
HP 9000 Series 300 Computers

LISP Application Notes

r/i~ HEWLETT
a:~ PACKARD

"~-

LISP Application Notes
for HP 9000 Series 300 Computers

HP Part Number 98678-90010

~) Copyright 1986 Hewlett·Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied. reproduced or translated to another language without the prior written consent of Hewlett
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use. duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Use of this manual and flexible disc(s) or tape cartridge{s) supplied for this pack is restricted to this product only. Additional
copies of the programs can be made for security and back-up purposes only. Resale of the programs in their present form
or with alterations. is expressly prohibited.

~C) Copyright 1980. 1984. AT&T, Inc.

© Copyright 1979. 1980, 1983. The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road. Fort Collins. Colorado 60525

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be Issued between editions and contain replacement and additional pages
to be merged Into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

May 1986...Edition 1. This manual documents release 1.0 of the common LISP Development
Environment for HP 9000 Series 300 Computers.

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT·PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT UMITED TO.
THE IMPUED WARRANTIES OF MERCHANTABIUTY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett·Packard shall not be liable
for errors contained herein or direct. indirect. special, incidental or consequential damages in connection with the lumishing, performance.
or use of this material.

WARRANTY
A copy of the specilic warranty terms applicable to your Hewlett·Packard product and replacement parts can be obtained from your IocaJ
S8les and Service Office.

ii

Table of Contents

Chapter 1
Introduction

Purpose 1
Prerequisites 2
Topics 2

Chapter 2
Using a Large Heap

Introduction 5
Synopsis 5
Other Documentation 5

Background 6
Menlory Layout. .. 7
Windows/9000 Shared Memory 8
Swap Space 9
NMODE Resource Usage , 9

Decisions 10
Swap Configuration 10
Process Size 11
Other Configuration Changes. .. 12

Procedure .. 12
Overview 12
Making a File System 13
Creating a Configuration File. .. 14
Running Config .. 16
After Booting 16

Chapter 3
The Example

Introduction 19
The Progra111 .. 20

Overview 20
Instance Types 21
Windowing Utilities .. 22

Source Code. .. 22

Chapter 4.
Libraries

Illtroduction. .. 37
Pointer Paranleters .. 37
Constants. .. 37

HP-UX System Calls 38
Special Considerations. .. 38
Constants .. 40
Functions .. 40

Windows/90aa Functions 44
Constants. .. 45
Functions .. 46

Starbase Graphics Functions 52
Constants .. 52
Functions .. 53

Device I/O Functions 60
Constants. .. 60
Structure Argulllents 60
Functions .. 61

Networking Functions 62

Chapter 5
User I/O

Introduction. .. 63
Prerequisites 63
Organization 63

File I/O 64
Text Files .. 64
Terminal Device Files 65
Sequence of Events. .. 66

TernlO Windows 71
Window-Smart and Window-Dumb 71
Window-Smart Example. .. 71
Window-Dumb Example 72

Graphics Windows .. 73
Exalnple 73

The Mouse. .. 75
Pop-Up Menus 75

Exalnple .. 75
Ideas for Expansion .. 78

NMODE I/O 79
Standard Input and Output Streams 79

~'

NMODE I/O Functions 80

Chapter 6
Delivery

Introduction 81
DUlllP Files 81

Exalnple .. 82
Drawbacks 82

General-Purpose Dump File .. 83
Using Command Line Arguments .. 83
Using a Script 85

~..
.. ,., •.,

l

Chapter 1

Introduction

Purpose
The purpose of the Lisp Application Development Notes is to provide a "cookbook"
of techniques useful for developing applications on Hewlett-Packard's Lisp workstation.
For the most part, the topics covered are particular to HP hardware and software. They
range from using the HP-UX software libraries to making a Lisp program accessible as
an HP-UX command. In order to reinforce the concepts presented, an example program
presented in the beginning of the manual is used where appropriate to illustrate the
concept being discussed.

In the future, there Illay be a Common Lisp standard defined for window and human
interface functions. Future releases of the Hewlett-Packard's Lisp development environ
ment may implement such a standard. We recommend that you isolate system-dependent
code in application programs as much as possible so that porting to the standard (and
thus to other machines) may be relatively painless. Since the current windowing system
is just a Lisp veneer for HP-UX Windows/9000, any source code you write for it will be
usable as long as Windows/9000 is supported by HP.

Remember that HP's Common Lisp software is protected by a codeword and an
HP46084A HP-HIL ID module. You must have purchased either 98679A (Execution
License for Common Lisp) or 98678A (Development Environment for COlllmon Lisp) for
each runnable instance of your application. The execution license allows loading and ex
ecuting any of the files listed ill the file $LISP/c:onfig/98679A-files. See the Installation
and Overview for more information about security modules and codewords.

1

Prerequisites
To use this manual effectively, you need experience with both Lisp and HP-UX. Some
particular concepts mentioned here with little or no explanation are

• Calling non-Lisp routines

• Object-oriented programming

• HP-UX Windows/9000 concepts

You might want to have the following manuals handy when you are using this manual.

• Lisp Programmer's Guide

• HP Windows/9000 Programmer's Manual

• HP Windows/9000 User's Manual

• HP- UX Reference

• Starbase Reference

Topics
The following chapters comprise this manual:

Chapter 1
Introduction

Chapter 2
Using a Large Heap

Chapter :I
The Example

Chapter 4:
Libraries

Chapter 5
User I/O

Chapter 6
Delivery

The very same introduction you are now reading.

As it's shipped, your system canIlot rUll a Lisp process much
larger than eight megabytes. This chapter explains how to con
figure your system to run large Lisp processes. If the resources
are available, this is desirable so that you can run applications
that use large amounts of data, or to minimize the number of
garbage collects.

Presents the example program used throughout this manual.

Explains how to load and use the provided Lisp code for ac
cessing HP-UX libraries such as Windows/9000 and Starbase
graphics.

Explains how to get input from the keyboard and mouse, and
how to output to windows.

Explains how to make a Lisp application "stand-alone") as well
as make it executable from an HP-UX shell.

2

~~ !

NOTES

3

4

/:)

Chapter 2

Using a Large Heap

Introduction
For one reason or another, you may want to run a Lisp process with a larger heap than
is possible with the standard configuration of HP-UX. If you're using Windows/~)QOO

from your Lisp process (highly likely if you're running NMODE), then the standard
configuration will allow a maximum Lisp process size of only around eight and a half
megabytes, with about four megabytes allocated for dynamic heap (the other space
is used for static heap). This default maximum size can be too restrictive for some
applications.

Reconfiguring your system to run a larger Lisp process is not a trivial procedure. You
will have to create a new HP-UX kernel with the config{lM} command, as well as install
additional swap space (either on an existing disk or a new disk). This does not mean
that you should be afraid to reconfigure, just that you should do it carefully.

Synopsis
This chapter contains the following sections.

Background

Decisions

Procedure

Provides information vital to underst.anding reconfiguration.

Describes some choices you will have to make when deciding upon a
new configuration.

Describes the steps involved in reconfiguring your system.

Other Documentation
There are some other manuals that you should have handy when you are reconfiguring.
These are from the documentation you received with your HP-UX system.

• The HP- UX Reference, particularly sections 1 and 1M.

• The HP- UX System Administrator Manual. Chapter 5 and Appendix D contain
the items of interest .

• The HP Windows/9000 Users's Manual. See the "Resource Usage Considerations"
appendix.

5

Background
Unfortunately, reconfiguring your system is not just a matter of deciding how big a heap
you want to have. There are a few other things that need to be considered. Tllis section
identifies these things and describes a few of them.

6

Memory Layout
The following figure shows how the Lisp system's data structures are arranged in memory.
This diagr:un is meant to serve only as a general guide. (The Series 300 Model 310 uses
twenty-four bit addresses, so on that machine the execution stack grows downward from
OxFFFFFF.)

oxffffffff
stack

(grows downward)

available for shared memory {
Windows/9000 Starbase

maxssize (kernel variable)
default 2 megabytes

see "Resource Usoge Considerations"
Appendix in Windows/90aa User's Manual

malloc overflow
(if needed)

dynamic heap

allocated as needed
when malloc space overflows

} -h dynam;c s;,.

-t determines data size (totol)

static heap -b ~ to static/dynamic heap

malloc space

LISP micro-kernel
1'V180k

oxoooooooo

size determined by -m option;
used by foreign functions
which coli malloc(3)

Lisp Process Memory Map

7

Windows/9000 Shared Memory
Any HP- UX process that makes use of the windowing software shares a portion of its
address space with the window manager process. Since most Lisp applications will want
to use the windowing system, this shared memory becomes an important part of the
memory map for the Lisp system. The shared memory is described ill detail in the
"Resource Usage Considerations" appendix of the HP Windows/9000 User's Manual.

Note that just because a process runs in a window does not mean the process uses the
window manager. For instance, if you bring up a Comlllon Lisp read-eval-print loop
in a window, it does not share memory with the window manager unless you make a
call to one of the windowing functions. The default NMODE environment, on the other
hand, makes extensive use of the windowing system, so its process does have the shared
memory.

You need to be concerned with the shared memory because its default location limits
a process' text and data space to 8.75 megabytes. To rUll a larger Lisp process you
will lleed to move the shared memory to a higher address. This entails changing two
things: SB_DISPLAY_ADDR, an environment variable that determines the location of the
shared memory; and shmmaxaddr, a kernel configuration variable whose value determines
the highest address at which shared memory can reside.

NOTE

To better understand Windows/9000 shared memory you lleed to
read the "Shared Memory Usage" section of the "Resource Usage
Considerations" appendix of the HP Windows/9000 User's Man
ual.

8

Swap Space
Your HP-UX system has a fixed amount of secondary storage (swap space) reserved for
swapped out processes. To run a large Lisp process you will need t.o increase the size
of your swap space by approximately the difference between the size of the Lisp process
you are running and the size of the Lisp process you wish to run. Swap space can be
increased by adding a new disk or by reconfiguring one of your current disks to contain
a smaller file system (and thus free some room for more swap space). It is easier to
add a new disk than reconfigure an existing disk. These choices are discussed further in
"Decisions" below.

NMODE Resource Usage
When you are determining what values to give kernel variables when you reconfigure,
you need to consider the system resources used by the programs you will be running.
The HP-UX System Administrator Manual has a worksheet to help you determine some
of the kernel variable values, but there is some Lisp-specific information that is useful
too.

If you're running NMODE under Windows/9000, each NMODE window uses the follow
ing resources:

• Two processes: the Windows/9000 gserver process, and a special NMODE wdaemon
process.

• Three pty master-slave pairs.

• Two file descriptors.

If you use NMODE's HP-UX access facility, each system shell or shell buffer uses the
following resources:

• One shell process plus any processes (such as an executing command) that are
spawned from that shell.

• One pty master-slave pair.

• Two file descriptors.

9

Decisions
Before reconfigurillg your system, you must make some decisions involving swap space,
the maximum size of the process you want to run, and any other kernel changes you may
want to make while you are reconfiguring.

Swap Configuration
Depending on how many disks your system bas, there are several different possible con
figurations of swap space.

If you only have one disk, enlarging the size of your swap space will be more difficult.
You will have to reinstall HP-UX and change the swap space size during installation. If
you decide to do this, remember:

• Back up any files that are important to you before you reinstall

• The size of your file system will be reduced by the amount of increased swap space

If yOll have more than one disk, or will be adding a new disk, then you will have to decide
which disk to use for the new swap space. Any particular disk can be used

• Solely as a file system

• Solely as swap space

• As a combination of file system and swap space

You should avoid changing your root disk since this requires reinstalling HP-UX. Most
likely, your present configuration uses the root disk for file system and swap space, and
a second disk for just file system. In this case, if you are not adding a new disk, you
will have to reconfigure your second disk to change some file system space into swap
space. You will have to back up any files on the disk before recollfiguring it. The df(lM)
command will tell you how much free space is on the disk. Use this, and any knowledge
about what files you may be adding or deleting, to decide how much of your file system
space to convert to swap space.

An easier way to expand your swap space is by adding a disk. Then you will only have
to decide if you want to use any of it for file system, and if so, how much.

10

"~

Process Size
Before you reconfigure, you should know the size of the largest process you are planning
to run. This determines (or is determined by) the amount of swap space necessary. It
also determines the new values of some kernel variables you will be changing.

Kernel Configuration Variables
Four kernel configuration variables specify the sizes of various memory management data
structures. These must be changed when you reconfigure. Table D.1 in Appendix D of
the HP- UX System Admistrator Manual shows these variables and their values based
on ranges of maximum process size. We will be assuming a maximum process size of
between forty and eighty megabytes, which means that the variables and their new values
are

dmmin 64
dmrnax 8192
dmtext 8192
dmshm 8192

Other kernel variables must also change, but their values are more flexible. They will be
discussed along with the actual configuration process.

Maximum Process Size and Swap Space
The HP- UX System Administrator Manual gives a formula for determining how much
swap space you will need based on several para.meters. A simpler method is to simply
add as much swap space as the size of the Lisp process you pla.n to run. In other words,
if you want to run a forty megabyte Lisp process, add forty megabytes of swap space.
With this method you may end up with a little extra swap space.

Since processes may increase the size of their data segments with calls to malloc(9G}, the
amount of necessary swap space is not static. It is possible to have enough swap space
one day and not enough the next because some background process allocated itself more
space.

