
;

HP 90QO Series 300 Computers

NMODE User's Guide

r/in- HEWLETT
~~ PACKARD

"'.
~

NMODE User's Guide
for HP 9000 Series 300 Computers

HP Part Number 98678-90020

@ Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. AU rights are reserved. No part of this
document may be photocopied. reproduced or translated to another language without the prior written consent of Hewlett·
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use. duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (bX3XB) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack Is restricted to this product only. Additional
copies of the programs can be made for security and back-up purposes only. Resale of the programs in their present form
or with alterations, is expressly prohibited.

@ Copyright 1980, 1984, AT&T, Inc.

@ Copyright 1979, 1980, 1983. The Regents of the University of Califomia.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road. Fort Collins. Colorado 80525

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

May 1986...Edition 1. This manual documents release 1.0 of the common LISP Development
Environment for HP 9000 Series 300 Computers.

May 1986...Update. Adds chapters missing from Edition 1.

NOTICE
The information contained in this document is sUbject to change without notice.

HEWLETT·PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING, BUT NOT LIMITED TO.
THE IMPUED WARRANTIES OF MERCHANTABIUTY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett·Packard shall not be liable
for errors contained herein or direct, indirect, special. incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

ii

F'i;' HEWLETT
':1:. PACKARD Manual Update

This Manual Update is for HP Part Number: 98678-90020
Title: NMODE User's Guide
Printing Date: 5/86

This manual update provides new information that was inadvertently omitted when the NMODE
User's Guide was published. We apologize for the oversight.

This update contains two chapters that may be missing from your manual and a revised Table
of Contents and Printing History.

• Chapter 8: Directories Facility

• Chapter 17: Customization

• Replacement Table of Contents

• Replacement Printing History

To update the NMODE User's Guide:

Insert the chapters into the manual at the appropriate locations.

Replace the Table of Contents with the one provided in this update.

Replace the Printing History with the one prOVided in this update.

No changes are needed to the on-line version of the manual.

Hewlett-Packard Company. 3404 East Harmony Road. Fort Collins. Colorado 80525

HP Part Number
98678-90800
Printed in U.S.A. 5/86

98678-90800

Table of Contents

Chapter 1
The Overall Picture

Introduction. .. 1
What Is NMODE7 3
Where Does NMODE Fit In? 4
Finding Information. .. 6
Getting Information in This Manual. .. 7
Looking at NMODE 8

Some Basic Definitions 8
The Features 9

Using NMODE 12
The Next Step 13

Chapter 2
Basic Use of NMODE

Introduction. .. 15
The Display .. 16

The NMODE Display 16
The Initial Screen Display. .. 23

The Overall Structure of NMODE 25
Using the Keyboard 26

The Physical Keyboard 26
Guidelines for Using the Keyboard 27
Key Bindings. .. 27
Special Keys 28
Supplemental Key Bindings 32

Executing NMODE Commands 33
A Model for Executing Commands 33
Key Sequence Commands .. 34
M-X Commands .. 35
Special C01llmam]::s ill Menus .. 38
Softkey COlnlnands. .. 38
Locator Device Commands 39

NMODE's Itenls and Modes 44
The Items and Modes 44
The Cursor and the Point. .. 46
Universal Arguments 47
Cancels, Aborts, and Exits 48

Assorted Topics. .. 50
Useful Routines. .. 50
Getting to a Known State. .. 54
Getting Help 54
The HP-UX System Access Facility 54

Conclusion .. 55

Chapter 3
NMODE Windowing

Introduction 57
Concepts 58

Windows 58
Panes 59

Commands and Techniques. .. 60
Window COIuluands .. 60
Pane Commands. .. 62

Window Enhancements .. 64
Fonts 64
Colors 64
Character Enhancements 64
Setting up the Enhancements 65
Example 65

Windows/9000 Interactions 66

Chapter 4:
Getting On·line Help

Introduction. .. 67
Documentation Facility .. 68

The Tutorial 69
Help Items .. 70
On-Ime Manuals 71

Help Via Menu Commands. .. 72
Using the Help Command 72
Executing Help in Any Browser. .. 72
The Key-bindings Command .. 73

Direct Help Via NMODE Commands 75
Commands That Duplicate Browser Comma.nds 75

Help Tools .. 76
Help During Input Mode. .. 77
A Short.Tour of the Help Command. .. 77

r

Chapter 5
Introduction to Browsers

Introduction 79
Using Browsers 80

Accessing Items at Various Levels 81
Working With Items in a Browser. .. 82
The Menu of Conlnlands .. 83
Common Browser Commands 84

Browse 84
Create 84
Group 85
The Multiple Selection Option and Grouping. .. 86
Filter (Hide) 87
Help 89
Kill 89
Options. .. 89
Quit 90
Thash 91
Other NMODE Commands Available 91

SUIlIJnary .. 91

Chapter 6
NMODERoot

Introduction 93
Invoking the NMODE Root 94
Using NMODE Root 95

Accessing Items. .. 95
The NMODE Root Menu of Commands 96

Loading Additional Facilities 96
Additional Facilities .. 97

Chapter '1
The Buffers Facility

Introduction 99
Buffers 99

Buffer Characteristics 100
Default Buffers .. lUI
Mode Line Display for a Buffer .. 101
Buffer Modes. .. 102
Manipulating Buffers. .. 103

The Buffers Facility .. 105
Selecting the Buffers Facility 106

The Item-line for Buffers. .. 106
Special Commands for Buffers .. 107

The Create Command (Buffers) 107
The Sort Command (Buffers) 108
The Write Command (Buffers) 108 ~
The Utility Command (Buffers). .. 109)
The Options Command (Buffers) 109
Updating the Buffers Facility 109

Chapter 8
Diredories Pacility

Introduction 111
The HP-UX File System 111

Active Directories 112
The Browser for a Directory 113

A Directory Browser Screen .. 113
File Types and Naming Conventions. .. 116
Calling a Directory Browser 116

The Menu of Commands for a Directory .. 118
Browse (Directory) .. 118
Sort (Directory) 118
Utility (Directory) 119
Type-specific (Directory) 121
Options (Directory) 122
File Access Permissions 123

Local Area Networks 125
LAN and the Directory Facility 125

Chapter 9
Working with Text ,

Introduction 127
Organization .. 127

Accessing the NMODE Editor 128
Writing N~w T~xt 128
Editing an Existing File 129

Establishing an Editing Environment .. 130
Setting Desired Modes for Editing. .. 130

Fundamental Text Editing 132
The Cursor and the Point 132
Moving the Cursor 132
Inserting Characters or Text 133
Deleting Characters or Text .. 134

Items You Can Edit. .. 135
Word ConlIllands 135
Line COlllmallds 137
Sentence Commands 139
Paragraph Comnlands .. 140
Prefixed Arguments (Repeat Factors) 141
Undoing Text 142

Miscellaneous Commands .. 143
The Cursor Location 143
Case Conversion Commands. .. 143
'I'ransposing Text 144

Search COlnmands 146
Increnlental Search 146

String Replacement Commands. .. 148
Query Replace Command .. 148

Formatting Commands 149
Setting Margins and Indenting 149
Tabbing and Indenting 150
Centering 151
Filling .. 151

Text Manipulation .. 155
Setting and Using Marks. .. 155
Deleting, Copying, and Moving Blocks of Text 158

Buffer and File I/O 161
Printing a Buffer. .. 161
Writing a Region 161
Finding or Visiting a File 162
Saving a File 163
Writing a File 163
Saving all Files 163
Creating a File 163
Copying a File 164
Moving a File 164
Killing (removing) a File. .. 164
Reverting Back to a File .. 164
Renauling a File 165
Compiling a File 165

Chapter 10
Working with Lisp Code

Introduction 167
Scrolling and Moving the Cursor. .. 169

Writing and Editing Lisp Code 170
Writing New Code 170
Editing Existing Code .. 170
Manipulating Lisp Code 172
Matching Parentheses, Braces, and Brackets. .. 178
A Brief Practice Session 179
Headers and Comments 180
Killing, Yanking, and Moving Lisp Code 181

Executing and Debugging Code. .. 184
Evaluating Lisp Source Code .. 184
Yanking Results from The OUTPUT Buffer 185
Simple Debugging of Lisp Source. .. 186
COJllpiling Lisp .. 187
Getting Additional Information about Programming. 188

Establishing a Programming Environment. .. 188
Using Packages .. 188

Chapter 11
Working with Other Code

Introduction 191
Setting Up 192

Loading the Language Module. .. 192
Invoking a Language Minor Mode 192

Working With Other Code 194
Moving the Cursor 194
USlllg Teulplates ',' 195
Available Templates. .. 196
Indentation 197
Editing Options 198

Compiling Other Code 199
Use of Facilities. .. 199

Chapter 12
HP-UX Aeecss Fneility

Introduction 201
Loading the Facility .. 201
Comparison of Shells .. 203

Using the HP-UX Access Facility 204
Using a Shell-Buffer 204
Using the HP-UX System Shell .. 206

Executing NMODE/HP-UX Commands 207
General COIIIJllands 208

Elnacs COUlnlands 210
Commands Specific to Shell-Buffers 213

The Options Browser 215
Creation Options 216
Kill Options. .. 217
Popup-Menu Options 217
Popup Menu Access 218

Creating and Killing Shells .. 220
The HP-UX Access Facility Model 222

The Shell-Buffer .. 222
The System Shell 223

Possible Problems and Anomalies .. 224
Rules to Renlenlber 224
Unresponsive Shell-Buffers 225

Chapter IS
Code Indexes

Introduction. .. 227
Loading the Browser for Code Indexes. .. 228
Creating New Code Indexes 229
Code Index Facility 230
A Code Index 231
Find Itenl COllllnand .. 233
Executing Browser Commands (Code Indexes) 235

The Add-files Command (Code Index) .. 235
The Utilities Command (Code Index) 236
The Options Command (Code Index) .. 236
Browse Include Command. .. 240

Saving and Restoring Code Indexes 240
Saving a Code Index 240
Loading Saved Code Indexes 241
Registering Saved Code Indexes. .. 242

Chapter 14:
Search Indexes

Introduction. .. 245
Loading the Browser for Search Indexes. .. 246
Creating New Search Indexes 247
Search Index Facility .. 248
A Search Index .. 249
Executing Browser Commands (Search Indexes) 251

The Pattern Command 251

The Add-files Command (Search Index) 252
The Utilities Command (Search Index) 253
The Options Command (Search Index) 253

Saving and Restoring Search Indexes .. 254
Saving a Search Index .. 254
Loading Saved Search Indexes .. 255

Chapter 15
Error Indexes

Introduction. .. 257
Loading the Support Code for the Error Indexes Facility. 258
Creating New Error Indexes .. 259
Error Index Facility .. 260
An Error Index .. 261
Executing Browser Commands (Error Indexes) 262

The Add-files Command (Error Index) 262
The Utilities Command (Error Index) 263
Runnulg make. .. 264
The Options Command (Error Index) 266
Options for C, Pascal and Fortran Compilers .. 266
Options for make 268 ~

Browsing au Error Index Item .. 270)
Saving and Restoring Error Indexes .. 271

Saving an Error Index 271
Loading Saved Error Indexes .. 272

Chapter 16
User OptioDs

Introduction 275
Selecting User Options 276
The User Options Facility. .. 277

Loading User Options 278
Options Browser Command Menu. .. 278
A Typical Options Menu. .. 280

Available Options 281
Options. .. 282

Chapter 1'1
Customization

Introduction 285
How CU::ltoJ1li~atioll::lan~ Made 285
When Customizations are Made 286

Where to Start 286
Key Mappings. .. 287

Determining Key Mappings 287
Changing Key Mappings. .. 287
Removing Key Mappings 293

Writing Command Functions .. 294
Combining Existing Commands. .. 294

Softkeys 295
Environnlent Variables 296
Registering Applications .. 296

Appendix A
NMODE Quick Reference

Options for Executing Commands. .. 298
Key Sequellces. .. 298
M-X Command Nalnes 299
Using Prefixed Arguments 299

The NMODE Commands 300
Prefixes. .. 300
Exits, Restarts, and Returns 300
HP-UX Access Facility 301
Help and Inforlnation. .. 302
Modes 303
Screens, Windows, and Panes. .. 303
Writing and Editing Text .. 304
Working With Strings 307
Using Marks in Text and Code 307
Writing and Editing Code. .. 308
Rp.gions .. 311
Buffers 311
Files (Directories) .. 312
Browsers 312
Miscellaneous Aids .. 313

General Softkeys .. 313
General Keyboard 313

Appendix B
Browser Menus

Introduction 315
The COnll11ands. .. 318

Appendix C
Softkeys and Softkey Labels

Introduction. .. 331
Softkey Labels and Commands 332

Appendix D
Keyboard Keys

Introduction. .. 339
The Keys and Tokens 340

Chapter 1
The Overall Picture

Introduction
This manual describes how to use the NMODE environment. This chapter describes the
overall nature of NMODE. It contains a basic introduction to NMODE that is assumed
in later chapters.

To help you quickly locate the desired information 111 this manual, each chapter and
major section has the following organization:

• First, an introduction describes the operational characteristics of the topic at hand.
The introduction describes the functionalities you are about to investigate. This
way, you will immediately know what you can learn by further reading.

• Next, any prerequisites such as loading a module or setting up an environment are
described. When many alternatives for setting things up are available, the manual
mentions one or two efficient commands or procedures that let you get started.
In additioll, in cases where it is desirable to describe some fundamental concepts
rela.ted 1.0 NMODE, this information is included.

• After any prerequisites are explained, the chapter or sectioll discusses the various
things you can accomplish, relative to the topic at hand, by explaining commands,
routines, and procedures. The manual explains multiple ways to do things and
often lets you decide how to proceed, depending on how you like to work and what
you want to do.

• Finally, each chapter or major section discusses the various details related to the
topic.

You do not need to use all of NMODE to work effectively, and correspondingly, you do not
need to read t.he ent.ire manual at one t.ime. The IlHlIllH\.1 is segment.ed a.nd each segment
is graduated so that you can obtain some fundament.al information in a few chapters and
then get information selectively, depending on what you want to do. Included with the
system are on-line tutorials. You may wish to use both this manual and the tutorials as
you learn about NMODE.

1

To see the total organization and content of this manual, you might take a moment to
examine the table of contents, which is the major guide to finding information by topics.
For specific items, the index references information by label and page number.

The information in this manual relates to the NMODE user environment as you received
it. This point might seem trivial, but later, you will see that NMODE can be customized
or extended, or both. If you customize or extend NMODE, your version might not work
according to what is said in this manual. If you intend to alter your environment and you
are concerned about being able to restore the original NMODE user environment, discuss
with your appropriate Hewlett-Packard representative about the best way to backup the
NMODE software you received.

Many parts of NMODE are like the EMACS editor originally developed by Richard M.
Stallman at M.LT. NMODE itself was based to some degree on EMODE, which was
developed by William F. Galway at the University of Utah.

Before You Read Further
You need to do the following things before you read and use this manual.

• Assemble and check your hardware system.

• Install HP-UX 5.1 (or later version)

• Install the Comlllon Lisp development environment software.

• Install NMODE. This occurs in conjunction with installing Common Lisp, but be
aware that you can do some customizing.

• Invoke NMODE. That is, you boot HP-UX and then run the NMODE user envi­
ronment.

The last point might seem trivial, but this manual assumes that NMODE has been
invoked; it does not deal with how to configure the software and invoke it. (That is
explained in the Installation and Overview manual.)

As a quick review, if HP-UX is up and the development environment software has been
installed and you have logged on and see a familiar shell prompt (% or $), then you can
invoke NMODE by typing:

$LISP/bin/nmode IReturn I

The invocation process takes one to two minutes depending on what options you are
loading.

2

r

What Is NMODE?
This section briefly describes what NMODE is in a conceptual sense. It does not tell
you how to do anything. In general, depending on your background and orientation to
software, NMODE is any or all of the following things:

• NMODE is an integrated program development environment. It provides an easy­
to-use human interface that can be manipulated by use of a pointing device (mouse),
simple keystrokes or English-like commands.

• NMODE provides an Emacs-type editor for rapid manipulation of text.

• NMODE supports the interactive development of Common Lisp programs and pro­
vides simplified editing, compiling, and error correcting of C, Pascal, and FOR­
TRAN programs.

• NMODE allows easy access to the underlying HP-UX operating system. You can
execute HP-UX commands in a shell-buffer which is similar to an HP-UX shell but
retains all text in an NMODE buffer.

• Besides being just an interface with an EMACS-type editor, NMODE lets you
develop, interpret, compile, and debug Lisp source code without ever leaving the
editing environment! In addition, it provides browsers that contain code and search
indexes which efficiently find source code functions and strings that you want to
edit.

• You can use NMODE to develop code in C, Pascal, and Fortran. NMODE pro­
vides assorted templates that help you write code and also provides a browser that
contains compilation error indexes. These error indexes take you directly to errors
produced during compilation of C, Pascal, or Fortran source code. In addition,
you can directly move between editing and browsing modes, which permits making
smooth transitions from editing to compiling to debugging and otherwise manipu­
lating source code.

• The name NMODE can also be applied to the library that contains the editor and
assorted tools.

Although NMODE is very flexible, you will discover that it is predictable and straight­
forward. The major things yOll can do include:

• Edit, interpret, compile, and debug source code

• Prepare reports and other documents

• Manage files in directories

3

• Get online information

• Interact with the underlying Common Lisp language

• Interact with the HP-UX operating system

• Run applications

Where Does NMODE Fit In?
The following general illustration shows the major parts of NMODE and the relation­
ship of NMODE within the Common Lisp Development Environment. The following
illustrates the high-level structure of NMODE.

Buffers (provides an Emacs Mode editor)

Directories (provides directory and file management)

Documentation (provides online documentation)

NMODE

Common Lisp

Additional Facilities (provides tools for programmers)

User Options (provides control of user customization)

Code Indexes (provides indexes to source code)

Search Indexes (prOVides indexes to any text)

Compilation Error Indexes (provides indexes to errors)

User Developed Applications

Optional software (e.g. Window Management)

HP-UX

Notice the following things:

• HP-UX is the underlying operating system. It provides a base for Common Lisp
and other software. NMODE can have a shell-buffer which lets you execute HP-UX
commands as if you were in a shell.

4

• You can run optional software on HP-UX that adds functionality; for example,
window management.

• Common Lisp runs 011 HP-UX and is independent of NMODE. Thus, a programmer
can use NMODE to develop Lisp-based a.pplications which can rUIl later without
NMODE.

• NMODE runs on Common Lisp and interfaces to the underlying Common Lisp
environment; for example, you can interpret or compile Lisp source code while you
are in NMODE.

Overall, the illustration shows that HP-UX, Common Lisp, and NMODE provide a base
for a software development environment. Other software can be added to extend the
environment to provide the functionality you need. The illustration also implies that
HP-UX and Common Lisp can provide a. basic execution environment on which you can
run assorted applica.tions.

5

Finding Information
This manual, which describes the use of NMODE, is part of the manual set for the
Common Lisp Development Environment. The set contains the following additional
guides and manuals:

• The Installation and Overview manual describes how to install the HP-UX oper­
ating system, the Common Lisp environment, and the NMODE user environment.
Working through the installation manual is a prerequisite to using this user's guide.

• The NMODE Command Reference manual supplements this user's guide in that it
contains reference information about each NMODE command.

• The Lisp Programming Guide describes assorted programming topics. The guide
explains how to use Common Lisp and assumes that you are familiar with Lisp.

• The Lisp Language Reference manual contains reference information about Com­
mon Lisp.

• The documentation set for HP-UX, especially the HP-UX System Administrator
manual, provides a detailed explanation of the HP-UX operating system.

6

Getting Information in This Manual
The Table of Contents provides n. quick means of seeing all of the topics discussed in this
manual. The appendices provide the following types of reference information.

• Appendix A is a lift-out card that lists all typical NMODE Commands. For each
cOllunand, the appendix provides: a descriptive phrase, a key sequence, and a Meta­
X command name. The commands are grouped into topical categories so you can
find them quickly .

• Appendix B is a lift-out card that contains an alphabetized list of special browser
commands. The appendix lists command names and describes the commands.

• Appendix C is a lift-out card that lists and describes the commands you can execute
by pressing a softkey. In most cases, pressing a softkey merely provides a convenient
way to execute a certain command. III a few cases, pressing a softkey toggles or
cycles certain states or sets of softkeys.

• Appendix D contains information about the keyboard. Examine this appendix if
you want to get information about bindings for keys.

Although NMODE is an integrated environment, information is presented in this manual
in somewhat separate pieces so that you can quickly find the information you want.

This manual does explain those commands that let you work with other software. For
example, you will probably use window management software. Commands that manip­
ulate windows are documented in this manual. Similarly, this manual documents mouse
commands, but does not describe the HP 46060A device in general.

7

Looking at NMODE
NMODE is essentially a user environment for software development. For example, with
NMODE you can: write source code, interpret and/or compile the code depending on
the language. This section describes the main features of that environment.

Some Basic Definitions
Before reading other chapters, it is necessary to define some terms that are used through­
out this manual to provide a consistent way to talk about the things you work with.

NMODE
Root

Facility

Item

The many parts that make up NMODE are IlOt just a collectioll; they have
hierarchical and integrated relationships. When you invoke NMODE, you
get a screen-oriented interface that provides a list of facilities. This top
level is named tn.mDE Root in the screen display that lists facilities. Do
not confuse references to tn.mDE Root with any references to the root of the
HP-UX file system or the root user (or system administrator).

When you are at NMODE Root, the display shows a list of items (such
as Buffers, Directories, and Documentation). Each item that is listed at
NMODE Root is called a facility, and the collection is called the facilities.

Each facility contains a list of items. In using NMODE, you typically get
into a certain facility and then work with its items. The generic term,
item, is used to refer to any of a number of "things" you might be using.
For example, the items in the Buffers facility are buffers (workspaces) in
which you can edit text. Other facilities contain other types of items.

In working with NMODE, you will notice that NMODE provides a consistent interface
for using the items. Two mechanisms, one called a browser and the other an EMACS­
type editor, stand out. The mechanism called a browser lets you manipulate assorted
facilities and items; for example, directories, files, indexes, online help, and user options.
In a different vein, the second mechanism is an EMACS-type editor that lets you edit
text in working buffers.

8

The Features
The following terms and information describe NMODE's features, and thereby indicate
what you can do within NMODE.

• Integrated: Without going into details, this term means that NMODE's files work
together to provide a total user environment. Here are three examples:

• NMODE's structure and available commands make it easy for you to sequen­
t.ially point to and browse a facility or item regardless of what it represents.
For example, starting at the NMODE Root, you could successively point to
and browse: the Directories, an a.ctive directory, and a particular file. Then,
you could "switch gears" and edit the file. The term, point to, means that
you move a highlighted region onto an item in a browser's list. The item that
you are pointing to is also referred to as the current, selected, or active item.

• NMODE is implemented entirely in Lisp. You can evaluate Lisp forms or
compile and execute them, without leaving NMODE's editing environment!

• The availability of multiple buffers and windows lets you edit several files in
parallelj for example, source code, documentation, and report files. You can
pause at any time, leave what you are doing, work with other items in the
environment, and then return to your files.

• You can access HP-UX in several ways without leaving NMODE.

• Customizable: You can change the key sequences that invoke commands or add
certain features to the environment.

• Extensible: Beyond customization, you can write functions for new commands, bind
them to key sequences, and add them to your environment. You can also replace
parts of NMODE incrementally.

• Screen-oriented: Typed characters automatically echo to the appropriate region of
the screen. Characters typed for text or code appear in a section of a window called
a pane. Characters typed for commands or entries related to prompts appear in
a message area. This echoing occurs interactively in the sense that the display is
updated often, usually after entry of each character.

• Documented: NMODE provides documentation in online manuals and frames of
information that can be accessed in various ways and displayed on the screen.
Among other things, you can get information about commands, terms, and defini­
tions. A later chapter of this manual called Getting Online Help contains detailed
information about getting online help.

9

• Moded: The name, NMODE, derives from the fact that the user environment has
multiple modes. Here is a general scheme for thinking about modes.

• In NMODE, you a.re always using a certain type of item; for example, a facility
(such as a directory), a file, or a buffer.

• An item always has some a.ssociated mode; for example, a buffer has an editing
mode.

• The mode determines available commands. That is, the available cOlllmands
are always suited to the items at hand.

• A mode consists of one major mode and zero or more minor Illodes. The major
mode provides the bulk of available commands while the minor mode provides
a limited set of special commands, generally suited to a particular type of item.
For example, in Emacs mode there are many commands for manipulating
text. If we' add the HP-UX minor mode, there are now additional commands
specialized for working with HP-UX.

The current set of modes is based on ongoing development of user environments that
began at M.I.T. in the 1960s with the development of TECO and continued with the
development at M.LT. of EMACS. The modes developed in these editors are the prede­
cessors of the current modes in NMODE.

10

With these terms in mind, the following chart shows relationships among the entities
that make up the NMODE user environment.

Basic Screen-oriented Interface
(The "mechanism" for using the NMODE's items and modes)

The total NMODE user environment

The Facilities
(Provide access to all items in NMODE)

[Directories. Documentation, Buffers, User Options. Code, and Others]

The Items
(Are the entities you primarily work with)

[files, text. information. forms. indexes, system variables]

These things work as follows:

• The basic screen-oriented interface simply lets you work with the things in NMODE.
This interface is fully described in the next chapter.

• The facilities let you access all parts of NMODE and sits at the top level, called
NMODE Root. In general, you do not work with facilities so much as you use them
to get to items they contain.

• The items are the "nuts and bolts" things that you manipulate as you browse files,
edit text, search for code items, and so on.

With this in mind, we can now begin to use NMODE.

11

UsingNMODE
Answering the question t "How does one use NMODE?" is not trivial since there is no
single way to use any part of NMODE. Many of the common opcrations t such as editing or
manipulating files, can be accomplished in several ways. While this may appear confusing
to the beginner, you should not worry because you can quickly learn the fundamentals.

Remember that each chapter and section provides some initial description and quickly
points out things you can do. Then, the chapter or section explains available alternatives
and lets you decide how you want to operate.

Overall, the following information suggests how to use NMODE.

• NMODE provides a screen-oriented interface that has several regions. Each region
serves a certain purpose. For example t the mode line always indicates the state of
the current environment. The next chapter called Basic Use of NMODE explains
this interface in detail.

• You can go to the part of the environment that you want and then complete tasks
by executing commands that operate on current items in a current mode. In most
cases, you invoke a particular browser that lets you manipulate items t or you invoke
the editor to edit text.

• When you are in a browser, you can examine a list of items, point to an item,
and then browse it. For example, starting at the Nt-mOE Root, you could point to
and browse Documentation to get a list of online manuals and help text. Then, you
could point to and browse an online manual to get a list of chapters. In addition
to pointing and browsing, you can execute any of several commands that let you
manipulate the items.

When you are in a browser, the current cnvironment provides a menu of special
browser commands that let you do such things as browse, filter, or group items. The
browser conullands t which appear at the bottom of the screen, are always tailored
to the current items and mode and allow a menu driven routine for manipulating
items.

When you are in a text buffer, no special menu of commands is available (unless
you use the mouse to get a popup menu), but you can writ,e and edit, text t evaluate
source code, and so on. Many commands are available for editing. These commands
are EMACS like commands. Appendix A contains a quick reference to them.

• NMODE has various commands that let you move the CUI'(lor, ma.nipula.te files,

compile source code, manipulate windows, and otherwise manage the overall envi­
ronment. Here are two examples:

12

~'

The editing modes provide commands for getting a file to edit, deleting items such
as words, lines, sentences, paragraphs, and regions. Having deleted an item, you
can move the cursor to a. desired location and reinsert the deleted item. You can
then save the edited text in a file.

After you write Lisp source code and edit. it to your satisfaction, you can inuuedi­
ately interpret the code to see if it works. If it does work, you can save the code to
a file and immediately compile the file.

When learning to use NMODE, most people begin by using a point and browse method
to perform tasks. Some use menu driven methods to execute certain browser commands.
Later, most people learn several commands that provide direct access t.o items they wish
to use.

The Next Step
This chapter, which you have almost finished, generally explained or implied what you
can do without saying anything about how to do it. This means that the chapter implied
the need to read other chapters. You will eventually need to work through subsequent
chapters if you want to make use of all parts of the NMODE cnvironment. Here is what
they contain.

• Basic Use of NMODE is essential reading. You cannot effectively use NMODE
unless you are acquainted with the screen-oriented user interface, the types of modes
that provide commilnds, the ways to execute commands, and various related details.
The chapter contains much information, but you will soon learn how to manage
and use it.

• The chapter called Getting Online Help explains how to have the system provide
information when you need it.

• The chapter named The HP- UX Facility explains thc facility that lets you interact
with the underlying HP-UX operating system wit.hout having to leave NMODE.

• Each browser is Jiscussed in a separate chapter tha.t. yOll can read after you read
the chapter called Introduction to Browsers, which expla.ins browsers in general.

• Working With Text contains information related t.o edit.ing human-readable text (as
opposed to program source code). This information is assumed in later chapters
called Working With Lisp Code and Working with Non-Lisp Code.

• Working With Lisp Code and Working with Non-Lisp Code contain information
related specifically to editing and otherwise manipulating source code.

13

• Customizat,jon is treated last in a separate chapter, should you wish to alter the
user environment you originally received.

Be sure to read the chapters that contain introductory material before tackling the
advanced topics. It is suggested that you take time to read the information and examine
your system at the same time. Be sure to watch for and read about the mode line. This is
important because, the mode line is always your best indicator of where you are located
within the environment.

While few specific exercises are provided in any of the chapters, many examples are
included. Try them out to see user-level cause and effect relationships. In particular,
it is suggested that you work through the parts of chapters or sections that discuss
prerequisites to doing something so you can see first-hand what the system does when
you load a module or set values for certain user options. Then, read additional material
selectively and perform tasks related to what you need to accomplish.

14

Chapter 2
Basic Use of NMODE

Introduction
This chapter describes how to use the NMODE environment. Here you can learn how to
interpret the display, execute commands, and use assorted routines for moving around
in the environment. In discussing these types of operations, specific information about
conventions and procedures is included so that, as you read later chapters, you will
know how to interpret particular situations. By knowing this type of information and by
knowing about NMODE's "parts", you will soon be able to use the environment in very
powerful ways.

Specifically, by reading the chapter you can learn how to:

• Understand and use the screen-oriented interface. Following this, the basic struc­
ture of NMODE is illustrated and discussed.

• Use the keyboard, softkeys, and pointing device (mouse) to execute NMODE com­
mands.

• Work with NMODE's modes. You will see how the current mode provides the
commands that let you work productively with current items.

• Use several different routines to access and otherwise work with items.

• Supply numeric arguments to a command being executed.

• Cancel, abort, or exit commands or situations.

Each of these things will be useful as you read subsequent chapters.

15

The Display
This section explains what you see on the terminal or window(s) that NMODE is running
on. The information is important because NMODE's interface is screen-oriented; it lets
you know what the system is doing by displaying items, text, prompts, and menus in
certain areas. This "partitioning" of the display is the fundamental principle underlying
the interface. For example, by reading further, you will Bee how the mode line always
lets you determine where you are within the overall environment.

While NMODE can be used with or without window-management software, having
window-management software provides various conveniences such as multiple NMODE
windows and popup menus. Exceptions to NMODE's behavior when it is running with­
out the window manager will be noted.

The NMODE Display
An NMODE window is the fundamental interface to NMODE. Without window­
management software, NMODE uses the entire physical display as its window. With
window-management software (Windows/9000), NMODE windows correspond to Win­
dows/9000 windows.

For simplicity, the term NMODE window will refer to the entire video display when
running without window management software, and it will refer to the one or more Win- ~_

dows/9000 windows used by NMODE when you are using window management software.)
(While it is possible for NMODE to use more than one video display, such configurations
are not discussed in this chapter.)

The NMODE screen is partitioned into panes, message areas, and mode lines. Such
things as text, lists, names (titles), messages, menus, softkey labels, prompts, user entries
(input), and system related information appear in certain locations, according to the their
purposes.

For the sake of simplicity, only one NMODE window appears in the following illustration
and description of the screen display.

The illustration contains illustrative entries in certain areas to demonstrate how the areas
..r~ l1sfOCl. In t.h~ iI1t1~t.J·<lt.inn, t.hE> display is ~J\c1os~(l, <lnd t.h~ l:t1wls fo1' <lJ'E>:lS <lPP~:l1' nil

the left side.

16

I <area for browser list or buffer contents> I
I 1
P I
A I
N 1
E 1
I 1
I 1
I 1
I W
I I/O CD Emacs (Text Fill) /users/julie/stuff. text -04%- :1: II N

I <another area for browser list or buffer contents> D
I 0
P W
A I
n 1
E I
1 I

Mode line--> I Emacs (Lisp) [OUTPUT] :1: 12 LISP I
Message area->I C-M-L to QUIT, C-? for HELP, C-X R for Root II I

I
I
I
I
I
I
I
I
I
I
S
C Mode line-->
R
E
E
N
I
I
I
I
I
I
I
I
I Softkey Help Next Nmode Nmode Buffers Direc- Options HP-UX
I labels --> Keys Command Root tories Command I
I 1

The General Screen Display

This is the general layout of a screen containing an NMODE window. The screen can
be more complex, depending on your system and what you are doing. To help you get
an overall notion about wha.t appears on the screen and how it works, the following
subsections describe each area in the NMODE window and the important items that
appear in those areas.

Physical Display
The entire physical display is one screen. From (.he bot.t.olll t·o the t.op, it. contains
softkey labels, and a window. With Windows/gOOD running, t.he screen can have multiple
NMODE and HP-UX windows, and you can move freely among them.

17

Window
An NMODE window sits inside the screen and incorponLtes one or more panes and a
two-line message area. With window-management software, a window has a name and an
optional border. The border has regions, especially in the corners, that provide certain
window management functionalities. The diagonal arrow lets you move the window; the
square lets you make the window into an icon, the square with the smaller square lets
you make the window smaller.

Pane
Panes sit inside a window. The illustration shows two pane~. Each pane has a highlighted
mode line and coutains either text (if the pane is displaying a buffer) or items (if the
pane is displaying a browser).

Most of the time, you focus on the contents of a pane as you use NMODE and note the
contents of other areas to get supplemental information; for example, the name of an
associated file or a browser command. The pane for the OUTPUT buffer is special in that
its mode line also contains information relaLcd to the state of the underlying Common
Lisp system.

Mode Line
Each pane contains a mode line. This line is very important since it tells you many
things about the state of NMODE. In the previous illustration, the following two mode
lines were shown:

I/O <II Emacs (Text Fill) /users!julie!my-stuff.txt -04%- :I:

and

Emacs (Lisp) [OUTPUT] :1: 12 LISP

In general, a mode line can contain some or all of the following information fields.

I/O <II Major (Minors) [BUFFER] file {PACKAGE} -position- ":

When you look at a mode line for a pane, here is what each part tells you:

I/O The I/O indicator appears when NMODE is idle for a certain amount of
t.ime and is waiting for input or out.put.. A PWR indicator appears during
the "power-up" of NMODE. A blank in this spot indicates that the system
is busy executing. This iudicator appears only in the current pane.

TIH' ""t. ~ie"" i~ "n illrlirn.t.or (01' t.hp C1l1TP"t. pnllP (i.p. t.hp p:lIlP t.hat. i~

listening to the keyboard). You can change the indicator to another string
by using the NMODE General Options Browser.

18

Major

(Minors)

[BUFFER]

file

This is a string that names the major mode; for example, Emacs for editing
text or Browser for manipulating listed items. Only one major mode is
current at a particular time.

The string or strings inside the parentheses name one or more minor
modes; for example, NMODE Root, Text, Lisp, or Directories. A minor
mode can be global, local, or tied to a major mode, depending on the
implementation of the mode.

The string inside the brackets names the editing buffer when it differs from
an associated file name. Otherwise, no buffer name is displayed. While
only one buffer is current at one time, you can have many buffers and can
move freely among them.

This is the absolute pathname for the associated file for the current editing
buffer; for example, /users/laurie/test22/codex.1. The displayed path­
name is for the last file visited in the buffer. You can visit any sequence
of files in an editing buffer, reading the mode line to keep track of which
file is current.

{PACKAGE} When it is present, the string inside the braces names the current package;
for example, {LISP}, {USER}, or {NMODE}. If the string is not present, you
can execute M-X show package to see the current package.

-position-

*

The position is a percentage of the contents of the buffer that lies above
the cursor (point); for example, -84y'-. The position indicates TOP or BOT
when the percentage approaches 0 or 100, respectively.

An asterisk appears when the content.s of the buffer have been modified
since the last save. Otherwise, the asterisk is not displayed.

Here are some examples of typical mode lines .

• This mode line is for the browser that contains the facility named Buffers. The
major mode is Browser and the minor mode is Buffers.

Browser (Buffers)

The pane is not current (no leading string), and the mode line only indicates the
major and minor modes.

• This mode line is for a current editing buffer in Emacs major mode with Lisp minor
mode:

19

G Emacs (Lisp) [~£SS] {USER}

The (!) indicates that the pane is current. The buffer name is MESS. It has no
associated file and has not been modified (no asterisk). The current package is
USER.

• This mode line is for a current editing buffer in Emacg major mode with Text and
Auto Fill minor modes:

to Emacs (Text Fill) !users!john!info!ace-doc-23.txt --34%-- :f;

No buffer name is displayed, but the buffer has an associated file which is indicated
by the patlmame, !users!john!info!ace-doc-23. txt. The -34%- indicates you are
34% of the way through the buffer. The asterisk indicates the buffer has been
modified.

By the way, you could invoke the browser for Buffers to verify that the buffer name
is ACE-DOC-23. TXT. Whenever you execute a cOlllmand that finds a file, a buffer is
created for the file and has the file's name even t.hough the buffer Jlame is not
displayed in the mode line.

Regarding the mode line, NMODE has one special case. The mode line for the OUTPUT

buffer displays typical information and also displays information about the current state
of the underlying Lisp system. The right end of the OUTPUT buffer mode line looks
something like this:

9 LISP

The 9 indicat.es the number of ca.lls to the Lisp interpret.er during t.he current NMODE
session. This number increases by one each time yOll evaluate a Lisp form.

When evaluation of a Lisp form produces an error, the mode line for the OUTPUT buffer
displays information about break loops; for example:

10 DEBUG (3)

The 10 indicates that you have called the Lisp Interpreter 10 times. The DEBUG indicates
you have entered the debugger. The (3) indicates the number of levels down from the
top level of the current break loop.

Everything you see in a pane is in a current buffer and that buffer has a current major
mode and some number of minor modes. The current modes provide the functionalities
for the butfer; they control for example, whether the contents of the buffer are items you
can manipulate or text yon can edit. Information about. the current mode appears in
the mode line for the current pane. In general, the mode line shows the current state of
NMODE.

20

Message Area
Notice that the message area in the illustration contains a reminder:

C-M-L to QUIT, C-? for HELP, C-X R for Root

that tells you how to exit the buffer, get help, or return to the top level of NMODE. The
message area is used for

• Prompts for commands. Many commands are interactive, prompting for user input.
Commands that prompt for user input temporarily invoke an Input mode that lets
you edit the input with normal editing cOllullands, get help, or abort the command.
Input mode might also provide additional functionalities (i.e. pressing the space
bar or IESC I to complete a filename or pressing IEnter! or IReturn I to terminate input).

• Menus for browser cOllullands (also called a command line).

• System and error messages. For example, if possible, the system indicates when it
is collecting garbage. The information returned by many commands appears ill the
message area. C-= is such a command.

• Strings (user input) typed as part of executing certain commands appear under the
prompt.

• Results returned by using the Evaluate Form command, C-X C-E, to evaluate Lisp
forms.

The message area is part of a window. A multiple window system contains a message
area for each window. During sessions with NMODE, your attention is often directed
to the message area as you interact with the system or get information. Some messages
appear only briefly, so you need look for them before they are erased. Like the mode
line, the message area often tells you what the system is doing.

Softkey Labels
The softkey labels appear at the bottom of the screen. You might need to press IMenu I
to display the labels. In general, the softkey labels change to fit the current mode and
state of the NMODE environment.

Selected Window N arne
If you have window-management software, and the softkey labels are being displayed,
the lower-right corner of the screen displays the name of the currently selected window.
Below this, NMODE will indicate when a garbage collect occurs by printing ":!:*" GC
"1:*:1:" •

21

Cursor
The currently selected pane contains a cursor. The cursor can be a blinking underscore
beneath the current character or a rectangular region on the current character, which
shows through in inverse video. In a browser, the cursor normally sits at the left end of
the highlighted region, but it can be moved to a character or word in the line.

In a buffer, the cursor tracks the "point", which is a position (column and row) in
the buffer just to the left of the cursor where characters are entered. When you execute
certain commands that invoke a temporary Input mode, the cursor moves to the message
area but it will return to the location of the point within a buffer.

Besides using a point to keep track of the location for character-ent.ry in an editing buffer,
NMODE can use up to 16 "nuu'ks" to keep track of certain locations in the buffer.

Highlight
When you are in a browser, the current item is highlighted by a rectangular region that
adjusts automatically to "fit" the item. The cursor sits somewhere in the highlight,
usually at the left end.

Pointer
If you have window-management software and a locator device (mouse), a small pointer
will appear on the screen. When you are inside a window, or in the softkey label area, the
pointer appears as an arrow. If you are "outside" all windows, in the "desktop" areas of
the screen, the pointer appears as a small square. The pointer changes to a "cross-hair"
when you point to a border region or an icon.

Icons
An icon is a graphic figure which represents a window that is not currently displayed.
V/ith Windows/gOOD, any window can be hidden and replaced with an icon. Icons consist
of a figure on top of a bar containing the name of the window it represents. The icon
can be moved by placing the cross-hair of the pointer on the left end of the bar and
pressing the left button. The icon can be "restored" to the window it represents by
placing the cross-hair on the right end of the bar and pressing the left button on the
mouse. Clicking the left button on the figure or the name invokes a popup menu for the
window represented by the icon.

22

Popup Menus
NMO DE supports "popup" menus when window-management soft.ware is running. The
position of the pointer and whether the left or right button is pressed determines which
popup menu will appear.

When the pointer is in the "deskt.op" area of the display, pressing the left button brings
up the window-manager popup menu for the currently selected window. Pressing the
right button brings up the NMODE General popup menu.

There are two slightly different cases when the pointer is inside an NMODE window.

• If the pane contains a browser, pressing the left button positions the highlight on
the item nearest the pointer. If the pointer is already on the highlighted item, the
item will be browsed. Pressing the right button produces a mode-sensitive popup
menu that duplicates the command line menu.

• If a buffer is being displayed, the left button moves the cursor to the location of the
pointer, while the right button provides a mode-sensitive popup menu. Pressing
the left button when the pointer is at the current cursor position will set the mark
at that point.

When the pointer is in the message area at the bottom of the window, you may select
any command displayed there by pressing the left button.

To exit a popup menu, quickly move the pointer out of the menu, or press the space bar.

The Initial Screen Display
You previously examined the general screen display and read about the "things" it can
contain. The following illustration shows the screen display when you invoke NMODE if
your initialization files load the typical facilities.

liMODE Root

Buffers
Directories
Documentation
User Options
Additional Facilities

~ Browser (NMODE Root)

Help Browse Group Filter Create Options

23

Kill Quit

The Initial NMODE Screen Display

Notice that NMODE Root provides t.he facilities that let yon access the files, buffers,
and other items that you use to do productive work. NMODE has a hierarchical design
allowing easy access to all parts of the system.

Note the following things about. the previous illustration:

Title

Facilities

Mode Line

Message Area

The title (name) for the top level is NMODE Root. The title, which
always appears when you are in a browser, is a good indicator of
where you are located within the environment. A title is not present
in an editing buffer.

The root displays some of NMODE's facilities. These facilities con­
tain the browsers that you use during working sessions.

The mode line is an important indicat,or of the current state of the
environment. It was discussed previously in this chapter.

Among other things, the message area displays the menu of browser
cOlllmands that you can execute from the top level browser. Com­
mands, prompts, messages, and inputs can appear in the message
area.

From this top level, you typically use one of these methods to initiate a work-session
with NMODE. The methods are explained later ill detail.

• Point. to a certain facility and browse into it. In general, the "point and browse"
method is used to eventually get to a specific item under one of the facilities .

• Execute an NMODE command that takes you directly to a certain item or items.
In general, the "direct-access" routine is used to circumvent sequential pointing and
browsing when you know the name of the item you want to use.

You will see later that, besides knowing about the "entities" in NMODE, knowing how
and when to use each method will help you work effectively and efHciently.

24

The Overall Structure of NMODE
The following illustration shows the generic structure of NMODE from the root to the
second level, if you loaded several of the more commonly used facilities.

BUFFERS
HP-UX.shell
MAIN
OUTPUT
<others>

DIRECTORIES
$HOME
/
<others>

DOCUMEtlTATION
Nmode User's Guide
Nmode Glossary
<others>

ADDITIONAL FACILITIES
Execution Monitor
Execution Stack Analyzer
Code Index
Compilation Error Index
File Search Index
Program Editing Support

HP-UX Access

USER OPTlOllS
Common Lisp User Options
NMODE Window Creation Options
HP-UX Access Options
tlMODE General User Options

Directory Options
<others>

With the exception of the Execution Monitor and Execution Stack Analyzer, each entity
is explained somewhere in this manual; for those two, see t.he Lisp Programmer's Guide.

25

Using the Keyboard
This section explains the relationships among an NMODE cOUUDand, the name of a
command, the ways to use the keyboard to exetute a command, and the Lisp functlon
that implements a command. The section also describes how each key operates. Although
a pointing device (mouse) is not part of a keyboard, the use of this device to execute ~
commands is also described.

At the highest level of abstraction, your system utilizes a virtual keyboard, which is then
mapped to a physi(:al keyboard. In general, a. function ca.n be assigned to every key on
the keyboard (this is called a key binding).

Some keys (e.g. Control and Meta) are not bound, to a. specific function that implements
a command. Instead, these keys modify the functions of other keys. That is, these keys
are pressed with one or more keys to execute a cOlllmand.

Appendix D, "Keyboard Mappings" describes the keys in the virtual keyboard. Refer to
the appendix if you need detailed information.

The Physical Keyboard
Your system probably has an HP 46020A or HP 46021A keyboard. The following illus­
tration shows such a keyboard.

Program
Control
Keys

Softkeys and
Softkeys Control

Editing
Keys

...---.-...
System

Control Keys

DOfO(O[]l[)[][][]lDfDE][;]g] ElEl

~~~O~D~~O~~DDO~~

~~~~~D~~~~DOOLJ~~

l;] EJ~~EJ~~~~[8EJ([]EJLJ~Ll
~ ~l I~ ~(i)~

.

