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Preface

The C++ Language System Release Notes describe Release 3.0.1 of the C++ Language System. This release
corrects some problems which were found with the implementation of templates in Release 3.0. The only
changes to this manual relate to those fixes. These include the removal of some known problems from
Appendix A, the addition of some "Not Implemented" messages to Appendix C, and a note in the CC
manual page indicating that the -ptt option is obsolete. Chapters 7 and 8 of the Selected Readings have
also been updated to reflect changes in the template implementation.

This manual is part of a set of four documents that are supplied with your C++ Language System. The
other documents are:

m the Product Reference Manual, which provides a complete definition of the C++ language supported by
Release 3.0 of the C++ Language System

m the Selected Readings, which contains papers describing aspects of the C++ language

m the Library Manual, which describes the three C++ class libraries and tells you how to use them.
The Release Notes consist of four chapters and two appendices, which describe how to install and use the
translator, changes in the C++ language for this release, and other information you need to know:

m Chapter 1 is a general description of the C++ Language System and new features that are part of this
release. You should read this chapter as a general introduction to the release.

m Chapter 2 is a description of the contents of Release 3.0. This chapter includes a diagram of the con-
tents of the tape from which you install the C++ Language System. You can use this diagram and
the accompanying descriptions as a reference when you install and use the C++ Language System.

m Chapter 3 tells you how to install the C++ Language System and how to port it to machines for
which it is not directly supported.

m Chapter 4 covers compatibility between different releases of the C++ Language System; it describes
things that have changed and might require you to make changes in code written for previous
releases. This chapter discusses the following release changes:

o upgrading from Release 2.0 or Release 2.1 to Release 3.0

o future compatibility — changes and enhancements that are planned for the next major release of
the C++ Language System

This chapter contains detailed discussions of new features and changes included in the release, and,
as such, should be an important reference for all users.

m Appendix A describes known problems with the C++ Language System which are of general interest
to C++ programmers, and suggests workarounds for these problems.

m Appendix B describes implementation specific behavior.

m Appendix C is a list of “not implemented”” messages issued by Release 3.0.1
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Preface

m Appendix D contains manual pages for the C++ Language System.

To make the best use of the Release Notes, you must be familiar with the C programming language and the
C programming environment under the UNIX operating system.
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Introduction

The C++ Language System

The C++ Language System, Release 3.0, translates C++ source code to C source code. It supports the C++
programming language (as described in the C++ Language System Product Reference Manual). The CC com-
mand invokes the Language System, which does semantic and syntactic checking on the C++ input pro-
gram and translates the C++ program to C language. The CC command then invokes the C compiler on
your machine to compile the resulting C program and run related processes such as linking function
libraries.

Figure 1-1 shows the operation of the CC command and the processes it invokes:
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Figure 1-1: Operation of the CC Command
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The C++ Language System can run on most UNIX systems with a C compiler that supports the following

features:

Release Notes



Introduction

m long variable names (of at least 31 characters)
m structures as arguments to functions and return values from functions

See “Installation Procedures” for detailed prerequisites and information on porting.

New Features Introduced in Release 3.0

Release 3.0 is a release of the C++ Language System, which is source— and link—compatible with Release
2.0 and Release 2.1. Release 3.0 provides the following new or enhanced features:

m The major feature for the release is Template classes and functions. For a definition and description
of how to use this feature, please refer to Stroustrup, "Parameterized Types for C++" in the Selected
Readings as well as Chapter 14 of the Reference Manual, by Margaret Ellis and Bjarne Stroustrup
(Addison-Wesley, 1990). This implementation conforms to the draft submitted to and preliminarily
accepted by the ANSI C++ standards committee. However, users should note that there continues to
be much discussion in the ANSI committee about the precise details of syntax and semantics regard-
ing templates. While we do not expect major, incompatible changes in the definition of templates, it
is likely that various refinements and extensions to the feature will be made in the course of the stan-
dardization activity. Users should be aware that any such refinements and extensions will be
reflected in future releases of the AT&T USL C++ Language System.

The Templates implementation is based on work originally done at Object Design Inc., in which they
implemented template classes based on Stroustrup’s initial design. We have licensed this initial tem-
plates implementation from Object Design and evolved it to include function templates, and have
extended the class implementation to provide support for various language features such as friends
and static members.

®m Release 3.0 completes the implementation of true nested scopes introduced in Release 2.1. The transi-
tion model is no longer supported. Code that compiled warning-free under Release 2.1 will correctly
reflect the new nested semantics.

m Release 3.0 begins a phased approach to improving the architecture of cfront. This release includes
reworking of the front end symbol table, type checking, function matching, operator overloading and
user-defined conversions.

m Release 3.0 implements various Release 2.1 Reference Manual upgrades, including allowing construc-
tors in which all parameters have default arguments to be used as the default constructor in initializ-
ing arrays, overloaded prefix and postfix increment and decrement, extension of dominance to data,
and use of constructor syntax for built-in types and protected derivations.

m Release 3.0 treats as errors most anachronisms which were warned about by default in Release 2.1.
Those that were +w only warnings are generally being warned about by default in Release 3.0 and
will be disabled in the release following 3.0.

Additional information about these improvements is provided in Chapter 4.
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Hardware

The C++ Language System Release 3.0 can be installed on the following machines:

The Language System has also been successfully ported to other machines, including:

AT&T WE 32000-based 3B2 Series Computers

AT&T 6386 WGS

DEC VAX line of Computers (including VAX BSD machines)
SUN 2, SUN 3, and SUN 4 Workstations

Motorola 68000-based Apollo and HP workstations

Amdahl UTS Computer

Intel 80286 large model and 80386-based machines

Hewlett-Packard 9000 series 800 and series 300 HP-PA based machines
IBM RT Personal Computer

Data General MV Computers running AOS/VS and DG/UX

MIPS machines

The C++ Language System can also be ported to other machines not on this list. Porting to machines
besides the AT&T 3B series, AT&T 6386 WGS, DEC VAX line of computers, and SUN 2/3/4 workstations
requires that you have access to an AT&T 3B series, AT&T 6386 WGS, DEC VAX, or SUN 2/3/4 computer, or
that you have access to an existing working C++ Language System. For information about porting, see
Chapter 3, under “Porting the C++ Language System.”
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This chapter intentionally removed.
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Installing the Compiler

This chapter intentionally removed.
For instructions on installing HP C++, see the HP C++ Release Notes you received with
HP C++.
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Overview

This chapter describes compatibility issues that pertain to both Release 2.1 and Release 3.0. If you are
currently using Release 2.1 and want to know about upgrading to Release 3.0, you can read the section
“Upgrading from Release 2.1 to Release 3.0”. If you are currently using Release 2.0, you should begin with
“Upgrading from Release 2.0 to Release 2.1.” In either case you should also read the last section, “Future
Compatibility Issues,” to learn about changes that will occur in the next major release of the C++ Language
System.
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Upgrading from Release 2.1 to Release 3.0

This section describes differences between Release 2.1 and Release 3.0.

This section provides information on the following topics:
m Header Files
m New Features

m Language Related Fixes

Recompilation of Release 2.1 Code

Code which compiled warning-free under Release 2.1 will not need to be recompiled. Code which uses
nested types and which was not upgraded to use the transition model of Release 2.1 will need to be recom-

piled:

struct A {
struct B {
void f();
}:
}i

typedef A::B T;

void T::foo() {}; // encoded as f__1BFv in 2.1
// encoded as f__ Q2 1A1BFv in 3.0

However, code which used the new nesting semantics in Release 2.1 will continue to link correctly:

struct B (}; // force new nesting semantics
struct A {
struct B {
void £();
}i
}:

typedef A::B T;

void T::£() {}; // encoded as f_ Q2 1A1BFv in 2.1 and 3.0
Refer to the section below on Nested Types for further information.
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Header Files

The 0S makefile variable has been updated to accomodate SunOS 4.1and UNIX System V Release 4. See
the discussion of the 0s makefile variable in Section 3 Installing the Compiler in this manual for further
information.

New Features

The major new feature for the release is the implementation of Templates. Various new features introduced
in the Release 2.1 Reference Manual have also been implemented.

Templates

The major enhancement in this realease is the implementation of Templates. Both template classes and
functions are supported. Automatic instantiation of templates is also provided. For a description of the
feature and its uses, see Chapter 14 of the C++ Language System Product Reference Manual, and ““Parameter-
ized Types for C++”, B. Stroustrup, in the Selected Readings manual. For information about support for
automatic instantiation, refer to the Selected Readings Chapter 7, “Template Instantiation in C++ Release 3.0,
Overview”, G. McCluskey and R. B. Murray, which presents an overview and technical rationale for the
instantiation mechanism and Chapter 8, “Template Instantiation, Users Guide”’, G. McCluskey, which
presents various examples of use of the automated support for instantiations.

This implementation conforms to the draft submitted to and preliminarily accepted by the ANSI C++ stan-
dards committee. However, users should note that there continues to be much discussion in the ANSI
committee about the precise details of syntax and semantics regarding templates. While we do not expect
major, incompatible changes in the definition of templates, it is likely that various refinements and exten-
sions to the feature will be made in the course of the standardization activity. Users should be aware that
any such refinements and extensions will be reflected in future releases of the AT&T USL C++ Language
System.

Implementation of Template Function Matching

During Release 3.0 beta testing, the restrictive function matching rules specified in the Reference Manual
were found to be too restrictive for practical use. We have, therefore, implemented extensions to the strict
function matching rules in the Reference Manual. It is likely that the ANSI definition will at least be relaxed
to allow these extensions and may extend the definition to encompass full function matching. This is
currently an active topic of discussion within the ANSI committee. In the meantime, we have made the
smallest set of extensions we found feasible.

The first extension allows the consideration of trivial conversions when searching for an exact match. This
implies that for a template function declared as follows:

template <class T> max( const T*, int );
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the following call is legal in the Release 3.0 implementation:
int iafl0] = { ... };

// error in the Reference Manual
// accepted by 3.0
int best = max( ia, 10 );

The second extension allows the conversion of derived classes to public base classes in calls of template
functions. This is necessary to ensure that template functions support object-oriented programming. For
example, under the strict rules the following calls of function print_vector () fail:

template <class T> void print_vector (const Vector<T>&) ;

template <class T>
class BoundedVector : public Vector<T> { ... };

template <class T>
class SortedVector : public Vector<T> { ... };

BoundedVector<int> bv;
SortedVector<int> sv;

print_vector(bv); // error in Reference Manual
// accepted by 3.0

print_vector(sv); // error in Reference Manual
// accepted by 3.0

and separate print functions for each class derived from Vector<T> must be written. Permitting the
conversions of BoundedVector<int> and SortedVector<int> to Vector<int> allows the use of the
polymorphic print_vector () function.

These extensions are designed to be interim solutions until the ANSI committee votes on a full resolution to
the template function matching issue.

Template Instantiation Support

An important aspect of the Release 3.0 implementation is support for automatic instantiation of template
class and template function references. The Release 3.0 implementation provides an instantiation mechan-
ism designed to free the programmer from direct manual intervention. Manual overrides for complicated
systems are provided to customize and tailor instantiation support for specialized applications.

As discussed above, papers describing template instantiation are included in the Selected Readings with this
release. These papers make clear that some assumptions are made about coding style and conventions:
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B A class or function template is declared in a .h header. For a function template this declaration
looks like a forward function declaration:

template <class T> void £(T);

The template .h header should include headers, with multiple-include guards, for "unbound”, i.e.,
non-template-arg types that it uses.

m A class or function template is implemented in a .c header.

m Template arguments of non-fundamental type are declared in .h header files. These files should be
self-contained, i.e., include other files they need using multiple-include guards.

Here is a simple example to get started with:
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// Sample.h
template <class T> class Sample {
char* p;
public:
Sample (char* s) : p(s) {}
char* get();
char* get2() (return T::£();}
}i

// Sample.c
template <class T> char* Sample<T>::get ()

{

return p;

}

// A.h
struct A {
static char* £() {return " ";}

};

// application
#include <stdio.h>
#include "Sample.h"
#include "A.h"

Sample<A> a("Hello");

main()
(
Sample<A> b("world");

printf ("%s%s%s0, a.get(), a.get2(), b.get());
}

This is a complicated way of printing "Hello world". To compile this example, you would create the vari-
ous files noted above and say:

$ CC app.c

It is instructive to look in the directory ./ptrepository after such a compile. There are three files there
whose use is fully explained in the paper:

xxx.c - the instantiation file

xxx.o - the instantiation itself
xxx.cs - the checksum used for dependency management
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Nested Types

Release 3.0 also completes the implementation of true nested scopes introduced in Release 2.1. The transi-
tion model is no longer supported. Code that compiled warning free under Release 2.1 will correctly reflect
the new nested semantics. Please note that code that generated warnings under Release 2.1 may produce
results under complete nested semantics that differ from Release 2.0 behavior:

class A {
class B {

}:
}i

B bvar;

// 2.1: warning: use A:: to access nested class type B (anachronism)

// 3.0: error: B bvar : B is not a type name
// error: type expected for bvar

Support for deeply nested classes is also now provided:

class A {
class B {
class C {

}i

}i
}i

Reference to the inner class C is now possible:

A::B::C cvar;

Default Constructors

The Release 2.0 Reference Manual explicitly stated that a default constructor is a constructor with no formal
parameters, thereby excluding constructors that can be called with no arguments by virtue of having
default arguments. The Release 2.1 and Release 3.0 versions of the Reference Manual lift this restriction; the
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constructor in the example below is now considered a default constructor.

struct S (
S(int = 0);
}i

Release 2.1 does not conform to this rule. Instead, it adheres to the old definition of default constructor.
Here are some examples:

s sl[2]; // legal, OK in 3.0, error in 2.1
S s2[2] = {1 }; // legal, OK in 3.0, sorry in 2.1

struct X {
S s[2]; // legal, OK in 3.0, error in 2.1
}i

void f£() ({
S* p = new S[2]; // legal, OK in 3.0 and 2.1
}

Release 3.0 correctly conforms to this rule.

Explicit Type Conversions with Empty Initializers

The Release 2.1 and 3.0 versions of the Reference Manual allow you to specify an explicit type conversion
with an empty initializer, as in the following examples:

int 1 = int();
struct Empty (};
Empty e = Empty();
Release 2.1 does not implement this capability and reports an error instead.

line 1: error: value missing in conversion to int
line 4: error: cannot make a Empty

Release 3.0 implements this capability.
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Prefix and Postfix Increment and Decrement Operators

The Release 2.0 Reference Manual provided no way to distinguish user-defined prefix increment and decre-
ment operators from postfix increment and decrement operators. The Release 2.1 and 3.0 versions of the
Reference Manual specify a separate syntax for defining prefix and postfix increment and decrement opera-
tors. The prefix increment and decrement operators take one argument (the implicit this argument for a
member function), whereas the postfix version takes two arguments (including the implicit this argument).
For example,

struct S {
operator++ () ; // 2.0: prefix or postfix
// 2.1: prefix, but not implemented as such
// 3.0: prefix, implemented as such
operator++ (int) ; // 2.1: postfix ++, not implemented
// 3.0: postfix ++, implemented
Yi

However, Release 2.1 does not recognize the new syntax. Use of the postfix form results in the following
error message:

line 4: error: S:: operator ++() takes no argument

Release 3.0 correctly handles these operators.

Extension of Dominance Rule to Objects

The Release 2.1 Reference Manual extended dominance to data and enumerators as well as functions.
Release 2.1 did not implement this. Release 3.0 does:

enum E {a,b};

struct V {void £(); int x; E vy;};

struct B: public virtual V {void £(); int x; E v;};
struct C: public virtual V{};

struct D: public B, public C {void g();};

void D::g() {
X4+ ; // ambiguous in 2.0/2.1
// ok in 3.0, refers to B::x
y = a; // ambiguous in 2.0/2.1
// ok in 3.0, refers to B::y
£0); // ok in 2.0/2.1 and 3.0, refers to B::f
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Protected Derivation

The Release 2.0 Reference Manual explicitly disallowed the use of protected as an access specifier for a base
class. The Release 2.1 Reference Manual lifts this restriction. However, Release 2.1 does not implement the
new behavior.

struct B {};
struct D : protected B (};// legal, but rejected by 2.1
// accepted by 3.0

Release 3.0 correctly implements the new behavior.

Exception Handling Syntax

Release 3.0 does not include an implementation of exception handling. However, the ANSI C++ committee
has preliminarily accepted the exception handling scheme as described in Chapter 15 of The Annotated C++
Reference Manual. In Release 2.1, reserved words were added for exception handling. In Release 3.0, the
likely syntax for exception handling has been incorporated into the grammar and a "sorry not imple-
mented" message is generated for uses. Again, code that compiled warning free under Release 2.1 will con-
tinue to compile and execute correctly under Release 3.0. Please note that Release 2.1 code that compiled
with warnings about use of reserved words may result in surprising error messages under Release 3.0:

int try;
// 2.1: warning: try is a future reserved keyword

// 3.0: sorry, not implemented: try
// error: syntax error

Language-Related Fixes

The focus of development for Release 3.0 has been to implement the Templates feature and to reengineer
selected portions of the implementation. The reengineering focus has been on function matching, operator
overloading, user-defined conversions, type checking and reworking the front end symbol table. We know
of no bugs in the function matching or operator overloading and many of the scoping and name reuse bugs
that existed in previous releases have been fixed. The reworking of type checking has uncovered previ-
ously existing bugs that are now fixed. Please note, some of these fixes may change the behavior of pro-
grams for which Release 2.0 or Release 2.1 incorrectly accepted illegal code or produced incorrect results.

Section numbers (§) following a heading identify the section of the Release 3.0 Reference Manual that
describes the correct behavior.
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Declarations in for Initializers (§6.5.3, 6.7)

The Release 2.0 Reference Manual stated that a for statement containing a declaration in its for-init-statement
was not allowed to be the statement after an if, else, switch, while, do, or for. In other words, this
code was illegal:

void f(int i)
if (i)
for (int j = i; j; j--) // error

’

}

This restriction was an error not enforced by the Release 2.0 implementation, and the Release 2.1 Reference
Manual omits it.

The Release 2.1 Reference Manual, however, does specify a related restriction: “/An auto variable constructed
under a condition is destroyed under that condition and cannot be accessed outside that condition.”

Here is an example:

int g(int i) {
if (1)
for (int j = 5; j; j--)
return j; // error

}

In the above code, j cannot be accessed at the point of the return statement because the return statement
is outside the body of the if statement. According to the Release 2.1 Reference Manual, an error should be
reported, but Release 2.1 quietly accepts this code. Release 3.0 correctly reports the error.

Enforcement of Return from Value-Returning Functions (§6.6.3)

In C++, unlike C, it is an error to fail to return a value from a value-returning function. See Section 6.6.3 of
the Reference Manual. Earlier releases of the compiler warned about failure to return a value. For Release
3.0, these warnings are errors for all member functions and all function templates. For non-member func-
tions, failure to return a value when a return type is explicitly specified is an error; warnings will continue
to be generated for non-member functions that implicitly return ints. As with previous releases, we will
continue to warn about failure to return from main only under +w:
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main() {/*...*/}; /7
//
£O) ( /*... */ ) /7
//

int £2() { /*...*/ }; /7
//
//

struct A {
£Q) (/*...*/); //
//
//

no return from main
+w warning in 2.0, 2.1 and 3.0

no return, implicit return type
warning in 2.0, 2.1 and 3.0

no return, explicit return type
warning in 2.0, 2.1
error in 3.0

no return, implicit return type
warning in 2.0, 2.1
error in 3.0

int £2() {/*...*/}; // no return, explicit return type

//
//
}:

const Typedefs (§7.1.6)

warning in 2.0, 2.1
error in 3.0

Previous releases failed to unwind const typedefs correctly:

typedef char *T;

const char *p; // p is a pointer to a const char
const T cp; // cp is a constant pointer to char

Previous releases incorrectly evaluated cp as a pointer to const char.

Scope of a Class Member’s Initializer (§8.4)

The Release 2.1 Reference Manual states explicitly that an initializer for a static member is in the scope of the
member’s class. This rule was not explicitly given in the previous Reference Manual.

Release 2.1 does not apply this rule consistently. For example, in
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const int a = 5;

struct X {
static int a;
static int b;
}:

int X::a = 1;
int X::b = a;
the correct behavior is implemented: X: :b is initialized with X: :a.

However, default arguments for member functions are not resolved within the scope of the class. In the
following code,

const int y = 2;
struct Y {
static int y;
static int f(int);
}:
int Y::f(int i = y) { return i; )}

Release 2.1 incorrectly determines that the default argument for Y:: £() is global y, not Y::y.

Release 3.0 correctly resolves the argument.

Reference Initializers (§8.4.3)

The Release 2.0 Reference Manual allowed a reference to be initialized with a temporary, as in the following
declaration:

int& r = 5;

However, the Release 2.1 Reference Manual has tightened the rules for reference initializations so that only
const references may legally be initialized with non-lvalues. This means that, instead of the previous
declaration, you must use the following:

const int& cr = 5;
The Release 2.0 C++ Language System already treated temporary initializers for non-const reference ini-
tializations at global scope as errors, although it allowed them at local scope. To provide a smooth transi-

tion to the more restrictive rules, Release 2.1 issues an anachronism warning, under control of the +w
option, for non-const reference initializations that were accepted by Release 2.0 but are now illegal.

Here are some examples:
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int& rl = 5; // illegal, error in 2.0, 2.1 and 3.0

struct A { A(int); ~A(Q); };

A& al = 5; // illegal, sorry in 2.0, error in 2.1, 3.0
const A& a2 = 5; // legal

int& £1();

int& r2 = £1(); // ok, ‘f£()' returns an lvalue

const int& r3 =5; // ok, ‘r3’ is ‘const int&’

int f2(inté&);
int j = £2(5); // illegal, error in 2.0 and 2.1

void x() {
int& rl = 0; // illegal, 2.1 warns under +w
// illegal, 3.0 warns by default

A& al = 5; // illegal, 2.1 warns under +w

// illegal, 3.0 warns by default
const A% a2 = 5; // legal, accepted by 2.0 and 2.1
int j = £2(5); // illegal, 2.0 and 2.1 warn under +w

// illegal, 3.0 warns by default

struct 81 (};
struct S2 (
operator S1();

};

void £3(81&);
void y (82 s2) {
£3(s2); // illegal, 2.0 and 2.1 warn under +w
//illegal, 3.0 warns by default
}

Release 3.0 issues an unconditional warning, or an error if the +p option is in effect.

The anachronism warnings turn into errors if the +p option is specified to the CC command.
Calls to Non-const Member Functions from const Objects (§9.3.1)

Calling a non-const member function on a const object has been illegal since Release 2.0. However, to
ease transition to this new rule, calling a non-const member function on a const object was flagged with a
warning in Release 2.0 and Release 2.1. This type of call is an error in Release 3.0.

The obvious example of the effect of this change is the simple changing of a warning to an error as in the
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following case:

struct A {
A(Q);
void fool();
}:
const A a;
a.foo(); // a warning in 2.0 and 2.1
// an error in 3.0

However, this change may also cause more subtle changes of behavior in code using function matching,
operator overloading, or conversion functions. For example, a non-const member function is now elim-
inated from consideration in a call to an overloaded member function using a const object. For example:

struct A {
A();
void foo(int); // #1
void foo(char) const; // #2
void foo(const A%*); // #3
}i
const A a;
a.foo(l); // used to call #1 with warning
// now will call #2
a.foo(&a) ; // used to call #3 with warning

// now flagged as no match error

Similarly, non-const user-defined operators are not considered for calls with const objects, and no non-
const conversion operators will be applied to const objects.

An example with conversion operators:

class B {
public:
B():
operator int();

}:

const B b;
int i = b; // error in 3.0

New errors that occur as a result of all usable functions being non-const should issue messages that include
that information. For example, the program above gives the following error in Release 3.0:
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"prog.c", line 8: error: bad initializer type const B for i (int expected)
(no usable const conversion)

Enforcement of const in const Member Functions (§9.3.1)

As with calls to non-const member functions from const objects, the enforcement of const within const
member functions was introduced via warnings in Release 2.0 and Release 2.1. In Release 3.0, the const
rules are strictly enforced. The release correctly reports errors for assignment to data members or calls to
non-const member functions from within a const member function. It is also illegal for const member
functions to return non-const references to a data member if the member is a class object. If the data
member being returned is a built-in type, however, Release 3.0 still incorrectly reports this with just a warn-

ing.
struct B{ };
struct A (
int 1i;
B b;
int& £() {return i;}; // ok, non-const member
void fl(int j) const ({

i=73; // warning in 2.0/2.1
// error in 3.0

i=£(); // warning in 2.0/2.1
// error in 3.0
}
int& £f2() const {return i;} // warning in 2.0/2.1

// error in 3.0

B& f3() const {return b;} // warning in 2.0/2.1/3.0
}i
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Static Data Members of Local Classes (§9.4)

The Release 2.1 Reference Manual states that static data members are not allowed for local classes. Previ-
ously, a local class could have a static data member only if no explicit initialization was required.

Release 2.1 does not enforce the new restriction properly. If a static data member of a local class is
declared but never used, a warning is reported but the program links successfully.

int main() {
struct S {
static int i;
}:
/! ..

return 0;

line 2: warning: static member S::i in local class S (anachronism)

Release 3.0 enforces this restriction, and correctly reports an error.

Access Specifiers in Unions (§11)

The Release 2.1 Reference Manual allows access specifiers in unions. Formerly, these were forbidden.

union U {

public: // legal
u();
int i;

private: // legal
double 4;

protected: // legal
float £;

}:

U u;

float £ = u.f; // protection violation

Release 2.1 accepts the definition of U shown above but does not report the protection violation.

Release 3.0 correctly flags the protection violation.
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Access to Static Members of Private Base Classes (§11.2)

The Release 2.1 Reference Manual states that a private derivation of a base class does not restrict access to
the static members of the base class. Without this rule, a member function would have less access to a base
class’s static members than a global function.

Release 2.1 does not implement this rule consistently. For access to a static member of an immediate base
class, some illegal accesses are not reported:

struct B {
static void £();

}:

struct D : private B {}
struct E : private D {

void g() {
£0); // illegal, reported by 2.1 and 3.0
this->f(); // illegal, reported by 2.1 and 3.0
B::f(); // legal, OK in 3.0, rejected by 2.1
}

}i
In the above code, the calls £ () and this->f() are illegal because they refer to £() via the this pointer,

and thus the access protection for private members is applied. The call B: : £() is legal because it refers
to £() directly, just as a global function could refer to B: : £().

Release 3.0 enforces the rule consistently. If multi-level derivation is involved, both Releases 2.0 and 2.1 are
overly conservative; they report an error for X: : £() even though it is legal.

struct X {

static void f();
};
struct Y : private X {};
struct Z : public Y ({

void g() {
£0); // illegal, error in 2.0, 2.1 and 3.0
this->f(); // illegal, error in 2.0, 2.1 and 3.0
X::£(); // legal, error in 2.0 and 2.1

}

}:

Scope of Friend Functions (§11.4, 9.7)

The Release 2.1 Reference Manual states that a friend function defined within a class declaration is in the
lexical scope of that class, just like a member function.
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In general, Release 2.1 does not implement this rule. Consider the following example:

extern int s;
extern int e;

struct S {
static int s;
enum { e = 5 };
friend £() { return e; } // which ‘e’?
friend void g(int = s) { }; // which ‘s’?
}:

According to the Release 2.1 Reference Manual, £ () returns S::e and the default argument for g() is S::s.
Instead, both Release 2.0 and 2.1 incorrectly resolve these names to : :e and ::s respectively.

Release 3.0 resolves these names correctly.

Constructor and Destructor Declarations (§12.1, §12.4, §9.3.1,)

The Release 2.1 Reference Manual specifies that constructors and destructors cannot be declared const,
volatile, or static. Release 2.1 correctly reports an error for constructors and destructors that are
declared static, but it incorrectly allows constructors and destructors to be declared const. Release 2.1
does not implement volatile member functions at all; these are rejected with a “not implemented” mes-

sage.

struct 8 {
static S();
static ~S();
}:

struct T {
T() const;

~T() const;
T (char*) volatile;

}i

Release 3.0 correctly reports these errors.

Compatibility

// illegal, error in 2.0, 2.1 and 3.0
// illegal, error in 2.0, 2.1 and 3.0

// illegal, but accepted by 2.1
// rejected by 3.0

// illegal, but accepted by 2.1
// rejected by 3.0

// illegal, sorry in 2.1
// rejected by 3.0
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Destructors for Built-In Types (§12.4,)

The Release 2.1 Reference Manual allows explicit destructor calls for any built-in type, as in the example
below. However, Release 2.1 does not implement this syntax.

void f (int* p) {
p->int::~int(); // legal, but error in 2.1
// legal, handled properly in 3.0
}:

Release 3.0 correctly implements this syntax.

Delete Operator (§12.5)

The Release 2.1 Reference Manual tightens the rules for the delete operator. Only one operator delete()
may be declared per class, and the global operator delete() may not be overloaded. Release 2.1 does
not enforce these restrictions.

For example, the second declaration of the delete operator in each scope below is illegal, but the code is
accepted by both Release 2.0 and 2.1.

typedef unsigned int size_t;

void operator delete(void*);
void operator delete(const void*); // error, correctly reported in 3.0

struct 8 {
void* operator new(size_t);
void* operator new(size_t, void*);
void operator delete(void*);
void operator delete(void*, size_t); // error, correctly reported in 3.0

};

Release 3.0 correctly reports these errors.

Argument Matching Rules (§13.2,)
Several details about the function matching rules have changed.

m In the Release 2.0 Reference Manual there was a rule that a call needing only standard conversions is
preferred over one requiring user-defined conversions. This rule has been eliminated in the Release
2.1 Reference Manual and the new semantics have been implemented in Release 2.1. For example,
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struct Complex { Complex(double); };
void f2(int, Complex);
void f2(double, double);

void y2() *{
£2(3, 4); // ambiguous
) =

For this code, Release 2.1 and 3.0 correctly report an ambiguity.

m The second function matching change involves the treatment of arguments of type T that require tem-
poraries. The Release 2.0 Reference Manual specified that a match with conversions requiring tem-
poraries was a legal match. So, for example, the call to £3 (char&) in the following code was legal
and was accepted by Release 2.0:

void f£3 (char&):;
void x3() {
£3('c’); // illegal, 2.1 warns under +w
// illegal, 3.0 warns by default

}

Furthermore, since standard conversions were preferred to conversions requiring temporaries, the
Reference Manual specified that the call to £4 () below would be resolved to £4 (int). Instead,
Release 2.0 resolved it to £4 (char&):

void f4(int);
void f4 (char&) ;
void x4() {
f4('c’); // illegal, 2.1 warns under +w
// illegal, 3.0 warns by default

)

Under the new rules, the calls to £3 () and £4() are in error because a non-const reference cannot
be initialized with a non-lvalue (see §8.4.3). However, Release 2.1 and 3.0 allow this behavior, with
warnings, to provide the opportunity to migrate old code.

Release 3.0 correctly warns by default in both case. Release 2.1 warns under +w.

lmproved Operator Overloading (§13.4)

Operator overloading and the resolution of operator expressions has been more clearly specified for Release
3.0, notably in the area of choosing between user-defined operators and built-in operators using conversions
to basic types. For instance, given the following class definition:
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class Foo {
public:
operator int();
int operator+(const Fook, int);

}:

and an object of class Foo, foo, the expression foo + 1 could be resolved two ways. It could be resolved
as operator+(foo, 1) by calling the user-defined + operator, or as operator int (foo) + 1 by using the
built-in + operator on integers after applying the user-defined conversion to int.

For Release 3.0, the operator overloading algorithm has been updated to match the function matching algo-
rithm. Therefore, argument matching is used to compare built-in operators to user-defined operators.

The only exceptions to this rule are operators which MUST be defined as members, i.e., operator=(),
operator[], operator->(), operator () (). For expressions involving these operators, the user-defined
version of the operator is always preferred.

The effect of this clarification is that some expressions involving operators which used to call a user-defined
operator will now be ambiguous. Other expressions which used to give an ambiguity error will now be
resolved. For example,
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class String {
public:
String(char) ;
friend String operator+(String&, char);

}:

class MyClass {

public:
operator int();
friend int operator+ (MyClassé&, int);
int operator[] (unsigned int);

}:

main()
{
MyClass a;
int i;
i=a+ 3; // 1: used to call operator+ (MyClass&, int);

// still does
i=a+ 3.2; // 2: used to call operator+ (MyClass&, int);
// now ambiguous

i =al3}]; // 3: used to call operator[](unsigned int);
// still does

i=3+ a; // 4: used to be ambiguous
// now calls built-in +

}

In call 1, Release 3.0 uses argument matching and chooses the user-defined operator. The best match on
the first operand is the user-defined operator+(); the best matches on the second operand are both the
user-defined operator+() and the built-in operator+() on integers. Thus, the intersection of best match
functions is the user-defined operator+().

Changing the right operand to a double makes call 2 ambiguous when using argument matching because
the best match on the second operand will now be the built-in operator+() on doubles.

Call 3 still calls the user-defined operator+ () because the user-defined version of operator|[] is always
preferred, since it must be defined as a member.

The last call (4) was ambiguous in pre-Release 3.0 versions of C++ because the call of the built-in opera-
tor+ () on integers conflicted with operator+(String&, char). Using argument matching, the call
resolves to the built-in operator+ () as the user would expect.
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Miscellaneous Fixes & Enhancements

m Classes with destructors are now permitted in || and && expressions.

m The limit on the size of inlines has been increased so that larger inline functions should now be laid
down inline.

m The number of nested include files that cfront can handle has been made dynamic. The limit in
Release 2.0/2.1 had been 127. Note that, of course, local cpps may vary in the limit they can process.

m Significant improvements have been made and extensive testing has been performed on the +al
(ANSI) option.

m Error messages for ambiguous function calls have been enhanced. The error message now lists the
set of overloaded functions which were equivalently good.

m All known line numbering bugs are fixed.

Return Value Optimization

Release 3.0 supports a return value optimization which may avoid the copying of potentially large data
structures which are returned from functions.

For instance, given the following class definition and function declaration:
class T {
public:
T(const T&);
}i
T foo();
An object of class T may be initialized with the return value of foo() as follows:

T x = foo();

Such a function, foo(), will often have a definition something like the following:
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T foo()
{

T result;
// do stuff to result
return result;

}

This means that in order to do the above initialization, a copy will be done of result into x. If instead the
function and the initialization had been written to look as follows:

void foo(T& result)

{
// construct result
// do stuff to result
return;

}

T x;

foo(x);

the copy would be avoided altogether while achieving the same results.

Under certain conditions, cfront will now perform a transformation from the original, more natural,
definition of foo() to the second definition automatically, thus avoiding the copy on the return.

This return value optimization is done under the following conditions:
m The function returns an object of type T, where T has a copy constructor, and

m The function creates a local variable of type T, say result, which is declared and returned at the top
block of the function.

m The function does not return anything but result, from anywhere in the function between the
declaration and return of result.

This optimization can eliminate the non-intuitive tricks that programmers often use to avoid copying of
large objects on returns.
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Release 2.1 of the C++ Language System is source compatible with Release 2.0. That is, a legal C++ pro-
gram that compiled and executed correctly with Release 2.0 will continue to compile and execute correctly
with Release 2.1.

In addition, Release 2.1 is link compatible with Release 2.0. This means that libraries that were compiled
using Release 2.0 do not need to be recompiled before linking with programs compiled with Release 2.1.

This section lists changes in Release 2.1. Most of these changes are bug fixes that have been made so that
Release 2.1 more accurately reflects the definition of the C++ language given in the Reference Manual.

This section covers the following topics:
m “Building the Compiler” — tells you information you must know before installing the C++ compiler
m “Header Files” — tells you about changes to the header files in Release 2.1

m “Changes to the cC Command” — tells you about changes in options to the CC command, macro
name changes, and other changes in functionality

m “Language-Related Fixes” — tells you about fixes to the compiler that enforce language rules more
accurately

m “Reference Manual Changes” — describes differences between the Release 2.0 Reference Manual and
the Release 2.1 Reference Manual .

m “New Warning Messages”” — lists warning messages that have been added for Release 2.1

m “Library Changes” — describes changes to the libraries supplied with Release 2.1

Recompilation of Release 2.0 Code Not Required

Code compiled using Release 2.0 does not need to be recompiled.

You might, however, want to recompile your old code using Release 2.1 anyway, as Release 2.1 enforces
some language rules that were not enforced by Release 2.0. If you recompile your code, you will find out if
it makes use of constructs that are illegal.

Building the Compiler

szal Output Format

The format of the output of the szal program has been improved for Release 2.1. The new output is in the
same format as the entries in the src/size.h file. This change makes it easier to add new systems to
src/size.h.

For example, the commands:
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cc -o szal szal.c

szal

when executed on an AT&T 3B2 computer yield the following output:

6753

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

&

DBI_IN_WORD 32
DBI_IN_BYTE 8
DSZ_CHAR 1
DAL_CHAR 1
DSZ_SHORT 2
DAL,_SHORT 2
DSZ_INT 4
DAL_INT 4
DSZ_LONG 4
DAL_LONG 4
DSZ_FLOAT 4
DAL,_FLOAT 4
DSZ_DOUBLE 8
DAIL,_DOUBLE 4
DSZ_LDOUBLE 8
DAL_LDOUBLE 4
DSZ_STRUCT 4
DAL,_STRUCT 4
DSZ_WORD 4
DSZ_WPTR 4
DAL,_WPTR 4
DSZ_BPTR 4
DAL_BPTR 4
DLARGEST INT *2147483647"
DF_SENSITIVE 0
DF_OPTIMIZED 1

_J

PLUSA Makefile Variable

You can now use the PLUSA variable in the makefile to set the +a CC command option to the desired
default setting before executing the build procedure. The build procedure will then generate a CC com-
mand that will use the specified setting for +a as the default. The default setting can, of course, be overrid-
den on the command line when invoking the CC command. The default value for PLUSA in the makefile

is +a0.

Compatibility
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patch

The file BSDpatch.c has been modified so that patch works under BSD Release 4.3 running on DEC VAX
computers.

Header Files

Header File Bug Fixes
Bug fixes made to header files for Release 2.1 fall into several categories:
— missing prototypes were added,

— prototypes for functions specified by the ANSI C standard were updated to match the prototypes in
the ANSI specification,

— some headers that were missing for certain platforms have been added.

stdlib.h and libc.h

In Release 2.0, stdlib.h and libc.h were similar, but not identical. In Release 2.1, they are identical.
stdlib.h is the ANSI C-specified header file used to declare many standard C library functions previously
undeclared in C header files. libc.h is retained for compatibility with previous releases of the C++
Language System.

curses.h Proto-Headers Reorganized

Because of the great differences between various versions of curses.h, the proto-header for curses.h has
been divided into three separate files: one for SVR2 (proto-headers/curses.svr2), one for SVR3 (proto-
headers/curses.svr3), and one for all the other systems supported (proto-headers/curses.h).

In addition, the curses.h header for SVR3 has been upgraded to SVR3.2.

Changes to the cc Command

a.out File Permissions

Under Release 2.0 the CC command left the resulting a..out file with executable permission even if the
munch or patch step of the compilation process failed. The Release 2.1 CC command does not make the
a.out file executable if the patch or munch step of the process fails.
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+L Option

The +L option had no effect in Release 2.0 because the compiler always generates source line information
using the format #1ine %d. The +L option has therefore been removed from the CC man page for Release
2.1.

-Fc Option

The -F and -Fc options produce identical results in Release 2.0 and Release 2.1. They both run only the
preprocessor and the compiler on the source files and send the generated C source code to the standard
output. Therefore the -Fc option has been dropped as a separate option on the CC man page for Release
2.1, although it is still implemented.

Position-Independent Options

Options such as -Y, +a[01], -E, -F, -C, -P, -H, -S, —¢, -I, -D, -U and -g are no longer position-
dependent on the command line. Instead, they apply to all files specified on the command line. For exam-
ple, under Release 2.1 the command:

CC foo.c -DDEBUG bar.c

defines the macro DEBUG for both foo.c and bar.c, whereas in Release 2.0 DEBUG was only defined for
bar.c.

Not all options have been made position-independent, however. The +d, +p, and +w options are still
position-dependent, as they were in Release 2.0. These options affect only those files named after the
option is specified; the files named before the option are not affected. For example, the following command
causes the +w option to be applied only to y.c, and not to x.c.