11

Other Configuration Changes
Before you reconfigure your system to allow running a big process, you may want to
cbeck if there are any other kernel configuration changes you'd like to make at the same
time. There's no sense in reconfiguring again in a few weeks or months just because ~..~

you weren't aware of a restriction of your current kernel. Appendix D of the HP-UX . J
System Adminstrator Manual gives descriptions of all the kernel configuration variables.
These include things like the total number of possible processes. Most of them are fairly
esoteric, but you should skim through them to see if there are any that you want to
change. You should also look at the previous section "NMODE Resource Usage" and the
"Resource Usage Considerations" appendix of the HP Windows/9000 User's Manual to
see if you lllay need to increase the kerllellimit on a particular type of resource.

Procedure
The HP- UX System Administrator Manual contains a lengthy section on the use of config
in the "Configuring HP-UX" section of the "Toolbox" chapter. This documentation
assumes that you have read that section. You may not actually need to read it, but it
wouldn't hurt.

Overview
In brief, the steps you will need to perform the reconfiguration are:

1. Make a file system on the disk that you will be using for additional swap space. If
you have a disk that will be dedicated solely to swapping, you can skip this step.

2. Create a configuration file (dfile) that specifies the kernel configuration you desire.

3. Execute the conjig(lM) command on the dfile you created.

4. Execute the make(l) command with the makefile that config created. This will
compile a new kernel for you.

5. Copy your old kernel (lhp-ux) to /SYSBCKUP. This provides a means of recovering if
your new kernel doesn't work.

6. Copy the kernel that you made in step 3 to /hp-ux.

7. Reboot.

8. Ifyou have swap space that is not Oil your root disk, activate it with the swapon(1M)
command. To automate this step so that it happens any time you reboot, add a
line to /etc/rc that executes the command upon entry to state 1.

9. IT you need to move the Windows/9000 shared memory, set the value of the
SB_DISPLAY_ADDR environment variable appropriately. Appropriate values are dis
cussed later.

12

Making a File System
If you have a disk that will be dedicated solely to swapping, you can skip this step. If
you want to use a new disk for swapping and a file system, or you want to reconfigure
a disk to provide more swap space, then you will have to build a new file system on the
disk. Remember that making a new file system destroys any files previously stored on
the disk, so make sure you have backups.

The new/s(lM} command uses information from the file /etc/disktab to create a new
file system with the mkfs(lM} command. The file /etc/diBktab has entries giving the
values of arguments to mkfs for particular models of disks and amounts of swap space.
There probably won't be an entry for the exact configuration you desire; you will have
to add a new entry to /etc/disktab for your desired disk configuration.

To add a new entry, find one of the existing ent,rics for the model of disk drive you are
configuring. It will look something like this

hp7946:\
:ty=winchester:ns#8:nt#7:nc#786:\

:pa#44016:ba#8192:fa#1024:\
:se#1024:rm#3600:

This entry specifies an HP7H45 disk drive with approximately 10 megabytes of swap
space. Copy this, and then change the nc and pa fields. The number after nc is the
number of cylinders to use in the disk's file system. The number after pa = ns X nt X
nco

There are 56K (ns times nt times se) bytes on each cylinder of a 7945, and a total of
968 cylinders. Let's say we want half the disk for swapping and half for file space. Our
entry in /etc/disktab for this configuration would look like this

hp7946_27:\
:ty=winchester:ns#8:nt#7:nc#484:\

:pa#27104:ba#8192:fa#1024:\
:se#1024:rm#3600:

After you have created the entry in /etc/disktab with a unique name, run the new/s
COIllluand

newfs -v /dev/rhd2 hp7946_27

The device file you specify in the command line should correspond to the character special
file of the disk you are creating the file system on.

13

Creating a Configuration File
The config{1M) command uses information from a file (a dfile) to create a program and
makefile for compiling a new kernel. The lines in the dfile can be various things, such as

• The names of device drivers to be included in the kernel

• Kernel configuration parameters and their values

• Specifications of swap devices

There are sample configuration files in the / etc/canf direet.ory. Copy one (<if ile. full. Ian
is the most general) to another file and then edit the new file to make your configuration
changes.

Kernel Configuration Variables
To change the value of a kernel parameter, add a line to the dfile with the name of the
parameter followed by its new value.

The parameters you need to change to run a larger-than-normal process are: dmmin,

dnunax, dmtext, dmshm, maxdsiz, maxssiz, and shmmaxaddr. There may be other parameters
you wish to change for other reasons.

The first four of these kernel variables are rigidly determined by the size of the largest ""'.
process you wish to run. Table 0.1 in appendix D of the HP- UX System Adminstrator }
Manual shows the appropriate values in terms of t.he process size. We'll assume here that
the largest process you wish to run is between forty and eighty megabytes.

The values of the other variables are more flexible because they are used for error checking
rather than resource allocation. The value of maxdsiz (maximum data segment size)
should be at least as big as the size of the largest, Lisp process you would like to run. The
default value of maxssiz (maximum stack size) is adequate for many applications, but
you may want to increase it for more flexibility. If your large Lisp process will be using
Windows/9000, you need to set shmmaxaddr high enough for the Windows/gOOD shared
memory to be above the data space of your Lisp process. A general guide for shmmaxaddr

is to set it to the size of the Lisp process you want to run plus four or five megabytes.
Remember that shmmaxaddr doesn't control where the shared memory actually is, only
how high it can go in memory. You will have t,O set the SB_DISPLAY_ADDR environment
variable to change the location of the window system's shared memory.

14

Specifying Swap Devices
You must specify in your dfile the swap device(s) that your system will use. Each device
has a one-line entry of the form:

swap driver-name (lddress swap-location [swap-sizel

The fields are as follows:

driver-name

address

swap-location

swap-size

The swap device's driver name (e.g. cs80). The file /etc/master
contains mappings of product number to device driver name.

The swap device's minor number in hexadecimal.

Swap area's location in decimal. If it,'s -1, t.hen the swap space is
put on the disk after the file system. If it's 0, then the whole disk is
used for swapping. If it's greater than or equal to 1, then a disk-size
- swap-location sized swap area is reserved at the end of the disk.

This optional field indicates the size of the swap area in lK byte
units.

A Sample Dfile
The following dfile specifies a configuration for a kernel with a full arsenal of device
drivers that can run processes up to eighty megabytes. The swap space is on two disks:
the root disk (after a file system), and a disk on bus address 2 that is dedicated entirely
to swapping.

* This is the configuration file for a full system. with LAN
:1: drivers
cs80
flex
amigo
tape
printer
stape
srm
rje
ptymas
ptyslv
ieee802
ethernet
hpib
gpio
ciper
:f: cards
98624
98626
98626

15

save the old kernel in case of trouble

98628
98642
* stuff for big processes «= 80M)
maxdsiz Ox10000000
maxssiz Ox01000000
shmmaxaddr OxOfffffff
dmmin 64
dmmax 8192
dmtext 8192
dmshm 8192
:f: swap configuration
swap cs80 £0000 -1
swap cs80 E0200 0 64208

Running ConJig

Assume that you have created a dfilc called dfile.bigproc in the /etc/cont directory.
The following commands would be executed t.o create and run a new kernel configuration.
You must be super-user to perform these steps. This procedure is discussed in more detail
in the HP- UX System Administrator Manual.

cd /etc/cont
config dfile.bigproc
make -f config.mk
cp /hp-ux /SYSBCKUP
cp hp-ux /hp-ux
exec reboot

After Booting
If you have swap space on more than one disc, this space must be enabled with
swapon(lM) each time you reboot. For instance, for the example configuration given
in the dfile above, you would execute the command

Bwapon /dev/hd2

You can automate this by adding the command to your letc/rc file so that it gets
executed upon entry to state 2.

If your large process uses Windows/gOO~, you must change the value of the
SB_DISPLAY_ADDR environment variable before starting the window manager. This must
be large enough so that all of the shared memory is above the data space of your process.
A general formula for computing a good value for SB_DISPLAY_ADDR is

SB_DISPLAY_ADDR = sizeofprocess + V/MSHMSPC + Oxl00000

16

To change SB_DISPLAY_ADDR if you use the Bourne shell (sh), execute

SB_DISPLAY_ADDR=Ox3800000
export SB_DISPLAY_ADDR

To change SB_DISPLAY_ADDR if you use the C-shell (csh), execute

setenv SB_DISPLAY_ADDR Ox3800000

17

18

Chapter 3
The ExaIllple

Introduction
A common complaint about computer documentation is that it does not present useful
examples. Many times this is because to be useful, the example would be too big.
For this manual, there is one major example that illustrat.es many of the techniques
that Lisp applications writers will need to use. This approach sacrifices modularity for
comprehensiveness. It is hoped that seeing the program presented here as a model will
make your programming task easier.

This chapter is a general introduction to the example program. Details of various aspects
of the program are covered in the appropriate chapters. The source code for the program
is given at the end of this chapter. You probably want to remove those pages and keep
them close at hand so that they may easily be referred to when necessary. You could also
print a listing yourself, since the code for the program was provided with your system in
the $LISP/doc/examples directory.

19

The Program
The model application presented in this manual is an object-oriented tic-tac-toe game.
The source code for this application is in the directory $LISP/doc/examples. The relevant
files are

tictactoe.l

tictactoe.b

windexutil.l

\1indexutil. b

Lisp source for' the game.

Binary for the game. You will have to create this yourself with
(compile-tile "$LISP/doc/examples/tictactoe.l").

Lisp source for utilities that are useful when using the Windows/9000
library.

Binary for the window utilities. You will have to create this yourself
with (compile-tile "$LISP/doc/exampies/windowutil.l ll

).

The directory $LISP/doc/examples contains a few other files discussed in this and other
manuals.

Overview
The game is started by calling the function tic-tac-toe (in the ttt package). The
program creates a graphics window in which it displays the tic-tac-toe board. The user
is then prompted to answer a couple of questions by positioning the windex locator over
yes or no selection boxes and pressing a mouse button. The user moves by pressing any
mouse button while the locator is in the square where they want to move. When the
game is over, the user is asked whether or not they wish to play again. If they answer
no, then the window is destroyed, and tic-tac-toe returns.

To load and run the game, execute the following forms.

(load II$LISP/doc/examples/tictactoe")
(ttt:tic-tac-toe)

20

Instance Types
There are two instance types used in the program. The ttt-game instance type defines
the methods for interacting with the game window and for running the game. The ttt
board inst.ance type maint.ains the state of the tic-t,ac-t;oe board and provides methods
to access that state.

The moves of the two playerl' are determined by the ttt-game instance variables x-player
move and o-player-move. The values of these instance variables are the names of ttt-game
methods that determine what move to make and then make it. Only two such methods
are provided: :get-user-move (which prompts the user for his move and gets it) and
:make-move (the routine that moves for the "computer"). It could be argued that the
methods for making moves should really be ttt-board methods, but since :get-user-move
must interact with the game window, they were made ttt-game methods. This works as
long as any particular implementation of ttt-board provides a standard set of methods
for obtaining information about the state of the game.

The TTT-BOARD Instance Type
The state of the board is represented in an instance of ttt-board. There is a vector (board
array) with nine slots for the nine squares on the board. The squares are numbered as
shown in this diagram.

o

3

6

4

7

2

6

8

Note that while the board is represented as a one-dimensional array, the ttt-board meth
ods provide an interface that makes it look like a matrix (ie. i and j coordinates).

The other data structure in the ttt-board instance type is free-spaces-list, a list of
all the squares on the board which are not yet occupied. This provides an easy way of
checking for forced moves in the methods :winning-move and :defending-move.

You are encouraged to experiment with the definition of ttt-board to provide a different
represclllation of the board and a richer set of methods for obtaining information. This
can serve as a platform for a "smarter" method for making the "computer" move. You
might also generalize it so that it can represent an n by n board (it's easier if you restrict
n to be odd).

21

Windowing Utilities
The tic-tac-toe program uses the Windows/9000 libraries. Some Lisp functions that
are useful for using Windows/9000 are defined in the windowutil module in the
$LISP/doc/examples directory. These routines correspond to the C routines for estab- '"
lishing and terminating window communication presented in the HP Windows/9000 }
Programmer's Manual.

Source Code
The source code for the tic-tac-toe program follows.

... .
""""., •• ,.,., II"""'" 'II""""'" II'" " •• ".",." •••• """" •• ".", •• ,

File:
SCCS:
Description:
Language:
Package:

tictactoe.l
Q(#) $hi/doc/examples/tictactoe.l 1.1Q(#) 4/23/86 13:66:34
Tic Tac Toe Game
Lisp
TTT

(c) Copyright 1986, Hewlett-Packard Company, all rights reserved.

(provide "ttt ll
)

(in-package 'ttt)

;;; Shadowing is done in the shadowing-import below

(export '(tic-tac-toe»

(require "objects ll
)

(require "hp-ux_3g")
(require "windowntil" Il$LISP/doc/examples/windowutil ll

)

(require "exception")

(shadowing-import '(hp-ux_3g:PUSH hp-ux_3g:REPLACE»
(use-package '(lisp extn hp-ux_3g hp-ux_3w windowutil»

22

""", " ,.,."", ",.,."",."",.""""."",.,." " .. " .
Definition and methods for the tictactoe game object

......... O' O' .. O'O' O'O'O' O' .. O'O'.O'O'O' .. O' O' O'O' •• O' O'O' •.,.""",.".""."""",.",.,."."""".""""."."",."""",.,'., ,

The ttt-garne instance type maintains all the info needed to communicate
with the game window. Its methods run the game.

