
Using HP BASIC/UX 6.2

FliO'J HEWLETT
a:~ PACKARD

HP Part No. E2040-9000 1
Printed in USA

Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESSED OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright © Hewlett-Packard Company 1988, 1989, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Copyright © AT&T Technologies, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

UNIX® is a registered trademark of UNIX System Laboratories in the U.S.A.
and other countries.

Printing History
First Edition-August 1991

iv

Contents

1. Using This Manual
BASICIUX Compatibility
Notations Used in this Manual
The System Administrator ..

2. Entering and Leaving BASIC lUX
Signing on to the System (login)

Logging In With HP VUE . . .
Logging In Without HP VUE

Creating or Changing Your Password
Creating a Password
Changing Your Password

Loading BASIC lUX into Memory. . .
Loading BASIC lUX With HP VUE .
Loading BASIC lUX Without HP VUE

Quitting BASICIUX (QUIT)
Logging Out of HP-UX: exit

3. Using BASIC lUX in the X Window System
Windowing Operations with BASICIUX

Creating Windows
Listing Windows .
Removing Windows
Moving Windows .
Outputting Graphics to a Window
Clearing the Contents of Windows
Raising and Lowering a BASIC lUX Window in the Window

Stack.
Copying Data Between Windows

Customizing the X Window System

1-1
1-2
1-3

2-1
2-2
2-4
2-5
2-6
2-6
2-7
2-7
2-8

2-11
2-11

3-1
3-2
3-3
3-5
3-6
3-7
3-8

3-8
3-10
3-11

Contents-1

4. Introduction to the System
Significance of Letter-Case 4-1
Program Control 4-2

The Status Indicators 4-3
Is There a BASIC Program in Memory? 4-5
Controlling Program Status 4-5
Determining Current System Devices 4-7

U sing the Key board . 4-9
Performing Calculations at the Keyboard 4-10
Typing and Executing Commands. 4-11

Using Soft keys 4-13
Soft key Labels 4-13
Selecting a Menu 4-15

Redefining Soft keys 4-16
Memory Available for Softkey Definitions 4-16
Examples of Redefining Softkeys 4-16
Improving Softkey Labels 4-18
Listing the Current Softkey Definitions 4-19
Storing and Loading Softkey Definitions 4-20

The SCRATCH Commands 4-20

5. BASIC lUX Mass Storage Concepts
Hierarchical Directories 5-2

What Is a Hierarchy? 5-2
Uses of the Hierarchy: An Example 5-3
Referring to Directories and Files in the Hierarchy 5-3

Choosing a Directory Format . 5-4
Accessing Hard Disks Through HP-UX 5-4
Accessing LIF Media 5-5

Specifying a LIF Volume . 5-5
Initializing a LIF Flexible Disk 5-10

Contents-2

6. Using Directories and Files
Creating and Using Hierarchical Directories

HFS File Names
Determining Your Place in the Structure .
Referencing Files and Directories: Path Names

Using Absolute Path Names
Using Relative Path Names

Understanding CAT Listings for Hierarchical Directories .
Listing HFS Directories . . .
Listing SRM Directories . . .
Listing SRMjUX Directories .
Listing Only File Names . . .
Cataloging Selected Files. . .
Cataloging Individual PROG Files

Creating Directories
Creating Directories from Your Home Directory.
Creating Directories with Absolute Path Names.

Changing Directories
Changing Directories with Relative Path Names
Changing Directories with Absolute Path Names
Changing Directories to LIF Disks
LIF Catalogs

Using Wildcards
Enabling and Disabling Wildcards
File Name Expansion
File Name Completion.
Using the Escape Character
Restrictions on the Use of Wildcards

General File Management Operations .
Closed versus Open Files and Hierarchical Directories

Protecting Files.
HFS File and Directory Permissions
SRM Passwords and Locks

Specifying Passwords
Exclusive Access: Locking SRM and SRMjUX Files .
Locking and Unlocking SRM Files

LIF Protect Codes
Copying Files.

6-1
6-1
6-2
6-2
6-3
6-4
6-5
6-5
6-7
6-8

6-10
6-10
6-11
6-13
6-13
6-14
6-14
6-15
6-16
6-17
6-17
6-18
6-19
6-19
6-20
6-21
6-21
6-22
6-22
6-23
6-23
6-26
6-30
6-30
6-30
6-31
6-33

Contents-3

Renaming Files
Purging (Deleting) Files or Directories .
Linking Files
Using LINK
Considerations When Using LINK

7. Editing and Storing Programs
Terminology
The EDIT Mode

Entering the EDIT Mode
Parameters Allowed with EDIT Command ..
Soft key Menu Changes
Correcting Typing Mistakes
Entering and Storing a Program Line

Upper-Case or Lower-Case Letters?
The BASIC Editor Checks Syntax

Keys Used for Editing the Current Line
Keys Used for Scrolling the Program
Inserting Lines
Deleting and Recalling Lines
Copying Lines (By Changing Line Numbers)

Global Editing Operations
Renumbering a Program .
Indenting a Program
Finding Textual Patterns
Search and Replace Operations
Copying Program Segments
Moving Program Segments . .
Deleting Multiple Lines
Making Programs Readable
Securing Program Lines . . .
Exiting EDIT Mode
Storing the Program on Mass Storage

Using STORE
Using SAVE

Contents-4

6-33
6-34
6-36
6-36
6-36

7-1
7-2
7-3
7-5
7-6
7-6
7-6
7-7
7-7
7-8

7-10
7-11
7-11
7-12
7-13
7-14
7-15
7-17
7-18
7-19
7-20
7-21
7-21
7-24
7-25
7-26
7-26
7-27

8. Loading and Running Programs
Loading Programs 8-3

Using LOAD 8-4
Using GET. 8-4

GET with Automatic Program Clearing 8-4
Using GET to Append and Run 8-5

Running a Program . 8-6
Prerun 8-7
Live Keyboard 8-7
Controlling Program Execution . 8-8

9. Using HP-UX Commands in BASIC/UX
U sing the EXECUTE Command 9-1

Examples of the EXECUTE Command 9-1
How to Run HP-UX Commands in the Background 9-2
How EXECUTE Displays 9-3
EXECUTE Runs as a Child Process. 9-3

Using Some HP-UX Commands and Utilities 9-4
Using BASIC/UX Program Files with HP-UX Commands (and

Vice Versa) 9-5
Saving Programs as HP-UX Type Files 9-5
Using HP-UX Files in BASIC/UX 9-6

Converting Error Messages to Another Language 9-7

10. Creating Environment and Autostart Files
Customizing Your BASIC/UX Session 10-1

What Variables Can Be In The Environment File? 10-2
Running an Autostart Program (autostart). . . . 10-3
Generate Compatibility Error Messages (errormode) . 10-3
Graphics Buffering (graphics_buffer) 10-3
Increasing the Heap Space (heap_prealloc) 10-4
HFS File System Buffering (hfs_buffer) 10-5
Locking BASIC/UX in Memory (plock) . 10-5
Setting Special Terminal Keyboard Mappings (term_control). 10-5
Setting Size of BASIC lUX Workspace (workspace) . . . 10-6
Setting Up Automatic Device File Locking and Mapping. 10-6
Mapping BASIC Mass Storage Volume Specifiers to HFS

Directories 10-6

Contents-5

How to Create Your Environment File.
Using HP-UX Editor
Using the BASIC Editor

Creating an A UTOST File .

11. Keyboard Information
ITF Keyboards

BASIC ITF Keyboard Overlays ..
Character Entry Keys
Cursor Control Keys
Numeric Keypad
Editing Keys
Program Control Keys
System Control Keys
Softkeys and Softkey Control

Softkey Control Keys
System Softkeys

Terminal Keyboard Reference
Supported Terminal Types
Mapping Terminal Keys to ITF Keyboard Keys ..
Some Hints While Using Terminals
Graphics Input from Terminals

Index

Contents-6

10-7
10-7
10-8
10-9

11-1
11-2
11-2
11-5
11-6
11-7
11-9
11-9

11-12
11-12
11-13
11-16
11-16
11-17
11-18
11-18

Using This Manual

This manual describes how to use HP BASIC/UX version 6.2. You can find
information on:

• Entering and leaving BASIC/UX.
• Using BASIC/UX with X Windows and HP VUE.
• Performing simple BASIC lUX operations.
• Understanding mass storage concepts.
• Using directories and files.
• Editing, storing, loading and running BASIC lUX programs.
• Using HP-UX commands in BASIC/UX.
• Creating environment and autostart files.
• Using your ITF Keyboard with BASIC/UX.

1

For information on installing your BASIC/UX system, refer to Installing and
Maintaining HP BASIC/UX 6.2.

BASIC/UX Compatibility
BASIC/UX is the HP-UX implementation of HP BASIC. It provides HP
Series 200/300 BASIC functionality running "on top of" the HP-UX operating
system. BASIC/UX is highly compatible with BASIC/WS (the workstation
implementation of HP BASIC).

Note For information about the differences between BASIC lUX and
BASIC/WS, refer to HP BASIC 6.2 Porting and Globalization,
"BASIC/UX Differences and Enhancements."

Using This Manual 1·1

1

1

A BASIC lUX system consists of several system software components:

• BASIC/UX provides the HP Series 200/300 BASIC programming language
running in the HP-UX environment.

• HP-UX is Hewlett-Packard's implementation of the UNIX operating system.
(Version 6.2 of BASIC/UX is compatible with version 8.0 of HP-UX.)

• X Windows provides a multi-tasking window system for bit-mapped displays
in the HP-UX environment. (X Windows is part of HP-UX 8.0 and may be
configured in your system at your option.)

• HP VUE (HP Visual User Environment) provides a user interface for the
X Windows/HP-UX environment. (HP VUE is part of HP-UX 8.0 and may
be configured in your system at your option.)

Notations Used in this Manual

The following table describes some of the notations (conventions) used in this
manual.

HYou See ...

COMPUTER FONT

italic font

It Means ...

something typed by you or the computer.

replace the italic word with your own entry. (Replace
file_name with a file name, such as Myfile).

an actual keycap on the keyboard.

a soft key label as shown on your CRT, or an inverse-video
character.

All references to keycaps in the text apply to ITF keyboards.

1·2 Using This Manual

The System Administrator

The role of the system administrator is to set up (install) and manage your
system. For example, the system administrator will:

• Add disks to the system.

• Add new users to the system.

• Perform system back-ups.

• Provide information and support to users.

If you happen to be the system administrator, you should be familiar with
the sections concerning system administration in Installing and Maintaining
HP BASIC/UX 6.2.

For information on problems with BASIC/UX software, read the file called
DEFECTS in the HP-UX directory installed with the BASIC/UX product.
The directory path is /usr/lib/rmb/newconfig.

Using This Manual 1·3

1

2
Entering and Leaving BASIC/UX

After you install your system (see Installing and Maintaining
HP BASIC/UX 6.2), you are ready to use BASIC/UX. This chapter explains
how to log in to HP-UX, how to load BASIC/UX, how to quit BASIC/UX,
and how to log out of HP-UX.

Signing on to the System (login)
Before you begin, obtain the following information from your system
administrator:

• Your user name.

• Your password.

• Your terminal type.

Entering and Leaving BASIC/UX 2·1

2

2 Logging In With HP VUE

If your system is configured with HP VUE, the following screen will appear
when you turn the computer on.

Note If you have purchased an HP BASIC lUX 6.2 system with
pre-installed software (with BASIC/UX and HP-UX installed
on the hard disk at the factory), HP VUE will be part of the
pre-installed configuration.

If you are installing the software yourself, HP VUE is part of
HP-UX 8.0, but you will have to configure it to run in order to
use it.

2·2 Entering and Leaving BASIC/UX

Just type your login and press (Return], then type your password and press
(RetUT). A screen similar to the following one will appear:

Refer to the HP Visual User Environment User's Guide for further information
about the HP VUE user interface.

Now you can go on to "Loading BASIC/UX With HP VUE" later in this
chapter.

Entering and Leaving BASIC/UX 2-3

2

2 Logging In Without HP VUE

If you are not using HP VUE, the following prompt should appear when you
turn on the computer:

login:

Note If you don't see the "login:" prompt, press (Return) a few
times. If you see the system prompt ("$" or a prompt similar to
"[xyz] : /users/bob: "), you are already logged in.

If you see the message, login:, continue as follows:

1. Type your user name beside login:

login: leslie

If you make a typing mistake, press (Break) and try again. (The computer
won't accept (Back space) at this point.)

2. When your user name is correct, press (Return).

3. You should see password: on the screen. Type your password and press
(Return). (You won't see the password typed on the screen.)

4. At this point you may see the message TERM = (hp) and should type your
terminal type. The terminal type tells the system how to interact with
display terminals. For example, the Series 300 high resolution monitor's
terminal type is 300h.

If you do not know your terminal type you can press (R'etUffi) and continue.
However, you may experience some display difficulties until you log in with
the correct terminal type.

Once the system prompt appears, go on to "Loading BASIC/UX Without HP
VUE" later in this chapter.

2·4 Entering and Leaving BASIC/UX

Problems During Login

If you see the message ... It means ...

Login incorrect. You made a typing mistake in
login: your user name or password;

try again. If you keep having
problems, see your system
administrator.

Your password has expired. Choose a new one. Type a new password-see the
Changing password for your _user_name next section for how to do this.
New Password:

Maximum number of users already logged in. You'll have to wait until
someone else logs out before
you can log in.

For more information about logging in, see A Beginner's Guide to HP- UX.

Creating or Changing Your Password
If you need to create a password or change your password, first log in (or have
your system administrator log in) to the system. After you log in, you should
see a prompt similar to:

$

You are in HP-UX. You can create or change your password and start
BASIC lUX by following the instructions in this section.

If your system is configured to automatically start the X Window System, you
should be able to follow the instructions in this section. Just use your mouse to
make your "system" or "console" window the active window, then follow the
instructions below.

Entering and Leaving BASIC/UX 2-5

2

2 Note If you are using HP VUE, refer to the HP Visual User
Environment User's Guide for information about creating or
changing your password.

Creating a Password

Create your password according to the following rules:

• A password must contain at least six characters.
• At least two characters must be letters (upper- or lower-case).
• At least one character must be numeric or a special character (for example,

@, -, _, or $).

Create a password that you can remember, but is not easy for others to guess.
Here are some sample passwords using the above constraints.

number 1
$money$

Changing Your Password

super-man
24"'gold Ir~t~t~\

Change your password periodically to protect your work. A new password
must differ from the current one by at least three characters. To change your
password:

• Log in to HP-UX by typing your user name and current password.

• At the system prompt, type:

passwd (Ret'ijffi) Be sure passwd is typed in lower case letters.

• Complete entries requested on the screen:

Changing password for leslie
Old password:
New password:
Re-enter your password:

Type your old password
Type your new password
Type the same password

The next time you login, you must use your new password.

If you get stuck in passwd and you want to exit without changing anything,
press {Break]. (Refer to the HP-UX Reference manual for more information.)

2-6 Entering and Leaving BASIC/UX

Loading BASIC/UX into Memory

Loading BASIC/UX With HP VUE

If you have logged in with HP VUE, your VUE "Workspace Manager" should
appear at the bottom of the screen. If you have a factory pre-installed
BASICIUX configuration, there will be a BASIC lUX ("RMB") icon at the
left-hand side of the Workspace Manager, as shown below:

You can use the BASIC lUX icon in two ways:

• As a "push button" - just move the mouse to the icon and click the left
mouse button to start BASIC. An HP Terminal window will appear, and the
"rmb" command will be executed within it to start BASIC. An HP BASIC
window will then appear (see the next section) .

• As a "drop zone" - you can "drag" programs from the HP VUE File
Manager and "drop" them on the icon. The HP Terminal and HP BASIC
windows will appear, and the selected program will run. For further
information about using the HP VUE File Manager, refer to the HP Visual
User Environment User's Guide.

The BASIC lUX icon is part of the customized HP VUE configuration provided
in the pre-installed software. This customized HP VUE configuration is also
provided on the HP BASIC lUX 6.2 tape. If you are installing BASIC lUX
from tape and you want to use this configuration, you will need to add a line
to your vuewmrc file as part of the installation process. Refer to Installing and
Maintaining HP BASIC/UX 6.2 for details.

Entering and Leaving BASIC/UX 2· 7

2

2 Loading BASIC/UX Without HP VUE

If BASIC lUX is not already running, you can load it by executing the
following command from the system prompt. (If X Windows is running, you
will have to execute the command from an active window.)

rmb (Retijffi)

Note Your system administrator can configure your system so that
X Windows, BASIC/UX, or both automatically load when you
log in.

If X Windows is running, you'll see a new window appear. (See "Using
BASIC lUX in the X Window System" for more details.) The BASIC lUX
startup screen (or X Window) will look like the example below:

HP BASIC/UX 6.2 Revision 1.0
1 Copyright Hewlett-Packard Company 1981, 1982, 1
1 1983, 1984, 1986, 1987, 1988, 1991 I
1---1
1 HP BASIC COMPILER 1

1 Copyright Masters So£tware Inc. 1986, 1987, 1
1 1988, 1991 1

1---1
1 RESTRICTED RIGHTS LEGEID 1

1 Use, duplication, or disclosure by the U.S. I
1 Government is subject to restrictions as set 1

1 £orth in subdivision (b)(3)(ii) o£ the Rights 1

1 in Technical Data and Computer So£tware 1

1 clause at 62.227-7013. 1

1 Hewlett-Packard Company 1
1 3000 Hanover Street, Palo Alto, CA 94304 1

The BASIC/UX Startup Screen

2-8 Entering and Leaving BASIC/UX

If the BASIC lUX screen or window does not appear, see your system
administrator.

If you are in the X Window System and you see the BASICIUX window with
the message:

rmb: fatal internal error

you may have too many processes for BASICIUX to start. Stop some processes
or destroy some windows and retry BASIC lUX. If you still can't start
BASIC lUX, see your system administrator.

Once you become familiar with the system, you may want to investigate
the options available for rmb. For details on the rmb command, refer to
appendix A, "HP-UX Command Reference," in Installing and Maintaining HP
BASIC/UX 6.2.

Entering and Leaving BASIC/UX 2·9

2

2
The following flow chart shows the internal HP BASICjUX boot process.

HP BASIC/UX Boot Process

2·10 Entering and Leaving BASIC/UX

Quitting BASIC/UX (QUIT)

To exit BASIC/UX, type:

QUIT (futijffi)

(BYE is an "alias" for QUIT.)

Logging Out of HP-UX: exit
If you logged in to the system, you should log out. Otherwise, you leave the
system open for anyone to use. (However, both X Windows and HP VUE
provide system "lock" features. You can lock the keyboard without logging
out.)

If you see login: after leaving BASIC lUX, your system administrator has
set up the system to log out directly from BASIC/UX. No further action is
required.

If you are in the HP VUE environment, first make sure you have quit
BASIC/UX, then move the mouse to the logout button in the Workspace
Manager and click the left mouse button.

If you are in the X Window System, first make sure you have quit BASIC/UX,
then type (Shift H CTRL H Reset] to exit the X Window System.

Once you have left BASIC/UX and X Windows, you may see the HP-UX
system prompt ("$"). To log out from HP-UX, type (in lower case):

ex it (futijffi)

You are logged out, and you should see the following:

login:

If you have problems exiting, see your system administrator.

Entering and Leaving BASIC/UX 2-11

2

3
Using BASIC/UX in the X Window System

The ability to create windows apart from your BASIC lUX root window allows
you to send different types of data to various locations in your windowing
environment. For example, one part of your program may send numeric results
to one window and graphics drawings to another. This chapter covers the
windowing operations that help you do tasks similar to these.

The window keywords covered in this chapter will only work if you are running
your BASICIUX system in the X Window environment. You will also need a
mouse and Medium or High Resolution Monitor (e.g., HP 98785A display).

Windowing Operations with BASIC/UX
This section covers the following BASIC lUX windowing operations:

• Creating windows.

• Listing windows.

• Removing windows.

• Moving windows.

• Outputting graphics to a window.

• Clearing the contents of windows.

• Raising and lowering a BASIC lUX window in the window stack.

• Copying data between windows.

For a detailed explanation of the keywords used in this section, read the HP
BASIC Language Reference.

Using BASIC/UX in the X Window System 3·1

3

3

Creating Windows

A window is a portion of the display that is accessible independently. The
ability to access windows as independent printing or plotting devices makes
them useful for programs that require the concurrent printing and plotting of
numeric and graphics results. You can create one window for your numeric
output and another for your graphics output.

The following example program called create_v (in /usr/lib/rmb/demo)
creates a BASIC/UX window. Lines 110 through 120 assign the coordinates
for the upper-left corner of the window being created. These are absolute
coordinates from the display's upper-left corner. Lines 130 through 140 assign
the window's width and height. The coordinates and window dimensions
are used with the CREATE WINDOW statement to create window 60l.
The secondary keyword LABEL, when used with the CREATE WINDOW
statement, allows you to assign useful names to each window you create.

100 IITEGER X_coor,Y_coor,Vidth,Height
110 X_coor=234 Assign the x coordinate position in pixels.
120 Y_coor=346 Assign the y coordinate position in pixels.
130 Vidth=640 Assign the width o£ the window in pixels.
140 Height=400 Assign the height o£ the window in pixels.
150
160 ! Create window number 601 and label it as window "One".
170
180 CREATE VIIDOV 601 ,X_coor,Y_coor,Vidth,Height iLABEL "One"
190 EID

3·2 Using BASIC/UX in the X Window System

Creating a Window

Listing Windows

A listing of the current windows is useful when you need to know a window's
attributes. For example, if you needed to know which window numbers have
been used or whether the window will retain a graphics image. To list the
current windows, execute the following command:

LIST WINDOW ~

Using BASIC/UX in the X Window System 3-3

3

3

If you executed the program in the previous section called create_w, your
display will look similar to this:

WINDOW SYSTEM: X
WINDOW X Y BUfFER OPENI
NUMBER POS POS WIDTH HEIGHT SIZE RET ICON LABEL

600 as 36 800 720 100 Yes Open HP BASIC/UX: 600
601 234 346 640 400 e No Open One: 601

Listing of Current Windows and Their Attributes

The attributes are explained as follows:

WINDOW NUMBER

x POS

y POS

WIDTH

HEIGHT

BUFFER SIZE

gives the window numbers of the currently active
windows (e.g., 601).

gives the x coordinate position in pixels of the upper-left
corner of the window listed.

gives the y coordinate position in pixels of the upper-left
corner of the window listed.

is the window's width in pixels.

is the window's height in pixels.

shows the buffer size in lines. Note that lines on the
screen can be scrolled into the buffer. These lines are in
addition to the current lines in the root window.

3·4 Using BASIC/UX in the X Window System

RET

OPEN/ICON

LABEL

indicates with a Yes or a No whether the window will
retain a graphics image. This is important if you output
graphics information to a window that is obscured by
another window and you want to bring it to the top of
the "window stack" (for information on the window
stack, read the subsequent section "Raising and Lowering 3
a BASIC/UX Window in the Window Stack"). If the
window was not retained, the image you would see in the
window when you brought it to the top of the window
stack would not be a complete one. To retain a window,
use the secondary keyword RETAIN with the CREATE
WINDOW statement. The secondary keyword RETAIN
causes the raster image of graphics in a window to be
saved in memory.

shows whether the window you are looking for has been
iconified (Icon) or is the full window size (Open).

shows the name you have given to a particular window.
This name was assigned when you used the secondary
keyword LABEL with the CREATE WINDOW
statement.

Removing Windows

When you are done with a window and its contents, the window can be
removed to avoid clutter and confusion on the display. To do this, use either
the keyword DESTROY WINDOW or SCRATCH W. The keyword DESTROY
WINDOW can be used as a statement in a program or it can be executed from
the keyboard line. Note that the keyword DESTROY WINDOW allows you to
remove one window at a time. The following program called dest_ w (found in
/usr/lib/rmb/demo) uses the DESTROY WINDOW keyword to remove a
window it creates.

100 CREATE VIIDOV 601.200.250.640.400iLABEL II One II ! Makes tdndoll 601.
110
120 VAIT 5
130 DESTROY VIIDOV 601
140 EID

Remove llindoll 601.

Using BASIC/UX in the X Window System 3·5

You can also remove the window by executing the SCRATCH W command.
This command differs from the DESTROY WINDOW command as follows:

• It is not programmable .