CC x.c +W y.C

The +e[01] options are also still position-dependent. Each +e option applies to all files listed before the
next +e option is encountered. For example, in the case below +e0 is applied to the files x.c and y.c,
whereas +el is applied to z.c:

CC +e0 x.c yv.c +el z.c
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The +a option specifies whether “Classic” C code or ANSI C-conforming code should be produced.
Because the CC command invokes a single C compiler, it is assumed that only one setting of the +a option
is appropriate. If multiple +a[01] options are specified on the command line, the last option is the one
actually used, and it is applied to all files. For example, the following command causes the +al option to
be applied to x.c, y.c, and z.c.

CC x.c +a0 y.c +al z.c

Partial Compilation Options

If the options specified to the CC command contain a combination of the -P (run only the preprocessor
step), -S (stop after creating the assembler input), and -c¢ (compile but do not link) options, the option
referring to the earliest stage of compilation is chosen and the others are ignored. For example, the follow-
ing invocation causes the CC command to perform the preprocessing step only on the three files:

CC X.¢c -Py.c -S z.c

Virtual Table Optimization Improved
Release 2.1 provides the same virtual table strategy that was provided by Release 2.0.

Release 2.1 provides a further improvement on the treatment of virtual tables. Under Release 2.0, each vir-
tual table had a companion pointer variable, which was used to hold housekeeping information necessary
for the virtual table optimization. Under Release 2.1 these pointers are allocated in an array, rather than
one per virtual table, so that only one symbol table entry is required in the generated object file. This
change reduces the symbol table size (but not the runtime data size) of programs compiled with Release
2.1

The new optimization is link compatible with Release 2.0.

More Debugging Information Generated Under the -g Option

Under Release 2.0, the -g option, which causes additional debugging information to be generated, was only
passed to the underlying C compiler; it did not affect the behavior of the compiler itself. Under Release
2.1, however, the -g option also affects the behavior of cfront. If —g is specified, the compiler produces C
code for every declaration in the compilation, rather than only for those declarations that are actually
needed or used. This additional information allows for easier debugging, but it also increases the size of
the object file because the symbol table is larger.
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Warnings about Inline Functions Issued under the +w Option

Several customers have noted that Release 2.0 did not treat consistently inline functions that cannot be suc-
cessfully inlined. Release 2.1 addresses this problem by providing more consistent information about
whether inline functions are actually being inlined.

There are several cases:

m If an inline function is seen for which cfront cannot generate inline code, and cfront cannot recover
from the error condition, a “not implemented”” message is reported. (The “not implemented” mes-
sages are described in Appendix D of the Release 2.1 Reference Manual.)

m If an inline function is seen which cannot be inlined for some other reason (e.g., it is too long or it is
a virtual function), and cfront can recover, the function will not be inlined and a warning message
will be issued if the +w option is specified.

m If a call to an inline function is seen and, because of the characteristics of the call site, the particular
call cannot be generated inline, a warning message will be issued if the +w option is specified.

m If the address of an inline function is taken, a warning message will be issued if the +w option is
specified.

Because the inline keyword is a “hint” to the compiler, and because the C++ Language System issues
warnings unconditionally only about constructs that are almost certainly serious problems, warnings about
inlines are issued only if the +w option is specified.

The following code illustrates the treatment of inlines:
inline int f(int) { return i; }

int g(int i) { return f£(i); }

inline void h() {
static int 1 = 5;

// .
}
struct S {

virtual void f£() {}
}:

If you compile this code using CC +w you get the following output:

line 5: sorry, not implemented: cannot expand inline function with static i
line 10: warning: virtual function S::f() cannot be inlined
line 12: warning: out-of-line copy of S::f() created
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For more information about inline functions, see Chapter 8 of the Selected Readings.

Language-Related Fixes

This section describes bug fixes in Release 2.1 that may break some code that used to be accepted, but
should never have been accepted. Section numbers (§) following a heading identify the section of the
Release 2.1 Reference Manual that describes the correct behavior.

Implicit Conversions of Pointers to Members (§4.8)
Release 2.0 incorrectly permitted several kinds of implicit conversions involving pointers to members.
m Implicit conversions between pointers to members of unrelated types were permitted:

struct X { int 1i; };
struct Y { int i; };
int X::*pmXi = &Y::i; // error

m Conversions from pointers to objects to pointers to members were also allowed:
struct Z2 { int i; };
int i;
int Z::*pmZi = &i; // error
m Finally, conversion from a pointer to member of a base class to a pointer to member of one of its
derived classes was permitted:

struct B { int 1i; };
struct D : B { int i; };
int B::*pmBi = &D::i; // error

Release 2.1 correctly enforces these rules and reports an error in these cases.

Casts of Pointer Types (§5.4)

The Reference Manual states that a pointer may be explicitly converted to any integral type large enough to
hold it. If the integral type is not large enough, the conversion is illegal. Release 2.1 enforces this rule;
Release 2.0 did not.

char *p;
unsigned short us = (unsigned short) p; // error
unsigned short usl = (unsigned short) (int) p; // ok
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Better Enforcement of const (§7.1.6)

Release 2.0 did not always realize that a member of a const object is itself a const. For example, the
assignment to b.a.i in the code below was permitted, even though b is const and therefore its members
are also const.

struct A {
int i;
}i
struct B {
A a;
BO):
}:
void £() {
const B b;
b.a.i = 5; // error

)
Release 2.1 issues the following message:

line 10: error: assignment to member A::i of const B

Initialization of const Class Objects (§7.1.6)

The Reference Manual states that all const objects not explicitly declared to be extern must be initialized.
Although Release 2.0 enforced this rule for built-in types, it did not require explicit initializations for const
class objects, such as al in the example below:

struct A { int a; };
struct B { B(); };:

const A al; // error, no initializer

const A a2 = {1 }; // ok, explicit initialization

const B bl; // ok, implicit initialization by constructor
A a3; // ok, non-const

Release 2.1 generates the following error for this code:

line 3: error: uninitialized const ::al
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Linkage Specifications (§7.4)

Release 2.0 did not enforce all the constraints on the use of linkage specifications. For example, it allowed a
function declaration without a linkage specification to precede one with a linkage specification. This error
is flagged by Release 2.1.

int £();
extern "C" int f(); // error

line 2: error: inconsistent linkage specifications for f()

Local Variables in Default Arguments (§8.2.6, §10.4)

The Reference Manual forbids the use of local variables in default argument expressions. For example,

void f(int i) (
void g{int = i);
/] o..

}

causes Release 2.1 to report the following error:

line 2: error: local i used as default argument

This error was not reported by Release 2.0.

Braced Initializers for Aggregates (§8.4.1)

The Reference Manual states that braced initializers may be used to initialize aggregates, which by definition
cannot have private or protected members, constructors, base classes, or virtual functions. Release 2.0 did
not enforce this rule for classes with private members, or for aggregate members that were not themselves
aggregates. For example, Release 2.0 incorrectly allowed both initializations shown below.
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class A {
int a;

}:

struct B {
A obj;
}:
Aa {5 1}; // error
Bb={51}; // error

Release 2.1 correctly generates errors for the initializations of a and b:

line 9: error: cannot initialize ::a with initializer list
line 10: error: cammot initialize ::b with initializer list

const Violations in const Member Functions (§9.3.1)

Release 2.0 did not consistently detect const violations in const member functions. For example, the fol-
lowing code is illegal because the value of this, which has type const S *const, is assigned to an object
of type S *const. Because this code was accepted, illegal assignments to members within const member
functions, such as the assignment to i, were not detected.
struct S (
int 1i;
void f() const {
S *const p = this; // error
p->i = 5;

Yi
Release 2.1 correctly reports the following error for this code:

line 4: error: S::£() const: assignment of S::this (const struct S *const) to S *const

volatile Member Functions Not Implemented (§9.3.1)

Release 2.1 issues a “not implemented” error message if a volatile member function is seen. Release 2.0
silently ignored the keyword volatile when applied to a member function.
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Member Functions in Local Classes Must Be Defined Inline (§9.8)

When a class is defined within a function definition (that is, a local class), all member functions of the class
must be defined within the class definition itself or not at all.

For example, the following code declares the function £2() but fails to define it:

void £() (
struct Local {
int f1() { return 0; }
int f2(int);
}i
Local var;

}
Release 2.0 quietly accepted the above code. Release 2.1, however, issues the following warning:

line 6: warning: f£2() must be defined inline within local class Local

Protection Violations of Anonymous Union Members (§11)

Release 2.0 did not enforce access protection for members that are anonymous unions. For example, the
following code was silently accepted:

class S {

union { int i; double d; };
}:
void £() (

S s;

s.i =5; // error

}i

Release 2.1 correctly reports an error for the assignment to s.i because i is declared in the private part of
S.

Friend Declarations Cannot Be Class Definitions (§11.4)

The syntax for declaring a class to be a friend of another class allows the use of an elaborated-type-specifier,
but not a complete class definition, in the declaration. Therefore, the first friend declaration in the example
below is legal, but the second is not.

class C {
friend struct A; // ok
friend struct B { int £(); }; // error

i
Release 2.0 did not recognize the error in the friend declaration for B, but Release 2.1 issues the following
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€ITor message:

line 3: error: friend struct B {...}

Access to Protected Members (§11.5)

The Reference Manual states that a derived class may refer to a protected member of a base class only if the
reference is through a pointer to, reference to, or object of the derived class. For example, in the code
below, although class D is derived from class B, D::£() cannot call the protected function B: :g()
through a B pointer. The same rules apply to constructors, making the calls to B: :B() in D::f () illegal.

class B {
B(int);
void g(int);
protected:
B();
void g();
}:
class D : public B { void £(); };
void D::f() {

B b; // error
B* bp = new B; // error
bp->g() ; // error

}

In general, Release 2.0 reported the protection violations in code such as this. In some cases, however, no
errors were reported. Such cases generally involved overloaded functions, one of which was protected, as
shown in the above example.

Release 2.1 correctly generates the following messages for this code:

line 11: error: D::f() cannot access B::B(): protected member
line 12: error: D::f() cannot access B::B(): protected member
line 13: error: D::f() cannot access B::g(): protected member
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Redundant Initializers (§12.6.1)

The following code was accepted by Release 2.0 but is incorrect because it specifies two initializers for the
same object. Release 2.1 reports an error.

struct Point { Point{(int, int); };
void £() {

Point p(1l, 2) = Point(3, 4); // error
}

lllegal Function Overloading (§13)

The Reference Manual states that functions with parameter types that differ only with respect to const or
volatile may not have the same name. Release 2.0 did not enforce this rule consistently and accepted
code such as the following:

void f£(int *);
void f(int *const); // error

Release 2.1, however, correctly reports an error for the second declaration of £().

line 2: error: the overloading mechanism camnot tell a void (int *) from a void (int *const )

“Intersection Rule’” Applied to Function Matching (§13.2)

Release 2.0 did not fully implement the “intersection rule” for function matching described in §13.2 of the
Reference Manual. For example, the following code was accepted and a call to £ (double, double) was gen-
erated.

double f(double, double);
double f(float, float);
double d = f(double(1.0),float(1.0)); // ambiguous

According to §13.2, however, this call is ambiguous. If you look for possible matches, parameter by param-
eter, you see that the set of best matches for the first parameter has only one element, f (double, double),
and the set of best matches for the second parameter also has only one element, £ (float, float). The
intersection of these sets is empty, so the call is ambiguous.

For this example, Release 2.1 correctly issues the following message:

4-38 Release Notes



Upgrading from Release 2.0 to Release 2.1

line 3: error: ambiguous call of f(); double (double, double) and double (float, float)

This change in behavior may affect class libraries that provide functions that overload system functions.
For example, suppose you define a type String and then overload the system function read() to handle
objects of type String:

struct String {
String (char*) ;
/] ...

};

int read(int, String&, int);

However, you do not notice that the last parameter of the system read() function is an unsigned rather
than an int:

int read(int, void*, unsigned); // system ‘read()’

Because Release 2.0 did not correctly implement the intersection rule, calls to the library’s read() were
considered unambiguous. Under Release 2.1 they are ambiguous because the intersection rule is strictly
applied:
void g(int £d, char* cp) {
(void) read(fd, cp, 3); // ambiguous
)

The point here, especially for library writers, is to be careful when overloading system functions. The types
of the parameters that are intended to be the same should match exactly.

Restrictions on Overloaded Operators (§13.4)

The Reference Manual places a number of restrictions on the ways in which operators can be overloaded.
For example, operator=() must be a non-static member function. Release 2.1 enforces these rules more
strictly than Release 2.0 did.

struct S {
static operator=(int); // error

}i

Release 2.1 reports the following error for the above example:
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line 2: error: S::operator=() cannot be a static member function

Reference Manual Changes

Release 2.1 provided a new, revised Reference Manual, which incorporated hundreds of customer comments
on the draft Reference Manual distributed with Release 2.0. The Release 2.1 Reference Manual clarified the
wording and intent of the language definition, corrected errors, and removed inconsistencies. In a very few
cases, the language rules were deliberately changed, in response to feedback from programmers using C++.
The revised Reference Manual was submitted to the American National Standards Institute (ANSI) and has
been accepted as the basis for standardizing the C++ language. An annotated version of the new Reference
Manual, entitled The Annotated C++ Reference Manual, was published in early 1990 by Addison-Wesley.

This section lists the changes in the Release 2.1 Reference Manual, ordered by section of the Reference
Manual. To help you determine quickly which changes might impact your code, each change has been
classified into one of the following categories:

m extension, which is implemented in Release 2.1
m restriction, also implemented in Release 2.1

m clarification, which makes a language rule more explicit and which does not affect the behavior of the
C++ Language System

m change, for which no corresponding change has yet been made to the C++ Language System

Release 2.1 will continue to compile successfully every legal C++ program that compiled under

NoTe | Release 2.0. As usual, you will get a warning message if you use a construct that is no longer legal,

but your program will still compile just as it did under Release 2.0. If your program compiles without

l any anachronism warnings, then it will work the same way when the new rules are completely
phased in and the old rules are completely phased out. Remember that some anachronism warn-

ings appear only if +w is specified.

New Keyword trv (§2.4, restriction)

There is a new keyword, try, for exception handling. Although Release 2.1 does not implement exception
handling, a warning message is issued if an identifier named try is encountered.

int try;

4-40 Release Notes



Upgrading from Release 2.0 to Release 2.1

line 1: warning: try is a future reserved keyword

Release 3.0 recognizes the full exception handling syntax, but issues a "sorry, not implemented" message.
NOTE

One Definition of an Inline Member Function (§3.3, change)

According to the Release 2.1 Reference Manual, an inline member function must have exactly one definition
in a program. In other words, an inline member function cannot legally have different definitions in dif-
ferent files. Previously, this restriction was not explicitly stated.

This rule might be easily enforced in a C++ environment where a library manager keeps track of all
definitions in a program, but the C++ Language System does not enforce this rule.

Character Types (§3.6.1, clarification)

The Release 2.1 Reference Manual states that the types char, unsigned char, and signed char are three
distinct types. This corrects a misstatement in the previous Reference Manual and conforms with the ANSI C
standard.

Because the C++ Language System ignores the keyword signed, Release 2.1 provides two character types:
char and unsigned char.

Qualified Name Syntax for Nested Types (§5.1, §9.7, extension)

The Release 2.1 Reference Manual extends the qualified name syntax to apply to type names as well as class
members. This new syntax allows a nested type to be named outside the class in which it is defined.

For example, to refer to the enumeration type E outside the definition of Outer, the syntax Outer: :E
should be used, as shown below.

struct Outer {
enum E { e };// nested type
Yi
Outer::E varl; // use of a nested type

To provide compatibility with Release 2.0, Release 2.1 also allows you to refer to a nested type name
without qualification, as in the following declaration:

E var2;

Compatibility 4-41



Upgrading from Release 2.0 to Release 2.1

Release 2.1 issues a warning message, however, for this use:

line 1: warning: use Outer:: to access nested enum type E (anachronism)

The qualified name syntax is recursive, but Release 2.1 does not implement qualified names with more than
two identifiers:

struct S1 {
struct 82 (
typedef int T;
};
Yi
S1::82::T var3; // legal, sorry in 2.1

For this code, the following message is issued:

line 7: not implemented: class names do not nest, use typedef x::y v_in x

True nested types are implemented in Release 3.0, and the transition model supplied in Release 2.1 is no
NOTE | longer supported.

Class Arguments to £ (...) (§5.2.2, extension)

The Release 2.0 Reference Manual specified that it was illegal to pass an object of a class with a constructor
to a function with an ellipsis formal parameter. This restriction is lifted in the Release 2.1 Reference Manual
and the new behavior is implemented in Release 2.1. The following code, which produced an error under
Release 2.0, compiles without complaint under Release 2.1. The copy constructor is not invoked to pass the
argument. Instead, a bit-wise copy is done.
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struct S {
s();
S(const S&);

};
void f£(...);

void g(S s) {(
f(s): // legal, accepted by 2.1

}

Explicit Type Conversions with Empty Initializers (§5.2.3, change)

The 2.1 Reference Manual allows you to specify an explicit type conversion with an empty initializer, as in
the following examples:

int i = int();
struct Empty {};
Empty e = Empty();
Release 2.1 does not implement this capability and reports an error instead.

line 1: error: value missing in conversion to int
line 4: error: cannot make a Empty

Release 3.0 implements this capability.
NOTE

Size of a Function (§5.3.2, restriction)

In C++, as in ANSI C, you are allowed to apply the sizeof operator to a pointer to a function but not to
the function itself. For example, this code is legal:

void f();
int i = sizeof (&f);

but this is not:
int j = sizeof (f);

Release 2.1 enforces this restriction.
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Access Protection for operator new() (§5.3.3, restriction)

Release 2.0 did not check access protection for calls to class-specific operator new(). The Release 2.1
Reference Manual explicitly extends access protection to calls to class-specific operator new(), and Release
2.1 implements this behavior. For example, the following code compiled without error under Release 2.0,
but produces an error message under Release 2.1.

#include <stddef .h>
class C {
void* operator new(size_t);
void operator delete(void*);
public:
c();
}i

void f£() {
C *cp = new C; // illegal, error in 2.1
}

Release 2.1 issues the following diagnostic for this code:

line 8: error: f() cannot access C::operator new(): private member

Empty Initializers for operator new() (§5.3.3, clarification)

The Release 2.1 Reference Manual explicitly allows the initialization expression in an allocation expression to
be empty, as in the following examples:

double* dp = new double();

struct Complex
Complex () ;
/] ...
}i
Complex* cp = new Complex();

For a built-in type, this means that an object with an undefined value is created. For a class type, this
means that the default constructor is called. If there is more than one default constructor, an error is
reported because the call is ambiguous. If there is no default constructor, an object with an undefined
value is created.

Both Releases 2.0 and 2.1 implement this behavior correctly.
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Deleting an Array (§5.3.4, extension)

It used to be necessary to specify the number of elements when deleting an array. For example, you were
required to specify the expression 10 when deleting the array pointed to by p in the following code:

struct S { S(O): ~S(); };
void f1() {
S *p = new S[10];
/7] ...
delete [10] p;
}

With Release 2.1 this is no longer necessary, and the following code is now accepted:

void £2() (
S *p = new S{10];
/7] ...
delete [] p; // no size necessary

)

Use of the old syntax is considered an anachronism, and Release 2.1 issues the following diagnostic if the
+w option is specified to the CC command:

line 4: warning: v in ‘delete[v]’ is redundant; use ‘delete[]’ instead (anachronism)

This capability frees the programmer from having to keep track of array sizes. It also prevents subtle prob-
lems caused by discrepancies between the number of allocated elements and the number of deleted ele-
ments.

Release 3.0 issues an unconditional warning if this syntax is detected.
NOTE

When an array is created using the placement version of operator new, destruction and deletion of that
array are the user’s responsibility. For example:
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class T {
T();
~T();
//

}:

T*

create_T array_in buffer (void* buff, int n)

{

return new (buff) T[nl;

}

void foo()

{
pv = malloc(sizeof(T)*5);
T* pT = create_T array_in_ buffer(pv, 5);
delete [] pT; // does not work!!!

Here are some approaches the user can take to this problem:
delete [5] pT;

This (anachronistic) syntax will run the destructor on the objects in the array and free the storage using the
global operator delete. Possibly this syntax should be resurrected.

T* ppT = pT + 5;
while (pT <= --ppT)
ppT->T::~T() ;

This loop destroys the objects in the array but does not free the storage, appropriate in case the storage is
managed by specialized code.

Type Definitions in Casts (§5.4, clarification)

The Release 2.1 Reference Manual clearly states that it is illegal to define a type in a cast. For example, the
following declaration is illegal and is rejected by the C++ Language System:

enum E { el = (enum { z = 10 } ) 3, e2 }; // error in 2.0 and 2.1
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Declarations in for Initializers (§6.5.3, §6.7, clarification)

The Release 2.0 Reference Manual stated that a for statement containing a declaration in its for-init-statement
was not allowed to be the statement after an if, else, switch, while, do, or for. In other words, this
code was illegal:

void f(int i) (
if (1)
for (int j = 1i; j; j--) // error

}

This restriction was an error not enforced by the Release 2.0 implementation, and the Release 2.1 Reference
Manual omits it.

The Release 2.1 Reference Manual, however, does specify a related restriction: ““An auto variable constructed
under a condition is destroyed under that condition and cannot be accessed outside that condition.”

Here is an example:

int g(int i) {
if (1)
for (int j = 5; j; j--)
return j; // error

}

In the above code, j cannot be accessed at the point of the return statement because the return statement
is outside the body of the if statement. According to the Release 2.1 Reference Manual, an error should be
reported, but Release 2.1 quietly accepts this code.

Release 3.0 correctly reports the error.
NOTE

Another example:

Compatibility 4-47



Upgrading from Release 2.0 to Release 2.1

struct S {
S(int);
~S();
operator int();
S& operator--();
}i
int h(int i) {
if (i)
for (8§ s = 5; s; s8--)
return s; // error

}

The destructor for s is invoked at the end of the if statement. Release 2.1 (correctly) issues the error mes-
sage

line 11: error: s undefined

at the return statement.

Global Inline Functions Are Static (§7.1.2, §7.1.1, §3.3, change)

The Release 2.0 Reference Manual allowed a non-member inline function to have external linkage. The
Release 2.1 Reference Manual specifies, however, that a name of global scope that is declared inline is local
to its file.

Release 2.1 does not conform to these rules. For example, the following code is accepted by Releases 2.0
and 2.1: £() is treated as a static function, and a static definition of £() is laid down.

extern int f(int);

inline int f£(int i) { return i; } // error, not reported
int 1 = £(0);

int (*pf) (int) = &f;

Instead, the C++ Language System should report an error that £ () cannot be redeclared as inline after
being declared extern.

Use of typedef Name as Synonym for a Class Name (§7.1.3, clarification)

The Release 2.0 Reference Manual was not explicit about where a typedef name could be used in place of a
class name. The Release 2.1 Reference Manual clarifies this: “The synonym may not be used after a class,
struct, or union prefix and not in the names for constructors and destructors within the class declaration
itself”” These restrictions have not been implemented by Release 2.1.
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struct S {
ON;
~S();
}:

typedef struct S T;

Sa="T(0; // legal, accepted by 2.0 and 2.1
struct T *p; // illegal, but accepted by 2.0 and 2.1
class C;

typedef class C U;
struct U (}; // illegal, but accepted by 2.0 and 2.1

Because typedef names cannot be used in the names of constructors, both Release 2.0 and 2.1 treat the use
of a typedef name in a member function declaration as introducing an ordinary member function of that
name, not a constructor. Since this is likely to be an error, the C++ Language System should, but does not,
issue a warning. However, both Release 2.0 and 2.1 correctly reject the use of a typedef name in a des-
tructor:

typedef struct X Y;

struct X {
X(); // constructor
Y(int); // illegal, accepted by 2.0 and 2.1
~Y(); // illegal, detected by 2.0 and 2.1

}i

Scope of a Nested Enumeration (§7.2, §9.7, extension)

In conjunction with the introduction of nested types, the name of an enumeration type declared within a
class declaration is local to the class. This marks a change from the Release 2.0 semantics. As a result of
this change, the scope of an enumerator declared within a class is the same as the scope of its enumeration

type.

struct S {
enum E { el, e2 };
1/ ..
Yi ,
S::E var = S::el; // 'E' and ‘el’ have the same scope

const Functions (§8.2.5, restriction)

The Release 2.1 Reference Manual restricts the use of the const and volatile qualifiers to non-static
member functions. Release 2.1 implements this restriction. Release 2.0 accepted the declarations of g ()
and x () below, whereas Release 2.1 correctly rejects them:
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class C {
int £() const; // legal
static int g() const; // illegal, error in 2.1

}:

void x() const; // illegal, error in 2.1

Default Arguments lilegal for Overloaded Operators (§8.2.6, §13.4, restriction)

The Release 2.1 Reference Manual explicitly states that default arguments are illegal for user-defined opera-
tors. Release 2.1 implements this rule. The code below was accepted by Release 2.0 but is rejected by
Release 2.1.

struct S {
friend int operator+(S, int = 0); // illegal, error in 2.1
/] ...

}i

Scope of a Class Member’s Initializer (§8.4, clarification)

The Release 2.1 Reference Manual states explicitly that an initializer for a static member is in the scope of the
member’s class. This rule was not explicitly given in the previous Reference Manual.

Release 2.1 does not apply this rule consistently. For example, in
const int a = 5;
struct X {
static int a;

static int b;

Yi
int X::a = 1;
int X::b = a;
the correct behavior is implemented: X: :b is initialized with X: :a.

However, default arguments for member functions are not resolved within the scope of the class. In the
following code,
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const int y = 2;

struct Y ¢
static int y;
static int f£(int);

}i

int Y::f(int i = y) { return i; }

Release 2.1 incorrectly determines that the default argument for Y: : £() is global y, not Y: :y.

Release 3.0 correctly resolves the argument.
NOTE

Reference Initializers (§8.4.3, restriction)

The Release 2.0 Reference Manual allowed a reference to be initialized with a temporary, as in the following
declaration: :

int& r = 5;

However, the Release 2.1 Reference Manual has tightened the rules for reference initializations so that only
const references may legally be initialized with non-lvalues. This means that, instead of the previous
declaration, you must use the following:

const int& cr = 5;
The Release 2.0 C++ Language System already treated temporary initializers for non-const reference ini-
tializations at global scope as errors, although it allowed them at local scope. To provide a smooth transi-

tion to the more restrictive rules, Release 2.1 issues an anachronism warning, under control of the +w
option, for non-const reference initializations that were accepted by Release 2.0 but are now illegal.

Here are some examples:
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int& rl = 5; // illegal, error in 2.0 and 2.1

struct A { A(int); ~A(); };:

A& al = 5; // illegal, sorry in 2.0, error in 2.1
const A& a2 = 5; // legal, sorry in 2.0, bad code in 2.1
int& £1();

int& r2 = £f1(); // ok, 'f£()' returns an lvalue

const int& r3 =5; // ok, ‘r3’ is ‘const int&’

int £2(inté&);
int j = £2(5); // illegal, error in 2.0 and 2.1

void x() |
int& rl = 0; // illegal, 2.1 warns under +w

A& al = 5; // illegal, 2.1 warns under +w
const A& a2 = 5; // legal, accepted by 2.0 and 2.1
int j = £2(5); // illegal, 2.0 and 2.1 warn under +w

struct S1 (};
struct S2 {

operator S1();
}i:

void f3(Sl&);
void y(S2 s2) {

£f3(s2); // illegal, 2.0 and 2.1 warn under +w
}

Release 3.0 issues an unconditional warning, or an error if the +p option is in effect.
NOTE

|

The anachronism warnings turn into errors if the +p option is specified to the CC command.

Reuse of a Class Name by its Members (§9.2, clarification)

The Release 2.1 Reference Manual limits the ways in which a class name can be reused by members of the
class. The rule is that a static data member, enumerator, member of an anonymous union, or nested type
may not have the same name as its class.
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Release 2.1 does not enforce these restrictions completely. An error is reported if an enumerator or nested
type has the same name as its enclosing class, but a static data member or member of an anonymous union
are not caught.

struct 81 {

static int S1; // illegal, no error in 2.0 or 2.1
}i
struct S2 {

union { int i; float S82; }; // illegal, no error in 2.0 or 2.1
}i

Static Data Members of Local Classes (§9.4, change)

The Release 2.1 Reference Manual states that static data members are not allowed for local classes. Previ-
ously, a local class could have a static data member only if no explicit initialization was required.

Release 2.1 does not enforce the new restriction properly. If a static data member of a local class is
declared but never used, a warning is reported but the program links successfully.

int main() {
struct S
static int 1i;
}i
/] ...

return 0;

line 2: warning: static member S::i in local class S ({(anachronism)

Release 3.0 enforces this restriction, and correctly reports an error.
NOTE

If the static data member is used, the program usually cannot be linked.
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int main() {
struct S {
static int i;

}i

S::1 = 5;
// .
return 0;

}

When the above code is compiled and linked, the following messages are reported on UNIX System V.
They indicate that the static member S: :i was declared but never defined:

e )

CC x.c:
line 2: warning: static member S::s in local class S
cc -Wl,-L/c++/cfront/cyclels x.c -1C

undefined first referenced
symbol in file
S main_ Pv__ILl::s /usr/tmp/CC.28949/x.0
\\\fd fatal: Symbol referencing errors. No output written to a.ocut j:;4V

No Virtual Functions in Unions (§9.5, clarification)

Because a union cannot be used as a base class, it makes no sense for member functions of unions to be
declared virtual. The Release 2.1 Reference Manual states this restriction explicitly, and Release 2.1 imple-
ments it.

union U (

int 1i;

double 4d;

virtual int £(); // error
}:

Release 2.1 reports the following error for this code:

line 3: error: f(): cannot declare virtual function within union
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Introduction of True Nested Types (§9.7, extension)

The Release 2.1 Reference Manual introduces true nested types. In previous versions of the C++ language,
as well as in C, nested classes are treated as a lexical convenience; they are “hoisted” to the scope of the
enclosing class. With Release 2.1, however, all names declared within a class definition are local to the class
and are not hoisted. The new rules provide greater consistency, improved modularity, and more intuitive
behavior. In addition, they remove some of the anomalies that previously occurred with nested local
classes.

To avoid breaking code that worked under Release 2.0, Release 2.1 implements a transition model for
nested types, which is designed to preserve the behavior of existing programs while allowing a smooth
transition to the new semantics. The old Release 2.0 behavior is now considered anachronistic.

True nested types are implemented in Release 3.0, and the transition model supplied in Release 2.1 is no
NOTE | longer supported.

Briefly, the transition model consists of three rules:

m Programs that are legal under the old rules and mean something else under the new rules (legal or
illegal) continue to follow the old rules, and a warning is issued. For example, the use of the nested
type E below is illegal under the new rules, but because it was legal under Release 2.0, Release 2.1
issues a warning rather than an error.

class X {
enum E { };
}i
E e; // legal in 2.0, warning in 2.1

Release 2.1 issues the following warning for the above declaration of e:

warning: use X:: to access nested enum type E (anachronism)

If the +p option (which disallows anachronistic constructs) to the cC command is specified, the
anachronism warning turns into an error.

Here is an example of code that is legal under both old and new rules, but means different things:

extern int i;
struct S {
static int i;
struct Embedded {
int £() { return i; )}
}:
}:

Under Release 2.0, Embedded: : £ () returned global ::i, whereas under the new nested types rules, it
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should return S::i. In this case Release 2.1 issues a warning

line 6: warning: i , accessed within nested class Embedded, is visible both globally
and within enclosing class S -- using ::i (anachronism)

and preserves the old behavior.
The +p option has no effect on this example; the warning does not turn into an error.
®m Programs that are legal and mean the same thing under both sets of rules behave the same.

m Programs that are legal under the new rules and illegal under the old rules follow the new rules. For
example, the new qualified name syntax was illegal under Release 2.0, but is legal under Release 2.1.

X::E xe; // syntax error in 2.0, legal in 2.1

There is one case that causes difficulty for the transition model. Consider the following program, which is
illegal under the old rules because the class Nested is defined twice:

struct S {
class Nested {};
}i

void f (Nested);

struct T {
class Nested {}; // old rules in effect; illegal in 2.0 and 2.1
}i

This program fails under the transition model for a subtle reason. When the compiler sees the declaration
of £(), it does not know whether Nested should be treated under the old or the new rules. It has to know
so that it can decide how to encode the function name in the generated C code. For compatibility, it must
assume the old rules. Thus when it sees the second definition of Nested, it reports an error.

To allow this program to compile, you must do something early on to force the program to be considered
unquestionably illegal under the old rules. The easiest way to do this is to define a global class with the
same name as the nested class before the nested class definition. In the example below, Inner is the nested
type that is defined within two global classes and thus requires a dummy global definition:
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struct Inner (}; // dummy class; tells the compiler
// to use the new nested types semantics

class C {
class Inner { /* ... */ };// legal in 2.1, error in 2.0

}i

void g(C::Inner) {} // legal in 2.1, error in 2.0
class D {

class Inmner { /* ... */ };// legal in 2.1, error in 2.0
}:
void g(D::Inner) {} // legal in 2.1, error in 2.0

The above code compiles and links properly.

To preserve link compatibility with libraries compiled under Release 2.0, you should not force your pro-
grams to use the new rules, as is done with Inner in the example above. If the new rules are applied, then
function names are encoded differently, and new code will not link with old libraries.

Nested Local Types (§9.7, §9.8, extension)

The transition model for nested types guarantees that code that is legal under both the old and new rules
but that changes meaning under the new rules preserves its former meaning. In this situation, Release 2.1
issues an anachronism warning.

Full nested types are implemented in Release 3.0, and the transition model supplied in Release 2.1 is no
NoTE | longer supported.

Here is an example that involves nested local types:
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struct Nested { int i; };
typedef int T;
enum E { e };

void £() {
struct Local {
struct Nested { int i, j; };:
typedef double T;
enum E { e };
}:
Nested nl;
T t1;
E el;
}

In this example, nl1 had type Local: :Nested under Release 2.0 because the declaration of Local: :Nested
was exported into the scope of £(). Similarly, t1 had type double. Release 2.0 incorrectly reported an
error for the declaration of E within Local, so el was also reported as an illegal declaration.

Release 2.1 preserves this behavior (except for the bogus error) and issues the following messages:

line 11: warning: Nested occurs at global and nested local class scope; using class type
Local: :Nested

line 12: warning: T occurs at global and nested local class scope; using typedef Local::T

line 13: warning: E occurs at glokal and nested local class scope; using enum type Local::E

Under the +p option to the cC command, the behavior does not change: Local: :Nested, Local: : T, and
Local: :E are still used. You are encouraged, however, to change your declarations to

Local: :Nested nl;
Local::T tl1;
Local::E el;

to ensure that your code continues to have the same meaning after nested types are fully implemented.

Protected Derivation (§10, change)

The Release 2.0 Reference Manual explicitly disallowed the use of protected as an access specifier for a base
class. The Release 2.1 Reference Manual lifts this restriction. However, Release 2.1 does not implement the
new behavior.

struct B {};
struct D : protected B ({};// legal, but rejected by 2.1
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Release 3.0 correctly implements the new behavior.
NOTE

Extension of Dominance Rule to Objects and Enumerators (§10.1.1, change)

The Release 2.0 Reference Manual restricted the concept of dominance to apply only to functions. That is,
dominance was used only when disambiguating function names in an inheritance hierarchy involving vir-
tual base classes. With the Release 2.1 Reference Manual, the dominance concept is extended to data
members and enumerators. However, Release 2.1 does not implement the new semantics. In the following
example, Release 2.1 incorrectly considers the use of x to be ambiguous, even though B: :x dominates
Vi:x.

struct V { void f(); int x; };
struct B : public virtual V { void £(); int x; };
struct C : public virtual V {};

struct D : public B, public C { void g(); };
void D::g() {

X++; // legal, but rejected by 2.0 and 2.1
£0); // legal, accepted by both 2.0 and 2.1

The extension of dominance to objects is implemented in Release 3.0.
NOTE

Inheritance of Pure Virtual Functions (§10.3, extension)

The Release 2.0 Reference Manual required that a derived class define or declare pure every pure virtual
function in its immediate base. This restriction is lifted in the Release 2.1 Reference Manual; pure virtual
functions are now inherited as pure virtual functions. The new behavior is implemented in Release 2.1.

For example, the following code is legal under Release 2.1, but produced an error under Release 2.0:

struct A { // abstract class
virtual void £() = 0;

}i

struct A2 : public A {};
Although £() is not redeclared as pure virtual in A2, Release 2.1 (but not Release 2.0) considers 22 to be an

Compatibility 4-59



Upgrading from Release 2.0 to Release 2.1

abstract class because A: :£ () is inherited as pure virtual.

Access Specifiers in Unions (§11, change)

The Release 2.1 Reference Manual allows access specifiers in unions. Formerly, these were forbidden.

union U {

public: // legal
uQ);
int i;

private: // legal
double d;

protected: // legal
float f£; '

Yi

U u;

float £ = u.f; // protection violation

Release 2.1 accepts the definition of U shown above but does not report the protection violation.

Release 3.0 flags the protection violation.
NOTE

Access to Static Members of Private Base Classes (§11.2, change)

The Release 2.1 Reference Manual states that a private derivation of a base class does not restrict access to
the static members of the base class. Without this rule, a member function would have less access to a base
class’s static members than a global function.

Release 2.1 does not implement this rule consistently. For access to a static member of an immediate base
class, some illegal accesses are not reported:

struct B {
static void £();

}i

struct D : private B {}
struct E : private D {

void g() {
£0); // illegal, not reported by 2.0 or 2.1
this->f(); // illegal, not reported by 2.0 or 2.1
B::f(); // legal, rejected by 2.0 and 2.1
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In the above code, the calls £() and this->f () are illegal because they refer to £() via the this pointer,
and thus the access protection for private members is applied. The call B: : £() is legal because it refers
to £() directly, just as a global function could refer to B: : £ ().

Release 3.0 implements the rule consistently.
NOTE

If multi-level derivation is involved, both Releases 2.0 and 2.1 are overly conservative; they report an error
for X:: f() even though it is legal.

struct X {

static void £();
}i
struct Y : private X (};
struct Z : public Y {

void g() {
£Q0); // illegal, error in 2.0 and 2.1
this->f(); // illegal, error in 2.0 and 2.1
X::f(); // legal, error in 2.0 and 2.1

}

}i

Access Declarations (§11.3, clarification)

The Release 2.1 Reference Manual explicitly imposes the following restriction on access declarations: an
access declaration may not adjust the access to a base class member if the derived class also defines a

member of the same name.
This rule is implemented by both Releases 2.0 and 2.1:
struct B {
int i;
}i
struct D : private B {
B::1i;

int i; // error

}i
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Linkage of Friend Functions (§11.4, restriction)

The Release 2.1 Reference Manual specifies that the default linkage for friend functions is extern. For
example,

static £();

struct S {
friend £(); // ok, internal linkage
friend g(); // ’‘g()’ has external linkage
}i

static g(); // illegal, error in 2.0 and 2.1

Release 2.1 warns about static friend functions such as £() in the example above because, although legal,
these could in principle be used to subvert the protection system. Release 2.1 issues the following messages
for the example above:

line 3: warning: static f() declared friend to class S
line 8: error: g() declared as both static and extern

Friendship Is Not Inherited (§11.4, clarification)

The Release 2.0 Reference Manual incorrectly stated that friendship is inherited. The Release 2.1 Reference
Manual corrects this mistake. In Release 2.1, as in previous releases of the C++ Language System, friend-
ship is not inherited.

Friendship Applies to Non-Functions (§11.4, clarification)

The Release 2.1 Reference Manual makes it explicit that class friendship extends to all members of the class
— not just to functions. Release 2.0 and Release 2.1 both implement this behavior. For example,

class X {
enum { e = 100 };
friend class Y;

}i

class Y {

int arr([X::e); // legal, accepted by 2.0 and 2.1
}i
class 72 (

int arr([X::e]; // error, 'X::e’ is private

}i
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Scope of Friend Functions (§11.4, §9.7, change)

The Release 2.1 Reference Manual states that a friend function defined within a class declaration is in the
lexical scope of that class, just like a member function.

In general, Release 2.1 does not implement this rule. Consider the following example:

extern int s;
extern int e;

struct S {

static int s;

enum { e =5 };

friend f£f() { return e; } // which ‘e’?

friend void g(int = g) { }; // which ’‘g’?
}i

According to the Release 2.1 Reference Manual, £ () returns S::e and the default argument for g() is S::s.
Instead, both Release 2.0 and 2.1 incorrectly resolve these names to ::e and : :s respectively.