EJOEJEJ
~~~EJ

EJl!J~O

D~~fl

~oU

L

Character
Entry Keys

The Keyboard

26

Cursor
Control Keys

Numeric
Keypad



~\

Guidelines for Using the Keyboard
The following explains the keys and what they do.

• The keyboard has the usual QWERTY arrangement of alphabetic, numeric, and
special characters. Pressing these keys typically lets you input characters to buffers.
When they are used with the Control or Meta keys, or with certain prefixes, these
keys let you execute commands.

• On the right end of the keyboard is a numeric keypad whose keys generally duplicate
keys in the main section of the keyboard,

• The keyboard has 80ftkeys along the top row in two sets, which are a darker shade
and are labeled ([J through (ffi and 00 through @.

• Most editing and cursor control keys work as you would expect. This includes
I Insert line I, IDelete line I, I Delete chari! IPrey I, INext I, and cursor movement keys ((Xl,
(YJ, (El, and B)L The specific bindings for these keys are discussed later.

The next section discusses the specific key bindings for these keys.

Key Bindings
The term key bindings is used to describe the relationship between the key you press
and the NMODE command that is invoked when you press the key.

Printing Characters
The typical printing characters typically insert themselves in an editing buffer. They do
this because they are bound to the function called insert-self-command. The printing
characters include: A, H, ... , Zj a, b, ... , Zj and special characters such as %, &, and @.

Numeric Characters
The numeric characters (0, 1, 2, ... , 9) are bound to the function named argument-or­

insert-command. This means they either insert themselves as a character in a buffer or
prompt, or they serve as a prefixed argument to a command (when preceded by C-U).

27



Special Key Operations and Bindings
The HP 46020A keyboard has special keys that let you execute commands; that is,
the special keys are bound to functions that implement certain NMODE commands.
For example, pressing IPrey I executes the Scroll Window Down Page command. Some
special keys have "shifted" bindings that usually execute an "opposite" command. For
example, pressing (EI moves the cursor to the beginning or a buffer while holding IShift I
and pressing (EI moves the cursor to the end of a buffer. In some cases, the shifted
key can augment a command. For example, pressing ~ moves the cursor one character
to· the left while holding IShift I and pressing ~ moves the cursor one word to the left.
How this works, of course, is that pressing (3) executes the Move Backward Character
command, and executing IShift I~ executes the Move Backward Word command. There
is more explanation of this later.

Special Keys
The special keys do the following operations and have the following command bindings:

Meta

IBack space I

The left IExtend chari key is the Meta key.

The Meta key is an integral part of NMODE, being similar to the Control
key in that it is used to "modify" another key in a key sequence. This
key is used by holding it down while you press another key.

When you see this manual refer to something like M-X <string> or M­
<char>. The M represents the Meta key and means that you should
hold down t,he left IExtend char I. The sequence M-X is pronounced "Meta
X"

This is the Control key, which is often used in a key sequence to execute
commands. This key is used by holding it down while you press another
key.

This key moves the cursor backward one space in Emacs mode, deleting
the existing character, and is bound t,o the Delete Backward Hacking
Tabs command. In a browser, the key moves the highlight up one line.

The shifted-key labeled I DEL 1 does almm~t f.he same thing as I Back space I

and is bound to the Delete Backward Character command.

The Space Bar In Emacs mode, this key inserts a space at t,he cursor's location. This
key is bound to the Auto Fill Space command in Emacs mode with
Auto Fill minor mode. In a browser, the key moves the highlight down
by executing the Drowse Next Item COIll11Hmd. When pressed in input
mode (in response to a prompt), it tries to complete the name of the
command or file.

28



IClear display I

(Clear line I

IDelete char I

IDelete line I

(Insert char I

I Insert line I

This key toggles the case for alpha characters.

This key performs a full refresh of the NMODE screen and is bound
to the NMODE Full Refresh command. A full refresh redisplays the
screen, clearing the screen of any characters that should not be currently
displayed.

This key deletes the entire current line I'egardle~s of the location of the
cursor and is bound to the Clear Line command. Unlike IDelete line I, the
"cleared" line remains open so you can enter new text.

This key deletes the character under the cursor and is bound to the
Delete Character command.

This key deletes the entire current line regardless of the position of the
cursor and deletes the created open line. The key is bound to the Delete
Line command.

This key, at the left of the keyboard, is bound to the Execute Form
command in Lisp mode. It is bound to the Indent New Line command
in Text mode. On prompts, it is bound to the NMODE Terminate Input
command. Therefore, it executes a form, indents a line, or terminates
input to a command, depending on the current mode. Its counterpart
on the numeric keypad has the same bindings.

This key is not generally used by NMODE, but it is used by the Incre­
mental Search command, C-S, and the Reverse Search command, C-R,
to terminate a search when you have typed enough to find a desired
string. Also tries to complete command or file names in input mode
when you are responding to a prompt.

When yOll are in all editing mode and pressed IDelete char I to delete a
character, pressing I Insert char I reinserts the deleted character. H you
delete several successive charact.ers, pressing I Insert char Ian equal number
of times reinsert.s the characters in a reverse order, which restores the
original characters. Otherwise. the key "beeps". The key is bound to
the Insert Character command.

This key opens a blank line below the current linc and drops the cursor
down. into t.he open line at. the same relative locat.ion as it had. No t.ext
is pulled down onto the newline. The key is bound to the Open Line
Indent command.

29



ISystem I

This key toggles display of the softkey labels on or off and is bound
to the Display Menu Keys command when you have invoked window­
management software.

This key scrolls the display up one panefu I and is bound to the Scroll
Window Up Page command. The shifted INext I ~elects the next screen
and is bound to the Select Next Screen command. This difference is
important because one command relates to the text in the current win­
dow (pane) and the shifted command relates to a different window in
NMODE.

This key scrolls the display down one paneful and is bound to the Scroll
Window Down Page command. The shifted IPrey I selects the previous
screen and is bound to the Select Previous Screen command. This dif­
ference is important because one command relates to the text in the
current window (pane) and the shifted command relates to a different
window in NMODE.

This shifted key lets you print the contents of the current buffer and is
bound to the Print Buffer command.

In a buffer Lisp mode, this key returns and indents appropriately and
is bound to the Return And Indent command. In a buffer in Text
mode with Auto FiJI mode, IReturn I effects a return (carriage return and
line feed) and is bound to the Auto Return command; without Auto
Fill mode, it is bound to the Return command. In a browser, IReturn I
executes the Browse Next Item command. In a prompt, pressing IReturn I
terminates input to a command and is bound to the NMODE Terminate
Input command.

Holding this key down while you press another key accesses the binding
for the top label on the key. For example, ffi!ill I User I accesses the
binding for I User I instead of the binding for ISystem I.

This key displays a cert.ain set of soft.key lahel~ and is bound t.o
the Display System Keys command when you have invoked window­
management software. Pressing the softkey for a corresponding softkey
label execute~ a coulIllaud implied by the label.

This shifted key displays a certain set of softkey labels and is bound
to the Display User Keys command when you have invoked window­
management software. Pressing the softkey for a corresponding softkey
label executes a command implied by the label.

30



This key, which looks like a sla.nted triangle, moves the cursor to the
beginning of a buffer and is bound to the Move To Buffer Start command.
In contrast, IShift lIE moves the cursor to the end of a buffer and is bound
to the Move To Buffer End command.

This key moves the cursor or highlight up one line and is bound to the
Move Up command. The shifted Up-arrow key scrolls the pane up one
line, but does not move the relative location of the cursor, and is bound
to the Scroll Window Up Line command.

This key moves the cursor or highlight down one line and is bound to the
Move Down command. A shifted Down arrow key moves the entire pane
down one line, but does not move the relative location of the cursor, and
is bound to the Scroll Window Down Line command.

This key moves the cursor one location to the left and is bound to the
Move Backwards Character command. The shifted Left-arrow key moves
the cursor one word to the left and is bound to the Move Backward Word
command.

This key moves the cursor one location to the right and is bound to the
Move Forward Character command. The shifted Right-arrow key moves
forward olle word and is bound to the Move Forward Word command.

This key interrupts the Lisp process and causes the system to enter the
debugger.

This key is similar to the left button on the mouse.

In text mode, the tab key performs the standard tab function. In Lisp
mode, this key performs the Lisp indenting function.

The IRaaet I, and~ keys have no assigned functionalities.

The four unmarked keys at the top-right corner of the keyboard have no assigned func­
tionalities.

The keys on Lhe numeric keypad have bindings ~illlil(l.r 1.0 I,heir counLerparLs found on
the keyboard.

31



Supplemental Key Bindings
Besides the above bindings for special keys, certain special keys also have bindings with
the Meta key or Control-Meta keys (a later section explains how to execute these com­
mands).

M-Backspace This key sequence deletes the word preceding the cursor and is bound
to the Kill Backward Word command.

M-Next

M-Prev

M-Return

C-M-Return

This key sequence selects the next screen and is bound to the Select
Next Screen command.

This key sequence selects the previous screen and is bound to the Select
Previous Screen command.

This key sequence moves the cursor back to the previous indentation
and is bound to the Back To Indentation command in Text mode.

This key sequence, which uses the Control-Meta prefix, also moves the
cursor back to the previous indentation and is bound to the Back To
Indentation command in Text mode.

32



Executing NMODE Commands
This section explains the types of NMODE commands and the assorted ways to execute
a command.

The sections focus on key sequences, M-X commands, and browser menus. Later, softkeys
and other alternatives for executing commands receive some attention.

You can execute NMODE commands interactively from t.he keyboard, and you can ex­
ecute NMODE commands noninteractively within Lisp code. This manual does Dot
deal with writing code that executes NMODE commands noninteractively within code.
The NMODE Command Reference manual mentions the Lisp functions that execute the
interactive NMODE commands and mentions related noninteractive functions in some
cases.

The general methods for executing commands via softkeys or a mouse are described later
in the sections called "Softkey Commands" and "Locator Device Commands". All this
will clear up as you execute commands and become familiar with NMODE. This is the
general model. The next several sections describe specific ways to execute commands.

A Model for Executing Commands
This section is optional reading. It explains the relationships among the various concepts
embodied in the idea of an NMODE command and how those concepts are used in this
manual.

To help you get information and keep the idea of a command in perspective, this manual
uses the following terms in a consistent manner.

• The name of a command is the basic identifer of a. command. For example, the
NMODE command that reads a file into a buffer (and does some related things) is
called the Find File command. The name of a command is the basic reference for
two reasons:

• The NMODE Command Reference manual list~ commands by name.

• Commands can usuaHy be executed by typing M-X followed by t.he command
name.

• Each NMODE command is implemented by a conunand function written in Lisp.
For example, the Find File command is implemented by the function find-file­

command. The names of most. NMODE command functions end ill t.he word command.

33



• Each NMODE command can usually be executed in several ways, depending on
such things as the current mode and your hardware/software installation. You
typically have the following alternatives for executing a command.

• A key sequence lets you execute a command by holding or pressing a series
of keys. Throughout the manual, the key sequence for a command is usually
mentioned with the name of a command. This helps you establish the con­
nection between the name, which is used for reference, and the key sequence,
which is used for execution. Key sequences appear in bold type so you can
see them quickly. For example, C-X C-F is the key sequence for the Find File
command.

• A M-X conunand lets you execute a command hy typing the Meta-X prefix,
typing the name of a command, and pressing IReturn I. A later section explains
how this works. It is practical to use this alternative when no key sequence
is available or when you know the name of a command and cannot remember
any other means of executing the command. For example, M-X find file,
executes the Find File command just as effectively as C-X C-F.

• In many cases, pressing a special key on the keyboard executes a certain
NMODE command. Of course, it is always possible to duplicate the function
of a special key with a M-X command.

• When you are in a browser mode, the system provides a menu which appears
in the message area. You can execute these special commands by pressing the
the key (case is insignificant) corresponding to the capitalized letter in the
command's name.

Key Sequence Commands
A key sequence is a sequence of keys where the purpose of the initial key, or set of keys,
is to provide a modifier that modifies the action of a final key. For example; holding
down ICTRL I while you type m is a key sequence. The Control key is the modifier and
the F is the final key.

The NMODE environment provides considerable flexibility ill how you bind key sequences
to commands. The "Customization" chapt,er in this manual has additional information
on the Control and Meta keys. It also discusses related functions, global variables, and
procedures for customization.

The key labeled IExtend char! at the left end of the keyboard is the Meta key in the
NMODE environment. The key labeled I CTRL 1 near the left side of the keyboard is the
Control key. This manual uses the following notations to describe key sequences that
execute commands.

34



C-<char>

C-X <char>

Hold down the Control key and press <char>.

Hold down the Control key and press []], release them and press
<char>.

C-X C-<char> Hold down the Control key and press CKJ, release, and then hold down
the Control key and press <char>.

M-<char> Hold down the Meta key (the left IExtend charI), and press <char>.

C-M-<char> Some commands use the combination prefix, Control-Meta, in which
you hold down the Control key and the Meta key and press <char>.
Alternatively, you can execute the control-meta prefix with C-Z, and
then press <char>.

Lisp <char> This is the Lisp prefix, which means execute C-] and then press <char>.

NMODE has other prefixes. For example, M-H is the HP-UX interface prefix.

M-X Commands
Not every NMODE command can be executed via a key sequence, mouse, or softkey.
But nearly every NMODE command can be executed via an M-X command. The term
M-X command means that a command has a long invocation, which consists of the M-X
prefix and a command name (English words that name the command). Presumably, the
command name suggest the command's functionality, making it easier to remember. The
term M-X command in this manual refers to a way to execute a command, not to the
command itself.

Conventions for M-X Commands
The general convention for using M-X tEl execute a command is:

M-X <string>

where string is the name of a command; for example, find file.

Let's examine this further. Executing M-X enters an input mode, which looks like this:

Enter command name (1 for choices, e-G to abort):

Enter a string such as find file or nmode root that is the name of a command and press
IReturn I. This initiates execut.ion of the command.

35



If yOll execute M-X and then at some point in typing the command name forget the
exact name of the cOllllualld, typing? temporarily exits the input mode, and displays a
list of all the available command names. You can then point to and browse one of the
names to complete execution of the command.

You can execute e-G to abort execution of the command at any point during typing of
the string.

String Completion When Executing M-X Commands
When executing M-X commands, the system can assist you in typing the command name.
For example, executing M-X,

nm IReturn I

is enough to complete execution of the command that lists the facilities at the top level
of NMODE (M-X nmode root). When IReturn I is pressed, the message area completes
the command name, Nmode Root. You can disregard case in typing the command name.
This feature is called completion. You can press IReturn I, press the space bar or IESC I,
or type W at any point in typing the string, depending on the kind of completion you
want to do.

If you press I Return I at any point in typing the string and the partial string is unique
to a particular available command, input terminates and the command is executed.
Otherwise, pressing IReturn I will only complete typing the command name as far as it
call; the bell will beep to indicate an ambiguity. For example, if you execute M-X, type
Ii, and press IReturn I, an "5" will be added to the string, but nothing else happens because
the system cannot tell if you want a command that starts with "Lisp" or "List".

On pressing the space bar, the M-X command attempts to complete the string you al'e
typing. If the string is several words such as auto fill mode and you type something like
au before you press the Spacebar, then repeated pressing of the Spacebar can supply the
remaining words: Auto, Fill, and t-fode.

You can press the space bar at any time during the entry of an M-X command name.
For example, after executing M·X, you might type:

help

and press the space bar. NMODE will capitalize the word, but it cannot complete the
string because there are several acceptable possibilities. If you continue by typing:

36



help dis

and press the space bar, the system completes the string and displays:

Help Dispatch

You can now press IReturn I to execute the command if you really want to execute the
indicated command. Otherwise, you can backspace and enter a different string.

What pressing the space bar does is let you see t,he rest. of the st,ring you are typing
provided the string has some validity. If you type something like glutenburger, a string
that has no validity in the environment, pressing the space bar takes no apparent action.

To get specific help, you can type? at any time while entering the command. IT you
type something like augo?, a M-X command does not accept the question mark because
the partial string has no validity within the system. You would need to backspace and
type another string or abort the command with C-G. On the other hand, if you type
something like tran? NMODE temporarily suspends execution of the M-X command
name and invokes a Prompt Browser major mode and shows only the command names
related to the partial string. In this case, the display looks like this:

M-X command Name:
(Browse item to complete command. Quit to return to command.)

Transpose Characters
Transpose Forms
Transpose Lines
Transpose Panes
Transpose Paragraphs
Transpose Regions
Transpose Sentences
Transpose Words

I/O ~ Browser (Input Prompt) Prompt

Help Browse Group Filter Quit

You can point to a command name and execute Browse to complete execution of the
command, or execute QUit to get back to the extended command to continue typing
the string. Note that softkeys , M-X commands, and most system commands are not
available while in the Prompt Browser mode; NMODE forces you to complete or abort
the command that is pending.

37



Aborting a M-X Command
Executing the Nmode Abort command, C-G, after you execute M-X and before you press
IReturn I during entry of a command name cancels the command. By the way, executing
C-G also cancels other commands that require user interaction.

Special Commands in Menus
When you are in a browser mode, typed characters are not inserted because the mode
write-protects the browser's items. This means that, in addition to executing applicable
NMODE commands, you can execute special commands that do not require a prefix.
These commands appear ill a command line, which appears in the message area.

Press the key (shifted or unshifted) corresponding to the capitalized letter in the com­
mand's name to execute a command from the command line. Appendix B contains an
alphabetical list of browser commands and describes their actions. If you see a command
in a menu and do not know what it does, you can use the alphabetical listing in Appendix
B to find the command and determine how it works. You can also get information by
requesting Help and executing Where-am-! (C-? W).

Softkey Commands
The HP 46020A keyboard has two groups of softkeys along the top row: lliJ through [ill
and (![) through (!!). NMODE uses these softkeys. In addition, the HP 46020A keyboard
has an unlabeled set of keys in the upper-right corner of the top row, which NMODE
does not use. The conventional softkeys look like this:

and a corresponding set of softkey labels might look like this:

Help HP-UX Nmode
Command Command

Nmode
Root

Buffers Direc­
tories

Find Find
File Direct.

Note in the illustrations that Nmode Root is the softkey label for the @ softkey, which
executes the Browser Browser command. By pressing the softkey, you do not need to
type the M-X prefix and then type the string, nmode root.

Appendix C, "NMODE Softkey Labels", contains an alphnhct,icallist of all default softkey
bindings for the NMODE user environment.

You calJ change the softkey bindings to suit your needs. See the CCCustomization" chapter
for details about altering softkey bindings.

38



Locator Device Commands
A pointing device (locator device) is not required to effectively use NMODE. Any locator
device supported by Windows/9000 can be used with NMODE, although the most useful
devices are x-y locators with at least two buttons (mouse, or tablet with a puck). IT your
locator has only one button (a tablet with a stylus for instance), it will be used by
NMO DE as the left button, and you will not have access to the functionality of the right
button. IT your locator has more than two buttons, the extra buttons will be ignored
by NMODE. IT you do not have a locator, you may invoke left button commands with
ISelect I, and move the pointer by holding down ICTRL I while pressing the appropriate
arrow key.

Be aware that all discllssion relates to positioning the pointer on the screen item or
inside the area being discussed and pressing the appropriate button on the device. Use
the following screen display to help you determine what happens in the sections that
explain how to use the left and right buttons.

39



NMOOE Root

Bufforo
Codo I ndolCoa
Dtroctortoo
Docunentot t on
ft Ie Soorch IndolCoo
Uaer Optlona

olp Brawoo Group ft hor Creoto Optlona Kt II Quit

A Typical Screen With window-management Software

40



The Left Button
To use the left button, position the pointer "on" or "in" an item and press (click) the
button to take the indicated action. Refer back to the typical screen as necessary.

• Outside any window: Invokes a window-management system-wide menu. This area
is sometimes called the desktop or background.

• On corner icons of a window: Provides these options:

• Move moves a window (the square with the diagonal arrow).

• Go Iconic causes the current window to become an icon and makes a different
window current (the empty square).

• Re-size causes a window to change size. NMODE automatically adjusts itself.
Windows cannot be made larger than their original, created size (the square
with the enclosed, dotted square).

• Pause pauses output to a TermO HP-UX window. A second "click" resumes
output (the octagon). Clicking Oll the pause icon has no effect OIl windows
created by NMODE.

• Inside the top, right, and bottom border areas of a window: Invokes a menu for
the window-management software. Only the currently available commands are
highlighted and selectable.

• Inside a non-active window:Becomes the active window for both NMODE and the
window-management. software.

• Inside a non-active pane in the active window: Becomes the active NMODE pane.

• On a sofikey label: Executes the corresponding softkey command.

• In an NMODE item for browsing in the active window and pane: Provides these
options:

• Moves the highlight to the pointed-at item. "Clicking" the current (pointed
to) item browses the item.

• On a browser command, executes the command as if you had pressed the
capital letter in the command'g name. This works for first and second level
menus of browser commands.

• In an editing buffer in Emacs mode in the active window and pane: Provides these
options:

• Within any text, "clicking" either positions the cursor "under" the arrow or
sets a mark if the cursor is already "under" the arrow.

41



• In the message area, "clicking" executes command under the pointer.

• In input mode (during prompt for file name, extended command name, etc.):

• Clicking in message area generates a IReturn I to terminate input.

• Clicking anywhere in the active window will abort the command (like C-G).

Right Button
Position the arrow ill or on the "item" and press the right hutton to take the indicated
action. Refer back to the typical screen as necessary.

• Outside any window: Provides a popup menu called In-fOOE GENERAL. See the later
section called "Popup Menus" for details.

• Inside the current NMODE window: In a buffer, provides a mode related popup
menu; in a browser, provides a popup menu that duplicates the menu of browser
commands. See the later section called "Popup Menus" to get some details. Note
that popping up a menu in a non-cative pane will not select that pane. This allows
you to use the popup menu without obscuring the active pane.

• Inside the right border of the active window: Provides these options:

• Up-arrow scrolls to the previous page.

• Down-arrow scrolls to the next page.

• Inside the bottom border of the active window: Provides these options:

• Left-arrow scrolls the window to the left (moves the cursor left).

• Right-arrow scrolls the window to the right (moves the cursor right). When
a horizontal scroll to the right occurs, an >XX indicator appears in the mode
line, where XX is the column position of the leftmost displayed character.

• Inside a Don-active window: Becomes both the NMODE window and the window­
management software window.

• In input mode (during prompt for file name, extended command name, etc.):

• Clicking in message area generates a IReturn I to t.erminat.e input.

• Clicking anywhere in the active window will a.hort the command (like C-G).

42



Popup Menus
When you are in a pane, clicking the right button provides a popup menu of commands
that relates to the current mode. In a buffer, the commands generally relate to the current
minor mode within Emacs mode. In a browser, the commands generally duplicate the
menu of special browser commands. The exceptions are that commands called Help or
Quit might be available and there is a special command called Nmode General (more on
this shortly).

When you are in the gray (desktop) area, clicking the right button provides a popup
menu called "MODE GENERAL, which contains several commands. When you click on Nmode
General, or click the right button in a gray area, you get the following popup menu:

NMODE GENERAL

Window Cmds »
Places »
Utilities »

NMODE GENERAL is the name of the menu, and you can point to and click any of the
cOllllllands: Window Cmds., Places, and Utilities.

The string » appended to a command in a popup menu indicates that clicking on the
command with either button brings up another popup menu instead of taking a direct
action.

In general, the commands provide a selected set of commands for manipulating windows,
going to "places", or using certain utilities, respectively. The commands in the second
level menus are straightforward. For example, the second level menu for places looks like
this:

PLACES

llext Window
Next Pane
Nmode Root
Bufters
Directories
Documentation
User Options
Add. Facilities
Quit

The description of popup windows is deliberately brief because they provide a convenient
but not essential way to execute commands. In addition, most commands provided in
popup 111CnuOJ arc OJtra.ight;forwo.rd. Sce thc docunlcnta.tion for the windo'w nla.na.gcnlcnt

softwa.re to get information not specifically related to NMODE.

43



NMODE's Items and Modes
This section discusses items and modes fundamental to NMODE. Because modes are
important, the discussion has some deliberate redundancy so you will see the overall
information in several contexts.

It was stated earlier that NMODE is a moded user environment. Modes control:

• The meaning of wha.t you see on the screen.

• Which operations ca.n be done.

• The use of things like the cursor and point, universal arguments, and procedures
for aborts and exits.

The next subsection should clarify what a mode is, and the following subsections should
provide additional information about how to use them.

The Items and Modes
A mode is a data structure that controls the behavior of NMODE. Each particular facility
of NMODE, such as editing buffers, facility browsers, has an associated mode that defines
the capabilities of that facility.

When you use a certain facility or item, NMODE knows the structure, state, and mode
that the facility or item should have. For example, NMODE "knows" that the top level of
NMODE (NMODE root) has a browsing mode in which you see a list of facilities that you
can point to, browse, and otherwise manipulate. NMODE also knows that the facilities
in the list are write-protect.ed and that NMODE is not in a character-insert state. In
this state, NMODE knows that it provides a menu of special browser commands.

On the other hand, when you enter an editing buffer, NMODE "knows" that a a list of
items and a menu of browser commands are not presented. Instead, NMODE knows it
should provide an editing buffer in which you can write or edit text, perhaps the text
contained in an associated file.

Whether you invoke a browser for a facility or item, or you invoke an editing buffer,
NMODE "knows" the associated mode that the browser 01' huffer should have. The as­
sociated mode determines the set of bindings between the keys on the keyboard and a set
of NMODE functions that execute commands. The set of bindings changes automatically
when you change modes. Check the mode line to find out what mode or combination of
modes is current. The set of bindings between keys and functions is called a dispatch
table. Later, you will learn commands that let you examine the bindings in a dispatch
table.

44



The current mode affects the screen display in the following ways:

• When the current facility or item bas a browser mode, you see n.listj you can execute
both NMODE and menu commands; and you cannot insert characters directly into
the items in the list.

• When the CUlTent item (typically a bUffer) has an editing mode, you do not see a
list; there are no command line commands; and you can insert characters directly
into the item.

While the above information is generally correct, in the most fundamental context, a
mode is a binding of keyboard keys to NMODE functions that implement commands.
The binding is not limited to keyboard keys, and can include devices such as a mouse.
You can execute the commands according to the alternatives provided by the current
mode. Of the available major modes, the most common "appear" in the mode line as
Browser or Emacs. Any associated minor modes appear inside parentheses just to the
right of the major mode; for example, you might see:

Browser (Buffers)

which indicates you are in Browser mode with buffers minor mode, and the corresponding
items in the list are buffers (workspaces); or you might see:

Emacs (Text Fill)

which indicates you are in Emacs mode with text and auto fill minor modes, and the
items are the characters ill the buffer that you can edit.

NMODE can have one major mode and several associated minor modes at a time.

You will have a better grasp of how NMODE works if, when viewing the mode line, you
associate the mode for Browser with manipulating lists of items and you associate the
mode for Emacs with writing and editing text. To rest.ate this in a different way, keep the
following information in mind as you learn more about using the NMODE environment.

• You are always using some type of item in some type of mode; for example, an
active directory in a browser mode or a buffer in an editing mode. You execute
commands to manipulate these items, and NMODE has about 300 cOlluuands for
this purpose.

45



The mode changes automatically as you access a different type of item. Tbis is a
nearly transparent action. Just remember that NMODE provides the functionalities
related to the current item. When you work with files, NMODE provides the mode
for working with files by providing a certain set of commands. If you change items,
and work with buffers, NMODE provides another mode that is suited to working
with buffers by providing a different or altered set of commands.

The Cursor and the Point
In an editing mode, the current pane has a visible cursor and the related buffer has an
invisible point that are closely related. In general, you pay close attention to the cursor
during text editingj the system deals with the point (more on this shortly). The cursor
is also important during user interaction in which you type entries related to prompts in
the message area. In using a browser, you typically focus on a current item and might
not even notice that there is a cursor, which can be moved along the highlighted line.

The cursor:

1. Shows on the screen the location for character entry in a buffer relative to the point
when you edit text.

2. Sits somewhere in the highlighted region that points to the current facility or item
in a browser's list. It usually sits at the left end, but can be moved.

3. Shows the location for interactive character entry related to a prompt or recursive
editing related to a search. In these cases, the cursor appears in the message area.

In a buffer, an item called the point keeps track of the location for entry of characters
according to line number and columJl. The point is Jlot visible. The point lies immediately
to the left of the cursor, but after the preceding character.

Because you can see the cursor, this manual usually refers to the cursor. The point
is mentioned when it is necessary to be more explicit, especially in the chapters called
"Working With Text" and "Working With Lisp Code". Think of the point as an "un­
lighted" cursor.

46



Universal Arguments
You will often want to repeat a command a specified number of times or otherwise alter
the functionality of a command. This is done by executing the Universal Argument
command, C-U <integer>, which gives a conuua.nd a prefixed arguDlent. This means
that you provide the argument. before you execut.e a command and without typing any
spaces in the total key sequence. For example, C-U 23 C-F means that you type or hold
the following keys without typing any spaces.

Many NMODE commands accept a prefixed argument supplied by the Universal Argu­
ment command. The prefixed argument is an integer. In some cases, you can execute
C-U and press IReturn Iwithout entering an argument. The Universal Argument command
does not have an M-X command alternative; that is, you cannot execute M-X universal
argument.

A universal argument can have the following general effects, depending on the command
and situation:

• Iteration: In an iterative situation, a prefixed argument, n, executes a command n
times. For example, C-U 20 C-F moves the cursor forward 20 spaces.

• Reversed direction: Most commands that have direction, such as the Move Forward
Character command, reverse direction when given a negative universal argument.
Negative arguments are typed with C-U - <integer>.

• Altered Functionality: For some commands, having an argument is important re­
gardless of its value. Such commands only "care" about whether there is an argu­
ment, the presence of which alters the functionality of the command. For example,
in a buffer in Text minor mode, the M-Q, Fill Paragraph command, fills text in a
paragraph. With an argument, C-U 23 M-Q or just C-U M-Q, the command fills
and justifies the text.

Numeric arguments can be positive, zero, or negative within the range accepted by a
command. In most cases, a negative integer reverses the action of a positive integer. The
-1 or 0 integers can be special cases. Such special cases are mentioned in the Comments:
entry in the NMODE Command Reference manual.

A sequence of C-<digit> arguments works the same way as an equivalent C-U <integer>
argument. For example, C-l C-3 C-2 has the same effect as C-U 132. Besides C-<digit>,
you can use M-<digit> and C-M-<digit>. C- (Control-minus) works the same as C-U

47



There are some additional special situations. For example, a C-U followed by nothing
or something other than a minus sign or digit means "multiply by four". The following
examples illustrate the idea.

• C-U d displays four ds.

• C-U C-U C-F moves forward 16 items; for example, 16 characters ill a buffer or 16
buffers ill the Buffer-Browser.

• c-U 10 C-U C-F moves forward 40 items.

• C-U C-U C-U M-D deletes 64 words.

Cancels, Aborts, and Exits
However you use the NMODE environment, you will encounter times and situations in
which you want to abort or exit some state or item and go to another state or item.

The following commands let you abort, terminate, or exit commands, processes, states,
or items.

C-G

Quit

Lisp q

The NMODE Abort command aborts execution of a command when
you use an M-X command. The command works while you attempt
to enter a command name, after you execute M-X, and before you
press IReturn I. By the way, e-G also "aborts" a key sequence ill which
you have a distinct prefix and a final character (e.g. C-X Z) if you
execute C-G before you type the final character.

This special command in every browser's menu exits the current
item and returns to the previous item. If you often moved from one
browser to another during a current session, repeatedly executing
Qui t moves back through the browsers in an exact reverse-sequence
because NMODE tracks your use of items throughout one session.

When you are in Lisp minor mode in Emacs mode and get into break
loops (enter the Debugger), the Lisp Quit command exits one break
loop and enters the next higher level, which might still be a break
loop. The Lisp- prefix is C-], so the key sequence is ICTRL I-II) m.

48



Lisp a

Lisp 1

c-x z

When you are in Lisp mode in Emacs mode and get into break loops,
the Lisp Abort command exits any number of break loops and returns
to the top level. The Lisp- prefix is C-], so the key sequence is ICTRL 1-
OJ [[).

Exits the NMODE user environment and returns you to the un­
derlying Common Lisp system in the HP-UX window that spawned
NMODE, but not back to the HP-UX system. The Lisp- prefix is
C-], so the key sequence is ICTRll-OJ [0. You can type (ed) and
press IReturn I to get back to the NMODE user environment.

Exits the NMODE user environment and returns you to the HP-UX
operating system.

49



Assorted Topics
As you work with the NMODE environment, you will probably encounter situations
where you want to get back to some known state, get help, or use HP-UX. You will also
need to know some methods for using the environment. The next few sections contain
some basic information that is used in later chapters.

Useful Routines
This section describes three very useful methods (procedures) that you can continually
employ as you read subsequent chapters and learn how to use NMODE. The routines
are definitely part of the big picture for using the NMODE environment.

The Point and Browse Routine
This subsection describes the "point and browse" routine that was mentioned in some
earlier sections. This is probably the best routine for inexperienced users. Therefore, it
is fully described in a setting that you can hypothetically follow and subsequently apply
to your situation.

Suppose you are at the top level of NMODE, you want to edit a file, and you see the
following facilities:

NMODE Root

Buffers
Directories
Documentation
User Options
Additional Facilities

Suppose also that your file is in Directories. With this situation in mind, the following
steps illustrate the point and browse routine.

Step 1

Press ~ or crJ as required to move the highlighted region onto Directories. There are
other ways to move the highlight that you will learn later. This step is called "pointing
to" a facility or an item.

Step 2

50



(Multiple-selection is ON)

Execute the browser command named Browse, which appears in the message area near the
bottom of the screen. You execute any browser command by pressing the key (shifted
or unshifted) corresponding to the capitalized letter in the command's name. This is
the "browse" part of the routine. After executing Browse, you could see a list of active
directories something like this:

Active Directories

$HOME/
/users/joe/l-code/
/users/joe/scripts/

At this point, be aware that the display could be blank, except for the title, Active
Directories. The reason is that you need to create active directories under the facility
called Directories. You probably did this in your NMODE initialization file. In any case,
assume for now that the directories are available. A later chapter called "The Browser
for Directories" explains how to create active directories.

Step 3

Press ~ or [Y) as required to move the highlighted region onto the active directory
named /users/ joe/l-code/. Again, this is the procedure that lets you point to an item,
a directory in this case. Pointing to any available item makes that item the current item.

Step 4:

Execute the Browse command to invoke the browser for the current (active) directory.
You would see a list of files something like this:

Directory: /users/joe/l-code/
Last Read: 9-0ct-86 09:23:41

some-demo.l
some-demo.b

Directory
Directory
Lisp Source
Lisp Code

..dir .

..dir .
366
746

1-0ct-86 07:40:18 drwxr-xr-x
1-0ct-86 09:21:00 drwxr-xr-x

12-0ct-86 12:32:66 -rw-r--r-­
13-0ct-86 14:12:31 -rw-r--r--

~'

Ignore the information at the top of the display for now. It is explained later.

Step 5

Press~ or (Y) enough times to move the highlighted region onto the file named some­
demo.l and execute the Browse command. Now that you are down to a specific item, the
command works differently. It does not just invoke a browser that produces another list
of items. In this hypothetical case, executing Browse:

51



• Exits the active directory browser;

• Invokes an editing mode;

• Creates an editing buffer to hold the current file; and

• "Visits the file" in the created buffer.

You could then edit the file. The peculiar phrase, visits the file, means that the file is
n.ssociated with a buffer and made available for editing.

While the exercise was hypothetical, this is the point and browse routine. It is a funda­
mental way to get around in the NMODE user environment that is friendly and easy to
use.

You would probably want to save the edited file. The chapter called "Working With Text"
explains the commands and procedures to do this. You would also want to get back to
a part of the environment from which you could do other work. The section "Getting
to a Known State" later in this chapter explains some fundamental alternatives. Several
later chapters mention ways to move around in the NMODE environment.

To use this routine effectively, you need to have some notion about where a file is located,
and it is helpful to know the name of the file you want to edit. If you have no notion
about the location or name, you might need to systematically browse the contents of
several directories or get to a shell and use the HP-UX fi,nd(l) or grep(l) commands to
locate your file.

The Menu Driven Routine
Anytime you are in a browser, the message area provides a menu of commands for that
browser. You can execute these commands in a menu driven routine according to how
you want to manipulate the items in the browser's list. In lllany cases, a particular
browser command provides a lower level menu of commands. Although the menus are
not visibly apparent from the top level, this nesting of menus can reach down three or
four levels. Appendix B, "Special Browser Commands", contains a chart that shows this.

The Direct Access Routine
While the point and browse routine is easy to usc, it oft-ell lacks cfficiency. The menu
driven routine primarily lets you manipulate items in a browser's list; for example group­
ing and filtering items are common manipulations. This sections describes a dired access
routine that lets you «branch" directly to all iLelll.

52



Again, suppose you are at the top level of NMODE and you want. to edit the file named
some-demo .1.

In the direct access routine, you execute an NMODE command that takes you directly to
a specified it.em. You need to know: the name of the commandi the method of executing
the commandj and the specific name of the item you are accessing.

Continuing the hypothetical example, to directly access the file named some-demo .1, which
is in the directory named /users/ j oe/l-code/, you could execute the Find File command
via a "key sequence", which appears as C-X C-F in this manual. In the case at hand,
you would use the following procedure:

Step 1

Execute the Find File command via the key sequence. The C-X C-F key sequence means:
hold down ICTRL I and press CIJ, release both keys, hold down ICTRL I again and press
[[), and release both keys. This initiates execution of the command that will find the
file.

Step 2

You will be prompted to enter a file name relative to the current directorYi for example,
the prompt in the echo area might look like this:

Find file: (relative to '/users/joe/')

Since the file you want is in the directory named I-code under the relative path in the
prompt, you would type:

l-code/some-demo.l

and press IReturn I. The Find File command would then exit the current mode, find the
file, create a buffer, and visit the file in the created buffer. You could then edit the file.

Notice that the direct access routine is more efficient., but you must know specific types
of information. It may take some t.ime to memorize the commands and procedures for
using it. Once you learn to use NMODE's commands, the direct access routine provides
a powerful and efficient way to use the total environment.

53



Getting to a Known State
When you get into some unknown state or location and have some doubts about how to
recover, you can always execute one of the following commands to get back to a known
location and state.

C-XR

C-X C-B

C-XD

The Nmode Root command, also available as M-X nmode root, takes
you to the top level on NMODE from which you can then access any
facility in the total environment.

The Buffer Browser command, also available as M-X list buffers, takes
you to the browser for Butfers, which list buffers for writing and editing
text and provides a menu of commands.

The Browse Directory command, also available as M-X find directory,
takes you to any specified active directory.

More is said about these commands later. They are mentioned here because they are
commands that people use to get to familiar departure points.

Getting Help
NMODE provides various commands and online manuals that provide online help. You
can directly point to and browse information items or execute 'commands that provide
information. The procedures, and cOlllmands for getting help are explained later ill a
chapter called "Getting Online Help". In addition, Appendix A has a list of commands
for getting help.

The HP-UX Systern Access Facility
The optionally loadable HP-UX System Access facility lets you interact with the under­
lying HP-UX operating system without leaving the NMODE environment.

When you are in the NMODE user environment and wish to execute HP-UX commands,
the HP-UX System Access facility provides two interfaces and a special command.

• An HP-UX shell-buffer int.erface provides a default shell-buffer whose name is HP­

UX.SHELL. A shell-buffer IcL~ yuu directly execuLc nw,llY HP-UX cummands and mosL
NMODE commands.

• A general HP-UX system command interface lets you execute commands through
NMOUh;'s system shell from any buffer in h;macs mode. This interface also provides
the HP-UX Execute By Prompt command, C-X H, which works at any time in any ~

mode (browser or buffer), and can also be invoked by the "HP-UX Command"}
softkey when the system shell is available.

54



The HP-UX access facility provides direct comlllunication with invocat.ions of HP-UX
shells. The details about using the HP-UX Facility are provided ill the later chapter
called "The HP-UX Facility".

Conclusion
This chapter contained fundamental information about such things as the screen display,
browsers, buffers, Illodes, facilities, routines, and so on. This information is sufficient for
you to read any additional chapters and learn how to use some part of the NMODE user
environment.

You need not read the chapters sequentially. If you want to know assorted ways to get
help, read the chapter about getting online help. If you want to use the HP-UX System
Access Facility, read that chapter. The only recommended sequences are that you read
the introduction to browsers before you try to work with a specific browser, and read the
chapter about working with text before you try to write source code in Lisp, C, Pascal,
or Fortran.

55



56



Chapter 3
NMODE Windowing

Introduction
In addition to utilizing the Windows/9000 libraries, NMODE supplies windowing capa­
bilities of its own. For instance, within a single Windows/9000 window, NMODE can
divide the screen into multiple areas (panes), each one of which may display a different
part of the NMODE environment. This chapter defines NMODE windowing concepts
and describes how to access these windowing capabilities.

57



Concepts
The two most important terms for discussing NMODE windowing are window and pane.
Remember that the definitions given here apply to NMODEj they are not necessarily
consistent with the way these words are used in other manuals.

Windows
An NMODE window is a virtual display device that is used for output from NMODE.
There are two basic types of NMODE windows:

1. Ones that are Windows/9000 graphics windows. These are used when NMODE
is invoked (without the -t option) while the Windows/900D window manager is
running. The number of these windows available at one time is limited only by
Lisp heap size and Windows/9000 resources. We will refer to this type of NMODE
window as a first-dass window.

2. Ones that are t.erminals, termD windows, or external displays. If you invoke
NMODE wit.h the -t opLioll or without the window manager running, you will
be using this type of NMODE window. A 98700 used as an auxiliary display device
for NMODE is also this kind of window. These are second-dass NMODE windows.

At a particular time, you may have several first-class windows, and one second-class win-
dow corresponding to a 98700 auxiliary display. If you invoke NMODE from a terminal ~

device with the -t option or when the window manager is not running, you can have at}
most two NMODE windows: oue corresponding to the terminal, and an optional one on
a 98700 auxiliary display. Both of these are second-class windows.

In the latter case, when yOli have only second-class windows, there are fewer features
available. You cannot use the mouse; left IExtend char Idoes not work as Meta; the numeric
keypad keys are not distinguished from their regular counterparts. For more information
about these restrictions, consult t.he Installation and Overview manual and Appendix D
of this manual.

NMODE always has at least one window.

58



Panes
An NMODE window can be divided into aIle or more panes. Each pane has its own mode
line information and can display a different part of the NMODE environment. Figure
3.1 shows an NMODE window with three panes. The upper- left pane is showing the
Buffers Facility; both the upper-right pane and the lower pane are showing the OUTPUT
buffer.

(A (BB C»
Buffers

CHAP2 626
S* HP-UX 13

:I: MAIN 3
:f: NMODE-WINDOWS 168
:I: NMODERC 397

Browser (Buffers) -TOP­
Dynamic Heap: 34,133,324 bytes total

3,326,866 bytes used
30,807,468 bytes free

Static Heap: 429,836 bytes free
239.78

Buffer Name Size
Dynamic Heap: 34,133,324 bytes total

Fi! 3,326,866 bytes used
30,807,468 bytes free 90!

-I! Static Heap: 429,836 bytes free
239.78

G Emacs (Lisp) [OUTPUT] {USER} -

90y' free

Emacs (Lisp) [OUTPUT] -BOT- 1:

C-M-L to QUIT, C-? for HELP, C-X R for Root

Figure 3.1: An NMODE Window

11 LISP

• A single existing pane can be split into two p;lIll':-; with either a horizontal or vertical
border.

• At a p:u-ticul:u- point lJl time, thel'e is one and only one selected pane. This is
the pane that is receiving NMODE's input from the keyboard and responding to
the commands you type. The selected pane is indicated in its mode line with
the string contained in the special variable nmode: :nmode-selected-window-symbol,
which defaults to II G II. In Figure 3.1, the upper-right pane is the selected pane.

59



Commands and Techniques
This section describes ways to create and manipulate NMODE windows and panes. Most
of the windows commands described apply only to first-class windows. In the NMODE
Oommand ReJerence, the commands discussed here appear in the "Windows and Panes"
section.

Window Commands
Creating
If you already have at least one first-class window, you can create additional ones while
NMODE is running. The default characteristics (size, locatioll) fOllt, etc.) of the window
you create are controlled by NMODE Window Creation Options in the User Options
Facility. There are two ways to create a window with the default characteristics:

• Execute M-X create default window.

• Browse the Create Window field of the Window Creation Options browser.

There are two ways to create a first-class NMODE window with characteristics different
from those specified in Window Creation Options:

• Execute M-X create window. You will be prompted to enter each of the window's
characteristics one at a time. For any particular characteristic, you can accept the
default by just typing IReturn I.

• Evaluate a call to the function nmode: create-terminal with the first argument being
:window. Such a call will look like:

(nmode:create-terminal :window
:name string

:fonts string-or-list-oJ-strings
:x-origin number-oj-pixels

:y-origin number-oj-pixels
:width number-oj-characters
:height number-oj-characters)

Fonts is a string or a list of strings for the desired font file(s) relative to
/usr/lib/raster. If you omit one of the keyword parameters, the default value
for that characteristic will be used.

60



Selecting
The window containing the selected pane is the selected window. To select a pane in
another window you must first select the window containing that pane. You can think of
all the available NMODE windows (first and second-class) as being in a circular ordered
list. To select the next window in the list, execute the Select Next Window command,
C-X N. To select the previous window in the list, execute the Select Previous Window
command, C-X P.

You can select an arbitrary NMODE window with the Select Window command, C-X
W. You will be prompted for the llame of the window to be selected.

If your locator is enabled, you can select a first-class window by positioning the pointer
over the window you wish to select and pressing either locator button.

Killing
First-class NMODE windows can be killed in a number of ways. If you try to kill your
last first-class window you will be prompted for confirmation that you really want to exit
NMODE.

There are several ways to kill a first-class window:

• Use a Windows/9000 popup menu to destroy the graphics window corresponding
to the NMODE window you wish to delete. If you use this method on your last
window, you will not be prompted for exit confirmation.

• Execute M-X kill window. You will be prompted for the name of the window to be
killed.

• Select the Kill item from the NMODE window commands popup menu.

Changing Size
The Size item of a Windows/9000 popup menu or the lower-right border icon can be used
to change the size of a first-class NMODE window. The mode line will be repositioned
and resized to fit the new size of the window. You cannot make an NMODE window
larger than its original size.

Moving
The Move item of a Windows/9000 popup menu or t,he upper-left border icon can be used
to move a first-class NMODE window.

61



Hiding (Changing to an Icon)
The Icon item of a Windows/9000 popup menu or the upper-right border icon can be
used to change the size of a first-class NMODE window. There is a special UHP-AI" icon
for first-class NMODE windows.

Writing a Window's Contents
The contents of the selected window can be written to a file by executing M-X write
window image. You will be prompted for the name of the file to which the window's
contents will be written.

Pane Commands
This section describes commands for manipulating panes.

Creating
Initially, a window displays one pane. This (or any other) pane can be split either
horizontally or vertically to create a new pane.

To split a pane into two panes with the same width but half the height as the original
pane, execute the Create Lower Pane command, C-X 2. The selected pane is split and
the newly created pane becomes the selected pane.

To split a palw into two side-by-side panes half the width of Ute original pane, execute
the Create Side Pane command, C-M-2. The selected pane is split and the newly created
pane becomes the selected pane.

Selecting
Each NMODE window has an ordered series of panes. To select the next pane in the list,
execute the Select Next Pane command, C-X O. If the current window ouly contains one
pane, executing this command replaces the selected pane with an alternate one.

You can use the locator to select a specific pane of a first-class window. The window
must first be selected. Then position the pointer over the pane you wish to select and
press the left locator button.

Killing
To kill the current pane, execute the Kill Pane COIllIlHlIld, C-X C-K. The pane disappears
and the next pane is selec ted.

To kill all a window's panes except for the selected one, execute the View ane Pane
command, C-X 1. All but the selected pane disappear, and the selected pane occupies
the entire window.

62



Changing Size
There are four commands that change the size of a pane. Which one to use (and its
effect) depends on the pane you wish to alter. The commands are:

• Grow Pane Down command, M-X grow pane down.

• Grow Pane Up command, C-X ....

• Grow Pane Left. command, C-M-<.

• Grow Pane Right command, C-M->.

All of these commands works as follows: If the pane is bordered by another pane in the
direction it is to grow, the pane is grown one line or column larger in that direction (the
bordering pane is shrunk by a line or column). Otherwise, if the pane is bordered in
the opposite direction by another pane, it is grown in that direction. Otherwise, nothing
happens.

You can use the locator to change the size of a first-class window's panes. Position the
pointer over the pane border (mode line or vertical border) you wish to move and press
the right locator button. Position the pointer at the new location for the border and
press either button. The border will be moved, effectively resizing one or more panes.

Transposing
You can switch the positions of any two panes ill a window. First mark one of the two
panes by selecting it and then executing the Mark Pane for Transpose command, M-X
mark pane for transpose. Then select the other pane that is to be transposed and execute
the Transpose Panes conunand, C-X E. Each pane that is switched assumes the position
and size of the pane it was switched with.

63



Window Enhancements
You can change the display characteristics of a particular NMODE window to suit your
personal preferences. The only NMODE windows that cannot be modified in this fashion
are ones associated with a terminal device.

Any other NMODE window is divided into six areas: background, text, browser line, ver­
tical border, mode line, and lisp listener prompt. Each of these areas except background
can have a unique font (all must be the same size), color, and video enhancement. The
background area can have only a color enhancement.

Fonts
When an NMODEwindow is created, it is given a list of available fonts (all the same size).
By convention, windows have a normal, bold, and italic font. You can control which of
these fonts is used to write characters to a given area of the window. Be aware that the
only font size that supports all three styles is 8x16. To see what styles are available for a
particular size, check the possible Window font values in llMODE Window Creation Options.

Colors
If you have a color display, you can change the color used for each window area. Your
display driver determines the number of colors that are available, but NMODE can use
only the first sixteen on the display's color map.

Character Enhancements
The characters displayed in each area can have a unique enhancement. The available
enhancements are underlining and inverse-video.

64



Setting up the Enhancements
You can set the enhancements for an NMODE window with a call to nmode:aet-acreen­
enhancement.

(nmode: set-screen-enhancement area window font color highlight) Function

window

font

color

area The area of the window for which you are specifying the enhancement. It
can be :background, :text (the main area of the window), :browser-line (the
line in a browser that indicates the current item), :vertical-border (the
border between side-by-side panes), :mode-line, or :lisp-listener-prompt
(the right-hand side of the OUTPUT buffer's mode line).

A string containing the name of the NMODE window for which you are set­
ting the enhancements. If you're running NMODE without Windows/9000,
the name of the window on the console display is main-screen. The name of
the window on a 98700 used as an auxiliary display is /dev/crt98700.

One of :normal, :bold, or :italics. If the window does not have the desired
font available, the normal font is used instead.

An integer index into the window's color map, or one of :black (0), :white
(1), :red (2), :yello\'l (3), :green (4), :cyan (6), :blue (6), or :magenta (7).

highlight The type of character enhancement to be made. Should be either :under-
line, :inverse-video, or :normal-video. An argument of nil is the same as
:normal-video.

Example
Here's an excerpt from an initialization file (.nmoderc) showing how you might choose to
set up your window enhancements.

(nmode: :aet-screen-enhancement :browser-line Unmode!U :bold :white :underline)
(nmode: :aet-screen-enhancement :text "nmode!U :normal :white nil)
(nmode: :set-screen-enhancement :lisp-listener-prompt Unmode!U :bold :white nil)
(nmode::set-screen-enhancement :mode-line Unmode!U :bold :white :inverse-video)

65



Windows/9000 Interactions
Since NMODE uses Windows/9000, it is useful to know some of the specifics about
the interactions between the two. This section lists some important information about
NMODE windows and their relation to Windows/9000.

• When the window manager is running, and NMODE is not invoked with the -t
option, NMODE windows are retained-raster graphics windows.

• NMODE only uses the first. two buttons of locator devices. It. will ignore any others.

• The effects of the WMIUICONFIG environment variable are restricted:

• Locator buttons are prc$ently "hard-wired" and cannot be configured.

• NMODE windows ignore the "top on select" bit (Oxl00).

• NMODE windows ignore the bit that disables the border scroll arrows.
(oxl0000).

• NMODE windows ignore the bit that disables pop-up menus over the desk
top (Ox40000).

• NMODE windows ignore the bit that turns off the beeper for aborted actions
(OX4000000) .

• WMBASEFONT and \'IMALTFONT are ignored.

• The window system environment variables for color (\'IMDESKFGCLR, WMDESKBGCLR, 'IIMB­

DRFGCLR, and \'IMBDRBGCLR) are ignored.

• Vll-1LOCSCALE is ignored.

66



~,
"

Chapter 4

Getting On-line Help

Introduction
This chapter discusses how to get on-line information (help) within the NMODE envi­
ronment. You can get help in these ways:

• H you just want to examine on-line documentat.ion, browse into Documentation from
NMODE Root. You can then choose the on-line documentation you want to browse.

• Anytime you need help during a working session, you can invoke a menu of com­
mands that let you access the on-line Help facility. This form of help is available
from any mode/location except input mode or prompt browser mode (which is an
extension of input mode).

• At those times when you get into an input mode (e.g. in responding to a prompt
for input), you can get help specifically related to the current situation.

Note that all routines for getting help use the documentation items in the Help Facility
called Documentation.

67



Documentation Facility
Nmode Root contains the facility called Documentation. This facility contains all of
NMODE's oil-line documentation ill browsable form. When you want to examine the
on-line documentation, you can execute M-X Nmode Root from any place in the NMODE
environment and then you can browse the Documentation Facility.

The Documentation facility contains items that you can browse to view on-line docu­
mentation. The default contents of this facility are listed below:

Documentation (a top level on-line information facility)

Environment Tutorial

NMODE Commands

NMODE Glossary

NMODE User's Guide

(a "hands-on" tutorial of the environment)

(a list of commands and their description)

(a list of terms and their description)

(the on-line version ot the manual)

Lisp Reference (a list of commands and their description)

Lisp Functional Guide (the on-line version of the manual)

Lisp Programmer"s Guide (the on-line version of the manual)

Lisp Application Notes (the on-line version ot the manual)

Installation and Overview Guide (the on-line version ot the manual)

Documentation Facility Contents

There are three types of documentation provided: the tutorial, help items used by other
parts of the help system (NMODE Commands, NMODE Glossary and Lisp Reference)
and manuals (NMODE User's Guide, Lisp Programmer's Guide, Lisp Application Notes
and Installation and Overview Guide).

The Documentation Facility does not contain the cont.ents of all these manuals by default.
If an item is loaded, an L is placed next to it ill the list.

When you browse an item that is not loaded, NMODE prompts yotl with:

Documentation not yet loaded, do you wish it to be? (Default is: "Yes")

68



Pressing IReturn I causes the system to load the documentation item you want to browse.

The next three sections describe the three types of items contained in the Documentation
Facility: Tutorials, Help Items and On-line Manuals.

The Tntorial
The Environment Tutorial provides interactive tutorials on many NMODE features. To
use the tutorial, browse the Documentation browser from NMODE Root. Then browse
the Environment Tutorial.

Unlike the manual type documentation, the tutorial is a program which uses softkeys
and controls the display windows. When you browse the tutorial, two panes are shown
side by side. In the right pane a list of tutorials available is shown. In the left pane are
instructions for using the tutorials.

Environment Tutor

How to Use NMODE Tutorials
NMODE Command Interface
Help
NMODE Facilities
Directory and File Access
Emacs Editor
Lisp Development
Windows
HP-UX Access
Language Editing
Code IndeXing
Error Indexing
Search Indexing
NMODE Customizations

The first time you use the tutorials, it would benefit you to browse the How to Use
NMODE Tutorial first. This tutorial describes the softkeys and windowing system used
in the tutorials.

You exit the tutorials by pressing the softkey Leave Tutorial.

NOTE

You have not "exited" the tutorial unt.il you press Leave Tutorial.
(Quit works ill the tutorial browser also.) You cannot re-enter the
tutorial once you are in it.

69



Help Items
You can browse the Help Items used by the help facility. These include the NMODE
Commands, NMODE Glossary and Lisp Reference. The NMODE Glossary is used in
the following discussion. You can browse the other items in a similar manner.

When you browse the glossary from the Documentation level, all the glossary items are
listed. When you browse one of those items, a frame of information on the glossary name
is displayed.

For example, browse the NMODE glossary. A list of glossary items appears on the
display.

Documentation: Nmode Glossary

ABORT
ACTIVATE DIRECTORY
ACTIVE/ACTIVATE DIRECTORY
BINDING

glossary item
glossary item
glossary item
glossary item

Now browse ABORT. The definition of abort is displayed. This is called a frame of
information. ~
abort

Some commands perform a simple operation with no user interaction. Other
commands provide for user interaction or performs a series of operations.
The user can abort these commands by executing a command that aborts an
interactive operation or gets the user out of a certain state in a series
of states.

To see another glossary item, return to the list by typing Q, then select and browse the
desired item.

70



On-line Manuals
