANES , TRUE 0,0.0,1.0,1.0,
FALSE,1,O,TRUE) ;

dcbitmap_print(fildes, "pcl" ,"config.prtr" ,ALL_PLANES ,FA LSE 0,100,100,
FALSE,1,O,TRUE);

2. Example of a file_print call. Refer to the Starbase Reference manual
for parameter descriptions.

file_print (myfile.dat , "pcl" ,"config.prtr",ALL_PLANES,T RUE, 1 ,0 ,TRUE) ;

Direct Access Using Redirection or Pipes

Access to a non-spooled printer requires an HP-UX environment (in order to use
the ">" and "I" redirection and pipe symbols). The following examples use a
configuration file named config. temp which has the output to a file named temp.
The example special device file is / dey /rp. The previously prepared Starbase
bitmap file is myfile. dat.

The HP-UX environment can be obtained from within a program using the
HP- UX Reference, Section 3 procedure system. Similar functionality may be
obtained by invoking the HP- UX Reference, Section 1 procedure pcl trans, or
by running the provided bmprint program.

1. Example of a pcl trans call. Refer to the Starbase Reference manual
pel trans procedure for parameters.

pcltrans myfile.dat <parms> > /dev/rp

2. Example of redirection using file_print, cat, and system.

file_print (myfile. dat, "pcl" , "config. temp" ,ALL_PLANES, TRUE, 1,0, TRUE) ;
system("cat temp> /dev/rp");

PCL-17

3. Example of a sereenpr call. Refer to the Starbase Reference manual
sereenpr procedure for parameters.

screenpr -c <parms> > /dev/rp

Spooling Examples

Spooling can be done using the Starbase Reference procedure pel trans. Spooling
may also be done utilizing the file_print, debi tmap_print, and bitmap_print
procedures in conjunction with the Starbase Reference procedure system. Using
the system command, you can spool a file from within a program.

A possible sequence within a program might be to create a file using the
bi tmap_ to_file procedure and then use the system procedure to invoke
the spooler. Alternatively, a program might invoke bitmap_print with a
configuration file specified that directs output to standard out in a system
procedure call which also pipes the output to lp in raw mode.

The following examples are given as possible ways to spool raster graphics data
from Starbase bitmaps. You should review the pertinent sections of the Starbase
Reference manual for the correct calling parameters (parms).

1. Spooling from a Starbase environment (assumes the configuration file
sets output to file myprint. proe and the Starbase bitmap file name is
myprint . dat) using file_print.

/* create the Starbase bitmap file */
bitmap_to_file(parms .. ,myprint.dat .. parms);

/* format the file, output filename is myprint.doc */
file_print(myprint.dat, .. parms);

/* spool the file */
system(lIlp -oraw myprint.proc ll

);

2. Spooling from a Starbase environment (assumes the configuration file sets
output to file myprint . proe) using bitmap_print.

PCL-18

/* format the file - output filename is myprint.proc */
bitmap_print(parms);
system(lIlp -oraw myprint.proc ll

);

I\.

3. Spooling using the HP-UX command screenpr. The currentli displayed
bitmap will be spooled.

screenpr -c I lp -oraw

4. Spooling using the HP-UX command pcltrans. Assumes a Starbase
bitmap file myprint . dat has been previously created.

pcltrans myprint.dat I lp -oraw

Controlling Print Orientation

The default print orientation is analogous to landscape mode on a LaserJet or
LaserJet Plus printer. That is, width is across the long paper dimension, and
height is across the narrow paper dimension.

Print Size and Clipping

Print rows that extend beyond the last column on the physical page will generally
be clipped by the printer. However, this action is printer dependent.

Print columns that extend beyond the last row on the physical page will be
printed onto the next (fanfold) page.

This formatter determines the target page size based on information in the
configuration file. Specifically, page_length, page_width, and resolution
determine the number of dots in the output page. The cell_size parameter
is used to determine the number of input pixels that will fit on the output page
as follows:

output pixels across = page_width * resolution / cell_size
output pixels down = page_length * resolution / cell_size

Prints will be truncated according to the target page size by the formatter. The
following example may help clarify this.

Request to print the entire frame buffer

Source frame buffer width = 1280 pixels
Source frame buffer height = 1024 pixels

Page width = 8.0 in
Page length = 10.5 in
Resolution = 300 dots per inch

PCL-19

cell_size = 2
available output pixels across = 8.0 * 180 / 2 = 720
available output pixels down = 10.5 * 180 / 2 = 945
result -- 720 < 1280 and 945 < 1024 -- truncate in both dimensions

cell size = 1 then
available output pixels across = 8.0 * 180 / 1 = 1400
available output pixels down = 10.5 * 180 / 1 = 1890
result -- 1400 > 1280 and 1890 > 1024 -- no truncation

Linking and Running Your Program

The PCL formatter pc1_fmt is located in /usr/1ib/starbase/formatters/pc1
with the file name 1ibfmtpc1. a. The PCL formatter requires fmt_tab1e. 0

(which associates the formatter and name) to be present at run time. Hewlett­
Packard provides the source as /usr/1ib/starbase/formatters/fmt_tab1e. c.
The Starbase procedures bitmap_print and file_print require a Starbase
environment and a device opened with the Star base gopen call. The following
example (myprog. c being your program name) uses the -1 option for the Starbase
and I/O libraries. This example also uses the -1 option for a representative driver
-ldd3001. To compile and link a program using bitmap_print or file_print
along with other Starbase procedures requiring a device opened with the Starbase
call gopen, use:

cc myprog.c /usr/lib/starbase/formatters/fmt_table.c \
/usr/lib/starbase/formatters/pcl/libfmtpcl.a \
-ldd3001 -lsbl -lsb2 -ldvio -1m -0 myprog

fc myprog.f /usr/lib/starbase/formatters/fmt_table.c \
/usr/lib/starbase/formatters/pcl/libfmtpcl.a \
-ldd3001 -lsbl -lsb2 -ldvio -1m -0 myprog

pc myprog.p /usr/lib/starbase/formatters/fmt_table.c \
/usr/lib/starbase/formatters/pcl/libfmtpcl.a \
-ldd3001 -lsbl -lsb2 -ldvio -1m -0 myprog

To compile and link /usr/1ib/starbase/formatters/pcl/bmprint. c, the
following sequence can be used. As explained previously, screenpr allows the
user to print a currently displayed bitmap.

PCL-20

cc /usr/lib/starbase/formatters/pcl/bmprint.c \
/usr/lib/starbase/formatters/fmt_table.c \
/usr/lib/starbase/formatters/pcl/libfmtpcl.a \
-ldd3001 -lsb1 -lsb2 -ldvio -0 bmprint

Warning and Error Messages
This section discusses warning and error messages provided by the peL formatter.

Warning Messages

Unrecognized item in config file, line xx

This indicates that a problem existed in the configuration file with the parameter
at line xx. This warning will be followed with an error message indicating an
error reading configuration file.

\ Print truncated
/

This indicates the formatter determined the print too large to fit in the print
space defined by resolution, page length, and page width. The formatter then
truncated the print to fit the print space defined.

Error Messages

Raster formatter specified is not in table

This indicates that the formatter specified was not found in fmt_table. o.

You should check that /usr/lib/starbase/formatters/fmt_table. c contains
the pcl entry, and that /usr/lib/starbase/formatters/fmt_table.o was
included in your link sequence.

Device is not bitmap

This indicates the bitmap specified in a bitmap_print or dcbi tmap_print call
was not a bitmap opened with gopen.

Plane number is out of range

PCL-21

This indicates that the single plane specified for printing was not in the
specified bitmap. This error can occur with bitmap_print, dcbi tmap_print
or file_print calls.

Cannot open source file

This indicates that the Starbase bitmap file specified in a file_print call could
not be opened.

Specified source file not bitmap data

This indicates that the file specified in a file_print call was successfully opened;
however, it was not a Starbase bitmap file.

Error in closing raster file

This indicates a problem in closing the Starbase bitmap file.

Unable to open configuration file

This indicates that the configuration file specified in a file_print, bitmap_print
or dc_bitmap print could not be opened.

Error while reading configuration file

This indicates a parameter problem in a successfully opened configuration file.

Error while opening output file: xxxx

This indicates a problem opening the special device file or output file that was
specified in the configuration file with output not to standard out.

Unable to allocate input buffer

This indicates a malloc call (to allocate 64K bytes) failed. You will need to
provide more memory for the formatter. In the case of a source bitmap which
contains multiple banks a total of 196K bytes of input buffer space will be
required.

Unable to allocate output buffer

This indicates a malloc call, (to allocate 92K bytes) failed. You will need to
provide more memory for the formatter.

Unable to allocate color table buffer

PCL-22

This indicates a malloc call (to allocate 512 bytes) failed. You will need to provide
more memory for the formatter.

Formatter internal error. All locations except 31

This indicates a problem internal to the formatter code. The most likely cause
is failure of a maUoc call (to allocate 54K bytes for processing source data).

Formatter internal error. Location 31

This indicates a single plane bitmap file was used with a full depth formatter call.
In the case of file_print, print_mode was negative or ALL_PLANES instead of
the plane number contained in the file. In the case of pel trans, the -pplane
option was not used or was used incorrectly.

Setting Up the Spooler
The steps for setting up the graphics spooler are very similar to the steps for
configuring the LP spooler system. Refer to the HP- UX System Administrator
Manual (the "System Administrator's Toolbox" section) for details.

1. The LP spooler system needs to use HP-UX 1.1 (for Series 800) or 5.2 or
later (for Series 300) printer models.

2. Always use the raw mode (-oraw) of the lp spooler.

3. You must have write access.

4. First make sure that the lp spooler works with text. If you have problems
refer to the HP- UX System Administrator Manual.

5. If in a Starbase program environment, you should make the HP- UX
Reference, section 3 procedure call system with the appropriate string
containing the necessary files, parameters, etc.

5. If you desire to print a currently displayed bitmap you may use a version
of bmprint redirected or piped as required.

PCL-23

Special Considerations for
Non-Spooled Serial Output
The normal stty settings for an unopened serial device may not correspond
with the desired stty settings. For example, the default baud rate is 300. The
following information for setting up the special device file and then setting stty
is provided as a starting point for your own requirements.

1. Typical mknod for an HP 3630A at select code 9

mknod /dev/rp c 1 Ox090004

2. To configure the port for normal printing

stty -parenb -ineqak cs8 9600 -cstopb \
-clocal ixon opost onlcr tab3 < /dev/rp

3. To configure the port for raster printing, execute the following stty
commands (or equivalent ioctl(2) calls).

stty -onlcr -opost -tabdly < /dev/rp

PCL-24

pel-IMAGING
Printer Command Language
Imaging Formatter

Overview
The peL Imaging Formatter is a superset of the peL Formatter. As such, the
peL Formatter (see "PGL" chapter) will drive a device that supports the imaging
extentions of peL (with reduced performance). However, the peL Imaging
Formatter will not drive a device that supports straight peL with no imaging
capabili ties.

Read the chapter on "Storing, Retrieving, and Printer Images" in the Starbase
Graphics Techniques manual before reading this chapter.

The peL Imaging Formatter permits hard copies from bitmaps or Starbase
bitmap file to a color or monocromatic printer that supports the imaging
extension of peL. If a device supports the imaging extensions of peL, it is
able to process the raw bitmap and raw color map data internally, creating the
fully processed image without the help of the host computer. Devices that do
not support these capabilities rely on the host computer to perform all the image
processing, treating the printer as a dumb peL device. These imaging extensions
give an increase in performance, image quality, and image processing options.

You can create hard copies using this formatter in the following ways .

• The HP-UX command pcltrans (see the Starbase Reference manual
for options) is used to print a previously created Starbase bitmap
file. Starbase bitmap files are created using the Starbase function
bi tmap_ to_file or dcbi tmap_ to_file .

• The HP-UX command screenpr (see the Starbase Reference manual for
options) is used to print a currently displayed bitmap. This command
reads the display's image planes and current hardware color map.

The screenpr command is supported on displays that use the following
Starbase device drivers:

PCL-IMAGING-1

Series 300:

Series 800:

hp300l, hp300h, hp98550, hp98556, hp98720, hp98721,
hp98730, hp98731.

hp98550, hp98556, hp98720, hp98721, hp98730, hp98731.

Both the pel trans and sereenpr commands are capable of using or not using
the PCL Imaging Formatter. If you wish to use the PCL Imaging Formatter,
as opposed to the PCL Formatter (see PCL Formatter chapter), you must pass
in a special option that states the device you are using supports the imaging
extensions of PCL.

Currently, the PCL Imaging Formatter is not available through the Starbase
functions hi tmap_print and file_print. If you invoke either of these functions
while running a Starbase program, the image will be processed entirely by the
host computer, not by the device's image processing software.

Key Points of the pel Imaging Formatter

1. The PCL Imaging Formatter supports HP C1602A (PaintJet XL)

2. You can print in gray scale, monochromatic (black and white), primary
(red, green, blue, cyan, yellow, magenta, black and white), or in color
using the following color algrithms:

error diffusion

ordered dither

3. Prints can be sized using non-integer pixel scaling. The default size is
the entire size of the paper used in the printer. Print size can also be
determined by specifying destination dimensions in inches.

4. Prints can be gamma-corrected by selecting one of the printer's built-in
gamma correction curves.

5. The PCL Imaging Formatter is not a Starbase driver-you do not do
moves, draws, etc. to the printer. Instead, you process currently displayed
bitmaps or previously created Starbase bitmap files for output to the
printer. ~

6. The PCL Imaging Formatter works with HP-UX releases 7.0 and later
for both the Series 300 and Series 800 computers.

PCL-IMAGING-2

Printer Configurations
There are two fundamental printer configurations of interest, spooled and non­
spooled. The primary difference between the two configurations is that spooling
uses the system spooler (lp) in the raw (-oraw option) mode. This section gives
an overview of these configurations so you can choose the appropriate method
for your application.

Non-Spooled Operation

The only non-spooled operation currently supported by the peL Imaging
Formatter is direct access printing in the HP-UX environment. Direct access
printing involves a non-shared printer directly connected to the host system. The
standard output (stdout) from the HP-UX commands pcltrans and screenpr
is "piped" to the printer's special device file (see the section on "Setting Up the
Special Device File" in this chapter). You will need to have write permission for
the special file.

The HP-UX environment can be obtained from within a program using the
procedure system (described in HP- UX Reference, Section 3).

Direct Access Printing

Examples:

• Using a bitmap file from a Starbase program:

/* Create the starbase bitmap file */

bitmap_to_file(params ... ,myprint.bit, ... params);

/* Process the file in color and send to the printer */

system(lIpcltrans -I -C myprint.bit > /dev/rpll);

• Print currently displayed bitmap from a program in color:

system(lIscreenpr -I -C -F/dev/crt > /dev/rpll);

• Print currently displayed window from a program in color:

*/ Origin=10,10, Width=100, Height=200 */

system(lIscreenpr -I -C -XlO -Yl0 -Dl00 -H200 -F/dev/crt > /dev/rpll>;

PCL-IMAGING-3

• Print color bitmap file using ordered dither in an HP-UX environment:

pcltrans -I -a3 myprint.bit > /dev/rp

• Print currently displayed bitmap in gray scale, rotated:

screenpr -I -a5 -R -F/dev/crt > /dev/rp

Spooled Operation

Spooled operation is the best mode if you have a shared printer. The HP-UX
commands pcl trans and screenpr can also be utilized in a spooled environment
(see the Starbase Reference manual for details on pcl trans and screenpr).

pcltrans

screenpr

is used as a filter to process a Starbase bitmap file previously cre­
ated by the bitmap_to_file procedure. The stdout (standard
out) is then piped to the lp spooler in raw mode. Spooling can
be done locally, or the pcl trans command output can be piped
into a file and sent to a remote printer on another computer.

is used to process a currently displayed bitmap. Its output is
also sent to stdout and can be piped to either the lp spooler or
a file for remote printing.

Spooled Printing

Examples:

• Using a bitmap file from a starbase program:

/* Create the starbase bitmap file */

bitmap_to_file(params ...• myprint.bit •... params);

/* Process the file in color and send to the printer */

system("pcltrans -I -C myprint.bit I lp -oraw");

• Print currently displayed bitmap from a program in color:

system("screenpr -I -C -F/dev/crt I lp -oraw");

• Print currently displayed window from a program in color:

/* Origin=10.10. Width=100. Height=200 */

PCL-IMAGING-4

system("screenpr -1 -C -Xl0 -Yl0 -0100 -H200 -F/dev/crt I Ip -oraw");

• Print color bitmap file using ordered dither in an HP-UX environment:

or

pcltrans -1 -a3 myprint.bit > myprint.out
Ip -oraw myprint.out

cat myprint.bit I pcltrans -1 -a3 I Ip -oraw

• Print currently displayed bitmap in gray scale, rotated:

screenpr -1 -a5 -R -F/dev/crt I Ip -oraw

Spooler Conflicts

In the following scenarios, interleaved/unusable output may be produced:

• Direct access output mode is used for a printer which is currently used
for spooling via the Ip command.

• More than one person is using direct access printing mode on the same
device.

In general, if a device is configured for spooling with the Ip command, all graphics
output should be done using the spooling print mode. Only use non-spooled
(direct access) print mode when a device is not shared. Simultaneous usage of
spooled and non-spooled modes should be avoided.

Software Structure

The following files are used for color/monochromatic printing on printers that
support the imaging extensions of peL:

/user/bin/pcltrans

/user/bin/screenpr

PCL-IMAGING-5

Setting Up the Special Device File
To directly access a printer, you need a special device file. If the printer has (:
already been assigned to a node as a system printer, you may use that device file '"
(you must have write permission on that device file).

If a special device file for your printer has not been assigned, the mknod command
must be performed before proceeding. For this you must be super-user. Enter
the select code in hexadecimal format (for example, a select code of 22 = 16 Hex).

Series 300 Computers

HP-IB printer: select code 7 (internal HP-IB), bus address 3 (determined by
device), raw bit set:

mknod /dev/rp c 21 Ox070301

Serial printer: select code 9, port address 0 (determined by type of interface card
in system), direct connect bit set:

mknod /dev/rp c 1 Ox090004

Series 800 Computers

HP-IB printer: (Lu) is the hardware logical unit, (Ad) is the port address:

mknod /dev/rp c 21 OxOO(Lu) (Ad)

Serial printer: (Lu) is the hardware logical unit, (Ad) is the port address:

mknod /dev/rp c 1 OxOO(Lu)(Ad)

You may need to set owner, group, and mode (chown, chgrp, and chmod)
appropriately.

Refer to the HP- UX System Administrator Manual for details on using the mknod
command.

PCL-IMAGING-6

(1
\"

Configuration Files
The PCL Imaging Formatter currently is unsupported through the Starbase
functions bitmap_print and file_print; therefore, no configuration files are
necessary (see the "PCL Formatter" chapter for a description of configuration
files) .

Printer Parameters
The only printer supported by the PCL Imaging Formatter is the PaintJet XL
(C1602A). The printer is 180 dots per inch and can produce output on both
A-size paper and B-size paper.

Print Modes

\ There are seven print algorithms on printers that implement the imaging
extensions of PCL:

Table PCL-IMAGING-1. Print Modes

Selection Algorithm
0 no algorithm

1 snap to primaries

2 snap to black & white

3 color ordered dither

4 color error diffusion

5 monochrome ordered dither

6 monochrome error diffusion

They are selected in the pcltrans and screenpr commands by the -a option.
~l Each mode is explained in the following sections.

PCL-IMAGING-7

Snap to Primaries

While error diffusion is useful for solid images, it is not adequate for line drawings
since lines appear intermittent due to "holes" in the dither pattern. The primary i1
mode supports direct generation of lines using the primary colors (red, green, ~
blue, cyan, yellow, magenta, black, and white). White lines are mapped to black
in primary mode. The background is rendered as white.

Snap to Black and White

The monochrome mode maps each nonzero pixel to black. This mode works well
for line drawings where a constant (black) intensity is desired for each line. This
mode does not work well for solids modeling or filled polygons as every nonwhite
pixel maps to black.

Color Ordered Dither or Monochrome Ordered Dither

In order dither, the intensity of each point (x,y) in a pixel matrix depends on
the desired intensity at that point I(x,y) and an 8x8 dither matrix. The value of
each cell (i,j) in the dither matrix is computed by:

i = x modulo 8
j = y modulo 8

If I (x,y) > D (i,j), the point corresponding to the (x,y) is intensified; otherwise,
it is not.

