
HP 90aO Series 300 Computers

LISP Programmer's Guide

r/"~ HEWLETT
~I:.. PACKARD

LISP Programmer's Guide
for HP 9000 Series 300 Computers

HP Part Number 98678-90040

e Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No pan of this
document may be photocopied, reproduced or tranSlated to another language without the prior written consent of Hewlett
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth In paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional
copies of the programs can be made for security and back-up purposes only. Resale of the programs in their present form
or with alterations, is expressly prohibited.

Hewlett-Packard Company
3404 East Harmony Road, Fort CoIIlns, Colorado 80525

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

March 1986...Edition 1

NOTICE
The information contained in this document is SUbject to change without notice.

HEWLETT·PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett·Packard shall not be liable
for errors contained herein or direct. indirect. special. incidental 01 consequential damages in connection with the furnishing, performance,
01 use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
5aIes and 5ervice OffICe.

ii

~...,

Table of Contents
Chapter 1: Introduction

Purpose 1
Audience 1
Topics 2
Conventions 3

Fonts 3
Function Descriptions 3

Other Documentation 4
NMODE Related Documents 4
Lisp Documents. .. 4

Chapter 2: Concepts
Introduction. .. 7
Scope and Extent 8

Background. .. 8
Some Simple Scope Examples .. 10
Shadowing 11
Free Variables. .. 13
Scope and Extent of Symbols 13
Special Bindings 14

Closures .. 18
Inside a Closure. .. 18
Example 19

Listeners .. 20
Listener Shorthands (Read Macros) 21
Invoking a New Listener 23
Listener Variables 24
Listener Functions .. 24

Garbage Collection 25
The Heap 25
When Garbage is Collected .. 25
What the Garbage Collector Does 26
Frequency and Duration 27

iii

Preprocessing .
So What? .
Example .

Compiling .
Macros .
Eval-When .

Chapter 3: Programming Tips
Introduction. .
Speed Optimizations .

Constant Folding .
Safe Functional Transformations .
Unsafe Functional Transformations .
Inline Coding .
Safety .
Extensions .
Optimizing Wisely .

Using Heap Wisely .
Destructive Functions .
Shared List Structure .

Creating Public Functions .

Chapter 4: Types and Declarations
Introduction .
Available Types .
Type Specifiers .

Subset Type Specifiers .
Predicate Type Lists .
Defining Type Symbols .

Declarations .
Symbols for Declaring .
Symbols for Specifying Declarations .

Other Uses of Types .
Specifying the Type of a Form .
Checking Types .
Program Control With Types .
Type Coercion .

Examples of Declarations .
Global Declaration Examples .
Local Declaration Examples .

Iv

29
29
30
31
31 ~31

33
34
35
36
37
37
37
38
39
41
41
42
44

47
48
49
50
52
53
56
57
60
65
65
66
69
70
71
~71

71

Chapter 5: Macros
Introduction. .. 73

Background. .. 74
Examples 78

Multiple-Value-Setf. .. 78
Substr 79

Chapter 6: Object-Oriented Programming
Introduction. .. 81

What's an Object? 82
Messages. .. 83
Terms 84

Getting Started. .. 85
Defining an Instance Type. .. 85
Defining a Method .. 89
Creating an Instance 90
Sending Messages .. 90
A Brief Tutorial. .. 91
Another Short Example .. 95

Inheritance 97
Defining a Type that Inherits , 97
Inheriting Methods. .. 98
Inheriting Instance Variables .. 103

Caveats .. 107
Initialization. .. 108

Custom Initializations .. 110
Universal Methods .. 112

Equality Methods. .. 113
Checking the Type of Instances. .. 114
Copying Instances .. 115

Redefining Instance Types. .. 116
Undefining Instance Types .. 117

Chapter 7: Calling Non-Lisp Routines
Introduction. .. 119
Background Information. .. 120

Object File Format 120
Entry Points 120

Loading Foreign Functions. .. 121
Load-related Variables and Functions. .. 123

Creating an Access Routine. .. 124
Parameter Specifiers .. 125

v

Result Specifiers. .. 130
Restrictions .. 130
Examples 130

Accessing Non-Lisp Variables 131 ."
Example 132)

Complete Examples. .. 133
C 133
Pascal 137
Fortran , 141
Assembly Language. .. 143

Chapter 8: Debugging Tools
Introduction. .. 145
Concepts. .. 146

The Execution Stack .. 146
Alternate Listener Modes. .. 146
Compiled vs. Interpreted , 147
Optimizations 147

The Execution Monitor 148
Execution Monitor Items 148
Breakpoints .. 149
Commands 149
Program Errors. .. 152
Options , 153

The Execution Stack Browser .. 154
Commands .. 154

The Inspector 156
Commands .. 157
Inspecting Instance Types 158
Example .. 158

Debug Listener Mode 160
Debug Listener Commands .. 160

Tracing a Function 164
Nested Trace Specifiers. .. 166
Changing Options .. 166
Tracing Order .. 167
Examples 168
Miscellany .. 168

The Break Loop .. 169
Break Loop Related Variables. .. 169

vi

Chapter 9: File System Dependencies
Introduction. .. 173
Pathnames. .. 174

Examples 175
Resolving Filenames 175

Loading Modules. .. 176
Multiple File Modules. .. 177

Chapter 10: Extensions
Introduction. .. 177
System Functions 178
Operating System Access Functions. .. 180
Error Signalling and Handling. .. 182

Defining Error Symbols. .. 182
Error Handling 183
Error Handling Example. .. 188

Index

vii

viii

()

Introduction 1
r Purpose

Welcome to The Lisp Programmer's Guide for Hewlett-Packard's Lisp workstation. As its name
suggests, this book provides the information necessary to write Common Lisp programs on this
system. This book is about HP's implementation of the Common Lisp language and related
utilities; you will not learn how to use the workstation by reading this book.

This book is organized so coverage of each topic is independent. For the most part, you do not
have to read any prior chapters to understand what is presented in a particular chapter. However,
in order to present useful comprehensive examples, there are minor degrees of interdependence
between some of the examples.

Audience
You do not have to be an advanced Lisp programmer to use this manual. You should have a
firm grasp of Lisp fundamentals, and be familiar with general programming concepts. Most of
the topics in this book are specific to Hewlett·Packard's Lisp; some of the material presented
here is also in Steele's Common Lisp, but in a less accessible form. Some details given in Steele
have been omitted from this book to make the presentation less cluttered.

Introduction 1

Topics
The following chapters comprise this manual:

Chapter 1
Introduction

Chapter 2
Concepts

Chapter 3
Programming Tips

Chapter 4
Types and Declarations

Chapter 5
Macros

Chapter 6
Object-Oriented Programming

Chapter 7
Calling Non-Lisp Routines

Chapter 8
Debugging Tools

Chapter 9
File System Dependencies

Chapter 10
Extensions

2 Introduction

The very same introduction you are reading at this very
moment!

Explains some important Lisp programming concepts such
as scope and extent, garbage collection, and listeners.

Contains advice on how to write efficient Lisp code.

Discusses the data types available in Common Lisp, how to
define your own types, and use of declarations to enhance
efficiency.

Explains and demonstrates the Common Lisp facility for
defining macros.

Describes object-oriented programming and the Lisp con
structs available to facilitate it. Several short examples are
presented.

Discusses how to call functions written in another language
from Lisp.

Explains the various tools available to help you debug your
Lisp programs.

Describes how Hewlett-Packard has implemented Common
Lisp pathnames to fit HP-UX, as well as how HP has defined
several system-dependent functions.

Describes the functions that Hewlett-Packard has added to
our implementation of Common Lisp. This chapter does
not cover extensions that are described elsewhere (such as
extensions for debugging and object-oriented programming).

Conventions

Fonts
Various typographical conventions are used throughout this manual.

• File names, and Lisp symbols and values are printed in a typewriter font
(e.g., /users/gurus/ritchie, car, 66).

All Lisp code appears in this font also.

• Bold font is used to highlight new terms when they are defined, to stress important sections,
and to represent keystroke commands (e.g., Don't touch that diaU, C-X C-F.)

• The names of HP-UX commands, the names of manuals, and parameters in the description
of functions, macros, and methods, appear in italics (e.g., vi, the NMODE Users GUide,
assoc-list).

Function Descriptions
Here is an example of how this manual describes the syntax of calls to functions, macros, and
special-forms.

(deftype type-name lambda-list {declaration Idoc-string}· {form}·) Macro

The basic form is (followed by the name of the function, followed by a description of the form
of the arguments, followed by) and an indication of whether it is a variable, function, macro,
or special form. Descriptions of arguments use the following notation:

• Names in italics (e.g. declaration) identify where actual arguments should appear. What
those arguments should be is usually described in the following paragraph.

• {and} are used as syntactic parentheses to indicate grouping of arguments.

• Zero or more repetitions of the preceding argument or group of arguments are indicated
by·.

• One or more repetitions of the preceding argument or group of arguments are indicated
by +.

• Two arguments or groups of arguments separated by a I indicate a choice of either of the
two arguments.

• Arguments surrounded by brackets [] are optional.

• In descriptions of functions, &:optional, &:key, and &:rest indicate that the parameters
following them fall into that particular class. For instance, in (foo x &:key :radix), foo
has one required parameter x, and will accept a :radix keyword parameter.

Descriptions of methods for object-oriented programming are similar, except that they are not
bracketed by parentheses.

Introduction 3

Other Documentation
When using this manual, you may occasionally be pointed to other documentation that was
shipped with your Lisp system. For reference, here is a list of the other documentation and
what it contains.

NMODE Related Documents
Reference Manual

• NMODE Command Reference

There are several appendices which provide reference information on the commands that
are available in the different parts of the system. These include: Quick Reference, Com
plete Command Reference, Browser menu commands and softkey commands.

Technique Manual

• NMODE User's Guide

This manual explains the NMODE user environment. The chapters give general information
about command syntaxes, displayed information and general rules of operation for the
browsers and text buffers. Simple customizations and extensions to the system are also
explained. .~

Lisp Documents
Reference Manuals

• Common Lisp by Guy Steele

This is a purchased manual provided with the documentation package. It describes the
Common Lisp standard. The "Bible" of Common Lisp.

• Lisp Quick Reference

This is a "mini-reference" for Common Lisp. The forms, functions, macros, and others are
arranged alphabetically, and cross-referenced by functionality. HP extensions are included.

• Lisp Language Reference

This is an alphabetical reference of Common Lisp and HP extensions.

4 Introduction

Lisp Techniques

• Lisp by Patrick H. Winston

This is a purchased manual provided with the documentation package. It is an introduction
to programming in Common Lisp.

• Lisp: A Gentle Introduction to Symbolic Computing by David Touretzky

This is a purchased manual provided with the documentation package. It provides a very
clear explanation of the fundamental concepts of Lisp. Note that its examples are not
written in Common Lisp.

The Gentle Introduction is provided for non-programmers, perhaps your manager, who
want to know "what's this all about".

Introduction 5

6 Introduction

Notes

Concepts 2
r Introduction

Lisp is substantially different from mainstream programming languages like Pascal and C. Even
if you are a veteran programmer in another language, there are probably some concepts that
will be new to you. Since some of these concepts are subtle, understanding them is key to your
success as a Lisp programmer. This chapter covers a number of important things about Lisp.
It discusses

• Common Lisp's scoping rules

• Closures (function objects)

• Listeners (read-eval-print loops)

• Garbage collection

• Preprocessing

• A few important things about compiling Lisp code.

Concepts 7

Scope and Extent

Background
Before introducing scope and extent, it is necessary to define a few terms.

• A name is a means of identifying something. It is often important to distinguish between the
name of something and the thing itself. In Common Lisp, names are strings of characters,
such as x or dog. Names can identify symbols and variables. When a name, such as dog,
appears in this book, it refers to the thing named dog. The words "the name dog" would
be used to refer to the name itself.

• Symbols are Common Lisp data objects. They have several components, including a print
name, a home package, a global value, a global function definition, and a property list.

• A variable is a slot for storing a value (which can usually be any Common Lisp data
object).

• The association between a name and a variable, or a name and a symbol is a binding.
A name is said to be bound to a variable if the name is currently associated with that
variable.

• A closure is the combination of a function and an environment. The environment portion
of a closure maintains the bindings that are in effect for that closure. Closures allow
bindings to persist even when the function that established them is no longer executing.
See the "Closure" section later in this section for more information.

All programming languages must have rules that resolve exactly what a name is bound to. These
rules are necessary because not every entity has a unique name. You must be able to use the
same name in different contexts to refer to different entities. On the other hand, you may
sometimes want to have a particular name always refer to the same entity. To fully understand
a programming language, you must understand the rules that determine what entity a name
identifies.

Two concepts central to these rules are scope and extent. The scope of an object is the textual
area of a program in which references to that object may occur. If someone asked you what
the scope of a particular variable is, you could answer with a list of the line numbers where that
variable can be referenced.

Extent is more elusive. The extent of an object is the period of time in which an object can be
referred to. Here time is usually described in terms like "during the execution of this function."

8 Concepts

Example: Consider the function,

(defun kung (x)
(cond «atom x) lilt's an atom")

(t "No such luck"»)

The scope of x is the function kung. The scope is the textual area in which we can use the
name x to refer to whatever object was the first argument to kung.

In this example, the extent of x is the duration of the execution of kung. Unfortunately, this is
not the general case. To simplify an explanation of scope and extent in Common Lisp, we need
to define a few more terms that describe some possible scopes and extents.

• Entities with lexical scope can be referenced by name only within the textual area of the
construct that established that entity. For instance, the function kung establishes a binding
between the name x and its first parameter, and that binding may only be referred to
within the body of kung.

• An entity that has indefinite scope can be referred to anywhere. Common Lisp symbols
have indefinite scope.

• Things that have indefinite extent exist as long as it is possible to reference them. The
binding of the name x in kung has indefinite extent. In this case, the extent of the binding
of x is only the duration of the execution of kung. As soon as kung finishes executing,
there is no way of accessing the binding since it has lexical scope and the name x does not
identify the parameter outside of kung. However, if a function creates a closure, then the
bindings of its parameters may still be accessible after the function has finished executing.

• An entity with dynamic extent can be referenced any time between when it is established
and when it is disestablished. Entities are established by the execution of some language
construct. When that construct terminates in any way, the entities it established are
disestablished.

• The term dynamic scope is sometimes used when discussing things that have indefinite
scope and dynamic extent.

Concepts 9

Some Simple Scope Examples
Now that we have a framework for talking about scope and extent, we can look at some more
examples of how they work in Common Lisp.

• Bindings between variables and names have lexical scope and indefinite extent.

(let «x 1) y)
(setq y 100)
(if (evenp y) (setq x (+ x 1»»

In this example, the let form binds the names x and y to their respective variables which can
be referred to by these names anywhere in the body of the let. x and y have lexical scope
and indefinite extent, but in this case, there is no way to refer to the variables after the let has
completed.

Here is an example where the extent of the bindings of lexical variables is longer than the the
duration of the form that established them. It creates a closure that allows the bindings to
persist.

(setq funny-adder (let «x 6»
#'(lambda (z)

(if (zerop z) (setq x 0)
(+ x z»»

(funcall funny-adder 7) => 13
(funcall funny-adder 0) => 0
(funcall funny-adder 7) => 7

The let returns a closure as the value of funny-adder. The closure's environment contains
the binding of the variable x. This closure retains the ability to access and modify the variable
x. After the value of x is modified by the second funcall, the value returned by (funcall
funny-adder 7) is different.

• Symbols have indefinite scope and indefinite extent.

(let «x 1»
(setq y (+ x 6»)

In the let form above, the name y refers to the symbol y. The global value cel) of the symbol
y is set to (+ x 6). In this case, y is called a free variable, because it is not bound within the ~... \.
scope of the let.

10 Concepts

• Special variable bindings have indefinite scope and dynamic extent.

(de£un sample 0
(let «x 46» (declare (special x»

(sample2»)

(defun sample2 ()
(+ x 92»

The let in sample establishes a special binding of x. This binding can be referenced anywhere
(like it is in sample2) until evaluation of the let completes. After that, the binding is disestablished
and can no longer be referenced.

Shadowing
Lexical Shadowing
The rules we have discussed so far are slightly inadequate. What happens when, within the
scope of a lexical variable, we create a new binding for the name of that variable?

(defun £00 (x y)
(print x) ; This x is the parameter
(let «x (+ y 1») ; y is the parameter y

(print x» This x is the let variable
(print x» ; This x is the parameter

In £00 we have two variables named x - the first is one of the formal parameters of £00; the
second is established by the let form. When the name x occurs, how do we know which of the
two variables it identifies? The answer: It identifies the most recent binding that is still in effect.

When the first (print x) form occurs, x is still bound to the first parameter of foo. The second
(print x) however, occurs inside the body of the let, which has established a new variable
and bound it to the name x. The third (print x) occurs outside the body of the let, but still
within the function foo, so it refers to the parameter x.

(£00 2 3) * 2 and prints 2 4 2

In situations such as this, we say that the inner binding of x shadows its outer binding.

Concepts 11

Global symbols may be lexically shadowed. The following example demonstrates shadowing the
global symbol car.

(defun stupid-tuna (a1ist)
(flat «car (1) (cdr 1»)

(car a1ist»)

(stupid-tuna '(a b c» => (B C)

The function car established by the f1et, shadows the global function definition of the symbol
car.

The above examples demonstrate lexical shadowing. It is also possible to have dynamic shad
owing of things with indefinite scope and dynamic extent.

Dynamic Shadowing
Catchers established by a catch special form have dynamic extent. It is possible for a function
that establishes a catcher to call another function that establishes a catcher with the same name.
When there is more than one active catcher with the same name, any throw to that name will
go to the most recently established catcher.

(defun fool (x)
(catch 'disc (* 2 (fo02 x»»

(defun fo02 (x)
(catch 'disc (+ 1 (fo03 x»»

(defun fo03 (x)
(throw 'disc x»

In this example. the catcher disc established in fool is dynamically shadowed by the catcher
established in fo02, so the throw from fo03 will be caught by the catch in fo02.

(fool 6) => 12

When this is evaluated, fo02 returns the value it caught, x, and fool returns this value times 2.
Now if we changed fo02 so that the catcher established in it had another name, say football,
then the throw from fo03 would be caught by the catch form in fool.

(defun fo02 (x)
(catch 'football (+ 1 (fo03 x»»

In this case,

(fool 6) => 6

12 Concepts

Free Variables
A variable is free if it is not lexically bound. For example,

(let «x 3) (y 9»
(setq z (+ x y»)

In this form, z is a free variable. A free variable refers to the global value cell of the symbol with
the same name. A bound variable refers to the global value cell of the symbol if the binding of
that variable is declared to be special.

Scope and Extent of Symbols
The bindings between names and symbols have indefinite scope and indefinite extent. After a
symbol is established, it can be referenced anywhere its name is not shadowed.

(setq x '(a b c»

(let (x)
(setq x 13»

x ~ (a b c)

(let (y)
(setq x 13»

x ~ 13

Establishes symbol x

Rebinds x for scope of let
This is the'local variable x

The x referenced here is the symbol

The first let above rebinds the name x to a local variable so the enclosed setq does not affect
the symbol x. The second let however, does not rebind x and the setq changes the global
value cell of the symbol.

Concepts 13

Special Bindings
In Common Lisp, you can declare variable bindings to be special. A special variable is bound to
the global value cell of the symbol with the same name as the variable. Special variable bindings
have indefinite scope and dynamic extent, which means they can be referenced anywhere they
are not shadowed, from the time they are established until the establishing form terminates.
After the establishing form terminates, the global value cell of the affected symbol is restored
to the value it had before the special binding was established. This is what makes special
variables "special".

You can declare a variable to be special everywhere (with a defvar, or proclaim), or only in
particular places. The following is an example of declaring a variable to be special in a particular
place.

(setq x '(the original x»
(defun foo 0

(let «x 5» (declare (special x»
(f002)
x»

(defun fo02 0
(setq x (+ x 9»)

(foo) => 14
x => (THE ORIGINAL X)

The free variable x refers to the
special binding established in foo.

The setq sets the global value of the symbol x to (the original x). When foo is called,
its let establishes a new binding for x that is declared to be special. The call to fo02 occurs
within the extent of the special binding of x, so any reference to x (as long as x is not leXically
shadowed) is to the global value of the symbol x (which has been changed by the let). If the
special declaration was omitted from foo, then an error would occur in fo02 when it attempted
to add 9 and the list (the original x). When the let in foo terminates, the special binding is
no longer in effect, and the previous value of the symbol x is restored.

14 Concepts

Parameters to functions can be declared special.

(defun kung (x y) (declare (special x»
(faa (+ y 7»)

(defun faa (z)
(+ x y z»

(setq y 1000 x 6000)

(kung 6 6) => 1018
(faa 13) => 6013

This situation is analogous to the previous example. Since kung declares x to be special, when
it calls faa, the x in faa refers to the new value of the symbol x (which is the value of the first
argument to kung). The global value of y on the other hand, is not changed since the binding
of the variable y is not declared special. Note that calling faa outside of kung with the same
argument (13) gives different results because the value of x has been restored to 5000.

Variables that are Always Special
When a variable is special everywhere, it is as if every new binding of the name of the variable
is declared special.

There are two basic ways of making a variable be special everywhere. The macros defvar and
defparameter are the preferred way, but proclaiming a variable to be special achieves the same
effect.

(defvar *username* "Joe Schmoe")

is equivalent to

(progn (proclaim '(special *username*»
(set '*username* "Joe Schmoe")
'*username*)

Both establish a symbol named *username* whose bindings are always special. In system code,
the names of global special variables that are exported usually begin and end with a * to avoid
name conflicts.

Concepts 15

Let's look at a few examples of globally special variables:

(defvar *indent-level* 0) ; Set up the special variable

Print-list prints a list indented to show the structure
of its nesting.

(defun print-list (1)
(format t l-v .OT-A-1." *indent-level* 11(11)
(dolist (element 1)

(typecase element
(atom (format t n-v,OT-A-1. n *indent-level* element»
(list (let «*indent-level* (+ 3 *indent-level*»)

(print-list element»)

)
(format t n-v,OT-A-1." *indent-level* II) II)
)

indent-level
is rebound

In this example, the special variable *indent-level* maintains the number of spaces to indent
before printing. Before recursively calling print-list, *indent-level* is rebound to a higher
number so that nested lists are indented more. When the let terminates after return from the
recursive call, the global value of *indent-level* is reset to whatever it was before the let.

Here's another example:
(defvar z 1000)

(defun fun1 (z) A special binding of z
(print (fun2»
z)

(defun fun2 0
(let «z (* z 2») ; Another special binding of z

z»

(fun1 12) => 12 after printing 24
z => 1000

z is declared to be a global special variable with initial value 1000 by the defvar form. fun1
rebinds the value of z to the value of its parameter. This binding can be referred to anywhere,
but only while fun1 is executing.

16 Concepts

The let form in fun2 rebinds z yet another time. Note that the free variable z in (* z 2)
refers to the binding established by funl and not the original global value of z. When the let
in fo02 finishes, it returns 24 and the binding of z it established is undone, restoring the binding
established by fun1.

funl returns 12 (the value of its parameter) and z is reset to its original global value (1000).

The bindings of special variables can be thought of as a stack (though this is not necessarily
how they are implemented). Each time a new special binding of a name is established, a new
value holder is added to the top of the stack. When that binding is disestablished, the holder is
popped off and the previous binding becomes the current one.

o

1000

12

o
o
o

global {
sym~ ;aluO

'"----------'
(dofvor x 1000)

o
o
o

(funl 12). {now speciel

........---~

1000

(lot «x (. x2»J
now apoc;lol {

binding of x

1000

0

0

24

12

1000

Figure 2-1. Conceptual Model of Spedal Variables

Concepts 17

Closures
Closures are similar to function objects in that they can be funcalled or applied just like functions.
The difference is that a closure contains some knowledge of the lexical environment in which it
was created.

A closure may be created by executing one of the following forms within a lexical environment,
such as a let or a function:

#' (lambda ...
#'x where x is defined by flet or labels

A closure will be created if the lambda, or the definition of x, references any lexically visible
entity (e.g. local variables, parameters, blocks, tagbody labels) other than special variables. If
no such references exist, a normal function object is created.

Inside a Closure
A closure is a compound object with two parts: a data part, and a function part. The function part
is like a normal function object. The data part contains variables and control flow information.
The variables are non-special variables which are referred to by the function part and were (are)
locally bound within the scope in which the closure was created. The control flow information
allows the closure to return from blocks or go to labels which were leXically visible where the ~
closure was created.

Upward and Downward
Closures are both upwardly and downwardly mobile. To be downwardly mobile, a closure needs
to remain valid only as long as the scope in which it was created is still active. Many languages
provide downwardly mobile closures; for example, HP Pascal procedure variables implement
downwardly mobile closures. To be upwardly mobile, a closure needs to remain valid after the
scope in which it was created has terminated.

In Common Lisp, closures are upwardly mobile with respect to lexical variables. Any local
variables (including function parameters) which are referenced by closures continue to exist even
after the scope in which they were bound has terminated.

Common Lisp closures are downwardly mobile with respect to tagbody labels and block names
which were leXically visible where the closure was created. However, it is not possible to return
from a block which has terminated or go to a label defined in a tagbody which has terminated.

18 Concepts

Compilation
The function part of a closure will be either interpreted or compiled, depending on whether the
code that created it was interpreted or compiled (i.e compiled code creates compiled closures).
The function part of a closure is actually a part of the larger function in which it is nested.

Example
One possible application of closures is to implement simple object-oriented programming capa
bilities. In this scheme, objects are closures, so the functions to create objects return closures.
Here is a function to create a rectangle object. The variables that are being "wrapped up" in
the closure are the length and width of the rectangle. The function part returns or modifies the
values of these variables based on the keywords they are passed.

(defun make-rectangle (length width)
;; Return a closure
#'(lambda (operation trest args)

;; Any key in this CASE is the name of a method
(case operation

(:width width)
(:length length)
(:area (* width length»
(:set-width (setf width (car args»)
(:set-length (setf length (car args»)
(:type 'rectangle)
(:describe (format t

"A mini-object of type rectangle-YeWidth=-A-Y.Length=-A-Ye"
width
length»

)

To invoke operations on these "objects", you funcall them with the name of the operation and
any arguments required by those operations.

(defmacro my-send (object method-name &rest args)
'(funcall ,object ,method-name ,Gargs)
)

(setf rect1 (make-rectangle 6 2»
(my-send rectl :type) => RECTANGLE
(my-send rectl :length) => 6
(my-send rectl :set-length 10) => 10
(my-send rectl :length) => 10

Other interesting applications of closures are discussed in Structure and Interpretation of Com
puter Programs by Harold Abelson and Gerald Jay Sussman with Julie Sussman.

Concepts 19

Break

Debug

Listeners
A listener (also known as a read-eval-print loop) is a central part in your interaction with
Lisp. It is the program that reads an input form, evaluates it, and prints the results. Usually, '"
this default behavior is what you desire and there is no reason for you to be concerned about _)
the listener. However, some situations benefit from specialized listener modes that prOVide
additional features. For instance, debugging after an error occurs can be facilitated by a mode
that simplifies access to information about the state of the Lisp system.

Additionally, a listener mode can provide shorthand notations for capabilities that are often used
in that listener. A listener can be made to look to the user like a command interpreter specific
to a particular situation, without foregoing the ability to do "normal" things like evaluate a Lisp
form.

The five listener modes that are prOVided by HP's Common Lisp system are:

Lisp The default listener. Provides a few shorthands.

Simple break loop. Entered when the debug module is not loaded, and an error is
signalled or break is called. In this mode, the listener reads from and prints to the
stream *debug-io*, even though the full debugger is not available.

Break Joop when the debug module is loaded. Invoked when an error is signalled
or the function break is called. In this mode, the listener also reads from and prints
to the stream *debug-io*. Provides shorthands for calling debugging functions.

Inspect Invoked from the function inspect. Provides shorthands for calling functions that
access and display Lisp data objects.

Monitor Invoked from the step macro. Behavior is the same as Lisp mode, but the prompt
reminds you that the execution monitor is active.

20 Concepts

Listener Shorthands (Read Macros)
To save typing and improve code readability, the reader part of a listener can interpret particular
series of characters in distinctive ways. These character combinations are called read macros.
An example of a read macro defined in Common Lisp is the single quote character ('). This
tells the listener to replace the quoted form with a call to the quote special form. For example,
the normal Lisp reader translates 'foo into (quote foo).

The Lisp listener modes like debug and inspect provide a set of shorthands (macros) for common
operations (see the "Debugging Tools" chapter for details on those operations). These macros
do nothing more than expand into an already documented form. They are only a typing aid for
the interactive user. They are not recommended for use in code files. To see the expansion of a
listener macro, simply evaluate the macro preceded by a single quote in the appropriate listener
mode. Note that these shorthands must be enabled before they can be used.

Enabling a Listener Macro Character
To enable them, you must first decide what single character or pair of characters you wish to
use to access the built in macros. It is important that you pick a character or characters that
will not interfere with other aspects of the system. The single quote for instance would be a
tragic choice. See the table of standard character syntax types in the "Input/Output" chapter
of Steele. The characters in that table marked with asterisks are good potential characters for
accessing the listener shorthands. HP has picked one of those characters (! : the exclamation
point) as the default listener macro character.

If you have chosen to use a single character (let's say 1), then evaluating a form like

(system:on '(listener-read-macro #\1»

will enable that character as the listener macro character, so any form immediately preceded by
it will be treated specially by the debug and inspect listeners. If you want to use ! as the macro
character, you can evaluate

(system:on 'listener-read-macro)

to enable it.

You can also use a sequence of two characters to access the listener macros. These are known
as dispatch macros. The first character is a signal to the reader that it should treat the next
character differently from usual. Here we discuss only the case where the first character is #.

The # character is used as a dispatch character throughout Common Lisp (to read in octal or
hex numbers for instance). If you decide to use two characters to access the listener macros,
you should consult the Standard # Macro Character Syntax table in the "Input/Output" chapter
of Steele to find a pair of characters that is not used for some other purpose.

Concepts 21

Once you have selected a character to use as the second character of the dispatch macro, you
must evaluate a form to enable it. Assume that you wanted to use #z to access the listener
macros. The following form would be evaluated to put it into effect.

(system:on '(listener-read-dispatch-macro #\z»

To enable the default sequence of # I, you would evaluate

(system:on 'listener-read-dispatch-macro)

Advanced users who have defined their own dispatch macro character can use it as the first char
acter in a listener macro sequence by calling system: on with a list (listener-read-dispatch
macro dispatch-character char).

Disabling a Listener Macro Character
To deactivate a single character you enabled as the listener macro character, evaluate the form

(system:off 'listener-read-macro)

There is no need to specify the character.

To deactivate a pair of characters that you enabled, evaluate

(system:off 'listener-read-dispatch-macro)

Accessing Status of Listener Macro Characters
You can determine the current listener read macro character, and the current dispatching macro
characters with the function system: on-off?

The function call

(sys:on-off? 'listener-read-macro)

returns the current listener read macro character if one is in effect, and nil if there is none in
effect.

The function call

(sys:on-off? 'listener-read-dispatch-macro)

returns a list whose first element is the dispatching macro character and whose second element
is the syntaxing character, or nil if there is no dispatching listener macro in effect.

22 Concepts

Function

Invoking a New Listener
Most of the time, the system takes care of invoking the proper listener. When an error occurs,
you get the debug listener; when you're inspecting a data object, you get the inspect listener.
Sometime, though, you may want to invoke a listener yourself. The function system: listener
is defined for that purpose.

(system:listener mode banner &optional
reader
evaluator
printer
name
top-level?>

The two required parameters are mode (a keyword) and banner (a string). The mode symbol
name appears in the listener prompt. It is LISP for the normal top-level listener, BREAK for the
simple break loop, DEBUG for the debugging break loop, INSPECT for the inspect function, and
MONITOR for the execution monitor. When the listener is invoked, the string banner is printed to
standard-output.

The first three optional parameters are the reader, evaluator, and printer to be used by the
listener. Each is expected to be an object that can be "funcalled", preferably a symbol naming
the appropriate function. These are called in order on each pass through the listener loop.
They default to system: reader, eval, and system:printer respectively. With these values, the
invoked listener will operate like the normal Common Lisp listener. The reader function is called
with no arguments, the evaluator is called with what the reader returns (a single value), and the
printer is called with one argument (if eval returns multiple values, the printer is called once for
each value). Note that no stream argument is passed. If no values are returned by eval, the
printer will not be called.The reader and printer are expected to use the appropriate stream. For
instance, the stream *debug-io* is used instead of *standard-input* and *standard-output*
when the listener mode is debug.