{define-type ttt-game
(:var board)
(:var Window-path)

device

An instance of ttt-board
The HP-UX pathname of the window special

{:var wm-fildes File descriptor of window manager interface
(: init nil»

{:var gr-fildes File descriptor of graphics window
(:init nil»

(:var marker-font-id
(: init nil»

{:var prompt-font-id
(: init nil»

(:var x-player-move) Method to generate x's move
(:var o-player-move) Method to generate o's move
(:var created-okay Flag for valid creation of window

(:init nil) :gettable)
:all-initable)

23

Initialize the game. This method does all the work of
setting up the window interface.

(define-method (ttt-game :init) (keylist)
(extn:when-error

(and
(setq wm-fildes (establish-wm-communication»
(setf window-path (make-string 26»
(hp-ux-return (wmpathmake IIWMDIRII IIttt ll window-path»
;; Create Window
(hp-ux-return (wcreate_graphics wm-fildes

window-path
700
100
180
226
180
226
SETRETAIN
SETNOBAIWER))

(setq gr-tildes (establish-gr-communication wm-tildes window-path»
(setq marker-font-id

(let (font-id)
(declare (special font-id»
(if (hp-ux-return (fm_Ioad gr-fildes lI/usr/lib/raster/18x30/pica.8UII

'font-id))
font-id»)

(setq prompt-font-id
(let (font-id)

(declare (special font-id»
(if (hp-ux-return (fm_load gr-fildes lI/usr/lib/raster/7xl0/lp.8UII

'font-id))
font-id»)

(setf created-okay t)
)

;; Error handling forms
(format t IIError in creation function -A; called with -A-Yell

(extn:exception-signaller)
(extn:exception-arguments»

(format t IICleaning up ... -Yell)
(=> self :cleanup)
)

)

24

.......................................,., ,., .. ,' ... ,.".".,.,.", ,. ,

;;;; Methods for controlling the game.

:Start does all the things needed to start a new game in the same window

(define-method (ttt-game :start) ()
(setq board (make-instance 'ttt-board»
(=> self :draw-markers)
(drawing_mode gr-fildes 3) ; Necessary because fm_write changes mode
(=> self :draw-grid)
(wtop gr-flldes SETTOP)
(=> self :set-move-methods)
)

:Set-move-methods queries the user to determine what ttt-game methods
should be used to determine the players' moves. As more methods
for determining the computer's move are developed, it may be
useful to modify this to allow a choice of available ones.

(define-method (ttt-game :set-move-methods) ()
(=> self :prompt-user "Dare you challenge me?")
(if (=> self :user-y-or-n-p)

(progn
(=> self :prompt-user "Care to go first?")
(if (=> self :user-y-or-n-p)

(setq x-player-move :get-user-move o-player-move :make-move)
(setq x-player-move :make-move o-player-move :get-user-move)» .

Else (User will not play against the computer)
(progn

(=> self :prompt-user IIShall I play by myself?")
(if (=> self :user-y-or-n-p)

(setq x-player-move :make-move o-player-move :make-move)
(setq x-player-move :get-user-move o-player-move :get-user-move)
»

25

.,. :Move-x-player just calls the method to make x's move and updates the
display.

(define-method (ttt-game :move-x-player) ()
(=> self x-player-move #\X)
(=> self :draw-markers)
)

,. ,
,., :Move-o-player just calls the method to make o's move and updates the
display.

(define-method (ttt-game :move-o-player) ()
(=> self o-player-move #\0)
(=> self :draw-markers)
)

:Gameoverp returns true when the current game is over.

(define-method (ttt-game :gameoverp) ()
(or (=> board :fullp)

(=> board :winnerp)
)

:Play-again-p returns true if the user indicates that he wants to play again.

(define-method (ttt-game :play-again-p) ()
(=> self :prompt-user "Like to try again?")
(=> self :user-y-or-n-p)
)

26

;;;; Methods for dealing with the game display.

:Prompt-user clears the prompt area and then writes a string to it.
The string should be less than 38 characters long.

(define-method (ttt-game :prompt-user) (prompt)
(c> selt :clear-prompt-area)
(tm_activate gr-fildes prompt-tont-id)
(fm_write gr-fildes 0 187 prompt (length prompt) TRUE TRUE)
)

:Clear-prompt-area clears the prompt area.

(define-method (ttt-game :clear-prompt-area) ()
(let «blankstring II

(fm_activate gr-fildes prompt-font-id)
(fm_write gr-fildes 0 187 blankstring 38 TRUE TRUE)
)

II))

:User-y-or-n-p displays yes and no boxes in the prompt area, returns
true if the user boinks (any button) with the locator in the yes box,
nil otherwise.

(define-method (ttt-game :user-y-or-n-p) ()
(wsetlocator gr-fildes -100 100)
(second (make-and-activate-menu gr-fildes IIYes or Noll

'«"Yes ll yes) ("No" nil»»

27

:Draw-grid draws the crossed lines for the game display.

(define-method (ttt-game :draw-grid) ()
(dcmove gr-fildes 0 69)
(dcdraw gr-fildes 179 69)
(dcmove gr-fildes 179 119)
(dcdraw gr-f11des 0 119)
(dcmove gr-fildes 0 179)
(dcdraw gr-fildes 179 179)
(dcmove gr-fildes 119 179)
(dcdraw gr-fildes 119 0)
(dcmove gr-fildes 69 0)
(dcdraw gr-fildes 69 179)
(make_picture_current gr-fildes)
)

:Draw-markers uses fm_write to draw the markers on the board display.

(define-method (ttt-game :draw-markers) ()
(fm_activate gr-fildes marker-font-id)
(dotimes (i 3)

(dotimes (j 3)
(fm_write gr-fildes (+ (* i 60) 20) (+ (* j 60) 14)

(string (=> board :get-square i j» 1 TRUE TRUE)

)

28

:Cle811up "undoes" all the game's connections to Windows/9000

(define-method (ttt-game :cleanup) ()
(when marker-font-id

(fm_activate gr-fildes marker-font-id)
(fm_remove gr-fildes marker-font-id»

(when marker-font-id
(fm_activate gr-fildes prompt-font-id)
(fm_remove gr-fildes prompt-font-id»

(when gr-fildes
(terminate-gr-communication gr-fildes»

(when wm-tildes
(wdestroy wm-tildes window-path)
(terminate-wm-communication wm-fildes»

29

...
•••••••• '" I I I I I I I I I I I ••• I I I I " I "'" I' "" I' I I II

Methods for making moves (names are suitable
values tor x-p1ayer-move and o-player-move.

:Get-user-move is one of the valid methods for x-p1ayer-move and
o-p1ayer-move. It prompts the user, then waits for them to boink
on the square where they wish to move.

(define-method (ttt-game :get-user-move) (marker)
(=> self :prompt-user (format nil "Player -A Move" marker»
(prog ()

start
(let* «points (get-boink gr-fi1des»

(x (first points»
(y (second points»
(i (truncate x 60»
(j (truncate y 60»
)

(=> self :c1ear-prompt-area)
(if (or (not (and «= 0 i 2) «= 0 j 2») (=> board :occupiedp i j»

(progn (=> self :prompt-user "Invalid: Try again ll)

(go start»
;; Else
(=> board :set-square i j marker)
»

30

:Make-move is a brain-damaged method that makes moves for the "computerll

(define-method (ttt-game :make-move) (marker)
(let (move)

(cond «setf move (=> board :winning-move marker»
(=> board :set-square (first move) (second move) marker»

«setf move (=> board :defending-move marker»
(=> board :set-square (first move) (second move) marker»

(t (setf move (=> board :default-move»
(=> board :set-square (first move) (second move) marker»

..
••••• II" •• ' •• ",."."",.,."", •••• ,.,." ••• , •••••••• ".,.",.".

;;;; Stuff for ttt-board instance type

...
• ,I.'.""""""""""""""" '11'11"""""""""""""""

The ttt-board instance type maintains the state of the game board
and provides methods to update and access that state.

(define-type ttt-board
(:var board-array)
(:var free-spaces-list)
)

Initializes the two data structures.

(define-method (ttt-board :init) (keylist)
(setq board-array (make-array 9 :initial-element nil»
(setq free-spaces-list (list 4 0 6 2 8 3 1 7 6»
)

31

Set a given square on the board to a given marker.

(define-method (ttt-board :set-square) (i j marker)
(let «index (+ i (:1: 3 j»»

(setf (svref board-array index) marker)
(setf free-spaces-list (remove index free-spaces-11st»
)

Return the character for the marker at a given position on the board.
Note that this returns a space character for unoccupied squares.

(define-method (ttt-board :get-square) (i j)
(let «square (svref board-array (+ i (:I: 3 j»»)

(cond (square)
(t #\Space»

Returns true if a given square is occupied, otherwise nil.

(define-method (ttt-board :occupiedp) (i j)
(svref board-array (+ i (:,: 3 j»)
)

Returns true if there are no unoccupied squares, otherwise nil.

(define-method (ttt-board :fullp) ()
(null free-spaces-list)
)

32

Laboriously churns through the various ways of getting three in a row.
Returns the marker of the winner if there is one, otherwise nil.

{define-method (ttt-board :winnerp) ()
{catch 'done

;; Check 0 1 2 and 0 3 6
{let «upper-left (svref board-array 0»

(middle (svref board-array 4»
(lower-right (svref board-array 8»)

(if (and upper-left
{or {and {equalp upper-left (svref board-array 1»

{equalp upper-left (svref board-array 2»)
(and {equalp upper-left (svref board-array 3»

{equalp upper-left (svref board-array 6»)
»

(throw 'done upper-left»
Check 1 4 7, 3 4 6, 0 4 8, and 2 4 6

(if (and middle
(or (and (equalp middle (svref board-array 1»

(equalp middle (svref board-array 7»)
(and {equa1p middle (svref board-array 3»

(equa1p middle (svref board-array 6»)
(and (equa1p middle upper-left)

(equa1p middle lower-right»
(and (equa1p middle (svref board-array 2»

(equalp middle (svref board-array 6»)
»

(throw 'done middle»
Check 2 6 8 and 6 7 8

{if (and lower-right
(or (and (equalp lower-right (svref board-array 2»

(equalp lower-right (svref board-array 6»)
(and (equalp lower-right (svref board-array 6»

(equa1p lower-right (svref board-array 7»)
»

(throw 'done lower-right»)
»

33

Tries all available moves and returns a winning move for marker
if there is one. Otherwise it returns nil.

(detine-method (ttt-board :wiDDing-move) (marker)
(catch 'done

(dolist (potential-move tree-spaces-list)
(unWind-protect
(progn

(sett (svref board-array potential-move) marker)
(if (=> self :winnerp)

(throw 'done (nreverse
(multiple-value-list (floor potential-move 3»»

»
Protect Form

(setf (svref board-array potential-move) nil)
)

)

)

Tries available moves to see if opponent of marker can win with next move.
Returns that move if there is one, otherwise nil.

(define-method (ttt-board :defending-move) (marker)
(let «opp-marker (case marker

(#\X #\0)
(#\0 #\X»»

(catch 'done
(dolist (potential-move free-spaces-list)

(unWind-protect
(progn
(setf (svref board-array potential-move) opp-marker)
(if (=> self :winnerp)

(throw 'done (nreverse
(multiple-value-list (floor potential-move 3»»

»
Protect Form

(setf (svref board-array potential-move) nil)
)

)

34

Returns first move of free list

(define-method (ttt-board :default-move) ()
(nreverse (mult1ple-value-list (floor (first free-spaces-list) 3»)
)

35

..
I I I I I I I I I' I I I I I " I' I '" I' I' I" I I I II II I I II II ,,., I I II " fl f' I. I I ••••• I I" '" I' I I' I I

Functions

...
• '" I II II ••••• '" II I ,., I' ., •• '!" II I "" I If II II "'1" I' ,., •••• I " II I., Iff" I'" f

The main loop that runs the game

(defun tic-tac-toe ()
(let ((*game* (make-instance 'ttt-game»)

(declare (special *game*»
(when (=> "'game* :created-okay)

(catch 'end-of-game
(unwind-protect

(loop
(catch 'another

(=> *game* :start)
(loop

(=> *game* :move-x-p1ayer)
(end-of-game? *game*)
(=> *game* :move-o-p1ayer)
(end-of-game? *game*)
»

)
(=> *game* :cleanup»

)
)

)
)

Checks to see if the game is done. If it is, asks
user if they want to play again and reacts accordingly.

(defun end-of-game? (game)
(if (=> game :gameoverp)

(11 (=> game :play-again-p)
(throw 'another nil)
(throw 'end-ot-game 'Done)
)

)

36

Chapter 4

Libraries

Introduction
The non-Lisp function calling mechanism makes it possible for you to call HP-UX library
or system functions from Lisp. It would however, be less than friendly if you had to define
all the access functions yourself. For this reason (and because we wanted to use them
too), HP has provided Lisp functions that call many of the HP-UX library routines.

This chapter lists all the available functions for calling the library routines and the types
of arguments that they require, but does not explain what the functions do. See the
appropriate HP-UX documentation for that information. The object code files for the
functions described here are in the directory $LISP/modules/lib.

Pointer Parameters
Some of the library functions expect arguments that are pointers. The non-Lisp function
calling mechanism requires that the corresponding argument to the Lisp access function
be a symbol. The global value cell of the symbol is used to transmit the value. See
"Calling Non-Lisp Routines" ill the Lisp Programmer's Guide.