The on-line manuals are the text of the manuals placed in files that you can read. When
you browse a manual, the table of contents is displayed. For example, browse the Lisp
Programmer's Guide. The table of contents for this manual is displayed.

Chapter 1.
Chapter 2.
Chapter 3.

Introduction
Concepts
Programming Tips

1 :0
2:0
3:0

When first displayed, two levels of filtering are in effect. This reduces the number of
headings shown. To see the sub headings and minor headings, execute Filter Undo. To
return to only the chapter headings, execute Filter Re-do.

The number shown next to the heading indicates the file number and line within the file
where the heading appears. When you browse a heading, you are placed in that file at
that line number. The entire chapter is made available by this action so you may look at
all the pages in the file. To go from one chapter to another, however, you must quit the
text-browsing and return to the table of contents. There you can select another chapter
to browse.

71



Help Via Menu Commands
This section discusses the menu driven routine that lets you use the Help facility to get
detailed or focused help during a work session. H need a quick reference, «Appendix B:
Browser Commands" has descriptions of the special Help facility commands.

Using the Help Command
All browsers have a command menu which includes a command named Help. Executing
Help provides a menu of Help commands. Each command at this level provides a certain
type of help. Some of the commands provide another level of commands. This nesting of
commands does not exceed three levels to give you the help you want quickly. Think of
getting help within the Help facility as temporarily suspending what you are doing and
browsing down as necessary to get focused help.

H you are not in a browser mode and the command menu is not available, the NMODE
Help Prefix, C-? (or C-/ so you don't have to use the IShift I key), invokes the Help mode
and provides the same menu of help commands.

Executing Help in Any Browser
All browsers contain a menu of commands and every top-level menu has a command
named Help.

Executing Help invokes the On-line Help facility, which provides a menu of lower-level
commands. These commands provide a menu driven routine for getting help. IT you are
not in a browser, executing M-X Help or C-? invokes the same help facility.

The following top level help menu is displayed.

Where-am-! Explain Key-bindings Documentation Tutor Help-help Quit-help

Each command works as follows:

Where-am-! Displays a description of the current mode or application, and provides
brief descriptions of available commands.

72



Explain Prompts for entry of a string, the default is the item closest to the
cursor before the command was given. The command then searches
for information items related to the string and presents a browsable
list of matching browsable items. For more information on the Explain
command, refer to the NMODE Command Reference.

Key-bindings Provides a menu of commands that are discussed later in the next section
called The Key-bindings Command.

Documentation Invokes the facility called Documentation, which provides access to the
on-line manuals as well as other information.

Tutor Invokes an oil-line interactive tutorial.

Help-help This second level of help provides a description of the top level help
commands.

Quit-help Exits the help facility and returns to your most recent location In

NMODE.

The Key-bindings Command
This command provides the following menu of commands.

Name Description All-commands Help-help Leave-help Quit-key-help

Here are descriptions of each command.

• Name: The command prompts for entry of a key sequence or M-X command name,
and then briefly displays the name of the bound function in the current mode. On
an invalid entry, the command indicates that no hind ing exist.s.

• Description: The cOllunand prompts for ent,ry of a. key sequence or M-X command
name and then displays related descriptive information in the current. pane. Current
alternate bindings to the function are also shown. On all invalid entry, the command
indicates that no information is available.

• All-commands: This command outputs the dispatch table. The output shows the
bindings between functions, key sequences, and M-X command names in the current
mode. Here are the commands.

73



• Screen: Displays a read-only list of bindings in t.hc current pane. The menu
of commands lets you get more information about an item, or quit the listing.

• Buffer: Prompts for entry of a buffer name, and then appends the list of
bindings for the current mode to the buffer, creating a buffer if necessary.

• File: Prompts for entry of a file name, and then writes the list of bindings
for the current mode to the specified file. It creates a file if necessary.

• Printer: Prints the list of bindings to a printer, offering the local printer as a
default.

• Help-help: Provides descriptions of the commands under All-commands.

• Leave-help: Exits the On-line Help facility and returns to the most current
location prior to requesting help.

• QUit-list-keys: Exits the current level of help and returns to the previous
level, which is the menu for Key-bindings.

• Help-help: Provides descriptions of the commands under Key-bindings.

• Leave-help: Exits the help facility and returns to the most current item prior to
requesting help.

• QUit-key-help Exits the current level of help and returns to the the menu for Help

74



Direct Help Via NMODE Commands
This sections discusses the direct access routine for getting help in some detail.

The third major way to get help is to execute a command that provides direct access
to on-line documentation items. This routine is very efficient when you know what help
you want and know which command to execute.

The M-X command names are the same as the command names. You can find the alter­
native bindings by executing Help, Key bindings, Description and typing the command
name.

Commands That Duplicate Browser Commands
In essence, the following commands provide direct access to the same help that you can
get by using the menu driven routine for getting help in a browser.

M-X Apropos

M-X Help Bindings

Prompts for entry of a string (e.g. file or lisp) and then
displays a list of commands that relate to the string. This
cOlluuand is also available as M-X Help Apropos.

Works as if you had executed Help and then Key-bindings.

M-X Help Explain

M-X Show Key Binding Prompts for entry of a key sequence or M-X command name
and then redisplays the entry and the corresponding, bound
command function or indicates that the entry is not bound.
M-/ is an alternative key binding.

Prompts for entry to a string to be explained and then displays
items related to the string, together with an explanation of
what the string represents. Alternatively, you can execute M­
X Explain.

See the NMODE Command lleference manual if you need more information about these
commands.

75



Help Tools
Several NMODE commands let you get information that answers particular questions;
for example: What is the current location of the cursor? While these commands are
not necessarily part of the help facility, they are discussed here because they provide
information you can get "on-line" by executing a command.

M-X Count Occurrences

M-X Find Item

M-X Show Fill Values

M-X What Cursor Position

M-X Show Function Bindings

This command determines and briefly displays the
number of occurrences of a specified string after the
point in a buffer.

This command, which works with code indexes, lets
you locate source code for a specified or default func­
tion that is contained somewhere in the files index.
M-. is an alternative binding.

This command displays the current values of system
variables related to the left margin, indentation, right
margin, and fill prefix.

This command displays information about the cursor's
current location. C-X =is an alternative binding.

This command prompts for the name of a command
function and then shows all the current bindings for
that function.

76



Help During Input Mode
It is often desirable to let the system complete a long command, buffer or file name for
you. IT you type enough letters to uniquely identify a name, pressing the space-bar will
cause the name to be completed. If however, the system "beeps", then either more than
one name matches the letters you have typed or there is no name that matches the letters
you have typed.

If multiple names exist, you can have the system present you with a list of all matching
names by typing a question mark. This places you in Prompt Broswing Mode which is a
special extension of Input Mode. While ill Prompt Browsing Mode, you can use search,
filtering and grouping commands (discussed in future chapters) to see which names you
have available to complete the pending input operation. Browsing an item in the list
completes the pending input, operation with the select.ed name. The Quit command in
Prompt Browsing Mode returns you to Input Mode (where you typed the question mark).
See the section on M-X Command name in the Basic Use of NMODE chapter for more
information.

A Short Tour of the Help Command
Try the following to become familiar with the Help command.

1. Go to NMODE Root by typing M-X Nmode Root.

2. Press (]J for help. A help menu will appear:

Where-am-! Explain Key-bindings Documentation Tutor Help-help Quit-help

Typing lYl for Where-am-I will cause a short description of the current mode or appli­
cation to appear on the screen. What gets displayed depends upon where you were when
you asked for help. You can now type IT] to quit or W to leave the help system.

The distinction between "leaving" and "quitting" the help system becomes important
when you go "deeper" into the help system. For example, typing (]J for help and then
another (]J for help-help causes information about how t,o nse the help facility to appear.
If you now "quit", you will return to the previous help menu. If you "leave" you will
complet.ely exit. the help sy~t.eom.

77



Help with Key Bindings
Try the following:

1. From llMODE Root, press (]J for Help.

2. Press CD for Key-bindings.

3. Press [[] for Description.

4. Now type a key sequence such as ICTRL I-IIJ ICTRL HI). A message will be displayed
that shows the key sequence and its current command binding. In a moment, the
screen will display information about the command and any other key bindings.

5. Press m to Leave the help system.

This ends the short tour. The other commands work in about the same way as the two
commands you toured. Experiment with the help facility and use it according to your
needs and preferences.

78



Chapter 5
Introduction to BroW'sers

Introduction
This chapter contains fundamental information about browsers. The next several para­
graphs provide an overview that lets you know what a browser is and how a browser helps
you use the NMODE environment. The remainder of the chapter extends information
contained in previous chapters by providing detailed descriptions of how browsers work.

To get started, the following information items provide some background for defining a
browser.

• You already know that NMODE often displays a list of items and that you can
point to one of the items and browse into it.

• You also know that the items in the list are write-protected, which generally means
that you cannot insert typed characters into the items.

• When you see a list of items, you know that, besides executing NMODE commands,
you can execute special commands that appear in a menu in the message area.

The interface and mode in the NMODE user environment that provides a list of items, a
non-character-insert (write-protected) state, and a menu of special commands is called a
browser. Think of a browser as a tool, having a browsing mode, that lets you manipulate
a set of items of a certain type. For example, the browser for Directories lets you
manipulate files in directories, while the browser for Buffers lets you ma.nipulate current
editing buffers.

Besides letting you manipulate items, the browsers provide a very convenient way to
move around the NMODE environment. To some ext.ellt., your ability to use NMODE is
determined by your skill in using the assorted browsers.

NMODE automatically provides browsers for some facilities. You need to load other
browsers. Each chapter that discusses a system facility mentions any procedure required
to use the associated browser.

79



As you work through the rest of this chapter, and succeeding chapters. just remember
that invoking any browser:

• Displays a "title" above the list of items and an entry in the mode line that tells
you which browser you are in.

• Displays a list of write-protected items. The type of item depends on the browser.
For example, when you see Browser (Buffers) in the mode line. the items are buffers
such as MAIN, OUTPUT, or MYCODE.

• Provides a menu, in the message area, of special commands that you execute by
pressing the capitalized letter in the command's name. These commands are in
addition to the usual NMODE commands provided by the browser mode.

Using Browsers
The interface for a browser is consistent. Take a moment to examine this screen display.

Title:

/
/

Items:
\
\

Mode line:

Message area:

NMODE Root

Buffers
Directories
Documentation
User Options
Additional Facilities

~ Browser (NMODE Root)

Help Browse Group Filter Create Options Kill Quit

Certain entries in the display indicate your current level and location in the NMODE
environment. Others indicate items that can be manipulated and commands that can
be used. Here is some information about each major part of the display.

• The message area contains special commands. Each browser has its own set of
special commands. You can execute these commands in addition to any available
NM0 DE commands.

• The title in the display, NMODE Root, indicates which which browsers you are cur­
rently using within NMODE. In the above screen, HMode Root means that you are
at the top or root level of NMO DE. Additionally, the display title ofter indicates
the type of the items in the browser's list. For example, if the title is Buffers, you
know that the items in its list are editing buffers. If the title is something like Di­
rectory: lusersl j ohn/new-code/, the items are files and directories in the indicated
directory.

80



• In the above display, the list contains facilities called Buffers, Directories, and
Documentation, among others. These facilities are the items that you can point to
and browse or manipulate. The items of a browser can be facilities, directories, files,
buffers, code indexes, source code lines, and so on. If you begin at the top level
and browse to sllccessively lower levels, you will move from more general facilities
to more specific types of items.

For example:

a. Browse Directories, which is a top-level facility;

b. Browse an active directory such as $HOME/, which is an intermediate-level item;

c. Browse a certain file such as .nmoderc, which is a lower-level item; and

d. Edit a specific portion of source code in the file; for example,

which is a very specific piece of code.

With this information in mind, the next few subsections contain information that can
help you move around in the browsers provided by the NMODE environment.

Accessing Items at Various Levels
In using browsers, it is helpful to think about how to access some items at the same time
that you think about the items themselves and where they are located. For example,
suppose you want information related to the Find File command. This information "sits"
at a low level within the NMODE environment. Starting at "MODE Root (the top level),
you could:

1. Point to and browse Documentation, a top-level facility.

2. Point to and browse NMODE Commands, a particular online document at the second
level of NMODE.

3. Examine the long list of commands, and seeing t.hat the Find File command does
not appear on the first paneful of commands, scroll t.he display until you can point
to and browse Find File. Note that the command is a particular online item at the
third level of NMODE.

4. At the fourth level, you see assorted information about the Find File command.
For example, you see the name of the function that executes the command and
the name of the extended command. Notice that, when you get down to this low
level, the modc liuc displays Text Drowsing to iudicat,c that you arc in a. mode that
lets you read basic online information. Notice also that at this level, the Browse
command is no longer available in the menu because you have reached a sufficiently

81



low level that further browsing is not possible. That is, you are at the lowest level
of NMODE along the "path" that you browsed.

This procedure for using a browser was introduced in earlier chapters as the point and
browse routine. Most people employ this routine within browsers until they become
sufficiently familial' with the overall environment to use more efficient routines. For
example, a dircct 8«:«:CSS routine (M-X, C-X, or softkey command, for example) provides
a much more efficient way to get to an exact item, regardless of level, but you need to
know the name of the item and the command that accesses it.

Working With Items in a Browser
Every browser contains a highlighted region that indicates the current (selected or pointed
to) item in the list. Moving the highlight to a different item selects that item. The
highlighted region also contains the cursor.

To move the highlight down, and thus select a lower item in the list, use any of these:
the Down-arrow key (Y), or the Spacebar, or the IReturn I key.

To move the highlight up, and thus select a higher item in the list, use any of these: the
Up-arrow key ~, or IBack space I.

You can also use the NMODE conullands, C-N and C-P to move the highlight down and
up, respectively.

You can skip several items by prefixing your command with a universal argument. For
example, C-4 followed by [Y) will move the highlight down four items. The I Next 1 and
IPrey I keys will also skip a screenful of items at a time.

If you have window management software and a mouse, move the pointer onto a desired
item and click the left button. The highlight moves to that item. A second click will
browse the item.

82



The Menu of Commands
The commands in the menu for a browser differ from "regular" NMODE commands in
the following ways.

• No prefix-character is required to execute a command because browsers are not
invoked in a character-insert state as is the Emacs editing mode. Just press the
capitalized letter in the command)s name to execute a command. With a mouse)
put the pointer on the command and click the left button.

• Each browser has its own menu of commands. The available commands relate to
the functionality of the browser.

Some commands) such as filter, group and help prompt you with a second level menu of
commands. Second level menus replace the original mcnu of commands with the name of
the command you just entered, such as 'GROUP:'. the input line then contains the menu
of commands available. Execute a command using Ule capitalized letter of the command
or the left mouse (locator device) button. Use the quit command in a second level menu
to return to the original command menu without executing a command.

Many menu commands can use command arguments to execute the command on con­
secutive browser items. For example, the item secondary command under the filter
command can be executed on the next 4 items by entcring C-4 FI.

Some commands such as Quit, Help, Browse) Group, and Filter appear in the menus of
most browsers. A browser Illay have commands that are specific to that type of browser,
such as Add-files in the index browser.

The next section discusses some commands that are common to most browsers. Other
commands are discussed in subsequent chapters that discuss browsers. For quick refer­
ence to commands, see Appendix B: Browser Menus) which is a lift-out card.

83



Common Browser Commands
While eacb browser has its own menu of commands, the following cOlluuallds appeal' in
the menus of most browsers. Descriptions of commands related to a particular facility
browser appear later in the chapter for that browser. The next several subsections
describe the common commands.

Browse
Executing Browse usually "goes into" the current item in some sense. For example,
browsing an active directory ill Directories invokes the browser for the active directory.
In other cases, browsing an item accesses the item so you can view or edit it. For
example, browsing an item in a code index causes the corresponding source code file to
be displayed in a buffer, ready for viewing or editing.

Create
Many browsers provide this command. Executing Create provides a menu of potential
items that can be created. In the case of buffers, the menu looks like this:

Buffer File Other Quit-create

Executing Quit-create exits t.lle create menu and redisplays the top level menu for the
browser. Selecting Buffer or File prompts for a buffer or file name and then browses the
newly created buffer or file. In a different browser, you might see options for different
types of items, and they will create and browse objects of the corresponding type.

Executing Other invokes a create browser. The mode line displays:

~ Browser (Create)

to indicate that you are in a create minor mode within a major browser mode. Potential
items that can be created are presented in a list. For example,

Activate Directory
Buffer
Code Index
Compilation Error Index
Directory
File

84



and the menu of commands includes:

Help Browse Group Filter Create-item Quit

By putting the highlight on one of the items and typing m to Create-item, NMODE
will create and browse an item of the specified type. Pressing (]J to Quit, will return
you to the browser ill which you executed the create-other.

Note that creating a file or directory with the create command will actually create the
file or directory 011 you disc and then browse you into a buffer or directory browser. This
differs from the find-file or visit-file NMODE commands which do not create a file
on your disc until you give a save-file or write-file command.

Group
The Group command allows you to select several items for a particular operation. For
example, you could group all files in a directory that were created on the same date and
then copy them with one command. An item is grouped when it is preceded by a >.

Executing Group provides a menu of second-level commands, which let you place items
in a group. Other commands such as Filter use grouped items. When the multiple
selection option is turned on, some commands directed to one item in a group will act
on every item in the group. Examples of such commands include: Move, Copy, and Print.
Here are the second level commands:

Item

Exclude

Matching

Differing

Clear

All

This command includes a previously ungrouped item as part of the group.
A > is then displayed in front of the item.

This command removes an item from the group, removing the >.

This cOlluuand prompts for entry of a string and groups all the items that
contain the string in their display lines. This command does not exclude
previously grouped items; it just groups more items.

This command prompts for entry of a string and groups all the items
that do not contain the string in their display lines. Like matching, this
command does not. exclude previously grouped items.

This command removes all items from the mult,iple selection group.

This command includes all items in the multiple selection Rroup.

Reverse-all This command inverts the grouping of all items in t.he browser. Every
item that was grouped becomes excluded and vice-versa.

QUit-group This command abort.s Ute command and returns to the current browser.

85



A command argument such as C-3 can be used before a group-item or group-exclude
command to modify several consecutive items.

The Multiple Selection Option and Grouping
This option determines whether a browser command will affect a single item or a group
of items.

When multiple selection is ON and the current item is grouped, certain browser commands
act on all grouped items, not just on the current (highlighted) item. When multiple
selection is OFF or the current item is not grouped, the command only acts on the current
item.

Filtered items are never included in the multiple selection group, even if an item was
grouped before it was filtered.

For example, here is a section of a directory browser's list.

Directory: tHOME/ (/users/joe/)
Last Read: 1-Jun-86 09:00:34 (Multiple-selection is au)

File Name Type Size Write Date Permission Owner

.cshrc
> ug01. text

ugOl1ntro
> ug02.text

ug02screen
> ug03.text

ug03help.text

File
Document
File
Document
File
Document
Document

1878 7-May-86 08:24:61 -rwxr-xr-x root
26931 11-May-86 10:67:62 -rw-r--r-- joe
32303 7-Nay-86 08:24:62 -r--r--r-- moe
86188 2-Apr-86 12:44:03 -rw-r--r-- joe
93696 7-May-86 08:24:64 -r--r--r-- moe
16270 31-Nay-86 18:00:03 -rw-r--r-- joe
20621 7-May-86 08:24:64 -r--r--r-- moe

Notice that the value of the multiple selection option is all in this example and three files
have been grouped. If the highlight is placed on any of the grouped items, some browser
commands (such as kill and print) affect all of the grouped items.

You may change the setting of the multiple selection option in NMODE General User
Options.

Grouping commands operate only on displayed (un-filtered) items.

86



Filter (Hide)
The Filter command allows you to "prune" a long list of items to a more manageable
list. It is a handy way to select similar items or create a list of items to be manipulated
(i.e. printed, purged, etc.).

Executing Filter provides the following menu of second-level commands that let you
filter items.

Item Grouped Non-grouped Matching Keep-matching Undo Quit-filter

Except for Quit-filter, the second-level commands imply the criteria for filtering.

Item This command filters (hides) the current item, removing it from the
displayed list in a browser, but the item is not destroyed or lost. A
command argument such as C-4: ca.n be used before executing filter­
item to hide several consecutive items.

Grouped

Matching

Non-grouped

This command hides all grouped items; the items preceded by a >. Prior
to executing this command, you need to use the Group command to
designate the items you want to include in a group.

This command hides all items ill a list that are not grouped. IT no items
were previously grouped, the command hides all the items, which can
be a bit shocking.

This command prompts for entry of a string and then hides all items
that contain the string some where in their display line. For example,
you can hide all the files owned by root ill a directory browser.

Keep-matching This command prompts for entry of a string and t,hen keeps all items
that contain the string somewhere in their display line.

Undo This command "undoes" (reverses) the effect of the most recent
second level command under Filter, except Undo and Qui t. For example,
if you executed Grouped to hide a group of marked items, executing Undo
returns the items in the group to the displa.y.

When a filter is applied, the mode line will contain <n FILTERS> where n is the number
of filter operations applied. Undo will reverse the action of only the most recent filter
and reduce the <n FILTER> count by one. Consecutive filter-item commands will be
compressed into a single filter.

87



Since more than one filter can be applied to make a list) more titan one Undo may be
needed to return to the original list.

An Example of Filter
The following example of F1lter illustrates a use of successive filters to produce a manage­
able list of items. This example provides a demonstration of filtering the documentation
in NMODE Commands. Execute these commands:

1. M-X nmode root;

2. Move the highlight to Documentation and execute Browsej

3. Move the highlight to NMODE Commands and execute Browse.

This displays along list of items where each item is the llame of a command (on the left)
and a description of the command (on the right); for example) the title and top item
look something like this:

Documentation: NMODE Commands

Abort Edit Template aborts edit of a language template.

Now for the tour:

1. Execute Filter. Then execute Keep-Matching and enter the word: file as the string.
This will reduce the list considerably, displaying only commands that contain the
term) file) in their display text) not necessarily in the command name. Notice the
mode line) which indicates that one filter is applied.

2. Now, examine the abbreviated list. Use the cursor keys and the Filter Item com­
maud to hide several command items. Notice the mode line) which shows that two
filters are applied.

3. Now, execute Filter and then execute Undo. Notice that you get back the list that
had one filter applied. Execute Undo again and notice that you get back the entire
list of commands.

88



Help
Executing Help displays a menu of commands that provide access to NMODE's Help
facilities. The Help commands include:

Where-am-I Explain Key-bindings Documentation Tutor Help-help QUit-help.

The use of these commands was discussed earlier in the chapter called "Getting Online
Help" .

Kill
Executing Kill irreversibly removes the selected (highlighted) item from the system. If a.
kill would remove a. file or unsaved buffer, the cOlluuand prompts for confirmation. Use
this command with caution and think about what will happen before you press m.
Many browser items in NMODE (such as the MAIN and OUTPUT Buffers) are protected
and cannot be distroyed with the kill command.

Options
Options allow you to customize the NMODE environment to your liking. For example,
the general environment options allow you to change the current-window indicator, toggle
the multiple-selection option, and set other variables in the system. The list of options
depends upon your location in the environment. Directory options will appear if you are
in a directory browser, code index options appear if you are in a code index.

To see all options in use, you can go to NMODE Root and browse the item called: User
Options.

The NMODE environment contains approximately 20 options browsers that are stored
in $LISP/config. Options browsers are automatically loaded when the facility that they
control is loaded. All browsers have the following format:

User Options: <name of browser> (Values save/restore is enabled)
Data from f 1le: "$LISP/h1/customize/<f ilename .opt> II

option-l
option-2

option-n

value of opt10n-l
value of option-2

value of option-n

~ Browser (User Options) <name of browser>

Help Browse Modify Group Filter Sort Write Restore-default Quit

89



where <name of browser> is the name of the related options browser and <filename. opt>

is the name of the file in $LISP/config/ that provides the data for the options browser.

Most items either toggle between possible values or prompt you for a string. Each options
browser allows you to save your modifications. The next time NMODE is invoked, during
initialization it will restore your previously saved options.

See the User Options Chapter for more information on how to use and save options and
for a description of each of the available options.

Quit
Executing Quit returns you to the previous location. For example, suppose you are at
the NMODE Root and point to and browse the item: Directories. Executing Quit takes
you back to the root.

H there was no previous location, NMODE will "beep" and display the message: No

previous location. III this case, simply browse some item or go to NMODE Root or any
other place by issuing a command.

NMODE keeps track of where you are and where you have been. You can always return
"the way you came" by successive "Quits", or you can always "move forward" by issuing
commands that take you to a new location.

Sometimes you will see a command QUit-<string>, where <string> is a modifier. For
example, Quit-filter takes you back to the browser from which you executed Filter.

Quit does not necessarily move you up a tree, closer to Root. Rather it remembers where
you have been and retraces you path. For example, from a buffer, M-X Options takes you
to the list of user options. From here, Quit will take you back to your most previous
location (the buffer you were editing), not the browser which contains User Options.

Each Pane maintains its own stack of locations you have visited. Quit simply pops the
previous location off the current pane's stack. Thus, you can be in the same buffer or
browser in several panes and quit in each pane will return you to a different location
depending on how you got to each.

90



Quitting Text Buffers
When you leave a browser and enter a buffer) NMODE displays a different menu:

C-M-L to QUIT, C-? for HELP, C-X R for Root

Here) instead of pressing CD to "quit" and return to t.he previolls 10catioJl, you must
type a "Control-Meta-L" by pressing the ICTftL I-I Extend char~m keys at the same time.

Other options include typing ICTRL I-CD to invoke the Help facility, or ICTRL I-[[] m to
"goto" NMODE Root, or typing any other NMODE command that invokes a browser (for
example, M-X Buffers which invokes the buffers browser).

Quitting NMODE
If you want to quit NMODE entirely, you need to execute either M-X exit nmode or C-X
Z. This will prompt you for confirmation and then completely exit the system, returning
you to your HP-UX shell.

Trash
Executing Trash marks the current item for future deletion by displaying a T at the left
end of the displayed item. If an item is already marked for deletion, Trash unmarks
the item for deletion, removing the T. No items are actually deleted until you exit the
browser with Quit or C-M-L. Leaving the browser or pane with any other command will
not cause the trashed items to be deleted.

Upon quitting the browser, all items marked with a T will be deleted. If there is an
unsaved buffer or if you are "trashing" a file, you will be prompted for confirmation.
Once deleted, a file cannot be recovered.

Other NMODE Commands Available
In addition to the commands listed in a browser)s menu of commands, many NMODE
commands are available while in a browser. In general, all EMACS mode commands that
do not modify a buffer are available, so you can search a browser for a specified string,
copy regions of the browser to a buffer, etc. The arrow keys are available for scrolling a
browser vertically and horizontally.

Use Help-key-bindings All Commands to get a complete list of the commands available in
a particular browser.

Summary
You now know the commands that are basic to all browsers. Other commands that are
uniquc to a particular typc of browser are documented in subsequcnt chapters.

91



92



~'

Chapter 6

NMODE Root

Introduction
This chapter explains how to use the browser for NMODE Root, whose essential purpose is
to provide access to the ma.jor facilities that let you do productive work. Think of NMODE
Root as containing the dynamic "parts" of the NMODE environment.

On invoking NMODE Root, you see the following screen, which has been generally
described in previous chapters. The list of facilities can be a bit different since what you
see depends on your initialization files and whether you loaded any facilities during the
current NMODE work-session.

NMODE Root

Butters
Directories
Documentation
User Options
Additional Facilities

~ Browser (NMODE Root)

Help Browse Group Filter Create Options Kill Quit

This is the top-level of the NMODE hierarchy. From here you have easy access to all of
NMODE's major facilities. You might want to consider NMODE Root as a "safe haven" to
which you can return if you become disoriented during your initial use of NMODE. If
you get stuck for any reason while you are learning how to use NMODE, execute M-X
Nmode Root to invoke this browser.

The current user environment can be expanded by loading additional facilities. The
current environment is seldom static. For example, by using the procedures described
later in the chapter called "Code Indexes" , you can add the facility named Code Indexes.

Like all browsers, the message area contains a menu of commands that can be executed
at the top level. There is more about these commands later.

93



Invoking the NMODE Root
When booting NMODE is complete you are placed at the NMODE Root. In addition,
any of the following procedures invokes the NMODE Root.

• Execute M-X Nmode Root or C-X R from any location or level in NMODE to exit ~

the current browser or buffer and go to the top level.Y

• Press the softkey for the label called Nmode Root. If you do not see Nmode Root
among the softkey labels at the bottom of the screen, you might need to cycle
through the available sets of softkeys, which are described in Appendix C, "Softkeys
and Softkey Labels".

• If you have an operational mouse (locator device), position the pointer in a gray
area within a Nmode pane, click the right mouse button, point to and click Nmode

general » (either button), then point to and click Places » (either button), and
then point to and click Nmode Root (either button).

94



Using NMODE Root
This section answers the question: What does the NMODE Root do for me?

The top level browser is often your "point of departure" when you access a certain facility,
and it is the level to which you often return when you finish a particular task. The major
functionality provided by NMODE Root is that it lets you easily access any part of the
NMODE environment.

Most of the facilities available at tn-lODE Root are either ahoeady loaded into the system
or will be loaded when you browse them. Exactly what is initially loaded depends upon
your initialization files.

Accessing Items
To access all item in a certain facility, you typically employ one of the procedures dis­
cussed earlier. For quick review, the next few subsections are a review.

Point and Browse
With this technique, you can access items by moving through the NMODE hierarchy a
step at a time. You point to a facility and browse it. Then you point to an item ill the
facility and browse it. This continues until you get to the item you want to manipulate.
Hypothetically, to get to a file ill a buffer, you might successively point to and browse:

• Directories, which is a facilitYi

• /users/ellen/tools/, which is an active directory (item) in the facility; and

• print-tool.l, which is a file (item), in an active directory, that you might edit to
correct bugs.

Direct Access
You execute NMODE commands that directly access the items you wish to manipulate.
For example, to go directly to a file in a buffer, you might execute the Find File command
(C-X C-F), and on the prompt, you might enter tools/print-tool. 1 relative to the default
path of /users/ellen/. Then, you could edit the file.

No one routine is necessal'ily best for getting to items, in particula.r facilities, that you
want to use during a working session. Deciding 011 which routine you want to use to
access some item depends mostly on your personal style and experience in using Nmode.

95



The NMODE Root Menu of Commands
Like all browsers, the NMODE Root browser provides a menu of commands.

Help Browse Group Filter Create Kill Quit

The section called "Common Browser Commands" in the earlier chapter called "Intro­
duction to Browsers" described all of these commands. Most browsers provide these base
level commands.

Loading Additional Facilities
When NMODE is shipped, the root contains buffers, directories, documentation, user
options and additional facilities. This provides a basic set of tools. Other facilities can be
loaded for more functionality. They are not standard to reduce the amount of memory
needed to load NMODE.

These other facilities can be loaded in three ways:

1. In make-nmode you can uncomment the lines which refer to the facility. After you
re-make NMODE, the facility is pre-loaded in the NMODE dump file.

2. In .nmoderc you can uncomment the lines which refer to the facility. The facility is
loaded each time you call NMODE.

3. When you are in NMODE, you can load a facility by browsing into Additional
Facilities and either Load or Browse/execute the facility you want.

The Load command loads the facility (and any associated options files) but takes
no further action. The Browse/execute command can then be used to run the
facility. If you Browse/execute a facility that has not already been loaded, you will
be asked to verify that you wish it to be loaded. This procedure must be done each
time you enter NMODE.

The Installation and Overview manual describes how to load optional facilities in make­
nmode and .nmoderc.

96



Additional Facilities
One of the items at NMODE Root is Additional Facilities. The items in Additional
Facilities are all optional facilities. That is. they are not loaded by the standard
NMODE.

If an item has been loaded, an L appears before it in the item list. When the item
is loaded, you can browse it, by going to NMODE Root and browsing the Additional
Facilities and then browsing the item. Or you can enter the facility directly through a
series of key strokes. The methods for entering the facilities are described in the chapters
which describe the facilities.

In general. when you load an additiona.l facility, a new item appears at NMODE Root.
For example, loading File Search Index and creating a search browser results in the
item: File Search Indexes appearing at the root.

The Execution Monitor and Execution Stack Analyzer are described in the "Debugging
Tools" Cha.pter of the Lisp Programmer's Guide.

The other facilities are described in this ma.nual.

• Program Editing Support is described in the "Working with Lisp Code" and "Work-
ing with Other Code" chapters.

• The HP-UX Access facility is described in the "HP-UX Access Facility" chapter.

• The Code Index is described in the "Code Indexes" chapter.

• The Compilation Error Index is described in the "Error Indexes" chapter.

• The File Search Index is described in the "Search Indexes" chapter.

key itf

97



98

I~



Chapter 7
The Buffers Facility

Introduction
This chapter describes the top-level facility for accessing buffers (workspaces for editing
text). In addition, it describes buffers themselves. This is an important topic because
all editing occurs in buffers.

Buffers
This section describes buffers and some commands for manipulating them. You can ma­
nipulate buffers directly (the technique described in this section) or through the Buffers
facility described in the next major section of this chapter. If you're just starting, you
may want to read just the description of buffers that follows, and then skip ahead to the
section that describes the Buffers facility.

A buffer (or editing buffer) is an area for viewing and manipulating text. A buffer may
contain the contents of an existing file, or it may contain text that has not yet been saved
in a file; at times a buffer may not contain any text at all. The number of buffers and
the maximum size of a buffer are limited by the size of available memory (heap).

Buffers only last until the end of the working session. When you edit a file, you are
really only editing a buffer that had the file read into it. The changes you make in the
buffer are not saved to the file until you do it explicitly with the Write File or Save File
commands.

Since you can have several buffers in the system at one time and files are edited within
buffers, you can edit several files at the same time. This allows sharing of data between
the files (buffers).

99



Buffer Characteristics
Buffers have the following characteristics:

name

associated file

modified flag

modes

The identifier of a buffer. Case is not significant in the name of a
buffer. You can change the name of a buffer with the Rename Buffer
command. The name of a buffer appears in its mode line only if
it does not have an associated file, or if the name of the buffer is
different from the file name.

This is an optional characteristic that determines the behavior of
certain commands. For instance, the Save File command (C.X C.S)
writes out a buffer to its associated file. (IT there is no associated file,
you are prompted for the file name, and that becomes the buffer's
associated file.) The associated file name appears in a buffer's mode
line.

This indicates whether the buffer has been modified since it was last
saved to a file. If a :I: appears at the right side of a buffer's mode
line, the current contents of the buffer have not been saved.

Each buffer has an associated major mode (Emacs) and zero or more
minor modes (Lisp, Text, etc.). The modes of a buffer determine
what editing commands are available and the behavior of certain
commands.

100



Default Buffers
Two buffers are created automatically when NMODE is invoked: MAIN and OUTPUT. These
buffers cannot be killed and are not initially associated with any files (although it is
possible for you to do this). The buffer MAIN is conventionally used as a place for trying
out small pieces of Lisp code. The OUTPUT buffer is where the system normally writes
the return values of evaluated forms. To make some wasted space reclaimable by the
garbage collector, you should occasionally delete lines in the OUTPUT buffer that you no
longer need to see.

Mode Line Display for a Buffer
When you are in a buffer, the mode line looks something like this:

I/O «) Emacs (Lisp) [FOO] /users/kathy/code-red.l {USER} -46%- :I:

The following items describe each part.

• The~, a string which is the default value of nmode: :nmode-selected-window-symbol,
indicates that the buffer is current (selected).

• The major mode is Emacs.

• The minor mode(s) appear in parenthesis, Lisp in this case. There may be more
than one minor mode.

• The item in brackets, FOO, is the buffer name. This is displayed when there is no
associated file, or the buffer name does not match the associated file name. The
next item is the associated file name.

• The item in braces, USER, is the current package. This appears only for buffers with
Lisp minor mode.

• The percentage indicates the position of the cursor in the buffer relative to the top
of the buffer. In this case, the cursor is located 45% of the "distance" from the top
of the buffer.

• The asterisk is the buffer modified flag, which indicates that the contents of the
buffer have been changed since they were last saved to a file.

In many cases, the mode line does not display all these things, but in any case, the mode
line indicates the current state of a buffer.

101



Buffer Modes
The following information items indicate how a buffer can be configured.

• An editing buffer defaults to Emacs mode, which means you have availa.ble the
basic editing commands.

• Available minor modes in Emacs mode include: Text, Lisp, Pascal, C, Fortran,
Auto Fill, and HP-UX. To invoke a minor mode, execute M-X string mode, where
string is one of the minor modes. Note that you would enter just one of the strings
inside the brackets. Each minor mode provides additional functionality that helps
you edit text or code.

• You can enable or disable automatic filling by executing M-X auto fill mode. The
command acts as a toggle. Alternately, you can press the Auto FiliOn softkey, or
use the popup menu item: Auto Fill Toggle.

• A special shell buffer is available for interacting with HP-UX if you loaded the
HP-UX System Access Facility as described in the "HP-UX Access" chapter of this
manual. ~

102



Manipulating Buffers
The Buffers facility discussed later in this chapter provides a high-level interface for
creating, selecting, and destroying buffers. There are also direct means of dealing with
buffers.

Creating and/or Selecting a Buffer
You can select an existing buffer or create a new buffer from anywhere in the NMODE
environment by executing the Select Buffer command (C-X B). The command prompts
for a buffer name, and then brings up the specified buffer. If a buffer with the specified
name does not exist, an empty buffer is created and entered. The new buffer has no
associated file. The new buffer default.s t.o Emacs mode and its minor mode is taken from
the value of the special variable nmode :nmode-default-language-mode, which defaults to
nmode: 11ap-language-mode, but can be changed in your .nmoderc initialization file.

Exiting a Buffer
When you are in a buffer, there are no command line commands like Quit; typing a single
key inserts the corresponding character into the buffer. To exit a buffer J use the Select
Previous Buffer command (C-M-L). This will take you to your previous location in the
current pane. Note that the name of this command is slightly misleading, since your
previous location may not have been a buffer.

Associating a File with a Buffer
There are several ways to associate a file with a buffer. The chapter "Working With
Text" discusses these in a more appropriate context, but they are mentioned here for
completeness.

• Use the Find File command (C-X C-F). This will prompt for the name of a file, and
create and select a buffer associated with that file. If the file exists, the contents of
the file will be in the buffer.

• When in a buffer, execute the Visit File command (C-X C-V) which loads a specified
file into the current buffer, overwriting the buffer's old contents .

• When in a buffer, execute the Write File command (C-X C-W), or the Save File
command (C-X C-S) which write the contents of the buffer to the named file, and
then associate that file llame with the buffer.

103



• Writing to a file that is associated with another buffer removes the association file
from the ot.her buffer (but does not modify the buffer). This helps prevent two very
different buffers from being associated with the same file.

Killing and Deleting Buffers
There are several ways to get rid of unwanted buffers. Note that these have no effect on
the file (if any) associated with the killed buffer. However, remember that you may have
made changes to the buffer that have not yet been written to the associated file. If you
kill the buffer, those changes are gone for good.

• Execute the Kill Buffer command (C~X K) and enter the name of a buffer to be
killed. The command prompts for confirmation if the contents were modified. If
the current buffer's name is an associated file's name, due to previous execution of
Find File, executing C~X K and hitting IReturn I with no entry kills that buffer but
not the file itself.

• In a buffer or the Butters facility, execute M-X kill some buffers. This command
displays the name of each buffer in turn, prompting each time for you to enter Y, H,

v, or IESC I to kill, not kill, view, or abort the command respectively. The V provides
a recursive editing level in which you can move around in the buffer, but not change
it.

Renaming a Buffer ~

To rename an existing buffer, select the buffer and execute M-X rename buffer. Enter ",
the new buffer name and press IReturn I. If the new name is the null string (no typed
characters), an existing default string or the associated file name is used as the new
buffer name. If you enter the name of a different, but existing buffer, a message is given
indicating the name is in use and the current buffer name does not change.

104



The Buffers Facility
The buffers facility groups all existing buffers into a single location from which they can
be easily accessed. In addition, it supplies cOlllmand line commands for manipulating
buffers.

From NMODE Root, if you point to and browse the line called Buffers, the screen display
looks something like this:

Buffers

Buffer Name

MAIN
:I: OUTPUT

TEXT
UG7.L

I/O 0 Browser (Buffers)

Size File Name

66
116
266
283 /users/joe/ug7.1

Help Browse Group Filter Sort Create Utility Options Kill Trash Write Quit

Notice that the title ill the pane is: Buffers and the mode line displays:

o Browser (Buffers)

to indicate that you are in the browser for Buffers. Also, notice that the browser provides
numerous commands that let you manipulate buffers. The commands are discussed later.

The browser keeps track of buffers' names, sizes, and associated files. Unlike some
browsers, the browser for Buffers has no related options browser that lets you control
what is displayed.

105



Selecting the Buffers Facility
Use any of the following methods.

• From NMODE Root: Point to Buffers and execute Browse.

• Execute the List Duffers command, C-X C-B or M-X list buffers.

• If you have a locator device (mouse), position the pointer in the "desktop" area
(outside any windows) and click the right button to get the popup menu called
NMODE GENERAL. Then, point to Places », click either button, and point to and
click Buffers (either button).

The Item-line for Buffers
In the browser for BUffers, the item for a particular buffer might look something like
this:

of: OBJECTIVES 1226 /users/spanky/objectives

The buffer na.Iue, OBJECTIVES, and its size in lines, 1226, are always displayed. The left
end of the item can show several status flags:

* Indicates that the buffer's contents have been altered since they were last saved to
a file.

.~

> Indicates that a buffer is grouped (placed in the multiple selection group).

T Indicates that an item is "trashed". That is, it will be killed when you exit the
browser with QuitoI' C-M-L.

s Indicates that the buffer is an HP- UX Shell buffer (described in the chapter ccHP_
UX Access").

106



Special Commands for Buffers
UpOll going into the Buffers facility, you see the following menu of commands:

Help Browse Group Filter Sort Create Utility Options Kill Trash Write QUit

The commands named Help, Browse, Group, Filter, Kill, Trash, and Quit work as de­
scribed earlier in the "Introduction to Browsers" chapter of this manual.

The next several subsections describe the commands named Create, Sort, Utility, Op­
tions, and Write.

The Create Command (Buffers)
Executing Create while in the Buffers facility provides the following menu of subcom­
mands:

Buffer File Other Quit-create

These second level commands work as follows:

Buffer

File

Other

Quit-Create

Executing this command prompts you for a name and then creates
and enters a new buffer with that name.

Executing this command prompts you for a name, creates a file with
that name, and enters a new empty buffer associated with the new
file.

Executing Other provides a browsable list of other items you can
create, such as directories.

Executing Quit-create returns to the browser for Buffers.

107



The Sort COInInand (Buffers)
Executing Sort calls a menu of subconunands that let you sort existing buffers according
to:

Buffer-name Size File-name Modified Reverse Quit-sort.

These categories work as follows:

Buffer-name

Size

File-name

Modified

Reverse

Sorts items alphabetically by their buffer name.

Sorts from smallest to greatest buffer size.

Sorts items alphabetically by associated file name. Buffers without
an associated file are considered to be "before" all other buffers.
Note that the full pathname of an associated files is used, not just
the basename.

Moves buffers marked with an :t: to the top of the list.

Prompts you for attribute with which items will be sorted in reverse
order.

The Write Command (Buffers)
Executing Write prompts for the name of the file to which the highlighted buffer should
be written. H the buffer has an associated file, that file is given as the default, so you
can just type IReturn I to save a buffer to its associated file. After writing to a file, that
file becomes the buffer's associated file.

108



The Utility Command (Buffers)
Executing Utility provides a menu of subcommands:

Not-modified Print-buffer Rename-buffer Set-filename File-revert Quit-utility

These second level commands work as follows. Where "buffer(s)" appears, it means that
those commands work with multiple selection groups or command arguments.

Not-modified removes a displayed * and lets you treat the current buffer(s) as though
it was not modified.

Print-buffer prompts for entry of a print device, offering Ip as a default to print the
current buffer(s).

Rename-buffer prompts for entry of a buffer name and changes the buffer's name to the
new entry.

Set-filename prompts for entry of an associated file name, sets the associated file to
the entry, but does not read the file. To remove the associated file name,
just press IRsturn I.

File-revert prompts for entry of Y or N. Entering Y replaces the current buffer(s)
with the associated file from a disc, thereby letting you revert back to a
previous copy of a file.

The Options Command (Buffers)
There is no options browser exclusively for the Buffers facility. Executing Options takes
you directly to "Nmode General Users Options". You do not pass Go, you do not collect
$200.

Updating the Buffers Facility
If the browser for the Buffers Facility is displayed in a pane other than the current one,
it is updated to accurately show what buffers exist, but the size and modification fields
are not updated until the browser's pane is selected.

109



110

.~



Chapter 8

Directories Facility

Introduction
This chapter describes the following items.

• The active Directories facility.

• The Browser for a Directory.

Before looking at them, a short review of the HP-UX file system is in order.

The HP-UX File System
HP-UX uses a hierarchical file system. This simply means that each directory not only
can contain files but can also contain other directories. The top-level directory that
contains all other directories is named: / (slash) and is called the "root" directory. Thus,
to access a file that exists inside a directory which exists inside yet another directory,
you "append" the directories with a "I" to form a pathname. For instance, the file: bugs
exists inside the directory: joe which exists inside the directory: users. The pathname
would be written /users/joe/bugs.

Sometimes it is useful to shorten the pathnames. An HP-UX shell provides variables
that can be set to pathnames. For example, the shell variable: HOME could be set to the
value: tUBers/joe; then you could access the bugs file by using the path: .HOME/bugs.

Other common directory specifiers include the double-dot ( .. ) which means the directory
"above" the current directory, the single-dot (.) which means the current directory, and
$LISP which means the directory that contains all of the Lisp files.

110.01



Active Directories
Starting at NMODE Root, the facility called Directories contains Active Directories. Active
directories are directories that have been loaded into memory. They can be loaded in
your NMODE initialization file or loaded upon request.

IT you point to and browse the Directories facility, the screen might look something like
this:

Active Directories

$HOME/
/
/lisp/config/

G Browser (Directories)

Help Browse Group Filter Create Options Kill Quit

Note that the mode line says "Directories". The commands such as Help, Group, Filter,
and Quit were discussed in the section called "Common Browser Commands" in the
chapter called "Introduction to Browsers".

Here are the remaining commands and a brief description of each.

Browse

Create

Options

Browsing an item in the Active Directories browser puts you in a
Directory browser of the specified directory.

The create command provides a submenu that lets you create an
empty directory, or activate an existing directory. Use the Activate­
directory command when you want to browse a directory without
browsing each of its parent directories.

This command invokes the NMODE General User Options options
browser. (See the "Users Options)) chapter of this manual for the
description.)

110.02



Kill In the active directories browser, killing an active directory removes
the item from the list but does not remove the directory itself. To
return the directory to the list you will have to press m to create
then press CD to activate the directory. You will then be prompted
for the name of the directory to activate.

Note that the previous commands are for the Active Directories browser and not for a
Directory browser (which is explained next).

The Browser for a Directory
The browser for Active Directories shows all directories that have already been loaded
into memory (either by the initialization file or by your request). The Directory browser
shows all files and sub-directories that exist in a particular directory. The files can be
source code (programs), compiled code, text, data, and so on. The directory browser
"understands" most file types and knows which commands and operations apply to each
type.

A Directory Browser Screen
When you invoke a directory browser (often by browsing an active directory) the screen
display might look something like this:

Directory: /users/tom/ace-project/
Last Read: 19-May-86 09:31 :39 (Multiple-selection is ON)

File Name Type Size Write Date Permission O\IID.er

.1 Directory 1024 30-Apr-86 13:23:48 drwxr-xr-x joe

.. / Directory 1024 12-Apr-86 14:03:31 drwxr-xr-x joe
zap-tool File 20346 19-Apr-86 16:22:66 -rw-r--r-- joe
zap-tool.txt Document 37779 19-Mar-86 16:12:66 -rw-r--r-- tom
zap-tool.l Lisp Source 12479 20-Apr-86 08:42:17 -r\1-r--r-- joe
zap-tool.b Lisp Code 16296 19-Apr-86 10:27:39 -r\'I-r--r-- joe
zap-tool.c C Source 32186 19-Apr-86 17:41:02 -rw-r--r-- root

G Browser (Directory) /users/tom/ace-project/

Help Browse Group Filter Sort Create Utility Options Type-specific Quit

110.03



As you can see, the Directory browser is like all browsers in that it has a title, a list
of items (files or directories), a browser mode (write-protected state), and a menu of
commands, but there are some powerful differences.

Notice that information is displayed with the title to describe the name of the directory,
the last read time, and the state of the multiple-selection option. Notice also that, for
each file, you get information about the name, type, size, write-date, and permissions.
The display of these things can be customized by executing Options, which is explained
later.

The value of the Multiple-selection option can be ON or OFF. IT it is ON and you used the
Group command to group a set of files, then commands such as Print, Kill, Move, and
Copy act on all files in the group when the current item is in the group, not just on the
selected file.

Notice that the items can be any type of file: text, document, Lisp source, Lisp code,
C source, and so on. This allows you to construct directories related, for example, to a
current project or an application you are developing.

Notice that a one-dot directory means the current directory. Browsing the one-dot di- ~
rectory will cause NMODE to re-read the directory. This is an easy way to update J
NMODE's copy of the directory if you changed something while you were in an HP-UX
shell. NMODE automatically updates if you change something from within NMODE,
but cannot know if something was changed by an HP-UX command given in another
shell or by an HP-UX shell-buffer in NMODE.

A two-dot directory indicates the directory that contains the currently displayed direc­
tory. Browsing the two-dot directory takes you "up" the hierarchy.

Entries for files look something like this:

>T mydocs
8:1: mydocs.doc
b program.l

File
Document
Lisp Source

37948 14-Apr-86
346 23-May-86

12346 27-Apr-86

10:02:03 -rw-r--r-­
11:12:13 -rw-rw-rw­
14:23:46 -rw-rw-rw-

joe
tom
guest

Again, be aware that the information in the line can vary, depending on the values of user
options for the browser. The characters to the left of the file names are flags indicating '"
the status of the file. ,

110.04



Flags
Each file can have one 01' more flags associated with it. The flags indicate the status of
the file (and/or its associated buffer) as follows:

>

T

b

B

:l:

This flag indicates that the file bas been included in a group by tbe Group
command. When the multiple-selection option is "ON", all grouped files
are affected by an operation (such as Print) instead of just the selected file.
The flag is toggled by the Group command.

This flag indicates that the file has been "Trashed" and will be deleted when
you leave the current directory with Quit or C-M-L. The flag is toggled by
the Utility menu's Trash command.

The lowercase "b" flag llldicates that a temporary buffer has been created
by NMODE for the file. This usually means that the file has just been
browsed but not modified. Once the buffer is modified, the buffer becomes
"permanent" and the file is flagged with an uppercase "B". Each time you
browse another file in the same directory, the previous temporary buffer is
killed and a new temporary buffer is created.

The uppercase "B" flag indicates that a buffer has been created by NMODE
for the file.

This flag indicates that the buffer (containing a copy of the file) has been
modified since the last time it was read or saved. Usually, when you modify
a file, the flags: B* appear next to the filename. After you save the file, the
flag B remains, indicating that a buffer containing the file is still loaded in
memory but that the contents exactly match the file saved on the disc.

When you browse a "flagless" file, a buffer is created for that file and the file is read
into the buffer. However, if a buffer already exists for that file, you will enter the buffer
without re-reading the file. Thus, if you were to use some HP-UX shell command to
change the contents of a file that has a B flag, browsing the file would actually show
you the contents of the buffer. You can use the M-X Revert File command to force the
reading of the file into the buffer.

110.05



File Types and Naming Conventions
You can enhance NMODE's "power" in many cases by consistently appending appropri­
ate suffixes to your file names. When you save a file with no suffix, NMODE does not
treat the file in any special way; it is just a file. With a suffix, the NMODE provides
functionalities that match the type of file. The types of available suffixes are presented
here:

Type of File

Common Lisp Source
Compiled Lisp Code
C Source
Pascal Source
Fortran Source
Compiled C, Pascal, and Fortran
Text File
Document File
User Options Data
Code Index Data
Search Index Data
Compilation Error Index Data

Suffix

.1

.b

.c

.p

.f

.0

.txt

.doc

.opt

.cb

.sb

.eb

A directory browser understands most file types and knows which operations apply to
each type. Thus, for example, when you browse a file of a certain type, NMODE does ~
not just browse the file; it also invokes constructs related to the file such as the correct
mode. A consistent use of suffixes that indicate file-type will help ensure that you will
get into a "correct" state when you browse or otherwise manipulate a file.

Calling a Directory Browser
There are several ways to enter a directory browser.

Entering a Directory Browser from NMODE Root
Suppose you are at the top level of NMODE, either by invoking NMODE or executing
M-X Nmode Root. To get into the browser for an active directory, you can point to
Directories and execute Browse. Then you can either browse one of the active directories
or activate another directory.

110.06



Entering a Directory Browser from Anywhere
When you are not at the top level of NMODE and you want to call a directory from any
current location in the environment, you can do any of the following.

• Executing the Edit Directory command (C-X D or M-X find directory) prompts
for entry of a directory name relative to the current pathnamej for example,

(relative to '/users/roger/')

On entering a name, the command finds the specified directory and invokes the
browser for that directory. If the specified directory does not exist, the command
indicates in the message area that the directory cannot be found and aborts.

• To use a softkey, you can, if necessary, toggle the sets of available softkey labels
until you see Directories and press the corresponding softkey. This invokes the
Directories facility and you can then point to and browse into the active directory
you want. Alternately, you can, if necessary, toggle the sets of available softkey
labels until you see Find Direct. and press the corresponding softkey. This executes
the Edit Directory command.

• If you have an operational locator device (mouse) and you are in a buffer, clicking
the right button provides a popup menu. Point to and click Nmode Genera.l »
(either button), which provides another popup menu. Then, point to and click
Pla.ces » (either button), which provides yet another popup menu. Point to and
click Directories (either button), which invokes the Directories facility. From
here, you can browse into or activate a directory.

110.07



The Menu of Commands for a Directory
A browser for a directory provides the following menu of commands:

Help Browse Group Filter Sort Create Utility Options Type-specitic Quit

The commands for Help, Group, Filter, Create, and Quit work according to descriptions
given earlier in the section called "Common Browser Commands" in the chapter called
"Introduction to Browsers".

Browse (Directory)
Executing Browse does one of these things:

• When the highlighted item is a directory, executing Browse: invokes a browser
for that directory, and if necessary, loads (activates) the directory. This lets you
examine subdirectories. For example, you can find a file by tracing its pathname
step by step, browsing each level of its name.

• When the highlighted item is a file that can be edited, the Browse command simply
enters the file and lets you examine or edit it.

• When the highlighted item is a file with a "known" suffix, such as any of the files ~
ending in ". opt", browsing the file will invoke the appropriate browser. J

• When the highlighted item is a Lisp Code file (.b) browsing the file will load the
file.

Sort (Directory)
Executing Sort provides a menu of commands.

Filename Grouped Type Size Write-date Reverse QUit-sort

You can sort files in a directory according to the criterion implied by the subcommand. ~

110.08



Filename

Grouped

Type

Size

Write-date

Reverse

Quit

Sorts files into an alphabetical list.

Places grouped files at the top of the list.

Sorts files according to their type; for example, C-Source, Directories,
File, Lisp Source, etc.

Sorts files according to file size, smallest to largest.

Sorts files by write-date, earliest to most recent.

Prompts for sort command to be applied to the directory but in reverse
order.

Exits the Sort command, returning to the File Browser.

Sort will preserve the previous ordering within the newly sorted list when possible. For
example, sorting by Size then sorting by Group will place the grouped files first and the
grouped files will be ordered by size.

Utility (Directory)
Executing Utilities provides the following menu of commands:

Move Copy Rename Save Kill Trash Print Update File-permission Quit-utility

which work as follows:

Move

Copy

Rename

Prompts for the name of a destination directory or file name. If