• It destroys all created windows.

3 If you no longer need the BASIC/UX windows that you created using the
keyword CREATE WINDOW and you want to remove them, execute the
following command:

SCRATCH W (Return)

This command allows you to remove all of your BASIC lUX windows excluding
the root window. The SCRATCH W command is convenient when you need to
remove more than one window.

Moving Windows

The MOVE WINDOW keyword allows you to move a window to another
location on your display. The following program called move_ w (found in
/usr/lib/rmb/demo) shows how you can move a window horizontally across
your screen using the keyword MOVE WINDOW.

100 IITEGER X_coor.Y_coor.Vidth.Height
110 I_coor=234 Assign the x coordinate position in pixels.
120 Y_coor=346 Assign the y coordinate position in pixels.
130 Vidth=640 Assign the width o~ the window in pixels.
140 Height=400 Assign the height o~ the window in pixels.
150
160 ! Create window number 601 and label it as window "One".
170
180 CREATE VIIDOV 601.X_coor.Y_coor.Vidth.Height;LABEL "One"
190
200 ! Move the window horizontally across the screen.
210
220 FOR 1=1 TO 100 STEP 2
230 MOVE VIIDOV 601.I_coor+I.Y_coor
240 IEXT I
250 EID

3-6 Using BASICjUX in the X Window System

Outputting Graphics to a Window

A window can be assigned as a plotter for your graphics output. The
PLOTTER IS keyword is used to assign a window as a plotting device. The
following program called plot_v (found in /usr/lib/rmb/demo) uses the
PLOTTER IS keyword to assign window 601 as the plotting device and draws
a rectangle in that window.

100 IITEGER X_coor,Y_coor,Vidth,Height
110 X_coor=234 Assign the x coordinate position in pixels.
120 Y_coor=346 Assign the y coordinate position in pixels.
130 Vidth=640 Assign the width of the window in pixels.
140 Height=400 Assign the height of the window in pixels.
150
160 ! Create window number 601 and label it as window "One".
170
180 CREATE VIIDOV 601,X_coor,Y_coor,Vidth,Height;LABEL "One"
190
200 ! Draw a rectangle in window 601.
210
220 GIIlT
230 PLOTTER IS 601,"VIIDOV" Assign window 601 to be the plotter.
240 MOVE 5,5 Move the pen to the starting
250 position of the plot.
260 RECTAIGLE 60,40 Draw the rectangle in window 601.
270 EID

Using BASIC/UX in the X Window System 3-7

3

3
~--- - - ----- -----

..
Sending Graphics Output to a Window

Clearing the Contents of Windows

You can clear the contents of a window using the CLEAR WINDOW keyword.
This keyword can be used to clear the rectangle from the window created in
the previous example. To clear window 601, type:

CLEAR WINDOW 601 ~

Note that the CLEAR WINDOW keyword is similar to the CLEAR SCREEN
keyword; however, if you want to execute the CLEAR SCREEN command to
clear a window, that window has to be the current PRINTER IS device. If you
want to clear only graphics from a window, use the GCLEAR command while
the window is the current PLOTTER IS device.

Raising and Lowering a BASIC/UX Window
in the Window Stack

This section explains how to uncover a selected window and bring it to the
top of the "window stack" and how to lower a window to the bottom of the
"window stack." A "window stack" is several "windows" that are layered on
top of each other.

3-8 Using BASICjUX in the X Window System

CRT Control register 22 gives you a means for moving a window to the top or
bottom of the window stack. The commands used to do this are as follows:

CONTROL wind_num, 22; 1
CONTROL wind_num, 22; 0

raises a window to the top of the window stack
lowers a window to the bottom of the window
stack

The variable wind_num, in the above command, is a window number between
601 and 699. The value 1 when sent with the above command causes a
designated window to be raised to the top of the window stack. If a value of
o is used with the above command, the designated window is lowered to the
bottom of the window stack.

The following program called raise_w (found in /usr/lib/rmb/demo) uses the
keyword CONTROL to access register number 22 to move a window to the top
of the window stack.

100 CREATE VIIDOV 601,200,250,640,400iLABEL "One" Makes window 601.
110 CREATE VIIDOV 602,220,270,640,400;LABEL "Two" Makes window 602.
120 CREATE VIIDOV 603,240,290,640,400iLABEL "Three" Makes window 603.
130
140 VAIT 2 This allows you time to look at the current
150 window stack.
160 COITROL 601,22il Raise window 601 to the top of the window stack.
170 EID

If you wanted to move window 603 to the bottom of the window stack, you
would change line 160 in the above program to read as follows:

160 COITROL 603,22iO ! Push window 603 to the bottom of the window stack.

Using BASIC/UX in the X Window System 3-9

3

3

Copying Data Between Windows

The following program tran_w (found in /usr/lib/rmb/demo) copies the
alpha contents of window 601 into the root window. To do this, window 601 is
created and assigned as the printing device. Next, the OUTPUT statement in
line 240 is used to send a string of characters to window 601. Lines 270 and
280 position the cursor in window 601 to the beginning of the string and line
290 reads that string into a string variable. The root window is then assigned
as the printing device and the contents of the string variable are printed in
window 600.

100 IITEGER I_coor,Y_coor,Width,Height
110 I_coor=200 Assign the x coordinate position in pixels.
120 Y_coor=350 Assign the y coordinate position in pixels.
130 Width=640 Assign the width of the window in pixels.
140 Height=400 Assign the height of the window in pixels.
150
160 ! Create window number 601 and label it as window "One".
170
180 CREATE WIIDOW 601,I_coor,Y_coor,Width,Height;LABEL "One"
190
200 Send a string to window 601 and read that string back
210 into window 600 (the default window).
220
230 PRIITER IS 601 ! Assign window 601 to be the printer.
240 OUTPUT 601 USIIG "1";"This is a string." Send string to
250 ! window 601.
260
270 COITROL 601,0;1 ! Position cursor in column one of window 601.
280 COITROL 601,1,1 ! Position cursor in row one of window 601.
290 EITER 601 USIIG "1", String$ Read string from
300 ! window 601.
310
320 PRIITER IS 600
330 PRIIT String$
340 EID

Assign window 600 to be the printer.
Print the string in window 600.

3-10 Using BASIC/UX in the X Window System

This Is a string.

This Is a string.

Copying Data Between Windows

Customizing the X Window System
You can change the default colors, location, border width, and buffer size on
windows for BASICjUX:

• If you are using HP VUE, refer to the HP Visual User Environment User's
Guide for information about customizing the VUE environment .

• If you are using X Windows without HP VUE, refer to Using the X Window
System for information about customizing the windows environment.

Using BASIC/UX in the X Window System 3-11

3

Introduction to the System

In addition to the complete set of manuals provided with HP BASIC,
HP E2160A BASIC Plus is available from Hewlett-Packard for convenient
on-line HELP.

4

This chapter explains simple BASIC lUX operations such as interpreting the
display, typing commands, using printers, and using and redefining softkeys.

Significance of Letter-Case
Letter-case is important in BASIC. Keywords consist of all capital letters
(for example, "BEEP"). Identifiers such as variable names, line labels, or
subprogram names consist of an initial capital letter followed by lower-case
letters or numbers. However, if you type all capital or all lower-case letters,
the BASIC editor is usually "smart" enough to recognize what you mean from
the context. For example, if you type "beep", and press CRe'tliT), BASIC will
execute the BEEP command. Don't type "Beep," or BASIC will decide that
you meant to type a variable name called "Beep".

Let's look at an example using the program editor.

If you type: The editor enters: Because:

let abc=l LET Abc=l LET is a keyword and Abc is a
variable name.

print "hello" PRINT "hello" PRINT is a keyword

BEGIN: beep Begin: BEEP Begin is a line label and BEEP is a
keyword.

Introduction to the System 4·1

4

4

The resulting program lines will look like this:

10 LET Abc=1
20 PRINT "hello"
30 Begin: BEEP

Note that literal strings ("hello") must be typed exactly as desired.

Letter-case is also important in HP-UX commands. EXECUTE "Is" is correct,
while EXECUTE "LS" is not correct. See the HP BASIC 6.2 Language
Reference for more information.

Many of the examples in this text do not begin with line numbers. Keep in
mind, however, that when these statements are used within a BASIC/UX
program they will be prefaced by a line number (see HP BASIC Programming
Guide). For example:

10 MOVE WINDOW 603,100,400 Where "10" is the line number

Program Control
When BASIC is booted, it clears memory and assigns various default values.
This condition is the power-on state. For a complete list of power-on defaults,
see the "Useful Tables" section in the HP BASIC 6.2 Language Reference.

If your computer has been used since power-on, it may be in an unknown state.
For instance, there may be an unwanted program in memory, or the default
printer may specify a device you don't want. This section explains how to:

• Find out what your computer is doing .

• Gain control of your computer to use it properly.

4·2 Introduction to the System

The Status Indicators

You can determine BASIC's current status by looking at the lower right-hand
corner of the screen. BASIC uses this area to display information about
whether a program is currently running, what soft key menu is currently active,
and other information.

R

System Status Indicators

Indicator Description Keyboard
Control

Softkey Menu Indicator The following labels are Select menu with (System),

used depending on which (User), or (Shift H Menu).

menu is selected: System,
User 1, User 2, User 3.

Caps Lock Indicator Indicates the keyboard's Toggle caps mode using
caps mode status. C§e).

Program Status Indicator Indicates the run light See following tables for run
status. light indicator meanings

and how to control
system/program status.

Softkey Labels Label the keyboard function Turn on and off with KEY
keys' operations. LABELS ON and OFF or

[Menu).

Run Light Graphic indicator of the See following tables for run
system or program status. light indicator meanings

and how to control
system/program status.

Introduction to the System 4-3

4

4

The character in the lower right corner is called the run light. The following
table shows the various run light indications and their meanings.

Run Light Indications

Status RWl Light System State
Indicatorl

Idle (blank) Program stopped; can execute commands;
CONTINUE not allowed.

Running R Program running; can execute commands;
CONTINUE not allowed.

Paused - Program paused; can execute commands;
CONTINUE is allowed.

Transfer I Program paused, but an overlapped
TRANSFER (I/O) operation is still in
progress; can also execute commands.

Input? ? BASIC/UX program waiting for input
from keyboard; cannot execute
commands.

Command * System executing command entered from
keyboard; can enter 1 more command,
but it will not be executed until after the
current command is completed.

Execute E A command is being executed in the
HP-UX environment.

Boot B BASIC/UX is in the process of booting;
all keyboard input is lost. The runlight
displayed by consoles and X windows at
boot-up is Boot, and the runlight
displayed by terminals is B.

1 Note that these indicators are displayed only if soft key labels are currently on.
Use [Menu) or the KEY LABELS ON statement, to turn these labels on.

4·4 Introduction to the System

Is There a BASIC Program in Memory?

To see if a BASIC program is in memory, use the LIST command to print the
program lines. For example:

PRINTER IS CRT CRetUmJ Tell BASIC to print to the CRT display.
LIST CRetUmJ

Typical results:

10 PRINT "Short program."
20 END

Available memory = 5629926

If you don't want to wait for the entire program to list, you can stop it by
pressing (Break). If there is no program in memory, LIST prints the amount of
available memory.

Controlling Program Status

To pause or stop a program before its normal completion, continue operation,
or abort an I/O statement, use the following keys:

Introduction to the System 4·5

4

4

ITF
Keyboard

~
(Pause)

(Break) (Clr
I/O)

(Shift)-~
(Stop)

Pausing and Stopping Programs

Effect

Pauses a program after it finishes the current line and any I/O in
progress. Useful for pausing a program that is executing an INPUT
statement, leaves internal information intact. You can resume program

execution with (or the CO NT command).

(or the CONT command) after Pause causes program to
a normal manner from where it was paused.

Cancels any I/O in progress (ENTER or TRANSFER) and pauses the
program. The pro~~~J:!l counter returns to the beginning of the canceled
I/O statement, so • resumes execution beginning with that
same statement.

Stops the program at the end of the current line, returning the program
to the main context. Does not affect interfaces, CRT, program memory,

:;:;:~:;~~abs, or the •• 1 (@) buffer. ~mfitl is not allowed

The most drastic and complete way to stop a program. The program
stops immediately, cancels I/O operations, closes open files, and resets
all interface cards. However, the printout area of the CRT, program or

variable memory, tabs, and the!!~lm!ii buffer are not affected .

. is not allowed after Reset.

ITF keyboard definitions are easy to remember if you use the BASIC/UX
keyboard overlay and keep soft key labels turned on.

4-6 Introduction to the System

Determining Current System Devices

You can determine the current state of several system defaults by using the
statements in the following table. See the HP BASIC 6.2 Language Reference
for more a complete list of the system defaults or for information about
SYSTEM$.

Note BASIC /WS provides several language extension binaries that
can be loaded at the option of the user. However, all of these
binaries are part of the BASIC/UX core system. You don't
need to worry about whether a particular binary is present.

System Defaults

Method Explanation Default

SYSTEM$("PRINTER IS") Returns the current system PRINTER IS CRT
printer's select code (destination
for PRINT operations).

SYSTEM$("PRINTALL IS") Returns the current print all PRINTALL IS CRT
printer's select code (destination
for system messages when
PRINTALL ON is active).

SYSTEM$("DUMP DEVICE Returns the current dump DUMP DEVICE IS
IS") device's select code (destination 701

of DUMP ALPHA and DUMP
GRAPHICS).

SYSTEM$("MSI") Returns the default mass storage device from which
device used when one is not BASICjUX booted
explicitly specified.

SYSTEM$("AVAILABLE Returns the sum of the memory (not applicable)
MEMORY") available for program storage,

stack and COM.

Introduction to the System 4· 7

4

System Defaults (continued)

Method Explanation Default

SYSTEM$("VERSION: Returns the BASIC/UX revision (not applicable)
BASIC/UX") number.

SYSTEM$ ("VERSION: bin") Returns the revision number of (not applicable)
bin ; for example:
SYSTEM$("VERSION:EDIT")

SYSTEM$("WILDCARDS") Returns the current status of OFF
WILDCARDS:

4
• OFF if disabled.
• "UX:" if UX wildcards enabled

without escape character.
• "UX: \" if UX wildcards

enabled with \ as the escape
character.

• "UX:'" if UX wildcards
enabled with ' as the escape
character.

• "DOS:" if DOS wildcards
enabled.

SYSTEM$("VERSION:OS") Determines HP-UX version; A (not applicable)
means single-user, B means
mul ti-user.

4·8 Introduction to the System

Using the Keyboard
The following section briefly describes keyboard use. For detailed information
on using your ITF keyboard, see chapter 11, "Keyboard Information."

ITF Keyboard (with BASIC/UX Keyboard Overlay)

Use the keyboard to perform the following BASIC tasks:

• Perform calculations.

• Type and execute commands.

• Load and run programs, and control program execution.

• Type, edit, and store programs.

Introduction to the System 4·9

4

4

Performing Calculations at the Keyboard

You can use BASIC as a calculator to evaluate numeric expressions using the
following arithmetic operators.

Operator

-

+

/

*

-
SIN, COS, etc.

(...

For example:

99/9
11

)

Arithmetic Operators
for Keyboard Calculations

Operation Example

subtraction 2-4 (Return)

addition 5.23+2.8-2 (Return)

division 5+3/2-1 (Return)

multiplication 3*3-1 (Return)

exponentiation 3-2*2-2 (Return)

functions SQRT(25)/5 (Return)

grouping SQRT(125/5)+(2*3)/4 (Return)

Results

-2

6.03

5.5

8

16

1

6.5

Characters you type appear here. Press (Return)

System response appears here.

For a complete explanation of all math operations, see the HP BASIC
Programming Guide chapters on "Numeric Computation" and "Evaluating
Scalar Expressions."

4·10 Introduction to the System

Typing and Executing Commands

You can type and execute commands from the keyboard at all times except:

• When a command is currently being executed, with another one already
entered and waiting to be executed

• When a program is running that traps keystrokes or disables the keyboard
(with SUSPEND INTERACTIVE).

At all other times, you can type commands and press (Rei'ij'ffi) to present them
to the system for execution. The system parses the command and takes the
appropriate action.

Try the commands in the following table.

• Note the status indicator as you execute commands.
• When you use the EXECUTE command in the X Window System, the results

are displayed in the HP-UX window from which BASIC/UX was invoked.

Introduction to the System 4·11

4

4

Example BASIC Commands

Type This Command What It Does Example Results

pATE$(TIMEDATE) [Return] show BASIC 26 Jun 1988
date

TIME$ (TIMEDATE) (Return] show BASIC 09:53:53
time

EXECUTE "who" [Return) display user julian ttypO Feb 29 08:57
names fred tty02 Feb 2908:32

KEY LABELS OFF [Return) turn off (look at the bottom of your screen
soft key labels or window; KEY LABELS ON or (Menu]

restores the labels)

SYSTEM$("VERSION:OS") determine 7 .OB HP-UX

HP-UX
version; A
means
single-user, B
means
multi-user

You can set the time and date using SET TIMEDATE.

SET TIMEDATE DATE("17 Mar 1987")+TIME("10:30:00") (Return)

Note SET TIMEDATE sets only the BASIC/UX clock - it has no
effect on the HP -UX clock.

4-12 Introduction to the System

When you make errors entering commands, you will receive an error message.
Here are some common ones:

Possible Error Messages When Entering Commands

Error Message Typical Cause of Error

Error 910 Ident not found in Mixed letter-case, or mistyped a
context parameter.

Error 949 Syntax error Mistyped command (check spelling).

rmb-execute: WHO: not found If you use the EXECUTE command, be
sure to use the proper letter-case within
the quote marks. In this example, WHO
should be who.

nothing on display If you used the EXECUTE command in
X, all output goes to the HP-UX
window from which the BASIC/UX
window was started. Shuffle the
HP-UX window to the top (see the
previous chapter, "Using BASIC/UX in
the X Window System").

Using Softkeys

Softkey Labels

If you are using the ITF keyboard, the following softkey labels are displayed at
the bottom of the screen when you first turn on your computer or boot BASIC:

Introduction to the System 4·13

4

4

When you press a soft key, it produces a commonly used command, which
is indicated by the key~~p~l. Some softkeys act simply as typing aids. For
example, if you pressfi2:~~;II (@), the command EDIT appears on the command
line. BASIC will go into EDIT mode when you then press [Return). Oth~E.

softkeys immediately execute the command. For example, if you press il1!:!11
(@)), the program currently in memory will be run-you don't have to press
(Return).

BASIC automatically defines what each softkey does, and what its key label
is. However, you can redefine any softkey to execute commands specific to
your needs. For further information refer to "Redefining Softkeys" later in this
chapter.

Note There is an exception to the normal operation of a soft key.
The soft key will execute the command indicated by its
key label, except when that soft key has been defined by a
running program to produce an interrupt. Refer to "Program
Structure and Flow" in the HP BASIC Programming Guide for
information on ON KEY interrupts.

On the ITF keyboard, if the softkey labels are not displayed, press (Menu) to
display them. Press [Menu) again to turn them off. You can also turn the
softkey labels on with either of the following commands:

KEY LABELS ON [Return)

CONTROL CRT,12;2 [Return)

4·14 Introduction to the System

Selecting a Menu

The set of eight soft key labels at the bottom of the screen is a softkey menu.
The soft keys (@ through @) have four independent sets of definitions for the
ITF keyboard. Select the menu that you want as follows:

Press (System) to display the System soft key menu:

Press (User) to return to the User 1 softkey menu:

(The User 1 menu is the default menu at system power up.)

Press (Shift}-[Menu) to display the User 2 soft key menu:

Press (Shift }-[Menu) again to display the User 3 softkey menu:

Introduction to the System 4·15

4

Pressing (ShiftHMenu) cycles through the User menus (from 1 to 2 to 3 to 1, and
so on).

Redefining Softkeys
This section describes how to create your own set of soft key definitions; it also
shows how to store these definitions in a file so you can reload them at a later
time.

4 An an alternative to the following procedures, you can write a program that
defines the softkeys, using the SET KEY statement. See the "Communicating
with the Operator" of the HP BASIC 6.2 Advanced Programming Techniques
manual for details.

Memory Available for Softkey Definitions

BASIC/UX uses about 1024 bytes of memory to store the softkey definitions.
Each definition can have:

• up to 256 characters on systems with high resolution displays
• up to 160 characters on systems with medium resolution displays.

Exceeding these limits results in lost characters.

Examples of Redefining Softkeys

Use the EDIT KEY command to redefine soft keys with your own soft key
definitions. Don't worry about losing the original softkey definitions. You can
get them back by executing LOAD KEY, or by rebooting. For programming
purposes, soft keys are numbered 1 through 24. USER 1 keys are numbered 1-8,
USER 2 keys are numbered 9-16, and USER 3 keys are numbered 17-24.

4·16 Introduction to the System

Example 1

This example defines a soft key that produces My very own keystrokes.

1. Enter the edit-softkey mode for the desired softkey:

a. Press (User) until the softkey-menu indicator displays User 1.

b. Press ::IB~~;:: (@), then press @ again. @ is the key you are going to
define. Press (Return).

If you are using an unmodified version of BASIC lUX, your display should
look similar to this:

if#EDIT
Editing key 1

Displayed on the keyboard input line
Displayed on the system message line

2. Press (Shift H Clear line) to clear the key's current definition.

3. Type the desired characters on the keyboard input line.

My very own keystrokes

4. Enter or cancel the soft key redefinition:

a. To enter the softkey's definition and exit softkey editing mode, press
CReWffi).

b. To cancel the redefinition and retain the existing definition, press Stop
((Shiftl-~).

5. If you entered the new definition, verify that the key works as desired.

Press @. My very own keystrokes should appear.

6. Press (Shift H Clear line) to clear the line for the next example.

Example 2

This example redefines a softkey to do the following:

• Clear the line you are on
• Type a command
• Execute the command.

Introduction to the System 4-17

4

4

1. Here is another way to enter the edit-softkey mode. Since you redefined
@ in the previous example, you'll have to enter the edit softkey mode by
typing:

EDIT KEY 2 ~

2. Press (Shift H Clear line)

3. Enter the following keystrokes:

(CTRL)-(Shift)-(Clear line) LIST (CTRL)-(Return)

The notation (CTRL H Return) means to hold down the (CTRL) key then press
(Return). The [CTRL) key tells BASIC not to execute that key's function,
but to enter that key in the sof~~ey definition. The display will show an
inverse-video k (shown here as :I:[D, followed by another character. For

example, [CTRL HReturn) produces ,liE.
4. To enter the softkey's definition and exit softkey editing mode, press [Return)

To cancel the redefinition and retain the existing definition, press (Shift)-~
(Stop).

5. If you entered the definition above, you can execute the LIST command by
pressing @. You don't need to press [Return) because you already included it
in the softkey definition.

Improving Softkey Labels

You may want to improve specific labels to fit in the label area on the display.
The following example shows how to improve the @ label for the LIST
command used in the previous example.

4·18 Introduction to the System

Example 3

1. Type:

EDIT KEY 2 ~.

2. To clear the current softkey definition, press (Shift H Clear line).

3. Type the following line (enter 12 spaces after LIST.)

LIST (CTRL)-(Shift)-(Clear line) (CTRL)-~

4. Press~ to save.

5. Press @ to see how the new definition works. Notice that LIST is
momentarily displayed, then cleared and executed.

Listing the Current Softkey Definitions

You can list all current softkey definitions by executing one of the following
statements:

LIST KEY
LIST KEY #PRT
LIST KEY #701

lists on the default printer (usually CRT)
lists on printer, if available
lists on device at 701, if available

Since most printers cannot print the inverse-video 11.I in soft key definitions,
LIST KEY substitutes the letters System key: for this character. For example:

Key 2:
System key: #
LIST
System key: E

(Clear line) key

(Return) key

Introduction to the System 4-19

4

4

Storing and Loading Softkey Definitions

STORE KEY stores all of the current soft key definitions in a file. Use LOAD
KEY to restore the default definitions or to load your own definitions back into
the computer. The following examples show how to store and load softkey files
and apply only to the currently specified mass storage volume.