Color Error Diffusion or Monochrome Error Diffusion

The actual intensity of each dot in the output print is determined in a complex
manner. A color map index value is obtained for the source pixel currently being
processed. Residual errors which have accumulated from previously processed
output dots are added to the color map index value to obtain a desired color
map index value. The desired color map index value is then tested against a
value equivalent to half bright. If the desired value is greater than half bright,
this output dot will be turned on; otherwise it will be turned off. If this output
dot is turned on, a new error value equal to the desired color map index (minus
full bright) is accumulated in adjacent output dots. If the output dot is not ~
turned on, only the desired value is accumulated in adjacent dots. The result
of this process is that errors in dot intensity are diffused (or accumulated) over
adjacent output dots. This process is repeated for each dot being expanded from

PCL-IMAGING-8

the source pixel. When the source pixel expansion is complete a new color map
index value is obtained for the next source pixel, and the process is repeated.

The error diffusion method works well for most color intensities. Certain color
intensities result in generation of unwanted patterns. This is most noticeable
with gray (r=g=b) in the range of 0.3 to 0.7. Note that this unwanted pattern
problem is discussed in A eM Transaction on Graphics, vol. 6, no. 4, October
1987.

Disappearing Lines in Monochromatic Ordered Dither

One result of the dithering method used is that single pixel width lines can
disappear. When the pixel is copied from the ordered dither pattern (as discussed
above) portions of the source pattern are empty (white). With certain conditions
the slope of a single pixel line can be such that it intercepts all black or all white
pixels in the dither cell locations being copied. This results in a disappearing
line. A similar problem results in a line appearing as random size strings of dots.

This mode was designed to be used with solids and polygons rather than with
lines. If the bitmap you desire to print consists of lines you should use monochrome
mode, possibly with no background.

Differences When Printing Single Planes

The two modes, snap to black and white and monochrome ordered dither
have quite different effects when printing from a bitmap which consists of
monochromatic foreground and background. Essentially monochromatic ordered
dither mode tries to approximate the actual display as closely as possible in shades
of gray. As a result, a display that consists of white text on a black background
will be printed faithfully. That is, the black background will be printed full black
while the white letters will not be printed (white being the absence of subtractive
color). Conversely, snap to black and white mode will print the foreground (that
is, the letters) in black and not print the background. The resulting prints will
(correctly) appear to be reversed images of each other.

PCL-IMAGING-9

Controlling Print Orientation

The default print orientation is left to right across the length of the paper
(equivalent to the LaserJet landscape mode). You can cause the HP-UX ~
commands pcl trans and screenpr orient the print across the width of the paper
by using the -R option.

Print Sizing and Clipping

By default, the printer will scale the image to the size of the paper used. However,
the user can select the destination size of the image by using the -x, -y, -d, - h
options of the pcltrans and screenpr HP-UX commands.

Paper size is automatically sensed by the printer. You can manually define the
paper size by using the pcl trans and screenpr options -1, -w.

Refer to the Starbase Reference manual for detailed option information on the
pcl trans and screenpr HP-UX commands.

Warnings and Error Messages
Refer to the "peL Formatter" chapter for details on warnings and error messages.

PCL-IMAGING-10

(I
I

\"

Contents

Gescapes
Introduction GESCAPE-l

BLINK_INDEX GESCAPE-8
C Syntax GESCAPE-8
FORTRAN77 Syntax GESCAPE-9
Pascal Syntax GESCAPE-9

BLINK_PLANES GESCAPE-1O
Exceptions - HP 98720w GESCAPE-1O
C Syntax GESCAPE-1O

\, FORTRAN77 Syntax GESCAPE-1O
Pascal Syntax GESCAPE-ll

GR2D_DEF _MASK GESCAPE-12
C Syntax GESCAPE-13
FORTRAN77 Syntax GESCAPE-13
Pascal Syntax GESCAPE-14

G R2D _FILL_PATTERN GESCAPE-15
C Syntax GESCAPE-15
FORTRAN77 Syntax . GESCAPE-16
Pascal Syntax GESCAPE-16

GR2D_MASK_ENABLE GESCAPE-17
C Syntax GESCAPE-17
FORTRAN77 Syntax GESCAPE-17
Pascal Syntax GESCAPE-18

GR2D_MASK_RULE . GESCAPE-19

~
C Syntax GESCAPE-20

v FORTRAN77 Syntax GESCAPE-20
Pascal Syntax GESCAPE-20

GR2D_OVERLAY_TRANSPARENT GESCAPE-21
C Syntax GESCAPE-21

Contents-1

FORTRAN77 Syntax GESCAPE-21
Pascal Syntax GESCAPE-22

GR2D_PLANE_MASK GESCAPE-23

~ C Syntax GESCAPE-23
FORTRAN77 Syntax GESCAPE-23
Pascal Syntax GESCAPE-24

GR2D_REPLICATE GESCAPE-25
C Syntax GESCAPE-27
FORTRAN77 Syntax GESCAPE-27
Pascal Syntax GESCAPE-28

HPGL_READ_BUFFER GESCAPE-29
C Syntax Example GESCAPE-29
FORTRAN77 Syntax Example GESCAPE-30
Pascal Syntax Example GESCAPE-30
HPGL_SET _PEN_NUM GESCAPE-31

C Syntax Example GESCAPE-31
FORTRAN77 Syntax Example GESCAPE-31
Pascal Syntax Example GESCAPE-31

HPGL_SET_PEN_SPEED GESCAPE-32 ('
C Syntax Example GESCAPE-32 "<It

FORTRAN77 Syntax Example GESCAPE-32
Pascal Syntax Example GESCAPE-32

HPGL_SET _PEN _ WIDTH GESCAPE-33
C Syntax Example GESCAPE-33
FORTRAN77 Syntax Example GESCAPE-33
Pascal Syntax Example GESCAPE-33

HPGL_ WRITE_BUFFER . GESCAPE-34
C Syntax Example GESCAPE-34
FORTRAN77 Syntax Example GESCAPE-34
Pascal Syntax Example GESCAPE-34

IGNORE_RELEASE .. GESCAPE-35
C Syntax Example .. GESCAPE-35
FORTRAN77 Syntax Example GESCAPE-35
Pascal Syntax Example GESCAPE-35

~ IMAGE_BLEND . GESCAPE-36
C Syntax GESCAPE-37
FORTRAN77 Syntax GESCAPE-38
Pascal Syntax GESCAPE-38

Contents-2

LS_OVERFLOW _CONTROL
HP 98721 Only
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

OVERLAY_BLEND .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

PAN_AND_ZOOM . .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

PATTERN_FILL .. .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_BIT _MASK
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_BIT _MODE. . . .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_DEF _ECHO_TRANS
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_DEF _FILL_PAT ..
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_DMA_MODE . . .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_ECHO_CONTROL

GESCAPE-39
GESCAPE-39
GESCAPE-40
GESCAPE-40
GESCAPE-40
GESCAPE-41
GESCAPE-41
GESCAPE-42
GESCAPE-42
GESCAPE-43
GESCAPE-44
GESCAPE-44
GESCAPE-45
GESCAPE-46
GESCAPE-48
GESCAPE-48
GESCAPE-49
GESCAPE-50
GESCAPE-50
GESCAPE-50
GESCAPE-50
GESCAPE-51
GESCAPE-52
GESCAPE-52
GESCAPE-52
GESCAPE-53
GESCAPE-54
GESCAPE-54
GESCAPE-54
GESCAPE-55
GESCAPE-55
GESCAPE-56
GESCAPE-56
GESCAPE-57
GESCAPE-58
GESCAPE-60
GESCAPE-62
GESCAPE-64

Contents-3

C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_ECHO_FG_BG_COLORS
Hardware Cursors
Overlayed Software Cursors
Non-Overlayed Software Cursors
Examples and Syntax
C Syntax
FORTRAN77 Syntax
Pascal Syntax .

R_ECHO_MASK. . .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_FULL_FRAME_BUFFER
HP 300h Device
HP 3001 Device.
HP 98700 Device
HP 98550/HP 98556 Device
HP 98720 Device
HP 98730/HP 98731 Device
C Syntax
FORTRAN77 Syntax . .
Pascal Syntax

R_GET _FRAME_BUFFER
Series 800 Dependency
C Syntax
FORTRAN77 Syntax :
Pascal Syntax

R_GET_ WINDOW _INFO.
C Syntax
FORTRAN77 Syntax . .
Pascal Syntax
C Program Example (not robust - no error checking)

R_LINE_ TYPE . . .

Contents-4

C Syntax
FORTRAN77 Syntax

GESCAPE-65
GESCAPE-66
GESCAPE-66
GESCAPE-67 ~
GESCAPE-68
GESCAPE-69
GESCAPE-71
GESCAPE-72
GESCAPE-72
GESCAPE-74
GESCAPE-75
GESCAPE-77
GESCAPE-78
GESCAPE-78
GESCAPE-78
GESCAPE-79
GESCAPE-79
GESCAPE-80
GESCAPE-80 ,/
G ESCAPE-80 '~
GESCAPE-80
GESCAPE-80
GESCAPE-81
GESCAPE-81
GESCAPE-81
GESCAPE-82
GESCAPE-82
GESCAPE-82
GESCAPE-84
GESCAPE-85
GESCAPE-87
GESCAPE-87
GESCAPE-87
GESCAPE-87 ~
GESCAPE-88 ~

GESCAPE-90
GESCAPE-91
GESCAPE-91

Pascal Syntax . . .
R_LOCK_DEVICE . .

C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .
C Example Program

R_OFFSCREEN_ALLOC
C Syntax
FORTRAN77 Syntax .
Pascal Syntax

R_OFFSCREEN_FREE
C Syntax
FORTRAN77 Syntax .
Pascal Syntax

R_OV _ECHO_COLORS
HP 98720 and HP 98721
HP 98730 and HP 98731
C Syntax
FORTRAN77 Syntax . .
Pascal Syntax

R_OVERLAY _ECHO. . .
HP 98550 and HP 98556
HP 98720 and HP 98721
HP 98730
C Syntax
FORTRAN77 Syntax . .
Pascal Syntax

R_TRANSPARENCY_INDEX .
HP 98720 and HP 98721
HP 98730 and HP 98731
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

R_ UNLOCK_DEVICE
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

READ_COLOR_MAP

GESCAPE-91
GESCAPE-92
GESCAPE-93
GESCAPE-93
GESCAPE-93
GESCAPE-94
GESCAPE-95
GESCAPE-96
GESCAPE-96
GESCAPE-97
GESCAPE-98
GESCAPE-98
GESCAPE-99
GESCAPE-99
GESCAPE-100
GESCAPE-100
GESCAPE-100
GESCAPE-101
GESCAPE-101
GESCAPE-102
GESCAPE-103
GESCAPE-103
GESCAPE-104
GESCAPE-104
GESCAPE-105
GESCAPE-105
GESCAPE-105
GESCAPE-106
GESCAPE-106
GESCAPE-106
GESCAPE-107
GESCAPE-107
GESCAPE-107
GESCAPE-108
GESCAPE-108
GESCAPE-108
GESCAPE-108
GESCAPE-109

Contents-5

C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

SET _BANK_CMAP .
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

SWITCH_SEMAPHORE
C Syntax
FORTRAN77 Syntax .
Pascal Syntax

TRIGGER_ON_RELEASE
C Syntax Example ...
FORTRAN77 Syntax Example
Pascal Syntax Example

TRANSPARENCY ..
C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

ZWRITE_ENABLE

Contents-6

C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

GESCAPE-I09
GESCAPE-I09
GESCAPE-I09
GESCAPE-IIO ~
GESCAPE-II0
GESCAPE-lll
GESCAPE-lll
GESCAPE-112
GESCAPE-113
GESCAPE-l13
GESCAPE-113
GESCAPE-114
GESCAPE-114
GESCAPE-114
GESCAPE-114
GESCAPE-115
GESCAPE-115
GESCAPE-116
GESCAPE-116/
GESCAPE-117\'
GESCAPE-l17
GESCAPE-117
GESCAPE-118

GESC
Gescapes

Introduction
This appendix provides information concerning the (op) , argl and arg2
parameters used with the gescape functions common to two or more device
drivers. Those gescape functions unique to a specific device driver are discussed
in the appropriate driver section of this manual.

The gescape function allows the application program to input or output to
a device in a device dependent manner. The term gescape is derived from
"graphics escape" and is analogous similar escape functions supported by other
graphics libraries. The syntax for the gescape function is:

gescape (fildes, op, arg1, arg2)

fildes is the file descriptor of the device to be accessed (returned by the Starbase
call gopen).

(op) is the "operation code" (opcode) which specifies the device dependent action
to be performed.

argl and arg2 are two parameters (pointers to argument lists) which provide the
information needed by gescape to do the desired job.

GESC-1

Table GESC-1. Supported Operation Codes (op)

(op) Parameter Function

BLINK_INDEX Alternate Between HP 98720 or HP 98730 Hardware
Color Maps.

BLINK_PLANES Blink the display using a mask.

GR2D_DEF_MASK Defines mask for 3-operand raster operation.

GR2D_FILL_PATTERN Define 16x 16 dither and fill pattern.

GR2D_MASK_ENABLE Enables 3-operand raster operation.

GR2D_MASK_RULE Set 3-operand drawing mode.

GR2D_OVERLAY_TRANSPARENT Turns on/off transparency of 0 pixels.

GR2D_PLANE_MASK Overrides the mask.

GR2D_REPLICATE Allows square pixel replication.

HPGL_READ_BUFFER Allows you to read data from the device

HPGL_SET_PEN_NUM Set plotter number of pens. I'i\

HPGL_SET_PEN_SPEED Set plotter pen velocity.

HPGL_SET_PEN_WIDTH Set plotter pen width.

HPGL_WRITE_BUFFER Permits direct communication of HP-GL commands to
supported devices.

IGNORE_RELEASE Trigger when button pressed.

IMAGE_BLEND Enable/disable video blending.

LS_OVERFLOW_CONTROL Sets options for light source overflow situations.

OVERLAY_BLEND Control blending of overlay plane frame buffer.

GESC-2

Table GESC-1. Supported Operation Codes (op)
Continued

(op) Parameter Function

PATTERN_FILL Fills polygon with stored pattern.

PAN_AND_ZOOM Pixel and zoom.

R_BIT_MASK Identifies the plane(s) to read to or write from.

R_BIT_MODE Changes the raw mode flag.

R_DEF_ECHO_TRANS Define raster echo transparency.

R_DEF_FILL_PAT Defines the current 4x4 pixel dither cell.

R_DMA_MODE Changes the definition of the raw flag for block writes.

R_ECHO_CONTROL Control hardware cursor allocation.

R_ECHO_FG_BG_COLORS Define color attributes.

R_ECHO_MASK Define cursor mask.

R_FULL_FRAME_BUFFER Allows access to the off screen area of the frame buffer.

R_GET_FRAME_BUFFER Reads the frame buffer and control space addresses.

R_GET_WINDOW_INFO Returns frame buffer address of Windows/gOOD
window.

R_LINE_TYPE Define line style and repeat length.

R_LOCK_DEVICE Locks the specified device.

R_OFFSCREEN_ALLOC Allocates offscreen frame buffer memory.

R_OFFSCREEN_FREE Frees allocated offscreen frame buffer memory.

R_OV_ECHO_COLORS Select overlay echo colors.

R_OVERLAY_ECHO Select plane to contain cursor.

GESC-3

Table GESC-1. Supported Operation Codes (op)
Continued

(op) Parameter Function

R_TRANSPARENCY_INDEX Specify transparency index.

R_UNLOCK_DEVICE Unlocks the specified device.

READ_COLOR_MAP Reads the color map.

SET_BANK_CMAP Install frame buffer bank color maps.

SWITCH_SEMAPHORE Controls the device access semaphores.

TRANSPARENCY Allows "screen door" for transparency pattern.

TRIGGER_ON_RELEASE Trigger when button released.

ZWRITE_ENABLE Allows creation of 3D cursors in overlay.

GESC-4

('
\

'"

Table GESC-2. Supported Device Drivers

(op) Parameter Supported Drivers

BLINK_INDEX hp98720, hp98721, hp98730, hp98731

BLINK_PLANES (blink speed 2.4 Hz) hp3001, hp300h, hp98700,
hp98710 (blink speed 3.75 Hz) hp98720, hp98720w,
hp98721,hp98550, hp98556, hp98730, hp98731

GR2D_DEF_MASK hp98550, hp98556

GR2D_FILL_PATTERN hp98550, hp98556

GR2D_MASK_ENABLE hp98550, hp98556

GR2D_MASK_RULE hp98550, hp98556

GR2D_OVERLAY_TRANSPARENT hp98550, hp98556

GR2D_PLANE_MASK hp98550, hp98556

GR2D_REPLI CATE hp98550, hp98556

HPGL_READ_BUFFER CADplt, CADplt2

HPGL_SET_PEN_NUM hpgl, CADplt

HPGL_SET_PEN_SPEED hpgl, CADplt

HPGL_SET_PEN_WIDTH hpgl, CADplt

HPGL_WRITE_BUFFER hpgl, CADplt, CADplt2

IGNORE_RELEASE hphil, Windows/900O

IMAGE_BLEND hp98730, hp98731

LS_OVERFLOW_CONTROL hp98721, hp98731

OVERLAY_BLEND hp98730, hp98731

PAN_AND_ZOOM hp98730, hp98731

PATTERN_FILL hp98721, hp98731

R_BIT_MASK hp3001, hp300h, hp98700, hp98710, hp98720,
hp98720w,hp98721, hp98550, hp98556, h98730,
hp98731

GESC-5

Table GESC-2. Supported Device Drivers
Continued

(op) Parameter Supported Drivers

R_BlT_MODE hp3001, hp300h, hp98700, hp98710, hp98720,
hp98720w,hp98721, hp98550, hp98556, hp98730,
hp98731

R_DEF_ECHO_TRANS hp98720, hp98721, hp98550, hp98730, hp98731

R_DEF_FILL_PAT hp3001, hp300h, hp98700, hp98710, hp98720,
hp98720w,hp98721, hp98550, hp98730, hp98731

R_DMA_MODE hp98730, hp98731 Models 825 and 835 SPUs with an
AI04 74 interface card

R_ECHO_CONTROL hp98730, hp98731

R_ECHO_FG_BG_COLORS hp98730, hp98731

R_ECHO_MASK hp98730, hp98731

R_FULL_FRAME_BUFFER hp3001, hp300h, hp9836a, hp98700, hp98710,
hp98720,hp98720w, hp98721, hp87550, hp98556,
hp98730, hp98731

R_GET_FRAME_BUFFER hp3001, hp300h, hp9836a, hp98700, hp98710,
hp98720,hp98720w, hp98721, hp98550, hp98556,
hp98730, hp98731

R_GET_WINDOW_INFO hp300h, hp3001, hp98700, hp98720w, window/900O
hp98730, hp98731

R_LINE_TYPE hp98720, hp98721, hp98730, hp98731, SMD

R_LOCK_DEVICE hp3001, hp300h, hp98700, hp98720, hp98720w,
hp98721, hp98550, hp98556, hp98730, hp98731,
window/900O

GESC-6

i~

Table GESC-2. Supported Device Drivers
Continued

(op) Parameter Supported Drivers

R_OFFSCREEN_ALLOC hp98550, hp98556, hp98730, hp98731

R_OFFSCREEN_FREE hp98550, hp98556, hp98730, hp98731

R_OV_ECHO_COLORS hp98720, hp98721, hp98730, hp98731

R_OVERLAY_ECHO hp98720, hp98721, hp98550, hp98556, hp98730

R_TRANSPARENCY_INDEX hp98720, hp98721, hp98730, hp98731

R_UNLOCK_DEVICE hp3001, hp300h, hp98700, hp98720, hp98720w,
hp98721, hp98550, hp98556, hp98730, hp98731,
Windows/900O

READ_COLOR_MAP hpterm, hp3001, hp300h, hp98700, hp98710, hp98720,
hp98720w,hp98721, hp98550, 987556,hp98730,
hp98731

SET_BANK_CMAP hp98730, hp98731

SWITCH_SEMAPHORE hp3001, hp300h, hp9836a, hp98700, hp98710,
hp98720,hp98720w, hp98721, hp98550, hp98556,
hp98730, hp98731,Windows/9000

TRIGGER_ON_RELEASE hp-hil, Windows/900O

TRANSPARENCY hp98721, hp98731

ZWRITE_ENABLE hp98721, hp98731

GESC-7

The (op) parameter is BLINK_INDEX.