The parameter name is a string that will appear in the prompt before the mode.

The last optional parameter, top-level? indicates whether this listener should trap listener aborts.
The function system: listener-abort throws back to the nearest listener for which top-level? is
true. In a normal system, this will be the top level invocation of system: listener.

Concepts 23

Listener Variables
There are some special variables that affect and reflect the current listener.

system:*exit-listener-on-eof* Variable

This variable controls the behavior of a listener when it reads an end of file. If system: *exit
listener-on-eof* is true, then when a reader reads an end of file, it exits. This will essen
tially cause the Lisp process to terminate. For interactive use, you should set system: *exit
listener-on-eof* to nil.

system:*listener-mode*
system:*listener-banner*
system:*listener-read*
system:*listener-eval*
system:*listener-print*
system:*listener-name*

Variable
Variable
Variable
Variable
Variable
Variable

These variables provide information about the current listener, For instance, system: *listener
read* stores the name of the current listener's read function.

Listener Functions
There are a few functions in the system package that affect the current listener.

(system: listener-abort) Function

Throws to the closest nested listener which was invoked with top-level? true. Sets *applyhook*
and *evalhook* to nil.

(system: listener-quit) Function

Quits the current listener by first exiting its read-eval-print loop and then throwing to the nearest
enclosing error handler (most often the nearest enclosing listener),

(system: listener-continue) Function

Continues from the current listener by exiting its read-eval-print loop. The function sys
tem: listener returns nil in this case.

24 Concepts

Garbage Collection
A feature of Lisp that contributes greatly to a programmer's productivity is automatic storage
allocation. To create a new data object, one needs only to call the appropriate function (e.g.
cons, list, make-array) and the storage for that object is automatically allocated from a central
pool. Among other things, this makes it easier to write programs that are not limited to a
specific maximum problem size.

However, this capability does not come free. Since the amount of virtual memory available to
Lisp is not unlimited, the system must occasionally pause to "recycle" memory that has been used
and then discarded. This process is known as garbage collection or reclaiming. Understanding
garbage collection can reduce frustration and make you a better Lisp programmer.

The Heap
The Lisp heap is a general-purpose storage area. It is used primarily for storing data objects
(lists, arrays, bignums, etc.). Interpreted code and uninterned symbols also reside in the heap.

When Garbage is Collected
When Lisp is first started, all the available heap space is in one large contiguous area. Space is
allocated sequentially from this area. When only 40000 bytes of free heap remain, a garbage
collect is automatically invoked. Note that there are unused objects scattered throughout the
heap. (If there are not, a garbage collect will not do any good.)

Full Heap
The heap is considered full when either

1. An attempt is made to allocate an object and two garbage collects have been invoked and
there is still insufficient space to allocate the object.

2. Three consecutive garbage collects have resulted in very little free heap. This indicates
that almost all of the CPU time is being spent garbage collecting and very little processing
is getting done.

Concepts 25

When the heap becomes full, a continuable error is signalled, putting you into a break loop or
debug listener. For the duration of the break loop, you have available 40 000 bytes of heap.
This allows a very limited amount of intervention to recover from the problem. Within the
break loop you have two choices for recovery:

1. Quit out of the break loop with !a (Le., call sys: listener-abort) or !q (Le., call ~
sys: listener-abort). This will abort the function that was attempting to allocate more
heap.

2. Release enough heap so that the interrupted function may proceed to allocate the re
quired space. This could be done by setting a global variable that contains some large
data structure to nil. You may then continue the interrupted function with !c (Le., call
sys: listener-continue).

If a reclaim occurs during the break loop, no messages to that effect will be printed. If the heap
becomes full during the break loop (according to the above definition of full), the Lisp process
will be terminated.

What the Garbage Collector Does
HP's garbage collector is a compacting garbage collector. To make the space taken by unused
objects suitable for reallocation, the garbage collector needs to make the unused space contigu
ous, otherwise the space will be fragmented in chunks whose sizes mayor may not be useful
for reallocation. This means that after reclaiming, all the useful data is in a contiguous section
of the heap that starts at the lowest heap address. All of the newly freed space is above this
contiguous section. The collector will usually have to move some data to achieve this.

Consider a model of the heap before and after reclaiming.

low I Previously Allocated Space

Before

IStable I Active Recovered

After
Free Space

Figure 2-2. The LISP Heap

26 Concepts

DHi9h

L Free Space

D

The three labeled areas are:

stable

active

recovered

The number of useful data items that were not moved during reclaiming.

The number of useful data items that were moved during reclaiming.

The number of data items that were freed during reclaiming.

Frequency and Duration
There are many factors which affect how often garbage collection occurs and how long it takes.
The most important ones are

• Heap size

• Applications (such as the NMODE environment) being run

• System configuration (swap space, real memory, CPU, disk storage)

Let's look at each of these areas in more detail.

Heap Size
This is an obvious factor in garbage collection. A larger heap will give you fewer reclaims since
there is more space to be allocated. On the other hand, with a larger heap, reclaims will take
longer since there is more heap for the garbage collector to deal with. Also, there will more
likely be a lower percentage of the heap in real memory, so paging time will increase.

The "correct" heap size is a matter of personal preference, the application being run, and the
HP-UX configuration. For any application, there is a some minimum size of heap that is required;
beyond that there is some minimum sized heap that is required for reasonable response. Note
that a large (bigger than six or seven megabytes) heap requires that your HP-UX swap space be
configured to allow enough room for the larger Lisp process to run.

A big heap will make garbage collection longer, but less frequent. A smaller heap will have
shorter, more frequent reclaims.

Concepts 27

Applications
The programs you run under Lisp affect how often and for how long garbage must be collected.
If an application allocates heap often or in large amounts, the heap will be used up faster and
thus reclaims will occur more frequently. If an application allocates a large amount of space that ""'0.

remains in use between reclaims, then garbage collection will take longer because more things }
must be moved.

The NMODE programming environment is an example of an application that is almost constantly
allocating heap space. Every character you type into a buffer must have space allocated to it. If
you keep more than a few buffers in memory, then the garbage collector will have to move a fair
amount of data. That is why reclaims are more frequent and longer when NMODE is running
than when you are just running a simple bare Common Lisp read-evaI-print loop. This is not
meant to discourage you from using NMODE or its facilities, but to give you an appreciation for
why garbage needs to be collected more often when it is running. One minor thing that you can
do in NMODE to free up space that would otherwise be wasted is to periodically clear out the
OUTPUT buffer.

System Configuration
The hardware that makes up your system affects the duration of reclaims. The factors that you
should be aware of are

CPU

Real Memory

Swap Device

28 Concepts

A MC68020 processor has a faster clock speed, larger cache, and wider
data paths than an MC68010. This means that a 320 system will collect
garbage faster than a 310.

The ratio of real (physical) memory to Lisp process size affects the length
of garbage collects. The closer this ratio is to one, the less paging (a
relatively slow procedure) will occur during reclaims.

The speed of the disk used for paging affects reclaiming time. In general,
a faster swap device leads to faster reclaims. For example, a typical Lisp
system running on a configuration using a 7914 for swapping will reclaim
slightly faster than a system that swaps on a 7945 or 7946. The speed
improvement depends on how much swapping must be done.

Preprocessing
A key component of Hewlett-Packard's Common Lisp implementation is the preprocessor. Pre
processing is the first stage of translation for both interpreted and compiled code. In some
sense, the preprocessor is itself a compiler, but it translates Lisp into an intermediate represen
tation language instead of assembly or machine code. This intermediate language is then either
executed interpretively or compiled.

So What?
At first glance, the existence of the preprocessor may seem insignificant. However, it has at
least two important ramifications:

• The times at which certain things occur, such as the expansion of macros, affect the
apparent semantics of your code. This is usually noticeable only if you nest top-level forms
(see Steele, p. 66) within other constructs.

• Since the preprocessor does much of the work that would normally be done by a compiler,
interpreted and compiled code are more closely linked. This means that some idiosyncra
cies related to preprocess time are present in both interpreted and compiled code. With a
more conventional Lisp implementation, these idiosyncracies would not show up until you
compiled the code. One exception to this is progn, which behaves differently when com
piled than when interpreted. This is to assure adherence to the Common Lisp standard
which says "... if a progn form appears at top level, then all forms within that progn are
considered by the compiler to be top-level forms."

A pathological example is necessary to characterize the kind of unexpected behavior that may
occur if you nest forms that are usually used at top level, without considering exactly when
certain things happen.

Concepts 29

Example
Consider the following code:

(defun weird 0
(defmacro foo ()

'(print "macrol"»
(foo)
(defun foo 0

(print "function"»
(foo)
(defmacro foo 0

'(print "macr02"»
(foo)
nil)

(weird)
(foo)

You might expect the call to weird to print

"macrol"
"function"
"macr02"
NIL

and the call to foo outside weird to print "macr02". But they don't. What really happens is
that weird prints

"macrol"
"macrol"
"macr02"
NIL

and the call to foo prints "function". Why?

Macro definitions are established at preprocess time. Similarly, macro calls are expanded at
preprocess time. The behavior of the first call to foo (within weird) makes sense: it calls the
macro defined in the preceding form.

The behavior of the second call to foo does not make sense. You would expect it to call the
function defined immediately before the call, but it doesn't. It doesn't because macro calls are
expanded at preprocess time. When the preprocessor sees the second call to foo, it checks
to see if there is a macro definition for it. There is, so it expands the call using the definition
established by the first defmacro within weird.

30 Concepts

The final call to foo within weird makes sense; it uses the macro definition established by the
preceding defmacro. But why does the call to foo outside weird call the function instead of the
macro we defined after the definition of the function? Because macro definitions are established
at preprocess time while function definitions are established at eval time. So the ordering of the
function and macro definitions for foo is insignificant: the foo macros get defined when weird
is defined; the function foo gets defined when weird is called.

In general, you should not encounter many problems like this. But if you do have unexpected
behavior in a program, examine your code for this kind of bug.

Compiling
Once you've written a set of Lisp functions and macros that provide a particular functionality, you
probably want to "package" that code into a loadable file. This is done with the compile-file
function. In his chapter on packages (chapter 11), Steele describes the format of the source for
a typical module. Beyond that, there are a few small things that are helpful to know when you
are compiling your code.

Macros
When you're compiling code that contains macro calls, the macros must be defined before they
are referenced. This is because macro calls are expanded when code is preprocessed. If a macro
is not defined before it is referenced, the call will be processed as if it was a function call. This
is true even if the call is inside a defun.

For this reason, you should put macro definitions before function definitions in your source file.

Eval-When
The eval-when special form controls when a series of forms gets evaluated. To understand why
such a facility is needed, consider the action of the compiler when it reads the following top-level
form from a source file.

(setq foo 12)

The difference between evaluating this form and compiling it is that the compiler does not set
foo to 12; it generates code to set foo when the object file is loaded. What do you do if you
want foo to be set in the compiler's environment, rather than at load time?

(eval-when (compile)
(setq foo 12»

There are three situations that can be specified in an eval-when: compile, load, and eval.

Concepts 31

Example
Assume you have a program that has the following delay loop in it.

(dotimes (i *delay-amount*)
)

When you're running an interpreted version of the code, 500 is a good value for *delay-amount*, ~
but when the code is compiled, you discover that the loop now runs much too fast. A solution
is to set *delay-amount* inside an eval-when.

(eval-when (load)
(defvar *delay-amount* 2000»

(eval-when (eval)
(defvar *delay-amount* 500»

Macros
If a source file defines some macros that are called only by functions defined in that same file,
you can make your compiled file size smaller by having the macros defined only when the file is
compiled or evaluated. This is done by putting the defmacros in the body of an eval-when.

;;; These macros are internal to this file
(eval-when (compile eval)

;; The foo macro
(defmacro foo (x)

Implicit Eval-Whens
Calls to some Common Lisp functions, special forms, and macros are treated as if they are
always within the body of an eval-when that specifies the load, compile, and eval situations.
This behavior is consistent with the semantics of these forms. The affected forms are:

define-modify-macro
define-setf-method
defmacro
defsetf
defstruct
export
import
in-package
make-package
proclaim
rename-package
require
shadow
shadowing-import
unexport
unintern
unuse-package
use-package

32 Concepts

Programming Tips
Introduction

3

1.

~
2.

3.

For a given problem, there are many different programs that provide a solution to the problem.
Obviously, some of these programs will be better than the others in terms of execution speed,
and/or code size. How can you make sure that the Lisp programs you write perform well in
these areas?

This chapter contains tips that will help you produce efficient Lisp code. The first part describes
the kinds of optimizations that may be made and how to enable them. The second part discusses
how to use these optimizations safely and effectively.

Before you can rush in and start writing these superfast Lisp programs, you need to know a little
about the architecture of Hewlett-Packard's implementation of Common Lisp. The language
system is made up of three basic components:

A preprocessor that converts Lisp code into an intermediate form. Most of the optimiza
tions are done by the preprocessor. Use of the preprocessor also helps to insure semantic
consistency between interpreted and compiled code.

An interpreter that interprets the output from the preprocessor.

A compiler that compiles preprocessor output into machine executable form.

Even though the preprocessor is used both when compiling and interpreting Lisp, its behavior
is not exactly the same in both situations. When the preprocessor is called by the compiler, it
bases its optimizations on the proclaimed or declared value of the speed quality. When called by
the evaluator, the preprocessor bases its optimizations on the extn: eval-speed quality. Even if
extn: eval-speed and speed have the same value, compiled code may be optimized more than
interpreted code. For instance, the interpreter will check that the argument of a the actually is
the specified type, while code emitted by the compiler will not.

As stated above, the preprocessor performs the transformations to optimize your Lisp code, so
it is the component that we are most concerned with in this chapter. You can find out what
modifications the preprocessor has made to your code with the function extn: pp-expand.

Programming Tips 33

(extn:pp-expand form &optional in-eual enuiron) Function

A call to pp-expand returns a form equivalent to the preprocessed version of form. If the optional
argument in-eval is given and is non-nil, then the return value represents what the preprocessor
would do to form when called from eval (Le. the form is interpreted). Otherwise the value
returned by pp-expand reflects the effects of the preprocessor when it is preprocessing forms
for the compiler. Interpreted code may be less optimized. The optional argument enuiron is the
environment you wish to have form expanded in (defaults to a null lexical environment). This is
analogous to the optional environment argument to macroexpand.

Speed Optimizations
Using the special form declare and the function proclaim will allow the preprocessor to optimize
your code. (See the "Types" chapter for information on how to use declare and proclaim.) The
preprocessor uses type information known at preprocess time as well as "general" declarations
to optimize its output. Since they change what code is actually being executed, optimizations
may affect error detection and handling. It may be more difficult to debug an optimized program
for this reason.

Currently the preprocessor recognizes the speed and safety qualities in an optimize declaration
or proclamation. The other qualities defined in Common Lisp (space and compilation-speed)
are allowed but have no effect on the code that the preprocessor passes on to the interpreter or
compiler.

HP has added a few other symbols for use in declarations and/or proclamations: extn: system
lisp, extn: eval-speed, and extn: upward-closures. The "Extensions" subsection later in this
section describes exactly how to use these facilities.

The types of optimizations that the preprocessor performs are

• Constant folding: expressions whose values can be determined at preprocess time are
replaced with that value if the functions in the expression have no side-effects.

• Conversion of &keyword and &rest parameters to positional parameters.

• Safe functional transformations: function calls are replaced with more efficient calls that
always preserve the semantics of the program.

34 Programming Tips

1

• Inline coding of function calls: the code that implements a function replaces the call, thus
avoiding the overhead of a function call.

• Unsafe functional transforms: function calls are replaced with more efficient calls that may
assume arguments of a particular type.

What each of these optimizations entails is described shortly. Which of them are performed
depends on the values of speed or extn: eval-speed, and extn: system-lisp. The speed
optimization level defaults to 1, extn:eval-speed to 0, and extn:system-lisp defaults to nil.

The following table summarizes the effects of various values of speed (for compiled code) and
axtn: eval-speed (for interpreted code) on preprocessor output:

o No optimizations
No constant folding.
No functional transformations; all function calls are passed intact through the preprocessor.

Some optimizations
No constant folding.
Safe functional transformations.
Conversion of &Test and &keyword parameters to positional parameters.
Open coding based on declarations.

2 Level 1 optimizations.
Constant folding.

3 Level 2 optimizations.
Optimization of structure operations: slot access functions and setf methods are made
inline with no type checking.
Additional functional transformations that either do less error checking than at speed I,
or significantly increase code size.
No checking for correct number of arguments in function calls.

Constant Folding
If a function has no side effects and all its arguments are preprocess-time constants, the result
of the application of the function to its arguments will be inserted into the code instead of the
function call.

Programming Tips 35

Safe Functional Transformations
Certain function calls may be transformed into different function calls or more efficient code
sequences when doing so will not alter the semantics of Common Lisp. Transformations of this
type fall into two broad categories:

1. Those which can be done unconditionally. Examples:

(typep x 'integer) ~ (integerp x) ~ inline tag check on x
(+ x Y z) ~ (lisp::binary-+ (lisp::binary-+ x y) z)
(eq x y) ~ inline check for machine word equivalence

2. Those which can be done based on type declarations. Examples:

(car (the cons x» ~ inline sequence without nil check
(car (the list x» ~ inline sequence with nil check

(let (a b)
(declare (fixnum a b»
(+ a b» ~ fixnum + which assumes fixnum arguments, but

may return a bignum

(let (a b)
(declare (simple-string a b»
(when (string:::: a b) (print "ok"») ~ Call to fast string= routine

(proclaim '(fixnum x»
(+ x 3) ~ inline + which assumes fixnum arguments

(dotimes (x 20)
(declare (fixnum x»
...) => will cause fixnum + routine to be called to increment x

NOTE

If you declare something to be a certain type, make sure that is always
that type! If you contradict declarations there is no guarantee of safety
or system integrity.

A type of functional transformation that does not depend on declarations is the transformation
of calls to certain functions with keyword parameters, to calls to functions with positional pa
rameters. This bypasses the relatively expensive operation of parsing the keywords at execution
time. Of course, this is only possible when the values of the keyword parameters are constants.

36 Programming Tips

Consider the function member. It takes three keyword parameters: :test (defaults to teql),
:key (defaults to ' identity), and :test-not (defaults to nil). Most of the calls to member will
be of the form:

(member i 1)

The preprocessor converts this to a call to an internal function that takes three positional pa
rameters: the item being checked for membership, the sequence being checkedt and a flag that
indicates the status of the :test-not keyword. So the above call to member would get translated
to

(member_eql i 1 nil)

As would this call:

(member i 1 :test teql)

Unsafe Functional Transformations
When the quality extn:system-lisp is set to t, then the preprocessor will make "unsafe"
functional transformations. These are functional transformations that make certain assumptions
(regardless of declarations) that may in some cases, turn out to be false. For instance, if you
have turned on extn: system-lisp with

(proclaim t(extn:system-lisp t»

then the preprocessor will not generate tests for nil arguments to car, cdr, and other list
manipulating functions. If you then call one of these functions with a nil argument, the results
are unpredictable and possibly hazardous to the state of your Lisp system. The optimizations
that will be made when extn: system-lisp is on are listed in the "Extensions" section. You
should enable this level of optimization only after making sure that the optimizations will not
"break" your code.

Inline Coding
Inline coding is a particular type of functional transformation where the preprocessor inserts the
actual code of a called function instead of the code to perform a call to that function. This
avoids the execution time overhead of a function call. You can control inline coding of function
calls with the inline declaration specifier (see the "Types" chapter for details).

Safety
If safety is proclaimed to be greater than 0 (1 is the default), the compiler generates code that
checks the number of arguments passed to user-defined functions. If safety is 0, these checks
are not produced. These checks are also not produced when speed is 3, regardless of the value
of safety.

Programming Tips 37

Extensions
For greater control of optimizations, Hewlett-Packard has added several qualities that are valid
for declarations and/or proclamations.

Compiling ys. Interpreting ~
There are separate speed qualities for interpreting and compiling. The regular quality speed is
used when compiling functions with compile-file. The quality extn:eval-speed is used when
the preprocessor is called from eval (Le. the interpreter). This quality can only be proclaimed,
not declared. The default for extn:eval-speed is 0 (no optimizations are performed). To change
it so the preprocessor will optimize interpreted code, execute a form like

(proclaim '(optimize (extn:eval-speed 1»)

Note that when you compile a function with compile (instead of compile-file), you are compil
ing an already preprocessed version of the function, so the optimization of that compiled function
is controlled by whatever extn: eval-speed was when the defun was evaluated. If you specify
the optional definition argument to compile or use compile-file and load to define a compiled
function, the optimizations are controlled by the declared speed quality.

Closure Optimizations
Closures (function objects) can be upwardly or downwardly mobile. An upwardly mobile closure
is one that is used after the form that established the lexical environment in which the closure
was created (such as a let or defun) terminates. A downwardly mobile closure is a closure that
is used only while the lexical environment in which it was created still exists.

Here is an example of an upwardly mobile closure.

(defun make-fun (f perm-arg)
#'(lambda (x) (funcall f perm-arg x»)

(setq a-function (make-fun 'nth 0»
(funcall a-function '(a b c» => A

Here is an example of a downwardly mobile closure.

(defun weird-nth-applier (arg1 arg2)
(let «fun1 #'(lambda (x) (nth x arg1»»

(funcall fun1 arg2»)

(weird-nth-applier '(a b c d) 2) => C

38 Programming Tips

HP has added the capability of optimizing downwardly mobile closures. This facility is accessed
with the extn:upward-closures declaration specifier which may have a value of nil or T.

If extn:upward-closures is T (the default), then you may use both upward and downward
closures. If extn:upward-closures is nil then the preprocessor assumes that closures are only
downwardly mobile, and takes steps to optimize them. The upward-declarations specifier can
be declared or proclaimed. To optimize weird-nth-applier, you could rewrite it as

(defun weird-nth-applier (arg1 arg2)
(declare (extn:upward-closures nil»
(let ((fun1 #'(lambda (x) (nth x arg1»»

(funcall fun1 arg2»)

Unsafe Functional Transformations
The quality extn:system-lisp has been added to control "unsafe" functional transformations
(described above). Valid values for extn: system-lisp are T or nil. To enable unsafe optimiza
tions use

(proclaim '(extn:system-lisp t»
or

(declare (extn:system-lisp t»

This feature is primarily intended for system implementors. Its effects are:

• Speed 3 optimizations are enabled.

• car, cdr, first, and rest are inline with no check for nil.

• Certain math functions are coded inline and assume fixnum arguments and results unless
declarations are made to the contrary. These functions are: + - * / 1+ 1- < = > <= >=
/= max min abs mod rem oddp evenp zerop plusp minusp logand logior logxor
logeqv lognand lognor logandc1 logandc2 logorc1 logorc2 logtest.

Optimizing Wisely
The previous section described how HP's Lisp system makes optimizations to your Lisp pro
grams. This section covers how to responsibly use the power of these optimizations without
"shooting yourself in the foot".

Caveats
The benefits of optimization are not without dangers. As discussed above, when optimizing to a
certain level, the preprocessor makes assumptions about your code, and it is your job to make
sure that these assumptions are correct.

Programming Tips 39

One of the biggest bottlenecks in the Lisp system is the overhead of checking parameters to
system functions. At run time the system must check the type of each parameter, so that it can
let you know if you've passed it something illegal. This takes a lot of time. As you increase
the level of optimization and add type declarations, these checks are relaxed, so your code runs
faster. However, if you pass a system function a parameter that is the wrong type, the results
are unpredictable and sometimes damaging to the stability of the Lisp system. One way to get
around this double-edged sword is to do your own parameter checking at strategic points in your
program. This technique will be demonstrated shortly.

Another point about system function parameter checking that you need to be aware of is that calls
to most system functions are checked for the correct number of parameters by the preprocessor
(not when the functions are actually called). This implies that even if you are not optimizing and
you invoke a function with funcall or apply, the system will not check for the correct number
of parameters.

Optimizations also make debugging more difficult. Since the preprocessor may change your
code before it is interpreted if extn:eval-speed is not 0, when you're tracing the code you may
not even recognize it. Error messages will be less meaningful because errors will be caught at a
lower level (if they're caught at all).

Strategy
These warnings are not here to discourage you from optimizing your code, but to give you an
idea of what can go wrong, so you can avoid problems. We suggest that you take the follOWing
approach:

• Develop and debug your program without optimizations.

• Determine where it is safe to turn on optimizations.

• Turn on the optimizations in the appropriate places and retest your program.

Benefits
Depending on the nature of your code, making useful declarations and turning on optimizations
will make your programs run many times faster than an unoptimized version. Thus it is well
worth the effort to optimize carefully.

40 Programming Tips

Using Heap Wisely
Besides speed, another performance measure of a Lisp program is how much heap it allocates
while running. (Allocating heap is often called consing.) When writing Lisp code, you should be
aware of how much your program conses, and take steps to minimize it. When optimizing the
amount of consing a program does, you usually trade safety and generality for more efficient
use of heap and faster performance (since it takes time to allocate space).

Destructive Functions
Consider the Common Lisp functions that come in destructive and nondestructive versions:
nreverse and reverse, nsubstitute and substitute, and so on. (The "n" is a mnemonic for
"iN-place") The destructive functions do not guarantee that the argument they are passed will
be unmodified. Instead of consing up all new space for the result, they use the space occupied
by the argument. This yields significant performance benefits. but can surprise the unwary.

In this example, the function reverse-pair, is supposed to return a list whose elements are its
argument (a sequence), and the reverse of the argument.

(defun reverse-pair (s)
(let «rs (nreverse B»~)

(list s rs)
)

(reverse-pair flabcde") => (fledcba fl fledcba fl)
(reverse-pair '(1 2 3» => «1) (3 2 1»

What happened? As soon as s is passed to nreverse, you can no longer depend on s to retain
its original value. The second call to reverse-pair demonstrates that you also cannot depend
on s being (nreverse s) after nreverse returns.

Bugs caused by improper uses of destructive functions (whether user or system defined) are
usually more subtle and insiduous than the one in reverse-pair. When you use or write a
utility function, think carefully about whether it is, or should be destructive.

Programming Tips 41

Shared List Structure
Joe Cobol laughed heartily when he saw the bug in the above definition of reverse-pair. "I
can fix that easy," he said. Here is Joe's "fixed" definition of reverse-pair.

(defun reverse-pair (s)
(let «save-s s)

(rs (nreverse s»)
(list save-s rs)
)

(reverse-pair Ilabcde ll
) => ("edcba" Iledcba ll

)

(reverse-pair '(1 2 3» => «1) (3 2 1»

Joe's program demonstrates another common source of bugs in Lisp programs: unexpectedly
shared data. When save-s is set to s, it is referencing the same piece of data as s. When the
list referenced by s is changed, the change is also reflected in the value of save-so This kind
of sharing bug can occur with any Lisp data type except numbers, characters, and functions,
which are considered to be immutable.

Here are some more examples of bugs caused by shared data.

(setq array-of-strings
(make-array 3 :initial-element (make-string 3 :initial-element #\Space»)

(setf (schar (aref array-of-strings 0) 2) #\X)
;; All the elements reference the same string
array-of-strings => #(n xn II xn n XII)

(defun make-rule (p c)
(let «template '«premise) (conclusion»»

;; Insert p after premise
(rplacd (car template) (cons p nil»
;; Insert c after conclusion
(rplacd (cadr template) (cons c nil»
template
)

(setf rule1 (make-rule '(rain) '(turn-on wipers»)
rule1 => «PREMISE (RAIN» (CONCLUSION (TURN-ON WIPERS»)
(setf rule2 (make-rule '(sunshine) '(put-on shades»)
rule2 => {(PREMISE (SUNSHINE» {CONCLUSION (PUT-ON SHADES»)
rule1 => {(PREMISE (SUNSHINE» {CONCLUSION (PUT-ON SHADES»)

42 Programming Tips

The bugs in both of these examples result from data not being allocated the way the programmer
expected. In the first one, they expected the make-string to be evaluated once for each element
of the array; in fact it is evaluated only once, and the result assigned to each element of the
array.

The make-rule example fails because of a misunderstanding of how constants are allocated.
The space for constants is allocated when the constant expression is read (in this case, when
the function make-rule is defined). Consequently, each call to make-rule does not begin with
a fresh template. To fix this bug, replace the constant' «premise) (conclusion» with (list
(list 'premise) (list •conclusion» or better yet, redefine make-rule as

(defun make-rule (p c)
'«premise ,p) (conclusion ,e»
)

The method used to allocate constants can be used to reduce consing in certain situations. For
instance, if a programmer knew that a rule constructed by make-rule was only needed until
the next call to make-rule, then the first definition would be adequate. In fact, it would be
preferable, since the space for the rule template would only be allocated once.

Programming Tips 43

Creating Public Functions
If you are writing functions that will be used by other programmers, you need to include error
checking. Here are some general guidelines for doing so.

1. Check parameters with check-type, assert, cease, ctypecase, ecase, or etypecase in
all user visible functions. Make all tests before the parameters are used in a computation
that might result in an error. These constructs produce continuable errors so that the
debugger can prOVide friendly feedback to the user. There should be very few explicit
calls to cerror or error if these macros are used correctly. Always try to catch the error
as soon as possible and make it a continuable error rather than postpone the check and
give the user a noncontinuable error. Check parameters before they are passed to lower
level routines where it will not be as obvious what went wrong. Rest parameters are simply
a list so you will need to check the elements of the list indiVidually as you process them.

2. Declare all local variables (in lets, dos, etc). Do not declare parameters in user visible
functions. Parameters in support functions should be declared. Not every local variable
or parameter can be declared in a way that will allow the preprocessor to optimize. For
example, a variable which may contain a string or nil can be declared with or, but the
preprocessor will not be able to do any optimizing based on this declaration. Use the to
type-cast the result of an expression when possible. For example, use

(the symbol (car foo»

when foo is known to be a list containing only symbols.

The interpreter can take advantage of this information by checking whether the expression
is of the reqUired type. The compiler can use this information to produce better code.

You can write functions that are optimized by the preprocessor without giving up error checking
by doing the error check(s) yourself. For instance, suppose you wanted to write a function to
call a function doittoit with successive elements of a simple vector. One way to do it would
be

(defun mapv (a)
(declare (optimize (speed 1»)
(dotimes (i (length a»

(doittoit (svref a i»
)

44 Programming Tips

Make it safe

With this definition, if someone calls mapv with something other than a vector, a system function
(either length or svref) will find the error. This is not exactly user friendly, but at least nothing
disastrous occurred because of the bad parameter. Notice however, that the preprocessor will
not be doing much to optimize this code since the speed level is set to 1. Every call to svref
will have the overhead of checking the type of a. We can improve upon the definition of mapv
in two ways by doing our own error checking.

(defun mapv (a)
(declare (optimize (speed 3») ; Make it fast
(check-type a simple-vector "a simple-vector") ; But safe
(dotimes (i (length a»

(doitoit (svref (the simple-vector a) i»
)

Here we turn the preprocessor loose to do its best, but check for a bad parameter ourselves.
We also only do it once, instead of each time through the loop. If a user does call mapv with
something other than a simple vector, they will get a friendly message that will allow them to
continue the error with a new value.

Some things to note about this example:

• The function doitoit should either work with arguments of any type, or include its own
error checking, preferably the former.

• It is more common to set the optimization level with a proclaim that covers all the
functions defined in a particular file to avoid repeating the declare in every function.
There is nothing wrong with overriding that in a particular function.

Programming Tips 45

46 Programming Tips

Notes

Types and Declarations 4
~ Introduction

One powerful feature of Lisp is its typeless variables. Any variable (unless intentionally restricted)
can have any Lisp data object as its value. Lisp data, however, does have type. So while you
need not worry about assigning to an incorrectly typed variable, you do have to make sure that
functions are called with the correct kinds of arguments. For instance, calling car with any
argument that is not nil or a cons is an error.

Although Common Lisp variables are typeless by default, it is possible to declare a variable to
be a certain type. Declarations are entirely optional, and their addition or removal will not affect
the correctness of a program (except for a special declaration, which controls the scope and
extent of a variable). Declarations in Common Lisp:

• Increase efficiency of compiled code

• Enable the interpreter to perform additional type-checking

• Enhance program documentation

Common Lisp types are different from the types found in conventional languages. Data types are
possibly infinite sets of Lisp data objects, and one should think in terms of an object belonging
to a type rather than being a type. The possible data types form a hierarchy, where a data
object that belongs to one type (integer for instance) also belongs to any types that superset
that type (like number).