only a directory is given, the current filename will be used. The
command moves the current item to the new location and removes
it from the original location. You cannot move a directory.

Prompts for the new name, then copies the highlighted item to a
specified directory or file.

Prompts for an existing name and a new name and then renames
the file. You cannot rename a directory.

110.09



Save

Kill

Trash

Print

Update

File-permission

QUit-utility

Saves (writes) the highlighted file if it has been modified or indi­
cates that no changes need to be written. Note that the Write File
command (M-X Write File or C-X C-W) will write the Browser's
displayed contents and not the file.

Permanently removes the file from the system.

Places a. T before the item to indicate the item will be "trashed"
(killed) when you exit the browser. Upon exiting the browser with
Quit or C-M-L, you will be prompted for confirmation to kill the
items. A second '!rash command will toggle the indicator.

Prints the highlighted file to your local printer. See the Print Buffer
comma.nd in the "Working with Text" chapter of this manual for
a description of printer commands. Note that M-X Print Buffer
or C-X C-P prints the browser's display and not the currently
highlighted file.

Re-Ioads the current directory and updates the display. This is
needed after the directory has been modified by some HP-UX com­
mand, Lisp process, or something other than NMODE. (This is the
same operation as browsing the file ./.)

Lets you alter the access permissions of the highlighted item. (See
the next section.)

Exits the Utility command and returns to the browser.

Note that the Move, Copy, Save, Print, and Kill commands will operate on all grouped
items if the current item is grouped and the multiple-selection option is on. 'J

110.10



Type-specific (Directory)
Executing Type-specific displays a menu of second-level commands under the top-level
menu for the browser according to the type of the current file. Menu items depend upon
the file type.

Lisp Source (.1)
Browse-code

Edit

Interpret

File-Compile

Lisp Code (.b)
Load

Edit

Creates a Code Index for the current file.

Edits the current file (same as Browse).

Evaluates lisp: load on the current file.

Compiles the current file to the specified destination file (. b)
just like the Compile File command.

Evaluates lisp: load on the current file (same as Browse).

Read the current file into a buffer (use with caution)

C, Pascal, Fortran Source (.c .p .f)
Browse-code Creates a Code Index for the current file.

Edit

File-Compile

Edits the Index Data file (same as browse).

Invokes the HP-UX compiler for the current file (like the
Compile-File command).

User Options Data File (.opt)
Browse-options Loads and enters the User Options (same as Browse).

Edit Edits the Options Data file.

Code Index Data File (.cb)
Load Loads the Code Index and creates the browser items (same as

Browse).

Register Loads the Code Index but does not create browser items.

110.11



Compilation Error Index Data File (.eb)
Load Loads the Error Index and creates browser items (same as

Browse).

Search Index Data File (.sb)
Load Loads the Search Index and creates browser items (same as

Browse).

Network Special File (files in /net)
Connect Allows you to make a RFA (Remote File Access)

connection to the current network special file.

Disconnect

Edit-network-special-1ile

Disconnects the RFA connection on the current
file.

Reads the actual contents of the network-special­
file into a buffer for editing. (Use with Caution.)

If the current file type bas no subcommands, you briefly see the message:

No type-specific commands for this item.

Options (Directory)
Executing Options calls the user options for directories and displays a list of system
variables that can be given values which control the operation of the Directory facility.

See the "User Options" chapter in this manual for more information on the operation of
the Options facility.

User Options: Directory Options
Currently saved in I$LISP/con1ig/directory.opt"

CONTROL OPTIONS:
Multiple selection of Group (» items Yes
Read headers to type files No

FIELD DISPLAY OPTIONS:
File Type
File Size
Write Date
Read Date

Time with Read/Write Date
Access Permissions
File Owner
File Group

110.12

Yes
Yes
Yes
No
Yes
Yes
Yes
No



User OptiODS for Directories

The option for "Multiple Selection ot Group (» items" is a duplicate of the option
in NMODE General User Options, so modifying the value in either browser will affect all
browsers.

The option for "Read headers to type tiles" controls whether the Directory facility will
open and read the "Language" field of the standard file-header (if it exists) of every file in
the directory when the directory if first activated and when the Utility menu)s Update
command is issued.

IT the options is the default, "NO", NMODE will use each filets suffix to determine
the filets type. Although enabling this option allows NMODE to do a better job of
determining the file type, reading and updating a directory will be slower.

By changing the field display options, you can control what fields are displayed in all
browsers for directories.

File Access Permissions
Each file in the HP-UX file system has access permission indicators that show you who
may access the file. The permissions are broken-down into three sets. The first set is
for the owner of the file. The second set is for the "group" of people who work with the
owner of the file. The third set is for all other users on the system.

OWNER GROUP OTHER

Within each of the three sets there are three indicators. These represent read-permission)
write-permission, and execution-permission. A letter indicates the permission is allowed,
a dash indicates it is not.

OWNER GROUP OTHER

rwx rwx rwx

In addition to the nine permission indicators, a tenth indicator at the beginning of the
list shows whether the file is a directory, a specia.l file, or some other type of file.

110.13



TYPE OWNER GROUP OTHER

rwx rwx rwx

Putting it all together, here is a line from a Directory browser:

parts Directory 1024 22-Apr-86 14:03:31 drwxr-x--- tom

The second to last field shows the permissions. The d appears since this "file" is a direc­
tory. The owner, tom, may read, write, or execute the file. (For directories, "execute"
means to be able to go through the directory to a subdirectory.) People in the owner's
group may read, execute, but not write; while all other users cannot read, write, or
execute at all.

Now if you understand that, imagine that each set of three permissions were actually an
octal digit. The r would be of weight 4, the w would be of weight 2, and the x would
be of weight 1. Thus, specifying a permission of 644 would set the bits to be rw-r--r-­
(a.nd would appear on the screen as: drw-r--r-- since it is a directory).

In another example, setting permission of 777 would result in the permission: rwxrwxrwx.
This would allow anyone to read, write, or execute the file.

If you wanted to keep the contents of a file a secret, readable only by yourself, you would
specify: 400.

You can use these octal values to modify the permissions of a file with either the Util­
ity menu's File-permission command from any Directory browser or by the M-X File
Permission command from anywhere in NMODE.

Only the owner of a file may change its permissions.

110.14



Local Area Networks
Your HP-UX operating system may have the optional software product that supports
a Local Area Network (LAN). If you do have LAN hardware and software, NMODE
supports Remote File Access (RFA) 011 the LAN.

The NMODE commands are:

• M-X Network Connett

• M-X Network Disconnect

The Network Connect command activates the directory containing the network-special­
files (usually /net but can be set in the NMODE General Users Options options browser).
You are prompted for a network-special-file, your login name, and password. Defaults
are provided. Once connected you can use any file access command as you would on your
own system.

LAN and the Directory Facility
Browsing the /net directory provides connection status information on each of the
network-special-files listed there. Browsing one of the files will attempt the connection
sequence. U successful, the root of the remote file system will be browsed.

Uyou make the remote file access connection in an HP-UX shell before you boot NMODE,
the /net directory will not show the connection. However, the files on the network can
be accessed through commands such as Find File. If you browse a network-special-file
that was connected before you entered NMODE, another connection is required.

There are type-specific commands for network-special-files to connect, disconnect or edit
the current network-special-file.

110.15



110.16

l~



Chapter 9
Working vvith Text

Introduction
This chapter describes how you can "work with text" within the NMODE user environ­
ment. In this general context, working with text means writing, editing, updating, and
otherwise manipulating text that can be a program, document, report, and so on. The
chapter contains basic information that is assumed in subsequent chapters about working
with Lisp and other code.

NMODE provides an EMACS-type editor automatically whenever you browse into a
buffer that has Emacs major mode. What you should know is that, when the mode line
indicates you are in a buffer with Emacs mode, you are in the EMACS-type editor.

Organization
The organization of this chapter anticipates that you will typically do the following things
in order.

1. Begin an editing session by establishing a suitable environment.

2. nUse commands and procedures to write or edit.

3. End the session by saving or printing your text.

Thus, the chapter is organized according to the following general topics:

• "Establishing An Editing Environment" describes accessing and manipulating
buffers; invoking and utilizing modes; ma.nipulating screens, windows, and panes;
and setting up global values for margins and indenting.

• "Fundamental Text Editing" describes use of prefixed arguments; inserting and
deleting characters; moving the cursor; and basic ways to manipulate characters,
words, lines, sent.ences, and paragraphs.

• "Text Manipulation" describes more complex procedures and commands for ma­
nipulating text. The text can be anything from one character t.o an entire buffer or
filc. This includcs transpo3ing charactcrs, "'0l"d3, linc3, and l"cgion3j 3ctting 111£\.r)(8

and establishing regions; killing and yanking units of text; and moving or inserting
bllffers and files.

111



• "Buffers and Files" describes tbe fundamental procedures and commands for saviug
the contents of a buffers to a file and later retrieving those contents.

The descriptions are segmented and brief so you can quickly find the information you
want.' Basically, you should skim the descriptions and read specific information as nec­
essary.

The chapters, "Writing and Editing Lisp Code" and "Writing and Editing Other Code" ,
assume fundamental knowledge of text editing. Much of the information about writing
and editing text applies to writing and editing source code, and that information is not
duplicated later.

Accessing the NMODE Editor
Regardless of bow you get there, you edit text in a buffer. Getting into a buffer that bas
an appropriate editing mode is how you invoke NMODE's EMACS-type editor. Buffers
and the Buffers Facility are covered in detail in the chapter "The Buffers Facility". You
should be familiar witb the information in that chapter, although some of it is duplicated
here.

Writing New Text
To write some new text tha.t you plan to save to a file:

Execute the Find File command, C-X C-F, from anywhere in NMODE. You will be
prompted for the name of the file relative to some directory. After you enter the file
name and type IReturn I, a new buffer is created and selected. You are now ready to begin
editing and entering text. Note that the file is not created until you explicitly save the
contents of the buffer with either the Save File or Write File command.

To create and edit text that you do not initially intend to save:

Execute the Select Buffer command, C-X B, from any location in the NMODE environ­
ment. On the prompt, enter a buffer name (such as MEMO) and press I ~.f!tum:J. The buffer
will be created (if it does not already exist), and selected. If while editing, you decide
you want to save the contents of the buffer to a file, execute either t,he Save File or Write
File command. You will be prompted for the name of the file to write the buffer to.

112



Editing an Existing File
To edit an existing file, either

1. Get into a Directory browser that contains the file. Point to and browse the file.
This exits the browser and puts you into a buffer that contains a copy of the file.

2. Execute the Find File command, C-X C-F, from any location in NMODE. On the
prompt, enter the patllllame for the desired file and press IReturn I. As with the above
procedure, the command gets you directly into an editing buffer that contains the
contents of the file. In this case, if the file does not already exist, the command
creates an empty buffer that is associated with the entered file name.

Again, remember that the changes you make to a buffer are not saved to its associated
file until you explicitly do so. You can use one of the Write File, C-X C-W, or Save File,
C-X C-S commands; or the Write command line command of the Buffers Facility; or the
Utility Save command line command of a Directory browser.

113



Establishing an Editing Environment
Writing or editing text typically begins with setting up all environment that is suited to
a particular editing session. This can be rather simple, or very complex. In general, you
set up an editing environment by coordinating the use of windows, buffers, files, modes,
and commands.

There are many ways to coordinate these things, and you do not necessarily perform a
fixed set of steps. How you work depends on largely on the type of· editing you want to
do and your personal style.

The next several subsections describe how to set up an environment for text editing.

Setting Desired Modes for Editing
An editing buffer has Emacs mode and can have additional minor modes. The modes
determine the available editing commands and overall functionality. The mode line
displays the current situation.

When you get into an editing buffer, the default editing mode is called Emacs. This
major mode suspends the write-protection usually provided in a browser and provides a
character-insert state in which a typed character is entered into the buffer at the current
location of the point and is echoed to the screen. The cursor appears on the screen to ~

indicate the next location for character-entry. The mode line for a buffer will display .,
something like this:

I/O G Emacs (Text Fill) JUIlK $HOME/docs/a-text-file.txt -34%-

The mode line tells you that the major mode is Emacs. Text and Fill are minor modes.

Minor Modes
While major modes are mutually exclusive (only one is current at one time) you can also
be in some minor modes: Text, Lisp, 0, Pascal, Fortran, Auto Fill, HP-UX, and so Oil.

You would not be in all these minor modes at once.

See the chapter on non-Lisp editing for informat.ion on C, Pascal, and Fortran minor
modes. The HP-UX minor mode is described in the chapter called "HP-UX Access".

Within Emacs mode, a minor mode provides an extended or altered set of commands
and functionalities that enhance your editing efficiency. Auto Fill mode is usually used
with 'T'pxt. moelp :lUd if:: not. t.ypiC':llly llf::prl with ot.hpl' morlpf::.

114



In general, the commands that alter their functionality to suit the mode relate to:

• Indentin g.

• Definitions of what words, sent.ences, and paragraphs are. These affect commands
like Move Forward Word.

• Matching brackets or braces.

• Evaluating source code files.

• Formatting lists, defuns, and forms.

To invoke a minor mode, you execute M-X string mode where string is a minor mode
such as Text, LiSp, 01' Auto Fill.

Besides letting you set a minor mode directly, NMODE can set a minor mode. When you
browse, visit, 01' find a file, NMODE uses information in the file's header or the filename
suffix (e.g. txt, 1, c, p, t, 81) to invoke the mode without intervention on your part. The
minor mode is displayed in parentheses in the mode line when you are at the top level.
For example,

I/O Q Emacs (Text)

indicates a current buffer in Emacs major mode in Text minor mode with no autofilling.
Because of this intervention, you will occasionally notice changes in the minor mode from
time to time even though you took no overt action to change it.

Auto Fill Minor Mode
Besides invoking minor modes relatcd to languages, you can provide automatic filling of
sentences by executing M-X auto fill mode when you are in a buffer. When Auto Fill
mode is on, NMODE inserts an end-of-line between words at the appropriate point when
entry of text approaches the right margin. The term, Fill, is displayed in the mode
line ill parentheses to the right of the major mode when Auto Fill mode is enabled; for
example,

Q Emacs (Text Fill)

Executing the command again disables the mode. If you ha.ve thcm, certain softkeys and
popup menu items let you execute the command.

Assuming that you have established an appropriate environment, the next sections as­
sume you are ill a buffer, ready to edit.

115



Fundamental Text Editing
This section describes the major commands and techniques for editing.

The Cursor and the Point
An editing buffer has a point, which is an invisible marker that determines where the next
character is inserted. The point moves as you insert characters or do assorted editing.
Numerous commands alter the location of the point.

The cursor in a pane shows the location of the point. The point is between the cursor
and the character immediately to the left of the cursor.

Moving the Cursor
A mouse lets you move the cursor to any location within a pane. Position the pointer on a
desired character (other than the current character) and click the left buttonj the cursor
moves instantly to the new location. This is handy for moving the cursor to "faraway"
locations. In addition, clicking the right button with the pointer inside a pane provides
a popup menu related to the current mode. The Jump » command in this menu will let
you move the cursor. You will get a new popup window that lets you move forward a
word, sentence, or paragraph.

You can use the key sequences in the following table to move the cursor. An N/A
means the command is not applicable or not available. Most commands in the table are
discussed in more detail in other sections.

Type of Move to Move to Move to Move to
movement start end previous next

Character N/A N/A C-B C-F
Line C-A C-E C-P C-N
Word M-B M-F M-B M-F
Sentence M-A M-E M-A M-E
Paragraph M- [ M-] l-t- [ M-]
Paneful N/A M-R N-V C-V
Butfer M-< M-> H/A H/A
Lisp form lIlA lilA C-~{-B C-"'-F
Lisp defun C-M-A C-M-E C-I-I-A C-M-E

In relation to the commands in the table, note the following details:

• Keyboards usually have keys that duplicate many of these commands. For example,
the cursor movement keys (~ [Y] etc.) essentially duplicate the C-F, C-B, C-N,
and C-P commands.

116



• The down-arrow key does not create a new line when you are at the end of a buffer
as does C-N. The Move Down Line Extending and Move Up Line commands, C­
Nand C-P, use the value of the global variable, goal-column, to determine which
column to move to. You can set this value by executing the Set Goal Column
command, C-X C-N. With no argument, C-X C-N uses the current column to
determine which column will be used by vertical movement commanels that move
the point up or down regardless of which column the point is in prior to executing
the vertical movement commands. To disable goal column tracking, execute C-X
C-N with a prefixed argument.

• Executing IPrey I and INext I duplicates the Previous Screen command, M-V, and the
Next Screen command, C-V, respectively.

• Executing (E duplicates the Move To Buffer Start command, M-<, and IShift I (E
duplicates the Move To Buffer End command, M->.

Should you wish to know where the cursor is in a buffer, execute the What Cursor
Position command, C-X = , which displays information about the cursor's location in
the echo area. The command works differently with a prefixed argument, treating the
argument as a line number and jumping to the corresponding line.

Inserting Characters or Text
An editing buffer is in a character-insert state. Just type to insert any valid, single­
keystroke, printable character.

• The cursor moves forward one position after inserting any character.

• Typing a character with the point to the left of (before) any existing characters
inserts that character and pushes all the following characters forward.

• Press IReturn I to end a line. This creates a new line 50 you can resume typing one line
down, beginning at the left margin. Also, pressing IReturn I anywhere along a line
opens the line, moves any remaining parts of the line down and to the left margin,
and leaves the cursor under the character at the beginning of the remaining partial
line. In contrast, executing the Open Line cOlUmand, C-O, opens the line, moves
the remaining line down and to the left margin, and leaves the curgor at the point
of opening on the original line.

• The system displays a ! as the rightmost character of a line when Ule line ig too
long to fit in a pane. You can use any of the cursor motion cOlllmandg to move
the cursor to the text that is not visible. The window will scroll horizontally as
necessary. The Scroll Window Right, C-X >, and Scroll Window Left, C-X <,
commands can be used to change a pane's perspective on a buffer.

117



• All printing characters insert directly. Other characters act as editing commands
and do not insert themselves. To insert a Control, Escape, Backspace, or Rubout
character, escape the character by prefixing it with the Insert Next Character com­
mand, C-Q. The inserted character is preceded by a - on the display; for example,
-D to differentiate the character from a normal printing character.

Inserting Blank Lines
Insert blank lines by executing C-O when you want to insert a line between lines and
then type the line. Prefix the c-o with an argument to create a specified number of
blank lines. After you insert or edit some text, all but one extra line can be deleted by
executing the Delete Blank Lines command, C-X C-O.

Deleting Characters or Text
You can delete characters and small blocks of text by executing any of the following
commands.

• Pressing IBack space Ideletes the character to the right of the cursor. If the character
is a tab, it is expanded into spaces, and then one of the spaces is deleted.

• The Delete Forward Character command, C-D, deletes the character under the
cursor, which is just left of the point.

• The Delete Blank Lines command, C-X C-O, deletes spaces, tabs, and blank lines.
If the cursor is on a blank line, all surrounding blank lines will be deleted, but the
line with the cursor will remain. IT the cursor is on a non-blank line, all continguous
blank lines below it will be deleted.

• The Delete Horizontal Space command, M-\, deletes contiguous horizontal spaces
on a line on either side of the point.

• The Delete Indentation command, M-", deletes the line feeds that crea~ed blank
lines and the indentation at the beginning of the current line, leaving one space.

In addition to these commands, a later section describes commands for deleting specific
text items; for example, a word, line, sentence, marked regioll, or buffer.

118



Items You Can Edit
The NMODE editor recognizes the following items as logical units. Commands are
provided to manipulate text in these units.

Character Printing characters such as A B Z 0 1 2 9 * ,. $ \ # @ ( 1{ ) ! ? .. , ", , .
Word

Line

Sentence

Paragraph

Region

Buffer

What a word is depends on the minor editing mode. Basically, there
are characters that are considered to be part. of a word, and there are
characters that are considered to come between words.

The set. of horizontally aligned characters in a buffer is a line.

Sentence is defined in the subsequent section called "Sentence Com­
mands" .

Paragraph is defined in the subsequent section called "Paragraphs Com­
mands."

A region is all the characters between a mark and the point. The "length"
of a region can vary from one character to an entire buffer. The point can
be previous to t.he mark, or vice versa.

There are commands that apply to the entire buffer.

These items can be manipulated in various ways by using the commands and procedures
discussed in the next several sections.

Word Commands
Several commands let, you ma.nipulate words. What's a. word? It depends on the current
mode, but in general a word is any contiguous string of constituent characters delimited
on both ends by a non-constituent character. In Emacs mode, constituent characters are
letters, numbers, and the characters - _ '. III Lisp minor mode, the following additional
characters are constituent: ! $ %& :1: + - . / < = > ? CD [ ] - { } - # \. An example
shows the implications. You can execute M-D to delete a word. Executing the command
with Lisp mode off and the cursor under the b iiI big-sad:l:wo11 only deletes the big-sad,

leaving the *wolf. In Lisp mode, however, the whole string is deleted.

Here are the commands for edit.ing words wit.h some supplement.al explanation. By
convention, commands for words are Meta commands.

119



M-D The Delete Forward Word command deletes characters from the cursor
location to the end of the current word.

M-Backspace The Delete Backward Word command dulcte8 characters from the char­
acter to the left of the cursor back to the beginning of a word.

M-F

M-B

M-T

The Move Forward Word command moves the cursor forward over a
word.

The Move Backward Word command moves the cursor backward over a
word.

The Transpose Words command switches the word beginning at the
point with the word to its left.

Note that the commands for words are the same as the commands for characters, except
that Meta is used instead of Control.

Each command deletes from the point to the- beginning or end of a word. For example,
if the cursor is under s ill makeshift and you execute M-D, the shift and any following
white-space is deleted, leaving the cursor just after make. Since the words are deleted,
they can be yanked, which is discussed later in a section called "Yanking (Reinserting)".

Punctuation marks between the point and the beginning or end of a word are not by­
passed. For example, if the cursor is under the t in time1zone and you execute M-F, the
cursor moves forward to rest on the 1; it does not move past the e in zone.

120



Line Commands

Several commands let you manipulate lines. A line is a set of horizontally aligned char­
acters.

Here are commands for editing lines:

M-M

M-S

C-x C-O

The Back To Indentation command moves the cursor back to the
indentation for the current line.

The Center Line command centers the current line.

The Delete Blank Lines command deletes blank lines according to
three cases: (1) Spaces, Tabs, and succeeding blank lines when the
cursor is on a nonblank line; (2) Previous and succeeding blank
lines when the cursor is on a blank line; and (3) Blank lines beyond
the cursor when cursor is at the end of a nonblank line.

M-X Delete Match- Deletes all lines after the point that contain a particular string.
ing Lines You are prompted for the string.

M-X Delete Deletes all lines after the point that do not contain a particular
Non-Matching Lines string. You are prompted for the string.

C-K

C-N

The Kill Line command deletes the current line from the location
of the cursor to the end of the line and leaves the line open.

The Move Down Extending command moves down to the next
line, extending. The term extending means that, if necessary, the
command will insert a newliJle in the buffer so the cursor can move
down to the next line.

The Move Down command moves down one line, except at the
end of a buffer.

121



C-p

C-E

C-A

The Move Up comma.nd moves ttp one line. You can also press
(Xl.

The Move To End Of Line cOJluuand moves to the end of the
current line.

The Move To Start Of Line command moves to the start of the
current line.

M-X Count Occur- Prompts for entry of a. string and then displays in the message
rences area the number of lines that contain the string.

C-O

I Insert line I

C-M-O

C-X C-T

The Open Line command does several things. First, it "opens" or
clears out the current line from the cursor's location. It also inserts
any existing text after the cursor on the next line, beginning at
the left margin. Finally, the command pushes after lines forward
and leaves the cursor after the opening on the current line, ready
for you to type additional text.

The Open Line Indent command opens a line under the current
line and indents so that the cursor is in the same column in the
newly opened line as it occupied on the current line. Existing
forward lines move down.

The Split Line command splits a line at the cursor's location in
the current line, moves the remainder of the line down one line
and indents it to the column that was occupied by the cursor. The
cursor is placed at the beginning of the remainder of the line.

Thc Tril.ll;$p0;$C Lill~':; \:OIIlI11<UH.1 Lnul~l'v~e.:; (.)1\: \:UITCIIL (1.11\1 ...J.,ove

lines and moves the cursor down to the next. line, except when the
current line is the last line of a buffer.

122



Sentence Commands
The following commands let you work with sentences. A sentence is a string of characters
that begins at:

• The start of a buffer, or

• The start of a paragraph, or

• First non-blank after a preceding sentence.

A sentence ends at:

• The end of a buffer, or

• The end of a paragraph, or

• A sentence terminator (. ? !) followed by zero or more sentence extenders (' II )

]), followed by at least two spaces.

A sentence can have any number of parentheses, braces, brackets, apostrophes, or quo­
tation marks and other special characters in between. Since this is a rather "long"
definition, here is an example that assumes spaces on both ends:

This is an {example} of a rather strange [sentence] with a IILisp
''form' II • (+ (:1: 2 3) (+ 4 6». in it.

M-A

M-E

M-K

The Backward Sentence command moves back to the beginning
of a sentence.

The Forward Sentence cOlllmand moves forward to the end of a
sentence.

The Delete Sentence command deletes forward from the cursor's
location to the end of the sentence, including special characters
;w(l ~IHling pnnef,nat.lon.

123



C-X Backspace

C-M-T

The Backward Delete Sentence command deletes backward from
the cursor's location to the beginning of the sentence. This in­
cludes special characters but does not include the spaces before
the sentence.

The Transpose Sentences command tra.nsposes the current seu­
tence with the previous one.

Notice that the commands for sentences parallel the commands for lines. For example,
M-A for sentences parallels C-A for lines.

Paragraph Commands
The following commands let you work with paragraphs.

In Text mode, a paragraph is delimited above and below by a blank line, but this is not
the complete picture. Many formatting packages recognize a line or sentence that begins
with a period as a formatting command. Such lines or sentences are treated as a text
formatting command line and are not treated as. part of any paragraph. While this is
true, it can be difficult for the command to account for all situations. It is usually better
to use blank lines to delimit paragraphs and insert formatting commands so that they
do not get "lost" when you edit a paragraph.

In a language mode, a paragraph is a set of characters that is delimited above and below
by a blank line so that the commands for paragraphs work, even though, in the reality
of programming, there is no paragraph per se.

M-[ The Backward Paragraph command moves the cursor back to the beginning
of the current paragraph.

M-Q The Fill Paragraph command fills the paragraph that contains the cursor.

M-] The Forward Paragraph command moves the cursor forward to the end of
the current paragraph.

124



C-M-P In Text mode, the Set Paragraph Indent command lets you set the value
for paragraph indentation. Notice that, in Lisp mode, this key sequence
is bound to the Move Backward List command, which moves the cursor
backward to the beginning of a list.

M-X mark The Mark Paragraph command lets you make the cnrrent paragraph into
paragraph a region by placing a mark and the point around the current paragraph.

The cursor moves to the beginning of the paragraph.

C-X M-T The Transpose Paragraphs command transposes the current paragraph
with the previous one.

Prefixed Arguments (Repeat Factors)
Many of the commands used to edit text accept prefixed arguments supplied by the
Universal Argument command, C-U, or C-U integer. This command was discussed ill
Chapter 2 and is also described in the NMODE Command Reference manual. In most
cases, you just prefix a command to cause the command to execute a specified number
of times. For example, C-U 34: M-D deletes 34 words, beginning at the location of the
cursor. As another example, executing C-U 10 C-O opens ten lines below the current
location of the cursor.

A negative command argument will usually cause a cOlllmand to execute "backwards".
For instance C-U -1 M-D will delete the word to the left of the cursor instead of to the
right.

125



Undoing Text
If you are in an editing buffer other than the OUTPUT buffer or an HP-UX shell buffer,
you can undo changes by executing the Undo command, C-X U. When you modify a
buffer's contents, NMODE uses a stack for each buffer to store text that you insert or
delete with editing commands such as Delete Word and Delete Line. Thus, when you
edit something a.nd then decide you want to undo it, executing C-X U undoes whatever
you did.

If the stack has more than one entry, the message area displays:

Hit space to undo more:

Repeated pressing of the space bar will undo the available sequence of edits on the stack,
where each stack entry will undo one NMODE command. Pressing any other key exits
the undo mode and does whatever the key does. To just exit the Undo command, press
IEsel.

When the stack IS empty, and there is no more history of entries, the message area
displays:

Nothing Left to Undo

If there is no undo stack for the current buffer, the message areas displays:

Sorry. No undo history on this butfer.

The Undo command can even undo the effects of a previous Undo command. For ex­
ample, If you are undoing a sequence of commands, and realize that you really did not
want to undo, simply leave the Undo command with IESC I, and then execute the Undo
command, C-X U, again.

In general, all editing commands can be undone, except for commands that overwrite
the entire buffer with new data from a file, like the Visit File and Revert File commands.

You can execute M-X set undo depth to alter the default undo-history gtack depth for
the current buffer; the defa.ult is 50 commands. The COllll1HUld p.·ompts for entry of a.
new undo depth. Note that the Set Undo Depth command destroys the old undo history
stack, so changes done before cannot be undone. Setting the depth to 0 disables the
undo feature for the CUlTent buffer. In the NMODE General User Options there is an
entry for "Undo Stack Depth For New Buffers". This controls the undo depth for any
new buffers you create, but does not change any existing buffers.

126



Miscellaneous Commands

The Cursor Location
To get precise information about, the current location of the cursor, and consequently
about the location of point, execute the What Cursor Position command, C-X =. The
command displays something like the following information in the echo area:

X=3 Y=19 CH=40 line=428 (74 percent of 674 lines)

The displayed fields have the following meanings.

• The X value is the column (zero is the leftmost column).

• The Y value is line number in the pane that the cursor is on (zero is at the top).

• The CH value is the ASCII value of the character above the cursor (after the point).

• The line value is the line number that the cursor is on in the buffer.

• The percentage shows the relationship between the location of line and the total
number of lines in the buffer; for example the line can be 74 percent of the way
through the buffer.

Case Conversion Commands

Several commands let you convert some type of character, word, or range of characters
into upper or lower case. Here are the commands.

M-L The Lower Case Word command converts the following word to lower case
and moves the cursor past the word.

M-U The Upper Case Word command converts t.he following word to upper case
and moves the cursor past the word.

M-C The Upper Case Initial command capitalizes the following word and moves
the cursor past the word.

C-X C-L

C-XC-u

The Lowercase Region command converts the current region to lower case,
but does not move the cursor or mark.

The Uppercase Region command converts the current region to upper case,
but does not move the cursor or ma.rk.

127



M-' The Upease Digit command converts the last digit typed to its shifted
character; for example, the command converts 5 to %. Notice that the first
time you execute the command during an editing session, the command
prompts you to type the digits 1. 2. ...• 9. 0 while you hold down IShift I
and then converts the digit. This "teaches" the command the characters
that correspond with the digits on your keyboard.

The word C4lSC (:ommands accept arguments. With a negative argument, the commands
work hackw".l'd~ 011 WOl'(I~ as specified by the argument, but do not move the cursor.
Actually, the comlllc\.lld::: work from the location of the cursor in a word. For example,
executing M-L with the cursor under the F in YOURFRE changes the word to YOURftle.
Prefixing the commands M-L, M-U, and M-C with all argument of -1 causes them to act
on the previous word, leaving the cursor where it was.

Transposing Text
While writing or editing, you often want to alter the sequence of certain items. The
following commands let you transpose text .

• The Transpose Characters command, C-T, transposes the characters either side of
the point. Visually, this is the character above the cursor and the character to its
left. Executed at the end of a line, the command transposes the two characters to ~

the left, not the ending line separator and the character to its left. This command "'.7
is usually used to fix simple typos.

• The Transpose Words command, M-T, moves the cursor forward over a word,
dragging the "appropriate" word forward as well. If the cursor is just before the
word, the command drags the preceding word forward. If the cursor is on a word,
that word is dragged forward past its forward word. There are three possibilities
for using a. prefixed argument.

• An argument of zero, transposes the word at the point (surrounding or adja.­
cent to it) and the word at the mark.

• A positive argument serves as a repeat. count, dragging t.he appropriate word
forward over the specified number of words. When the cursor is on a word,
that word is dragged forward. If the cursor is between words, the previous
word is dragged forward.

• A negative argument serves as a repeat count, dragging the appropriate word
backward over the specified number of words. When the curSOl' is 011 a word,
that word is dragged backward. If the cursor is between words, the previous
word is dragged backward.

128



In any case, a punctuation or delimiter character between two words does not move. For
example, roo, BAR transposes to BAR, roo and human-like (humanoid) transposes
to humanoid (human-like) .

• The Transpose Lines command, C-X C-T, transposes the current line and the pre­
vious line, and moves the cursor down one line.

• The Tra.nspose Regions command, C-X T, is a general purpose command that lets
you transpose two regions, which do not need to be adjacent. Here is one way to
do it:

a. Move the cursor to the beginning of the first region and execute the Set Mark
command, M-Spacebar, to set a first mark at the beginning of the region.
Then, move the cursor to just past the end of the first region and execute the
comma.nd again to set a second mark.

b. Move the cursor to the beginning of a second region and set a third mark.
Then, move the cursor to just past the end of the second region and execute
C-X T to transpose the regions.

The order in which you set marks is not important and the point (cursor) can be at
a beginning or end; you only need have two distinct regions. Use this command and
procedure to transpose any two arbitrary blocks of text.

These commands let you transpose blocks within a buffer. A later section discusses block
copies and moves within a buffer and among buffers.

129



Search Commands
These commands help you find words in text.

Incremental Search
The Search Forward command, C-S, and the Reverse SearcIl command, C-R, are the two
major commands for searching for strings. The Reverse Search command, C-R works
the same way as the Search command, but in a backward direction.

Beginning at the cursor's location, C-S reads a typed character and moves forward to the
first occurrence of that character. The command continues this forward movement as
you type additional characters. The cursor moves during entry of characters, and when
you stop typing, the cursor indicates the first occurrence of the accumulating string. This
process continues until one of the following states occurs.

• Pressing IESC I terminates a search and leaves the cursor at its current location.

• Appending a character to a string that creates a string which has no forward exis­
tence causes the search to fail and indicates in the message area that the I-search
is failing.

• Certain keys or commands such as the Backspace key or Insert Next Character
command, C-Q, apply to the search string in the message area. In particular,
pressing the Backspace key backspaces in the search string so you can enter a
different character if you like. Executing C-Q lets you enter a character which
causes the command to search for a non-printing character instead of a printing
character.

• Executing the NMODE Abort command, C-G, during entry of characters termi­
nates a search and moves the cursor back to where the search started. On a failing
search, the command throws away characters that caused the search to fail, back­
tracks to where the search was successful, and lets you enter different characters.
Another execution of the command at this point exits, canceling the entire search.

• Any command not recognized by incremental search will end the search and execute
that command.

130



Repeated Searches
You might need to execute C-S several times t.o find t.he "right" occurrence of the string
because the command finds the first occurrence. This might not be the string you want.
To search again, execute C-S to start the search and then, with no entry of characters,
execute C-S again to set a state that means: search again for the string used previously.
You can repeat this successively until you find the "right" string.

Case-Sensitive Searches
The searches ignore case. To enable a case-sensitive search, execute C-C after executing
a C-S or C-R and before you enter a character. So doing displays the message: Case
sense is ON:

Word Search
The Word Search command, C-M-S, prompts for entry of the word you want to find.
IT you previously executed the command, the command offers the previous word as a
default. Accept the default or enter a word and press IReturn I. Then, the command
either: finds the word and moves the cursor just after itj or does not take any apparent
action and leaves the cursor at its current location. In particular, no message appears in
the message area to indicate that the word does not exist.

Multi-line Patterns
Incremental search will match multi-line patterns. That is, XYZ IReturn I will search for
XYZ at the end of a line. Searching for IReturn I XYZ will find occurrences of XYZ at the
beginning of a line.

131



String Replacement Commands
The Replace String command, M-X replace string, prompts for the name of a string to be
replaced, prompts for the name of a string to be inserted, and performs the replacement
operation forward from the cursor's location to the end of the buffer, indicating the
number of replacements. The cursor will not move

Query Replace Command
The Query Replace command, M-X query replace or M-%, works about the same way as
the Replace String command, except that on each potential replacement, the command
provides the following options:

Y

N

Perform the replacement operation.

Skip replacement and move to the next possibility.

Perform the replacement operation and display the result, which lets you
inspect the replacement and then enter a Y, IESC I, !, or A character.

Exits without finishing the replacement operation.

Perform the current replacement operation and then exit.

Perform all replacements without intervention.

Go back to the previous replacement possibility, whetber the replacement
was made or not.

Entering any otller character or executing another command terminates the replacement
operation and inserts the character or executes the command.

Executing M-X count occurrences prompts for a string and then counts the number of
occurrences of the specified string in the buffer from the cursor's location to the end of
the buffer. The count is displayed in the message area.

Executing M-X delete non-matching lines prompts for entry of a string and then deletes
all lines from the cursor's location to the end of the buffer that do not contain the string.

Ex'ecuting M-X delete matching lines prompts for ent,ry of n. ~t,rjng n.nd t.hen delet,e~ n.ll
lines from the cursor's location to the end of the buffer that do contain the string.

132



Formatting Commands
These commands are useful when formatting text.

Setting Margins and Indenting
You can further configure an environment for editing by setting assorted parameters
related to margins.

• In Text mode:

• The Set Left Fill Column command, C-M-Y, lets you specify a left margin.
The default setting is O.

• The Set Paragraph Indent command, C-M-P, lets you specify the indentation
for beginning a paragraph. The default setting is 5.

• In any mode:

• The Set Fill Column command, C-X F, sets the right margin. You can prefix
the command with the Universal Argument. command, C-U integer, to set an
arbitrary right margin; for example, C-U '12 C-X F sets the right margin at
72. Alternatively, yOll can move the cursor to the desired column and execute
C-XF.

• The Set Goal Column command, C-X C-N, lets you set, or flush, a global
value for horizontal positioning of the cursor as you move from line to line.
In any line, position the cursor on the column you want the cursor to move
to when you move to a line and execute C-X C-N. To unset the goal column,
execute the command with a prefixed universal argument.

• The Set Fill Prefix command, C-X " makes the characters in the current line
from the left column to the current column into a fill prefix by assigning the
string as the value of the system variable fill-prefix.

133



Tabbing and Indenting
The exact way in which tabbing and indenting occurs varies, depending on which mode
you are in, but the principles are consistent. The language modes: Lisp, C, Pascal, and
Fortran effect tabbing and indenting according to conventions for writing source code in
the particular language. Text mode provides straightforward tabbing and indenting.

The next few subsections discuss schemc~ for tabbing and indenting. Briefly, here is a
list of the available commands.

ITab I

M-I

M-Tab

C-M-\

C-x.

M-"

M-\
M-M

Indents "appropriately" according to current mode.

Indent to tap stop.

Inserts a Tab character, which usually tabs 8 spaces.

Indents an entire region to the same arbitrary colullln; for example, ten
spaces. {e.g. C-U 10 C-M-\

Sets a fill prefix consisting of the string from the left column to the current
column; for example, »>.

Appends current line to the line above, undoing effects of other indenting
and tabbing.

Deletes space and tab characters about t.he point horizontally.

Moves the cursor back to the current line's first nonblank character, which
means that it moves it back to the indent,ation.

Tabbing
Tabbing varies according to established conventions for the current mode. In text mode,
the cursor moves forward 8 spaces. In a language mode, the cursor moves according to
conventions for the current language.

The actual key you press to do tabbing can vary depending on which hardware you have
and which mode you are in. Here are some guidelines:

• In Text mode, you press ITab I if your system "a~ c1<>fault key bindit1g~ and left
IExtend char! is the Meta key.

• If you customized your system or your systelll does not use IExtend char I as t.he Meta
key, then you might not press ITab I to tab. You can always tab by executing the
Tab To Tab Stop command, M-I, which illserLs a Tab character.

134



• In any language mode, executing M-I indents appropriately, according to the mode:
Lisp, C, Pascal, or Fortran .

• In any mode, text or language, executing M-Tab or C-Q Tab also tabs by inserting
a Tab character, which is 8 spaces.

Indenting
In English text, you often indent the first line in a paragraph and do not indent su bsequent
lines. When you are in Text and Auto Fill modes, the Set Paragraph Indent command,
C-M-P, lets you establish a column value for indenting the first line. To set the value,
either: execute the command with the cursor on the desu'ed column for indentation; or
prefix the command with the desired column value. For example, C-U 5 C-M-P sets
paragraph indentation at 5 spaces. To remove the 5-space indentation, execute C-U 0
C-M-P, or move the cursor to the left margin and execute C-M-P.

The established value for indentation is used by the Fill Paragraph command, M-Q. The
value is also used when you begin a new paragraph when Auto Fill mode is on.

Centering
The Center Line command, M-S, centers a line according to the length of the line in
relation to the value assigned to the system variable, nmode ::fi11-column. Prefixing M­
S with a negative argument centers a specified number of lines above the current line,
leaving the cursor on the current line. Prefixing the command with a positive argument
centers the specified number of following lines, beginning with the current line, leaving
the cursor beyond the centered lines.

Filling
Enabling Auto Fill mode by executing M-X auto fill mode lets you type text or source
code that is filled as you t,ype, That is, the text or source code is broken up into lines
that fit in a width specified by the left and right margins. This works fine when you type
and do not immediately edit the text.

Later editing can create text that is unequal, scrolled, or cont.aills lines that appear to
end with a ! c:h;u'nd.er. The ! meil.1l~ that. t,he line ext,f'nd~ pn~t. t,he vi~ihle di~play. TIH~

next few subsections explain how to fill text,

135



General Commands for Filling
Here are the major commands or keys for filling.

Spacebar

M-Q

C-U M-Q

M-G

C-X=

When Auto Fill mode is on, breaks lines at the right margin when the loca­
tion-of a word will exceed the value for fill-column. This action continues
to the end of the paragraph.

Has the same effect as space before it creates a new line.

The Fill Paragraph command fills the current paragraph, using values for
fill-column, left-fill-column, and paragraph-indent. Be sure that blank
lines delimit the paragraph! Otherwise, you can scramble your text, espe­
cially if it contains characters and commands for formatting.

Fills and justifies a paragraph. Note that this is M-Q, which fills a. para­
graph, prefixed by the Universal Argument command with no argument.

The Fill Region command fills a region.

The What Cursor Position command displays information about the cur­
rent cursor position in the message area.

System Variables Related to Filling
Some filling occurs ill accordance with the values given to the system variables:
nmode :fill-column, nmode: left-fill-column, and nmode: paragraph-indent. The latter
two variables apply to filling done in Text mode. The defaults, respectively, are 70, 0,
and 5. You can set the values by executing the following commands, respectively:

C-xP

C-M-Y

C-M-P

The Set Fill Column command sets the fill prefix at the column that COIl­

tains the point, or it sets the fill prefix to a value specified by a prefixed
argument. For example, C-U '10 C-X F sets the value of fill-prefix to 70.

The Set Left Fill Column command sets the left fill prefix. Use the same
procedure as for fill prefix.

The Set Paragraph Indent command sets the value for paragraph inden­
tation. Use the same procedure as for fill prefix. Only the first line ill a.

paragraph is indented.

136



Filling Paragraphs
After you edit a paragraph and wish to fill it, position the cursor anywhere in the
paragraph and execute the Fill Paragraph command, M-Q. Execute C-U M-Q to fill and
justify the paragraph. Putting the cursor anywhere in the paragraph is equivalent to
putting the point inside the paragraph. If the cursor (point) is between paragraphs, the
command fills the next paragraph.

Filling Regions
The Fill Region command, M-G, fills each paragraph in Ute region.

Beware of Filling with ForuHltting Commands
The M-Q and M-G commands fill an entire para.graph or region. This is not a problem
when you just type text, but if you insert special commands that are subsequently used
to format the text during printing, be sure to separate the commands for formatting
from the text by temporarily inserting a blank line above and below the text you intend
to fill. Otherwise the formatting commands will be treated as normal text and filled.

Using a Fill Prefix
When you are in Auto Fill mode, in some cases, you might want to begin each line in a
paragraph with a specific string; perhaps something like the string:

Ace Company Policy:

You can use the Set Fill Prefix command, C-X., to assign a string to the system variable,
nmode: :fill-prefix. Then, the string is inserted at the beginning of each new line. Here
is an example that illustrates the process:

1. With the cursor at the begining of a blank line, type:

Ace Company Policy:

and execute C-X .

2. Continue typing; for example, type something like:

Coffee is available at no charge.

and press IReturn I. Notice that the fill prefix is inserted automatically at the begin­
ning of the next line and the cursor is positioned just after the prefix so you can
type the next policy.

Here are some fine points related to using fill prefixes.

137



• You can think of the fill prefix as a marker of sorts. It can be any valid string.
Filling a paragraph removes the marker from each liue, fills the paragraph, and
puts the marker back in each line.

• On continuous typing when Auto Fill mode is enabled, the fill prefix is inserted
at the beginning of each new line. It is important to realize this. In relation
to the example, if you typed a policy statement. that exceeded the right margin,
the ensuing filling caused by Auto Fill mode would insert the prefix in the policy
statement, which is probably not what you want.

• Any line that does not start with the fill prefix delimits a paragraph.

• To remove a fill prefix, execute C-A, or equivalent command, to position the cursor
at the beginning of a liue. Then, execute C-X .. This removes the prefix by setting
the value of fill-prefix to a null string.

138



Text Manipulation
Previous sectiolfs discussed fundamental editing tasks: moving the cursor, inserting text,
manipulating paragraphs, finding strings, and so on. This section describes procedures
and commands for transposing two regions or inserting text from disassociated buffers
into the current buffer.

Setting and Using Marks
Earlier sections mentioned that the point and something ('ailed a mark could establish
a region that could represent certain items that could be edited. This section describes
how the point and a mark can be used to establish a region. Many of the commands
make use of the regions delimited by the mark and the point.

The Ring of Marks
NMODE can "remember" 16 locations at which you or t.he system set a mark. Commands
that set a mark push any new mark onto this stack and remove the oldest mark when
the current stack has 16 marks.

To set a mark, execute C-Space (or C-@, or M-Space). Alternately, you can execute
M-X set mark.

To return the cursor to the most recent mark, execute the Set Mark command with a
"null" universal argument (e.g C-U C-Space). This moves the point to where the mark
was and restores the mark from the stack of former marks. Doing this repeatedly moves
the point successively to all t.he old marks on the stack and can eventually put the point
back where you started. Insertion and deletion can cause the marks to "drift", usually
not far unless you insert or delete large amounts of text above the marks.

Establishing a Region
In general, any command that processes an arbitrary part of a buffer must know where to
start and stop. Such commands operat.e on a region, which is a set of characters between
the point and the current mark.

Recalling that the point sits just to the left. of the cur~or, t.he following procedure is a
reliable way to establish a region:

1. Move the cursor under the character at the location where you want to start a
region and execute the Set Mark command, C-Space, to set a mark. This sets a
mark at point, which is just before the first character in the region.

139



2. Move the cursor forward just past the character where you want to end a region.
This leaves the point just before that character, which is after the last character in
the region.

You now have au est,ablishecl region. By knowing clearly what is in and not ill your
region, you can execute commands related to regions with confidence. For example, you
can execute the Copy Region command, M-W, which makes a copy of a region, and then
yank the region into another part of the CUlTent buffer with complete confidence that the
region will be inserted as desired.

It is almost as easy to set a mark and move the cursor backwards as long as you keep the
point-cursor relationship in mind so you know exactly what is and is not in the region.

An Example of Using Marks and Regions
Here is an illustrative example. Assume the following text:

The ACE Company's new policies appear to
be effective. Anticipating an increase in
the use of AI techniques, Ms. Trundle assigned
ace expert and dedicated hacker. Julie Smart. the
task of teaching the programmers, who understood
Pascal, how to write Lisp code.

Then, assume you set the following marks:

1. Position the cursor under the A in Anticipating and set a mark, which places a
mark just to the left of the A.

2. Now, move the cursor to the top of the text and execute the Delete Region com­
mand, C-W. Since the point sits just to the left of the cursor and the first available
mark sits just to the left of the A, the following text disappears.

The ACE Company's new policies appear to
be effective.

3. Now, position the cursor under the J in Julie and execute C-Space to set a mark.

4. Move the cursor under the comma just. aft,er Smart Cl.nd (\xecute C-W t.o delet.e the
current region. Since the point sits just to the left of the comma and the current
mark is just t.o t.he left. of t.he J in Julio) t.lu' following t.ext. i~ rlelete(J.

Julie Smart

140



There is no point to this example oUter than t,O help yOll visun)i~e how establishing
certain regions lets you control text manipulation of items other than characters, words,
and sentences. NM0 DE has several commands for working with regions. They are listed
in Appendix A and are discussed further in this manual in a later section called "Deleting,
Copying, and Moving Blocks of Text"

Commands for Setting Marks
Here is a list of commands that let you set marks.

C-Space

M-@

C-<

C->

C-XC-H

M-P

C-M-H

C-M-@

The Set Mark command sets a mark at the current location of the point.

The Mark Word command sets a mark after the end of the next word.
The point does not move. In effect the command, makes the next word a
current region. Place the cursor between words because, when the cursor
is on a word, the mark is set at the end of the current word, possibly not
what you want.

The Mark Beginning command sets a mark at the beginning of the current
buffer. The point does not move.

The Mark End command sets a mark at the end of the current buffer.
The point does not move.

The Mark Whole Buffer command establishes the entire buffer as a region,
set.t.illR the mark at the end of the buffer and placing the point at the
begiulling.

The Mark Paragraph command establishes the current paragraph as a
region, setting the mark at the end of the paragraph and placing the
point at its beginning.

The Mark Defun command establishes the current Lisp defun as a region,
setting the mark at the end of the defun and placing the point at its
beginning.

The Mark Form command sets a mark after the end of the next Lisp form.
The point does not move. Again, the cursor should be between forms as
is the case for words.

Many NMODE commands affect the point and auy marks t.hat might. be set. Do not
assume too much in attempting to use them. In general, the best procedure is to set marks
and use them immediately, before you forget where they are or before an intervening
command changes them.

141



The Exchange Point And Mark command exchanges the current mark and point. This
command is useful for verifying the current region visually. Executing it a few times
moves the cursor to both ends of the region so you can see exactly what constitutes the
region you want to manipulate.

Deleting, Copying, and Moving Blocks of Text
NMODE maintains a "buffee' for the temporary storage of "killed" or deleted text. The
buffer is called the kill ring in which up to 16 blocks of killed text are saved. Switching
buffers has no effect on the kill ring. Even when you visit, or find files, the kill ring is
unchanged. Consequently, you can do cut and paste operations in a buffer or among
buffers and files.

In most cases, each delete operation pushes a new block of text onto the kill ring. But
executing several similar kills sequentially combines the text into a single entry on the
ring. For example, executing M-D 10 times to kill 10 consecutive words puts the ten
words onto the kill ring as one entry. Such a block of text can be reinserted by one
execution of C-Y. Commands that kill forward from the cursor add text onto the end
of the text in kill ring, and commands that kill backward from the cursor add text onto
the beginning of the text in the kill ring. This way, any sequence of mixed forward
and backward kills puts all the killed text into one entry without rearrangement. This
sequential execution of a kill command works quite well for words, lines, and sentences
in Text mode and for lists, deCuns, and forms in Lisp mode.

A kill command that is separated from the last kill command by some other command
creates a new entry on the kill ring, unless you execute the Append Next Kill command,
C-M-W, before you execute the kill command. Executing C-M-W establishes a state
that tells the following command, if it is a kill command, to append the killed text to
the last killed text instead of making it, a new entry on the kill ring. The Append Next
Kill command lets you kill several separated segments of text, accumulating them until
you want to yank the single item into some location.

Some commands for killing or moving text relate to items stich as words, lines, sentences,
and forms (in Lisp mode). Any other segment of a buffer from a single character to the
whole buffer can be established as a region and then killed.

Text does not have to be killed to be put in the kill ring, it, can be copied there by
executing the Copy Region command, M-W, and then yanked. This comnmnd actually
places the region on the kill ring. That is, it copies the region onto the kill ring so it can
be yanked, but it does not kill the existing text.

142



The Yank Last Kill command reinserts the text of the most recent kill. You can prefix C­
Y with an argument that will reinsert killed text according to the argument; for example,
C-U 3 C-Y reinserts the third most l'ecent kill. This is very useful when you can remember
the content of the last severa.l kills. Executing C-Y puts the cursor at the end of the
insertion and puts a mark at its beginning.

Regardless of what text you kill or copy or how you kill or copy it, text is yanked by
executing the Yank Last Kill command, C-Y, or the Ullkill Previous command, M-Y. This
latter command replaces reinserted killed text with the previously killed text, rotating
the kill ring backwards. Executing M-Y enough times can rotate any part of the kill ring
to the front so you can get at it, if it is among the last 16 kills.

Deleting Text
Here are commands for deleting text.

M-D

M-Backspace

C-K

M-K

C-M-K

C-M-DEL

C-w

The Kill Forward Word command deletes the current word from the
location of the cursor to the end of the word.

The Kill Backward Word command kills the current word from the
character left of the cursor backward to the beginning of the word.

The Kill Line command deletes the current line from the location of
the cursor forward to the end of the line, including punctuation and
special characters. See the command reference for details.

The Kill Sentence command delet.es forward from the location of the
cursor to the end of a sentence. See the command reference for details.

In Lisp mode, the Kill Forward Form command deletes the current
Lisp form from the location of the cursor to the end of the form, not
including the close paren.

In Lisp mode, the Kill Backward Form command deletes the cur­
rent Lisp form from the character left of the cursor's location to the
beginning of the form, not including thl\ open pa.ren.

The Kill Region command deletes the current region from t.he point to
the current mark. Note that the exact character deleted near the cur­
sor can vary depending on whether you delete forward or backward.

143



Most of these commands accept prefixed arguments. Their use is discussed in the
NMODE Command Reference manual if you need additional information.

U sing Registers for Insertion
Another option for storing text temporarily and insert.ing it as desired is to establish
a region and execute the Put Region cOJ1uualld, C-X X. This temporarily "puts" the
region into a register. Later, you can insert the region int.o a buffer at the cursor's
location by executing the Get Register command, C-X G. A register is associated with a
single alphabetic character or digit, which you enter, so you can store several regions ill
several corresponding registers. You need only to remember your arbitrary relationship
between regions and characters for registers during an editing session.

Accumulating Text in Buffers or Files
There are several ways to accumulate and manipulate assorted text besides using the
Insert Kill Buffer or Unkill Previous commands.

Any region can be inserted into a buffer by: executing M-W to copy the region, invoking a
different buffer, and then executing C-Y to yank the region to the new buffer. Alternately,
you can execute the Append To Buffer command, C-X A, which inserts a copy of the
region into a specified buffer, at the buffer's end. The command even creates a new buffer
if necessary. The cursor moves to the end of the insertionj so repeated appends let you
accumulate text. Finally, the Write Region command, M-X write region, lets you write
the contents of the current region in a buffer to a file.

Any text accumulated in a buffer can be inserted into any other buffer by executing M-X
insert buffer. In the current buffer, executing the command prompts you to enter the
name of the buffer in which you accumulated text and then inserts the entire buffer,
beginning at the current location of the cursor.

Any text in a buffer can be appended to a file by executing M-X append to file, which
prompts for a file name and then appends the contents of the current region of the buffer
to the end of the file. Executing M-X prepend to file works the same way, except that
the contents are added to the beginning of a file.

144



Buffer and File I/O
Commands are available for directing the contents of buffer's and files from various devices
or reSOUl'ces to various devices or resources. Perhaps these commands should be discussed
in a separate chapter, but the fact is that you typically use them often during the text
editing process and as you manipulate code. Consequently, they are discussed here, and
you should realize that they apply equally to the later chapters about working with Lisp
and other code.

Remember that you can abort most of the following commands by executing C-G during
entry of strings or file names related to prompts. The commands discussed in the next
several subsections appear in an approximate order in which you might use them during
an editing session.

Printing a Buffer
You might often want to get hardcopy of text you are editing for study or reference. The
Print Buffer command, C-X C-P, lets you dump the contents of the current buffer to a
specified printer. The specified printer defaults to the HP-UX command Ip, but you may
change the default in NMODE General User Options. The way you specify a printer
is to give the name of an HP-UX command that accepts input from standard in. The
Print Buffer command simply pipes the contents of the current buffer into the specified
command. Note that the HP-UX command is not required to have anything to do with
printing hardcopy. For instance,

sort I expand > /tmp/sorexfile

Writing a Region
When you are writing or editing text and want to save some part of the text, the Write
Region command, M-X write region, lets you write the contents of the current buffer's
established region to a file, which you specify in response to a prompt,

145



Finding or Visiting a File
Finding a file or visiting a file are primary initial tasks in the text editing process.
Executing the Find File command, C-X C-F, lets you read a file into a newly created
buffer, which is given the file's name, less its pathname. If the specified file is already in
a buffer, the command reselects that buffer.

The Visit File command, C-X C-V, is somewhat different because it visits a file in the
current buffer, reading the specified file into the buffer and making it t,he associated
file. Be aware that the command replaces the current buffer's contents with the contents