The HP 98720, HP 98721, HP 98730, and HP 98731 have two separate hardware ~
color maps. They alternate between the two color maps: one color map is used
for 133 ms (milliseconds) and the other color map is used for 133 ms. When the
color table is changed either by INIT or by define_color _map both hardware
color maps are updated to the same software color table. This gescape allows
the user to set a color map value in only one hardware color map. The color set
by the gescape goes directly into one of the hardware color maps and does not
effect the Starbase software color table. The effect will be that a single color map
index will blink between the color set in the Starbase color table and the color set
by this gescape. The color map value set with this gescape will be overwritten
any time Starbase updates that entry in its software color table.

The arg1 parameter contains the index number, red value, green value, and blue
value in that order.

The arg2 parameter is ignored.

The example given below will blink index 5 between the color value given in the
Starbase color table and red.

When in CMAP _FULL mode, the index number can contain three index values
simultaneously. The index value for red is in byte 2, the index number for green
is in byte 1, and the index value for blue is in byte o.
When video blending is enabled on the HP 98730 or HP 98731, color map index
blinking will not be operative. See the description of the gescape IMAGE_BLEND
for more detail.

To blink color map planes see the gescape for BLINK_PLANES.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1, arg2;

arg1.f[O]=5.0;
arg1. f [1] =1. 0;
arg1.f[2]=O.O;

GESC-8

'\
/

argl.f[3]=0.0;
gescape(fildes,BLINK_INDEX,&argl,&arg2);

FORTRAN77 Syntax

real argl(64),arg2(64)
arg1(1) =5.0
argl(2)=1.0
arg1(3)=0.0
argl(4)=0.0
call gescape(fildes,BLINK_INDEX,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
argl.f[l] := 5.0;
argl.f[2] := 1.0;
argl.f[3] := 0.0;
argl.f[4] := 0.0;
gescape(fildes,BLINK_INDEX,argl,arg2);

GESC-9

BLINK_PLANES

The (op) parameter is BLINK_PLANES.

This gescape allows you to blink the display. To blink individual color map ~
indexes refer to the R_BLINK_INDEX segment of those device driver sections that
allow color map blinking.

The following drivers support a blink speed of 2.4 Hertz:

hp3001 hp300h hp98700 hp98710

The following drivers support a blink speed of 3.75 Hertz:

hp98720 hp98720w hp98721 hp98550 hp98556 hp98730 hp98731

The argl parameter is a mask indicating which planes to blink. The argl
parameter can be any value from 0-255. For example, if argl is 5, planes 0
and 2 of the device will blink.

Devices which support video blending allow individual blink control for all planes
when blending is enabled. In this case argl can contain values with more than
eight bits. See the description of the gescape IMAGE_BLEND for more details.

The arg2 parameter is ignored.

Exceptions - HP 98720w

This gescape works only in image plane configuration; that is, when this driver
is running to the image planes and not the overlay planes.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl. arg2;

argl.i[O]=5;
gescape(fildes.BLINK_PLANES.&argl.&arg2);

FORTRAN77 Syntax

integer*4 argl(64).arg2(64)
arg1(l)=5
call gescape(fildes.BLINK_PLANES.argl.arg2)

GESC-10

\
I
J

/

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl.arg2:gescape_arg;

begin
arg1.i[l] := 5;
gescape(fildes.BLINK_PLANES.argl.arg2) ;

GESC-11

GR2D_DEF _MASK

The (op) parameter is GR2D_DEF _MASK.

The HP 98548A, HP 98549A, HP 98550A, and HP 319C displays, and the
HP 98556A accelerator, have hardware capability for three-operand raster com­
binations: that is, operations that use a tiling mask and a replacement rule that
specify the combination of the source, mask, and destination. When enabled, the
mask rule and current mask are used for block_write and block_move opera­
tions. When disabled, the normal replacement rule (see drawing_mode) is used
and the current mask is ignored.

The hardware only allows a mask size of 16 X 16 pixels. This mask repeats over
the entire screen area. The mask is full-depth (that is, it is specified as a byte
per pixel, and as many low-order bits are significant as there are color planes
in the display being accessed). Each plane of the mask is applied only to the
corresponding source and destination planes.

Related gescape functions are GR2D_MASK_RULE and GR2D_MASK_ENABLE.

This gescape allows you to define the mask to be used. The argl parameter
contains 256 bytes in row-major order, representing the mask (16 pixels wide by
16 pixels high).

The arg2 parameter is ignored.

This mask remains in effect for three-operand combinations until this gescape is
used again to set another mask. The default mask is all ones.

The following example sets the mask to a checkerboard of 88 squares in the first
plane.

GESC-12

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;
int row;

for (row=O; row<8; row++)
{

}

argl.i[row*4] = OxOl0l0l0l;
argl.i[row*4+1] OxOl0l0l0l;
argl.i[row*4+2] 0;
argl.i[row*4+3] 0;

for (row=8; row<16; row++)
{

}

argl.i[row*4] = 0;
argl.i[row*4+1]
argl.i[row*4+2]
argl.i[row*4+3]

0;
OxOl0l0l0l;
OxOl0l0l0l;

gescape(fildes.GR2D_DEF_MASK.&argl.&arg2);

FORTRAN77 Syntax

integer*4 argl(64).arg2(1). row

do 100 row=0.7
argl(row*4+1)
argl(row*4+2)
argl(row*4+3)
argl(row*4+4)

100 continue
do 200 row=8.15

argl(row*4+1)
argl(row*4+2)
argl(row*4+3)
argl(row*4+4)

200 continue

Z'01010101';
Z'01010101';
0;
0;

0;
0;
Z'01010101';
Z '01010101' ;

call gescape(fildes.GR2D_DEF_MASK.argl.arg2)

GESC-13

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;
row: integer;

begin

GESC-14

for row := 0 to 7 do begin
arg1.i[row*4+1] := hex('01010101');
arg1.i[row*4+2] := hex('01010101');
arg1.i[row*4+3] := 0;
arg1.i[row*4+4] := 0;

end;
for row := 8 to 15 do begin

arg1.i[row*4+1] := 0;
arg1.i[row*4+2] := 0;
arg1.i[row*4+3] := hex('01010101');
arg1.i[row*4+4] := hex('01010101');

end;

gescape(fildes.GR2D_DEF_MASK,arg1.arg2);

(1
(
\j

The (op) parameter is GR2D_FILL_PATTERN.

This gescape allows the user to define a 16x 16 dither or fill pattern that will
be used as the source fill for polygons and rectangles. The bytes defining the
pattern are passed to the driver through arg1. The 256 bytes are placed in
the fill pattern cell in row major order. After gescape is called the polygon
and rectangle primitives will be filled with the user-defined pattern until another
pattern is defined with gescape or until the fill is redefined using interior _style
and pattern_define.

This gescape is provided for compatibility with older device drivers. It is
suggested that the INT_PATTERN interior style be used instead of this gescape.

The arg2 parameter is ignored.

The following example defines a checkerboard fill pattern.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;
int row;

for (row=O; row<8; row++)
{

}

argl.i[row*4] = OxOl0l0l0l;
argl.i[row*4+1] = OxOl0l0l0l;
argl.i[row*4+2] = 0;
argl.i[row*4+3] = 0;

for (row=8; row<16; row++)
{

}

argl.i[row*4] = 0;
argl.i[row*4+1] = 0;
argl.i[row*4+2] = OxOl0l0l0l;
argl.i[row*4+3] = OxOl0l0l0l;

gescape(fildes.GR2D_FILL_PATTERN.&argl.&arg2);

GESC-1S

FORTRAN77 Syntax

integer*4 argl(64) ,arg2(1) , row

do 100 row=O,7
argl(row*4+1) = Z' 01010101 ' ;
argl(row*4+2) = Z' 01010101 ' ;
argl(row*4+3) = 0;
argl(row*4+4) = 0;

100 continue
do 200 row=8,15

argl(row*4+1) = 0;
argl(row*4+2) = 0;
argl(row*4+3) Z ' 01010101' ;
argl(row*4+4) = Z'01010101';

200 continue

call gescape(fildes,GR2D_FILL_PATTERN,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;
row: integer;

begin

GESC-16

for row := 0 to 7 do begin
argl.i[row*4+1] := hex('01010101');
argl.i[row*4+2] := hex('01010101');
argl.i[row*4+3] 0;
argl.i[row*4+4] := 0;

end;
for row := 8 to 15

argl.i[row*4+1]
argl.i[row*4+2]
argl.i[row*4+3]
argl.i[row*4+4]

end;

do begin
:= 0;
:= 0;
:= hex('01010101');
:= hex('OlOlOlOl');

gescape(fildes,GR2D_FILL_PATTERN,argl,arg2);

The (op) parameter is GR2D _MASK_ENABLE.

The HP 98548A, HP 98549A, HP 98550A, HP 319C displays, and the HP 98556A
accelerator have hardware capability for 3-operand raster combination: that
is, operations that use a tiling mask and a replacement rule that specify the
combination of the source, mask, and destination. When enabled, the mask rule
and current mask are used for block_write and block_move operations. When
disabled, the normal replacement rule (see drawing_mode) is used and the current
mask is ignored.

Related gescapes are GR2D_MASK_RULE and GR2D_DEF _MASK.

This gescape allows the user to enable or disable the use of the mask. The
argl parameter contains one flag. If argl [0] is 0, 3-operand mode is disabled.
If argl [0] is 1, 3-operand mode is enabled for block_write and block_move.
If argl [0] is 2, 3-operand mode is enabled for block_write, block_move and
raster text using the HP Window /9000 font manager or fast alpha libraries.

The arg2 parameter is ignored.

This is a hardware-dependent feature not supported in window retained rasters.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1. arg2;

:>
arg1.i[O]=TRUE;
gescape(fildes.GR2D_MASK_ENABLE,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1(1)=TRUE
call gescape(fildes,GR2D_MASK_ENABLE,arg1.arg2)

GESC-17

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin
arg1.i[1] := 1;
gescape(fildes.GR2D_MASK_ENABLE.arg1.arg2);

GESC-18

The (op) parameter is GR2D _MASK_RULE.

The HP 98548A, HP 98549A, HP 98550A, and HP 319C displays, and the
HP 98556A accelerator have hardware capability for three-operand raster combi­
nation: that is, operations that use a tiling mask and a replacement rule (drawing
mode) that specify the combination of the source, mask, and destination. For
more information, review the "Three-operand Raster Operations" section of the
appropriate device driver chapter.

Related gescapes are GR2D_MASK_ENABLE and GR2D_DEF _MASK.

This gescape allows you to set the 3-operand drawing mode. The arg1 parameter
contains one integer, specifying the new replacement rule. The replacement rule
is generated from the desired results by reading the eight result bits as a number.
The default rule is (source), rule number OxCC.

Table GESC-3.

Mask Source Destination Result

a a a ra
a a 1 r1
a 1 a r2
a 1 1 r3
1 a a r4
1 a 1 r5
1 1 a r6
1 1 1 r7

Table GESC-4.

For example, to derive the commonly used rule (if (mask) then (source) else
(destination)), rule number OxCA, the following table defines the rule. The rule
number is determined by reading the result column as an integer (from bottom
to top, r7 being the most significant bit and rO the least significant).

GESC-19

Table GESC-S.

Mask Source Destination Result

0 0 0 0

0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

The arg2 parameter is ignored.

The following program fragment shows the use of this gescape and example rule.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[O]=OxCA;
gescape(fildes,GR2D_MASK_RULE,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64) ,arg2(64)
arg1(1) =Z 'CA'
call gescape(fildes,GR2D_MASK_RULE,arg1,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1.i[1] := hex('CA');
gescape(fildes,GR2D_MASK_RULE,arg1,arg2);

GESC-20

~

(
\
'1

The (op) parameter is GR2D _OVERLAY _TRANSPARENT.

The HP 98549A, HP 98550A, and HP 319C displays, and the HP 98556A acceler­
ator may be opened in configurations that provide 2-overlay planes, in addition
to the 4- or-8 image planes. Images created in the overlay planes do not affect
images in the graphics planes. However, pixels of value zero in the overlay planes
may be made either transparent (allowing the graphics planes to be displayed)
or opaque (obscuring the graphics planes).

This gescape allows the transparency of zero pixels to be turned on or off (the
default is that zero pixels are transparent). The argl parameter contains a single
flag: if TRUE, zero pixels are transparent; if FALSE, zero pixels are opaque and the
color found in entry 0 of the overlay color map is displayed for those pixels.

The arg2 parameter is ignored.

This gescape should not be used with the HP 98548A display.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl, arg2;

argl.i[O]=TRUE;
gescape(fildes,GR2D_OVERLAY_TRANSPARENT,&argl,&arg2);

FORTRAN77 Syntax

integer*4 argl(64) ,arg2(64)
argl(l)=TRUE
call gescape(fildes,GR2D_OVERLAY_TRANSPARENT,argl,arg2)

GESC-21

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1. i [1] : = 1;
gescape(fildes,GR2D_OVERLAY_TRANSPARENT,arg1,arg2);

GESC-22

I

The (op) parameter is GR2D_PLANE_MASK.

This gescape defines a mask indicating the frame buffer planes read or written
during bit/pixel block transfers. The mask is relevant when R_BIT_MODE
has enabled bit/pixel mode and raw mode is used in block_readO and
block_wri toe O. The mask may define any number of planes up to the total
number of planes opened. Extra bits are ignored. The least-significant bit in the
mask corresponds to the least-significant accessible plane. For example, mask 5
allows reads and writes to both plane 0 and plane 2. The storage expected is
that needed for the number of planes specified. For this example, storage for two
planes is needed. Both planes are transferred on a single call to block_read or
block_wri teo See the documentation of block_read and block_write with raw
mode for more information.

This gescape overrides the mask set by gescape R_BIT_MASK. If this gescape
is called after R_BIT_MASK, transfers to obscured regions of a retained raster (if
supported) will be according to the most significant set bit in the mask value (i.e.,
only a single plane), and transfers to the visible regions will be according to the
entire mask value. The R_BIT_MASK gescape must be used to ensure consistency
in retained raster operations.

The arg1 parameter is the mask to be used.

The arg2 parameter is ignored.

The default mask is Ox01 (plane 0 only).

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1. i [0] = 5;
gescape(fildes,GR2D_PLANE_MASK,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1. i (1) = 5
call gescape(fildes,GR2D_PLANE_MASK,arg1,arg2)

GESC-23

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2

begin
argl.i{l) := 5;
gescape(fildes,GR2D_PLANE_MASK,argl,arg2);

GESC-24

GR2D_REPLICATE

The (op) parameter is GR2D_REPLICATE.

The HP 98548A, HP 98549A, HP 98550A, HP 319C displays, and the HP 98556A
accelerator, have hardware support for pixel replication in the Y direction. This
gescape combines driver management of replication in the X direction with the
hardware support to provide square pixel replication, and specifies the replication
factor to be used. The X replication needs a workspace, that must be specified
in the call, along with the source and destination rectangles and the destination
size. Only replication factors of 2, 4, 8, and 16 are supported.

The arg1 parameter specifies the many parameters needed for the operation to
take place:

arg1 [0]

arg1 [1]

arg1 [2]

arg1 [3]

arg1 [4]

arg1 [5]

arg1 [6]

arg1 [7]

arg1 [8]

arg1 [9]

arg1 [10]

arg1 [11]

specifies replication factor. A value other than 2, 4, 8, or 16 is a
no-op.

specifies the source rectangle upper left X device coordinate.

specifies the source rectangle upper left Y device coordinate.

specifies the destination rectangle upper left X device coordinate.

specifies the destination rectangle upper left Y device coordinate.

specifies the destination rectangle X size in pixels.

specifies the destination rectangle Y size in pixels.

specifies the workspace upper left X device coordinate.

specifies the workspace upper left Y device coordinate.

specifies the workspace X size in pixels.

specifies the workspace Y size in pixels.

specifies whether the workspace position has been specified in
window device coordinates or raw device coordinates: (0 =
window coordinates, 1 = raw coordinates)

The arg2 parameter is ignored.

GESC-2S

When argl is an allowed value, replication is done as follows:

• The number of source pixels to be replicated is computed based on the
source, workspace, and destination sizes (one of them being the limiting ~
factor). ~

• The workspace is cleared to zeroes.

• The X-replication is done in the workspace.

• The driver waits for a vertical retrace.

• The final Y -replication is done to the destination rectangle.

Some notes on the use of this gescape:

• For the workspace not to be the limiting component in either the X or Y
dimension, it must be as wide as the destination in X, and as high as the
source in Y.

• The workspace may overlap the destination rectangle only at the bottom
of the destination.

• If the workspace is on-screen and visible, visually displeasing effects may
occur during the X-replication. Usually, it is desirable to either use an
offscreen workspace (acquired with the gescapes R_OFFSCREEN_ALLOC or
R_FULL_FRAME_BUFFER), or to blank out the workspace by obscuring it
with a mask in another image plane or an overlay plane.

• Large destination areas may appear to "tear" during the replication
because a video refresh occurs during the final replication operation. The
largest destination that may safely be used without risk of tearing is
512x512 pixels.

• This is a hardware-dependent feature and is not supported in window
retained rasters.

The following example replicates a 100xl00 source at X=O,Y=O into a 400x400
destination at X=512,y=O using a on-screen workspace of minimum size at
X=512,Y =512.

GESC-26

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl. arg2;

argl.i[0]=4;
argl.i[l]=O;
argl.i[2]=O;
argl.i[3]=512;
argl.i[4]=O;
argl.i[5]=400;
argl.i[6]=400;
argl.i[7]=512;
argl.i[8]=512;
argl.i[9]=400;
argl.i[10]=100;
arg1. i [11] =0;
gescape(fildes. GR2D_REPLICATE. &argl. &arg2);

FORTRAN77 Syntax

integer*4 argl(64).arg2(64)
arg1(1)=4;
arg1(2)=O;
arg1(3)=O;
arg1(4)=512;
arg1(5)=O;
argl(6)=400;
argl(7)=400;
arg1(8)=512;
arg1(9)=512;
argl(10)=400;
arg1(11)=100;
argl(12)=O;
call gescape(fildes. GR2D_REPLICATE. argl. arg2)

GESC-27

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
arg1.i[l] := 4;
argl.i[2] := 0;
arg1. i [3] : = 0;
argl.i[4] := 512;
arg1. i [5] : = 0;
argl.i[6] := 400;
argl.i[7] := 400;
arg1. i [8] : = 512;
argl.i[9] := 512;
argl.i[10] := 400;
argl.i[l1] := 100;
arg1. i [12] := 0;
gescape(fildes, GR2D_REPLICATE, argl, arg2);

GESC-28

r'
(

The (op) parameter is HPGL_READ _BUFFER.

This gescape allows you to read data from the device. The argl parameter is a
character buffer that the device string will be returned in. The arg2 parameter
is the length of the string in bytes.

This gescape assumes the user program has sent an output command to the
device previous to this call, possibly using the HPGL_WRITE_BUFFER gescape.
The device driver will flush the current output buffer, send a serial trigger to the
device if necessary, and then read in the device's reply.

Caution If the user program has not sent an HP-GL output command
0* before this gescape, the application program will wait
indefinitely for a reply when no timeout is set.