NOTE

This chapter presents some fundamental information on Common Lisp
data types and their use in the Lisp workstation. Types are discussed
in greater detail in Chapters 2, 4, and 9 of Steele's Common Lisp.

Types and Declarations 47

Number

Character

Available Types
The following list shows some of the basic data types available in Common Lisp. Since these
basic types can be combined or restricted to form new types, this is not a complete list of every
possible type. (Such a list would be difficult to come by, since users can define their own types.)

Symbol Symbols are abstract data objects that are notated by their name, which
consists of a series of characters. Each symbol has a home package, a
value cell, a function cell, and a property list which serves as a structure for
storing additional information about that symbol. Functions and variables
in Lisp are named by symbols, so Lisp must prOVide a means of accessing
a symbol with its name.

List A list is an ordered sequence of data objects that is represented by linked
cells called conses. Each cons cell holds a pointer to the next object in
the list (the car), and a pointer to the remainder of the list (the cdr). The
special symbol nil stands for the empty list. Items in a list may themselves
be lists.

There are several types for representing numbers including an integer type
and a double precision floating point representation.

This data type provides a way of storing the graphic symbols commonly
used in writing. This includes letters, punctuation, and a few non-printing
characters that have special meaning (such as #\Newline). Collections of
one or more characters can be stored in arrays.

Array

Vector

String

Structure

Function

Instances

The concept of an array in Common Lisp is the same as in other pro
gramming languages. An array is a dimensioned collection of data whose
elements can be referenced by a series of integers (one integer per dimen
sion of the array). General Lisp arrays can store any Lisp data object, but
arrays can also be restricted to hold only elements of a given type.

A vector is a one-dimensional array.

A string is a vector whose elements are of type string-char.

A structure is like a Pascal record or a C structure. A user may define
a data type whose members are data objects with named components.
These data objects are structures.

Functions take arguments and return results, while possibly causing some
side-effects. Since variables can be bound to functions, functions are con
sidered a class of data.

This is a type that Hewlett-Packard has added to its implementation of
Common Lisp to facilitate object-oriented programming. See the chapter
"Object-Oriented Programming" for details.

48 Types and Declarations

Type Specifiers
To specify the set of data objects that constitute a type you wish to use, Common Lisp provides
type specifiers that may be used in places appropriate for a type definition (like the declarations
described later in this chapter).

Type specifiers can be symbols or lists. Common Lisp defines some standard type symbols.
These are listed on p. 43 of Steele's Common Lisp. In addition to these, the symbol instance
is a valid type specifier symbol in Hewlett-Packard's Common Lisp.

The first element of a type specifier list is a symbol, and the remainder of the list (if present)
is further information about the type being specified. Common Lisp predefines several symbols
that may be used at the beginning of a type specifier list, as well as allowing you to create your
own with the deftype macro. The remainder of a type specifier list consists of parameters that
determine exactly what data objects are members of the type described by that type specifier
list. For example,

(integer 0 7) ; the integers from 0 to 7

If you don't want to designate a particular parameter in a specifier list, then put a * in the
position for that parameter. Here's a list that specifies the type consisting of all vectors of length
4:

(vector * 4)

In this case, the * takes the place of the parameter that, if given, indicates the type of the vector
elements. Since it is not specified in this example, the type includes any vectors of length 4.
Any *'s that appear at the end of the list can be discarded. For instance, the type specifier list

(vector integer *)

denotes the set of integer vectors of any length, and is abbreviated with

(vector integer)

Types and Declarations 49

Subset Type Specifiers
There is a certain amount of overhead required for storing Lisp data objects. Allowing a variable
to store any possible data object (the default condition) means that the overhead for that variable
will be the maximum possible. For this reason, Common Lisp provides type specifier lists that ~
specify specializations of other data types. Note that using these specifiers in a declaration only "-.)
allows a Common Lisp implementation to use a more efficient representation, it does not require
it.

The following text describes in detail a few of the symbols that Common Lisp defines for use
in this context. The remaining symbols are listed; for details on the precise semantics of these,
see Chapter 4 of Steele.

Array
(array element-type dimensions)

A type specifier list whose first element is array describes a subset of the possible array objects.
Element-type is a type specifier that indicates what type of elements an array in the type being
described is to hold. Dimensions is either a non-negative integer that indicates the number of
dimensions of the array, or a list of non-negative integers that represent the length of each of
the array's dimensions. The length of any of the dimensions can be left unspecified by putting
a * in place of the appropriate integer. Unlike the *'s that appear within the highest level of a ~
type specifier list, these can never be omitted.)

Examples:

(array integer 4)
(array list (2 * *»
(array list *)
(array list)
(array * (2 2 2»

Four-dimensional integer arrays
Three-dimensional arrays of lists

whose first dimension has length 2
Arrays of lists
Arrays of lists
All 2 by 2 by 2 arrays

Integer Subranges
You can specify a type that is a subrange of the integers with a type specifier list that starts
with integer. This takes the form of

(integer lower-bound upper-bound)

Lower-bound and upper-bound must each be either an integer, a list of a single integer, or *. If
a bound is an integer, the type includes that integer; if it is a list of an integer, that integer is
not included in the type. If * is given as a bound, then that bound does not exist, and the range .~
ends at plus or minus infinity.

50 Types and Declarations

Examples:

(integer * (0»
(integer (0) *)
(integer 0 *)
(integer -1 3)
(integer -1 (3»
(integer (-1) (3»

All negative integers
All positive integers
Non-negative integers
The set {-1, 0, 1, 2, 3}
The set {-1, 0, 1, 2}
The set {O, 1, 2}

Other Subset Type Symbols
The following is a list of the additional symbols that are available for specifying types that are
basically subsets of other types. Most of them are self-explanatory, but if necessary, see Steele
for details on their exact meaning.

(vector element-type length)

(simple-vector s~e)

(function (argl-type arg2-type . ..) value-type)

(values valuel-type value2-type . ..)

(mod n)

(signed-byte s)

(unsigned-byte s)

(float lower-bound upper-bound)

(short-float lower-bound upper-bound)

(single-float lower-bound upper-bound)

(double-float lower-bound upper-bound)

(long-float lower-bound upper-bound)

(string length)

(simple-string length)

Type lists that have a single length or size parameter include only objects that have exactly that
length or size.

Types and Declarations 51

Use of the type specifying symbol function is restricted. It may only be used in declarations; it
cannot be used for type-checking.

The symbol value. is also restricted. It can only be used as the value type specifier in a function "'.
type specifier, or in a the special form. }

Predicate Type Lists
You can specify a type to include any data object that satisfies a given one-argument predicate.
This is done with a type specifier list that begins with the symbol satisfies and whose one
other element is the name of the predicate to be satisfied. For instance, if we define our-even-p
as

(defun our-even-p (x)
(and (integerp x) (~venp x»)

then

(satisfies our-evenp)

denotes the type that is the set of all even integers. Note that we could've run into trouble if
we had just used evenp in the satisfies form since it is an error to call evenp with any object
other than an integer. The and in our-even-p prevents evenp from being called unless x is an
integer. You should make sure that any predicate function you use in a satisfies type specifier ~.,

list has no side effects. J

Examples:

(satisfies symbolp)
(satisfies functionp)

All symbols
All functions

There are a few other type specifiers that allow combinations of types similar to those possible
with satisfies.

A list (member objectl object2 ...) denotes the type consisting of the specified objects. For
instance,

(declare (type (member 'orange 'lemon 'grapefruit) fruitl fruit2»

says that fruitl and fruit2 will only take on one of the three values orange, lemon, or
grapefruit.

52 Types and Declarations

(not type) specifies the set of all objects not in type.

(and typel type2 . ..) specifies the intersection of the types listed.

(or typel type2 . ..) specifies the union of the types listed.

The and and or type specifying symbols work similarly to their equivalent logical operators.
When an and type specifier is processed, the object being tested is tested against each of the
given types from left to right. As soon as the object fails one of the tests, processing stops and
nil is returned. This allows you to create a "sieve" of types so that if one of the types is a
satisfies specifier whose predicate only takes arguments of a certain type (like evenp), the and
can be constructed to eliminate improper arguments before the predicate is called.

For example, if you wanted to specify a type consisting of all even integers, you could use

(and integer (satisfies evenp»

This specification prevents caning evenp with a non-integer argument, since if the object being
tested is not an integer, the test will fail before getting to the satisfies specifier.

An or type specifier list works analogously: the object being tested is checked against the given
types from left to right until it is found to belong to one, or runs out of types to check it against.

Defining Type Symbols
The macros defstruct, deftype, and define-type let you define new type symbols to use in
type specifiers. The name of a structure type defined by defstruct will be a valid type specifier
symbol (unless it was defined with the :type option). The macro deftype, is a macro-like facility
that allows you to create your own type specifying symbols that mayor may not take arguments.
The macro define-type is for defining instance types for object-oriented programming.

A call to deftype has the following form:

(deftype type-name lambda-list {declaration Idoc-string}- {form}-) Macro

Type-name is the type specifier symbol you are defining; lambda-list is a lambda list that describes
the arguments that may be given with type-name in a type specifier list; any forms given are the
body of the type definition. deftype returns type-name.

When a symbol defined by deftype occurs in a type specifier list, any argument forms are
bound to the corresponding parameters in the lambda list of the definition. The arguments are
not evaluated. The forms that make up the body are then evaluated as an implicit progn, and
the value of the last form evaluated becomes the type specifier that the original specifier list
represents.

Types and Declarations 53

Example:

; Define a type that consists of all integer multiples of 16
(defun hexdivp (n)

(= 0 (rem n 16»)

(deftype multiple16 ()
C(and integer (satisfies hexdivp»)

After this definition form is evaluated, if you use the type specifier (multiple16) it stands for
the type (and integer (satisfies hexdivp» .

The lambda list in a deftype form is completely general, so you can use toptional and trest
markers. However, if no initform is given for an &optional parameter, the default value is *,
instead of nil. &optional parameters are used in the following example in which we define a type
specifier symbol (cubic-array) that lets us specify three dimensional arrays whose dimensions
all have the same length. The definition of CUbic-array allows a programmer to optionally
indicate the type of the elements and/or the size of the dimensions.

Example:

(deftype CUbic-array (toptional elt-type dim-size)
C(and (array ,elt-type (,dim-size ,dim-size ,dim-size»

(satisfies equaldimp»)

(defun equaldimp (a) ;; Returns t if sizes of a's dimensions are =
(or « (array-rank a) 2)

(apply #'= (array-dimensions a»»

54 Types and Declarations

Here are a few examples of how some uses of cubic-array would be expanded.

(cubic-array float 5) == (and (array float (5 5 5» (satisfies equaldimp»

(cubic-array * 9) == (and (array * (9 9 9» (satisfies equaldimp»

(cubic-array integer *) == (and (array integer (* * *»
(satisfies equaldimp»

(cubic-array integer) __ (and (array integer (* * *»
(satisfies equaldimp»

(cubic-array) == (and (array * (* * *» (satisfies equaldimp»

cubic-array == (and (array * (* * *» (satisfies equaldimp»

Notice from the last example that when no arguments are specified to cubic-array, you can
use just the symbol itself; there is no need to enclose it in parentheses (although there is nothing
wrong with doing so).

Types and Declarations 55

Declarations
One context in which type specifiers can be used is declarations. Declarations are a way of
specifying additional information about the bindings of variables and certain other aspects of ~
your Lisp program. There are three basic types of declarations:)

1. Those that deal with variable bindings. These are primarily concerned with the typing of
variables.

2. Those that deal with things other than variable bindings. This category includes declara
tions that change how the compiler treats the affected portion of code.

3. Special declarations. These fall into both of the above classes and are of a global nature.
Special declarations are the only type of declarations that affect the meaning of a program.

Note that declarations in Common Lisp can affect things other than variable data types. For
example, there are declarations that change scoping, the environment of a function, or the way
the compiler treats function calls.

The nature of declarations in Common Lisp differs significantly from the nature of declarations
in other high level languages. In Common Lisp, declaring a variable to be a certain type does
not force the object stored in that variable to be that type. A declaration is your "promisen

to the language processors that a variable will always be the type you have declared it to be.)
The following example illustrates this.

(let (v)
(declare (simple-vector v»
(dotimes (i 50)

(setf (svref v i) 1»)

This code will not work.
Do not try to run it.

Here, v has been declared to be a simple vector. However I the value stored in v is nil.
Depending on the current level of optimization, the preprocessor may not check to see if v is
really a simple vector (since you have said that it is in your declaration) before it tries to do the
svref. Using svref on nil causes unpredictable results. The correct version of this example is

(let «v (make-array 50») ;; This code will work.
(declare (simple-vector v»
(dotimes (i 50)

(setf (svref v i) 1»)

56 Types and Declarations

Symbols for Declaring
Declarations can be made with three different symbols: declare (a special form), locally (a
special form), and proclaim (a function). Which one you use depends on where you want your
declarations to take effect and what type of declaration you are making.

• declare is used to imbed any type of declaration in executable code.

• locally makes declarations that are local to the form in which they occur. It cannot be
used to make declarations that affect variable bindings.

• proclaim is for making global declarations.

The declare Special Form
To imbed declarations within code (such as within a function definition) use the declare special
form, which has the syntax

(declare {declare-specification}*) Special Form

Declare-specification is a list whose first element is one of several symbols (to be described shortly)
that indicate what type of declaration is being made.

declare forms can only occur before the body of certain special forms and macros. For example,

(defun inker (i)
(declare (integer i»
(+ i 1»

Note that all declarations within a special form must precede any other statements in the body
of that form. Declarations affecting variable bindings apply only to the bindings made by the
form in which they appear, but declarations not concerned with bindings affect any code within
the form. For instance, (declare (type integer x» only affects bindings of x made by
the form in which it appears, while (declare (inline foo» affects all calls to foo textually
contained within the form. Here are the names of all the special forms and macros that permit
declarations:

defmacro
defsetf
deftype
defun
do*
do-a11-symbols
do-external-symbols
do-symbols
do
dolist
lambda

dotimes
flet
labels
let
let*
locally
macrolet
mu1tiple-va1ue-bind
prog
prog*
extn:define-method

Types and Declarations 57

The locally Special Form
The locally special form makes declarations that apply only to the forms inside it. Since
locally does not establish any bindings, declarations that affect variable bindings (like type,
etc.) are not meaningful in a locally form. However, a locally can affect references to
variables, so you can declare variable references to be special within a locally form.

(locally {declaration}· {form}·) Special Form

All listed declarations apply to the forms within the locally. locally returns whatever the last
form returned. If there are no forms following the declarations, then nil is returned.

(defun two-calls (1)
(declare (notinline cdr»
(cons (locally (declare (inline cdr»

(car (cdr 1»)
(cdr 1)
»

There are two calls to cdr in this example. The first call will be compiled in-line. The second
call to cdr will not be since it is outside the locally declaration requesting that calls to cdr be
done in-line.

Here's an example of a special declaration made in a locally.

(setq y 67)

(let «y 3»
(+ y

(locally (declare (special y»
(setq y 8»

=>11

y => 8

This particular locally form declares that any occurrences of y that appear within it refer to
the current special binding of y.

58 Types and Declarations

The proclaim Function
To make a global declaration, use the proclaim function.

(proclaim declare-specification) Function

Because proclaim is a function, its argument is always evaluated. This lets you compute a
declaration on the fly and means you sometimes must quote the specifications for them to work.
Variable names used in declare-specification refer to the dynamic values of the variables. Function
names refer to their global function definition. Declarations made by proclaim are global, but
they may be overridden by a local declaration. For instance, the global declaration

(proclaim '(notinline fac»

could be overridden in a function zoo.

(defun zoo (i j)
(declare (inline fac»
(+ j (fac i»)

Notice that the quote in the first example (the proclaim) is not used in the declare special form
since its argument is not evaluated.

NOTE

Use proclaim with caution. Be certain you understand its effects before
using it.

Types and Declarations 59

Symbols for Specifying Declarations
This section describes the symbols that can be used as the first element of a declaration specifi
cation (either in a declare special form or proclaim function call).

special

(special varl var2 ...)

special specifies that all of the variables in the list are special. For information on what it means
for a variable to be special, see the "Scope and Extent" chapter. All affected variable bindings
are made dynamic and references to the named variables refer to that dynamic binding.

A special declaration is not pervasive. Inner bindings of a variable override a special declara
tion and must be redeclared to be special (if desired). For example,

(defun kung (a b)
(declare (special a»
(let «a 6»

(+ a b»)

In (+ a b), a refers to the binding established by the let and not the special binding in kung.
If kung was rewritten as

(defun kung (a b)
(declare (special a»
(let «a 6» (declare (special a»

(+ a b»)

then the bindings of, and references to, a are special throughout kung.

As an exception to the above, if a variable is proclaimed to be special, then that declaration
applies to all bindings and references of that variable.

(proclaim '(special a»

(defun kung (a b)
(let «a 6»

(+ a b»)

In this case, both the binding of a established by the function kung, and the binding established
by the let form are special. Using proclaim to declare a special variable is not advised. The
macros defvar and defparameter are the accepted ways of defining globally special variables.

60 Types and Declarations

type

(type type var1 var2 ...)

A type declaration specifier affects only variable bindings. It declares that the variables in the
list will only take values of type type. For example,

(type (integer 1 1000) i j k)

type

(type var1 var2 ...)

This is equivalent to (type type varl var2 ...), but type must be one of the standard type
specifiers. It cannot be a user-defined type or a type specifier more complex than a single
symbol. For example,

(integer i j k)

ftype

(ftype type function-namel function-name2 ...)

A declaration specifier like this says that the named functions are of the functional type type.
For example.

(ftype (function (integer array) float) fetch getter)

This says that fetch and getter are the names of functions that take two arguments - an
integer and an array - and return a float.

function

(function name arg-type-list result-typel result-type2 ...)

This is equivalent to

(ftype (function arg-type-list result-typel result-type2 ...) name)

Types and Declarations 61

For example,

(function fetch (integer array) float)

inUne

(inline functionl junction2 ...)

An inline declaration specifier tells the compiler that you want the named functions expanded
inline. This does not force the compiler to do so, it only indicates that it is desirable. Inline
expansion is the insertion of a function's code into the calling routine, thus avoiding the overhead
of a function call.

notinUne

(notinline junctionl junction2 ...)

This declaration specifier tells the compiler that you do not want calls to the named functions
expanded inline. The compiler must follow this advice.

ignore

(ignore varl var2 ...)

The ignore declaration specifier specifies that the bindings of the named variables are not used ~

in the scope of this declaration. y

62 Types and Declarations

optimize

(optimize (qualityl ualuel) (quality2 ualue2) ...)

The optimize declaration specifier directs the preprocessor to optimize various qualities to a
specified level. qualityn is a symbol. The following qualities are recognized in Hewlett-Packard
Common Lisp: speed, space, safety, compilation-speed, and extn: eval-speed, The qualities
space, and compilation-speed currently have no effect. The extn: eval-speed quality may only
be proclaimed, not declared.

Valuen is a non-negative integer between 0 and 3. 0 says that the corresponding quality is totally
unimportant, and 3 specifies the highest level of importance. quality is equivalent to (quality 3).

See the "Programming Tips" chapter for information on what effect the various qualities have
on optimization.

Example:

(defun danger-danger (x y list)
(declare (optimize (speed 3) (safety 0»)
(+ x (nth y list»)

declaration

(declaration namel name2 ...)

The declaration type specifier tells the compiler that the given names are valid symbols for use
as the first element of a declaration specifier. It can be used only with a proclaim form, not a
declare. The named symbols can then be used as declaration specifiers for either proclaim or
declare. Use this so the compiler won't issue warnings about declarations that were intended
for use by another program processor or language implementation.

extn:system-lisp

(extn:system-lisp {T I nil})

An HP extension, the system-lisp declaration specifier toggles whether the preprocessor makes
"unsafe" optimizations when compiling code. Declaring or proclaiming system-lisp to be non-nil
turns on the unsafe optimizations; nil turns them off. For more information, see the "Program
ming Tips" chapter.

Types and Declarations 63

extn:upward-c1osures

(extn:upward-closures {T I nil})

The upward-closures specifier is an HP extension that allows the language preprocessor to
optimize code that uses only downward closures. If declared or proclaimed to be nil (it defaults "".,',
to T). then the preprocesor assumes that all closures in the affected code are downward. For _)
more information on this specifier. and upward and downward closures. see the "Programming
Tips" chapter.

extn:name

(extn: name symbol)

This is an HP extension that can only be used in a declare inside a lambda expression. It allows
you to name a lambda expression. This is sometimes useful for debugging since the name of
the lambda expression will be available to debugging tools like the stack browser.

(setf thor #'(lambda () (declare (extn:name thor» (+ 1 2»)

extn:version

(extn :version string)

This is an HP extension that can only be used in a proclaim. and only has effect in a file being
compiled by compile-file. It embeds string in the resulting binary file. This is useful when
using HP-UX sees commands such as what(l).

warn

(warn {T I nil})

This is an HP extension that can only be used in a proclaim. Declaring warn to be nil suppresses
all but the most important preprocessor and compiler warning messages; declaring it to be T
enables the printing of all preprocessor and compiler warnings.

64 Types and Declarations

Other Uses of Types
Besides declarations, there are a few other uses for types in Common Lisp, including specifying
the type returned by a particular form, checking the type of a variable, and controlling program
flow.

Specifying the Type of a Form
To increase efficiency, it is sometimes desirable to declare the type of value a specific form will
return. This is the purpose of the the special form.

(the return-value-type form) Special Form

This is your guarantee to the compiler that the form will return a value of the type you have
specified. The following two definitions of fast-and-dirty-car achieve the same effect, but the
second one uses the instead of declare.

(defun fast-and-dirty-car (1) (declare (list 1»
(car 1»

(defun fast-and-dirty-car (1)
(car (the list 1»)

Here's an example where declare cannot be used, but the can.

(defun exists (i 1)
;; Returns i if it is found at top-level in 1.
;; otherwise. it returns nil
(loop (ctypecase 1

(cons (if (eq i (car (the cons 1»)
(return-from exists i)
(setq 1 (cdr (the cons 1»»)

(nil (return-from exists nil»
)

)

In the cons part of the typecase we already know that 1 is a cons. If we declare it as such with
the, then depending on the current value of extn: eval-speed or speed, the preprocessor will
replace the calls to car and cdr with inline code that doesn't check for nil, thus making the
code more efficient.

Types and Declarations 65

Here are a few more simple examples of the:

(the float (sqrt (abs x»)

(the symbol name) ; form does not have to be a list

(the (vector * 6) (aref a 1» ; a must be an array of vectors of length 6

Checking Types
Common Lisp provides several functions for checking the types of variables. One key thing to
remember when type-checking is that the Common Lisp compiler may not be able to use special
representations for all declared variables. Thus, it is possible for a variable you have declared to
be a certain type not to be that type.

You can obtain the type of a given object with the type-of function.

(type-of object) Function

This returns the type of obj ect. For portability, you should be aware that Common Lisp imple
mentations are only required to return some type of which the object is a member. Consequently,
type-of is not very useful and is best reserved for debugging. Hewlett-Packard has extended the
type-of function to return the name of the instance type of its argument when that argument
is an instance. (See the chapter "Object-Oriented Programming" for details.)

Type Membership Predicates
The general predicate for testing whether an object is a member of a given type is typep.

(typep object type) Function

The function typep returns t if object is a member of type, and nil otherwise. Type can be any
valid type specifier except that it may not contain either of the type specifying symbols function
or values. Remember that objects can be members of more than one type. Example:

(typep 46 'integer) => T
(typep 46 'number) => T

In addition to typep, there are predicates that can test whether an object is a member of a
specific type. For instance, the predicate symbolp returns t if its single argument is a symbol.
With the exception of atom and null, the type checked for is the name of the predicate with
the p or -p on the end omitted. atom returns true only if its argument is not a cons, and null
returns true only if its argument is ni1.

66 Types and Declarations

(null object) Function

(atom object) Function

r (symbolp object) Function

(consp object) Function

(listp object) Function

(numberp object) Function

Cintegerp object) Function

(rationalp object) Function

(floatp object) Function

(complexp object) Function

(characterp object) Function

(stringp object) Function

r'. (bit-vector-p object) Function
,

(vectorp object) Function

(simple-vector-p object) Function

(simple-string-p object) Function

(simple-bit-vector-p object) Function

(arrayp object) Function

(packagep object) Function

(functionp object) Function

(compiled-function-p object) Function

(commonp object) Function

~ (extn:instancep object) Function

Types and Declarations 67

Another means of checking the type of an object is the macro check-type. check-type is
commonly used to check the types of function parameters.

(check-type place type-specifier &:optional type-string) Macro

Place must be a variable reference valid for Betf, and type-specifier can be any type specifier. .~
Type-speci/ier is not evaluated, so should not be quoted. Y

check-type uses typep to check whether the value in place belongs to the type specified by
type-specifier. If it does not, the error message

! ! !! Continuable error: The value of place. value. is not type-string
If continued: prompts for a value to use.

is displayed and you can enter a new value.

The optional parameter type-string should be a string, and will be printed as the desired type
in the error message. If type-string is not given the type to be displayed in the message is
determined from the type specifier.

Comparing Types
To check whether one type is a subtype of another, use subtypep.

(subtypep typel type2) Function

The two type specifiers can be any type specifiers that do not use the type specifying symbols
function or values. Two values are returned by sUbtypep. Both the values are t if type1 was
definitely determined to be a subset of type2. If the first value returned is nil and the second
value is t, then typel is definitely not a subset of type2. If both returned values are nil, then
sUbtypep could not conclusively determine the relationship between the two types.

(multiple-value-list (subtypep 'fixnum 'integer» => (T T)
(multiple-value-list (subtypep 'simple-vector 'cons» => (NIL T)
(multiple-value-list (subtypep 'extn:instance 'integer» => (NIL NIL)

68 Types and Declarations

Program Control With Types
Common Lisp has three macros that alter the control flow of a program based on the type of a
given form. The most general of these is typecase.

(typecase keyform
(type-l consequent-l-l consequent-1-2 ...)

(type-2 consequent-2-1)
(type-3 consequent-3-1)
...)

Macro

The typecase macro evaluates keyform, then compares the type of the value it returned to the
types in the typecase. The consequents associated with the first type to which the returned
value belongs are evaluated. A type selector of t or otherwise matches the type of any returned
value. If none of the cases are matched, nil is returned

(defun generic-first (thing)
(typecase thing

(cons (car (the cons thing»)
(nil nil)
(string (char thing O})
(simple-vector (svref thing O)}
(vector (aref thing 0»
)

Notice from this example that the types do not have to be mutually exclusive. However, if one
of your types is a subset of another, the more specific type should come first. For instance, in
generic-first, it would not make sense to have vector before simple-vector because then
the simple-vector clause could never be selected.

The macros etypecase and ctypecase serve the same purpose as typecase but provide built-in
error handling. The syntax is the same, but no t or otherwise clause is allowed. In etypecase,
if no clause is satisfied, then an error message is printed. If generic-first had been defined
with etypecase instead of typecase, then (generic-first 'fool would produce the message

!!!!! Error: The key value FOO does not correspond to any of
the types (VECTOR SIMPLE-VECTOR STRING NIL CONS).

The ctypecase macro works the same way, but the error is continuable. If you decide to
continue, you will be prompted for a new value for the offending variable.

Types and Declarations 69

Type Coercion
coerce converts a data object into an equivalent object of another type. Of course, not all
coercions are possible: attempting an illegal coercion results in an error. Here are the allowed
conversions:

An object that belongs to any sequence type can be coerced to any other sequence type provided
that the elements are of the correct type.

Strings of length one can be coerced into characters. coerce returns the single character of the
string.

(coerce "c" 'character) => #\c

Symbols whose print name has length one can be coerced into characters. coerce returns the
single character of the symbol's print name.

(coerce 'x 'character) => #\X

When converting an integer to a character, coerce returns the result of calling int-char with that
integer.

The only provided floating point representation is double-float. You can ask for any number
to be coerced into float, short-float, single-float, double-float, or long-float, and it
will always be coerced into double-float.

Any number can be coerced into a complex number.

Any data object can be coerced into type t.

70 Types and Declarations

~.
•• , .. ".,

\

Examples of Declarations
The following is a list of examples of declarations. There are two sections: declarations that
can be made at top-level, and declarations to be made within the special forms and macros that
allow them.

Global Declaration Examples
These declarations are made with proclaim. They are usually made at top-level, and are in
effect anywhere they are not overridden.

(defvar *indent-Ievel* 0) Make all bindings of *indent-Ievel* special.
This declaration cannot be overridden.

(proclaim •(notinline foo» ; Calls to foo should not be made inline

(proclaim •(declaration conjunction
premise»

(proclaim (current-optimization-Ievel»

Allow the symbols conjunction and
premise to be used in declarations

Current-optimization-Ievel must
return a list that is a valid
declaration

Local Declaration Examples
Here are examples of declarations made with the declare special form. These can be made
anywhere a declaration is allowed (see the list of special forms and macros that allow declarations
earlier in this chapter).

(declare (simple-string name rank serial-number» Name, rank, and
serial-number are
simple-strings

(declare (type (simple-vector 20) x y»

(declare (simple-vector x»

(declare (type simple-vector x»

(declare (integer a b c»

(declare (type (integer 0 *) a»

(declare (special donut»

x and y are simple-vectors
of length 20

X is a simple-vector

X is a simple-vector

a, b, and c are integers

a is a non-negative integer

Make this a special binding
of donut

Types and Declarations 71

: discombobulate is a function that takes two float arguments. and
; returns an integer.
(declare (ftype (function (float float) integer) discumbobulate»

: Same as previous.
(declare (function discumbobulate (float float) integer»

(declare (inline foo» ; Request that calls to foo be made inline

(declare (notinline foo» ; Calls to foo should not be made inline

(declare (optimize (speed 0») : Turn off optimizing

72 Types and Declarations

Macros
Introduction
There are at least three good reasons for writing Lisp macros:

• Delayed evaluation of arguments

• Reduced call overhead

• Convenient shorthand for commonly used pieces of code

5

Sometimes a function just won't do. For instance, how successful would you be if you tried to
write a function with the functionality of the macro or? Not very, because the forms you need to
evaluate inside the function (to see if they return true) would already have been evaluated before
they were passed to the function. The arguments to a macro, on the other hand, are passed
unevaluated. This gives the macro programmer the choice of when or whether to evaluate
arguments.

Most of the overhead of a macro call occurs at preprocess time when the macro call is expanded.
Unlike a function call, the execution of a macro call does not reqUire constructing a new activation
record to push on the execution stack. Depending on the situation, this means that a macro can
be more efficient than a function.

Learning to write Lisp macros is like learning to ride a bike: experience is the best teacher.
However it's very difficult to learn without any background information. This chapter is macro
training wheels. It gives some fundamental advice about writing macros, and discusses a few
simple examples. There is more detailed, but less accessible information about macros in Steele.

Macros 73

Background
Common Lisp macros provide the ability to execute possibly complex series of forms with a
simple macro call. Prior to execution, a macro call is replaced with another form that is computed
by the definition of the called macro. This substitution is the essence of macros.

Expansion Time
It is important to distinguish between macro expansion time and execution time. Expansion time
is when a macro call is replaced with the form computed according to the macro's definition.
This occurs when the macro call is first processed. For instance, if you define a function foo
that calls a macro, the macro call is expanded when the defun is evaluated. If you then change
the definition of the macro, foo will still contain the macro expansion computed by the original
version of the macro. To make foo use the new definition of the macro, you must reevaluate
the defun.

Since the definition of a macro must be available before the expansion of a call can be computed,
macros must be defined before they are used as part of the definition of a function (or otherwise
called).

When writing macros, it is often helpful to see the expansion of a call. The functions macroexpand
and macroexpand-1 give you that capability.

(macroexpand form &optional enl1)
(macroexpand-1 form &optional enl1)

Function
Function

Form should be a quoted version of the macro call you wish to see the expansion of. These
functions return two values:

• The expanded version of form if it is indeed a macro call, otherwise form is returned.

• T if form is a macro call, otherwise nil.