Release 3.0 resolves these names correctly.
NOTE

If the declaration of a friend function within a class declaration uses a nested type, however, the nested
type name is resolved according to the new semantics.

typedef void* T;
struct X {
typedef int T;
friend T h(T t);
}i

In the above example, Release 2.1 treats h() as having type int (int), not void* (void*).

Default Constructors (§12.1, change)

The Release 2.0 Reference Manual explicitly stated that a default constructor is a constructor with no formal
parameters, thereby excluding constructors that can be called with no arguments by virtue of having
default arguments. The Release 2.1 Reference Manual lifts this restriction; the constructor in the example
below is now considered a default constructor.

struct S {
S(int = 0);
}:

Release 2.1 does not conform to this rule. Instead, it adheres to the old definition of default constructor.
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Here are some examples:

S sl[2]; // legal, sorry in 2.0, error in 2.1
S s2(2] = {1 }; // legal, sorry in 2.0, sorry in 2.1

struct X {

S s[2]; // legal, sorry in 2.0, error in 2.1
}:

void f£() {

S* p = new S[2]; // legal, error in 2.0 and 2.1
}

Release 3.0 correctly conforms to this rule.
NOTE

Constructor and Destructor Declarations (§12.1, §12.4, §9.3.1, clarification)

The Release 2.1 Reference Manual specifies that constructors and destructors cannot be declared const,
volatile, or static. Release 2.1 correctly reports an error for constructors and destructors that are
declared static, but it incorrectly allows constructors and destructors to be declared const. Release 2.1
does not implement volatile member functions at all; these are rejected with a “not implemented” mes-
sage.

struct S (
static S(); // illegal, error in 2.0 and 2.1
static ~S(); // illegal, error in 2.0 and 2.1

Yi

struct T {
T() const; // illegal, but accepted by 2.1
~T() const; // illegal, but accepted by 2.1
T(char*) volatile; // illegal, sorry in 2.1

}:

Release 3.0 correctly reports these errors.
NOTE
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Destructors for Built-In Types (§12.4, change)

The Release 2.1 Reference Manual allows explicit destructor calls for any built-in type, as in the example
below. However, Release 2.1 does not implement this syntax.

void f(int* p) {
p—>int::~int(); // legal, but error in 2.1
}i

Release 3.0 correctly implements this syntax.
NOTE

Delete Operator (§12.5, change)

The Release 2.1 Reference Manual tightens the rules for the delete operator. Only one operator delete()
may be declared per class, and the global operator delete() may not be overloaded. Release 2.1 does
not enforce these restrictions.

For example, the second declaration of the delete operator in each scope below is illegal, but the code is
accepted by both Release 2.0 and 2.1. ’

typedef unsigned int size_t;

void operator delete(void*);
void operator delete(const void*); // error, not reported

struct S {
void* operator new(size_t);
void* operator new(size_t, void*);
void operator delete(void*);
void operator delete(void*, size t); // error, not reported

}i

Release 3.0 correctly reports these errors.
NOTE
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Generating the Default Assignment Operator (§12.8, clarification)

The Release 2.1 Reference Manual states the condition under which a default assignment operator is gen-
erated differently from the old Reference Manual. Formerly, the condition was the following;:

“If a class X has any X: :operator=() defined, even one that takes an argument of a type unrelated
to X, X: :operator=(const X&) will not be generated.”

The Release 2.1 Reference Manual says

“If a class X has any X: :operator=() that takes an argument of class X, the default assignment
will not be generated.”

The new description reflects the behavior of Release 2.0 and 2.1.

Argument Matching Rules (§13.2, clarification)
Several details about the function matching rules have changed.

m In the Release 2.0 Reference Manual there was a rule that a call needing only standard conversions is
preferred over one requiring user-defined conversions. This rule has been eliminated in the Release
2.1 Reference Manual and the new semantics have been implemented in Release 2.1. For example,

struct Complex { Complex(double); };
void f2(int, Complex);
void £2(double, double);

void y2() {
£2(3, 4); // ambiguous
}

For this code, Release 2.1 correctly reports an ambiguity.

® The second function matching change involves the treatment of arguments of type T that require tem-
poraries. The Release 2.0 Reference Manual specified that a match with conversions requiring tem-
poraries was a legal match. So, for example, the call to £3 (char&) in the following code was legal
and was accepted by Release 2.0:

void f3 (char&);
void x3() {
£3('c’);
}
Furthermore, since standard conversions were preferred to conversions requiring temporaries, the
Reference Manual specified that the call to £4 () below would be resolved to £4 (int). Instead,
Release 2.0 resolved it to £4 (chars):
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void f4(int);
void f4 (char&);
void x4 () {(

fa('c’);
}

Under the new rules, the calls to £3() and £4() are in error because a non-const reference cannot
be initialized with a non-lvalue (see §8.4.3). However, Release 2.1 does not report these errors and
instead preserves the Release 2.0 behavior by resolving the calls to £3 (char&) and £4 (charé)
respectively.

Release 3.0 correctly reports errors in this situation.
NOTE

Prefix and Postfix Increment and Decrement Operators (§13.4.7, change)

The Release 2.0 Reference Manual provided no way to distinguish user-defined prefix increment and decre-
ment operators from postfix increment and decrement operators. The Release 2.1 Reference Manual specifies
a separate syntax for defining prefix and postfix increment and decrement operators. The prefix increment
and decrement operators take one argument (the implicit this argument for a member function), whereas
the postfix version takes two arguments (including the implicit this argument). For example,

struct S {
operator++ () ; // 2.0: prefix or postfix
// 2.1: prefix, but not implemented as such
operator++(int) ; // 2.1: postfix ++, not implemented
}i

However, Release 2.1 does not recognize the new syntax. Use of the postfix form results in the following
error message:

line 4: error: S:: operator ++() takes no argument

Release 3.0 correctly recognizes this syntax.
NOTE
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ANSI C Preprocessing (§16, change)

The description of preprocessing in the Release 2.1 Reference Manual reflects the rules of ANSI C rather than
of K&R C. Because the C++ Language System does not include a preprocessor, the actual preprocessing
behavior of Release 2.1 depends on the preprocessor resident on the host machine.

New Warning Messages

“Not Used” Warning Messages Reported More Consistently
Release 2.1 issues warning messages more consistently if an object is declared but not used.
For example, Release 2.0 did not issue a “not used”” message for the following code:

int £() ¢
int array[5];
return 0;

}

Release 2.1 issues a warning that array is not used.

Warning for Pure Virtual Destructors (§10.3, §12.4)

Release 2.1 issues a new warning if a pure virtual destructor is declared but not defined. For example, the
code

struct B {

/] ...

virtual ~B() = 0;
}:

elicits the warning

line 1: warning: please provide an out-of-line definition: B::~B() {}; which is needed
by derived classes

to remind you that a definition of B: : ~B() is required.

To understand why a pure virtual destructor of an abstract class must be defined, consider what happens
when a class D is derived from the class B defined above:

struct D : B {
/7 ..

virtual ~D();
}:
D::~D() { /* ... */ }
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The Reference Manual says that base class destructors are implicitly executed after the destructors for their
derived classes (§12.4). This means that the compiler will generate code to call B: :~B() at the end of
D::~D(). Therefore B: :~B() must have a definition; otherwise, a link-time error will occur because the
definition is missing.

Why doesn’t the compiler implicitly generate an empty definition for B: : ~B() ? The reason is that it is
legal for the user to define a B: :~B() that is not empty! If the compiler generated an empty B: :~B() in
one compilation and the user defined a non-empty B: :~B() in another compilation, then there would be
two different definitions of the destructor. Although this inconsistency would probably be detectable at
link time, it is preferable to avoid the inconsistency altogether by requiring the user to define the destructor
explicitly.

Anachronism Warning Messages

Release 2.1 issues warning messages for all uses of anachronisms. The section “Future Compatibility
Issues” in this chapter describes these messages in more detail.

Library Changes

iostream: :get () and iostream: :put () Now Inline

The Release 2.0 version of the iostream library declared iostream: :get () and iostream::put() to be
inline, but both functions were too complex to be successfully inlined. The Release 2.1 implementations
of these functions have been changed so that most calls can be generated inline. For example, the call to
is.get () is inlined by Release 2.1:

#include <iostream.h>
void £() {
istream is(0);
char c;
is.get(c);

Task Library Ported to Amdahl UTS Computers

For Release 2.1 the task library has been ported to a new platform, Amdahl UTS. To build the task library
for the Amdahl UTS computer, either set MACH=uts in the top level makefile or specify it on the command
line when building the task library. For example,

make MACH=uts libtask.a
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patch

The file BSDpatch.c has been modified so that patch works under BSD Release 4.3 running on DEC VAX
computers.
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Anachronisms

The C++ Language System provides several extensions to the C++ language to enable users to make a gra-
dual transition from previous versions of the C++ language to the current definition, which is specified in
the Reference Manual. In general, these extensions allow constructs to be used that are no longer legal under
the current definition, but were previously legal. The +p option disables most of these extensions so that
only the “pure” language is accepted.

The following set of extensions were provided in Release 2.0 and 2.1, and most have been phased out in
Release 3.0. Most of these extensions are listed and explained in §B.3 of the Reference Manual. The complete
list appears below, with additional references to sections of the Reference Manual and example programs
that demonstrate each anachronism.

Release 2.1 reports uses of these extensions, except the last two, by issuing a warning message, as shown.
Each of these messages has the string (anachronism) at the end. All of the anachronism warnings are
issued unconditionally, except as noted.

In most cases, anachronisms that were warned about by default in Release 2.1 are considered errors by
Release 3.0. Anachronisms that produced warnings only when the +w option in effect in Release 2.1 are
now warnings by default and will be disallowed in the next release.

m use of the overload keyword (§2.4)

overload f;

Release 2.1 — warning under the +w option

line 1: warning: ‘overload’ used (anachronism)

Release 3.0 — unconditional warning, or error if the +p option is in effect
m use of . instead of :: for scoping (§5.1)

struct S {
int £();
}:
int S.f() { return 0; }

Release 2.1 — warning
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line 4: warning: ‘.’ used for qualification; please use ’'::’ (anachronism)

Release 3.0 — error

® use of the delete [n] syntax (§5.3.4)

struct 8 { S(); ~S0); );
void £() |
S* p = new S[10];
/] ...
delete [10] p;
}

Release 2.1 — warning under the +w option

line 5: warning: v in ‘delete[v]’ is redundant; use ‘delete[]’ instead (anachronism)

Release 3.0 — warning under the +p option
@ cast of a bound pointer (§5.4, §B.3.4)

struct 8 {(
int £();
} os;
typedef int (*PF)();
PF pf = (PF) &s.f;

Release 2.1 — warning

line 5: warning: address of bound function (try using ‘S ::*'’ for
pointer type and ‘‘&S ::f’’ for address) (anachronism)

Release 3.0 — error
® assignment of a value of integral type to an enumeration type (§7.2)

enum E { el, e2 };
void f(int i) {
E local = i;

}
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Release 2.1 - warning

line 3: warning: int assigned to enum E (anachronism)

Release 3.0 — error
m non-const reference initializer not an lvalue (§8.4.3)
void f() (

int& ¥ = 5;

}

Release 2.1 — warning under the +w option

line 2: warning: initializer for non-const reference not an lvalue (anachronism)

Release 3.0 — unconditional warning, or error if the +p option is in effect
m non-const member function called for a const object (§9.3.1)

struct S {

int £();
}:
extern const S s;
int 1 = s.£();

Release 2.1 — warning

line 4: warning: non-const member function S::f() called for const object (anachronism)

Release 3.0 — error
m static data member declared within a local class (§9.4)

int main() {
struct S {
static int i;
}:
/7] ...
return 0;

}

Release 2.1 ~ warning
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line 3: warning: static member S::i in local class S (anachronism)

Release 3.0 — error
m use of an unqualified nested type name outside its enclosing class definition (§9.7)

struct Enclosing

enum Nested { el, e2 };
Y:
Nested var;

Release 2.1 — warning

line 5: warning: use Enclosing:: to access nested enum type Nested (anachronism)

Release 3.0 — error
m use of an identifier that is declared at global and local scope within a nested type definition (§9.7)
int 1i;
struct S {
static int 1i;
struct Nested {
static int £() { return i; )}
}:
};

Release 2.1 — warning

line 5: warning: i, accessed within nested class Nested, is visible both globally
and within enclosing class S -- using ::1 (anachronism)

Release 3.0 — accepted under complete nested semantics

m use of a type name that is declared at global scope and within a local nested class (§9.7)
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typedef int T;

void f() (
struct Nested {
typedef char T;
}:
T var;

}

Release 2.1 — warning

Future Compatibility Issues

line 7: warning: T occurs at outer and nested local class scope;
using typedef Nested::T (anachronism)

Release 3.0 — accepted under complete nested semantics
m first parameter of operator new() not of type size_t (§12.5)
m second parameter of operator delete() not of type size_t (§12.5)

struct S {
void* operator new(long) ;
void operator delete(void*, long);

}i

Release 2.1 - warning

line 2: warning: operator new() first argument should be size t (anachronism)
line 3: warning: operator delete()’s 2nd argument should be a size_t (anachronism)

Release 3.0 — error
m operator=() declared as a global function (§13.4.3)

struct S { /* ... */ };
S& operator=(S&, S&);

Release 2.1 — warning
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line 2: warning: non-member operator =() (anachronism)

Release 3.0 — error
m use of the “Classic C” style function definition syntax (§B.3.1)
int f (i)
int i;
{

return 1i;

}

Release 2.1 - warning

line 1: warning: old style definition of f() (anachronism)

Release 3.0 — remains a warning to maintain ““Classic C”” compatibility
m use of an old-style base class initializer in a constructor definition (§B.3.2)

class B {
int b;
public:
B(int i) { b =1i; }
}i
struct D : public B {
D(int i) : (i) (3
Yi

Release 2.1 — warning

line 7: warning: name of base class B missing from base class initializer (anachronism)

Release 3.0 — remains a warning to allow portability between Release 2.0 and Release 3.0.

m assignment to this (§B.3.3)

4-76 Release Notes



Future Compatibility Issues

extern void* myalloc(unsigned int);
struct X { X(); };
X::X() {
if (this == 0) {
this = (X*) myalloc(sizeof(X));

/7] ...

}

else {
this = this;
/7.

}

}

Release 2.1 — warning under the +w option

line 3: warning: assignment to this (anachronism)

Release 3.0 — unconditional warning, or error if the +p option is in effect
m use of the c_plusplus preprocessor macro (§16.1)

m static data member declared but never defined (§9.4)

This anachronism is enforced for template classes, and will be disallowed in the next release.
NOTE

The last two extensions — use of the c_plusplus preprocessor macro and implicit definition of a static
data member — are difficult for the compiler by itself to detect, and do not produce warning messages.
Uses of c_plusplus are generally known only to the preprocessor, and implicit definitions of static data
members can only be detected at link time, or after linking has taken place. You can look for uses of
c_plusplus by scanning your source code for that pattern. On some systems you can also find implicit
definitions of static data members by examining the executable file produced by the linker for instances of
uninitialized data with class-scope names.
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The Old Stream Library

The old stream library, which is available as 1ib Ostream.a in Release 2.1, is not provided with this
release of the C++ Language System.
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Known Problems

The following sections describe specific problem areas that remain in the C++ Language System. Where
appropriate, the related sections of the Reference Manual are noted.

Multiple Definitions (§3.3)

m In K&R C and in the ANSI C standard, implementations are free to decide how to treat multiple,
uninitialized definitions of objects with external linkage at global scope.

In C++ exactly one definition, initialized or uninitialized, may occur in a single program. In order to
enforce this rule, the C++ Language System initializes most global variables to 0. However, in order
to reduce object file space, no initialization is done for global arrays. Similarly, since most K&R C
compilers reject such code, no initialization is done for unions or for classes or arrays of classes
whose first element is a union.

Users should be aware that invalid multiple definitions for these cases may go undetected.

m For compatibility with previous releases of the C++ Language System, static data members of non-
template classes are implicitly defined. This means that multiple definitions of the same static
member in multiple files will result in multiple calls to the constructor.

For example, suppose that the header file a.h defines a class with a static member:

struct A { AQ); };
struct B { static A ab; };

and file a.c contains the definition of the static data member:

#include "a.h"
A B::ab;

as does file main.c:

#include "a.h"

A B::ab;

main() { /* ... */ }
When these files are compiled and linked together, the duplicate definitions of B: :ab will not be
reported and the constructor for B: :ab will be called twice.

Global Inline Functions Are Static (§7.1.2, §7.1.1, §3.3)

The Release 2.0 Reference Manual allowed a non-member inline function to have external linkage. The
Release 3.0 Reference Manual specifies, however, that a name of global scope that is declared inline is local
to its file.
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Release 2.1 and Release 3.0 do not conform to these rules. For example, the following code is accepted by
Releases 2.0, 2.1 and 3.0: £() is treated as a static function, and a static definition of £ () is laid down.

extern int f(int);

inline int f(int i) { return i; } // error, not reported
int i = £(0);

int (*pf) (int) = &f;

Instead, the C++ Language System should report an error that £() cannot be redeclared as inline after
being declared extern.

Reuse of a Class Name by its Members (§9.2)

The Release 3.0 Reference Manual limits the ways in which a class name can be reused by members of the
class. The rule is that a static data member, enumerator, member of an anonymous union, or nested type
may not have the same name as its class.

Release 3.0 does not enforce these restrictions completely. An error is reported if an enumerator or nested
type has the same name as its enclosing class, but a static data member or member of an anonymous union
are not caught.

struct S1 {

static int S1; // illegal, no error
}:
struct S2 (

union { int i; float S82; }; // illegal, no error
}i

Unions (§9.5)

m The C++ Language System invalidly allows union members of a type which contains a user defined
assignment operator. It correctly detects union members of a type with a constructor or destructor:
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struct assign {
//...
assign& operator =(const assigné&);

struct ctor {

//...
ctor () ;

}:
struct dtor {

/e
~dtor () ;

union U {

assign a; // undetected error
ctor b; // correctly detected
dtor c; // correctly detected

}i

The following correct errors are reported

Known Problems

line 16: error: member U::b of class ctor with constructor in union
line 16: error: member U::c of class dtor with destructor in union

but there should be a similar error

line 16: error: member U::a of class assign with operator= in union

Nested Types (§9.5)

Appendix A

This release completes the introduction of true nested types. There are two known problems in the new
implementation:

m The C++ Language System generates invalid C code for uses of nested classes as virtual base classes:
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struct Outer (
struct InnerBase {

Y

}i

struct InnerDerived : public virtual Outer::InnerBase {
//...

};
};:

m Protection has not yet been implemented for nested types:

class A {
enum E {/*...*/}; // private
//...

}i

A::E evar; // undetected error,
// A::E should not be accessible

Pure Virtual Functions (§10.3)

m The C++ Language System fails to detect the use of a pure virtual function inside the class’s own des-
tructor. Other invalid uses of a pure virtual function are correctly detected:

struct Base {
Base();
~Base();
virtual void f() =0;

}i

Base::~Base() {
£(0); // undetected error

Yi

Base::Base() {
£0); // correctly detected

}i

Base f();// correctly detected
f (Base) ; // correctly detected

The following errors are correctly reported
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line 13: error: call of pure virtual function Base::f() in constructor Base::Base()
line 15: error: abstract class Base cannot be used as a function return type

line 15: Base::f() is a pure virtual function of class Base
line 16: error: abstract class Base cannot be used as an argument type
line 16: Base::f() is a pure virtual function of class Base

but there should be a similar error reported for the case involving the destructor.

Friendship (§11.4)

m The C++ Language System invalidly extends friendship throughout the class hierarchy in a multiple
inheritance lattice:

class basel {

friend void foo();
protected:

int i;

}i

class base2 {
protected:
int j;

};

class derived : public basel, public base2 {
protected:
int k;
public:
derived() ;
}i

void foo() (
derived der;

der.i = 1; // ok, foo is friend of basel
der.j = 2; // undetected error
der.k = 3; // detected error

}i

The following correct error is reported:
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line 23: error: foo() cannot access derived::k: protected member

but there should be a similar error for the assignment to der.j:

line 22: error: foo() cannot access derived::j: protected member

Static Members (§11.5)

m Release 3.0 is too restrictive in its treatment of protected static members of a base class when they are
accessed by friends of a derived class. The following example should compile without complaint:

class 81 {
protected:
static int s;

}i

struct 82 : public S1 {
friend int f1() { return Sl::s; } // legal
friend int £2() { return S2::s; } // legal
}i

Instead, the following errors are incorrectly reported:

error: f2() cannot access Sl::s: protected member
error: fl1() camnot access Sl::s: protected member

This problem can be circumvented by referring to the base class’s static member through an object of
the derived class:

friend int £3(const S2& s2) { return s2.s; }
m Section 11.5 of the reference manual states that "a friend or a member function of a derived class can
access a protected static member of a base class" and section 12.5 specifies that "An X:operator new()

[delete()] for a class X is a static member". The C++ Language System fails to allow the implied
access to static members new and delete:
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typedef unsigned int size_t;

class base (

protected:
void * operator new(size_t);
void operator delete(void *);
void static memf () ;

}:

class derived : public base {

public:
void £()
base *b = new base(); // invalidly rejected
delete b; // invalidly rejected
static_memf (); // correctly allowed
}i

}:

Produces the following invalid errors:

line 10: error: derived::f() cannot access base::operator delete(): protected member
line 10: error: derived::f() cannot access base::operator new(): protected member

Access control and constructors and destructors (§12.3)

m The reference manual stipulates that normal access control is applied to constructors and destructors.
This implies that making a destructor private or protected disallows automatic and static allocation of
such objects since they could never be destroyed. The C++ Language System correctly enforces this
rule in most situations. However, it invalidly creates temporaries of such types when passing argu-
ments as const references and then invalidly calls the private destructor:
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class A;
struct B {
B();
~B();
void foo (A consté&);
}:
class A {
private:
~A();
void operator=(A&);
A(AL) ;
public:
A(B);
}:
main() {
B b;
A a(b);
A al = A(b);
b.foo(b);

b.foo(A(b));
}:

The following correct errors are reported:

// correctly detected
// correctly detected

// undetected error
// undetected error

line 21: error: main() cannot access A::~A(): private member
line 22: error: main() cannot access A::~A(): private member

but there should be similar errors for the calls to b.foo.

® The C++ Language System also fails to detect invalid calls to operator delete for classes with a

private destructor:
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class B {
~B(): // private
}:
main() {
B b; // correctly detected
B* bp = new B; // legal
delete bp; // undetected error

}i

Protection and Destructors (§12.4)

m If a base class has a private destructor, only member and friend functions of that class may destroy
objects of that class. However, Release 3.0 fails to enforce this protection for derived classes that do
not redefine the destructor at the same protection level. Thus, protection can be overridden by a
derived class that simply fails to declare a destructor or by a derived class that declares a destructor
with less restrictive protection.

For example, the following code compiles without complaint:

class B {
private:

~B();
}:

class D: public B {};

class D2: public B {

public:
~D2() {}

}:

void £() {
D d; // undetected error
D2 d42; // undetected error

}
Instead, £ () should not be able to create objects of type D or D2.
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Template Classes (§14.2)

® In processing templates, the C++ Language System builds up internal representations of template

classes and functions but does not type check or otherwise validate user code until a template is
instantiated. For example, in the code below, the definition of the non-existent static member y is not
detected until an object of the template type A is declared:

template <class T> struct A {
static int x;

}:

template <class T> int A<T>::y = 37; // error not detected until
// an object of type A<...>
// is declared

It is a good idea, therefore, when developing code that defines template classes or functions to
include simple references to the template type to force instantiation time type checking and other
semantic checking. For example, if the above code had been compiled with a use of template A, the
error would have been correctly reported:

template <class T> struct A {
static int x;

}i
template <class T> int A<T>::y = 37;

A<int> _dummy;

Produces the following correct error messages:

line 8: error: Yy: only static data members can be parameterized

Template Declarations(§14.5)

m If two class templates refer to each other, one referring to the other only via a pointer or reference,

A-10

and the other referring to the first in a way that requires the full definition to be known, the C++
compiler may produce errors depending on the order in which uses of the templates appear in user
code. For example:
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template <class T> class B;

template <class T> class A {
B<T>* ptr;
};

template <class T> class B {
A<T> not_a_ptr;

}:

A<int> something; //Causes error

produces the following invalid errors:

line 9: error: A undefined, size not known

line 9: error detected during the instantiation of B <int >
line 9: the instantiation path was:

line 3: template: B <int >

line 12: template: A <int >

If a use of A<int> is seen before a use of B<int>, the instantiation will either fail, or produce invalid
C code. If a reference to B<int> is seen first, there are no errors.

The workaround is to add a dummy reference to B<int> before the first reference to A<int>:

typedef B<int> dummy;
A<int> something;

Member Function Templates (§14.6)

m In processing templates, the C++ Language System builds up an internal representation for the tem-
plate, but does not actually process instantiations until the end of the file. This is to allow for correct
processing of template specializations. However, this approach has several side effects with respect
to processing inline member function templates. To be inlined, member functions must be defined
inside the class definition. For example, the Vector constructor in the following code will be laid
down out of line in each file rather than being inlined:
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template<class T> class Vector {

public:

inline Vector (int size);

T& operator[] (int i) {return vecl[i];}
private:

int size;

T* vec;

};

template<class T>
inline Vector<T>::Vector (int sz) : vec(new T[size=sz]) (}

main()
{
typedef char *String;

String a = "foo_bar";
Vector<String> str_vec(2);
str_vec[0] = a;

}

Similarly, errors will be reported if a member function is not declared to be inline in the class tem-
plate but is subsequently defined as inline. For example:

template <class T> class A {

public:
void £(T t);
}i
template <class T> inline void A<T>::£(T t)
{
}
main()
{
A<int> a;
a.f(0);
}

produces the following errors:
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line 7: error: A <int>::f()declared with external linkage and called before definedasinline
line 7: error detected during the instantiation of A <int >
line 24: is the site of the instantiation

Preprocessing (§16)

B The C++ Language System does not include a version of cpp, but instead uses the cpp resident on
the host machine. Many cpps do not recognize C++ comments. This can sometimes lead to surpris-
ing results.

For example, if your preprocessor has not been modified for C++, C++-style comments (//) in a
macro definition will not be ignored:

#include <stream.h>

#define A 5 // define something

main() {
cout << A;

}

The comment in the macro definition results in the following error message:

line 6: error: ;' missing after statement

Similarly, use of a macro name within a // comment
#include <generic.h>
main() {

int a; // declare variables
float £;

}

sends many preprocessors into an infinite loop expanding the macro declare, which is defined in
generic.h. Note that generic.h may be included by other files as well. For example, stream.h
indirectly includes generic.h.

Finally, interactions between C comments and C++ comments should be noted. For example,
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//** this looks like a C-style block comment to cpp
#include <stddef.h>
/* this is a C-style block comment */
main ()
{
char *c = NULL;
}

results in the following error message if cpp does not properly handle C++-style comments:

line 1: error: synrax error
line 4: error: NULL undefined

Incompatibilities with the ANSI C Standard

m Release 3.0 fails to accept ANSI C-conforming declarations for functions taking function arguments.
For example,

void f(int());

produces the following error:

line 1: error: bad base type: void f

If a function pointer is specified as a parameter, like this,
void f(int(*) ());

the code is accepted.

Missing or Extraneous Warnings

m The C++ Language System is sometimes too cautious in deciding when it is necessary to generate
code to invoke a destructor. As a result, unreachable code containing destructor invocations is some-
times generated, and some C compilers warn about this unreachable code. For example:
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struct A {
AQ);
~A();
}:
void f(int i) ('
switch(i) {
case 0: (
A a;
break;

}:

}

This code may result in the C compiler warning

line 6: warning: statement not reached

which can be safely ignored.

m Similarly, for the following case, destructors are properly called on each return path, but also at the
end of the function:

struct A {
AQ);
~A();
}i

int f(int i) {

A a;
if (1)

return i;
else

return i;

}

m C++ allows conversions that may involve loss of information. Because such conversions are likely to
introduce errors in the user’s code, the C++ Language System should warn about shortening conver-
sions. In general, such conversions are diagnosed only when assigning a float, double, or long
value to one of the smaller integral types. The following shortening conversions are accepted without
complaint:
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extern char c;

extern short s;

extern unsigned char uc;
extern unsigned short us;
extern int i;

extern long 1;

extern float £;

extern double d;

void x() {
f =4d;
c = 1i;
1 =4d;
1 =1£;
c = s;
s = 1i;
uc = i;
us = i;

}

m Some instances of “used before set” warnings are invalid. For example, the code below causes the

A-16

C++ Language System to warn incorrectly that s is used before set.

struct S {
short a;
short b;
}:
void £() {
S s;
s.a = s.b = 0; // invalid ’‘’used before set’’ warning
}

Use of the sizeof operator also leads to invalid “‘used but not set” warnings, as in the following
code:

void g() {

char *p;

int i = sizeof(p); //invalid ‘‘used but not set’’ warning
}
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Other Problems with Compiling and Linking

m Single files compiled directly to an a.out which contain specializations of templates will occasionally
fail. For example:

extern "C" void printf(...);
template <class T> int foo(T) { return 1; }

main()
{

int i = 3;

printf("%d\n", foo(i)); // should print 0
}

int foo(int) { return 0; }

Invalidly produces the following error from the ¢ compiler:

line 11: redeclaration of foo_ Fi

This is because the single file case is optimized to avoid automated instantiation support and the sys-
tem invalidly instantiates the template version of foo(int). When the subsequent specialization is
seen, the template instance has already been created. This problem can be avoided either by ensuring
that all specializations preceed any use:

extern "C" void printf(...);
template <class T> int foo(T) { return 1; }

int foo(int) { return 0; }

main ()
{
int i = 3;
printf("%d\n", foo(i)); // should print 0
}
or by compiling CC -ptn which ensures that full automated instantiation support is invoked.

m At present, function templates declared in header files have only the raw name extracted and added
to the name mapping files. So for:

template <class T, class U> void £(T, int, U);

£ will be extracted. This works for many simple cases, but fails in some cases where two different
headers declare a function template with the same or different formal arguments.
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m For compatibility with previous releases, the argument type of _ vec_new and vec_delete under the
+al ANSI option are incorrect. Strict ANSI compliance would declare these functions as:

__vec_new(void*, int, int, wvoid(*)());
__vec_delete(void *, int, int, void(*) (), int, int);

However, doing so would lead to bootstrapping problems when building the compiler using libC
compiled with earlier releases.

m For compatibility with previous releases, static class members and static template class members
created from a template specialization are not initialized to 0. This may lead to problems with link-
ers that do not pull in object files from an archive if there are no initialized external references. If a
file exists whose only external dependency is an uninitialized static data member or an uninitialized
global array, these linkers will fail to include the object file and a runtime error will occur.

For example, suppose ab.h defines a class with a static data member:

// file "ab.h"
struct A {

int i;

A() {1=23;1
}:

struct B {
static A a;

}:
and file ab.c defines the static member

// file "“ab.c"
#include "ab.h"
A B::a;

and file main.c refers to the static member

// file "main.c"
#include <stdio.h>
#include "ab.h"

main() {
printf ("%d\n", B::a.i);
/] .
return 0;

}

If these files are directly compiled and linked, the expected output of 3 is printed on the standard
output. However, if the file ab.c is compiled and stored in a library and later linked with main.c,
then the program prints 0 if a linker that does not resolve uninitialized data is used.
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m When two files are compiled separately in separate directories, but contain identically named objects
of the same class, problems will occur when an attempt is made to link the two object files.

For example, suppose you have a header file x.h in your current directory, and you have two sub-
directories a and b, each of which contains a file named x.c.

// file "x.h"
struct X {
virtual void £() {};

}:

// file "a/x.c"
#include "../x.h"

void £() {
X x;

}

// file "b/x.c"
#include "../x.h"

main() {
X x;
/] ...
return 0;
}

If these files are compiled separately and an attempt is made to link them together,

cd a

CcC -c x.c

cd ../b

CcC -c x.c

cd ..

CC a/x.0 b/x.0

they will fail to link, and messages similar to the following will be generated by the linker:

1d: Symbol vtbl _1X x ¢ in b/x.0 is multiply defined. First defined in a/x.o
1d: symbol ptbl 1X_x ¢ in b/x.o is multiply defined. First defined in a/x.o
1d fatal: Error(s). No output written to a.out
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These errors occur because the names of the virtual tables and associated housekeeping information
for the X objects in files a/x.c and b/x.c are encoded identically, so the symbols are multiply
defined.

A workaround for this problem is to rename one of the files or to use a longer pathname when com-
piling these files.

Library Problems

m The implementation of the task library limits the number of levels of derivation from class task to
one. That is, a class derived from class task may not have derived classes. However, use of multi-
level inheritance is not detected and usually results in an unexpected runtime core dump.

One possible workaround for this limitation is to put the required complex structures in a class not
derived from task. Then derive a trivial class from task whose constructor executes the coroutine in
the complex task. For example:

class Task_base ({
virtual int Main();

}i

class Runner : public task {
Task_base* P;
public:
Runner (Task_base*) ;

}i

Runner: :Runner (Task_base* fp) : p(fp)
{
resultis (p->Main());

}

Class Task_base is the base class from which the user should derive whatever additional classes and
structures are needed.
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Implementation Specific Behavior

This appendix describes implementation specific behavior of the C++ Language System. Implementation
specific behaviors can be categorized as follows:

1. behavior that the Reference Manual defines as “‘implementation dependent”

2. behavior that depends on the underlying C compiler or preprocessor used with Release 3.0

3. properties that are defined in the standard header files stddef.h, limits.h, and stdlib.h

4. translation limits

5. language constructs that are not implemented in this release
This appendix addresses categories 1, 2, 4, and 5. For details about properties defined in the standard
header files (category 3), see the headers themselves. Additional information about constructs that are not

implemented is provided in Appendix C, which contains an alphabetical listing of the “not implemented”
error messages.

The ordering and numbering of sections in this appendix corresponds to the order and numbering of the
related sections in the Reference Manual. The section entitled “Translation Limits” (which does not have a
corresponding section in the Reference Manual) precedes the numbered sections.

Translation Limits

Release 3.0 of the AT&T C++ Language System imposes the following translation limits:
® 50 nesting levels of compound statements
m 10 nesting levels of linkage declarations
m 4088 characters in a token
®m 22222 virtual functions in a class
® 10000 identifiers generated by the implementation

These limits can be changed by recompiling the translator. Additional translation limits may be inherited
from the underlying C compiler and preprocessor.

Identifiers (§2.3)

Identifiers reserved by Release 3.0: Release 3.0 reserves identifiers that contain a sequence of two under-
scores for its own use. In addition, identifiers reserved in the ANSI C standard are also reserved by Release
3.0. Under the +w option, identifiers with double underscores result in a warning in Release 3.0
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Character Constants (§2.5.2)

Value of multicharacter constants: The Reference Manual states that the value of a multicharacter constant,
such as 'abed’, is implementation dependent. Release 3.0 passes these constants to the underlying C com-
piler, which determines their values. A multicharacter constant containing more characters than

sizeof (int) is reported as an error by Release 3.0.

Value of (single) character constants: The Reference Manual states that the value of a character constant is
implementation dependent if it exceeds that of the largest char. Release 3.0 accepts octal and hexadecimal
character literals that do not fit in a char. It uses the low order bits that make up the value of the con-
stant. For example, the octal character constant *\777", is treated as '\377. The hexadecimal character
constant ‘\x123’ is treated as '\x23".

Wide character constants: Release 3.0 does not implement wide character constants, such as L’ab‘’. A “not
implemented” error message is reported.

Floating Constants (§2.5.3)

Long double floating constants: When compiling with the +a0 option, Release 3.0 removes an 1 or L suffix
from a floating constant before passing the constant to the underlying C compiler. Under the +al option
such a constant is passed unchanged to the underlying C compiler. In either case, the constant is con-
sidered to be of type long double for purposes of resolving overloaded function calls.

String Literals (§2.5.4)

Distinct string literals: The Reference Manual states that it is implementation dependent whether all string
literals are distinct. Release 3.0 does not attempt to detect cases where string literals could be represented
as overlapping objects. The underlying C compiler may, however, detect such cases and attempt to overlap
their storage.

Wide character strings: Release 3.0 does not implement wide character strings, such as L"abcd". A “not
implemented” error message is reported.

Start and Termination (§3.4)

Type of main(): The Reference Manual states that the type of main() is implementation dependent. Release
3.0 itself does not impose any restrictions on the type of main (), but the underlying C compiler or the tar-
get environment may impose such restrictions.

Linkage of main(): The AT&T C++ Language System treats main() as if its linkage were extern "C".
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Fundamental Types (§3.6.1)

Signed integral types: Release 3.0 does not implement the type specifier signed; it issues a warning and
proceeds as though the specifier signed had not appeared.

Long double type: When Release 3.0 is invoked with the +a0 option, the type long double is considered
to be the same size and precision as the type double in the underlying C compiler. Under the +al option,
long double is passed to the underlying C compiler as long double. In either case, type long double is
considered a distinct type for purposes of resolving overloaded function declarations and invocations.

Alignment requirements: Release 3.0 does not impose any alignment restrictions when allocating objects of
a particular type. Such restrictions, if they exist, are enforced by the underlying C compiler.

Integral Conversions (§4.2)

Conversion to a signed type: When a value of an integral type is converted to a signed integral type with
fewer bits in the representation, Release 3.0 issues a warning message if the +w option is specified. The
runtime behavior of such a conversion depends on the treatment of the conversion by the underlying C
compiler.

Expressions (§5)

Overflow and divide check: The Reference Manual states that the handling of overflow and divide check in
expression evaluation is implementation dependent. When the second operand of a division or modulus
operator is known to be zero at compile time, Release 3.0 reports an error. Overflow and other divide
check conditions are handled by the underlying C compiler and execution environment.

Function Call (§5.2.2)

Evaluation order: The Reference Manual states that the order of evaluation of arguments to a function call is
implementation dependent; similarly, the order of evaluation of the postfix expression, which designates
the function to be called, and the argument expression list are implementation dependent. In both cases
the order depends on the treatment by the underlying C compiler.
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Explicit Type Conversion (§5.4)

Explicit conversions between pointer and integral types: The Reference Manual states that the value
obtained by explicitly converting a pointer to an integral type large enough to hold it is implementation
dependent. This behavior is defined by the underlying C compiler. Similarly, the behavior when explicitly
converting an integer to a pointer depends on the underlying C compiler.

Multiplicative Operators (§5.6)
Sign of the remainder: The Reference Manual states that the sign of the result of the modulus operator is
non-negative if both operands are non-negative; otherwise, the sign of the result is implementation depen-

dent. This behavior depends on the underlying C compiler except when the values of both operands are
known at compile time. In this case, the sign of the result is the same as the sign of the numerator.

Shift Operators (§5.8)
Result of right shift: The Reference Manual states that the result of a right shift when the left operand is a

signed type with a negative value is implementation dependent. This behavior depends on the underlying
C compiler.

Relational Operators (§5.9)

Pointer comparisons: According to the Reference Manual, certain pointer comparisons are implementation
dependent. For Release 3.0, the results of these comparisons depend on the underlying C compiler.

Storage Class Specifiers (§7.1.1)

Inline functions: The Reference Manual states that the inline specifier is a hint to the compiler. Chapter 8
of the Selected Readings describes the treatment of inline functions.

When compiling with the +d option, Release 3.0 always generates out-of-line calls to inline functions.
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Type Specifiers (§7.1.6)
Volatile: Release 3.0 does not implement the type specifier volatile. If it is applied to a member func-
tion, a “not implemented”” error message is issued; otherwise it is ignored and a warning message is issued.

Signed: Release 3.0 does not implement the type specifier signed; it is ignored and a warning message is
issued.

Asm Declarations (§7.3)

Effect of an asm declaration: Release 3.0 passes asm declarations to the underlying C compiler without
modification.

Linkage Specifications (§7.4)

Languages supported: Release 3.0 supports linkage to C and C++.

Linkage to functions: The effect of a "C" linkage specification (extern "C") on a function that is not a
member function is that the function name is not encoded with type information, as is otherwise done for
C++ functions. Member functions are not affected by linkage specifications.

Linkage to non-functions: The C linkage specification (extern "C"), when applied to a non-function
declaration, does not affect the C code generated.

Class Members (§9.2)

Allocation of non-static data members: The Reference Manual states that the order of allocation of non-static
data members across access-specifiers is implementation dependent. Release 3.0 allocates non-static data
members in declaration order.

Bit-Fields (§9.6)

Allocation and alignment of bit-fields: The Reference Manual states that the allocation and alignment of
bit-fields within a class object is implementation dependent. Responsibility for the allocation and alignment
of bit-fields rests with the underlying C compiler.