C Syntax Example

/* gescape_arg is a type defined in starbase.c.h */
gescape_arg argl. arg2;

/* First we send the HP-GL output command for its 10 */
strcpy(argl.c. "01;");
arg2.i[O] = 3;
gescape(fildes. HPGL_WRITE_BUFFER. &argl. &arg2);

/* Now we read back in the device's 10 */
gescape(fildes. HPGL_REAO_BUFFER. &argl. &arg2);
printf("The 10 is %s and has %d letters in it". arg1.c. arg2.i[O]);

GESC-29

FORTRAN77 Syntax Example

C

C

CHARACTER ARG1C(255)
INTEGER ARG2I(64)

C FIRST WE SEND THE HP-GL OUTPUT COMMAND FOR ITS ID
C

ARG1C(1) '0'
ARG1C(2) = 'I'

ARG1C(3) ';'
ARG2I(1) = 3
CALL GESCAPE(FILDES. HPGL_WRITE_BUFFER. ARG1C. ARG2I)

C
C NOW WE READ BACK IN THE DEVICE'S ID
C

CALL GESCAPE(FILDES. HPGL_READ_BUFFER. ARG1C. ARG2I)
PRINT*. 'THE ID IS '. ARG1C. 'AND HAS '.ARG2I(1).
'LETTERS IN IT'

Pascal Syntax Example

{ gescape_arg is defined in starbase.pl.h }
var

argl. arg2 : gescape_arg;
begin

GESC-30

{ First we send the HP-GL output command for its ID }
argl.c := '01; ';
arg2.i[1] := 3;
gescape(fildes. HPGL_WRITE_BUFFER. argl. arg2);

{ Now we read back in the device's ID }
gescape(fildes. HPGL_READ_BUFFER. argl. arg2);
writeln('The ID is '. argl.c. ' and has'

arg2.i[1]. 'letters in it');

(
\

The (op) parameter is HPGL_SET _PEN_NUM.

This gescape allows you to explicitly state the number of pens.

The arg1 parameter is the number of pens.

The arg2 parameter is ignored.

The following examples change the number of pens to 6.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h *1
gescape_arg arg1. arg2;
arg1. i [0] = 6;
gescape(fildes. HPGL_SET_PEN_NUM. &arg1. &arg2);

FORTRAN77 Syntax Example

integer arg1i(64). arg2i(64)
argii (1) = 6
call gescape(fildes. HPGL_SET_PEN_NUM. arg1i. arg2i)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}
var
arg1.arg2 : gescape_arg;
begin
arg1. i [1] : = 6;
gescape(fildes. HPGL_SET_PEN_NUM. arg1. arg2);
end.

When you change the number of pens, a new color map of the appropriate size
is created and initialized to the Starbase default color map entries. The size is
number_of_pens+1 (the extra one is for pen up).

GESC-31

The (op) parameter is HPGL_SET_PEN_SPEED.

This gescape allows you to change pen velocity.

The argl parameter is the desired pen velocity. Pen velocity is specified in
centimeters per second.

The arg2 parameter may be 0 (zero) to specify the new velocity for all pens or
set to the specific pen number to have that pen's velocity changed. If the desired
velocity is out of range for the device, the result is device dependent. If the pen
number is out of range, the result is also device dependent.

The following example will set the the velocity to 30 centimeters per second for
all pens.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */
gescape_arg argl. arg2;
arg1. i [0] = 30;
arg2.i[0] = 0;
gescape(fildes. HPGL_SET_PEN_SPEED. &arg1. &arg2);

FORTRAN77 Syntax Example

integer argli(64). arg2i(64)
argii (1) = 30
arg2i(1) = 0
call gescape(fildes. HPGL_SET_PEN_SPEED. arg1i. arg2i)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var
argl.arg2 : gescape_arg;
begin
arg1. i [1] : = 30;
arg2.i[1] := 0;
gescape(fildes. HPGL_SET_PEN_SPEED. argl. arg2);
end.

GESC-32

/

(

The (op) parameter is HPGL_SET _PEN _WIDTH.

This gescape allows a change in pen width.

The arg1 parameter is the desired pen width. Pen width is specified in millimeters
(mm).

The arg2 parameter is the distance between fill lines in millimeters.

The following example sets the pen width to 0.4 millimeters and the distance
between fill lines to 0.6 millimeters. Pen width is used in calculating the distance
between lines when performing area fill.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h *1
gescape_arg argl. arg2;
arg1.f[O] = 0.4;
arg2.f[0] = 0.6;
gescape(fildes. HPGL_SET_PEN_WIDTH. &argl. &arg2);

FORTRAN77 Syntax Example

real arglf(64). arg2f(64)
arglf(1) = 0.4
arg2f(1) = 0.6
call gescape(fildes. HPGL_SET_PEN_WIDTH. arglf. arg2f)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var
argl.arg2 : gescape_arg;
begin
argl.f[l] := 0.4;
arg2.f[1] := 0.6;
gescape(fildes. HPGL_SET_PEN_WIDTH. argl. arg2);
end.

GESC-33

The (op) parameter is HPGL_WRITE_BUFFER.

This gescape permits direct communication of HP-GL commands to supported
devices. The commands are sent directly to the device without alteration. Invalid
commands will cause unpredictable results. The full HP-GL command syntax
must be observed, including proper placement of punctuation.

The argl parameter is an ASCII buffer of HP-GL commands with a maximum
length of 255 bytes.

The arg2 parameter is the command buffer's length in bytes.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h *1
gescape_arg arg1. arg2;
strcpy (arg1. c . IIpU; II) ;

arg2.i[O] = 3;
gescape(fildes. HPGL_WRITE_BUFFER. &arg1. &arg2);

FORTRAN77 Syntax Example

character arg1c(255)
integer arg2i(64)
arglc(1) 'P'
arglc(2) 'u'
arglc(3) ,.,
arg2i(1) 3
call gescape(fildes. HPGL_WRITE_BUFFER. arg1c. arg2i)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}
var
argl.arg2 : gescape_arg;
begin
arg1. c [1] 'P' ;
arg1. c [2] 'u' ;
argl.c[3] ';';
arg2.i[1] := 3;
gescape(fildes. HPGL_WRITE_BUFFER. argl. arg2);
end.

GESC-34

;'
I

IGNORE_RELEASE

The (op) parameter is IGNORE_RELEASE.

This gescape causes the event trigger to start only when a button is pressed.
This reverses the condition created by TRIGGER_ON_RELEASE.

This is the default condition.

The arg1 and arg2 parameters are ignored.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h *1
gescape_arg argl, arg2;
gescape(fildes,IGNORE_RELEASE,&argl,&arg2);

FORTRAN77 Syntax Example

integer*4 argl(64),arg2(64)
call gescape(fildes,IGNORE_RELEASE,argl,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl, arg2 : gescape_arg;
begin

gescape(fildes,IGNORE_RELEASE,argl,arg2);

GESC-35

The (op) parameter is IMAGE_BLEND.

The HP 98730 and HP 98731 Device Drivers support video blending hardware. ~
This gescape allows the user to enable or disable video blending of frame buffer
banks.

The argl points to a flag which enables blending if equal to one and disables
blending if zero. When this gescape is called, the program must be gopened to
the image planes, and double buffering must be turned off. Double buffering may
be turned on after blending is enabled.

The arg2 is ignored.

This gescape command will override any previous display modes set by
shade_mode or double_buffering. Subsequent calls to bank_switch can be used
to alter the frame buffer banks being written and displayed, and shade_mode can
be used to initialize the color table and set the color map mode within the banks.

When blending is enabled, the hardware configuration is altered in the following
way:

• While blending is enabled, bank_switch may be used to select single or
multiple banks to be displayed. During blending, the dbank parameter is
used as a mask with bit 0 corresponding to bank 0, bit one corresponding
to bank 1, and so forth. Only one bank at a time may be selected for
writing.

• Any combination of the three available frame buffer banks may be dis­
played simultaneously. Each frame buffer bank of 8 display planes has its
own 256 entry color map. These color maps may be individually set using
call to the SET_BANK_CMAP gescape and regular define_color_table
calls. See the SET_BANK_CMAP documentation for details. By default
all three color maps contain the same entries, which were specified with
the last define_color_table or shade_mode call. When multiple frame
buffers are turned on, the intensities out of the separate color maps are
summed and displayed. if the sum for any red, green, or blue color exceeds ~
the maximum allowable intensity of 1.0, it is clamped.

GESC-36

• Display enable and write_enable become 24 bit quantities, with one
bit for each of the 24 display planes which can be installed. (See
display_enable and write_enable.) When blending is turned on, the
lower byte of the plane is duplicated into the next two upper bytes to get
24 bit quantities. Subsequent calls to display_enable and write_enable
will treat the enable value as 24 bit quantities.

• Since each display bank has its own 256 entry color map, 24 bit color is
not available when blending. If the color map mode is set to CMAP _FULL
while blending is enabled, eight planes will be used, with three bits for
red, three bits for green, and two bits for blue.

• The blink mask given to the gescape BLINK_PLANES becomes a 24 bit
quantity, with one bit for each of the 24 display planes which can be
installed. (See BLINK_PLANES.) If blinking of planes is currently enabled
when blending is turned on, the byte blink mask specified previously by
the user is duplicated into the next two upper bytes to obtain a 24 bit
blink planes mask.

• Since all the hardware color maps are used for blending when it is
enabled, blinking color map entries are not supported simultaneously with
blending. This means that calls to gescape with an (op) parameter of
BLINK_INDEX will have no effect (although BLINK_PLANES still works-see
above).

The following examples demonstrate how to use this function.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[O] = 1;
gescape(fildes,IMAGE_BLEND,&arg1,&arg2);
bank_switch(fildes,O,7); /* enable blending of all three banks */

arg1.i =0; /* disable blending */
gescape(fildes,IMAGE_BLEND,&arg1,&arg2);
bank_switch(fildes,O,O); /* return to normal operation */

GESC-37

FORTRAN77 Syntax

integer*4 arg1(4),arg2(1)

arg1(1)=1
call gescape(fildes,IMAGE_BLEND,arg1,arg2)

call bank_switch(fildes,O,7)

arg1(1)=0
call gescape(fildes,IMAGE_BLEND,arg1,arg2)

call bank_switch(fildes,O,O)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1. i [1] : = 1;
gescape(fildes,IMAGE_BLEND,arg1,arg2) ;

bank_switch(fildes,O,O);

arg1.i[1]:= 0;
gescape(fildes,IMAGE_BLEND,arg1,arg2) ;

bank_switch(fildes,O,O) ;
end

GESC-38

/
/,11
l

The (op) parameter is LS_OVERFLOW_CONTROL.

Four options are provided to the user to address overflow situations that may
occur with light source calculations. This gescape takes up to 4 floating point
numbers in arg1 to set the option.

CLIPPED

SCALED

DEBUG

This is the default option and will be the fastest case. The red, green,
and blue values are calculated, and if any color value exceeds 1.0 it
is truncated to 1.0. (r=min (r , 1 .0,), etc.)

To get this option the gescape should be called with: arg1. f [0] =0.0

When an overflow occurs, this option maintains the proper hue. If
any color exceeds 1.0, the maximum of the red, green, and blue values
is used to divide each of the color values with. (r=r/max(r, g, b),
etc.)

To get this option the gescape should be called with: arg1. f [0] =1. 0

This option allows the user to quickly determine where the light
source equations are overflowing. The user selects a color and then
if any overflow occurs the overflow color is used instead of the
calculated color.

To get this option, the gescape should be called with:
arg1.f [0]=3.0,
arg1. f [1] =(red overflow component),
arg1. f [2] =(green overflow component),
arg1. f [3] =(blue overflow component).

HP 98721 Only

HYBRID This option scales the diffuse and specular terms separately, then
multiplies the diffuse term by a fractional value and adds it to the
specular term. This new color is clipped if necessary.

(r=min«rd/max(rd,gd,bd))*diff+rs/max(rs,gs,bs) ,1.0), etc)

This option allows the user to limit the diffuse term to some fraction
of the full color and the specular contribution will bring it to full
color. The assurance that the diffuse is in a certain region and the

GESC-39

specular is in another region is useful for two reasons. When in
CMAP _FULL mode it guarantees that the specular reflections can be
seen. When in CMAP _MONOTONIC mode the color map can be set up
in such a way to have the diffuse color in one region and the specular
color in the next region of the color map.

To get this option the gescape should be called with:
arg1.f[O]=2.0,
arg1 [1] =(diffuse fraction)
The value of (diffuse fraction) is 0.0 to 1.0.

When using a HP 98730 device, similar functionality to the HYBRID option is
available with surface_coefficients.

The following examples select a scaled model.

C Syntax

I*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1. arg2;

arg1. f [0] =1. 0;
gescape(fildes.LS_OVERFLOW_CONTROL.&arg1.&arg2);

FORTRAN77 Syntax

real arg1(64) • arg2 (64)
arg1(1) =1. 0
call gescape(fildes.LS_OVERFLOW_CONTROL.arg1.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin

GESC-40

arg1.f[1] := 1.0;
gescape(fildes.LS_OVERFLOW_CONTROL.arg1.arg2);

(

OVERLAY _BLEND

The (op) parameter is OVERLAY _BLEND.

The HP 98730 and HP 98731 overlay color map defines a transparency bit
associated with a color map entry. If the transparency bit for a pixel is set
to one, the pixel color is forced to the red, green, and blue values in the overlay
color map. If the transparency bit is set to zero, the red, green, and blue values
in the overlay planes are blended with the red, green, and blue values in the
graphics planes behind the overlay planes. If the red, green, and blue values
for the selected entry are all zero, then black will be blended with the graphics
planes. Blending black is exactly the same as defining an entry to be transparent.

This gescape lets you control the blending of overlay color map transparent
entries.

arg1 [0] is an index value in the range of 0-15 (only 0-7 if the overlay planes
were opened with a 3-plane device file) defining which color map entry for which
the transparency mode is being defined. If the value is not in the range of 0-15
a mod function is performed.

If arg1 [1] is TRUE, writing a pixel with the specified index value results in
blending the color defined for that entry in the overlay planes with the graphics
planes.

If arg1 [1] is FALSE, writing a pixel with the specified index value results in black
being blended with the graphics planes.

For processes in the image planes using the fourth overlay plane for cursors
(see the R_OVERLA Y _ECHO gescape), the cursor will not be visible in regions of
transparency where black is not being blended with the image planes.

The arg2 parameter is ignored.

C Syntax

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1. arg2;

arg1.i[O]=3;
arg1 . i [1] =F ALSE;
gescape(fildes.OVERLAY_BLEND.&arg1.&arg2);

GESC-41

FORTRAN77 Syntax

integer*4 arg1(64). arg2(64)
arg1(1)=3
arg1(2)=0
call gescape(fildes.OVERLAY_BLEND.arg1.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin

GESC-42

arg1.i[1] := 3;
arg1.i[2] := FALSE;
gescape(fildes.OVERLAY_BLEND.arg1.arg2);

PAN_AND_ZOOM

The (op) parameter is PAN_AND_ZOOM.

The PAN_AND_ZOOM gescape is only supported in image planes.

Pixel panning is a function that readdresses the start of the video scan to arbitrary
X, Y pixels.

Pixel zooming is a function most commonly used with pixel panning to inspect
pixels in an image by enlarging the image. Zooming is a replication of pixels.

For example: a 2X zoom replicates each pixel four times, twice in the X direction,
and twice in the Y direction.

Pixel pan and zoom can be done relative to the upper left of the screen, or relative
to the center of the screen.

This gescape can be used with the HP 98730 and HP 98731 device drivers to
control pixel pan and zoom hardware.

If arg1 [0] is TRUE (1) then arg1 [1] is the X location (call it PANx) , and arg1 [2]
is the Y location (call it PAN y), of the frame buffer pixel to be at the center of
the screen.

If arg1 [0] is FALSE (0) then arg1 [1] is the X location (call it PANx) , and
arg1 [2] is the Y location (call it PANy) , of the frame buffer pixel to be at the
upper left-most position of the screen.

Resolution in PANx is limited to four pixel boundaries. This means that the
lower two bits of the value passed in for PANx are masked off.

arg1 [3] is the zoom factor for pixel replication. Legal values are values from
1-16. A zoom factor of one or zero implies no pixel replication.

arg1 [4] is either TRUE (1) or FALSE (0). Setting this parameter to TRUE allows
PANx values such that pixels beyond 2047 are displayed on the screen. Setting
this parameter to FALSE results in PANx values being adjusted so that no wrap
around is attempted.

Wrap around can occur in the Y direction. Wrap around cannot occur in the X
direction. Therefore, pixels beyond 2047 are undefined.

If PANx or PANy are negative values, then they are converted to positive values
by adding either 2048 or 1024 respectively, until the value becomes positive.

GESC-43

Setting arg1 [0] to FALSE (0), arg1 [1] and arg1 [2] to 0, and arg1 [3] to 1 will
obtain normal displaying, where pixel 0,0 is the upper-left screen origin and nq
pixel replication is done.

At gop en time the pixel pan and zoom hardware is reset to obtain normal display
if the Mode word contains INIT or RESET_DEVICE. Otherwise, the pixel pan and
zoom hardware is left in its current state.

C Syntax

I*gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl, arg2;

argl.i[O]=l; 1* Request that PANX,PANY represent pixel to become center
*1

1* of the screen *1
argl.i[1]=1280;
argl.i[2]=512;
argl.i[3]=1; 1* Do not do any pixel replication *1
argl.i[4]=O;
gescape(fildes,PAN_AND_ZOOM,&argl,&arg2);

FORTRAN77 Syntax

integer*4 argl(64),arg2(64)
arg1(1)=1
argl(2)=1280
arg1(3)=512
argl(4)=1
arg1(5)=0
call gescape(fildes,PAN_AND_ZOOM,argl,arg2)

GESC-44

!~

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1. i [1] : = 1;
arg1.i[2] := 1280;
arg1.i[3] := 512;
arg1. i [4] : = 1;
arg1. i [5] : = 0;
gescape(fildes,PAN_AND_ZOOM,arg1,arg2);

GESC-45

The (op) parameter is PATTERN_FILL.

This gescape allows you to fill polygons with a pattern stored in offscreen
memory. Shade mode must be CMAP _FULL or CMAP _MONOTONIC for this gescape

to work. To resume non-pattern operations call drawing_mode to change the
replacement rule. Refer to the Starbase Graphics Techniques manual for more
information on replacement rules.

Using this gescape, you specify one of 256 replacement rules that include a
pattern. The new replacement rule is hex number obtained from using a logical
operator on three inputs:

(pattern) op (source) op (destination) --+ (result)

A (pattern) is a rectangular grid of off-screen pixels containing a pattern you will
use to "overlay" with the (source) and and (destination) information. You are
sending the new information, (source), to the pixel. The information currently
in the pixel is (destination).

The replacement rule is used to determine how data is written into the frame
buffer. Since there are eight possible ways to combine three-operands, in this case
the (source), (destination), and (pattern), there are eight bits in the replacement
rule. The following table shows the bit from the replacement rule which will be
used for each of the logical combinations.

Table GESC-6. Replacement Rule Truth Table

Pattern Source Destination Result Bits
a a a r7
a a 1 r6
a 1 a r5
a 1 1 r4
1 a a r3
1 a 1 r2
1 1 a rl
1 1 1 ra

GESC-46

I
I
\

'\

Note that if you wish to duplicate the effect of drawing_mode's replacement rules,
copy the values of r3-rO into this rule's r7-r4 and r3-rO. This makes the (pattern)
operand a no-op.

The following table shows five example replacement rules.

Table GESC-7. Example Replacement Rules

Rule, and Hex
Representation of the Rule r7 r6 r5 r4 r3 r2 rl rO

Zero 0 0 0 0 0 0 0 0
OxOO

Source 0 0 1 1 0 0 1 1
Ox33

Source OR Destination 0 1 1 1 0 1 1 1
Ox77

If pattern=O,then Destination 0 1 0 1 0 0 1 1
If pattern=l,then Source
Ox53

Pattern 0 0 0 0 1 1 1 1
OxOF

The first three examples are replacements that can also be done using draw­
ing_mode: the upper four bits of the replacement rule are the same as the lower
four bits and match the equivalent drawing_mode rule. The last two examples
are replacement rules that use the (Pattern) operand. In the fourth example,
when pattern bit is 0, the result bit remains unchanged; when the pattern bit is
1, the result bit is set equal to the source. In the last example, the result bit is
equal to the pattern bit.

The gescape takes five parameters:

• The first parameter is one of the replacement rules described above.

• The second parameter is the X location of the upper left corner of the
pattern rectangle.

• The third parameter is the Y location of the upper left corner of the
pattern rectangle.

GESC-47

• The fourth parameter is the dx size of the pattern rectangle. allowable
values of dx are 16, 32, 64, 128, 256. x mod dx must equal zero.

• The fifth parameter is the dy size of the pattern rectangle. Allowable ~
values of dy are 4, 8, 16, 32, 64, 128, 256. y mod dy must equal zero.