Constants
When calling HP-UX library routines from C, you normally use the include facility
to insert the text of various "include" files into the source of your program. These
files contain definitions for constants that are convenient to .use as arguments to certain
library functions. Many of these constants have been defined for you in the modules that
provide the Lisp access functions. The names of predefined constants are listed in the
section that describes the functions they are most often used with.

37

HP-UX System Calls
There are predefined Lisp access functions for all of the HP-UX system functions de
scribed in Section 2 of the HP- UX Reference. These are in the hp-wc2 module, which
can be conditionally loaded with

(require lIhp-ux_211)

All of the functions listed here are in the hp-ux_2 package. Because of name conflicts
with some Common Lisp functions, we recommend that anyone using these functions
import the desired symbols or qualify the names (with hp-ux_2:), instead of using the
package directly.

Special Considerations
Some of the functions in this section have special considerations because their corre
sponding C functions expect arguments whose types have no convenient equivalent in
Lisp. This has been handled a couple different ways.

Structure Arguments
For some of the section 2 functions that take structure arguments, we have defined
equivalent Lisp structures to be used as arguments to the Lisp version of the function.
These functions and structure definitions are described below. Remember that they are ~

defined in the hp-ux_2 package.)

For the functions gettimeofday and settimeofday, the structure definitions are:

(defstruet (timeval (:type (vector integer»)
(tv_sec 0)
(tv_usee 0»

(defstruet (timezone (:type (vector integer»)
(tz_minuteswest 0)
(tz_dsttime 0»

For the times function, the structure definition is:

(defstruct (tms
(:type (vector integer»)

(utime 0)
(stime 0)
(cut1me 0)
(cstime 0»

For the uname function, the structure definition is:

38

(defstruct utsname
(sysname 1111)
(nodename 1111)
(release 1111)
(version 1111)
(machine 1111)
(idnumber 1111»

For the utime function, the structure definition is:

(defstruct (utimbuf
(:type (vector integer»)

(actime 0)
(modtime 0»

If you want to use the ioctl function to change the termio structure of a terminal device,
we have supplied the Lisp function tty-ioctl

(hp-ux_2: tty-1octl file-descriptor command arg) Function

If command is one of TCGETA, TCSETA, TCSETAW, or TCSETAF, then arg should be a termio
structure. The definition of the structure is

(defstruct termio
(c_itlag 0 :type
(c_otlag 0 :type
(c_ctlag 0 :type
(c_ltlag 0 :type
(c_line #\a
(c_cc II

integer)
integer)
integer)
integer)

:type
II :type

string-char)
(array string-char»)

Addresses
Some section 2 functions take arguments that are supposed to be addresses. At the
moment, there is no support in Lisp for easily generating a meaningful address for these
functions. If you use such a function, you are responsible for making sure that you pass
it a meaningful argument.

For some of these functions, it makes more sense to write a C program that calls the
system function, and then call your C function from Lisp using the non-Lisp function
calling facility.

All of the non-trivial function calls are marked non-trivial in the list below.

39

Constants
TCGETA
TCSETA
TCSETAW
TCSETAF
TCSBRK
TCXONC
TCFLSH

Functions
(access character-array integer)

(acct character-array)

(alarm integer)

(brk integer)

(sbrk integer)

(chdir character-array)

(chmod character-array integer)

(chown character-array integer integer)

(chroot character-array)

(close integer)

(creat character-array integer)

(dup integer)

(errno)

For execl, do not specify tile last argument as 0; it is done for you.
(execl character-array .trest character-arrays)

(execv character-array vector-of-strings)

For execle, do not specify the second to last argument as 0; it is dOJle for you.
(execle characte~-array&rest character-arrays vector-of-strings)

(execve character-array vector-of-strings vector-of-strings)

For execlp, do not specify the last argument as 0; it is done for you.
(execlp character-array &rest character-arrays)

40

(exeevp character-array vector-of-strings)

(exit integer)

Lexit integer)

(fentl integer integer integer)

(fork)

(fsync integer)

(ft1me vector) ; non-trivial

(gethostname character-array integer)

(getitimer integer vector) ; non-trivial

(set1t1mer integer vector vector) ; non-trivial

(getp1d)

(getpgrp)

(getppid)

(getpr1vgrp array)

(setpr1vgrp integer array)

(gett1meofday time val-structure timezone-structure)

(sett1meofday timeval-structure timezone-structure)

(getu1d)

(geteuid)

(getg1d)

(getegid)

(ioctl integer integer fixnum) See tty-ioctl. described above.

(kill integer integer)

(link character-array character-array)

(locld integer integer integer)

41

(lseek integer integer integer)

(mkdir character-array integer)

(mknod character-array integer integer)

(mount character-array character-array integer)

(msgctl integer integer array) ; non-trivial

(msgget integer integer)

(msgsnd integer array integer integer) ; non-trivial

(msgrcv integer array integer integer integer) : non-trivial

(nice integer)

(open character-array integer &optional integer)

(pause)

(pipe two-element-integer-vector)

(plock integer)

(prealloc integer integer)

(profil integer integer integer integer)

(ptrace integer integer integer integer)

(read integer character-array integer)

(readv integer array integer) ; non-trivial

(reboot integer character-array character-array)

(rmdir character-array)

(rtprio integer integer)

(select integer integer-array integer-array integer-array array)

(semctl integer integer integer array) ; non-trivial

(semget integer integer integer)

(semop integer array integer) non-trivial

42

non-trivial

non-trivial

(setgroups integer integer-array)

(sethostname character-array integer)

(setpgrp)

(setuid integer)

(setgid integer)

(setprgrp)

(setuid integer)

(shmctl integer integer array)

non-trivial

non-trivial

(fstat integer array)

(stime integer)

(stty integer array)

(gtty integer array)

(aync)

(shmget integer integer integer)

(shmat integer integer integer) non-trivial

(shmdt integer) ; non-trivial

(signal integer integer) ; non-trivial

(sigpause integer) ; non-trivial

(sigsetmask integer) ; non-trivial

(sigspace integer) ; non-trivial

(sigvector integer array array) non-trivial

(stat character-array array) non-trivial

; non-trivial

(time symbol) ; Value cell of the symbol will be used

(times tms-struc ture)

(truncate character-array integer)

43

(ttruncate integer integer)

(ulimit integer integer)

(umask integer)

(umount character-array)

(uname utsname-structure)

(unlink character-array)

(ustat integer array) ; non-trivial

(utime character-array utimbuf-structure)

(vfork)

(wait symbol) ; The value cell of the symbol will be used.

(write integer character-array integer)

Windows/9000 Functions
The Lisp access functions for Windows/9000 are defined in the hp-ux_3w module, which ~
call be conditionally loaded with

(require Ihp-ux_3w")

All of the symbols described here are interned in the hp-ux_3w package.

44

Constants
The following useful constants are defined in the hp-ux_3w module.

COLORMODE
DFLTNAMEMAX
DFLT_IPOS
DFLT_NAME
DFLT_WPOS
DO_MC
ECHO_ALPHA
ECHO_BEST
ECHO_BOX
ECHO_DEFAULT
ECHO_DEVDEP
ECHO_FULL
ECHO_NOOPT
ECHO_OPT
ECHO_RUBLINE
ECHO_RUBRECT
ECHO_SMALL
ECHO_USERDEF
EVENT_B1_DOWN
EVENT_B1_UP
EVENT_B2_DOWN
EVENT_B2_UP
EVENT_B3_DOWN
EVENT_B3_UP
EVENT_B4_DOWN
EVENT_B4_UP
EVENT_B6_DOWN
EVENT_B6_UP
EVENT_B6_DOWN
EVENT_B6_UP
EVENT_B7_DOWN
EVENT_B7_UP
EVENT_B8_DOWN
EVENT_B8_UP
EVENT_ECHO
EVENT_MENU
EVENT_MOVE
EVENT_REPAINT
EVENT_SELECT
EVENT_SIZE
FABLINK
FABLUE
FABONW
FACOLOR
FACURSORNOMOVE

FAGREEN
FAHALFBRIGHT
FAINVERSE
FAOFF
FAPLANE
FARED
FAROLLDOWN
FAROLLLEFT
FAROLLRIGHT
FAROLLUP
FASERIAL
FAUNDERLINE
FA\IIINDO'li
FAWONB
FONTIDMAX
FONTIDMIN
GETAUTODESTROY
GETAUTOSELECT
GETAUTOTOP
GETBANNER
GETBOTTOM
GETCONCEAL
GETFONTID
GETICONIC
GETPAUSE
GETRECOVER
GETSELECT
GETTOP
IMODE_FILE
IMODE_NONE
IMODE_TYPE
LABELMAX
LMODE_DISP
LMODE_NONE
MCALWAYS
MENU_ACT_AUTO
MENU_ACT_DIS
MENU_ACT_1M
MENU_ACT_INQ
MENU_DISPGREY
MENU_DISPNORM
MENU_NEWITEM
MENU_NOPARENT
MENU_NOTSELECTABLE
MENU_POPUP

MENU_SELECTABLE
MENU_SEPARATOR
MENU_STRING
MENU_TRACKINV
MENU_TRACKNOCHNG
NOMCONCFLAGFALSE
NOMCONCFLAGTRUE
NOMCOUCLEAR
NOMCONFARECT~mITE

NOMCONFAROLL
NOMCONFAWRITE
SETAUTODESTROY
SETAUTOSELECT
SETAUTOTOP
SETBANNER
SETBOTTOM
SETCONCEAL
SETICONIC
SETUOAUTODESTROY
SETNOAUTOSELECT
SETNOAUTOTOP
SETUOBANNER
SETNOBOTTOM
SETNOCONCEAL
SETNOICONIC
SETNOPAUSE
SETNORECOVER
SETNORETAIN
SETNOSELECT
SETNOTOP
SETPAUSE
SETRECOVER
SETRETAIN
SETSELECT
SETTOP
SFKLABELMAX
SFKOFF
SFKON
SFKSEPOFF
SFKSEPON
SHUFFLEDOWN
SHUFFLEUP
WINMAX
WINNAMEMAX
WI NUNI TMAX

45

Functions
Below is a list of all the Lisp functions for accessing the Windows/900a library functions.
It gives the name of the functions and the types of arguments they require. See the
Windows/gOOa documentation for information on what each function does. When an
argument is a symbol, the value cell of the symbol is used. For more information see the
chapter "Calling Non-Lisp Routines" in the Lisp Programmer's Guide.

(altfont_termO fixnum fixnum)

(basefont_termO fixnum fixnum)

(faclear fixnum jixnum four-element-jixnum-vector)

(facolors jixnum jixnum jixnum)

(facursor jixnum jixnum jixnum fixnum)

(fafontactivate jixnum jixnum)

(fafontload jixnum simple-string)

(fafontremove fixnum jixnum)

(fagetinfo jixnum jifteen-element-fixnum-vector)

(fainit fixnum jixnum)

(farectwrite jixnum jixnum fixnum four-element-jixnum-vector)

(faroll jixnum jixnum jixnum four-element-jixnum-vector)

(fasetinfo jixnum jifteen-element-fixnum-vector)

(faterminate jixnum)

(fawrite fixnum jixnum fixnum simple-string simple-string fixnum)

(fm_activate fixnum jixnum)

(fm_cl1pflag jixnum jixnum)

(fm_cliplim jixnum jixnum jixnum fixnum fixnum>

(fm_colors fiT-n.t/.m. fiT-n.t/.m. fixn.t/.m.)

(fm_fileinfo simple-string
symbol The value cells of these
symbol symbols will be used to
symboO ; return the information.

46

(tm_tontdir jixnum jixnum)

(tm-f;etname jixnum fixnum simple-string)

(tm.....load fi,xnum simple-string symbol) ; Value cell ot symbol \'fill be used

(fm_raster1nfo fixnum
jixnum
symbol
symbol
symbol)

The value cells of these
symbols will be used to
return the information.

The value cells of these
symbols will be used.

(fm_remove fixnum fixnum)

(fm_str_len fixnum simple-string fixnum)

The Lisp interface to fm_style1nfo is not currently implemented.

(tm_write jixnum
fixnum
fixnum
simple-s tring
fixnum
fixnum
jixnum)

(fontget1d_termO fixnum simple-string)

(tontgetname_termO jixnum fixnum)

(fontload_termO fixnum simple-string)

(fontreplacea11_termO fixnum simple-string simple-string)

(fontsize_termO fixnum symbol symbol> ; The value cells of the symbols are used.

(fontswap_termO fixnum simple-string fixnum)

(fromxy_termO fixnum
fixnum
fixnum
symbol
symbol)

(toxy_termO fixnum
symbol ; The value cells of these
symbol ; symbols will be used.

47

The value cells ot these
symbols will be used to
return values.

jixnum
jixnum)

(wautodestroy jixnum jixnum)

(llautoselect jixnum jixnum)

(wautotop jixnum jixnum)

(wbanner fixnum fixnum)

(wbottom fixnum fixnum)

(\fCOnceal jixnum jixnum)

(wcreate_graphics jixnum
simple-string
fixnum
jixnum
jixnum
fixnum
jixnum
jixnum
jixnum
jixnum)

(wcreate_termO fixnum
simple-string
jixnum
jixnum
jixnum
jixnum
jixnum
fixnum
jixnum
jixnum
simple-string
simple-string
jixnum
fixnum)

(wdestroy jixnum simple-string)

(wdfltpos jixnum
fixnum
symbol
symbol
symbol
symbol
simple-string)

48

(weventclear fixnum fixnum)

(weventpoll fixnum
symbol
symbol
symbol
symbol)

(wgetbcolor fixnum
symbol
symbol)

(wgetbcoords fixnum
symbol
symbol
symbol
symbol)

(wgetcoords fixnum
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol)

(wgetecho fixnum
symbol
symbol
symbol
symbol)

(wgeticonpos fixnum
symbol
symbol)

(wgetlocator fixnum
symbol
!fym-htll
symbol)

The value cells of these
symbols w111 be used to
return values.