STORE KEY IMyKeys"
RE-STORE KEY IMyKeys"
LOAD KEY IMyKeys"
LOAD KEY

To store definitions in new file called MyKeys
To replace definitions in an existing file of My Keys
To load definitions stored in file called MyKeys
To restore default softkey definitions

The SCRATCH Commands
You can use the SCRATCH command to clear the BASIC/UX system's
memory and restore default parameters. Let's look at what each form of
this command will do. (For further information, refer to the HP BASIC 6.2
Language Reference.

SCRATCH Clears all program lines currently in the BASIC/UX
system's memory. It also clears all variables which are not
in COM. See the "Subprograms" chapter of HP BASIC
Programming Guide for a description of COM.

SCRATCH A
SCRATCH ALL

SCRATCH C
SCRATCH COM

SCRATCH KEY

SCRATCH R
SCRATCH RECALL

Clears most everything from the BASIC lUX system's
memory, restoring the s~~!~~ .. !9 its default state. The
only exceptions are the IBI:III;llll (@) key's buffer and the
real-time clock.

Clears all variables from the BASIC/UX system's memory,
including COM. However, the current program and softkey
definitions are left intact.

Clears soft key defini tion(s). See the descriptions of
soft keys in preceding sections of this chapter for further
information.

Clears the (@) key's buffer.

4·20 Introduction to the System

SCRATCH W This command only can be executed from a window
SCRATCH WINDOW system. Otherwise, an error occurs. This command

destroys all windows created from BASIC/UX. It does not
destroy the BASIC lUX window itself.

Introduction to the System 4·21

4

5
BASIC/UX Mass Storage Concepts

This chapter covers some general mass storage concepts with emphasis on how
mass storage is used in BASIC lUX. As the term mass suggests, mass storage
devices are designed to store large quantities of data. Just how much data
constitutes a large amount depends on the device itself. Common mass storage
devices include the following:

• Hard disk drives.

• Flexible disk drives.

• Tape drives.

The most common devices are the hard and flexible disk drives. Flexible disks
can store on the order of several thousand bytes of data. On the other hand,
hard disks can store up to hundreds of millions of bytes. To keep this large
amount of data well organized and accessible, mass storage is organized into
files, volumes, and directories.

There are basically two types of mass storage organization structures:

• In a hierarchical directory structure, program and data files are organized in
a hierarchy of directories and subdirectories, starting at the root directory.
Hierarchical directories are discussed in detail in the following section.

• In a non-hierarchical structure, a flexible disk or hard disk drive unit is
organized into one or more separate volumes. An example of such a structure
is the Logical Interchange Format (LIF) system. Each LIF volume has a
single LIF directory that lists all of the files in that volume. There are no
subdirectories. LIF disk media are covered later in this chapter.

BASIC/UX Mass Storage Concepts 5·1

5

5

Hierarchical Directories
A directory contains information about files, such as file name, size, and type.
A directory is itself a file, but it is used only to organize and control access to
other files. This section describes the two BASIC/UX directory formats that
implement hierarchical directories:

• Hierarchical File System (HFS) format (used with HP- UX, some BASIC, and
some Pascal systems). (This format is also used by SRMjUX.)

• Shared Resource Manager (SRM) format. The disk format is actually called
Structured Directory Format (SDF) on catalog listings of these directories.

What Is a Hierarchy?

As the word hierarchy suggests, hierarchical directories are arranged in levels.
Such a directory may contain either files or other directories.

• A directory is superior to the files and directories it contains.

• A file or directory within a directory is subordinate to the directory
containing it.

In the following figure, the directory named KATHY is subordinate to the
directory named Project_one because Project_one contains the information
describing KATHY. The directory named PROJECTS is at levell, the root
directory. You cannot create a directory at a higher level than the root level.

assignments

schedule

budget

Hierarchy of Directories

5·2 BASIC/UX Mass Storage Concepts

(root)

Uses of the Hierarchy: An Example

Suppose you're managing several projects, and each needs to access a shared
disk. To organize the files for each project separately, you can create a
directory for each project (as shown in the previous figure). Within each
project directory, you can have a directory for each person working on the
project, and so on.

Because files at different locations in the directory structure can have the same
file name, you can use generic file names to identify similar project functions
in the different projects. For example, the file budget in the Project_one
directory is distinct from the file budget in the Proj ect_ two directory.

To maintain security, BASIC/UX provides the capability of protecting access
to directories and files. For example, you may want to allow only members of
a project team to read that project's files. Or, you may want to prevent other
users from altering the contents of a personal file. See "Protecting Files" in
chapter 6, "Using Directories and Files." 5

Referring to Directories and Files in the Hierarchy

To access a directory or file, specify its location in the hierarchical directory
structure. This location is specified by a list of directories, called a directory
path, that you must follow to reach the desired file or directory. Directory
names in the list are delimited by a slash (/).

In the directory structure illustrated previously, the file specifier:

"/PROJECTS/Project_one/JOHN/f1"

defines the directory path to the file f 1 through its superior directories. The
directory path to a file begins at one of these locations:

• The root directory .

• The current working directory.

The current working directory is the directory specified by the most recent
MASS STORAGE IS statement. The HP BASIC 6.2 Language Reference
discusses the rules for specifying HFS, SRM, and SRM/UX files and
directories.

BASIC/UX Mass Storage Concepts 5·3

Choosing a Directory Format
On the Series 300 BASIC lUX system, there are three directory formats
available for disks (and other mass storage media):

• Hierarchical File System (HFS).

• Logical Interchange Format (LIF).

• Structured Directory Format (SDF) used on Shared Resource Manager
(SRM) systems.

The following recommendations will help you choose a format:

• Use HFS format with hard disks. You can access the hierarchical file system
on your hard disk through the HP-UX operating system. This will give you
optimum performance in the BASIC/UX environment. Refer to "Accessing
Hard Disks Through HP-UX" later in this chapter. (This format is also used

5 by SRM/UX.)

• Use LIF format with flexible disks. The LIF format will allow you to share
disks with HP Series 200/300 BASIC workstations. For further information,
refer to "Accessing LIF Media" later in this chapter.

• Use SnF on an SRM system if you want to share a disk between several
workstations.

Accessing Hard Disks Through HP-UX
You can access your BASIC/UX system's hard disk by using the HFS file
system through HP -UX. However, there are a few tasks that your system
administrator must perform before you can do this. These tasks are described
in detail in the HP- UX System Administration Tasks manual. However, the
tasks are listed here for convenience:

1. Connect the hard disk to the HP -UX system.

2. Initialize the hard disk in HP-UX format using /etc/mediainit.

3. Create the HFS file system using / etc/newfs. (To use / etc/newfs there
must be an entry for the hard disk in the / etc/ disktab database.)

5·4 BASIC/UX Mass Storage Concepts

4. Mount the file system using / etc/mount.

Once the file system is mounted, you can access the file system using standard
HFS directory path names, either from HP-UX or from BASIC/UX. For
further information, refer to chapter 6, "Using Directories and Files."

Accessing LIF Media
The traditional mass storage format for HP Series 200/300 Workstation
BASIC (BASIC/WS) is the Logical Interchange Format (LIF). LIF media are
formatted into one or more volumes, but there is no hierarchical directory
structure. The LIF format is a very practical format for flexible disks since
they hold relatively small amounts of data. However, for most hard disks it is
much more practical to use one of the hierarchical directory structures covered
previously in this chapter. 5

Specifying a LIF Volume

You can specify a LIF volume by means of an msvs, or mass storage volume
specifier. (The msvs is sometimes called an msus, or mass storage unit
specifier.)

BASIC/UX Mass Storage Concepts 5-5

5

The msvs has the following syntax:

Examples

:CS80,700
:,700

:HP9122,702,1
: ,702,1

:SCSI,1400,1
:,1400,1

Syntax of a Volume Specifier

In each case the device type ("CS80", "HP9122", or "SCSI") can be left
out. If it is, BASIC will determine the device type automatically. Thus, the
"shortened" version works in each of the above examples.

The following table describes each part of the volume specifier.

5·6 BASIC/UX Mass Storage Concepts

Volume Specifier Components

Component Explanation

Device type Identifies the mass storage device's type. Once BASIC
determines the device type, it can also determine device
capacity, and other information required to determine the
access method for the device.

Here are some examples:

Device Type

if omitted

CS80

SCSI

Description of Mass Storage Device

BASIC determines type automatically.

Any disk in the general class of
"Command Set/80" devices (such as the
HP 9122, and most other newer drives).

A built-in, 3 1/2-inch, flexible-disk drive
(e.g. Models 362 and 382).

For a list of all device types, see the HP BASIC 6.2
Language Reference entry for MASS STORAGE IS.

Device selector Identifies the interface's select code (4, and 7 through 31)
and primary address (HP-IB and SCSI devices only). Here
are examples:

Unit number

700 Specifies select code 7 and primary address 0
(note that device selectors with HP-IB and SCSI
addressing must contain 3 or 4 digits).

1402 Specifies select code 14 and primary address 2.

Tells BASIC additional information about the device's
unit-number setting. Many devices have hard-wired unit
numbers, while others use the unit number to identify
different portions of one disk. For instance, the unit
number of the right drive of an HP 9122 is 1, the left drive
is 0 (internal drives of Model 236 computers are numbered
in the opposite order).

Volume number Identifies the volume number (multi-volume hard disks
only, such as HP 9133X drives).

BASIC/UX Mass Storage Concepts 5· 7

5

5

If you need to access LIF devices from your HP -UX system, have your system
administrator install the devices and identify each device with a label showing
its msvs.

For the BASIC/UX system, the most common use of LIF devices is to access
LIF flexible disks from a LIF disk drive (for example, an HP 9122). LIF
flexible disks provide a convenient means of transferring data files between your
BASIC/UX system and HP Series 200/300 BASIC workstations. You can also
access LIF hard disk volumes (for example, on an HP 9133), from BASIC/UX.

Note You can access a LIF formatted hard disk from BASIC/UX
using its msvs. (For example, you could access an HP 9133
Hard Disk Drive moved to the BASIC/UX system from a
BASIC workstation.) However, for optimum performance, use
the Hierarchical File System (HFS) and access your hard disk
through the HP -UX operating system. For further information,
refer to "Accessing Hard Disks Through HP-UX."

5-8 BASIC/UX Mass Storage Concepts

A typical configuration is shown below, representing:

• an HP 9122 Disk Drive containing two 3 1/2 inch flexible disk drives .

• an HP 9133 Disk Drive consisting of one hard disk drive, partitioned into two
volumes, and one flexible disk.

Series 200/300
Workstation

HP-18 HP-IB Bus
Interface I---,-------------r----______ Other HP-18

Disk Drives
ISC = 7

Address 0

Drive 0 Drive 1

LlF DIR LlF dir

file 1 file 1
file2 file2
file3 file3

":,700,0" ":,700,1"

I 9122 Dual 3.5" I
I I

~ _ !~o~~_ 9~v~ __ ~

Address 5
(flexible disk)

Address 6
(hard disk)

J J
Drive 0 Volume 0 Volume 1

UF dir LlF dir LlF dir

file1 filel file1
file2 file2 file2
file3 file3 file3

":,705,0" ":,706,0,0"; ":,706,0,1";

r---------------,
: 9133 Hard Disk Drive :

~ _ ~i~ _ ~.~'~ !I~~~ _ ~~~ ~

The volume specifiers for the HP 9122 Disk Drive are:

: ,700,0 and
: ,700,1

The drive type is "CS80", but is omitted. The HP-IB interface
select code is "7". The primary address of the drive is "00".
The left drive unit number is "0", and the right drive unit
number is "1".

The volume specifier for the HP 9133 Disk Drive flexible disk drive unit is:

: , 705,0 HP-IB interface select code is "7". Primary address of the
drive is "05". The drive unit number is "0".

The volume specifiers for the HP 9133 Disk Drive hard disk are:

:,706,0,0
and
: ,706, 0,1

HP-IB interface select code is "7". Primary address of the
drive is "06". The hard disk drive unit number is "0". The
first volume number is "0". The second volume number is "1".

BASIC/UX Mass Storage Concepts 5·9

5

5

Initializing a LIF Flexible Disk

Before you can use a blank flexible disk, it must be initialized. You can
initialize a LIF flexible disk from BASIC lUX by using the INITIALIZE
statement in the same manner as for BASIC/WS. The INITIALIZE statement
formats the disk and creates a LIF directory on it. You will need to have a LIF
flexible disk drive connected to your BASIC/UX system, and you will need to
know its msvs.

To initialize a LIF flexible disk, follow these steps:

1. If the disk is write-protected, write-enable it.

2. Determine the contents of the disk by executing the CAT statement. For
example:

CAT ": J 700 J 0 II

This accomplishes two things. First, it ensures that you are using the
correct msvs for the flexible disk drive. If you use the msvs of a hard disk
volume by mistake, you will destroy the contents of that volume! Second,
the CAT listing indicates the contents of the disk to be initialized. If you
are initializing a previously used disk, you can check to make sure you won't
lose any valuable files.

3. Execute the INITIALIZE statement. For example:

INITIALIZE II: J 700 J 0"

Normally, you should INITIALIZE a disk with the default parameters.
However, if you want to change the parameters, refer to the HP
BASIC Language Reference manual for complete information about the
INITIALIZE statement.

5-10 BASIC/UX Mass Storage Concepts

Using Directories and Files

Creating and Using Hierarchical Directories
Directories contain information about files on a volume. Directories on
a hierarchical-directory volume (such as HFS, SRM, or SRM/UX) have
additional capabilities. This section shows how to create and access
hierarchi cal directories.

HFS File Names

6

The disk on which BASIC/UX is installed, is HFS-formatted (Hierarchical File
System).

HFS file names can be up to 255 characters in length for Long File Name
systems (LFN) or up to 14 characters for Short File Name systems (SFN).

• Don't use control characters that might "confuse" your terminal.

• Avoid creating file names the same as system commands or file names.

• The CAT command (listing the files in a directory) truncates file names
longer than 14 characters.

You can use either upper- or lower-case letters to name a file, however, it is
case sensitive. For example, if you try to retrieve a file you named SAM by
typing sam, the computer will not recognize it.

Using Directories and Files 6-1

6

Determining Your Place in the Structure

To learn where you are in the directory structure, type one of the following
commands and press (Return)

Determining Your Place in the Structure

Type this ... What it does Example Results

EXECUTE "echo $HOME" Prints your HOME directory /users/arnie
(displays in HP-UX window
when running in X Windows)

SYSTEM$("MSI") Prints your current directory. /users/arnie/project1:HFS
All characters before : HFS (or
: REMOTE) comprise the path
name.

Referencing Files and Directories: Path Names

Since files are located all over the directory structure, you need a way to
reference them. Path names show the computer a way to get to a particular

6 directory or file .

• Absolute path names show the path to a directory or file starting from the
root directory (the uppermost directory, symbolized by "I") .

• Relative path names show the path to a directory or file from the current
directory.

6-2 Using Directories and Files

Using Absolute Path Names

The figure below shows the absolute path name for each directory in its
structure. Notice that "/" separates directory names, and the first "/"
indicates the root directory.

/users

/users/engineers

/users/engineers/arnie /users/engineers/leslie /users/engineers/sally

Absolute Path Names

Using Directories and Files 6·3

6

6

Using Relative Path Names

The following figure shows relative path names from the directory leslie (..
indicates the "parent" directory; . indicates the current directory).

Start at directory leslie. Moving up in the structure adds .. to the path .

.. I .. I ...

. . I ..

• ·/arnie * ./sally

•• / arnie/hisfile myfile projects •• /sally/herfile

Relative Path Names from /users/engineers/leslie

For example, the path from leslie to herfile requires you to go up the
structure to engineers (..), horizontally to sally (.. / sally), then down to
herfile (.. /sally/herfile).

6·4 Using Directories and Files

Try the example commands in the table below to list the contents of directories
from BASIC lUX.

Example CAT Commands Using Absolute and Relative Paths

Type this ... What it Does

CAT [Return) List contents of current directory

CAT " •• " [Return) List contents of parent directory (relative)

CAT "/users" [Return) List contents of users directory (absolute)

EXECUTE "ls" [Return) Use the HP-UX 1s command to list the current
directory.

Understanding CAT Listings for Hierarchical Directories

Listing HFS Directories

When you list the contents of a directory, you see a list similar to the HFS
listing below:

/users/lesIie:HFS
LABEL:
FOIUlAT: HFS
AVAILABLE SPACE: 166780

FILE IUK REC MODIFIED
FILE lAME TYPE RECS LEI DATE TIME PERMISSIOI OWIER GROUP
============== ===== ====== ===== ========= ===== ========== ===== =====
. profile HP-UX 760 1 23-Jun-88 11: 18 RWX------ 204 10
.xllstart HP-UX 1729 1 23-Jun-88 11:05 RWX------ 204 10
.Xdefaults HP-UX 456 1 8-Jul-88 7:29 RWX------ 204 10
reports DIR 7 32 19-Jul-88 13:13 RWXRWXRWX 204 10
backup DIR 39 32 27-Jun-88 13:41 RWXRWXRWX 204 10
notes HP-UX 106 1 14-Jul-88 16:28 RW-RW-RW- 204 10
SPL_PROGRAM PROG 1 256 14-Jul-88 16:28 RW-RW-RW- 204 10
ASCIIPROG ASCII 1 256 14-Jul-88 16:28 RW-RW-RW- 204 10

Using Directories and Files 6-5

6

6

Here is what each column means:

FILE NAME

FILE TYPE

NUM RECS

REC LEN

MODIFIED
DATE TIME

PERMISSION

OWNER

Is the name of the file (up to 14 characters).

Indicates the file type (PROG, ASCII, BDAT, HP-UX, DIR).

Is the number of records in the file.

Is the record length used in the file (file size is the product of
RECORDS x LENGTH).

Shows the date and time of day when the file was written or
last modified.

Shows who is allowed to R(ead), W(rite), or eX(ecute) the
file for the file's Owner, Group, or Other (everyone on the
system). Execute permission is also referred to as SEARCH
permission.

NumericalID of the file's owner.

GROUP Numerical ID of the file's group.

A CAT of an HFS directory requires R (read) and X (search) permissions on
the directory, as well as X (search) permissions on all parent directories. See
"Permitting HFS File Access" for information on permissions if you receive an
error when executing CAT (for example, ERROR 183 Permission denied).

6·6 Using Directories and Files

Listing SRM Directories

A typical SRM listing would look something like this example:

USERS/STEVE/PROJECTS/DIR1:REMOTE 21,0
LABEL: Disk1
FORMAT: SDF
AVAILABLE SPACE: 54096 SYS FILE lUMBER RECORD MODIFIED PUB OPEl
FILE lAME LEV TYPE TYPE RECORDS LEIGTH DATE TIME ACC STAT
=================== === ==== ===== ======== ======== =============== ==== ====
Common_data 1 ASCII 48 256 2-Dec-83 13:20 MRV OPEl
Personal_data 1 9816 BDAT 33 256 2-Dec-83 13:20 LOCK
PrograJILalpha 1 9816 PROG 44 256 3-Dec-83 15:06 RV
HP9845_DATA 1 9845 DATA 22 256 10-0ct-83 8:45 R
HP9845_STORE 1 9845 PROG 9 256 10-0ct-83 8:47 MRV
Pascal_file.TEIT 1 PSCL TEIT 37 256 11-lov-83 12:25 MRV
Program_500 1 9000 PROG 12 256 13-Dec-83 9:54 MRV

Here is what each column means:

FILE NAME

LEV

SYS TYPE

FILE TYPE

NUMBER
RECORDS
RECORD
LENGTH

MODIFIED
DATE TIME

PUB ACC

Is the name of the file (up to 16 characters).

Is always 1 (for BASIC).

Indicates the type of system used to create the file. This is
blank for ASCII files and directories. 98x6 denotes a Series
200/300 computer.

Indicates the file type (such as PROG, ASCII, BDAT)

Is the number of records in the file.

Is the record length used in the file (file size is the product of
RECORDSxLENGTH).

Shows date and time of day when the file was last written or
modified.

Shows which access rights are currently public. For instance,
MR indicates that Manager and Read capabilities are public,
while other rights are protected requiring a password to access
them. See the section "SRM Passwords and Locks" later in
this chapter for details.

Using Directories and Files 6-7

6

6

Listing SRM/UX Directories

A typical SRM/UX listing would look something like this:

:REMOTE 21,0
LABEL: BOOT
FORMAT: SRM-UI
AVAILABLE SPACE: 123456789

FILE lUMBER REC MODIFIED OPEl
FILE lAME TYPE RECORDS LEI DATE TIME PERMS OVIER GROUP STAT
============== ===== ======== ===== =============== ========= ----- ----- ====
SYSTEMS DIR 11 24 1-Mar-90 16:56 RVXR-XR-X 0 1
console CDEV 0 1 12-0ct-90 17:05 RV--V--V- 0 1
EDITTEST.TEXT TEXT 8 256 12-Dec-89 15:20 RV-R--R-- 175 54
AUTOST PROG 2 256 5-Jan-90 15:07 RV-R--R-- 175 54
srmdpipe PIPE 0 1 12-0ct-90 11:45 RV------- 0 1
PTEST ASCII 1 256 2-Jan-90 10:51 RV-RV-RV- 17 9 LOCI
PTESTCAT HP-UX 984 1 2-Mar-90 15:12 RV-RV-R-- 175 54 OPEl

Here is what each column means:

FILE NAME

FILE TYPE

lists the names of the files and directories in the directory
being cataloged.

indicates the file type. File types recognized by BASIC on
SRM/UX are the following:

DIR - directory
PROG - BASIC program file
PIPE - named pipe

The SRM/UX user can also see the following special
HP-UX files in a CAT listing, but cannot manipulate
them:

NET - network special file
SOCK - HP -UX socket
BDEV - block special file
CDEV - character special file

If the system does not recognize a file type, it prints a
numeric code or "OTHER".

6·8 USing Directories and Files

NUMBER RECORDS

REC LEN

MODIFIED
DATE/TIME

PERMS

indicates the number of records in a file.

indicates the number of bytes in each file record (always
24 for directories (DIR), regardless of actual size).

(80-column format only) shows the date and time when
the file's contents were last changed.

specifies who has access rights to a file.

R - indicates that a file can be read.
W - indicates that a file can be written.
X - indicates that a directory can be searched
(meaningful for directories only).

Three classes of user permissions exist for each file:

OWNER - left-most three characters.
GROUP - center three characters.
OTHER - right-most three characters.

Using Directories and Files 6-9

6

6

Listing Only File Names

The following statement produces a multi-column listing of the file names in
the current working directory of the current default volume:

CAT; NAMES

lost+found
MY_PROG

WORISTATIOIS
D.lT.l_13

Cataloging Selected Files

SYSTEM_BAS
PROJECTS

You can specify which files to list using the following options to CAT:

CAT; SELECT "ABC"

CAT "*A*"

CAT; COUNT Num_files

CAT; NO HEADER, SKIP 10

Lists only the files beginning with the
specified letters "ABC".

If you enable WILDCARDS, you could use
this statement to list all file names containing
the letter A. See the subsequent section on
"U sing Wildcards."

Stores the number of lines in the catalog in
a numeric variable called Num_files. (This
variable must be defined in the current
program or subprogram context before it can
be used.)

Suppresses the catalog heading and skips the
first 10 files in the directory.

See the HP BASIC 6.2 Language Reference for a complete description of these
options.

6·10 Using Directories and Files

Cataloging Individual PROG Files

A catalog of a PROG file yields the following additional information about the
file:

• A list of the binary program(s) contained in the program file and the size of
each (in bytes).

• The size of the main program (in bytes).

• A list of contexts (SUB and FN subprograms) and their sizes (in bytes).

The following catalog listing is an example of a CAT performed on an
individual PROG file. Note that this catalog format requires only 45 columns.

NEWPAGER_A
NAME SIZE TYPE
====================== ===== ================
MAIN 62002 BASIC
FNBar$ 3680 BASIC
FNRoman$ 656 BASIC
Killkeys 426 BASIC
FNTrim$ 414 BASIC
FNUpc$ 344 BASIC
FNLwc$ 416 BASIC
Table_formatter 6810 BASIC
Strip 1260 BASIC

AVAILABLE ENTRIES = 0

The AVAILABLE ENTRIES table entry is not currently used.

Using Directories and Files 6·11

6

6

The following listing shows a program which was stored while a BIN program
was resident in the computer.