The following example shows a pattern in the upper right corner of off-screen
memory. The pattern is 128x128 and is located at (1920,0). Subsequent polygon
primitives and vector primitives will use the pattern until drawing_mode is called.

C Syntax

I*gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1. arg2;
char patt[128] [128];

dcblock_write(fildes.1920.0.128.128.patt.1);
arg1.i[O]=OxOF;
arg1.i[1]=1920;
arg1.i[2]=O;
arg1.i[3]=128;
arg1.i[4]=128;
gescape(fildes.PATTERN_FILL.&arg1.&arg2);
rectangle(fildes.x1.y1.x2.y2);
drawing_mode(fildes.3);

FORTRAN77 Syntax

integer arg1(64).arg2(64)
integer patt(32.32)

call dcblock_write(fildes.1920.0.128.128.patt.1)
arg1(1) =15
arg1(2)=1920
arg1(3)=0
arg1(4)=128
arg1(5)=128
call gescape(fildes.PATTERN_FILL.arg1.arg2)
call rectangle(fildes.x1.y1.x2.y2)
call drawing_mode(fildes.3)

GESC-48

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin

patt: array [0 .. 127.0 .. 127] of 0 .. 255;

dcblock_write(fildes.1920.0.128.128.patt.1) ;
arg1. i [0] : =hex('OF ') ;
arg1.i[1] :=1920;
arg1. i [2] : =0 ;
arg1.i[3] :=128;
arg1. i [4] : =128;

gescape(fildes.PATTERN_FILL.arg1.arg2);
rectangle(fildes.x1.y1.x2.y2);
drawing_mode(fildes.3) ;

GESC-49

The (op) parameter is R_BIT_MASK.

This gescape defines a mask. The mask indicates the plane to read bit patterns
from or write bit patterns to. The highest plane indicated by the mask is the
enabled plane. For example, mask 5 allows reads and writes to plane 2.

The argl parameter defines the mask to be used. The range of values allowed
for this parameter are device dependent. The default mask is 1.

The arg2 parameter is ignored.

Note This gescape should not be used on black and white devices.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl, arg2;

arg1. i [0] = 5;
gescape(fildes,R_BIT_MASK,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1(l) = 5
call gescape(fildes,R_BIT_MASK,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
argl,arg2 gescape_arg;

begin

GESC-50

arg1. i [1] : = 5;
gescape(fildes,R_BIT_MASK,argl,arg2) ;

/
\

The (op) parameter is R_BIT _MODE.

This gescape changes the definition of the raw mode flag for block reads and
writes. When bit_mode is turned on (arg1 is true) and a block read or write is
called with the raw mode flag set (true), then each byte of the source/destination
array contains information about eight pixels, I-bit per pixel. The plane read
from or written into is set using the gescape R_BIT_MASK. When in "bit mode",
raw reads and writes are clipped. Each row of the bit pattern must be padded
to a byte boundary. For Example:

If a block write with a "destination x" of 18 bits is performed, each row of the
bit pattern is three bytes long. The first bit (highest order bit) of the first byte
of the source bit pattern, will determine the first pixel on the destination device.
The second bit of the first byte determines the second pixel, and so on through
the first two bytes. The 17th pixel is determined by the first bit of the third byte,
while the last pixel on the first row of the device is determined by the second bit
of the third byte. The next six bits of byte three are ignored. Then the first pixel

\ of the second row is represented by the first bit of the fourth byte.

A bit pattern that turns on every third pixel in each row of an 18 X 2 pixel area
would look like this (each digit represents a single bit and the spaces represent
byte boundaries).

00100100 10010010 01000000
00100100 10010010 01000000

"Bit mode" can be used to reduce the amount of space it takes to store a raster
image.

If arg1 is TRUE (1), raw mode is 1 bit per pixel. If arg1 if FALSE (0), raw mode
is used.

The arg2 parameter is ignored.

GESC-S1

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1. i [0] = 1;
gescape(fildes,R_BIT_MODE,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1(l) = 1
call gescape(fildes,R_BIT_MODE,arg1,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2 gescape_arg;

begin

GESC-52

arg1.i[l] := 1;
gescape(fildes,R_BIT_MODE,arg1,arg2);

The (op) parameter is R_DEF _ECHO_TRANS.

This gescape allows you to define a transparency mask for raster cursors. The
transparency mask is used to determine which bits of the raster cursor pattern are
visible over the graphics background. The transparency mask is assumed to have
the same height and width as the current raster cursor. The mask is arranged
in a packed array as one-bit per pixel, so each byte contains information about
eight pixels. If the bit in the mask is set, the corresponding pixel location in the
raster cursor will be visible. If the pattern bit is zero, the corresponding pixel
will be transparent (not drawn).

This gescape provides the same functionality as R_ECHO_MASK, except that input
data to R_ECHO_MASK is byte aligned on row boundaries. Suggestion: On the
HP 98730 and HP 98731 devices, use R_ECHO_MASK for slightly better performance.

With the HP 98730 Device Driver, echo transparency patterns cannot be used in
graphics windows if the echo currently being used is not the hardware cursor, or
the echos are not overlayed in the fourth overlay plane.

After this gescape has been called, the transparency mask will be used to
draw the current raster cursor, until another raster cursor is defined with a
call to define_raster_echo. If define_raster_echo is called, it is necessary
to follow that call with another call to this gescape to use a transparency
mask. To summarize, calling this gescape turns on transparency, calling
define_raster _echo turns off transparency.

Note Because of hardware limitations, only a transparency mask size
up to 16x 16 pixels is supported by hp98550 and hp98556 device
drivers. If the current raster echo has a larger size, this gescape
will have no effect.

The arg1 parameter is assumed to point to the transparency mask.

The arg2 parameter is ignored.

The following program segments show how to define a transparency mask for the
default raster cursor.

GESC-53

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1. arg2;

arg1.i[0]=OxFOCOA090;
arg1.i[1]=Ox08040201;
gescape(fildes.R_DEF_ECHO_TRANS.&arg1.&arg2);

FORTRAN77 Syntax

integer*4 arg1(64) .arg2(64)
arg1(1)=Z'FOCOA090'
arg1(2)=Z'08040201'
call gescape(fildes.R_DEF_ECHO_TRANS.arg1.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin

GESC-54

arg1.i[1] := hex('FOCOA090');
arg1. i [2]' : = hex('08040201') ;
gescape(fildes.R_DEF_ECHO_TRANS.arg1.arg2.nuII);

~l
/

The (op) parameter is R_DEF _FILL_PAT.

This gescape allows the user to specifically define the current 4x4 pixel dither
cell when in CMAP _NORMAL color map mode. This gescape will not work
in CMAP _MONOTONIC or CMAP _FULL color map modes. See the shade_mode
information in the Starbase Reference. The dither cell is used to fill polygon
and rectangle primitives. Suggestion: Use the INT_PATTERN interior style instead
of this gescape.

The arg1 parameter specifies the bytes defining the dither cell. The 16 bytes are
placed in the dither cell in row major order. After gescape is called, the polygon
and rectangle primitives will be filled with the user-defined pattern until another
pattern is defined with another gescape call or until fill_color is called.

The arg2 parameter is ignored.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1. arg2;

arg1. c [0] =1; arg1. c [1] =0; arg1. c [2] =0; arg1. c [3] =0;
arg1. c [4] =0; arg1. c [5] =1; arg1. c [6] =0; arg1. c [7] =0;
arg1. c [8] =0; arg1. c [9] =0; arg1.c[10]=1; arg1. c [11] =0;
arg1.c[12]=0; arg1.c[13]=0; arg1.c[14]=0; arg1. c [15] =1 ;

GESC-55

FORTRAN77 Syntax

c
c
c

integer*4 argl(64),arg2(64),pattern(4)
data argl/z'01000000',

z/00010000' ,
z/00000100' ,
z/OOOOOOOl'/

call gescape(fildes,R_DEF_FILL_PAT,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin

GESC-56

argl.i[l] := hex('01000000');
argl.i[2] := hex('00010000');
argl.i[3] := hex('00000100');
argl.i[4] := hex('OOOOOOOl');
gescape(fildes,R_DEF_FILL_PAT,argl,arg2);

The (op) parameter is R_DMA_MODE.

This gescape changes the definition of the raw flag for block writes. When DMA
mode is turned on (arg1 is TRUE) and block_write is called with the raw flag
set (TRUE), the block of bytes to be transferred will be transferred using DMA.
Currently, DMA is only supported on the HP 9000 Models 825 and 835 SPUs
with a A1047 A interface card. The gescape will output an error if A1047 A
hardware is not present. If the application continues and calls block_write with
the raw flag set, a warning will be generated and a standard block_write will be
performed. There are many constraints on data alignment that are required by
the A104 7 A hardware. It is the user's responsibility to properly align his data in
a contiguous block of memory, lock the data in RAM, and flush the data cache.
The following alignment restrictions exist on the parameters to the block_write
call:

• x_dest must be on a 16-pixel boundary in the frame buffer (that is, its
address must be modulo 16).

• length_x must be a multiple of 32.

• pixel_data must be on a 32-byte boundary in main memory (that is, its
main memory address must be modulo 32).

• Do not specify parameters that would result in DMA outside the device
coordinate range (0-1279 in X direction, 0-1023 in Y direction). This will
result in unpredictable behavior.

• The use of device coordinates (dcblock_wri te) is recommended to make
it easier to follow the alignment restrictions.

Note The data alignment restrictions are relative to the screen. When
using an X window the position of the window relative to the
origin of the device must be considered.

The following additional restrictions apply while doing block_wri te with DMA:

• Clipping operations are disabled when doing DMA to avoid sending
unaligned data to the hardware. Setting the raw flag insures that clipping
is not done, independent of whether or not Starbase clipping has been
enabled.

GESC-57

• The replacement rule value of three is always used during DMA
regardless of what was selected by drawing_mode. The value selected
by drawing_mode remains unchanged and is used for all other non-D MA
operations.

The R_DMA_MODE gescape is only supported for byte per pixel data and is
mutually exclusive with the R_BIT_MODE gescape. If bit mode is turned on and
an attempt is made to do DMA, an error will occur and DMA mode will not
be set. If a call is made to turn on DMA mode and A1047 A hardware is not
present, an error will occur and DMA mode will be turned on anyway. When
block_wri te is called with the raw flag set, a warning will be generated and a
normal block write operation will be performed.

If argl is TRUE (1), raw mode is DMA transfer. If argl is FALSE (0), normal raw
mode is used.

The arg2 parameter is ignored.

The following presents a method for aligning one's data and performing a DMA
transfer:

C Syntax

#include <starbase.c.h>
#include <sys/lock.h>
#define PATTERN_SIZE (320*100)

main(argc.argv)
int argc;
char *argv[];
{

int fildes;
gescape_arg arg1. arg2; /* Gescape arguments */
char *buf. *buf32; /* Initial and aligned data pOinters */

fildes = gopen(l/dev/crt l .OUTOEV. l hp9S731".INIT);

arg1. i [0] = 1;
gescape(fildes. R_OMA_MOOE. &arg1. &arg2); /* Enable OMA mode */

/* Allocate 32-byte alligned buffer */
allocate_aligned32(&buf. &buf32. PATTERN_SIZE);

GESC-58

!
I
\

1* DMA data must be locked in memory (see framebuf(7) and plock(2». *1
if (plock(DATLOCK» {

}

printf("*** Data lock failed.\n");
1* If this fails, make sure you are executing with user id

of root, or have group privileges via setprivgrp. *1
exit(1);

1* Load your data into buf32 here *1

1* Flush the data cache before DMA (see section on data cache
flushing in framebuf(7» *1

1* Write the buffer out to a different part of screen.
Note that x_dest must be a multiple of 16 and length_x
must be a multiple of 32. The raw flag is 1 to indicate
use of DMA. *1

dcblock_write(fildes, 48, 0, 320, 100, buf32 , 1);

gclose(fildes);
}

1* Allocate a 32-byte alligned buffer. *1
1* This routine is also used by the Fortran and Pascal examples below. *1
allocate_aligned32(initial,aligned,datasize)
char **initial, **aligned;
int datasize;
{

*initial
*aligned

}

(char *)malloc (datasize + 32);
(char *)«(int)*initial + 31) & OxffffffeO);

GESC-59

FORTRAN77 Syntax

Since FORTRAN77 has no generalized pointer type, to use the aligned address
you must make the address the base of an array. This is done by sending the
address as a parameter to the do_dma subroutine that thinks the parameter is an
array of the appropriate size. Then use the "alias" compiler directive to make
the main program think that the parameter is being sent by value. The "alias"
compiler directive must be inside the main program because if it -is outside, the
compiler realizes that you are trying to access a reference parameter as called by
value.

include '/usr/include/starbase.fl.h'

$alias allocate_aligned32 (%ref,%ref,%val)
$alias plock (%val)

program main

$alias do_dma (%ref, %val)

integer*4 fildes, error, argl(64) , arg2(64)
integer*4 buf, buf32
include '/usr/include/starbase.f2.h'
integer*4 plock

fildes = gopen('/dev/crt'//char(O),OUTDEV,
+'hp98731'//char(0),INIT)

C Turn on DMA mode
argl (1) = 1

call gescape(fildes, R_DMA_MODE, argl, arg2)

C Allocate 32-byte alligned buffer
call allocate_aligned32(buf, buf32 , 32000)

GESC-60

C DMA data must be locked in memory (see framebuf(7) and plock(2)).
if (plock(4) .ne. 0) then

print *,"*** Data lock failed. II

C If this fails, make sure you are executing with user id
C of root, or have group privileges via setprivgrp.

stop
endif

C Pass address of 32-byte aligned buffer to routine that does DMA
call do_dma(fildes, buf32)

error = gclose(fildes)

END

subroutine do_dma(fildes, buf32)

integer*4 fildes
character buf32(32000)

C Load your data into buf32 here

C Flush the data cache before DMA (see section data cache
C flushing in framebuf(7))

C Write the buffer out to a different part of screen.
C Note that x_dest must be a multiple of 16 and length_x
C must be a multiple of 32. The raw flag is 1 to indicate
C use of DMA.
call dcblock_write(fildes, 48, 0, 320, 100, buf32 , 1)

END

GESC-61

Pascal Syntax

$standard_level 'hp_modcal'$
program main (output);
$include '/usr/include/starbase.p1.h'$

const
PATTERN_SIZE 320*100;
DATLOCK = 4;

type
datatype = packed array [0 .. (PATTERN_SIZE + 31)] of gbyte;
data_ptr = Adatatype;

var
fildes, error: integer;
arg1, arg2 gescape_arg; {Gescape arguments}
buf, buf32 : data_ptr; {Initial and aligned data pointers}

$include '/usr/include/starbase.p2.h'$

procedure allocate_aligned32 (var initial, aligned: data_ptr;
datasize integer); external;

function plock(op : integer) : integer; external;

begin
fildes gopen('/dev/crt' ,OUTDEV, 'hp98731' ,INIT);

arg1.i[l] := 1;
gescape(fildes, R_DMA_MODE, arg1, arg2); {Enable DMA mode}

{ Allocate 32-byte alligned buffer }
allocate_aligned32(buf, buf32 , PATTERN_SIZE);

GESC-62

(

~

\
\

\,
/

{ DMA data must be locked in memory (see frarnebuf(7) and plock(2». }
if (plock(DATLOCK)<>O) then
begin

writeln('*** Data lock failed.');
{ If this fails, make sure you are executing with user id

of root, or have group privileges via setprivgrp. }
halt(1);

end;

{ Load your data into buf32 here }

{ Flush the data cache before DMA (see section on data cache
flushing in frarnebuf(7») }

{ Write the buffer out to a different part of screen.
Note that x_dest must be a multiple of 16 and length_x
must be a multiple of 32. The raw flag is 1 to indicate
use of DMA. }

dcblock_write(fildes, 48, 0, 320, 100, buf32-, 1);

error
end.

gclose(fildes);

GESC-63

The (op) parameter is R_ECHO_CONTROL.

The HP 98730 workstation provides both hardware and software cursors. Nor­
mally, right before cursors are used the first time, the driver tries to allocate the
hardware cursor. If the hardware cursor is already being used by another process,
the driver uses software cursors. This attempt to use the hardware cursor is only
done once by the driver the first time it uses cursors. If the driver gets access to
the hardware cursor, the hardware cursor is not relinquished until gclose time.
If the driver did not get access to the hardware cursor, the driver will never try
for the hardware cursor again, even if cursors are turned off and back on again.
Instead it will use software cursors until gclose time.

When initializing cursor state, the driver will try to allocate the hardware cursor
whenever any routine is called that modifies cursor state. These routines are:

• define_raster_echo, and echo_type.

• Any of the gescapes R_DEF _ECHO_TRANS, R_ECHO_MASK,
R_ECHO_FG_BG_COLORS, and R_OV_ECHO_COLORS.

If this gescape is called before the first time cursors are used, it can be used to
control whether hardware or software cursors will be used at cursor initialization
time. If this gescape is called after cursors have been used, it can be used to
determine what type of cursors the driver is using.

Input to this gescape is arg1 [0] which contains a flag that can have one of the
following three values:

• REQUEST_HW_ECHO (value of 1).

If arg1 [0] is REQUEST_HW_ECHO and cursors have already been initialized,
the driver will attempt to allocate the hardware cursor for future usage.
arg2 [0] is returned 1 if the hardware cursor allocation was successful and
hardware cursors will be used, otherwise it returns 0 if software cursors
will be used.

If arg1 [0] is REQUEST_HW_ECHO and cursors have already been initialized,
arg2 [0] will contain 1 if hardware cursors are being used. Otherwise,
arg2 [0] will return 0 if software cursors are being used, and the driver
will not attempt to allocate the hardware cursor.

GESC-64

• REQUEST_SW_ECHO (value of 2).

If arg1 [0] is REQUEST_sw_ECHO and cursors have not yet been initialized,
the driver will use software cursors and not attempt to allocate the
hardware cursor. If software cursors are being used, arg2 [0] will be
returned O.

If arg1 [0] is REQUEST_SW_ECHO and cursors have already been initialized,
arg2 [0] will contain 1 if hardware cursors are being used, otherwise
arg2[0] will return 0 if software cursors are being used, and the driver
will not attempt to relinquish the hardware cursor if it was being used .

• FORCE_HW_ECHO (value of 3).

Note

If arg1 [0] is FORCE_HW_ECHO and cursors have not yet been initialized,
the driver will attempt to allocate the hardware cursor for future use. If
the hardware cursor allocation was successful, arg2 [0] is returned and
o if not. Even if the driver could not successfully allocate the hardware
cursor, it will use the hardware cursor.

If arg1 [0] is FORCE_HW_ECHO and cursors have already been initialized,
arg2 [0] will contain 1 if hardware cursors are being used, otherwise
arg2 [0] will return 0 if software cursors are being used, and the driver
will not attempt to allocate or use the hardware cursor.

The FORCE_HW_ECHO is a dangerous mode and should only be used
when the user knows that other processes will not be attempting
to update the hardware cursor simultaneously. Refer to the driver
section on cursor usage for a more complete discussion of using
this mode.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

argl.i[O]=REQUEST_HW_ECHO;
gescape(fildes,R_ECHO_CONTROL,&argl,&arg2);

GESC-65

FORTRAN77 Syntax

integer*4 argl(64),arg2(64)
argl(l)=REQUEST_HW_ECHO
call gescape(fildes,R_ECHO_CONTROL,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin

GESC-66

argl.i[l] := REQUEST_HW_ECHO
gescape(fildes,R_ECHO_CONTROL,argl,arg2) ;

The (op) parameter is R_ECHO_FG_BG_COLORS

The HP 98730 workstation and HP 98731 accelerator provide both hardware and
software cursors. Hardware cursors give the best performance because cursors
do not have to be "picked up" and "put down" around every graphics output
operation, since hardware cursors have their own dedicated graphics planes.
Software cursors are cursors that are written to the same frame buffer area that
graphics are also currently using. Therefore, they have to be "picked up" and
"put down" around graphics output operations. This gives lower performance.

This gescape lets the user define color attributes for cursors. The functionality
of this gescape depends on the mode of cursors that is currectly active. The
three modes are:

• Hardware cursors

• Non-overlayed software cursors are written in the same graphics planes
that graphics is currently being written to.

• Overlayed software cursors are written to the fourth overlay plane. This
mode is only supported if opened to the image planes.