Sign of “plain” bit-fields: Whether the high-order bit position of a “plain” int bit-field is treated as a sign
bit depends on the behavior of the underlying C compiler.
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Multiple Base Classes (§10.1)

Allocation of base classes: The Reference Manual states that the order in which storage is allocated for base
classes is implementation dependent. For non-virtual base classes, Release 3.0 allocates storage in the order
that they are mentioned in the derived class declaration.

Argument Matching (§13.2)

Integral arguments: The type of the result of an integral promotion (§4.1) depends on the execution
environment, as does the type of an unsuffixed integer constant (§2.5.1). Consequently, the determination
of which overloaded function to call may also depend on the execution environment, as illustrated by an
example in §13.2 of the Reference Manual.

Exception Handling (experimental) (§15)

Release 3.0 does not implement exception handling. The keyword catch is reserved for future use. A “not
implemented” error message is reported if catch is seen.

Predefined Names (§16.10)

Predefined macros: The following macros are defined by Release 3.0:
__cplusplus The decimal constant 1.

c_plusplus The decimal constant 1. This macro is provided for compatibility with previous
releases and will not be supported in the next major release.

Other macros may be predefined by the underlying preprocessor.

Anachronisms (§B.3)

For compatibility with previous releases, Release 3.0 supports the anachronisms described in Appendix B.
These anachronisms will not, however, be supported in the next major release of the AT&T C++ Language
System. The current and future behavior are described in Chapter 4 of the Release Notes.
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“Not Implemented” Messages

This appendix contains the text and explanation for all “not implemented”” messages produced by the C++
Language System Release 3.0.1. They are listed here in alphabetical order.

Each message is preceded by a file name and line number. The line number is usually the line on which a
problem has been diagnosed.

A “not implemented” message is issued when Release 3.0.1 encounters a legal construct for which it cannot
generate code. Because code is not generated, “not implemented” messages cause the CC command to fail,
and the program is not linked. Release 3.0.1 does, however, attempt to examine the rest of your program
for other errors.

m actual parameter expression of type string literal
A template is instantiated with a string literal actual argument:

template <char* s> struct S {(/*...*/};

S<"hello world"> svar;

"file*, line 3: not implemented: actual parameter expression of type string literal

m address of bound member as actual template argument
A template is instantiated with the address of a class member bound to an actual class object:
template <int *pi> class x (}:
class v { public: int i; } b;

x< &b.i > xi;

“file*, line 4: not implemented: address of bound member (& ::b . y::i) as actual
template argument

m & ofop
This message should not be produced.
m 1lst operand of .* too complicated

The first operand of a function call expression involves a pointer to a member function and is an
expression that may have side effects or may require a temporary.
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struct S { virtual int £(); };
int (S::*pmf) () = &S::f;

S *£():

int i = (£()->*pnf) ();

*file*, line 5: not implemented: lst operand of .* too complicated

B 2nd operand of .* too complicated
The second operand of a pointer to member operator is an expression that has side effects.

struct S { int £(); };

int (S::*pmf) () = &S::£;

S *sp = new S;

int i 5;

int j (sp—>* (i+=5, pmf)) ();

*file*, line 5: not implemented: 2nd operand of .* too complicated

B call of virtual function before class has been completely declared

class x {
public:
virtual x& £();
int foo(x t = pt->£());

private:
static x* pt;
int i;

};

*file", line 6: not implemented: call of virtual function x::f() before class x
has been completely declared - try moving call from argument list into function body or
make function non-virtual
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M cannot expand inline function with for statement
A for statement appears in the definition of an inline function.
struct s {
int s[100];

S() { for (int i = 0; i < 100; i++) s[i] = 1i; }
}:

*file*, line 1: not implemented: cannot expand inline function S::S(} with
for statement in inline

B cannot expand inline function with return statement
A void function contains a return statement.

inline void f£()
{

return;

“filer, line 8: not implemented: cannot expand inline function f£() with return statement
1 error

m cannot expand inline function with statement after “return”

A value-returning inline function contains a statement following a return statement.

inline int f(int i) {.
if (i) return i;
return 0;
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*file*, line 4: not implemented: camnot expand inline function f() with statement
after "return'

B cannot expand inline function with two local variables with the same name
Two variables with the same name and different types are declared within the body of a value-
returning inline function.

inline int f(int i) {
{ int x = 1i; }
{ double x = i; }
return 0;

"ﬁk', line 5: not implemented: cannot expand inline function f() with two local
variables with the same name (x)

B cannot expand inline function needing temporary variable of array type

An inline function that contains a local declaration of an array object is called.
inline int f(int i) {
int a[l];
al0] = i;
return i;

}
int v = £(0);

"file*, line 6: not implemented: cannot expand inline function needing
temporary variable of array type

B cannot expand inline function with return in if statement

This message should not be produced.

B cannot expand inline function with static
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An inline function contains the declaration of a static object.

inline void £() {(
static int 1 = 5;

}

*file*, line 2: not implemented: cannot expand inline function with static i

m cast of non-integer constant
A cast of a non-integer constant as an actual parameter to a template class.
template <int i> class x;

int vy;

x< (int)&yy > xi;

*filer, line 4: not implemented: cast of non-integer constant

B cannot expand inline void function called in comma expression

A call of an inline void function that cannot be translated into an expression (that is, one that
includes a loop, a goto, or a switch statement) appears as the first operand of a comma operator.
int i;
inline void f£() { for (;;) ; }
void g() { for (f£(), i = 0; 1 < 10; i++) ; }

*file*, line 3: not implemented: cannot expand inline void f() called in
comma expression

B cannot expand inline void function called in for expression

A call of an inline void function that cannot be translated into an expression (that is, one that
includes a loop, a goto, or a switch statement) appears in the second expression of a for statement.

void inline f() { for (;;:) ; }
void g() { for (;; £0) ; )
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*file*, line 2: not implemented: camnot expand inline void f{) called in
for expression

B cannot expand value-returning inlinefuncﬁon with call of ...

A value-returning inline function is defined, and it contains a call to another inline function that is
not value-returning.

inline void £() { for(;;) ; }
inline int g() { £(); return 0; }

“file*, line 2: not implemented: cannot expand value-returning inline g() with
call of non-value-returning inline f()

B cannot merge lists of conversion functions

A derived class with multiple bases is declared and there are conversion operators declared in more
than one of the base classes.

struct Bl {
operator int();
}:
struct B2 {
operator float();
}i
struct D : public Bl, public B2 { };

‘file, line 7: not implemented: cannot merge lists of conversion functions

B catch
The keyword catch appears; catch is reserved for future use.

int catch;
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*file*, line 1: not implemented: catch
“file*, line 1: warning: name expected in declaration list

B class defined within sizeof
A class or union definition appears as the type name in a sizeof expression.

int i = sizeof (struct S { int i; });

*file*, line 1: not implemented: class defined within sizeof
*file*, line 1: error: S undefined, size not known

B class hierarchy too complicated
This message should not be produced.
m conditional expression with type

The second and third operands of a conditional expression are member functions or pointers to
members.

struct S { int i, 3; };
void f(int i) {
int S::*pmi = i ? &S::1 : &S::3;

*file*, line 3: not implemented: conditional expression with int S::*%

B constructor needed for argument initializer

The default value for an argument is a constructor or is an expression that invokes a constructor.

struct S { S(int); };
int £(8 = S(1));
int g(8 = 5);
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*file", line 2: not implemented: constructor as default argument
"file*, line 3: not implemented: constructor needed for argument initializer

m copy of member[], no memberwise copy for class

An implementation-generated copy operation for a class X is required, but the operation cannot be
generated because X has an array member whose type is a class with either a virtual base class or its
own defined copy operation. The workaround is to add a memberwise copy operator to X.

struct S1 (};

struct 82 : S1 { S2& operator=(const S2&); };
struct X { S2 m[1]; };

X varl;

X var2 = varl;

*file*, line 5: not implemented: copy of S2[], no memberwise copy for S2

B default argument too complicated
A default argument in a declaration not at file scope requires the generation of a temporary.

struct S {

s(O);
int f(const int &r = 1);

}:

“file*, line 3: not implemented: default argument too complicated
*file*, line 3: not implemented: needs temporary variable to evaluate argument
initializer

M ellipsis (...) in argument list of template function name
An ellipsis is used in a template function declaration:

template <class T> £(T, ...);
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*file*, line 1: not implemented: ellipsis (...) in argument list of t:,errplate function f()

B explicit template parameter list for destructor of specialized template class name
Explicit template parameters are included in declaration of a specialized class’ destructor:
template <class T> struct S { /*...*/ };

struct S<int> {
~S<int>();

*file*, line 4: not implemented: explicit template parameter list for destructor
of specialized template class S <> -- please drop the parameter list

Instead, declare the specialized destructor as follows:
template <class T> struct S { /*...*/ );

struct S<int> {
~S():

m formal type parameter name used as base class of template
The formal type parameter is used as the base class of a template class:
template <class T> struct S : public T {(/*...*/};

*file*, line 1: not implemented: formal type parameter T used as base class of template

m forward declaration of a specialized version of template name
A forward declaration of a specialized, rather than generalized template:

template <class T> struct S;
struct S<int>;
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*file", line 2: not implemented: forward declaration of a specialized version of
template S <int >

B general initializer in initializer list

The initializer list in a declaration contains an expression that cannot easily be evaluated at compile
time or that requires runtime evaluation.

int £();
int i[1] = { £0) };

“file*, line 2: not implemented: general initializer in initializer list

B initialization of nmame (automatic aggregate)

An aggregate at local scope is initialized. This message is not issued if the +al option (produces
declarations acceptable to an ANSI C compiler) is specified.

void f£() {
int i1[1] = (1};

“file*, line 2: not implemented: initialization of i (automatic aggregate)

B initialization of union with initializer list

An object of union type is initialized with an initializer list. This message is not issued if the +al
option (produces declarations acceptable to an ANSI C compiler) is specified.

union U { int i; float f; };
Uu= {1};
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*file*, line 2: not implemented: initialization of union with initializer list

B initializer for class member array with constructor

This message should always be accompanied by an error message. The “not implemented” message
is inappropriate and should not be reported.

B initializer for local static too complicated
This message should not be produced.

B initializer for multi-dimensional array of objects of class class with constructor
name

A multi-dimensional array of a class with a constructor has an explicit initializer.

struct 8§ { S(int); };
S s[2]1[2] = {1,2,3,4};

"file*, line 2: not implemented: initializer for multi-dimensional
array of objects of class S with constructor ::s

B implicit static initializer for multi-dimensional array of objects of class with
constructor

class x {
public:
x() ;

};

main() {
static x xx[10][20];

}

“file*, line 7: not implemented: implicit static initializer for multi-dimensional
array of objects of class x with constructor
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B initializer list for local variable name
This message should not be produced.
B label in block with destructors
A labeled statement appears in a block in which an object with a destructor exists.
struct S { S(int); ~S(); };

void £() {

S s(5);
Xyz: H
}

"file*, line 5: not implemented: label in block with destructors

m local class class(local to function) as parameter to template class class
A local class is defined and is used as a template actual argument.
template <class T> class A (};

void £()

{
class B (};
A<B> a;

*file", line 6: not implemented: local class B(local to f()) as parameter type to
template class A

m local class name within template function

A local class is defined inside a template function. A similar message is issued for localenums and
localtypedefs defined inside a template function:

template <class T> £() {
class 1 {/*...*/};
enum E {/*...*/};
typedef int* ip;
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*file*, line 2: not implemented: local class 1 (local to f()) within template function
*file*, line 3: not implemented: local enum E(local to f(}) within template function
*file*, line 4: not implemented: local typedef ip within template function

W local static class name ( type )
A static array of objects of a class with a constructor is declared at local scope.

class S {
public:
SO ;
}i
void f() {
static S s[9];

*filer, line 2: not implemented: local static class s ( S [9])

m local static name has class: :~class () but no constructor (addclass:: class())
A static class object with a destructor, but no constructor, appears at local scope.

struct S { ~S(); };
void f() { static S s; }

*file*, line 1: warning: S has S::~S() but no constructor
*file*, line 2: not implemented: local static s has S::~S() but no constructor
(add s:: S{})

m lvalue op too complicated
This message should not be produced.
B needs temporary variable to evaluate argument initializer

A default argument requires a temporary variable.
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‘“Not Implemented” Messages

void f£() {
int g(const int& = 5);

*file*, line 2: not implemented: needs temporary variable to evaluate argument
initializer

B nested class fype as parameter type to template class name

A nested class is used as the actual parameter for a template class instantiation:
template <class T> struct S;

struct outer {
struct inner {};

S<outer: :inner> svar;

"file*, line 7: not implemented: nested class outer

::inner as parameter type to
template class S

B nested class within template
A template class contains a nested class.

template <class T> struct A {
struct B {};

*file*, line 2: not implemented: nested class within template

B nested depth class beyond 9 unsupported

Classes are nested more than nine levels deep.

C-14
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“Not Implemented” Messages

struct S1 (
struct S2 {
struct 83 (
struct S84 {
struct S5 {
struct S6 {
struct 87 {
struct S8 {
struct S9 (
struct S10 { enum { e }; };

YiYididiYidididid:

*file*, line 20: not implemented: nested depth class beyond 9 unsupported

B nested enumenum in template specialization
m nested typedef typedef in template specialization
A nested enum or typedef is used in a template specialization.

template <class T> struct A {
enum E {ee = sizeof(T)};
typedef T T2;

}:

struct A<int> {
' enum E {ee = 47};
typedef int T2;

*file*, line 13: sorry, not implemented: nested enum E in template specialization
*file*, line 14: sorry, not implemented: nested typedef T2 in template specialization

B non-trivial declaration in switch statement

A “non-trivial” declaration appears within a switch statement. Such a declaration might declare an
object of reference type, a static object, a const object, an object of a class type with constructor or
destructor, an object with an initializer list, or an object initialized with a string literal.
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“Not Implemented” Messages

void f(int i) {
switch (i) {
default:
int& j = i;

"file*, line 2: not implemented: non-trivial declaration in switch statement
(try enclosing it in a block)

Note that since it is illegal to jump past a declaration with an explicit or implicit initializer unless the
declaration is in an inner block that is not entered, most declarations in switch statements and not
contained in inner blocks will be errors.

B overly complex op of op
This message should not be produced.
B parameter expression of type float, double or long double
A template taking a non-type argument is declared taking a float, double or long double argument:
template <double d> struct S { /*...*/};

“file*, line 1: not implemented: parameter expression of type float, double, or long double

B postfix template function operator ++(): please make a class member function

The postfix implementation of a template increment or decrement operator must be a member func-
tion.

template <class t> struct x {
int operator++(int); // ok

};

template <class t>
int operator++(x<t>&,int); // sorry

x<int> xi;
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“Not Implemented” Messages

*file*, **, line 6: not implemented: postfix template function operator ++():
please make a class member function

@ pointer to member function fype too complicated
This message should not be produced.
B public specification of overloaded function

The base class member in an access declaration refers to an overloaded function. A similar message
is issued for private and protected access declarations.

struct B { int £(); int f(int); };
class D : private B {
public:

B::f;

*file*, line 2: not implemented: public specification of overloaded B::f()

B reuse of formal template parameter name
A template formal parameter name is reused within the template declaration:

template <class T> struct S ({
int T;
}i

*file*, line 2: not implemented: reuse of formal template parameter T

B specialized template name not at global scope

A specialized template is declared at other than global scope:
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“Not Implemented” Messages

template <class T> struct S {
T var;

void £() (
struct S <int > {
int var;

*file*, line 6: not implemented: specialized template S not at global scope

m static member anonymous union

A static class member is declared as an anonymous union.

class C {
static union {
int i;
double d;

*file, line 5: not implemented: static member anonymous union

W struct name member name
This message should not be produced.

B template function instantiated with local class name
template <class T> int £(T);

£2() {
struct local {(/*...*/};
local lvar;
f(lvar);
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“Not Implemented” Messages

*filer, line 6: not implemented: template function f{) instantiated with local class local

m temporary of class name with destructor needed in expr expression

An expression containing a ?:, ||, or & operator requires a temporary object of a class that has a
destructor.

struct 8 { S(int); ~S(); };
S f(int i) ¢
return i ? S(1) : S(2) ;

"file*, line 3: not implemented: temporary of class S with destructor needed
in ?: expression

B too few initializers for name

The initializer list for an array of class objects has fewer initializers than the number of elements in
the array.

struct S { S(int); S(); };
S al2] = {1};

“file, line 2: not implemented: too few initializers for ::a

m typel assigned to type2 (too complicated)
A pointer is initialized or assigned with an expression whose type is too complicated.

struct S1 (};

struct 82 { int 1i; };

struct 83 : 81, 82 {};
int S3::*pmi = &S2::i;
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“Not Implemented” Messages

*file*, line 4: not implemented: int S2::* assigned to int S3::* (too complicated)

B use of member with formal template parameter

An attempt to use a member of a formal parameter type, such as T: : type, is not currently sup-
ported. For example,

template <class T> class U

{
typedef T TU;
// ...

template <class Type> class V
{

Type::TU t;

/...

“file*, line 9: not implemented: use of Type::TU with formal template type parameter
*file*, line 9: cannot recover from earlier errors

B variant nested enumenum in template
B variant nested typedef typedef in template
A variable enum or typedef is declared in a template definition.

template <class T> struct A {
enum E {ee = sizeof (T)};
typedef T T2;

main()
{

A<char> a;
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“Not Implemented” Messages

line 2: sorry, not implemented: variant nested enum E in template

line 2: error detected during the instantiation of A <char >

line 9: is the site of the instantiation

line 3: sorry, not implemented: variant nested typedef T2 in template
line 3: error detected during the instantiation of A <char >

line 9: is the site of the instantiation

W visibility declaration for conversion operator
An access declaration is specified for a conversion operator.

struct B { operator int(); };
class D : private B {
public:

B::operator int;

“file*, line 1: not implemented: visibility declaration for conversion operator

m volatile functions
A member function is specified as volatile.

struct S {
int £() volatile;

*file*, line 2: not implemented: volatile functions

B wide character constant
M wide character string
A wide character constant or a wide character string is used.

int we = L’ab’;
char *ws = L"abcd";
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“Not Implemented” Messages

*file*, line 1: not implemented: wide character constant
*file*, line 2: not implemented: wide character string
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Manual Pages

To see the online man page for CC(1), type man CC.

Man pages are provided online for the following commands:

s CC(1)
m c++filt(1)
m demangle(3)
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c++filt(1) UNIX System V c++filt (1)

NAME
c++filt — C++ name demangler
SYNOPSIS
c++filt [-m] [-s] [-V]
DESCRIPTION
Cc++filt copies standard input to standard output after decoding tokens which look like C++ encoded symbols.
Any combination of the following options may be used:
-m Produce a symbol map on standard output. This map contains a list of the encoded names
encountered and the corresponding decoded names. This output follows the filtered output.
-s Produce a side-by-side decoding with each encoded symbol encountered in the input stream
replaced by the decoded name followed by the original encoded name.
-V Output a message giving information about the version of c++filt being used.
SEE ALSO

cc(1), 1d(1), nm(1).
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demangile(3) UNIX System V demangle (3)

NAME

elf_demangle — decode a C++ encoded symbol name
SYNOPSIS

char *elf_demangle (char const *symbol)
DESCRIPTION

demangle decodes an encoded C++ symbol name into a format which more closely resembles the original C++
declaration. This routine should be used to convert symbols obtained from an ELF symbol table into a form
more suitable for output.
WARNING
This routine allocates space for the return buffer using the ELF allocation routines.
CAVEAT
The return value points to static data whosé content is overwritten by each call.
SEE ALSO
cc(), c++£ilt(l), 1ibelf(3), nm(1).
Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley 1986.
DIAGNOSTICS

The argument symbol will be returned if it points to a string which does not need decoding. A return value of
NULL indicates that storage could not be allocated for the return buffer.
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Index

A

+a option 4:26

access declaration for conversion operator, not
implemented message C: 19

access declarations 4: 54

access protection, for operator new() 4:39

access to protected new or delete member
invalidly disallowed A:6

actual parameter expression of type string literal,
not implemented message C: 1

address & of op, not implemented message C: 1

address of bound member as actual template argu-
ment, not implemented message C: 1

aggregate at local scope, not implemented mes-
sage C:8

allocation of storage, for multiple base classes B:§

anachronisms 4:61,63-69, B:6

anonymous union members 4: 32

ANSI C standard, incompatibilities A: 13

ANSI C standard, preprocessors 4: 60

a.out file permissions 4:25

argument matching rules 4: 18-19, 58-59

array class member initialization, not implemented
message C: 10

arrays, deleting 4: 39, 41

asm declaration B: 4

assignment, of ints to enumerations 4: 64

assignment to overcomplicated type, not imple-
mented message C: 17

AT&T 3B15 computers  3: 38

AT&T 3B15 computers, build problems 3: 38

AT&T 3B15 computers, usage problems 3: 40

AT&T 3B2 computers 3:37

AT&T 3B2 computers, build problems 3: 37

AT&T 3B2 computers, usage problems 3:40

AT&T 3B20 computers, build problems 3: 38

awk problems 3: 42

B

bit-fields B:5
block nesting  3: 41

index

bootstrapping the compiler 3: 4, 15

BSD systems 3: 36

build shell script 3: 31

building compiler, from C++ source 3: 16

C

-c option 4:26

call of virtual function before class has been com-
pletely declared, not implemented message
C:2

cannot expand inline function with return state-
ment, not implemented message C:3

cast of non-integer constant, not implemented mes-
sage C:4

casts, of bound pointer 4: 64

casts, of pointer types 4:29

casts, type definitions 4: 41

catch keyword, not implemented message C:6

cc command 1:1, 3:18, 33

CC command, new options to 4: 25-28

cc makefile variable 3: 11, 20, 32

ccC environment variable 3:34

CCFLAGS makefile variable 3:11, 35

c++£ilt program 3: 15, 18

cfront program 3: 15, 18

cfrontC environment variable 3: 34

character constants B: 2

character types 4:36

class arguments to £(...) 4:37

class defined within sizeof, not implemented
message C:6

class names, reuse of 4:46, A:2

class temporary needing destructor, not imple-
mented message C: 17

classic C function definition syntax 4:67

comma operator ,, not implemented message C:5

comments, C++-style A: 12-13

compatibility, between releases 2.0 and 2.1
4:23-62

compatibility, between releases 2.1 and 3.0 4:2-22

compatibility, with future releases 4:63-69

compatibility, with previous releases 4: 1-62
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Index

compilation and linking problems A: 15-18

compiler tape, extracting contents of 3:8

compiler-specific problems 3: 40-42

complex arithmetic library 2:2

complex arithmetic library, building 3: 21

conditional expression with type operand, not
implemented message C:6

const functions 4:44

const member functions 4: 13-14

const member functions, with const violations
4:31

const objects, initialization of 4: 29-30

const objects, members of 4:29

const parameters 4:34

const typedefs 4: 11

constructor needed for argument initializer, not
implemented message C:7

constructors, declaration 4: 17, 57

constructors, definition 4: 67

contents of the release 2:1-3

conversion to signed type B:3

conversions A: 14

conversions, not implemented message C:6

copy operation for class, not implemented mes-
sage C:7

CPIO makefile variable 3: 11

c_plusplus preprocessor macro 4:68

cpp errors 3: 41

cppC environment variable 3: 34

curses.h header file 4:25

D

declaration within switch statement, not imple-
mented message C: 14

decrement operators 4:7-8, 59-60

default argument, not implemented message C:7

default arguments requiring temporary variable,
not implemented message C: 12

default assignment operator 4:58

default constructors 4:6-7, 56

definitions, multiple A: 1

delete operator 4:17-18, 67-58, 66

-2

delete operator, and arrays 4:63

DENSE makefile variable 3:12

destructors A: 13-14

destructors, declaration 4:17, 57

destructors, for built-in types 4: 17, 57

division operator / B:3

dominance rule, and objects and enumerators
4:8,52

E

+e[01] options 4: 27

editing files created during build 3: 18

ellipsis (...) in argument list of template function,
not implemented message C:8

enumerations 4: 44, 52

environment variables, setting 3: 34

exception handling 4:9, B:6

#expand directive 3: 30

explicit template parameter list for destructor of
specialized template class, not implemented
message C:8

explicit type conversion B:3

explicit type conversions 4:7, 38

extern C syntax 3:30

F

-Fc option  4:25

FILLDEF makefile variable 3: 12

FILLUNDEF makefile variable 3: 12

floating constants B: 2

for keyword, initializers 4:9, 41, 43

for statement, not implemented message C:2

for statement, not implemented message C:5

forward declaration of a specialized version of
template, not implemented message C:9

free store 3: 40

friend declarations 4:32-33

friend functions, linkage of 4:54-55
friend functions, scope of 4: 16, 55-56
friendship 4: 55
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friendship, and non-function members 4: 55

friendship in multiple inheritance invalidly
extended A:4

function call, evaluation order B:3

function definitions, classic C 4:67

functions, overloading 4: 34

functions, size of 4:38

functions, value-returning 4: 10

G

-g option 4:27

general initializer in initializer list, not imple-
mented message C:9

generic function 2:2

generic.h header file 3:35

global inline functions 4:43, A: 1-2

H

hash table 3: 41

header files 4:3, 24-25

header files, full port of 3:29-31

header files, porting 3: 28-32

#hide directive 3:30

HP 9000 computers 3:37,39

HP 9000 computers, build problems 3: 37
HP 9000 computers, usage problems 3:39

I environment variable 3: 15, 32, 34

identifiers B: 1

identifiers, in nested type definitions 4: 66

if statement, not implemented message C:4

implementation specific behavior B: 1-6

implicit conversions, of pointers to members 4: 28

implicit static initializer for multi-dimensional
array of objects of class with constructor, not
implemented message C: 10

incl directory 3:15

include files, defining location of 3: 15

Index

increment operators 4:7-8, 59-60

initializer for multi-dimensional array of class, not
implemented message C: 10

initializers, for aggregates 4:31

initializers, for class members 4: 11, 44-45

initializers, for operator new() 4:39

initializers, for references 4: 11-12, 45-46

initializers, redundant 4: 33

inline function, not implemented messages
C.2-5

inline functions 4:27-28, B: 4

inline member functions 4: 36

INSTALL makefile variable 3: 11

installation roadmap 3:5

INSTALL,_BIN makefile variable 3:10

INSTALL_INC makefile variable 3:11, 35

installing compiler 3: 1-42

installing compiler, on machine with existing com-
piler 3:14

installing compiler, on machine without existing
compiler 3:15-16

INSTALL ILIB makefile variable 3:10

Intel 386-based computers 3: 38

Intel 386-based computers, build problems 3: 38

Intel 386-based computers, usage problems 3: 40

intersection rule, and function matching 4:34-35

introduction to C++ language system 1:1-3

iostream library 2:3, 4: 61

iostream::get() 4:61

iostream: :put () 4:61

K

known problems A: 1-18
Korn shell problems 3: 42

L

+L option 4:25

label in block with destructor, not implemented
message C: 10

language-related fixes 4:9-22, 28-35

libC.a program 3:15, 18

Index



Index

libc.h header file 4:25

libraries A: 18

libraries, building 3: 20

libraries, installing 3:22

LIBRARY environment variable 3: 34

limits.h header file B:1

linkage B:5

linkage specifications 4:30

linkage-specification B:5

list of procedures, for building compiler 3:5

local class class(local to function) as parameter to
template class class, not implemented mes-
sage C: 11

local class not implemented message C: 11

local enum not implemented message C: 11

local static, initializer for, not implemented mes-
sage C:10

local static class object, not implemented message
c:1

local typedef not implemented message C: 11

local variables, in default arguments 4: 30

lvalue too complicated, not implemented message
Cc:12

M

MACH makefile variable 3: 10

machines supported for language system 3: 1
machine-specific usage problems 3: 39-40
main() B:2

make clean procedure 3:17-18

make clobber procedure 3:19

make demos procedure 3:17

make fillscratch procedure 3:24, 32
make munch procedure 3:16

make patch procedure 3:16

make procedure 3: 14, 16

make procedure, options to  3: 18-19
make scratch procedure 3:15

makefile variables, setting 3:8

man directory 2:3

member functions 4: 13-14, 32

MIPS computers, build problems 3: 38

I-4

mk directory 2:2

moving files created during build 3: 18
Munch directory 2:3

munch option 3:3, 14-15, 18

munch program 2:3

munchC environment variable 3: 34

N

formal type paramete C:8

name, too few initializers for, not implemented
message C: 17

name demangling 3: 41

names B:1

nested class as parameter type to template class,
not implemented message C: 12

nested class depth unsupported, not implemented
message C: 13

nested class within template, not implemented
message C: 13

nested enum enum in template specialization, not
implemented message C: 14

nested type as virtual base not supported A:3

nested type names 4: 65

nested typedef typedef in template specialization,
not implemented message C: 14

nested types 4:6, 36-37, 48-51

nested types, local 4: 50

new directory 2:3

new features 4:3

new operator 4:39, 66

non-const member functions 4: 13-14

non-constant reference initializers 4: 64

not implemented messages C: 1-20

o)

operator=() 4:67

options to CC, partial compilation 4: 26-27
options to CC, position-independent 4: 25-26
order of allocation of class members B:5
#os directives 3:30

0S makefile variable 3:9, 28-29, 31-32
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Index

overload keyword 4:63

overloaded function argument matching B:5
overloaded operators 4: 19, 35

overloaded operators, default arguments 4: 44

P

-P option  4: 26

parameter experssion of type float, double or long
double, not implemented message C: 14

Patch directory 2:3

patch option 3:3, 14, 18, 4: 24

patch option, under BSD 4: 62

patchC environment variable 3: 34

period (.) operator, scoping anachronism 4: 63

PLUSA makefile variable 4: 24

pointer to member function, not implemented mes-
sage C:15

porting the compiler 3: 23-33

porting the compiler, to non-UNIX systems 3:33

postfix template function operator ++(): please
make a class member function, not imple-
mented message C: 15

predefined"macro B: 6

preprocessor A: 12-13

prerequisites, for installing the compiler 3: 2-3

private overloaded function, not implemented
message C:15

problems, known A:1-18

problems, system-specific 3: 35-42

protected class members A:5-6

protected class members, access to  4: 33

protected derivation 4:8, 51

protected overloaded function, not implemented
message C:15

protection, and destructors A: 8-9

public overloaded function, not implemented mes-
sage C:15

R

Reference Manual changes 4: 35-62
relational operators B: 4

Index

Release 2.0, recompiling existing code from 4: 23

Release 2.1, recompiling existing code from 4:2

release date stamp  3: 34

return statement, not implemented message C:3

return value optimization 4: 21

reuse of formal template parameter, not imple-
mented message C: 15

S

-S option 4:26

scratch directory 2:3

scratch/1ib directory 2:3

scratch/src directory 2:3

setting makefile variables 3:8

shift operators B: 4

signed char B:4

signed char type 4:36

sizeof operator A:15

sizeof operator, not implemented message C:6

software dependencies 3:2

space requirements, for installing compiler 3:2

specialized template not at global scope, not
implemented message C: 16

src directory 2:3

src/size.h header file 3:27-28

start and termination B:2

static class object without destructor, not imple-
mented message C: 12

static data members 4: 65, 68, A: 1

static data members, of local classes 4: 14-15,
47-48

static functions 2:3

static member anonymous union, not implemented
message C: 16

static members, of private base classes 4: 15-16,
53-54

stddef .h header file B:1

STDINCL makefile variable 3:9

stdlib.h header file 4:25, B:1

storage class specifier B: 4

stream library, old 4: 69

string literals B:2



Index

struct name member name, not implemented mes-
sage C:16

structure arguments 3:2

Sun workstations 3: 37, 39

Sun workstations, usage problems 3:39

symbol tables 3: 41

SYMBOLICLINK makefile variable 3:9

SYs makefile variable 3:8

system-specific problems 3: 35-42

SZAL makefile variable 3: 11

szal.c program 3:24-25

szal.c program, new output format 4:23-24

T

task library 2:3

task library, building 3: 20-21

task library, limits of derivation from A: 18

task library, on Amdahl UTS 4: 61

template forward declaration A:9

template function instantiated with local class, not
implemented message C: 16

template instantiations A: 9

testing results of build 3: 17

this, assighment to 4: 68

tools directory 2:3

translation limits B: 1

tree space 3: 40

try keyword 4:36

type names 4:66

typedef declarations 4:43-44

types, fundamental B:3

types, nested 4:6, 48-51

U

union initialization, not implemented message
C:9

union member invalidly accepted A:2

unions, and access specifiers 4: 15, 53

unions, and virtual functions 4: 48

unsigned char type 4:36

#usedby directive 3:30

1-6

\'

value-returning functions 4: 10

variable names, distinguishing 3: 41

variable names, length of 3:2

variant nested enum enum in template, not imple-
mented message C: 18

variant nested typedef typedef in template, not
implemented message C: 18

virtual functions, and unions 4: 48

virtual functions, pure 4: 52

virtual table strategy 4:27

virtual tables, name encoding restrictions A: 17

volatile, not implemented message C: 19

volatile member functions 4:32

volatile parameters 4:34

volatile type B:4

W

+w option  4: 27-28

warning messages 4: 60-61

warning messages, during build 3: 17

warning messages, for anachronisms 4: 61

warning messages, for pure virtual destructors
4: 60-61

warning messages, missing A: 13-15

warning messages, “not used” 4:60

wide character constant or string, not implemented
message C: 19

Y

yacc overflow problems 3: 41
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Preface

The C++ Language System Library Manual describes the C++ class libraries provided with Release 3.0 of the
C++ Language System:

m the complex arithmetic library

m the task library

m the iostream library
The manual is part of a set of four documents that are supplied with your C++ Language System. The
other documents are:

m the Release Notes, which describe the contents of this release, how to install it, and changes to the
language

m the Product Reference Manual, which provides a complete definition of the C++ language supported by
Release 3.0 of the Language System.

® the Selected Readings, which contains papers describing aspects of the C++ language

The chapters in this manual cover the following C++ class libraries:

m Chapter 1 describes the complex arithmetic library, which provides a class complex that allows you
to declare and manipulate complex numbers in C++ programs

m Chapter 2 describes the task library, which allows you to create and control concurrent processes in
C++ programs. The last section of Chapter 2 provides porting information for the task library, which
is machine dependent.

m Chapter 3 describes the stream library, which allows you to do formatted input and output from C++
programs

m The back of this book contains manual pages for the complex library, task library, and iostream
library.

To make the best use of the Library Manual, you must be familiar with the C programming language and
the C programming environment under the UNIX operating system.
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Complex Arithmetic in C++

This chapter is taken directly from a paper by Leonie V. Rose and Bjarne Stroustrup.
NOTE

Abstract

This memo describes a data type complex providing the basic facilities for using complex arithmetic in
C++. The usual arithmetic operators can be used on complex numbers and a library of standard complex
mathematical functions is provided. For example:

#include <complex.h>

main() {
complex xxX;
complex yy = complex(1,2.718);
xx = log(yy/3);
cout << 1+xx;

)

initializes yy as a complex number of the form (real+imag*i), evaluates the expressions and prints the
result: (0.96476,1.21825).

The data type complex is implemented as a class using the data abstraction facilities in C++. The arith-
metic operators +, —, *, and /, the assignment operators =, +=, —=, *=, and /=, and the comparison opera-
tors == and != are provided for complex numbers. So are the trigonometric and mathematical functions:
sin(), cos(), cosh(), sinh(), sqrt (), log(), exp(), conj (), arg(), abs (), norm(), and pow() .
Expressions such as (xx+1)*log (yy*log(3.2)) that involve a mixture of real and complex numbers are
handled correctly. The simplest complex operations, for example + and +=, are implemented without func-
tion call overhead.

Introduction

The C++ language does not have a built-in data type for complex numbers, but it does provide language
facilities for defining new data types. The type complex was designed as a useful demonstration of the
power of these facilities.

There are three plausible ways to support complex numbers in a language. First, the type complex could be
directly supported by the compiler in the same way as the types int and float are. Alternatively, a
preprocessor could be written to translate all use of complex numbers into expressions involving only
built-in data types. A third approach was used to implement type complex; it was specified as a user-
defined type. This demonstrates that one can achieve the elegance and most of the efficiency of a built in
data type without modifying the compiler. It is even much easier to implement than the pre-processor
approach, which is likely to provide an inferior user interface.
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This facility for complex arithmetic provides the arithmetic operators +, /, *, and —, the assignment opera-
tors =, +=, —=, *=, and /=, and the comparison operators == and != for complex numbers. Input and out-
put can be done using the operators >> (get from) and << (put to). The initialization functions and >>
accept a Cartesian representation of a complex. The functions real() and imag() return the real and ima-
ginary part of a complex, respectively, and << prints a complex as (real, imaginary). The internal
representation of a complex, is, however, inaccessible and in principle unknown to a user. Polar coordi-
nates can also be used. The function polar () creates a complex given its polar representation, and abs ()
and arg () return the polar magnitude and angle, respectively, of a complex. The function norm() returns
the square of the magnitude of a complex. The following complex functions are also provided: sqrt (),
exp(), log(), sin(), cos(), sinh(), cosh(), pow(), and conj (). The declaration of complex and the
declarations of the complex functions can be found under “Type complex.” A complete program using
complex numbers can be found under “An FFT Function.”

Complex Variables and Data Initialization

A program using complex arithmetic will contain declarations of complex variables. For example:
complex zz = complex(3,-5);

will declare zz to be complex and initialize it with a pair of values. The first value of the pair is taken as
the real part of the Cartesian representation of a complex number and the second as the imaginary part.
The function complex () constructs a complex value given suitable arguments.1 It is responsible for initializ-
ing complex variables, and will convert the arguments to the proper type (double). Such initializations
may be written more compactly. For example:

complex zz(3,-5);
complex c¢_name(-3.9,7);
complex rpr(SQRT _2,root3);

A complex variable can be initialized to a real value by using the constructor with only one argument. For
example:
complex ra = complex(l);

will set up ra as a complex variable initialized to (1,0). Alternatively the initialization to a real value can
also be written without explicit use of the constructor:

complex rb = 123;

The integer value will be converted to the equivalent complex value exactly as if the constructor com-
plex(123) had been used explicitly. However, no conversion of a complex into a double is defined, so

double dd = complex(1,0);

is illegal and will cause a compile time error.
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If there is no initialization in the declaration of a complex variable, then the variable is initialized to (0,0).
For example:

complex orig;
is equivalent to the declaration:

complex orig = complex(0,0);

Naturally a complex variable can also be initialized by a complex expression. For example:
complex ¢x(-0.5000000e+02,0.8660254e+02) ;
complex cy = cx+log(cx);

It is also possible to declare arrays of complex numbers. For example:
complex carray[30];

sets up an array of 30 complex numbers, all initialized to (0,0). Using the above declarations:
complex carr[] = { cx, cy, carray[2], complex(1.1,2.2) };

sets up a complex array carr[ ] of four complex elements and initializes it with the members of the list.
However, a struct style initialization cannot be used. For example:

complex cwrongl[] = (1.5, 3.3, 4.2, 4};

is illegal, because it makes unwarranted assumptions about the representation of complex numbers.

Input and Output

Simple input and output can be done using the operators >> (get from) and << (put to). They are declared
like this using the facility for overloading function operators:

ostream& operator<<(ostream&, complex);
istream& operator>>(istream&, complex&);

When zz is a complex variable cin>>zz reads a pair of numbers from the standard input stream cin into

zz. The first number of the pair is interpreted as the real part of the Cartesian representation of a complex
number and the second as the imaginary part. The expression cout<<zz writes zz to the standard output
stream cout. For example:

void copy(istream& from, ostream& to)

{
complex zz;
while (from>>zz) to<<zz;

}

reads a stream of complex numbers like (3.400000,5.000000) and writes them like (3.4,5). The
parentheses and comma are mandatory delimiters for input, while white space is optional. A single real
number, for example 10e-7 or (123), will be interpreted as a complex with 0 as the imaginary part by
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operator >>.

A user who does not like the standard implementation of << and >> can provide alternate versions.

Cartesian and Polar Coordinates

The functions real () and imag() return the real and imaginary parts of a complex number, respectively.
This can, for example, be used to create differently formatted output of a complex:

complex cc = complex(3.4,5);
cout << real(cc) << "+" << imag(cc) << "*i";

will print 3.4+5%1.

The function polar () creates a complex given a pair of polar coordinates (magnitude, angle). The func-
tions arg() and abs () both take a complex argument and return the angle and magnitude (modulus),
respectively. For example:

complex cc = polar (SQRT 2,PI/4); // also known as complex(1l,1)
double magn = abs(cc); // magn = sqgrt(2)

double angl = arg(cc); // angl = PI/4

cout << "(m=" << magn << ", a=" << angl << ")";

If input and output functions for the polar representation of complex numbers are needed they can easily
be written by the user.