NEWPAGER_B
NAME SIZE TYPE
---------------------- ----- -------------------------------------- ----- ----------------
PHYREC (2.0) Rev A 1734 BASIC BINARY
*** WARNING:
MAIN
FNBar$
FNRoman$
Killkeys
FNTrim$
FNUpc$
FNLwc$

System level 5. Bin level 1.
56394 BASIC
3218 BASIC
656 BASIC
426 BASIC
414 BASIC
344 BASIC
374 BASIC

Table_formatter 7622 BASIC
AVAILABLE ENTRIES = 0

If the currently loaded BASIC lUX system version is different from the binary
program version, a warning and the version codes of both BASIC lUX system
and binary program are included in the catalog information. The following
example shows the format of the returned message.

Prog_phy
NAME SIZE TYPE
====================== ===== ================
PHYREC 1.0
*** WARNING:
MAIN

1734 BASIC BINARY
System level 5. Bin level 1.

222 BASIC
AVAILABLE ENTRIES = 0

See the HP BASIC 6.2 Language Reference for more detail on CAT. See A
Beginner's Guide to HP- UX for more on path names.

6·12 Using Directories and Files

Creating Directories

To organize your own files, you can create additional directories from your
home directory with the CREATE DIR command.

Generally, you should only create directories subordinate to (below) your home
directory unless you are the system administrator.

Creating Directories from Your Home Directory

Try creating the examples from your home directory-we'll use the directories
in a subsequent module for learning how to move from directory to directory.

• CREATE DIR "SAMPLE" [Return)

• CREATE DIR "TRAIL" (Return)

• CREATE DIR "SAMPLE/PROJECT1" (RetUffi)

• CREATE DIR "SAMPLE/PROJECT1/FILES" (RetUffi)

When you complete these commands, you create a directory structure shown in
the following figure.

An Example Directory Structure You Create

Using Directories and Files 6·13

6

6

Creating Directories with Absolute Path Names

If you are the system administrator, you may want to create directories
outside your home directory. When you use absolute path names to create a
directory, only the last directory name in the path can be the new directory.
For example, if you type:

CREATE DIR II /tmp/sample"

/tmp must already exist (you'll see ERROR 56 File name is undefined if it
doesn't exist).

You must have the correct permissions for each level of directories in the path
down to the parent of the directory you are creating. See the subsequent
section on "Permitting HFS File Access" for more information on permissions.

See the HP BASIC 6.2 Language Reference for more on the CREATE DIR
command.

Changing Directories

To make another directory your current directory use the MSI statement (the
"MASS STORAGE IS" statement).

Before trying the examples in this module, find the path name for your current
directory so you can return to it. Type:

SYSTEM$ (II MSI ")

For example, /users/leslie :HFS. The path name is: /users/leslie

6-14 Using Directories and Files

Changing Directories with Relative Path Names

If you have to move to a directory in "close proximity" to your current
directory, you can use a relative path name. The following table lists some
commands you can try from your current directory based on the example from
the previous section on "Creating Directories with Absolute Path Names" .

After each command, type: CAT and check the path name at the top of the list.
Then type: CLS to clear the screen and make it easier to see the next list.

Changing Directories with Relative Path Names

Example Explanation

MSI "TRIAL" Move "down" to TRIAL directory.

MSI " .. /SAMPLE" Move "up" to home directory and then "down"
to SAMPLE directory.

MSI IPROJECT1/FILES" Move down two levels to FILES directory

MSI " .. / .. / .. " Move up three levels to the directory where you
started.

Type the SYSTEM$ ("MSI") command again to make sure you are in your home
directory. If you aren't, type the MSI command with your home directory path
name. For example: MSI "/users/leslie"

Using Directories and Files 6-15

6

6

Changing Directories with Absolute Path Names

The table below shows some examples that use directories from the following
figure (these examples won't necessarily work on your particular system).

/users

/ users/ eng ineers

/users/engineers/arnie /users/engineers/leslie /users/engineers/sally

Absolute Path Names

Changing Directories with Absolute Path Names

Example Explanation

MSI "/" Move directly to the root directory.

MSI "/users/engineers" Move directly to /users/engineers.

MSI "/users/engineers/arnie" Move directly to the arnie directory.

6-16 Using Directories and Files

Changing Directories to LIF Disks

You can move to a directory for an LIF disk by including the mass storage
vol ume specifier (msvs; see the previous chapter) of the LIF disk (see your
system administrator for the disk's msvs). For example:

MSI ":,700"

where: ,700 is the msvs. To return to the HFS directory from LIF disk, type:

MSI ": HFS" (Return)

If you see Permission denied, it means you tried to get into a directory that
has been protected. The "owner" of the directory must change the permissions
before you can change to that directory.

To determine your home directory's path name, type:

EXECUTE "echo $HOME"

See the HP BASIC 6.2 Language Reference for more information on the MSI
keyword.

LlF Catalogs

Here is a typical catalog listing of a LIF directory. Displays with 80 columns
or more, have two extra fields for DATE and TIME when the file was last
modified.

:CS80,700
VOLUME LABEL: B9836
FILE lAME PRO TYPE REC/FILE BYTE/REC ADDRESS

MyProg PROG 14 256 16
VisiComp ASCII 29 256 30
GRAPH BII 171 256 59
GRAPHX BII 108 256 230

Using Directories and Files 6·17

6

6

Here is what each portion of the catalog means:

: CS80, 700 Is the mass storage volume specifier (msvs) of the device.

VOLUME LABEL Is the name given to the volume (in this case, B9836).

FILE NAME

PRO

TYPE

REC/FILE

BYTE/REC

ADDRESS

DATE

TIME

Lists the file names in the directory (limit 10 characters).

Indicates whether the file has a protect code (* is listed in
this column if the file has a protect code).

Lists the type of each file.

Indicates the number of records (or sectors) in the file.

Indicates the record size.

Indicates the number of the beginning sector in the file.

Date when file was last modified (on 80-column or wider
displays).

Time when file was last modified (on 80-column or wider
displays). '

Using Wildcards
BASIC lets you use wildcards with file system commands. Wildcards is the
name given to a set of rules for using expressions as substitutes for file names.
For instance, using an asterisk (*) as an argument in a file system command
means to execute that command with all the matching files in the current
directory. Wildcards can process multiple files by using file name expansion.
Wildcards can also reduce typing by using file name completion. BASIC /WS
wildcards are similar to wildcards used in the HP-UX operating system,
and several options in addition to the asterisk are available. For complete
information, see the entry for WILDCARDS in the HP BASIC 6.2 Language
Reference.

6-18 Using Directories and Files

Enabling and Disabling Wildcards

WILDCARDS is disabled at power-up, and after SCRATCH ALL. Wildcard
processing must be explicitly enabled.

WILDCARDS UX;ESCAPE "\"
WILDCARDS OFF

Enable HP-UX style wildcards
Disable wildcard recognition

File Name Expansion

Certain file system commands can perform operations on multiple files when
WILDCARDS are enabled. These commands are PURGE, COPY, LINK,
CRGRP, CROWN, PERMIT, PROTECT (on SRM files only), and CAT. All
files that match a wildcard argument are processed by the command. For
example, you could use wildcard arguments to process the files in the following
SRM catalog listing.

PROJECTS/Project_one/CRARLIE:REKOTE 21. 0
LABEL: Disci
FORlUT: SDF
AVAILABLE SPACE: 54096

SYS FILE lUMBER RECORD KODIFIED PUB OPEl
FILE lAKE LEV TYPE TYPE RECORDS LEIGTR DATE TIKE ACC STAT
================ === ==== ===== ======== ======== =============== === =====
AGEIDA
KEKOS
DATAl
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8

Note

1 ASCII 254 1 24-Apr-90 12:01 RW
1 DIR 12 24 22-Kar-89 23:12 RW
1 9816 BOAT 8 256 1-Apr-90 14:12 RW
1 9816 BDAT 7 256 2-Apr-90 14:12 RW
1 9816 BOAT 8 256 3-Apr-90 14:12 RW
1 9816 BDAT 5 256 4-Apr-90 14:12 RW
1 9816 BOAT 4 256 5-Apr-90 14:12 RW
1 9816 BDAT 8 256 6-Apr-90 14:12 RW
1 9816 BOAT 6 256 7-Apr-90 14:12 RW
1 9816 BDAT 5 256 8-Apr-90 14:12 RW

PURG E "DATA *" will erase all files in the directory path
designated that begin with DATA (eg. DATAl, DATA2,
DATA3). Before you execute a command using a wildcard, be
certain you want to affect all files designated.

Using Directories and Files 6-19

6

6

To copy all of the files prefixed by DATA to IPROJECTS/Proj ect_onel JOHN,
type:

COpy "DATA*" TO I/PROJECTS/Project_one/JOHN"

If an exception occurs while processing one of the files, the file name is
displayed followed by a warning message. The command continues processing
any remaining files that match the wildcard argument. After the command is
finished processing the files, ERROR 293 Operation failed on some files is
generated. Only one error is generated for a command no matter how many
warning messages are generated for that command.

If multiple warning messages are generated, each message writes over the
previous message. To avoid missing any warning messages, press (PRINTALL 1.
(PRINTALL) sends all warning messages and their corresponding error message to
the PRINTALL IS device.

File Name Completion

Certain file system commands let you use file name completion with wildcards.
Instead of specifying a complete file name as the argument for a command,
you can specify a wildcard expression that matches a desired file name. The
command finds the matching file name, then processes the file exactly as if you
had specified the file name explicitly. File name completion reduces typing
required for long file names.

Commands that allow file name completion are ASSIGN, DICTIONARY IS,
GET, GFONT IS, LOAD, LOAD KEY, LOAD SUB, MSI, PROTECT(LIF
files only), RENAME, RE-SAVE, RE-STORE, and RE-STORE KEY.

Using the previous SRM catalog listing you can rename DATAl using the
statement:

RENAME "*1" TO "RESULTS1"

In a file name completion command, a wildcard argument must match only one
file name. Therefore, the statement:

RENAME "D*" TO "RESULTS1"

would cause the following error:

ERROR 295 Wildcard matches >1 item

6-20 Using Directories and Files

Using the Escape Character

An escape character is specified when you enable WILDCARDS. The escape
character cancels the special meaning of a wildcard character. The allowable
values for the escape character are \ or '. The null string ("") can be specified
to disable escape character processing. If an invalid escape character is
specified the following error is generated:

ERROR 290 Invalid ESCAPE character

If you enabled WILDCARDS using the following statement:

WILDCARDS UX;ESCAPE "\"

you could use this statement to purge the program, my _program* shown in the
following HFS catalog listing:

PURGE "my_program*"

:CS80. 700
LABEL: MyVol
FORMAT: HFS
AVAILABLE SPACE: 60168

FILE lAME
FILE
TYPE

IUM
RECS

REC MODIFIED
LEI DATE TIME PERMISSIOI OWIER GROUP

============== ===== ====== ===== =============== ========== ===== =====
lost+:found
my_program.
my _programl
:freddy

DIR 0
PROG 41
PROG 412
ASCII 50

32 24-Apr-90 12:01 RWIRWIRWI
256 24-Apr-90 15:42 RW-RW-RW-
256 24-Apr-90 14:32 RW-RW-RW-
256 24-Apr-90 12:02 RW-RW-RW-

Restrictions on the Use of Wildcards

18
18
18
18

9

9
9

9

You can use wildcards only in the rightmost segment of a directory path.
(That is, after the last "/" of the path name.) The following statements are all
valid:

PURGE "."
RE-SAVE "/CHARLIE/.a.b"
COpy "/PROJECTS/Project_one/UTHY/." TO "/PROJECTS/Project_one/JOHI

However, the following statements are invalid, and would cause the message
ERROR 53 Improper file name to appear:

Using Directories and Files 6·21

6

6

PURGE 11*/*11
RE-SAVE II/*/my_program"
CAT II/PROJECTS/P*/CHARLIE/DATA*II

General File Management Operations
This section describes the mechanics of managing files in your system. These
may be program files that your application creates or data files that you create
from the keyboard.

Closed versus Open Files and Hierarchical Directories
Many of the following operations can only be performed on closed files and
directories. Here is what the term closed means for files and directories .

• Files are open when the following statement is currently active for the file:

ASSIGN tOlo_path TO file_name

Files are closed by this statement:

ASSIGN tOlo_path TO *

• Directories are closed when they are not the current working directory.

MASS STORAGE IS II /USERS/MARK/MY _DIRII Makes MY _DIR the current
directory

The SCRATCH A command also closes any currently open directories and files.
All files except those opened with the PRINTER IS statement are also closed
by pressing Reset ((Shift}-(Breakl). See the HP BASIC 6.2 Language Reference
description of these commands for details.

6·22 Using Directories and Files

Protecting Files

You can protect files from being read, over-written, or destroyed by other
system users. Note that file protection is different for each of the three
directory types.

HFS File and Directory Permissions

For HFS directories, you can use PERMIT to assign and remove access
permissions of a file or directory. Since this file system is compatible with the
HP-UX system, BASIC uses a subset of the HP-UX file protection mechanism.
(With HP-UX, the chmod command performs this function.)

Nine permission bits for HFS files and directories are broken into three classes,
one for each class of users:

OWNER GROUP OTHER

Read I Write 1 Search Read I Write I Se~rch Read I Write I Search

The three classes of users are:

• OWNER-initially the person who created the file; however, ownership of 6
individual files and directories can be changed with CHOWN. (CHOWN and
CHGRP are used only when you will also be using a disc with the HP-UX
system. They give selected HP-UX users ownership or group access to files
and directories. See the HP BASIC 6.2 Language Reference entries for
CHOWN and CHGRP for further information.) With BASIC, the system
owns all files and directories with an owner identifier of 18.

• GROUP-initially the group to which the owner of the file or directory
belongs; however, the group identifier of individual files and directories can
be changed with the CHGRP statement. With BASIC, the system is in the
group with an identifier of 9, which is also the default group identifier used
by the Workstation Pascal system.

• OTHER-all other users who are not the owner and are not in the same
group as the owner-that is, everyone else.

Using Directories and Files 6·23

6

Each class of users has three types of permissions for accessing an HFS file or
directory:

• READ-allows reading a file or directory (such as with CAT, ENTER, and
GET).

• WRITE-allows a user to modify the contents of a file or directory (such as
with OUTPUT, RE-STORE, or CREATE).

• SEARCH-an operation which allows you to search the directory (such as
with CAT and MASS STORAGE IS). This permission has no meaning for
files (that are not directories) on BASIC.

The current state of these bits is represented in the PERMISSION column of a
CAT listing of the directory in which the file or directory resides (R for READ;
W for WRITE; X for SEARCH; - for no permission):

FILE IUM REC MODIFIED
FILE lAME TYPE RECS LEI DATE TIME PERKISSIOI OWIER GROUP
=========== ==== ==== === ============== ========== ===== =====
Directory DIR 256 1 7-lov-86 9:22 RVIRVIRVI
File HPUI 8192 1 7-lov-86 9:23 RV-RV-RV-

18
18

9
9

The default permission bits for directories are: RWXRWXRWX. The default
permission bits for files are: RW-RW-RW-.

PERMIT is used to permit or restrict access to files and directories by other
users on a system. For more information about user categories and how to
change permissions on a file or directory, see PERMIT in the HP BASIC 6.2
Language Reference.

The following example sets READ and WRITE permission for OWNER, but
removes permission for SEARCH:

PERMIT IIFile ll
; OWNER:READ,WRITE

--------- before
RW------- after

6·24 Using Directories and Files

With these permission bits set, the owner of the file can read and write the file
(with GET and RE-STORE, for example), but all other users on the system
cannot access the file.

The following example sets READ and WRITE permission for OWNER, but
removes permission for SEARCH (the PERMIT parameters are the same as in
the preceding example, but the before permission bits are different):

PERMIT "File"; OWNER:READ,WRITE

R-XRW-RW- before
RW-RW-RW- after

With these permission bits set, all classes of users can read and write the file.

If OWNER, GROUP, or OTHER is not specified, the corresponding
access-permission bits are not affected. The following statement sets permission
bits for OWNER and OTHER, but leaves the bits for GROUP unchanged:

PERMIT "File"; OWNER: READ ,WRITE; OTHER:READ

R--R---W- before
RW-R--R-- after

The next example changes bits for GROUP and OTHER but leaves the bits for
OWNER unchanged: 6

PERMIT "File"; GROUP:READ; OTHER:READ

RW-RW-RW- before
RW-R--R-- after

If no user class is specified, the default permissions for all groups are restored:

PERMIT "File"

RW-R--R-- before
RW-RW-RW- after

PERMIT "Directory"

RW-R--R-- before
RWXRWXRWX after

Using Directories and Files 6·25

6

SRM Passwords and Locks

The SRM system offers three kinds of access capability for files and directories:

READ

WRITE

MANAGER

For a file, possessing .this access capability allows you to
execute statements that read the file, such as GET, ASSIGN,
ENTER.

For a directory, possessing this access capability allows you to
execute statements that read the file names in the directory,
and to "pass through" the directory when the directory's name
is included in a directory path. In the SRM file specifier:

I/PROJECTS/Project_one<READpass>/JOHN/fl"

including the assigned password <READpass> allows passage
through the directory Proj ect_one to allow access to its
subordinate directories and files.

For a file, possessing this access capability permits you to
execute statements that write to the file, such as SAVE,
OUTPUT.

For a directory, possessing this access capability allows you to
execute statements that add to or delete from the directory's
contents, such as CREATE ASCII, CREATE DIR, PURGE.

With the MANAGER access capability, public capabilities
for a file or directory differ slightly from password-protected
capabilities .

• Public MANAGER capability allows any SRM user to
PROTECT, PURGE, or RENAME the file .

• The password-protected MANAGER capability provides
MANAGER, READ, and WRITE access capabilities to users
who include a valid password in the file or directory specifier.

Capabilities are either public access (available to all workstations on the
SRM) or protected access (available only to users who know the appropriate
password).

6·26 Using Directories and Files

The current access capabilities for a file are shown in a catalog listing:

PROJECTS/Project_one:REMOTE 21, 0
LABEL: Disci
FORllAT: SDF
AVAILABLE SPACE: 4354096

SYS FILE lUMBER RECORD MODIFIED PUB OPEl
FILE lAME LEV TYPE TYPE RECORDS LEIGTH DATE TIME ACC STAT
=========== === ==== ===== ======= ====== ============== === ====
ASCII_l
BDAT_l
MEMOS

1 ASCII
1 9816 BDAT
1 DIR

In the above example:

o 256 2-Dec-84 13:20
o 256 2-Dec-84 13:20 R
o 24 2-Dec-84 13:20 RV

1. The file ASCII_l has no public access capabilities; all access must include
the appropriate password.

2. The file BDAT_l has the READ capability public; anyone on the SRM
system can read the file.

3. The directory MEMOS has READ and WRITE capabilities open to the public;
anyone can create and purge files in the directory, and search through the 6
directory with a statement like MASS STORAGE IS "MEMOS/SUB_DIR".

Capabilities are protected with the PROTECT statement, which associates a
password with one or more access capabilities. Each file or directory can have
several password/capability pairs assigned to it.

Once assigned, the password must be included with the file or directory
specifier to execute statements requiring that access. If you don't specify the
correct password when it is required, the system will report an error and deny
access to the file or directory.

Using Directories and Files 6·27

6

When you create directories and files, their access capabilities are public
(available to any user on the SRM). You may subsequently protect a directory
or file against certain types of access by other SRM workstations, if all of the
following are true:

• You possess MANAGER access capability on the file or directory
(MANAGER access to the file is public or you know the password protecting
the capability).

• You possess READ access capability on the directory immediately superior
to the file or directory you wish to protect.

• You protect the file or directory either while in its superior directory or by
specifying the valid directory path to its superior directory.

U sing the directory structure in the following figure, and assuming no
passwords have been assigned to the files, you could change the protections
described in the list that follows.

ASCII_l

BDAT-.;.l

(root)

1. Assign the password passme to protect the MANAGER and WRITE access
capabilities on the directory CHARLIEwith:

MSI "/PROJECTS/Project_one"
PROTECT ICHARLIEI,("passme":MANAGER,WRITE)

This moves to the directory Proj ect_one (immediately superior to
CHARLIE) and executes the PROTECT statement. The READ access
capability on CHARLIE is still public, but any operations that require
MANAGER or WRITE capabilities must include the password.

6-28 Using Directories and Files

2. Remove all public access capabilities from the file ASCII_l by assigning the
password no_pub, using:

PROTECT "CHARLIE/ASCII_l",("no_pub":MANAGER,WRITE,READ)

or

MSI "CHARLIE"
PROTECT IASCII_l",(lno_pub":MANAGER,WRITE,READ)

These statements assume you are in the directory Proj ect_one. The second
sequence makes CHARLIE the new working directory. In the first, you merely
pass through CHARLIE to reach ASCII_1. With the READ access capability
on CHARLIE still public, you do not need a password.

3. Protect the file BDAT_l so data can be read from it but not written into it
without using the password write. If the current working directory were
CHARLIE, you would type:

PROTECT IBDAT_ll,(lwrite":MANAGER,WRITE)

4. Protect the MANAGER access capability of the directory MEMOS with the
password, mgr_pass. Everyone can read from and write to the directory, but
a password is required to purge the directory or its contents. Type:

PROTECT IMEMOS",(lmgr_pass":MANAGER)

If you followed the steps above to protect the files and directory in CHARLIE, a
catalog listing of CHARLIE would look something like this:

PROJECTS/Project_one/CHARLIE:REMOTE 21, 0
LABEL: Disci
FORMAT: SDF
AVAILABLE SPACE: 54096

SYS FILE lUMBER RECORD MODIFIED PUB OPEl
FILE lAME LEV TYPE TYPE RECORDS LEIGTH DATE TIME ACC STAT
========== === ==== ===== ======= ====== ============== === ====
ASCII_1
BDAT_1
MEMOS

1 ASCII
1 9816 BDAT
1 DIR

6 256 2-Dec-84 13:20
4

o
256 2-Dec-84 13:20 R
24 2-Dec-84 13:20 RV

Using Directories and Files 6·29

6

The letters in the column labeled PUB ACC indicate access capabilities that
are public (not protected with a password). Only the MANAGER (M) access
capability on the directory MEMOS is protected, leaving the READ (R) and
WRITE (W) capabilities available to any SRM workstation user.

Specifying Passwords. When a password is required, you must include the
correct password as part of the file or directory specifier. The password must
be enclosed between < and > and must immediately follow the name of the file
or directory it protects. For example:

GET I/PROJECTS/Project_one/CHARLIE/ASCII_1<no_pub>"

Exclusive Access: Locking SRM and SRM/UX Files. Although allowing users
to share SRM or SRM/UX files saves disk space, it introduces the danger of
several users trying to access the file at the same time. To avoid problems,
you can use LOCK and UNLOCK to secure files during critical operations.
LOCK establishes exclusive access to a file; the file can only be accessed from
the workstation at which the LOCK was executed. Typically, you LOCK all
critical files, read data from files, update the data, write the data into the files,
and then UNLOCK all critical files.

To permit shared access to the file once again, UNLOCK must be executed
from the same workstation, or the file must be closed. Only ASCII or BDAT

6 files that have been opened by a user via ASSIGN may be locked explicitly
by that user. For more information, refer to the descriptions of the ASSIGN,
LOCK, and UNLOCK keywords in the HP BASIC 6.2 Language Reference.

Locking and Unlocking SRM Files. You can get sole access to an SRM file (or
an SRM/UX file) with the LOCK statement. The same file can be locked
several times in succession. You must cancel each LOCK with a corresponding
UNLOCK.

Using ASSIGN to re-open a locked file unlocks the file. You must execute
another LOCK statement to lock the file again.

Closing the file via ASSIGN (D ••• TO * cancels all locks on the file.

6·30 Using Directories and Files

In this example, a critical operation must be performed on the file named
File_a, requiring a LOCK.

1000 ASSIGN <OFile TO "File_a:REMOTE"
1010 LOCK <OFile;CONDITIONAL Result_code
1020 IF Result_code THEN GOTO 1010 ! Try again
1030 Begin critical process

2000 End critical process
2010 UNLOCK <OFile

The numeric variable called Result_code is used to determine the result of the
LOCK operation. If the LOCK operation is successful, the variable contains O.
If the LOCK is not successful, the variable contains the numeric error code
generated by attempting to lock the file.