of the visited file. Unless you save the current contents, you could lose them. After
prompting for the name of the file to be visited, you are a~ked if you wish to save the
current contents of the buffer. If you enter YES, the command prompts for a file name,
saves the contents to the specified file, and then visits the new file. In contrast, The
Find File command always finds oj' creates a differenL buffer, leaving the contents of the
current buffer undisturbed. Note Lhat the action of the Visit File command cannot be
re~ersed with the Undo command.

Executing either command prompts you for a file name, and might offer a default or
suggest entry of a file name relative to some pathname. When a relative pathname is
provided, you need only specify the remaining part of the pathname plus the filename.
For example, if the prompt displays:

relative to $HOME!tools

you might specify somet.hing like:

mytools!1ramis.txt

so that the entire pathname is:

$HOME!tools!mytools!1ramis.txt

By the way, you can execute M-X set visited file name to make NMODE think you have
changed the name of the associat.ed file without. writ.iug t.o t.he filf>, ~honld yon need t.o
do so.

146



Saving a File
Whether you find or visit a file and make changes you want to save, or just enter text into
a buffer and decide to save it, the Save File command, C-X C.S, saves the contents of a
buffer to its associated file. If the current buffer does not have an associated file name,
the command prompts you to enter a file name (you can enter an entire pathname), saves
the contents of the buffer to the specified file, and makes the file the associated file.

After saving the file, the command indicates that the file is written and displays the
number of lines it contains. If no changes have been made in a buffer that has an
associated file, the command indicates that there are no changes to save. Saving the
contents of a buffer to a file removes the asterisk displayed in the mode line that indicates
the presence of changes.

Writing a File
The Write File command, C-X C-W, works just like the Save File command, except that
you are always prompted for the name of the file to write to.

Saving all Files
The Save All Files command, M-X save all files, lets you sequentially save the contents
of all buffers that have modified contents. The command finds a buffer that has modified
contents and asks yon, Yes or No, to save the file. Entering Yes saves the contents of the
buffer to its associated file and moves to the next modified buffer. Entering No skips the
buffer and moves on to the next modified buffer. Execute C-G to abort the command
and not save any more files.

Creating a File
Besides executing other commands that create files as necessary, you can execute M-X
create file at any time to create an arbitrary file in any specified directory. On the
prompt:

Create file whose name is: (Default is: '/users/mike/docs/')

where /users/mike/docs/ is the current relative pat.hname, enter t.h~ name of the file you
want to create a.nd prcss IRoturn I. Thc cntry ca.n bc a. file Ilamc rdativc to t.hc dcfault.
pathname or it can be an absolute pathname. In cit.her case, the command creates the file
and places it in the specified directory, hut. docg not exit YOllr current location and visit
the file in a buffer. To see that t.he file was created, browse into t.he specified directory
and note that it now appears in the list.

147



Copying a File
The Copy File command, C-X C-C, works in a straightforward way to let you make a
copy of a file, prompting first for the existing file name and then for the name of the
copy. The original file is left intact.

Moving a File
The Move File command, C-X C-R, moves a file to another file, changing the actnal
file name on the disc and deleting the original file. Like copying a file, you enter two
filenames, one for the existing file, and one for the moved file.

Killing (removing) a File
The Kill File command, M-X kill file, prompts for entry of a file name and then, irre­
trievablely, kills the file! Do not press IReturn I unless you are sure you want to remove the
file. It is often more efficient to get into an active directory and use. the browser's Trash
command to remove files because the files are not deleted until you exit the browser.

Reverting Back to a File
When you:

1. Visit or find a file;

2. Modify its contents in a buffer;

3. Have not yet saved the changesj and

4. Decide you want to revert back to the original version of the file,

then you should execute the Revert File command, M-X revert file.

The command prompts for entry of a file name; you will probably just accept the default,
which is the associated file. The command does not change the location of point relative
to the beginning of the buffer, but if you made drastic changes in the buffer's (file's)
contents before reverting, the location of the point may be nowhere close to its previous
location. Note that the effects of the Revert File cOlUmand cannot be reversed with the
Undo command.

148



Renaming a File
The Rename File command, M-X rename file, works just like the Move File command,
except that the file must remain in the same directory.

Compiling a File
The Compile File command, M-X compile file, lets you compile an existing file of Lisp
source code; that is, the file has a .1 suffix. The command produces a file with an
equivalent name, but with a .b suffix. You must be ill a buffer in Lisp mode. The
output from compilation appears in the OUTPUT buffer. On initial execution, the command
prompts if you want to save the contents of the current buffer to a file. You should respond
YES if you have not yet saved the buffer because the command compiles the file's source
code, not the buffer's source code. On being prompted to enter a file, enter a filename
with an appropriate suffix of .1.

You can be in another language mode and compile an existing source code file with a .c,
.p, or .f suffix provided you loaded the program editing support module (lang-edit).
The compiled file has the suffix .o.

149



150

'~



Chapter 10
Working with Lisp Code

Introduction
The earlier chapter called "Working With Text" discussed general aspects of text edit­
ing. This chapter assumes that information and focuses 011 how to edit and otherwise
manipulate Lisp source code. This includes:

• Automatic indentation and formating of lists, defuns, and forms.

• Automatic matching of parentheses.

• Killing and yanking forms, defuns, and any other arbitrary region.

• Inserting headers, comments, and revisions.

• Convenient methods of interpreting and compiling source code.

• A few very simple means of debugging programs. The LISP Programmer's Guide
discusses more comprehensive means of debugging source code.

This chapter describes these things in terms of how to use the NMODE commands; it
does not deal with how to write programs. Any examples of forms, defuns, or lists are
trivial because their only purpose is to illustrate how to use commands.

The information ill this chapter is supplemented and extended in the LISP Programmer's
Guide, which describes programming. In case you need help with Lisp syntax and related
information, the LISP Reference manual describes the constants, variables, functions,
special forms, and macros in Common Lisp.

This chapter discusses the various wa.ys you can do things, but. leaveR the overall ap­
proach up to you. Depending 011 your familiarit.y wit.h an EMACS-type editor and the
Lisp programming language, you can selectively read sect.ions of this cha.pter t.o get the
information you need. The sections are:

• "Scrolling and Moving the Cursor" explains how to move around and position the
cursor as desired.

151



• "Writing and Editing Lisp Code" explains finding code, manipulating Lisp code,
matching parentheses and such (with a practice session), manipulating headers and
comments, and killing and moving code.

• "Executing and Debugging Code" explains evaluating Lisp code, yanking results,
simple debugging, compiling source code, and getting more information about pro­
gramming.

• "Establishing a Programming Environment" explains using packages, loading
browsers, creating browsers, creating buffers, and setting margins and prefixes.

To get informatioll, go to a section, skim for what you need, and read as necessary.

Programming usually requires extensive use of facilities which are not re-examined in this
chapter. To write, edit, interpret, debug, and compile Lisp source code, you will probably
use the Additional Facilities, active directories, code indexes and search indexes.

Like the previous chapter, the sections that follow discuss the commands and procedures
in a segmented manner so that you can skim the material and quickly find the information
you want.

152



Scrolling and Moving the Cursor
The general procedures for scrolling and moving the cursor were discussed earlier. This
section reviews some information related to editing Lisp code.

When you edit Lisp code, lines can become long and disappear partially on the right side
of the screen, displaying an , (exclamation mark). The following table shows the key
or key sequence and the NMODE command that provides some type of scrolling. The
command name implies the functionality and you can get additional information in the
NMODE Command Reference manual if necessary.

Scroll Down command.

IPrevl

INextl

C-X <
C-X>

C-M-V

Scroll Up command.

Scroll Pane Down Page command.

Scroll Pane Up Page command.

Scroll Pane Left command.

Scroll Pane Right command.

Scroll Other Pane command.

As with many commands, it is often helpful to use C-U integer to give these commands
prefixed arguments.

153



Writing and Editing Lisp Code

Writing New Code
Like writing and editing text, all Lisp code editing takes pla.ce in a buffer. You can create
and enter a new buffer for editing Lisp with the Select Buffer Command, C-X B. If you
want to create and begin editing a new Lisp source file, use the Find File Command,
C-X C-F. If you named your new file with a .1 suffix, you will automatically be put
into Lisp mode. If you didn't, or you just created a new buffer (not a file), you may
need to execute the Lisp Mode command, M-X Lisp Mode. Lisp mode provides some
features designed for editing Lisp, like parenthesis matching and automatic indenting.
Since these capabilities are available when editing new or existing code, they are discussed
below under "Editing Existing Code."

Editing Existing Code
The next several subsections describe commands and techniques that access NMODE
capabilities that are appropriate for editing Lisp.

Finding a File
In either a buffer or browser, you can access an existing file by executing the Find File
command, C-X C-F, when you know the name of the file you want to examine. The
COlllllland prompts for the name of the file, reads the file into a buffer it creates and then
visits the buffer. You can edit the file as desired, using assorted search commands to find
specific items in the file. This is the most direct way to get to a specific file.

You can use file name completion to find the file name. When the find file command
prompts you for the file name, type a few letters of the file name and then press IES C I.
If the letters you typed are unique to a file name, the rest of the name is written for
you. You press IReturn I to accept the name. Or you can back space over the name and
try again.

If you do not know the name of the file you wish to edit, you can use the directory facility
to activate and then browse the directories you are interested in. This technique is also
useful when you have several files you wish to edit that. are all in the same directory.

Recall that a file ill an active directory in Directories can be accessed in two main ways:

1. Execute the Find Directory or Dired command, C-X D, enter the name of a desired
directory, and then point to and browse into a file; or

154



~'

2. Execute M-X nmode root, which invokes the NMODE Root. Then, point to and
browse Directories. From here, point to and browse into a desired directory, and
then point to and browse into a desired file.

Finding a Specific Word in a File
The Incremental Search conun<l.lld, e-s, and the Reverse Search command, C-R let you
find specific items in the current buffer (file). These commands were described in the
previous chapter. Briefly, they prompt you for a string and begin searching for a matching
string character by character. To go to the next occurrence of the search string, repeat
the command. To terminate the search, t.ype IESC I.

The Word Search command, C-M-S, works in any language mode and prompts for entry
of a word to find (a string). Note that a word is a string which has a blank or carriage
return before it and a blank, carriage return, period or parenthesis after it. The word
search command searches the current buffer from the location of the cursor forward to
the end of the buffer, stopping just after finding the first occurrence of the word, or
beeping the bell on not finding the word. While the command searches for a "word",
you are not actually so restricted aud can enter any reasonable number of characters; for
example,

(cons 'foo bar)

Finding Function Definitions
The Find Item command, M-., which if' ca.lled the Meta-dot. command in the tradition
of Lisp editors, lets you find a function definition that. might exist in any of the files that
have been processed and added to a browser for code indexes! Recall that adding the
files extracts the items and places them ill the code index relative to the file that contains
them.

The M-. command is only useful if the following conditions are fulfilled.

1. The code index facility has been loaded.

2. The file(s) containing the source code you are iut.crested in have been added to a
code index.

3. The appropriate code index is 1Jl memory (i.e. it ha.s been browsed during the
current session).

Once these conditions have been met, the M-. command works equally well in a code
index or in an editing buffer.

155



Executing M-. (a period) prompts you to enter the name of an item, with the default
being the item at the current cursor position; for example:

Type in the name of the Item you want to see. (Default 1s: 'SETF')

H the default is not the item you wish to see the source for, enter the name of the function
you want to find, which must be in some file in the browser for code indexes. On finding
a match, the command creates and enters a buffer in Lisp mode with the associated file
and with the cursor at the specified function.

In a browser, the command works the same way except that no default function is offered
because the cursor is not next to any "item". You must enter the name of the function
you want to find. In the browser for code indexes, just point t.o the index (function) and
browse into it. This will find the desired code.

On failing, the command indicates that the item cannot be found.

Manipulating Lisp Code
For historical reasons, an expression at the top level in a buffer is called a defun. To
increase efficiency, NMODE assumes that any { in column 0 initiates a defun; that is,
any open parenthesis in column zero begins a top level expression. Assorted commands
use this principle for locating defuns, and for indenting Lisp code based on the degree of ~

nesting of expressions. }

During an editing session, you need to focus on high-level tasks; for example, fixing code
so it will work. To help you do this, Lisp mode in Emacs mode provides many commands
for indenting code, setting marks, and moving the cursor, that are specifically suited to
Lisp. For example, in Lisp Illode, IReturn I inserts a newline and indents to the appropriate
place on the next line.

The commands that are described in the following subsections let you set specific marks,
indent Lisp code, or move over Lisp code. The commands "know" how to handle COIll­
ments, literal strings, and tokeIi syntax during execution and editing, provided that any
literal strings do not extend over multiple lines.

These commands for working with Lisp source COlle are not isolated commands. They
work in addition to other general commands for sett.ing marks and moving over text.
You are not limited to using "Lisp" commands. You can also use most of the commands
discussed in an earlier chapter about writing and editing text.

156



Limitations
NMODE does not handle all the cases of parentheses and macros as they appear in Lisp
code. In particular,

• Within a string that continues over a line boundary, parentheses and indentation
may not match.

• Read macros (items beginning with #) are not handled properly.

• Indentation commands do not recognize all Lisp special forms and macros, nor do
they recognize user defined macros.

These limitations should not pose a problem, however you should be aware of them.
Before deleting a defun or region, check that what NMODE has determined to be the
defun or region is what you want deleted.

Moving Over Source Code
Use the following commands to move over code in various increments.

C-M-[

C-M-]

The Move Backward Defun command moves the point to the location just
before the beginning of the current defun. Alternately, you can execute
C-M-A.

The Move Forward Defun command moves the point. forward to the loca­
tion just after the end of the current defun. Alternately, you can execute
C-M-E.

157



C-M-F

C-M-B

C-M-N

C-M-P

M-M

The Move Forward Form command moves the point forward over the con­
tents of a form according to the "a-b-c-d" scheme below, but with some
qualifiers. If possible, the command stays at the same level of parenthe­
ses. Otherwise, the command might move up or down a level, which is
explained later. The scheme is: (a) If the first significant character after
the point is an open parenthesis, (, the command moves the point past the
matching close parenthesis, ) i (b) If the first character is a close parenthe­
sis, ), the point just moves past it; (c) If the character is part of an atom,
the command moves the point to ju~t nIter the end of the atom; or (d)
With a prefixed argument, the command is repeated the specified number
of times, forward with a positive argument and backward with a negative
argument.

The Move Backward Form command generally works like the Move For­
ward Form command, except in the opposite direction. In moving over a
form, characters such as • are also moved over. For example, when the
point is after . FOO, executing C-M-B leaves the point before the single
quote, not before the F in FOO.

The Move Forward List cOlluuand moves the point over a list somewhat
like the related commands for forms, except that it does not stop on atoms.
After moving past an atom, the command moves over the next expression,
stopping after moving over a list. Thus, executing C-M-N lets you avoid
stopping after each atomic item in an expression.

The Move Backward List command works like the Move Forward List com­
mand, except it works in the opposite direction.

Executing the Back To Indentation command moves t.he cursor forward or
backwanl to the fir~t llollblank dmntder on the ClllTell(, line. If the cur~or is
to the left of the first non-blank character, M-M moves the cursor forward
to that character. If the cursor is "in" the line and past the initial blanks,
M-M moves the cursor back to the first non-blank character. Alternately,
you can execute the same command with C-M-M.

158



Changing Levels of Lists
You might need to change levels while moving around in a large defun. The Forward Up
List command, C-M-), moves forward up past one closing parenthesis. The Backward Up
List command, C-M-( or C-M-U, moves backward up past one open parenthesis. Both
commands accept arguments, which repeat the command as specified by the argument.
A slightly different command, the Down List command, C-M-D, moves down in list
structure in about the same manner as searching for an open parenthesis, (, except that
the command does not search past the end of the enclosing form.

Indenting Lisp Source Code
Along with the capability to move around in defuns, forms, and li8ts, you can also indent
source code in assorted ways. The indentation can get scrambled during an editing
session in which you find, move over, and edit the code extensively.

The traditional pattern for indentation uses the following scheme:

1. The open parenthesis, (, in the first line of a defun appears in column O. Open
parenthesis for other expressions in the defull are indented. Here is an example:

(detun junk 0
(setq x '(1 2 3»
)

Notice that the ( before defun begins in column 0 while the other expression, (setq

x •(1 2 3» is indented.

2. The second line of a single expression is indented under the first element of that
expression when that element is 011 the same line as the beginning of the expression;
otherwise, the second line is indented two spaces more than the entire expression.
Here is an example of the first case:

(setq a
(make-array 12»

Notice that the second line, (make-array 12), is indented under the first element,
setq, of the initial expression and that the first element, setq, is on the same line
as the beginning of the expression. Here is all example for t.he "otherwise" case:

(detun junk (a) (setq
x a)

Notice that the second line, x a), is indented two spaces more than the entire
expression for it, which would have been (setq x a).

159



3. Each subsequent line is indented under the previous line whose nesting depth is the
same. You can see this in the above examples.

While there are few guidelines, and most software engineers have personal styles, most ~
Lisp code is indented (pretty-printed) something like this:

(defun check-junk-values (a b c)
(let «x (+ (* a b)

(* a c)
(:1: b c)

»
)

(cond «> x 104) "too-big)
«= x 104) "jackpot)
«< x 104) "too-small)
)

The following procedures, or commands, let you properly indent a single line, a specified
set of lines, or all the lines in a form or defun.

C-M-I The Tab command, or Lisp Tab cOlluuand, indents a line by calling the
lisp-tab-command function. The Tab command indents according to the
conventions for Lisp. In most cases, you press ITab I or execute C-M-I at
the beginning of a line. For a line tbat appears somewhere in a segment
of code, position the cursor anywhere on the line and execute C-M-I to
indent the line accordingly. In Lisp mode, the Tab command aligns lines
according to the line's depth ill parentheses relative to the line above it.

In Lisp mode, the IReturn I key inserts a new line and moves the cursor down
to the new line at the correct level of indentat.ion. When you type IReturn I
at the end of a line, the command makes a following blank line and indents
it appropriately. In the middle of a line, typing IReturn I breaks the line and
provides appropriate indentat.ion in front of the new line.

160



C-M-Q

C-M-\

M-"

The Lisp Indent Sexpr command indents the items in a single form when
you locate the cursor under the form's open parenthesis, (. The initial
line of the form is not reindented, only the relative indentation within the
form is changed. Its position is not changed. To also correct the position,
execute a Tab command, C-M-I, before you execute C-M-Q. This cOllunand
is very handy for properly indenting Lisp code during extensive editing.

The Lisp Indent Region Command iudents all entire region. Set a mark
and then move the cursor (point) to create a desired region. Executing C­
M-\ applies the Tab command to each line whose first character is between
the point and the mark; that is, in Lisp mode, the command does a Lisp
indent on each line in the region.

To join lines, tile Delete Indentation command is the inverse of the Newline
command. Executing M-" deletes the indentation at the front of tile current
line, and joins it with the previous line, according to the following scheme:
(1) Normally, the indentation and line separator are replaced by a single
space; (2) If done before a ), after a (, or at tile beginning of a line, there
is no space in the replacement; or (3) With a prefixed argument, M-" joins
the current line and the next line, removing indentation at the front of the
next line beforehand.

Additional Indentation Commands
Besides the commands just described, the following commands and techniques provide,
alter, or adjust indentation.

M-\ Executing the Delete Horizontal Space command deletes spaces and tabs
on either side of the point.

To insert an indented line before the current one, execute t.hese commands in order:

1. Move To Line Start, C-A, which moves the cursor to t.he beldnninR of t.he line;

2. Open A Line, C-O, which opens a line above the current linej and

3. Execute either ITab I or C-M-I, which tabs over to the con-ect indentation level to
begin the line.

161



To insert an indented line after the current one, execute these commands in order:

1. Move To Line End, C-E, which moves to the end of the line; and

2. IReturn I, inserts a newline and indents the correct amount.

Matching Parentheses, Braces, and Brackets
Language modes automatically provide matching of parentheses, braces, and/or brackets.
III Lisp mode, typing a close parenthesis) causes the cursol" to move to the corresponding
open parenthesis, pause briefly, and then move back to the inserted close parenthesis.
This way, you can see whether expressions at all levels in your Lisp code are properly
enclosed by parentheses. The point is not affected by matching operations. Only the
cursor moves briefly. Therefore, you can type ahead freely as desired.

The following two commands help you insert and indent when you edit code, particularly
when you are scanning code and see assorted places where you need to insert segments
of Lisp code.

M-(

M-)

The Insert Parenthesis command inserts a set of pCl.rentheses, 0, at the
cursor's location, which makes it handy to insert a Lisp expression between
the parentheses and not worry about mat.ching. With a positive integer
command argument n, the command places the close parenthesis, ), after
the nth following expression.

The Move Over Parenthesis command moves the cursor past the next close
parenthesis and reindents, or when necessary, moves the remainder of the
current line down and indents or opens an indented line.

In Lisp mode, matching occurs only for parentheses, 0, not for brackets [], or braces, {}.
In addition, the bell rings when you type a closing parent.hesis that. has no corresponding
opening parenthesis.

162

.J



A Brief Practice Session
If you are not familiar with the commands described so fa.r that relate to manipulating
source code (i.e. commands for set.ting marks, moving over source code, indenting, and
matching), you can practice effectively by getting into a editing buffer in Lisp mode and
entering a trivial defun such as the following:

(detun junk 0
(let «a "nested-letters)

(b "(a b c»
)

(list a (car b) (cdr b) (list b»
)

Using such a defun, go through the previous sections and practice with each command,
observing cause and effect relations. You will quickly become proficient this way. Should
you evaluate the form by executing C-] E or IEnter I, the form should return the following
value in the OUTPUT buffer:

JUNK

And if you evaluate

(junk)

the form should return:

(NESTED-LETTERS A (B C) «A B C»)

163



Headers and Comments
Headers and comments are inserted in source code to explain that code. Headers (and
file suffixes) are also important in NMODE because they can directly influence how an
editing environment is configured. For example, certain commands for browsers use a
file's header or suffix to determine its default environment. By knowing a file's type, ~
NMODE can provide appropriate features in the buffers and browsers. Consequently, it ,
is advantageous to initially include, and keep current the header at the beginning of a
source file. In fact, NMODE does some of the work of updating the header for you. Other
program comments should be included as required. The semicolon ; is the Common Lisp
comment character.

NMODE provides the following commands for including headers and comments in source
files.

M-X make
header

M-X make
revision

M-X bJock
comment

Inserts a header template at the beginning of a file, appropriately en­
closed by semicolons. The template contains several fields that you
can editj for example, author, language, package, and so on. Some
of these fields will be filled in automatically based on the values of
variables like nmode: *author-name~:. If a source file exists and has no
header, you can provide one by visiting or finding the file, execut­
ing M-X make header, regardless of the location of the cursor, and
adding the information. This command also works in Text mode.

Lets you insert a block of comments concerning a program revision
just after the location of a header. The command automatically
inserts comment characters at the left margins. You can execute
this command with the cursor at any location in the source file.

Inserts two Jines oj' comment cha.l'actel·s t.hat are separated by a line
which begins with one comment. character. The cursor is placed just
after the initial comment character, ready for you to type the com­
ment. Note that the command does not insert. a comment character
at the beginning of any new line you type so you need to begin each
new line with a comment character. This command works best for
inserting high level comments as required in a source file.

164



M-;

M-Z

Moves the cursor to the end of the current line and inserts a comment
character, placing the cursor just after tohe character ready for you
to type a comment. This command works best for inserting short
comments at the end of particular lines. No comment character is
automatically inserted at the beginning of any subsequent lines.

Fills a paragraph of comments much like the filling of a paragraph,
but without disturbing the format. Specifically, the command re­
moves unnecessary spaces and gaps. Position the cursor anywhere
inside the comment block and execute M-Z. Do not use the com­
mand inside a header, as it will delete the new lines which separate
the fields.

Killing, Yanking, and Moving Lisp Code

The commands described earlier dealt with configuring an editing environment and per­
forming fundamental editing tasks: indenting, inserting comments, matching parenthe­
ses, and so 011. This section discusses ways to move source code from one location to
another.

The functionality of some commands changes among language modes according to con­
ventions used in the corresponding language. These changes are mentioned on a per
command basis.

Killing and Yanking Source Code
Some of the following commands for killing, copyin~, and reinserting were discussed in
the earlier chapter called "Writing and Editing Text". When used with the commands
shown here for marking Lisp forms, they can also help you manipulate source code.

C-M-B The Mark Defun command establishes a defun as a region, putting a mark
after its end and moving the point before its beginning (the cursor sits 011

the open parenthesis). Alternately, you can use C-M-Bac:kspac:e.

165



C-M-@

C-w

M-W

C-y

The Mark Form command establishes a form as a region, but. you need to
be aware of the location of the point (cursor). The region marked is from
the cursor position to the end of the form. The end of the form may be
a word or a closing parenthesis. You can check the location of the mark
with C-X C-X.

The Kill Region command kills (remove~) the current region. Before you
execute the command, use an appropriat.e command to set a mark and
move the cursor so that the mark and cursor establish a "killable" region.

The Copy Regions command places a copy of the current region on the kill
ring where it can be yanked. The copied region is not removed.

The Yank Last Kill command lets you reinsert killed source code after
you kill the code and move the cursor to a location at which you want to
reinsert the code.

M-Y The Unkill Previous command replaces reinserted killed text with the pre­
viously killed text, rotating the kill ring backwards.

Remember that you are not limited to the above commands. You can also use the general
commands for killing characters, works, and lines when you edit Lisp code; for example,
M-D, M-Baekspaee, and C-K.

The following commands let you kill specific units of Lisp code.

C-M-K The Kill Forward Form command kills forward over a form; that is, the
command ki1l~ the characterg that. the Move Forwa.rd Form command, C­
M-F, would move over.

166



C-M-l DEL I The Kill Backward Form command kills backwcu"d over a formi that is, the
command kills the characters that t.he Move Backwm"d Form command,
C-M-B, would move over.

Transposing Source Code
The commands for transposing charaders, words, and lines in Text mode provide the
same functionality for equivalent items in a Lisp mode.

C-T

M-T

C-X C-T

Transposes characters.

Transposes words.

Transposes lines.

~'

C-M-T, the Transpose Forms command, drags the previous form across the current form,
leaving the point at the end of the transposed forms. For example, given two forms such
as:

(+ 2 3) (:1: 3 4)

with the cursor under the open parenthesis in (:1: 3 4), executing C-M-T drags the (+ 2

3) across and the result looks like this:

(:1: 3 4) (+ 2 3)

with the cursor after the last close parenthesis. A positive argument serves as a repeat
count, and a negative argument drags backwm'ds, which in effect would cancel the effect
of the command with an equivalent positive argument. Au argument of zero transposes
the forms at the point and the mark.

Beyond this, to effect any block move, you can estahlish a region, kill 01' copy it, move
the cursor to a desired location for insertion, and yank it.

167



Executing and Debugging Code
NMODE provides assorted commands for interpreting, debugging, and compiling Lisp
source code.

Commands related to evaluation and simple debugging of Lisp code are often prefixed ~
with Lisp. FOI' example, Lisp e evaluates a form. The Lisp prefixt is typed as C-]. Some
of the lisp commands are bound to softkeys.

Evaluating Lisp Source Code
Another functionality related to the underlying Lisp language is that you can evaluate
Lisp expressions directly in the NMODE environment.

Typically, you evaluate Lisp expressions by executing one of the following commands
in a buffer in Lisp mode. Returned values are written to the OUTPUT buffer, which is
automatically displayed if necessary.

C-] E

C-] D

The Execute Form command passes text to the Lisp readert which reads
and evaluates the form starting at the beginning of the current line. The
command sets a mark at the location of point and moves the point at the
beginning of the line after the form. This waYt you can easily return to the
starting location by executing the Exchange Point and Mark command,
C-X C-X. If two or more forms are Oil one line, the command evaluates the
first form. Note that the given key 8l'Q lIence represents Lisp e. Alternately,
you can press IEnter I.

The Execute Defun command passes text to the Lisp readert which reads
and evaluates the current <lefun. The cursor (point) can be anywhere in the
defull. During executioll, C-] D sets a mark at the current location of the
point and moves the point to t.he beginning of t.he line after t.he defunt so
you call return to the initial location. If there is no current clefull t the Lisp
reader reads and evaluates a form starting at the current location, which
might not always make sense if the cursor is in some "intermediate" location
between apparent forms. Note that the given key sequence represents Lisp
d.

168



C-] • The Execute From Point command pa.c;ses text from the current buffer
starting at the point to the lisp reader. A mark is set at the point and the
point is moved to the beginning of the line after the end of the form read.

Besides these commands, the Eval Form command, C-X C-E, provides a way to evaluate
short forms regardless of what mode you are in. Tbat is you can evaluate a form from
any buffer or browser without modifying the current buffer. Executing C-X C-E prompts
in the message area for entry of a form. Some forms you might typically execute this
way include:

(require "lang-edit")
(in-package 'user)
(require "code-browser")
(* (+ 34 66 78)(+ 112 323 466»

Press IReturn I after you type the form. The return value of the form will briefly appear
in the echo area. Note that executing this command with a zero or negative command
argument willllot evaluate the typed-in form, but merely displays NIL.

Yanking Results from The OUTPUT Buffer
When you write Lisp code that serves as an example, and you want to include the returned
values with the code, the Yank Last Output command, Lisp y or C-] Y, lets you insert
the values returned during evaluation of Lisp forms or defulls, into the current buffer.
Position the cursor at a desired location for insertion, typically just after a corresponding
segment of code, and execute C-] Y. This yanks the last output to the OUTPUT buffer into
the current buffer. This command is very useful when you write documentation for code
and want to show the relatiollship between code and returned values.

169



Simple Debugging of Lisp Source

Lisp debugging is discussed extensively in the "Debugging Tools" chapter of the LISP
Programmer's Guide. This section skims over a few simple things that you may encounter
while running Lisp from NMODE. When an error occurs during Evaluation of a form,
the system is put into a "debug", or "break" loop, which is indicated by a number in
parentheses near the Lisp prompt at the right end of the OUTPUT buffer's mode line. For
example, a message such as:

42 DEBUG (4)

indicates that you have evaluated 42 forms so far in NMODE and you are in the Debugger
at the 4th break loop. Executing C-] A aborts all break loops and C-) Qquits the current
break loop. If you abort all break loops, the OUTPUT buffer displays:

Abort to top loop!

You can continue to evaluate Lisp forms in a break loop. Additional errors invoke a new
break loop and increment the break loop counter.

When you are in a break loop, the following commands let you exit a loop, or loops, or
do some very simple debugging.

C-) 1

C-] A

C-] Q

The Lisp Help command displays in the message area the commands avail­
able in a break loop. Note that this key sequence may also be referred to
as Lisp 1.

The Lisp Abort command pops out of any arbitrarily deep break loop and
returns to the top level. The OUTPUT buffer's mode line reveals this by
removing the indication that you are in a break loop. Not.e t.hat t.his key
sequence may also be referred to as Lisp A.

The Lisp Quit command exits the current break loop, moving up one level.
The OUTPUT buffer's mode line confirms this by dccremcnting the break loop
counter. Note that this key sequence may also be referred to as Lisp Q.

170



C-] B

C-] C

C-] L

The Lisp Backtrace command enters the Execution Stack browser if it is
loaded. This helps you see how an error occurred. The Execution Stack
browser is discussed in detail in the "Debugging Tools" chapter of the Lisp
Programmer's Guide. Note that this key sequence may also be referred to
as Lisp B.

The Lisp Continue command attempts to continne execution from the point
of the error. If the error is continuable, you may be prompted for infor­
mation to correct the error. IT the error is not continuable, a message to
that effect will be printed in the OUTPUT buffer and you will remain in the
current break loop. Note that this key sequence may also be referred to as
Lisp C.

The Exit NMODE to Lisp command exits NMODE and invokes the Lisp
Listener Loop. You can return to NMODE by executing (nmode :nmode).
This key sequence may also be referred to as Lisp L.

Compiling Lisp
The subject of compiling Lisp code is covered in the LISP Programmer '5 Guide. As an
alternative to using the Lisp function compile-file, NMODE provides one command (M­
X compile file) that compiles Lisp source code (the command is a front-end to compile­
file).

To use this command, you must be in Lisp mode. Make sure that you have written the
latest changes to the file you want to compile.

When you execute the Compile File command, M-X compilc filc, you will be prompted
for the name of the source file you wish to compile (default.s to the current visited file),
and for the name of the binary file to be created (defaults to the Ilame of the CUlTent
visited file with a .b suffix). Output messages from the compiler are written to the OUTPUT

buffer.

171



Getting Additional Information about Programming
The informatioJ~presented in this chapter can let you write, edit, and otherwise manip­
ulate Lisp source code, but there is much more to the general task of programming. By
using the information contained in the entire manual set for the Common' Lisp develop­
ment environment, you should be able to find needed information about programming
at increasingly complex levels and across assorted categories.

Besides this cbapter, the information contained in several earlier chapters that discuss
facilities can help you work with code. In particular, code, search, and error indexes let
you find code very efficiently, and you should learn how to use these facilities effectively
and efficiently. While you might want or need to get started on a project within your
company immediately, taking a few days to become familiar with the use of facilities for
working with code and taking the time to "play" with some "dummy" code can save
much time later on.

Establishing a Programming Environment
Editing Lisp code is not just a matter of typing text into a buffer. Since the editor
is integral to the programming environment, you must make sure that it is configured
correctly for the code you are editing and executing. Additionally, there are NMODE
facilities that can make your programming task easier. This section covers some of the
things that are useful (or necessary) when programming.

Using Packages
Packages are mappings between names and symbols. The same name can refer to two
different symbols if the symbols are in different packages. Completing certain tasks often
requires that you be in the correct package. To change the current package (the package
that symbols are looked up in by default), use the M-X set patkage command or evaluate
a form like the following ones.

(in-package 'user :use '(hp-ux_3w»

(in-package 'lisp)

You probably evaluated one of these forms in your initia.li1.at.ioll fill'. Common Lisp: The
Language by Guy Steele, which accompanied your manual set, has information about
packages.

If you wish to determine which package is active, execute M-X show patkage. The
command briefly displays the name of the current package ill the message area; For ~
example,

The current package is USER

172



NOTES

173



174



Chapter 11

Working with Other Code

Introduction
Previous chapters described how to work with Conventional t.ext and Lisp code. This
chapter extends information in tho8e chapters by discnssing how to work with other code
(i.e. C, Pascal, and Fortran). Note that this chapter describes the NMODE tools for
editing non-Lisp source code. For a description of how to call non-Lisp routines from
Lisp, see the chapter "Calling Non-Lisp Routines" in the LISP Programmer's Guide.

If you load the language module, the NMODE environment provides editing modes within
Emacs mode for working with "other" code: C, Pascal, and Fortran. The following
general ways to work with other code are available.

• You can browse, find, or visit a source file and then edit the file, using the typical
commands for editing code.

• You can browse source code files in a way that produces an online index of source
code items such as procedure and function declarations.

• Compiling source code produces a b.·owser whose indexes point to compilation
errors in a source file. After compilation, you can browse the errors to find offensive
lines in the source code.

• Besides typical writing or editing, you can insert special templates into an edit­
ing buffer. The templates make it easier to write segments of code that can be
subsequently inserted into a program.

• During editing, the language mode you are using provides block matching that is
similar to the matching done for Lisp code, but is adjusted to suit the conventions
of the current language.

• By adding appropriate headers and sunixes t.o other language files, you can help
the system work for you. Many commands usc a fil~'s header or suffix t.o provide
commands specifically suited to the current other language mode.

In general, if you are already skilled in the use of C, Pascal, or Fortran. yon can work
with those languages in the NMODE environment according to the conventions of the
language and take advantage of the features just ment.ioned.

175



This chapter discusses the specific NMODE commands and procedures that are available
for working with non-Lisp code. It does not re-examine more general commands or
procedures for editing that were discussed in earlier cbapters on text and Lisp.

Setting Up
As with text or Lisp, you must set up a working environment. The next few subsections
discuss things you need to do to make available the commands that are specific to (nou­
Lisp) code.

Loading the Language Module
To work with and execute non-Lisp-specific commands, you need to load the code that
implements them. This can be done in two different ways. The simplest way is to
browse into Additional Facilities, put the cursor on the Program Editing Support item,
and execute either of the Load or Browse/execute command line commands. You can
also load the code index support functions by evaluating a Lisp form. If you expect
to be editing non-Lisp programs often, you can have program editing support loaded
automatically by adding this form to your initialization file (.nmoderc in your home
directory) .

(reqUire "lang-edit")

Invoking a Language Minor Mode
Depending on how you load a source file into an editing buffer, the buffer may have a
Text, Lisp, C, Pascal, or Fortran minor mode.

The Default Minor Mode
A default language mode is established in your NMODE initialization file according to
the value given to the global variable nmode: nmode-detault-language-mode. The possible
forms to set this variable are:

(sett nmode:nmode-default-language-mode nmode:c-language-mode)
(sett nmode:nmode-default-language-mode nmode:Lisp-language-mode)
(sett nmode:nmode-default-language-mode nmode:pascal-language-mode)
(sett nmode:nmode-detault-language-mode nmode:fortran-language-mode)

If NMODE cannot determine the appropria.te minor mode from eit.her the header of a
file or the suffix of the file's name, it will use the default minor mode.

176



Suffixes Invoke a Minor Mode
NMODE recognizes file suffixes such as .c or .p and can use the suffix (or the header)
to automatically invoke a minor mode when you browse into or find a file. The file types
are:

• The C language suffix is c:; for example, longpool. c

• The Pascal language suffix is p; for example, acebase. p

• The Fortran language suffix is Cj for example, fast-calc.f

A consistent use of suffixes can ensure that the "correct" minor mode is invoked when
you browse or find an existing file.

Invoking a Minor Mode Directly
You can invoke a desired minor language mode directly in an editing buffer. Just execute
M-X and enter one of the following strings:

C Mode
Pascal Mode
Fortran Mode

and press IReturn I.

Always check the mode line to see if the buffer has the "right" mode; for example:

G Emacs (C) $HOME/myproject/prog22.c --24~--

indicates that you are in C mode with an associated file named prog22. c and the cursor
is 24% of the "distance" from the top of the file.

177



Working With Other Code
The next several subsections discuss how to work with C, Pascal, or Fortran source code.

Moving the Cursor
A language mode has commands that move the cursor (point) forward or backward over
a particular block of code. None of the block matching commands work in Fortran
mode. Note below that the key sequences call the same commands with regard to name
in both C and Pascal modes. But the commands at.t.empt. to move the cursor to the
corresponding item in the source code according to the particular conventions for the
language. The cursor need not be directly on an item, only between the corresponding
items. The commands ignore string literals and comments. The system attempts to ring
the bell when you type a closing character that has no corresponding opening character:.

C-M-F

C-M-B

C-M-N

C-M-P

The Match Opening Keyword command moves the cursor forward to the
next keyword. An alternative key sequence for this command is M-{.

The Match Closing Keyword command moves the cursor backward to the
previous keyword. An alternative key sequence for this command is M-}.

The Match Opening Bracket command moves the cursor forward to the
closing bracket that corresponds to the opening bracket. An alternative
key sequence for this command is M-(.

The Match Closing Bracket command moves the cursor backward to the
opening bracket that corresponds to the closing bracket. An alternative
key sequence for this command is M-).

In addition to these commands, the following matching occurs automatically when you
type or edit code in the following language modes:

C mode Matching occurs for parentheses, brackets, and braces.

Pascal mode Matching occurs for parentheses and brackets.

Fortran mode No matching occurs.

Use the same commands for indenting other language code as you used for Lisp code.
The current language mode accommodates the commalHls and indents according to the
conventions for the language.

178



Using Templates
Each language minor mode provides a set of predefined templntes if you loaded the
language module. A template is a portion of text that represents a construct in the
language. A template contains certain keywords, which you do not need to retype, that
appear in lowercase letters. The template also contains placeholders that appear in
uppercase letters. You replace the placeholders and enter code according to what you
want a program to do. For example, a Pascal IF template looks like this:

if EXPR then
begin

SIMT;
end;

where EXPR and STMT are placeholders you would replace with particular code.

In working with templates, you can use the following commands as desired:

• The Insert Template command, M-O, prompts for entry of the name of a template.
Name completion works. Typing a question mark during entry displays names
that match the partial entry. The template is inserted in the current buffer at
the current cursor location and the cursor is placed at the first placeholder in the
template. Typing any character inserts the character and deletes all the characters
of the placeholder. Executing M-X delete placeholder lets you delete or insert any
character in the current placeholder. Within a template:

• Executing the Next Placeholder command, M-N moves to the next place­
holder, and

• Executing the Previous Placeholder command, M-P, lets you move among
placeholders. If no next or previous placeholders exist, the system beeps and
indicates this state in the message area.

• Executing M-X edit template lets you edit templates. The command prompts for
entry of a template name, then invokes a buffer in which the template can be
edited. While editing the template, you have available the following special editing
commands.

• Executing M-X make placeholder command leh; you ellt.l~r a string that. rep­
resents a placeholder, which is inserted a.t the cursor'~ location.

• Executing the Quit Template Edit command, C-X C-S or C-X C-W, creates
a new template, overwriting any previous template with the same name and
exiting the buffer. You must execute this command to have the new version
of the template available. The edited template definitions are stored in the
file usr-tmp1ates.1 ill your home directory.

179



• The M-X Make Template command is available for creating new templates. The
cOlluuand prompts for the name of a new template, then invokes a buffer in which
the template can be created.

• Executing the M-X Abort Template Edit command lets you discard any
changes you have made to the template being edited. If you were editing
an existing template, it is not overwritten. If you were making a new tem­
plate, it is not created.

Available Templates
The following subsections list the templates and commandB tbat are available in a par­
ticular minor mode when you execute the M-X edit telnplate or M-X insert template
commands. Remember that if you type ? at allY time while you are entering the name
of a template, you will be presented with a list of the templates whose names match the
characters you have typed so far.

C Mode Templates
C mode provides the following templates.

block comment
case
comment
conditional
do while
for
function
header
if
if else
main
switch
while

No descriptions of the templates are provided because the names are self-explanatory.

Pascal Mode Templates
Pascal mode provides the following list of templat.es.

block comment
case
comment
for
function
header
It
if else
procedure

180



program
repeat
while
with

Fortran Mode Templates
Fortran mode provides the following list of templates.

arithmetic it
block comment
block if
comment
do
do while
else if
goto
header
logical if
parameter
program

Indentation
Nmode provides automatic indentation appropriate to each language when RETURN
(or C-J) is used to terminate a line. In Pascal and Fortran, you can customize when
indentation will occur by modifying the editing User Options. In C, indentation occurs
when "{" is the last character on the previous line. You can also change the number
of spaces to indent. In addition, the following commands relating to indentation are
available:

C-M-I

M-I

M-H

The M-X C, Pascal or Fortran Tab command moves the current line to the
appropriate indentation.

The M-X Move Forward Indent command moves current line forward the
number of spaces for default indentation.

The M-X Move Backward Indent command moves cnrrent line backward the
number of spaces for default indentation.

181



Editing Options
Each language (C, Pascal and Fortran) provides user customizable editing options. These
options browsers are accessed by browsing the User Options facility from Nmode Root.
You will see the items C Edit Options, Pascal Edit Options and Fortran Edit Options.
Each browser provides the following menu of commands:

Help Browse/modify Group Filter Sort Write Restore-default QUit

What you will see on the screen when you browse any of t.he editing User Options items
is described below. The default value for each item is indicated.

User Options: C Edit Options
Currently saved in II$LISP/config/c-edit.opt ll

C EDITING OPTIONS:
Block begin character(s)
Block end character(s)
Bounce Cursor with .}.
Spaces to Indent

The first two items, Block begin and end character(s), allow you to tell Nmode if you have
redefined their value as is allowed in the C language. Bounce cursor indicates whether
you want to enable the feature that moves the cursor to the opening bracket and back,
when a closing bracket is typed. Spaces to Indent gives t.he number of spaces to insert
when indentation is done.

User Options: Pascal Edit Options
Currently saved in II$LISP/config/pscl-edit.opt ll

INDEUTATIOlI OPTIONS:
Indent after Reserved Words

Spaces to Indent

(IIBEGINII IICONSTII 1100 11 IITHENII IIELSEII
IlFUNCTIONII "OFII "PROCEDUREII II RECORD II
II REPEAT II "TYPEII IIVAR")

3

Indent after Reserved Words provides a method of cust.omjzjllg t.he indentation algorithm.
Indentation will occur when any of the keywords ill the li~t is t,he last piece of text on
the preceding line. You may add to or remove keywords from t.hi~ list. Space~ to Indent
gives the number of spaces to insert when indent.at.ioll is done.

User Options: Fortran Edit Options
Currently saved in II$LISP/config/ftn-edit.opt"

INDENTATION OPTIONS:
Indent after Reserved Words
Spaces to Indent

(IIDOII "IF" IIELSE" IIELSE IFII "WHILEII)
3

182



~.

Indent after Reserved Words provides a method of customizing the indentation algorithm.
Indentation will occur when any of the keywords in the list is the last piece of text on
the preceding line. You may add to or remove keywords from this list. Spaces to Indent
gives the number of spaces to insert when indentation is done.

Compiling Other Code
To use NMODE to compile non-Lisp code (via the regular HP-UX compilers), you must
have loaded the Compilation Error Index Facility (see Chapter 11). Once that is loaded,
the M-X Compile File command works with non-Lisp code as long as you are in the
appropriate language mode; for example, Pascal mode t.o compile Pascal source code.

Use of Facilities
When you work with a language mode, you can use all the NMODE facilities and in
particular, you can make good use of code and error indexes. These facilities are described
in earlier chapters.

183



184



Chapter 12

HP-UX Access Facility

Introduction
Being able to communicate "directly" with HP-UX while remaining in nn NMODE buffer
can be very useful. You C.l.lI use NMODE's editing features to manipulate your HP-UX
commands and responses. You can also use HP-UX tools to manipulate NMODE's data.

The HP-UX Access facility provides two ways to communicate with the underlying HP­
UX operating system.

• The System Shell lets you execute an HP-UX command, or sequence of commands,
from any NMODE buffer.

• A shell-buffer provides an NMODE buffer that emulates an HP-UX shell. The
shell-buffer responds very similarly to a "dumb" terminal running an interactive
shell.

Even if you choose not to load this facility, the HP-UX Execute Command (available on
the (]!) softkey) lets you execute an HP-UX command from within NMODE (with some
restrictions) .

Loading the Facility
As with most pieces of NMODE, there are several ways to load the HP-UX Access facility.
From the NMODE root, you can point to and browse Additional Facilities and then
point to and browse HP-UX Access.

If the facility has not already been loaded, NMODE will a,c;k:

Facility not yet loaded, do you wish it to be? (Default is: 'Yes')

Press IReturn I to load the facility. Once the facilit.y is loallt'Cl, you will be prompted:

Do you want to create default HP-UX shells? (Default is 'Yes')

Press IReturn I to create the default shells.

185



As the shells are created, messages to that effect will appear in the message area. You
will then be left in a shell-buffer.

Once the access facility has been loaded, repeated browsing of the HP-UX Access facility
will provide the opportunity for creating more shells and modifying the options for this
facility. The options will be explained in a later section of this chapter, as will other
methods of creating shells.

At this point you are ill an NMODE buffer that communicates with an HP-UX shell.
Depending upon the setting of the options, you will have either a Bourne shell prompt
or a C-shell prompt appearing on the left edge of the buffer. What you type is sent to
HP-UX and the results are sent back to the buffer. Try typing an HP-UX command just
as you would in a "regular" shell. For example, type pWd and press IRsturn I. The system
will respond by printing your working directory. You can leave the buffer by executing
a C-M-L.

Loading During Initialization
You may wish to have the HP-UX Access facility loaded during NMODE initialization.
The form necessary to load the facility appears in bot.h the $LISP/config/nmode-lnit
"group-customization" script and your $HOME/ .nmoderc "personal-customization" script.
Although the form appears in both scripts, it appears as a comment. By editing your
.nmoderc script, and removing the comment character from the beginning of the line
containing the form, the facility will be loaded each time you use NMODE. Look for the
form: (require "shell-access"). You should only uncomment one of the two occurrences
of the form.

Alternate Loading
If for some reason you wish to load the facilit.y "on-dema.nd" from the keyboard, you
can use the EVAL-FORM-COMMAND which is usually bound to C-X C-E. For example, typing:
ICTRL 1-00 ICTRL I-m (require "shell-access") IReturn 1would load the access facility
but not create the default shells. See the commands later in this chapter to create shells.

186



Comparison of Shells
The HP-UX Access facility allows up to ten shells to be ill use at any given time. Thus,
if you choose to have a System Shell, you may create up to nine shell-buffers.

The advantage of using a shell-buffer is that, ill a shell-buffer, you can dU'ectly execute
many HP-UX commands as if you were typing on a terminal to an HP-UX shell, and
you can execute the NMODE commands available in an editing buffer in Emacs mode
with Text and HP-UX minor modes. Also, shell-buffers are appropriate for executing
"interactive" commands (those that expect user input) while the System Shell is not.

On the other hand, using the System Shell lets you execute HP-UX commands in any
buffer, but you need to type the HP-UX command or commands and then execute the
appropriate Emacs command (for example, M-X HP-UX Execute Line or M-H E). The
output generated by the HP-UX command can be directed to any buffer.

Differences with Regular Shells
While interacting with a shell-buffer is similar to interacting with an HP-UX shell, note
the following differences:

• Output often appears a batch at a time rather than a line at a time.

• Since the buffer collects all text, you can scroll back through all commands and
responses since the beginning of the session.

• Cer~ain HP-UX shell commands and applications that insist on being connected to
terminal that is "smarter" t.han the dumb terminal type used by the facility are
not likely to work as you might expect.

• No preprocessing or postprocessing is performed by the facility. For instance, some
screen-oriented programs will not work as yOll expectj for example, vi will use
"open" mode. Also, escape-code sequences present in your shell's prompt will not
be detected.

• If you change your prompt, be sure to set the "prompt character" option. From
the shell-buffer's point of view, the prompt and your commands are simply text.
Usually, marks are llsed to delimit your commands so that NMODE knows what
to send the shell process. Sett.ing the prompt character opt.ion will allow NMODE
to know what the prompt looks like a.nd not pay att.ellt.ion t.o marks, a.lIowing you
to use marks as desired.

• When using a shell-buffer without the prompt character option, setting marks is
likely to cause problems. The facility sets the marks with each command you type.

187



• H you use the csh history mechanism, be aware that several HP-UX commands may
be issued for one NMODE/HP-UX command. Do not expect the last command in
the history to be your last command. This makes the history event number less
useful to include within your prompt.

• The facility uses a subset of the C-shell. HP extensions to the standard C-shell are ~
not available. .

Be sure to see the last section of this chapter for other anomalies.

Using the HP-UX Access Facility
This section describes the basic use of the HP-UX Access facility. The examples in this
chapter assume you have loaded the facility and are using the default shells. The facility
does allow you to create and kill shells at will and allows you to tailor them to your
needs. Please use the default values until you become familiar with the features of the
facility. Setting shell options will be discussed later in this chapter. The last section of
this chapter has information to help you fix problems that may occur when you use this
facility.

U sing a Shell-Buffer
After loading the facility and creating the default shells, you will find a new buffer named
HP-UX. SHELL has been a:dded to the list of buffers. To see this, you can execute C-X C-B.
You should see something similar to this:

Buffers

Buffer Name

S* HP-UX.SHELL
MAIN
OUTPUT

Browser (Buffers)

Size

1
1
8

File Hame

Note the meaning of the S* that appears to the left of the buffer name. The S indicates
that the buffer is a shell-buffer. The :I: indicates that the buffer has been modified.

188



Point to and browse the HP-UX. SHELL buffer. The buffer may be empty except for the
shell's prompt character. HP-UX will respond very much as it would in an "ordinary"
shell. However, when a command produces several lines of output, the lines will often
appear in the buffer all at once or in bursts.

On browsing into the buffer, you will see your prompt. You can now type in HP-UX
commands. After echoing the cOlluuand you typed, your input is sent to the shell-buffer's
shell for processing and output is appended to your current buffer. For example, if you
executed pwd, the display might look like this:

$ pwd
/users/joe
$

Within this shell-buffer, you can also execute the NMODE commands available ill Emacs
major mode with Text and HP-UX minor modes. The HP-UX minor mode commands
are described in the next section.

For example, you can use the (!) ("Home" key) to return to the beginning of your buffer,
use M-F (move forward word) as many times as necessary to skip over your prompt, and
then press IShift I-I Return I (or M-H N) to re-execute the pwd command. Your output will
again appear at the end of the buffer.

It is worth noting that the IReturn I key has a special binding in a shell-buffer (HP-UX
Execute Line). This binding is what gives the appearance that you are in a shell.

Filename Completion
As you type HP-UX commands, you might want to complete filenames just as you would
in csh. The shell-buffer mechanism provides the HP-UX Escape command which at­
tempts to complete filenames. To use it, you can press the IESC I at any point in typing
a filename and the command will complete the filename if possible. Alternatives for
executing the command include: pressing the softkey for Complete Filename; clicking 011

the popup menu item called Complete Filenamej and executing M-X Complete Filename.

The escape command follows NMODE's rules for filena.me completion and not. csh's rules.
For example, the completion of a directory name will include a trailing slash (I). This
feature is not available with the System Shell.

189



Using the HP-UX Systenl Shell
If you have created the System Shell and are in any cclit;ing buffer (Emacs mode), you
can execute the current line as an HP-UX command. The procedure is to type an HP­
UX command and then execute an NMODE/HP-UX command such as HP-UX Execute
Line. The command then submits your input to the System Shell, which interacts with
the underlying HP-UX operating system. Results are appended to the OUTPUT buffer or
to an alternate buffer you designatc.

Do not change the Syst,em Shell's t.(~rminal charaderistics, it.~ environment variables (such
as it.s prompt.), or set variables such as autologout. It's best. to leave it alone and let it
work for you.

Redirecting Output
When using the system shell, results appear ill the OUTPUT buffer unless you specify a
buffer that is to receive HP-UX output. This is accomplished by executing the HP-UX
Set Output Buffer command, (M-H 0). Note that this chapter uses the term "HP-UX
Output Buffer" to mean either the OUTPUT buffer or the buffer you specify to recieve
HP-UX Access output.

When using a shell-buffer, results are appended to the buffer and cannot be redirected.
You can use the HP-UX Yank Last Output command to retrieve the results and put
them in another buffer.

Note that using the HP-UX Filt,er Region command will redirect output to the buffer
in which the command was executed. (Filters remove the input text and replace it with
the output text.) You may wish to issue another HP-UX Set Output Buffer command
after using the HP-UX Filter Region command.

190



Executing NMODE/HP-UX Commands
This section contains the NMODE commands that are used to interact with HP-UX. All
commands execept the HP-UX Set Output Buffer command can be used in a shell-buffer.

The results (output) of a cOlllmand executed iu a shell-butTer are appended to the end
of the shell-buffer. The results of a command executed in any otller buffer are appended
the HP-UX Output buffer.

There is one specia.l commaud tha.t IS availa.ble wit.h or without, loading the IIP-UX
Access facility, it is discussed first.

HP-UX Execute Comrnand
IIP-UX Execute Command lets you execute an IIP-lJX cOlluuand from any buffer or
browser in the NMODE environment. This command's behavior depends upon whether
or not the HP- UX Access facility has been loaded .

• If you have not. loaded the lIP-UX Access Facility, you can execute an HP-UX
command by pressing the softkey for HP-UX Command. Output appends to t.he
window from which you invoked NMODE and you cannot save this output to a file
or manipulate it using Emacs. If you choose not t.o load the facility, be sure not to
"bury" the window from which you invoked NMODE.

• Loading the facility and creating a System Shell allows you to use C-X H, M-X HP­
UX Execute Command, or the HP-UX Command softkey t.o execute the command.
Not.e that the same softkey is used with or without the facility, but that its definition
has changed: out.put. is appended to t.he HP-llX Out.put buffer. Be aware that since
output is appended to a. buffer that might not. he displayed, you might need to have
NMODE display the IfP-UX Output butTer by selecting it or by any other means.

On executing the command, you will see t.his prompt.:

Enter HP-UX command(s) to execute:

Enter a command, Is /users for example, and pn~~:, IReturn I. Alternately, you can enter
a series of couunands; for example:

pwd; Is: ps -ef

Either way, the command appends out.put according t.n t.hc condit.ions mentioned above.

Note that "interactive" commands (like more) ::;houl(1 not be executed ill this fashion,
since user input is required all at once.

191



General Commands
The following commands are available everywhere but ill input-mode. You can use them
while in any buffer or browser.

Shell Manipulation Commands
The general facility commands listed below are used t.o create and kill shells and to invoke
the options browser interface to the access facility.

Shell Allocation Commands

Create HP-UX Shell Set
Create Detault HP-UX shells

Create System Shell
Create Default System Shell

Create Shell-Buffer
Create Detault Shell-Bufter

Shell Recovery Command

Recover shell-buffer Shell

Shell Deallocation Commands

Kill All HP-UX Shells

Kill System Shell

Kill Shell-Bufter
Kill Current Shell-Butter

HP-UX Access Options Command

HP-UX Access Options

Detailed explainations of these commands are provided later in this chapter.

HP-UX Execute Buffer
This command executes the entire buffer as input text to the shell. All input is executed
in the shell's current environment, hence it can affect subsequent shell commands.

HP-UX-execute-bufter-command M-HB
M-X HP-UX Execute Duffer