Arithmetic Operators

The basic arithmetic operators +, — (unary and binary), /, and *, the assignment operators =, +=, —=, *=,
and /=, as well as the equality operators == and !=, can be used for complex numbers. The operators have
their conventional precedences. For example: a=b*c+d for complex variables a, b, ¢, and 4 is equivalent to
a=(b*c)+d. There are no operators for exponentiation and conjugation; instead the functions pow () and
conj () are provided. The operators +=, —=, *=, and /= do not produce a value that can be used in an
expression; thus the following examples will cause compile time errors:

complex a, b;

/] ...

if ( (a+=2)==0 ) {
/] ...

}

b =a *= b;
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Mixed mode expressions are handled correctly. Real values will be converted to complex where necessary.
For example:

complex xx(3.5,4.0);
complex yy = log(yy) + log(3.2);

This expression involves a mixture of real values: log(3.2), and complex values: log (yy) and the sum.
Another example of mixing real and complex, xx=1, is equivalent to xx=complex(1) which in turn is
equivalent to xx=complex(1,0). The interpretation of the expression (xx+1)*yy*3.2 is

(( (xx+complex (1) )*yy) *complex(3.2)).

Mathematical Functions

A library of complex mathematical functions is provided. A complex function typically has a counterpart
of the same name in the standard mathematical library. In this case the function name will be overloaded.
That is, when called, the function to be invoked will be chosen based on the argument type. For example,
log (1) will invoke the real log (), and log(complex (1)) will invoke the complex log (). In each case
the integer 1 is converted to the real value 1.0.

These functions will produce a result for every possible argument. If it is not possible to produce a
mathematically acceptable result, the function complex_error () will be called and some suitable value
returned. In particular, the functions try to avoid actual overflow, calling complex_error () with an
overflow message instead. The user can supply complex_error (). Otherwise a function that simply sets
the integer errno is used. See “Errors and Error Handling”” for details.

complex conj(complex) ;
Conj (zz) returns the complex conjugate of zz.
double norm{complex);

Norm(zz) returns the square of the magnitude of zz. It is faster than abs (zz), but more likely to cause an
overflow error. It is intended for comparisons of magnitudes.

double pow (double, double) ;
complex pow(double, complex);
complex pow(complex, int);
complex pow(complex, double);
complex pow(complex, complex);
Pow (aa,bb) raises aa to the power of bb. For example, to calculate (1-i)**4:

cout << pow( complex(l,-1), 4);

The output is (-4,0) .
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double log (double) ;
complex log(complex);
Log(zz) computes the natural logarithm of zz. Log(0), causes an error, and a huge value is returned.
double exp (double) ;
complex exp(complex);
Exp(zz) computes e**zz, e being 2.718281828...
double sqgrt (double) ;
complex sqgrt(complex);
Sqgrt (zz) calculates the square root of zz.
The trigonometric functions available are:

double sin(double);
complex sin(complex) ;

double cos(double);
complex cos(complex);

Hyperbolic functions are also available:

double sinh(double) ;
complex sinh(complex) ;

double cosh(double) ;
complex cosh(complex) ;

Other trigonometric and hyperbolic functions, for example tan() and tanh(), can be written by the user
using overloaded function names.

Efficiency

C++7s facility for overloading function names allows complex to handle overloaded function calls in an
efficient manner. If a function name is declared to be overloaded, and that name is invoked in a function
call, then the declaration list for that function is scanned in order, and the first occurrence of the appropri-
ate function with matching arguments will be invoked. For example, consider the exponential function:

double exp (double) ;
complex exp(complex);

When called with a double argument the first, and in this case most efficient, exp () will be invoked. If a
complex result is needed, the double result is then implicitly converted using the appropriate constructor.
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For example:

conmplex foo = exp(3.5);
is evaluated as

conmplex foo = complex( exp(3.5) );
and not

complex foo = exp( complex(3.5) });

Constructors can also be used explicitly. For example:

complex add(complex al, complex a2) // silly way of doing al+a2
{
return complex( real(al)+real(a2), imag(al)+imag(a2) );

}

Inline functions are used to avoid function call overhead for the simplest operations, for example, conj (),
+, +=, and the constructors (See “Type complex”).

Type complex

This is the definition of type complex. It can be included as <complex.h>. A friend declaration specifies
that a function may access the internal representation of a complex. The standard header file <stream.h>
is included to allow declaration of the stream I1/O operators << and >> for complex numbers.

#include <stream.h>
#include <errno.h>
#include <math.h>

class complex {
double re, im;
public:
complex () { re=im=0; }
complex(double r = 0, double i) { re=r; im=i; }

friend double abs(complex);
friend double norm(complex);
friend double arg(complex);
friend complex conj(complex);
friend complex cos(complex) ;
friend complex cosh(complex);
friend complex exp(complex);
friend double imag(complex);
friend complex log(complex) ;
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friend
friend
friend
friend
friend
friend
friend
friend
friend

friend
friend
friend
friend
friend
friend
friend

complex pow(double, complex);
complex pow(complex, int);
complex pow(complex, double);
complex pow(complex, complex);
complex polar (double, double = 0);
double real(complex);

complex sin(complex);

conmplex sinh(complex);

complex sqgrt(complex) ;

complex operator+ (complex, complex);
complex operator- (complex) ;

complex operator-(complex, complex);
complex operator* (complex, complex);

complex operator/(complex, complex);
int operator==(complex, complex) ;
int operator!=(complex, complex);

void operator+=(complex) ;
void operator-=(complex) ;
void operator*=(complex) ;
void operator/=(complex) ;

}i

ostream§ operator<<(ostreams, complex);
istream& operator>>(istream&, complexé);

inline complex

{

return

)

inline complex

{

return

}

inline complex

{

return

}

inline complex
{

return

operator+ (complex al, complex a2)

complex(al.re+a2.re, al.im+a2.im);

operator-(complex al,complex a2)

complex(al.re-a2.re, al.im-a2.im);

operator- (complex a)

complex(-a.re, a.im);

conj (complex a)

conplex(a.re, -a.im);
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}

inline int operator==(complex a, complex b)

{

return (a.re==b.re && a.im==b.im);

}

inline int operator!=(complex a, complex b)

{

return (a.rel!=b.re || a.im!=b.im);

}

inline void complex.operator+=(complex a)

{
re += a.re;
im += a.im;
}
inline void complex.operator-=(complex a)
{

re -= a.re;
im -= a.im;

An FFT Function

Transcribed from Fortran as presented in “FFT as Nested Multiplication, with a Twist” by Carl de Boor in
SIAM Sci. Stat. Comput., Vol 1 No 1, March 1980.
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#include <complex.h>

void fftstp(complex*, int, int, int, complex*);

const NEXTMX = 12;
int prime[NEX™X] = {( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 };

complex* fft (complex *zl, complex *z2, int n, int inzee)

/*

*/

Construct the discrete Fourier transform of 2zl (or z2) in the

Cooley-Tukey way, but with a twist.

zl[before], z2[before].

inzee==1 means input in zl; inzee==2 means input in z2

int before = n;
int after = 1;
int next = 0;
int now;

do {
int np = prime[next];

if ( (before/np)*np < before ) {
if (++next < NEXIMX) continue;

now = before;

before = 1;
}
else {
now = np;
before /= np;
}
if (inzee == 1)
fftstp(zl, after, now, before, 22);
else

fftstp(z2, after, now, before, zl);

inzee = 3 - inzee;
after *= now;
} while (1 < before)

return (inzee==1) ? zl : 22;

void fftstp(complex* zin, int after, int now,

/*

1-10

int before, complex* zout)
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zin(after, before, now)
zout (after, now, before)

there is ample scope for optimization
*/

PI2/ (now*after) ;
complex(cos (angle), -sin(angle));

double angle
complex omega
complex arg = 1;
for (int j=0; j<now; j++) {
for (int ia=0; ia<after; ia++) {
for (int ib=0; ib<before; ib++) {
// value zin(ia, ib, now)
complex value zin[ia + ib*after + (now-1)*before*after];

{

for (int in=now-2; 0O<=in; in--)

// value = value*arg + zin(ia, ib, in)
value *= arg;
value += zin[ia + ib*after + in*before*after}];

}
// zout(ia,j,ib)

= value

value;

zout[ia + j*after + ib*now*after]

)

arg *= omega;

}

The main program below calls ££t () with a sine curve as argument. The complete unedited output is
presented on the next page. All but two of the numbers ought to have been zero. The very small numbers
shows the roundoff errors. Since C++ floating-point arithmetic is done in double-precision these errors are
smaller than the equivalent errors obtained using the published Fortran version.
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#include <complex.h>

extern complex* f£ft(complex*, complex*, int, int);

main ()
/*
test fft() with a sine curve
*/
{
const n = 26;
complex* zl = new complex[n];
complex* z2 = new complex[n];
cout << "input: \m";
for (int i=0; i<n ;i++) (
z1[i] = sin(i*PI2/n);
cout << zl[i] << "\m";
}
errno = 0;
complex* zout = fft(zl, z2, n, 1);
if (errno) cerr << "Cerror " << errno << " occurred\m”;
cout << "output: \m";
for (int j=0; j<n ;j++) cout << zout{j] << "\m";
}
input:
(0, 0)

(0.239316, 0)
(0.464723, 0)
(0.663123, 0)
(0.822984, 0)
(0.935016, 0)
(0.992709, 0)
(0.992709, 0)
(0.935016, 0)
(0.822984, 0)
(0.663123, 0)
(0.464723, 0)
(0.239316, 0)
(4.35984e-17, 0)
(-0.239316, 0)
(-0.464723, 0)
(-0.663123, 0)

1-12 o Library Manual



Complex Arithmetic in C++

-0.822984, 0)

-0.935016, 0)

-0.992709, 0)

-0.992709, 0)

-0.935016, 0)

-0.822984, 0)

-0.663123, 0)

-0.464723, 0)

(~-0.239316, 0)

output:

(9.56401e-17, 0)
(-3.76665e-16, -13)
(9.39828e~17, 1.1126le-17)
(6.42219%e-16, -4.20613e-17)
(7.37279e-17, 2.33319%e-16)
(2.85084e-16, 2.87918e-16)
(4.03134e~-17, 5.178%e-17)
(2.60865e-16, 6.78794e-17)
(-5.71667e-17, -3.86348e-17)
(2.76315e-16, 2.36902e-17)
(-6.43755e-17, -3.80255e-17)
(1.95031e-16, 9.77858e-17)
(1.49087e~16, -7.57345e-17)
(3.17224e-16, 1.64294e-17)
(1.49087e-16, 7.57345e-17)
(2.7218e-16, -4.03777e-17)
(-6.43755e-17, 3.80255e-17)
(4.93805e-16, 3.36874e-17)
(-5.71667e-17, 3.86348e-17)
(7.86047e-16, -4.11068e-18)
(4.03134e-17, -5.1789%e-17)
(1.60788e-15, -1.0684le-16)
(7.37279e-17, -2.3331%9e-16)
(5.45186e-15, 2.4271%e-16)
(9.39828e-17, -1.1126l1e-17)
(-1.12013e-14, 13)

A~ N e~ S~ e~~~
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Errors and Error Handling

These are the declarations used by the error handling:

int errno;
int complex error(int, double);

The user can supply complex_error (). Otherwise a function that simply sets errno is used. The excep-
tions generated are:

cosh(zz) :

C_COSH_RE | zz.re| too large. Value with correct angle and huge magnitude returned.
C_COSH_IM | zzim| too large. Complex(0,0) returned.

exp(zz) :

C_EXP_RE_POS  zz.im too small. Value with correct angle and huge magnitude returned.
C_EXP_RE_NEG zz.re too small. Complex(0,0) returned.

C_EXP_IM | zz.im| too large. Complex(0,0) returned.

log(zz):

C_LOG_0 zz==0. Value with a large real part and zero imaginary part returned.
sinh(zz) :

C_SINH_RE | zz.re| too large. Value with correct angle and huge magnitude returned.
C_SINH_IM | zz.im| too large. Complex(0,0) returned.
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Footnotes

1. Such a function is called a constructor. A constructor for a type always has the same name as the
type itself.
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Introduction

Roadmap for the C++ Task Library Documentation

The three sections of this chapter describe the C++ Language System coroutine or task library.

m The first section, ““/A Set of C++ Classes for Co-routine Style Programming,” written by Bjarne
Stroustrup and revised and updated by Jonathan Shopiro, describes how the task library can be used.
Read this section to learn about the basic use of the task library.

m The second section, “Extending the C++ Task System for Real-Time Control,” by Jonathan Shopiro,
describes new features of the task library to enable tasks to receive UNIX system signals.

m The task system internals for Release 3.0 are described in the third section, /A Porting Guide for the
C++ Coroutine Library,” by Stacey Keenan. This part tells you about the internals of the task library.

®m The manual pages for the task library can be found at the end of this book.
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A Set of C++ Classes for Co-routine Style Programming

This section is taken directly from a paper by Bjarne Stroustrup and Jonathan E. Shopiro.
NOTE

Abstract

Some programs are most naturally expressed as a set of relatively independent activities communicating to
achieve a common goal. Each activity, here called a task, has its own locus of control, a program to execute,
and its own private data. Tasks can communicate by explicit sharing of data, by messages, or by data
pipes. ‘

This paper describes C++ classes for a range of styles of multi-programming techniques in a single
language, single address-space environment. Each task is an instance of a user-defined class derived from
class task, and the program of the task is the constructor of its class. A task can be suspended and
resumed without interfering with its internal state. Class ghead and class gqtail enable a wide range of
message passing and data buffering schemes to be implemented simply.

The task system can be used for writing event driven simulations. Tasks execute in a simulated time frame
presented by the variable clock, and objects of class timer provide a convenient and efficient facility for
using the clock.

The implementation and use of these concepts rely heavily on the idea of derived classes. Familiarity with
the C++ language would be an advantage for the reader.

Introduction

Some programs are most naturally expressed as a set of relatively independent activities communicating to
achieve a common goal. Such activities, here called tasks, must be able to execute in parallel with each
other and communicate through means convenient to the chosen style of task usage.

Facilities for multi-thread computation can be provided in the semantics of a language, as is done in Con-
current Pascal and Mesa or a language without such facilities can be augmented using special run-time sup-
port systems and library functions, as has been done for BCPL and C. The use of C classes to implement
tasks represents an intermediate approach pioneered by Simula67.

The tools presented here! provide the basic facilities for several styles of multi-thread programming in a
single language, single address-space environment. The underlying facility is a simple and efficient tasking
system with non-preemptive scheduling. That is, a task will only be suspended on its own request, so no
“system policy”” can be enforced without the cooperation of all tasks. In contrast to pure co-routine sys-
tems, however, the task system provides a framework for processor sharing and communication between
tasks. The task system is intended for applications, like event driven simulations, where tasks are used to
express a quasi-parallel structure for a single program. For this class of applications a concept of simulated
time is implemented. A unit of simulated time can represent any amount of real time, and it is possible to
compute without consuming simulated time. A few simple random number generating classes and a
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histogram class for data gathering are also provided. The task system is not intended for handling real
parallelism of some underlying real-time system. Consequently, no facilities are provided to map inter-
rupts and other real-time events into the concepts provided by the task system.

The current version of the task library has a new degree of extensibility, so that it is now
possible to write a class that represents an interrupt or signal that can be waited for.

Implementations of the task system have been used for about eight years on the UNIX system and other
operating systems on 3B2, 3B20, VAX, and Motorola 680x0 hardware.

In the following sections the task library will be described in some detail, and examples of its use will be
given. The classes used in the task system are presented. This allows a detailed and specific discussion of
the concepts involved, but it unfortunately also implies that some concepts cannot be explained in detail
where they are first mentioned.

Tasks

The publicly accessible functions and data of class task look like this:?

class task : public sched

{

public:
task(char* name=0, int mode=0, int stacksize=0);
~task();
task* t_next;
char* t_name;
int waitvec (ocbject**);
int waitlist (object* ...);
void wait (object*) ;
void delay (long) ;
long preempt () ;
void sleep(object* t =0);
void resultis(int);
void cancel (int) ;
}:

The base class, sched, is responsible for scheduling and for the functionality that is common to tasks and
timers (described below). The public part of its declaration is:
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class sched : public object {

public:
sched() ;

void setclock (long) ;
long rdtime () ;

int rdstate () ;

int pending () ;
void cancel (int) ;
int result () ;

i
Class sched is used strictly as a base class: that is, only instances of derived classes are created.

A task is a locus of control, a virtual processor. It too can only be used as a base class, with the further
limitation that only one level of derivation from class task is allowed

Multi-level derivation from class task is disallowed for implementation reasons. See the manual page for a
NoTeE | workaround for this limitation.

A task executes the program supplied as the constructor of the derived class.® The most basic feature of a
task is that it can be suspended and later resumed so that several tasks can run in quasi-parallel. Most
member functions of class task are conditional or unconditional requests for suspension.

A task can be in one of three states:

RUNNING The task is executing instructions or it will be scheduled to do so without further
intervention from other tasks.

IDLE The task is not in the RUNNING state, but it can be transferred to the RUNNING state
by some suitable action. That is, it is waiting.

TERMINATED The task has completed its work. It cannot be resumed, but its result can be
retrieved.

The function sched: :xdstate() returns the state.

A simple example of the use of tasks is where one task creates another to run in parallel with itself. Later
the creator can obtain the result produced by the “secondary”” task. For example, a task which counts the
number of spaces in a string could be declared. First a class Spaces must be declared.

class Spaces : public task

{
public:
Spaces (char*) ;

};

In the case of class Spaces the declaration is trivial. It states that Spaces is derived from class task so
that each object of class Spaces becomes an independently scheduled entity. The program for the task is
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provided by its constructor.

Spaces: :Spaces (register char* g)
{
register int i=0;
register char c;
while (¢ = *s++)
if (¢ == " ') i++;
resultis(i);

}

This function counts the spaces in its argument string and returns the result using the class task function
resultis(). A task of class Spaces can now be created and used like this:

main()

{
Spaces ss("a line with four spaces");
int count = ss.result();
printf("count = %d0, count);
thistask->resultis(0);

}

When an object of class Spaces is created, like ss here, 1ts constructor becomes a new task that runs in
parallel with the task® that created it. A task can “return’” an mteger5 value using the function

task: :resultis(int). The task then becomes TERMINATED and the value is available for examination by
the function sched: :result (). That is, in this example ss will call resultis () with the argument 4,
which will be returned from sched: :result () to the parent task. If a task calls result() for another task
which has not yet completed the calling task will be suspended. After the other task finishes the call to
result () in the waiting task will return. A task waiting for another to complete is IDLE. If a task calls
result () for itself it will cause a run time error.

A task cannot return a value using the usual function return mechanism; it must use resultis(). This
function puts the task into the TERMINATED state from which it cannot be resumed.

Queues

A queue is a type of storage that is organized so that objects are retrieved from it in the order in which they
were inserted into it. A queue has a head from which data is retrieved and a tail where data is inserted.
With a little elaboration this basic type of data structure makes an excellent inter-task communication facil-
ity.

There is no “class queue’” available to a user. Instead, the two classes ghead and gtail provide the ser-
vices needed. There is a function gtail: :put () which adds an object to the tail of a queue and a function
ghead: :get () which retrieves an object from the head of a queue. This allows explicit separation between
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the source and the recipient of data. The public part of the declaration of class ghead looks like this:

class ghead : public object
{

public:

ghead (int =WMODE, int =10000);
~ghead() ;

object* get();

int putback(object*) ;

int rdcount () ;

int rdmode () ;

int rdmax () ;

void setmode (int) ;

void setmax(int) ;

gtail* tail();
ghead* cut () ;

void splice(gtail *);
int pending() ;
void print (int, int =0);

}i

A queue can be created like this:
ghead gh;

To obtain a gqtail for an existing queue execute tail () for its head:
qgtail* gtp = gh.tail();

The queue could now be used as a one way inter-task communication channel by giving its head and tail as
arguments to two new tasks, Producer and Consumer:

Producer pp(gtp);
Consumer cc (&gh) ;

The producer task pp can now put () objects to the tail of the queue (denoted by the pointer gtp) and the
consumer task cc can get () those objects from its head (denoted by the pointer &gh). The function
gtail::put () takes a pointer to a class object as argument, and ghead: :get () returns such a pointer.
Unless the user has specified otherwise a task executing ghead: :get () will be suspended temporarily if
the queue is empty. 7 After another task executes put () on the assoc1ated queue tail the suspended task will
be resumed. Similarly a task executing gtail::put() ona full® queue will be suspended until some other
task removes data from the queue.

The objects transmitted through a queue must be of class object or of some class derived from it. Class
object (described under “The object Class”) is provided by the task system, and it is up to the program-
mer to define types of objects suitable for each application.
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In the current version of the task library ghead and gtail have the form of user extensions,
but in the original version they were built in. Since extensibility was limited, the supplied
classes had to support a wide range of programming styles. Thus they may seem “feature-
rich.” The new organization makes it easy to provide new kinds of queues and other forms
of task interaction.

A Server Example

As an example of the use of tasks and queues we will define a server task that receives requests for service
in the form of messages on a queue, handles the requests and returns replies on other queues. One could
define a class Message as follows:

class Message : public object
{

public:
int r_operation;
int r_argl;
int r_argl;

gtail* r_reply;
}:

A message, that is an object of class Message, describes an operation r_operation that is to be performed
by the recipient of the message. Arguments for this operation can be passed as r_argl and r_arg2, and
the result of the operation is to be returned as a message on the queue denoted by r_reply.

A server for these messages can be defined as follows:
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class Server : public task

{
public:

Server (ghead *);

}:

Server: :Server (ghead* in)

{
for (;;) {

Message* req = (Message *) in->get();

gtail* reply = reg->r_reply;
int res = VALUE;

int val;

switch (reqg->r_operation) {
case PLUS:

val = reg->r_argl + reqg->r_arg2?;
break;

case MINUS:

default:

res = ERROR;

}

req->r_operation = res;
reg->r_argl = val;
reply->put (req) ;

This style of server has proved useful in many contexts. In particular, it is the backbone of many
“message-based systems.” In this particular example a server, that is an object of class Server, and the
queue on which it depends can be declared:

gtail* rg = new gtail;

Sexrver* ser =

new Server (rg->head());

Other tasks can now send a request to this particular server through rg. For example:

2-8
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ghead rply;
gtail* rply_to = rply.tail();
Message* mess = new Message;

mess->r_operation = PLUS;
mess->r_argl = 1;
mess->r_arg2 = 2;
mess->r_reply = rply_to;

rg->put (mess) ;
mess = (Message *) rply.get();
if (mess->r_operation == ERROR) error();
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More about Queues: Mode and Size

A queue head has a mode that controls what happens when get () is executed on an empty queue. In
EMODE this causes a run time error. In ZMODE it will cause get () to return the NULL pointer instead of a
pointer to an object. In WMODE a task executing a get () on an empty queue will wait on that queue until
the queue becomes non-empty. Unless the user specifies the mode explicitly a queue head will be in
WMODE. The function ghead: :rdmode () returns the current mode and ghead: : setmode () can be used to
change it.

As mentioned above a queue also has a maximum size. This can be changed using ghead: :setmax (), and
read using ghead: : rdmax() .

The mode and maximum size for a queue can also be specified when the queue is created. For example:
ghead Q1 (ZMODE, 10);
ghead* QP2 = new ghead(EMODE, 64*BUFSIZE);

The public part of the declaration of class gqtail is similar to that of class ghead. The two classes comple-

ment each other, and together they provide a representation of the general idea of a queue:

class gtail : public object
{

/] ..
public:
gtail(int = WMODE, int = 10000);
~qtail();
int put (object*) ;
int rdspace () ;
int rdmax () ;
int rdmode () ;
gtail* cut ();
void splice (ghead*);
ghead* head() ;
void setmode (int m) ;
void setmax (int m) ;
int pending () ;
void print (int, int =0);
}:

A queue tail’s mode controls what happens on queue overflow in the same way as a queue head’s mode
controls what happens on queue underflow. For example, when a task executes put () on a full queue
where the queue tail is in WMODE, then that task will be suspended until the queue is no longer full. The
modes of a queue’s head and tail need not be the same.

Similarly the maximum number of objects which can be on a queue can be examined by rdmax() and
changed by setmax (). Decreasing the maximum below the current number of objects on the queue is
legal. Doing this simply implies that no new objects can be put on the queue until the queue has been
drained below the new limit.
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ghead: :rdcount () returns the current number of objects in a queue, and gtail: :rdspace() returns the
number of objects which can be inserted into a queue before it becomes full.

ghead: :putback () puts its argument back at the head of the queue, that is

ghead gh (WMODE, 10) ;
object* oo = gh.get();
gh.putback (0o) ;
oo = gh.get();

will assign the same object to oo twice. putback() has proved to be a useful function in many systems in
the past, and it also allows a queue head to operate as a stack. When putback() is used, the task execut-
ing it competes for queue space with tasks using put () on the queue’s tail. A putback() to a full queue
causes a run time error in both EMODE and WMODE. In ZMODE it returns NULL.

More about Tasks

When a task is created it can be given three arguments. The first is a character string pointer which is used
to initialize the class task variable t_name. This name can be used to provide more readable output and
does not affect the behavior of the task. The string denoted by the pointer will not be copied. The t_name
is used by the debugging aids and error reporting functions described below. The other two class task
arguments are tuning parameters and will be described below. If an argument is NULL a system default
will be used. For example, we could have given each Server task a name like this:

class Server : public task

{

Server (char*, ghead *);

}i

void Server::Server (char* name, ghead* in)
(name) // argument for Server’s base class task
{
/7] ..
}

Server my_name_is_fred("fred", ghp);
task::sleep(object* =0) suspends the task unconditionally without specifying what is supposed to
cause it to be resumed.

If an argument is given to task: :sleep(cbject* =0) which is a pointer to a pending
object, the task will be remembered by the object, so that after it is no longer pending, the
task will be resumed.
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task::cancel() puts a task into the TERMINATED state and sets the return value just like resultis().
However, cancel () does not invoke the scheduler so that one task can terminate another without losing
control itself.

The pointer
task* thistask;

denotes the currently active task. If no tasks have been created its value is 0. It is illegal to assign to this-
task. The use of thistask enables the class task functions to be used from external functions without
explicit passing of the current task’s this pointer.

The pointer9
task* task_chain;
is the start of a chain of all tasks. In the following loop t points to every task in turn:

task* t;
for (t=task_chain; t; t=t->t_next) ;

It is not possible to have only one task. Therefore, when the first task is created in a program another task
is implicitly created. Its name is main and its code is the original main () function. It can be suspended
and resumed like any other task. Please remember that a return from main() terminates a C program. If
the “main” task should be terminated when there are other tasks which should be left running, then
resultis() can be used. For example,

thistask->resultis(0);
can be executed in main (). The program will then run on until no more tasks are or can become RUNNING.

It is illegal for a task to return. Always call resultis() instead of return, and never just ““drop out of the
bottom” of a task. Unless a task contains an infinite loop so that it will never terminate place a call of
resultis() at the end of its body.

The task system does not provide a garbage collector. It is left to the programmer to ensure that pointers
to deallocated store are not used.

Waiting
Functions like sched: :result (), ghead: :get (), and gtail::put () each provide a way of waiting for
one single specific event to happen. More general facilities are sometimes needed.

When an object must be waited for, we say it is pending. For example,

m A queue head whose associated queue is empty is pending because if a task calls
get () for it, the task must wait until some other task puts some data in the queue,

m  Similarly, a queue tail whose queue is full is pending because a put () must wait, and
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m A task that has not terminated is pending because its result is not available.

Each class derived from object may have its own definition of the virtual pending () func-
tion. An object may have several operations that could suspend the calling task, but it can
have only one definition of pending (). Therefore (for example) it is not possible to combine
a queue head and a queue tail into a single object, because the former is pending when its
queue is empty, and the latter when its queue is full. New kinds of objects, with new kinds
of interaction can be added to the task library, with the fundamental requirement being a
definition of pending () for the new datatype.

task::wait (cbject*) provides a way of waiting on an arbitrary object. If the argument points to a pend-
ing object, the calling task will be suspended until the object is no longer pending. If the argument is not
pending the caller will not be suspended at all. For example, if taskp is a pointer to a task then

wait (taskp);
will suspend the task executing it until the task denoted by taskp finishes.

Each class derived from class object which is ever going to be “waited on” must have rules specifying
under which conditions a task executing a wait () for it will be resumed. The rules for class task, ghead,
and gtail have been stated.

The conditions for wakeup are reflected in state changes in the objects, and are not just transitory
unrecorded signals. For example, if a task executes a wait () for a non-empty ghead it will immediately
continue, that is the condition for returning from a wait () for a ghead is that the queue is non-empty, not
a brief state change from empty to non-empty. Rules of this type simplify programming considerably by
eliminating race conditions.

When the state of an object changes from pending to not pending, object::alert () must
be called for the object. This function changes the state of all tasks “remembered” by the
object from IDLE to RUNNING and puts them on the scheduler's run_chain. Thus all such
operations should be member functions of the object’s class or a related class. For exam-
ple, in gtail::put (), if the queue was empty, a call to alert () is made for the associated
queue head. If it was possible to put an object on a queue without calling a member func-
tion, then there would be no guarantee that alert () would be called.

The functions task: :waitvec() and task::waitlist() suspend a task waiting for one of a list of objectso
for example to wait for messages to arrive on one of a number of queue heads. waitlist (cbject* ...) !
takes a list of object pointers terminated by a zero as argument; for example:

ghead* ql;
ghead* az;
/] ...

short who = waitlist(qgl, g2, 0);

will suspend the task executing it until either g1 or g2 is non-empty. If either is non-empty when
waitlist() is called the task will continue immediately.
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The value returned is the position in the list of the object that caused the return from the wait, that is if g2
caused the task to resume the value 1 will be assigned to who. Positions are numbered starting from 0.
waitlist () can take any number of arguments. The degenerate example

waitlist(0);

causes unconditional suspension of the task executing it without any guarantee of later resumption. It is
equivalent to sleep() and wait (0).

Please note that one should not assume that because waitlist () returns a particular value indicating one
object as the cause of resumption none of the other objects are “ready.” The value returned by
waitlist () only indicates what is known to have happened, and it does not exclude other independent
possibilities.
However if waitlist () indicates a particular object, that object is guaranteed to be “ready,”
because waitlist () does not return until the object is no longer pending.

Because every class in the task system allows non-blocking examination of the conditions which might lead
to suspension using the three wait functions, the value returned by waitlist () can always be ignored.
The information it conveys can always be obtained by direct inquiry. In many cases, however, the value
returned can be trusted and used to write simpler, more efficient programs.

waitvec(), a variation of waitlist (). takes the address of a vector holding a list of object pointers. For
example:

object* wvec[] = ( gl, a2, 0 };
short who = waitvec(vec);

is equivalent to the previous example.

System Time and Timers
The long variable clock measures simulated time. It is initialized to zero. It is illegal to assign to clock.
task::delay (long) suspends a task for a specified time. That is,

long t = clock;
delay(n);
actual_delay = clock-t;

will assign the value n to actual_delay. delay() is useful for representing service delays in simulations.
While a task is delayed in this way its state is still RUNNING, but it will not be affected by the actions of
other tasks except if cancel() or preempt () is used on it. delay(n) makes an IDLE task RUNNING so that
it will start executing at time clock+n.

task: :preempt () makes a RUNNING task IDLE and returns the number of time units left of its delay.
Applying preempt () to an IDLE or TERMINATED task causes a run time error. This function is useful when
tasks are used to represent processes in a system with preemptive scheduling and delay times are used to
represent the time used by executing processes. The value returned by preempt () allows the preempted
task to be re-started with a new delay time which is a function of the delay time at the time of preemption.
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For example:
long time left = other task->preempt();
/7.
other_task->delay (time_left+10);
A timer provides a facility for implementing time-outs and other time dependent phenomena.

Class timer has this declaration:

class timer : public sched (

public:
timer (long);
~timer();
void reset(long);
void print(int, int =0);
}i

A timer is quite similar to a task with a constructor consisting of the single statement
delay (d) ;

that is, when a timer is created it simply waits for the number of time units given to it as its argument, and
then wakes up any tasks waiting for it.

A timer’s state can be either RUNNING or TERMINATED. This state can be inspected by using
sched: :rxdstate().

A common use of timers is to wait for a task and a timer. For example, one can wait for the completion of
a task handling a simulated input operation and also on a timer. The timer ensures that the waiting task
will eventually be resumed even if the input operation is never completed:11

timer* tt = new timer(15);

short res = waitlist (io_ptr,tt,0);
switch (res) (
case 0:

/* normal completion of i/o */

break;

case 1:
/* time out occurred */
break;

default:
error (IMPOSSIBLE) ;
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sched: :result and sched::cancel() have the same use and effects on timers as on
tasks. Since there is no timer::resultis(), the value returned by sched: :result () is
undefined for a timer unless cancel () was used.

timer::reset () re-sets the timer delay to the value of its argument. This makes repeated use of timers
possible. A timer can be reset () even when it is TERMINATED.

A unit of simulated time can be used to represent any unit of real time. Only delay () causes the clock to
advance.

More About Queues: Cutting and Splicing

One of the most convenient and powerful ways of using tasks involves tasks defined to do a transformation
on a data stream. Such a task is called a filter. It reads its input from one queue and writes its output onto
another queue. Tasks at the “other ends” of these queues tend to view these queues plus the filter as one
entity. The data source simply sees an output queue that is being emptied at some rate, and the task at the
receiving end sees an input queue being filled. In other words, a task sees only its input and output
queues and cares little about the “internal organization” of the programs that operate on the other ends of
those queues.

For example, one task could produce a stream of lines of characters, that is objects of class Line, and
another expect an input stream consisting of words, that is objects of class Word. A filter that handles the
conversion could be defined and used like this:
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class Line_to_word : task
{
public:
Line_to_word(ghead*, gtail¥*);
Word* next_word (Line*) ;

}i

Line_to_word::Line to_word(ghead* in_q, gtail* out_qg)
{
Line* 1;
Word* w;
for(;;) {
1 = (Line *) in_g->get();
while(w = next_word(l)) out_g->put ((object *)w);

ghead* line g = new ghead (WMODE, 10) ;
gtail* word_q = new gtail (WMODE, 50) ;
Producer* prod = new Producer(line_g->tail());
Consumer* cons = new Consumer (word_g->head()) ;

Line_to_word* filt = new Line_to _word(line_g, word _q);

In this way the filter £ilt is programmed into the path between cons and prod using two queues to
separate £ilt’s input from its output.

This is a fairly static use of a filter. Often one would like to insert a filter into an existing data path. For
example, a macro-based text formatting program could be organized as a sequence of filters — each doing
its small part of the common task. First some filters re-arrange the input into a form suitable for the for-
matter proper, then the “input independent” formatter does its job producing output of a standard form,
and last some output filters adjust this output to a form suitable for physical output. The task £ilt is an
example of such a filter. In this scenario it would be useful to have each macro defined as a filter which
the formatter proper inserts just in front of itself when the macro expansion is needed and which removes
itself when it is not needed any more. Assuming that data streams are represented by queues, this can be
achieved by using the class ghead functions cut () and splice().

When the task formatter recognizes a call to the macro foo it creates a new task of class Macro to handle
a macro of type FOO and diverts its own input through it. This is done by first “cutting” the input queue
to create a place to insert the new filter, and then creating the filter giving it the new ghead and gtail as
arguments:

ghead* newhead = input_gueue->cut();
gtail* newtail = input_queue->tail();
Macro* f = new Macro (FOO, newhead, newtail) ;
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ghead: :cut () splits the queue to which it is applied into two. newhead, the pointer returned from cut (),
denotes the ghead for the original queue and has the same mode as the original ghead. The original ghead
is now attached to a new empty queue with the same max as the original.

Puts to the original gtail will therefore place objects on the filter’s input queue, and gets from the original
ghead will retrieve objects from the filter’s output queue.

The result of these operations has been to insert a filter with an input and an output queue into a queue
without changing the appearance of that queue to anyone using it, and without halting the flow of objects
through that queue. In our example the macro expansion filter foo will get () the input which would oth-
erwise have gone to the formatter, interpret it as macro arguments, and output the expanded input as its
output.

The filter can be removed again by splicing its input and output queues together with ghead: :splice():
newhead->splice (newtail) ;
splice() deletes the ghead to which it is applied, the gtail given to it as an argument, and the queue

denoted by that gtail. If the splice() operation causes an empty queue to become non-empty or a full
queue to become non-full all tasks waiting for such a state change are resumed.

Deleting the filter completes the cleanup:
delete f;

Typically a filter would remove itself when its task was completed, because the task that inserted it would
not be programmed to be aware of the presence of the filter it inserted. The sequence of operations which
enables a task to remove itself without a trace is:

cancel (any_value) ;
delete this;

This will work because cancel () does not imply immediate suspension, only a guarantee that the task can-
not be resumed.

gtail::cut() and gtail::splice() are similar to ghead, but they operate on the other end of the queue.

Encapsulation

Passing information between tasks through queues can lead to rather tedious, repetitive (and therefore
error prone) packing and unpacking of information into messages. Simple encapsulation techniques can be
used to relieve the programmer of this. For example, by adding a constructor to the class Message the
server example could be re-written thus:
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class Message : object

{

public:
int r_operation;
int r_argl;
int r_arg2;
gtail* r_reply;
Message(int op, int al, int a2, gtail* rp)
r_operation(op), r_argl(al),
r_arg2(a2), r_reply(rp) (}
}:

Message* mess;

rg->put (new Message (PLUS, 1, 2, rply_to)};
mess = (Message *) rply.get():;

if (mess->r_operation == ERROR) error();

Furthermore, because the message queues obviously are meant to hold only Message objects a specific mes-
sage queue could be defined and used:

class Mghead : ghead

{
public:

Message® get() { return (Message *) ghead::get(); };
}i

class Mgtail : gtail
{
public:
int put (Message* m) { return gtail::put(m); };
Yi
The use of Mgtail: :put () ensures that only class Message objects are put on the queue, and no type cast
is needed when class Message objects are taken from the queue using Mghead.get (). For example:

mess = rply->get();

Because the body of Mgtail::put () is present in the class Mgtail, declaration calls of Mgtail::put () will
be expanded inline. This ensures that using a Mgtail is no less efficient than using a gtail directly. In
many cases some error handling can also be handled by the derived put () and get () functions.

An alternative solution is to provide the server class with functions which handle the packing:
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class Server : task

{
gtail* inp;

public:
Server (char*, ghead*);
int plus(int, int, Mgtail *);
int minus(int, int, Mgtail *);

};

int Server::plus(int argl, int arg2, Mgtail * rqt)
{

Message* mess;

int X;

inp->put (new Message (PLUS,argl,arg2,rqt));

mess = rqt->head()->get():;

X = mess->r_operation;

delete mess;

return x;

}

so now the server task can be requested to perform services like this:

Mgtail qq;

Server ss("plus_and_minus*, 0, 0);
int two = ss.plus(l, 1, &gq);
int ten = ss.minus (12, 2, &qq);

For large programs this style of inter-task communication promises not only increased clarity, but also
increased efficiency. The message queue interaction may, where necessary, be transparently replaced by a
specially tailored inter-task communication facility.

These techniques are now widely applied in C++ programming, but when this paper was first
written, they were new to C.

Histograms and Random Numbers

To ease data gathering class histogram is provided.
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struct histogram
// "nbin" bins covering the range [l:r] uniformly

// nbin*binsize == r-1

{
int 1, r;
int binsize;
int nbin;
int* h;

long sum;
long sgsum;
histogram(int=16, int=0, int=16);
void add (int) ;
void print();

}:

A histogram consists of nbin bins h[0], ... h[nbin-1] covering a range [1:r] of integers. The func-
tion add () adds one to the correct bin for its integer argument. The sum of the integers added is main-
tained in sum, and the sum of their squares is maintained in sgsum. If an argument to add () is outside the
range [1:r] the range is adapted by either decreasing 1 or increasing r. The number of bins remains con-
stant so the size of the range covered by a bin is doubled each time the size of the range [1:r] is. The
print () function prints out the numbers of entries for each non-empty bin.