LlF Protect Codes

With LIF directories, protect codes are two-character strings assigned to any
BDAT, BIN, or PROG file by using PROTECT. The protect code does not
appear in the CAT display, but must be specified to subsequently modify the
file. Protect codes are intended to prevent accidentally writing and purging
files.

To protect the file SECRET with the protect code BS, use the statement:

PROTECT "SECRET","BS"

The protect code must then be specified with the file name to allow access. To
RENAME the protected file SECRET, use the statement:

RENAME "SECRET<BS>" TO "SHHHH"

If a file has a protect code, it must be included in file specifiers for mass
storage statements that write to that file or directory. Mass storage statements
that read a file or directory do not require the protect code. Such statements
include CAT, LOAD, LOADSUB, GET, and COPY.

Using Directories and Files 6·31

6

6

To assign an IIO path name to the file named SHHHH, you have to include the
protect code:

ASSIGN <OPathl TO "SHHHH<BS>"

If you assign a protect code longer than two characters, the system will
ignore everything after the second (non-blank) character. The protect codes
LONGPASS, LOST, and LOLLYGAG all result in the same protect code: LO.
This rule holds both for PROTECTing a file and for specifying the protect
code in a file specifier.

Renaming a file changes the file name in the directory, and leaves everything
else intact, including the protect codes.

You can also assign a protect code to a BDAT file when you create it. For
example:

CREATE BOAT "Example<xx>",10

To change a protect code, simply execute a new PROTECT statement:

PROTECT "Example<xx>","yy" new protect code is yy

PROTECT "Example<yy>"," " two blanks cancel protection

When specifying a file that does not have a protect code, you can either ignore
the code entirely, or include a code of two spaces:

PURGE "Example"

or

PURGE "Example< >"

For details on the PERMIT statement, see the HP BASIC 6.2 Language
Reference For information on SRM permissions, see Using HP BASIC/UX 6.2.
To lock files so they can be accessed only by the person who locked the file, see
the HP BASIC Programming Guide, "Data Storage and Retrieval" chapter,
"Locking Files" section.

6·32 Using Directories and Files

Copying Files

The COpy statement allows you to duplicate files. Any type of file may be
copied.

COpy Statements

Example Explanation

COPY "ExistFile" TO "NewFile" Duplicate ExistFile into NewFile

COPY "F2" TO "/users/dan/F2" Copy the file F2 to another directory

To copy a file, you must have the correct permissions (described in "HFS File
and Directory Permissions") that allow you to READ, WRITE, and SEARCH.
You cannot copy whole directories, although you can copy a file from one
directory to another. Unlike the HP -UX cp command, you cannot specify only
a directory name to copy a file to that directory; you must include the file
name.

If you are copying from an SRM or LIF disk to an HFS volume, use the COpy
command in BASIC and not the HP- UX utilities srmcp or lifcp. Using srmcp
or lifcp causes errors due to special headers on HFS files. 6

If the new file name (name of the copy) is the name of an existing file, you
receive an error message: ERROR 54 Duplicate file name.

See the HP BASIC 6.2 Language Reference for more information on COPY.

Renaming Files

Renaming files allows you to change the name of a file. You will get an error
message if the new name is the same as an existing file ..

USing Directories and Files 6·33

Rename Statements

Example Explanation

RENAME "MyFile" TO "YourFile" Renames the file MyFile to a file named
YourFile in the current directory.

RENAME "This" TO " .. /engineers/That" Renames the file This to a file named
That in the engineers directory:
actually moves the file to the new
directory.

RENAME "MyFile" TO " .. /MyFile" Moves the file MyFile to the parent
directory

To rename a file, you must have the correct permissions that allow you to
READ, WRITE, and SEARCH in the directory in which you are renaming the
file.

See the HP BASIC 6.2 Language Reference for more information on RENAME.

Purging (Deleting) Files or Directories

6 Purging a file deletes the directory entry for the file.

Note Once a file is purged, there is no way of retrieving the
information it contained.

The following statement removes the file "Old_stuff" from the current
directory:

PURGE "Old_stuff"

If you created directories in the module on "Creating Directories", try the
following examples. It's assumed you are in your home directory.

6·34 Using Directories and Files

PURGE Statements

Example Description

PURGE "SAMPLE" You get an error message because the
directory is not empty: it contains other
directories.

PURGE "SAMPLE/PROJECT1/FILES" Purge the FILES directory.

PURGE "SAMPLE/PROJECT1" Purge the PROJECTl directory.

PURGE "SAMPLE" N ow you can purge SAMPLE.

PURGE "TRIAL" Purge the TRIAL directory.

The PURGE statement can be used for removing files and directories. Here are
some restrictions on using PURGE to remove files:

• To use PURGE, you must have W (write) permission on the parent
directory, and X (search) permission on all superior directories.

• You cannot purge the current directory.

• Directories must be empty before you purge them (cannot contain any files
or other directories).

See the HP BASIC 6.2 Language Reference for more information on the PURGE
command.

Using Directories and Files 6·35

6

Linking Files

LINK lets you link a new file name on an HFS volume to an existing file on the
same volume. This command saves disk space, and lets you reference one main
file with several file names.

LINK can only be used with an HFS volume. You cannot link files from one
disk to another disk (however, HP-UX does support symbolic links; see the
entry for cp(l) in the HP-UX Reference).

Using LINK

The following example links the file COREFILE to another file name, NEWFILE:

LINK "COREFILE" TO "NEWFILE"

When you access NEWFILE (with an OUTPUT command, for example), the
actual file accessed is COREFILE. In essence, LINK is much like COPY, but the
actual file is not copied, and disk space is saved.

Considerations When Using LINK

6 The following items are important to know when using LINK:

• If the file is BDAT, ASCII, or HP-UX, an OUTPUT to the file changes its
contents.

• An ENTER command on any linked file reflects any changes to the core file.

• If you RE-STORE or RE-SAVE to a file linked to other files, a new file is
created and the link to the original data is broken. The RE-STOREd or
RE-SAVEd file is changed, but the original data and file names referring to
the original data are not changed.

• Use LINK when you want to save disk space and you want changes to be
reflected in all linked files.

• Use COpy when you want two separate files, with changes reflected in only
one copy of the file.

See the HP BASIC 6.2 Language Reference for more on LINK.

LINK is also programmable. See HP BASIC Programming Guide for details.

6·36 Using Directories and Files

7
Editing and Storing Programs

One of the advantages of using BASIC/UX is that it makes entering, editing,
and storing programs a simple task. This chapter introduces you to the
concepts and skills involved in entering and storing BASIC/UX programs.

Terminology
Knowing the following terms will help you learn how to edit and store
programs:

keyword

statement

command

A group of characters recognized by BASIC lUX to represent
some pre-defined action, such as CAT, LOAD, and COPY.

A keyword followed by any parameters and/or secondary
keywords that are required or allowed with that keyword, and
fit on one program line.

The maximum length of a command or program line is two
CRT lines (up to 256 characters). On most models, this 7
is 160 characters when you enter lines from the keyboard.
Examples of statements are:

CAT ":,700"
LOAD IMyProg"
COPY IIMyProg" TO IBackupFile"

A statement that is executed from the keyboard.

Editing and Storing Programs 7·1

program line A statement preceded by a line number (and optional line
label) that is stored in a program. Examples are:

100 CAT ":,700"
250 COPY IMyProg" TO IBackupFile"
875 Line_label: LOAD IMyProg"

In general, a statement can be used as either a command or program line:

• A command is executed from the keyboard; for example:

PRINT "This is a keyboard command. II (Return)

• A program line contains a leading line number; for example:

100 PRINT "This is a program line."

However, there are some statements that cannot be executed as commands
(such as DIM and RETURN):

100 DIM String_var$[100]

or stored as program lines (such as DEL and SCRATCH):

SCRATCH A

The HP BASIC 6.2 Language Reference indicates whether or not a keyword is
keyboard executable, programmable, or both.

7 The EDIT Mode
You can enter a program by typing program lines (line number and statement)
on the normal keyboard input line of the CRT and pressing (Return). But it is
usually better to use ED IT mode because you can see several program lines at
one time, and the BASIC editor checks the syntax of each line as you enter it.

7·2 Editing and Storing Programs

Entering the EDIT Mode

To enter the editor using an ITF keyboard, type:

1. Press (Resetl ((Shift H Break l) to halt any currently running program.

2. Enter EDIT mode by doing either of the following:

a. Type:

ED IT (Return)

b. Press (@ in the User 1 menu) and then press (Re'tUffi)

Editing and Storing Programs 7-3

7

7

The EDIT screen has this format:

110 1=.03
120 B=.02
130 1=0
140 Y=O
150 C=1+B
160 PRIIT" Item Total Total"
170 PRIIT" Price Tax Cost"

180 PRIIT "-----------------------,,

190 P=O

200 IIPUT "Input item price",P

210 D=P*C
220 E=P+D
230 I=I+D

240 Y=Y+E
250 DISP "Tax ="jDj"Item cost ="jE

260 PRIIT P,I,Y
270 GOTO 190
280 EID

Previous Program Lines (if any)

Current Program Line (2 CRT lines)

System Message Line (if needed)

Following Program Lines (if any)

In this mode, you can view a multi-line portion of the program. You can view
different portions of the program by scrolling the display (see subsequent
section called "Keys Used for Scrolling the Program" for details). To edit a
particular line, scroll the display so the line you want to edit is in the middle of
the screen.

If there is no program in memory when you enter EDIT mode, the cursor will
appear on a line with the number 10, the default line number for the first
program line.

The EDIT command is not programmable.

7·4 Editing and Storing Programs

You cannot use EDIT mode while a program is running.

Parameters Allowed with EDIT Command

The EDIT command allows two parameters. The first is a line identifier and
the second is the increment between line numbers.

For example, the following command places the program on the CRT so that
line 140 is in the current-line position, and new line numbers increment by 20.

EDIT 140,20

If the increment parameter is not specified, the computer assumes a value of
10. The following command places the program on the CRT so that line 1000
is in the current-line position, and new line numbers increment by 10.

EDIT 1000

When the line identifier is not supplied, the computer has different ways of
assuming a line number.

• If this is the first EDIT after a power-up, SCRATCH, SCRATCH A, or
LOAD, the assumed line number is 10.

• If EDIT is performed iInmediately after a program has paused because of an
error, the number of the line that generated the error is assumed.

• At any other time, EDIT assumes the number of the line that was being
edited the last time you were in EDIT mode.

The line identifier also can be a line label. This makes it very easy to find a
specific program segment without needing to remember its line number. For
example, if you want to edit a sorting routine that begins with a line labeled
Go_sort, type:

EDIT Go_Sort

The line labeled Go_sort is placed in the middle of the display, with any lines
that were immediately above and below this line.

To locate a program line in a subprogram context, you can use the FIND
command. See the subsequent section called "Global Editing Operations" for
details.

Editing and Storing Programs 7-5

7

7

Softkey Menu Changes

When you go from normal mode to EDIT mode on a system with an ITF
keyboard, the softkey menu and labels change to the User 2 menu.

While in EDIT mode, you can switch soft key menus normally: use either the
(Shift H Menu) key, or the appropriate statements (such as SYSTEM KEYS and
USER 1 KEYS) to switch to other menus.

If you are in the User 2 menu when you exit EDIT mode, the system returns
you to the menu that was in effect when you entered EDIT mode.

Correcting Typing Mistakes

If you make errors while typing, use the (Back space) or ffi and CEl keys to
move the cursor to the errors, then type them correctly. To insert characters,
position the cursor to the right of where you want to insert, press (Insert Char],

and type characters. Press (Insert Char) again to return to the typeover mode.

Entering and Storing a Program Line

To enter a program line, type the desired characters at the keyboard. Once the
line is exactly as you want it, you must press (Return) to store it. The cursor
may be any place on the line when you store it; the system will read the entire
line. For practice, type the lines shown below (the line numbers to the left are
supplied for you).

10 PRINT "Tiny prog. II (Return)

20 END (Return)

30

7·6 Editing and Storing Programs

Upper-Case or Lower-Case Letters?

Program entry is simplified by the computer's ability to recognize the upper
and lower-case letter requirements for most elements in a statement. An entire
statement can be typed using all upper-case or all lower-case letters. If the
statement's syntax is correct, and there are no keyword conflicts BASIC stores
the program line. Upon LISTing or EDITing the program, however, BASIC
uses these conventions:

• Keywords are all upper-case letters (CAT, LOAD, DISP).

• Identifiers (variable names, line labels, or subprogram names) must begin
with a capital letter and otherwise be lowercase (for example, "Word",
"Label").

• Accented characters (in the ASCII code range CHR$(16) to CHR$(244))
remain as entered. These characters do not occur in keywords.

You usually do not need to use (Shift) when entering a line, because BASIC
automatically changes all letters to the proper letter-case. However, if there is
a keyword conflict, an error is reported. A keyword conflict occurs when you
try to use a keyword for an identifier (variable name, line label, or subprogram
name). For example, "CAT" would result in a keyword conflict, but "Cat"
would not.

The BASIC Editor Checks Syntax

Before storing a program line, the computer checks for syntax errors, and also
changes the letter-case of keywords and identifiers. Syntax describes the way
keywords, parameters, etc. are put together to form a legal statement. 7

Immediate syntax checking is a major advantage of writing programs in the
BASIC editor. Many programming errors can be detected while editing, which
increases the chances of a program running properly, and cuts debugging time.
If the line's syntax is correct, the line is stored, and the next line number
appears in front of the cursor.

Editing and Storing Programs 7-7

7

If BASIC detects an error in the input line, it displays an error message
immediately below the line and places the cursor at the location it blames for
the error.

10 PRINT "Short program.

Error 985 Invalid quoted string

20 END

You might not always agree with the Editor's diagnosis of the exact error
or the error's location. However, an error message definitely indicates that
something needs to be fixed. You can find a complete list of error messages
and their meanings in the "Errors" section of the HP BASIC 6.2 Language
Reference.

Keys Used for Editing the Current Line

To edit a line, it must be the current line-the line that the cursor is on. The
following table gives a quick overview of the standard editing keys to use while
editing the current line. The "Keyboard Information" chapter at the end of
this manual lists key definitions.

7·8 Editing and Storing Programs

Editing
Feature

Normal cursor
(blinking
underscore _)

m,0, and
(Back space)

(I nsert char)

Insert cursor
(inverse-video

block, ;;i':~D

(Delete char)

(Clear line)

(Shift H Clear line)

§1.~iit~~!I~'i ((ill)

and 'c:~!Il;I~~i
((Shift l-(ill)

(System menu)

(Tab) and
(Shift HTab)

Editing Features

Explanation

When you type characters at the keyboard, they appear on the
current line at the cursor, overwriting any existing characters.

Move the cursor one character in the indicated direction. If the
cursor has reached either end of the line, it doesn't go any farther.
Pressing (Shiftl-(!) moves the cursor to the end of the line, and
(Shift l-m moves the cursor to the beginning of the line.

Changes the cursor to the insert cursor (see below), and enters
insert mode (any characters typed appear before the current cursor
position, and the cursor and subsequent characters shift one position
to the right). This key toggles between the normal cursor and the
insert cursor.

Indicates that the character entered is inserted in front of the
character currently highlighted by the cursor.

Deletes the character pointed to by the cursor. Subsequent
characters on the line are shifted one position to the left.

Deletes all characters from the cursor to the end of the current line.

Clears the entire current line .
...

',:.:.:.;.:.;.:.:.:.:.;.;.:.:.;.:.:.:.:.:.:.:.:.;.:.:.;.;.:.:.;.:.;.;.;.:.;.;.:.:.:.
sltIT§:lSand perform the indicated action at the cursor
position.

The (Tab) key moves the cursor to the next tab position, if there is
one. (Shift HTab) moves the cursor back to the previous tab position,
if there is one.

Editing and Storing Programs 7·9

7

7

Editing
Feature

(@
System menu)

Softkeys @
thru @ (in the
User 1,2, and 3
menus ofITF
keyboards)

Editing Features (continued)

Explanation

Characters that don't appear on the keycaps can be typed by using
this key. Assume you are typing a program line and you want the
vertical bar character, but it is not on your keyboard. Press the

: key. The following message appears below the current
line:

ENTER 3 DIGITS, 000 THRU 255

The decimal ASCII code for a vertical bar is 124. Press the C!l1li)
number keys. A vertical bar appears at the cursor position, and the
message goes away. If you press a key that is not part of a 3-digit
number in the proper range, the ANY CHAR operation is aborted
and the key performs its normal function.

These keys produce characters and system-key presses, as if you had
typed them at the keyboard. See the "Using Soft keys" section of the
"Introduction to the System" chapter in this manual for details.

Keys Used for Scrolling the Program

All EDIT mode text-entry capabilities apply to the current line. You must
move a line to the current-line position before you can edit it. The only
exception to this is when you enter a new line with the same line number as
an existing line. In that case, the new line replaces the old, even though the
old line was not moved to the current-line position. The text on the screen is
scrolled so that you are always editing the line in a window in the middle of the
screen.

7·10 Editing and Storing Programs

Scrolling Keys

Editing Key Explanation

CD Scrolls the program up one line, so that you will
be editing the next program line.

(!) Scrolls the program down one line, so that you will
be editing the preceding program line.

(Shift 1-0 Jumps to the end of the program.

(Shift}-(!J Jumps to the beginning of the program.

Inserting Lines

Lines can be easily inserted into a program. As an example, assume that you
want to insert some lines between line 90 and line 100 in your program. Place
line 100 in the current-line position, and press the (Insert line) key.

90 PRINT "Line 90."
100 PRINT "Line 100." Make this the current line, then press (Insert line)

A new line number appears between line 90 and line 100.

90 PRINT "Line 90."
91 Begin typing; letters appear at the cursor
100 PRINT "Line 100."

Type and store the inserted lines in the normal manner. Appropriate line
numbers will appear automatically. The insert mode is canceled by pressing the
(Insert line) key again, or by performing an operation that causes a new current
line to appear (such as scrolling).

Deleting and Recalling Lines

Lines can be deleted one at a time or in blocks. The (Delete line) key deletes the
current line.

Editing and Storing Programs 7 -11

7

7

Before deletion:

90 PRINT "Line 90."
100 PRINT "Line 100." Make this the current line, then press (Delete line)

110 PRINT "Line 110."

After deletion:

90 PRINT "Line 90."
110 PRINT "Line 110." New "current line"

If you press (Delete line) by mistake, you can recover the line by pressing .
(@), then store it by pressing (Return). BASIC/UX has a recall buffer that
holds the last lines entered, deleted, or executed. You c~.!1: ... ~Y~~~. through these
lines, most recent to less recent, by repeatedly pressing :·I~I:I:II:I,\·. (Shift HID
cycles through from the current line to the more recent lines. You can clear
this recall buffer by executing SCRATCH R to keep others from seeing
passwords that you have typed.

When the keyword DEL is followed by a single line identifier, only a single
line is deleted. The line identifier can be a line number or a line label. The
(Delete line) key produces the same results, but has some advantages:

• You can see the line before you delete it .

• (Delete line) saves the line in the recall buffer (DEL does not).

Therefore, DEL is more useful for deleting blocks of lines (described in the
subsequent section, "Deleting Multiple Lines."

Copying Lines (By Changing Line Numbers)

Although the computer supplies a line number automatically, you can change
that line number easily. Use (Backspace) to place the cursor over the line number
and type the line number you want to use. You can copy existing lines to
another part of the program by changing their line numbers. However, there
is an easier Ylay to copy program lines-by using the COPYLINES command,
described in "Copying Program Segments" in the section on "Global Editing
Operations."

7 ·12 Editing and Storing Programs

Here are some points to keep in mind when changing the line numbers supplied
by BASIC .

• Changing the line number of an existing line causes a copy, not a move .

• Entering a line with the same number as an existing line replaces the existing
line.

Global Editing Operations
The preceding sections showed how to edit single program lines. This section
shows how to perform editing operations that may affect the entire program.

Editing and Storing Programs 7 -13

7

7

Summary of Global Editing Operations

BASIC Purpose and Example Command Softkey
Command User 2 Menu

REN Renumbers the program (or a specified segment of @
the program).

REN 100,10

INDENT Indents lines in a program to show the nesting of the @
branching constructs (such as FOR .. NEXT and
REPEAT .. UNTIL).

INDENT 7,2

FIND Searches the program for a specific textual pattern. @

FIND "a pattern"

CHANGE Searches for a textual pattern, but allows you to @
optionally change it to a new pattern.

CHANGE "old text" TO "NEW CHARACTERS"

COPYLINES Copies (duplicate) program line(s) to another @
location in a program.

COPYLINES 10,300 TO 550

MOVELINES Moves program line(s) to another location in a @
program.

MOVELINES 450,522 TO 10

DEL Deletes program segments (ranges of program lines). Not a default

DEL 100,150
softkey.

Renumbering a Program

After an editing session with many deletes and inserts, you can improve the
appearance of your program by renumbering. This also helps make room for
long inserts. Renumber programs with the REN command.

7·14 Editing and Storing Programs

Commands to Renumber Program Lines

Command Explanation

REN Renumber the program lines using 10 as the first line,
and increment lines by 10 (default).

REN 100,5 Renumber the program using 100 as the first line,
number and increment lines by 5.

REN 100,5 IN 100,200 Renumber only in the line range of 100 to 200; make the
first line of this segment 100, and increment by 5.

Indenting a Program

INDENT is a non-programmable command. You can use it to scan an entire
program, indenting it to nest program segments defined by the following cases:

• Looping (such as FOR .. NEXT and REPEAT .. UNTIL).

• Conditional execution (such as IF .. THEN and SELECT .. CASE .. END
CASE).

• A separate program segment (such as SUB subprograms and DEF FN
user-defined functions).

Commands to Indent Program Lines

Command Explanation

INDENT Indent lines to show nesting of branching constructs
(FOR ... NEXT, REPEAT ... UNTIL, etc.).

INDENT 7,2 Place the first character of the outermost construct in
column 7 and space each indentation by 2 characters
(INDENT 6,2 is the default).

INDENT 7,0 Remove all indentation.

Editing and Storing Programs 7 -15

7

7

The following program shows the indentation performed by this command:

INDENT 7,2

Notice how indentation improves readability.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

FOR 1=1 TO 5
REPEAT

IIPUT "How old are you?",Age
Reasonable=l ! Assume they're telling the truth ...
IF Age<O THEI

DISP "A negative age implies you are not born."
Reasonable=O

ELSE
IF Age>120 THEI

DISP "Are you sure?!"
Reasonable=O

ELSE
IF Age>100 THEI

DISP "You are pretty spry!"
ELSE

IF Age>80 THEI
DISP "Wow! Most people your age don't use computers much."

ELSE
DISP "Glad to meet you."

EID IF
EID IF

EID IF
EID IF
WAIT 4

UITIL Reasonable
DISP "You were"jJ.ge*365.2422j" days old on your last birthday."
WAIT 3

IEIT I
EID

When indentation parameters attempt to force program statements too far to
the right, they are bounded by the width of the screen minus 8 characters. On
an 80-column screen, a program line will never start to the right of column 72.
Instead, all lines which should be indented farther to the right of this column
will begin in this column. Line beginnings drop back to the left when the
nesting level decreases to one increment less than 72 ..

7 ·16 Editing and Storing Programs

Finding Textual Patterns

When programs are larger than a couple of screenfuls, the computer can search
for items such as variable names, numeric or string literals, and comments. Use
the non-programmable FIND command to do this.

The following example searches the current program for the letters A pattern,
beginning at the current line. These letters may be a variable name, a string or
numeric literal, a comment, or a portion of any of these.

FIND "A pattern" (Return)

If you want to begin the search in a different place, then specify the range of
lines to be searched:

FIND "A pattern" IN 200,650 (Return)

When you execute this command, BASIC begins a search for these characters.
The following message is shown in the message/results line below the keyboard
input line.

Finding "A pattern"

If the pattern is not found, then the system displays the following message:

"A pattern" not found

If an occurrence of these letters is found, the system displays the program line
containing the pattern and a confirmation:

300 PRINT "A pattern of circles is shown on the display."
Found "A pattern"

You can choose any of the following actions:

• Edit the line (optional): move the cursor to change, add, or delete characters.

• Press (Retljffi) to store the edited (or unchanged) line.

• Scroll the program up or down (with (!) or (!)) to cancel the FIND mode.

• Press II;n\~lr (@) to leave the line unchanged and continue the search.