The value cells of these symbols
w111 contain the returned values.

The value cells of these
symbols w1l1 be used to
return values.

The value cells ot these
symbols w111 be used to
return values.

The value cells of these
symbols w111 be used to
return values.

The value cells of these symbols
w111 contain the returned values.

The value cells of these
AymbolA will be used to
return values.

(wgetname fixnum simple-string)

(\fgetrasterecho fixnum
symbol
symbol
symbol

The value cells of these
symbols will be used to
return values.

49

symbol
symbol
symbol
simple-s tring
simple-string)

(wgetscreen fixnum
symbol
symbol
symbol
symbol
symbol)

The value cells of these
symbols will be used to
return values.

(wgets1gmask fixnum symbol) The value cell of the symbol will be used.

(wiconic fixnum fixnum)

(winit fixnum)

(wmenu_create fixnum fixnum fixnum fixnum fixnum)

(wmenu_item jixnum fixnum fixnum fixnum jixnum simple-string)

(wmenu_delete jixnum fixnum)

(wmenu_activate fixnum fixnum fixnum)

(wmenu_eventread fixnum symbol symbol) ; The value cells of the symbols are used

(wminquire fixnum simple-string simple-string)

(wmkill fixnum)

(wmove fixnum fixnum fixnum)

(wmpathmake simple-string simple-string simple-string)

(wmrepaint fixnum)

(wpan fixnum fixnum jixnum)

(wpauseoutput fixnum fixnum)

(wselect fixnum fixnum)

(wsetbcolor fixnum fixnum fixnum)

(wsetecho fixnum fixnum fixnum fixnum fixnum)

(wseticon fixnum fixnum fixnum simple-string)

50

(wset1conpos jixnum jixnum jixnum)

(wsetlabel jixnum simple-string)

C (wsetlocator jixnum jixnum jixnum)

(wsetrasterecho jixnum
fixnum
fixnum
jixnum
fixnum
fixnum
fixnum
simple-string
simple-string)

(wsets1gmask fixnum fixnum)

(wsfk_mode fixnum jixnum)

(wsfk_prog fixnum fixnum simple-string string-character)

(wshuffle fixnum jixnum)

(ws1ze jixnum jixnum jixnum)

(wterminate jixnum)

(mop jixnum fixnum)

51

Starbase Graphics Functions
The Lisp access functions for Starbase graphics are defined in the hp-wc_3g module, which
can be conditionally loaded with

(require IIhp-wc_3gll)

All of the symbols described here are interned in the hp-wc_3g package. Tbere are two
symbols in this package that conflict with symbols in the lisp package (push and replace).
IT you want to use both of these packages, you will need to precede the use-package with
a call to shadowing-import. For instance,

(in-package 'user)
(shadowing-import , (hp-wc_3g:push hp-wc_3g:replace»
(use-package • (hp-wc_3g lisp»

After doing this, to call the Common Lisp functions push and replace, you will need to
qualify the symbols with lisp: (e.g. lisp:push). Similarly, you could do the shadowing
import with lisp:push and lisp:replace, and then explicitly refer to hp-ux_3g:push and
hp-wc_3g:replace.

Constants
The following useful constants are defined in the hp-ux_3g module.

ALL
BLINK_PLANES
CENTER_DASH
CENTER_DASH_DASH
CHARACTER_TEXT
CHOICE
CLEAR_CLIP_RECTANGLE
CLEAR_DISPLAY_SURFACE
CLEAR_VDC_EXTENT
CLIP_OFF
SIMULTANEOUS_EVENT_FOLLOWS
CLIP_TO_REeT
CLIP_TO_VDC
DASH
DASH_DOT
DASH_DOT_DOT
DISABLE_AurO_PROMPT
DISTORT
DOT
EMPTY_NO_OVERFLOW
EMPTY_OVERFLOW
ENABLE_AUTO_PRO~~T

FALSE
FRACTIONAL

HPTElUtC640X400
HPTERM_PRINT_ESC
HP_8BIT
IGNORE_RELEASE
INDEV
INIT
INMETA
I NT_HOLLOW
INT_SOLID
ISOTROPIC

ISO_7BIT
ISO_8BIT
LOCATOR
LONG_DASH
METRIC
NOT_EMPTY_NO_OVERFLOW
NOT_EMPTY_OVERFLOW
NO_ERROR_PRINTING
OurDEV
OUTINDEV
OUTMETA
PATH_DOWll
PATH_LEFT

52

R_BIT_MASK
R_BIT_MODE
R_DEF_FILL_PAT
R_FREE_OFFSCREEN
R_FULL_FRAME_BUFFER
R_GET_FRAME_BUFFER
R_GET_WINDOW_INFO
R_LOCK_DEVICE
R_UNLOCK_DEVICE

SINGLE_EVENT
SOLID
SPOOLED
STRING_TEXT
STROKE_TEXT
SWITCH_SEMAPHORE
TA_BASE
TA_BOTTOM
TA_CAP
TA_CENTER
TA_CONTINUOUS_HORIZONTAL
TA_CONTINUOUS_VERTICAL
TA_HALF

GA_NONE
GB_NONE
GKSM_GET_ITEM_TYP£
GKSM_INQ_COLOR_NDCES
GKSM_INQ_PAT_REP
GKSM_READ_ITEM
GKSM_SKIP_ITEM
GKSM_\'IRITE_ITEM
HP26_PRINT_ESC
HPGL_SET_PEN_NUM
HPGL_SET_PEN_SPEED
HPGL_SET_PEN_WIDTH
HPGL_VIRITE_BUFFER

PATH_RIGHT
PATH_UP
POST
PRE
PRINT_ERRORS
PRINT_WARNINGS
PROMPT_OFF
PROMPT_Oll
PUSH
READ_COLOR_MAP
REPLACE
RESET_DEVICE
R_ALLOC_OFFSCREEN

TA_LEFT
TA_NORMAL_HORIZONTAL
TA_NORMAL_VERTICAL
TA_RIGHT
TA_TOP
TC_HALF_PlXEL
THREE_D
TOS_TEXT
TRIGGER_ON_RELEASE
TRUE
VDC_TEXT
WORLD_COORDINATE_TEXT

Functions
Below is a list of all the Lisp functions for accessing the Starbase library functions. It gives
the name of the functions and the types of arguIllents they require. See the Starbase
documentation for information on what each function does. When an argument is a
symbol, the value cell of the symbol is used. For more information see the chapter
"Calling Non-Lisp Routines" in the Lisp Programmer's Guide.

(await_event fixnum float symbol symbol)

~ (await_retrace fixnum)

(background_color_index fixnum fixnum)

(background_color fixnum float float float)

(block_move fixnum float float fixnum fixnum float float)

(deblock_move fixnum fixnum fixnum fixnum fixnum fixnum fixnum)

(block_read fixnum float float fixnum fixnum simple-string fixnum)

(deblock_read fixnum fixnum fixnum fixnum fixnum simple-string fixnum)

(block_write fixnum float float fixnum fixnum simple-string fixnum)

(dcblock_write fixnum fixnum fixnum fixnum fixnum simple-string fixnum)

(bUffer_mode fixnum fixnum)

(character_expans1on_factor fixnum float)

(character_height .fixnum float)

(dccharacter_height fixnum fixnum)

53

{character_slant fixnum float>

(character_width fixnum float)

(dccharacter_width fixnum fixnum)

(clear_control fixnum fixnum)

(clip_depth fixnum float float>

(clip_indicator fixnum fixnum)

(clip_rectangle jixnum float float float float)

(concat_matrix 4x4-float-array 4x4-float-array 4x4-float-array)

(concat_transformation2d jixnum 3x2-jloat-array jixnum jixnum)

(concat_transformation3d fixnum 4x4-float-array jixnum fixnum)

(dc_to_vdc jixnum jixnum fixnum jixnum symbol symbol symbol>

(define_color_table jixnum jixnum fixnum 2d-jloat-array)

(define_raster_echo fixnum
fixnum
fixnum
jixnum
fixnum
jixnum
jixnum
simple-string)

(depth_indicator fixnum fixnum fixnum)

(designate_character_set jixnum simple-string fixnum)

(disable_events fixnum fixnum fixnum)

(display_enable jixnum fixnum)

(draw2d fixnum float float)

(draw3d fixnum float float float)

(dcdro.w jitxnum jixnum jixnum)

(drawins-mode fixnum fixnum)

54

(echo_type jixnum jixnum jixnum float float float)

(dcecho_type jixnum fixnum fixnum fixnum jixnum)

("'" (echo_update jixnum jixnum float float float)

(dcecho_update fixnum fixnum fixnum fixnum)

(enable_events fixnum jixnum fixnum)

(fill_color jixnum float float float)

(fill_dither fixnum jixnum)

(flush_matrices fixnum)

(gclose fixnum)

To use gerr_procedure, you must write two C functions: one that is the error handler,
and another that sets up the error handler by calling gerr_procedure. Load this C code
with extn: load-ofile, and use extn: defexternal to define a Lisp version of the C function
that calls gerr_procedure. Calling the Lisp version will set up the error handler.

(gerr_defaults)

(gerr_message fixnum)

(gescape jixnum jixnum 64-element-fixnum-array 64-element-fixnum-array)

If you want to call gescape with another type of array, you must use the non-Lisp function
calling facility to define your own version. See "Calling Non-Lisp Routines" in the Lisp
Programmer's Guide.

(gopen simple-string jixnum simple-string jixnum)

(initiate_request fixnum jixnum jixnum symbol>

(inquire_color_table jixnum fixnum jixnum fd-float-array)

(inquire_gerror symbol symbol>

(inquire_id jixnum symbol simple-string symbol>

55

(inquire_input_capabilities jiznum
symbol
symbol
symbol
symbol
sym~ol
symbol)

(inquire_request_status jiznum jiznum jiznum symbol)

(inquire_sizes jiznum
2z9-floa t- array
three-element-float-vector
three-element-float-vector
three-element-float-vector
symbol)

(inquire_text_extent jiznum simple-string jiznum twelve-element-ftoat-vector)

(interior_style jiznum jiznum jiznum)

(intra_character_space jiznum float)

(line_color_index jiznum jiznum)

(line_color jiznum float float float)

(line_repeat_length jiznum float)

(line_type jiznum jiznum)

(make_picture_current jiznum)

(mapping_mode jiznum jiznum)

(marker_color_index jiznum jiznum)

(marker_color jiznum float float float)

(marker_orientation jiznum float float)

(marker_size jiznum float jiznum)

(dcmarker_size jiznum jiznum)

(marker_type jiznum jiznum)

(move2d jiznum float float)

56

(move3d fixnum float float float)

(dcmove fixnum fixnum fixnum)

(part1al_polygon2d fixnum float-vector fixnum fixnum fixnum)

(partial_polygon3d jixnum float-vector fixnum fixnum fixnum)

(dcpartial_polygon fixnum fixnum-vector fixnum jixnum jixnum»

(perimeter_color_index fixnum fixnum)

(perimeter_color fixnum float float float)

(perimeter_repeat_length jixnum float)

(perimeter_type jixnum fixnum)

(polygon2d jixnum float-vector fixnum fixnum)

(polygon3d fixnum float-vector fixnum jixnum)

(dcpolygon jixnum fixnum-vector fixnum fixnum)

(polyline2d fixnum float-vector fixnum jixnum)

(polyl1ne3d jixnv.m float-vector fixnv.m fixnv.m)

(dcpolyline fixnv.m fixnv.m-vector fixnum fixnv.m)

(polymarker2d fixnum float-vector fixnum fixnum)

(polymarker3d fixnum float-vector fixnum fixnum)

(dcpolymarker fixnum fixnum-vector fixnum fixnum)

(pop_matrix fixnum)

(pop_matrix2d fixnum 9x2-float-array)

(pop_matrix3d fixnum 4x4-float-array)

(push_matrix2d fixnum 9x2-float-array)

(push_matrix3d fixnum 4x4-float-array)

(push_vdc_matrix fixnum)

(read_choice_event fixnum symbol symbol symbol symbol symbol)

57

(read_locator_event fixnum symbol symbol symbol symbol symbol symbol symbol>

(rectangle fixnum float float float float)

(dcrectangle fixnum fixnum fixnum fixnum fixnum)

(replace_matrix2d fixnum 9xf-float-array)

(replace_matr1x3d fixnum 4x4-float-array)

(request_choice fixnum fixnum float symbol symbol)

(request_locator fixnum fixnum float symbol symbol symbol symbol>

(sample_choice fixnum fixnum symbol symbol)

(sample_locator fixnum fixnum symbol symbol symbol symbol)

(set_locator fixnum fixnv,m float float float)

(set_pl_p2 fixnum fixnum float float float float float float)

(set_signals fixnum fixnum)

(append_text fixnum simple-string fixnum fixnum)

(text2d fixnum float float simple-string fixnum fixnum)

(text3d fixnum float float float simple-string fixnum fixnum)

(dctext fixnum fixnum jixnum simple-string)

(text_alignment fixnum fixnum fixnum float float)

(text_color_index fixnum fixnum)

(text_color fixnum float float float)

(text_tont_index fixnum fixnum)

(text_line_path fixnum fixnum)

(text_line_space fixnum float)

(text_orientation2d fixnum float float float float)

(text_orientation3d fixnum float float float float float float)

(text_path fixnum fixnum)

58

(text_precision jixnum jixnum)

(text_switching_mode jixnum jixnum)

(track jixnum jixnum jixnum)

(track_off jixnum)

(transform_points jixnum float-array float-array jixnum jixnum)

(vdc_extent fixnum float float float float float float)

(vdc_to_dc jixnum float float float symbol symbol symbol)

(vdc_to_wc jixnum float float float symbol symbol symbol)

(viewport_justification jixnum float float)

(wc_to_vdc jixnum float float float symbol symbol symbol)

(write_enable jixnum jixnum)

59

Device I/O Functions
The Lisp access functions for the Device I/O library (DIL) are defined in the hp-ux_3i
module, which can be conditionally load~d with

(require "hp-ux_3i ll
)

All of the symbols described in this section are interned in the hp-ux_3i package.