In most simulations some form of random number generation is needed. The generators provided here are
intended to help the developer of a simulation to get started and to provide a paradigm for generators of
more suitable distributions.

class randint
// uniform distribution in the interval [0,MAXINT_AS FLOAT]

{

long randx;

public:
randint (long s = 0);
void seed(long s);
int draw() ;

float fdraw() ;
Yi
The following program shows the use of class randint. The ints returned by randint: :draw() are uni-

formly distributed in the interval [0:largest_positive_int]. The floats returned by
randint::fdraw() are uniformly distributed in the interval [0:1].

The Task Library 2-21



A Set of C++ Classes for Co-routine Style Programming

main()
{
randint ir;
register i;
for (i=0; i<100; i++)
printf ("i=%d f=%f ", ir.draw(), ir.fdraw());
}

Each object of class randint provides an independent sequence of random numbers. randint::seed()
can be used to reinitialize a generator. The draw() function calls the underlying C library rand(3). Using
class randint, generators for other distributions are easily programmed. Note that erand: :draw() calls
log() from the math library, so a program using it must be loaded with -1m.

class urand : public randint
// uniform distribution in the interval [low,high]
{
public:

int low, high;

urand(int 1, int h) { low=1l; high=h; }
int draw() { return int(low + (high-low) *
(0+randint: :draw() /MAXINT _AS FLOAT)); }

}:

class erand : public randint
// exponential distribution random number generator
{
public:
int mean;
erand(int m) { mean=m; };
int draw() ;

Implementation Details

The following sections contain many implementation-dependent details. The implementation described is

the UNIX version. Implementation-dependent information is unfortunately often necessary to allow tuning
and ease debugging.
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Task Stack Allocation

The two arguments mode and stacksize allow the user to guide the system’s handling of the task. Their
exact interpretation is implementation dependent. Users who are not interested in implementation details
and/or want a more portable program should set them both to zero. The system will then choose (hope-
fully reasonable) implementation-dependent default values.

The stacksize argument indicates the maximum amount of stack storage that the task is allowed to use.
Using more is an error. It will be expressed in a unit of store (typically machine words) suitable for stack
allocation on the host system.

The mode provides additional information. The value SHARED indicates that the stack space should be
taken from the stack space of the parent task, that is the task which created the new task. Where SHARED
stacks are used the active part of the stack is copied to a save area when a task is suspended, and copied
back when it is resumed. Since SHARED stack locations are not dedicated to a single task pointers to local variables
should not be passed to other tasks. The time needed to suspend and resume a task with SHARED stack is
approximately proportional to the amount of stack space actually used at the time of suspension.

If, on the other hand, the mode is DEDICATED then a new and separate stack area is allocated, and no copy-
ing of stack space will occur.

Scheduling

Functions of a system class, known as the scheduler, are invoked as the result of any function of class task
which causes the suspension of a running task, and may be invoked by any function from the standard
classes described here. The scheduler selects the next task to run. When the scheduler finds no more tasks
to run, and there are no interrupt_handlers, it examines the pointer variable exit_fct, and if this is
non-zero the scheduler will call the function denoted by it.

Whenever clock is advanced the scheduler examines the pointer variable clock_task. If this denotes a
task, then that task will be resumed before any other task. The clock_task must be IDLE when resumed
by the scheduler. The class task function sleep () is useful to ensure this.

Debugging and Tuning Aids

The task system has been designed under the assumption that a typical use of tasks may involve hundreds
of tasks and need tuning to achieve an acceptable time-space tradeoff. The task of debugging such a sys-
tem can safely be assumed to be non-trivial.

Classes were used in the implementation of the task system largely because they allow the scope of data
and functions to be explicitly restricted to the object to which they belong. This allows better type checking
of a multi-threaded program than could be achieved by a function-based implementation. The classes
which constitute the task system were designed to allow quite strong type checking of programs using
them.

A number of run time errors are detected by the task system. For example it is illegal to delete a queue
on which a task is waiting. When such a run time error is detected the task system function

object: :task_error is called with the number of the error and the this pointer of the object which
caused the error as arguments. A list of run time errors appears under “Run-Time Errors.” task_error()
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will in turn examine the pointer error_fct, and if this is non-zero call the function denoted by it with a
copy of its own arguments. function Otherwise task_error () will call the system function exit () with
the error number as argument.

When returning from task_error() after executing an error_fct which returned rather than using
exit () the task system will re-try the operation which caused the error (provided that error_fct could
have affected the condition which caused the error). For example, a put () to a ghead will be re-tried
because the user’s error_fct might have either caused the get () function to be used on the queue, or
used chmax () to allow more objects to be inserted into that queue.

This error handling mechanism is primarily designed for debugging and it is expected that
user error functions will print some appropriate error message and exit.

Beware of infinite loops.

All task system classes have a function print () which can be used to print the contents of their objects on
stdout. A print() function takes an int argument indicating the amount of information to be printed.
print (0) gives the minimum amount of information, print (VERBOSE) rather more, and print (CHAIN)
will call print () for objects on lists associated with the object with its own arguments. The print () argu-
ment constants can be combined by the or operator. For example

thistask->print (VERBOSE) ;
run_chain->print (VERBOSE |CHAIN) ;

will verbosely describe every non-TERMINATED timer and every RUNNING task. For tasks information about

the run time stack is printed by print (STACK) . If the variable _hwm is set to a non-zero value,

print (STACK) will also give an estimate of the maximum amount of stack space ever used by the task, the

stack’s “high water mark.” For tasks that share a stack, the high water mark printed will be the high water
mark of the most greedy task. For example, information describing stack usage for all tasks can be printed

by:
task_chain->print (STACK|CHAIN) ;

The output of the print () functions is implementation-dependent and hopefully self-explanatory.

Overheads and Performance
The store used for representing a class object in addition to the user specified data is:

object | 3 words

timer | 5 words

task 18 words + stacksize

queue | 15 words (including the ghead and the qgtail)

The times needed to execute some of the task system functions are (very) approximately:
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C procedure call + return | 1 unit

task suspend + resume 9 units (using result())
put 2 units
get 2 units

wait, waitvec, or waitlist 3 units
The last four actions can all cause a task to be suspended. When this happens add 6 units of time.

For timing results relative to UNIX process switching, see “Extending the C++ Task System
for Real-Time Control.”

The task system uses about 15K bytes of store for program and data, but much of this is redundant virtual
function tables that will be eliminated in a future version of the C++ compiler.

The object Class

The task system as described above is implemented using a lower level of abstraction based on the direct
use of the class object. Class object can also be used as a base for other (user defined) abstractions, but
beware, it is an implementation tool that is not intended to be used directly.

Class object is a base class for all classes in the task system and also the most basic facility for inter-task
communication. The declaration of class object looks like this:

class object

{

friend sched;
friend task;

olink* o_link;
public:
object* o_next;

virtual int o_type();
object () { o_link=0; o_next=0; }

~object () ;
void remember (task* t) { o_link = new olink(t,o_link); }
void forget (task*) ; // remove all occurrences of task from chain
void alert(); // prepare IDLE tasks for scheduling
virtual int pending(); // TRUE if this object should be waited for

virtual void print(int, int =0);// first arg VERBOSE, CHAIN, or STACK
}:

The task system implements objects of type TASK, QHEAD, QTAIL, and TIMER.

Virtual functions make it unnecessary to ever test the type of an object. The virtual function
o_type() is never called.

The Task Library 2-25



A Set of C++ Classes for Co-routine Style Programming

A task can be added to the set of tasks “remembered” by an object by executing cbject : : remember () and
a task can be removed from this set by executing object: : forget (). Executing object::alert() has the
effect of transferring all IDLE tasks remembered by the object to the run_chain and the RUNNING state.

The virtual function object: :pending () provides the “glue” that allows new kinds of
objects and new communication protocols to be added to the task system. The object may
have any kind of operation that may cause the invoking task to wait, but it must implement
its own version of pending () to tell whether the operation would cause a wait.

A task can be “remembered” by several objects or several times by the same object without any ill effects.
forget () will insure that its argument is not “remembered”” any more, and it causes no bad effects when
used for an object that does not “remember” its argument task. No record is kept of how many alert ()
operations have been executed on an object. alert () does not cause an object to forget () tasks. Execut-
ing a remember () does not suspend a task. Applying alert () to an object that does not remember any
tasks is legal, but has no effect. Caveat emptor!

The functions cbject : :remember (), object: : forget (), object: :pending (), and object::alert()
provide a simple, efficient, but unstructured and therefore error-prone communication mechanism.

The declarations for the task system classes can be found in /usr/include/CC/task.h on systems where it

is implemented.

Run Time Errors

When an error is detected at run time, task_error() is called. This function will examine error_£fct and
if this variable denotes a function, that function will be called with the error number and this as argu-
ments, otherwise the error number will be given as an argument to print_error () which will print an
error message on stderr and terminate the program.

E_OLINK Attempt to delete an object which remembers a task.
E_ONEXT Attempt to delete an object which is still on some chain.
E_GETEMPTY Attempt to get from an empty queue in E_MODE.

E_PUTOBJ Attempt to put an object already on some queue.
E_PUTFULL Attempt to put to a full queue in E_MODE.

E_BACKOBJ Attempt to putback an object already on some queue.
E_BACKFULL Attempt to putback to a full queue in E_MODE.

E_SETCLOCK Clock was non-zero when setclock () was called.
E_CLOCKIDLE  The clock_task was not IDLE when the clock was advanced.
E_RESTERM Attempt to resume a TERMINATED task.

E_RESRUN Attempt to resume a RUNNING task.

E_NEGTIME Negative argument to delay ().

E_RESOBJ Attempt to resume task or timer already on some queue.
E_HISTO Bad arguments for histogram constructor.

E_STACK Task run time stack overflow.

E_STORE No more free store — new() failed.

E_TASKMODE Illegal mode argument for task constructor.
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E_TASKDEL
E_TASKPRE
E_TIMERDEL
E_SCHTIME
E_SCHOBJ
E_QDEL
E_RESULT
E_WAIT
E_FUNCS
E_FRAMES
E_REGMASK

E_FUDGE_SIZE

E_NO_HNDLR
E_BADSIG
E_LOSTHNDLR

Attempt to delete a non-TERMINATED task.

Attempt to preempt a non-RUNNING task.

Attempt to delete a non-TERMINATED timer.
Scheduler run chain is corrupted: bad time.

Sched object used directly instead of as a base class.
Attempt to delete a non-empty queue.

A task attempted to obtain its own result ().

A task attempted to wait () for itself to TERMINATE.
Internal error — cannot determine the call frame layout.
Internal error — cannot determine frame size.
Internal error — unexpected register mask.

Internal error — fudged frame too big.

No handler for the generated signal.

Attempt to use a signal number that is out of range.
Signal handler not on chain.

A Program Using Tasks

#include <task.h>

/* trivial test example:
make a set of tasks which pass an object round between themselves
use printf to indicate progress
WARNING: this program sets up an infinite loop

*/

class pc :

{

}i

task

pc(char*, gtail*, ghead *);

pc::pc(char* n, gtail* t, ghead * h) : (n,0,0)

{

printf ("new pc(%s,%d,%d)\n",n,t, h);

while (1)

main()

object* p = h->get();
printf ("task %s\n",n);
t->put (p);

ghead* hh = new ghead;

The Task Library
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gtail* t = hh->tail();
ghead* h;
short i;

printf ("main\n");

for (i=0; i<20; i++) {
char* n = new char[2]; /* make a one letter task name */
n[0] = ‘a’+i;
n[l] = 0;

h = new ghead;
new pc(n,t,h);
printf("main()’s loop\n");
t = h->tail();

}

new pc("first pc",t,hh);
printf ("main: here we go\n");
t->put (new object) ;
printf("main: exit\n");
thistask->resultis(0);
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This section is taken from a paper by Jonathan E. Shopiro.
NOTE

|
Abstract

The task system for coroutine programming was one of the first libraries written in C++ and it has served
admirably in several applications. It is small, efficient, and easy to use. As part of a robot control project,
it was extended to support real-time control. The new task library is more robust, more easily extendible,
and more portable than the original. It is upward compatible, so that programs written for the old task
library can still be used. This section documents the new features and the internal structure of the revised
system, and is intended for users of the task library and for authors of other coroutine systems.

Overview

The C++ task library is a coroutine!? support system for C++. A task is an object with an associated corou-
tine. The task library includes a scheduler that enables each task to execute just when it has work to do,
and to wait when necessary for whatever is needed.

Programming with tasks is particularly appropriate for simulations, real-time process control, and other
applications which are naturally represented as sets of concurrent activities. A task can represent a simple
part of a complex system, and when the task gains control, it can process its current input data, perhaps
creating other data that will be processed by other tasks. It can then relinquish control, waiting for more
input or an external event.

In a program using the C++ task system, all tasks share the same address space so that pointers can be
passed between tasks, and it is easy to share common data structures. Also, the scheduler is non-
preemptive, so that each task runs until it explicitly gives up the single processor, and only then does the
scheduler choose a new task to run. This eliminates the need for locks on shared data (which would be
required if preemptive scheduling or multiple processors were used) and allows task-switching to be
accomplished with low overhead, but requires the programmer to be careful that no task monopolizes the
processor.

The rest of this section is an overview of control flow in the task system along with a brief note on task sys-
tem performance. The section “Real-Time Extensions”” describes the interrupt handler class and how it can
be used to provide real-time response to external events. Familiarity with C++ is assumed.

The Structure of the Task System

Control in the task system is based on a concept of operations which may succeed immediately or be
blocked, and objectsl which may be ready or pending (not ready). When a task executes a blocking opera-
tion on an object that is ready, the operation succeeds immediately and the task continues running, but if
the object is pending, the task waits. Control then returns to the scheduler, which chooses the next task
from the run chain, a list that contains all the tasks that are ready to run (not waiting or terminated). For
example, a queue head is ready when the associated queue has data, and get (which extracts an item from
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the queue) is a blocking operation for queue heads. Similarly, put is a blocking operation for queue tails,
which are ready unless the associated queue is full.

Each different kind of object can have its own way of determining whether it is ready or not, which makes
it easy to add new capabilities to the system. On the other hand, each kind of object can have only one cri-
terion for readiness (although it may have several blocking operations), so it is not possible for one object
to act as both a queue head and a queue tail, for example.

Each object contains a list (the remember chain) of the tasks that are waiting for it. When any operation
changes the state of a pending object so that it becomes ready, those tasks are moved to the run chain; this
is called an alert. Thus the cycle is: a task runs until it blocks; it is saved on the remember chain of one or
more pending objects; some other task or an interrupt alerts the object; the original task is moved to the
run chain; eventually the task runs again.

Task System Performance

The fundamental operations of the task system are task creation and task switching. In order to make a
meaningful evaluation of their performance, equivalent programs using tasks and UNIX Operating System
processes were written. These programs are given under “Example Programs.” Each of the first pair of
programs (tcreate.c and ucreate.c) repeatedly creates new trivial tasks (processes) and waits for them
to terminate. Each of the second pair of programs (tswitch.c and uswitch.c) creates a single child task
(process) and repeatedly exchanges control with it through a pair of semaphores (see under “Semaphores”)
in the task version, and through UNIX signals in the process version. The programs were run on a SUN
3/280 under 4.2 BSD, using the free store allocator (malloc.c) from Ninth Edition UNIX, which is much fas-
ter than the one supplied with 4.2 BSD. The results were that tcreate.c was 37 times faster than
ucreate.c, and tswitch.c was 10 times faster than uswitch.c.

It is important to note that the task system and the UNIX Operating System are not equivalent and that the
results of these performance measurements do not imply that the task system is 23.5 times better than
UNIX. Among the significant differences between tasks and processes are the following.

m A set of tasks runs as a single UNIX process. The task system relies on the UNIX Operating System
for I/O, memory management, etc.

m Tasks share an address space, while processes have separate address spaces. This means that tasks
can share data by simply passing pointers, while processes must go through one of several much
more complex and expensive procedures to share data. By the same token, tasks can interfere with
each other as easily as they can cooperate, while errant processes usually kill only themselves.

m The task system can support two or three orders of magnitude more concurrent tasks (especially with
the SHARED option; see ““Task Switching’’) than the UNIX Operating System can support processes. It
is not uncommon for a simulation to require thousands of tasks.

The memory required for the task system is about 14,000 bytes for code and data, plus about 70 bytes per
task, plus stack storage for each task. By default each task has its own stack buffer with a default size of
3000 bytes, but tasks can share a stack buffer and then storage is required only for the active stack of each
task (typically 50 to 100 bytes). This option is very useful for applications with thousands of tasks. Queues
occupy 60 bytes (including both head and tail) plus the size of whatever is stored on the queue. Lists of
tasks are maintained in various places, for example the run chain and remember chains; each occurrence of

2-30 Library Manual



Extending the C++ Task System for Real-Time Control

a task on a list adds 8 bytes to the total memory requirement.

Real-Time Extensions

The application that motivated this work on the task system was a control system for two robots operating
in the same workspace. The most important requirement of this application that was not fulfilled by the
original task system was the need for tasks to wait for external events. For example, after a motion com-
mand was sent to a robot, the task that sent the command needed to wait for the interrupt that was gen-
erated by the robot hardware when the command was complete or had failed. A related requirement of
some real time systems is to respond to external events in a timely manner, for example to retrieve data
from an unbuffered external device. Also, in the original task system, the scheduler would exit when the
run chain was empty. This is inappropriate in a system that is intended to respond to external events
because some task might become runnable after an interrupt.

Hardware interrupts are handled differently by different machines and operating systems, so the interface
to the task system must also vary. For didactic reasons, the version described here is for the UNIX Operat-
ing System using signals as interrupts, but it should be clear how to adapt it to other environments.

In the task system events that can be waited for are represented by instances of class object or derived
classes. When the function object::alert () is called, the tasks that were waiting for that object are made
runnable. A natural solution to the problem of waiting for external events was to define a new kind of
object to represent external events, and when such an event occurs, to call object::alert () for the
appropriate object. These objects are called interrupt handlers.

class Interrupt_handler : public object {

int id; // signal or interrupt number
int got_interrupt; // an interrupt has been received but not alerted
Interrupt_handler *old; // previous handler for this signal
virtual void interrupt() (}// runs at real time
public:
int pending(); // FALSE once after interrupt
Interrupt_handler (int sig_num);
~Interrupt_handler() ;
}i

After an interrupt handler is created, a task can wait for it, exactly as for any other object. When the inter-
rupt occurs, the handler’s interrupt () function will be executed immediately, or rather, as soon as the
operating system can route the interrupt to the process. When the interrupt function returns, control will
resume at the point where the current task was interrupted.

At the next entry to the scheduler, when the currently running task blocks, a special task, the interrupt
alerter, will be scheduled. This task alerts the handler (and any other handlers that have received interrupts
since it was last scheduled). Thus the waiting task becomes runnable. As long as any interrupt handler
exists, the scheduler will wait for an interrupt, rather than exiting when the run chain is empty. The pend-
ing function for an interrupt handler always returns TRUE except the first time it is called after an interrupt
occurs.
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Interrupt_handler::interrupt () is a null function, but since it is virtual, the programmer can specify
the action to be taken at interrupt time by simply defining an interrupt () function in a class derived
from Interrupt_handler. An example is given under “Interrupts.” In this way real-time response can be
obtained without resorting to a preemptive, priority-based scheduler which would be more complex and
less efficient, and would require locking of shared data structures.

Avoiding Interference

Whenever shared data structures are manipulated by concurrent processes, there is the potential for
interference, where one process is in the middle of modifying a data structure and another process accesses
it and finds it in an invalid state. Segments of code that access shared data structures are called critical
regions. 14 1f more than one process can be in a critical region at one time, there is a potential for interfer-

ence.

Interference is easy to avoid in the task system, because of the non-preemptive nature of the scheduler.
There are only two ways in which interference can arise: a task switch occurring within a critical region, or
an interrupt routine that accesses shared data.

It is almost always possible to write code so that no operation that could cause a task to block is inside a
critical region. The style of programming where coroutines share information by sending messages to each
other in the form of objects on queues typically leads to programs where there are no shared data struc-
tures or critical regions at all. Even if coroutines must share access to a data structure and alternately
modify it, no problems will arise if the routines that do the modification refrain from operations that could
cause the task to block. A properly modular program will generally satisfy this requirement without any
extra effort.

Semaphores

If, for some unusual reason, it is necessary to put an operation that could cause the task to block in a criti-
cal region, then the affected data structure should be protected by a semaphore, which will allow only one
task at a time to access the object. The following example code outlines this technique.

class My_data {
Semaphore sema;
// user data

public:
void lock() { sema.wait(); }
void unlock() { sema.signal(); }
My data() : sema(l) { ... } // see note

}i

Each critical region must begin with a call to My_data: :lock() for the object to be accessed, and end with
a call to My_data: :unlock (). This wﬂl ensure that no interference occurs, even if the operations in the
critical region cause the task to block.!

The implementation of semaphores using the task system is easy.

2-32 Library Manual



class Semaphore : public object {

int sigs; // the number of excess signals
public:
Semaphore(int i =0) { sigs = 1i; }
int pending() { return sigs <= 0; }
void wait();
void signal() { if (sigs++ == 0) alert(); }
}:
void
Semaphore: :wait ()
{
for (;;) {
if (--sigs >= 0)
return;
sigs++;
thistask->sleep(this);
}
}

Semaphores are useful tools for building other kinds of synchronization besides mutual exclusion. For
example, whenever one task wants to wait for an operation to be completed by another task, it can wait on
a semaphore.

Interrupts

The other case where interference can occur is a little more complex. The interrupt () routine of an
Interrupt_handler can be executed at any time, and it would be contrary to the reason for its existence to
lock it out. The mechanism that alerts the handler after the interrupt has occurred is carefully designed to
be safe from interference, and sometimes the alert is all that is necessary for an application. If it is neces-
sary to gather data from an external device immediately after an interrupt occurs, but the interrupts do not
come in rapid succession (for example, the next interrupt won’t occur until after the device is reset), the
interrupt routine can save the data and the task that is waiting for the interrupt can process the data before
resetting the device. In this case even though the data is shared, the interrupt routine cannot access the
data at the same time as the task.

Sometimes, however, it is necessary to handle interrupts that can come in rapid succession, with a require-
ment to gather data at each interrupt, so that several interrupts may occur before the task that will process
the data can be scheduled, and more interrupts may occur even while the task is running. This problem is
best handled by establishing a queue of the interrupt data records. Then the only shared data between the
interrupt handler and the task processing the data can be the queue head and tail pointers, which can be
atomically updated. In the following toy example, the interrupt routine records the value returned by an
arbitrary function, get_data(), each time the signal SIGINT is sent. A waiting task is then scheduled and
prints all accumulated data.
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class Delete_handler : public Interrupt_handler {

void interrupt () ;
int* localg; // data buffer beginning
int* localg end; // data buffer end
int* localqg h; // queue head
int* localqg t; // queue tail
public:
int getX(int&) ; // the next item, if any
Delete_handler (unsigned local g size =5);
~Delete_handler() { delete [localg end - localqg] localqg; }
}:

The delete handler (so called because SIGINT is normally sent when the user presses the (DELETE) key) is
an interrupt handler that maintains a local queue of data. Its interrupt function will put data on the local
queue, using localq_t, the queue tail pointer, and its getX () function is used by a task to retrieve the
data.

Delete_handler: :Delete_handler (unsigned local_g size)

: (SIGINT) // base class constructor arg

{
localg t = localg h = localqg = new int[local_g size];
localg _end = &localqgllocal g sizel;

}

The constructor initializes the local queue. The size of the local queue determines how many interrupts can
be awaiting processing.

void
Delete_handler: :interrupt ()
€
register int* p = localq t;
*p = get_datal();
if (++p == localg end) p = localqg;
if (p != localq h)
localg t = p; // no overflow
else error ("Overflow");

}

The interrupt function assumes that localqg t points to an available slot in the queue and puts the real-
time data there. It then checks for overflow and updates localg _t to point to the next available slot if it's
okay or calls an error function otherwise.
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int
Delete_handler::getX(int& ans)
{
register int*p = localq h;
if (p == localg_t)
return 0;
ans = *p;
if (++p == localqg_end) p = localqg;
localg h = p;
return 1;

}

The function getX() assigns the next datum to its argument and returns “1,” or returns “0” and leaves its
argument alone if no data is available. A call to getX() may be interrupted, but it has been designed so
that no corruption of the queue will result.

class Delete_printer : public task
Delete_handler*handler;
public:
Delete_printer();
}:
Delete_printer() is a task that will create a Delete_handler and print whatever data is received.

Delete printer::Delete_printer()
: handler (new Delete_handler)
{
: for (;:) {
wait (handler) ;
inti;
while (handler->getX(i))
cout << i << "\n";

}
Note that each time the printer task is scheduled, it prints all the available data from the delete handler.

Implementation Details

The approach taken was to minimize the impact to the scheduler and to isolate as much as possible the
machine and operating system dependent parts of the implementation. There is a system-dependent func-
tion, sigFunc (), which catches each signal for which an Interrupt_handler exists. When the signal is
sent, sigFunc() calls the appropriate interrupt () function. It then atomically puts the address of a dedi-
cated alerter task in a static, private cell of the scheduler and rearms the signal and returns. At the next
entry to the scheduler, that cell is checked and if it is non-zero, the alerter task is scheduled. The alerter
task alerts all pending interrupt handlers and returns to the scheduler. Tasks that were waiting for inter-
rupt handlers are then eligible to run.
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The other system-dependent parts of the implementation are the constructor and destructor for class
Interrupt_handler. Its constructor takes the signal number as argument (it might be an interrupt vector
address in another system). If some other interrupt handler already existed for that signal, it is saved (and
alerted if it was pending), and otherwise the UNIX system function signal() is called to associate sig-
Func () with the signal. The destructor undoes the action of the constructor, restoring the previous signal
routine if necessary.

Example Programs

tcreate.c

The following program repeatedly creates a task and waits for it to terminate. It would be possible to time
creation of new tasks without waiting for them to terminate, but because of the limited number of
processes that can exist under the UNIX system, the corresponding UNIX system program would fail.

#include "task.h"

class Child : public task // user task declaration
{
public:
Child(int) ; // task constructor declaration
}:
Child::Child(int i) // user task constructor definition
("Child") // argument to base class constructor
{
resultis(i); // terminate task execution
}
main ()

for (register int i = 10000; i--; ) {
Child* ¢ = new Child(i); // create a task

c->result(); // wait for it to terminate
delete c¢; // clean up

}

thistask->resultis(0); // exit from main task
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ucreate.c

The following C program repeatedly forks a UNIX process and waits for it to terminate.

main()
{
register int i;
for (i=10000; i--; )
if (fork() == 0)
exit (0); // child process
else
wait ((int*)0); // parent process
}
tswitch.c

The following program uses two semaphores (described under ‘“Semaphores”) to alternate control between
a parent and child task.
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#define K 10000
#include *task.h"

class Child : public task

{
public:
Child();
}:
Semaphore semal;
Semaphore sema?2;
Child::Child()
("child")
{
for (register int n = K / 2; n--; )
semal.wait () ;
sema2.signal() ;
}
resultis(0);
}
main ()
{
new Child;
semal.signal () ;
for (register int n =K / 2; n--; )
sema2.wait () ;
semal.signal();
}
thistask->resultis(0);
}
uswitch.c

{

// wait for a signal from main
// send it back

{

// for signals from main to Child
// for signals from Child to main

// send the first signal

// wait for a signal from Child
// send it back

The following C program uses a UNIX system signal to force alternation between two UNIX system
processes. The program is a little strange in that its main routine consists of an infinite loop of pause ()
calls. Unfortunately the utility of wait () and pause () for signal handling is limited because it is always
possible that a signal has been received just as the wait () or pause() is being executed.
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#include <signal.h>
#define K10000

int otherpid;
int received;
int child;
void
sig() /* signal-catching routine. called */
/* when a signal is received */
{
signal (SIGTERM, sig); /* arrange to catch the next signal */
received++;
if (child && received >= K/2) exit();
kill (otherpid, SIGTERM); /* send it back */
if (!child && received >= K/2) exit();
}
main ()
{
signal (SIGTERM, sig); /* arrange to catch the signal */
if ((otherpid = fork()) == 0) { /* create the child process */
otherpid = getppid(); /* get parent process id */
child = 1; /* this is the child */
kill (otherpid, SIGTERM); /* send the first signal */

}
for(;;)
pause () ;

real_timer.c

In addition to the robot application, the system was implemented on the UNIX Operating System using sig-
nals as interrupts. A class Real_timer, modelled on the original class timer was built.
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class Real_timer :

public:

}i

public object {

friend class Alarm handler;

int

long
void
void
void

int
void
void

state;

time;

insert (long) ;
remove () ;
resume () ;

Real timer (long);
~Real_timer();
pending () ;

reset (long) ;

print (int, int =0);

// RUNNING, IDLE, TERMINATED

// initially delay, then alarm time
// put on chain

// remove from chain & make IDLE

// called when time is up

Instead of simulated clock ticks, class Real_timer measures time in seconds. It is based on the following
handler for the alarm signal and a task that maintains the list of unexpired Real_timer instances.
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class Alarm _handler : public task {
friend Real_timer;

Real_timer* chain;
Interrupt_handler* bell;
void add_timer (Real_timer*);
void remove_timer (Real_timer*);
public:
Alarm_handler () ;
}:
Alarm_handler alarm handler; // the only instance

Alarm _handler: :Alarm handler ()
("Alarm_handler"), chain(0)
{

sleep();
for(;;) {
for (long now = time(0); chain && chain->time <= now;
chain = (Real_timer*)chain->o_next)
chain->resume(); // alert the timer

if (chain) ¢
alarm(chain->time - now);
wait (bell);

} else {
bell->forget (thistask);
delete bell;
sleep() ;

}

The Interrupt_handler pointed to by Alarm_handler: :bell only exists while there are pending
Real_timer objects. The Alarm handler task runs after an alarm signal, and after alerting any timers that
have expired, if there are any unexpired timers, it resets the alarm and waits.
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This section is taken directly from a paper by Stacey Keenan.
NOTE

Introduction

The C++ coroutine library, commonly known as the task library after its header file, task.h, provides mul-
tiple threads of control within one UNIX system process. Each thread of control is a coroutine, or task, and
each task runs until it explicitly gives up the processor; there is no pre-emption. Implementing concurrency
requires knowledge of hardware-dependent and compiler-dependent runtime features, especially calling
sequence and stack frame layout; hence the library is target-dependent and must be ported explicitly to
each supported compiler/processor platform.16 The target-dependent parts of the library are isolated in
four files. Release 3.0 of the C++ Language System supplies the task library for the AT&T 3B20, AT&T
WE32000 family (e.g., 3B2, 3B15), AT&T 6386 WGS and DEC VAX processors, and the Sun-2 and Sun-3
Workstations (Sun compilers on Motorola 68000 family processors).

This paper describes the implementation of the task library, with particular emphasis on task creation and
task switching, where target-dependent code is needed. The existing implementations for the 3B, VAX, and
Sun Workstation processors are used as examples.17 The scope of this paper is limited by the similarity of
the runtime models supported by these targets. Targets diverging from these models, like mainframe or
RISC-style processors, are likely to present porting difficulties not addressed in this paper. It is assumed
that the reader has access to the source code for the library. This paper does not describe how to use the
task library; see ““A Set of C++ Classes for Co-routine Style Programming” and “Extending the C++ Task
System for Real-Time Control” for user-level information. “Task Switching Fundamentals” provides back-
ground needed to understand the workings of the task library. “Implementation of Task Switching”
describes how the task library creates new tasks and switches among them, including details about the
target-dependent functions swap () and fudge_return(). The final sections discuss source file organiza-
tion and miscellaneous hints for porting the library.

Task Switching Fundamentals

The C++ task library provides non-preemptive scheduling for tasks. A task runs until it explicitly gives up
the processor to allow another task to run. Typically, a task will give up the processor when it tries to per-
form an action that cannot yet be done, for example, if it tries to put an obgect on a full queue, or to get an
object from an empty queue. When this happens, the task is put to sleep.1 The scheduler then chooses to
run the next task on the ready-to-run list, sched: :runchain.

When a task is put to sleep, or suspended, the task system must save the state of the task so that it may be
resumed later. On the targets described here, this involves saving the task’s stack and hardware registers,
including the non-volatile registers and the frame pointer (and the argument pointer on some targets). A
task switch is the process of saving the state of one task, and restoring the state of another.
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Stack Frames

Some familiarity with the C runtime environment and the target implementation of stacks is needed to
understand the details of task creation and switching. A C function call sets up a new stack frame for the
function. A stack frame contains the arguments to the function, the saved hardware state of the calling
function, and any automatic variables used by the function. Figure 2-1 illustrates the stack frames built on
the 3B2, the VAX, and the Sun-2/3 targets for a function called with three arguments and saving four regis-
ters. These stack frames are described here to provide a base for later discussions on the internals of the
task library.

On a 3B2, the argument pointer (ap) points to the start of the arguments to the function, the frame pointer
(fp) points to the start of the automatics of the function, and the stack pointer (sp) points to the next avail-
able space in the stack. The caller’s registers are saved between the arguments and the automatics. Previ-
ous stack frames can be accessed via the frame pointer: The old frame pointer, argument pointer, and pro-
gram counter (pc) are always a fixed distance below the frame pointer. Stacks grow up, toward higher
memory addresses.

On a VAX, stacks grow down, toward lower memory, although the figures in this paper will show the low
memory on top and relative positions on the stack will be described in terms of the pictures (e.g., above
means higher in the picture, at a lower memory address). The argument pointer points to a longword con-
taining the number of arguments that have been pushed on the stack. Arguments are pushed in reverse
order, so that the first argument is stored one word below the ap. The frame pointer points to a condition
handler, above which are the automatics of the function. The stack pointer points to the last assigned word
in the stack. The word just under the frame pointer contains a procedure entry mask, which tells which
registers were saved in the frame. Saved user registers and the old frame pointer, argument pointer, and
program counter are stored between the argument and frame pointers.
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Figure 2-1: Stack Frames on a 3B2, a VAX, and a Sun-2/3 for a Function Taking 3 Arguments and Saving 4
Registers
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The stack on the Sun-2/3 Workstation grows down, toward lower memory. This target has no argument
pointer. Arguments, saved registers, and automatics are all referenced as offsets from the frame pointer.
Arguments are pushed on the stack in reverse order, followed by the return pc and the old frame pointer.
The frame pointer points at the old frame pointer. Space for automatics is reserved above the frame
pointer. Saved registers are pushed after the reserved space, and the stack pointer points to the last saved
register. The 68000 processor has both data (dx) and address (ax) registers. In this example, two of each
type are saved.

On entry, a function first saves all the registers that it might use.”’ On function exit, the same number of
registers are restored from the register save area of the stack frame. On some targets, like the VAX, stack
frames are self-describing: one can tell how many registers are saved in the frame (and where they are)
from the frame itself (by looking at the entry mask). Thus, the function return sequence on a VAX consists
of a single, simple instruction: ret. The 3B and Sun-2/3 targets do not have self-describing stack frames.
This means that “return” instructions on these targets need to specify how many registers to restore. When
(as happens in the task system) one needs to restore registers without returning through the normal return
sequence, one can only find out how many registers were saved on the stack by looking at the save instruc-
tion at the beginning of the function.

To switch to a new task, the task system needs to know what the new frame pointer (and argument pointer
on the 3B targets) should be and from where to restore all the non-volatile registers. 20 The task hbrary
explicitly saves the frame pointer and argument pointer of the function to be returned to, swap (), in the
task object as t_framep and t_ap. The non-volatile registers are stored in swap’s stack frame.

DEDICATED and SHARED Tasks

Tasks can be of one of two modes: DEDICATED or SHARED. DEDICATED tasks each have their own stack, of
some fixed size, allocated from the free store. SHARED tasks share a single stack, of some fixed size. When
a SHARED task is about to resume execution, if its stack space is occupied by another task, 2! the portion of
the stack that is in use by the other (suspended) task is copied out to a save area, and the resuming task’s
stack is copied from its save area back into the stack. Because the in-use part of the stack is less than the
allocated size of the stack, the user can save space by using SHARED stacks, at a cost in execution speed.
Additionally, some targets and operating systems do not allow the stack pointer to point into the UNIX pro-
cess data segment; on these systems SHARED tasks must be used. 2

Implementation of Task Switching

There are two general contexts in which a task switch occurs: when a parent task creates a new child task
and switches to it, and when a task suspends and the scheduler chooses a new task to run. The stacks of
both the suspending and resuming tasks look different in each of these situations. Task creation differs
from a switch to a suspended task in two ways. First, in task creation a runtime environment for the new
task must be set up before the switch can take place. Second, task creation causes the parent task to be
suspended and the new task to run immediately, bypassing any other tasks waiting on the run chain. This
is the only case where a task switch takes place without a call to the scheduler to choose the next task to
run. These two contexts are described below.
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Task Switches Between Suspending and Resuming Tasks

In task switches from a suspending to a resuming task (i.e., switches other than those to newly created
tasks), the function that causes the running task to block (ghead: :get () in Figure 2-2) calls
task::sleep(), which in turn calls the scheduler, sched: :schedule (). After selecting the next task to
run, the scheduler calls task: :resume () “” for the resuming task. The function task: :resume () calls
task::restore(), an inline function whose purpose is to call the appropriate version of swap () (swap ()
for DEDICATED tasks, sswap () for SHARED tasks) with the appropriate arguments.

Figure 2-2 shows examples of the stacks for a suspending and a resuming task, both of type user_task
(user_task: :user_task() is the constructor and “main” function of the task). Each box in the stack
represents a stack frame; the frames for task: :resume () and task::restore() are separated by a dashed
line because task: :restore() is an inline function, and therefore doesn’t really have its own stack frame.

Figure 2-2: A Task Switch from a Suspending to a Resuming Task (DEDICATED)
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Switching Between DEDICATED Tasks: swap ()

The two swap functions do the real work of performing a task switch. They are written in assembly
language because they manipulate hardware registers. The swap () function saves the state of the suspend-
ing task (labeled running in the code)24 and restores the state of the resuming task (labeled to-run). Sav-
ing the state of the suspending task involves first saving all the non-volatile registers in swap’s stack frame,
then saving the current frame pointer, which defines swap’s frame, and the argument pointer, if necessary,
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in the suspending task’s task object, in members t_framep and t_ap. Then swap() overwrites the
hardware frame pointer and argument pointer with the values saved in the resuming task’s t_framep and
t_ap. Now the to-run task is running; swap () returns, restoring all the registers that were saved when the
to-run task was suspended. Note that swap’s save is done on the suspending task’s stack, and the restore
is done on the resuming task’s stack. This is because save and restore instructions are executed relative to
the frame pointer, which was modified in the middle of swap () . Figure 2-2 illustrates a task switch on a
3B target. The swap() hardware frame and argument pointers are shown both before and after the switch.

Switching Between SHARED Tasks: sswap ()

The function sswap () is like swap (), but has additional code for SHARED tasks to copy task stacks out of
and into the shared stack area.”” There are three tasks that are relevant during a SHARED task switch: the
suspending task, the resuming task, and the task that last occupied the stack space that the resuming task
now wants to occupy (the target stack). This “prevOnStack” task is often the same as the suspending task,
but that is not necessarily the case.

The sswap () function first saves all the non-volatile registers in its stack frame, then saves the frame
pointer (and argument pointer, if necessary) of the suspending task in that task’s task object, just as swap ()
does. It also calculates and saves the height of the stack in the t_size member of the task object. Next, it
allocates space and copies the contents of the target stack to that space, which becomes ““prevOnStack’s”
save area (pointed to by task member t_savearea). Next, sswap() copies the resuming task’s saved stack
back from its t_savearea to the target stack, and deletes the space. Finally, sswap () restores the resum-
ing task’s t_framep (and t_ap, if necessary) to be the hardware frame and argument pointers, and the
resuming task is running. As in swap (), sswap() returns, restoring all the registers saved in the resuming
task’s sswap frame.