If you choose to remain in FIND mode, press [Return). After checking the line's
syntax, FIND searches for the next occurrence of the specified characters. If
the modified line contains a syntax error, you may correct the error and press

Editing and Storing Programs 7 .. 17

7

I

7

(Return) again. Once the line is syntactically correct, FIND begins searching for
the next occurrence of the specified string.

You will remain in FIND mode as long as the FIND command has additional
program lines to search. To remind you that you are in this mode BASIC
displays these prompts at the bottom, right-hand corner of the screen:

Command

*

If you want to abort the FIND command, then use the (Break) (elr 1/0) key to
cancel the mode. BASIC lUX will display:

Search aborted at nnnnn; "A pattern" not found.

in which nnnnn is the line number at which the FIND was aborted.

Search and Replace Operations

The CHANGE command is similar to FIND, except that you specify both a
search pattern and a replacement pattern.

The following example searches for the pattern Old text and replaces it with
New characters:

CHANGE "Old text" TO "New characters" (Return)

As with FIND, the system shows that it is busy searching for a pattern:

Finding "Old text"

7 ·18 Editing and Storing Programs

J

CHANGE pauses when it finds the first occurrence of the search pattern;
however, CHANGE also replaces the old pattern with the new one, and waits
for you to confirm or reject the change:

200 PRINT "New characters."

"Old text" to "New characters"?

• You can edit the line first. To confirm the change, press (Retijffi).

• To reject the change, press ~glB~?:':nBj~;t (@).

If you want only the occurrences of the pattern in a certain program segment
to be changed, then use the following syntax:

CHANGE "old" TO "New" IN 1, 250

If you want all occurrences of the pattern changed, with no capability of
confirming/rejecting the changes, use the following syntax:

CHANGE "old" TO "New" ; ALL

You can also combine these two specifications to change all occurrences within
a range of lines:

CHANGE "old" TO "New" IN 1, 250; ALL

Copying Program Segments

COPYLINES provides an easy way to duplicate several lines of BASIC code
in another location of the program. You must make sure the destination line 7
numbers do not already exist.

The following example copies lines 180 through 220 to a location beginning at
line 5205:

COPYLINES 180,220 TO 5205 (Return)

The following example copies lines 300 through 3005 to a location beginning at
line 100:

COPYLINES 300,3005 TO 100 [Return)

If the line you try to copy to already exists, an error occurs and no lines are
copied. You cannot copy to an existing line number.

Editing and Storing Programs 7 -19

7

Moving Program Segments

Use MOVELINES to move several program lines at a time. You must make
sure the destination line number does not already exist.

The following command moves lines 32 through 127, inclusive, to a spot
beginning at line 453:

MOVELINES 32,127 TO 453 [Return]

The following command moves lines 300 through 3005 to a location beginning
at line 100:

MOVELINES 300,3005 TO 100 [Return]

If the line you try to move to already exists, an error occurs and no lines are
moved. You cannot move to an existing line number.

You may frequently use MOVELINES to move program lines from a main
program into a separate subprogram (defined by SUB and SUBEND). To do so
you must go to a line below all of the existing lines in memory and enter the
SUB statement.

2100 SUBEND
2110 SUB New_subprogram
2120

After you type this subprogram heading, you can use MOVELINES to move
program lines from the main program (or from another subprogram) into the
new subprogram:

MOVELINES 350,499 TO 2120

Don't forget to delimit the end of the new context with a SUBEND statement!

2630 SUBEND
2640

7 ·20 Editing and Storing Programs

Deleting Multiple Lines

DEL can be used to delete several lines in a single operation. Delete blocks of
program lines by using two line identifiers in the DEL command .

• The first number or label identifies the start of the block to be deleted .

• The second number or label identifies the end of the block to be deleted.

The line identifiers must appear in the same order they do in the program.
Here are some examples.

The following command deletes lines 100 through 200, inclusively:

DEL 100,200

This command deletes all the lines from the one labeled Block2 to the end of
the program:

DEL Block2,32766

This command would do nothing except generate an error:

DEL 250,10

Subprograms or user-defined functions in your program can only be deleted
in certain ways (such as with DELSUB). Primarily, the SUB or DEF FN
statement cannot be deleted without deleting the entire subprogram or
function. This subject is explained fully in the "Subprograms" chapter of
HP BASIC Programming Guide.

DEL is not programmable and cannot be used while a program is running.

Making Programs Readable

Good program documentation can make the difference between a supportable
tool that adapts to the needs of the users and a support nightmare that never
really does exactly what the current user wants. Keep in mind that the local
software support person just might be you.

Editing and Storing Programs 7 ·21

7

7

BASIC/UX makes it easy to write self-documenting programs. In addition to
BASIC's standard REM (remark) statement, additional documentation features
are:

• Descriptive keywords (such as REPEAT .. UNTIL, LOOP .. END LOOP, and so
forth)

• Descriptive variable names (up to 15 characters)

• Descriptive line labels (up to 15 characters)

• End-of-line comments.

All of these features work together to make a readable program. The following
example shows two versions of the same program. The first version is
uncommented and uses traditional BASIC variable names. The second version
uses the features of HP's BASIC/UX language to make the program more
easily understood. Which version would you rather support?

100 PRINTER IS 1
110 A=.03
120 B=.02
130 X=O
140 Y=O
150 C=A+B
160 PRINT " Item Total Total"
170 PRINT " Price Tax Cost"
180 PRINT

11 ______________________________ "

190 P=O
200 INPUT "Input item price",P
210 D=P*C
220 E=P+D
230 X=X+D
240 Y=Y+E
250 DISP "Tax =ljDj"Item cost ="jE
260 PRINT P,X,Y
270 GOT a 190
280 END

7 ·22 Editing and Storing Programs

100 This program computes the sales tax for
110 a list of prices. Item prices are input
120 individually. The tax and total cost for
130 each item are displayed. The running
140 totals for tax and cost are printed on
150 the CRT. Modify line 220 to change the
160 the system printer.
170
180 Sales tax rates are assigned on lines 230
190 and 240. The rates used in this version
200 of the program were in effect 1/1/81.
210
220 PRINTER IS CRT
230 State_tax=.03
240 City_tax=.02
250
260 Total_tax=O
270 Total_cost=O

Use CRT for printout
Local tax rates

! Initialize variables

280 Tax_rate=State_tax+City_tax
290 ! Print column headers
300 PRINT" Item Total Total"
310 PRINT" Price Tax Cost"
320 PRINT "------------------------------"
330
340 LOOP ! Start of main "Get Price" loop.
350 Price=O ! Don't change totals if no entry.
360 INPUT "Input item price",Price
370 Tax=Price*Tax_rate
380 Item_cost=Price+Tax
390 Total_tax=Total_tax+Tax ! Accumulate totals.
400 Total_cost=Total_cost+Item_cost
410 DISP "Tax ="iTaxi" Item cost ="iItem_cost
420 PRINT Price, Total_tax, Total_cost
430 END LOOP ! Repeat loop for next item.
440 END

Editing and Storing Programs 7 -23

7

7

Securing Program Lines

There may be times when you want to keep portions of your programs from
being read or used by others. With BASIC, you can prevent others from
reading or executing a program unless you give the authorization. SECURE
prevents program line(s) from being listed.

Note Once a program is secured, it cannot be unsecured. Therefore,
you should keep an unsecured backup copy of all programs.

The following example secures lines 30 through 60 from being listed (either
with the editor or by using the LIST statement):

SECURE 30,60

Here is what the program might look like-either with the editor or as the
output of a LIST statement:

10 Example of SECURE'd program.
20 ! Begin password check routine.
30*
40*
50*
60*
70 End of password check.
80

If you want the whole program to be secured, use this statement:

SECURE

7 ·24 Editing and Storing Programs

BASIC/UX also provides a method to prevent unauthorized execution of
programs. You can write a routine that includes the following statement; it
checks the serial number of a computer, or the serial number of an optional HP
46084ID Module. Then your routine can determine whether or not to permit
the rest of the program to execute.

SYSTEM$("SERIAL NUMBERII) Reads the computer's ID PROM or returns
encoded ID Module contents

In order to decode an ID Module's contents, use the "ID_MODULE" program
supplied on the Manual Examples disk.

Exiting ED IT Mode

You can terminate the EDIT mode in many ways. Your choice depends upon
what you want to do next. If you simply want to return the CRT to its normal
state, press ~ (PAUSE) or (Clear display).

You can also leave EDIT mode by proceeding with another operation. The
most useful choices in this case are LIST, CAT, (Reset) ((Shift HSreak 1), :!YI1\! (@),
or :I~IB;I (@, system menu). EDIT mode is also terminated by a GET or
LOAb",and by any operation that uses the display. Some examples follow:

• List the program on the current PRINTER IS device (usually the CRT) by
executing the following command.

LIST (Return 1

• You can store a program currently in memory in a file named MyProg on the
default volume by executing the following statement:

STORE IIMyProg ll (Return)

• You can run a program currently in memory by executing the following
statement:

RUN (Return 1

or pressing~'9'H.".

Editing and Storing Programs 7 ·25

7

Storing the Program on Mass Storage

To write a program to a mass storage device, use either SAVE or STORE.
There is no right or wrong choice; your choice depends upon the kind of file
you want.

• STORE records an internal representation of the program in a PROG file.
The main advantage of a PROG file is a rapid retrieval rate (nearly five
times faster than files stored with SAVE).

• SAVE creates an HP-UX type file when saving on an HFS volume.

• SAVE creates ASCII type files when saving on LIF or SRM volumes.

The main advantage of an ASCII file is that it can be read as data by
a BASIC/UX program or by LIF-compatible devices (such as other HP
computers and terminals). LIF is the acronym for Logical Interchange
Format, a disk format used by several HP divisions. (Note that the first
letter of the file name must be a letter; in addition, some LIF-compatible
devices restrict file names to upper-case letters and the decimal digits 0
through 9.)

For information about converting ASCII type files to HP-UX type files,
see "Making ASCII Type Files HP-UX Type Files" in the chapter "Using
HP-UX Commands in BASIC/UX."

Using STORE

The following command creates a program file called MyProgFile on the
7 current default volume:

STORE IMyProgFile"

If you get error 54, it means a file with the name you are using is already on
the disk. You have three choices:

• Pick a name that doesn't already exist. To determine which file names are
already being used, execute a CAT command.

• Replace the existing file with a newer version. To replace an existing file, use
RE-STORE. The command to replace a program file called BEAMS is:

RE-STORE II BEAMS II RE-STORE must include the hyphen

7 -26 Editing and Storing Programs

• PURGE the old file, then STORE the new one.

Using SAVE

The SAVE (or RE-SAVE) keywords, store information as ASCII characters,
and you must use GET to retrieve these programs.

• Using SAVE on HFS or SRM/UX volumes creates HP-UX type files

• Using SAVE on SRM or LIF volumes creates ASCII type files.

SAVE allows line identifiers that specify what portion of the program you want
to save. This is especially helpful when moving or appending program segments
during major editing operations. Here are some examples.

SAVE "WHALES"
SAVE "LastPart",500
SAVE "Sorter",Sort,Printout

RE-SAVE "Analysis"

Saves the entire editor contents
Saves from line 500 to end
Saves lines from label Sort to label
Printout
Replaces old Analysis program with new
version

Note Use SAVE to save to a new file that doesn't exist. Use
RE-SAVE if the name already exists. Use the GET statement
to retrieve a file that has been SAVEd.

Editing and Storing Programs 7 ·27

7

Loading and Running Programs

Since two different types of files can be created for BASIC lUX, there are
different commands for each file type:

• Programs STORE'd (or RE-STORE'd to an existing file) create file type
PROG, and you must LOAD the program into memory and then run it.

8

• Programs SAVE'd (or RE-SAVE'd) are stored as ASCII characters, and you
must GET the program and then run the program.

• Programs SAVE'd on HFS volumes are HP-UX type files.

• Programs SAVE'd on SRM or LIF volumes are ASCII type files.

Loading and Running Programs 8·1

8

Start

ASCII or HP-UX

LIST file

RUN file

Loading and Running Files
8

8·2 Loading and Running Programs

Loading Programs
To load a program, follow this procedure:

1. Use CAT to locate your program. If necessary, include the volume specifier
or the directory path as described in "Files, Directories, and Volumes."

Your listing should look similar to the example below:

:CS80.700
VOLUME LABEL: B9836
FILE lAME PRO TYPE REC/FILE BYTE/BEC ADDRESS

my_prog PROG 14 256 16
VIS I_TOOL ASCII 29 256 30
GRAPH BII 171 256 59
GRAPHX BII 108 256 230

2. Load the program into computer memory.

Use LOAD for program files designated as PROG under TYPE on the CAT
listing.

LOAD "MY_PROG" File type is PROG

Use GET for program files designated as ASCII or HP-UX on the CAT
listing.

GET "VISI_TOOL" File type is ASCII or HP- UX

To load a program that is not located on the default drive, use the volume
specifier.

LOAD IOUR_PROG:,700,1"

LOAD and GET can be executed from the keyboard as commands or included 8
in a program. When executed as commands, they bring a program into the
computer's memory so it can be edited or run. When included within a
program, they link together the segments of large programs.

Loading and Running Programs 8·3

Using LOAD

The LOAD command brings in programs from a PROG file, with the option of
beginning program execution at a specified line. It clears any existing program
from the computer's memory before loading a new file. For example:

LOAD "CANNON"

LOAD "CANNON",10

LOAD "CANNON",Here

Loads program into memory without running it

Loads program into memory and starts running it
from line 10

Loads program into memory and starts running it
from line labeled Here

If you specify a line label or number, it must identify a line in the main
program segment (not in a subprogram or user-defined function). See the
"Program Flow" chapter of the HP BASIC Programming Guide for further
information.

The LOAD command cannot be used to bring in arbitrary program segments
or append to a main program. Subprogram segments can be appended using
LOADSUB, as described in the "Subprograms" chapter of the HP BASIC
Programming Guide.

If the file is not a PROG file, LOAD is not performed and Error 58 (improper
file type) is reported.

Using GET

The GET command brings in programs or program segments from an ASCII or
HP-UX file, with the options of appending them to an existing program and/or
beginning program execution at a specified line.

GET with Automatic Program Clearing

8 To clear any existing program from the computer's memory and load an ASCII
or HP-UX file, use GET followed by the file name. The following statement
clears any BASIC lUX program currently in memory, and loads an ASCII or
HP-UX file called FORMULA, assuming the file contains valid program lines.

GET "FORMULA"

8·4 Loading and Running Programs

If the first line does not start with a valid line number, GET is not performed
and error 68 (syntax error during GET) is reported.

The lines are entered into program memory if:

• the line contains valid program lines that were placed in the file by a SAVE
operation

• line numbers are still valid after any renumbering that is specified.

If there is a syntax error in any of the program lines in the file, the lines in
error are turned into comments, error 68 is reported, and the syntax error
message is sent to the system printer. This might happen if the program was
written and saved on a computer that had a different version of BASIC/UX
from the one used for the GET operation.

If the file is not an ASCII or HP-UX file, GET is not performed and Error 58
(improper file type) is reported.

Using GET to Append and Run

GET can also specify that program execution is to begin. This is done by
adding two line identifiers:

• The first line number specifies the placement and renumbering.

• The second line number specifies the line at which execution is to begin.

Assume there is no program in memory and an ASCII file named RATES
contains valid program lines. A typical command to bring the contents of this
file into memory and begin execution at line 10 is:

GET II RATES II , 100,10

Loading and Running Programs 8·5

8

8

If there is already a program in memory, an append and run is allowed. For
example:

GET "RATES",250,100

deletes any existing lines from 250 to the end of the program in memory,
renumbers the contents of file RATES, and appends it to the program in memory
beginning at line 250. Program execution begins at line 100. Any combination
of line identifiers is allowed, but the line specified as the start of execution
must be in the main program segment (not in a SUB or user-defined function).
Execution does not begin if there is an error during the GET operation. For
further information about this use of GET, see the "Chaining Programs"
section of the "Program Flow" chapterin the HP BASIC Programming Guide.

Running a Program
To run a program you just loaded, type:

RUN @tUTJ

On ITF keyboards, @ ('III't,')in the System menu, and User 1 and 2 menus
serve the same purpose. If key labels are not currently displayed, execute KEY
LABELS ON or press [Menu) to turn them on.

Note Some software is secured against being run without proper
authorization. This is usually accomplished by requiring a
special codeword somehow related to:

• your machine's serial number (stored in permanent memory)
• a serial number stored in an optional HP 46084 ID Module.

If the program prompts you to enter a codeword, you need to
get it from your system administrator.

8·6 Loading and Running Programs

You can include a line identifier in a RUN command to indicate where program
execution is to begin. For example,

RUN 200

Prerun

Begin execution at line number 200

Begin execution at the line label

~!_~IC/UX automatically performs a prerun when you execute RUN or press
-l§E!NI. Prerun completes the following tasks:

• Reserves sufficient memory for all the variables in the program (except those
that are ALLOCATEd). This includes all variables in COM statements,
those declared in DIM, REAL, and INTEGER statements, and all implicitly
declared variables.

• Locates all the context boundaries. These are defined by the END, SUB,
SUBEND, DEF FN, and FNEND statements.

• Ensures correct interaction between lines. Although BASIC/UX checks for
syntax errors before it stores a program line, some errors can't be detected
by looking at a single line. An example of this kind of error would be an
improper matching of statements like FOR ... NEXT and IF ... END IF.
At prerun, BASIC lUX also links line identifiers and line numbers with all
references to them, to make program execution faster.

Live Keyboard

When a program is running, the keyboard is still active. Commands can
be executed, variables can be inspected and changed, and the state of the
computer can be changed. Live keyboard means commands can be executed
during a running program. A principal use for live keyboard commands is
troubleshooting and debugging programs, as discussed in the "Debugging
Programs" chapter of the HP BASIC Programming Guide. See "Introduction
to the System" in this manual for tables showing how to pause, stop, and
continue a program.

Loading and Running Programs 8-7

8

8

Controlling Program Execution

To demonstrate some of the interaction between a program and the keyboard,
enter the following simple program.

10 DISP "Next command? II

20 x=o
30 PRINT X;
40 X=X+1
50 WAIT .1
60 GOTO 30
70 END

1. After you enter the program, execute RUN and observe the CRT. The
DISP message appears in the display line, the printout area fills with a
sequence of numbers, and the run light indicates that a program is running.

Program-Status Running

Run Light

8-8 Loading and Running Programs

User 1 Caps Running

R

2. Press Pause (@!i)). The printout of numbers stops, and all the data
on the CRT remains unchanged. The run light now indicates that the
program is paused and can be continued. The program line that appears at
the bottom of the CRT is the next line that will be executed when program
execution resumes.

Program-Status Paused

Run Light

3. Press;§!lpiI (@) a few times. The program is executed one line at a
time, as'Iildicated by the lines changing at the bottom of the C.~!"~,,,,:;rhe
program is still paused and continuable after each press of the ; .. §r~~;:. key.

The§I~Bll key can be a great help when you are trying to find certain
kinds of problems. The "Debugging Programs" chapter in the HP BASIC
Programming Guide gives the details of this and other debugging tools.

Program-Status Paused

Run Light

Loading and Running Programs 8-9

8

8

4. Press ';I~I~'I'I!I::)) (@). The printout on the CRT resumes with the next
number"Tfi'''ihe'sequence. The run light again indicates that a program is
running.

Program-Status Running

Run Light

R

5. Press Stop ((Shift ~C§ii)) The printout of numbers stops, and all the data
on the CRT remains unchanged. However, the run light is off, indicating a
stopped condition.

Program-Status
Run Light

8·10 Loading and Running Programs

Idle

(blank)

6. Press ::gP:fi~!~:~~'lj ((ill). An error results, because a stopped program cannot
be continued.

Program-Status Idle

Run Light (blank)

Error 122: Program not continuable

7. Press~~I;;; (@).

The program runs again, but the number sequence has restarted from the
beginning, not from the next number in the sequence. RUN causes the
program to restart, not resume.

Program-Status Running

Run Light

R

Loading and Running Programs 8·11

8

8

8. Type X=1 and press ~. Notice that the numbers being printed start
over with "1". The live keyboard was used to change the value of "X" , and
the program used the new value from the keyboard.

Program-Status Running

Run Light

R

9. Press Reset ((Shift H Break l). The program stops and the data remains in the
printout area, but the display line is cleared and the message BASIC Reset
appears at the bottom of the CRT. Although the clearing of the display
line seems like a minor effect, it indicates an important point. Reset and
Stop have different effects on interfaces and peripheral devices. This aspect
of Reset is summarized in the "Reset Tables" in the "Useful Tables"
section of the HP BASIC 6.2 Language Reference and is discussed fully in
the HP BASIC 6.2 Interface Reference.

BASIC Reset

Program-Status

Run Light

8-12 Loading and Running Programs

Idle

(blank)

10. Press~q~: (@). Then type WAIT 5 and press (Return). The run light
changes to indicate that a keyboard command is being executed and the
printout is delayed for five seconds while the live keyboard command is
processed. Actually, the run light changed when the X=l command was
executed in step 8, but it may have happened so fast that you didn't see it.

Program-Status Command

Run Light *

11. Press Pause (~) and then type EDIT and press (Return). The display on
the CRT changes to show the program. The line you were editing last
appears in the current-line position. The run light is still visible in the
lower right-hand corner and it indicates that the program is paused.

Program-Status Paused

Run Light

Loading and Running Programs 8·13

8

8

12. Press ~1:1:lm;i:ill::! (@). The CRT returns to normal mode, and the printout
of numbers continues in sequence. However, the previous data on the
display was lost when the CRT was used for EDIT mode.

Program-Status Running

Run Light

R

13. Press Pause (~). Then type EDIT 50 and press (Return]. The CRT
changes to EDIT mode and the program appears again. This time, line 50
is in the current line position. The run light indicates that the program is
paused. Change line 50 to WAIT .2 and press (Return). The new line 50 is
entered, but the run light changes. Editing the program caused it to move
from the paused state to the stopped state.

Program-Status Idle

Run Light (blank)

8·14 Loading and Running Programs

9
Using HP-UX Commands in BASIC/UX

The EXECUTE command is used to run HP-UX commands while in BASIC/UX.
This chapter also discusses how to localize BASIC lUX error messages in other
languages.

Using the EXECUTE Command
EXECUTE runs an HP-UX command in a "sub-shell". Any HP-UX variables
you create while the EXECUTE command is running are erased when control
is returned to BASIC lUX.

In the X Window System, the output from EXECUTE is displayed in the HP-UX
(root) window that initiated BASIC/UX (if you boot directly into BASIC/UX,
the HP-UX window may be "underneath" your BASIC/UX window).

Examples of the EXECUTE Command

The following table shows some examples of the EXECUTE command. For a
detailed look at EXECUTE and its options, see the HP BASIC 6.2 Language
Reference.

Using HP-UX Commands in BASIC/UX 9 .. 1

9

9

Example EXECUTE Statements

Example Description Example Results

EXECUTE Run HP-UX in the $
window from which
BASIC/UX started.
Type exit [Return) to
return to BASIC/UX.

EXECUTE "date" Runs the HP-UX Tue Apr 5 09: 55: 53 MDT 1988
command date. Type
date in lower-case.

EXECUTE "more myfile" Run the HP-UX This is
command more to show not a PROG file. It could
the contents of myf ile. have been created in HP-UX.

How to Run HP-UX Commands in the Background

If you have an HP-UX command that takes a long time to execute or is a
concurrent process (runs all the time), you can place it in the "background" so
it runs at the same time you use BASIC/UX.

To run an HP-UX command in the background, add the ampersand (&t)
character after the HP-UX command in the BASIC/UX statement. For
example,

EXECUTE lipS til

executes the HP-UX command ps and lets you continue executing BASIC/UX
commands. If you omit the &t, you cannot execute any more commands until
the process is completed. To halt the process without the &, use one of the
following:

• (Break)

• (CTRL~0
• exit CRetUmJ if in an HP- UX shell requiring input

9-2 Using HP-UX Commands in BASIC/UX

If you are in the X Window System and the process continues, move the
pointer to the BASIC/UX window and press (Reset) ((Shift}-(Breakl). Use this as a
last option as it may clutter the system with parts of the killed process.

How EXECUTE Displays

When you are in the X Window System, the EXECUTE command runs in the
window that started BASIC/UX (root window).