The difference between the two functions is that macroexpand-1 will only expand the outermost
macro call, whereas macroexpand will keep expanding the form until it is no longer a macro call.
Usually, macroexpand-1 is the most useful for debugging your own macros. You may want to
expand some calls to system macros or some of the examples in this chapter just for practice.
For example,

(pprint (macroexpand-1 '(or (car fool (or (numberp x) x?) radio») =>
(LET (#:G9)

(IF (SETQ #:G9 (CAR FOO»
#:G9
(IF (SETQ #:G9 (OR (NUMBERP X) X1» #:G9 RADIO»)

74 Macros

Definition
Macros are defined with defmacro. Its syntax is nearly identical to defun.

(defmacro name lambda-list {declaration I doc-string}* {form}*) Macro

There are several extensions to lambda-list allowed in a defmacro. The use of these extensions
is not covered in this chapter, but you should be aware of their existence.

The following additional lambda-list keywords are allowed.

&body

&whole

&environment

This is the same as a trest, except that it tells some output-formatting
functions that the rest of the form should be treated as a body. You may use
only one of either &body and &rest.

The keyword &whole followed by a variable specifies that the variable should
be bound to the whole macro call form. The &whole and variable should be
the first things in the lambda-list.

The keyword &environment followed by a variable specifies that the variable is
to be bound to an environment representing the lexical environment in which
the macro call is to be interpreted. This is an esoteric option that you may
never need. See Steele for more information.

Lambda lists in a defmacro can also use a facility known as destructuring. Briefly, anywhere in
the lambda list where a list is not normally allowed, you can replace a parameter with another
lambda list. The argument associated with that parameter in a call is treated as a list whose
components are matched with the parameter lambda list.

The body of a defmacro consists of the forms to be evaluated at macro expansion time. The
value of the last form evaluated is the form that will be substituted for the macro call.

The following very simple macro provides a shorthand way to call a particular function with
specific arguments.

(defmacro stupid ()
'(the-name-of-a-function-thats-much-too-long "Ahab" 3)
)

Macros 75

A call to the macro stupid would always be replaced with the form

(the-name-of-a-function-thats-much-too-long nAhab lt 3)

which would then be evaluated at execution time.

This is not too useful, because there is no use of parameters. Suppose we wanted to make
stupid a macro that would act as a synonym for the-name-of-a-function-thats-much-too
long. This could be defined as

(defmacro stupid (arg1 arg2)
(list 'the-name-of-a-function-thats-much-too-long arg1 arg2)
)

Note that we couldn't use a single quoted list because we needed to have the values of the
arguments substituted in. We had to use list to construct a form to return as the expansion of
the macro call. For macros where the form to be constructed is not simple, using list in this
manner would become tedious. Fortunately, there is an easier way.

~•••,•..•",

The Backquote Character
The backquote character () prOVides a convenient way of constructing a return form within a
macro definition. Its use is not restricted to macro definitions, but that is where it is most often

~. .~

The backquote is similar to a quote in that it specifies that the form that follows is to be taken
literally. Backquote however, allows the use of commas to insert values into the backquoted
form. Within a backquoted form, the following uses of commas are allowed:

,form The result of evaluating form is inserted in place of ,form.

,~form The result of evaluating form should be a list. This resulting list is "spliced" into the
backquoted form. e.g. «+ ,G(cdr '(2 3 6 6») evaluates to (+ 366). If form
does not evaluate to a list, the results are unpredictable, and an error may be signalled.

• .form This works like •G except that the list produced by form may be destroyed in the
process of creating the result of the backquoted form.

76 Macros

Here's a few examples of backquoted forms showing the results of evaluating them.

'(car (1 2 3» => (CAR (1 2 3»
'foobar => FOOBAR

(setq a '(a be»
, ,Oa => Signals an error
'(1 ,Oa 2 3) => (1 ABC 2 3)
'(1 ,a 2 3) => (1 (A B C) 2 3)

(setq a 'doghead b , (foo to you 2) c 98)
'(c ,a ,(cdddr b) ,(- ell) ,O(cdr b) a) => (C DOGHEAD (2) 87 TO YOU 2 A)

Using the backquote, we could rewrite our stupid macro as

(defmacro stupid (argl arg2)
'(the-name-of-a-function-thats-much-too-long ,argl ,arg2)
)

(macroexpand-l '(stupid (+ 1 a) foo» =>
(THE-NAME-OF-A-FUNCTION-THATS-MUCH-TOO-LONG (+ 1 A) FOO)

Notice that the arguments are not evaluated at expansion time. Within the body of the macro,
the name of a parameter evaluates to the form that was in the corresponding argument position
in the macro call.

Macros 77

Examples
One of the best ways to get started writing macros is to examine some that other people have
written. This section lists and explains the definitions of several macros.

Multiple-Value-Sett
Common Lisp defines a function multiple-value-setq for setting a list of variables to the values
returned by a form. This is only good for setting variables; you cannot use the generalized variable
facility as with setf. You might try to write a function to serve this purpose, but you would
fail miserably, because if you tried to pass the form that returns the values you want to use, it
will be evaluated and the values lost. You need to write a macro so that the form will not be
evaluated until you want it to be.

NOTE

This definition of multiple-value-setf is not strictly correct in that
some tricky order of evaluation concerns are not addressed for the sake
of simplicity and exposition.

Multiple-Value-Setf takes a list of generalized variable
references and a form. evaluates the form and setf's the
variable references to the corresponding value returned by
the form. If there are more values than places. the extra
values are discarded. If there are extra places. they are
left unchanged.

{defmacro mu1tiple-value-setf (place1ist form)
;; This part is executed at expansion time
(let (var1ist setf1ist)

(do1ist (place p1acelist)
{let {{var (gensym»)

{setf varlist {append var1ist (list var»)
(setf setf1ist (append setf1ist (list place var»)
)

;; This is the form to be substituted for the call
;; then evaluated at run time
'(mu1tip1e-va1ue-bind .var1ist ,form

(setf .~setflist)

)

78 Macros

The expansion of a call to multiple-value-setf is a mUltiple-value-bind form that binds a
list of variables (varlist) to the values returned by form, and then does a setf that sets the
specified places to the values of the variables.

The lists varlist and setflist are generated in the dolist loop. For each place in placelist,
a variable name is generated with gensym and appended to varlist. Then the current place and
the generated variable are appended to setflist, a list of alternating places and variable names.
When multiple-value-setf is called, the call is replaced with the multiple-value-bind form
which is then evaluated (at execution time).

It is important to notice the use of gensym in the definition of multiple-value-setf. Here
it is almost essential because you need an indeterminate number of variable names. Another
good reason for using gensym to generate the names of any variables that will be present in
the expansion of a macro call is to avoid collisions with variables that may be present in the
environment in which the expansion is executed.

Substr
This example could be implemented as either a function or a macro. Here it is written as a
macro to demonstrate using an &optional parameter with a macro. Note that the Common
Lisp function subseq provides a similar capability.

Substr returns the n character substring of s starting at start.
If there aren't enough characters in s, substr returns nil. If
n is not specified, it defaults to the number of characters in
s after start.

(defmacro substr (s start &optional (n C(abs (- (length ,s) ,start»»
(let «temp-len (gensym»

(temp-i (gensym»
(temp-str (gensym»
)

C(let «,temp-len ,n»
(when «= (+ ,temp-len ,start) (length ,s»

(let «,temp-str (make-string ,temp-len»)
(dotimes (,temp-i ,temp-len)

(setf (schar ,temp-str ,temp-i) (schar ,s (+ ,start ,temp-i»)
)

,temp-str)

Macros 79

In this example, the entire body of the defmacro is the form to be returned. It essentially follows
the way you could write substr as a function. The thing to notice is the specification of the
default value for n. Since the arguments s and start may be expressions whose values are not
available until execution time, the default value of n must be a form that computes the number
of characters to include in the substring. You might be tempted to leave out the backquote and
use

(abs (- (length s) start»

as the default value of n. In general, though, this will not work because the default is computed
at expansion time, and the values of s and start may not be available then. Note the use of
a variable to store the value of n. This insures that if n is not specified in a call, the form that
computes the default value is evaluated only once, rather than every time that the value of n
is needed. Also notice the use of gensym to create a variable name for the dotimes counter.
This avoids conflicts that might arise if, for instance, we just used i as the variable name and
we called substr with a call like (substr namestring i).

80 Macros

Object-Oriented Programming 6

Introduction

r' Introduction
You may have heard the term object-oriented programming before. Like most buzzwords, it
means different things to different people. This chapter will define in general terms what we
mean by object-oriented programming, and describe how it is supported in HP's implementation
of Common Lisp.

As of this writing, the Common Lisp standard does not define facilities for object-oriented
programming. Since this is a valuable capability, Hewlett-Packard has chosen to provide the
tools that its engineers and researchers have been using to program with objects. The definition
of these tools is being considered along with several other proposals as possible standards for
objects in Common Lisp. If and when an objects standard for Common Lisp is defined, HP
will implement it. HP expects to continue to support use of our current objects system, and to
provide appropriate migration tools in order to converge our definition with a future standard.

The major sections of this chapter are as follows:

Describes the general concept of object-oriented programming; defines
some necessary terms.

Getting Started Summarizes the basic functions provided in HP's Common Lisp that sup
port object-oriented programming; concludes with a short example that
demonstrates the basics.

Inheritance Describes how to combine different types of objects to create a new type.

Initialization Details the process of how an object is initialized when it is created.

Universal Methods Lists the methods that are defined by default at the time an instance type is
defined. Also covers a few extensions made to Common Lisp for working
with instances.

Redefining Instance Discusses how to rename and undefine instance types.
Types

Object-Oriented Programming 81

NOTE

The term object is sometimes used to refer to any unit of Lisp data
(as in "x is an object of type listU). This introduction uses object to
identify a special kind of data object. We will shortly define some terms
that avoid the ambiguity of two different meanings for the word object.

What's an Object?
First of all, what is an object? An object is a vehicle for abstracting data and the operations that
can be performed on that data. You can think of an object as a "black boxu whose only visible
characteristics are some buttons on the front panel and a slot for inserting data. The buttons
select operations that the object can perform, and the slot provides a means of providing input.
The important thing is that the inside of the box is hidden from view. Someone who wishes to
utilize its capabilities does not need to know how those capabilities are achieved.

Figure 6-1. An object

You may be saying "But that's just a subprogram. Every reasonable programming language has
those. U The difference is that an object contains data as well as instructions for manipulating it.
For instance, in a graphics program, an object could represent a particular figure to be shown
on the screen. This object would be made up of data (such as the origin and dimensions of
the figure) and the operations that can be performed on that data (such as rotating or scaling).
To rotate the figure you need only to press the rotate button and insert the desired angle of
rotation.

82 Object-Oriented Programming

The beauty of this is that while different kinds of figures in your graphics program may require
different algorithms to rotate them, you can press the rotate button on any figure and have the
proper operation performed. You don't have to say "Well, this figure is a dodecahedron so I'll
use the dodecahedron rotating algorithm." Because the operations are part of the object, it
"knows" which algorithm to use to rotate itself. As long as all the objects that represent figures
have a rotate button, you're all set.

So we now know that

data + operations object

Messages
Asking an object to perform an operation (pushing a button on the black box) is referred to as
sending the object a message. A message contains the name of the operation and any external
data the object needs to perform the operation (such as the angle of rotation). Note that the
message contains only the name of the operation, and not any details as to how the operation
is to be done. Thus, different objects can have very different reactions to the same message,
though in a useful system the final result should be similar in order to maintain mnemonic
consistency.

Think about when a manager asks an employee to perform a task. They usually will tell them:

• What general job is to be done. "Write a manual." (This is the name of the operation.)

• Any necessary auxiliary information. "About Lisp Programming."

Assuming there is more than one employee competent to perform the task, it doesn't matter
which one the manager asks to do the job. The manual will be written. However, it is unlikely
that any two writers would get the job done in the same way. It is the built-in knowledge of the
employees that allows the manager to request the performance of tasks without having to go
into great detail. They also do not have to tailor the procedure to each individual.

Object-Oriented Programming 83

Terms
Like most specialized subjects, object-oriented programming has its own set of terms. You've
already seen the word "message." Before going any further, let's define a few more terms.

Instance

Instance Type

Method

Instance Variable

An object. We will use instance in order to avoid confusion with the
other definition of the word object.

A type that describes a kind of instance. Instances of a particular
instance type store the same types of data and have the same set
of operations defined on them. Sometimes called a flavor.

An operation that can be performed on an instance of a given in
stance type. These are the "buttons" of an instance.

An instance type definition contains a template for the data that will
be stored in an instance of that instance type. This is similar to a
Pascal record, or a structure created with defstruct, in that the
template specifies names of fields that store data. In instances, the
fields are called instance variables.

84 Object-Oriented Programming

Macro

~.""""
(

Getting Started
There are certain primitive tools needed for object-oriented programming. You must be able to

• Define an instance type.

• Define a method.

• Create an instance.

• Send a message to an instance.

Since these operations are so closely related, it is difficult to describe any of them without
mentioning another. Please be patient while reading the following descriptions. All will be
revealed by the example that follows them.

The functions that implement objects are defined in the obj ects module, and are named by
symbols in the extn package. You should put the following forms at the beginning of any
programs you write that use objects.

(require "objects")
(use-package 'extn)

Defining an Instance Type
Instance variables are like slots in a structure, except that access to them is allowed only within
the methods defined on that type of instance. Anywhere else, they must be accessed indirectly
by sending a message to the instance that contains them. This insures that programs that use
instances do not rely on the instances' internal data.

An instance type consists of a description of its instance variables, and the definitions of its
methods. The first step in defining an instance type is describing the data (Instance variables)
to be stored in instances of that type. You do this with the macro define-type. Do not
be intimidated by the large variety of options available for define-type. You do not need to
immediately understand them all to start programming with instances.

(extn:define-type type-name [doc-string]
{ (: var var {var-option} e) I de/ine-type-option}e)

The name of the created instance type is type-name; it should not conflict with any of the
system defined types (such as integer or list). A call to define-type returns the symbol that
is the name of the instance type that was defined. If specified, doc-string is installed as the type
documentation for the symbol type-name.

Object-Oriented Programming 85

Specifying Instance Variables
The instance variables of the type are specified with forms like

(: var oar {oar-option} e)

The name of the instance variable is oor. Zero or more uar-options may be specified. They ~
control various properties of the instance variable. Valid var-options are:

(: init form)

(: type type)

:gettable

:initable

:settable

When a new instance of the type being defined is created, form is
evaluated and the value it returns is the initial value of the affected
instance variable. See the "Initialization" section of this chapter for
more detail.

This declares the affected instance variable to be of type type.

This option sets up a parameterless method named :oar that returns
the value of the instance variable oar. This is how programs can ac
cess the values of instance variables. Note that this does not hinder
the ability of an instance to hide its internal data since the values are
accessed by sending a message. If the internal representation were
to change, the methods created by the :gettable option could be
rewritten to simulate the old versions. (An example of this appears
later in this chapter.)

If an instance variable is defined with the : initable option, then
you may specify an initial value for it when creating an instance of
that instance type.

This sets up a method named :set-var that' takes one parameter
and sets the value of the affected instance variable to that parame
ter. A :settable instance variable is always made :initable and
:gettable. If this is not desired, you must define your own method
to set the instance variable, instead of using the :settable option,
or use the :redefined-methods option to suppress creation of the
undesired methods.

Define-Type Options
You can also specify options that globally affect the instance type being defined. These are valid
in the same places within a call to define-type as instance variable definitions. Stylistically, it is
preferable to segregate define-type options and instance variable definitions. The only option
that may appear more than once in a single call to define-type is :inherit-from. ~

86 Object-Oriented Programming

The available options are:

:all-gettable

:all-settable

:all-initable

(:fast-methods
{method-name}*)

(:inline-methods
{method-name}*)

(:notinline-methods
{method-name}*)

(:redefined-methods
{method-name}*)

All instance variables of this instance type are :gettable. This does
not apply to inherited instance variables.

All instance variables of this instance type are: settable. This does
not apply to inherited instance variables.

All instance variables of this instance type are: initable. This does
not apply to inherited instance variables.

In the current implementation, this option has no effect. The meth
ods for this instance type named by the symbol(s) method-name
(which might not be defined at this time) are made more efficient
to invoke. This could make other methods less efficient, so should
only be used when there are a few methods that are used substan
tially more often than the others. If no symbols are given, then this
option has no effect.

In the current implementation, this option has no effect. This option
specifies that the methods for this instance type named by the sym
bol(s) method-name (which might not be defined at this time) should
be processed inline so that the overhead of a call is avoided. The
compiler may ignore this option. This option trades increased code
size for an increase in execution speed. If no symbols are given,
then this option has no effect.

This option specifies that the methods for this instance type named
by the symbol(s) method-name (which might not be defined at this
time) should not be processed inline. The compiler must obey
this directive, but is free to process inline any methods not listed
within this option. If no symbols are given, then this option has no
effect.

define-type automatically defines some methods for the instance
type being defined. These include a number of "universal" methods,
methods resulting from :settable and :gettable options, and in
herited methods. Any method named in the :redefined-methods
option will not be created by define-type. This option should be
used when there are automatically created methods (universal or in
herited) that you plan to redefine. Specifying these in a :redefined
methods option prevents them from being aCcidentally redefined if
the define-type is reexecuted.

Object-Oriented Programming 87

(:init-keywords
{keyword} e)

This declares that the given keywords are valid initialization key
words for calls to make-instance (the function for creating an in
stance) that create instances of the type being defined. See the
"Initialization" section later in this chapter.

:no-init-keyword-check When this option is given to define-type, make-instance will not
check the validity of initialization keywords when creating an in
stance of the type being defined.

(:inherit-from
instance-type-name
{inherit-option} e)

The :inherit-from option is used to add characteristics of existing
instance types to the instance type being created. This is a com
plicated topic, and is covered in the "Inheritance" section of this
chapter.

Example
The following code sets up an instance type whose members represent Cartesian vectors.

(extn:define-type vector-instance
;; Instance Variables
(:var theta (:type float»
(:var magnitude (:type float»
;; Options
:all-settable
)

The two instance variables are declared to be of type float. The :all-settable option causes
define-type to create the methods

• :theta and :magnitude for accessing the values of the two instance variables.

• :set-theta and :set-magnitude for updating the values of the instance variables.

88 Object-Oriented Programming

Defining a Method
To define a method for an instance type, use the extn:define-method macro. This is similar
to defun. The parameters of define-method include the name of the method, the name of
the instance type the method applies to, a description of the parameters, and the actions the
method should take.

(extn:define-method Cinstance-type-name method-name) lambda-list
{declaration} -
{form}-)

Macro

The instance type instance-type-name must exist at the time define-method is processed. Oth
erwise, an error results. A call to define-method returns a list of two symbols: the instance
type name symbol and the method name symbol.

The name of the method can be any symbol, but it is suggested that you use keywords (Le.,
symbols in the keyword package).

The forms (as in a defun) are evaluated when the method is invoked. The method returns the
value of the last form evaluated during its invocation. The forms within the method definition
can access the instance variables of instance-type-name just by using their names as if they were
lexical variables. The forms may also refer to the lexical variable self, which refers to the
instance upon which the method was invoked.

Here's an example call to define-method that uses the vector-instance instance type defined
above:

Method that returns x-coordinate of a Cartesian vector instance

(extn:define-method (vector-instance :x-coordinate) ()
(* magnitude (cos theta»
)

Note that we are now able to partially access a vector-instance as if it was represented as an
x-y pair (rectangular) instead of a magnitude-theta pair (polar). This will be expanded upon in a
forthcoming example.

Object-Oriented Programming 89

Creating an Instance
The most direct means of creating an instance is the function extn:make-instance.

(extn: make-instance instance-type-name {init-keyword ualue}*) Function

A call to make-instance returns a new instance belonging to the named instance type (which
must exist and be an instance type). When the instance is created, a universal method named
:initialize is invoked on it with all the init-keyword ualue pairs as parameters. Typically, the
init-keywords are the names of initable instance variables preceded by a :, and the values are the
initial values for those instance variables. If the keywords are not valid initialization keywords
and the instance type was not defined with the :no-init-keyword-check option, then an error
occurs. For information on the exact initialization process, see the "Initialization" section of this
chapter.

Here's an example of a call to make-instance:

(setq my-vector (extn:make-instance 'vector-instance
:theta (/ pi 2)
:magnitude 67»

Sending Messages
An operation may be invoked on an instance by sending it a message. There are two functions
that do this:

The commonly used one is extn: => (pronounced "send").

(extn :=> instance method-name {argument} *) Function

If method-name is not a keyword, it must be quoted. Arguments to the method are simply
added after method-name. The form

(extn:=> my-vector :set-theta pi)

would return the results of invoking method: set-theta on the instance my-vector with the
value pi. This particular method has the side effect of changing the value of theta for that
instance to the value of its argument (in this case, pi). If the instance type of the instance being
sent to does not support the method, an error is signalled.

A similar function is extn:send?

90 Object-Oriented Programming

(extn:send? instance method-name {argument}-) Function

This works identically to =) except that if there is no method method-name for the instance type
of instance, or instance is not an instance, no error is signalled and nil is returned.

You can explicitly test whether or not an instance supports a particular method with the function
extn:supports-operation-p.

(extn: supports-operation-p object method-name) Function

This returns true only if object is an instance, and it has a method method-name defined on it.

A Brief Tutorial
This simple example shows the concepts discussed above in action. It details creating an in
stance type named vector-instance, methods for operating on vector-instance instances,
and functions that use those methods. In the example you will

1. Define the instance type.

2. Define the primitive operations (methods) for the instance type.

3. Define some functions to use the instances.

4. Create some instances and test the methods and functions.

Defining the Instance Type
The first thing to do when programming with objects is to define the instance types you'll be
using. In this example we will be dealing with the vector-instance instance type. The Cartesian
vectors will be stored in polar (angle-magnitude pairs) form so our instance type will have two
instance variables: theta and magnitude. We'll assume that the default angle (in radians) is 0,
so that is the default initialization for theta. We want to be able to specify initial values when
creating a Cartesian vector, as well as have default methods set up to access and update both
of the instance-variables, so the all-settable option is specified.

(require "objects") The rest of this example assumes that
(use-package 'extn) ; these two forms have been evaluated.

(define-type vector-instance
;; Instance Variables
(:var theta (:type float)

(:init 0»
(:var magnitude (:type float»
;; Options
:all-settable
)

Object-Oriented Programming 91

Choosing and Defining Methods
Once you have defined the shape of the data in your object (by executing the define-type
form), you must complete the definition of the object by creating the operations that are part of
it.

What kind of operations do we want to define for the vector-instance instance type? Since the
instance-variables are settable, we already have methods :magnitude, : set-magnitude, :theta,
and :set-theta (as well as some initialization methods). We probably want to be able to multiply
the Cartesian vector by a number. Let's call this method: scale.

;;; The scale method multiplies a vector-instance by some number x

(define-method (vector-instance :scale) (x)
(setq magnitude (* x magnitude»)

Notice that the magnitude instance-variable is referenced just by using its name, and that it can
be setqed.

Another Way of Looking at Vectors
There are two common ways of specifying Cartesian vectors. One is the way we're represesenting
them in our vector-instance instance type. These angle-magnitude pairs are referred to as
polar coordinates. The other way to represent a vector is to store the values of its x and y
coordinates. These are known as rectangular coordinates.

Polar Coordinates:
theta=56.31

magnitude=3.6056

Rectangular Coordinates:
x=2
y=3

Figure 6-2. Two Ways to Represent a Vector

92 Object-Oriented Programming

Suppose there are situations where it's more convenient to look at a vector-instance as rectangular
coordinates than as polar coordinates. We could define another instance type to handle this
situation, but then we'd be defeating the whole purpose of programming with instances. Why
not just define methods that "pretend" that the vector is stored as x and y coordinates? We'll
need methods :x and :y (to obtain the values of the coordinates), and :set-x and :set-y (to
update the vector based on x and y coordinates).

;;; Return the x coordinate of a vector

(define-method (vector-instance :x) ()
(* magnitude (cos theta»)

Return the y coordinate of a vector

(define-method (vector-instance :y) ()
(* magnitude (sin theta»)

Set the x coordinate of a vector

(define-method (vector-instance :set-x) (new-x)
(setq magnitude (sqrt (+ (expt new-x 2)

(expt (=> self :y) 2»»
(setq theta (atan (=> self :y) new-x»)

Set the y-coordinate of a vector

(define-method (vector-instance :set-y) (new-y)
(setq magnitude (sqrt (+ (expt (=> self :x) 2)

(expt new-y 2»»
(setq theta (atan new-y (=> self :x»»

Once these methods are defined, anyone using a vector-instance object can access it with
polar or rectangular coordinates. There is no need for external conversion routines, since the
vector-instance object "knows" both forms of the Cartesian vector. Instead of building in
additional data, we have built in the means to extrapolate this data.

However, one place where we know that the vector is not actually stored as rectangular coordi
nates is in the methods that are part of the instance. The main symptom of this is that within a
vector-instance method we cannot refer to the x and y coordinates by just naming them. We
must invoke the method :x or :y on self.

Object-Oriented Programming 93

Now let's define a function that adds two vectors and returns a vector-instance object repre
senting their sum.

;;; Return the sum of two Cartesian vectors

(defun vector-instance-add (vector1 vector2)
(let «new-vector (make-instance 'vector-instance»)

(=> new-vector :set-x (+ (=> vector! :x) (=> vector2 :x»)
(=> new-vector :set-y (+ (=> vector! :y) (=> vector2 :y»)
new-vector»

Being able to reference the vectors as x-y pairs makes this function much simpler than if we
would've had to add the vectors in polar form. This function points out one flaw in our pretext
that the vector is stored as rectangular coordinates: we can't use initialization keywords for x and
y in our call to make-instance. There are ways of doing this however; see the "Initialization"
section for details.

94 Object-Oriented Programming

Another Short Example
Here is a simple example that uses the object-oriented programming features of HP's Common
Lisp to implement a computerized bank account. This first section of code defines the bank
account instance type, and a few basic methods and functions for manipulating bank accounts.

; ;; An instance type to represent bank accounts

(define-type bank-account
(:var holder (:type simple-string»
(:var acct-num)
(:var balance (:type number»
:all-initable
:all-gettable)

Function for creating new accounts

(defun open-account (name number initial-balance)
(if (and (simple-string-p name)

(numberp initial-balance)
(> initial-balance 0»

(make-instance 'bank-account
:holder name
:acct-num number
:balance initial-balance)

(error "Bad name: -A or Balance: -A " name initial-balance»

(setq acct1 (open-account "Bobby Brown" '555-55-5555 100.00»
(=> acct1 :balance) => 100.0

Method to make a deposit to an account. The new balance
is returned.

(define-method (bank-account :deposit) (amount)
(if (and (numberp amount) (> amount 0»

(setf balance (+ balance amount»
(error "Bad deposit amount -A" amount»

(=> acct1 :deposit 50) => 150.0
(=> acct1 :balance) => 150.0

Object-Oriented Programming 95

Method to make a withdrawal from an account. The new
balance is returned.

(define-method (bank-account :withdraw) (amount)
(cond «or (not (numberp amount» « amount 0»

(error "Improper Withdrawal Amount -A" amount»
«< balance amount)
(error "Insufficient Funds -- Transaction denied"»

(t (setf balance (- balance amount»)
)

(=> acct1 :withdraw 25) => 125.0
(=> acct1 :balance) => 125.0

96 Object-Oriented Programming

Inheritance
The object-oriented programming features of HP's Lisp allow you to create a new instance
type by combining previously defined instance types with any additional instance variables and
methods you care to define. This mechanism is called inheritance since the new type inherits
the characteristics of the previously defined type(s).

As an example of where inheritance might be used, consider a graphics program that deals with
geometric shapes. The programmer might define a shape instance type that implements the
instance variables and methods needed for all shapes, and then define more specialized instance
types that inherit from shape, such as circle or rectangle. This way, the code that is common
to all shapes only needs to be written once. We could even go one step further and define an
instance type colored-rectangle which inherits from rectangle which inherits from shape.

For convenience, we define the following: If instance type a is inherited by instance type b, then
a is a parent type with respect to b, and b is a child type with respect to a.

Defining a Type that Inherits
The :inherit-from option to define-type indicates which (if any) existing instance types should
be inherited by the type being defined. The following code defines two instance types: circle,
and colored-circle (which inherits from circle).

(extn:define-type circle
(:var origin)
(:var radius (:type float»
(:var exposed?)
:all-settable)

(extn:define-type colored-circle
(:var color :settable)
(:inherit-from circle :init-keywords)
)

The :inherit-from option has the folloWing form:

(: inherit-from inherited-type-name {inherit-option}·)

Object-Oriented Programming 97

The valid values for inherit·option are:

(:methods [: except]
{ method-name}·)

:init-keywords

(:init-keywords
:except {keyword}·)

(:variables {ivar-name
(ivar-name alias) }.)

Default behavior is for an instance type to inherit all of the methods
(except universal methods) defined on the type(s) it inherits from.
If there is a :methods option to :inherit-from and: except is
omitted, only the named methods are inherited. If :except is
specified, then the instance type inherits all of the inherited type's
non-universal methods except those named.

Default behavior is to not allow the use of initialization keywords
that are defined for an inherited type. This option declares that
all legal initialization keywords defined for the inherited type are
also legal for the inheriting type. See the "Initialization" section
for details.

Default behavior is to not allow the use of initialization keywords
that are defined for an inherited type. This option declares that all
legal initialization keywords defined for the inherited type, except
those named in the option, are also legal for the inheriting type.
See the "Initialization" section for details.

This option allows methods to access and update the named in
herited instance variables as if they were defined directly in the
inheriting type. (Normally they must be accessed by invoking
a method). The (ivar-name alias) variation of the option allows
methods of the child instance type to access the inherited instance
variable ivar-name with the name alias. See "Pseudo Instance Vari
ables" below for more information.

Inheriting Methods
By default, a child type inherits all of its parents' (there may be more than one) methods, except
for their universal methods. If this is not what you want, the :methods option to the :inherit
from clause can be used to specify exactly which methods are inherited. For efficiency, you
should only inherit methods that will be used by the inheriting type. Naming a method in the
:redefined-methods option to define-type prevents it from being inherited, but the preferred
way to do this is the :methods option. If you attempt to inherit more than one method with
the same name, or try to inherit a method with the same name as a method resulting from a
:settable or :gettable option, an error is signalled.

An inheriting type only inherits the methods defined on its parents at the time of its definition. ')
Defining a new method on a parent type after the define-type for the child has been evaluated
has no effect on the child type. The new method does not automatically propagate to the child;
to inherit the method, the define-type for the child must be reevaluated.

98 Object-Oriented Programming

~
\

Accessing Inherited Methods
Inherited methods are invoked just like any other method. Here's an example:

(require "objects")
(use-package 'extn)

;;; Animal Instance Type

(define-type animal
(:var habitat :settable)
(:var weight :settable)
(:var year-of-birth :initable :gettable)
(:var living? (:init t) :settable)
(:var year-of-death :settable»

Method to return animal's age in solar years
Note: Assumes years are A.D.

(define-method (animal :age) ()
(if living?

(- (current-year) year-of-birth)
else

(- year-of-death year-of-birth)
)

Race-horse instance type (inherits from animal)

(define-type race-horse
(:inherit-from animal :init-keywords

(:variables living?»
(:var offspring :settable)
(:var races :settable»

(setq man-of-peace (make-instance 'race-horse :year-of-birth 1967»

(current-year) => 1986 This function is not predefined
(=> man-of-peace :age) => 18

Object-Oriented Programming 99

The inherited methods :set-year-of-birth and :age can be accessed by an instance of type
race-horse as if they were defined specifically for that type. If we want to define a more specific
age method for race-horse (perhaps one that gives the horse's equivalent human age) we can.

;;; Method to return race-horse's equivalent human age

(define-method (race-horse :age) ()
(let «birth-year (=> self :year-of-birth»

real-years)
(if living?

(setf real-years (- (current-year) birth-year»
;; else
(setf real-years (- year-of-death birth-year»)

(* real-years 3) ;; Horses live -1/3 as long as humans
)

(=> man-of-peace :age) => 54

After this method is defined, invoking the :age method on an instance of type race-horse will
execute the new code. After adding this new method, we should add a :methods option to
the :inherit-from clause in the define-type for race-horse so that we do not inherit the
animal :age method. Then if we ever need to reevaluate the define-type, we won't also have ~

to reevaluate the definition of the specialized age method for race-horses. }

Resolving Method Ambiguity
There are some problems associated with redefining inherited methods. For instance, what if
we want to define an animal method that returns T if the animal has lived longer than a given
number of years, and we want the years to be normal solar years? The natural way to define
such a method would be

(define-method (animal :lived-longer-than-p) (number-of-years)
(> (=> self :age) number-of-years)
)

If we use this method with a race-horse instance (or any other inheritor of animal that defines
its own :age method), we will not get the desired result. We need a way to specify that we want
to invoke the :age method defined for animal instances.