Refer to the gescape R_OVERLA Y _ECHO for more information on the location of
software cursors.

When initializing cursor state, the driver will try to allocate the hardware cursor
whenever any routine is called that modifies the cursor state. These routines are:

• define_raster _echo, and echo_type.

• Any of the gescapes R_DEF _ECHO_TRANS, R_ECHO_MASK,
R_ECHO_FG_BG_COLORS, andR_OV_ECHO_COLORS.

For explicit control of allocations of the hardware cursor, refer to the gescape
R_ECHO_CONTROL.

Further discussion of this gescape is categorized by the mode of cursor being
used. Such as: Hardware Cursor, Overlayed Software Cursor, or Non Overlayed
Software Cursor.

GESC-67

Hardware Cursors

If using hardware cursors, then vector cursors only have a foreground color, and
raster cursors have both a foreground color and a background color. ~

There are two color maps for the hardware cursors which alternate every 133ms.
Therefore, for each of the foreground colors and background colors, two colors can
be specified for each and the cursor will blink between the two specified colors.

As input to this gescape, there is a flag associated with the foreground color and
a flag associated with the background color. If this flag has the value 0, it means
"do not modify the color". If this flag has the value 1, it means "modify the
color". If the flag has the value 2, the foreground (or background) of the raster
cursor should be treated as transparent.

For example: If the flag value for the foreground color is defined as transparent,
for every zero value in the raster cursor pattern, the graphics image behind the
cursor will be visible. Even if the foreground color is being defined as transparent,
red, green, and blue values should be provided because the foreground colors will
be used when switching back to vector cursors.

The initial state of hardware cursors is a white foreground color, and a transparent
background for raster cursors. If this gescape is used to redefine the state
of the foreground or background transparency for hardware raster cursors,
define_raster _echo must be called to ensure proper initialization of the
hardware raster cursor bitmaps.

One final piece of information is needed for hardware cursors. This is an
index value to associate with the raster cursor background color. This index
is used when a raster echo pattern is being defined to the hardware cursor (see
define_raster _echo). During this definition, every value in the raster definition
that has the background color index value specified by this gescape will be
defined to the hardware as the background color pixel. Every other value found
in the raster pattern will be defined as a foreground pixel for the raster cursor.
The default index value defined at gopen time is O.

All the data for this gescape is provided in argl and is all in floating point
notation. The order of the data is: ~

argl. f [OJ

GESC-68

Flag for foreground color.
0.0 = Do not alter current foreground color.
1.0 = Alter current foreground color.

argl. f [1]

argl. f [2]

argl. f [3]

argl. f [4]

argl.f [5]

argl. f [6]

argl. f [7]

argl. f [8]

argl. f [9]

argl. f [10]

argl. f [11]

argl. f [12]

argl. f [13]

argl. f [14]

argl. f [15]

argl. f [16]

2.0 = Foreground is transparent. Even if foreground is trans­
parent, the following red, green, blue values are defined to the
hardware cursor to be used with vector cursors.

Primary color map red value.

Primary color map green value.

Primary color map blue value.

Unused.

Secondary color map red value.

Secondary color map green value.

Secondary color map blue value.

Unused.

Flag for background color.
0.0 = Do not alter current background color.
1.0 = Alter current background color.
2.0 = Background is transparent.

Primary color map red value.

Primary color map green value.

Primary color map blue value.

Secondary color map red value.

Secondary color map green value.

Secondary color map blue value.

Index to use for background pixels in raster pattern definition.

Overlayed Software Cursors

Overlayed software cursors are cursors in the fourth overlay plane. Refer to the
gescape R_OVERLAY _ECHO for more discussion on overlayed cursors. Overlayed
software cursors do not need to be "picked up" and "put down" again around
graphics output, since they are not in the same graphics planes currently being
used by graphics. Threfore, they offer better performance than non overlayed
software cursors.

GESC-69

For overlayed raster cursors a foreground color and a cursor mask can be defined.
For defining cursor masks refer to the R_ECHO_MASK or the R_DEF _ECHO_TRANS
gescapes.

For overlayed software cursors there are two color maps which alternate every
133ms. Thus, for the cursor color, two colors can be defined and the cursor will
blink between the two colors.

For foreground color definition, a transparency value is also given. If the
transparency value is 1.0, the pixel color is forced to the color specified by the
red, green, and blue values provided by the foreground color. If the transparency
value is 0.0, the pixel color will be the color in the graphics planes "behind" the
overlay planes.

Calling this gescape causes the driver to update the overlay color map so that for
all entries that are transparent, the cursor will be seen. Therefore, even though
the cursor is written to the fourth overlay plane, it appears to be in the image
plane behind the overlay planes. If another process opened to the over lay planes
defines another transparent entry using the R_TRANSPARENCY_INDEX gescape,
calling this gescape will cause the color map to be updated so that the cursor
will also be seen in this new region of transparency. If this gescape is not called
after defining a new transparency entry in the overlay planes, the cursor for the
image planes will not be seen in regions of the new transparency index.

One final piece of information is needed for overlayed software cursors. This is
an index value to associate with the raster cursor background color. This index
is used when a raster echo pattern is being defined (see define_raster _eChO).
During this definition, every value in the raster definition that has the background
color index value specified by this gescape will be defined to the driver as the
background color pixel. Every other value found in the raster pattern will be
defined as a foreground pixel for the raster cursor. The default index value
defined at gopen time is o.
All the data for this gescape is provided in arg1 and is all in floating point
notation. The order of the data is:

arg1. f [0]

arg1. f [1]

GESC-70

Flag for foreground color.
0.0 = Do not alter current foreground color.
1.0 = Alter current foreground color.
2.0 = Unused.

Primary color map red value.

(

\

arg1. f [2]

arg1. f [3]

arg1. f [4]

arg1. f [5]

arg1. f [6]

arg1. f [7]

arg1. f [8]

arg1. f [9]

arg1. f [10]

arg1. f [11]

arg1. f [12]

arg1. f [13]

arg1. f [14]

arg1. f [15]

arg1. f [16]

Primary color map green value.

Primary color map blue value.

Transparency bit. 0.0 = Transparent. Force pixel to color in
image planes behind the overlay planes.
1.0 = Not transparent. Force pixel to red, green, blue color.

Secondary color map red value.

Secondary color map green value.

Secondary color map blue value.

Transparency bit.
0.0 = Transparent. Force pixel to color in image planes behind
the overlay planes.
1.0 = Not transparent. Force pixel to red, green, blue color.

Unused.

Unused.

Unused.

Unused.

Unused.

Unused.

Unused.

Index to use for background pixels in raster pattern definition.

Non-Overlayed Software Cursors

Non-overlayed software cursors are cursor written to the same planes that
graphics are currently being written to. These cursors need to be "picked up"
before graphics output, and "put down" again after graphics output, thus, they
are slower. Non-overlayed software cursors are not available on the HP 98731
device. In order to maximize performance all cursors are overlayed.

This gescape is not supported for non-overlayed software cursors because cursor
colors can not be defined. When writing these software cursors to the frame
buffer, a replacement rule of not-destination is used for vector cursors. For raster
cursors, the raster bitmap for the cursor is written to the graphics planes. Thus,

GESC-71

the raster cursor color depends on the values in the raster cursor bitmap and the
current color table definition.

However, for non-overlayed software cursors, a raster echo mask can be defined. ~
~ Refer to the gescape R_DEF _ECHO_TRANS or R_ECHO_MASK for more discussion of

raster echo masks.

Examples and Syntax

Following are two examples. The first example defines a foreground color blinking
between red and green and a background color of blue. It assumes that access to
the hardware cursor has been granted.

The second example defines a transparent foreground and a background color of
red. It also assumes access to the hardware cursor has been granted.

C Syntax

Example 1:

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

argl.f[O]=1.0; /* Set flag indicating define foreground color */
argl.f[1]=1.0; /* Red value for primary color map */
argl.f[2]=O.O; /* Green value for primary color map */
argl.f[3]=O.O; /* Blue value for primary color map */
argl.f[4]=O.O; /* Transparency flag. Ignored since we are using hardware */

/* cursors. */
argl.f[5]=O.O; /* Red value for secondary color map */
argl.f[6]=1.0; /* Green value for secondary color map */
argl.f[7]=O.O; /* Blue value for secondary color map */
argl.f[8]=O.O; /* Transparency bit. Ignored since we are using hardware */

/* cursors. */
argl.f[9]=1.0; /* Set flag indicating define background color */
argl.f[10]=O.O; /* Red value for primary color map */
argl.f[ll]=O.O; /* Green value for primary color map */
argl.f[12]=1.0; /* Blue value for primary color map */
argl.f[13]=O.O; /* Red value for secondary color map */
argl.f[14]=O.O; /* Green value for secondary color map */
argl.f[15]=1.0; /* Blue value for secondary color map */
argl.f[16]=O.O; /* Cursor background color index */
gescape(fildes,R_ECHO_FG_BG_COLORS,&argl,&arg2);

GESC-72

/* A call to define_raster_echo should follow this since it changed the */
/* background from the default configuration of transparent to a defined */
/* color. */

Example 2:

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

argl.f[O]=2.0; /* Set flag indicating transparent foreground */
/* The following rgb values will be used for vector cursors */
argl.f[1]=1.0; /* Red value for primary color map */
argl.f[2]=O.O; /* Green value for primary color map */
argl.f[3]=O.O; /* Blue value for primary color map */
argl.f[4]=O.O; /* Transparency flag. Ignored since we are using hardware */

/* cursors. */
/* The following rgb values will be used for vector cursors */
argl.f[5]=1.0; /* Red value for secondary color map */
argl.f[6]=O.O; /* Green value for secondary color map */
argl.f[7]=O.O; /* Blue value for secondary color map */
argl.f[8]=O.O; /* Transparency bit. Ignored since we are using hardware */

/* cursors. */
argl.f[9]=1.0; /* Set flag indicating define background color */
argl.f[10]=1.0; /* Red value for primary color map */
argl.f[ll]=O.O; /* Green value for primary color map */
argl.f[12]=O.O; /* Blue value for primary color map */
argl.f[13]=1.0; /* Red value for secondary color map */
argl.f[14]=O.O; /* Green value for secondary color map */
argl.f[15]=O.O; /* Blue value for secondary color map */
argl.f[16]=O.O; /* Cursor background color index */
gescape(fildes,R_ECHO_FG_BG_COLORS,&argl,&arg2);
/* A call to define_raster_echo should follow this since it changed the */
/* foreground to be transparent. */

GESC-73

FORTRAN77 Syntax

Example 1:

real arg1(64),arg2(64)
arg1(1) =1. 0
argl(2)=1.0
arg1(3) =0.0
argl(4)=0.0
arg1(5) =0.0
arg1(6)=0 . 0
arg1(7)=1.0
arg1(8)=0 . 0
arg1(9)=0.0
arg1 (10) =1.0
arg1(l1)=0 . 0
arg1(12)=0.0
arg1(13)=1.0
arg1(14)=0.0
arg1(15)=0.0
arg1(16)=1. 0
arg1(17)=0.0
call gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2)

C A call to define_raster_echo should follow this since it changed the
C background from the default configuration of transparent to a defined
C color.

Example 2:

real arg1(64),arg2(64)
arg1(0)=2.0

C the following rgb values will be used for vector cursors
arg1(1) =1. 0
arg1(2)=0.0
arg1(3)=0.O
arg1(4)=0.0

C the following rgb values will be used for vector cursors
arg1(5) =1. 0
arg1(6)=O.0
arg1(7)=0.0
arg1(8)=O.0
arg1(9) =1. 0
arg1(10)=1.0
arg1(l1)=0 . 0
arg1(12)=0.0

GESC-74

(

arg1(13) =1. 0
arg1(14)=0.0
arg1(15)=0.0
arg1(16)=0.0
call gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2)

C A call to define_raster_echo should follow this since it changed the
C foreground to be transparent.

Pascal Syntax

Example 1:

{ gescape_arg is defined in starbase.p1.h }

var arg1, arg2: gescape_arg;

arg1.f[O] :=1.0; { Set flag indicating define foreground color}
arg1.f[1] :=1.0; { Red value for primary color map}
arg1.f[2] :=0.0; { Green value for primary color map}
arg1.f[3] :=0.0; { Blue value for primary color map}
arg1.f[4] :=0.0; { Transparency flag. Ignored since we are using hardware}

{ cursors. }
arg1.f[5] :=0.0; { Red value for secondary color map}
arg1.f[6] :=1.0; { Green value for secondary color map}
arg1.f[7] :=0.0; { Blue value for secondary color map}
arg1.f[8] :=0.0; { Transparency bit. Ignored since we are using hardware}

{ cursors. }
arg1.f[9] :=1.0; { Set flag indicating define background color}
arg1.f[10] :=0.0; { Red value for primary color map}
arg1.f[11] :=0.0; { Green value for primary color map}
arg1.f[12] :=1.0; { Blue value for primary color map}
arg1.f[13] :=0.0; { Red value for secondary color map}
arg1.f[14] :=0.0; { Green value for secondary color map}
arg1.f[15] :=1.0; { Blue value for secondary color map}
arg1.f[16] :=0.0; { Define 0 as background index}
gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2);
{ A call to define_raster_echo should follow this since it changed the}
{ background from the default configuration of transparent to a defined }
{ color. }

GESC-75

Example 2:

{ gescape_arg is defined in starbase.p1.h }

var arg1. arg2: gescape_arg;

arg1.f[0] :=2.0; { Set flag indicating transparent foreground}
{the following rgb values will be used for vector cursors }
arg1.f[1] :=1.0; { Red value for primary color map}
arg1.f[2] :=0.0; { Green value for primary color map}
arg1.f[3] :=0.0; { Blue value for primary color map}
arg1.f[4] :=0.0; { Transparency flag. Ignored since we are using hardware}

{ cursors. }
{ The following rgb values will be used for vector cursors }
arg1.f[5] :=1.0; { Red value for secondary color map}
arg1.f[6] :=0.0; { Green value for secondary color map}
arg1.f[7] :=0.0; { Blue value for secondary color map}
arg1.f[8] :=0.0; { Transparency bit. Ignored since we are using hardware}

{ cursors. }
arg1.f[9] :=1.0; { Set flag indicating define background color}
arg1.f[10] :=1.0; { Red value for primary color map}
arg1.f[11] :=0.0; { Green value for primary color map} (
arg1.f[12] :=0.0; { Blue value for primary color map} \
arg1.f[13] :=1.0; { Red value for secondary color map}
arg1.f[14] :=0.0; { Green value for secondary color map}
arg1.f[15] :=0.0; { Blue value for secondary color map}
arg1.f[16] :=0.0; { Define 0 as background index}
gescape(fildes.R_ECHO_FG_BG_COLORS.arg1.arg2);
{ A call to define_raster_echo should follow this since it changed the }
{ foreground to be transparent }

GESC-76

The (op) parameter is R_ECHO_MASK

This gescape allows the user to define a mask for raster cursors. It provides
the same functionality as R_DEF _ECHO_TRANS, except that the input data is byte
aligned on row boundaries. It is suggested that R_ECHO_MASK be used instead
of R_DEF _ECHO_TRANS for slightly better performance. An echo mask is used to
determine which bits of the raster cursor pattern are visible over the graphics
background. The mask is assumed to have the same height and width as the
current raster cursor. The mask is arranged in a packed array as one-bit per
pixel. Each byte represents eight pixels, and row boundaries are byte aligned. If
the bit in the mask is set, the corresponding pixel location in the raster cursor
will be visible. If the mask bit is zero, the corresponding pixel of the raster cursor
will not be applied to the frame buffer.

After this gescape has been called, the echo mask will be used to draw
the current raster cursor until another raster cursor is defined with a call to
define_raster_echo. If define_raster_echo is called, it is necessary to follow
that call with another call to this gescape to use an echo mask.

If defining a mask to be used with the hardware cursor on a HP 98730 worstation,
this gescape should be used for better performance.

With the hp98730 device driver, echo masks cannot be used in a graphics window
if the echo currently being used is not the hardware cursor, or the echo is not
overlayed in the fourth overlay plane.

The argl parameter points to the echo mask.

The arg2 parameter is ignored.

The default raster cursor is a 8x8 pattern. The following example defines a echo
mask for the default raster cursor that is 108 in size. The default raster cursor
and echo mask are justified in the upper left 8x8 square. An extra two pixels
on the right hand side are being included to demonstrate how the data is byte
aligned on row boundaries.

GESC-77

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1. arg2;

arg1.i[O] = OxFOOCOOAO;
arg1.i[1] = Ox09000800;
arg1.i[2] = Ox40020010;
gescape(fildes.R_ECHO_MASK.&arg1.&arg2);

FORTRAN77 Syntax

interger*4 arg1(64).arg2(64)
arg1(1)= Z'FOOCOOAO'
arg1(2)= Z'09000800'
arg1(3)= Z'40020010'
call gescape(fildes.R_ECHO_MASK.arg1.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

type
mask_def = array [1 .. 2] of integer;
mask_ptr = -mask_def;
ptrunion = record case integer of

1 :(a : mask_ptr);
2 :(b : gescape_arg)

end;

var
arg1.arg2.nuII:gescape_arg;
pointers:ptrunion;
mask: mask_def;

begin
mask[l] := hex('FOOCOOAO');
mask [2] := hex('09000800');
mask [3] := hex('40020010');
pointers.a := -mask;

gescape(fildes.R_ECHO_MASK.pointers.b.null);

GESC-78

I
(

\
\

\
I

/

The (op) parameter is R_FULL_FRAME_BUFFER.

This gescape allows access to the off screen area of the frame buffer after the
set_pl_p2 procedure is called.

The argl parameter is a flag, when TRUE(l), the physical limits of the device are
set to maximum frame buffer memory size. When FALSE(O), the physical limits
are set to the visual screen area.

The arg2 parameter is ignored.

Note Care should be taken when using this gescape since other
processes can access the frame buffer and the driver may use
some off-screen memory. HP Windows/9000 uses offscreen for
its fonts and sprite (HP Windows/9000 's tracking echo). XII
also uses offscreen for its fonts and sprite, as well as pixmaps
and backing store (retained rasters). Notice: HP Windows/9000
and XII leave the user with very little extra offscreen memory
to use. Refer to the "Device Description" segment in the device
drivers section for details of frame buffer sizes and current usage
of offscreen memory by Starbase.

The specification for use of this area by Star base,
HP Windows/ 9000 and XII may change for future releases. As a
result, more offscreen memory may be required than is currently
used.

Hewlett-Packard does not guarantee that the use of offscreen
frame buffer memory will remain the same for future releases
of Starbase, HP Windows/9000, and XII.

The following sections describe the Windows/9000 usage of offscreen frame buffer
memory on different devices.

~\,
/ HP 300h Device

Windows/9000 uses the first 32 lines of off-screen frame buffer memory for the
sprite. Only the first 96 bytes of each of these lines is used; the rest is unused.

GESC-79

The remaining lines, up to the last 16 used by Starbase, are used for window
system fonts.

HP 3001 Device

Windows/9000 uses the first 32 lines of off-screen frame buffer memory for the
sprite. Only the first 192 bytes of each of these lines is used; the rest is unused.
The remaining lines, up to the last 16 used by Starbase, are used for window
system fonts.

HP 98700 Device

Windows/9000 uses the last 64 lines of off-screen frame buffer memory for the
sprite. The 64x64 area immediately below this sprite area is unused. The fonts
are contained in the first 960 bytes of all 256 lines of off-screen memory.

HP 98550/HP 98556 Device

Windows/9000 uses the first 96 bytes of the first 32 lines of off-screen frame buffer
memory for the sprite. The next 656 bytes of each of these lines are always used
for dithered-fill patterns. The rest of each line is unused. All remaining lines are
used by the window system's fonts. Starbase raster echoes consume 64 lines by
128 bytes per gopen but are allocated only as needed.

HP 98720 Device

Windows/9000 uses the first 96 bytes of the first 32 lines of off-screen overlay
planes frame buffer memory for the sprite. The next 656 bytes of each of these
lines is always used for dithered-fill patterns. The rest of each line is unused. All
remaining lines are used by the window system's fonts.

HP 98730/HP 98731 Device

A global resource manager is used to manage allocation and deallocation of
overlay planes offscreen memory for fonts, windex system sprites, and dithered-fill
patterns. Refer to the device driver section for a description of offscreen memory
usage.