New Task Creation

To use the task library, the user derives a class, which I will refer to as class user_task, from the base class
task. The “main” program for the user task will be the constructor user_task: :user_task(). The first
thing user_task: :user_task() does is to call the base class constructor, task::task(). The constructor
task::task() initializes the private data for the new task, acquires stack space27 in which the task will
run, initializes the stack with the top two frames of the parent task’s stack (as illustrated in Figure 2-3),
inserts the parent task on the run chain, and switches to the new task, which runs immediately.
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Figure 2-3: Creating a New Task’s Stack
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After initializing the new task’s stack, the parent task continues execution in task: :task(). Notice that
the parent’s stack contains a frame for user_task: :user_task(), the child’s “main”; the parent task needs
to skip over that frame when it returns from task: :task(). To arrange this, task: :task() calls a func-
tion, task: :fudge_return(), to alter task: :task’s stack frame so that it returns to

user_task: :user_task’s caller (restoring any registers saved in the skipped frame as well). This change
to the parent’s stack is shown in Figure 2-4 with dotted lines through the user_task: :user_task() frame.
The fudge_return function will be described in detail under “Fudging the Parent Stack.”

swap () for Children

When a new task is created, its stack does not have an instance of swap () on it; task: :task() is the top
frame. Itis task::task’s responsibility to arrange for the hardware state of user_task: :user_task() to
be restored when the child begins execution there. Therefore, task: :task() saves the frame and argu-
ment pointers for the child’s task: :task() frame in the child’s t_framep and t_ap of its task object.
Then task: :task() saves all the registers as they were when user_task: :user_task() called
task::task() in a global variable, New_task_regs 2 Getting these registers right, no matter how many
registers were saved in user_task: :user_task or task: :task(), is a bit tricky. We first copy all the
current hardware registers into New_task_regs and then overwrite any of those that are used by
task::task() with those saved in task::task’s frame. This is done with a macro, SAVE_CHILD_REGS,
which calls SAVE_REGS () to do the first step, and save_saved_regs () to do the second step.

Then the parent calls task: :restore, which calls swap() with a NEW_CHILD argument. Given this argu-
ment, swap () explicitly restores the registers that were saved in New_task_regs, instead of restoring the
registers saved in the frame. See Figure 2-4 When swap () returns, the return is effectively from
task::task(), as that is where the frame pointer points, and then the child task is executing in
user_task: :user_task(). On the 3Bs, the assembly language return instruction specifies how many
registers to restore. Because the necessary registers have been restored from New_task_regs, swap ()
restores no registers saved in task: :task()’s frame on its return. The VAX return instruction determines
the number of registers saved in the frame by looking at the entry mask under the frame pointer, therefore,
when swap () returns, the registers saved in task: :task’s frame are restored. Since these registers are the
same as those saved by save_saved_regs (), save_saved_regs() is unnecessary on the VAX.
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Figure 2-4: A Task Switch to a New Child (DEDICATED)
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New SHARED tasks don’t need to copy in a new stack, nor do they need to reset the hardware frame and
argument pointers. Their stacks are already in place, since a new SHARED task runs in its parent’s stack.
However, the parent task needs to call sswap () to save its state and to copy its active stack to its save area.
Therefore, task: :restore() and sswap() are called with a NEW_CHILD argument, and sswap () has a
branch for new children to skip the “copy in”’ part.

Fudging the Parent Stack

As mentioned above, fudge_return is called by task::task() to modify the parent stack so that the
parent does not return to user_task: :user_task (). Rather, the parent skips the

user_task: :user_task() frame and returns to user_task: :user_task’s caller (main() in Figure 2-4).
This routine is highly machine- and compiler-dependent. It depends on call/return and save/restore con-
ventions of both the compiler and the machine. The left side of Figure 2-5 shows a hypothetical example of
a parent stack when fudge_return() is first called. Portions of three stack frames are shown:

m at the bottom is the register save area for user_task::user_task(), containing the saved state of
main() (i.e., “main’s r8"” refers to the value of hardware register r8 in main() before
user_task: :user_task() was called). In this example, user_task: :user_task() uses, and there-
fore saves, two registers, which on a 3B2 would be registers r7 and r8.
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m in the middle is the save area for task: :task(), containing the saved state of
user_task: :user_task() or skip(), as it is labeled in the diagram and in the fudge_return()
code. In this example, task: :task() uses and saves four registers, r5 through 8%

m at the top is the save area for fudge_return(), containing the saved state of task: :task(). In this
example, fudge_return() uses and saves just one register, r8.

The ellipses in the diagram represent function arguments, automatics, and unused words in the stack
frames. The fudge_return() function must copy up the relevant elements from skip’s stack frame to
task: :task’s stack frame, so that when task: :task’s return instruction is executed, the parent will find
itself back in main() (in this example), with the hardware registers restored to the values they had before
skip() was called. The stack on the right side of Figure 2-5 represents the same parent stack after
fudge_return has altered the stack. The dotted arrows show where the elements from skip’s save area
have been copied.

In the 3B, VAX, and Sun-2/3 implementations, fudge_return () overwrites the program counter, frame
pointer, and argument pointer (for 3B targets only) saved in task: :task’s frame with those saved in
skip’s frame. This causes task: :task() to return to main().

Restoring main () ‘s registers is trickier. It requires knowing the layout of the save area for at least skip ()
and task: :task(), and sometimes for fudge_return() as well. Ways of determining the frame layout
are discussed under “Finding Where Registers Are Saved: Framelayout().” For now, assume
fudge_return() knows how many registers are saved in each frame.
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Figure 2-5: A 3B2 Stack Before and After Fudging
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If skip () saved any registers, we must take pains to see that they are restored on task: :task’s return. If,
as is the case in the example in Figure 2-5, all the registers saved in skip’s frame are also saved in

task: :task’s frame, this is simple. We just copy the saved skip() registers over the corresponding
task::task() registers, leaving any additional saved task: :task() registers in place. There is room in
task: :task’s frame for these registers and, in the case of the 3B and Sun-2/3 targets,30 task: :task’s
restore instruction will restore all the registers we care about.
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There are various difficulties with restoring the “extra” registers when skip () saves registers that
task::task() does not save. On some targets, such as the VAX and Sun-2/3, there is no room in the
frame for the additional registers; on other targets, such as the 3Bs, task: :task’s restore instruction won’t
restore any extra registers, although the save area is always large enough to hold extras. Figure 2-6 shows
a parent stack frame where the skip() frame contains four saved registers, the task: :task frame contains
only two saved registers, and the fudge_return() frame contains three saved registers. In this example,
r5 and r6 are “extra."
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Figure 2-6: Fudging When user_task: :user_task() Uses More Registers than task: :task
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If fudge_return() saved any of the “extra” registers, then we can overwrite those with the corresponding
saved skip registers. In Figure 2-6, skip() saved r6 (“main’s r6”), task: :task() did not, but
fudge_return() also saved r6. Therefore, fudge_return() will overwrite the r6 in its save area with the
r6 from skip’s save area. When fudge_return() returns, r6 will be restored to the value it had when
main() last executed, which is what we want. Because task: :task() did not save r6, we know that it
will not disturb its value.

Neither task::task() nor fudge_return() saved the other extra register, r5, in this example. Therefore,
to ensure that when task: :task() returns, r5 has the value it had in main (), and not the value it had in
skip() (its current value), fudge_return() must explicitly set the hardware register r5 to the value saved
in skip’s frame (main’s r5). This is safe to do, because none of the intervening functions use r5. The func-
tion fudge_return() calls an assembly language function to overwrite r5 (or any other extra registers).
After fudge_return() and task::task() return, all the registers will have the values they had when
main() last executed on the parent stack.

There is one final step: arranging for the stack pointer to be in the right place after task: :task returns.
This depends on the way the target executes a return. Without some adjustment, the stack pointer will be
set one frame too high (at the top of skip’s frame instead of at the top of main’s frame).

On the VAX, a return instruction restores the frame and argument pointers from those saved in the stack,
pops the saved registers off the stack, and adds the number of arguments that are on the stack (as given in
the argument descriptor, see Figure 2-1) to the stack pointer. We can cause the stack pointer to be restored
correctly by adjusting the argument descriptor in task: :task’s frame to include all the words in the skip
frame in addition to the arguments. In other words, fudge_return() alters task: :task’s frame to look as
though there is a big argument list.

On the 3Bs, a return instruction restores the frame and argument pointers from those saved on the stack,
but the stack pointer is given the value of the argument pointer of the returning function. This presents a
problem for a fudged parent stack: when we return from task: :task(), the frame and argument pointers
are reset to point to main’s frame, as we wanted, but the new stack p%ilnter points where task: :task’s
argument pointer was, which is higher than needed and wastes space.” What we want is to have the stack
pointer point to wggere skip’s argument pointer was. We arrange for this with an assembly language func-
tion, FUDGE_SP () ,”~ which is defined for the 3Bs to take an argument, the skip() argument pointer, and to
reset the current argument pointer (task: :task’s) to the argument. FUDGE_SP() is called just before
task::task() returns on the parent side. Once FUDGE_SP() is called, no arguments to task::task() can
be referenced. The task::task() constructor returns the this pointer, which is its implicit first argument.
The this argument is usually in a register, but if it is not, task: :task will need to reference it through the
now-changed argument pointer when it sets the return value. Therefore, FUDGE_SP() also copies the value
of task: :task’s first argument to be user_task: :user_task’s first argument, to ensure that

task: :task’s return value will be set properly.

The Sun-2/3 targets have a similar problem to that described above for the 3B targets. The solution, how-
ever, is different. The Sun-2/3 compiler typically generates a function return sequence of three instructions:
movem, unlk, and rts. The movem instruction restores the registers denoted by a mask and uses an offset
from the frame pointer to find the register save area. The unlk instruction resets the frame pointer to be
the one saved in the stack, and also resets the stack pointer to point at the saved return program counter
on the stack. Finally, the rts instruction pops the program counter off the stack, leaving the stack pointer
pointing at the top of the frame of the function that called the returning function. As with the 3B targets,
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after a parent task (whose stack has been fudged) returns from task: :task() to main() (in the example),
the stack pointer points to the top of the skipped frame.

We compensate for this with a variation in FUDGE_SP() and fudge_return() on the Sun-2/3 tau'gets.33
Instead of overwriting task: :task’s return pc with skip’s return pc, fudge_return() overwrites

task: :task’s return pc with the address of an assembly language function, fudge_sp() . When the parent
task returns through task: :task(), it calls FUDGE_SP () , which sets a global yvariable, Skip_pc_p, to point
to skip’s return pc in the stack. Then task::task() returns to fudge_sp() ,34 which sets the stack pointer
to Skip_pc_p, and executes an rts instruction, which pops skip’s saved return pc off the stack, leaving
the stack pointer at the top of main()’s frame.

Finding Where Registers Are Saved: FramelLayout ()

As mentioned above, fudgmg the parent stack requires knowing the layout of the stack frames surrounding
the one to be fudged > This is not a problem for targets with self-describing stack frames, such as the VAX.
Targets that do not have self-describing stack frames, such as the 3B and Sun-2/3, include a structure,
defined in the source file fudge.c, called FrameLayout. FrameLayout has different members, depending
on the target. It always has a constructor, which initializes the members so that fudge_return() has the
information it needs to modify the parent stack.

FrameLayout for the 3B Processors

On the 3B2 and 3B20 targets the layout of saved registers follows from the number of registers saved by the
function. On both targets, the size of the save area is invariant; if fewer than all the registers are saved,
some slots in the save area will be unused and contain garbage values. The number of registers saved is
found by looking at the save instruction of the function in question. By convention, the save instruction is
the first instruction of the function. The easiest way to find the save instruction for a given function, f, is
by dereferencing a pointer to the function. However, when f is a constructor, as both task: :task() and
user_task: :user_task() are, one cannot take its address. In this case, one can find the save instruction
for f by using the pointer to the return pc saved in the f's frame, backing up one instruction to find the
instruction to call f, and following the destination argument of the call to find the save instruction.

On the 3B targets, Framelayout contains one element: n_saved, which represents the number of registers
saved in the frame. The Framelayout constructor finds n_saved for the frame denoted by its frame
pointer argument. FrameLayout: :FrameLayout () uses the frame pointer to find the return pc, which
points to the instruction after the call to the denoted function. It backs up one instruction to get a pointer
to the call instruction,”® then decodes the call instruction (using a function called call_dst_ptr()) to geta
pointer to the function denoted by the frame pointer argument. Finally, it decodes the save instruction
(pointed to by the function pointer) to find the number of registers saved in the frame.

FrameLayout for the Sun-2/3 Target

On the Sun-2/3 target, Framelayout contains two elements: of fset, the offset of the top of the register
save area from the frame pointer, and mask, the bit mask denoting which registers were saved. The
Framelayout constructor for the Sun-2/3 initializes the structure by a method similar to that described
above for the 3B targets, which involves following the return pc to find the call, and decoding the call to
find the destination of the call. Finally, it decodes the instructions in the function prologue (which can
vary), to find the mask and the offset.
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Source File Organization

The target-dependent parts of the task library are isolated in four source files:

hw_stack.h

contains target-dependent macro, const, structure, and function declarations for each sup-
ported target (surrounded by #ifdefs).

hw_stack.c

contains definitions of target-dependent functions for each supported target (surrounded by
#ifdefs). Many of these are short assembly language functions which set or return hardware
registers.

fudge.c There is a version of fudge.c for each supported target, currently: fudge.c.3b,

fudge.c.vax, fudge.c.386, and fudge.c. 68k.” These files contain definitions of
task::fudge_return() and FrameLayout: :FrameLayout () (for the targets that need it).

swap.s There is a version of swap.s for each supported target, currently: swap.s.3b, swap.s.vax,

swap.s.386, and swap.s.68k. These files contain the assembly language functions swap ()
and sswap ().

Hints for Porting the Task Library to Other Processors

m Draw pictures (like those in Figure 2-1) of the stack frame layout for the target to which you are port-
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ing. Detailed pictures of the register save areas of several frames on the stack, like those in Figure
2-5 and Figure 2-6, are helpful in writing fudge_return().

Become familiar with the sequence of operations in function calls and returns. Write and compile
some sample C or C++ programs and look at the generated code to see what kinds of call and return
sequences the compiler generates, in what order registers are used, and so forth. A fast way to write
the copy in and copy out loops for sswap () is to write them in C, compile them with the -S option,
and transcribe the generated code into sswap () .

The implementation of the task library was designed to be both maintainable and, as far as possible,
portable across both machines and compilers. These goals are sometimes mutually exclusive, and in
those cases, we aimed for maintainability and portability across different compilers for the same
machine (where possible). Some porters may want to write some of the assembly language functions
in hw_stack.c as macros that depend on positional parameters and compiler conventions. For
example, FP () returns the frame pointer for the calling function. This could also be written for the
3B targets as a macro that takes as an argument the first automatic variable of the function and
returns the address of that variable, or for the VAX takes the same argument and returns the address
of that variable minus one. This only works if the macro is given the first automatic as an argu-
ment, if the compiler assigns automatics in the order in which they are declared, and if the optimizer
leaves the automatic on the stack, even if it is never read nor written.
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Footnotes

1. The original version of this paper was written in 1980 by B. Stroustrup and revised in 1982 by him.
Since then both the task library and C++ (then known as “C with Classes”) have changed substan-
tially, but the interface to the task library has been left intact. This has allowed old programs to run
with new versions of the library, but has prevented any updating of the style of the interface, which
does not conform to current tastes.

This version of the paper has been revised by J. E. Shopiro to reflect the present state of affairs. I
have added a few notes (in sans-serif type) where changes have been significant, and have made
numerous syntactic changes, etc., without further comment.

2. Many of the member functions are inline, but their definitions are not shown here to prevent clutter.
Class task is derived from class sched which is derived from class cbject. Class ocbject is a sim-
ple base class used by most classes in the task system. It contains some of the pointers used by the
task system’s internal “house-keeping.” Class cbject is described under “The object Class.”

3. The class may have other member functions, of course, which may be called by the constructor or by
any other function according to the usual rules of C++.

When the first task is created, main () automatically becomes a task itself.
It is a fairly simple job to add a new kind of task that returns some other datatype.

The handling of run time errors will be described below.

N oo o R

Thus ghead: :pending () returns 1 if the queue is empty and 0 otherwise. Correspondingly,
gtail::pending() returns 1 if the queue is full and 0 otherwise.

8. The default maximum size for a queue is 10000. That is, the queue can hold up to 10000 pointers to
objects. It does not, however, pre-allocate space.

9. The original task package had a number of global variables, including thistask, task_chain, and
clock. They are now all macros which expand to inline functions that return the values of private
static variables. Thus programs that just read the values will be unaffected, but programs that try to
set them (which was always illegal) will fail to compile.

10. waitlist() is an example of a function whose form does not satisfy current esthetic standards.

11. In a quasi-parallel system this will only be true provided no infinite loop without task system calls
exists. Such a loop constitutes an error that only a system with true parallelism or time slicing can
recover from.

12. Coroutines can exchange control among themselves more freely than ordinary functions and pro-
cedures. In the usual function calling discipline, when one procedure (more precisely, one instance
of a procedure) executes a procedure call, a new instance of the called procedure is created, and the
calling procedure waits until the called procedure (and any procedures it may call) returns. A pro-
cedure instance is initiated when the procedure is called and is destroyed when it returns. When one
coroutine (coroutine instance) initiates another it need not wait for the new coroutine to end, but
instead it can be resumed while the new coroutine is still active. A running coroutine can relinquish
control to any waiting coroutine without abandoning its state and later regain control and continue
from where it left off.
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Class object is the base class of most classes in the task system. We use the typewriter font for
programming language constructs.

Semaphores which are used for mutual exclusion are initialized with one excess signal so that the
first lock call will succeed.

But watch out for deadlock.

To the extent that the target hardware dictates subroutine linkage and stack frame layout, the com-
piler is less important. Some machines, like the 3Bs and the VAX, support a particular stack frame;
the task library is largely independent of the compiler on these machines. The 68000, however, does
not support a specific stack frame arrangement; the task library on this machine also depends on the
compiler conventions for the stack frame. The word target will be used in this paper to denote an
instance of either a processor or a compiler/processor platform.

The stack frame layout on the AT&T 6386 WGS is similar to that on the Sun-2/3 Workstations. The
task library port is also similar on these targets.

See “A Set of C++ Classes for Co-routine Style Programming” or “Extending the C++ Task System
for Real-Time Control” for details. The ways in which a task is put to sleep and awakened are
target-independent.

This is true for our example targets. Some targets may use a caller save convention rather than a cal-
lee save convention.

It may not be immediately obvious that all registers must be saved on a task switch. Consider a task
A, which has a function f that uses all the registers. It calls another function, g, which uses less than
all the registers, say two, and therefore only saves two registers in its save area. If a task switch
occurs before g returns, and task B uses all the registers, it will destroy those needed by task A’s
function f.

It can happen that a SHARED task will resume execution without having ever been displaced by
another task sharing the same stack.

For example, DEDICATED tasks do not work with 3B2s running versions of the UNIX system earlier
than SVR3.

The function resume () is virtual, with definitions for tasks and timers. Only tasks are relevant here.
If the suspending task is TERMINATED, then swap () does not save its state.

Writing the code for stack copying of SHARED tasks in assembly language adds more complexity than
we would like to the job of porting the task library. It would be possible to call a C function to copy
out the suspended task’s stack to its save area. However, copying the resuming task’s stack back in
presents a problem: If the resuming task’s stack is taller than the stack on which we are executing, a
copy-in will overwrite the current stack frame. The sswap() function is careful to move all the data
it needs from the frame into registers, so that if the frame is overwritten, sswap () can still complete
successfully. But if sswap() called a C function to do the copy-in, that function might overwrite its
own stack frame, making it impossible to return to sswap() to finish the task switch. So long as the
copy-in must be written as part of sswap (), it seems little more trouble to write the complementary
copy-out in assembly language as well.
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26. When the prevOnStack task and the resuming task are the same, restore () calls swap (), rather
than sswap (), to do the task switch, as no stack copying is necessary.

27. The constructor task: :task() only acquires stack space for DEDICATED tasks, that is, tasks that have
their own stack. SHARED tasks will need space in which to save the current (or parent) task’s active
stack; sswap () takes care of that, as described above.

28. Only one child is activated at a time — remember, no pre-emption — and the child runs immedi-
ately, so it is safe to put these registers in a global, and more space-efficient than keeping them as
part of the task object.

29. Note that, in Figure 2-5, the saved 15 and r6 in task: :task’s frame are labeled “main’s r5” and
“main’s r6” rather than “skip’s r5” and “skip’s r6.” This is because in this example, skip() does
not use r5 or r6; main () was the last function to use r5 and r6. Therefore, the values of r5 and r6
saved in task: :task’s frame are the values that r5 and r6 had when main() was running.

30. The restore instruction for the VAX doesn’t specify which registers to restore.

31. In the case of a task that repeatedly spawned children, the stack pointer would grow unnecessarily,
eventually causing the stack to overflow. Each time the parent task returned from task: :task, the
stack pointer would be an additional frame higher than needed, and a new call to task::task
would start building the next frame where the stack pointer pointed.

32. FUDGE_SP() is defined as a do-nothing macro for the VAX.
33. The AT&T 6386 WGS port of the task library also uses this technique.

34. When task: :task() returns, the hardware registers are restored to the values they had in main ()
and the frame pointer is set to the value it had in main (), but the program counter is set to
fudge_sp().

35. Some of these frames are for user functions, so we cannot rely on techniques which require the C++
code for the function to be written so as to generate code that creates frames with some particular
layout.

36. Because 3B instructions can be of various sizes, one cannot deterministically “back up” one instruc-
tion. FrameLayout: :FrameLayout () subtracts each possible instruction size from the return pc and
decodes the resulting pointer to check for a call opcode and legal operands. There is a small possi-
bility, reduced by familiarity with the compiler, that these heuristic methods could yield more than
one candidate call instruction.

37. The .68k suffix used for the Sun-2/3 target is something of a misnomer. These files were written
specifically for Sun compiler/68K platforms; they will not necessarily work on all 68K platforms, for
example, the AT&T compiler for the 68K. However, the #ifdefs in the source files say
#1fdefmc68000
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lostream Examples

This chapter is taken directly from a paper by Jerry Schwarz.
NOTE

Abstract

The iostream library supports formatted I/O in C++. This document, containing many examples, is an
introduction to the library. Overloading and other C++ features are used to provide an interface that com-
bines flexibility and type checking. Predefined and user defined operations are easily mixed. The stream-
buf class supports alternate sources and sinks of characters.

The manual pages for the iostream library can be found at the end of this book.

Introduction

C and C++ share the property that they do not contain any special input or output statements. Instead,
1I/0 is implemented using ordinary mechanisms and standard libraries. In C this is the stdio library. In
C++ (since Release 2.0 of the AT&T C++ Language System) it is the iostream library. Because C++ is an
extension of C it is possible for a C++ program to use stdio. Using stdio may be the easiest way for a C
programmer to get started with C++, but using stdio is not a good style for C++ I/O. Its main drawbacks
are its type insecurity and the inability to extend it consistently for user defined classes.

This document consists mainly of examples of the use of parts of the iostream library. It assumes a reason-
able familiarity with C++, including such extensions to C as references, operator overloading, and the like.
An attempt has been made to create examples that not only illustrate features of the iostream library, but
represent good programming style. A programmer who is new to C++ may copy the examples “cookbook
style,” but cannot be said to have mastered C++ until he or she understands the examples.

Some of the examples are moderately complicated and demonstrate advanced features of the iostream
library. These are included so that the document will continue to be useful as an aid even after the pro-
grammer has written a few programs using iostreams. The author is annoyed by “tutorials” that show
how to do simple things that he could figure out himself, but are silent about the harder, more sophisti-
cated kinds of code that he frequently wants to write.

This document is not a complete description of the iostream library. Some classes and members are not
described at all. Some are used without complete descriptions. The reader is referred to the iostream man
pages for more details.

The declarations for the iostream library exist in several header files. To use any part of it, a program
should include iostream.h. Other header files may be needed for other operations. These are mentioned
below, but the #include lines are never put in the examples.
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The iostream library is divided into two levels. The low level (based on the streambuf class) is responsible
for producing and consuming characters. This level is an independent abstraction and may be used
without the upper level. This is appropriate when the program is moving characters around without much
(or any) formatting operations.

The upper level is responsible for formatting. There are three significant classes. istream and ostream
are responsible for input and output formatting, respectively. They are both derived from class ios, which
contains members relating to error conditions and the interface to the low level. A third class, iostream, is
derived (multiple inheritance) from both istream and ostream. It plays only a minor role in the library.
A “stream class” is any class derived from istream or ostream.

The topics covered in this document are:

m Output — predefined output conversions, ways to deal with errors, and ways to adapt the library for
output of user classes.

m Input — predefined input conversions, and ways to adapt the library for input of user classes.
® Constructing specialized streams — file I/O and incore operations.

m Format Control — An ios contains some format state variables. This section describes how they are
manipulated by user code and interpreted by the predefined operations

® Manipulators — A powerful method for customizing operations.
m streambufs — How to use the low level interface.

m Deriving Streambuf Classes — Methods for creating specialized classes that specialize streambuf to
deal with alternate producers and consumers of characters.

m Extending Streams — Deriving classes from istream and ostream, adding state variables, and ini-
tialization issues.

m Comparison of 1/0 libraries.

m Compatibility — Converting a program that uses the old stream library to use the new library.

Output

Suppose we want to print the variable x. The main mechanism for doing output in the iostream library is
the insertion operator <<. This operator is usually called left shift (because that is its built-in meaning for
integers) but in the context of iostreams it is called insertion.

cout << xX ;

cout is a predefined ostream and if x has a numeric type (other than char or unsigned char) the inser-
tion operator will convert x to a sequence of digits and punctuation, and send this sequence to standard
output. There are different operations depending on the type of %, and the mechanism used to select the
operator is ordinary overload resolution. The insertion operator for type t is called the “t inserter.”
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If we have two values we might do:
cout << X << Yy ;

which will output x and y, but without any separation between them. To annotate the output we might
do:

cout << "x=" << x
<< "y=" <<y
<< ",sum=" << (x + y) << "\n" ;

This will not only print the values of %, y, and their sum, but labels as well. It uses the string (char*)
inserter, which copies zero terminated strings to an ostream.

Notice the parentheses around the sum. These are not needed because the precedence of + is higher than
that of <<. But, when using << as insertion, it is easy to forget that C++ is giving it a precedence appropri-
ate to shift. Getting in the habit of always putting in parentheses is a good way to avoid nasty surprises
such as having cout<<x&y output x rather than x&y.

The output might look like:
x=23,y=159, sum=182

A pointer (void*) inserter is also defined.

int x = 99 ;
cout << &x ;

It prints the pointer in hex.
A char inserter is defined:

char a = 'a’ ;
cout << a << '\n’ ;

This prints a and newline.

User Defined Insertion Operators
What if we want to insert a value of class type?

Inserters can be declared for classes and values of class type and used with exactly the same syntax as
inserters for the primitive types. That is, assuming the proper declarations and definitions, the examples
from the previous section can be used when x or y are variables with class types.

The simplest kinds of examples are provided by a struct that contains a few values.
struct Pair { int x ; int y ; } ;

We want to insert such values into an ostream, so we define:
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ostream& operator<<(ostream& o, Pair p) {
return o << p.Xx << " " < p.y

}

This operator inserts two integral values (separated by a space) contained in p into o, and then returns a
reference to o.

The pattern of taking an ostream& as its first argument and returning the same ostream is what makes it
possible for insertions to be strung together conveniently.

As a slightly more elaborate example, consider the following class, which is assumed to implement a vari-
able size vector:

class Vec {

private:
public:
Vec() ;
int size() ;
void resize(int) ;

float& operator(](int) ;

Yo
We imagine that Vec has a current size, which may be modified by resize, and that access to individual
(float) elements of the vector is supplied by the subscript operator. We want to insert Vec values into an
ostream, so we declare:

ostream& operator<< (ostream& o, const Vec& v) ;

The definition of this operator is given below. Using Vecs& rather than Vec as the type of the second argu-
ment avoids some unnecessary copying, which in this case might be expensive. Of course, using Vec*
would have a similar advantage in terms of performance, but would obscure the fact that it is the value of
the Vec itself that is being output, and not the pointer.

The definition might be:

ostream& operator<< (ostream& o, const Vec& v)
{
o << "[" ; // prefix
for (int x =0 ; x < v.size() ; ++x )
// use comma as separator
if ((x!1=0 ) o< '," ;

o << Vv[x] ;
}
return o << "]" ;// suffix

}

This will output the list as a comma separated list of numbers surrounded by brackets. The code takes care
to get the empty list right and to avoid a trailing comma.
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Propagating Errors

None of the examples so far has checked for errors. Omitting such checks would be bad style, except that
the iostream library is arranged so that errors are propagated.

Streams have an error state. When an error occurs bits are set in the state according to the general category
of the error. By convention, inserters ignore attempts to insert things into an ostream with error bits set,
and such attempts do not change the stream’s state. The error bits are declared in an enum, which is
declared inside the declaration of class ios.

class ios {
enum io_state { goodbit=0, eofbit=1, failbit=2, badbit=4 } ;
Yo

ios::goodbit is not really a “bit.”” It is zero and indicates the absence of any bit.

In the definitions of the Pair and Vec inserters, if an error occurs some wasted computation may be done
as the code does insertions that have no effect. But eventually the error will be properly propagated to the
caller.

It is a good idea to check the output stream in some central place. For example:
if (!cout) error("aborting because of output error") ;

The state of cout is examined with cperator!, which will have a non-zero value if the state indicates an
error has occurred. This and other examples in this document assume that error() is a function to be
called when an error is discovered, and that it does not return. But error () is not part of the jostream
library.

An ostream can also appear in a “boolean” position and be tested.

if ( cout << x ) return ;
oo} // error handling

The magic here is that ios contains a definition for operator void* that returns a non-null value when
the error state is non-zero.

An explicit member function also exists:

if ( ... , cout.good() ) return ;
; // error handling

The reader is referred to the man pages for other member functions that examine the error state.

Flushing

In many circumstances the iostream library accumulates characters so that it can send them to the ultimate
output consumer in larger (presumably more efficient) chunks. This is a problem mainly in interactive pro-
grams where the user may need to see the output before entering input. It can also be a problem during
debugging when the programmer may need to see how far the program has gotten before dumping core.
The easiest way to make sure that everything inserted into an ostream has been sent to the ultimate consu-
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mer is to insert a special value, flush. For example:
cout << "Please enter date:" << flush ;

Inserting flush into an ostream forces all characters that have been previously inserted to be sent to the
ultimate consumer of the ostream. flush is an example of a kind of object known as a manipulator, a
value that may be inserted into an ostream to have some effect. It is really a function that takes an
ostreams& argument and returns its argument after performing some actions on it.

Another useful way to cause flushing is the endl manipulator, which inserts a newline and then flushes.

cout << "x=" << X << endl ;

Binary Output
Sometimes a program needs to output binary data or a single character.

int c='A’
cout.put(c) ;
cout << (char)c ;

The last two lines are equivalent. Each inserts a single character (3) into cout.

If we want to output a larger object in its binary form a loop using put would be possible, but a more
efficient method is to use the write member. For example:

cout.write((char*)&x, sizeof (x))
will output the raw binary form of x.

The reader should notice that the above example violates C++ type discipline by converting &x to char*.
Sometimes this is harmless, but if the type of x is a class with virtual member functions, or one that
requires non-trivial constructor actions, the value written by the above cannot be read back in properly.

Input
Iostream input is similar to output. It uses extraction (>>) operators that can be strung together. For
example:

cin >> x > vy ;

inputs two values from the predefined istream cin, which is by default the standard input. The extractor
used will be appropriate for the types. The lexical details of numbers are discussed below under “Format
Control.” Whitespace characters (spaces, newlines, tabs, form-feeds) will be ignored before x and between
x and y. For most types (including all the numeric ones), at least one whitespace character is required
between x and y to mark where x ends.

There is a char extractor. For example:
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char ¢ ;
cin >> ¢ ;

skips whitespace, extracts the next visible character from the istream and stores it in c. (“Non-whitespace”
is too ugly a phrase for extensive use. This document uses “visible” instead. Strictly speaking this termi-
nology is incorrect. For example, it classifies control characters as visible. But the term is reasonably
euphonious and reasonably clear.)

Sometimes it is desirable to extract the next character unconditionally. For example:

char c¢ ;
cin.get(c) ;

The next character is extracted and stored in ¢, whether or not it is whitespace.

User Defined Extraction Operators
Creating extractors for classes is similar to creating inserters. The Pair extractor could be defined thus:

istream& operator>>(istream& i, Pair& pair)
{
return i >> pair.x >> pair.y ;

)

By convention, an extractor converts characters from its first (istreams) argument, stores the result in its
second (reference) argument, and returns its first argument. Making the second argument a reference is
essential because the purpose of an extractor is to store a new value in the second argument.

A subtle point is the propagation of errors by extractors. By convention, an extractor whose first argument
has a non-zero error state will not extract any more characters from the istream and will not clear bits in
the error state, but it is allowed to set previously unset error bits. Further, an extractor that fails for some
reason must set at least one error bit. The code in the Pair extractor does nothing explicitly to respect
these conventions, but because the only way it modifies i is with extractors that honor the conventions, the
conventions will be respected.

Conventions also apply to the meaning of the individual error bits. In particular ios::failbit indicates
that some problem was encountered while getting characters from the ultimate producer, while

ios: :badbit means that the characters read from the stream did not conform to the expectation of the
extractor. For example, suppose that the components of a Pair are supposed to be non-zero. The above
definition might become:
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istream& operator>>(istream& i, Pair& pair)
{
i >> pair.x >> pair.y ;
if ( !i ) return i ;
if ( pair.x == 0 || pair.y == 0 ) {
i.clear (ios::badbit|i->rdstate()) ;
)
return i ;

)

This uses the (misleadingly named) clear () member function to set the error state to indicate that the
extractor found incorrect data. Oring ios: :badbit with i->rdstate() (the current state) preserves any
bits that may previously have been set.

The Pair extractor has been defined so that it can input values that were output by the Pair inserter.
Maintaining this symmetry is an important general principle that is worth some effort.

The next example is the Vec extractor, which will require an opening [ followed by a sequence of numbers,
followed by a ]. Recall that the Vec inserter uses , as a separator and does not insert any whitespace
between numbers. The extractor must accept such input. It will also accept slightly more general formats.
In particular it allows extra whitespace, and it allows any visible character to be used as a separator. It also
deals properly with a variety of special conditions such as errors in the input format.
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istream& operator>>(iostream& i, Vec& v)

{
int n =20 ; // number of elements
char delim ;

v.resize(n) ;

// verify opening prefix

i >> delim ;

if ( delim != [’ ) ;
i.putback(delim);
i.clear(ios::badbit|i.rdstate()) ;
return i ;

}
if ( i.flags() & ios::skipws ) i >> ws ;
if ( i.peek() == ']’ ) return i ;
// loop

while ( i && delim != ']’ ) {
v.resize(++n) ;
i >> v[n-1] >> delim ;

}
return i ;
}
The steps this code performs are:
m Turn v into an empty vector. This is done by the first resize operation.
m Verify that the next character in the istream is [.

If the next character is not [ (or if the state of the iostream already has error bits set), mark the state
of i as bad, put delim back in e (where it may later be extracted again), and return. Putting delim
back in the stream is not essential but it is consistent with the behavior of the predefined extractors.

m Optionally skip some whitespace.

Whether to skip is controlled by the ios: :skipws flag set in a collection of bits known as i’s format
flags. This bit also controls skipping of whitespace in the predefined extractors. If it is set,
whitespace was skipped before extracting the character stored into delim.

m If the next character is ], the input represents an empty vector and since v has already been resized
the extractor can just return.

The next character is examined using the peek() member function. This returns the next character
that would be extracted but leaves it in the stream.
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m The code now loops, extracting numbers and delimiters until either the closing ] is found or an input
error occurs. An explicit check of the state of i is required to prevent an infinite loop should an
error occur in extracting vec[n-1] or delim.

char* Extractor
A useful extractor, but one that must be used with caution, takes a char* second argument. For example,

char p[100];
cin >> p;

skips whitespace on cin, extracts visible characters from cin and copies them into p until another
whitespace character is encountered. Finally it stores a terminating null (0) character. The char* extractor
must be used with caution because if there are too many visible characters in the istream, the array will
overflow.

The above example is more carefully written as:

char p(100] ;
cin.width(sizeof (p)) ;
cin >> p ;

There are very few circumstances (perhaps there are none at all) in which it is appropriate to use the char*
extractor without setting the “width” of the istream.

To make specifying a width more convenient, the setw manipulator (declared in icmanip.h) may be used.
The above example is equivalent to:

char p[100] ;
cin >> setw(sizeof(p)) >> p ;

Binary Input

The char extractor skips whitespace. Programs frequently need to read the next character whether or not
it is whitespace. This can be done with the get () member function. For example,

char c;
cin.get(c);

get () returns the istream and a common idiom is:

char ¢ ;
while ( cin.get(c) ) {

}
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Programs also occasionally need to read binary values (e.g., those written with write()) and this can be
done with the read() member function.

cin.read((char*)&x, sizeof (X)) ;
This does the inverse of the earlier write example (namely, it inputs the raw binary form of x).

If a program is doing a lot of character binary input, it may be more efficient to use the lower level part of
the iostream library (streambuf classes) directly rather than through streams.

Creating Streams

The examples so far have used the predefined streams, cin and cout. For some programs, reading from
standard input and writing to standard output suffices. But other programs need to create streams with
alternate sources and sinks for characters. This section discusses the various kinds of streams that are avail-
able in the iostream library.

Files

The classes of stream and ifstream are derived from ostream and istream and inherit the insertion and
extraction operations respectively. In addition they contain members and constructors that deal with files.
The examples in this section assume that the header file fstream.h has been included.

If the program wants to read or write a particular file it can do so by declaring an ifstream or ofstream
respectively. For example,

ifstream source("from") ;

if ( !source ) error("unable to open ‘from’ for input");
ofstream target("to")

if ( !target ) error("unable to open ‘to’ for output");
char c ;

while ( target && source.get(c) ) target.put(c) ;

copies the file from to the file to. If the ifstream() or ofstream() constructor is unable to open a file in
the requested mode it indicates this in the error state of the stream.

In some circumstances a program may wish to declare a file stream without specifying a file. This may be
done and the filename supplied later. For example:

ifstream file ;
H

file.open(argvil]l) ;

It is even possible to reuse the same variable by closing it between calls to open (). For example:
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ifstream infile ;

for ( char** £ = &argv[l] ; *f ; ++f ) {
infile.open(*f) ;
infile.close() ;

}

In some circumstances the program may already have a file descriptor (such as the integer 0 for standard
input) and want to use a file stream. For example,

ifstream infile ;
if ( stramp(argv[l],"-") ) infile.open(argv([l],input) ;
else infile.attach(0) ;

opens infile to read a file named by argv([1], unless the name is -. In that case it will connect infile
with the standard input (file descriptor 0). A subtle point is that closing a file stream (either explicitly or
implicitly in the destructor) will close the underlying file descriptor if it was opened with a filename, but
not if it was supplied with attach.

Sometimes the program wants to modify the way in which the file is opened or used. For example, in
some cases it is desirable that writes append to the end of a file rather than rewriting the previous values.
The file stream constructors take a second argument that allows such variations to be specified. For exam-
ple,

ofstream outfile("out",ios::applios: :nocreate) ;

declares outfile and attempts to attach it to a file named out. Because ios: :app is specified all writes
will append to the file. Because ios: :nocreate is specified the file will not be created. That is, the open
will fail (indicated in cutfile’s error status) if the file does not previously exist. The enum open_mode is
declared in ios.

class ios {
enum open mode { in, out, app, ate, nocreate, noreplace )} ;

}i

These modes are each individual bits and may be or'ed together. Their detailed meanings are described in
the man pages.

Sometimes it is desirable to use the same file for both input and output. fstream is an iostream (a class
derived via multiple inheritance from both istream and ostream). The type streampos is used for posi-
tions in an iostream. For example,

fstream tmp ("tmp",ios::inlios::out) ;

streampos p = tmp.tellp() ;// tellp() returns current position
tmp << X ;

tmp.seekg(p) ; // seekg() repositions iostream
tmp >> x ;

saves the position of the file in p, writes x to it, and later returns to the same position to restore the value
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of x.

A variant of seekg () takes a streamoff (integral value) and a seek_dir to specify relative positioning. For
example,

tmp.seekg(-10, ios::end) ;
positions the file 10 bytes from the end, and
tmp.seekg (10, ios::cur) ;

moves the file forward 10 bytes.

Incore Formatting

Despite its name, the iostream library may be used in situations that do not involve input or output. In
particular, it can be used for “incore formatting”” operations in arrays of characters. These operations are
supported by the classes istrstream and ostrstream, which are derived from istream and ostream
respectively. The examples of this section assume that the header file strstream.h has been included.

For example, to interpret the contents of the string argv[1] as an integer value, the code might look like:
int i ;
istrstream(argv[l]) >> i ;

The argument of the istrstream() constructor is a char pointer. In this example, there is no need for a
named strstream. An anonymous constructor is more direct.

The inverse operation, taking a value and converting it to characters that are stored into an array, is also
possible. For example,

char s[32] ;
ostrstream(s,sizeof(g)) << X << ends ;

will store the character representation of x in s with a terminating null character supplied by the ends
(endstring) manipulator. The iostream library requires that a size be supplied to the constructor and noth-
ing is ever stored outside the bounds of the supplied array. In this case, an “output error” will occur if an
attempt is made to insert more than 32 characters.