192



HP-UX Script Buffer
This command executes the entire buffer as a shell-script (see sh or csh in the HP­
UX Command Reference for information on shell-scripts). A sub-shell is spawned for
execution of the script. Thus, any subsequent commands are not affected by the contents
of the script.

Note that this command is equivalent to the HP-UX Send Buffer command with a shell
specified as the HP-UX command.

HP-UX-script-buffer-command M-BM-B
M-X BP-UX Script Buffer
Script Buffer popup menu item in asbell-buffer

HP-UX Send Buffer
This command sends the entire buffer as input text to the specified HP-UX command.
You are prompted for the HP-UX cOl1unand, and a sub-shell is spawned to execute it
using the buffer as stdin.

HP-UX-send-buffer-command M-H C-B
M-X HP-UX Send Buffer

HP-UX Set Output Buffer
This command does not apply to shell-buffers. You are prompted for the name of a
buffer that is to be designated the HP-UX Output buffer. The specified buffer receives
output until you specify another buffer or end the current NMODE session.

Note that specifying a new HP-UX Output buffer takes effect immediately. If the System
Shell is writing output to the HP- UX Output buffer and you specify a new HP-UX Output
buffer before the shell has completed its command, part of the output will appear in the
old buffer and part will appear in the new buffer.

HP-UX-set-output-buffer-command M-HO
M-H C-O
M-X HP-UX Set Output Buffer
Set Output Buffer popup menu item

193



Elnacs Conlmands
The following commands can be used in any buffer, including shell-buffers. The only
requirement is that the buffer is in Emacs mode. Additional commands that only work
with shell-buffers are described after these commands.

HP-UX Execute Line
This command takes the line containing the cursor, "trims off the prompt", and sends
the line to a shell for execution. Either NMODE will trim off the prompt by knowing
the prompt-end-charader because you have specified it in the options browser, or it will
try to send the characters existing from the location of the mark to the end of the line.

HP-UX-execute-line-command M-HE
M-H C-E
M-X HP-UX Execute Line
Execute Line popup menu item

Additional bindings when using a. shell-buffer:

HP-UX-execute-line-command IReturn I
Execute Line softkey

HP-UX Execute Region
This command is similar to HP-UX Execute Buffer, but applies only to the current
region. It takes a region of text and sends it to the current shell for execution. Commancls
executed in this way can change your environment.

HP-UX-execute-region-command M-HR
M-H C-R
M-X HP-UX Execute Region

Additional bindings when using a shell-buffer:

HP-UX-execute-region-command Execute Region softkey in a shell-buffer
Execute Region popup menu item in a shell-buffer

194



HP-UX Script Region
This command is similar to the lIP-UX Script Buffer command, but applies only to the
current region. It takes the current region and sends it to a sub-shell for execution as if
it were a shell script. This means your shell will not be changed by the execution of the
commands within the region.

HP-UX-script-region-command M-HX
M-H C-X
M-X HP-UX Script Region

Additional bindings when using a shell-buffer:

HP-UX-script-region-command Script Region popup menu item

HP-UX Send Region
This command is similar to the HP-UX Send Buffer comnH\ud, but applies only to the
current region. It prompts you to send the region to a particular HP-UX command.
The current region is then sent to the HP-UX command (a sub-shell) as that command's
stdin.

HP-UX-send-region-command M-HS
M-X HP-UX Send Region

Additional bindings when using a shell-buffer:

HP-UX-send-region-command Send Region popup menu item

HP-UX Filter Region
This command takes the current region, deletes it from the buffer, and replaces it with
its filtered result. You are prompted for an I-IP- UX command such as sort, cat, nroff,
etc. t.o apply as t.he filter.

HP-UX-filter-region-command M-HF
M-H C-F
M-X HP-UX Filter Region

Additional bindings when using a shell-buffer:

HP-UX-filter-region-command Filter Region popup menu item

195



HP-UX Yank Last Output
Executing this command yanks the last output from all HP- UX command, inserting it
in the current buffer after the cursor (point). The last output could contain any amount
of information from the most recently active shell that had any output, hence it will not
always work as expected.

HP-UX-yank-last-output-command M-HY
M-H C-Y
M-X HP-UX Yank Last Output

HP-UX Send End-of-File
Use this command to send to the shell the character the terminal is currently using as
the end-of-file (EOF) character. The default character is control-D. See terminjo(4J for
details about changing the EOF character.

HP-UX-send-interrupt-command M-H C-D
M-X HP-UX Send Eof

HP-UX Send Interrupt
Use this command to send an interrupt to the shell. This is equivalent to a kill -2 in
HP-UX.

HP-UX-send-interrupt-command M-H C-C
M-X HP-UX Send Interrupt
Send Interrupt popup menu item

Additional bindings when using a shell-buffer:

HP-UX-send-interrupt-command IDELI
C-C

HP-UX Stop Output
Use this command to stop output from a shell.

HP-UX-send-stop-output M-H C-S
M-X HP-UX Stop Output

196



Additional bindings when using a shell-buffer:

HP-UX-send-stop-output

HP-UX Start Output
Use this command to resume output from a shell that was previously stopped.

HP-UX-send-start-output M-H C-Q
M-X HP-UX Start Output

Additional bindings when using a shell-buffer:

HP-UX-send-start-output

HP-UX Send Signal
Use this command to send a signal to the shell. You will be prompted for the HP-UX
sigllalnumbel'. See the kill(l) and the signal(e) commands in the HP- UX Reference for
details on signals.

HP-UX-send-signal-command M-HK
M-H C-K
M-X HP-UX Send Signal

Commands Specific to Shell-Buffers
These commands can be used only in shell-buffers. All commands in the previous sections
are available in shell-buffers except the HP-UX Set Output Buffer cOl1uuand.

HP-UX Execute to End
This command takes characters from the cursor to the end of the line and sends this
line to a shell for execution. It is similar to HP-UX Execute Line, but does not trim the
prompt. Hencs, you can always use this command to move to the correct position in a
buffer and execute the portion of the line you desire.

HP-UX-execute-to-end-command M-HN
M-H C-N
M-X HP-UX Execute to end
IShift 1-1 Return I
IEnter I on the numeric keypad
Execute To End 50ftkey
Execute To End popup menu item

197



HP-UX Escape
This command completes a filename if possible. See the earlier section in this chapter
for details on filename completion.

HP-UX-escape-command ~key

M-X HP-UX Complete Filename
Complete Filename softkey
Complete Filename popup menu item

HP-UX Send Character
This command is used to send a character to HP-UX commands that expect a single­
character response not followed by a newline). For example, the more command wants
a space character to scroll the next screenful of texl..

HP-UX-send-character-command M-HA
M-H C-A
ICTRl HReturn I
M-X UP-UX Send Charader

HP-UX Execute and Delete
This command sends the current line (via HP-UX Execute Line) to HP-UX and then
deletes it from the buffer. This can be useful for protecting passwords. Even though the
password is printed as you type it, all referrences are obliterated as soon as you execute
this command.

HP-UX-execute-and-delete-command ICTRll-Meta-1 Return I
M-X HP-UX Execute and Delete

198



The Options Browser
The easiest way to creat.e or kill shells is to use the options interface to the HP-UX Access
facility. To enter the options browser) you may either:

• Go to NMODE root (C-X R). Point to and browse the User Options then point to
and browse HP-UX Access Options.

• Execute the M-X HP-UX Access Options command.

• Use the directory browser or the Find File command to browse the file:
$LISP/coDtig/hp-ux.opt

The options browser display looks something like this:

User Options: HP-UX Access Options
Currently saved in "$LISP/config/hp-ux.opt"

CREATION OPTIONS:
Master Pty Directory
Slave Pty Directory
Shell-buffer to create (name)
Unique character to identify prompt
Type of HP-UX shell
Create System Shell and shell-buffer
Create System Shell only
Create new shell-buffer only

KILL OPTIONS:
Kill System Shell
Kill shell-buffer
Kill all HP-UX shells

POPUP-MENU OPTIONS:
Options for 'ps' command
Options for 'ls' command
Mailer to use for 'mail' command

"/dev/ptym"
II/dev/pty"
"HP-UX.SHELL-lII
NIL
IHL
<Browse to invoke function>
<Browse to invoke function>
<Browse to invoke function>

<Browse to invoke function>
<Browse to invoke function>
<Browse to invoke function>

II-ef"
"-aF"
"mailx"

I/O ~ Browser (User Options) HP-UX Access Options
Help Browse/modify Group Filter Sort Write Restore-default Quit

The three main sections are creating, killing, and popup options.

199



Creation Options
Use these options to create the System Shell or shell-buffers.

Master and Slave pty Directories
Do not alter master pty and slave pty directories unless you are familiar with HP-UX
device files. The master and slave pty directories should be the absolute pathnames
where pty device files can be found. These options relate to the ptY(4) driver, which
provides a communication path between a supporting server process (the master side of
pty, which is the NMODE Shell) and an HP-UX application process (the slave side of
pty, which is sh/csh). See ptY(4) in the HP-UX Reference for more information on ptys.

Shell-Buffer Name
This option allows you to change the default name for shell-buffers. As successive shells
are created, a numeral will be appended to the name. The default creation functions will
use the name specified here for the next shell-buffer.

Unique Prompt Character
As a typing-aid, so that you can use marks freely, you should notify NMODE of your
prompt's ending character. Be aware that the value of prompt-end-character is only the
ending character of your prompt. The character must be unique in the prompt.

A couple of examples should help to clarify specification of prompt-character option
values:

HP-UX Prompt Prompt-Character Option

"$ " $ or <space> (See Note 1)

"Y." Y.

"Y. " Y. or < space>

"joe's system" m (See Note 2)

"joe's sys" None Available (See Note 3)

"Y.Y." None Available (See Note 3)

Note 1
Since a blank preceding a command name does not cause any problems, the $ or the
<space> character can be used as the unique end character.

200



Note 2
Since there are two blanks ill the prompt. "joe's system" (and therefore not unique)
the m must be used. This works for the same reasons as discussed in Note 1.

Note 3
In both of these cases, a unique character at the end of the prompt (or at the end followed
by whitespace) is not available. The option must be nil in these cases.

Type of Shell
Depending on your preferences, you may choose either a Bourne shell (sh) or a C shell
(cah) as the HP-UX shell associated with the NMODE shell-buffers you create.

The default of nil indicates that NMODE should use the shell type defined by the shell
variable $SHELL Of, if the variable is not set, /bin/sh will be used.

Create Shells
Browsing these options results in the creation of the requested shells. See the later section
on Creating and Killing Shells for more information.

Kill Options
Use these options to get rid of the System Shell or shell-buffers. See the later section on
Creating and Killing Shells for more information.

Popup-Menu Options
These options allow you to customize frequently used HP-UX commands and arguments
that will be available when you are using the HP-UX Access facility popup menus.

Options for ps
The HP-UX ps command provides process status information about your system. Brows­
ing this option allows you to enter a new argument string for the ps command. See the
HP- UX Reference Volume 1 for other possible arguments.

Options for Is
The HP-UX Is command lists the files in your directory. Browsing this option allows
you to enter a new argument for the Is command. See the liP-UK Reference for other
possible arguments.

Options for Mailer
This option lets you specify the HP-UX command to be used for the mail cOlluuand
available through the NMODE/HP-UX popup menus. The default is mailx. For more
information about mailers, see HP- UX Ooncepts and Tutorials.

201



Popup Menu Access
If you have an mouse and want to execute NMODE/HP-UX commands, clicking the
right button when you are in a buffer will provide a menu with an Emacs menu as one
of the items. For example, if you are in an Emacs buffer ill Text minor mode you will
see the following menu.

TEXT t-IODE

Yank
Undo
Kill »
Jump »
t-Iark »
Transpose »
Format »
Auto Fill Toggle »
Emacs »
Nmode General »
Help »
Quit

Selecting the Emacs item results in the following menu:

EMACS

Modes »
Places »
Utilities »
HP-UX Access »
Nmode General »
Help »
Quit

Selecting the HP-UX Access item results in the following menu:

HP-UX ACCESS

Create/Kill »
Set Output Buffer
Execute Line
Send Interrupt
Script Buffer
Process Status
Date
Mail
Show Current Directory
List Directory
HP-UX Ref Manual

202



The command called Create/Kill » provides the following popup menu.

CREATE/KILL

CREATE
System Shell & Shell-Buffer
Shell-Buffer
System Shell

KILL
System Shell
Shell-Buffer
All Shells

These commands are discussed in the section on creating and killing shells.

The last six commands in the menu entitled "HP-UX Access" are commonly used HP-UX
commands that NMODE provides an easy way to access. Some of these can be modified
using the Options Browser for HP-UX Access. The remainder of the commands in
the lUenu are discussed in the "Executing NMODE/HP-UX Commands" section of this
chapter.

In addition to these menus (accessedvia Emacs mode), NMODE provides a set of menus
pertaining to HP-UX minor mode, which are accessible via shell-buffers. Aside from
adding some commands unique to shell-buffers, these menus are primarily present to
give you faster access to NMODE/HP-UX cOllunands. The commands accessible with
this menu set will not be discussed further, as they are discussed elsewhere throughout
this chapter.

203



Creatillg and Killing Shells
This section describes the various commands for creating and killing the System Shell
and shell-buffers. The commands are discussed in terms of the M-X interface since all
oU.er interfaces present some subset of tbis functionality. All commands tbat include ~

the word "default" imply that the HP-UX Access options are used as parameter values,
instead of prompting you for them.

Create Default HP-UX Shells
If the access facility is loaded and no system shell is currently allocated, executing M-X
Create Default Hp-Ux Shells allocates the System Shell and a shell-buffer shell using
the values specified in the Options browser. This includes the name, shell type, and
prompt-end-character If none have been specified, the shell-buffer will be named HP­

UX. SHELL, the shell type will be as specified in the Options section of this chapter with
no prompt-end-character. If the System Shell already exists, just a shell-buffer will be
created.

This command is also available through the Options browser and popup menu interfaces.

Create HP-UX Shell Set
This command differs from Create Default HP-UX Shells Only because it lets you specify
parameters related to the shells. You are asked to provide a name for the shell-buffer,
the prompt-end-character, and shell type.

Create Default System Shell
If the Access facility is loaded and the System Shell does not yet exist, this command
will create it using the shell type specified in the Options browser. This command is also
available through the Options Browser and popup menus.

Create System Shell
This command differs from the Create Default System Shell command only in that it
prompts you for the shell type.

Create Default Shell Buffer
If you currently have less than 10 shells, this command will create a new shell-buffer
using the Options browser values. Your location is left unchanged.

This command is also available through the Options browser and popup menus.

204



Create Shell-Buffer
This command is the same as Create Default Shell-Buffer, except that you are prompted
for the buffer name, prompt-end-character, and shell type.

Kill All HP-UX Shells
Browsing this function prompts to check if you really want to kill all of the shells. You
may answer yes or no. Attempting to use an HP-UX/NMODE command without having
a shell will produce an error.

This command is also available through the Options browser and popup menus.

Kill System Shell
Executing M-X Kill System Shell kills the System Shell. (You can create a new system
shell if desn·ed.) Any shell-buffers you have created will still work correctly, but you will
not be able to communicate with HP-UX by using the NMODE/HP-UX commands from
other NMODE buffers.

This command is also available through the Options browser and popup menus.

Kill Shell-buffer Shell
Browsing this option prompts you for the name of the shell-buffer to kill. Before you
browse this item, you may wish to visit the buffer browser (C-X C-B) to see the names of
the shell-buffers. Each shell-buffer will have an s indicator to the left of its name. If yOll
have the System Shell, you can still use NMODE/HP-UX commands from other buffers.

This command is also available through the Options browser and popup menus.

Kill Current Shell-Buffer
If you are currently located in a shell-buffer, this cOlllmand will kill it and leave you at
your previous location.

This command is also available through the Options browser and popup menus.

205



The HP-UX Access Facility Model
Here is the model of the HP- UX Access Facility. The following two sections show the
two ways shells are used in the facility.

The Shell-Buffer
The following illustration shows the shell-buffer interface. It behaves similar to a regular
Bourne shell or csh but since it is an NMODE text buffer, all text typed and all HP-UX
responses are saved ill the buffer.

Butter

v

NMODE
Shell

HP-UX
Mode

->
<-

Master
Pty

->
<-

Slave
Pty

->
<-

HP-UX
Shell

v

HP-UX

Shell-Buffer Interface

When you type something and press IReturn I, NMODE takes what you typed and passes
it (through an HP-UX pty) to a shell. The response from HP-UX is then passed back
(through the pty) and appended to the buffer.

Note that the master and slave pty provides the cOllul1unicatioll path between the
NMODE shell and an HP-UX shell. See ptY(4) in the IIP- UX Reference if you need
more information about how they work.

Also note that the bu ffer has an HP-UX minor mode that provides commands that
supplement those in Emacs mode and Text mode.

206



The System Shell
Sometimes it is useful to be able to send a command to HP-UX from any buffer, not just
one that is a shell-buffer. The HP-UX Access Facility provides a System Shell to which
you can direct any piece of text from any buffer.

The System Shell is shared by all buffers. This implies that if one buffer is using the
System Shell, a command from another will be queued (by the the shell).

Bufter Butter Butter Bufter

I I I
/ / /

I / / /
-------<--------------------<---------------------<--------
I
V

"MODE
Shell

->
<-

Ma.ster
Pty

->
<-

Sla.ve
Pty

->
<-

HP-UX
Shell

I
x HP-UX Set Output Butter command
I
v

HP-UX
Output
Butter

System-Shell Interface

v

HP-UX

In using the system shell, NMODE accepts input from a buffer and appends output to
the HP-UX Output buffer. Again, the master and slave pty provides the communication
path between the NMODE shell and an HP-UX shell.

207



Possible Problems and Anomalies
The purpose of the IIP-UX Access facility is to provide a convenient way for you to
execute most HP-UX commands without leaving the NMODE user environment. As you
may know, there are many types of HP-UX commands and some of them insist upon
being "connected" to a terminal. Such commands are not "fooled" by the techniques
used in the access facility. The facility works like a dumb terminal (see termcap(9X) or
terminfo (5) in the HP- UX Reference if you want additional information about general
charac teristics) .

Rules to Remember
Here are a few things that you should remember when you use the HP-UX Access facility.

• Be sure that all commands are typed on one line.

• Do not try to "type-ahead" while results are being output.

• Do not use Control, Escape, or other special characters expecting them to be pro­
cessed before the shell sees them.

• Do not change the System Shell's environment.

• Avoid setting marks when using a shell-buffer In general, the system expects a
mark at the beginning of a command. If your mark seems to be confused, and you
are not using the prompt-end-charactel option in a shell-buffer, simply type C-C.

• The facility uses a subset of csh. HP extensions to the standard csh are not available.

• The PTYs (HP-UX device files) llsed by the facility are shared by Windows/9000.
This can result in the window-manager not being able to create another window.
The confiict can be fixed by directing the window-manager to use a higher numbered
set of PTYs since it insists that the PTYs be in a contiguous block.

• If HP-UX is heavily loaded, extraneous prompts may appear in the output. This
is due to NMODE and the shell being "out of sync" with each other.

• The HP-UX Filter Region command used with the System Shell, changes the setting
of the designated output buffer. To change again, use the HP-UX Set Output Buffer
command.

• The HP-UX Filter Region command used in a shell-buffer will print your prompt
as part of its output since NMODE does not post-process shell output.

• When llsing any HP-UX Region command in a shell buffer, the prompts will also
be sent with the rest of the text if you include the prompt in the region.

• Do not press IBreak I during the creation of a shell. It will render the shell useless
and reduce the number of available shells.

208



Unresponsive Shell-Buffers
If there is no response to a command, it might be that an incomplete command or an
improper command was sent to the shell. After waiting a reasonable amount of time,
you can issue the HP-UX Send Interrupt command to interrupt the shell (C-C in a
shell-buffer, M-H C-C in any other buffer).

Accidental Logout
If you accidentally logout of the shell-buffer or if it appears to quit working, you can try
one or both of the following recovery procedures.

Execute the M-X Recover Sbell-Buffer Shell command. You will be asked for the llame
of the "dead" shell-buffer, the unique prompt character, and the "type" of shell (sh or
csh). The system will then try to "reconnect" the shell-buffer to a new HP-UX shell.

Of course, it is also possible to kill and recreate any or all of the shells used by the facility.
If you wish to recreate shells, you can follow these steps.

1. Go to NMODE Root. (C-X R)

2. Browse User Options.

3. Browse HP-UX Access Options.

4. Browse Kill Shell-Buffer. You will be asked for the name of the shell to kill. If
you do not know the name of the shell, you can either check the list of buffers (use
C-X C-B) and determine the correct name, or you can simply browse the Kill All

HP-UX Shells option.

5. Browse the Create new shell-buffer only option to create a new shell. If you killed
all of the shells in the previous step, simply browse the Create System Shell and

shell-buffern option instead.

If both of the recovery procedures fail, you may wish to reboot NMODE and reload the
facility.

209



210

'~



Chapter 13
Code Indexes

Introduction
The code index facility offers the user a means of viewing their source code from a higher
level. A code index allows the user to obtain a skeletal view of their source code. The
code index of a source file acts like an index into that file. You can have code indexes
for Lisp, C, Pascal and Fortran source code.

Typically, the items of a code index are routine headers, each item containing the name
of each routine available within the designated source files. However, you have the option
to choose which language components, or code forms, you deem necessary for skeletal
viewing.

This facility serves as an index into code as follows. You create a code index that will
display the top level code forms of a designated file or set of files. Items are placed into
the code index by reading the files and extracting the relevant lines of code. All items
of a file are listed under that file name, where the file Ilame also serves as an item ill the
code index. Once you find an item of interest, selecting the item and browsing in will
place you in a buffer containing the source file at the location of that item in the file,
ready for viewing or editing.

As a software project writes numerous routines and needs to make usc of existing ones,
tracking these can be made easier by the availability of code indexes of the source files.
The task of finding a particular routine is reduced to searching through a list, with
browsing commands (such as Filter) available to operate on this list.

There is also a Find Item feature that allows the user to point to a word in a buffer
and request the system to enter the file containing the code form that matches the word
pointed at the location of the code form. Typically this is used to move from a call of a
routine to the definition of that routine.

211



--
Loading the Browser for Code Indexes

To work with and execute code index commands, you need to load the code that im­
plements them. This can be clone in two different ways. The simplest way is to browse
into Additional Facilities, put the cursor on the Code Index item, and execute either of
the Load or Browse/execute command line commands. The difference between the two
is that Browse/execute assumes that you want to create a new code index immediately
after loading.

You can also load the code index support functions by evaluating a Lisp form. If you
expect to use this type of browser often, you can have the code index facility loaded
automatically by adding this form to your make-nlllode or initialization file (.nmoderc in
your home directory):

(reqUire "code-browser")

The form sets up the facility ill NMODE Root called Code Indexes, which lets you access the
active code indexes. While this loads the facility, you will not necessarily see any code
indexes displayed on the screen when you are in the facility. You need to complete a few
more steps.

212



Creating New Code Indexes
After having loaded the code index facility, you can now create a code index. One method
is to create an empty code index first and then explicitly add files to it. To do this,

• You can browse Additional Facilities and use the Browse/execute command.

• You can execute M-X create code index from anywhere in the system.

• From the Code Index Facility or within a code index itself, you can use Create and
its sub-command Code-index.

These will prompt for the name of a new code index. After you enter the name, the
system will create and then enter the new code index.

At this point, you need to add items to the code index and then save it if you want to
use the code index beyond the duration of your CUlTent session. To add new items to the
code index, you should execute the command named Add-files (as described ill a later
section).

Another method of creation consists of creating a code index and building the items via
one command. This can be done by

• Executing M-X browse code from within a buffer.

• Using Type-specific in a directory browser with sub-command Browse-code on a
file with suffix .1, .p, .c, or .f (for source code in Lisp, C, Pascal or Fortran).
In this case the code index will have the same na.me as the file whose code was
browsed.

This last method also has a means of handling multiple files at one time. This can be
done by grouping the files you desire within the directory browser. Then use the Type­
specific Browse-code with the current item being one of the files in the group. This will
prompt for the name of the code index and then create the items from each grouped file.

213



Code Index Facility
At the top level of NMODE, you can point to and browse into the facility called Code
Indexes. This invokes a browser that will contain items for each of the code indexes in
the NMODE system. Like working with the browser for active directories, notice the
implicit two-step procedure: the facility provides a browser that lets you browse into a
particular code index.

The screen display might look like this:

Code Indexes

acme-code

o Browser (Code Indexes)
Help Browse Group Filter Create Options Kill Quit

Note that the title and mode line indicate your location in NMODE and you have a
menu of commands. The important thing is the item in the browser, acme-code in this
case. If you select all item ill this browser and invoke the Browse command you will enter
the corresponding code index. Each item in a code index is a pointer to where that code
form appears ill a source code file.

214



A Code Index
The previous example of the Code Indexes Facility contained au item called acme-code.
Pointing to and browsing into the acme-code code index takes you into that p(U,ticular
set of items. Each item in th is database lets yOll access l.he source code file that. contains
the code form.

The screen display might look like this:

Code Index: acme-code

/users/guest/progs/demo.l

;; Demo for code index, etc
(defun foo (a b)

Q Browser (Code Index) acme-code

Help Browse Group Create Utilities Options Add-files Quit

Like all browsers, you see a title and mode line that indicate your location in NMODE
and you have a menu of commands that are discussed later. There are actually three
items in this code index. That is:

/users/guest/progs/demo.l

;; Demo for code index, etc
(defun foo (a b)

are the three index items that point into the source file named demo .1. You can point to
and browse any of the three lines (the file name or either code form item) and NMODE
will find the source code file, load it into memory, and visit the file in a buffer according
to the following scheme:

• U you point to and browse /users/guest/ ... , NMODE locates you at the beginning
of the file.

• If you point to and hrowse the comment,
comment in the associated source file.

Demo ... , NM0 nF. locat.es you at the

• If you point to and browse (defun foo ... , NMODE loca.tes you at. the beginning
of the defun in the associa.ted source file.

215



Regardless of your location within the buffer, you can edit the file as desired. Note
that the above display focused on an extremely simple situation to illustrate the idea.
Actually, code indexes will normally contain many items for a single file and might
contain several files. In general, the list for a code index looks like this:

:Ule-name-l

item-l
item-f

item-n

file-name-2

The list of items can become very long. Use the assorted commands, such as Filter, in
the menu to manipulate the list of items so you can obtain manageable sublists. The
sections on commands discuss this.

The displayed items in a code iildex that you develop yourself could vary from what
was shown. The actual items that get displayed depend on the values assigned to the
user options for the browser of code indexes. IT you want to change how code forms are
extracted from source files, you can execute the command named Options and set the
values for options according to your needs. This is discussed later ill the section called
"The Options Command (Code Indexes}".

216



Find Item Command
A very useful command is the Find Item command, which can be invoked via M-. or
M-X find item. With the cursor on a word in the current buffer, invoking M-. will cause
a search for this word throughout all the code indexes in the system. If there is an item
that matches the word, then the source file will be displayed as if you had browsed into
the item yourself from a code index. Thus you will be placed at the location of the
relevant code.

When you are in a buffer viewing some source code, and there is a function being called
for which you want to see the definition, put the cursor on the function name in the
buffer and invoke M-.. NMODE will prompt for the name to search for. Notice that the
default value will be the word the cursor was positioned on in the buffer. Press IReturn I
in response to the prompt. This initiates a search for the source code that defines the
function. It does this by searching for the function name through all code indexes in the
system. When it finds this function name in an it,em, it will browse into the item for
you, displaying the function definition.

If for some reason there are multiple items among the code indexes with this name, you
will be presented with a miniature code index of the matching items listed under their
source file names. You could then browse into an item to see the code associated with
that item.

Using the example of demo.! from the section before, the function being called in code
you are viewing in a buffer might be foo. Putting the cursor on any letter of this word
in your buffer and issuing M-. will cause the prompt:

Type in the name of the Item you want to see. (Default is: 'foo')

to appea.r. Pressing IReturn I initia.tes a search for the function definition of foo. It will find
it in code index acme-code and place you in a buffer of the file /users/guest/progs/demo.l,
displaying at the top "(defun foo (a b) ...".

If the cursor is not positioned at a word, the default will be the default value used in the
previous invocation of the Find Item command. You can override the default it picks up
by enterin~ a string for a search of a different item.

As you use Find Item, you may travel down several levels. Maybe you are a.t a definition
of a function via M-. and you wish to view the defillit,ion of another function being called
by this current one. You can invoke another M-. and view that definition. At any time
you can exit back through the levels to the original buffer you started at by invoking
C-M-L at each level you have visited. You will then be positioned at the first function
call you invoked Find Item on.

217



Another example might be in Pascal source, where a global variable is being used and
knowing its type would be useful. Having loaded in source code with the option of
Variable Extraction turned on (options will be discussed in the next. section), put the
cursor on this variable and issue the M-. command. If it is defined in the set of source
code the code indexes in your NMODE consist of, its definit.ion will be displayed. Type
definitions can similarly be displayed, having chosen the Type Extraction option in the
Pascal Options Browser.

Also note that you can change a buffer or file after creating the code index, such that
lines that serve as items in the code index are now in a different location in the buffer
or file. Browse and Find Item commands will still work as expected. In most. cases, you
will not have to update the code index. However, if any of these lines are themselves
changed, the following could happen:

• Find Item is not able to find the item and the system informs you that it is unable
to find the source code for it.

• Find Item finds the item, but is unable to find the line of the item in the source file
and the system informs you that the code index refers to an item no longer in the
file.

• You attempt to Browse into an item whose line of code no longer exists in the file
and the system beeps, remaining in the code index.

When any of these occur, you will need to update the code to reflect the changed file.
Updating will be described under the section "Executing Browser Commands (Code
Indexes)"

218



Executing Browser Commands (Code Indexes)
A code index browser has the following menu of commands:

Help BrowBe Group Filter Create Utility Options Add-files Quit

The commands named Help, BrowBe, Group, Filter, Create, and Quit were described
earlier in the section called "Common Browser Commands" in the chapter cal1ed "Intro­
duction to Browsers". The next few sections discuss the other commands.

The Add-files Command (Code Index)
The Add-files command allows you to add to the list of files that are being indexed in a
particular code index. During execution, the command processes a source code file and
extracts code forms such as the initial lines in defuns or define-methods. Those items
are references to the complete code forms in the file, and appear in the code index's list
under the file name from which they were extracted. Use the Add-files command when
you make a code index or when you want to add more files to an existing index. Add
those files that have an appropriate suffix: .1, .p, .c, or .f.

The Add-files command prompts:

File (or IIwildcard ll spec): (relative to '/uBers/guest/')

Type the file name, or path name for source code files, that you want to add to the code
iudex. As examples:

acme/code22.1

adds indexes from one Lisp source file, code22.1, from t,he directory named acme under
/uBers/guest/. Using the wildcard character "*" allows multiple files t,o be specified.
Entering

/users/joint-proj ect/ace/:I:. c

adds indexes for all the C Source files in the directory named ace under /uBers/joint­
project/.

If you specify a directory name only, then all of the files in the directory will be added.

You can add indexes for as many files as you want up to the capacity of your system.

219



The Utilities Command (Code Index)
Executing Utilities provides the following menu of second-level commands:

Update Kill Write Current-File Quit-utilities

These sub-commands work as follows:

Update

Kill

Write

Current-file

Quit-utilities

Reads the current file associated with the current item in the code
index and updates the items in the code index to reflect the actual
state of the source files. If you want more than one file updated,
group the file name items of the desired files in the code index. Then
select one of the grouped items and invoke Utilities Update.

Removes the highlighted item from the code index. This only affects
the code index and has no effect on the actual source code file. If the
highlighted item is a file name, all items of that file and the file name
will be removed.

Saves the code index into a file. Then it can be loaded (or regis­
tered) in a subsequent NMODE session. See the section "Saving and
Restoring Code Indexes" later in this chapter for further details.

Many source code files contain more interesting items than can be
displayed in a single pane. Executing Current -file displays in the
message area the name of the source file for the current highlighted
item.

Exits the Utilities command and returns to the code index.

The Options Command (Code Index)
There is a chapter devoted to user options called "The Browser for User Options". That
chapter discusses how to access and use options browsers in general. You may want to
refer to that chapter as this section will describe options pertaining to code indexes.

Executing Options provides the following meJlU of t'e~olld-IcvclCVlllllHLJl\15:

Lisp Pascal C Fortran Quit-options

Choose the type of Code Index you wish to customize. This will place you in an options
browser for that language. This browser provides the following menu of commands.

220



Help Browse/modify Group Filter Sort Write Restore-default Quit

The commands named Help, Group, Filter, Sort, Write, and Quit are familiar from
previous chapters dealing with browsing ill general. Executing Browse/modify lets you
alter the value of the current option. Executing Restore-default assigns the default value
to the current option.

The following shows the options (system variables) for each language. Each list depicts
what you see on the screen when you invoke the related user options browser. In each
case, you see the assigned default values for options.

If you execute Options and then execute Lisp, you see:

User Options: LISP Code Index Options
Currently saved in I$LISP/coDtig/lisp-code.opt"

CODE INDEX OPTIONS:
Function Extraction
Comment Header Displayed
Form Type to Extract

Yes
Yes
NIL

Function Extraction causes any line with a left parenthesis, "(", in column 0 to be be
extracted. For the code index to process functions correctly, the left parenthesis of the
function definition must appear in column o.

Comment Header Displayed will display comment lines that are each preceded by a line of
at least five comment characters (e.g. ";;;;;"). So a code index for

Printing Aids:
; Other comments may follow

(defun print-caps ()

will contain the line "; Printing Aids:" as an item.

Form Type to Extract. The value of this option is a st.ring type which names a form to
be displayed in the code index. The entire form (whose left parenthesis is in column 0),
not just one line, will be extracted from the source. !tor example, a value of "export"
will cause each occurrence of (export ...) to be displayed in its entirety. So

(export '( terminal-default single-wibdow window-width window-height))

221



would appear in the code index.

If you execute Options and then execute Pascal, you see:

User Options: Pascal Code Index Options
Currently saved in "$LISP!config/pscl-code.opt ll

CODE INDEX OPTIONS:
Procedures and Functions Yes
Constant Extraction No
External Routine Declarations No
Import Extraction No
Include Extraction No
Module Extraction No
Type Extraction No
Variable Extraction No

The default is procedure and function headers becoming items in the code index. Choos­
ing the other options with a Yes value will cause those lines of code to be displayed
in the code index. For example, choosing Type extraction will cause the whole global
type section to be displayed in the code index, with each type definition becoming an
item. Similarly, Constant Extraction or Variable Extraction cause entire CONST or
VAR sections to be displayed.

Choosing External Routine Extraction will display the procedure and function headers
designated "external" in the source code.

Choosing Import Extraction will cause the appearance of IMPORT statements. Choosing
Module Extraction will cause the lines of MODULE, EXPORT and IMPLEMENT to
become items in the code index. And choosing Include Extraction will cause include lines
to become part of the code index (note the Browse Include C-M-B command described
below).

If you execute Options and then execute C, you see:

User Options: C Code Index Options
Currently saved in II$LISP!config!c-code.opt ll

BLOCK DELIMITER OPTIONS:
Block begin character(s) II{II
Block end character(s) II}"

EXTRACTION OPTIONS:
Define lines No
Function extraction Yes
If directives No
Include directives No

222



Typedet extraction
Variable extraction

110
Ho

Function extraction is the default. The first line of each function declaration will become
an item in the code index. If other options are chosen with value of Yes, those source code
items will also be extracted from each file and displayed in the code index. For example,
choosing Variable extraction will cause the global VA R. section (,0 be placed in the code
index. Choosing Define lines or Include direct!ves will cause the #define lines or
#include lines to appear. (Not.e the Browse Include C-M-B command described below).
A value of Yes for If directives will extract those lines with # iI, #iIdef, #ifndef, #else
or #endif. Choosing Typedet extraction will cause entire global typedef statements to
appear in the code index.

Notice also that since the C language allows redefinition of the blocking characters "{"
and "}", the option browser fives the user a chance to specify how they were changed.
This allows the code index to still find function declarations with new values. For exam­
ple, "Begin" and ClEnd" could be used in place of Cl{ Cl and Cl}".

If you execute Options and then execute Fortran, you see:

User Options: Fortran Code Index Options
Currently saved in "$LISP/config/ttn-code.opt"

EXTRACTION OPTIONS:
Common Declarations
Data Statements
Dimension Statements
Functions and Subroutines
Include Statement/Directives
Parameter Lists
Types Declarations

No
No

No
Yes
110
No
No

The default for Fortran code indexing is the subroutine and function lines of each file
becoming items in the code index. Other lines of code can also become items of the
code index by changing the value to Yes. For example, by choosing Types extracted,
source code lines declaring variables to be of t.he t.ypes INTEGER., REAL, DOUBLE
PRECISION, DOUBLE COMPLEX, CHARACTRR or COMPLEX LOGICAL wiJl be
displayed. Common Extraction, Data Extraction, Dimension Extraction, Include State­
ment/Directives, or Parameter Extraction cause COMMON lines, DATA lines, DIMEN­
SION lines, INCLUDE lines, or PARAMETER lines respectively, to become items in the
code index.

223



Browse Include Command
With include statement items for any language, you can browse directly into the actual
include file. First select the include statement item in the code index. Now invoke C-M­
B. NMODE will not enter the source file that cont.ains the include statement. Instead
it will enter the include file itself. If C-M-B is invoked when the cnrrent item is not an
include statement, the source file of the item will be browsed as normal.

Saving and Restoring Code Indexes
When an NMODE session is exited all code indexes that were created during that session
are destroyed. To save the effort of having to create code indexes each time a new
NMODE session is started there are commands that allow you to save a code index after
it has been created and restore that code index in a subsequent session.

Saving a Code Index
To save a code index you must be in the code index you want to save. Execute Utilities
and Write to save the code index. NMODE will display a prompt something like:

Write browser database to file (Default is '$HOME!acme-code.cb')

IT you enter a IReturn I in response to the prompt the default value is used as the file
name to save to. If you enter the path Ilame of a directory followed by "I" then the
code index is saved ill the file in that directory. In the example above if you entered
/users/guest/code-indexes/ the code index would be saved in the file /users/guest/code­
indexes/acme-code.cb. If you enter the path name to a file NMODE will modify the
name of the file to insure that it is not longer than 14 characters and that it ends in
".cb". The code index be will saved in the file with the resulting name. Saved code index
file names will always end ill the suffix .cb so they can be identified.

After a response is entered NMODE will display thc message:

Writing index database ...

When the save operation is complcte NMODE will display a mcssage of t.hc form:

File file-name written.

to indicate that the save operation is complete.

224



Loading Saved Code Indexes
A code index that has been created and sa.ved ca.n be loaded bn.ck int.o NMODE either
interactively or programmatically. There are several methods that can be used to load a
saved code index interactively.

• Within the Code Indexes facility you can invoke the Create command. NMODE
will display a new menu in the prompt area. If you now invoke the command
Load-code-index NMODE will display a prompt similar to:

Load index file (type defaults to "cb"): (relative to /users/guestl)

You should enter the name of the file conta.ining a saved code index. You do not
need to enter the full path name of the file. The suffix can be omitted. It will default
to .cb as the prompt (type defaults to IIcb ll

) indicates. Also the path name can
be entered relative to the working directory of NMODE, which is displayed after
relative to in the prompt. After you enter a file name NMODE will load the code
index saved in the file into the system and move you into that code index. If the file
does not exist or is not a saved code index NMODE will display the elTor message:

File file-name is not a saved code index

• You can invoke the command M-X Load Code Index to load a saved code index from
anywhere within NMODE. NMODE will re~pond with the same prompt discussed
above. After you enter the file name of a saved code index NMODE will load and
enter the code index.

• When you are in a directory browser containing items for files that are saved code
indexes these code indexes can be loaded lIsin~ directory browser commands. First
you must select an item for a file containing a saved code index that you want to
be loaded. Now you can load the code index by invoking either the Browse or the
Type-specific Load command. NMODE will then load the code index from the
indicated file and then enter the code index. These two commands can be used on
grouped items to load more than one code index. If the current item is part of a
group then invoking the Browse or Type-specific Load commands will load saved
code indexes for each of the files in the group.

You may want to load saved code indexes during the init.ializat.ion of your NMODE
session. For this reason there is a programmatic met.hod of loadinf{ saved code indexes.
If you evaluate the form:

(nmode: load-tile-index-bro\llser-db file-name)

225



NMODE will load a saved file index from file-name. This function is used to load saved
code, file search and error indexes programmatically. File iudex is a generic term that
covers all three of these indexes. File-Name must be t.he full path name to the code index
file and must end in . cb when loading a saved code index. If the file does not exist or is
not a saved code index NMODE will display the error message discussed above.

The function nmode: load-:tile-index-browser-db can be invoked from your NMODE ini­
tialization or customization files to load code indexes when your NMO DE session is
started.

When saved code indexes are loaded programmatically the code indexes a.re not auto­
matically entered. However, they will be displayed in the Code Indexes facility just like
other code indexes.

Registering Saved Code Indexes
Often you will only want to use a code index with the M-. command. You can use this
command without loading the code index into memory. This can be done by registering
a saved code index. When a code index is registered, an entry for it is added to the
list of code indexes that appear in the Code Indexes facility. Invoking M-. will search
through all code indexes appearing in the facility. The advantage of registering a code
index rather than loading it is that a registered code index does not use as much memory
as a loaded code index.

You can register a saved code index in several ways that are similar to the ways in which
a code index can be loaded.

• Within the Code Indexes facility you can invoke the Create command. If you now
invoke the command Reg1ster-code-index NMODE will display a prompt similar
to:

Register index :tile (type defaults to "cb"): (relative to $HOl.1E1)

You should enter the name of the file containing a saved code index. You can omit
the suffix and supply a relative path name as with the corresponding command
for loading a code index. After you enter a file name NMODE will register the
code index saved in the file. If the file does not exist or is not. a saved code index
NMODE will display the error message:

File file-name is not a saved code index

• You can invoke the command M-X Register Code Index to register a saved code
index from anywhere within NMODE. NMODE will respond with the same prompt
discussed above. After you enter the file llame of a saved code index NMODE will
register the specified code index.

226



• When you are in a directory browser containing items for files that contain saved
code indexes, these code indexes can be registered using a directory browser com­
mand. First you must select an item that is a file containing a saved code index
that you want to be registered. Now you can register the code index by invoking
the Type-specific Register command. NMODE will then register the code index
from the indicated file. This command can be used on grouped items to register
more than one code index by invokiug one command. If the current item is part
of a group then invoking the Type-specific Register command will register saved
code indexes for each of the files in the group.

A registered code index can be loaded in a way not discussed in the section 011 loading
code indexes. IT you are in the Code Indexes facility you can select an item corresponding
to a registered code index. Then if you invoke the Browse command the code index will
be loaded and will no longer be registered.

227



228



Chapter 14
Search Indexes

Introduction
Search indexes are similar to code indexes in that they extract lines from files to make
items in a browser. What makes a search index different is that it extracts all the lines
from files that contain a string pattern being searched for. Selecting an item in a search
index and browsing in will place you in a buffer containing the file that the line of the
item was extracted from. The cursor will be placed at the beginning of the line for
the item that was browsed. This provides a capability similar to the HP-UX grep(l)
command with the additional feature of interacting with the index after it is built.

This facility serves as an index into text as follows. You create a search index that will
display the lines containing a given string pattern, from Cl designated file, or set of files.
Items are placed into the search index by reading the files and extracting the relevant
lines of text. All items of a file are listed under that file name, where the file Ilame also
serves as an item in the search index. Once yOll find an item of interest, selecting the
item and browsing in will place you in a buffer containing the text file at the location of
that item in the file, ready for viewing or editing.

229



Loading the Browser for Search Indexes
To work with and execute search index commands, you need to load the code that
implements them. This can be done in two different ways. The simplest way is to browse
into Additional Facilities, put. the cursor on the Search Index it,em, and execute either
of the Load or Browse/execute command line commands. The difference between the two
is that Browse/execute assumes that you want to create a new search index immediately
after loading.

You can also load the search index support functions by evaluating a Lisp form. If you
expect to use this type of browser often, you call have the search index facility loaded
automatically by adding this form to your make-Ilmode or initialization file (.nmoderc ill
your home directory):

(require "search-br")

The form sets up the facility ill "MODE Root called Search Indexes, which lets you access
the active search indexes. While this loads the facility, you will not necessarily see any
search indexes displayed 011 the screen when you are in the facility. You need to complete
a few more steps.

230



Creating New Search Indexes
After having loaded the search index facility, you can now create a search index. One
method is to create an empty search index first and then explicitly add files to it. To do
this,

• You can browse Additional Facilities and use the Browse/execute command.

• You can execute M-X create search index from anywhere in NMODE.

• From the Search Index !t'acility or within a search index itself, you can use Create
and its sub-command Search-index.

These will prompt for the name of a new search index. After you enter the name,
NMODE will create and then enter the new search index.

At this point, you need to add items to the search index and then save it if you want to
use the search index beyond the duration of your current session. To add new items to
the search index, you should execute the command named Add-tiles (as described in a
later section).

Another method of creation consists of creating a search index and building the items
via one command. This can be done by

• Executing M-X browse occurrences from within a buffer containing a file. In this
case the search index will have the same name as the file in the buffer.

231



Search Index Facility
At the top level of NMODE, you can point to and browse into the facility called Search
Indexes. This invokes a browser that will contain items for each of the search indexes
in the NMODE system. Like working with the browser for active directories, notice the
implicit two-step procedure: the facility provides a browser that lets you browse into a
particular search index.

The screen display might look like this:

Search Indexes

tab-search

~ Browser (Search Indexes)
Help Browse Group Filter Create Options Kill QUit

Note that the title and mode line indicate your location in NMODE and you have a
menu of commands. The important thing is the item in the browser, tab-search in this
case. If you select an item in this browser and invoke the Browse command you will enter
the corresponding search index. Each item in a search index is a pointer to where that
string pattern appears in a text file.

232



A Search Index
The previous example of the Search Indexes Facility contained an item called tab-search.
Pointing to and browsing into the tab-search search index takes you into that search
index. Each item in the search index lets you access the text file that contains the search
pattern.

With the search pattern set to tab, the screen display might look like this:

Search Index: tab-search

/users/guest/progs/document.text

with the tab set to 0 you can now
the tab is set to a number greater than

~ Browser (Search Index) tab-search

Help Browse Group Create Utilities Options Add-files Pattern QUit

Like all browsers, you see a title and mode line that indicate your location in NMODE
and you have a menu of commands that are discussed later. There are actually three
items in this search index. That is:

/users/guest/progs/document.text

with the tab set to 0 you can now
the tab is set to a number greater than

are the three index items that point into the text file named document. text. You can
point to and browse any of the three lines (the file name or either text item) and NMODE
will fiud the text file, load it into memory, and visit the file in a buffer according to the
following scheme:

• IT you point to and browse /users/guest/ ... , NMODE locates you at the beginning
of the file.

• If you point. t.o and browse with the tab. '" NMODE locn.t.es yon at. t.hat line in
the associated text file.

• IT you point to and browse the tab is ... , NMODE locates you at the that line in
the associated text file.

233



Regardless of your location within the buffer, you can edit the file as desired. Note
that the above display focused on an extremely simple situation to illustrate the idea.
Actually, seal'ch indexes will normally contain many items for a single file and might
contain several files. In general, the list for a search index looks like this:

:file-name-l

item-l
item-2

item-n

file-name-2

The list of items can become very long. Use commands, such as Filter, in the menu to
manipulate the list of items so you can obtain manageable sublists.

234



~.

Executing Browser Commands (Search Indexes)
A search index browser has the following menu of commands:

Help Browse Group Filter Create Utility Options Add-files Pattern Quit

The commands named Help, Browse, Group, Filter, Create, and Quit were described
earlier in the section called "Common Browser Commands" in the chapter called "Intro­
duction to Browsers". The next few sections discuss the other commands.

The Pattern Command
The Pattern command allows you to enter the string pattern to be searched for. When
this command is invoked NMODE will issue the prompt

New search pattern

You should now enter the exact characters of the pattern you want to search for and
then enter IReturn I. All the files that have been added to the search index are searched
for the pattern and the lines containing the pattern will be added the search index under
the corresponding file name.

After a pattern has been entered if you invoke the pattern again the prompt displayed
will be some what different. It will have the form:

New search pattern (Default is: · current search pattern')

Notice that the current search pattern is displayed as the default value. If you just press
IReturn I the search pattern will remain the default. Using the Pattern command in this
way allows you to determine what search pattern is associated with a particular search
index. You can also change the search pattern and NMODE will search all the files in
the search index as discussed above.

235



The Add-files Command (Search Index)
The Add-files cOJIlmand allows you to add to the list of files that are being indexed
in a particular search index. During execution, the command processes a text file and
extracts the lines containing the search pattern. The resulting index items are references
to the lines containing the search pattern in the file, and appear in the search index's list
under the file name from which they were extracted. Use the Add-files command when
you make a search index or when you want to add more files to an existing index.

The Add-files command prompts:

File (or Ilwildcard ll spec): (relative to '/users/guest/')

Type the file name, or path name for text files, that you want to add to the search index.
As examples:

manual/tab. text

adds indexes from one text file, tab. text, from the directory named manual under
/users/guest/. Using the wildcard character * allows multiple files to be specified. En­
tering

/users/joint-project/ace/*. text

adds indexes for all the text files in the directory named ace under /users/joint-project/.

IT you specify a directory name only, then all of the files in the directory will be added.

236



The Utilities Command (Search Index)
Executing Utilities provides the following menu of second-level commands:

Update Kill Write Current-File QUit-utilities

These sub-commands work as follows:

Update

Kill

Write

Current-file

Quit-utilities

Reads the current file associated wit.h the current item in the search
index and updates the items in the search index to reflect the actual
state of the search pattern in the text files. If you want more than
one file updated, group the file name items of the desired files in
the search index. Then select one of the grouped items and invoke
Utilities Update.

Removes the highlighted item from the search index. This only affects
the search index and has no effect on the actual text file. If the
highlighted item is a file name, all items of that file and the file name
will be removed.

Saves the search index into a file. Then it can be loaded (or regis­
tered) in a subsequent NMODE session. See the section "Saving and
Restoring Search Indexes" later in this chapter for further details.

Many text files contain more int.eresting items than can be displayed
in a single pane. Executing Current-file displays in the message area
the name of the text file for the current highlighted item.

Exits the Ut.ilit.ies command and ret.urns to the search index.

The Options Command (Search Index)
This command loads in the NMODE Genera.l User Options. There is an chapter devoted
to user options called "The Browser for User Options". That chapter will discuss how
to access and use options browsers in general. You may want to refer to that chapter.

237



Saving and Restoring Search Indexes
When an NMODE session is exited all search indexes that were created during that
session are destroyed. To save the effort of having to create search indexes each time
a new NMODE session is started there are commands that allow you to save a search
index after it has been created and restore that search index in a subsequent session.
Both the items in a search index and the search pattern associated with it are saved and
restored.

Saving a Search Index
To save a search index you must be in the search index you want to save. Execute
Utilities and Write to save the search index. NMODE will display a prompt something
like:

Write browser database to file (Default is ·$HOME/tab-search.sb·)

H you enter a IReturn I in response to the prompt the default value is used as the
file name to save to. If you enter the path name of a directory followed by f then
the search index is saved in the file in that directory. In the example above if
you entered fusersfguestfsearch-indexesf the search index would be saved in the file
fusersfguestfsearch-indexesftab-search.sb. H you enter the path name to a file, NMODE
will modify the name of the file to insure that it is not longer than 14 characters and
that it ends in .sb. The search index be will saved in the file with the resulting name.
Saved search index file names will always end in the suffix .sb so they can be identified.

After a response is entered NMODE will display the message:

Writing index database ...

When the save operation is complete NMODE will display a message of the form:

File file-name written.

to indicate that the save operation is complete.

238



Loading Saved Search Indexes
A search index that has been created and saved can be loaded back into NMODE either
interactively or programmatically. There are several met.hods that can be used to load a
saved search index interactively.

• Within the Search Indexes facility you can invoke the Crea.te command. NMODE
will display a new menu in the prompt area. If you now invoke the command
Load-search-index NMODE will display a prompt similar to:

Load index file (type defaults to "sb"): (relative to /users/guest/)

You should enter the name of the file containing a saved search index. You do not
need to enter the full path name of the file. The suffix can be omitted. It will default
to .sb as the prompt (type defaults to "S b") indicates. Also the path name can
be entered relative to the working directory of NMODE, which is displayed after
relative to in the prompt. After you enter a file name NMODE will load the
search index saved in the file into NMODE a.nd move you into that search index. If
the file does not exist or is not a saved search index NMODE will display the error
lnessage:

File file-nanle is not a saved search index

• You can invoke the command M-X Load Search Index to load a saved search index
from anywhere within NMODE. NMODE will respond with the same prompt dis­
cussed above. After you enter the file name of a saved search index NMODE will
load and enter the search index.

• When you are in a direct.ory browser containing items for files that are saved search
indexes these search indexes can be loaded using directory browser commands. First
you must select an item for a file containing a saved search index that you want to
be loaded. Now you can load the search index by invoking either the Bro\'/se or the
Type-specific Load command. NMODE will then load the search index from the
indicated file and then enter the search index. These two commands can be used
on grouped items to load more than one search index. If the current item is part of
a group then invoking the Browse or Type-specific Load cOllllnands will load saved
search indexes for each of the files in the group.

You may want. to load saved search indexes duriug t.he init,ializat.jou of yOHr NMODE
session. For this reason there is a programmatic IlH~t,hod of loading saved search indexes.
If you evaluate the form:

(nmO<1e: loa<1-!11e-ln<1ex-browser-<1b file-name)

239



NMODE will load a saved file index from file-name. TJlis function is used to load ~aved

code, file search and error indexes programmatically. File index is a generic term that
covers all three of these indexes. F~'le-Name must be the full path name to the search
index file and must end in .sb when loading a saved search index. If the file does not
exist or is not a saved sem'ch index NMODE will display the error message discussed
above.

The function nmode :load-file-index-browser-db can be invoked from your NMODE ini­
tialization or customization files to load search indexes when your NMODE session is
started.

When saved search indexes are loaded programmatically the search indexes are not au­
tomatically entered. However, they will be displayed ill the Search Indexes facility just
like other search indexes.

240



~... /~,.

Chapter 15
Error Indexes

Introduction
The error index facility provides a means of viewing t.he compilation errors that have
been detected in source code. When a C, Pascal or Fortran source file is compiled from
inside NMODE any errors detected are added to an error index. When an item in an
error index is browsed you will be placed in the file at the location corresponding to that
item (i.e. the location where the error was detected).

There are additional cOlllmands available when you browse an error and enter a file.
These commands allow you to move to the next or previous error position in the file.
They also will inform you when there are no more errors.

You can also use the HP-UX command make to compile several files and have all the
generated errors added to an error index.

241



Loading the Support Code for the Error Indexes Facility
To work with and execute error index commands, you need to load the code that im­
plements them. This can be done in two different ways. The simplest way is to browse
into Additional Facilities, put the cursor on the Error Index item, and execute either of
the Load or Browse/execute command line commands. The difference between the two
is that Browse/execute assumes that you want to create a new error index immediately
after loading.

You can also load the error index support functions by evaluating a Lisp form. If you
expect to use this type of browser often, you can have the error index facility loaded
automatically by adding this form to your make-nJllode or initialization file (.nmoderc in
your home directory):

(require "err-browser")

The form sets up the facility in "MODE Root called Compilation Error Indexes, which lets
you access the active error indexes. While this loads the facility, you will not necessarily
see any error indexes displayed on the screen when you are in the facility. You need to
complete a few more steps.

242



Creating New Error Indexes
After having loaded the error index facility, you can now create an error index. One
method is to create an empty error index first and then explicitly add files to it. To do
this,

• You can browse Additional Facilities and use the Browse/execute command.

• You can execute M-X create error index from anywhere in the system.

• Fi'om the Error Index Facility or within an error index itself, you can use Create
and its sub-command Error-index.

These will prompt for the name of a new error index. After you enter the name, the
system will create and then enter the new error index.

At this point, you need to add items to the error index and then save it if you want to
use the error index beyond the duration of your current session. To add new items to
the error index, you should execute the command named Add-files (as described in a
later section).

Another method of creation consists of creating an error index and building the items