100 Object-0riented Programming

(call-method method-name {arg} *)
(apply-method method-name {arg}* list)

Macro
Macro

The macros call-method and apply-method are used within the body of a define-method for
some type t to invoke a method defined on type t. Method-name is not evaluated, it must be
the name of a method defined on type t (either directly or inherited). With call-method, the
remaining forms are evaluated and passed as arguments to the method being invoked. With
apply-method, the args are evaluated to produce individual arguments and list is evaluated to
produce a list of arguments; the invoked method is passed the individual arguments followed by
the elements of the list. (call-method is analogous to funcall and apply-method is analogous
to apply.) Within the invoked method, self refers to the same instance that it did in the method
containing the call-method (or apply-method).

With call-method we can write the :lived-longer-than-p method as follows and have it work
correctly.

(define-method (animal :lived-longer-than-p) (number-of-years)
(> (call-method :age) number-of-years)
)

Accessing Methods that are Not Inherited
It is sometimes desired within the definition of a method for type x to invoke a method defined
in a parent type of x without actually inheriting the method. For instance, it may be possible to
reuse code by defining the child's method in terms of the parent's.

To do this, there is another variety of call to call-method and apply-method.

(call-method (instance-type-name method-name) {arg} *)
(apply-method (instance-type-name method-name) {arg}* list)

Macro
Macro

This form is used within the body of a define-method to invoke a method that is defined on a
directly inherited type. If the call-method appears in a define-method for type t, then instance

type-name must be the name of an instance type that appears in an : inherits-from option to
the define-type for t. Additionally, method-name must be defined for instance-type-name when
the call-method is executed. Within the invoked method, self refers to the same instance that
it did in the method containing the call-method (or apply-method).

Object-Oriented Programming 101

Here's a demonstration of using call-method to implement a child's method by augmenting an
existing method that is defined on a parent.

(require "objects")
(use-package 'extn)

;;; The basic employee instance type

(define-type employee
(:var name :initable :gettable)
(:var address :settable)
(:var phone :settable»

Method to display basic employee info

(define-method (employee :display-info) ()
(format t "Name: -A-%Address: -A-%Phone: -A-&" name address phone)
)

A restricted access employee type

(define-type secured-employee
(:inherit-from employee :init-keywords

(:methods :except :display-info)
(:variables name address phone»

(:var password»

Method to display basic info if password allows access
(Assumes that the function request-and-get-password exists)

(define-method (secured-employee :display-info) ()
(if (equal (request-and-get-password) password)

(call-method (employee :display-info»
(error "Access Denied")
)

102 Object-Oriented Programming

Inheriting Instance Variables
A child instance type inherits all of its parents' (there may be more than one) instance variables.
However, these instance variables are not directly accessible in the child's methods; they must be
accessed by invoking the parents' access methods. For instance, in a method for the co1ored
circle instance type, we cannot access the inherited instance variable exposed? as if it were a
lexical variable.

(define-type circle
(:var origin)
(:var radius (:type float»
(:var exposed?)
:a11-settab1e)

(define-type colored-circle
(:var color :settab1e)
(:inherit-from circle :init-keywords)
)

(define-method (colored-circle :show-yourse1f)
(if (not (=> self :exposed?» :exposed must be accessed

(prog (=> self :set-exposed? T); with a method.
(=> self :dither-expose»

;; Else
(=> self :refresh»)

Since colored-circle inherits the methods: exposed? and: set-exposed? from circle, we
can use them to access and update the value of the inherited instance variable exposed?

Object-Oriented Programming 103

Name Conflicts
Inheriting more than one instance variable with the same name is allowed (there will be two
distinct variables), but you can only have one method with a particular name. This means that
if the parents' have methods with the same names, you will get an error unless you make sure
to inherit only one of the identically named methods.

(define-type a
(:var x)
:all-settable)

(define-type b
(:var x)
:all-initable
:all-gettable)

This is the WRONG way to inherit from both a and b.
We are trying to inherit two methods named :x.

; (define-type c
(:inherit-from a)
(:inherit-from b)
(:var z)
:all-gettable)

This is the right way to do it. We must specifically ask
00. not to inherit one of the :x methods.

(define-type c
(:inherit-from a)
(:inherit-from b (:methods :except :x»
(:var z)
:all-gettable)

To access the second instance variable named x, we must define our own method to do so using
call-method.

Method to get to type b's x instance variable

(define-method (c :x-b) ()
(call-method (b :x»
)

104 Object-Oriented Programming

The same conflict shows up in the situation where type b inherits from type a, and type c inherits
from both type a and type b. In this case, c will have two copies of a's instance variables, but
you must explicitly not inherit some methods to avoid name conflicts. This is not a situation
that you should attempt to emulate. It is described here for completeness.

(define-1iype a
(:var x)
:all-settable)

(define-type b
(: var y)
(:inherit-from a»

(define-type c
(:var z)
(:inherit-from a)
(:inherit-from b (:methods :except :x :set-x»)

(define-method (c :set-x-b) (value)
(call-method (b :set-x) value »

(define-method (c :x-b) ()
(call-method (b :x»)

(setq zone (make-instance 'c»
(=> zone :set-x 6) => 6
(=> zone :x) => 6
(=> zone :set-x-b 9) => 9
(=> zone :x) => 6
(=> zone :x-b) => 9

Pseudo Instance Variables
You can simulate direct access to inherited instance variables with the :variables option to
:inherit-from. This option provides a shorthand notation for invoking certain methods that
are defined for the parent instance type (the methods mayor may not be inherited by the child
type).

The :variables option has the following form:

(: variables {iuar-name I (iuar-name alias) }*)

When this option is specified, methods for the child type may use iuar-name (or alias if the
second form of the option is used) as a shorthand notation for the form

(call-method (parent-type: iuar-name»

Object-Oriented Programming 105

In addition, methods for the child type can use

(setq ivar·name value) or
(setq alias value) (if the second form of the :variables option is used)

as a shorthand for

(call-method (parent-type :set-ivar-name) value)

The parent instance type must have the appropriate method(s) defined on it (: iuar·name and
:set-ivar·name) in order to use the shorthand.

Example of the :variables Option
(define-type human

(:var birthdate :initable :gettable)
(:var height :settable)
(:var weight :settable)
(:var name :initable :gettable»

(define-type doctor
(:var alma-mater :initable :gettable)
(:var specialty :settable)
(:inherit-from human

(:variables height
(weight tonnage)
)

:init-keywords)

tonnage is an
alias for weight

With these instance type definitions, we can define methods for doctor that can refer to the
inherited instance variable height and the alias tonnage as if they were instance variables defined
directly in the doctor instance type.

(define-method (doctor :change-size) (w-delta h-delta)
(setq tonnage (+ tonnage w-delta»
(setq height (+ height h-delta»
)

Note that the :variables option does not define any methods. Using this option does not by
itself allow instance types that inherit from doctor to access the same variables. To make access
possible by types that inherit from doctor, the necessary methods must be inherited by doctor.
In this particular case they are, since there are no :methods options in the: inherit-from clause;
all human methods are inherited by doctor. Specifying an alias in a :variables option does not
change the name of the inherited method that accesses the aliased instance variable (eg. in the
example above, doctor inherits a method named :weight, not one named :tonnage).

106 Object-Oriented Programming

Caveats
The behavior of the macros that implement object-oriented programming can surprise you. For
instance, a call to the following function will not correctly define the instance type fromfoo.

(defun save-time ()
(extn:define-type foo

(:var a)
(:var b (:type simple-string»
:all-settable)

(extn:define-type fromfoo
(:var gonzo :settable)
(:inherit-from foo)
)

If you try to invoke one of the methods that are supposed to be inherited from foo (such as
:a) on an instance of type fromfoo, you will get an error message saying that there is no such
method for fromfoo. This happens because of the way the define-type macro is implemented.
It does things both at macro expansion time and at run time. When the macro call to define
fromfoo is expanded, not all of the information it needs to work correctly is available.

The moral of the story is: The macros that implement object-oriented programming may not
behave as expected if you call them anywhere besides at top level. If you have an unexplained
bug in code that deals with instances, this is a good place to look for it.

For more information on errors of this kind, see the "Preprocessing" section of the "Concepts"
chapter.

Object-Oriented Programming 107

Initialization
When make-instance is called to create a new instance, it begins a sequence of actions to
initialize the instance variables of the new object.

1. Check that the initialization keywords in the keyword-value list passed to make-instance
are legal. If there are any that are not recognized, an error occurs.

2. Invoke the universal method :initialize on the uninitialized instance, passing it the
keyword-value list.

a. The :initialize method first invokes the :initialize methods for all instance
types directly inherited by the type of the instance being initialized. The keyword
value list is also passed to these methods.

b. The :initialize method then invokes the universal method
: initialize-variables on the new instance, passing it the keyword-value list. For
any keyword that matches the name of an : initable instance variable, the corre
sponding value is assigned to that instance variable.

Then, any instance variable that remains uninitialized is assigned the default value
(if any) that was specified in the define-type for this instance type. This is done in
the order in which the instance variables appear in the define-type. The forms that
specify the default values are evaluated in the context of the: initialize-variables
method, so they may refer to other instance variables as lexical variables.

c. Finally, from within :initialize, the method :init is invoked, passing it the
keyword-value list. The default definition of :init is empty. It is provided so
that you can define arbitrary initialization code for a particular instance type.

108 Object-Oriented Programming

Here's some code that shows how the initialization methods for a particular instance type might
be defined.

The instance type definition

(define-type child
(:var x1 :initable)
(:var x2 (:init 0) :initable)
(:var x3 (:init (foo x1 x2»)
(:inherit-from parent1)
(:inherit-from parent2)
)

Example definition of :initialize method

(define-method (child :initialize) (keylist)
(call-method (parent1 :initialize) keylist)
(call-method (parent2 :initialize) keylist)
(call-method :initialize-variables keylist)
(call-method :init keylist)
)

Example definition of :initialize-variables method

(define-method (child :initialize-variables) (keylist)
;; Initialize :initables according to keylist
(do. «unprocessed-keys keylist (cddr unprocessed-keys»

(keyword (car unprocessed-keys) (car unprocessed-keys»
(value (cadr unprocessed-keys) (cadr unprocessed-keys»)

«null unprocessed-keys»
(case keyword

«:x1) (setq x1 value»
«:x2) (setq x2 value»)

)
Assign defaults if currently unassigned

(unless (assignedp x2) (setq x2 0»
(unless (assignedp x3) (setq x3 (foo x1 x2»)
)

Empty definition of :init

(define-method (child :init) (keylist)
)

Object-Oriented Programming 109

Note the use of assignedp: This is an HP extension to Common Lisp for dealing with instances.

(assignedp instance-variable) Function

A call to assignedp returns true if instance-variable has been previously assigned a value. An ~.

error is signalled if assignedp is called with an argument that is not an instance variable. }
Consequently, assignedp can only be called from within a method.

Custom Initializations
In a previous example that dealt with a Cartesian vector instance type, we wanted to specify
initial values for x and y coordinates in a call to make-instance, but couldn't because there were
no corresponding instance variables. The following example shows how to do this by writing an
: init method for vector-instance.

;;; The instance type definition

(define-type vector-instance
;; Instance Variables
(:var theta (: type number)

(:init 0»
(:var magnitude (:type number»
;; Options
:all-settable
(:init-keywords :x :y) ; This is new
)

:init method for vector-instance to allow initializing x and y

(define-method (vector-instance :init) (keylist)
(let «xvalue (getf keylist :x»

(yvalue (getf keylist :y»)
;; Both x and y must have values specified
(cond «and xvalue yvalue)

(setq magnitude (sqrt (+ (expt xvalue 2)
(expt yvalue 2»»

(setq theta (atan yvalue xvalue»
»)

110 Object-Oriented Programming

Now you can create a new vector-instance instance and initialize it as if it had x and y instance
variables.

(setq vectorl (make-instance 'vector-instance :x 4.0 :y 3.0»

Note that our : init method is not robust. It assumes that you never want to initialize x or y to
nil (a reasonable assumption in this case, but not in others). Also, there are no checks to see
if initial values were given for magnitude and theta, as well as x and y. A real implementation
would need to specify which values take precedence, or signal an error when illogical combinations
of initialization keywords are given.

Object-Oriented Programming 111

Universal Methods
Whenever a define-type is executed, several methods are automatically defined for the new
instance type. These are known as universal methods (since they are universal to every instance
type). If you do not want a particular universal method to be automatically defined for an instance
type, then that method should be named in a :redefined-methods option to define-type.

To avoid conflicts when a type inherits from more than one other type, universal methods are
not inherited unless explicitly specified in the: inherits-from option. In many cases, inheriting
universal methods will not produce the desired results.

The universal methods are as follows:

:print output-stream depth The :print method is invoked by various printing functions
when an instance is to be printed. It is not normally invoked
directly from user code. Output-stream is the stream to
send the output to, and depth is the current level of print
nesting.

:describe The :describe method displays an instance. It is not nor
mally invoked from user code. The default definition prints
a description of self to *standard-output*. The instance
variables printed are those of the instance type of self and
any types that it inherits.

: initialize keylist This is the basic initialization method of an instance type.
Keylist is an alternating list of initialization keywords and
values. See the "Initialization" section for more detail.

:initialize-variables key/ist Initializes the instance variables of an instance. Key/ist is an
alternating list of initialization keywords and values. See the
"Initialization" section for more detail.

: init keylist Provides the ability to customize initialization of an instance.
The default definition is empty. Keylist is an alternating list
of initialization keywords and values. See the "Initialization"
section for more detail.

:eq1 instance

:equal instance

Method for comparing two instances. The exact semantics
are discussed below under Equality Methods.

Method for comparing two instances. The exact semantics
are discussed below under Equality Methods.

112 Object-Oriented Programming

: equa1p instance

:typep type

:copy

:copy-instance

:copy-state

Method for comparing two instances. The exact semantics
are discussed below under Equality Methods.

This method returns T if self is of instance type type, and
nil otherwise.

This method is used to make a copy of an object. The
default definition simply returns the instance the method
was invoked on.

This method returns a new instance of the same type as
self whose instance variables denote the same objects as
the corresponding instance variables of self.

This method returns self. It is present so that it can be
redefined to implement a copy method for a user-defined
instance type.

Equality Methods
There are three universal methods for comparing two instances for equality: : eq1, : equal, and
:equa1p. The default definitions of these methods are:

(define-method (the-type : eq1) (another-instance)
(eq self another-instance»

(define-method (the-type :equa1) (another-instance)
(call-method :eq1 another-instance»

(define-method (the-type : equa1p) (another-instance)
(call-method :equa1 another-instance»

By default, all three methods return T only if the two instances being compared are the same
object. Notice though that if you change the definition of :eq1, you are changing the meaning
of :equal and: equa1p. Similarly, if you redefine the: equal method, then: equa1p will work
differently.

Object-Oriented Programming 113

If you redefine any of the equality methods, your definition should be

1. Reflexive. (=> foo equality-method fool * True

2_ Symmetric. If (=> foo1 equality-method fo02) * True, then (=> fo02 equality-method
foo1) * True.

3. Transitive. If (=> foo1 equality-method fo02) * True and (=> fo02 equality-method
fo03) => True, then (=> foo1 equality-method fo03) => True.

The definitions of the Common Lisp functions eql, equal, and equalp have been extended to
allow them to compare instances. If only one of the arguments to these functions is an instance,
then nil is returned. If both of the arguments are instances, then the corresponding equality
method is invoked on the first instance with the second one as its argument. Le.,

(equal foo1 fo02)

where foo1 and fo02 are instances, becomes

(send? foo1 :equal fo02)

Note the use of send? to avoid an error if there is no :equal method defined for fooL

Checking the Type of Instances
The default definition of the universal method :typep takes one argument and returns T if the
argument is the same as the name given in the define-type.

The definition of the Common Lisp function typep has been extended to allow it to check
for types defined by a define-type. If the second argument to typep is a type defined by a
define-type, then the :typep method is invoked on the object being checked with the type as
its argument.

(typep x 'fool

where foo is the name of an instance type, becomes

(send? x :typep 'fool

114 Object-Oriented Programming

A new type has also been introduced into the language: instance. This is a full-fledged type
symbol whose members are any objects that are instances. The form

(typep x 'instance)

will return T for any x that is an instance, and nil for any object that is not.

The function instancep has also been added to the language.

(instancep object)

This returns T whenever object is an instance. Otherwise it returns nil.

Function

The Common Lisp function type-of has been extended to return the name of the instance type
of its argument whenever that argument is an instance.

Copying Instances
The :copy-instance and :copy-state universal methods are intended to be used as part of
the implementation of a user-defined copy method on a user-defined instance type. This will
typically be done by invoking the :copy-instance method on the instance to be copied, and
then invoking a user-defined :copy-state on the resulting instance to make copies of the values
of instance variables.

~ For example,

(define-type murphy
(:var xi)
(:var x2)
(:inherit-from cow)
)

(define-method (murphy :copy) ()
(=> (call-method :copy-instance) :copy-state»

(define-method (murphy :copy-state) ()
(call-method (cow :copy-state»
(setq xi (=> xi :copy»
(setq x2 (=> x2 :copy»
self
)

This example assumes that the values of the instance variables xi and x2 are instances that have
a :copy method, and that the instance type cow has a similar user-defined :copy-state method.
For instance variables whose values are not guaranteed to be instances, you need to consider
each possible type of object that they could be.

Object-Oriented Programming 115

Redefining Instance Types
While developing a program, you may need to change the definition of an instance type. This
can have serious implications, since there may be objects of that type already in the system, ~

or other instance types that inherit from the type you're changing. If the new definition is }
compatible with the old (old methods will work correctly on new objects, and new methods will
work on old objects), then the system will let you change the definition of the instance type. If
the new definition is not compatible with the old, then an error is signalled and you must either
rename the existing instance type, or abort the new definition.

The function rename-type is used to change the name of an existing instance type.

(rename-type symboll symbol2) Function

If there is an eXisting instance type symboll and no instance type symbol2, then the type identified
by symboll is renamed to symbol2, otherwise an error is signalled. A call to rename-type returns
the symbol that names the new type.

Assume that before the rename-type, symboll was the name of type a. Existing objects of type
a will continue to function, and will be affected by changes made to a using the name symbol2.
Calling type-of with one of these "old" objects will return symbol2. A new instance type named
symboll can be defined without affecting any of the type a instances.

If an existing type child inherits from type a, it will continue to refer to type a, and will be
affected by any subsequent changes made to a using symbol2. This is true until the type child
itself is redefined, at which point the names in its : inherit-from option(s) are reinterpreted.

Compiled or preprocessed invocations of => where the target variable has been declared to be
type a will work only on instances of type a, even if a new type with the name symboll is
defined.

116 Object-Oriented Programming

Undefining Instance Types
An instance type can also be removed entirely from the system. This of course makes useless
any existing instances of that type. Attempting to send a message to an instance whose type
has been undefined results in an error.

(undefine-type symbol) Function

If there is no instance type named symbol, undefine-type returns nil. Otherwise, the type a
named by symbol is removed from the system, and T is returned.

If there is any existing type that inherits from a, an error is signalled and you are asked whether
or not you wish to continue. If you still wish to undefine the type, continue the computation with
the NMODE command lisp-C (or the listener macro !c, which calls sys: listener-continue).
If you undefine an instance type that is inherited by other types, the other types will most likely
be rendered useless also, since they probably use methods defined on type a.

You can also undefine a particular method for an instance type.

(undefine-method instance-type method-name) Function

A call to the function undefine-method removes the existing definition of method-name for
instance-type. An error is signalled if there is no instance type instance-type. If there is no
method method-name for instance-type, no error is signalled, but nil is returned.

Object-Oriented Programming 117

118 Object-Oriented Programming

Notes

Calling Non-Lisp Routines 7
~ Introduction

Hewlett-Packard has enhanced Common Lisp by providing the ability to call routines written in
other programming languages (e.g., C, Fortran, Pascal) from Lisp. Routines written in another
language are sometimes called foreign functions or non-Lisp functions. Presently this capability
works only in one direction: you can call a foreign function from Lisp, but there is no way to
call a Lisp function from a program written in another language.

This chapter explains how to call a foreign function from Lisp; it has the following organization:

• Defines background concepts (object files and entry points).

• Describes how to load conventional object code into your system.

• Shows how to create a Lisp function that calls a loaded foreign function (includes parameter
conversion and how to access a foreign global variable).

• Examples for each of C, Pascal, Fortran, and assembly language.

Note that all of the symbols that name the functions and variables described here are in the extn
package. The external module must be loaded before the non-Lisp routine calling facility can
be used.

(require "external")

Calling Non-Lisp Routines 119

Background Information
Here is some information about the HP-UX implementation of the three conventional languages
(C, Fortran, and Pascal) that you can call from Lisp. Knowing this information makes it easier
to understand the mechanism used to access foreign functions from Lisp.

Object File Format
The C, Pascal and Fortran compilers that run on HP-UX produce relocatable object files that
have a common format. These are known as .0 (pronounced "dot 0") files because this is the
default suffix for files of this type. The exact format of a .0 file is described in the a.out(5) entry
of the HP-UX Reference.

Object files may contain references to things that are not defined within that file. These are
called external references, and they must be resolved when the object files are loaded. Typically
the external "thing" is defined in another object file that is being loaded at the same time, or in
an archive (library), in which case the necessary part of the archive is linked and loaded along
with the object file.

Entry Points
The names within an object file or code archive that are available to resolve external references
in other object files are known as entry points. Different compilers have different ways of
constructing the name of an entry point from the name of the corresponding entity in the source
code. The Series 300 C compiler simply adds an underscore to create the name of the entry
point, so in the object file for a C function named goof, there is an entry point _goof. The
compiler conventions for naming entry points in Pascal and Fortran are discussed under the
appropriate examples later in this chapter. You can use the HP-UX command nm(l) to identify
the entry points in an object file.

120 Calling Non-Lisp Routines

Loading Foreign Functions
The code that supports the foreign function call mechanism is in the external module. To call
foreign functions, this module must be loaded. If it wasn't loaded when your system was created,
you must load the module by executing

(require "external")

Before calling a foreign function, the object file that contains the definition for the function must
be loaded into your Lisp environment. This is done with extn: load-ofile.

(extn: load-ofile object-file-names &key :libs :protecting :redefining Function
:entry-point-format :load-also :verbose :print)

The parameter object-file-names is a filename or list of filenames, identifying the relocatable
object file(s) to be loaded into the system. Typically these are .0 files that were created by
compiling a source file with the -c (suppress link edit phase) option. A filename is either a string
or a pathname. If object-file-names is nil, then no .0 files are loaded; this is used in combination
with the :load-also parameter to load library routines.

The :libs keyword parameter is a string or list of strings specifying the libraries to be loaded. A
library in /lib or /usr/lib can be specified with "-llibrary-name"; any other library is specified
with its complete HP-UX path. If no :libs parameter is provided, the value of *default-hpux
libraries* (initially "-lc") is used. Note that when the: libs parameter is provided, the C
library is not used to resolve external references unless it is specified in that parameter.

The keyword parameter :redefining has to do with external references and the way object files
are loaded into the system. External references in the loaded object files are satisfied first by
any entry points already defined in the Lisp environment, and then by the libraries specified by
the: libs parameter. If you wish to override this by having an entry point already in the system
replaced by one with the same name from the libraries you are loading, you must specify the
name(s) of the entry point(s) with the :redefining parameter. A single entry point is specified
as a string or symbol; multiple entry points are specified as a list of strings and/or symbols.

On the other hand, the keyword parameter :protecting identifies entry points present in the
system that should not be redefined by the call to load-ofile, even if there is an entry point
of the same name defined in the file(s) being loaded. A single entry point is specified as a string
or symbol; multiple entry points are specified as a list of strings and/or symbols.

Calling Non-Lisp Routines 121

The keyword parameter: load-also specifies entry points that should be loaded from the libraries
even if no external references to them exist in the files being loaded. This is especially useful
if you want to access only some library routines. A single entry point is specified as a string
or symbol; multiple entry points are specified as a list of strings and/or symbols. The value of
:load-also defaults to nil. ~

'---

The actual names of entry points that are affected by the :redefining. :protecting. and
: load-also keywords are constructed by passing each specified entry point name (a string or
symbol) and the: entry-point-format parameter (defaults to *default-entry-point-format*)
to format.

The keyword parameters :verbose and :print are similar to those for the Common Lisp function
load.

The Common Lisp function load has been extended to allow its argument to be the name of a
.0 file. Essentially.

(load nfingle.on) __ (extn:load-ofile nfingle.on)

Examples:

(require n external")
(use-package 'extn)

(load-ofile "/users/joe/clock.on)
(load-ofile nil :libs n-lc" :load-also

'(tmpnam
IItempnam")

Load Object from specific file
Load some C library functions

)
(load-ofile nwindows.o lI :libs '(n-lwindow" n-lsb1 lI-lsb2n "-len»

122 Calling Non-Lisp Routines

Load-related Variables and Functions
There are some system variables that affect the function load-ofile. The symbols that name
these variables are in the extn package.

extn:*unexported-entry-points* Variable

The value of *unexported-entry-points* is a list of entry points that may be present in the
system, but are not used to satisfy external references in loaded .0 files or libraries. The entry
points initiaJly on the list are _end, _etext, and _edata. To construct an entry point to be added
to *unexported-entry-points*, use the function entry-point-symbol described below.

extn:*protected-entry-points* Variable

The value of *protected-entry-points* is a list of entry points that cannot be redefined by
loading a .0 file or library, even if the files being loaded contain an entry point with that name
and the entry point is specified by the :redefining parameter. The entry points initially on the
list are _end, _etext, and _edata. To construct an entry point to be added to *protected
entry-points*, use the function entry-point-symbol described below.

Since the entry points on these lists are maintained as symbols instead of strings, a function is
prOVided to construct an appropriate symbol.

(extn:entry-point-symbol name &key :entry-point-format) Function

This function returns a Lisp symbol that identifies the entry point with the name name (a string)
that has been loaded into the system with load-ofile. If no entry point with that name has
been loaded, nil is returned. The name of the symbol is constructed by passing name and the
:entry-point-format parameter to format. The default for: entry-point-format is the value
of *default-entry-point-format*.

extn:*default-entry-point-format* Variable

The value of *default-entry-point-format* is used as the default value of the: entry-point
format keyword parameter for the functions load-ofile, entry-point-symbol, define-entry
point, defexternal , and defexternalvar. It should be a string suitable for use as the format
string in a call to format. The initial value of *default-entry-point-format* is 11- L - A-) II.

(This says stick an underscore at the beginning of the argument and make it lowercase.)

It is possible that an object file you are loading contains an external reference that you know is
never used by the function you want to access from Lisp. In this case you would not want the
loader to resolve this reference by linking in a library function that would just waste space. For
this reason, a function is provided to define a "dummy" entry point that will be used to resolve
the external reference at load time.

Calling Non-Lisp Routines 123

(extn:define-entry-point name &key :entry-point-format :value) Function

Macro

The name of the entry point is obtained by calling format with nil, the value of :entry-point-
format (defaults to *default-entry-point-format*l, and nome. If the entry point already is ~
present in the system, define-entry-point returns nil, otherwise, T. _)

The :value keyword parameter can be used to assign a value to the entry point. This is only
useful if you are familar with the implementation of Hp·UX and HP's Common Lisp. The default
for: value is a value that will signal an error (such as a bus error) if it is ever used for anything
besides satisfying an unused external reference.

Creating an Access Routine
Once you have loaded the object code that contains the entry point for the function you wish
to call, you must create a lisp macro or function to call the foreign function. The macro
extn:defexternal defines the calling macro or function for you.

(extn :defexternal Junc-name param-/ist &key :result :entry-point
:entry-point-format :macro :type-check)

Func-name is the name of the function or macro being defined (as in defun or defmacro).

Param-/ist is a list of the parameter specifications for the function or macro being defined. It
indicates the number and types of parameters to the foreign function as well as what types of
Lisp objects are expected as parameters to the function or macro being created. The syntax
for parameter specifiers is explained below under "Parameter Specifiers". If the function has no
parameters, param-/ist should be nil.

The keyword parameter :result indicates the type of result the non-Lisp function will be re
turning and what Lisp type it should be converted to. The syntax for this result specifier is
discussed below under "Result Specifiers". If :result is omitted, the function or macro created
will return nil.

The keyword parameters :entry-point and :entry-point-format identify the entry point to
be called by the macro or function being defined. The parameter :entry-point defaults to Junc
name, and: entry-point-format defaults to the value of *default-entry-point-format*. The
name of the entry point is obtained by calling format with nil and these two parameters. While
:entry-point-format is evaluated, :entry-point is not.

124 Calling Non-Lisp Routines

The keyword parameter :macro indicates whether to create a function or a macro. If nil (the
default), a function is created, otherwise a macro is created. It may be desirable to create a
macro to avoid the overhead of a Lisp function call, but care should be taken when using macros
created by defexternal so that expressions passed in as arguments have no side effects and do
not allocate space (cons).

If the keyword parameter :type-check is true (nil is the default), the function created by
defexternal will do run time type checking of array parameters.

Parameter Specifiers
Since Lisp uses different representations for data than do the other languages available on HP
UX, the arguments to a function created by defexternal must be converted before they are
passed to the foreign function. Necessary conversions are done automatically according to the
param-list parameter to defexternal. The syntax of these specifiers will be described shortly.

Non-Array Parameters
There are two styles of parameter specifiers for parameters that are not arrays. Which one you
use depends on whether the argument for that parameter is passed by reference and whether
the non-Lisp code could change the value of the argument.

Any arguments of non-Lisp functions that are passed by reference (Le., a pointer to the argument
is passed instead of its value) require special attention. Many Lisp objects (such as numbers) are
considered immutable and are not expected to change. Passing a pointer to the representation
of an immutable object to a non-Lisp function gives that function the ability to change the object.
This could cause problems if the object is used by other Lisp constructs. It is considered an
error to directly pass pointers to immutable Lisp objects to non-Lisp code unless that code is
known to not modify the object. It is not considered an error to pass pointers to mutable objects
such as strings.

The arguments corresponding to the following types of non-Lisp parameters are passed as
pointers:

• All parameters of Fortran functions

• Pascal var parameters

• Pascal parameters declared to be pointers (eg. i: -integer)

~\ • C parameters declared to be pointers (eg. int *i)

Calling Non-Lisp Routines 125

This restriction does not make it impossible to use non-Lisp code that modifies its arguments, but
it does require you to use the correct style of parameter specifier when setting up the interface
to the non-Lisp function.

The first style of parameter specifier is used for non-pointer parameters and for pointer param- ')
eters that you are certain will not be modified by the non-Lisp routine. The specifier is a list
whose first element indicates the type of the Lisp object to be passed and whose second element
indicates the non-Lisp type it is to be converted to.

(lisp-type non-Lisp-type)

If the non-Lisp type is a pointer type, the non-Lisp code should not modify the value of the
parameter. An example of this style of parameter specifier is (fixnum p-integer), which
specifies passing a Lisp fixnum to a Pascal function expecting a non-var integer argument.

The second style of parameter specifier is used for specifying parameters whose corresponding
arguments may be changed by the non-Lisp code. It has the form:

(var lisp-type non-lisp-type)

In this case the Lisp caller must pass a symbol whose global value is of type lisp-type. Depending
on Lisp-type, the non-Lisp function is either passed a pointer to the value or a copy of the value.
After the non-Lisp call, the global value of the symbol will be set to the (possibly modified) value
of the argument. This may be the original object mutated, or an entirely new object. This is
the recommended way of passing by reference (pointer) when the argument may be modified.

A parameter specifier that is nil indicates that no conversion is to be performed on that
parameter.

126 Calling Non-Lisp Routines

The following table shows the symbols that are currently supported for use in non-array parameter
specifiers. In the names, * indicates a C pointer. and A indicates a Pascal pointer (or var
parameter). These names are symbols in the extn package. The letters next to the non-Lisp
types indicate what Lisp types can be converted to that non-Lisp type.