NOTE

The hp-ux_3i module should not be loaded or used when either the
hp-ux_3V1 or hp-ux_3g module is loaded.

Constants
The following useful constants are defined in the hp-ux_3i module.

HPIBWRITE
HPIBREAD
HPIBATN
HPIBEOI
HPIBCHAR

Structure Arguments
The device I/0 function hpib_io takes as one of its arguments an array of C structures.
To facilitate calling hpib_io from Lisp, we have defined an equivalent Lisp structure
called iodetail. The definition of this structure is

(defstruct iodetail
(mode 0 :type unsigned-byte)
(terminator 0 :type unsigned-byte)
(count 0 :type fixnwn)
(buf 1111 : type simple-string»

Since hpib_io actually takes an array of such structures, the function make-iodetail
array is also defined.

(hp-ux_3i:make-iodetail-array n) Function

A call to this function retllrn~ a.n n-element olle-dimem:iona.1 array of iodetail ~trlletllreS

which have been initialized to the default values (see definition above). The second ~

argument to the Lisp version of hpib_io should be an array returned by make-iodetail- ,Y
array.

60

Functions
This is a list of all the Lisp functions for accessing the Device I/O Library (DIL) functions.
It gives the name of the functions and the types of parameters they require. See section
three of the HP- UX Reference for information on what each function does.

(gp1o_get_statu8 fixnum)

(hp1b_abort fixnum)

(hpib_bus_status fixnum fixnum)

(hpib_io fixnum iodetail-array fixnum)

(hpib_ppoll fixnum)

(hpib_ppoll_resp_ctl fixnum fixnum)

(hpib_ren_ctl fixnum fixnum)

See description of iodetail
structure above

(hpib_rqst_srvce fixnum fixnum)

(hpib_send_cmnd fixnum simple-string fixnum)

(hpib_spoll fixnum fixnum)

In the current release, calling io_burst has no effect (it is a no-op). This is provided so
that code written for this release need not be changed for future versions that support
io_burst.

(10_ eoL_ctl jixnum jixnum jixnum)

(io_reset fixnum)

61

(io_speed_ctl fixnum fixnum)

(io_timeout_ctl fixnum fixnum)

(io_width_ctl fixnum fixnum)

Networking Functions
The Lisp access functions for Local Area Networking (LAN) are defined in the hp-ux_3n
module, which can be conditionally loaded with

(require IIhp-ux_3n ll
)

All of the symbols described here are interned ill the hp-ux_3n package. For the meaning
of these functions see the reference pages in your LAN documentation.

(errnet) ; Returns the value of the errnet variable

(netunam simple-string simple-string)

(net_aton simple-string simple-string fixnum)

(net_ntoa simple-string simple-string fixnum)

62

".",\

Chapter 5

User I/O

Introduction
This chapter explains how to use the Common Lisp I/O functions to input from and
output to various types of files. Most of the information presented applies to I/O for
functions that will be running independent of NMODE, but a few functions provided by
NMODE for user input and output are discussed.

Prerequisites
Since the Common Lisp system runs on top of HP-UX, the behavior of the I/O functions
is sometimes dependent on factors controlled by HP-UX. In particular, input and output
to and from a terminal's special device file (of which windows are a special case) are
affected by the termio structure associated with that device file. This chapter attempts
to give you all the information you need to deal with these thingsj for details see the
ioctl(2) and termio(4) entries in the HP-UX Reference.

This chapter assumes that you have a basic understanding of Windows/900D concepts,
such as the difference between graphics and termO windows. This information is covered
in the HP Windows/9000 User's Manual, and the HP Windows/9000 Programmer's
Manual.

Organization
The first part of this chapter deals with I/O from/to files. First, text files are discussed,
then device special files. The device file section covers termO window I/O, and I/O with
graphics windows. Next there is a brief section that suggests a way of getting input
from the mouse. The last section deals with user I/O in the NMODE programming
environment.

63

File I/O

Text Files
Text files are "real" files: collections of cbaracters stored on disk somewhere in the HP- ~
UX file hierarchy, like /usr/include/window.h or /etc/passwd. Using Lisp to read from)
or write to such a file is easy. Just use one of the Lisp functions open or with-open-tile
to bind a stream to the desired file and call any Lisp I/O function that takes a stream
argument. When used with text files, all the Common Lisp I/O functions behave as
described in Steele.

If you have HP's local area network (LAN) hardware and software, you can even do I/O
on a file on another computer's file system via RFA (Remote File Access). The upcoming
example demonstrates doing this conditionally.

Example
Suppose you are an R&D manager trying to keep an eye on your staff. You're worried that
the programmers are not documenting their code sufficiently, so you write the following
program to help you analyze the situation. It takes an output file name, an input file
name, and some optional arguments that are used for accessing files via LAN (if desired).
The input file is read, and any line containing a semicolon is written to the output file.
When processing is complete, a summary is written to :f:standard-output:f:.

(require IIhp-ux_3n ll)

(detun analyze-comments (out-tile in-file &optional
(rem-system nil) (password 1111»

(let «real-in-tile (get-real-tile-name in-file rem-system password»)

(with-open-tile (outstream out-tile :direction :output)
(let «line-count 0)

(comment-count 0»
(with-open-file (instream real-in-file :direction :1nput)

(do «line (read-line instream nil 'eot)
(read-line instream nil 'eot»)

«eq line 'eof»
(inct line-count)
(when (commentp line)

(inct comment-count)
(write-line line outstream)
)

»
(format outstream "Total Lines: -A-XComment Lines: -A-X Percentage:

-4,lF-X"
line-count comment-count (* 100 (/ comment-count line-count»)

64

(defun get-real-file-name (file-name system password)
(cond «simple-string-p system)

;; Try to set up access to remote system
(if « (hp-ux_3n:netunam system password) 0)

(error "Invalid password specified for -A" system»
(concatenate 'simple-string system file-name»

(t file-name)
)

;; Currently stupid, returns true even for ;'s imbedded in strings
(defun commentp (str)

(find #\; str :test #'char=)
)

;; An example call
(analyze-comments "results" "/users/stud/lispfiles/foo.l" "/net/stud"

Iroot:zanzlBar")

Terminal Device Files
Terminal device (or special) files are HP-UX device files that correspond to some kind
of terminal Windows have device files that behave like a terminal device, so they are
included in this category. These files, such as /dev/console and the files in $WMDIR, can
be opened with open or wi th-open-::rile and read from or written to with the Common
Lisp I/O functions.

Before you do any input or output from/to a terminal device, you must make sure that
the termio structure for that device is set correctly. The termio structure contains fields
that control things like how carriage returns are treated, what the backspace character
is, and whether or not characters are automatically echoed. See termio(4) in the HP- UX
Reference for a description of all the available fields. H you're using a device file that does
not correspond to a window created by your program, then you also need to make sure
that your application resets the termio structure to whatever it was before your program
took over. To modify a device file's termio structure you need to have an HP-UX file
descriptor for the file. This means that you will have to call the HP-UX system function
open(f) (hp-ux_2 :open) before using the Lisp function open.

65

Sequence of Events
The basic steps in a program that performs user I/O are:

1. Get a file descriptor corresponding to the device you want to use by calling hp-
ux_2:open (not necessary if you are using standard input and/or standard output ~
since their file descriptors are 0 and 1 respectively). IT you create the window
yourself you will have the file descriptor already because the utilities to establish
communication with a window open the file and return the file descriptor.

2. IT you are not doing I/0 to a window that your program created, sa.ve the device's
termio structure.

3. Set the termio structure to the desired values.

4. Call Common Lisp open (or with-open-file) with the HP-UX pa.thname of the
device you are using (for instance /dev/screen/myapp). You should open separate
streams for input and output.

5. Do whatever your application is supposed to do, doing reads and writes from the
streams you opened.

6. Close the input and output streams (with Lisp Close).

7. Restore the device's termio structure to its saved state, if necessary.

8. Call hp-ux_2: close with the device's HP-UX file descriptor. For windows, this is
done by the utilities for terminating window communication.

Setting the Termio Structure
A terminal device's termio structure is set by calling the HP-UX system function ioctl{2}.
The hp-ux_2 module defines a function tty-ioctl and a Lisp termio structure to simplify
calling ioctl.

/

There are four basic operations that you will want to have available:

1. Save a termio structure.

2. Set up termio for output and canonical input.

3. Set up termio for output and raw input.

4. Restore a termio structure.

The Lisp code to perform these four operations will be described shortly. First, let's look
at two types of input.

66

Canonical Input
Canonical input lets the operating system do much of the dirty work of keyboard input.
When canonical processing is enabled, keyboard input is processed in units of lines. You
can read the input from Lisp in characters or lines, but your application will not "see" any
part of a line typed by the user until they press the return key. Echoing and backspacing
are handled by the operating system.

Raw Input
Raw input is the opposite of canonical input. Characters are passed through to your
application as they are typed and are not echoed to the screen. Some special keys are
bandIed by HP-UX. For instance, Signals are still sent for the characters set in the INTR
and QUIT slots of termio's c_cc array. You must handle echoing and backspacing yourself.

Sample Code
The following Lisp code defines four useful functions for dealing with termio struc
tures tbat are used in the examples ill this chapter. This source is ill the file
$lISP/doc/examples/termio.l.

.. 1.1 .

"""""""""""""""""""",",,, "111""""""""""""""'"

File:
SCCS:
Description:
language:
Package:

tendo .1
~(#) $hi/doc/examples/termio.l 1.lG(#) 4/23/86 13:63:03
Stuff for dealing with a file's termio structure
lisp
USER

(c) Copyright 1986, Hewlett-Packard Company. all rights reserved .

... .
""".",.",.""."."" II'.""".",.,.""., •••• ,."" ••• ,."." •• """",
(provide "termio")
(in-package 'user)

(require IIhp-ux_2 11)

Defconstants for a few of the things found in termio.h and fcntl.h

(defconstant
(defconstant
(derconstant
(defconstant
(defconstant
(defconstant
(defconstant
(defconstant
(defconstant
(defconstant
(defconstant

VINTR
VQUIT
VEHASE
VKIll
VEOF
VEOl
VMIN
VTIME
ICRNl
BRKINT
IGNPAR

0)
1)
2)
3)
4)
6)
4)
6)
#00000400)
#00000002)
#00000004)

67

(defconstant IXON #00002000)
(defconstant OPOST #00000001)
(detconstant ONLCR #00000004)
(detconstant TABO 0)
(defconstant ISIG #00000001)

~(defconstant ICANON #00000002)
(detconstant XCASE #00000004) '-

(de:rconstant ECHO #00000010)
(defconstant ECHOE #00000020)
(defconstant ECHOK #00000040)
(defconstant B9600 #00000020)
(defconstant CS8 #00000140)
(defconstant CREAD #00000400)
(detconstant CLOCAL #00010000)

(defconstant O_NDELAY #004)
(defconstant F_GETFL 3)
(defconstant F_SETFL 4)

Set-canonical sets the terminal device to do canonical input
with carriage returns handled in a way appropriate for Common
Lisp I/O functions.

(defun set-canonical (fd)
(let «tio (hp-ux_2:make-termio»

file-control-flag
)

Get the current termio structure
(hp-ux_2:tty-ioctl fd hp-ux_2:TCGETA tio)
;; Change the appropriate fields
(setf (aref (hp-ux_2:termio-c_cc tio) VINTR) (code-char 3»
(setf (aref (hp-ux_2:termio-c_cc tio) VQUIT) (code-char 28»
(setf (aref (hp-ux_2:termio-c_cc tio) VERASE) (code-char 8»
(setf (aref (hp-ux_2:termio-c_cc tio) VKILL) (code-char 21»
(setf (aref (hp-ux_2:termio-c_cc tio) VEOF) (code-char 4»
(setf (aref (hp-ux_2:termio-c_cc tio) VEOL) (code-char 0»
(sett (hp-ux_2:termio-c_lflag tio) (logior (hp-ux_2:termio-c_lflag tio)

ECHO
ICANON
ISIG
ECHOK
ECHOE»

(sett (hp-ux_2:termio-c_iflag tio) (logior (hp-ux_2:termio-c_itlag tio)
BRKINT
IGNPAR
ICRNL
IXON»

(setf (hp-ux_2:termio-c_oflag tio) (logior (hp-ux_2:termio-c_oflag tio)

68

OPOST
ONLCR
TABO»

(setf (hp-ux_2:termio-c_cflag tio) (logior (hp-ux_2:termio-c_cflag tio)
B9600
CS8
CREAD
CLOCAL»

:; Put the new termio values into effect
(hp-ux_2:tty-ioctl fd hp-ux_2:TCSETA tio)
;; Get the current file control value and turn off O_NDELAY
(setf file-control-flag (logand (lognot O_NDELAY) (hp-ux_2:fcntl fd F_GETFL

0»)
(hp-ux_2:fcntl fd F_SETFL file-control-flag)
)

Set-raw sets the terminal device to return characters as they are typed
without echoing them. In this case, the user will have to handle
echoing, backspacing, etc. Carriage returns are handled correctly.