via one command. This can be done by

• Executing M-X compile file from within a buffer containing a C, Pascal or Fortran
source file. The error index will have the same name as the file whose code was
browsed.

• Using Type-specific in a directory browser with sub-command File-compile on a
file with suffix .p, .c, or C.f (for source code in C, Pascal or Fortran). The error
index will have the same name as the file whose code was compiled.

This last method also has a means of handling multiple files at one time. This can be
done by grouping the files you desire within the directory browser. Then use the Type­

specific File-compile with the current item being one of the files in the group. This
will prompt for the name of the error index and t.hen create the items from each grouped
file.

243



Error Index Facility
At the top level of NMODE, you can point to and browse into the facility called Error
Indexes. This invokes a browser that will contain items for each of the error indexes in
the NMODE system. Like working with the browser for active directories, notice the
implicit two-step procedure: the facility provides a browser that lets you browse into a ')
particular error index.

The screen display might look like this:

Compilation Error Indexes

acme-code

~ Browser (Error Indexes)
Help Browse Group Filter Create Options Kill QUit

Note that the title and mode line indicate your location in NMODE and you have a menu
of commands. If you select an item in this browser and invoke the Browse command you
will enter the corresponding error index. Each item in an error index is a pointer to
where a compilation error was detected in a source code file.

244



An Error Index
The previous example of the Error Indexes Facility contained an item ca.lled acme-code.
Pointing to and browsing into the acme-code error index takes YOll into that particular
set of items. Each item in this database lets you access the source code file that contains
the compilation error.

The screen display might look like this:

Compilation Error Index: acme-code

/users/guest/progs/demo.c

syntax error

~ Browser (Error Index) acme-code

Help Browse Group Create Utilities Options Add-files Quit

Like all browsers, you see a title and mode line that indicate your location in NMODE
and you have a menu of commands that are discussed later. There are actually two items
in this error index. That is:

/users/guest/progs/demo.c

syntax error

are the two index items that point into the source file named demo. c. You can point to
and browse any of the two lines (the file name or error message item) and NMODE will
find the source code file, load it into memory, and visit the file in a buffer according to
the following scheme:

• If you point to and browse lusers/guest/ ... , NMODE locates you at the beginning
of the file .

• If you point to and browse the error message, syntax error, NMODE locates at
the line where the error was detected in t.he <l~sociated source file.

Regardless of your location within the buffer, you can edit Lhe lile as desired. Note
that the above display focllsed on an extremely simple situation to illustrate the idea.
Actually, error indexes will normally contain many items for a single file and might
contain several files. In general, the list for a error index looks like this:

245



file-name-l

error-message-l
error-message-f

error-message-n

jile-name-f

Executing Browser Commands (Error Indexes)
An error index browser has the following menu of commands:

Help Browse Group Filter Create Utility Options Add-files Quit

The commands named Help, Browse, Group, Filter, Create, and QUit were described
earlier in the section called "Common Browser Commands" in the chapter called "Intro­
duction to Browsers". The next few sections discuss the other commands.

The Add-files Command (Error Index)
The Add-files command allows you to add to the list of files that are being indexed in
a particular error index. During execution, the command compiles source code files that
are being added. It creates an item for each error detected. Those items appear in the
error index under the name of the file containing the errors. Usc the Add-files command
when you make an error index or when you want to add more files to an existing index.
Only add files that have an appropriate suffix: .p, .C, or .f.

The Add-files command prompts:

File (or "wildcard" spec): (relative to '/users/guest/')

Type the file name, or path name for source code files, that you want to add to the error
index. As examples:

acme/code22.c

adds errors from one C source file, code22.c, from the directory named acme under
/users/guest/. Using the wildcard character * allows multiple files to be specified. En­
tering

246



/users/jo1nt-project/ace/*.c

adds errors for all the C Source files in the directory named ace under /users/ j oint­
project/.

If you specify a directory name only, then all of the files in the directory will be added.

When files are added to an error index (or recompiled via the Utilities Update command
discussed below), NMODE will display a message for each file showing how it is being
compiled. This message has the form:

Compiling file-name with options compile-options

Compile-Options are the actual options passed to the compiler.

The Utilities Command (Error Index)
Executing Utilities provides the following menu of second-level commands:

Update Kill Write Current-File Quit-utilities

These sub-commands work as follows:

Update

Kill

Write

Recompiles the file associated with the current item in the error index
and updates the items in the en'or index to reflect the actual state of
the source files. If you want more than one file updated, group the
file name items of the desired files in the error index. Then select one
of the grouped items and invoke Utili ties Update. If the file that
is being recompiled is in an unsaved buffer NMODE will display a
prompt of the form:

Save file llfile-name ll ? (Default is: 'Yes')

If you enter IReturn I the buffer will be saved t.o the file and the new
version of the file will be compiled. If you ent.er no t.he hnffer will not.
be saved and the older version of t.he file will be compiled.

Removes the highlighted it.em from the error index. This only affects
the error index and has no eITect on Lhe actual source code file. If Lite
highlighted item is a file name, all it.ems of that. file Clnd the file name
will be removed.

Saves the error index into a file. Then it can be loaded in a su bse­
qucnt NMODE session. See the section "Saving and Restoring Error
Indexes" later in this chapter for further details.

247



Current-file

Quit-utilities

Some source code files have more errors than can be displayed ill the
window. Executing Current-file displays in the message area the
name of the source file for the current highlighted item.

Exits the Utilities command and returns to the error index.

Running make
Many programmers do not call the C, Pascal or Fortran compilers directly to compile
source modules except for the most trivial programs. Instead they use the program
make to control compilation. The make program reads a file (commonly called a make
file) , which contains information on the dependencies one file may have on another.
Based on the dependencies and on the modification dates of files, make determines what
commands to execute. An error index can invoke the program make and add errors from
compilations of C, Pascal or Fortran source done by make to that error index.

The command to invoke make is Utili ties Run-make. When this command is executed,
make is run with arguments determined by the values of the options for make in the error
index. See the section "The Options Command" below for details on make options.

When make is run NMODE checks if there are any unsaved buffers containing files
associated with the error index. If there are, a prompt of the following form is displayed:

Saved modified buffers associated with error index? (Default is: 'Yes')

To save the buffers enter IReturn ,. If you do not want the buffers saved enter no.

Next the system displays in the echo area of the screen a message of the form:

Running make with options make-options

Make-Options is the actual arguments that are passed to the make process.

After the make program has terminated t.he output of the make is processed to build
error index items. Any commands executed by make that are compilations of C, Pascal
or Fortran sources will cause error index items to be built for that file. If any errors were
detected by the compiler then items for those error messages will be huilt. and displayed
in the error index below the name of the source file containing the errors. If no errors
occurred then the file name will be displayed followed by two blank lines. Just prior to
adding error index items that were generated by make, all error itemR in t.lle error index
are removed. Thus after running make only the errors generated by make will be in the
error index.

248



Special Items Added to Error Index
Other commands mny be invoked from a. make file besides invocations of the compilers of
0, Pascal or Fortran source files. The lines in the output from make that are caused by
executing these other commands are also added to the error index so that a user will not
lose information because make was run from the error index. For each non-compilation
command the errors generated by that command will be displayed in the error index in
the following form:

line containing command as executed by make

line containing first message from command execu.tion

line containing last message from command execu.tion

The messages associated with a command may not always be error messages. III some
cases they may just be informative messages generated by the command.

The items associated with non-compilation commands are displayed for the user's infor­
mation only and cannot be browsed. Attempting to browse one of these items will cause
the system to display an error message:

Item has no associated source file

The items associated with a non-compilation command are displayed together. The
groups of error index items associated with either files or non-compilation items are
displayed in lexicographic order according to the first line of each group (i.e. either the
full path name of the file or for non-compilation commands, the command itself).

Restrictions on Use of make in Error Index
Because of the way the error index processes the output from make there are certain
restriction on how ma,kc is run and on command lines in the make file .

• No command in a make file can compile more than one source file.

• The options -d, -n, -q and -s are not sent a.s argument,s to make. St't' (;he sect,ion
"The Options Command" below for det.ails 011 optiolls lIsed with ma,ke.

249



The Options Command (Error Index)
For the C, Pascal and Fortran compilers and for the program make there are options,
which control the process of running the program that generates errors for the error
index. These options may be modified with the Options command.

There is a chapter devoted to user options called "The Browser for User Options". That
chapter discusses how to access and use options browsers in general. You may want to
refer to that chapter as this section will describe options pertaining to code indexes.

Executing Options provides the following menu of second-level conuuands:

options: C Fortran Pascal Make Quit-options

Choose the type of options you wish to customize. This will place you in an options
browser for that compiler or for the make program. The optiolls browser provides the
following menu of commands.

Help Browse/modify Group Filter Sort Write Restore-default Quit

The commands named Help, Group, Filter, Sort, Write, and Quit are familiar from
previous chapters dealing with browsing in general. Executing Browse/modify lets you
alter the value of the current option. Executing Restore-default assigns the default value
to the current option.

Options for C, Pascal and Fortran Compilers
Following shows the options (system variables) for each language. Each list depicts what
you see on the screen when you invoke the related user options browser. In each case,
you see the assigned default values for options.

If you execute Options and then execute Pascal, you see:

User Options: Pascal Compilation Options
Currently saved in "$LISP/config/pscl-error.opt ll

COMPILER OPTIONS:
Compiler execute directory
Compiler option string
Compiler program name

If you execute Options and then execute C, you see:

250

II II

II-ell

"pc ll



User Options: C Compilation Options
Currently saved in "$LISP/config/c-error.opt"

COMPILER OPTIONS:
Compiler execute directory
Compiler option string
Compiler program name

II II

II-ell

"CC II

If you execute Options and then execute Fortran, you see:

User Options: Fortran Compilation Options
Currently saved in "$LISP/config/ttn-error.opt ll

COMPILER OPTIONS:
Compiler execute directory
Compiler option(s) string
Compiler program name

II II
II-e"

IIt77 II

The options for each language have the same format and meaning.

Name of option in browser

Compiler option string

Compiler program name

Compile execute directory

Meaning of option value

This is a string containing a list ot
options to the compiler. The
documentation for the particular
compiler should be checked for the
exact format of these options. The
default for this option -c tells
the compiler to suppress loading of the
object file after the compilation
succeeds. The HP-UX reference manual
has more information on the options for
a particular compiler.

This is a string containing the name of
the program to be run to perform the
compilation. It should be modified for
special versions of compilers (e.g
cross compilers for other machines) .

This is a string containing the path name
of the directory that the compilation
will be executed in. If a file being
compiled includoa other filoa the path
names of those files will be relative
to this directory. If this option
value is a relative path name then is
relative to the directory containing
the source file.

251



When a compilation is initiated (via the Add-files or Utilities Update commands), the
options will be used to build a command string to tell HP-UX how to do the compilation.
For each file being compiled the suffix will determine the language and the option values
for that language will determine the command string. The command string will have the
following form:

cd directory ; program 01Jtion-string file-name

Directory is determined from the value of the Compile execute directory opt.ion for the
particular language, Program is the Compiler program name option for the particular lan­
guage and option-string is the Compiler option string option for the particular language.
For example executing an Add-files command for the file /users/guest/test. c with the
C options set at their default values would result in the command string

cd /users/guest : cc -c test.c

being executed to perform the compilation.

Options for make
If you execute Options and then execute make, you see:

User Options: Make Options
Currently saved in "$LISP/config/make-error.opt ll

MAKE OPTIONS:
Make execute directory
Make file name
Make option string
Make target

These options have the following meaning:

II II
1111

II-k"
1111

Name of option in browser Meaning of option value

Make execute directory This is a string containing the
directory that the system will be in
when executing make.

Make tile name This is a string containing the name
ot the description tile that specifies
the dependencies and commands that
make will execute. It the value is
1111 then make will search the
current directory tor the detau1t make
file names as described in the HP-UX
manual in section make{l).

252



Make option string

Make target

This is a string containing options for
make. See section makerl) of HP-UX
manual for details on make options.

This is a string containing the target
goals that make will try to build.
See make(l) in HP-UX documentation
for further information on make
targets.

When make is invoked from an error index (via the Utilities Run-make command), the
options will be used to build a command string to tell HP-UX how to nm make. The
command string will have the following form:

cd directory ; make make-options target

Directury is the value of the Make execute directory option, and target is the value of
the f\lake target option. Make-Options is obtained by removing all occurrences of the
ignored opt,ions (-d, -n -q and -s) from the value of I-lake option string. Then if the
value of Make file name is not "», -f and the file name are appended to mnke-options.

For example, if the make options were set as follows:

Make execute directory
Make file name
Make option string
Make target

"-/test"
"special-make"
"-k _q"
"install"

then invoking Utilities Run-make would result in the command string:

cd -/test ; make -k -f special-make install

being executed to run ma.ke.

253



Browsing an Error Index Item
Browsing the current item in an error index activates an enor minor mode in the buffer
containing the source file. The mode line will indicate this by displaying the language
of the source file and the word Error in parentheses. Additionally the error message
associated with the current error index item is displayed in the prompt line.

The error minor mode provides two commands that let you move to the previous or next
en-or without exiting to the error index. The two key sequences and commands are:

M-X next error

M-X previous error

Positions the cursor at the next error. If there are no errors
after the current one in the associated error index the error
message No next error will be displayed. This command has
an abbreviated form (C-X M-N).

Positions the cursor at the previous error. If there are no errors
before the current one ill the associated error index the error
message No previous error will be displayed. This command
has an abbreviated form (C-X M-P).

Both commands automatically change the displayed file when the new error is in a
different file. After positioning the cursor on the next or previous error, the error message
associated with the new current error is displayed in the message area. These commands
will not find the next or previous errors when the line at the position of the error has been
changed in the buffer containing the source file. After you exit (via C-M-L) the source
file containing errors, you will return to the error index. If you changed the current item
by invoking either M-X next error or M-X previous error commands, it will be reflected
in the display of the error index. The new current item will be highlighted.

254



Saving and Restoring Error Indexes
When an NMODE session is exited all error indexes that were created during that session
are destroyed. To save the effort of having to create error indexes each time a new
NMODE session is started there are commands that allow you to save an error index
after it has been created and restore that error index in a subsequent session.

Saving an Error Index
To save an error index you must be in t.he error index you want to save. Execute Utilities
and Write to save the error index. NMODE will display a prompt something like:

Write browser database to file (Default is '$HOME!acme-code.eb')

If you enter a IReturn I in response to the prompt the default value is used as the file
name to save to. If you enter the path name of a directory followed by / then the
error index is saved in the file in that directory. In the example above if you entered
/users/guest/codc-indcxcs/ the error index would be saved in the file /users/guest/code­
indexcs/acme-codc.cb. If you enter the path Ilame to a file the system will modify the
name of the file to insure that it is not longer than 14 characters and that it ends in .eb.
The error index be will saved in the file with the resulting name. Saved error index file
names will always end in the suffix. eb so they can be identified.

After a response is entered NMODE will display the message:

Writing index database ...

When the save operation is complete NMODE will display a message of the form:

File file-name Vlritten.

to indicate that the save operation is complete.

255



Loading Saved Error Indexes
An error index that has been created and saved can be loaded back into NMODE either
interactively or programmatically. There are several methods that can be used to load a
saved error index interactively.

• Within the Error Indexes facility you can invoke the Create command. NMODE
will display a new menu in the prompt area. If you now invoke the command
Load-error-index NMODE will display a prompt similm' to:

Load index file (type defaults to It.eb lt
): (relative to /users/guestl)

You should enter the name of the file containin~ a saved error index. You do not
need to enter the full path name of the file. The 8uflix can be omitted. It will default
to .eb as the prompt (type defaults to II. eb ll

) indicates. Also the path name can
be entered relative to the working directory of NMODE, which is displayed after
relative to in the prompt. After you enter a file name NMODE will load the error
index saved in the file into the system and move you into that error index. If the
file does not exist or is not a saved error index, NMODE will display the error
message:

File file-nante is not a saved error index

• You can invoke the command M-X Load Error Index to load a saved error index
from anywhere within NMODE. NMODE will respond with the same prompt dis­
cussed above. After you enter the file name of a saved error index NMODE will
load and enter the error index.

• When you are in a directory browser containing items for files that are saved error
indexes these error indexes can be loaded using directory browser commands. First
you must select an item for a file containing a saved error index that you want to
be loaded. Now you can load the error index by invoking either the Browse or the
Type-specific Load command. NMODE will then load the error index from the
indicated file and then enter the error index. These two commands can be used on
grouped items to load more than Olle error index. If the current item is part of a
group then invoking the Browse or Type-specific Load commands will load saved
error indexes for each of the files in the group.

You may want t.o load saved error indexes during t.he init.ifllizat.ion of yom' NMODE
session. For this reason there is a programmatic met.hod of loading saved error indexes.
If you evaluate the form:

(nmode: load-file-index-browser-db file-nante

256



liMODE will load a saved file index from file-name. This function is used to load
saved code, file search and error indexes programmatically. File index is a generic term
that covers all three of these indexes. File-Name must be t.he full path Ilame t.o the error
index file and must end ill .eb when loading a saved error index. If the file does not exist
or is not a saved error index NMODE will display the error message discussed above.

The function nmode :load-file-index-browser-db can be invoked from your NMODE ini­
tialization or customization files to load error indexes when your NMODE sessioll is
started.

When saved error indexes are loaded programmatically t.he error' indexes are not auto­
matically entered. However, they will be displayed in the Error Indexes facility just like
other error indexes.

257



258



Chapter 16
User Options

Introduction
This chapter discusses the User Options facility which allows customizatioJl of other
system facilities. User Options for a particular facility are described within the chapter
for that facility, All User Options are reviewed here.

Recall that the NMODE user environment has many system variables (user options)
that are customizable. This means that you can invoke a browser of user options for a
particular facility and modify the values of available options, thereby manipulating the
facility to suit your needs. For example, recall that the display of information about the
size, write date, and permissions for items in an active directory depends on the values
of the user options for the browser for directories.

From NMODE Root, the facility called User Options provides access to browsers for
modifying specific user options, which ill turn, provide quick and easy access to system
variables.

User options browsers display a list of fields, specific to a certain facility, corresponding
to system variables and functions. The fields are displayed with a label that identifies
the option, and the current value of the option.

The next several sections discuss how to work with the options browsers.

259



Selecting User Options
This section discusses the user options and some things you need to do to be able to
modify their values.

You can invoke a browser for user options in several ways.

• When you are using some browser that lets you set opt.ions, execute the command
named Options (or execute M-X Options). This invokes a browser for user options
related to the current browser and provides a menu of cOllllnands that. let you
manipulate the related options. This command is discussed in detail later.

• If you want to change options for more than one facility, from NMODE Root. browse
into User Options, or execute M-X options from anywhere in NMODE. You will
then have a choice of several User Options browsers for various facilities.

• If you browse the directory $LISP/config (or the directory specified by (:I:user­
customize-prefix:I:), you can point to and browse into a file that has an .opt suffix.
This invokes a browser for user options for the facility implied by the filename. For
example, browsing into lisp-vars .opt invokes an options browser for changing the
values of some Common Lisp system variables.

• Execute M-X load options: This command prompts for a user options file name
and either: creates a browser for user options for the specified file when no such
browser exists; or reent,ers the specified browser.

However you first enter an options browser, the browser is added to the facility called
User Options.

260



The User Options Facility
This section describes the facility called User Options, which can be browsed from
NMODE Root. Depending on what facilities are loaded, the display looks like t.his:

User Options

NMODE Window Creation Options
Execution Monitor
Debugger Printing
Stack Item Visibility Options
HP-UX Access Options
Common Lisp User Options
Directory Options
lIMODE General User Options

~ Browser (User Options)

Help Browse Group Filter Create Options Kill Quit

Your list of items can vary considerably, depending on how you customized your ini­
tialization file and which options browsers you have used during the current NMODE
session and any additional facilities you have used. The item named "MODE General User
Options is special; this it,em is described lat.er in the section ca.lled "Options".

Notice the familiar menu of commands. The commands named Help, Browse, Group,
Filter, Kill, and Quit work according to directions given earlier in the section called
"Common Browser Commn.nds" in t.he "Int.roduct.ion to Browsers" chapt.er. The com­
mand named Create is discussed next, and Options is described in the next section.

Executing Create provides the following menu of second level conuuallds.

Load-options-file File Buffer Other QUit-create

The Load-options-file performs the same fundion as the M-X Load Options command
discussed in the previous seet.ion.

The other Create second-level cOlHma.nds, File, Buffer, and Quit-create, work as their
name implies. Executing Other exits the current browser and enters a browser for crea.ting
other things. This was explained earlier in the chapter ca lied "Introd uct.ion to Browsers" .

261



Loading User Options
Some options are always loaded. You can examine these options by browsing the User
Options facility at NMODE Root.

User Options

NMODE Window Creation Options
Common Lisp User Options
NMODE General User Options
Directory Options

Generally, a new Option will appear in this list when one of the facilities appearing in
Additional Facilities is loaded. When you load one of Lhe facilities, NMODE checks
the value of *user-customize-prefix* to determine the directory llame to check for the
optiolls file.

~
0'

When you modify the options for a facility, you can save the modified options in the
directory of your choice (defaults to the value of nmode: :I:user-customize-prefix:"). The
next time the facility is loaded, the modified options are restored from the directory
specified by :f:user-customize-prefix*. If the desired opt.ions are not found in the loca­
tion specified by *user-customize-prefix;I:, then they are read from the $LISP/config/
directory, which contains the original versions of the options files. J
Options Browser Command Menu
The Help, Group, Filter, and Quit commands were discussed in the "Introduction to
Browsers" chapter of this manual.

Browse/modify
The Browse/modify command allows you to change values or invoke functions. Here are
the different types of options and how to change them.

<Browse to invoke function>

Yes/No

Simply Browse this it.em t.o invoke t;he funct.ion indi­
cated bv the description. For example. the HP-UX
Access facilit.y will creal,e an IIP- {IX shell if you
browse the Create System Shell only function.

Many item are simply "yes" and "no" toggles. For
instance, in the Directory Options browser, you can
have the file size displayed in a directory browser.
By browsing this item, you can control whether the
file size is shown.

262



T/NIL

Multiple Choice

Numeric

String

Similar to the "yes" and "no" toggle described
above. See the Common Lisp User Options for ex­
amples. At other times a NIL may indicate an unset
option, in which case you will be prompted for a
value.

Some items provide three or more choices. Repeated
browsing cycles through all possible choices. For ex­
ample, the Common Lisp User Options item called:
:1:print-case:l: allows printing to be in uppercase,
lowercase, or capita.lized.

Browsing a numeric item prompts you to enter
a new value. An example is the NMODE General
User Options. Browsing Undo Stack Depth for New
Buffers prompts you for the number of changes to
be retained during an editing session. You may en­
ter a new number or accept the default value by
pressing IReturn I.

Many items accept a string as input. Browsing a
string option prompt.s you to enter a string. It is im­
pOl·tant to note the default value of a string can be
the null string (cO)) and pressing IReturn I will result
in the value being set to the null string. For exam­
ple, in the UMODE General User Options, the Author
name item will prompt. you to enter your name. C-G
will abort the input without changing the value of
the option.

Sort
The Sort command allows you to rearrange the list of opt,ions alphabetically or by argu­
ment type.

Write
Once you have modified the options to a particular facilif.y, use the Write command to
save your changes. You are prompted for a filename. The default vallie is t.he pn.t.hname
specified by *user-customize-prefix:t: in your .nmoderc file (set. to $HOl-IE hy default) plus
t.he name of t.he Opt.ions file. Do not. change t.he ba.::;e file Ilame of all opt.ioll::; file. If you
do, NMODE will not load it automatically in future sessions.

263



By allowing the Options file to be written to each ll~er8 "home" directory, each user can
have his or her own customizations.

Once the file is written, the next time NMODE is executed the modified options will be
in effect.

Restore-default
At some time you may wish to restore an option t.o its factory default. The Restore­
default command allows you to restore the currently selected option to its original value.
This is possible because each Options Browser retains a copy of the factory default option
values.

Changing more than one option is possible by usilll4 an argument (such as C-U 5 to
change the next five options) or by grouping.

A Typical Options Menu
Browsing User Options at the top level, and then browsing HI,IODE General User Options
results in the following display:

User Options: HI-lODE General User Options
Currently saved in $LISP/config/nmode.opt

NMODE ENVIROllMENT CONTROL:
Multiple selection of Group (» items:
HP-UX Command for Nmode Printing
Symbol for Selected Window
Undo Stack Depth for Hew Buffers
Expose OUTPUT Buffer for any output
Add terminating newline to buffer
Set Up NKeys

FILE SYSTEM CONTROL:
Merge Default File Name Suffixes
Directory for LAN Network's Special File

BUFFER & FILE HEADER CONTROL:
User Name for Revisions
Author Name
Initial Status
User Company Hame for Copyright
Update Revision Date on Writes
Case-sensitivity on No

Yes
1I1pll
II <ll II
60
Yes
Yes
<Browse to invoke function>

liEd Jones ll
liEd Jones, Ace Corp.1I
IIExperimental (Do Hot Dist.)11
IIAce Corp."
Yes

<ll Browser (User Options) NMODE General User Options

Help Browse/modify Group Filter Sort Write Restore-default Quit

264



The fields on the right show the current values for the options named on the left. Note
that the values control various ~pects of your environment. For example, wit.h the above
value of the Undo Stack Depth for New Buffers option, you will be able to undo the last
50 changes in a buffer with the Undo command. As another example, the values assigned
to options for File Header Control will show up in file headers that you insert with M-X
Make Header.

An options browser lets you manipulate user options for a particular facility. What
changes from one options browser to another is the fields, options, and values that you
can manipulate.

Available Options
If you are familiar with NMODE and just want to explore some options browsers on your
own, the directory named $LISP/config contains the following option files.

c-code.opt
c-edit.opt
c-error.opt
db-print.opt
directory.opt
ftn-code.opt
ftn-edit.opt
ftn-error.opt
hp-ux.opt
lisp-code.opt
lisp-vars.opt
make-error.opt
nmode.opt
pscl-code.opt
pscl-edit.opt
pscl-error.opt
stack-vis.opt
window. opt
xm-options.opt

Pointing to and browsing into any such file invokes an options browser for t.he facility
implied by the filename.

265



Options
Here is a synopsis of each of the Options Browsers.

NMODE Window Creation Options: Contains alterable specifications for the next win­
dow to be created as well as a locator device enable and disable function.

Conunon Lisp User Options: Contains alt.erable lisp variables that control reading and
printing options as well as error system control and optimization control.

Directory Options: Provides display control on directory items as well as additional
control on how files are read in and manipulated.

NMODE General User Options: Provides control for the basic nmode environment in­
cluding file system and file header control file header control.

Make Options: Options for controlling the rUllning of make files.

Pascal Compilation Options: Options for controlling the compilation of pascal files.

Fortran Compilation Options: Options for controlling the compilation of fortran files.

C Compilation Options: Options for controlling the compilation of C files .

.
LISP Code Index Options: Provides control over what code items (lines of code, when
browsed, enters the file at that location in the code) are extracted based on lisp constructs
and column location of forms.

Pascal Code Index Options: Provides control over what code items (lines of code, when
browsed, enters the file at that location in the code) are extracted based on Pascal
constructs.

Fortran Code Index Options: Provides control over what code items (lines of code, when
browsed, enters the file at that location in the code) are extract.ed based on Fortran
constructs.

C Code Index Options: Provides control over what r.ode it.p.l1ls (lines of code, when
browsed, enters the file at that location in the code) are ext.ratted hased on C constructs.

Execution Monitor: Provides control over the basic functioning of the execution monitor
:\$ wpll t.hp Ipvpl~ t.n wl1iC"h it. PXP("lIt.P~.

266



Debugger Printing: Provides control over how much information is printed by the exe­
cution stack analyzer and the execution monitor.

Stack Item Visibility Options: Controls what functions are shown in the stack analyzer.

HP-UX Access Options: Provides control over creation and killing of the System Shell
and shell-buffers as well as options for the popup menus for HP-UX commands.

Fortran Edit Options: Provides program formatting options.

Pascal Edit Options: Provides program formatting options.

C Edit Options: Provides program formatting options as well as a cursor bounce option.

267



268



Chapter 17
Custornization

Introduction
The NMODE user environment can be changed to fit the way yOll work. This chapter
describes how to make various changes.

You can change the following things.

• What a particular keystroke does.

• The labels and functions of softkeys.

• System variables (options) that change the actions of the environment.

At a more comprehensive level, yOll can register new applications in the Applications
Browser and write your own functions to be used as editor commands.

How Customizations are Made
Since NMODE is written in Lisp, you can access and use functions that change its
behavior. Keep in mind that although these functions are available, they are not part
of Common Lisp. Instead, the functions that implement the NMODE user environment
are in the nmode package.

A customization is usually one or more function calls that you originate. This chapter
and the NMODE Command Reference contain the names of the functions usually used
to make customizations. These functions, combined with system variables that can be
accessed and changed, let you modify the NMODE environment so that it meets your
needs.

268.01



When Customizations are Made
Customizations can be made at two times.

• The initialization file in your home directory called .nmoderc: contains forms that
are evaluated at the beginning of each invocation of NMODE. By inserting or
uncommentillg forms ill this file, you can customize NMODE each time it is invoked.

• Options are loaded from the nmode: *user-customize-pre:Ux* directory after initial­
ization files are read.

• Customizations can be made "on the fly" during any session with NMODE, but
such customizations are not persistent. They last only for the duration of the
particular session.

There is also a file named $LISP/c:onfig/nmode. in1t which contains customizations that
you can make for every user of the system. You sbould set up tbis file to suit your needs
before you invoke NMODE so that the environment reflects the customizations you want.
Every user's .nmoderc should include the form:

(nmode:nmode-read-and-evaluate-t11e nmode:nmode-detault-init-tile-name)

which puts the customizations in the file named $LISP/config/nmode. init into effect.

Where to Start
Reading this chapter should give you a good idea of what types of customizations are
possible and how to make them. Another good source is the example configuratiou file
called $LISP/cont1g/nmoderc, which is shipped with your system. This file contains forms
for many typical modificatious of your environment, along with comments that explain
how to change the forms so they suit your needs. The global initialization file named
$LISP/config!nmode.init also contains examples.

268.02



Key Mappings
When you are in NMODE and press a key, possibly in combination with zero or more
of the keys IShift I, Meta (left IExtend char I), IESC I, or ICTRL I, you invoke a function tha.t
performs a task. The association between a key sequence and a fundion is known as a
key binding or key mapping. The combination mentioned zero or more keys because you
ca.n alter the binding for a single key. You should do this with caution and make sure you
do not alter tbe binding of a single key (e.g. IReturn I) that performs some fundamental
task in the system.

Tables known as conunand lists store the bindings for key sequences, and are associated
with modes. For example, when you edit in Lisp Mode, the key sequence C-M-Q is bound
to the NMODE function lisp-indent-sexpr. On the other hand, in Text mode, C-M-Q
is not bound to any function and pressing that key sequence produces an error message.

Determining Key Mappings
To determine what function is bound to a key sequence, execute the Help Binding com­
mand, M-/ or M-? The command prompts you to type the key sequence or extended
command you are interested in, and then brieHy displays in the echo area the name
of the function to whicb that key sequence is bound. If the key sequence is unbound,
the command displays tbe message, Function: Undefined. This command even works
for new key bindings you might create. In general, you should creat,e key bindings for
situations that have 110 current binding. Tbat way, you can add functionality without
detracting from existing functionality. If you need to know which bindings are in effect
in a particular mode, you can get into the desired mode, execute M-X help bindings and
select the All option. You will be given a cboice of where to display the list of bindings.

Changing Key Mappings
Suppose you want to make the key sequence M-= set a mark. That is, you want to bind
M-= to set-mark-command, which is the function that actually executes the Set Mark
command. The inlplied distinctions are important because, in NMODE, you have:

• The name of a command; for example, Grow Pane command.

• The name of the function that executes the command; for example, grow-wlndow­
command.

• The arbitrary key sequence or extended command which accesses the function; for
example, C-X .. or M-X grow pane up, respectively.

268.03



There is usually a close relationship between the Ilame of the command and the name
of the function, but not always. The key sequence is rather arbitrary, but NMODE
does have some conventions concerning the Control, Meta, and Control-Meta keys for
assigning key bindings. For example, deleting a line in any editing mode is C-K, deleting
a sentence in Text Mode is M-K, and deleting a form in Lisp Mode is C-M-]{ where K is ~
used each time to denote the deleting (Killing), and tbe prefix cbaracters progress from .
Control to Meta to Control-Meta.

To set up a key binding, or to alter any other key binding, you must:

1. Determine what function performs the action you wantj

2. Cboose a key sequence that you want to bind to the function (preferably one that
bas no default binding)j

3. Bind the key sequence to the function.

Each step is discussed next.

Determining the Appropriate Function
If you do not know the name of the command that performs the task you want, execute
M-X Explain, wbich prompts you to enter a string. Enter a string such as region 01' ~
whatever relates to the type of commands you want. Examine the list of command
names and descrip"tions, and identify the command you need. You can browse an item in
the list to get more information, such as the name of the Lisp function tbat implements
the command. Doing tbis with set mark, for example, reveals that it is implemented by
tbe function, set-mark-command. The names of functions that implement commands can
also be found in the NMODE Command Reference manual.

Choosing a Key Sequence
Finding an unbound key sequence is a matter of knowing what keys have default bindings,
and trial and error. You can print out a list of all bindings with the NMODE Help
facility's List command. You can also scan the lists of NMODE commands in Appendix
A, which shows the bindings for commands according to logical categories. Doing this
reveals that there is no default binding for M-=.

268.04



Creating a Key Mapping
How you perform this step depends on whether or not you want to have your new binding
persist beyond your current session. IT you only need a binding for the current session,
use the M-X Set Key command. It prompts you for the function and then the key
sequence. Enter the function name (no parens) and type the key sequence like you would
to execute the command. The function must have no arguments.

To have your customizations in effect every time you use NMODE, you need to add
forms to your file named .nmoderc. Several existing functions help you customize the key
sequences used to access command functions. One of them is:

(nmode: add-to-commend-list command-list key-sequence function-name> Function

The function nmode: add-to-command-list is essentially a non-interactive M-X Set Key.
It adds a binding of key-sequence and function-name to command-list. There are several
command lists that you will be concerned with when making customizations, but for now
we'll just use nmode: text-commend-list.

Representing Key Sequences
Since add-to-command-list takes an argument called key-sequence, you need a way of
specifying a key sequence that may include modifiers such as Control and Meta. There
are three macros for doing tbis.

(nmode :x-char key)
(nmode:x-chars {key}·>
(nmode:x-sfk key)

Macro
Macro
Macro

These three Inacros let you specify a key sequence in a call to add-to-command-liat. The
key sequence you are trying to represent determines which one of the three to use. The
figure below shows the keyboard divided into several zones.

268.05



If the key you want to represent (possibly ill combination with Control or Meta) is ill
zone A, then call x-char with the appropriate character optionally preceded by C- and/or
M-. For IDEL I, IESC I, and the space bar, use DEL, ESC, and Space, respectively. For letters,
case is insignificant.

(nmode:x-char C-#)
(nmode:x-char F)
(nmode:x-char C-M-ESC)
(nmode:x-char M-j)

If the key you want to represent is in zone B, use x-char in the same way, except precede
the character with N- (for numeric pad).

(nmode:x-char C-N-*)
(nmode:x-char N-7)
(nmode:x-char C-M-N-\.) ; Need to escape the comma

Tile macro x-chars is used to represent sequences of the characters that x-char can
represent. The first key in a call to x-chars should be a standard prefix character such
as c-x or C-]. Having more than two keys in a call to x-chars is allowed, but does not
make much sense in the context of add-to-command-11st.

The keys that are not in either zone A or zone B can be represented with a call to x-sfk.
The characters that are valid when preceded by zero or more of c-, M-, or s- (shift) are

Reset
User
Back-space
Insert-char
Home
Up-arrow
Enter

Break
System
Insert-line
Delete-char
Prev
Down-arrow
Print

Stop
Clear-line
Delete-line
Caps
Next
Right-arrow
N-Enter

Menu
Clear-display
Tab
Return
Select
Left-arroVi
N-Tab

Additionally the softkeys can be specified in a call to x-sfk with f 1 to f 12 (the eight
normal softkeys plus the four unlabelled keys in the top right corner of the keyboard).

(nmode:x-sfk M-Back-space)
(nmode:x-sfk Print)
(nmode:x-sfk M-f7)
(nmode:x-sfk C-M-N-Enter)
(nmode:x-sfk C-S-f9)

268.06



Example
To bind the keystroke M-= to nmode :set-mark-command every time you invoke NMODE,
add the following lines to your .nmoderc.

(nmode:add-to-command-list 'nmode:text-command-l1st (nmode:x-char M-g)
'nmode:set-mark-command)

(nmode:nmode-establish-current-mode)

The first line adds the binding to the command list. The second line puts that binding
into effect. When making more than one key binding, you only need one call to nmode­
establish-current-mode following all of the calls to add-to-command-list. Remember
that to make the new customizations work immediately after adding them to .nmoderc,
the forms must be evaluated.

Command Lists
Command lists are some of the underlying data structures of the editor. You do not
need to know the details of how they work to make customizations, but you need to
know which command list to use when you add a key binding to your system. The
command list you add a key mapping to determines where that new key mapping can
be used. There are six command lists that you need to know about.

basic-command-list Any key mappings added to this command list are available any­
where in the environment (unless overridden by a more specific
command list).

text-command-llst

mx-text-command­
list

read-only-text­
command-list

read-only-mx-text­
command-list

Key mappings added to this command list are available in the
Emacs major mode.

Key mappings in this command list are available ill the Emacs
major mode. Only M-X commands should be added to this list.

Key mappings added to this command list are available ill the
Emacs major mode. The functions that implement the commands
on this list should not change the contents of the buffer being
edited.

Key mappings added to this command list are available in the
Emacs major mode. The commands on this list should be M-X
commands that do not change the contents of the buffer being
edited.

lisp-command-list The key mappings in this command list are available in the Lisp
minor mode.

text-language­
command-list

Key mappings in this list are available in Text minor mode.

268.07



user-keys-command­
list

This is the command list used by M-X set key and named command
macros. After adding a command to this list, the parameterless
function nmode: :activate-user-keys -mode should be called.

As an example of when command lists are important, imagine that you often switch
between the Lisp and Text minor modes, and you're tired of having to type in the M-X
command. You decide that you want M-P to switch you from Text mode to Lisp mode,
and vice versa. In Text mode, the function to get to Lisp mode is lisp-mode-command. In
Lisp mode, the function to get to Text mode is text-mode-command.

(nmode:add-to-command-list 'nmode:text-command-list (nmode:x-char M-P)
'nmode:lisp-mode-command)
(nmode:add-to-command-list 'nmode:lisp-command-list (nmode:x-char M-P)

'nmode:text-mode-command)
(nmode:nmode-establish-current-mode)

The first form makes M-P invoke the function lisp-mode-command whenever you're in the
Emacs major mode. The second form overrides that binding whenever you're in the Lisp
minor mode to make M-P invoke text-mode-command.

This customization is not possible with the M-X Set Key command, because M-X Set
Key only deals with the user-keys-command-list. We could do a similar customization
by setting M-P to lisp-mode-command, but this would only toggle the Lisp minor mode, J
not go directly between Lisp and Text mode.

Adding M-X Commands
You add a M-X command to a command list in the same way, but with a slightly different
syntax for specifying the key sequence. Suppose you wanted to bind the fUllction browser­
browser-command to M-X Let me at them browsers. The following forms would do the
job:

(nmode:add-to-command-list 'nmode:basic-command-list
(nmode:m-x "Let me at them browsers")

'nmode:browser-browser-command)
(nmode:nmode-establish-current-mode)

There is no way to add M-X commands with M-X Set Key. All extended command
completion features will work with extended commands that you add.

268.08



~.,.." ......
\

Removing Key Mappings
The function remove-trom-command-list takes key mappings off command lists. Here is
the basic function that does the work:

(nmode :remove-trom-command-list command-list key-sequence)

If you decided you didn't like your M-P command for switching between Lisp and Text
mode, you could remove it with

(nmode:remove-trom-command-list ·nmode:text-command-list (nmode:x-char M-P»
(nmode:remove-trom-command-list ·nmode:lisp-command-11st (nmode:x-char M-P»
(nmode:nmode-establish-current-mode)

Since bindings you add with M-X Set Key are added to the user-keys-command-11st,
remove them from the system with

(nmode:remove-trom-command-list ·nmode::user-keys-command-list key-sequence)

268.09



Writing Command Functions
Since NMODE commands are implemented as functions, and you can choose the name
of the function a particular key sequence invokes, you can write your own NMODE
commands.

Combining Existing Commands
If you find yourself often repeating a series of commands, you may want to write a
function that executes the commands for you. For instance, if you're editing text, and
sometimes you want to indent blocks of text differently (like for long passages taken from
another document), it would be handy to have a command to do this for you, rather
than having to do it by hand. The following function would produce the desired action.

;;; Special-indent-command indents a paragraph on both
;;; sides

(defun special-indent-command () ; Command functions have no parameters
(let «old-fill-column nmode:f111-column)

(old-left-fill-column nmode:left-fill-column)
(old-paragraph-indent nmode:paragraph-1ndent»

(setf nmode:fill-column 60
nmode:left-fill-column 10
nmode:paragraph-indent 0)

(nmode:fill-paragraph-command) ~
(sett nmode:f111-column old-till-column 1

nmode:left-f111-column old-left-f111-column
nmode:paragraph-indent old-paragraph-indent)

After defining this function, bind it to a key sequence using:

(nmode:add-to-command-list 'nmode:text-command-list (nmode:x-char C-M-Q)
'special-indent-command)
(nmode:nmode-establish-current-mode)

You can find the names of functions you might want to use to create your own com­
mands with the Show Binding command, M-/, or by looking in the NMODE Gommand
Reference. If you define a lot of command functions, put all the definitions in one file,
compile it, and then load that file in your .nmoderc before making the key bindings.

268.10



Softkeys
NMODE lets you change the labels and functions of the softkeys, as well as providing a
default softkey setup.

The function nmode-estab11sh-softkey is provided to let you define your own user soft­
keys. The basic form is:

(nmode: nmode-establish-sottkey key function-name label-string)

Key should be a call to x-sfk specifying the softkey you wish to define. For instance,
to specify the softkey (ill shifted, use (nmode: x-sfk S-f 1). Function-name is the name
of the function that you want this softkey to invoke, and label-string is the string that
will appear in the softkey label. To use this capability, define a function that establishes
your softkeys and then bind a key sequence to that function. Then, when you want your
softkeys, execute that key sequence. The IUser I key is a good key to bind to the function
that sets up your softkeys.

Here's what the section in your file named .nmoderc that sets up softkeys might look like.

(defun set-up-them-sottkeys ()
(nmode:nmode-establish-softkey (nmode:x-sfk ft)

'nmode:execute-torm-command
nEval Form")

(nmode:nmode-establish-softkey (nmode:x-sfk f2)
'nmode:move-bac~,ard-detun-command

"Back Form")
(nmode:nmode-establish-sottkey (nmode:x-sfk fa)

'nmode:end-ot-defun-command
"Forward Formn)

(nmode:nmode-establish-sottkey (nmode:x-sfk t4)
'nmode:kill-torward-torm-command
"Kill Form")

)

(nmode:add-to-command-list 'nmode:text-command-llst (nmode:x-stk USER)
'set-up-them-softkeys)
(nmode:nmode-establlsh-current-mode)

After this, you can activate your softkey definitions by pressing I User I. You can also
change softkeys "on the fly" by simply evaluating a call to nmode :nmode-establlsh­
softkey.

There is also a mode-sensitive softkey module called nkeys. See the example NMODE
initialization file ($LISP/cOnflg/nmoderc) for details 011 how to use it.

268.11



parameter-less function called by browse
string displayed in browser line
module name for require

Environment Variables
The NMODE environment contains many variables whose values affect how the system
behaves. These "allow you to make changes to your environment simply by changing the
value of the variable. For example, the variables nmode :fill-column and nmode :paragraph­
indent control what a paragraph looks like when you use the command that fills para­
graphs.

The important environment variables can be changed in an options browser. Browse into
User Options from NMODE Root to see what options browsers are available. See the
chapter "User Options" for more information.

Registering Applications
The User Application browser provides a convenient mechanism for accessing Lisp appli­
cation programs. You can create the browser and add an application to it with a form
like:

(nmode: nmode-register-application function display-string module-name)

Function is the parameterless function that you call to invoke the application; display­
string is a string that identifies the application in the browser; and module-name is a
string that is the name of a module that can be used as a single argument to require (i.e.
module should be the name of a file in $LISP/modules/local minus the. b suffix). H the
function to be called is in a package that may not exist until the application is loaded,
you must precede the call to nmode-register-application with a call to make-package, and
qualify the fUllction name with "pkg::". For example,

(make-package IIEXSYS")
(nmode:nmode-register-application

°exsys::solve-worlds-problems
lip Solverl!
lIapp-module ll )

268.12



Appendix A
NMODE Quick Reference

Use this lift-out appendix for quick referencl' 1,0 t.he key sequences and Meta-X Command
names that execute NMODE commands in a default user envi.ronment; that is, in an
environment that you did not extensively customize or extend. In the three-column
format for documenting commands:

• The left column indicates what the command does.

• The middle colunm is a key sequence that executes the command.

• The right column is the Meta-X prefix and gnglish COlllllHUld name that executes
the command.

• An n.a.d. in the middle column means the cOlluna.nd has no assigned default key
sequence.

The execution of some commands requires prior loading of certain facilities, which this
appendix assumes are present. See the appropriat.e chapter in the NMODE User's Guide
if you need information about whether a facility must be loaded to use a command. The
Installation and Overview lllanual also describes the loading of facilities.

The following manuals 01' appendices contain additional information about executing
NMODE commands.

• The NMODE Command Reference manual contains reference information about
NMODE commands. It lists cOllullands by name and classifies the commands
a.ccording to the same ca.tegories used in t.his appendix. Informal,ion includes: the
cOlluuand name with a descript.ion, the default key sequence, the M-X Command
name, the function name, the available modes, the procedure, and any applicable
comments.

• Appendix B is a liftout card t.hat de~cl'ih('~ .. he spccia I command!' I,hat appear in
the message area in the menus of browsers. These cOl1lmands are also desCl'ibed in
the chapters in the NAtJODE User's Guide that discuss assorted hrowsers.

• Appendix C is a liftout card that describes the softkeys and softkey labels available
for executing selected NMODE commands.

269



C-x <char>

There is no appendix that contains available popup menus, provided you have an oper­
ational mouse. The use of a mouse to execute commands is discussed in the NMODE
User's Gu·t'de.

Options for Executing Commands
NMODE provides assorted options for executing commands. This appendix describes
how to use key sequences and M-X Command names because these means are available
with or without window management software and a pointing device (mouse).

Key Sequences
Executing a command by pressing a sequence of keys (a sequence of keystrokes called a
key sequence) is efficient and direct, once you learn the key sequences. The major types
of key sequences include: C-<char>, C-X <char>, C-X C-<char>, C-M-<char>, and
M-<char> where <char> is a printing character (e.g. A-Z, 0-9, and such as %). Witbin
the HP-UX Access facility, key sequences involve M-H <char> and M-H C-<char>.
See Chapter 2 in the Nmode User's Guide if you need detailed information about key
sequences.

A key sequence such as C-<char> means hold down the Control key (which is I CTRL I),
press a character key, and release both keys. The M-<char> key sequence is the same,
except that M represents the Meta key, which is the left IExtend chari on your keyboard.
Just remember that holding down the Meta key, denoted in all documentation as M-,
means that you hold down IExtend char I, which sits just left of the spacebar. Use the
following conventions to execute key sequence commands.

Hold down the Control key, press Q], and release them. Then, press
a character key.

C-X C-<char> Hold down the Control key, press CD, and release them. Then, hold
down the Control key, press a character key, and release them.

C-M-<char>

M-<char>

M-H <char>

Hold down the Control key, press the Meta key, and release them.
Then, press a character key. The Cont.rol-Meta prefix i~ bound to C-Z
for convenience (i.e. C-Z <char> is the sa.me as C-M-<char».

Hold down the Meta key, press a chal'adel' key, and n~lca.se thcm.

Hold down the Meta key and press W, release them, and press a
ch:tl'acf:(>r k(>y.

M-H C-<char> Hold down the Meta key, press 0, a.nd release them. Then, hold down
the Cont.rol key, prefl~ it charadeI' key, a.nd relea.~e t.hem.

270



Although you might encounter other key sequences, the above information illustrates the
process.

M-X Command Names
A Meta prefix and Command name, M-X <name of eonnnand>, provides an English
context for executing an NMODE command. For example, in Lisp mode within Emacs
mode, executing M-X execute form lets you enter and evaluate a Lisp form. See Chapter
2 ill the NMODE User's Guide for details relat.ed to execut,ing commands via a Meta
prefix and cOlllluand name. Case is not important in the cOlllJuand name; type upper or
lower-case letters, whichever is convenient.

Using Prefixed Arguments
Selected commands in the following lists were prefixed by f,he term, <arg>, to suggest
using a prefixed argument when it is helpful to execute a command many times. The pre­
fixed argument is supplied by executing the Universal Argument command, C-U <arg>,
which is described fully in the chapter called Basic Use of NMODE ill the NMODE
User's Guide.

271



The NMODE Commands
This section lists commands alphabetically within categories. There is some redundancy
in the lists to help you find commands that can fit into several categories.

Prefixes
NMODE uses the following prefixes ill key sequences for comma.nds.

Control-Meta prefix
Control-X prefix
Command name prefix

HP-UX prefix
Lisp prefix
NMODE help prefix

c-z
c-x
l'I-X

or C-M-X
1,I-H
C- ]
C-?

or C-/

None available
None available
None available

lIone available
None available
Hone available

Exits, Restarts, and Returns
These commands get you out of a state or system and into another state or system.

Exits
Cancel command
Exit NMODE to HP-UX
Exit NMODE to Lisp
Leave tutorial
Lisp abort
Lisp qUit

C-G
C-X Z
C-] L
n.a.d.
C-] A
C-] Q

M-X cancel
M-X exit to HP-UX
M-X exit to lisp
M-X leave tutorial
1>1-X lisp abort
!>I-X lisp qUit

Booting NMODE
Boot NMODE from HP-UX Type: /lisp/bin/nmode and press Return

(Hote: not an In,IODE command)

272



HP-UX Access Facility
These commands let you interface with HP-UX from NMODE. In the NMODE User's
Guide and the NMODE Command Reference manual, the commands are divided into
three sections so you can get detailed information about applicability and utilization of
the commands. Here, they are presented alphabet.ically.

M-X HP-UX execute region
M-X HP-UX execute to end

M-X HP-UX execute buffer
M-X HP-UX execute command
M-X HP-UX execute line

M-X HP-UX filter region

Hone available

Hone available

M-X HP-UX complete filename

M-X HP-UX script buffer
};I-X HP-UX script region
};I-X HP-UX send buffer
M-X HP-UX send character

I,I-X recover shell-buffer shell
1I0ne available

I,I-X HP-UX send eof
lll-X HP-UX send interrupt

1>I-X HP-UX execute and delete

M-X create default HP-UX shells
M-X create default shell-buffer
M-X create default system shell
M-X create HP-UX shell set
I,I-X create shell-buffer
M-X create system shell
lIone available

!<I-X HP-UX access options
M-X kill all HP-UX shells
M-X kill current shell-buffer
M-X kill shell-buffer
M-X kill system shell
none available

n.a.d.

n.a.d.

ESCAPE

n.a.d
n.a.d.

M-H B
C-X H
N-H E
Return
C-M-Return

M-H C-D
lvl-H C-C

n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.

M-H M-B
M-H !<I-B
1>1-H C-B
C-Return

I,I-H R
M-H tl
M-H C-H
S-Return
I-I-H F

or 1>I-H C-F
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.

Filter a region

HP-UX options browser
Kill all HP-UX shells
Kill current shell-buffer
Kill specified shell-buffer
Kill the system shell
List a directory

(popup menu only)
Mail

(popup menu only)
Process status

(popup menu only)
Recover a shell-buffer
Reference manual

(popup menu only)
Script buffer
Script region
Send buffer
Send character

(shell-bUffer only)
Send EOF
Send interrupt

Complete filename
(in shell-buffer only)

Create default HP-UX shells
Create default shell-buffer
Create default system shell
Create HP-UX shell set
Create a shell buffer
Create the system shell
Date

(popup only)
Execute buffer contents
Execute an HP-UX command
Execute a line

(in shell-buffer)
Execute and delete a line

(in shell-buffer only)
Execute a region
Execute to end

(in shell-buffer only) or
or

~.., ..,., ,

,"

27~



M-H C-Q
M-H C-S
M-H Y

or M-H C-Y

Send region M-H S
Send signal M-H C-K
Set output buffer M-H c-o

(everywhere but shell-buffer)
Show current directory n.a.d.

(popup menu only)
Start output from command
Stop output from command
Yank last HP-UX output

M-X HP-UX send region
M-X HP-UX send signal
M-X HP-UX set output buffer

None available

M-X HP-UX start output
M-X HP-UX stop output
M-X HP-UX yank last output

Help and Information
These commands provide information. Use them according to the type of iIiformatioll
you need.

M-X explain
M-X find directory
M-X dired
M-X find item
M-X help binding
M-X documentation

or M-X help documentation
M-X help

.J

M-X apropos
M-X browse directory
M-X count occurrences
M-X dired
None available
None available
None available
None available

M-X tutor
M-X lisp help
M-X show fill values
M-X show function binding
M-X show key binding
M-X what cursor position
lvi-X where am i

C-?
or C-/

C-? T
C-] ?
n.a.d.
C-? K N
M-/ or M-?
C-X =
C-? VI

Invoke the Help facility
(provides a menu)

Invoke the Tutor
Lisp help (in Lisp Mode)
Show fill values
Show a function binding
Show a key binding
What is cursor position
Where am I

Find item (need Code Br.)
Help with a binding
Invoke doc. facility

Apropos n.a.d.
Browse a directory n.a.d.
Count number of strings n.a.d.
Dired C-X D
Dispatch table to buffer C-? K A B
Dispatch table to file C-? K A F
Dispatch table to printer C-? K A P
Dispatch table to screen C-? K A S

(Can use C-/ as alternative to C-?)
Explain M-,
Find a directory C-X C-D

or C-X D
M-.
n.a.d.
n.a.d.

274



Modes
On first execution, these commands invoke the implied major or minor mode. For Auto
Fill Mode, a second execution terminates filling. For the other modes, a second execution
does nothing.

Auto fill mode
C mode
Emacs mode
Fortran mode
Lisp mode
Pascal mode
Reset the user bindings
Text mode
User keys mode

n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.

M-X auto fill mode
M-X c mode
M-X emacs mode
M-X fortran mode
M-X lisp mode
M-X pascal mode
M-X reset user bindings
}.I-X text mode
M-X user keys mode

Screens, Windows, and Panes
These commands establish or alter the state of screens, windows, and panes.

<arg>

<arg>
<arg>

<arg>
<arg>
<arg>
<arg>

<arg>
<arg>
<arg>
<arg>
<arg>
<arg>

M-X create default window
M-X create lower pane
M-X create side pane
M-X create window
M-X display next page
M-X display previous page
M-X transpose panes
M-X tull refresh
M-X grow pane up
M-X grow pane down
M-X grow pane left
}.I-X grow pane right
M-X kill pane
M-X kill window
M-X mark pane for transpose
None available
M-X move to pane edge
None available
None available
M-X invert video
None available
M-X refresh
M-X scroll defun to top
N-X scroll down
M-X scroll left
M-X scroll other pane
M-X scroll right
M-X scroll up
M-X select next pane
M-X select next window

n.a.d.
C-X 2
C-M-2
n.a.d.
Next key
Prev key
C-X E
Clear dis.
C-X ­
n.a.d.
C-M-<
C-M->
C-X C-K
n.a.d.
n.a.d.
Down-arrow
M-R
Up-arrow
C-V
C-X V
M-V
C-L
C-M-R
S-Down-arr.
C-X <
C-M-V
C-X >
S-Up-arrow
C-X 0
C-X N

or l~-Next

Create the default window
Create a lower pane <arg>
Create a side pane <arg>
Create a window
Display the next page <arg>
Display the previous pg<arg>
Exchange the panes
Full refresh of display
Grow pane <ar~

Grow pane down
Grow pane left
Grow pane right
Kill the pane
Kill the window
Mark the pane
Move down a line
Move to pane edge
Move up a line
Next page
Nmode invert video
Previous page
Refresh current window
Scroll defun to top
Scroll down
Scroll pane to left
Scroll other pane
Scroll right
Scroll Up
Select the next pane
Select the next window

275



<arg> C-M-P M-X set paragraph indent

M-X select preVious window

M-X select window
M-X set fill column
M-X set fill prefix
M-X set goal column
M-X set left fill column

M-X view one pane
M-X window options

C-X 1
n.a.d.

S-Hext
C-X P
M-Prev

or S-Prev
C-X W
C-X F
C-X .
C-X C-U
C-M-Y

name
<arg>
<arg>
<arg>
<arg>

or
Select the previous window

or

Select a window by
Set fill column
Set fill prefix
Set goal column
Set left fill column

(in Text mode)
Set paragraph indent

(in Text mode)
View one pane
Window options

Writing and Editing Text
These commands let you write and edit text (documents, memos, reports). They work
in Text mode; most of them also work in Language modes: Lisp, C, Pascal. Some
commands are prefixed with <arg> to suggest that the Universal Argument command,
C-U <integer>, is very useful.

M-X delete backward hacking tabs
M-X delete forward character

M-X delete horizontal space
M-X delete indention
M-X insert next character
M-X move backward character
M-X move forward character
M-X tab to tab stop

M-X transpose characters
none available
M-X upcase digit

Backspace
C-D
Delete char
M-\
1,1--
C-Q
C-B
C-F
M-I
M-Tab
C-T
C-H
M-'

<arg>

Characters
Delete backward
Delete forward

<arg>
<arg>

or <arg>
Delete horizontal space<arg>
Delete indentation <arg>
Insert next character <arg>
Move backward <arg>
Move Forward <arg>
Tabbing (in Text Mode) <arg>

or
Transpose characters
Simulate backspace
Upcase digit

Words
Delete backward word
Delete forward word
T.ower~RAe word
Move backward
Move forward
Transpose words
Uppercase initial
Uppercase word

<arg> M-Backsp 1\I-X delete backward word
<arg> M-D 1\I-X delete forward word
<Rrg> M-T. M-X loll,prr.RflP lI,ord
<arg> M-B M-X move backward word
<arg> M-F M-X move forward word
<arg> M-T M-X transpose words
<arg> M-C M-X uppercase initial J<arg> "'I-U 1-!-X uppercase word

276



Transpose lines

Open a line
Open line and indent

Lines
Auto fill return

(provides tilling
Auto till space

(provides tilling
Back to indentation

<arg> Return
in Auto Fill mode)

<arg> Spacebar
in Auto Fill mode)

M-M
or C-M-M
or C-M-Return

Center a line <arg> M-S
Clear the current line Clear-line