Lisp C Pascal Fortran

integer c-int 0 p-boolean C f-integer 0
fixnum c-char C p-char C f-short-integer 0
float c-short 0 p-scalar 0 f-real F
simple-string c-long 0 p-integer 0 f-double F
string c-unsigned-int 0 p-real F f-logical 0
character c-unsigned-char 0 p-longreal F f-short-logical 0
string-char c-unsigned-short 0 p-string E f-character A
boolean c-unsigned-long 0 p-pac E f-Hollerith A

c-float F
c-double F p-Aboolean C

p-Achar C
c-int* 0 p--scalar 0
c-char* A p--integer 0
c-short* 0 p-Areal F
c-long* 0 p--longreal F
c-unsigned-int* 0 p--string
c-unsigned-char* 0 p--pac E
c-unsigned-short* 0
c-unsigned-long* 0 p-varstring G

c-float* F
c-double* F

c-string

Key to the letter codes:

A: integer fixnum simple-string string character string-char boolean
B: integer fixnum simple-string string boolean
C: integer fixnum character string-char boolean
0: integer fixnum boolean
E: simple-string string
F: float
G: simple-string (can only be used in a var specifier)

Calling Non-Lisp Routines 121

A few clarifications of the meaning of some non-Lisp type specifiers:

• The Lisp type boolean refers to values whose only significance is whether they are nil
or non-nil.

• The specifier p-varstring represents a Pascal var parameter declared as string rather
than as string [n] .

• The specifier p-pac represents a Pascal packed array of characters.

Array Parameters
You can also pass simple arrays to non-Lisp functions. Arrays are passed as pointers, so any
changes made to an array by a non-Lisp routine will be reflected in the array after the routine
returns.

The syntax for specifying an array parameter to a non-Lisp function is

(({vector I array} !isp-array-type) non-!isp-array-type)

If you're passing a one-dimensional array, use vector, otherwise use array.

Lisp-array-type indicates the type of the elements in the arrays to be passed. It can have any of
the following values.

bit string-char character fixnum integer float T

If lisp-army-type is T, it says that the array or vector is a general Lisp array or vector. The types
of the elements of the array must be convertible to the element type of the non-Lisp routine's
array. All of the Lisp array's elements must be the same type. Specifying Iisp-array-type to be
T is less efficient than giving a specific type.

NOTE

The current implementation does not use any special representation for
arrays with element type character, fixnum, or integer. Consequently,
using one of these types as the Iisp-array-type is the same as using T.

This behavior may change in future releases.

128 Calling Non-Lisp Routines

If lisp-array-type is not T, then the array must have been created by a call to make-array with the
proper: element-type keyword parameter. Likewise, if the parameter was specified as being a
vector, then a vector must be passed. The default is for no type checking of array parameters to
non-Lisp routines, but you can have the routine created by defexternal check for these cases
by proclaiming safety to be 3 before the defexternal with (proclaim ' (optimize (safety
3»), or with the :type-check parameter to defexternal. Passing arrays of the wrong type
when type checking is not enabled can be hazardous to the state of your system.

The following table shows valid values for non-/isp-array·type along with codes designating which
Lisp array types can be converted to them.

C Fortran Pascal

c-char* A f-character-array A p-pac A
c-int* B f-integer-array B p-integer-array B
c-long* B f-short-integer-array B p-real-array C
c-float* C f-real-array C p-longreal-array C
c-double* C f-double-array C p-char-array A

c-* D

A: string-char character T
B: character fixnum integer T
C: float T
0: anything

Note that although T is syntactically correct with every non-Lisp array type, the elements of the
array still may need to be converted. For an idea of the conversions that are available, see the
table in the section "Non-Array Parameters" above.

Multi-dimensional Fortran arrays are stored in column-major order while Lisp arrays are stored
in row-major order (as are C and Pascal arrays). This means that the indices of Lisp arrays must
be transposed when they are accessed by Fortran routines. There is an example of this in the
section below containing Fortran examples.

Calling Non-Lisp Routines 129

Result Specifiers
Like parameter specifiers, result specifiers are represented as lists, but the first element is the
non-Lisp type of the result, and the second element is the Lisp type the result should be converted
to, I.e.,

(non-Lisp-type Lisp-type)

The possible type names are the same ones that are available for parameter specifiers (see
above).

The result specification null indicates that the function created by defexternal should return
nil. The result specification nil says not to perform any conversion of the result.

Restrictions
There are a few reasonable restrictions to the non-Lisp function calling facility.

• No type checking is performed on the arguments to a function or macro created by
defexternal, except for array parameters when safety is proclaimed to be 3 or the
:type-check keyword is specified to be true.

• There is no way to obtain a useful value from a C function that returns a structure by
value (eg. struct stype sfunc 0).

• Records, structures, sets, and other "complicated" types are not supported.

• Lisp strings cannot be passed as arguments to Pascal functions whose corresponding pa
rameter is declared to be a string of length less than four.

Examples
Here are some examples of calls to defexternal. These assume that the necessary entry points
have already been defined by a prior call to load-ofile. Complete examples showing every
step needed to call functions in C, Fortran, and Pascal, are given at the end of this chapter.

(require "external")
(use-package 'extn)

;;; Define C_FUNC_NUMBERS to call the entry point "_c_func_numbers fl
•

;;; This C routine takes six arguments and returns a double float
(defexternal c_func_numbers «integer c-short)

(integer c-int)
(integer c-long)
(integer c-unsigned-int)
(float c-float)
(float c-double»

:result (c-double float»

(defexternal clock nil :result (c-long integer»

130 Calling Non-Lisp Routines

Macro

Accessing Non-Lisp Variables
In addition to being able to define Lisp functions that call non-Lisp functions, it is also possible
to create a Lisp function to return the value of a global variable that is defined in a program
written in another language.

(extn: defexternalvar function-name &key :vartype :entry-point
:entry-point-format :offset :macro)

This macro is used to create functions and macros of no arguments that return values from
non-Lisp global variables. The non-Lisp routines must be loaded (by a call to load-ofile) before
calling the created function or macro. The :entry-point, :entry-point-format, :offset, and
:macro parameters are evaluated, but the other parameters are not.

The name of the Lisp function or macro created is the symbol function-name. The keyword
parameters are as follows:

:vartype Specifies the conversion of the non-Lisp value to a Lisp value. These
have the same form and possibilities as result specifiers for defexternal
(except null is not allowed). A :vartype of nil indicates that no
conversion is to be performed. It defaults to (c-int integer).

:entry-point This identifies the entry point associated with the variable. The value of
:entry-point defaults to function-name. The actual entry point name
to be used is obtained by calling format with nil and the values of the
:entry-point and :entry-point-format keyword parameters.

:entry-point-format Used to construct the name of the entry point to be accessed. It defaults
to the value of *default-entry-point-format*. See: entry-point.

:offset Used to reference variables at a byte offset from the named entry point.
This is useful when referencing gloOOls in Pascal and Fortran where
globals are maintained as offsets into a global or common area. It
is also useful for accessing elements of global records, structures, or
arrays. User supplied offsets must be derived from a knowledge of
how the non-Lisp compilers allocate memory for global variables. This
argument defaults to O.

:macro Specifies whether a function or macro is to be created. A value of
nil (the default) means a function is created; non-nil says to create a
macro. Creating a macro avoids the overhead of a function call, but
if complicated type conversions are required, the advantage may be
negligible or nonexistent.

Calling Non-Lisp Routines 131

Example
As an example of where defexternalvar is useful, consider the HP-UX system variable errno. If
you are making an Hp·UX system call from Lisp (with a function created by def external or with
one of the provided functions) and something goes wrong, it would be nice to be able to check
what the specific error was. The following code defines a function hp-ux-error that returns the
value of errno. (For more information on errno see errno(2) in the HP-UX Reference.)

(require "external ll
)

(use-package 'extn)

Load the errno entry point from the C library.

(load-ofile nil :load-also lIerrno n)

Define hp-ux-error with defexternalvar

(defexternalvar hp-ux-error :entry-point lIerrno ll
)

132 Calling Non-Lisp Routines

Complete Examples
This section presents examples (at least one each for C, Pascal, Fortran, and assembly language)
of calling non-Lisp functions from Lisp. Every step in the process is described. Even if you don't
need to call functions written in all three of these languages, you may want to look at all of the
examples for a more complete understanding of the non-Lisp function calling mechanism.

c
Suppose you have the following C function that you wish to call from Lisp defined in the file
silly.c.

double silly(x1. x2, name)
int x1;
float *x2;
char *name;

{
if (strcmp(name, "Big Cheese") == 0) {

*x2 = 8.762;
return(xl + *x2);
}

else
return(xl - *x2);

}

The first step is to compile the source file into a .0 file with the Hp·UX command

cc -c silly.c

This will produce the object file silly. 0 containing the entry point _silly. Entry points in C
are just the name of the function or global variable preceded by an underscore L). These entry
point names are case sensitive.

Calling Non-Lisp Routines 133

Assuming that the file silly. 0 is in the directory SHOME/c-code, the Lisp code to access this
function looks like this:

(require "external ll)

(use-package 'extn)

;;; Load the .0 file containing the object code for silly

(load-ofile lI$HOME/c-code/silly.oll)

;;; Define a function lisp-silly that calls the C function silly

(defexternal lisp-silly «fixnum c-int)
(var float c-float*) ; Argument must be symbol
(simple-string c-char*»

:result (c-double float)
:entry-point "silly") ; Note use of default format

(setq a2 3.221)

;;; Call lisp-silly

(let· «al 6) (a3 lIBig Cheese ll»
(lisp-sillyal 'a2 a3) Note that a2 is quoted (var param).
)

a2 => 8.762

134 Calling Non-Lisp Routines

"..."......,
This next example shows calling a C function that has an array parameter. Assume that the C
source is in a file called linear. c.

1*
Finds the determinant of a 2x2 integer array.
*1
determinant (a)
int a [2] [2] ;
{

return«a[O][O] * a[1] [1]) - (a[0][1] * a[1][0]»;
}

After you have compiled this into the file linear. 0 with the HP-UX command

cc -c linear.c

you can access the function determinant from Lisp.

(require "external"
(use-package 'extn)

(load-ofile "linear.o")

(defexternal determinant «(array fixnum) c-int*»
:result (c-int fixnum»

(setq m (make-array '(2 2) :initial-contents '«-1 9) (-8 10»
:element-type 'fixnum»

(determinant m) => 62

Calling Non-Lisp Routines 135

The following example shows the Lisp code to call some Hp·UX library routines from Lisp. See
section 3 of the HP-UX Reference for details about the routines.

(require n external II)

(use-package 'extn)

;;; Load the necessary object code from the C library

(load-ofile nil :libs "-lc" :load-also '("clock" II-Ie" is unnecessary
natoi"»

Create the Lisp functions to call the C library routines

(defexternal clock nil :result (c-Iong integer»

(defexternal atoi «simple-string c-string»
:result (c-int integer»

Now call the lisp functions

(clock)

(atoi n466") * 466

136 Calling Non-Lisp Routines

Pascal
Calling Pascal functions from Lisp is similar to calling C functions, except for the way the Pascal
compiler identifies entry points. This example illustrates the differences.

Given the following Pascal source code in a file ipswich. p,

module foo;

export

implement

type mystring = string[15];
function pfuncl(xl:integer; var x2:real; name:mystring): real;
function pfunc2(n: integer; x, y:real): longreal;

function pfuncl;
begin

if (name = 'Big Cheese') then begin
x2:= 8.762;
pfuncl:= xl + x2
end

else
pfuncl:= xl - x2

end;

function pfunc2;
var i: integer;

temp: longreal;
begin

temp:= 0;
for i:= 1 to n do

temp:= temp + x + y;
pfunc2:= temp

end;

end. {MODULE FOO }

To compile this module of two functions, execute the HP-UX command

pc -c ipswich.p

This will create the file ipswich. o.

Calling Non-Lisp Routines 137

The Pascal compiler has a different convention for naming entry points in the object files it creates.
Entry points in Pascal are all converted to lower case. The form of the entry point name is
_module-nameJoutine-name or _program-name_Toutine-name if you're not using modules. This
affects how we identify the entry points in calls to defexternal and load-ofile.

(require "external")
(use-package 'extn)

;;; Load the necessary object code

(load-ofile "ipswich.o" :libs '("-lpc -leU»

;;; Set up an entry point format string for module foo
(defvar foo-entry-point-format u_foo_-(-A-)U)

Define the Lisp equivalents of pfuncl and pfunc2

(defexternal pfunc1 «fixnum p-integer)
(var float p-·real) Argument must be a symbol
(string p-string»

:result (p-real float)
:entry-point-format foo-entry-point-format)

(defexternal lisp-pfunc2 «fixnum p-integer)
(float p-real)
(float p-real»

:result (p-Iongreal float)
:entry-point "pfunc2"
:entry-point-format foo-entry-point-format)

Call the functions

(setq p-arg 4.666)
(pfunc1 2 'p-arg "Jack be nimble") ~ -2.566

(lisp-pfunc2 11 8.9 7.3) ~ 178.2

138 Calling Non-Lisp Routines

Procedures
Another difference between Pascal and C is that Pascal can have procedures as well as functions.
This next example demonstrates calling a Pascal procedure with an array parameter from Lisp.

module hunky;

export type matrix = array[l .. 3.1 .. 3] of integer;
procedure dory(var m:matrix);

implement

procedure dory(var m:matrix);

var i.j: integer;
temp: matrix;

begin
for i:= 1 to 3 do

for i:= 1 to 3 do
temp[i.j]:= m[j.i];

for i:= 1 to 3 do
for j:= 1 to 3 do

m[i.j]:= temp[i.j]
end;

end. { MODULE HUNKY }

Compile this function (defined in the file pproc. p) with

pc -c pproc.p

to create the file pproc. o. In this case the entry point for the procedure is named _hunky_dory.

Calling Non-Lisp Routines 139

(require "external")
(use-package 'extn)

;;; Load the necessary object code

Define the Lisp equivalent of procedure dory

(defexternal dory «(array fixnum) p-integer-array»
:result null ; Always return nil
:entry-point-format ll_hunky_-(-A-)n
:type-check t)

Call the function

(setq my-matrix (make-array '(3 3) :initial-contents
'«1 2 3) (466) (789»»

(dory my-matrix) => NIL
my-matriX => #2A«1 4 7) (2 6 8) (3 6 9»

140 Calling Non-Lisp Routines

Fortran
The important thing to remember when writing Lisp code to access Fortran functions is that all
parameters are passed by reference. Thus if an argument's value may be changed by the Fortran
function, that corresponding parameter should be specified using (var Lisp-type non-Lisp-type)
in the defexternal call.

Suppose you wanted to call the following Fortran function (defined in the file archaic. f).

real function oof(x1. x2. name)
integer x1
real x2
character*15 name

if (name .eq. 'Big Cheese') then
x2 =8.1
oof = x1 + x2

else
oof = x1 - x2

end if

end

Compiling this with

fc -c archaic.f

creates the object file archaic. o. The Fortran compiler names entry points like the C compiler
(Le., Junction-name).

After the file is compiled, the following Lisp code can be used to call the function oof.

(require "external")
(use-package 'extn)

;;; Load the required object file

(i~ad-ofile "archaic.o" :libs '("-lF77" "-1177" "-1m" "-Ie"»

;;; Set up the equivalent Lisp function...
(defexternal oof «fixnum f-integer)

(var float f-real)
(string f-character»

:result (f-real float»

(setq fparam 2.33)

This parameter isn't changed
This one could be changed

;;; Call the created function

(~~f 0 'fparam "Big Cheese ") Note padding to Fortran size (*15)
fparam => 8. 1

Calling Non-Lisp Routines 141

Subroutines
Fortran also has program units that are not functions. This example shows calling a Fortran
subroutine that has array parameters. Remember that Fortran stores arrays in column-major
order while Lisp stores them in row-major order. This means that you need to reverse the
subscripts.

* Puts the sum of the rows of array x into array sum
subroutine jawaka (x. sum)
integer x(3.6).sum(3)

do 100 i=1.3
sum(i) = 0
do 200 j=I.6

sum(i) = sum(i) + xCi.j)
200 continue
100 continue

end

Assuming this is defined in the file fproc .f, compile it into the file fproc. 0 with

fc -c fproc.f

Then, you could use the following Lisp code to access the subroutine.

(require "externa1 11
)

(use-package 'extn)

;;; Load the required object file

(i~ad-ofi1e "fproc.o ll :libs 1I-1F77 -1177 -1m -lc")

;;; Set up the equivalent Lisp function

(d~fexterna1 1isp-jawaka
«(array t) f-integer-array)
«vector t) f-integer-array)
)

:entry-point "jawaka"
:resu1t null ; Always return nil
)

;;; Call the created function
(setq mtrx (make-array '(6 3) ; Note the transposition of dimensions

:initial-contents '«1 2 3) (466) (789)
(10 11 12) (13 14 16»)

sumvector (make-array 3 :initia1-element 0»

(lisp-jawaka mtrx sumvector)
sumvector => #(36 40 46)

142 Calling Non-Lisp Routines

Assembly Language
For assembly language, entry points have no system-enforced naming conventions since they are
whatever you choose. Here's an example of an assembly routine that you might inexplicably
wish to call from Lisp.

Back up p to point at last char

all chars examined.
Get char pointer s
Copy it to P
Bump P until it points at 0

ENDl

globl palindromep
palindromep
* Returns 1 if parameter is a palindrome
* (i.e., reads same forwards and backwords)
* Returns 0 if not.
* Comparison is case sensitive,

move.l 4(a7),a5
move.l a5,a4

LOOPl tst.b (a4)
jeq ENDl
addq.w #l,a4
jra LOOPl
sUbq.w #l,a4

Return 1 if palindrome, 0 if not

s++
p--
Go to top of loop

Loop until s >= p
or until *s != *p

cmp.l a4,a5
jcc END2
move.b (a5) ,dO
cmp.b (a4) ,dO
jne END2
addq.w #l,a5
sUbq.w #l,a4
jra LOOP2

moveq #O,dO
cmp.l a4,a5
jcs EXIT
moveq #l,dO
rts

END2

LOOP2

EXIT

If this code was in the file aproc. s, you would assemble it with the command

as aproc.s

to produce the file aproc. o. The following code could then be used to access it from Lisp.

(require "external")
(use-package 'extn)

(load-ofile "aproc.o")

(defexternal palindromep «simple-string c-string»
:result (c-int boolean)
:entry-point-format II-(-A-)II)

(palindromep "aba ll
)

(palindromep II aaaII)
(palindromep "abcd")
(palindromep "abcdefgfedcba")

=>T
=>T
=> NIL
=>T

Calling Non-Lisp Routines 143

144 Calling Non-Lisp Routines

Notes

Debugging Tools 8
~ Introduction

The Hewlett-Packard Lisp workstation provides tools to help you debug Lisp programs. There
are two levels of access to these tools:

• A functional level where you obtain information by calling particular debugging functions.

• A higher level integrated into the human interface. This is easier to use, and likely the
one you will use more often.

At the the lower level there are functions that:

• Return information about the state of a function call.

• Cause calls to a particular function to be traced.

• Set break points at particular functions.

• Signal and process error conditions.

• Inspect Lisp objects.

The two screen-oriented debugging tools are:

• An execution monitor that allows you to step through the execution of a Lisp form.

• An execution stack browser that displays the current state of the active Lisp execution
environment.

This chapter discusses how to use these debugging tools, as well as briefly covering some
concepts essential to understanding them.

Debugging Tools 145

Concepts
In order to use the debugging tools effectively, you must have a little knowledge about the way
things are represented in the Lisp system. For instance, you should know about the execution
stack and its entries, as well as what effect compiling code has on your ability to debug it.

The Execution Stack
The Lisp system maintains in memory an execution stack on which it stores information about its
current state. The stack can be thought of as a collection of currently active lexical environments.
The environment of a particular function call stores information pertinent to that call, such as the
values of parameters and local variables. This information can be very valuable when debugging,
so the debugging tools allow you to view and change some of the values stored in an environment.

Alternate Listener Modes
Listeners are discussed in more detail in the "Concepts" chapter, but this section should provide
enough information for most users.

The Lisp listener (or read-evaI-print loop) is the function that reads an expression, evaluates it,
and prints the results. Most of the time this is the behavior that you want, but there are times
when you want some specific additional capabilities.

If the debug module is loaded, and an error occurs when executing a Lisp form, evaluation of
that form stops and the system enters a new listener in debug listener mode. This is simply
another read-eval-print loop in which you can evaluate forms to examine or alter the state of
the system (e.g. function definitions, values of symbols). If the debug module is not loaded, you
will enter a simple break loop, which is another listener mode with less capabilities than debug
listener mode. Depending on what the error was, you may be able to continue the original
evaluation where it left off (hopefully after you have corrected the condition that caused the
error). Some errors will explicitly prompt you to enter a new value to continue the execution.
You can enter debug listener mode or a break loop yourself by calling the function break. More
information on break loops and the debug listener is provided later in this chapter.

The command-oriented inspector is another specialized listener mode. It displays and accesses
Lisp data objects. It too is described in greater detail later in this chapter.

146 Debugging Tools

Compiled V5. Interpreted
When a Lisp function is compiled, much of the information about that function will not be
available at execution time. Interpreted code however, retains most of the information that you
will be interested in when debugging. For this reason, it is much better not to compile functions
that you think you will have to debug.

Optimizations
When debugging, you should turn off all optimizations by evaluating the form

(proclaim '(optimize (extn:eval-speed 0»)

This is the default; it will prevent the language preprocessor from making functional transforma
tions to your interpreted code. If optimizations are enabled, you may find it difficult to recognize
your own code because of the transformations made by the preprocessor. (See the "Program
ming Tips" chapter for more detail on optimizations.) The preprocessor must expand macros,
however, so code that you do not recognize may be the result of a macro expansion, not an
optimization. Note that compile-file uses the speed quality (not eval-speed) to determine
what optimizations to make.

Debugging Tools 147

The Execution Monitor
The execution monitor is an interactive debugging tool that lets you step through and control
the execution of an interpretive Lisp form. With it you can run a function a step at a time, or let
it run until a specified point in its execution or until you press a key. You can also modify the
values of a function's arguments or return values. Once the execution monitor is loaded with

(require ndebug-brn)

it can be invoked with the Common Lisp macro step.

(step form) Macro

Form should not be quoted. Evaluating a call to step puts you into the execution monitor to step
through the execution of form. The monitor can also be invoked with the !step and !qstep
listener macros or the function debug: step-from-listener (see the section "Debug Listener
Mode" later in this chapter). To step a method, just step a call to extn: => that invokes the
method you want to step.

The execution monitor looks and behaves like an NMODE browser. In fact, it appears as one of
the entries in the Programming Aids browser, and can be browsed into and out of. Of course,
there won't be anything interesting going on there unless you have previously initiated stepping
with step. Only one form can be stepped at any given time, but it is possible to leave the
monitor's buffer, evaluate a form, and return back to the monitor. Any changes made to the
values of special variables will also change them in the functions being stepped.

Execution Monitor Items
A line displayed in the execution monitor can be one of five things:

1. Display information such as the lines at the top that describe the monitor.

2. The next form to be executed as part of the stepping. The next command you enter
controls how the form will be executed.

3. A form that has been executed as part of the stepping. It is followed by ~ and the value
that it returned.

4. The name of an argument to a function call that has been stepped. It is followed by::: and
its value.

5. A return value of a stepped function call.

148 Debugging Tools

The indentation of a line shows its relative level of nesting. When the monitor runs out of room
to indent lines, it starts over on the left side and uses a new character to precede the lines. The
characters used to precede lines are (in order), I, ;, :. Where a # is displayed, it indicates that
that item was not printed due to the value of debug:*debug-print-level*. A ... indicates that
the item was not displayed due to the value of debug:*debug-print-length*. A B in column
one indicates that a breakpoint was set on the form on that line.

The execution monitor has an inverse video bar that indicates the current line of the browser.
As soon as you evaluate a call to step, you are put into the execution monitor with the inverse
bar on the form to be stepped.

Breakpoints
In the execution monitor, breakpoints are used to interrupt execution started by the commands
Run or Walk. Breakpoints are the names of functions and methods which when called or returned
from, cause the monitor to stop stepping and wait for your next command. The elements of the
breakpoint list denote functions or methods. Functions are denoted by the symbol that names
them. Methods are denoted with the syntax

(:method instance-type method·name+)

Breakpoints can also be set at an arbitrary form which you are in the middle of executing. This
will cause the monitor to stop at the next call after the marked form returns (I.e., when it has
been executed completely).

Commands
What commands are valid at a particular time depends on the current line of the monitor. Also,
the same command may have two different meanings, depending on the state of the monitor.
This section describes the execution monitor commands, grouped by functionality.

Debugging Tools 149

Help (H)

Quit (Q)

Abort (A)

General Commands
These commands are always available in the highest level menu of the execution monitor. They
affect the general state of the monitor.

Accesses the NMODE help system. Information on the monitor can then be
obtained with the Where-am-I (W) command.

Options (0) Gives you a choice of entering a browser for debug printing options (P) or
execution monitor options (M). The execution monitor options are described
below.

Breakpoints (B) Enters a menu for changing the status of the monitor·s breakpoints (Le.,
functions the monitor will stop at when calling or returning). The folloWing
sulJ.commands are available.
Edit (E): Enter a new list of breakpoint functions.
Mark (M): Set a break at the return of the highlighted form.
Unmark (U): Remove a breakpoint from the highlighted form.
Activate (A): Enable stopping at breakpoints (the default).
Deactivate (0): Disable stopping at breakpoints.
QUit (Q): Return to the main monitor command level.

If the top-level form being stepped has returned, qUitting turns off monitoring
and selects the previous buffer. If the stepping is not complete and the user
confirms the request, quitting finishes evaluation of the current form with
monitoring turned off. Return values of currently active forms will be shown,
but new evaluations within the form will not be monitored.

After prompting for confirmation. abort stops monitoring of new evaluations.
If there is an active form. abort terminates stepping without returning a value;
this has the same effect as the command bound to Lisp-A.

Stepping Commands
These commands control the stepping process. The stepping always proceeds from the last form
in the execution monitor; it does not matter what line is currently highlighted.

Evaluate (E)

Step (5)

150 Debugging Tools

This command evaluates the current form without monitoring it, and
displays the results.

Take the next step. One of two things happens:
• If the form is a call to a compiled function that doesn't call any
interpreted functions. the function is called, the result displayed, and
the next form to be stepped is displayed.

• Otherwise, the next form to be stepped is displayed.

Walk (W)

Run (R)

Slowly steps automatically until you press I Return I or a breakpoint is
reached, displaying the steps as it proceeds.

Steps automatically until you press IReturn Ior a breakpoint is reached.
No intermediate forms are displayed, but they are stored in the moni
tor's history and can be accessed with the> command.

Information Commands
The following execution monitor commands control the information that is displayed.

More (»

Less «)

View (V)

If the highlighted item is a previously executed form, show an added
level of detail of the steps of its execution. In this case, the > command
can be repeated to show more detail. If the item is a value, prettyprint
it to the output buffer.

Remove detail about the highlighted item from the display.

Show more information about the highlighted item. This is a two level
command that is sensitive to the type of the highlighted item. The
available sub-commands are described below.

When the highlighted line is a function call, the following view commands are available.

Code (C)

Values-and'args (V)

No-values (N)

Quit (Q)

If the highlighted item is a call to a function or method whose definition
is in a loaded code browser, the definition is displayed.

Displays the function's arguments and their values, one per line. If the
function has returned, it also displays the value(s) it returned. This com
mand is used if you want to select an argument or value to prettyprint,
get, or modify.

If the highlighted item is a function whose arguments and value(s) are
displayed on individual lines, it removes the argument and value lines
from the display.

Exits the View command menu.

When the highlighted item is a form to be stepped, the following view commands are available.

Prettyprint (P)

Values (V)

Prettyprints the form to the output buffer.

Displays the value(s) returned by a stepped form, one per line. This
command is used if you want to select a value to prettyprint, get, or
modify.

Debugging Tools 151

No-values (N)

QUit (Q)

If the highlighted item is a form whose value(s) are displayed on indi
vidual Iinest it removes the value lines from the display.

Exits the View command menu.

If the current item is a functionts argument or value, the following View commands are available.

Prettyprint (P)

Value (V)

Set (5)

Quit (Q)

The current value is prettyprinted.

Prompts for the name of a special variablet and then stores the value
of the item into that variable.

Prompts for a new value for the highlighted item. Only allows changes
to arguments of a function about to be called.

Exits the View command menu.

Program Errors
If an error occurs in the monitored executiont the message will be printed in the output buffer
(as usual). The monitor display will be correct if you were single stepping or walkingt but not
if you were running. After the errort you can do anything you could normally do in a debug
listener or break loop. ~

If the error is continuable and you wish to continue, type Lisp-C or the monitor's Step, Walkt
or Run commands. At this point a prompt for input may be printed in the output buffer. If so,
you must move to a Lisp buffer and execute the form that you wish to respond with.

If the error is not continuablet either use the monitor's QUit command or Lisp-Q or Lisp-A to
quit out of the break loop.

152 Debugging Tools

5.

6.

~
7.

8.

Options
The execution monitor options browser lets you inspect and modify aspects of the stepping
environment. Some of the options (such as uBreakpoints list") may also be modified by execution
monitor commands. To change the value of the highlighted option, use the Browse/modify (B)
command. You will either be prompted for a new value or the value of the option will be toggled.
The available options are:

1. What to monitor: Lets you choose between stepping all expressions or only function calls.
If nil, then no intermediate results are shown.

2. Maximum monitoring depth: When the depth of evaluation nesting goes beyond this
number, the execution will continue, but will not be monitored.

3. Show rarely used options: Toggles whether or not to display the options described after
this one.

4. Stop at breakpoints: Toggles whether the the monitor will stop at breakpoints.

Breakpoints list: Prompts for you to enter a new value for the breakpoints list.

Maximum display indentation: The monitor will not indent items further than this column;
it will restart indentation in column two.

Number of steps kept in history: The minimum number of most recent history items always
kept by the execution monitor. History for returned items older than this is periodically
pruned.

Number of steps before pruning: Determines how often the monitor will remove old history.

9. Keep histories of preVious runs: If Keep, then the monitor maintains histories of the
previous monitoring of forms.

Debugging Tools 153

The Execution Stack Browser
The execution stack browser is an interactive tool that lets you examine and alter the Lisp
execution stack. Like the execution monitor, it appears as an NMODE browser, and is not
available outside the NMODE environment. When you are in a debug listener and the stack
browser is loaded, you can browse the execution stack with the command Lisp-b (e-l b). The
stack browser is most useful when executing a function signals an error and you want to know
why. It is loaded with

(require ndebug-brn)

In the stack browser you can see the sequence of function calls that were active when the break
occurred. There are commands to display information about the active functions, such as

• A description of the parameter list.

• The values of arguments.

• The values of local variables

This information is only available for interpreted functions. The only visible component of a
compiled function is its name on the stack.

Commands
Once you have gotten into a debug listener and browsed into the stack browser, the following
commands are available:

Help (H)

Browse (8)

More (»

Less «)

Value (V)

154 Debugging Tools

Enters the standard NMODE browser help facility. Information on the
stack browser can then be obtained with the Where-am-I (W) command.

If the highlighted item is an activation of a function or method, the
browser searches for the function or method definition in any code
browsers that are present; if the definition is found, it is browsed into.
If the highlighted item has a value (such as a lexical or special variable),
then the function describe is called with the value.

Displays more detail about the highlighted item. For a function, the
first level of detail is the values of its parameters. Pressing > a second
time displays the values of local variables.

Reverses the effect of the last > command on the highlighted item.

Prompts for the name of a special variable and then stores the value of
the highlighted item into that variable.

Set (S)

Disassemble (D)

Options (0)

Look (L)

Quit (Q)

Prompts for a value to be stored into the highlighted item. This can be
a form to be evaluated; the return value will be used.

Writes the disassembly of the highlighted function into the output buffer.

Gives you of choice of two options browsers - one for changing the
values of the debugging *print-level*, *print-depth* and *print
radix*, and one for determining whether certain kinds of functions
show up in the stack browser.

Reexamines the stack, and displays any changes. This is not usually
needed, since the stack is examined upon entry to the browser, but can
be used to update the display after a change in the environment, such
as setting a new current package.

Exits the execution stack browser.

Debugging Tools 155

The Inspector
The term "inspectoe' refers to a tool for examining and altering Lisp data (Le., objects). HP's
Lisp system provides a command-based inspector. ~

The Common Lisp function inspect is used to enter the command-oriented object inspector.
This is actually a listener mode that defines a set of read macros (the "commands") to access
inspecting functions.