If you are not in X, the screen is cleared and the EXECUTE command output is
shown on a new screen.

EXECUTE When Not in X Windows

IT you want to ... Do this ...

Return to BASIC/UX When the process completes, PRESS ANY KEY

TO CONTINUE: appears. Press a key, to clear
the screen and return to BASIC/UX.

Stop a process while it is Press (Break).

running

Leave an HP-UX shell Type exit (Return).

If you are in X and the process does not stop after using the above methods,
move the pointer to the BASIC/UX window and press Reset ((Shift}-{Break n.

EXECUTE Runs as a Child Process

When you run an EXECUTE command, it is processed as a child process. In
other words, the command defines its variables only for the time the command
is being processed. Those variables are lost when you return to BASIC/UX.

See HP BASIC 6.2 Language Reference for other options of EXECUTE, for the
SAVE ALPHA OFF option which saves graphic output, and the RETURN option
which allows you to return to BASIC without pausing.

See A Beginner's Guide to HP-UX for general information on operating in
HP-UX.For details on HP-UX commands, see the HP- UX Reference.

Using HP-UX Commands in BASIC/UX 9·3

9

9

Using Some HP-UX Commands and Utilities
Commands in the following table can be used in the EXECUTE statement. Refer
to A Beginner's Guide to HP- UX for detailed information or a complete list of
beginning HP -UX commands.

Some Useful HP-UX Commands

Conunand Description

cal Display a calendar for the current month.

date Display the current date and time.

hostname Display your system's "node" name.

mailx user Send an electronic mail message to user.

man command Display on-line information on command.

who ami Display your user name.

cp file newfile Copy file to newfile.

Is List (catalog) files in current directory.

mkdir dir Create a directory named dir.

more file See the contents of file. Press the spacebar to continue
scrolling when content list pauses.

mv file newfile Change the name of file to newfile (mv can also be used to
move a file to a specified directory).

pwd Display the path name of the current directory.

rm file Destroy file (file is irretrievable).

rmdir dir Destroy the directory dir (cannot contain files).

ps -e:f Display all current processes running on the system.

For example:

EXECUTE "date" displays the current date and time

9-4 Using HP-UX Commands in BASIC/UX

Using BASIC/UX Program Files with HP-UX Commands
(and Vice Versa)

Only HP-UX type files can be used with HP-UX commands and utilities. A
program can exist on disk as a PROG file, an ASCII file, or as an HP-UX file:

• If you use the STORE or RE-STORE command to store a program on disk,
it will be a PROG type file regardless of the file system. (You can use the
LOAD command to load the program into memory.)

• If you use the SAVE or RE-SAVE command to save a program on disk in a
LIF or SRM volume, it will be an ASCII type file. (You can use the GET
command to load the program into memory.)

• If you use the SAVE or RE-SAVE command to save a program on disk in an
HFS or SRM/UX volume, it will be an HP-UX type file. (You can use the
GET command to load the program into memory.)

Saving Programs as HP-UX Type Files

In order to use HP- UX commands on a program file, you will have to SAVE or
RE-SAVE the program on an HFS or SRM/UX volume. Let's look at some
examples.

First, suppose that you have a program stored as a PROG file named "test_I"
in the HFS directory "/users/jim". The first step is to load the program into
memory:

MSI "/users/jim"
LOAD "test_i"

Now save the program as an HP- UX file in the same HFS directory with a
different name:

SAVE "test_i.ux"

You can now use HP-UX commands to manipulate the HP-UX file "test_l.ux".

Note If you wish to use the file with an HP-UX command (for
example, the vi editor), you'll need to exit BASIC/UX (or
create a sub-shell with EXECUTE) first.

Using HP .. UX Commands in BASIC/UX 9 .. 5

9

9

For our second example, suppose that you have a program saved on a LIF
volume at ":,700" as an ASCII file, "test_2".

Use the GET command to load the program into memory:

GET Itest_2:,700"

Assuming the current MSI is still "/users/jim", an HFS directory, just SAVE
the program as follows:

SAVE "test_2"

On the HFS volume, the file "test_2" will be of the HP-UX type, but the
original "test_2" on the LIF volume will still be an ASCII file.

Using HP-UX Files in BASIC/UX

HP -UX files (created in an HP -UX editor, for exam pIe) can be used by
BASIC lUX. Use GET to bring the file into memory.

If you attempt to GET an HP-UX file that does not contain a BASIC program,
you may receive the following error message:

ERROR 68 Syntax error occurred during GET.

You cannot use the BASIC/UX editor for an HP-UX file that does not contain
a BASIC program.

9-6 Using HP-UX Commands in BASIC/UX

Converting Error Messages to Another Language

HP-UX Native Language Support (NLS) tools let you localize BASIC/UX error
messages to languages other than English.

• You must be logged in as root or be super-user (su) to modify the message
file. See your system administrator to do this task.

• The fileset NLS_CORE from partition NLS must be installed on your system.
To check, type:

;1.;:'

lsf / etc/filesets I grep NLS_CORE (Return)

If you see NLS_CORE returned, it means you have the fileset loaded. If you
see nothing but a new prompt, you must load the fileset. See the chapter
"Updating HP-UX" in the HP-UX System Administration Tasks manual for
your series of computer. You must be system administrator to do this task.

• You should know the language to which you are converting the messages.

• You should be familiar with C language printf statements.

• You must be familiar with an HP- UX editor (such as vi).

To convert BASIC/UX error messages, use the following procedure:

1. Login as root or become super-user (su).

2. Copy a default file to /tmp as a working file:

cp /usr/lib/rmb/newconfig/rmb .msgs /tmp/rmb .msgs

3. Change directories: cd /tmp

4. Edit rmb .msgs (for example, with vi) and change the English strings to the
appropriate language equivalents.

• Do not change lines beginning with $

• Do not change or remove any numbers.

• Do not remove any of the format information (for example, quoted strings
are C programming language print control statements).

rmb .msgs is a large file, so you may want to print the file first.

Using HP-UX Commands in BASIC/UX 9 .. 7

9

9

5. Execute the HP-UX gencat utility:

gencat rmb. cat rmb. msgs

6. List the /usr/lib/nls directory to choose the language catalog where you
store the new message file:

Is /usr/lib/nls

7. Move the new file to the appropriate directory in /usr/lib/nls:

mv rmb. cat /usr/lib/nls/ language

For example, if you are converting to Spanish,

mv rmb. cat /usr/lib/nls/spanish

Be sure to include spaces between the file names in the above commands. If
you receive a message like

mv [-fJ fl f2
mv [-fJ fl ... fn dl
mv [-fJ dl d2

while running the mv command, it means you forgot the spaces.

For more information see:

• HP-UX Reference for gencat(l) .

• HP-UX Concepts and Tutorials: Device I/O and User Interfacing, "Native
Language Support" section.

9-8 Using HP-UX Commands in BASICjUX

10
Creating Environment and Autostart Files

An environment file sets system variables when you start BASIC lUX. An
autostart file then is automatically run with commands you specify.

Customizing Your BASIC/UX Session

When you start a BASIC lUX session, the system looks for a file:

/usr/lib/rmb/rmbrc

to set the default environment. The environment consists of system variables
that affect how the system performs some tasks.

A template environment file:

/usr/lib/rmb/newconfig/rmbrc

is available for you to customize, move to your home directory, and call . rmbrc
Type the file name lower-case, and precede with a period (.).

To copy the default file to /users/leslie type:

COpy" /usr/lib/rmb/newconfig/rmbrc" TO "/users/leslie/ .rmbrc"

Then EDIT the file and make any necessary changes based on the descriptions
that follow. See "How to Create Your Evironment Files" for details.

Creating Environment and Autostart Files 10-1

10

10

What Variables Can Be In The Environment File?

More details about these variables follow the table.

Global Environment Variables

Name of Variable Range of Values Default Values Description

autostart pathname nja Pathname of an autostart
file.

errormode on, off on Generate error messages for
BASIC Workstation,
BASICjUX compatibility.

graphics_buffer on, off on Turn on graphics buffering
to speed up graphics
processing time.

heap_prealloc o to space nja Preallocate heap space.
available

hfs_buffer on, off on Turn on HFS file system
buffering.

plock all, t, d, W nja Lock text area, data area,
workspace or all of
BASICjUX into memory
(any combination of t, d,
and w is valid).

term_control on, off off Provide access to the special
terminal keyboard mappings.

workspace 64k to amount of 1m Size of BASICjUX
RAM workspace (integer values

only).

10-2 Creating Environment and Autostart Files

Here is more detail on the environment variables for BASIC lUX, as well as
some additional statements you can add to rmbrc.

All examples below show an arbitrary line number created using EDIT mode.

Running an Autostart Program (autostart)

If you want an autostart program, you can specify the file with autostart.
Using the program, /users/leslie/ AUTOST, you would enter:

50 !autostart=/users/leslie/AUTOST

into the . rmbrc file.

See the subsequent section, "Creating an AUTOST File."

Generate Compatibility Error Messages (errormode)

If you port programs created on BASIC Workstation systems, you may
have some errors. For example, some commands (such as LOAD BIN) are not
supported on BASIC lUX .

• 60 ! errormode=on error messages are generated
• 60 ! errormode=off does not print error messages

Graphics Buffering (graphics_buffer)

When using graphics, you can choose to have graphics buffering:

70 ! graphics_buffer=on The image is faster than when off, but it
could be choppy when an image moves on
the screen.

70 !graphics_buffer=off The image is slower than when on, but it
is smoother when the image moves on the
screen.

Creating Environment and Autostart Files 10-3

10

10

Increasing the Heap Space (heap_prealloc)

To increase your heap space, type:

75 ! heap_prealloc= additionaL heap_space

If the additionaLheap_space given in bytes is zero (the default value), then
no additional heap space is allocated; however, if it is greater than zero, the
amount of heap space specified is preallocated.

The heap-consuming BASIC operations are listed below, as well as suggested
amounts of heap space to add for each one if the need arises:

Heap-consuming BASIC/UX Operations

Operation Heap Space Required

CREATE WINDOW 17K for the default window and
buffer sizes

GLOAD/GSTORE width x height of "from" device (if
given) or "PLOTTER IS" device (if
no parameters)

INITIALIZE memory volume number of sectors x 256 bytes

CSUBS size of stored CSUB file

BPLOT width x height for given parameters
(plus size of stored CSUB)

GDUMP_R width x height of "from" device (plus
size of stored CSUB)

DUMP GRAPHICS width X height of "from" device or
PLOTTER IS device if no parameter is
given

mass memory operations on HFS directories will at
most use 20 Kbytes

opening SRM file each open file uses 48 bytes

10-4 Creating Environment and Autostart Files

HFS File System Buffering (hfs_buffer)

This variable determines how data is written to a disk:

80 !hfs_buffer=on

80 !hfs_buffer=off

Saves data in a buffer and writes to a disk
periodically. Makes system operations
faster, but a greater amount of data could
be lost if a power failure occurs, or the
system is not properly shut down.

Writes data to the buffer, then immediately
to the disk. OUTPUT performs much
slower.

Locking BASIC/UX in Memory (plock)

Note that plock disables swapping. To lock the text area, data area,
workspace, or all of BASIC lUX into memory:

90 ! plock=all locks BASIC lUX into memory.

90 !plock=t

90 !plock=d

90 !plock=w

locks text area in to memory.

locks data area into memory.

locks workspace into memory.

Any combination of t, d, or w is valid (for example, plock=td).

Setting Special Terminal Keyboard Mappings (term_control)

To set the terminal keyboard mapping mode, type:

115 !term_control=on

115! term_control=off

Accesses the special terminal keyboard
mappings, such as (CTRl HBJ (Reset) and
(CTRL HI) (Recall).

Turns off the special terminal keyboard
mappings.

Creating Environment and Autostart Files 10-5

10

10

Setting Size of BASICjUX Workspace (workspace)

To set the size of BASIC lUX workspace use:

120 !workspace=2m

Make the value dependent on the size of programs to be run. A program
with lots of subprograms (CSUBs, for example) needs more workspace than a
small program. If you have difficulty increasing your workspace larger than 3
megabytes, read the chapter "Maintaining the BASIC lUX System" found in
the Installing and Maintaining HP BASIC/UX 6.2 manual.

Setting Up Automatic Device File Locking and Mapping

Set up automatic locking, memory mapping, or set io_burst on an I/O
interface. Note that autolock + automap is equal to autoburst.

Determine the select code of the interface, and include this in the. rmbrc file:

interface select_code; option

w here option is one of the following:

• auto lock
• automap
• auto burst
• norma1.

Mapping BASIC Mass Storage Volume Specifiers to HFS Directories

If you have programs that access mass storage devices with the volume
specifiers, you can map a volume specifier to an HFS directory with this entry:

disk scba, volume, unit = directory name

where elements represent the following:

scba Select code * 100 + bus address

,volume The volume number (optional; use the comma if
you include this)

10-6 Creating Environment and Autostart Files

,unit

directory name

The unit number (optional; use the comma if you
include this)

An HFS directory. This could be the directory
under which the disk is mounted.

To map a device on select code 7, bus address 2, volume 1 mounted under
/disk1.

disk 702,1 = / disk1

How to Create Your Environment File

To make the . rmbrc file compatible with HP- UX, you must either create a new
. rmbrc file and place it in your HOME directory, or copy the system default
and modify it. To format the file, use:

• an HP-UX editor (vi, for example)

• the BASIC/UX editor.

Using HP-UX Editor

1. Be in HP-UX (QUIT or EXECUTE from BASIC/UX).

2. Copy the default rmbrc file:

cp /usr/lib/rmb/newconfig/rmbrc $HOME/.rmbrc

3. Modify the . rmbrc file, for example: vi . rmbrc

Precede comments with the # character; include statements without spaces
between variables and values. For example:

This is a sample rmbrc file edited in HP-UX
interface 7;autolock
errormode=off
workspace=1m
End of sample rmbrc file

Files created with an HP-UX editor cannot be modified using the BASIC/UX
editor.

Creating Environment and Autostart Files 10-7

10

10

Using the BASIC Editor

1. Enter BASIC lUX: rmb

2. Make sure you are in your HOME directory (EXECUTE "echo $HOME" tells
you your home directory).

3. Copy the default file:

COpy "/usr/lib/rmb/newconfig/rmbrc" TO ".rmbrc ll

4. Edit the new file: EDIT and make modifications (see below for an example
file).

5. Save the file: (Shift H Clear line) RE-SAVE II. rmbrc II

All lines must be preceded with line numbers and an exclamation mark.
Precede comments with ! # or REM. For example:

10 REM This is a sample rmbrc file edited in BASIC
20 !interface 7;autolock
30 !errormode=off
40 !workspace=lm
50 !# End of sample rmbrc file

10-8 Creating Environment and Autostart Files

Creating an AUTOST File

If you always want to perform the same task each time you enter BASICjUX
(for example, you always want to run the same program), you can use an
AUTOST (autostart) program file. The file must be of the "PROG" type and
must have the file name "AUTOST". The AUTOST program will be found and
will run at the end of the boot process, which is shown below:

HP BASIC/UX Boot Process

You can also indicate the autostart file in the rmb command (see the HP-UX
Reference) .

Creating Environment and Autostart Files 10-9

10

10

The AUTOST program can PRINT statements, LOAD files, and RUN
programs. The sample AUTOST file below greets the user and then loads and
runs a program.

10 PRINT "Welcome to the System."
20 PRINT
30 INPUT "Press RETURN to start the MONITOR program",C$
40 LOAD IMONITOR",1 !load and automatically run MONITOR
50 END

When you press (Retli'T) as prompted, the file MONITOR is loaded and run.

To edit your own AUTOST program, enter the EDIT mode and create a
program that fits your needs. Then SAVE the file in your home directory,
named AUTOST.

To avoid unnecessary errors, be sure to debug your AUTOST program before
you re-enter BASIC lUX. The HP- UX Reference provides more information on
the rmb command options, including how to specify your own AUTOST file.

10-10 Creating Environment and Autostart Files

11
Keyboard Information

This chapter provides a handy reference guide to BASIC/UX key definitions
for the ITF keyboard. Note that other system programs may define the keys
differently. Each key will be demonstrated where possible. The cursor referred
to in the following paragraphs is the blinking-underline that points to a
location on the screen. On some displays the cursor does not blink.

ITF Keyboards
The keys on the ITF keyboard are arranged into the following functional
groups:

Program Saftkeys and Editing
Control Keys Softkeys Control Keys

~ -----------------------------~

Character Entry Keys

ITF Keyboard

Cursor
Control Keys

System
Control Keys

I III II III

'I I

'I I

I I

I

II III

II I

II

II

Numeric
Keypad

U

Keyboard Information 11-1

11

11 Note Before you proceed, type:

SCRATCH (Return)

This clears the computer of any programs that might be left in
memory from previous demonstrations.

BASIC ITF Keyboard Overlays

Two keyboard overlays designed for the ITF keyboard were included with your
BASIC Language System. Place the overlays on the keyboard as shown below:

BASIC Keyboard Overlays

Character Entry Keys

The character entry keys are arranged like a typewriter, but have some added
features.

The (§£il key sets the unshifted keyboard to either upper-case
(which is the default after BASIC is booted) or lower-case
(normal typewriter operation). The computer displays which
mode the computer is in when you press the (§£il key.

Type a few words, then press (§£il and continue typing.
Notice the case change. Press (Shift H Clear line) when finished.

You can enter standard upper-case and lower-case letters using
the (Shift) key to access the alternate case.

11-2 Keyboard Information

Print
((Shift H Enter))

(Extend char)

Type a few words, pressing [Shift) to change the case of the
first letter of each word. Now press C§Ei) and continue the
same process. Notice that the alternate case accessed by (Shift)

depends on the setting of C§Ei). Press (Shift H Clear line) when
finished.

The (Return) key has three functions:

• Enters data you provide when prompted by a program.

• Stores each line of code when typing in program lines.

• Executes commands entered on the keyboard input line.

Type EDIT and press (Return). Notice the number 10 now
displayed on the screen-this is the line number of the first
line of a BASIC program. The computer is waiting for you to
type the line. Type:

!FIRST LINE

and press ('Retij'ffi). The computer accepts the statement as a
program line and displays 20 in preparation for the next one.
Press Stop ((Shift l-~) when finished.

Pressing (Enter) is the same as pressing the ('Retij'ffi) key.

Pressing (Print) ((Shift HEnter l) prints a complete copy of the
alpha display on the default printer. The shifted version of the
key directly above the 0 key in the numeric keypad (labeled
Dump Alpha on the overlay) performs the same function.

When you press (Extend chad plus another key, it enhances the
character entry keys on Standard and European keyboards to
print another character from the full 256-bit character set (see
following table). On a Katakana keyboard, the "Roman" and
"Katakana" keys select the other character sets.

Keyboard Information 11·3

11

11 Extended Character Set

Stnmlm'(l SllUldm'd N \llUhel'fj

Jlel,f,eI'Sl Ext,encled Chnrnctel's &:. Symbols Extended Clml'nciel's

Lower Case Upper Crl.';e Lower Case Upper Case

A a A 1 i i
H • • 2 @ @

C ~ C 3 # #
D d D 4 1 I

'4 0

E re M 5 1 1
"2 '2

F f f 6 " "
G 0 a 7 \ \
H ¥ ¥ 8 [{
I - - 9] }
J $ $ 0 l. i..
J(((c <t: ~

L £ £ - --
M !! Q = ± ±
N ~ !! [0 0

0 f.I 0] I I
p P 1) \ J.l I'
Q ; £ £
H, , , ,
S B B I < <
T

,
> >

U
.. ..

/ - -
V § §
W - -
X R S
y " "
Z , ,

l'1'he a.ccents produced by pressing [Extend chad with CD, @), (1), (ill, or (1)
a.ppea.r on the CRT, but the cursor does not advance until you press the key for
t.he letter over which the a.ccent must appear. For example, to pl'oduce A (in
Ca.ps mode), press a.nd hold [Extend char], then press @. The" appears with the
cursol' beneath it. Now press 0 to complete the A character.

11·4 Keyboard Information

Press the (Tab) key to move the cursor forward to preset tabs.
Press (Shift HTab) to move the cursor backward to preset tabs.

Before (Tab) can be used, a tab must be set. Tabs are set
and cleared with System menu softkeys. The (Tab) key is

demonstrated along with the l~II!;;!I;m;~ZSI~J;ri~l~ii softkey under
"System Softkeys" later in this chapter.

The (CTRL) (control) key works like (Shift) to access a set of
standard control characters, such as line-feed and form-feed.
These characters are useful to the programmer for controlling
some devices and for communicating with other computers.
You probably won't need them when running programs. The
available control characters are listed in the HP BASIC 6.2
Language Reference in the "Useful Tables" section.

The (selectl key beeps but performs no function unless it is
program-defined.

Cursor Control Keys

The cursor-control keys move the display cursor. The (!) and (!) keys allow
you to scroll lines in the output area up and down. Shifted, the keys allow you
to jump to the top and bottom of the output area. The CD and ffi keys allow
you to move horizontally along a line. Shifted, they allow you to jump to the
left and right limits of a line. The (Back space) key works just like the BJ key.

The unshifted (!J key positions the print position at the beginning position on
the page. The shifted (!J key places the print position at the beginning of the
first empty line in the display (scrolls up if necessary). In edit mode, pressing
this key (shifted or unshifted) causes the computer to beep.

To verify operation of the (!J key, press (Clear display l. Then type PRINT
"SOMETHING" and press (Return l; repeat twice. You should now have the
following display:

SOMETHING
SOMETHING
SOMETHING

Press the (!J key (unshifted).

Keyboard Information 11-5

11

11
Type PRINT "ANY II and press (Return). Your display should look like this:

ANY THING
SOMETHING
SOMETHING

Press (Clear display).

In normal mode, press the (Prev) key to scroll the display down one page and
press the {Next} key to scroll up one page. In edit mode, these keys move the
scroll one-half page.

To test the horizontal movement of the cursor, type a few words and press the
shifted and unshifted ffi and CB keys. Notice that the cursor cannot be moved
beyond the characters you have typed. Press (ShiftH Clear line) when finished.

To test the vertical movement of the cursor, type EDIT and press (Return). Now
type the following lines, pressing (Return) after each line (if you entered the first
line in a previous exercise, just press (Return) to accept it):

10 !FIRST LINE
20 !SECOND LINE
30 !THIRD LINE
40 !FOURTH LINE

Try the shifted and unshifted 0, (!), and C!) keys. Then try the (Prev) and
(Next) keys. When you're done, press Stop to exit. Then, type SCRATCH (Return)

to clear memory.

Numeric Keypad

The numeric keypad provides a convenient way to enter numbers and perform
arithmetic operations. Simply type the arithmetic expression you want to
evaluate, then press (Ented. The result is displayed in the lower-left corner of
the screen.

The (Enter] key performs the same function as the (Return) key. The (Tab) key
on the numeric keypad functions like the (Tab) key in the character entry
area. The shifted versions of the (!), 0, (i), and (] keys are E, (,), and A,
respectively (see labels on the overlay). The shifted versions are also available
in the character entry area.

11·6 Keyboard Information

Type the following problem using the numeric keypad:

(26+14)/4

Now press (Enter] to perform the calculation. The answer, 10, is displayed in the
lower-left corner of the screen.

Editing Keys

The editing keys put easy character editing and line editing at your fingertips.

(Insert line)

(Delete line)

(Insert char)

Press (Insert line) to insert a new line above the cursor's current
position (edit mode only).

Type EDIT, then press (Return). Type this line (if it isn't
already there):

10 !FIRST LINE

Now, with the cursor somewhere on line 10, press (Insert line).

Notice that a new line number (1) is inserted before line 10.
Press Stop when finished.

Press (Delete line) to delete the line containing the cursor (edit
mode only).

Type EDIT, then press (Return). Position the cursor to the line:

10 !FIRST LINE

and press (Delete line). The line is removed. To restore it, press
the key directly above c::J (labeled Recall on the overlay) to
recall it, then press (Return) to enter it into the program. Press
Stop to exit edit mode.

Press (Insert char) to set insert mode; characters you insert
appear to the left of the cursor. Press the key a second time to
cancel insert mode.

Carefully type the following line exactly as shown:

THIS IS A TEST .