In case it is inconvenient to preallocate enough space for the string, a program can use an ostrstream()
constructor without any arguments. For example, suppose we want to read the entire contents of a file into
memory.
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ifstream in("infile") ;

// strstream with dynamic allocation
strstream incore ;

char ¢ ;
while ( incore && in.get(c¢) ) incore.put(c) ;

// str returns pointer to allocated space
char* contents = incore.str() ;

// once str is called space belongs to caller
delete contents ;

The file infile is read and its contents inserted into incore. Space will be allocated using the ordinary
C++ allocation (cperator new) mechanism, and automatically increased as more characters are inserted.
incore.str () returns a pointer to the currently allocated space and also “freezes” the strstream so that
no more characters can be inserted. Until incore is frozen, it is the responsibility of the strstream() des-
tructor to free any space that might have been allocated. But after the call to str(), the space becomes the
caller’s responsibility.

Predefined Streams

There are four predefined streams, cin, cout, cerr, and clog. The first three are connected to standard
input, standard output, and standard error respectively. clog is also connected to standard error but,
unlike cerr, clog is buffered. That is, characters are accumulated and written to standard error in chunks.
cout is also buffered.

Frequently programs want to use either standard input and output or some external file depending on their
command line arguments. One way is to use the predefined streams and assign to them. Assignment of
streams is not possible in general but the predefined streams have special types which allow it. The reader
is referred to the man pages for a discussion of the semantics of assignment. A more flexible style is to use
a pointer or reference to a stream:

istream* in = &cin ;
if ( infile ) in = new ifstream(infile) ;
*in << X ;

Problems can occur when mixing code that uses iostreams with code that uses stdio. There is no connec-
tion between the predefined iostreams and the stdio standard FILEs except that they use the same file
descriptors. It is possible to eliminate this problem by calling

ios::sync with_stdio()

which will connect the predefined iostreams with the corresponding stdio FILEs. Such connection is not
the default because there is a significant performance penalty when the predefined files are made
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unbuffered as part of the connection.

Format Control

The default treatment of scalar types is that integral values (except char and unsigned char) are inserted
in decimal, pointers (except char* and unsigned char*) in hex, floats and doubles with 6 digits of preci-
sion and all without leading or trailing padding. char and unsigned char values are just inserted as sin-
gle characters. char* and unsigned char* values are treated as pointers to strings (null terminated
sequences of characters). The default treatment for extraction of integer types is decimal numbers with
leading whitespace permitted. An optional sign (+ or -) is permitted, but without whitespace between it
and the digits. Extraction is terminated by a non-digit character. Extraction for floating point types is simi-
lar except that the lexical possibilities for floating point numbers are an optional sign followed (without
intervening whitespace) by a number according to C++ lexical rules.

For many purposes these defaults are adequate. When they are not, the program can do more formatting
itself, or it can use the format control features of the iostream library. The examples in this section use
these features.

Associated with each iostream is a collection of “format state variables” that control the details of conver-
sions. The most important of these is a long int value that is interpreted as a collection of bits. These
bits are declared as:

enum { skipws=01, // skip whitespace on input
left=02, right=04, internal=010,

// padding location
dec=020, oct=040, hex=0100,

// conversion base
showbase=0200, showpoint=0400, uppercase=01000,
showpos=02000,

// modifiers
scientific=04000, fixed=010000

// floating point notation
Yo

These may be examined and set individually or collectively. For example, the ios: :skipws controls
whether leading whitespace is skipped by extractors.

char ¢ ;

cin.setf (0, ios::skipws) ; // turn off skipping
cin >> ¢ ;

cin.setf (ios::skipws, ios: :skipws) ; // turn it back on

The second argument of setf indicates which bits should be set. The first indicates what values they
should be set to.
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Manipulators are declared (in iomanip.h) that will have an equivalent effect. The above is equivalent to:

cin >> resetiosflags (ios::skipws)
>> ¢
>> setiosflags(ios::skipws) ;

resetiosflags resets (makes zero) the indicated bits and setiosflags sets (makes them 1) the indicated
bits.

Commonly we want to save the flags (or other state variables) and restore their value later. Consider:

long £ = cin.flags() ;

cin.setf (ios::skipws, ios: :skipws) ;
cin >> ¢ ;

cin.flags(f) ;

The variant of flags without an argument returns the current value. state variable The variant with an
argument stores the argument into the flags state variable. This code does the same extraction as the pre-
vious code, but instead of arbitrarily leaving cin with skipping on it restores skipping to its previous
status.

The pattern of member functions is repeated for other state variables. That is, if svar is some state vari-
able, and s is a stream, then s.svar () returns the current value of the state variable and s.svar (x) stores
the value x into the state variable.

Field Widths

The default behavior of the inserters is to insert only as many characters as is necessary to represent the
value, but frequently programs want to have fixed size fields.

cout.width(5) ;
cout << x ;

will output extra space characters preceding the digits to bring the total number of inserted characters to
five. If the value of x will not fit in five characters, enough characters will be inserted to express its value.
The numeric inserters never truncate. The width state variable might be regarded as an implicit parameter
of extractors because it is reset to 0 (which induces the default behavior) whenever it is used.

cout.width(5) ;
cout << X << " " <y ;

will output x in at least five characters, but will use only as many characters as necessary in outputting the
separating space and y.

The value of the width state variable is honored by the inserters of the iostream library, but user defined
inserters are responsible for interpreting it themselves. For example, the Pair inserter defined previously
does nothing special with width and so if it is non-zero when the inserter is called the width will apply to
the first int inserted, and not the second. If the inserter wants to honor width its definition might look
like:
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ostream& operator<<(ostream& o, Pair p)
int w = o.width() ;
o.width(w/2) ;
O KL p.Xx<<" ",
o.width(w/2-((w+1)&1)) ;
o << p.Y ;
return o ;

}
This inserts each number in half the requested width.

It is slightly awkward to mix calls to the width () member function with insertion operations. The mani-
pulator setw() may be used. An alternative definition of the Pair inserter might be:

iostreamé& operator<<(iostream& ios, Pair p) {
int w = ios.width() ;
return ios << setw(w/2) << pair.x << " "
<< setw(w/2+((w+l)&l)) << pair.y ;
}

Pair

width is always interpreted as a minimum number of characters. There is no direct way to specify a max-
imum number of characters. In cases where a program wants to insert exactly a certain number of charac-
ters, it must do the work itself. For example,

if ( strlen(s) > w ) cout.write(s,w) ;
else cout << setw(w) << s ;

will always insert exactly w characters.

width is generally ignored by extractors, which tend to rely on the contents of the iostream to detect the
end of a field. There is, however, an important exception. The char* extractor interprets a non-zero width
to be the size of the array. For example,

char a[l6] ;
cin >> setw(sizeof(a)) >> a ;
if ( !isspace(cin.peek() ) error("string too long") ;

protects the program in case there are sixteen or more visible characters. As a further measure of protec-
tion, the extractor stores a trailing null in the last byte of the array when it stops because there are too
many visible characters. This means that the number of characters extracted (not counting leading
whitespace) will be at most one less than the specified width.

Flags control whether padding (when it occurs) causes the field to be left or right justified. The £i11 state
variable (whose initial value is a space) supplies the character to be inserted.
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cout.fill(*) ;

cout.setf (ios::left,ios::adjustfield) ;

cout << setw(5) << 13 << ", " ;

cout.fill (#) ; // set state variable
cout.setf(ios::right, ios::adjustfield) ;

cout << setw(5) << 14 << "\n" ;

results in a line of output that looks like:

13%**, #4##14

Conversion Base

Integers are normally inserted and extracted in decimal notation, but this is controlled by flag bits. If none
of ios::dec, ios::hex, or ios::oct are set the insertion is done in decimal but extractions are inter-
preted according to the C++ lexical conventions for integral constants. If ios: :showbase is set then inser-
tions will convert to an external form that can be read according to these conventions.

For example,

int x = 64;
cout << dec << x << " "
<< hex << x << " "
<< oct << X << endl ;
cout.setf (ios: :showbase, ios: :showbase) ;
cout << dec << X << " "
<< hex << x << " "
<< oct << X << endl ;

will result in the lines:

64 40 100
64 0x40 0100

setf () with only one argument turns the specified bits on, but doesn’t turn any bits off.

Reading the lines shown above could be done by:

cin >> dec >> X
>> hex >> x
>> oct >> X%
>> resetiosflags (ios: :basefield)
>> X >> X >> X ;

The value stored in x will be 64 for each extraction. The resetiosflags() manipulator turns off the
specified bits in the flags.
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Miscellaneous Formatting

As a precaution against looping, zero width fields are considered a bad format by the extractors. So if the
next character is whitespace and ios: : skipws is not set, the arithmetic extractors will set an error bit.

The number of significant digits inserted by the floating point (double) inserter is controlled by the preci-
sion state variable. The details of the conversion are further controlled by certain flags. The reader is
referred to the man page for more details.

It is good practice to flush ostreams appropriately. The flush and endl manipulators make it relatively
easy to do so. Yet, there are circumstances in which some automatic flushing is appropriate. This is sup-
ported by the ostream* valued state variable tie. If i.tie is non-null and an istream needs more char-
acters, the ostream pointed at by tie is flushed. Initially cin is tied in this fashion to cout so that
attempts to get more characters from standard input result in flushing standard output. This seems to han-
dle most interactive programs reasonably well without imposing a large performance penalty on non-
interactive programs and without creating different behavior when programs are connected to pipes rather
than directly to a terminal. (Programs that won’t work when their input or output is connected to a pipe
are one of the author’s pet peeves.) The overheads implied by tying are relatively small when compared
with “big”” extractors (such as the arithmetic ones) but may be large when single character operations are
being performed. For this reason it is sometimes a good idea to break the tie by setting the state variable
to 0. For example:

char ¢ ;

// break the tie to improve performance of get.
cin.tie(0) ;

while ( cin.get(c) ) cout.put(c) ;

Manipulators

A manipulator is a value that can be inserted into or extracted from a stream to cause some special side
effect. That is, some side effect besides inserting a representation of its value, or extracting characters and
converting them to a value. A parameterized manipulator is a function (or a member of a class with an
operator () ) that returns a manipulator. Previous sections contain examples of the use of manipulators
and parameterized manipulators. This section contains examples illustrating how to define manipulators.
The predefined manipulators and macros discussed in this section are declared in the header file
iomanip.h.

A (plain) manipulator is a function that takes an istream& or ostream& argument, operates on it in some
way, and returns it. A (pointer to a) function of this type may be extracted from or inserted into a stream,
respectively.

Many examples of manipulators (such as flush or endl) have already appeared in this paper. For exam-
ple, a manipulator to insert a tab can be defined:
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ostreamé& tab(ostream& o) ¢
return o << '\t’ ;

}

cout << x << tab <<y ;

This seems over elaborate. Why not simply define tab as a character or string? One possible reason has to
do with the namespace. There can be only one (global) variable in a C++ program named tab but because
of overloading there can be many functions with that name.

Another common use of manipulators is to shorten the long names and sequences of operations required
by the iostream library. For example,

ostream& fld(ostream& o) {
o.setf (ios: :showbase, ios: :showbase)
o.setf(ios::oct, ios::basefield)
o.width(10) ;
return o ;

}

4

.
1

cout << fld << x ;

It is common for the function that manipulates a stream to need an auxiliary argument. setw() is an

example of such a parameterized manipulator. To use parameterized manipulators the program must
include iomanip.h.

For example, we might want to supply the value to be printed to £1d in the above.

ostream& fld(ostream& o, int n ) {
long £ = flags(ios::showbasel|ios::oct)
o << setw(1l0) << n ;

flags(f) ; // restore original flags
return o ;

)

’

OMANIP (int) fld(int n)
return OMANIP(int) (£14,n)
}

1

cout << £14(23) ;

OMANIP is a macro and OMANIP (int) expands to the name of a class declared in iomanip.h. An
OMANIP (int) insertion operator is also declared in iomanip.h and is used in the example. Note that £14

in the above is overloaded; it is both the function that manipulates the stream and a function that returns
an OMANIP(int).
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If we need parameterized manipulators for parameter types other than int and long (which are declared
in iomanip.h), they must be declared. For example, suppose we want to read numbers that may have a
suffix.

typedef long& Longref ;

IOMANIPdeclare (Longref) ;
// Declares IMANIP(Longref), OMANIP(Longref), IOMANIP(Longref)
// IAPP(Longref), OAPP(Longref), IOAPP(Longref)

istream& in k(istream& i, long& n)
{
// Extract an integer.
// If suffix is present multiply by 1024

i>n;

if ( i.peek() == 'k’ ) {
i.ignore(1l) ;
n *= 1024 ;
}

return i ;

}

IAPP(Intref) in k = in_k ;
// IAPP(Intref) is the type of an Intref applicator
// in_k on right is function, on left variable

long n ;

cin >> in_k(n) ;
The IOMANIPdeclare(T) declares manipulators (and applicators) for type T. Because of the way the macro
IOMANIPdeclare expands, the argument must be an identifier. In this case a typedef is required to create
manipulators for long&. An applicator is something that behaves like a function returning a manipulator.
That is, it is a class with an operator () member.

Sometimes we want a manipulator with more than one parameter. One way to achieve this effect is to
define a manipulator on a class. For example, a manipulator that can be used to repeat a string might look
like:

cout << repeat("ab",3) << endl ;

to result in a line containing “ababab.” A possible definition of repeat would be
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struct Repeatpair {
const char* g ;
int n ;

Yo
IOMANIPdeclare (Repeatpair) ;

static ostream& repeat (ostream& o, Repeatpair p)
// insert p.s into o, p.n times
for (int n=p.n;n>0; --n) o << p.s ;
return o ;

}

OMANIP (Repeatpair) repeat (const char* s, int n) {
Repeatpair p ;
p.s=s ; p.n=n ;
return OMANIP (Repeatpair) (repeat,p) ;
}

Manipulators are a powerful and flexible method of extending the default inserters and extractors.

The Sequence Abstraction

The iostream library is built in two layers: The formatting layer discussed in previous sections, and a
sequence layer based on the class streambuf. The formatting layer is responsible for converting between
sequences of characters and various types of values and for high level manipulations of the streams. The
sequencing layer is responsible for producing and consuming those sequences of characters. The most com-
mon way of using streambufs is with a stream. But streambuf is an independent class and may be used
directly.

Abstractly, a streambuf represents a sequence of characters and two pointers into that sequence, a get and
a put pointer. These pointers should be thought of as pointing at the locations either before or after char-
acters in the sequence, rather than at specific characters. The sequences and pointers may be manipulated
in a variety of ways, with the two fundamental ones being fetching the character after the get pointer, and
storing a character in the position after the put pointer. Storing either replaces any previous character at
that location or, if the put pointer was at the end of the sequence, extends the sequence. Other manipula-
tions may move the pointers in various ways.

For the examples of this section, we assume that there are two streambufs, pointed at by in and out.
Methods for constructing streambufs appear later, but it is easy enough to get at the streambuf associated
with a stream via rdbuf () . So we assume that in and out have been initialized with

streambuf* in = cin.rdbuf() ;
streambuf* out = cout.rdbuf() ;

An istream or ostream retains no information about the state of the associated streambuf. For example
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a program may alternate between extracting characters from in and cin.

The simplest operations are getting and putting characters. A simple loop to copy characters from one
streambuf to another would be:

int ¢ ;
while (( ¢ = in->sbumpc()) != EOF ) {
if ( out->sputc(c) == EOF ) error("output error") ;

}

sbumpc () fetches the character after the get pointer and advances the get pointer over the fetched charac-
ter. sputc() stores a character into the sequence and moves the put pointer past it. Both functions report
errors by returning EOF, which is why ¢ must be declared an int rather than a char. EOFs returned while
fetching tend to mean that the streambuf has run out of characters from the ultimate producer. EOFs
returned when storing tend to signal real errors. Because, unlike iostreams, streambufs do not contain any
error state, it is possible that a store or fetch might fail one time and succeed the next time it is tried.

The streambuf class contains several different member functions for manipulating the get pointer. The fol-
lowing loop represents a common idiom:

int ¢ = in->sgetc() ;
while ( c¢!=EOF && !isspace(c) ) {
¢ = in->snextc() ;

}

It scans the streambuf looking for a whitespace character (i.e., one for which isspace is non-zero). It stops
when it finds that character leaving it available for extraction. This is because sgetc() and snextc() do
not behave the way many programmers expect. sgetc () returns the character after the get pointer, but
does not move the pointer. snextc() moves the get pointer and then returns the character that follows the
new location. As usual both these functions return EOF to signal an error.

The copy loop moved characters one at a time. It is possible to do larger chunks, as in:

static const int Bufsize = 1024 ;
char buf[Bufsize] ;

int p, g ;

do {
g = sgetn(buf, Bufsize) ;
p = sputn(buf, g) ;

if ( p!=g ) error("output error");
} while ( g>0 ) ;

sgetn(b,n) attempts to fetch n characters from the sequence into the array starting at b. Similarly
sputn (b,n) tries to store the n characters starting at b into the sequence. Both move the pointer (get or
put respectively) over the characters they have processed and return the number transferred. For sgetn ()
this will be less than the number requested when the end of sequence is reached. When sputn () returns
less than the number requested, it indicates an error of some sort.
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Buffering Exposed

As the name suggests streambufs may implement the sequence abstraction by buffering between the
source and sink of characters. This results in an unfortunate pun. The word “buffer” is frequently used
informally to designate a streambuf, but it is also used to describe the chunking of characters. Thus, the
oxymoron “unbuffered buffer” refers to a streambuf in which characters are passed to the ultimate consu-
mer as soon as they are stored, and obtained from the ultimate producer whenever they are retrieved.

In light of the buffering provided by streambufs, the reader will not be surprised to discover that arrays of
characters are used in the implementation. The streambuf class contains some member functions that
make the presence of such arrays visible to the program. With some effort, they might be used to “break
the abstraction,” but the intended purpose is to deal with the delays implicit in buffering.

The earlier example using sgetn () and sputn() to copy from in to out waits until Bufsize characters
become available (or the end of the sequence is reached) before passing any to cut. If the source of charac-
ters has delays (e.g., it is a person typing at a terminal) and we want the characters to be passed on as soon
as they become available; the program might use operations on single characters instead, or it might use an
adaptive method such as:

static const int Bufsize = 1024 ;

char buf [Bufsize] ;

int p, g ;

do {
in->sgetc() ; // force a character in buffer
g = in->in_avail() ;
if ( g > Bufsize ) g = Bufsize ;
g = in->sgetn(buf,g) ;
p = out->sputn(buf,g) ;
out->sync() ;
if ( p!=g ) error("output error");
} while (g > 0 )

in_avail returns the number of characters immediately available in the array. Calling sgetc() first forces
there to be at least one such character (unless the get pointer is at the end of the sequence). Recall that
sgetc() returns the next character, but doesn’t move the get pointer. The code calls sync () after it has
put characters into out, thus causing these characters to be sent to the ultimate consumer.

In some circumstances, such as when streambufs are being used for interprocess messages, the chunks in
which characters are produced and consumed may have significance. The above preserves these chunks
provided they are less than Bufsize and they fit into the arrays of in and out. To ensure that this latter
condition is met, the code should provide large enough arrays explicitly with:

char ibuf[Bufsize+8], obuf[Bufsize+8] ;
in->setbuf (ibuf, sizeof (ibuf)) ;
out->setbuf (obuf, sizeof (obuf)) ;

The calls to setbuf () should be done before any fetches or stores are done. The arrays are eight larger
than required by the largest chunk to allow for various overheads. Of course, this code behaves properly
only when in delivers the characters in the appropriate chunks.
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Using Streambufs in Streams

The positions of the put pointer after operations that store characters and position of the get pointer after
operations that fetch characters are well defined by the sequence abstraction. But the location of the get
pointer after stores, and the location of the put pointer after fetches is not. Most specializations of stream-
buf (i.e., classes derived from it) follow one of two patterns. Either the class is queuelike, which means
that the put pointer and the get pointer are independent and moving one has no effect on the other. Or the
class is filelike, which means that when one pointer moves the other is adjusted to point to the same place.
So a filelike class behaves as if there were only one pointer. Other possibilities are logically possible, but
do not seem to be as useful.

A queuelike streambuf, may be shared between two streams. For example:

strstreambuf b ;

ostream ins (&b) ;

istream extr (&b) ;

while ( ... ) {
ins << X ; ... ;
extr >x; ... ;

}

This example explicitly uses the strstreambuf class (declared in strstream.h) which is also used (impli-
citly) by the istrstream and ostrstream classes. The istream() and ostream() constructors require a
streambuf argument. They use that streambuf as a producer or consumer of characters. The characters
inserted into ins may later be extracted from extr. If an attempt is ever made to extract more characters
than have been inserted, the extraction will fail. If more characters are later inserted, extr’s error state can
be cleared and the extraction retried.

Because of the dynamic allocation performed by strstreambufs the queue is unbounded, but there is a
serious drawback. Space is not reclaimed until b is destroyed.

Deriving New Streambuf Classes

The streambuf class is intended to serve as a base class. Although it contains members to manipulate the
sequences, it does not contain any mechanism for producing or consuming characters. These must be pro-
vided by a derived class. The iostream library contains several such derived streambuf classes, but a pro-
gram may define new ones.

The members of a class that are intended for use by derived classes are protected, and the data structure
as seen by a derived class is said to be the protected interface of the streambuf class. This abstraction
exposes the details of the array management that is implicit in the buffering provided by streambufs. It
consists of two parts. The first part is member functions of streambuf that permit access to and manipula-
tion of the arrays and pointers used to implement the sequence abstraction. The second part is virtual
members of streambuf that must be supplied by the derived class.
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The principle example of this section will be the implementation of fctbuf, whose declaration looks like:

typedef int (*action) (char* b, int n, open_mode m) ;

class fectbuf : public streambuf (
public:

fctbuf (action f,open_mode m) ;
private:

Yo

When called with m=ios: :out, an action() function processes the n characters starting at b. When called
with m=ios: :in, it stores n characters starting at b. It returns non-zero to indicate success and zero to
indicate failure.

The declaration of fctbuf looks like:

class fctbuf : public streambuf {
public: // constructor
fctbuf (action a, open_mode m) ;

private: // data members
action fct ;
open_mode
mode ;
char small[l] ;
protected: // virtuals
int overflow(int) ;
int underflow() ;
streambuf*
setbuf (char*, int, int) ;
int sync() ;

Y

The constructor just initializes the data elements. The action function a will be called only in modes com-
patible with m.

fctbuf: : fctbuf (action a, open mode m)
: fet(a), mode(m) { }

The virtual functions define details that make fctbuf () behave properly. The streambuf protected inter-
face is organized around three areas (char arrays), the holding area, the get area, and the put area. Char-
acters are stored into the put area and fetched from the get area.

As characters are stored in the put area, it shrinks until there is no more space available. If an attempt is
made to store a character when the put area has no space, a new area must be established. Before that can
be done the old characters must be consumed. Both these tasks are the responsibility of the overflow()
function. Similarly, the get area is shrunk by fetches and is eventually empty. If more characters are
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needed the underflow() function must create a new get area. Both overflow() and underflow() will
use the holding area to initialize the put or get area (respectively).

setbuf

The virtual function setbuf is called by user code to offer an array for use as a holding area. It can also be
used to turn off buffering.

streambuf* fctbuf::setbuf (char* b, int len)

{
if ( base() ) return 0 ;

if ( b!=0 & len > sizeof (small) ) {
// set up holding area
setb(b,b+len) ;
}

else {
// Use a one character array to achieve
// "unbuffered" actions.
setb(small, small+sizeof (small)) ;
}

setp(0,0) ; // put area

setg(0,0,0) ; // get area

return this ;

}
The actions of this function are:

B base() points to the first character of the holding area. If a holding area has already been set up
(base non-zero) a new one cannot be established and setbuf () returns a null pointer as an error
indication.

m If an array is supplied and is sufficiently large, setb() is called to set up the pointers to the holding
area. lIts first argument becomes base, the first char of the holding area, and its second becomes
ebuf, the char after the last. Otherwise the fctbuf will become unbuffered. This is noted by set-
ting up a one character holding area.

m Finally the pointers related to the put area are set to 0 by setp() and the pointers related to the get
area are set to 0 by setg().
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overflow

The virtual function overflow() is called to send some characters to the consumer, and establish the put
area. Usually (but not always) when it is called, the put area has no space remaining.

int fctbuf::overflow(int <) {
// check that output is allowed
if ( ! (mode&ios::out) ) return EOF ;

// Make sure there is a holding area
if ( allocate()==EOF ) return ECF ;

// Verify that there are no characters in
// get area.
if ( gptr() && gptr() < egptr() ) return EOF ;

// Reset get area
setg(0,0,0) ;

// Make sure there is a put area
if ( !'pptr() ) setp(base(),base()) ;

// Determine how many characters have been
// inserted but not consumed.
int w = pptr()-pbase() ;

// If ¢ is not EOF it is a character that must
// also be consumed.
if ( ¢ != EOF ) {

// We always leave space

*pptr() = ¢ ;

+4+W

}

// consume characters.
int ok = (*fct) (pbase(), w, ios::out) ;

if ( ok ) {
// Set up put area. Be sure that there
// 1s space at end for one extra character.
setp(base(),ebuf()-1) ;
return zapeof(c) ;
}
else {
// Indicate error.
setp(0,0) ;
return EOF ;
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}
Some explanations of this code:

m It first tests for various error conditions, such as trying to do insertion when there are characters that
have been produced but not extracted. This is a problem because the code only uses one area to hold
characters for insertion and extraction. It would also be possible to ignore this condition and just
throw away the characters or a more elaborate version of fctbuf might use separate areas for inser-
tion and extraction.

m allocate() is a part of the streambuf protected interface. If no reserve area has previously been
specified it allocates heap space.

m pbase is the value of pptr established by the last call to setp(). As characters are stored, pptr is
moved so that it always points to the first unused character. Thus the characters between pbase and
pptr have been stored and not consumed. They are now sent to the consumer.

m The value returned by the consumer is checked to verify that it has been able to consume all the char-
acters that were passed to it. If not, there is no put area and EOF is returned.

m When all has gone well the put area is established by setp() whose first argument becomes pptr
(pointing to the first char of the put area) and whose second becomes epptr (pointing to the char
after the last char of the put area). In this case when no errors have occurred the whole holding
area minus the last character is used as a put area. The last character will usually be filled in by the
character supplied to the next call to overflow().

m Finally, if all has gone well, ¢ is returned unless it is EOF. If ¢ is EOF something else must be
returned because EOF is returned to signal an error. The macro zapeof () deals with this con-

tingency.

underflow

The underflow function is called when characters are needed for fetching and none are available in the get
area. Its general outline is similar to overflow(), but it deals with the get area rather than the put area.
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int fctbuf::underflow() {

Some explanations:

// Check that input is allowed
if ( ! (mode&ios::in) ) return EOF ;

// Make sure there is a holding area.
if (allocate()==EOF) return EOF ;

// If there are characters waiting for output
// send them ;
if ( pptr() && pptr() > pbase() ) overflow(EOF) ;

// Reset put area
setp(0,0) ;

// Setup get area ;
if ( blen() > 1 ) setg(base(),base()+1,ebuf()) ;
else setg(base() ,base(),ebuf()) ;

// Produce characters -
int ok = (*fct) (base(),blen(),ios::in) ;

if ( ok ) {
return zapeof (*base()) ;
}
else {
setg(0,0,0) ;
return EOF ;
}
}

m EOF is returned immediately if we aren’t supposed to do input or if a holding area cannot be allo-

cated.

B allocate()

is called to make sure that there is a holding area.

m setg() is used to establish the get area where fct will be asked to store characters. Its first argu-
ment sets up a pointer, eback, that marks the limit to which putback can move gptr. The second
argument becomes gptr, and the last becomes egptr, pointing at the char after the last char contain-
ing values stored by the producer.

m blen() returns the size of the holding area. It may be as small as 1.

m If the action function indicated success underflow() returns the first character. It is left in the get
area and may be extracted again. zapeof () is used to make sure that the returned result is not EOF.
If zapeof () were omitted this might occur on a machine in which chars are signed and EOF is -1.
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sync

The virtual function sync () is called to maintain synchronization between the various areas and the pro-
ducer or consumer. It is also called by the streambuf () destructor.

int fctbuf::sync()
{
if ( gptr() &% egptr() > gptr() ) {
// no way to return characters to producer
return EOF ;
}

if ( pptr() && pptr() > pbase() ) {
// Flush waiting output
return overflow(EOF) ;

}

// nothing to do
return 0 ;

)

The virtual functions defined above implement a correct streambuf class. A possible refinement would be
to provide implementations of the virtual xsputn () and xsgetn() functions. These functions are called
when chunks of characters are being inserted and extracted respectively. Their default actions are to copy
the data into the buffer. If they were defined in the fctbuf class they could call the functions directly and
avoid the extra copy.

Extending Streams

There are two kinds of reasons to extend the basic stream classes. The first is to specialize to a particular
kind of streambuf and the second is to add some new state variables.

Specializing istream OF ostream

When the iostream library is specialized for a new source or sink of characters the natural pattern is this:
First derive a class from streambuf, such as fctbuf in the previous section. Then derive classes from
whichever of istream, ostream, or iostream is appropriate. For example, suppose we want to do this
with the fctbuf class defined in the previous section. The streams might get the definitions:
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class fctbase : virtual public ios {
public:
fcthase(action a, open_mode m)
: buf(a,m) { init(&buf) ; }
private:
fctbuf buf ;
Yo

class ifctstream : public fctbase, public istream {
public:
ifctbase (action a)
: fctbase(a, ios::in) { )}

Yo

class ofctstream : public fctbase, public ostream {
public:
ofctbase(action a)
: fctbase(a, ios::out) { }

Yo

class jiofctstream : public fctbase, public iostream {
public:
iofctstream(action a open_mode m)
: fctbase(a, m) { }
Yo

Derivations from ios are virtual so that when the class hierarchy joins (as it does in iofctstream) there

will be only one copy of the error state information. Because the derivation from ios is virtual an argu-

ment cannot be supplied to its constructor. The streambuf is supplied via ios::init (), which is a pro-
tected member of ios intended precisely for this purpose.

Extending State Variables

In many circumstances we would like to add state variables to streams. For example, suppose we are
printing trees and would like to have an indentation level associated with an ostream.
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int xdent = ios::xalloc() ;
// generate a unique index

ostream& indent (ostream& o) {
// manipulator that inserts newlines and
// appropriate number of tabs
o << '\n’ ;
int count = o.iword(xdent) ;
while ( count-- > 0 ) o << "\t’ ;
return o ;

}

ostream& redent (ostream& o, int n) {
// parameterized manipulator that modifies
// indentation level
o.iword(xdent) += n ;

}

OAPP(int) redent = redent ;

o.iword (xdent) is a reference to the xdent’th integer state variable. Each call to ios::xalloc returns a
different index. The index may then be used to access a word associated with the stream. The reason for
calling ios: :xalloc to get an index rather than just picking an arbitrary one is that it allows combining
code that uses the indentation level with code that may have extended the formatting state variables for
some other purpose.

A subtle problem occurs in the above example because xdent is initialized by a function call. What if
indent () or redent () were called before xdent was initialized? Can that happen? Yes it can. It can
happen if indent () or redent() is called from inside a constructor that is itself called to initialize some
variable with program extent. Problems with order of initialization when doing I/O in constructors are
common. The solution relies on “tricks” to force initialization order. In this case we would put into the
header file containing the declarations of indent () and redent ():

static class Indent_init {
static int count ;
public:
Indent_init() ;
~Indent_init() ;
} indent_init ; ‘

Each file that includes this header file will have a local variable indent_init that has to be initialized.
Because this variable is declared in the header its initialization will occur early.

The definition of the constructor and destructor looks like:
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static JIostream init* io ;

Indent_init::Indent_init ()

{
// count keeps track of the difference between how
// many constructor and destructor calls there are
if ( count++ > 0 ) return ;

// This code is executed only the first time
io = new Iostream init ;
xdent = ios::xalloc() ;

}

Indent_init::~Indent_init ()
{

if ( --count ) > 0 ) return ;

// This code will be executed the last time
delete io ;

}

The iostream library uses this idea itself. The constructor for Tostream init causes the iostream library to
be initialized the first time it is called. It also keeps track of how many times the constructor is called and
will do finalization operations on various data structures the last time it is called. It is therefore important
that any values of type Iostream init that are constructed by a program are eventually deleted. This is
the purpose of having an Indent_init destructor; even though there are no finalization operations associ-
ated with indentation, it must delete io.

Comparison of lostreams, Streams, and Stdio

The stdio library served C programmers well for many years. However, it has several deficiencies:

m The use of functions, like printf (), that accept variable numbers and types of arguments mean that
type checking is subverted at an important point in many programs.

m There is no mechanism for extending it to user defined classes. The only way to add new format
specifiers to printf () is to reimplement it.

m The mechanism is closely tied to file I/O. sprintf() explicitly extends it to incore operations, but
there is no general method for creating alternate sources and sinks of data.

After stdio, the next stage of development was the stream library. Its most significant innovation was the
introduction of insertion and extraction operations. The first two problems with stdio were elegantly
solved. It was in use by C++ programmers for several years. But the stream library had problems of its
own:
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m The mechanism for creating sources and sinks of characters (streambuf class) was not documented
or designed for extension.

m The full range of UNIX file operations was not supported. In particular there were no repositioning
operations (seeks).

m There was only limited control over formatting. Programs frequently reverted to printf () like func-
tions to specify alternative formats for numbers. A fixed size area was allocated for converting
values to strings and then outputting the strings. Although it was not a problem in practice, in
theory this buffer was subject to overflows.

The iostream library presented in this document has resolved these problems. It is relatively new, and
whether significant problems will emerge in the future is not yet known. Some apparent deficiencies are:

m There is no way to determine if a producer has characters available, and no way to select input from
one of multiple sources. This is, of course, also a deficiency of stdio and streams.

m There is no way to process data in the buffers without copying them out. This extra copying step can
be expensive when simple operations (e.g., scanning for a specific character) are being performed.

m Some formatting operations tend to be wordier than the equivalent stdio operations. This is compen-
sated for by the ability to define manipulators and inserters.

Converting from Streams to lostreams

The iostream library is mostly upward compatible with the older stream library, but there are a few places
where differences may affect programs. This section discusses those differences.

The major conceptual difference is that in the iostream library, streams and streambufs are regarded
solely as abstract classes. The old stream classes provided certain specialized behaviors, specifically incore
formatting and file I/O. In the iostream library these are supported solely through derived classes.

The old stream library declared everything in the header file stream.h. The iostream library uses
iostream.h and some other headers. For compatibility a stream.h is supplied that includes iostream.h
and other headers that are required for compatibility and defines a variety of items whose names are dif-
ferent in the iostream and stream libraries.

streambuf Internals

The internals of the streambuf class in the stream library were all public. Any program that relies on
these internals will break because they are different (and private) in the iostream library.

How to derive new streambuf classes was not documented in the stream library. But it is such a natural
idea to do so that many programs do it. Converting these programs to the iostream library may require
changes in the derived overflow() and underflow() functions. The functionality of these functions in the
iostream library is essentially the same as in the stream library. But because the internals of streambuf
have changed, some code changes will probably be required. In particular the code will have to use the
(protected) streambuf member functions setb(), setg(), and setp() instead of directly manipulating
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the pointers.

Incore Formatting

In the stream library the use of arrays of characters as sources or sinks was supported as the default
behavior of streambuf. Although some attempt to preserve the default behavior is made by the iostream
library these uses of a streambuf are considered obsolete. The support of incore operations is specifically
the responsibility of the strstreambuf declared in strstream.h. streambufs created for this purpose can
usually be replaced directly by strstreambufs that have equivalent behavior. The stream usage:

char* buf[10] ;
streambuf b(buf,10) ;

is equivalent to the iostream:

char* buf(10] ;
strstreambuf b(buf,10) ;

and the old method for initializing a streambuf for extraction:

char* buf[10] ;
streambuf b ;
b.setbuf (buf, 10, buf+5) ;

is equivalent to the iostream method:
char* buf[10] ;
strstreambuf b(buf,10,buf+5) ;

Frequently these uses of streambuf do not appear explicitly in the program but are the consequence of
using certain constructors of istream and ostream. These constructors are supplied in the iostream
library, but are considered obsolete. The equivalent forms using strstream should be used.

The old method of storing a formatted value into an array:

char* buf[10] ;
ostream out (10,b) ;

is replaced by:

char* buf[10] ;
ostrstream out(b,10) ;

Note that the order of the arguments is reversed. The new order creates more consistency between various
uses of strstreams.

The old method of extracting a formatted value from an array:

char* buf[10] ;
istream in(10,b) ;
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is replaced by

char* buf{10] ;
istrstream in(b,10) ;

The old istream() constructor allowed an optional extra argument to specify skipping of whitespace. In
the iostream library this is part of a greatly expanded collection of state variables and so an extra argument
is not provided for the istrstream() constructor. However, the obsolete form of istream() constructor
continues to accept these optional arguments.

Filebuf

Both libraries contain a filebuf class for using streams to do 1/0. It is declared in fstream.h in the ios-
tream library. The stream library had constructors that implied the use of filebufs. In the iostream
library these constructors are replaced by constructors of certain derived classes. The old usage:

int fd ;
istream in(£d) ; // file descriptor
ostream out (fd) ; // file descriptor

is replaced by:

int fd ;
ifstream in(fd) ; // file descriptor
ofstream out (£d) ; // file descriptor

The optional extra arguments of the stream constructors (for specifying whitespace skipping and “tying*)
are not supported. The equivalent functionality is supported by format state variables.

Interactions with stdio

The libraries differ significantly in the way they interact with stdio. The old stream header stream.h
included stdio.h and some stream data structures could contain a pointer to a stdio FILE. In the iostream
library specialized streams and streambufs (declared in stdiostream.h) are provided to make the connec-
tion.

The old usage:

FILE* stdiofile ;

filebuf fb(stdiofile) ;
istream in(stdiofile) ;
ostream out (stdiofile) ;
constructor, obsolete form
constructor, obsolete form
constructor, obsolete form

is replaced by:
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FILE* stdiofile ;

stdiobuf fb(stdiofile) ;
stdiostream in(stdiofile) ;
stdiostream out (stdiofile) ;

In the old library the predefined streams cin, cout, and cerr were directly connected to the stdio FILEs
stdin, stdout, and stderr. I/O was mixed character by character. Further, these streams were unbuf-
fered in the sense that insertion and extraction was done by doing character by character puts and gets on
the corresponding stdio FILEs. In the iostream library the predefined streams are attached directly to file
descriptors rather than to the stdio streams. This means that for output the characters are mixed only as
flushes are done and the input buffer of one is not visible to the other.

In practice the biggest problems seem to come from attempts to mix code that uses stdout with code that
uses cout. The best solution is to cause flushes to be inserted whenever the program switches from one
library to the other. An alternative is to use:

ios::sync_with stdio() ;

This causes the predefined streams to be connected to the corresponding stdio files in an unbuffered mode.
The major drawback of this solution is the large overheads associated with insertion of characters in this
mode. Typically insertion into cout is slowed by a factor of 4 after a call of sync_with_stdio().

The old stream library contained some “stringifying’”” functions that were called with various arguments
and returned a string. These are declared in stream.h and available primarily for compatibility. The only
such formatting function that seems to provide a significant functionality that is not easily available in the
iostream library is form(), which allows printf () like formatting. In fact, form() is just a wrapper for
calls to sprintf (). The programmer can easily write manipulators and inserters that do the same thing.

Assignment

In the old library it was possible to assign one stream to another. This is possible in the iostream library
only if the left hand side is declared to be an assignable class. A general assignment cannot be allowed
because of the interactions of derived classes. What, for example, should be the effect of assigning an ifs-
tream to an istrstream? Most programs that use this feature can be converted by using a reference or
pointer to a stream. The old usage:

ostream out ;
out = cout ;
out << x ;

can be replaced by:

ostream* out ;
out = cout ;
out << x ;

or:
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ostream with_assign out ;
out = &cout ;
*out << X ;

char Insertion Operator

The stream library did not contain an insertion operator for char. So inserting a char was taken as insert-
ing an integer value, and it was converted to decimal. This omission was due to problems with overload
resolution in earlier versions of the C++ Language System. Any old code such as:

char ¢ ;
cout << ¢ ;

may be replaced by:

char ¢ ;
cout << (int)c ;
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