(inspect object) Function

This writes information about object to the stream *standard-output*, and puts you into an
alternate listener for the inspector. (See the section "Alternate Listeners" at the beginning of this
chapter or the "Listeners" section of the "Concepts" chapter). You can then enter commands
to obtain more information, or to alter the object being inspected. Commands are entered
by evaluating forms that are preceded by the current listener macro character. The following
documentation assumes that the macro character has been set to its default (! : the
exclamation point) by evaluating

(system:on 'listener-read-macro)

In addition to using the read macros as commands, you can also call the inspecting functions ~
directly.

The general form of output from the command-style inspector is:

'<ITEM: address> : item-type
field-name : field-value

A few of the inspector commands require you to specify the part of the object that the command
applies to. This is done with the name of the field, possibly foUowed by indices into the value
of the field (if it's an array or list). See the example for an illustration of using an index in a
command.

156 Debugging Tools

Commands
The commands available in the inspector are described below. All of the commands can be
abbreviated by using the first letter of the command name. If you specify arguments in a
command, the command must be a list, otherwise the parentheses can be omitted. The name
of the function that a command maps to is given at the end of the command description.
Remember that this documentation assumes that the listener macro character has been set to
the exclamation point.

!? Inspect Listener Macro

Displays a list of the inspector commands. Takes no arguments. Expands into a call to the
function debug: inspect-?.

! (describe Uield-name index·]) Inspect Listener Macro

Prints information about a field of the inspected object. Takes one optional argument: the name
of the field to be described. If no arguments are specified, then the current object being inspected
is described. Expands into a call to the function debug: inspect-describe.

! (inspect field-name index·) Inspect Listener Macro

Inspects the field field-name. If optional indices are given, then the array or list element specified
by that index or indices is inspected. This differs from the !describe command in that the
I inspect command recursively invokes the inspector on the specified field, not just describes it.
Expands into a call to the function debug: inspect-inspect.

! (modify field-name index· value) Inspect Listener Macro

Changes the value of a field of an inspected object. The arguments to modify are the name of
the field to be changed, an index or indices into the field if the inspected object is a list or an
array, and the new value for the specified item. Note that value is evaluated. This command
expands into a call to the function debug: inspect-modify.

!source Inspect Listener Macro

If the object being inspected is a function object, either the disassembly of the function is
displayed (if the function is compiled), or a form equivalent to the preprocessed definition of
the function is displayed (if the function is interpreted). Expands into a call to the function
debug: inspect-source.

Debugging Tools 157

Takes you back to inspecting the object that was the original argument to the function inspect.
Expands into a call to the function debug: inspect-top.

Itop

!up

Inspect Listener Macro

Inspect Listener Macro
~.::.j

Takes you up one level in an inspection. This is useful if you've used the inspect command to
inspect a field of an object and now want to get back to that object. Expands into a call to the
function debug: inspect-up.

1quit Common Listener Macro

Leaves the inspector listener. Expands into a call to the function system: listener-quit.

1abort Common Listener Macro

Returns you to the top-level listener. Expands into a call to the function system: listener-abort.

Inspecting Instance Types
With the inspector you can qUickly see what methods and instance variables are defined by
an instance type. Inspect the symbol that identifies the instance type and then inspect the
Object-Type field. You then have a choice of inspecting either Methods or Instance-Vars.

Example
Here's a transcript of an inspection session. Forms evaluated by the user are preceded with a
> for clarity.

> (system:on 'listener-read-macro)
#\1

> (inspect tea b c»
#<ITEM: #x806F4F9C> : LIST
Length 3
Value : (A B C)

> !1
1 Print this text
(describe item) Print description of item
(inspect item) Recursively inspect
(modify item value) Change the value of item
(source) Display source (or assembly)
(quit) Quit the inspector
(up) Move up one level
(top) Go to top level inspect
Commands without arguments do not require parentheses
The inspect and modify commands can take dimensions following item

158 Debugging Tools

> !(modify value 0 'd)
> !d
#<ITEM: #x806F4F9C> : LIST
Length 3
Value : (D B C)

> (defstruct foo x y)
FOO

> (setq afoo (make-foo :x '(a b c) :y 8»
#S(FOa X (A B C) Y 8)

> (inspect afoo)
#<ITEM: #x40D6CA78>
Structure-Type
X
Y

STRUCTURE
FOO
(A B C)
8

> ! (1 x)
#<ITEM: #x80D6C730> : LIST
Length 3
Value : (A B C)

> !u
#<ITEM: #x40D6CA78>
Structure-Type
X
Y

> ! (m x 0)

STRUCTURE
FOO
(A B C)
8

> !d
#<ITEM: #x40D6CA78> : STRUCTURE
Structure-Type FOO
X 0
Y 8

> !q

Debugging Tools 159

Debug Listener Mode
The debug listener is another debugging tool. It is entered when an error is signalled or break
is called. It provides a set of commands (read macros) and functions to obtain information about ~....,
the state of the system. Most of these deal with information that is stored on the execution ,
stack. Note that unlike the browser-oriented debuggers, this capability can be used without the
NMODE programming environment. However, to make these functions are available, you must
load the debug module with

(require "debug")

If the debug module is not loaded when an error is signalled, you will be put into a simple break
loop, which is a listener with less capabilities than the debug listener. Break loops are described
later in this chapter.

Debug Listener Commands
Some commands are atoms, some are lists. The function that a command maps to is listed
along with the command. Commands that accept variable or argument names quote the names
for you. If you call the function directly, you must quote the names. Remember that this
documentation assumes that the listener macro character has been set to the exclamation point
with (system: on 'listener-read-macro).

(debug:backtrace)
Ib

Function
Debug Listener Macro

Displays a simple function level execution stack backtrace. Functions are listed starting at the
bottom of the stack, so the stack is displayed with the top of the stack at the bottom of
the display. An interpreted function is indicated by a lowercase "i" before the function name;
otherwise, assume the function is compiled. An attempt is made to determine who called break
or signalled the error, and this function becomes the current selected item. The current selected
item is indicated by an arrow, (-» to the left of the item. The current selected item may be
moved by the commands lu and Id (descriptions of these follow).

The !b command normally suppresses most system functions that it considers to be of no interest
to the user. Finer control over stack items visibility can be achieved with the! show and !hide
commands discussed below. Ib expands into (debug:backtrace).

160 Debugging Tools

(debug:up-fn [count] [name])
! (uf [count] [name])

Function
Debug Listener Macro

The !uf command moves the pointer to the current selected item up the stack (towards the top
of the execution stack) to the function item specified. Specifying count moves that many function
items. Name may be either a symbol or a string. If it's a symbol, then !uf moves up to a function
item whose name is eq to the symbol given. If name is a string, !uf moves up to a function
item whose name contains the given string as a substring (case insensitive comparison). If both
name and count are specified, then !uf finds the countth occurrence of a function environment
satisfying name. When both name and count are given, they may be given in either order. If
neither count or name are given, then !uf can be used instead of ! (uf).

!(uf 2 faa) expands into (debug:up-fn 2 (quote faa».

(debug:down-fn [count] [name])
! (df [count] [name])

Function
Debug Listener Macro

The !df command works the same as !uf, only it searches down the stack. It expands into a
can to debug: down-fn.

(debug: up [count] [name]>
! (u [count] [name])
! (- [count] [name]>

Function
Debug Listener Macro
Debug Listener Macro

The !u (or! -) command moves the current item pointer to the stack item specified. Behavior is
the same as the !uf command except that !u deals with any item on the stack display (not just
function items). If name is given, it is compared against function names and lexical environment
names. For debugging purposes, it can be useful to put a (declare (name the-name» in any
closures so that they can be easily identified when they appear on the stack. If neither count
nor name is given, then the command !u can be used instead of ! (u). ! (u 3 faa) expands into
(debug:up 3 (quote faa».

(debug: down [count] [name])
! (d [count] [name])

Function
Debug Listener Macro

The !d command works like !u except that it moves down the stack instead of up. It expands
into a call to the function debug: down.

(debug: top)
!top

Function
Debug Listener Macro

The !top command makes the top function item from the current backtrace the current selected
function environment. ! top expands into (debug: top) .

Debugging Tools 161

(debug:more-detail)
!>

Function
Debug Listener Macro

If the selected item is an interpreted function, the !> command displays the chain of active
lexical environments for that function. The display includes the lambda list (with &optional and ~
etreat indicators, init forms and supplied-p vars) and let lists with init forms. ! > expands into
(debug:more-detail).

(debug:leaa-detail)
!<

Function
Debug Listener Macro

The !< command eliminates the display of the active lexical environments for the current function
item. ! < expands into (debug: leaa-detail) .

(debug:value oor)
! (v var·)
! (a {var value}+)

Function
Debug Listener Macro
Debug Listener Macro

The !v command returns the value of the given variable in the current selected lexical environment
(item). If a requested variable is not accessible from the current environment, then nil is returned
and a diagnostic message is displayed. When !v is used to access the value of a special variable,
the value returned is the value of that special in the debugger's environment, not its value in the
environment being debugged. This behavior for special variables may change in future releases.
Note that debug: value is a valid place for aetf. I (v x y) expands into

(valuea (debug:value (quote x» (debug:value (quote y»)

The I s command allows you to set the value of variables in the current selected lexical envi·
ronment. The setting of specials with ! a is not currently supported. ! (s x 1 y 2) expands
into

(aetf (debug:value (quote x» 1
(debug:value (quote y» 2)

(debug: arg arg)
! (arg arg+)
! (sa {arg value}+)

Function
Debug Listener Macro
Debug Listener Macro

The commands !arg and ! aa work like !v and !a, except that they implicitly operate on
the lambda environment of the current function item, instead of the currently selected lexical
environment. ! (arg p1 p2) expands into

(values (debug:arg (quote p1» (debug:arg (quote p2»)

! (sa p1 11 p2 "fleaa") expands into

(aetf (debug:arg (quote p1» 11
(debug:arg (quote p2» "fleas")

162 Debugging Tools

(debug:step-from-listener {:continue I:quit}) Function
!step Common Listener Macro
!qstep Common Listener Macro

The !step and !qstep commands exit the current listener and enable stepping in the execution
monitor. You must be running NMODE to use these commands. If the execution monitor is not
loaded, a continuable error will be signalled. Continuing from this error will load the monitor and
then begin stepping. The commands differ in the way the current listener is exited. The !step
command exits with a continue operation, while !qstep exits with a quit. !step expands into
(debug:step-from-listener :continue); !qstep expands into (debug:step-from-listener
:quit).

(debug:show-classes {class}-)
! (show {class}-)
(debug :hide-classes {class}-)
! (hide {class}-)

Function
Debug Listener Macro

Function
Debug Listener Macro

The ! show and !hide commands control what is displayed when you are viewing the execution
stack. There are four classes of functions normally considered uninteresting to the user. Classes
are identified by their names, which are keywords. The classes are:

:primitive Functions which manipulate primitive data objects in the system.

:interpreter Interpreter functions - functions that would not be called if the function being
interpreted was a compiled function.

:debugger

:system

Debugger functions.

All other functions used in the implementation of the Lisp system.

A class is made visible by specifying it in a !show command, and hidden by specifying it in a
!hide command. For the first three classes, if a function is a member of the class, it is displayed
if the class is visible, and not displayed if the class is hidden. If the system class is hidden, only
system functions called from user code are displayed.

!show expands into (debug: show-classes); !hide expands into (debug: hide-classes) .

Debugging Tools 163

Tracing a Function
It is sometimes useful to see the sequence in which some particular functions are called during
the execution of a program. Common Lisp provides the ability to mark a particular function as
traced, so that when it is called, its name is displayed along with the values of its arguments.
When a traced function returns, its value(s) is/are displayed. Hewlett-Packard has extended this
capability to allow tracing of methods as well as functions. Tracing has also been extended to
aUow a traced function to do more than just display its name and the values of its arguments.
Breakpoints can be conditionally set, and arbitrary forms evaluated when a traced function is
called.

(trace [trace-spec])
(untrace [trace-spec])

Macro
Macro

The macro trace is used to set trace options for a function or set of functions. The macro
untrace is used to remove tracing options from a function or set of functions.

Trace-spec is one or more function specifiers followed by zero or more trace options. A call to
trace adds the specified options to the tracing behavior of the given functions, untrace removes
them. A function specifier can be one of three things:

1. A symbol identifying the function to be affected.

2. A list (:method instance-type·name method-name+) which indicates that all the named
methods of the given instance type will have the trace options added or removed.

3. A list (trace-spec). This allows nesting of trace specifiers. The semantics of this are
described shortly.

All tracing options involve the evaluation of a form. The form is evaluated in an environment
with the following special variable bindings in effect:

debug:*name*

debug:*self*

debug:*args*

debug:*depth*

The symbol naming the function being traced.

When tracing an ordinary function, *self* is bound to nil. When tracing
a method, it is bound to the instance the method is being invoked upon.
For ordinary functions, this should never be set to anything besides nil.

A list of the arguments passed to the traced function.

The depth of recursive calls to the function since tracing began. (Value is
1 for first call.)

164 Debugging Tools

debug:*values* Useful only for options that evaluate forms after return from the traced
function. It is bound to a list of the values returned by the function. For
"before" forms, it is bound to O. Note that for functions that return zero
values, it will also be bound to 0 for "after" forms.

The available tracing options are:

:breakb [predicate] The optional form predicate (T if omitted) is evaluated before call
ing the traced function. If true, the function break is called.

:breaka [predicate] The optional form predicate (T if omitted) is evaluated after re
turning from the traced function. If true, the function break is
called.

:break [predicate] The equivalent of specifying both :breakb and :breaka with the
same predicate.

:before form Form is evaluated immediately before calling the traced function.

:after form Form is evaluated after returning from the traced function.

:both form The equivalent of specifying both :before and: after with the
same form.

:trace-output [predicate] The optional form predicate (T if omitted) is evaluated before
and after calling the traced function. If nil, the normal, system
generated trace output is not written. This is useful in cases
where break predicates or before/after forms can provide suffi
cient debugging information and the normal trace output would
be redundant.

When no options are specified in a trace specifier argument to trace, normal tracing behavior is
established, Le., each time the affected functions are called, output containing information about
the call and subsequent return is written to the stream that is the current value of the variable
trace-output.

If called with no parameters, trace returns a list of all functions currently traced along with their
active options. If called with no parameters, untrace untraces all functions in the system.

Debugging Tools 165

Nested Trace Specifiers
When trace specifiers are nested, as in

(trace foo (fee fie :before (print *important-var*»
:no-trace-output :after (my-test»

then a given option applies to all functions in the trace specifier in which it appears, plus any
functions nested within that trace specifier. So in the above example, fee and fie have both
before and after forms with normal trace output turned off; foo has an after form with normal
trace output turned off. In the case of conflicting options, such as

(trace foo (oof :before (check-that-thing» :before (lets-take-a-look»

the innermost option prevails. So oof has the before form (check-that-thing), and foo has
the before form lets-take-a-look.

Specifiers at a given level are effectively evaluated left to right, so the rightmost prevails if
conflicting specifiers are given.

Changing Options
Options are cumulative. Any call on trace adds the specified options to the active set for a
given function. Previously specified trace options which are independent of the new ones remain
in effect. A new specification for an option already in effect supplants the previous specification.
For example,

(trace x :breaka *sometimes*)

sets a conditional breakpoint right after the execution of x based on the value of *sometimes*
at the time of exit. If followed by

(trace x :breaka *occasionally*)

then the break will be based on the value of *occasionally* instead of *sometimes*.

166 Debugging Tools

Tracing Order
The evaluation of a traced function foo has seven steps. Depending on the trace options in
effect, some of these steps may be skipped, but the order is consistent.

1. Write values of arguments to *trace-output*. If there is a :trace-output option, its
predicate is evaluated and if nil, no output is written.

2. Evaluate "before" break predicate (: breakb) and break if true.

3. Evaluate "before" forms (:before).

4. Call the "real" foo.

5. Evaluate "after" forms (: after).

6. Write result value(s) to *trace-output*. If there is a :trace-output option, its predicate
is evaluated and if nil, no output is written.

7. Evaluate "after" break predicate (: breaka) and break if true.

This ordering has several implications. Normal trace output will show the original arguments
supplied to foo by the calling program, and the result value(s) that the calling program receives
back. These are also the values that will be visible inside a debug listener entered during the
tracing process. This means that the before and after forms are essentially part of the definition
of foo. If a before form modifies the arguments, or the after form modifies the result, there
is no way to distinguish this from the actual behavior of f 00. The following two functions can
be used when you want the trace output to show the actual behavior of a traced function even
when modifications may be made by before and/or after forms.

(debug:trace-entry-print)
(debug:trace-return-print)

Function
Function

These functions get the function name, arguments, and value(s) from debug: *name*, de
bug:*args*, and debug:*values* respectively, and write them to *trace-output* in a manner
consistent with normal trace output. For traced methods, the value of debug: self is also written.
By turning off normal trace output with the :trace-output option and calling these functions
at the appropriate place in the before and after forms, the trace output will display the actual
behavior of the traced function.

Debugging Tools 167

Examples
Here are some examples of setting and unsetting trace options. Assume that the forms are being
evaluated in order;

(use-package 'debug)

(trace fool fo02 fo03)
(untrace fool)
(trace fo02 (fo03 :breakb)

:after (print *args*»
(trace fo02 :breaka)
(untrace fo03 :breakb)

(trace (:method shape
:rotate :shade»

(untrace (:method shape :rotate»

Avoid package qualifier for
args and *values*

Normal tracing of three functions.
Disable tracing of fool.
Add an after form to fo02 and fo03.
break before fo03. Normal output.

Break after fo02, retain after form.
Remove break before fo03.

Normal tracing of :rotate and :shade
methods for shapes.

; Disable tracing of :rotate method.

(trace)
(untrace)

Show all tracing options in effect.
Remove all tracing options from everything.

Miscellany
When using trace be aware of the following things:

• If a function that is currently being traced is redefined by load, compile, defun, or
(setf (symbol-function ...) ...), only the basic definition is modified; tracing behavior is
maintained.

• Only symbols can be traced, not function objects. If func is a function that is currently
being traced, evaluating

(apply 'func (list x Y z)

will be traced just like (func x y z), but

(apply #'func (list x y z»

will result in no tracing behavior.

• Functions called from within break predicates and before/after forms are not traced.

168 Debugging Tools

The Break Loop
The break loop was explained earlier in this chapter in the "Concepts" section. Most of the
time you are developing code you will have loaded the debug module, so will be using the debug
listener, which is an enhanced break loop. This section explains some of the details about the
break loop and related variables.

In the current system implementation, the break loop listener is equivalent to the top loop
listener. No distinction is made between break loops entered by an error condition and those
entered by a user call on the function break.

The following listener commands and NMODE commands are available in a break loop. (The
listener commands assume that you have set up the default listener macro character with
(system:on 'listener-read-macro).

Command NMODE command Action

!a Lisp a Abort to top loop

!e Lisp c Continues from the current listener

Iq Lisp q Quits from the current listener

Break Loop Related Variables
As with many parts of the Lisp system, the behavior of the break loop depends in part on the
values of some global variables. This section describes the variables pertinent to the break loop.
The symbols naming these variables are all in the sys package.

system:*break-hook*
system:*default-break-hook*

Initial Value: break-loop
Initial Value: break-loop

Variable
Variable

The variable *break-hook* must always be assigned. Its value should be the name of a function
of no arguments, which when called establishes the actual break loop for the user. NMODE
redefines this variable. Many subtleties of the current break implementation must be understood
before this variable should be redefined. The value of *default-break-hook* is initialized to
the same value as *break-hook*. It is provided for the convenience of developers who wish to
redefine *break-hook*, so they can still call the default break hook while doing some additional
processing before or after calling it.

system:*break-level*
system:*break-level-limit*

Initial Value: 0
Initial Value: 10

Variable
Variable

Debugging Tools 169

The variable *break-level* is rebound and incremented on each new entry into a break loop.
It tells how many levels deep the system currently is in break loops. After *break-level* is
incremented, but before the break hook is called, *break-level* is compared with *break
level-limit*. If it is greater, the break hook is not called, and a diagnostic is printed noting
the failed attempt to enter another level of break. This test may be defeated by setting *break- ~
level-limit* to nil.)

system:*break-limit-exceeded*
system:*break-limit-exceeded-limit*

Initial Value: 0
Initial Value: 60

Variable
Variable

Each time the break hook is called, *break-limit-exceeded* is rebound to o. Each time
break-level-limit is exceeded, the variable *break-limit-exceeded* is incremented by
one. Each time *break-limit-exceeded* is incremented, it is compared against the value of
break-limit-exceeded-limit. If less, nothing happens. If equal, a warning is issued. If
greater, sys: listener-abort is called, leaving you in the top level loop. None of this testing
and drastic behavior occurs if *break-limit-exceeded-limit* is nil.

The primary reason for setting *break-limit-exceeded-limit* to a non-nil value is for termi
nating non-interactive Lisp sessions which encounter error conditions that try to query a user.

If *break-limit-exceeded-limit* is non-nil, the net effect of all this is as follows. Assume
break-level-limit is 6 and *break-limit-exceeded-limit* is 10. On entering each of the
break levels 1 through 5, *break-limit-exceeded* is rebound to o. Each time we attempt to
enter break level 6, *break-limit-exceeded* is incremented, until on the tenth attempt you are
warned that the next attempt will cause a listener abort. If you then cause another error which
attempts to enter another break loop, sys: listener-abort is called. If at any time while at
break levelS, we exit the break loop, going back to level 4, *break-limit-exceeded* is reset
by the restoration of the old binding. Thus, succeeding entries to break level 5 get a fresh start
with *break-limit-exceeded* set to zero.

These two variables also playa part in protecting you from a particular infinite looping situation.
If the listener makes two consecutive calls to read that do not make any "progress", it incre
ments *break-limit-exceeded* and then does so every subsequent time that its call to read
does not make "progress". As soon as "progress" is made, *break-limit-exceeded* is reset
to O. If *break-limit-exceeded* becomes greater than *break-limit-exceeded-limit*,
sys :listener-abort is called. Lack of "progress" usually means reading an end of file.

break-on-warnings Initial Value: nil Variable

Works as documented in Steele's Common Lisp. If nil, it affects nothing. If non-nil, causes all
calls to the function warn to enter a break loop.

170 Debugging Tools

File System Dependencies
r- Introduction

9
Because its designers expected Common Lisp to be implemented on a wide variety of hardware
and operating systems t the definition includes a system-independent mechanism for specifying
files and/or directories. This facility is based on data objects called pathnames. This chapter
describes how HP-UX file names are mapped to Lisp pathnames in Hewlett-Packard's implemen
tation of Common Lisp.

It also describes how we have chosen to implement several functions whose behavior is not given
explicitly in the Common Lisp definition because they are almost inherently system-dependent.
These functions deal with the loading of Lisp files and modules: provide, require t and load.

File System Dependencies 171

Pathnames
Common Lisp pathnames have six components: host, directory, name, type, version, and
device. Namestrings (strings that identify a file in the manner used by Hp·UX, such as .~.

n/users/bonzo/ . login II) are parsed to produce the various pathname components. The meth-)
ods for parsing a namestring to produce the pathname components read like the rules to some
sort of bizarre game, but they should be made clear by the examples that follow these descrip-
tions.

Host

Directory

Name

Type

Version

Device

Identifies the type of file system. This is always "HP-UX". The host component
of a pathname can be obtained with pathname-host.

Identifies the directory. This is a list of strings that are the names of the directories
in the namestring. If the namestring begins with a /, then the first string in the
list is 1111. Anything between a pair of /'s is taken to be a directory name, so
if a namestring ends with a /, then the name component is ni1. The directory
component of a pathname can be obtained with pathname-directory.

A string representing the basename of the file. This is everything in the namestring
to the right of the rightmost / (or the beginning of the namestring if there are no
I's) and to the left of the rightmost period (or the end of the namestring if there
are no periods). If the rightmost period comes immediately after the rightmost
/, then it is assumed to be part of the name rather than the delimiter between
the' name and type. The name component of a pathname can be obtained with
pathname-name.

A string representing the type of a file. This is everything in the namestring to the
right of the rightmost period, unless the rightmost period falls at the beginning
of the name, in which case the type is II ". The type component of a pathname
can be obtained with pathname-type.

This component is not used. Its value defaults to nil. You can obtain the
version component of a pathname with pathname-version, but it won't be very
interesting.

This component is not used. Its value defaults to nil. You can obtain the device
component of a pathname with pathname-device, but it won't be very interesting.

172 File System Dependencies

Examples
A few examples should clear up any confusion you have about the way namestrings are parsed
to produce pathname components. If you're not sure about the way a particular string would be
parsed, just try it.

(pathname-name "bin/rm") => "rm"
(pathname-name "/jose/the/amazing/wonderdog/ II) => "II
(pathname-name "lispcode/source/hobnai1.1 II) => "hobnail"
(pathname-name II. II) => II. II

(pathname-name "$HOME/.cshrc") => ".cshrc"

(pathname-directory "/usr/bin ll
) ~ ("" "usr")

(pathname-directory lIusr/bin/ lI) ~ ("usr" IIbin")
(pathname-directory "/users/orion/quiver/arrow.1 II) ~ (1111 "users" lIorion"

"quiver")

(pathname-type "bin/kazbah. b") => "b II
(pathname-type " .. ") => 1111

(pathname-type "pompous.asc ll
) ~ lIasc"

Resolving Filenames
Notice that these rules only specify the mapping of namestrings to pathnames. They do not
say anything about how the system "finds" the files that namestrings or pathnames identify. In
Hp·UX, file names are either relative or absolute. An absolute file name is one that begins with
a / (which means to start at the "root" directory). A relative file name is one that does not
begin with a /. The search for the file corresponding to a relative file name begins at the current
directory. When you're in the Lisp system, the current directory is the one that was current
when you invoked the system, or possibly one that was subsequently changed to by calling the
HP-UX function chdir(2) from Lisp.

Namestrings for files may contain Hp·UX shell variable references such as $HOME or $mysource.
These are properly expanded when it comes time to access the file, but are not expanded when
the namestring is parsed for its pathname components. For instance,

(pathname-directory "$HOME/.nmoderc ll
) ~ ("$HOMEII)

File System Dependencies 173

Loading Modules
It is convenient to think of Lisp code in terms of modules, with each module being a unit of
code that provides some particular service. Common Lisp provides several functions that deal ~
with modules, but the details of how they operate is left to the particular implementation. This)
section describes how Hewlett-Packard has chosen to define three Common Lisp functions that
deal with modules and code files.

(load pathname &key :verbose :print :if-does-not-exist) Function

The load function is used to load code files into the Lisp system. It can be used to load Lisp
source (.1) or binary (. b) files, or HP-UX a.out files (.0) (.0 files can only be loaded with load if
the external module Is loaded). If pathname is a namestrlng with a suffix or a pathname with
a type, then the specific file identified by pathname Is loaded in the appropriate manner. If no
suffix or type is specified, the system looks for a file to load In the following way:

1. If there is a file named filename with no suffix, assume that it is a Lisp source file and load
it.

2. If there Is a file named filename with a .1 suffix, and one with a .b suffix, load the one
that has been written most recently.

3. If there is a file named filename with a .1 suffix, load it.

5. If there is a file named filename with a .b suffix, load it.

6. If there is a file named filename with a .0 suffix, assume that it is an a.out file and load it
with extn: 10ad-ofi1e.

Each step assumes that the conditions for the preceding steps were not satisfied.

It is not possible to load from a stream in HP's implementation of Common Lisp.

(provide module-name) Function

A call to provide could be placed at the beginning of the file that implements a module. When
called, it adds module-name to the list of modules maintained in the variable *modu1es*. Module
name is a string or symbol. If it's a symbol, the print name of the symbol Is used as the module
name. If you put the provide at the beginning of a file, the module will be registered as loaded
even if an error causes the load to be aborted. If you put the provide at the end of a file to
avoid this problem, make sure that there is no way for the module to require itself (directly or
indirectly), or you will initiate an infinite cycle of loads.

174 File System Dependencies

(require module-name &optional pathname)
system:*require-directories*

Function
Variable

The function require is used to make sure that a particular module is loaded. When require
is called, *modules* is searched for module-name. If it's not found and the optional argument
pathname (a pathname or list of pathnames) is specified, then the file(s} identified with the
pathname(s) are loaded as if load was called with them as parameters. If the required module
was not found in the loaded files (Le. no provide of the module was executed), a warning is
issued.

If the module name in a call to require is not found in *modules*, then the system assumes
that the module is implemented in a file with the same name as the module name. It then
searches the directories whose pathnames are in the list system: *require-directories* for
the appropriate file to load. Exactly which file to load is determined in the manner described
above for load.

System modules to be loaded with require are normally stored in subdirectories of the
$LISP/modules directory. The default value of sys: *require-directories* is a list of path
names corresponding to the local, lisp, extn, lib, and nmode subdirectories. User-defined mod
ules you would like to be able to load with require should be put in the $LISP/modules/local
directory. Then you will not have to specify the optional pathname argument to require.

Multiple File Modules
If a module is implemented in more than one file, there are two ways to make sure that a call
to require loads all the files that implement that module. The first way is to always provide
the optional argument to require that names the files to be loaded. So if you have a module
dance that is implemented in the files dance .1, twist .1, and rhumba. 1 (all of which are in the
directory $arts), the call to require would be

(require IIdance" '("$arts/rhumba.b ll "$arts/twist.b ll "$arts/dance.b"»

Remember that the order of the files to be loaded may be important. The call to provide for
the module should be in the rightmost file in the list of files to be loaded ($arts/dance. b in this
case).

The other way to require a module implemented in multiple files is to put calls to load in the
file that has the same name as the module. So the beginning of dance. 1 would be

(load "$arts/rhumba")
(load "$arts/twist")
(provide "dance ll

)

File System Dependencies 175

Then to require the dance module, you would do the following:

(unless (member Il$arts" *require-directories*)
(push Il$arts ll *require-directories*»

(require Ildance ll)

176 File System Dependencies

This would probably be
; done somewhere else.

'~

Extensions
r Introduction

10
Because of implementation dependencies, the Common Lisp standard does not define some
functions that are useful (even necessary) for Lisp programmers. For this reason, Hewlett
Packard has added some functions to its version of Common Lisp. Some of these extensions
are discussed in the appropriate chapter (such as the debugging functions), but the ones that do
not fall into a convenient category are covered here.

NOTE

Since the functions described in this chapter are HP extensions, you
should not use them if you want your code to be strictly portable. If
you must use them, but may port your code in the future, try to isolate
them as much as possible.

Extensions 177

System Functions
The following functions manipulate the state of the Lisp system. They are all in the system
package.

(system:gc) Function

Calling system:gc initiates garbage collection and returns nil when garbage collection is com
plete. Call the function room to see how much space is available.

(system: exit)
system:*exit-forms*

Function
Variable

Calling system:exit terminates the current Lisp session. Prior to termination, the forms in
system: *exit-forms* are evaluated. It makes no difference if you're in the NMODE environ
ment, or just the bare language interpreter; Lisp is terminated, and you are left in the shell
from which Lisp was invoked. When using NMODE, we recommend that you use the C-X Z
command instead of calling system: exit.

The variable system:*exit-forms* is a list of forms to be evaluated before the Lisp process
terminates. This list should include forms to release operating system resources (windows, for
example) that were allocated during the session.

(system: save-world file &optional init-forms message)
system:*save-world-init-forms*

Function
Variable

A call to system: save-world saves the current state of the Lisp system in file (a string, pathname,
or symbol whose print name is used) and then returns nil. The resultant file is called a dump
file. Init-forms is a list of forms to be evaluated immediately upon restoration of the dump file.
This list of forms is appended to the list of forms in system: *save-world-init-forms*. All of
the forms in the resulting list are evaluated sequentially when the dump file is restored. Message
is a string or symbol (print name is used) that is to be displayed when the dump file is restored.
The current date is appended to the message before the system is saved. Message defaults to
"Saved World". The save-world function cannot be called from within NMODE.

178 Extensions

After calling save-world, you can later restore that state by executing the file from a shell. For
example, if you evaluate

(system:save-world "/users/fido/bin/mylispenv")

and then leave Lisp, you can type

/users/fido/bin/mylispenv

to reenter the Lisp environment that was saved.

The variable *save-world-init-forms* is a list of forms to be evaluated when a saved Lisp
system is restored (see above). The initial value of *save-world-init-forms* is implementation
dependant. Forms can be added to this list, but you should not indiscriminately delete forms
from it.

A good use for *save-world-init-forms* is to specify forms necessary for reinitializing modules
when they require special actions when restoring a dump file (such as reinspecting the state of
the file system, or regaining access to an operating system resource). When such a module is
loaded, it should append the necessary forms to *save-world-init-forms*.