Delete a line <arg> C-K
Delete blank lines C-X C-O
Delete matching lines n.a.d.
Delete nonmatching lines n.a.d.
Indent a new line <arg> C-J
Move down line extend <arg> C-N
Move down line <arg> Down-arrow
Move to line end <arg> C-E
Move to line start <arg> C-A
Move up line <arg> C-P

or <arg> Up-arrow
<arg> C-O
<arg> M-O

or Insert-line
Split line <arg> C-M-O
Tabbing (in Text Mode) <arg> M-I

or M-Tab
<arg> C-X C-T

Sentences
Bac~1ard delete sentenc<arg> C-X Backsp
Backward sentence <arg> M-A
Forward sentence <arg> M-E
Delete sentence <arg> M-K
Transpose two sentences<arg> C-M-T

(in Text Mode)

Purugrupht'J
Back to indentation C-t-I-f',t

or M-M
Backward paragraph <arg> M- [
Fill paragraph <arg> M-Q
Forward paragraph <arg> r.1- ]

~
Delete paragraph C-X M-K
Mark paragraph n.a.d.
Set till column <arg> C-X F
Set left fill column <arg> C-M-Y

(in Text Mode)
Set paragraph indent <arg> C-M-P

None available

None available

M-X back to indentation

M-X center line
M-X clear line
M-X delete line
M-X delete blank lines
M-X delete matching lines
M-X keep lines
M-X indent new line
M-X move down extending
M-X move down
M-X move to end ot line
M-X move to start of line
M-X move up

N-X open line
M-X open line indent

M-X split line
M-X tab to tab stop

M-X transpose lines

M-X backward delete sentence
M-X backward sentence
M-X forward sentence
M-X delete sentence
M-X transpose sentences

M-X back to indentation

M-X backward paragraph
M-X fill paragraph
M-X forward paragraph
M-X delete paragraph
N-X mark paragraph
M-X set fill column
M-X set left fill column

M-X set paragraph indent

277



(in Text Mode)
Transpose paragraph <arg> C-X M-T M-X transpose paragraph

Killing and Yanking Text
Append next kill C-M-W M-X append next kill

~Backward delete senten.<arg> C-X Backsp M-X backward delete sentence
Delete backward word <arg> 1>1-Backsp M-X delete backward word
Delete torward word <arg> M-D M-X delete forward word
Delete line <arg> C-K M-X delete line
Delete paragraph C-X M-K M-X delete paragraph
Delete sentence <arg> M-K M-X delete sentence
Delete region C-W M-X delete region
Insert the last kill <arg> C-Y M-X insert from kill ring
Unkill previous <arg> M-Y M-X unkill previous

M-X move to buffer start

M-X fill comment
M-X fill region
M-X get register
M-X insert date
M-X insert in buffer
M-X move to buffer end

None available
None available
M-X center line
M-X copy region
M-X delete to buffer end
M-X expand abbreviation

M-X upcase digit
M-X uppercase initial

M-X move to pane edge
M-X negative argument
M-X put register
M-X set fill prefix
M-X set goal column
M-X set indent to argument
N-X set left margin
M-X set right margin
M-X set undo depth
I-t-X simulate tab
I-I-X Lab Lo Lab Ii Lop

M-X terminate buffer with newline
M-X undo

M-Left-arrow
M-Right-arro

<arg> M-S
M-W
M-Clr dis
C-Return

or S-Return
<arg> M-Z
<arg> M-G

C-X G
n.a.d.
n.a.d.
M->

or Shifted Home
M-<

or Home
<arg> M-R

Cn
C-X X
C-X .
C-X C-N
n.a.d.
C-M-Y
C-X F
n.a.d.
C-I
M-l
n.a.d.
C-X U
C-U <int.>
M-'

<arg> M-C

<arg>
<arg>
<arg>
<arg>

Move to buffer start

Fill comment
Fill region
Get register
Insert date
Insert in bufter
Move to buffer end

Assorted Editing Aids
Buffer page left
Buffer page right
Center line
Copy region
Delete to buffer end
Expand abbreviation

Move to pane edge
Negative argument
Put register
Set a fill prefix
Set a goal column
Set indent to argo
Set a left margin
Set a right margin
Set undo depth
Simulate tab <arg>
Tab to Lab sLop <tu"g>

Terminate buffer/newline
Undo text buffer
Universal argument
Upcase digit
Uppercase initial

278



Working With Strings
These commands find, replace, insert, or otherwise deal with strings. Use them in editing
text or code.

Count occurrences
Delete matching lines
Delete non-matching lines
Incremental search
List matching lines
List nonmatching lines
Query replace
Replace string
Reverse search
Search backward for string
Search forward for string
Word search

n.a.d.
n.a.d.
n.a.d.
C-S
n.a.d.
n.a.d.
M-y'
n.a.d.
C-R
n.a.d.
n.a.d.
C-M-S

M-X count occurrences
M-X delete matching lines
M-X delete non-matching lines
M-X search
M-X list matching lines
M-X list non matching lines
M-X query replace
M-X replace string
M-X reverse search
M-X search backward
M-X search forward
M-X word search

Using Marks in Text and Code
These commands set marks, which when used with the cursor's location and the Copy
Region Command, M-W, help you effect block moves in editing text or code.

Exchange point and mark
Mark beginning
Mark defun (in Lisp)
Mark end of buffer
Mark form (in Lisp)
Mark a pane for transpose
~Iark paragraph (in text)
!-Iark sentence
Mark whole buffer
t-tark word

~'

Set mark
or

<arg>
or
or

C-X C-X
C- <
C-N-Backsp
C- >
C-M-O
n.a.d.
M-P
C-X M-S
C-X C-H
M-CD
C-X CD
M-Spacebar
C-Spacebar
C-O

101-X exchange point and mark
M-X mark beginning
M-X mark defun
M-X mark end
M-X mark form
M-X mark pane for transpose
M-X mark paragraph
M-X mark sentence
M-X mark whole buffer
M-X mark word

M-X set mark

279



Writing and Editing Code
Be in a desired language mode (Lisp, 0, Pascal, or Fortran) and use the following com­
mands in concert with most of the commands for editing text.

If a command does not appear to work, you might need to load a particular module.
The forms that load modules are discussed in the Installation and Overview manual, the
Oomments: entry ill the NMODE Oommand Reference manual, and the chapters about
browsers and editing in the NMODE User's Guide.

Comments and Headers
Block comment
Fill comment
Insert comment
Insert date
Make header
Make revisions
Parse header

Evaluating Lisp Programs
Evaluate form
Execute defun
Execute from a point
Execute form (Lisp e)

n.a.d.
M-Z
M-;
n.a.d.
n.a.d.
n.a.d.
n.a.d.

C-X C-E
C-] D
C-]
C-] E

M-X block comment
M-X fill comment
M-X insert comment
M-X insert date
M-X make header
M-X make revisions
M-X parse header

M-X eval form
M-X execute defun
M-X execute from point
M-X execute form

Lisp Break Loops and Errors
Lisp abort C-] A
Lisp backtrace C-] B
Lisp continue C-] C
Lisp help C-] ?
Lisp qUit C-] Q

1-I-X lisp abort
M-X lisp backtrack
M-X lisp continue
M-X lisp help
M-X lisp quit

Deleting and Yanking While Programming
Delete backward form <arg> C-M-DEL M-X delete backward form
Delete forward form <arg> C-M-K M-X delete forward form
Yank last output C-] Y }.i-X yank last output

Examining Code
Browse code
Browse occurrences
Create code index
Create error index
Create file search index
Find source code item
Load code index
Load search index
Register code index

n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
M-.
n.a.d.
n.a.d.
n.a.d.

1'-1-X browse code
M-X browse occurrences
M-X create code index
}.i-X create error index
M-X create search index
M-X find item
M-X load code index
M-X load search index
M-X register code index

280



Transpose forms M-X transpose forms

M-X move backward form
M-X move backward list
M-X move forward defun
M-X move forward form
M-X move forward list
M-X move over paren
M-X move to end of line
M-X move to start of line
M-X count occurences
M-X open line
M-X open line indent
M-X put register
M-X set fill column
M-X Bet fill prefiX
M-X set goal column
M-X set package
M-X show paCkage
M-X split line
M-X lisp tab
M-X tab to tab stop

M-X abort edit template
M-X backward up list
M-X delete backward hacking tabs
M-X delete forward form
M-X down list
M-X end of defun

M-X execution monitor
M-X find item
M-X forward up list
M-X get register
M-X indent new line
not available
M-X insert comment
M-X insert template
M-X lisp indent region
M-X lisp indent sexpr
M-X lisp tab
M-X Make Parens
M-X make placeholder
M-X make revision
M-X make template
M-X move backward defun

Execution monitor
Find item (the meta-point)
Forward up list <arg>
Get register
Indent new line in Lisp<arg>
Insert closing bracket
Insert comment
Insert template
Lisp indent region
Lisp indent sexpr
Lisp tab
Make parens. ()
Make a placeholder
Make revision
Make a template
Move backward defun

Assorted Lisp Programming Aids
Abort edit template n.a.d.
Backward up list <arg> C-M-(
Delete backward hacking<arg> Backspace
Delete forward form <arg> C-M-backsp
Down list <arg> C-M-D
End of defun (in Lisp) <arg> C-M-E

or C-M-]
n.a.d.
M-.
C-l-l- )
C-X G
C-J
)
M-;
M-O

<arg> C-M-\
C-M-Q
C-M-I

<arg> M-(
n.a.d.
n.a.d.
n.a.d.

<arg> C-M-[
or C-M-A

Move backward form (Lis<arg> C-M-B
Move backward list (Lis<arg> C-M-P
Move forward defun <arg> n.a.d.
Move forward form (Lisp<arg> C-M-F
Move forward list (Lisp<arg> C-M-N
Move over paren <arg> M-)
Move to line end <arg> C-E
Move to line start <arg> C-A
Occurrence of string n.a.d.
Open a line <arg> C-O
Open line and indent <arg> Insert-line
Put register C-X X
Set fill column <arg> C-X F
Set fill prefix C-X
Set goal column <arg> C-X C-N
Set package n.a.d.
Show paCkage n.a.d.
Split line <arg> C-M-O
Tab <arg> C-M- I
Tab to tab stop <arg> M-Tab

or M-I
<arg> C-M-T

r"

281



M-X c tab
M-X edit template
M-X delete placeholder
t-l-X fortran tab
M-X get register
M-X insert template header
None available

None available
M-X make placeholder

M-X modify placeholder

M-X match open bracket

M-X match close keyword

M-X match open keyword

M-X match close bracket

M-X move backward indent
M-X move torward indent
M-X move to end of line
M-X move to start of line
M-X next error
M-X next placeholder
M-X parse header
M-X pascal tab
M-X previous error
l-I-X previous placeholder
M-X put register
M-X quit edit template

M-H
M-I
C-E
C-A
C-X M-N
M-N
n.a.d.
C-M-I
C-X M-P
M-P
C-X X
C-X C-W

or C-X C-S

M-)
or C-M-P

M-}
or C-M-B

M-(
or C-M-N

l-f-{
or C-l>I-F

n.a.d.

Match close keyword

Match open keyword

Match open bracket

Modify placeholder
(in Edit Template Mode)

Move backward to indent<arg>
Move torward to indent <arg>
Move to line end <arg>
Move to line start <arg>
Next error (error br.)
Next placeholder
Parse header
Pascal tab <arg>
Previous error (error br.)
Previous placeholder
Put register
Quit edit template

Assorted C, Fortran, and Pascal Aids
C tab <arg> C-M-I
Edit template n.a.d.
Delete placeholder n.a.d.
Fortran tab <arg> C-M-I
Get register C-X G
Insert template header M-O
Lang. insert closing bracket] or }

(in C Mode)
Lang. return and indent<arg> C-J
Make placeholder n.a.d.

(in Edit Template Mode)
Match close bracket

(in C or Pascal Modes)
Tab-to-tab stop <arg> M-Tab

or M-I
M-X tab to tab stop

M-X previous error

t-l-X compile file
M-X compile file
M-X create error browser
M-X next error

n.a.d.
n.a.d.
n.a.d.
C-X M-l~

error-browser)
C-X M-P

error-browser)

Compile Programs
Compile file (Lisp mode)
Compile tile (C, Pas., For.)
Creating error browsers
Next error

(in C or Pascal
Previous error

(in C or Pascal

282



Regions
These commands manipulat,e regions established via a mark and the point. Use them in
conjunction with editing text and code.

Copy region
Delete region
Exchange point and mark
Fill region <arg>
Get contents of register
Indent region <arg>
Indent region in Lisp <arg>
Insert in buffer
Lowercase region
Put string in register
Sort contents of region
Transpose regions
Unkill previous <arg>
Uppercase region
Write region

M-W
C-IJI
C-X C-X
M-G
C-X G
n.a.d.
C-M-\
n.a.d.
C-X C-L
C-X X
n.a.d.
C-X T
M-Y
C-X C-U
n.a.d.

M-X copy region
M-X delete region
M-X exchange point and mark
M-X fill region
M-X get register
M-X indent region
M-X lisp indent region
M-X insert in buffer
M-X lowercase region
M-X put register
M-X sort region
M-X transpose region
M-X unkill previous
M-X uppercase region
M-X write region

Buffers
These commands create, kill, browse, and otherwise manipulate buffers. Use them in
working with text and code.

M-X print buffer
M-X rename buffer
M-X select buffer
M-X select previous buffer
M-X set undo depth
M-X terminate buffer with newline

M-X append to buffer
M-X buffer not modified
M-X create buffer
M-X delete to buffer end
M-X execute script buffer
M-X insert buffer
}.I-X insert from kill ring
M-X insert in buffer
M-X kill buffer
}.I-X Kill some buffers
}.I-X list buffers
M-X mark whole buffer
M-X move to buffer end

M-X move to buffer start

<arg> C-X A
M-­
n.a.d.
n.a.d.
n.a.d.
n.a.d.

<arg> C-Y
n.a.d.
C-X K
n.a.d.
C-X C-B
n.a.d.
Shift Home

or }.I->
Home

or M-<
C-X C-P
n.a.d.
C-X B
C-M-L
n.a.d.
n.a.d.

Move to buffer start

Print buffer
Rename buffer
Select buffer (browse)
Select preVious buffer <arg>
Set undo depth of buffer
Terminate buffer, newline

Append to buffer
Buffer not modified
Create buffer
Delete to end of buffer
Execute a script
Insert buffer
Insert from kill ring
Insert in buffer
Kill buffer
Kill some buffers
List buffers
Mark whole buffer
Move to buffer end

283



Files (Directories)
These commands let you manipulate files, which cau be directories iu some cases.

Append to file
Change file permission
Compile file
Copy file
Create a directory
Create file
Dired (directory read)
Execute a script
Find an active directory
Find a file
Insert file in buffer
Kill a directory
Kill a file
List active directories
Move a file
Prepend to file
Rename a file
Revert to a file
Save all files
Save file
Set the visited filename
Visit a file in a buffer
Write buff. cont. to file
Write window image

n.a.d.
n.a.d.
n.a.d.
C-X C-C
n.a.d.
n.a.d.
C-X D
n.a.d.
C-X 0
C-X C-F
n.a.d.
n.a.d.
n.a.d.
n.a.d.
C-X C-R
n.a.d.
n.a.d.
n.a.d.
n.a.d.
C-X C-S
n.a.d.
C-X C-V
C-X C-W
n.a.d.

M-X append to file
M-X change file permission
M-X compile file
M-X copy file
M-X create directory
M-X create file
M-X dired
M-X execute script file
M-X find directory
M-X find file
M-X insert file
M-X kill directory
M-X kill file
M-X list directories
M-X move file
M-X prepend to file
M-X rename file
M-X revert file
M-X save all files
M-X save file
M-X set visited filename
M-X visit file
M-X write file
M-X write window image

Browsers
These commands let you manipulate the assorted Nmode browsers.

None available

}.I-X browse code
None available

M-X create code index
M-X create direct~ry

M-X create error index

M-X browse occurrences

M-X create search index
M-X find directory
M-X list buffers
}.I-X list directories
M-X nmode root

or M-X list nmode root
M-X list optionsn.a.d.

n.a.d.
C-X D
C-X C-B
C-X C-D
C-X R

n.a.d.
<arg> Down-arrow

or C-ll
n.a.d.Browse occurrences

(file search browser)
Browse up an item <arg> Up-arrow

or C-P
br.) n.a.d.

n.a.d.
n.a.d.

Browse code (code br)
Browse down an item

List facility user options

Create code index (code
Create directory
Create error index

(in C, Pas., Fort.)
Create search index
Find an active directory
List the editing buffers
List active directories
List the facilities

284



Load code index
Load error index
Load options
Load search index
Register code index
\'Iindow options

n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.
n.a.d.

or M-X options
M-X load code index
M-X load error index
M-X load options
M-X load search index
M-X register code index
M-X window options

Miscellaneous Aids
These commands can be used in assorted places, depending on your task and intentions.

M-X begin macro
M-X make space
M-X disable mouse buttons
M-X enable mouse buttons
M-X end macro
M-X execute script buffer
M-X execute script file
M-X make space
M-X name macro
not available
M-X network connect
M-X network disconnect
M-X reset user bindings
M-X save macro
None available
M-X set package
M-X show package
M-X start scripting
M-X stop scripting
None available
M-X user keys mode

not availableC-<digit>
or M-<digit>

C-X (
n.a.d.
n.a.d.
n.a.d.
C-X )
n.a.d.
n.a.d.
n.a.d.
n.a.d.
Cn
n.a.d.
n.a.d.
n.a.d.
n.a.d.
C-X M
n.a.d.
n.a.d.
n.a.d.
n.a.d.
C-U <arg>
n.a.d.

Argument digit

Begin macro
Collect space in memory
Disable the mouse buttons
Enable the mouse buttons
End macro
Execute script in a buffer
Execute script in a file
Make space (collect garbage)
Name macro
Negative argument
Network connect
Network disconnect
Reset the user bindings
Save macro
Start the current macro
Set package
Show package
Start scripting
Stop scripting
Universal argument
User keys mode (toggle)

General Softkeys
The commands executed by pressing softkeys are discussed III Apl)entlix G, which IS a
liftout card.

General Keyboard
The keys 011 the keyboard are documen(,ed ill several phu;e~ mid ill ~everal cuu(,ex(,s. The

NMODE User's Guide contains AIJpendix D, which cont,ains tables that show, for each
key, the tokens in the device driver for a keyboard. The tables show the normal token and
the tokens for various combinations of keys: Shifted, Control, Meta, and Control/Shift.

To see what happens at the user-level when you press a key, see Chapt.er 2 in the NMODE
User's Guide. In addition, the NMODE Command Reference manual contains a section
that explains what happens when you press a key.

285



286



Appendix B

Browser Menus

Introduction
Each browser displays a title, a list of items, a mode line, and a menu of commands that
appear in the message area (the menu can also be called a command line). Each Browser
mode has a fixed menu structure regardless of how you get into the modej for example,
Text-Browsing mode and Help-Help mode are each used in many places, but each has
a fixed menu of commands. The menu of commands is available in addition to typical
NMODE commands established by the dispatch table for the current browser mode. The
functionality that the menu provides is a set of conuuallds specifically intended to let
you use a menu-driven routine to manipulate the items in the browser. This appendix
describes the commands that occur in menus, presenting them in alphabetical order.

Browser commands have the following characteristics.

• Because characters do not self-insert in a browser mode, you execute a command
in a menu by pressing the capital letter in the command's name.

• Each browser has its own menu of commands, although some commands appear
in several menus. For example, the commands named Help, Browse, Filter, Group,
and Quit appear in most menus.

• You do not see all available commands as you move among the browsers because
many commands in top-level menus do not directly execute a command. Instead,
they provide another menu of commands, and some of these commands provide yet
another menu. Consequently, part of knowing how to execute a certain command
is to know where it is located and know which sequence of commands gets to it.

The commands in menus for browsers work in the following ways:

• Some commands such as QUit do something in one sl.ep wil.h no int.ervening a.ction
on your part. That is, they perform a task directly.

• Other commands such as Filter provide another menu of commands. These com­
mands merely provide access to additional commands.

287



• Still other commands such as Write prompt for input and tben perform a task
according to that input. Executing Nmode Abort, e.G, during before you complete
input cancels (aborts) these commands.

In a browser mode, you can use key sequences, M-X Command names, softkeys, and
popup items to execute typical NMODE commands in addition to the commands in
menus. A browser mode provides many nonediting NMODE commands and some editing
commands that have the same functionality in a browser as they have in an editing buffer,
but the context can vary.

Given the assorted browsers, the number of commands, and the nesting of menus, it is
difficult to provide one chart that shows all the commands in their respective browsers
and menus. The following small chart shows the nesLing situation for one command,
Help. The chart shows the general scheme for nesting of menus and lets you see the
structure of the Help facility. You will see some duplication of menus, which illustrates
how NMODE can enter certain modes from assorted locations in the environment.

In the chart, commands preceded by an asterisk appear directly in the menu for Help.
Commands inside braces, {}, appear under a command under Help. Commands inside
brackets, I), appear under the indicated second-menu command. In general, the nesting
of menus in NMODE seldom exceeds three levels. For example, to display the current
dispatch table for a browser mode, you could execute Help, Key-bindings, All-commdands,
and then Screen. The first three commands provide menus and the fourth command
displays the dispatch table.

288

,~"-. .



~'

Chart of Menus and Commands Provided by Help

:~ Where-am-I
Enters Help-Help Mode and provides these commands:

{Leave-help. Quit-help-help}

:l: Explain
Enters Documentation or Text-Browsing mode. Documentation mode
provides these commands:

{Help. Browse, Group. Filter, Leave-help. Quit}

Under Group, you get:
[Item. Exclude. Matching. Differing. Clear, All, Rev.-all. Quit-group]

Under Filter. you get:
[Item. Grouped, Non-grouped. Matching, Keep-matching. Undo, QUit-filter]

:f: Key-bindings
{Name. Description. All-commands, Help-help. Leave-help. Quit-key-help}

Description enters Text-Browsing mode and you get:
[Explain, Help-help. Leave-help, Quit]

Under All-commands. you get:
[Screen. Buffer, file. Printer. Help-help. Leave-help. Quit-list-help]

Help-help enters Help-Help mode and you get:
[Leave-help. QUit-help-help]

1: Documentation
Enters the Documentation facility and provides these commands:

{Help. Browse/execute, Group. Filter. Load, Quit}

:I: Tutor
Enters Tutor mode and provides these commands:

{Help, Browse, Group, Filter, Quit}

:l: Help-help
Enters Help-Help mode and provides these commands:

{Leave-help. QUit-help-help}

:l: QUit-help

289



The Commands
This section contains an alphabetical list of commands that appear in menus of browsers.
The commands are presented alphabetically with information about which commands
you need to execute to get to them. The list has the following format:

• You see the command name and an entry inside parentheses. The term Top, inside
parentheses, indicates that t.he command appears ill a menu at. the top level. This
means that the cOlllmand is visibly available in a menu when you invoke a browser
that has the command. Otherwise, the entry in parentheses shows the sequence of
commands you execute to get to the command in a secondary menu. For example,
Description (Help, Key-bindings) means that you execute Help, Key-bindings, and
then Description.

• A description of the command appears under the command name. Some commands
such as Browse are very common, and in these cases, the description does not
mention the specific browsers that provide the command. Other commands such
as File-permission appear ill the menu of a specific browser, and in these cases,
the description mentions the related browser or browsers.

The list of commands follows:

Activate-directory (Create)
In the browser for Directories, the command activates a directory by reading it into
NMODE and browsing into the directory. The specified directory is added to the list of
active directories.

Add-files (Top)
In a Code Index, Compilation Error Index, or File Search Index, executing Add-files
adds the specified file to the list of files in the index. The action taken by the index when
a file is added is different for each index.

In a Code Index, adding a file also adds lines extracted from the specified file according
to the current extraction rules set by the options for that language.

In a Compilation Error Index, adding a file compiles the file using the currently set
compiler options for that language.

In a Search Index, adding a file simply adds an item to the index for t.he specified file.
Execute Pattern to specify the pattern to search for in the files listed ill the index.

290



The entered file for any index can by a directory, and you can include the wildcard
character, :r.. For example, entering mycode/* adds all files in the directory named mycode,
while entering mycode/old* adds only those files in the directory that begin with the
letters old.

All (Group)
Groups all items in the current browser's list, making them part of the multiple selection
group.

All-coImDands (Help, Key-bindings)
Executing All-commands provides a menu of commands related to getting help.

Screen Buffer File Printer Help-help Leave-help QUit-list-help

The commands named Screen, Buffer, File, and Printer output the bindings for the
current dispatch table to the specified entity. Help-help provides a description of the
commands. Leave-help exits the Help facility altogether and QUit-list-help exits to the
menu that contains All-commands.

Browse (Top)
Invokes an item for viewing or editing, depending on the item.

Browse-code (Type-specific)
In the browser for a directory, when the current item is a source code file, the command
creates and enters a Code Index for the current file. See Type-specific to get more
information about when this command is available.

Browse/modify (Top)
Invokes or modifies an item in a browser for options, whichever operation suits the item.

Browse/ execute (Top)
In the browsers for Additional Facilities and Documentation, the command browses into
or executes an item, whichever operation suits the item.

Buffer (Help, Key-bindings, All-commands)
Displays the current dispatch table in a specified buffer.

291



Buffer-name (Sort)
Sorts buffers a.lpha.betically by na.me in the browser f01" Buffers.

Clear (Group)
Ungroups all items in the browser.

Copy (Utility in an active directory)
Copys the highlighted file, or files, to the file or directory llame you provide.

Create (Top)
The Create command is provided in several browsers. In all cases, executing Create
provides a menu of commands that I~I; you create the type of item related to the browser.
The command also provide:; a comm<.md named Other which gives you alternatives for
creating items. Depending on the current browser, commands in the second level menus
include: Buffer, Code-index, File, Directory, Directory-browser, Error-index or User­
options. Except for Other and Quit, the commands prompt for a llame and then create
the appropriate item, for example, a buffer or an index.

Current-file (Utilities)
In the browsers for code, search, and error indexes, the command displays the name of
the file that was processed to build the current index item (code form, search string, or
error).

Description (Help, Key-bindings)
Prompts for entry of a key sequence or M-X Command llame and then displays informa­
tion related to the entry.

Differing (Group)
Prompts for entry of a string and groups all items that do llot contain the string in their
display lines.

Documentation (Help)
Invokes the top level of online documentation, which is the facility called Documentation
under NMODE Root.

Edit (Type-specific)
In a browser for a directory, executing Edit places the current file ill a buffer in which you
can edit the file. See Type-specific to get more information about when this conulland
is available.

292



Exclude (Group)
Ungroups the current item (removes the ».

Explain (Help)
Prompts for a term for which you want an explanation (in a browser) or defaults to the
current word (in an editing buffer). The command then searches for matches, presenting
them as a browsable list. On not finding any matches, the command indicates that no
matches exist. Avoid entering plural terms.

File (Help, Key-bindings, All-commands)
Prompts for entry of a file name and then writes the current dispatch table to the file.

File-compile (Type-specific)
In the browser for a directory, executing File-compile lets you compile a language source
file. See Type-specific to get more information about when this command is available.

File-name (Sort)
In a browser for buffers or a directory, executing File-name sorts items alphabetically by
file name.

File-permission (Utility)
III the browser for a directory, the command lets you alter the permissions for the current
file in a manner similar to that of HP- UX.

File-revert (Utility)
In the browser for buffers, the command prompts for entry of Y or N concerning your
decision to overwrite the current item's buffer with the existing disc version of the asso­
ciated file. Entering Y lets you revert back to the disc version. Use the command when
you have edited a file in such a way that it is no longer accept.able and you need to start
over.

Filter (Top)
A pervasive command that provides a menu of commands:

Item Grouped Non-grouped ~Iatching Keep-matching Undo QUit

The name of the command suggests the criteria for filt,el'iug. Filtered items are not
destroyed, they are just not displayed. A filter applies during a working session until you
Undo it. You can have more than one filter.

293



Group (Top and several lower-level menus)
A pervasive cOlluuand that provides a menu of commands, any of which let you include
an item in a group.

Item Exclude Matching Differing Clear All Reverse-all Quit

See the individual commands to get additional information.

Grouped (Filter)
Hides all grouped items; that is, it hides all items in the multiple selection group.

Help (Top)
Invokes the Help Facility, providing a menu of commands:

Where-am-I Explain Key-bindings Documentation Tutor Help-help QUit-help

Each command provides help of some type. See the individual commands to get addi­
tional information.

Help-help (Help and several other commands)
Displays a description of the cOllunands in the menu for Help or <other command>. Note
that Help-help appears at a second or third level and that it always functions in this
way; that it, it describes commands in the current menu.

Interpret (Type-specific)
In the browser for a directory, executing Interpret lets you evaluate the current Lisp
source file. See Type-specific to get more information about when this command is
available.

Item (Filter)
Hides the current item; t.hat is, it removes the item from the display, but does not destroy
or otherwise affect the item.

Item (Group)
Groups an item and displays a > to its left. The> indicat.es that t.h(! item IS in t.he
multiple selection group.

294



Keep-matching (Filter)
Prompts for a string to match, and then hides all items which do not contain the string
anywhere in their display lines.

Key-bindings (Help)
Provides a menu of commands that provide assorted types of help relative to bindings
between command functions and key sequences or M-X Command names.

Name Description All-commands Help-help Leave-help Quit-key-help

See the individual commands to get additional information.

Kill (Top or some second levels)
Irreversibly removes a highlighted item. If the kill will remove a file or unsaved buffer,
the command prompts for confirmation to kill or not. Use this command with caution
and think about what it will do before you press IT].

Leave-help (Help, <Some lesser command»
At whatever level, the command exits the Help Facility and returns to the entity in which
you requested help.

Load (Top)
Loads the current item in the browsers for Additional Facilities and Documentation and
displays an L at the left end of an item, but does not browse the item. You can tell if
an item needs to be loaded during a working session because, when you invoke either
browser, an L appears at the left end of any item that was previously loaded.

Load-code-index (Create)
Loads a code index that was previously saved to a file. The new index is added to the
Code Indexes facility.

Load-options-file (Create)
Loads a file of type opt to create a browser for user options.

Load-search-index (Create)
Loads a search index that was previously saved to a file. The new index is added t.o the
File Search Indexes facility.

295



Load (Type-specific)
Lets you load a compiled file into memory. This command was called Faslin in some
other Lisp user environments. See Type-specitic to get more information about when
this command is available.

Matching (Filter)
Prompts for entry of a string and hides (filters) all items that contain the string in their
display lines.

Matching (Group)
Prompts for entry of a string and then groups all items that contain the string in their
display lines, displaying a > next to the grouped items.

Modified (Sort)
Moves buffers marked by an :I; to the top of the list. The :1: indicates the buffers that have
been modified.

Move (Utility)
In a browser for a directory, executing Move prompts for a directory or file name and then
moves the current item to the specified directory or file name. The command removes
the item from the original location.

Name (Help, Key-bindings)
Prompts for entry of a key sequence or M-X Command name and returns the name of
the command function bound to the entry.

N on-Grouped (Filter)
Hides all items in a list that are not groupedj that is, it hides all items not ill the multiple
selection group.

Not-modified (Utility)
In the browser for Buffers, executing Not-modified removes the displayed 'I: from the
current buffer item and lets NMODE treat the buffer as if it. were not modified.

Options (Top)
This command is available in most browsers. It enters the user opt.ions t.hat, relate to
the CUITent browser. If more than one set of user options relate to the current browser,
a list of user-options choices is provided ill a secondary menu of commands.

296



Pattern (Top)
In the browser for file search indexes, the command prompts for entry of a string, which
is used as a search pattern, a.nd initiates a search for the string in all included files.

Print (Utility)
In a browser for a directory, executing Print prints the highlighted file. The command
prints the "in-memory" (buffer) version of a. file, if it is present. A prompt asks you to
specify the printer spooler.

Print-buffer (Utility)
Prints the contents of the current buffer item. A prompt asks you to specify the printer
spooler.

Printer (Help, Key-bindings, All-commands)
Prints the current dispatch table. A prompt asks you to specify the printer spooler.

Quit
Exits the current entity and returns to the previous entity in the current window or pane.

Quit-<command>
Several secondary menus contain a secondary Quit command that quits the named com­
mand. Examples include: QUit-create, Quit-sort, Quit-help-help, and Quit-list-help.

Re-filter (Filter)
In the table of contents for an online manual, the command filters sub-chapter items
untill only the chapter items remain. This browser is initia.lized with 2 filters active.
Re-filter will re-establish one of these filters after a Filter-undo.

Register-code-index (Create)
In the browser for code indexes, the command lets you register a code index that was
previously saved to a file. Registering a code index makes the index it,ems available for
the Find Item command, M-., but not available for browsing via the Code Indexes facility.
A registered code index will take less heap (memory) space than a loaded index, but the
Find Item command will run somewhat slower. A registered code index will appear in
the Code Indexes facilit,y, and browsing n regi~tere(l code index will ill1t.omCl.t.icnlly load
it.

297



Rename (Utility)
In the browser for Directories, the cOlluualld prompts for entry of the new name of the
current file and then renames the file.

Rename-buffer (Utility)
In the browser for BUffers, the command prompts for entry of a buffer name and then
renames the current buffer, using the specified name.

Restore-default (Top)
III the browser for user opt;iol1s, executing Restore-de:tault l'estores the original default
value for the current option (system variable).

Reverse (Sort)
Sorts files in the reverse order of a specified criterion. For example, a reverse sort
according to Size sorts from largest to smallest.

Reverse-all (Group)
Inverts the include-exclude multiple selection group sense of items in a browser.

Run-make (Utilities)
III the browser for search or error indexes, the command invokes the command ill HP­
UX called make (1), which is executed with arguments determined by the values of the
options for make in the browser for error indexes. To make full use of this command, you
might need to examine the documentation for make (1) in the HP- UX Reference manual,
Vol. 1B: Section 1 (M through Z).

Save (Utility)
In the browser for a directory, the command saves (writes) the current file, if it has been
modified, or indicates that no changes need to be written.

Screen (Help, Key-bindings, All-commands)
The command invokes a text-browsing mode and displays the current dispatch table.
Text-browsing mode provides the following menu of commands:

Explain Help-help Leave-help Quit

that you can execute according to your needs.

298



Set-filename (Utility)
In the browser for buffers, the command prompts for ent,ry of a file name and then
associates the specified file name with the current buffer. Hit IReturn I with no entry to
have no file associated with the buffer.

Sort (Top)
In the browsers for buffers or a directory, executing Sort provides a menu of commands
used as criteria for sorting; for example, Filename, Size, or Type.

Size (Sort)
Sorts files according to file size, smallest to greatest.

Trash (Top or after executing Utility)
Marks the current item for deletion, displaying a T at t,he left of the item, or unmarks au
item marked for deletion, removing the T. Marked items are not trashed (deleted) until
you exit the browser with a Quit or C-M-L command.

Tutor (Help)
Invokes the Tutor module, which provides several olllilH' t.utortals that can help you learn
how to use the NMODE environment. If you havt~ 1I0t. previously loaded the module, the
command prompts for a decision to load it.

Type (Sort)
In a browser for a directory, executing Type sorts files according to file type, preserving
the previous order within a type.

Type-specific (Top)
In a browser for a directory, executing Type-specific either: tells you that there are 110

type-specific commands for the highlighted file; or it provides a menu of commands such
as:

Browse-code Edit Interpret File-compile Quit

To determine type, the command uses the curreut file's suffix or standard header. The
menu of subcommands varies to accommodate conventions for workill~ with a file of a
certain type; for example, you call1lot interpret Pascal source code, but, ~l1ch code can be
compiled.

299



Undo (Filter)
Reverses the effect of the last use of the following commands for Filter:

Item Grouped Non-grouped Matching Keep-matching

If you have applied several filters, executing Undo successively undoes the filters in the
order of last applied to first applied. Successive item filters will be undone with a single
Undo command.

Update (Utility)
In a browser for a directory, the command re-reads the directory and updates each
item. This is necessary after the directory has been modified by an HP-UX shell or Lisp
function.

Update (Utility)
III a browser for an index, the command effects any necessary updates in the current item.
It does this by processing the file for the current item again and replacing old items with
newly processed items. If the current item is not marked (included in a multiple selection
group), the command only works on that item. Otherwise, the command processes all
marked items in the browser.

Utilities (Top level for browser for code indexes)
Provides a menu of commands that let you work with the current browser.

Update Write Kill Current-file Quit-util

See the individual commands to get. additional information.

Utilities (Top level in the browsers for error and search indexes)
Provides a menu of commands that let you work with the current browser.

Update Run-make Kill Write Current-file QUit-util

See the individual commands to get additional informatioll.

300



Utility (Top level in browser for a directory)
Provides a menu of commands that let you work with the current browser:

Move Copy Rename Save Kill Trash Print Update Access QUit-util

See the individua.l commands to get additional information.

Utility (Top level in browser for buffers)
Provides a menu of commands that let you work with the current browser:

Not-modified Print-buffer Rename-butfer Set-filename File-revert Quit-util

See the individual commands to get additional information.

Where-am-I (Help)
The command displays a brief description of the current mode along with some descrip­
tion of the commands in the current menu.

Write (Top level in the browser for buffers)
Writes the current buffer to its associated file if the contents of the buffer have been
modified. The command prompts for a file name, offering the associated file as the
default.

Write (Utilities)
In a Code Index or Compilation Error index, the command writes (saves) the index data
base to a specified file (i.e. it prompts for a file).

Write (Top level of browser for user options)
Writes (saves) the options (with their current values) to a specified file. The command
defaults to the current filename in your *USER-CUSTOMIZE-PREFIX* directory. See the
chapter called User Options in the NMODE User's Guide for more details.

Write-date (Sort)
Executing Write-date sorts files according to the date they were written, earliest to most
recent.

301



302

:~



Appendix C
Softkeys and Softkey Labels

Introduction
The softkeys, which are the dark gray keys OIl to (ill in the HP 46020A keyboard, provide
an alternative for executing some NMODE commands. They distribute evenly about two
keys: IMenu I and a IUsed ISystem I combinatiollj the User key is shifted.

Softkeys are available when you run NMODE with HP Windows/900G soft.ware. The
softkey labels appear in two lines in a window at the bottom of Ule display. Softkeys are
available on any other primary display (e.g. a terminal), but the softkey labels might
be truncated and abbreviated. They are not available on any secondary display. The
position of the softkey label relates to the position of the softkey. For example, press [![)
to execute the command given by the third softkey label from the left.

If you do not load the Nkeys Softkey Interface Package, you get two sets of softkeysj
ISystem I and I used toggle the two sets. If you do load this pacltage, some softkeys are
mode sensitivej that is, the available commands change as you move among the major
and minor modes, and you have more commands. In general, you access commands by
pressing ISystem I or I User I and by executing C-System or C-User. In some cases, you
press a softkey to get additional commands. If the softkey labels are not displayed, press
IMenu I, which is bound to the Toggle Menu Keys command and sits between the two sets
of softkeys.

This appendix assumes you will load the Nkeys Softkey interface package, and therefore,
it shows the softkeys you get in that configuration. Your personal initialization file called
.nmoderc has information about loading this package. See the NMODE Installation and
Overview manual and the NMODE User's Guide to get. information abollt this package.

On loading the Nkeys package, you can utilize the following sets of softkeys:

• Pressing IUsed (a shifted key) executes the Setup User Softkeys command, which
provides assorted user keys.

• Pressing ISystem I executes the Setup Mode Soft.keys command, which provides as­
sorted mode-sensitive softlteysj that is, t·he commands change to fit the mode.

303



• Executing I CTI\L II User! (a shifted key) executes the Display User Keys command,
which provides a simple set of keys. They are the same keys you get by pressing
IUser' without the Nkeys package.

• Executing ICTRL II System I executes the Display System Keys command, which pro- ~

vi~els a si1mPNlekset of kkeys. They are the same keys you get by pressing ISystem " )

WIt lout t le eys pac age.

H you do not want the default softkeys, you can extensively cust.omize t.he softkey bind­
ings. Information about how to customize softkey bindings is contained ill the chapter
ca.lled Oustomization in the NMODE User's Guide and in one section of your initializa­
tion file called nmadere.

Softkey Labels and Commands
This section contains an alphabetical list of commands you can execute by pressing a
softkey.

Append to File
Executes the Append To File command, which prompts for entry of a filename and then
appends the contents of the current region to the file.

Auto Fill On (Off)
Executes the Auto Fill Mode command. If you have enabled Auto Fill Mode, the label
reads Auto Fill Off. When Auto Fill Mode is not enabled, the label reads Auto Fill On.

Back Trace
When you get into a break loop, the softkey executes the Lisp Backtrace command.

Break: Abort
When you get into a break loop, the softkey executes the Lisp Abort command.

Break: Continue
When you get into a break loop, the softkey executes the Lisp Continue command.

Break: Quit
When you get into a break loop, the the softkey executes the Lisp Quit command.

304



Buffers
Executes the List Buffers command, which displays a list of current buffers.

Center Line
Executes the Center Line command, which centers the current line.

Complete Filename
111 the HP-UX shell buffer ill Mode Keys, the softkey executes the Complete Filename
command, which attempts to complete any filename you might be entering.

Copy File
Executes the Copy File command, which lets you make a copy of a file.

Create File
Executes the Create File command, which lets you create a new file.

Create Window
Executes the Create Default Window command, which automatically creates a default
window and makes it current.

Directories
Executes the List Directories command, which lists the active directories in the facility
called Directories in NMODE Root.

Exec Defun
In Lisp Mode, executes the Execute Defun command, which evaluates the current func­
tion definition within a Lisp source file.

Exec Form
In Lisp Mode, executes the Execute Form command, which evaluates the current program
(form) within a Lisp source file.

Execute Line
In an HP-UX shell buffer, executes the HP-UX Execute Line command, which trims off
the prompt and executes the entered HP-UX comma.nd.

305



Execute Region
In an HP-UX shelllmffer, executes the HP-UX Execute Region command, which submits
the current region as an HP-UX command or commands.

Execute to End
In the HP-UX shell buffer, executes the HP-UX Execute to End command, which trims
off the current line at the cursor and submits the remainder of the line as an HP-UX
command or commands.

Fill Parag.
Executes the Fill Paragraph cOlluuand, which fills a paragraph.

Find Direct.
Executes the Edit Directory command, which invokes a browser for a specified directory.

Find File
Executes the F'ind File command, which finds (loads) a file and lets you edit it in an
editing buffer.

Format Comment
Executes the Fill Comment command, which fills the segment of a source code file that
contains the file header.

Help
Calls the Help Facility.

Horiz. New Pane
Executes the Create Lower Pane command, which creates a new pane and makes it
current.

HP-UX Command
Executes the HP-UX Execute By Prompt command, which lets you execute an HP-UX
command that you type in the message area.

Indent Form
Executes the Lisp Indent Sexpr command, which indents a form.

306



Insert File
Executes the Insert File command, which inserts a file into the current buffer, beginning
at point.

Jump to Mark
Executes the Exchange Point and Mark command, which exchanges the locations of the
current mark and point.

Lisp Abort
The command aborts an arbitrarily deep break loop.

Lisp Command
Executes the Eval Form cOIlU1ul.nd, which prompts for entry of a form in the message
area and then evaluates the form.

Kill Pane
Executes the Kill Pane command, which kills the current pane in a set of panes.

Kill Window
Executes the Kill Window command, which provides a default and prompts you to press
? to get a list of choices or execute e·G to abort.

Kill Region
Executes the Kill Region command, which kills the current region.

Mode
Pressing the softkey for Mode provides a set of softkeys:

fl

Help

f2

Lisp
Mode

f3

Text
Mode

f4

Autofill
Mode

fa

Exit
Menu

The softkeys on the left work as implied. Executing Exit-Menu returns to the state in
which you executed Mode.

Next Keys
Repeatedly pressing the softkey for INext I cycles through several sets of softkeys for @
through @.

307



Next Page
Executes the Display Next Page conulland. which scrolls the contents of a pane up one
page.

~:::~t~:~~e Select Next Pane conunand. which moves the cursor to the other pane. ~
Next Parag.
Executes the Forward Paragraph command, which moves the cursor foward to the next
paragraph.

Next Window
Executes the Select Next Window command. which makes the next window current.

Next Word
Executes the Move Forward Word command. which moves the cursor forward to the next
word.

NMODE Command
Initiates execution of all M-X Command name and displays the prompt:

Enter Command name (1 for choices. C-G to Abort):

in the message area.

NMode Root
Executes the List Nmode Root command, which displays a list of current facilities in
NMODE Root.

Previous Keys
This is a shift of Next Keys and selects the previous set of softkeys instead of the next
set.

Prey Page
Executes the Display Previous Page command, which scrolls the cout.euts of a pane down
oue page.

308



Prev Window
Executes the Select Previous Window command, which makes the previous window cur­
rent.

Query Replace
Executes the Query Replace command, which lets you do a query replace of a string.

Quit
Executes the function bound to C.M.L, usually Select Previous Buffer command.

Rename File
Executes the Rename File command, which lets you rename an existing file.

Replace All
Executes the Replace String command, which lets you replace an existing string. The
command prompts for the string being replaced and then prompts for entry of the re­
placement string.

Save File
Executes the Save File command, which automatically writes the contents of a buffer to
its associated file, if there is such a file. Prompts for entry of a filename if there is no
associated file.

Search
Executes the Incremental Search command, which lets does an incremental search for a
string as you enter characters.

Search Back
Executes the Reverse Search command, which works like the Incremental Search com­
mand, except that it searches backwards. See Search.

Set L Margin
Executes the Set Left Fill ColuIlln command, which sets the left fill column to t.he value
determined by the cursor's current location unless you provide a positive argument that
is used for the left fill column.

309



Set Mark
Executes the Set Mark command, which sets a mark at the current location of point.

Set P Indent
Executes the Set Paragraph Indent command, which sets the column for paragraph
indentation.

Transp. Chars.
Executes the Transpose Characters command, which transposes the characters either
side of point.

Undo
Executes the Text Buffer Undo command, which undoes deletions and insertions in text.

User Options
Executes the Nmode Horizon Options command, which invokes a browser for user op­
tions.

Vert. New Pane
Executes the Create Side Pane command, which creates a vertical pane to the right of
the current pane and makes the new pane current.

Write File
Executes the Write File command, which saves the current buffer to a specified file.

Yank Last Kill
Executes the Yank Last Kill command, which yanks (reinserts) the contents of the top
level of the Kill Ring.

310



Appendix D
Keyboard Keys

Introduction
Each key on a keyboard in combination with the modifier keys Shift, Control, and Meta
produces a unique token. The token as reported by various commands is composed of a
base-symbol with optional prefix codes for the modifier keys. These prefix codes are S­
for Shift, C- for Control and M- for Meta. There is also a prefix code N- for keys on the
number-pad. The prefix codes are allowed in any comhination of those listed in the note
for the specific key.

These same tokens (without the word Key) are used in customizatioll code to define
key-bindings. The letters in the matrix refer to availability notes given at the end of this
section.

311



The Keys and Tokens
This section provides a table of the keys and tokens for tbe keyboard. Then, the section
provides some information and the rules for interpreting the letters in the table.

- - - - - APPLICABLE RULE
MAIN KEYBOARD TOKEN NAME GRAPHICS S300 239X

KEY LABEL WINDOW ITE TERMINAL

Back space Back-space Key Z U U
Break Brea.k Key B B B
Caps Caps Key Y X X
Clear display Clear-display Key Z U U
Clear line Clear-line Key Z U U
Delete char Delete-char Key Z U U
Delete line Delete-line Key Z U U
(Down-arrow) Down-arrow Key Z,W S S
Enter Enter Key Z X #
fl fl Key Z U U
f2 f2 Key Z U U
f3 f3 Key Z U U
f4 f4 Key Z U U
f6 f6 Key Z U U
f6 f6 Key Z U U
f7 f7 Key Z U U
fa fa Key Z U U
(Home-arrow) Home Key Z S S
Insert char Insert-char Key Z U U
Insert line Insert-line Key Z U U
(Left -arrow) Left-arrow Key Z,W U U
Menu Menu Key Z X L
Next Next Key Z U U
Prey Prey Key Z U U
Print Print Key C,M X X
Reset Reset Key C,M X X
Return Return Key Z U U
(Right-arrow) Right-arrow Key Z,W U U
Select Select Key Y X X
Stop Stop Key Z X X
System System Key C.M X X
Tab Tab Key Z S S
(Up-arrow) Up-arrow Key Z,W S S
User User Key C,M X X

(Space bar) SPACE A A.I A,l
ESC ESCAPE C,M A,l A,I )A A.I A,l
II II A A,l A,l
# # A A,l A,l
Y. Y. A A,l A.I
& & A A,l AtI

312



A A,l A,l
( ( A A,l A,l
) ) A A,l A,l

* * A A,l A,l
+ + A A,l A,l

A A,l A,l
A A,l A,l
A A,l A,l

/ / A A,l A,l
0 0 A A,l A,l
1 1 A A,l A,l
2 2 A A,l A,l
3 3 A A,l A,l
4 4 A A,l A,l
6 6 A A,l A,l
6 6 A A,l A,l
7 7 A A,l A,l
8 8 A A,l A,l
9 9 A A,l A,l

A A,l A,l
A A,l A,l

< < A A,l A,l
A A, I A,l

> > A A,l A,l
? ? A A,l A,l
$ $ A A,l A,l
4) 4) A A,V A,l
A A A A A
B B A A A
C C A A A
D D A A A
E E A A A
F F A A A
G G A A A
H H A A,Q A,Q
I I A A,T A,T
J J A A A
K K A A A
L L A A A
M M A A,R A,R
N N A A A
0 0 A A A
p P A A A
Q Q A A A
R R A A A
S S A A A
T T A A A
U U A A A
V V A A A
VI W A A A

313



x X A A A
Y Y A A A
Z Z A A A
[ [ A A,E A,E
\ \ A A A
] ] A A A

A A A
A A A
A A,V A,CD

{ { A A,E A,E
I I A A,\ A, \
} } A A,] A,]

A A, - A
DEL DEL C,M A,_ A

Shift S- O 0 0
CTRL C- F F F
Extend char (left) M- 0 J X
Extend char (right) P J X

APPLICABLE RULE -
NUMERIC KEYPAD TOKEN NAME GRAPHICS S300 239X

KEY LABEL WINDOVI ITE TERMINAL

Enter N-Enter Key Z,N X #
(f9) N-f9 Key Z,N X X
(flO) N-fl0 Key Z,N X X
(fll) N-fll Key Z,N X X
(f12) N-f12 Key Z,N X X
Tab N-Tab Key Z,N S S

:!: 11-:1: A,:!: U U
+ N-+ A,:!: U U

N- , A,:!: U U
N-- A,:': U U
N-. A,:" U U

/ N-/ A,:!: u U
0 N-O A,:!: U U
1 N-l A, :~ U U
2 N-2 A,'" U U

3 N-3 A,:!: U U
4 N-4 A,:!: U U
6 N-6 A,:I: U U
6 N-6 .A I of: U U
7 N-7 A,:!: U U
8 "-8 A,:;: U U
9 N-9 A,:r- U U

314



Note the following information:

a. Parentheses around a KEY LABEL indicate that the key has no label, or that
it has an arrow as a label. The arrows could perhaps be formatted graphically
into the real manual. In fact, graphic representations of key caps could be
used instead of the key labels, if there was some way to call attention to which
of the two labels on multi-labeled keys was being accessed.

b. The HP 46020A keyboard is split into the normal ("main keyboard") and
the "numeric pad" sections. Within each section, the keys are listed in the
following order. First, the special (ie, "non-ascii") keys appear, in alphabetic
order by key label. The ascii keys follow, in numeric order.

c. The USASCII HP 46020A keyboard is the basis for the key labels.

d. There are two labels on some key caps. The key label field in this table refers
to the individual label (part of the key cap), which requires the SHIFT key
to be in a known position.

e. The M- modifier key is only available with the GRAPHICS WINDOW.

The following items are the applicability rules for the above table. The letter below
denotes the rule for the corresponding letter in the table.

a. The alphanumeric key for the S- prefix is not shown. A Shift of this key pro­
duces an appropriate character, according to the caps-lock state. Both the
shifted and unshifted characters will be an appropriate USASCII character
or national character. The key has C- and M- variants unless noted other­
wise. (eg under nOll GRAPHICS WINDOW interfaces the M- variant is never
available) .

b. The key produces a break signal; no key code is available.

c. The C- modifier is available.

d. This key produces an S- modifier when pressed with some other key. This key
works with the caps-lock state and alphanumeric keys to produce a different
character instead of an S- modifier.

e. The C- modifier produces the ESCAPE character

f. This key produces a C- modifier when pressed with some other key.

i. The C- modifier is ignored.

j. In 8 bit mode this key, when held down, causes alphanumeric keys to be
interpreted as if from a ROMAN 8 keyboard.

315



1. The C- variant is bound to no-op-command, other variants are not available.

m. The M- modifier is available.

n. The N- modifier is used with this key.

o. When held down, this key produces a M- modifier for any other key pressed at
the same time. For the Katakana keyboard this key ALSO causes a state to
be entered where tile alpha keys are interpreted from the USASCII keyboard.
(See note P)

p. When held down, this key causes any alpha. key pressed a.t. the same time to
be interpreted as if from a ROMAN 8 keyboard. For the Katakana keyboard
this key causes entry into a state where the alpha keys are interpreted as
Katakana keys. (See note 0)

When held down, this key produces a C- modifier for any other key pressed
at the same time.

q. The ('".. modifier produces the Back-space Key.

r' The C- modifier produces the Return Key.

s. S- modifier available. (other modifiers may be ignored)

t. C- modifier produces the Tab Key.

u. S- and C- modifiers are ignored.

v. C- variants are not available (may be used by terminal emulator)

w. C- variants are bound to the 1l0-0p-col1unand to avoid confilict with terminal
emulator. usage.

x. The key is not avaialble to NMODE. (may be used by terminal emulator)

y. The key is available to NMODE but all variants are bound to the no-op­
command to avoid confilict with terminal emulator usage.

z. The S-, C-, and M- modifiers are available.

There are some special cases.

\ The C- modifier produces C-\

] The C- modifier produces C-j

The C- modifier produces C- A

The C- modifier produces C-_

@ The C- modifier produces C-@

316



* The N- modifier is available except in combina.tion with the Shift key.

# The a.ction of this key is determined by the terminal emulator (unless programmed
to some sequence recognized by NMODE it is best not touched)

317





a
abort 48
accessing items through browsers 81
Addition Manuals 6
additional facilities flag:

L 97
Additional Facilities:

loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96
Apropos 75
associated file 100
Auto filllnode 102
auto fill nlode 115, 135

b
back to indentation 121, 158
backward delete sentence 123
backward paragraph 124
backward up list 159
block comnlent 164
Bourne shell 201
browse coulllland 84
browser create 84
browser options 89
browser:

106
106
106
106

$>$ .
S .
T .

1l1enU 83
browsers help 89
browsers:

accessing itelns 81
overview 79
selecting itellls 82
using 80

browsing error indexeg 254
buffer facility 105
buffer flag:

S* 188
buffer flags 106
buffer Rags:

*



buffer modes 102
buffer modes:

Auto fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 102
C 102
EIDacs 102
Fortran 102
HP-UX 102
Lisp 102
Pascal 102
Text 102

buffer not lllodified 109
buffer utilities ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109
buffer:

printing 145
buffers 99
buffers:

associated file 100
characteristics 100
creating 103, 107
default 101
definition 99
deleting 104
exiting 103
flag 100
killing 104
MAIN 101
IDode line 101
modes 100
na.llles 100
OUTPUT 101
print 109
quitting 91
renanle 109
renaming 104
revert file 109
selecting 103
sorting 108
writing 108

c
C lllode 102
C shell 201



c telnplates 180
C-u 47
case conversion 127
center line 121, 135
character case conversion 127
code index facility 214
code indexes 211
code indexes:

add files 219
browser cOllllnallds 219
creating 213
loadhlg 212
options 220
registering saved 226
reloading 225
saving 224
utilities 220

color 64
conlnland cODlpletion 77
cOInpile Lisp code 171
compiling a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 149
compiling non-Lisp code 183
copy region 166
copying a file 148
copying text 142
count occurrences 76, 122
create browser 84
create file 84
creating a file 147
creating buffers 103, 107
creating code indexes 213
creating error indexes 243
creating panes 62
creating search indexes 231
creating shells 204
creating windows 60
cursor 46, 116
cursor location 127
cursor, moving 116
cursor position:

what 76



d
debugging Lisp code 170
defun:

Inove backward 157
Inove forward 157

delete backward word 120
delete blank lines 121
delete forward word 119
delete horizontal space 161
delete indentation 161
delete Inatching lines 121
delete non-matching lines 121
delete sentence 123
deleting buffers 104
deleting characters 118
deleting text 142, 143
display 16
Documentation 67
documentation:

Lisp Reference 70
NMODE COllllllands 70
NMODE Glossary 70

down list 159

e
edit a file 113
editing environment 114
editing lllodes 114
editing non-Lisp code 182
Elliacs lliode 102
Envirollluent Tutorial 69
error index facility 244
error index:

add files 246
options 250
restrictions 249
utilities 247

error indexes 241
error indexes:

browser cOlluuands 246
browsing 254



creating 243
loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 242, 256
saving 255
special itenls 249

execute buffer:
HP-UX 192

execute defun 168
execute forl11 168
execute frOUl point 168
execute region:

HP-UX 194
executing NMODE commands 33
exit NMODE 49, 171
exiting a buffer 103
explain 72
extablishing a region 139

f
Facility:

definition 8
file name completion 77, 154, 189
file revert 109
files:

associated 100
coulpiling 149
copying 148
creating 147
finding 146, 154
killing 148
Inoving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148
renalning 149
reverting 148
saving 147
visiting 14G

fill COlnnlent 165
fill paragraph 124
fill values:

show 76
filling 136
filter undo 87
filtering on-line manuals 71
filters 87



filters:
HP-UX 190

Find File 103
find itenl 76, 155, 217
finding a file 146, 154
finding a word 155
finding functions 155
flag:

$>$ 85
S* 188

flags:
additional facilities 97
buffers 100, 106

fonts 64
form:

move backward 158
move forward 157

Fortran 1l1ode 102
fortran telnplates 181
forward paragraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124
forward up list 159
function bindings:

show 76

g
getting to NMODE Root 94
group cOllllnand 85

h
Help 67
Help COll11Ua.lld 72
Help Items 70
help:

docunlentation 73
explain " 72
help-help 73
key-bindings 73
wbere-a.lll-i 7'1.

hiding items 87
hiding windows 62
HP-UX access 185



HP-UX command execution 190
HP-UX escape 198
HP-UX execute and delete 198
HP-UX execute buffer 192
HP-UX execute command 191
HP-UX execute line 194
HP-UX execute region 194
HP-UX execute to end 197
HP-UX filter region 195
HP-UX filters 190
HP-UX Inode 102
HP-UX options browser 199
HP-UX output 190
HP-UX prompt character 200
HP-UX script region 195
HP-UX send buffer 193
HP-UX send character 198
HP-UX send end-of-file 196
HP-UX send interrupt 196
HP-UX send region 195
HP-UX send signal 197
HP-UX set output buffer 193
HP-UX start output 197
HP-UX stop output 196
HP-UX system access facility 54
HP-UX yank last output 196
HP-UX:

execute cOlllllland 185
file name completion 189
using 188

HP-UX.SHELL buffer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 188

•
1

incremental search 130, 155
indent Lisp expression 160
indent region 161
indentation Lisp code 159
indenting non-Lisp code 181
indents . . . . . . . . . . . . .. 134
insert COlnnlent 164
insert line 122
insert parenthesis 162



inserting bla.nk lines 118
inserting characters 117
Item:

definition 8

k
key bindings 32, 73, 73
key sequence commands 34
kill backward fornl 166
kill forward fornl 166
kill line 121
kill region 166
killing an itelll 89
killing buffers 104
killing files 148
killing panes 62
killing shells 205
killing windows 61

I
language module:

loadulg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176
Lisp abort 48, 170
Lisp backtrace 170
Lisp code indentation 159
Lisp code:

block conllnent 164
COllllllents 164
COllIpile 171
copy region 166
debugging 170
execute defun 168
execute forlll 168

execute from point 168
fill conllllent 165
headers 164 ~

indent region 161 )
insert COJ1uuent 164
kill backward forIII 166
kill forward fornl 166
killregioua 166



1l1ake header 164
luake revision 164
nlark defun 165
1l1ark forlll 165
unkill previous 166
yank last kill 166
yank result 169

Lisp continue 171
Lisp exit NMODE 49
Lisp expression indent 160
Lisp help 170
Lisp mode 102, 154
Lisp packages 172
Lisp quit 48, 170
list:

backward 159
down 159
forward 159
JlI0Ve backward 158
move forward 158

loading Additional Facilities 96
loading code indexes 212
loading error indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 242, 256
loading HP-UX 185, 186
loading language module 176
loading search indexes 239
loading user options 262
locator device commands 39

In
M-X comluands 35
MAIN buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101
Jllake header 164
lllake options 252
1l1ake revision 164
nlake, the progralll 248
Manual Set 6
margins:

setting 133
nlark clefull 165
lllark forIn 165
lllark paragraph 125



Illarks 139
marks:

setting 141
Inatching parentheses 162
lllode line 18
mode line:

buffers 101
nlodes of buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 102
modes:

auto fill 115
editing 114

mouse commands 39
lllove backward defun 157
lllove backward fornl 158
lllove backward list 158
move backward sentence 123
Inove backward word 120
lllove down extending 121
lllove forward defun 157
lllove forward {orin 157
lllove forward list 158
move forward sentence 123
Inove forward word 120
nlove over parenthesis 162
Inove to end of line 122
1110ve to start of line 122
moving cursor with non-Lisp code 178
moving files 148
nloving text 142
llloving the cursor 116
Inoving windows 61
multiple selection 86

n
new text 112
NMODE commands:

executing 33
NMODE editor 112
NMODE nlessage area 21
NMODE lllodes 44
NMODE Root 8
NMODE Root cOlnlnands 96



NMODE Root:
invoking .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94
Using 95

NMODE:
basic use 15
definition 3
display 16
keyboard 26
parts 4
point 46
quitting 91
structure 25

non-Lisp code 175
non-Lisp code templates 179
non-Lisp code:

COlllpilillg 183
editing 182
indenting 181
nloving cursor 178

o
On-line Doculllentation 68
On-line Help 70
on-line help 72
On-Line Manuals 71
on-line manuals:

filtering 71
on-line tutorial 68, 69
options browser:

HP-UX 199
OUTPUT buffer 101

p
pC1.J1t:l:! •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 18,:;9

panes:
creating 62
killing 62
selecting 62
size 63
transposing 63

parentheses:
insert 162



nUI-tclling 162
Inove over 162

Pascal mode 102

P
pas01.)C1tal teulplates '4'6' 118106 ~,.,;.

..............................................................., ,
popup nlenus 23, 43
prefixed argunlents 125
Previous Buffer 103
print buffer 109
printing buffers 145

q
query replace 132
quit 48, 90
quitting buffers 91
quitting NMODE 91

r
region:

establishing .
writing .

registering saved code indexes .
reloading code indexes .
renallle buffer .
renallling buffers .
renaming files .
repeat factor .
repeated searches .
replaceJnent with query .
replacement:

strings .
reverse search .
revert file .
reverting a file .

s
Save File .
saving a file .
saving code indexes .
saving error indexes .
saving search indexes .
search index facility .

139
145

~226
225
109
104
149
125
131
132

132
155
109
148

103

~147
224
255
238
232



search indexes 229
search indexes:

add files 236
browser conlmands 235
creating 231
loading .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 230, 239
options 237
saving 238
utilities 237

search:
caSe sensitive 131
increnlental '.' 130
repeated 131
word 131

selecting buffers 103
selecting panes 62
selecting user options 260
selecting windows 61
sentence:

backward delete 123
delete 123
move backward 123
Inove forward 123
transpose 124

set filenanle 109
setting lllargins 133
setting IIIarks 141
shell buffers 187
shell comnlands 192
shell script 193
shell systenl 207
shells:

creating 204
killing 205
unresponsive 209

show fill values 76
show function bindings 76
show key binding 7fi
size of panes 63
softkey commands 38
softkey labels 21
sorting buffers 108



special COllllllands 38
special keys 28
string replaceUlent 132

t
tab cOlnnland 160
tabs 134
templates:

c 180
fortran 181
pascal 180
using 179

text 1l1anipulation 139
Text 1l1ode 102
text:

copying 142
deleting 142, 143
Inoving 142

transpose forlns 167
transpose lines 122
transpose paragraph 125
transpose sentences 124
transpose words 120
transposing panes 63
transposing text 128
trash 91

u
undo 126
undo filter 87
universal argllillents 47
unkill previous 166
user options 2fi0
user options available 265
user options nlenu 264
user options:

facility 261
loading 262
selecting 260

using browsers 80
using HP-UX 188



~'

using telnplates 179
using the keyboard 26

v
Visit File 103
visiting a file . . . . . . . . . . . . . . . . . . . . .. 146

w
what cursor position 76
where-anl-i 72
window enhancements:

setting up 65
window:

color , 64
enhanceUlents 64
fonts 64

windowing . . . . . . . . . . . . . . . . . . . . . . . . .. 57
windows 18
windows:

creating 60
hiding 62
killing 61
1l1ovillg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61
selecting 61
size 61
writing 62

windows/gOOD 66
word commands 119
word search 131, 155
word:

delete backward 120
delete forward 119
1l10Ve backward 120
1l10Ve forward 120
transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120

working with text 111
Write File 103
writing buffers 108
writing Lisp code 154
writing region 145
writing windows content,s 62



y
yank last kill 166
yank last output:

HP-UX 196 ~

yank result 169 ..J



MANUAL COMMENT CARD

NMODE User's Guide

for HP 9000 Series 300 Computers

Manual Reorder No. 98678-90020

Name:

Company: _

Address:

Phone No: _

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on _



BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FIRST CLASS PERMIT NO 37 LOVELAND. COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins. Colorado 80525

J





HP Part Number
98678-90020
Microfiche No. 98678·99020
Printed in U.S.A. 5/86

rliOW HEWLETT
~~ PACKARD

1111111111
9867~-90601

For Internal Use Only


	Manual Update
	Table of Contents
	Chapter 1 The Overall Picture
	Chapter 2 Basic Use of NMODE
	Chapter 3 NMODE Windowing
	Chapter 4 Getting On-line Help
	Chapter 5 Introduction to Browsers
	Chapter 6 NMODE Root
	Chapter 7 The Buffers Facility
	Chapter 8 Directories Facility
	Chapter 9 Working with Text
	Chapter 10 Working with Lisp Code
	Chapter 11 Working with Other Code
	Chapter 12 HP-UX Access Facility
	Chapter 13 Code Indexes
	Chapter 14 Search Indexes
	Chapter 15 Error Indexes
	Chapter 16 User Options
	Chapter 17 Customization
	Appendix A NMODE Quick Reference
	Appendix B Browser Menus
	Appendix C Softkeys and Softkey Labels
	Appendix D Keyboard Keys
	Index