GESC-80

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argi. arg2;

arg1. i [0] = 1;
gescape(fildes.R_FULL_FRAME_BUFFER.&arg1.&arg2);
set_p1_p2(fildes.FRACTIONAL.0.0.0.0.O.O.i.0.1.0.i.O) ;

FORTRAN77 Syntax

integer*4 arg1(1)=1
call gescape(fildes.R_FULL_FRAME_BUFFER.arg1.arg2)
call set_pi_p2(fildes.FRACTIONAL,O.O.O.O,O.O,1.0.1.0.i.O);

Pascal Syntax

{gescape_arg is defined in starbase.pi.h}

var
arg1.arg2 gescape_arg;

begin
arg1.i[1] = 1;
gescape(fildes.R_FULL_FRAME_BUFFER.arg1.arg2);
set_p1_p2(fildes.FRACTIONAL.O.O.O.0.O.O.1.0.1.0.1.0) ;

GESC-81

The (op) parameter is R_ GET _FRAME_BUFFER.

This gescape will read the address of the device's frame buffer and control space.

The arg1 parameter is ignored.

The arg2 [0] parameter will return the address of the device's control space. The
arg2 [1] parameter will return the address of the upper-left corner of the device's
frame buffer.

Note Be careful when using this gescape since other processes can
also access the frame buffer. You must call the R_LOCK_DEVICE
gescape before attempting to access the frame buffer in this way.
The R_UNLOCK_DEVICE gescape should be called when finished
accessing the frame buffer.

In order to avoid any conflict with the current graphics process,
a MAKE_PICTURE_CURRENT call must be done before accessing the
hardware directly. This will ensure all buffers are flushed.

See the "Device Description" segment of the appropriate driver section for details
on frame buffer organization.

The following examples draw a line in the frame buffer using this gescape. The
bytes-per-row multiplier (2048 in the following example) is device-dependent. See
the appropriate driver section for the correct width of the frame buffer memory.

Series 800 Dependency

These examples are written for the Series 300 computers. On the Series 800
computers, the frame buffer arrays would need to be changed to arrays of integers
since the 10 is 32 bits wide. In the C syntax example, the line register
unsigned char *frame would become register unsigned int *frame.

C Syntax

#include <starbase.c.h>

main(argc,argv)
int argc;

GESC-82

\,
I

char **argv;
{

}

register int fildes,i;
register unsigned char *frame;
gescape_arg argl, arg2;

/* Open device using Path and driver name passed on command line */
fildes = gopen(argv[1],OUTDEV,argv[2] ,INIT);

/* Get address of frame buffer */
gescape(fildes,R_GET_FRAME_BUFFER,&argl,&arg2);
frame = (unsigned char *) arg2.i[1];

/* Lock the device before accessing frame buffer */
gescape(fildes, R_LOCK_DEVICE,&argl,&arg2);

/* Draw a vertical line from (x=99,y=5) to (x=99,y=299) */
for (i=5;i<300;i++)

frame[99 + i*2048] (char) 3;

/* Unlock device */
gescape(fildes,R_UNLOCK_DEVICE,&argl,&arg2);

/* Close the device and exit */
gclose(fildes);

GESC-83

FORTRAN77 Syntax

Since FORTRAN77 has no generalized pointer type, to use the address you must
make the address the base address of an array. This is done by sending the
address as a parameter to a subroutine that thinks the parameter is an array
of the appropriate size. Use the "alias" compiler directive to make the main
program think that the parameter is being sent by value. The "alias" compiler
directive must be inside the main program because if it is outside, the compiler
realizes that you are trying to access a reference parameter as called by value.

include '/usr/include/starbase.f1.h'
program main

$alias doline (%val)

integer*4 fildes,error,arg1(10),arg2(10)
include '/usr/include/starbase.f2.h'

C Open device, for driver of interest
fildes = gopen('/dev/crt' ,OUTDEV,Driver_name,INIT)

C Get frame buffer address
call gescape(fildes,R_GET_FRAME_BUFFER,arg1,arg2)

C Lock the device before accessing frame buffer
call gescape(fildes,R_LOCK_DEVICE,arg1,arg2)

C Pass address to routine which draws a line
call doline(arg2(2))

C Unlock device
call gescape(fildes,R_UNLOCK_DEVICE,arg1,arg2)

C Close device and exit
error = gclose(fildes)
END
subroutine doline(frame)

GESC-84

(

integer*2 frame(1024*2048/2)
integer*4 i

C draw line from (x=99,y=5) to (x=99,y=299)
do 10 i = 5,299,1

10 frame«99+1)/2 + i * 2048/2) = 3

END

Pascal Syntax

program main(output);
$include '/usr/include/starbase.p1.h'$

type
frame_buffer = array [0 .. maxint] of char;
fb_ptr = -frame_buffer;
ptrunion = record case integer of

1 :(a array [1 .. 2] of fb_ptr);
2 :(b : gescape_arg)

end;

var
null:gescape_arg;
pointers:ptrunion;
frame : fb_ptr;
fildes,i:integer;

$include '/usr/include/starbase.p2.h'$

begin
{ Open device from name in driver}
fildes := gopen('/dev/crt',OUTDEV,driver,INIT);

{ Get frame buffer address }
gescape(fildes,R_GET_FRAME_BUFFER,null,pointers.b);
frame := pointers.a[2] ;

GESC-85

{ Lock device before accessing frame buffer}
gescape(fildes,R_LOCK_DEVICE,null,null);

{ Draw line from (x=99,y=5) to (x=99,y=299) }
for i := 5 to 299 do

frame-[99 + i*2048] chr(3);

{ Unlock device }
gescape(fildes,R_UNLOCK_DEVICE,null,null);

{ Close and exit }
error

end.
gclose(fildes);

GESC-86

(

The (op) parameter is R_GET_WINDOW_INFO.

The window address of a Windows/9000 window can be used as the origin when
accessing the frame buffer directly. Remember that each line of the frame buffer
still has the same width.

The arg1 parameter is ignored.

If the device is a window device, this procedure returns the address of the upper­
left corner of the window in arg2. i [0]. If the window is currently un obscured
(completely visible on the display), arg2. i [1] returns 1, otherwise, it returns O.

If the device is the raw device, arg2. i [0] returns the frame buffer address, and
arg2. i [1] returns 1 (not obscured).

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;

gescape(fildes,R_GET_WINDOW_INFO.&argl.&arg2);

FORTRAN77 Syntax

integer*4 argl(64).arg2(63)
call gescape(fildes.R_GET_WINDOW_INFO.argl.arg2)

Pascal Syntax

{ gescape_arg is defined in starbase.pl.h }
var

argl.arg2 : gescape_arg;

begin
gescape(fildes.R_GET_WINDOW_INFO.argl,arg2);

GESC-87

The following example program shows R_GET_WINDOW_INFO in action.

C Program Example (not robust - no error checking)

#include <starbase.c.h>

maine)
{

int fildes;
gescape_arg arg1, arg2;
char *win_addr;

/* Open a window on an HP 300h device for output and initialize it */
fildes = gopen("/dev/screen/window1",OUTDEV,"hp98720w",INIT);

/* Lock down the device and keep it if it's unobscured */
/* Otherwise, unlock it and sleep awhile until can check it again */
arg1.i[0] = 1; /* Remove sprite if it's on */
while (TRUE) {

gescape(fildes,R_LOCK_DEVICE,&arg1,&arg2) ;
gescape(fildes,R_GET_WINDOW_INFO,&arg1,&arg2);
if (arg2.i[1] != 0) break;
gescape(fildes,R_UNLOCK_DEVICE,&arg1,&arg2);

/* To insure that window becomes unobscured, you may want to do
a "wtop(fildes,1)" routine, which must be preceeded by the
"winit(fildes)" routine. See the Programmer's Manual for the
Window Library. */

sleep(5); /* wait 5 seconds before next check */
}

/* Now have device locked and know window's address in arg2.i[O] */

win_addr = (char *)arg2.i[0];

/* For additional speed improvement.
screen will get garbaged !!

GESC-88

Window must be unobscured or
*/

arg1. i [0] = 0;
gescape(fildes,SWITCH_SEMAPHORE,&arg1,&arg2);

/* Do anything desired to window; use inquire_sizes if need to know
size of window in pixels */

arg1. i [0] = 1;
gescape(fildes,SWITCH_SEMAPHORE,&arg1,&arg2);

/* Unlock the device now that finished */
gescape(fildes,R_UNLOCK_DEVICE,&arg1,&arg2) ;

gclose(fildes);
} /* All done */

GESC-89

The (op) parameter is R_LINE_ TYPE.

This gescape is supported on the following device drivers: hp98720, hp98721,
hp98730, hp98731, and the Starbase Memory Driver.

This gescape allows you to specifically define the current line style and repeat
length to be used for all subsequent line primitives. A 16-bit repeat pattern is
accepted, as well as the repeat length to be used. This gescape will override the
line style set by line_type and the repeat length set by line_repeat_length.
Further calls to line_type or line_repeat_length will override both values set
with this gescape. See line_type and line_repeat_length in your Starbase
Reference manual.

Both parameters for this gescape are passed in arg1. The first (arg1. i [0]) is
a 16-bit pattern which defines the repeating pattern for lines. Note that even
though a 32-bit integer is passed to the subroutine, only the least significant 16
bits will be used. The second parameter (arg1. i [1]) is an integer value which
is the repeat length of the line type pattern. The repeat length specifies how
the pattern is scaled. If the repeat length is one, the 16-bit pattern will be (
used for the first 16 pixels of the next line that is drawn, and will then begin
repeating for subsequent pixels. If the repeat length is two, the first bit in the
repeat pattern will be used for the first two pixels in the next line, and so on.
The effect is to stretch the pattern. For example, if the pattern were specified
as OxAAAA (hexadecimal), and the repeat length were 1, lines would be drawn
with alternating pixels on and off (a very fine dotted line.) If the repeat length
was 2, and the same pattern were used, lines would be drawn with two pixels on,
followed by two pixels off (a more coarse dotted line.)

GESC-90

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1. arg2;

arg1.i[0]=Ox1010;
arg1.i[1]=1;

gescape(fildes.R_LINE_TYPE.&arg1.&arg2);

FORTRAN77 Syntax

integer*4 arg1(4).arg2(1)
arg1(1) =Z) 1010)
arg1(2)=1
call gescape(fildes.R_LINE_TYPE.arg1.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin
arg1.i[l] := hex('1010');
arg1. i [2] : = 1;
gescape(fildes.R_LINE_TYPE.arg1.arg2);

GESC-91

The (op) parameter is R_LOCK_DEVICE.

This procedure locks the device associated with the specified file descriptor
(fildes).

This gescape is useful when semaphores are to be turned off or the frame buffer
is to be accessed directly using R_ GET _FRAME_BUFFER, and the program needs
exclusive use of the display. Once the device is locked, any program that uses
the semaphore can not access the device until it is unlocked.

Both the argl and arg2 parameters are ignored.

The following warnings apply to the time between an R_LOCK_DEVICE gescape
and an R_UNLOCK_DEVICE gescape.

• If the device is the Console ITE also, any output to the console (ie. printf
to /dev/console) should not be done.

• A fork should not be done because child processes get confused as to
whether they own the lock or not. (

• If a lock is in effect, characters typed on the Console ITE may block the
ITE and prevent the break key from interrupting until the lock is released.

• The application should not perform any Starbase input (polling, track_on,
or track_off) from a window device or to an output device on the same
display as the lock.

• The application should not invoke the Windows/gOOD wgetlocator
procedure.

• The application should not use any X window system calls that access
the X server.

• Signals with signal handlers installed may be masked until the lock is
released. Changing the signal mask mayor may not affect this masking by
the graphics system. The signal mask may be changed again by unlocking
the device. Do not change the signal mask yourself while the device is
locked.

GESC-92

\
\

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1. arg2;

gescape(fildes.R_LOCK_DEVICE.&arg1.&arg2);

FORTRAN77 Syntax

integer*4 arg1(64) .arg2(64)
call gescape(fildes.R_LOCK_DEVICE.arg1.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1. arg2 gescape_arg;

begin
gescape(fildes.R_LOCK_DEVICE.arg1.arg2) ;

GESC-93

C Example Program

The following program locks the device before disabling semaphores. Locking the
device guarantees that this process has sole access to the device (assuming all
other programs have semaphores turned on - the default). Disabling semaphores
makes the program run slightly faster because an attempt to lock the device is
no longer done before each output (or output buffer) to the device.

#include <starbase.c.h>

main(argc,argv)
int argc;
char **argv;
{

register int fildes;
gescape_arg argl, arg2;

1* Open device from path and driver name passed in command line *1
fildes = gop en (argv[l] ,OUTDEV, argv [2] ,INIT);

1* Lock the device, turn semaphore off *1
arg1.i[O] = 0;
gescape (fildes, R_LOCK_DEVICE,&argl,&arg2); 1* Lock *1
gescape (fildes, SWITCH_SEMAPHORE,&argl,&arg2); 1* Semaphore off *1

Do graphics operation here. Remember, no "print!", no forks to the device . ..
1* Turn on semaphore, unlock the device *1
arg1. i [0] = 1;
gescape (fildes, SWITCH_SEMAPHORE,&argl,&arg2);
gescape (fildes, R_UNLOCK_DEVICE,&argl,&arg2);

1* Close the device *1
gclose(fildes);
}

GESC-94

1* semaphore on *1
1* Unlock *1

(

\
\

The (op) parameter is R_DFFSCREEN_ALLDC.

This gescape allows you to use offscreen frame buffer memory in a way that
cooperates with offscreen use by Starbase and Windows/9000. Starbase and
HP Windows/9000 use offscreen frame buffer memory for storage of raster sprites
and characters. You may wish to have a part of offscreen memory allocated for
your own personal use. Using this gescape will allow you to allocate a portion
of offscreen memory for personal usage and will not interfere with Starbase or
HP Window /9000 storage. A related gescape is R_DFFSCREEN_FREE.

The argl parameter contains two integers, specifying the x and y sizes (in pixels)
of the rectangular area needed.

The arg2 parameter returns four integers:

• a success flag (TRUE if the allocation was successful and FALSE otherwise).

• the raw device coordinates of the allocated rectangle if the allocation was
successful.

• the number of pixels to increment from the end of one row in the rectangle
to the beginning of the next.

Raw device coordinates are returned even if the request is via a window device
file designator. The allocation will fail (return FALSE in arg2 [0]) if there is not
a rectangle of the requested size available.

Remember that offscreen memory is used by the driver for raster cursors and fill
patterns and also by the Windows/9000 system for the window sprite and raster
font optimization. Please read more about the uses of offscreen memory in the
appropriate device driver chapter.

On HP 98730 workstations, an alignment factor for x and y can be specified in
argl [3] and argl [4] respectively (argl [2] is reserved for future use). The effect
of the alignment factor is such that the location modulo for the alignment factor
is zero. For example: specifying an x alignment factor of 2 and a y alignment
factor of 4, results in an x location on an even boundary (that is, 0, 2, 4, 6,
8, ...) and a y location on a boundary divisible by four (that is, 0, 4, 8, 16,
32, ...). Specifying zero for alignment factors results in no alignment being
done.

GESC-95

The following example attempts to allocate a 128x64 pixel rectangle in offscreen
frame buffer memory.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[O]=128;
arg1.i[1]=64;
gescape(fildes,R_OFFSCREEN_ALLOC,&arg1,&arg2);

if (arg2.i[O])
{

}

/* allocation successful */
printf (IIOK. Location is %d %d, skipcount is %d.\n",

arg2.i[1], arg2.i[2], arg2.i[3]);

else
{

}

/* allocation failed */
printf (IIOh, well.\n");

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1(l) =128
arg1(2)=64
call gescape(fildes,R_OFFSCREEN_ALLOC,arg1,arg2)

if (arg2(1) .eq. TRUE) then

else

write *, "OK. Location is ",arg2(2), arg2(3),I."
write *. "Skipcount is l,arg2(4)1."

write *, "Oh. well."
endif

GESC-96

(
\
\

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1.i[1] := 128;
arg1.i[2] := 64;
gescape(fildes,R_OFFSCREEN_ALLOC,arg1,arg2);

if arg2.i[1] = 1

else

writeln ('OK. Location is ',arg2.i[2] " , ,arg2.i[3] , '.')
writeln ('Skipcount is ',arg2.i[4] ,'. ')

writeln ('Oh, well.');

GESC-97

The (op) parameter is R_DFFSCREEN_FREE.

This gescape allows you to free offscreen frame buffer memory that has been
previously allocated by gescape R_DFFSCREEN_ALLDC.

The argl parameter contains two integers, specifying the x and y raw device
coordinates of the upper left corner of the rectangular area to be freed.

The arg2 parameter returns one integer; a success flag, TRUE, if the deallocation
was successful, and FALSE if otherwise.

The deallocation will fail if the coordinates given do not specify the corner of
a previously allocated rectangle. Please read more about the uses of offscreen
memory in the appropriate device driver chapter.

The following example deallocates a rectangle in offscreen frame buffer memory
at x=1280, y=512.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1, arg2;

arg1.i[O]=1280;
arg1.i[1]=512;
gescape(fildes,R_OFFSCREEN_FREE,&arg1,&arg2);

if (arg2.i[O])
{

}

1* deallocation successful *1
printf ("OK. All gone.\n");

else
{

}

GESC-98

1* allocation failed *1
printf ("Oh, well.\n");

I
\

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1(1)=1280
arg1(2)=512
call gescape(fildes,R_OFFSCREEN_FREE,arg1,arg2)

if (arg2(1) .eq. TRUE) then
write *, "OK. All gone."

else
write *, "Oh, well. "

endif

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1.i[1] := 1280;
arg1.i[2] := 512;
gescape(fildes,R_OFFSCREEN_FREE,arg1,arg2);

if arg2.i[1] = 1
writeln ('OK. All gone.')

else
writeln ('Oh, well. ');

GESC-99

The (op) parameter is R_OV_ECHO_COLORS.

The HP 98720, HP 98721, HP 98730, and HP 98731 can be equipped with 4-
overlay planes of frame buffer memory for nondestructive alpha, cursors, or
graphics. These overlay planes have their own unique color map, separate from
the color map used for the graphics planes.

HP 98720 and HP 98721

The color map for this system consists of sixteen 4-bit entries. These four bits
correspond to transparent, red, green, and blue (trgb) in order of MSB to LSB.
If the transparent bit (the MSB) is set to zero, the pixel color will be the color of
the graphics planes "behind" the overlay planes. If the transparent bit is set to
one, the pixel color is forced to the color specified by the red, green, and blue bits
in the color map entry. Thus, pixels in the overlay planes can be any combination
of the seven primary colors or transparent.

This gescape allows you to specify the color map entries which are used for
overlay cursors. As with the graphics planes, the overlay planes actually have (
two hardware color maps which alternate every 133ms. Therefore, two colors can
be specified causing the cursor to blink between the two.

HP 98730 and HP 98731

The color map for this system consists of 16 entries. Each of these entries contains
eight bits of red, eight bits of green, eight bits of blue, and a transparency bit. If
the transparent bit is set to zero, the pixel color will be the color of the graphics
planes "behind" the overlay planes. If the transparent bit is set to one, the pixel
color is forced to the color specified by the red, green, and blue bits in the color
map entry. Thus, pixels in the overlay planes can be any of the seven primary
colors or transparent.

This gescape is provided for backwards compatibility for applications written for
the HP 98720 product. This gescape allows you to specify the color of cursors
in the fourth overlay plane using only one bit for the red, green, and blue. As
with the graphics planes, the overlay planes actually have two hardware color
maps which alternate every 133ms. Therefore, two colors are specified causing
the cursor to blink between the two. The colors are specified with an 8-bit field

GESC-100

passed in arg1. The upper four bits specify trgb for the primary color map, and
the lower four bits specify trgb for the secondary color map.

This gescape causes the color map to be initialized in such a way that the
cursor will only be seen in areas of transparency. Therefore, even though the
cursor is in the fourth overlay plane, it appears to be in the image planes behind
the overlay planes. If another process opened to the overlay planes defines
another transparent entry using the R_TRANSPARENCY_INDEX gescape, calling
this gescape will cause the color map to be updated so that the cursor will also
be seen in this new region of transparency. If this gescape is not called, after
defining a new transparency entry in the overlay planes, the cursor for the image
planes will not be seen in the regions of the new transparency index.