(defun set-raw (fd)
(let «tio (hp-ux_2:make-termio»)

;; Get the current termio structure
(hp-ux_2:tty-ioctl fd hp-ux_2:TCGETA tio)
;; Change the appropriate fields
(setf (hp-ux_2:termio-c_lflag tio) (logand (hp-ux_2:termio-c_lflag tio)

(lognot (logior ECHO ICANON
XCASE»»

(setf (hp-ux_2:termio-c_lflag tio) (logior (hp-ux_2:termio-c_lflag tio)
ISIG»

(setf (aref (hp-ux_2:termio-c_cc tio) VMIN) (code-char 1»
(setf (aref (hp-ux_2:termio-c_cc tio) VTIME) (code-char 0»
(setf (hp-ux_2:termio-c_iflag tio) (logior (hp-ux_2:termio-c_iflag tio)

ICRNL»
(setf (hp-ux_2:termio-c_oflag tio) (logior (hp-ux_2:termio-c_oflag tio)

OPOST
OHLCR»

:; Put the new termio values into effect
(hp-ux_2:tty-ioctl fd hp-ux_2:TCSETA tio)
)

(defvar *save-termio-list* nil)
1iermlos

Association list of file descriptors and

Save-termio saves a terminal device' s termio structure on 'I'Bave-termio-list:~

69

(defun save-termio (fd)
(let «tio (hp-ux_2:make-termio»)

(when (assoc fd *save-termio-list* :test #'=)
(cerror "Overwrites currently saved one"

"Termio for file descriptor -A already saved." fd»
;; Get the current termio structure and save it
(if (hp-ux_2:tty-ioctl fd hp-ux_2:TCGETA tio)

(setf *save-termio-list* (aeons fd ti0 *save-termio-list*»)

)

Reset-termio restores a terminal device's termio structure from
save-termio-list.

(defun reset-termio (fd)
(let* «assoc-pair (assoc fd *save-termio-list* :test #'=»

(tio (cdr assoc-pair»
)

(unless tio
(error "No termio structure saved for file descriptor -A" fd»

(setf *save-termio-list* (delete assoc-pair *save-termio-list*»
(hp-ux_2:tty-ioctl fd hp-ux_2:TCSETA tio)
)

)

70

TermO Windows
TermO windows emulate a terminal. The default window that you get when you use
the wsk command is a termO window. TermO windows are appropriate where display
performance is not as much of a concern as simplicity of use. Graphics windows are
faster but there is no echoing in them, so you must do your own echoing (if you want it)
in raw mode with fast alpha or font manager routines.

Window-Smart and Window-Dumb
Applications can be either window-smart or window-dumb. A window-smart program is
window system dependent. It may call window library routines and/or recognize window
system signals. A window-dumb application does not "know" anything about the window
system. It could be run at a terminal. Window-dumb applications are usually run in
termO windows.

This section shows the code for two applications that use termO windows. One of them is
window-smart; it creates a termO window solely for use by the application. The second
is window-dumb; it uses whatever window (or terminal) it was invoked from. Functions
that create their own windows for I/O can be called directly from within NMODE. For
window-dumb applications, you can get to a Lisp listener from an NMODE buffer in Lisp
mode with Lisp-L, and then call your function from there.

Window-Smart Example
Here is the code for a simple function called query-user. It creates a window, prints a
prompt (supplied by the caller), and returns whatever the user types before a carriage
return. The overhead of creating the window is hardly worth the trouble, but hey, it's
only an example.

(require "windowutil ll II$LISP/doc/examples/windo\1util ll
)

(require IItermio ll II$LISP/doc/examples/termio ll
)

(in-package 'user :use , (hp-ux_3w windowutil»

(defun query-user (wm-fildes window-name prompt)
(let «Window-path (make-H~rlng 26»

to-fildes
iostream
reply)

(wmpathmake IIWMDIRII window-name Window-path)

;; Create Window
(wcreate_termO wm-1ildes window-path 200 100 80 4 80 4 80 24

lI/usr/lib/raster/8x16/lp.8UII
lI/usr/lib/raster/8x16/lp.b.8U"
2

71

1)

(unwind-protect
(and

(setq to-tildes (establish-tO-communication window-path»
(set-canonical to-tildes)
(setq iostream (open window-path :direct10n :10 :1f-ex1sts :overwrite»
(wtop to-tildes SETTOP)
(wselect to-fildes 1)
(write-line prompt iostream)
(setq reply (read-line iostream»
)

;; Protect Forms
(if iostream (close iostream»
(if to-tildes (terminate-tO-communication to-fildes»
(wdestroy wm-fildes window-path»

reply)

;; Test
(setq wmfd (establish-wm-communication»
(query-user wmfd "Jimi" "Hey Joe, where you going with that pizza in your
hands?lI)
(terminate-wm-communications wmfd)

In a practical application one would not create a window to ask the user only one question.
However, you could create a window at the beginning of the application that would be
dedicated to querying the user and then expose· it and write to it as necessary.

Window-Dumb Example
Window-dumb applications use the file descriptor for standard input (1) as the argument
to the functions that set the termio structure. They use the Common Lisp streams
standard-input and :t:standard-output* for stream I/O. These streams are the defaults
for many I/O functions, so it is not always necessary to mention them explicitly.

Window-dumb applications will be run fl"Om a read-eval-print loop running in a termO
window. Here is the code for a simple window-dumb application. The program reads
numbers entered by the user until the symbol q is entered. It then prints a message and
the sum of the numbers.

(require "termio" "$LISP/doc/examples/termio")
(in-package 'user)

(defun simple-adder ()
(save-termio 0) ; Standard Input's file descriptor is 0
(set-canonical 0)
(unWind-protect

72

(do «sum 0)
(n 0»

«eq n 'q) (format t lithe
(format t IIEnter number: II)
(setq n (read»
(if (numberp n)

(incf sum n»
)

;; Protect Forms
(reset-termio 0)
)

)

sum of the numbers entered is -A-%" sum»
t means use :l:standard-output*

; Uses *standard-input'!'

Graphics Windows
You can use graphics windows for text-based applications, but they require a little more
work. Because they are graphics devices, graphics windows do not echo characters as
they are typed at the keyboard. The application writer (you) must echo characters using
Windows/9000 fast alpha or font manager routines. This means you need to get each
character as it is typed, so raw input must be used.

Example
Getting input from a graphics window can be simple if you're only concerned with getting
a character or two of input without echoing them. Consider the method :user-y-or-n-p
in the tic-tac-toe program. It would be reasonable to make it so that the player would
just type a y or an n at the keyboard rather than use the mouse. This would make it
advantageous to have an instance variable whose value would be the input stream for the
window. This opening of the stream would be ill the: init method, along with a call to
set-raw. Only routines that would need to be changed are shown here. Changed lines
are marked with **.

The ttt-game instance type maintains all the info needed to communicate
with the game window. Its methods run the game.

(define-type ttt-game
(:var board)
(:var Window-path)

device
(:var wm-fildes)
(:var gr-fildes)
(:var fa-fildes)
(:var input-stream)
(:var marker-tont-1d)
(:var' prompt-font-id)
(:var x-player-move) ;

An instance of ttt-board
The HP-UX pathname of the window special

File descriptor of window manager interface
File descriptor of graphics window
File descriptor of fast-alpha interface
Stream opened to the window device **

Method to generate XiS move

73

(:var o-player-move) Method to generate o's move
:all-initable)

Initialize the game. This method does all the work of
setting up the window interface.

(define-method (ttt-game :init) (keylist)
(setq wm-fildes (establish-wm-communication»
(let «temp (make-string 26»)

(wmpathmake 11WMDIR" "ttt" temp)
(setq window-path temp»

;; Create Window
(wcreate-8raphics wm-fildes

window-path
700
100
270
330
270
330
SETRETAIN
SETNOBANNER)

(setq gr-fildes (establish-gr-communication wm-fildes window-path»
(setq fa-fildes (establish-fa-communication wm-fildes window-path»
(set-raw fa-tildes) ; ** set-raw would have to be defined
(setq input-stream (open window-path :direction :input» ; **
(setq marker-tont-id (fafontload fa-tildes II /usr/lib/raster/1Bx30/pica. BU"»
(setq prompt-font-id (fafontload fa-fildes "/usr/lib/raster/7x10/lp.8U"»
)

:User-y-or-n-p returns true if the user types a y (or Y). nil otherwise.

(define-method (ttt-game :user-y-or-n-p) ()
(wselect gr-fildes 1) ; **
(char= (read-char input-stream) #\y) ; **
)

:Cleanup "undoes" all the game's connections to Windo''1s/9000

(define-method (ttt-game :cleanup) ()
(close input-stream) ; **
(tatontremove ta-tl1des marker-tont-ld)
(fafontremove fa-fildes prompt-font-id)
(terminate-fa-communication fa-fildes)
(torminato-gr-communication gr-fildos)
(wdestroy wm-fildes window-path)
(terminate-\fln-communication wm-fildes)

74

)

The Mouse
The recommended method for using the mouse as a locator device is to poll using hp
wcSw:wgetlocator. This is the way moves are input in the tic-tac-toe program (see the
:get-user-move method). If you want to use the mouse with pop-up menus, see the
"Pop-Up Menus" section below.

Pop-Up Menus
The Windows/9000 library provides some functions for creating and using pop-up menus.
These functions are described in the HP Windows/9000 Reference and the HP Win
dows/9000 Programmer's Manual, documents written primarily for people programming
in C. Consequently, this section has been written to show you how to create and use Win
dows/9000 pop-up menus from Lisp. Since you will still be calling the Windows/9000
functions, you should have the Windows/9000 reference manual handy while you read
this.

The function and macro described ill this section are only one way of using the Win
dows/9000 menu capabilities from Lisp. It does not implement the full functionality
available. You are encouraged to expand this example to suit your particular needs.

Example
The following code from the file $LISP/doc/examples/windowutil.l implements a simple
pop-up menu facility.

Popping Up a Menu
The primary function is make-and-activate-menu, which creates a menu, displays it at
the current locator position, and returns the user's selection. It. takes the following
arguments:

fd The HP-UX file descriptor of the window the menu 18 to be associated
with.

name A ~t.ring giving t.he:> t.it.le:> of t.lle:> me:>nn. l'hi~ will he:> r1. non-~e:>le:>d.r1.hle:> it.e:>m at
the top of the menu.

75

menu- items A list that specifies the contents of the menu in order. An element in this
list can be
• The keyword :line. This specifies a non-selectable horizontal line across
the menu.
• A string to be displayed as a non-selectable item.
• A list. This specifies a selectable item. The first element of the list
must be a string to be displayed for the item. The rest of the list can be
whatever you want; the entire list is returned if the item is selected by the
user. Useful things to put as the rest of the list are discussed shortly.

If the user selects a selectable menu item, make-and-activate-menu returns the list that
represents that item, otherwise it returns nil. Here is the definition of make-and
activate-menu.

(defun make-and-activate-menu (fd name menu-items)
(let «menu-id (wmenu_create fd MENU_POPUP -1 MENU_NOPARENT MENU_NOPARENT»

selected-menu-id
selected-menu-item
)

(declare (special selected-menu-id selected-menu-item»
(make-menu-item fd menu-id name :no-select :no-tracking)
(make-menu-item fd menu-id :line)
(dolist (item menu-items)

(cond «listp item)
(make-menu-item fd menu-id (first item»)

«eq item :line)
(make-menu-item fd menu-id :line»

«stringp item)
(make-menu-item fd menu-id item :no-select»

(t
(cerror UIgnores item ll lIInvalid pop-up menu item -All item»

»
(wmenu_activate fd menu-id M~IU_ACT_IM)

(wmenu_eventread fd 'selected-menu-id 'selected-menu-item)
(wmenu_delete fd menu-id)
(if (>= selected-menu-item 0)

(nth (- selected-menu-item 2) menu-items)
nil
)

)

76

Creating Menu Items
In make-and-activate-menu, menu item creation is handled by the make-menu-i tem macro.
A call to this macro expands int,o a call to the Windows/9000 function wmenu_item.

The required arguments to make-menu-item are the HP-UX file descriptor of the window
to be associated with the menu, the menu id of the menu, and the string to be displayed
for the item (or : line to create a seperator item). Any remaining arguments are used
to specify the selectability, display color, and tracking characteristics of the item being
created. By default, the created item is selectable, displayed in normal text, and is
tracked in inverse-video. To override these defaults, include one or more of these keywords
as arguments (note that these are not &key arguments).

:no-select Make t.he item non-selectable.

:grey Display the item in "shaded" grey text.

:no- Make it so that there is no inverse-video highlight displayed when the
tracking locator is over that item in the menu.