Creating a dump file does not save the dynamic state of your Lisp system. Special variables will
have the values they had when save-world was executed, but outer bindings are lost. Similarly,
execution in the restored system will no longer be within the dynamic scope of any functions,
catches, when-errors, or unwind-protects that were active when save-world was called.

Extensions 179

Operating System Access Functions
The functions, macros, and variables described in this section provide access to the operating
system that the Lisp process runs on. Some of these have functionality similar to that provided
by the NMODE environment. The functions here are not meant to supplant the NMODE facilities,
but to provide programmatic Hp·UX access, and access when not running with NMODE.

(system: current-directory) Function

A call to current-directory returns a pathname that is the name of the directory currently
being used as the file system default. This directory can be changed by using setf. For example,

(setf (system:current-directory) "/tmpn)

The current directory can be set to a string, symbol, pathname or nil. If nil, then the users
home directory is made the current directory.

(system:get-program-args) Function

A call to this function returns a simple vector of strings containing the arguments specified on
the operating system command line when Lisp was invoked.

(system:host-command-function cmd &rest args)
(system:host-command cmd &rest args)
system:*host-command-symbol-format*
system:*host-command-quoted-format*
system:*host-command-object-format*

Function
Macro

Variable
Variable
Variable

The function host-command-function is a primitive command interpreter that invokes programs
on HP-UX without terminating the Lisp process. The Lisp process is suspended while the
program is executed, and then the Lisp system resumes execution. The value returned is
the termination status of the program. All of the arguments to host-command-function are
strings: cmd names the program or command to be executed; the rest of the arguments are the
arguments for cmd. The value of the user's PATH HP-UX environment variable is used to search
for cmd.

Since the command is not part of the Lisp process, any 1/0 performed by the command is
independent of Lisp. This means that the values of *standard-input* and *standard-output*
are irrelevant. If Lisp is using the same terminal that the command uses, their output may be
interspersed. Lisp programs that maintain screen appearances (such as editors) may want to
clear the screen before invoking a host command, and repaint it afterwards. Note that when
NMODE is running, the output from host-command-function goes to the terminal or window
from which NMODE was invoked, not to an NMODE buffer.

180 Extensions

The host-command macro is provided to make it easier to invoke an HP-UX command or program.
Its arguments have the same meanings as those for host-command-function, but they can be
things other than strings. The arguments are converted to strings and passed to host-command
function.

The following rules are used to convert host-command arguments to strings. The left column
indicates the type of the argument; the right column says what is done to convert the argument.

Strings

Symbols

Quoted Expressions

Conses

Other Objects

No conversion is performed.

Symbols are written to a string with format and the format string in
host-command-symbol-format.

The quoted item is written to a string with format and the format string
in *host-command-quoted-format*.

Conses whose car is something other than quqte are assumed to be
evaluable forms. These are evaluated just before the call to host
command-function and the result is written to a string with format and
the format string in *host-command-obj ect-format*.

Other objects (e.g. numbers, characters) are written to a string with
format and the format string in *host-command-obj ect-format*.

The initial values for the various format strings are as follows.

host-command-symbol-format => n-(-a-)"
host-command-quoted-format => "-a"
host-command-object-format => "-a"

lower case, no escapes
no case conversion, no escapes
no case conversion, no escapes

Two significant implications of these format strings:

• The names of symbol arguments are made lowercase when converted to a string.

• A symbol returned by a form argument will not be made lowercase when converted to a
string.

If the user is accustomed to typing commands to a command interpreter that provides helpful
aliasing or text substitutions, he may find unexpected results using host-command-function and
host-command since these will not perform the same services. However, the user may invoke
the command interpreter and pass it the appropriate command string, thus getting the behavior
he expects. If this is the behavior most often desired, the user is encouraged to write his own
function to do this, such as

(defun ci (command-string)
(system:host-command-function "csh" II_C"

command-string»

Extensions 181

Command Examples
Here are a few examples of calls to host-command-function and host-command.

(host-command-function "cpu Il.nmoderc ll "/users/novice/.nmoderc")
(host-command cp .nmoderc /users/novice/.nmoderc)

(setq file-to-print "foofile")
(host-command-function nlp" file-to-print)
(host-command lp (eval file-to-print»

Error Signalling and Handling
Some extensions have been made to the definitions of several of the Common Lisp functions for
signalling errors. This section describes these extended functions, as well as some macros that
let you use the extensions.

NOTE

This mechanism for handling errors is preliminary, and subject to change
in subsequent releases of the system.

Defining Error Symbols
(extn :deferror symbol error-format &key continue-format) Macro

Symbol is not evaluated; all other arguments are evaluated. The deferror macro declares
symbol to be a valid symbol to be used in place of the format-string argument to the functions
error, cerror (actually, the error-format-string argument to cerror), break and warn and the
macros check-type and assert. The deferror macro stores the string error-format where it
may be found by the error functions. If the keyword parameter :continue-format is given, its
value is also saved to be used by cerror as described below. The benefit of using deferror to
associate format strings with symbols is described below under "Error Handling".

182 Extensions

The existence of deferror allows the following extensions to these Common Lisp functions and
macros:

(error {symbol I format-string} &rest args)

(cerror {symbol I continue-format-string error-format-string} &rest args)

(warn {symbol I format-string} &rest args)

(break &optional {symbol I format-string}&rest args)

(checktype place typespec &optional {symbol I string})

(assert test-form [({place}·)})

Function

Function

Function

Function

Macro

Macro

In each case, if a symbol is provided instead of a string, the appropriate association made by
deferror is used to yield a format string. The cerror case is slightly different. The Common
Lisp specification states that cerror takes two string arguments and a rest argument. When
called with a symbol parameter, the symbol takes the place of both strings. Both needed string
values must have been declared by deferror (the error format string as the first parameter and
the continue format string as the :continue-format keyword parameter). The arguments to
cerror must either be a symbol followed by the &rest parameters, or two strings followed by
the krest parameters. The macros check-type and assert do not evaluate the symbol or string
argument.

Error Handling
The value of these error signalling extensions lies in their ability to support error identification by
error handlers. The macros and functions described in this section are used for error handling.
The symbols that name these functions and macros are all in the extn package. When compiling
or interpreting functions that use the macros described here, you must load the exception
module with

(require "exception")

At run time however, all the functions needed are in the basic Lisp system.

(extn:when-error form {handling-form}·) Macro

The macro when-error evaluates form under the "protection" of an error detection mechanism.
If no errors occur, when-error returns the value(s) produced by form. The handling-forms, If
any, are not executed. If, however, during the evaluation of form, an exception is signalled
by a call to either of the functions error or cerror, handling-forms will be evaluated. Before
evaluation of the handling forms is begun, the variable *exception-info* is bound to an object
containing information about the exception that caused the handling forms to be executed. See
the subsequent section Exception Information for details on what information is available and
how it is accessed.

Extensions 183

The handling forms of the when-error are evaluated without benefit of special error protection. If
handling forms are specified. when-error returns whatever is returned by the last handling form.
Providing no handling forms effectively says to ignore all exceptions; in this case when-error
returns nil if an exception occurs.

(extn :break-on- errors {form}·) Macro

The macro break-on-errors will override any enclosing when-error and enter a break loop
if an error occurs while evaluating the forms. Continuing from a break loop entered within
the dynamic scope of a break-on-errors behaves like a normal continue. Quitting from such
a break loop. however. causes break-on-errors to return nil (so the handling forms of an
enclosing when-error will not be evaluated in either case).

Both break-on-errors and when-error implicitly set up a catch that is thrown to when an error
is signalled.

Exception Information
As described in this chapter. the variable *exception-info* is at times bound to a value
containing exception information. In order to allow for future extensions or modifications. the
exact form of this value is not defined. Instead. functions are prOVided to allow you to access
the various "fieldsn of *exception-info*. and to construct an exception information value that
is compatible with the accessor functions. It is an error to rely on a specific format for the value
of *exception-info*.

(extn: exception-function &optional exception-info)
(extn: exception-arguments &optional exception-info)
(extn: exception-continuable-p &optional exception-info)
(extn: exception-signaller &optional exception-info)
(extn: exception-symbol &optional exception-info)

Function
Function
Function
Function
Function

Each of the these functions operates on the variable *exception-info* unless exception-info is
supplied (in which case that value is used). Exception-info should of course only be constructed
by calling the function exception-info described below.

The function exception-function returns the symbol naming the error function that was called.
Currently. this will be either error or cerror. though there could be others in the future.

The function exception-arguments returns a list of all the arguments that were passed to the
function named by exception-function.

The function exception-continuable-p returns true if the exception is continuable. and nil
otherwise.

184 Extensions

The function exception-signaller returns the symbol naming the function which signalled the
exception. If the name of the function cannot be determined, then the symbol :unknown is
returned.

If the exception was signalled using a symbol declared by deferror, exception-symbol returns
that symbol. If a symbol was not used in the call by the exception signaller, nil is returned.

It is at this point that the symbol parameter for the error functions becomes useful. If the error
handler wishes to identify or classify an error, the only information available is that which is
actually passed to the error function. Parsing format strings to identify errors would be difficult,
at best. Arbitrarily complex error identification/classification is now possible by associating
whatever information an implementation/application desires with a symbol.

If you need to create your own exception information value, the function exception-info must
be used.

(extn: exception-info Junc arglist signaller continuable?) Function

~
~-

This uses its arguments to construct a value that has the same format as *exception-info*.
Func is the symbol identifying the function that was used to signal the exception (error or
cerror). Arglist is a list of arguments that would be acceptable to June. Signaller is a symbol
identifying the function that caused the exception to be signalled, and continuable? is a boolean
indicating whether or not the exception is continuable.

User Defined Exception Handlers
The system allows you to define and use your own error handling function through the use of a
variable, *exception-hook*, which is initially nil. When non-nil, the value of *exception-hook*
should be an error-handling function (typically a symbol that identifies a function) that takes one
argument.

If *exception-hook* is non-nil, and an exception is signalled, the handler function identified
by *exception-hook* is called with the appropriate exception information value as its argu
ment. While the handling function is executing, *exception-info* is bound to the exception
information value. The handler is always called, even if the error occurs within the scope of a
when-error or break-on-errors. To minimize the risk of infinite recursion, *exception-hook*
is rebound to nil immediately before the user defined error handler is invoked. If this is not
what you desire, you must explicitly reset *exception-hook* within the body of your handler.

Extensions 185

There are three legitimate ways to exit from a user defined exception handler.

(extn:exception-decline) Function

If the handler determines that it does not wish to handle the exception, It should call except1on- "
decline. In this case, the system will proceed with whatever action would have occurred if _,
exception-hook had been nil when the exception was originally signalled.

(extn:exception-continue) Function

If the exception is continuable, the handler may correct the error that caused the exception and
then call exception-continue to continue the computation that signalled the exception. An
error will be signalled if exception-continue is called when the exception being handled is not
continuable.

(extn: exception-quit &optional exception-info) Function

The effect of calling exception-quit within an exception handler is to throw to the nearest
exception handling form (such as a when-error or break-on-errors). If you want your handler
to throw a value other than *exception-info*, use exception-info to construct an exception
value and pass that value as the optional argument to exception-quit. Note that the Lisp top
loop executes under the "protection" of a break-on-errors, so that there will always be an
active handler to throw to, even if you have not explicitly provided one. ~

An error is signalled if either of the functions exception-decline or exception-continue is
called outside the dynamic extent of an exception hook function. The function exception-quit
may be called at any time to throw to the nearest enclosing error handler.

Exception Messages
(extn: exception-msg &optional exception-info) Function

The function exception-msg returns a string containing the complete message that was (or would
have been) printed for the current exception. If called from a break loop or user-defined exception
handler, the message is the one for the exception that caused the break loop or handler to be
entered. If exception-msg is called in the handling forms of a when-error, the message is for
the exception being handled, even though the exception environment has been exited.

This function is useful both in an interactive mode, where it can be used to determine why a
break loop was entered, and programmatically, where user-defined handlers can use it to report
the appropriate condition.

The function exception-msg uses the current value of *exception-info*, unless the optional
parameter exception-info is supplied. When supplied, it must be an exception information value
constructed with the function exception-info.

186 Extensions

Error Handling Example
The following is a short transcript of a session that demonstrates these error features.

1 LISP [USER:] > (require "exception")
"exception"
2 LISP [USER:] > (use-package 'extn)
T
3 LISP [USER:] > (deferror my-error "I made a -A mistake. II

:continue-format "Forget it.")
MY-ERROR
4 LISP [USER:] > (error 'my-error 'bad)

I!!!! Error: I made a BAD mistake.
Condition signalled in INTERPRETER::LAMBDA-PUSH-FRAME

Entering the debugger
6 DEBUG (1) [USER:] > !q
6 LISP [USER:] > (cerror 'my-error "little")

I!!! Continuable error: I made a little mistake.
Condition signalled in INTERPRETER::LAMBDA-PUSH-FRAME

(defun my-error? ()
(if (eq (exception-symbol) 'my-error)

"Shame on me."
"Shame on you. II»

(when-error
(error 'my-error 'bad)
(format nil II-A-%But it's OK. I fixed everything."

(exception-msg»)
! I!!! Error: I made a BAD mistake

Condition signalled in: INTERPRETER::LAMBDA-PUSH-FRAME.
But it's OK. I fixed everything.

If continued: Forget it.
Entering the debugger
1 DEBUG (1) [USER:] (1) > !c
NIL
8 LISP [USER:] > (when-error (error 'my-error 'bad)
8 LISP [USER:] > (exception-symbol»
MY-ERROR
9 LISP [USER:] > (when-error (error "Your error.")
9 LISP [USER:] > (exception-arguments»
(nyour error. II)
10 LISP [USER:] >
10 LISP [USER:] >
10 LISP [USER:] >
10 LISP [USER:] >
MY-ERROR?
11 LISP [USER:] > (when-error
11 LISP [USER:] > (error 'my-error 'bad)
11 LISP [USER:] > (my-error?»
IIShame on me. II
12 LISP [USER:] > (when-error
12 LISP [USER:] > (error "Your error.")
12 LISP [USER:] > (my-error?»
"Shame on you."
13 LISP [USER:] > (when-error (error 'my-error 'bad»
NIL
14 LISP [USER:] >
14 LISP [USER:] >
14 LISP [USER:] >

Extensions 187

188 Extensions

Notes

Index

a
... 21,22

, 76,77
, 76,77
,<0 .••..•.•••...•••......••.......••••••••••••..•.••••.•.•.••••.• 76,77
<, execution monitor command 151
<, stack browser command 154
=> 90
=>examples 93, 95, 96
!> debug listener macro 162
>, execution monitor command 151
>, stack browser command 154
!? inspect'listener macro 157
! - debug listener macro 161
c ••• 76,77
Abort, execution monitor command 150
!abort inspect listener macro 158
!abort listener macro " 158
absolute file name 173
active , 27
:after trace option 165, 167
:all-gettable option to define-type 87
:all-initable option to define-type 87
:all-settable option to define-type 87,91
apply .. 40, 168
apply-method 101
!arg debug listener macro 162
arg function (: debug) 162
args variable (:debug) 164
argument type symbols for non-Lisp routines " 127
arguments to non-Lisp routines 125, 126, 127, 128
array 48
array creation " 129
array parameters to non-Lisp routines 128
array specifier for non-Lisp routine arguments 128
arrays, Fortran 142
arrays, in C 135

Index 189

arrays in Pascal 140, 139
assembly language, example of calling from Lisp 143
assert macro 183
assignedp function (: extn) 110

b
!b debug listener macro 160
backquote 76, 77
backquote examples 77
backtrace function (: debug) 160
:before trace option 165, 167
binding .. 8, 56
:both trace option 165, 167
break function 146, 183
Break listener mode 20, 23, 169, 170
break loop 20, 23, 169, 170
:break trace option 165, 167
break-hook variable (: system) 169
break-level variable (:system) 169
break-level-limit variable (:system) 169
break-limit-exceeded variable (: system) 170
break-limit-exceeded-limit variable (: system) 170
break-on-errors macro (: extn) 184
break-on-warnings variable 170
:breaka trace option 165, 167
:breakb trace option 165, 167
Breakpoints, execution monitor command 150
breakpoints:

execution monitor 149, 150
trace 164, 165

Browse, stack browser command 154

190 Index

-c compiler option
C:

c
121

arrays 135
entry point format 120
examples of calling from Lisp 133-136
pointer parameters 125, 126

call-method macro (: extn) 101, 102, 104-106
calling non-Lisp functions 119-143
catch special form 12
cerror function 183
character 48
check-type macro 68, 183
closure 8, 18, 19
Code, execution monitor command .. 151
coerce function 70
comma 76,77
command line arguments from Hp·UX 180
compilation-speed optimization quality 34
compile function 31, 38
compile-file function 38
compiled code 147
compiler .. 29, 31-33, 38
compiler warnings .. 64
concepts 7-32
consing 41-43
constant folding 34, 35
constants 42, 43
conventions 3
conversion of arguments to non-Lisp routines 125-127
:copy universal method 113, 115
:copy-instance universal method 113, 115
:copy-state universal method 113, 115
creating an instance 90
current-directory function (: system) 180

Index 191

d
!d debug listener macro 161
Debug listener mode 20, 23, 146, 160-163
debug module 160 ~
debug-br module 148, 154
:debugger class of functions 163
debugging Lisp , 145-170
declaration examples 71, 72
declarations 36, 47-72
declare special form 34, 45, 57
default methods 112-116
default-break-hook variable (:system) 169
default-entry-point-format (: extn) .. 123
default-hpux-libraries (: extn) 121
deferror macro (: extn) 182
defexternal macro (:extn) 124
defexternalvar examples 132
defexternalvar macro (:extn) , 131, 132
define-entry-point function (: extn) 124
define-method examples 89,92, 95, 96, 99-105
define-method macro (: extn) 89
define-type examples 88, 91, 95, 99, 102, 103
define-type macro (: extn) 85-88
define-type options 86-88
defining non-Lisp routines 124
defining types .. 53-55
defmacro macro 75
deftype macro 53-55
defvar macro 15
delayed evaluation 73
depth variable (: debug) 164
!describe inspect listener macro 157
:describe universal method 112
destructive functions 41
destructuring 75
device component of pathnames 172
!df debug listener macro 161
directories for loading .. 175
directory component of pathnames 172
Disassemble, stack browser command 155
documentation 4, 5

192 Index

down function (:debug) 161
down-fn function (:debug) 161
downward closures 18, 38
dynamic extent .. 9-12
dynamic scope 9
dynamic shadowing 12

e
: element-type keyword parameter to make-array 129
ending a session 178
entry point format 123, 137, 138
entry points 120-124
entry points, assembly language 143
entry points, Fortran 141
entry points, Pascal 138, 139
:entry-point keyword parameter to defexternal 124
:entry-point keyword parameter to defexternalvar 131
:entry-point-format keyword parameter to defexternal 124
:entry-point-format keyword parameter to defexternalvar 131
:entry-point-format keyword parameter to define-entry-point 124
:entry-point-format keyword parameter to load-ofile 122, 123, E138
entry-point-symbol function (: extn) 123
: eql universal method 112, 114
:equal universal method 112, 114
:equalp universal method 113, 114
error function 183
error handling example .. 187
error signalling and handling 182-187
errors, incomprehensible 29, 30, 107
eval situation for eval-when 31
eval-speed optimization quality 33-35, 38, 147
eval-when special form 31, 32
Evaluate, execution monitor command 150
examples:

=> 93, 95, 96
backquote 76, 77
calling assembly routine from Lisp 143
calling C from Lisp 133-136
calling Fortran from Lisp 141, 142
calling library functions from Lisp 121, 136
calling Pascal from Lisp 137-140

Index 193

closures 19, 38, 39
declarations 71, 72
defexternal 130, 134-143
defexternalvar 132 ~
define-method 89, 92, 95, 96, 99-105)
define-type 85-88
deftype 54
destructive functions 41
error handling 187
eval-when 32
free variables 13
inheritance 99, 102-106
inspect 159
instance initialization .. 110
load-ofile 122, 134-143
macros .. 78-80
object-oriented programming 91-96, 102-106
toptional macro parameters 79
pathnames 173
scope and extent 10-17
shadowing 11, 12
special variables 14-17
trace 168
weird errors 30, 31, 41-43

exception handling 182-187
exception handling example 187
exception module 183
exception-arguments function (: extn) 184
exception-continuable-p function (: extn) 184
exception-continue function (: extn) 186
exception-decline function (: extn) 186
exception-function function (: extn) 184
exception-hook variable .. 185
exception-info function (:extn) _ " 185
exception-info variable (: extn) 183
exception-msg function (: extn) 186
exception-quit function (: extn) 186
exception-signaller function (: extn) 184
exception-symbol function (:extn) 184
execution monitor 148-153, 163
execution stack 146, 154, 160-163

194 Index

execution stack browser 154, 155
exit function (: S ystem) 178
exit-listener-on-eof variable (:system) 24
extensions to Common Lisp 177-187
extent 8-17
external module 119
external references 120-123
extn package 119

f
:fast-methods option to define-type 87
file system 171-176,180
floating point numbers 70
foreign functions, see "non-Lisp functions"
Fortran:

arrays 129, 142
examples of calling from Lisp 141, 142
parameters .. 125

free variable 10, 13
funcall function 40
function descriptions .. 3
function stepPer 148-153, 163
function tracing 164-168
functional transformations 34-37, 39

9
garbage collection .. 25-28, 178
gc function (: system) 178
gensym function 78-80
get-program-args function (: system) 180
:gettable option to instance variable specifier 86, 98

h
handling errors 182-187
heap 25-28,41-43
hide-classes function (:debug) 163
host component of pathnames 172
host-command macro (: system) .. 180
host-command-function function (: system) 180
host-command-object-format variable (:system) 180

Index 195

host-command-quoted-format variable (:system) 180
host-command-symbol-format variable (:system) 180
Hp·UX command line arguments 180
HP·UX, functions for accessing 180-182

i
ignore declaration specifier 62
immutable data 42, 125
indefinite extent 9, 10, 13
indefinite scope 9-11, 13
: inherit-from option to define·type 88, 97-106, 116
inheritance 97-106
inheritance:

examples 99, 102-106
instance variables 103
methods , 98-102
:methods option .. 98, 104
:variables option 98, lOS, 106

:init universal method 86, 108-110, 112
:init-keywords option to define-type 88, 98
: initable option to instance variable specifier 86, 108
initialization keywords for instances .. 90, 94, 108-111
: initialize universal method 90, 108, 109
: initialize-variables universal method 108, 109, 112
inline code 35, 37
inline declaration specifier 37, 62
:inline-methods option to define-type 87
inspect function 20, 156-159
! inspect inspect listener macro 157
inspect-? function (:debug) .. 157
inspect-describe function (:debug) .. 157
inspect-inspect function (:debug) 157
inspect-modify function (: debug) 157
inspect-source function (:debug) 157
inspect-top function (:debug) 158
inspect-up function (: debug) 158
inspector 156-159
inspector example 159
instance type symbol 49, 115
instance variable 84, 86, 89
instance variables:

196 Index

inheriting 98, lOS, 106
pseudo lOS, 106

instancep function (: extn) .. 115
instances 48, 84
instances:

creating 90
initialization 108-111
inspecting. .. 158
type 84

interpreter 33, 38, 147
:interpreter class of functions 163

I
leaving the system 178
less-detail function (:debug) 162
lexical:

scope 9, 10
shadowing II, 12

library functions, calling from Lisp 121, 136
:libs keyword parameter to load-ofile 121
list " 48
listener function (: system) 23
listener macros 21, 22
listener modes 20, 146
listener-abort function (: system) 24
listener-banner variable (: system) 24
listener-continue function (: system) 24
listener-eval variable (: system) 24
listener-mode variable (: system) 24
listener-name variable (: system) 24
listener-print variable (: system) 24
listener-quit function (: system) 24
listener-read variable (: system) 24
listener-read-dispatch-macro symbol .. 22
listener-read-macro symbol 21, 22
listeners 20-24
load directories 175
load function 31, 122, 174
:load-also keyword parameter to load-ofile 121, 122
load-ofile function (: extn) 121
load-related variables 123, 175

Index 197

loading files 174, 175
loading non-Lisp object code .. 121
locally macro " 57, 58
Look, stack browser command 155

m
macro examples 78-80
macro expansion time 74, 107
:macro keyword parameter to defexternal 124
:macro keyword parameter to defexternalvar .. 131
macroexpand function 74
macroexpand-l function 74
macros , 30-32, 73-80, 107
make-array function 42, 129
make-instance function 90
message " 83
message sending 90,91
:method breakpoint specifier .. 149
:method trace specifier 164
methods 84
:methods option to inherit-from 98, 104
methods:

ambiguity 100
name conflicts 104
resolution 100
universal 112-116

!modify inspect listener macro 157
modules variable 174, 175
modules:

debug 160
debug-br 148, 154
exception 183
explanation of 174-176
external 119

Monitor listener mode .. 20
monitoring execution 148-153
more-detail function (: debug) 162
multiple-value-setf macro example 78
mutable data 42

198 Index

n
name component of pathnames .. 172
name declaration specifier (: extn) 64
name variable (:debug) .. 164
names 8
NMODE 4,27,28, 148, 178, 180
:no-init-keyword-check option to define-type 88
No-values, execution monitor command 151
non-destructive functions .. 41
non-Lisp:

argument type symbols .. 127
arguments 125-128
array parameters 128
array specifier for arguments 128
assembly language example 143
C examples 133-136
defining access functions 124
Fortran examples 141, 142
function calling 119-143
loading object files 121
Pascal examples 137-140
pointer parameters 125, 126
restrictions 130
return values 124, 130
symbol arguments 126
var parameters 125, 126
variables .. 131
vector specifier for arguments 128

notinline declaration specifier .. 62
:notinline-methods option to define-type '. 87

o
.0 file 120
object 82
object file format 120
object-oriented programming .. 19, 81-117
object-oriented programming examples 91-96
off function (: system) 22
:offset keyword parameter to defexternalvar 131
on function (:system) 21,22
on-off? function (: system) 22

Index 199

125, 126-128

operating system access functions 180-182
optimization 33-45
optimize declaration specifier 34, 63, 147
"optional parameters to macros, example 79 ~

op~:n:~mpiler 121 ''-.
: inherit-from to define-type 88,97-106, 116
:after to trace 165, 167
:all-gettable to define-type 87
:all-initable to define-type 87
:all-settable to define-type 87
:before to trace 165, 167
:both to trace 165, 167
:break to trace .. 165, 167
:breaka to trace 165, 167
:breakb to trace 165, 167
execution monitor 153
:fast-methods to define-type 87
:gettable instance variable 86, 98
:init-keywords to define-type 88, 98
: initable instance variable 86, 108
: inline-methods to define-type 87
:methods inheritance 98, 104
:no-init-keyword-check to define-type 88
:not-inline-methods to define-type 87
stack browser .. 155, 163
trace 165, 166
:trace-output to trace 165, 167
:type instance variable .. 86
:variables inheritance 98, 105, 106

p
parameters to non-Lisp routines
Pascal:

arrays 139, 140
entry points 138, 139
examples of calling from Lisp 137-140 ~
procedures 139, 140
records 130, 131
var parameters 125, 126

pass by reference 125

200 Index

PATH HP-UX environment variable. .. 180
pathname examples 173
pathnames 171-173
pointer parameters to non-Lisp routines 125, 126
porting considerations . " 177
pp-expand function (: axtn) 33, 34
predicate type specifiers 52, 53
preprocessor 29-31, 33
Prettyprint, execution monitor command .. 151
:primitiva class of functions 163
:print universal method 112
procedures:

Pascal 139, 140
proclaim function 34, 45, 57, 59
propagation of methods 98
protected-antry-points variable (: extn) 123
:protecting keyword parameter to load-ofile 121
provide function 32, 174
pseudo instance variables lOS, 106

q
!qstep debug listener macro 163
!qUit inspect listener macro .. 158
!quit listener macro 158

r
records, Pascal 130, 131
recovered 27
recovering from errors 24, 182-187
:redefined-methods 87, 98
redefining instance types .. 116
:redefining keyword parameter to load-ofile 121
relative file name 173
rename-type 116
require function 32, 175
require-directories variable (: system) .. 175
resolving file names 173, 180
restrictions on non-Lisp routines 130
:result keyword parameter to defexternal 124, 130
return value of non-Lisp routines " 124, 130
Run execution monitor command 151

Index 201

5
!s debug listener macro 162
!sa debug listener macro 162
safety .. 34, 37, 130
save-world function (: system) 178
save-world-init-forms variable (:system) 178saving an environment 178Scope

8-17
self

89,93
self variable (: debug) .. 164
send?

91Set execution monitor command .. 152Set stack browser command 155
:settable

86, 98shadowing
11, 12

shared list structure 42
show-classes function (:debug) 163
!source inspect listener macro 157
space

34
special 11, 14-17, 47, 56, 60special variable 11, 14-17, 56
specifying instance variables 86
speed .. 33-38stable

27stack 146, 154, 160-163stack browser , 154, 155Steele
1, 47

step
20, 148

!step debug listener macro 163
Step, execution monitor command 150
step-from-listener function (:debug) 163stepping functions 148-153, 163string

48
structures:

C
130,131

Lisp
48subroutines, Fortran 142 ")subset type specifiers 50-52

substr macro example 79
subtypep function 68
supports-operation-p function (: extn) 91

202 Index

symbol 8, 13, 14, 48
symbols as arguments to non-Lisp routines 126
:system class of functions 163
system functions, Lisp 178-179
system-lisp declaration specifier (:extn) 34,37,39,63

t
the special form 44, 45, 65
throw special form 12
tools for debugging Lisp 145-170
!top debug listener macro 161
top function (:debug) 161
!top inspect listener macro " 158
topics 2
trace macro 164
trace-entry-print function (:debug) 167
:trace-output trace option 165, 167
trace-output variable 165
trace-return-print function (:debug) 167
tracing:

examples 168
functions 164-168
options. .. 165, 166
order 167

type checking 40, 44, 45, 66-68, 130
type component of pathnames 172
type declaration specifier 61
:type option to instance variable specifier .. 86
type specifiers 49-55
:type-check keyword parameter to defexternal 124, 125, 130
type-of function 66, 115
typecase macro . " 69
typep function 66, 114
:typep universal method 113, 114
types 47-71
types of arguments to non-Lisp routines 127

Index 203

u
!u debug listener macro 161
!uf debug listener macro 161
undefine-method 117undefine-type .. 117
undefining instance types 117
unexported-entry-points variable (: extn) 123universal methods .. 112-116untrace macro. .. 164
up function (:debug) 161
!up inspect listener macro 158
up-fn function (: debug) 161
upward closures 18, 38
upward-closures declaration specifier (: extn) 34, 38, 39, 64

v
! v debug listener macro 162
Value, execution monitor command 152value function (: debug) 162
:value keyword parameter to define-entry-point 124
Value, stack browser command , 154
value variable (:debug) 164Values, execution monitor command 151
Values-and-args, execution monitor command 151:var instance variable specifier to define-type 86var parameters to non-Lisp routines 125, 126
:var-type keyword parameter to defexternalvar 131variables .. 8
:variables option to :

inherit-from 98, 105, 106
variables:

free
10, 13

instance 84, 86, 89
non-Lisp 131
pseudo instance lOS, 106

vector specifier for non-Lisp routine arguments 128version component of pathnames 172version declaration specifier (: extn) 64View, execution monitor command lSI, 152

204 Index

w
Walk, execution monitor command 151
warn declaration specifier 64
warn function 183
warnings, turning off .. 64
weird errors 29,30,41-43, 107
when- error macro (: extn) 183

Index 205

206 Index

Notes

',.

,...
\(

MANUAL COMMENT CARD

LISP Programmer's Guide

Manual Reorder No. 98678-90040

Name:

Company: _

Address:

Phone No: _

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on _

BUSINESS REPLY MAIL

III
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO

J

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

~~',

HP Part Number
98678-90040
Microfiche No. 98678-99040
Printed in U.S.A. 3/86

FliOW HEWLETT
':1:. PACKARD

~ 11\\11 ~II ~ 111111l1li ~ -,
98678-90603
For Internal Use Only

	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Concepts
	Chapter 3: Programming Tips
	Chapter 4: Types and Declarations
	Chapter 5: Macros
	Chapter 6: Object-Oriented Programming
	Chapter 7: Calling Non-Lisp Routines
	Chapter 8: Debugging Tools
	Chapter 9: File System Dependencies
	Chapter 10: Extensions
	Index