Refer to the gescape R_ECHO_FG_BG_COLORS for defining overlay cursor colors
using the full eight bits of red, green, and blue in the overlay color map.

The arg1 parameter specifies these colors using an 8-bit. The upper four bits
specify trgb for the primary color map, and the lower four bits specify trgb for
the secondary color map.

The arg2 parameter is ignored.

The program segments below show how to use this gescape to blink overlay
cursors between white and transparent.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1. i [0] =15;
gescape(fildes,R_OV_ECHO_COLORS,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1 (1)=15
call gescape(fildes,R_OV_ECHO_COLORS,arg1,arg2)

GESC-101

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl.arg2:gescape_arg;

begin

GESC-102

arg1.i[l] := 15;
gescape(fildes.R_OV_ECHO_COLORS.argl.arg2);

(

..
\

)

The (op) parameter is R_OVERLAY_ECHO.

This gescape allows you to select whether graphics cursors will be located in the
graphics or overlay planes. Placing cursors in the overlay planes may significantly
improve driver performance while cursors are turned on because the driver does
not have to "pick up" the cursor to draw. Images created in the overlay planes
do not affect images in the graphics planes.

You can specify the location of raster and non-raster cursors separately.

The argl parameter contains two flags; the first flag specifies the location of
raster cursors, the second specifies the location of non-raster cursors. If the flag
is TRUE, the corresponding cursors will be echoed in the overlay plane, if FALSE,
the corresponding cursors will be echoed in the graphics planes.

The arg2 parameter is ignored.

You must call define_raster_echo to actually move the raster echo into
the overlay planes. See the DEFINE_RASTER_ECHO (3G) entry in the Star­
base Reference for more information.

HP 98550 and HP 98556

The HP 319C, HP 98549A, and HP 98550A displays may be opened in configura­
tions that provide 2-overlay planes in addition to 4- or 8-image planes.

If the overlay planes are simultaneously accessed through another gopen, there
is no safeguard to prevent unwanted interactions.

N on-raster and raster cursors may be placed in either the overlay or the image
planes. Both default to the planes specified by the special device file used with
the gopen procedure.

This gescape has no effect when the fildes used corresponds to gopen of the
overlay planes. Note that an overlay cursor may not appear as expected if the
overlay color map has not been initialized.

~I
/ This gescape has no effect on the HP 98548A display.

GESC-103

HP 98720 and HP 98721

The HP 98720 and HP 98721 can be equipped with four overlay planes of frame
buffer memory for nondestructive alpha, cursors, or graphics. ~

Only one overlay plane can be used for cursors, so overlay cursors must be
monochrome. Review the R_OV_ECHO_COLORS gescape described in this appendix
for details on overlay cursor colors. Raster cursors in the graphics planes may be
any combination of available colors.

Since there is little advantage to having non-raster cursors in the graphics planes
and performance suffers, non-raster cursors default to the overlay plane. Since it
may be very desirable to have multi-colored raster cursors, these default to the
graphics planes.

HP 98730

The HP 98730 can be equipped with four overlay planes of frame buffer memory
for nondestructive alpha, cursors, or graphics. This gescape allows you to select
whether graphics cursors will be located in the graphics planes or the fourth
overlay plane (when opened to the graphics planes). Placing cursors in the
fourth overlay plane can significantly improve driver performance while cursors
are turned on. Note that the HP 98731 Device Driver always overlays cursors.
Only one overlay plane can be used for cursors, so overlay cursors must be
monochrome. Review the R_OV_ECHO_COLORS gescape described in this appendix
for details on overlay cursor colors. Raster cursors in the graphics planes may be
any combination of available colors. Performance will be reduced, however, since
each time the display is altered, it is necessary to "pick up" the cursor, make the
alteration, and put down the cursor.

Since there is little advantage to having non-raster cursors in the graphics planes,
and performance suffers, non-raster software cursors default to the overlay plane.
Since it may be very desirable to have multi-colored raster cursors, these default
to the graphics planes.

Cursors can only be put in the fourth overlay plane when there is a fourth overlay
plane. If another process opens all overlay planes, this gescape will not allow
placing cursors in the fourth overlay plane. In an X window, overlay plane cursors
may be available even when some other process has all the overlay planes open.
See the Starbase Programming with Xll manual for more information.

This gescape is a no-op if the hardware cursor is being used.

GESC-104

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;

argl.i[O]=TRUE;
argl.i[l]=TRUE;
gescape(fildes.R_OVERLAY_ECHO.&arg1.&arg2);

FORTRAN77 Syntax

integer*4 arg1(64).arg2(64)
arg1(l)=TRUE
argl(2)=TRUE
call gescape(fildes.R_OVERLAY_ECHO.argl.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
argl.arg2:gescape_arg;

begin
arg1.i[l] := 1;
arg1. i [2] : = 1;
gescape(fildes.R_OVERLAY_ECHO.argl.arg2);

GESC-105

R_ TRANSPARENCY _INDEX

The (op) parameter is R_TRANSPARENCY_INDEX.

HP 98720 and HP 98721

The HP 98720 and HP 98721 can be equipped with four overlay planes of frame
buffer memory for nondestructive alpha, cursors, or graphics. These overlay
planes have their own unique color map, separate from the color map used for
the graphics planes. This color map consists of sixteen 4-bit entries. These four
bits correspond to transparent, red, green, and blue (trgb) in order of MSB to
LSB. If the transparent bit (the MSB) is set to zero, the pixel color will be the
color of the graphics planes "behind" the overlay planes. If the transparent bit
is set to one, the pixel color is forced to the color specified by the red, green, and
blue bits in the color map entry. Thus, pixels in the overlay planes can be any
combination of the seven primary colors or transparent.

If a graphics driver has been opened to the overlay planes, this gescape can be
used to create a transparent color entry in the color map. When the color maps
are initialized, all entries have the transparency bit set to one. This gescape
clears that bit for the specified color index. If the entry is updated, as in a call
to define_color_table, the transparency bit is set back to one.

Note that this gescape will have no effect if the graphics driver has been opened
to the graphics planes rather than the overlay planes.

HP 98730 and HP 98731

The HP 98730 and HP 98731 come equipped with four overlay planes of frame
buffer memory for non-destructive alpha, cursors, or graphics. These overlay
planes have their own unique color map, separate from the color map used for
the graphics planes. This color map consists of sixteen 24-bit color entries and
sixteen transparent entries. Each color map entry has eight bits for red, eight bits
for green, and eight bits for blue. For each color entry there is a transparency bit.
If this bit is zero, the pixel color in the overlay plane is blended with the pixel

(

color in the graphics planes "behind" the overlay planes. If the transparency bit ,~

is set to one, the pixel color in the overlay plane is forced to the color specified ~

by the red, green, and blue bits in the overlay color map.

If the graphics driver has been opened to the overlay planes, this gescape can be
used to create a transparent color entry in the overlay color map. When the color

GESC-106

maps are initialized, all entries have their transparency bits set to one. (This is
only true if the environment variable SB_OV_SEE_THRU_INDEX is set to -1. Refer
to the HP 98730 and HP 98731 driver sections for details.) This gescape can be
used to set a color map entry to transparent (that is, the color black for a pixel
is blended with the pixel color in the image planes behind the overlay planes). If
the entry is updated, as in a call to define_color_table, the transparency bit
is set back to one.

Note that this gescape will have no effect if the graphics driver has been opened
to the graphics planes rather than the overlay planes.

The argl parameter contains to the transparency index.

The arg2 parameter is ignored.

The examples below demonstrate setting index 0 to transparent.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

argl.i[O]=O;
gescape(fildes,R_TRANSPARENCY_INDEX,&argl,&arg2);

FORTRAN77 Syntax

integer argl(64),arg2(64)
arg1(l)=O
call gescape(fildes,R_TRANSPARENCY_INDEX,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
arg1.i[l] := 0;
gescape(fildes,R_TRANSPARENCY_INDEX,argl,arg2);

GESC-107

The (op) parameter is R_UNLOCK_DEVICE.

This procedure unlocks the device associated with the specified file descriptor
(fildes).

This procedure should be called prior to turning semaphores on if R_LOCK_DEVICE
was used to lock the device. See R_LOCK_DEVICE for an example program.

Both the arg1 and arg2 parameters are ignored.

The syntax of this procedure is the same for both a window device and the raw
device. The lock and unlock gescape functions are useful when semaphores are
turned off, and the program needs use of the display.

When fildes is associated with a window, arg1. i [0] is significant. If arg1. i [0]
! = 0, the window system sprite will be restored (should one be visible). Many
unlocks can be done in a row as long as the same number of locks have already
been done. Regardless of arg1. i [0], the last unlock always causes the sprite to
be restored on the display.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl, arg2;

gescape(fildes,R_UNLOCK_DEVICE,&argl,&arg2);

FORTRAN77 Syntax

integer*4 argl(64) , arg2 (64)
call gescape(fildes,R_UNLOCK_DEVICE,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2 gescape_arg;

begin
gescape(fildes,R_UNLOCK_DEVICE,argl,arg2);

GESC-108

(
\

The (op) parameter is READ _ COLOR_MAP.

This gescape copies the device's hardware color map into the software color
map associated with the file descriptor. The software color map is used by the
Starbase library for dither calculations, color specification, and inquires.

This gescape is ignored when the display is black and white.

Thisgescape is ignored for terminals other than the HP2397 and when
output is spooled for terminals. READ_COL OR_MAP can be used to get the
color map definition as defined by the hardware. The software color map and
hardware color map can differ when multiple processes are changing the color
table. Another time that this gescape is useful is when you wish to allow a
process to function without changing the actual color map. To do this, read
the current hardware color map state after opening a graphics device with the
gop en mode set without INIT. See the Starbase Programming with Xll manual
for information on using this gescape in an Xl1 window.

Both the arg1 and arg2 parameters are ignored.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl. arg2;

gescape(fildes.READ_COLOR_MAP.&argl.&arg2);

FORTRAN77 Syntax

integer*4 argl(64).arg2(64)
call gescape(fildes.READ_COLOR_MAP.argl.arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl.arg2 gescape_arg;

begin
gescape(fildes.READ_COLOR_MAP.argl.arg2);

GESC-109

The (op) parameter is SET _BANK_ CMAP.

This gescape allows you to select individual color maps for separate frame buffer
banks. The HP 98730 device supports up to three separate frame buffer banks
of eight planes each. Each can have its own unique color map. By default, all
color maps are loaded identically. This gescape allows them to be different. This
is primarily intended for use when frame buffer outputs are being blended (see
the gescape IMAGE_BLEND). When blending, this function allows you to vary the
contribution of each bank with define_color_table. For example, if a given
bank's color map entries were smoothly zeroed out, the displayed image from
that bank would smoothly fade out.

The argl parameter points to the argument list for this function. It takes one
argument: an integer specifying which bank is being selected. Allowable values
are zero through two.

The arg2 parameter is ignored.

The bank selected by this gescape will have its color map installed for subsequent
Starbase calls. This means that calls to define_color_table will affect only the '"
installed color map. Also, functions which search the color map will use the newly
installed color map. For example: in CMAP _NORMAL mode fill_color may search
color map entries to form a dither cell or find the closest match. The color map
it searches will be the one installed with this gescape.

The examples below demonstrate changing the color map for bank one to the
values in the array "colors".

C Syntax

1* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;
float colors [256] [3];

arg1.i[O] = 1; /* choose bank 1 */
gescape(fildes,SET_BANK_CMAP,&arg1,&arg2);
define_color_table(fildes,O,256,colors);

/* Update entire cmap for bank 1 */

GESC-110

. ,
I

~\

/

FORTRAN77 Syntax

int arg1(1).arg2(1)
real colors(3.256)

arg1(1)=1
call gescape(fildes.SET_BANK_CMAP.arg1.arg2)
call define_color_table(fildes.O.256.colors)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

type rgb_color=array[1 .. 3]of real;
var

arg1.arg2:gescape_arg;
colors: array[O .. 256] of rgb_color;

begin
arg1. i [1] : = 1;
gescape(fildes.SET_BANK_CMAP.arg1.arg2);
define_color _table (fildes. 0.256. colors) ;

end

GESC-111

SWITCH_SEMAPHORE

The (op) parameter is SWITCH_SEMAPHORE.

Semaphore operations prevent interference between multiple processes accessing
the same device. Semaphore operations are normally on. See R_LOCK_DEVICE for
an example of how this control is used for multiple processes accessing the same
device.

If only a single process is accessing a device, you can significantly increase speed
by turning the semaphore operations off.

The TRACK procedure will also turn the semaphore operations on. Do not turn the
semaphore operations off when the output device has an asynchronous process
tracking to it.

The arg1 parameter switches the semaphore operations on (if TRUE (1)) and off
(if FALSE (0)).

The arg2 parameter is ignored.

If you want to hold the display for a long time and run with the speed ('
improvement of not checking the semaphore, the following process is suggested: \,.

1. Lock down device to guarantee that the process is the sole owner of the
display. See the gescape function R_LOCK_DEVICE.

2. If the device is a window, you must insure that the window is unobscured.
See the gescape function R_GET_WINDOW_INFO-this gescape will also
work to the raw device; in this case it always says it's "unobscured". If
the window is obscured, you must unlock the device. See the gescape
function R_UNLOCK_DEVICE and try again later.

3. Do the semaphore switch to improve performance slightly.

4. Do whatever Starbase operations are desired, for as long as desired.

5. Do the semaphore switch to re-enable lock/unlock operations with
semaphores. If the device is a window, this also re-enables output to
obscured windows.

GESC-112

/

,I

6. Unlock the device using the gescape function R_UNLOCK_DEVICE to allow
other processes to access the display. Windows/9000 or another graphics
application are examples of other processes that will block until this
gescape is finished.

See the R_GET_WINDOW_INFO gescape for a C program example.

The following examples switch semaphore operations on.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[O]=TRUE;
gescape(fildes,SWITCH_SEMAPHORE,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
arg1(1)=TRUE
call gescape(fildes,SWITCH_SEMAPHORE,arg1,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2 gescape_arg;

begin
arg1. i [1] : =1 ;
gescape(fildes,SWITCH_SEMAPHORE,arg1,arg2);

GESC-113

The (op) parameter is TRIGGER_ON_RELEASE.

The default trigger is started when a button is pressed. This allows events to be
triggered when a button is released.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */
gescape_arg argl, arg2;
gescape(fildes,TRIGGER_ON_RELEASE,&argl,&arg2);

FORTRAN77 Syntax Example

integer*4 argl(64),arg2(64)

call gescape(fildes,TRIGGER_ON_RELEASE,argl,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl, arg2 : gescape_arg;
begin

gescape(fildes,TRIGGER_ON_RELEASE,argl,arg2) ;

GESC-114

\
)

TRANSPARENCY
The (op) parameter is TRANSPARENCY

This gescape allows you to define a "screen door" transparency pattern for use
with polygon rendering. You may define a pattern that disables writes to any
pixels within a 4x4 cell. This cell is duplicated over the entire screen.

Pass in a bit mask where a "I" means the corresponding pixel is write enabled
and a "0" is write disabled. Table A-8 shows the 2 byte pattern passed in, and
table A-9 shows how that pattern is turned into a 4x4 dither cell.

This gescape will set the same pattern for both front and back facing polygons.
To define different patterns for front facing polygons and back facing polygons,
use the POLYGON_TRANSPARENCY gescape (HP98731 only).

The arg1 parameter contains the mask.

The arg2 parameter is ignored.

Table GESC-S.

1151 ... 1211 1 0 1

Table GESC-9.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The examples will produce a green square with a 50 percent transparent red
rectangle in front. Remember to reset the transparency to opaque when done.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;

GESC-11S

fill_color(fildes,O.O,1.0,O.O);
rectangle(fildes,O.25,O.25,O.75,O.75) ;
arg1.i[O] = OxAAAA;
gescape(fildes,TRANSPARENCY,&arg1,&arg2);
fill_color(fildes,1.0,O.O,O.O);
rectangle(fildes,O.O,O.25,1.0,O.75);
arg1.i[O] = OxFFFF;
gescape(fildes,TRANSPARENCY,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64) ,arg2(64) ,pattern(2)
data pattern/z'OAOAOAOA',

C z'OFOFOFOF'/
fill_color(fildes,O.O,1.0,O.O);
rectangle(fildes,O.25,O.25,O.75,O.75) ;
arg1(1)=pattern(1)
call gescape(fildes,TRANSPARENCY,arg1,arg2)
fill_color(fildes,1.0,O.O,O.O);
rectangle(fildes,O.O,O.25,1.0,O.75);
arg1(1)=pattern(2)
call gescape(fildes,TRANSPARENCY,arg1,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin

GESC-116

fill_color(fildes,O.O,1.0,O.O);
rectangle(fildes,O.25,O.25,O.75,O.75);
arg1.i[1] :=hex('AAAA');
gescape(fildes,TRANSPARENCY,arg1,arg2);
fill_color(fildes,1.0,O.O,O.O);
rectangle(fildes,O.O,O.25,1.0,O.75);
arg1.i[1] := hex('FFFF');
gescape(fildes,TRANSPARENCY.arg1,arg2);

ZWRITE_ENABLE

This gescape was designed specifically to allow the creation of three-dimensional
cursors in the overlay planes. To accomplish this objective, you need to draw a
primitive in the overlay planes to use the same Z-buffer used to draw the object
in the image planes. To get a three-dimensional cursor effect, this gescape allows
primitives to be rendered using the Z-buffer information, but the primitives do
not modify the Z-buffer in any way. This gescape may be used in conjunction
with the ZSTATE_SAVE and ZSTATE_RESTORE gescapes to accomplish three­
dimensional cursors in the overlay planes.

Devices with dedicated Z-buffers do not need to use ZSTATE_SAVE and ZS­
TATE_RESTORE. However, if they are used, they will have no detrimental effects.

Devices which support analog blending of frame buffer outputs can be used to
achieve three-dimensional cursor effects without using the overlay planes, because
different frame buffer banks may be used for the cursors and the image. See the
IMAGE_BLEND gescape for more information on blending.

The gescape ZWRITE_ENABLE looks at argl (0] to determine whether to enable
(argl [0] ! =0) or disable (argl [0] =0) the Z-buffer for primitive modification.
This has no effect on zbuffer_switch which will clear the Z-buffer.

The examples below will disable the zbuffer from primitive modification.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;

argl.i[O]=O;
gescape(fildes.ZWRITE_ENABLE.&argl.&arg2);

FORTRAN77 Syntax

integer*4 argl(64).arg2(64)

argl(l)=O
call gescape(fildes.ZWRITE_ENABLE.argl.arg2)

GESC-117

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1.arg2:gescape_arg;

begin

GESC-118

arg1. i [1] : =0
gescape(fildes.ZWRITE_ENABLE.arg1.arg2);

/
\

fold---

Win an HP Calculator!
Your comments and suggestions help us determine how well we meet your needs.
Returning this card with your name and address enters you into a quarterly
drawing for an HP calculator*.

Starbase Device Drivers
Library Manual

The manual is well organized.

It is easy to find information in the manual.

The manual explains features well.

The manual contains enough examples.

The examples are appropriate for my needs.

The manual covers enough topics.

Overall, the manual meets my expectations.

You have used this product:

Less than 1 week Less than 1 year

Less than 1 month 1 to 2 years

Agree

0
0
0
0
0
0
0

Disagree

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

More than 2 years

Please write additional comments, particularly if you disagree with a statement
above. Use additional pages if you wish. The more specific your comments, the
more useful they are to us.

Comments: __ _

* Offer expires June 1990. (98592-90018 E0989)

Please Tape Here

Please print or type your name and address.
Name: __ ___

Company: __ __

Address: __ ___

City, State, Zip: __ _

Telephone: __ _

Additional Comments: ____________________________________ _

Starbase Device Drivers Library Manual
HP Part Number 98592-90018
E0989

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Learning Products Center
3404 East Harmony Road
Fort Collins, Colorado 80525-9988

11"1,11,,,,1,1, " 1,1,1,1,1,1" 1,1,,1 " 1,1 " I " II " I

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
98592-90018
Microfiche No. 98592-99018
Printed in U.S.A. E0989

rlin- HEWLETT
~~ PACKARD

98592-90601
For Internal Use Only