Here is the source to the macro make-menu-item. Remember that even though it is
discussed here after make-and-activate-menu, ill the source file, the macro definition must
come first, so that it is available when make-and-activate-menu is defined.

(defmacro make-menu-item (fd menu-id item-string &rest traits)
(if (eq item-string :line)

'(hp-ux-return
(wmenu_item ,fd ,menu-id MENU_NEWITEM MENU_SEPARATOR MENU_NOTSELECTABLE

1111»
;; Else
(let:l; «select-mask (if (member :no-select traits) MENU_NOTSELECTABLE

MENU_SELECTABLE»
(display-mask (if (member :grey traits) MENU_DISPGREY

MENU_DISPlIORM»
(track-mask (if (member :no-tracking traits) MEUU_TRACKNOCHNG

MENU_TRACKINV»
(mask (logior select-mask display-mask track-mask»)

'(hp-ux-return
(menu_item ,fd ,menu-id MENU_HEWITEM MENU_STRIHG ,mask ,item-string»

)

77

1Jsnng make-and-activate-menu
In the tic-tac-toe game program, the :user-y-or-n-p method of the ttt-game instance
type uses make-and-activate-menu to get a yes or no answer from the user.

(define-method (ttt-game :user-y-or-n-p) ()
(wsetlocator gr-fildes -100 100)
{second (make-and-activate-menu gr-fildes "Yes or No"

"«"Yes" yes) ("No" nil»»
)

Notice that it treats a menu cancellation, or selection of a non-selectable item as a "no"
answer.

This example uses very simple lists for its selectable menu items. Some ideas for useful
menu item lists are:

• The second element of the list is a parameterless function to be funcalled when that
menu item is selected. For instance,
(IICreate File" #·create-file-command) .

• The second element of the list is a list representing another pop-up menu item list
to be selected from. For instance,
(IICreate »" «IIFile ll #"create-file-command) ("Directory"
#'create-dlr-command»)

Ideas for Expansion
The two routines discussed here are designed only to give you a platform from which
to develop a more detailed menu facility. This section mentions a few capabilities you
might want to implement.

With the current facility, there is no way to create a menu, save it, and then pop it up
whenever you choose; the menu is created every time. A menu data structure could be
created (with instances or structures). You could then split make-and-activate-menu into
separate creation and activation functions.

If you implement this suggestion, then you may also want to extend make-menu-item to
allow modifying existing menu items. Your call to hp-wc3g:wmenu_item would then need
to specify the item id of the item, instead of MENU_NEVlITEM.

78

NMODE I/O
The internal structure of the NMODE environment is not currently documented for
customers because any programs written to use that information may become useless for
future versions of this product. This means that you'll only be able to integrate relatively
simple (in terms of I/O) programs into the environment.

When you are running NMODE and you call a Lif;p input function such as read-line with
*standard-input"" no input is available to that functioll unt,il you execute the NMODE
Execute Form Command (Lisp-E). Then the funct.ioll I·t?\.(.h~ starting at the beginning of
the line that the cursor was on when you typed Lisp-E.

If you're creating an application function that will be called from within the NMODE
environment, there are three basic approaches.

1. Have your function create its own window. In this case the information presented
elsewhere in this chapter applies, and the program will behave the same when called
from NMODE as when called from a simple read-eval-print loop.

2. Have your function use the streams :t.standard-input:l: and *standard-output*. This
situation is described in this section.

3. Use a combination of NMODE supplied functions for input, and *standard-output:!:
for output. This situation is described in this section.

Standard Input and Output Streams
When NMODE is running, tbe variable *standard-output* is bound in such a way that
any output sent to it will appear in the NMODE output buffer. This is the default
destination for most of the Common Lisp output functions.

When NMODE is running, the variable :l:standard-input:l: is bound so that it is attached
to the current buffer. However, no input is available until the user types the Lisp-e
command. When that happens, whatever input function you called starts reading from
the beginning of the line until it is satisfied. This makes read-char impractical since it
always reads only the first character of the line.

One advantage to using the standard streams for programs is that they will work from
NMODE or a simple read-eval-print loop.

79

NMODE I/O Functions
There are a few simple functions for displaying messages and getting a line of user
input that are defined within the NMODE environment. These are useful for minor
customization functions. These functions are in the nmode package.

(nmode: prompt -for-string prompt-string default-string) Function

When called, prompt-for-string displays prompt-string followed by (Default 1s: default
string). If an empty string is entered, the default string is returned, otherwise the string
that was entered is returned. If default-string is nil, then no default is displayed in the
prompt, and if the user just types IReturn I, 1111 is returned.

(nmode: :write-prompt string)
(nmode:write-message string)

Function
Function

Calling write-prompt displays its argument (a string) in the current NMODE screen's
prompt area for approximately two seconds. The function write-message does the same,
but the message remains on the screen until replaced by another call to write-message.

Example
Here's a function that provides access to Common Lisp function documentation strings
from NMODE.

(defun nmode::function-documentation-command ()
(let* «function-name (nmode: prompt-for-string "Function Name: II nil»

(function-aym (read (make-string-input-stream function-name) nil nil»
(docstring (documentation function-aym 'function»)

(if docstring
(format t II-Y.-A-y'" docstring)
(nmode: :write-prompt
(format nil ~'No documentation string for -All function-name»

)

)

After definition, you could bind a key to this function with the forms

(in-package "nmode)
(add-to-command-liat "lisp-coMmand-list (x-char M-?)
"function-documentation-command)
(nmode-establish-current-mode)

80

~
\:

Chapter 6
Delivery

Introduction
Once you have written and tested an application, you need to be able to make it available
to users. There are two basic scenarios for using an application written in Lisp.

• The user is also an NMODE user. In this case they only need to know what file{s}
to load and the name of the main function.

• The user only wants to run your application. They don't know or care about Lisp
and NMODE. In this case you will need to wrap up your application into a file that
can be executed as an HP-UX command.

This chapter discusses several ways of making it possible to run a Lisp program as a
command.

Dump Files
Dump files are executable files that "capture" a particular Lisp environment. The envi
ronment can then be restored by executing the file as an HP-UX command. When you
bring up the NMODE you created with the make-nmode script, you are restoring a dump
file. You can create dump files that will bring up whatever Lisp application you wish.

There are three basic steps to wrapping up an application into a dump file.

1. Bring up a read-eval-print loop by executing the lisp-loader command.

2. Load all the code required by your application.

3. Create a dump file of the Lisp system with the function system: save-world. In this
call you will specify the forms you wish to have executed when the dump file is
executed. One of these forms should call the main function of your application.

81

Example
This example shows how to create a dump file that, when restored, runs the tic-tac-toe
program described earlier in this manual. Assuming that you've invoked Lisp with the
HP-UX command

lisp-loader -t 4000000 -b .62 -m 200000

the following forms would be typed.

(in-package 'user)
;; Load the reqUired modules
(require Ihp-ux_3g")
(require "windoVlUtil ll "$LISP/doc/examples/windowutil ll)

(require "objects ll)

(load II$LISP/doc/examples/tictactoe ll)

;; Create dump :file
(system:save-world "$LISP/b1n/ttt-dumpn '«ttt:t1c-tac-toe)

(system: exit»
IIEnter1ng Tic-Tac-Toe Game")

(system: exit)

After this, if $LISP/bin is ill your HP-UX PATH environment variable, you can run the
tic-tac-toe game from a shell by typing

ttt-dump

Drawbacks
Note that the file is la.rge (over two megabytes). IT you have more tha.n one or two Lisp
applications that you want to run this way, the overhead in disc space is substantial.
Consequently, you may want to consider the methods described under "General-Purpose
Dump File".

82

General-Purpose Dump File
You can avoid the disc overhead of having one dump file for each application by creating
a single dump file that contains the support code required by most of the applications
you wish to run. Then you must implement a means of loading and executing the desired
application when this dump file is restored. Two such techniques are described in this
section, one that uses a Lisp function to load and execute the appropriate code based on
command line arguments, and one that uses HP-UX shell scripts.

What you should load into the dump file you use to run your applications depends on
the applications. Ideally you should only have to load things that are used by all your
programs. At the same time, you don't want to have to load anything large at run
time. You have to resolve the trade offs between time and space. The examples in this
section assume that your applications require windowing, graphics, and objects support.
Note that some applications may need more heap space than the examples allow r 3
megabytes) .

Using Command Line Arguments
The function sys: get-program-args (an HP extension) returns a simple vector containing
the strings that the user typed to invoke the Lisp process. You can use this capability
to decide what program to load and run when a dump file is restored by having the user
give the name of the desired application on the command line that restores the dump
file. For instance, if your general-purpose dump file is named run-lisp-app, and the user
wishes to run an application named cirCUit-analyzer, they would type this line to an
HP-UX shell:

run-lisp-app circuit-analyzer

Somewhere ill the initialization forms of run-lisp-app would be a call to a function that
loads and executes a program based on the first command argument to run-lisp-app.
This dispatching function would know what code to load, and how to invoke the top-level
function of the circuit analyzer application.

83

Example Dispatching Function
Here is a definition of such a dispatching function:

(defun dispatch ()
(let* «args (sys:get-program-args»

(appl-name (if (> (length args) 1) (svre1 args 1) nil»
)

(cond «string=- app1-n8Jlle "ttt")
(lisp: load "$tee/tictactoe")

The function must be funcal1ed because of the way
;; symbols are resolved at read time. This technique
;; delays resolution until execution time.
(funcall (intern IITIC-TAC-TOE" (find-package 'ttt»)
)

Add clauses for other applications here
(t (format t "No mown application -A-Ye" appl-name»
)

Tbis version of dispatch only knows about one application: the tic-tac-toe game. New
applications would be added as similar clauses to the cond that load and execute tbe
appropriate programs.

Here are the steps to create a general-purpose dump file that uses this dispatching mech
anism. It assumes that dispatch is defined in either of the files dispatch.1 or dispatch. b.

1. Execute the HP-UX command

lisp-loader -t 6600000 -b .66 -m 200000

2. Type in the following forms:

(in-package 'user)
(require "objects")
(require IIhp-ux_2 II)

(require IIhp-ux_3g II)

(require IIhp-wc3w II)

(require "windowutil" II$LISP/doc/examples/windowutil. btl)
(system:save-world II$LISP/bin/run-lisp-appll '«load IIdispatchll)

(dispatch)
(sys: exit»)

(system: exit)

Mter this dump file is created and $LISP/bin has been added to their PATH environment ~
variable, a user can run the tic-tac-toe program with the HP-UX command:

84

run-lisp-app ttt

Notice that the dispatching function is loaded when the dump file is restored. This allows
you to change the definition of dispatch (to add a new application, for instance) without
having to create a new dump file.

U sing a Script
You can run a Lisp application by writing a script containing the forms you would execute
to bring up the program if you were doing it by hand.

One of the drawbacks to this approach is that it is slower than using a dump file since
things must be loaded at execution time. However, by using a hybrid approach, the
amount of time needed to bring up an application can be reduced to reasonable levels. To
do this, create a general-purpose dump file that captures a Lisp environment containing
most of the code that your applications need to run. Theil the script that runs a particular
application does not need to load all of the support binaries.

Another drawback to using the script method described here is that it works only for
application programs that do not read from HP-UX standard input. If your application
does read from standard input, you should use one of the previously described methods,
or have your users use a two step process to invoke your application:

1. Restore the general-purpose dump file.

2. Execute a Lisp form to load a file you've created that loads your application and
calls the top-level function (and optionally calls sys: exit).

The steps to create a general-purpose dump file for use with HP-UX scripts are:

1. Execute the HP-UX command

lisp-loader -t 6600000 -b .66 -m 200000

2. Type in the following forms:

(in-package ·user)
(require "objects")
(require Ihp-ux_2")
(require Ihp-ux_3g")
(require Ihp-ux_3w")
(require "windowutil ll lI$LISP/doc/examples/windo\rotil. b ll)

(system:save-world "$LISP/bin/appl-dumpll)
(system: exit)

85

Example Script
Once you have created the general-purpose dump file, you ca.n write a script for each of
the applications you want available. Let's assume again that we want to run the tic-tac
toe program. Here is a sllell script that would acllieve that purpose. The script assumes
that the directory containing appl-dump (created above) is in your PATH shell variable. ~

: Sh, not csh
Script to run Lisp tic-tac-toe game
appl-dump «EOF
; Lisp forms that you want to execute
(load "$LISP/doc/examples/tictactoe")
(ttt:tic-tac-toe)
(system: exit)
EOF

Put this text in a file (say $HOME/b1n/ttt) using an editor, and then make it executable
with tile HP-UX command

chmod +x $HOME/bin/ttt

Running tile script (by typing its name) will run the tic-tac-toe game.

IT you don't want anything to appear in the window from which you invoke tile script,
you can redirect the output to /dev/null by changing the third line to

appl-dump « EOF > /dev/null

86

MANUAL COMMENT CARD

LISP Application Notes

for HP 9000 Series 300 Computers

HP Part No. 98678-90010

Name:

Company: _

Address:

Phone No: _

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on _

BUSINESS REPLY MAIL

II II I
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO

J

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

J

()
0."'.r

, I

HP Part Number
98678-90010
Microfiche No. 98678-99010
Printed in U.S.A. 5/86

Flidl HEWLETT
~~ PACKARD

98678-90600
For Internal Use Only

II

	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Using a Large Heap
	Chapter 3 The Example
	Chapter 4 Libraries
	Chapter 5 User I/O
	Chapter 6 Delivery