Keyboard Information 11-7

11

11

(Delete char)

(Clear line)

(Clear display)

Position the cursor under the period and press [Insert char]. Now
type:

OF INSERT MODE

and press [Insert char) again. The line should now look like this:

THIS IS A TEST OF INSERT MODE.

The new characters were inserted to the left of the period.
Press ~(Clear line) when finished.

Press (Delete char) to delete the character at the cursor's
position.

Type a few words and experiment with (Delete char), positioning
the cursor at various places on the line. Notice that if you
hold the key down, characters are deleted until you release it.
Delete all of the characters you typed.

Press unshifted-(Clear line) (labeled Clr~ End on the overlay) to
clear from the current cursor position to the end of the line.

Press (Shift H Clear line) (labeled Clr Ln on the overlay) to clear
the keyboard line and message/results line.

Type a few words and use the (I) key to position the cursor in
the middle of the line. Press unshifted-(Clear line) to clear to the
end of the line. Press (Shift H Clear line) to clear the rest of the
line.

Press either the shifted or unshifted version of (Clear display) to
clear the entire alpha screen.

Type the following BASIC command:

PRINT "PUT THIS MESSAGE IN THE OUTPUT AREA."

Now press (R'!tij'T) to execute it. Press the key directly above
(!) (labeled Recall on the overlay) to recall the command, and
press (R'!tij'T) again. Repeat this step several times to fill the
screen with messages. Now press (Clear display) to erase all lines
at once.

11·8 Keyboard Information

Program Control Keys

The following keys allow you to control execution of the program stored in the
computer's memory.

Pause (~

Stop
((Shift)-~

Press unshifted-~ (labeled Pause on the overlay) to pause

program execution after the current line. Press Ig;gl;'~~~I!;:
(unshifted @) in the System menu to resume program
execution from the point where it was paused.

Press (Shift)-~ (labeled Stop on the overlay) to stop
program execution after the current line. To restart the
program, pressly!;:! (unshifted (ill) in the System menu.

Press (Break) (labeled elr I/O on the overlay) to pause program
execution when the computer is performing or trying to
perform an I/O operation. Press (Break) instead of Pause when
the computer is hung up on an I/O operation, since Pause
works only after the computer finishes the current program
line. Pressing (Break) cancels the I/O operation and pauses the
program at the current line.

Press (Reset) to pause program execution immediately without
erasing the program from memory. The BASIC Reset message
indicates the computer is ready for your command.

System Control Keys

Four unlabeled keys directly above the numeric keypad control various system
functions related to the display, printer, and editing operations. Most of these
keys execute their functions immediately, as the key is pressed. To easily
identify the keys in the following description, we'll use this convention.

• ~Above the c:J key (labeled Recall on the overlay).

• ~Above the (2) key (labeled Alpha/Dump Alpha on the overlay).

• ~Above the C±J key (labeled Graphics/Dump Graph on the overlay).

• ~Above the (] key (labeled RES on the overlay).

Keyboard Information 11-9

11

11 ~Recall

~Alpha/
Dump Alpha

Press unshifted-~ (Recall) to recall the last line that
you entered, executed, or deleted. Several previous lines
can be recalled this way. Recall is particularly handy
to use when you mistype a line. Instead of retyping the
entire line, you can recall it, edit it using the editing keys,
and enter or execute it again.

Type:

PRINT 11111 [Return)

to print the number 1 on the screen. Now press ~ to
recall the print statement. Edit the statement to print
the number 2 by positioning the cursor under the 1 and
typing (1) over it. Press [Return) again. Now press ~
several times to see all of the statements it remembers.
Then press (Clear display) when finished.

(Shift ~~ moves forward through the recall stack.

Press @ in the System menu to perform the same recall
function as ~.

Press unshifted-~ (Alpha) once to turn on the
alphanumeric display. Press it the second time to turn off
the graphics display. (This key will have no effect unless
you are in "separate alpha/graphics" mode. Refer to the
SEPARATE ALPHA FROM GRAPHICS keyword in the
HP BASIC Language Reference.)

Press (Shift ~~ (Dump Alpha) to print a complete copy
of the alpha display on the default printer. The Dump
Al pha function is also executed by Print «(Shift H Enter]).

11-10 Keyboard Information

~Graphics/
Dump Graph

~RES

Press unshifted-ffii}) (Graphics) once to turn on the
graphics display. Press it the second time to turn off the
alphanumeric display. (This key will have no effect unless
you are in "separate al pha/ graphics" mode. Refer to the
SEPARATE ALPHA FROM GRAPHICS keyword in the
HP BASIC Language Reference.)

Pressing (Shift l-ffii}) (Dump Graph) prints a complete
copy of the graphics display on the default printer. The
combined alpha and graphics display will be printed unless
you are in "separate alpha/graphics" mode.

Pressing ~ (RES) either shifted or unshifted returns
the result of the last arithmetic expression that was
executed.

Press (Shift H Clear line), then type:

23+45 (RetUffi)

The result, 68, is displayed in the lower-left corner of the
screen. To add 123 to this value, press ~ and type:

+ 123 (Return)

The new result, 191, is now displayed. Press
(Shift}-(Clear line) when finished.

Keyboard Information 11·11

11

11 Softkeys and Saftkey Control

There are eight softkeys (labeled @ through @) and two keys that control
the definitions of the softkeys ((Menu) and (System). Refer to chapter 4 for a
discussion of menus and key labels.

When the BASIC system is booted, the softkeys default to System mode and
the System menu appears at the bottom of your display. System softkeys are
defined following control key definitions. In addition to the System mode, there
are three User modes: User 1, User 2, and User 3. HP BASIC Programming
Guide describes how to set up User modes.

Softkey Control Keys

To assume System mode, press unshifted-(system) .. The
System menu is displayed, if the (Menu) key is toggled to
the on position.

Press (Used ((Shift H System l) to put the soft keys in User
mode. A User menu is displayed if the (Menu) key is
toggled to the on position.

The system remembers which User menu you are in when
you press the (System) key and returns to that menu when
you press the (User) key. A second press of the (User) key
always goes to the User 1 menu. There are additional
iterations with EDIT mode; see "Softkey Menu Changes"
in the "Editing and Storing Programs" chapter for details.

Press unshifted-(Menu) to toggle the softkey labels; it turns
them on if they're off and turns them off if they're on.

Press (Shift H Menu) to increment User mode and menu if
User mode is on.

Try the following exercises to learn how the two control keys work.

First, get the System mode selected and menu displayed. If the System menu is
not displayed, press (System). If it is still not displayed, press (Menu).

With the System menu displayed, press unshifted-(Menu) several times. The
system menu display should go on and off. Leave the System menu displayed,
and continue.

11-12 Keyboard Information

N ow press (Shift HUser). The User 1 menu appears on your display.

Press (Shift HMenu) several times. The displayed menus should rotate
successively through the three User menus (User 1 --7- User 2 --7- User 3 --7-

User 1 --7- User 2, etc.).

Press unshifted-{Menu) several times and the last User menu goes on and off.
Leave the User menu on.

Press unshifted-(sxstem) to return to the System menu.

System Softkeys

The following paragraphs define the eight System softkeys.

(unshifted-@) lets you execute one program line at
a time. This is useful for debugging programs.

;;Eg~I~!HI]I (unshifted-@) resumes program
execution from the point where it was paused (by an
unshifted-~) .

~~R!i (unshifted-@) starts a program running from the
beginning.

The i~~~RI;;;;:~!:~~; key (unshifted-@) turns the printall
mode on and off, allowing keyboard operations and
displayed error messages to be copied to a printall device.
Press Ig~;~111;;~~~1! once to set printall on and again to
set printall off. An asterisk (*) appears next to All to
indicate that printall is on.

The display's output area is the default printall device at
powerup. HP BASIC Programming Guide explains how to
select other printall devices.

Press~I~~~I;I~~;;I to turn on printall mode. Now type the
followingc~mm~nd :

PRINT IITHIS IS A KEYBOARD OPERATION" (R'etljffi)

Keyboard Information 11-13

11

11
Both the PRINT command and the message are displayed
on the screen, (the default printall device). Now type:

THIS WILL CAUSE AN ERROR (Return)

Because this is not an executable BASIC statement,
an error message is displayed, both at the bottom of
the screen and in the printall area at the top. A log
is produced of all commands typed and executed at
the keyboard, along with any error messages. Press
(Clear display) to clear the display, and press lRI~~ll;:ll:;I~I!l to
turn off printall mode.

(unshifted-@) sets a tab at the cursor's current
Tabs remain in effect until cleared by either
or the SCRATCH A statement (explained in

HP BASIC Programming Guide).

ll;~I:l'::;::=I~i::: ({Shift)-@) clears a tab previously set at the
cursor's position.

Press the space bar to move the cursor forward a few
spaces and press Move the cursor back several
spaces using (3), then press (Tab). Move the cursor
forward several more spaces with the space bar, then
press (ShiftHTab). To clear the tab, movethe cursor to
the unwanted tab position and press Press
(ShiftHClear line) when finished.

::~~I':I:!m:II::!;;:iIIIIII;: (unshifted-@) sets the display-functions
mode, allowing you to see special control characters (e.g.,
form-feed, carriage return) on the screen. Pressing this
key a second time cancels the display-functions mode.
An asterisk (*) appears next to Fetns to indicate that
display-functions mode is on.

Type the following line:

PRINT "DISPLAY-FUNCTIONS MODE OFF" (Return)

11·14 Keyboard Information

Notice the display at the top of the screen. Now press

:.:.:.:.:.:.:.:.:.:.: ... :: :.:.:.:.: .. : ... :.:.: ... :.:.:.:.:.:.::.:.:.:.:. (unshifted-@) to recall the line, and edit it to
read:

PRINT "DISPLAY-FUNCTIONS MODE ON"

Press and then press (RetijT). Notice
that the carriage return (CR) and line-feed (LF) control

characters are now displayed. Press 1::::::*~l? .;;::::g~~:I::: again
to exit display-functions mode. Press (Clear display) when
finished.

(unshifted-@) is used to find any ASCII

character. First press!~~y ls~;IL The following message
appears above the menu:

Enter 3 digits, 000 to 255

Enter a three-digit number from 000 through 255
representing the decimal equivalent of an ASCII character.
The computer automatically displays the character on
the screen. For a list of characters and their equivalent
decimal values, see the US ASCII Character Codes table
in the "Useful Tables" section of the HP BASIC 6.2
Language Reference.

Press !~Rl{"sl~t, then type 65 which is the decimal
equivalent of A. The display line now displays A. Press
(Shift H Clear line) to erase it.

The soft key (unshifted-@) acts just like System

Control @ (described earlier).ll~;sl~~;l recalls the last
line that you entered, executed, or deleted. Several
previous lines can be recalled this waY.;!I!I~~!::l is
particularly useful when you mistype a line. Instead of
retyping the entire line, you can recall it, edit it using the
editing keys, and enter or execute it again.

Keyboard Information 11-15

11

11
Type:

PRINT II 111 (R'et"U'T)

to print the number 1 on the screen. Now press ·11!]I;!:li;!
to recall the PRINT statement. Edit the statem~~'t''''''''t'~''''''''''''''''''
print the number 2 by positioning the cursor under the
1 and typing (1) over it. Press (Return) again. Now press

several times to see all of the statements it

remembers. Note that: . goes backward through the
queue.

Press (Shift ~@ to cycle forward through the queue until
the last line entered, executed, or deleted is displayed. In
the previous exercise you pressed unshifted-@ several
times, cycling backward through the queue. Now press
(Shift ~@ several times to cycle forward through the queue
until the last line is displayed.

Terminal Keyboard Reference
If you do not have an ITF keyboard, some keys may operate in a different way
than those referenced in this document. In general, only the alphanumeric keys
are guaranteed to work properly. The following describes:

• which terminal types are supported

• what keys on the terminal can be used to perform the same functions as
those on the ITF keyboard

• what device can be used to input graphics from terminals.

Supported Terminal Types

The table below lists the terminal types supported on BASIC/UX. The HP
Part Number is generally the same as the terminal type. The following
terminal types without the hp prefix are also supported.

11·16 Keyboard Information

Terminal Types Supported

hp2392 hp2623

hp2393 hp2625

hp2394 hp2627

hp2397 hp2628

hp2622 hp150

hp262x 70092

70094

Mapping Terminal Keys to ITF Keyboard Keys

To perform the same operation as some of the ITF keyboard keys on a
terminal, or some of the BASIC Workstation keys (such as (Recalll),Use the
following mappings.

Terminal Key Mappings

BASIC System Key Key Mapping

(Reset) (CTRL l-0

(Clear 1/0) (CTRLl-(S)

(Clear line) (CTRLl-G)

(Recall) (CTRLl-[)

(Pause) (CTRLl-(£)

These keyboard mappings can be turned on and off from the rmb command
line. To turn the keyboard mappings on, type:

rmb -t

To turn the keyboard mappings off, do not use the -t option.

Keyboard Information 11-17

11

11
You can also turn keyboard mappings on and off by placing the environment
variable TERM_CONTROL in your $HOME/ .rmbrc file. To turn keyboard mappings
on using this variable, type the following in your $HOME/ • rmbrc file:

TERM_ CONTROL=on turns keyboard mapping on

To turn keyboard mappings off using this variable, type the following in your
$HOME/ • rmbrc file:

TERM_CONTROL=off turns keyboard mapping off

Also, you must note the following:

• (Break], (Reset], (aids], (used keys, and (modes] keys are not recognized by
BASIC/UX (they are local to the terminal).

• Keypad keys on terminals are not recognized by BASIC/UX.

• Shifted non-alphanumeric keys are not recognized by BASIC lUX.

Some Hints While Using Terminals

• There is no ~ key. Therefore, to stop a program, type

S TOP ('Re"ttjffi)

To exit the EDIT mode, use the (Clear Display) or (Clear Line] keys.

• You cannot cycle through the system softkey menus with softkey control
keys. Use the SYSTEM KEYS, USER n KEYS, or CONTROL KBD,2
statements (see the HP BASIC 6.2 Language Reference).

• There is no (RECALL] key. Use (§ill-GJ or cycle through the system softkeys for
the "RECALL" soft key.

Graphics Input from Terminals

The mouse is not supported as a graphics input device for a terminal. From a
terminal, you will have to use the keyboard arrow keys for graphics input -
they are the only graphics input device available.

11-18 Keyboard Information

Index

A

Aborting FIND command, 7-18
Absolute path name, 6-2
Absolute path names, and creating

directories, 6-14
Accented characters, and letter-case,

7-7
Access capabilities

current, 6-26
Access capability

SRM files and directories, 6-26
Access permission, HFS, 6-23
Address (upper) for BASIC/UX, 10-2
Ampersand (&), to run multiple HP-UX

processes, 9-2
Any char soft key , 7-10
Append and run, using GET, 8-5
arithmetic operators, 4-9
ASCII, 6-6
ASCII files

and SRM locks, 6-30
HFS, using LINK, 6-36
using GET, 8-3
using SAVE on LIF or SRM volumes,

7-26
ASSIGN statement, 6-22

and locking SRM files, 6-31
autoburst, and automatic locking or

mapping, 10-6
autolock, and automatic locking or

mapping, 10-6

automap, and automatic locking or
mapping, 10-6

Automatic file execution, 10-2, 10-9
Automatic locking, on an I/O interface,

10-6
AUTOST, 10-9
autostart, 10-2, 10-3
Autostart files, 10-9

B

Background processing, 9-2
(Back space) key, 7-6
BASIC keyboard overlays, for ITF

keyboards, 11-2
BASIC/UX

and HFS formatting, 6-1
boot process, 2-10
problems with software, 1-3
quitting, 2-11
startup, 2-7
system version, 6-12
upper address, 10-2

BASIC/UX editor, 7-7
BASIC/UX files in HP-UX, 9-5
BASIC/UX icon, 2-7
BDAT files

and LIF protect codes, 6-31
and SRM locks, 6-30
HFS, using LINK, 6-36

Binary program version, 6-12
BIN files and LIF protect codes, 6-31
Blank disk, LIF, formatting, 5-10

Index-1

Index

Index

booting BASIC/UX, 2-7
BPLOT, heap space required, 10-4
(Break) key, 4-5
Buffering HFS file system, 10-2
Buffering of graphics, 10-2

C

cal, 9-4
calculations, keyboard, 4-10
C§i!l key, ITF keyboard, 11-2
caps lock indicator, 4-3
Cataloging individual PROG files, 6-11
Cataloging selected files, 6-10
Catalog listings

for hierarchical directories, 6-5
HFS, permission column, 6-24
SRM, PUB ACC column, 6-29
to locate your program, 8-3

CAT command, 6-5, 6-10
CAT command, using wildcards, 6-10
CHANGE command, 7-14, 7-18
changing your password, 2-6
character entry keys, ITF keyboard,

11-2-5
Child process, running EXECUTE

commands, 9-3
Clearing entire current line, 7-9
clearing the computer, 4-20
Clear I/O, 4-5
clear line, 4-17
(Clear line) key, 4-17, 7-9
Clear Tab, 7-9
Closed files, 6-22
Closed hierarchical directories, 6-22
Codeword, used for software security,

8-6
Commands, 7-1
commands, typing and executing, 4-9
Comments, 7-21
Compatibility error messages, 10-3
computer, clearing, 4-20

Index-2

Conditional execution, and indenting,
7-15

Contents of a directory, 6-5
Continue soft key , 4-5
conventions

used in this manual, 1-2
conventions, passwords, 2-6
Copying files, 6-33
Copying lines

by changing line numbers, 7-12
Copying program segments, 7-19
COPYLINES command, 7-12, 7-14,

7-19
COpy statement, 6-33
Correcting typing mistakes, 7-6
COUNT statement, 6-10
cp, 9-4
CREATE DIR, 6-13
CREATE statement, and protecting

files, 6-32
CREATE WINDOW, heap space

required, 10-4
creating

your password, 2-6
Creating

an AUTOST file, 10-9
directories, 6-13
environment files, 10-7

Creating windows, 3-2
CS80, 5-6
CSUBS, heap space required, 10-4
(CTRL) key, ITF keyboard, 11-5
Current access capabilities, SRM, 6-26
Current directory, 6-2
Current line, editing, 7-8
current system devices, determining,

4-7
Current working directory, 5-3, 6-22
Cursor, 11-1
cursor control keys, ITF keyboard, 11-5,

11-7

Cursor, moving, 7-9
Customizing BASIC/UX sessions, 10-1

D

Data area, 10-2
date, 9-2
DATE, 4-12
default drive, 4-7
Default environment file, 10-1
Default permission bits, 6-24
default values, 4-2
DEF FN statement, 8-7
definitions, soft key, restoring to default,

4-20
DEL command, 7-14, 7-21
{Delete chad key, 7-9
(Delete line) key, 7-11
Deleting

directories, 6-35
files, 6-34
lines, 7-11
multiple lines, 7-21

DEL statement, 7-12
Determining your home directory, 6-17
Device selector, in volume specifier, 5-6
device type, 5-6
Device type, in volume specifier, 5-6
DIR, 6-6
Directories

changing, 6-14
changing to an LIF disk, 6-17
closed, 6-22
creating, 6-13
current working, 5-3
HFS, access permission, 6-23
hierarchical, 5-2
purging, 6-35
root, 5-3
SRM access capability, 6-26

Directory
current, 6-2

current working, 6-22
home, 6-2
listing contents, 6-5

Directory, established by INITIALIZE,
5-10

Directory format, choosing, 5-4
Directory location, 6-2
Directory path, 5-3, 6-2
disk, 10-7
Disk drives, as storage media, 5-1
Disk format, choosing, 5-4
Disk organization, 5-1
Documenting programs, 7-21
(!) key, 7-11
DUMP DEVICE IS statement, 4-7
dump device, system, 4-7
DUMP GRAPHICS, heap space required,

10-4

E

EDIT command, 7-5
editing keys

ITF keyboard, 11-7-8
Editing keys, 7-8
Editing operations, global, 7-13
Editing programs, 7-1
{EDIT] key, 4-17
EDIT mode, 7-2, 7-7

exiting, 7-25
exiting from a terminal, 11-18

EDIT screen format, 7-4
edit softkey mode, 4-17
END statement, 4-5, 8-7
Entering a line, 7-6
Entering programs, 7-1
Environment files, 10-1
Environment files, creating, 10-7
Erasing

directories, 6-35
files, 6-34

error messages

Index-3

Index

Index

ERROR 910,4-13
ERROR 949, 4-13
fatal internal error, 2-9
when entering commands, 4-13

Error messages, 10:"'2
and using the BASIC/UX editor, 7-8
compatibility, 10-3
converting to another language, 9-7
Error 183, 6-6
Error 290, 6-21
Error 54, 6-33, 7-26
Error 58, 8-4, 8-5
Error 68, 8-5, 9-6

errormode, 10-2, 10-3
Escape character, using with wildcards,

6-21
Exclusive access, SRM files, 6-30
EXECUTE, 9-1
exit from HP-UX, 2-11
exiting BASIC/UX, 2-11
exiting HP VUE, 2-11
exiting X Window System, 2-11
[Extend chad key, ITF keyboard, 11-3
extended character set, ITF keyboard,

11-3

F

File names, listing, 6-10
Files

closed, 6-22
copying, 6-33
HFS, access permission, 6-23
LIF, protecting, 6-31
linking, 6-36
open, 6-22
PROG, 6-11
protecting, 5-3
purging, 6-34
selected, cataloging, 6-10
SRM access capability, 6-26
SRM, locking, 6-30

Index-4

File specifiers, including protect code,
6-31

File system buffering, 10-2
File type, 6-6
FIND command, 7-14, 7-17

aborting, 7-18
Finding textual patterns, 7-17
FNEND statement, 8-7
Foreign language messages, 9-7
Format of disk, choosing, 5-4
Formatting LIF disks, 5-10

G

GDUMP _R, heap space required, 10-4
gencat utility, 9-8
GET statement, 8-3, 8-4, 9-6

to append and run, 8-5
with automatic program clearing, 8-4

GLOAD/GSTORE, heap space required,
10-4

Global editing operations, 7-13
Global environment variables, 10-2
graphics_buffer, 10-2, 10-3
Graphics buffering, 10-2
GROUP, 6-6
GROUP, HFS user class, 6-23

H

Heap space, increasing, 10-4
hfs_buffer, 10-2, 10-5
HFS catalog contents, 6-6
HFS classes of users, 6-23
HFS directory access permission, 6-23
HFS directory format, 5-2, 5-4
HFS file access permission, 6-23
HFS file names

length, 6-1
letter-case, 6-1

HFS file system buffering, 10-2
HFS formatted disks, 6-1
HFS permissions, 6-24

HFS volume, linking files, 6-36
Hierarchical directories, 5-2

closed, 6-22
Hierarchical File System, 5-4, 6-1
Hierarchical File System format, 5-2
Hierarchy, uses, 5-3
Home directory, 6-2

determining, 6-17
hostname, 9-4
HP 46084 ID Module, 7-25
HP 9122, unit numbers, 5-6
HP 9122, volume specifiers, 5-9
HP 9133, volume specifiers, 5-9
HP-UX

exit, 2-11
file type, 6-6
logging out, 2-11

HP-UX commands from BASIC/UX,
9-1

HP-UX editor, 10-7
HP-UX files

HFS, using LINK, 6-36
using GET, 8-3
using SAVE on HFS volumes, 7-26

HP-UX windows
and results of EXECUTE in X

Windows, 4-11
HP VUE

exiting, 2-11
loading BASIC/UX, 2-7
login, 2-2

Icon
BASIC/UX, 2-7

Identifiers, and letter-case, 7-7
ID Module, HP 46084, 7-25
ID PROM, reading, 7-25
Indentation bounds, 7-16
INDENT command, 7-14, 7-15, 7-16
Indenting a program, 7-15

indicators, system status, 4-3
Initialization, 5-10
INITIALIZE command, 5-10
INITIALIZE (memory volume), heap

space required, 10-4
(Inser char) key

correcting typing errors, 7-6
[Insert chari key, 7-9
Insert cursor, 7-9
Inserting lines, 7-11
[Insert line) key, 7-11
Interface, I/O, determining select code,

10-6
inverse-video

on CRT, 4-18
on print listing, 4-19

io_burst, on an I/O interface, 10-6
I/O interface, 10-6
I/O statement, aborting, 4-4
ITF keyboard, 4-9, 11-1
ITF keyboard, overlays for BASIC, 11-2

J
Jumping to beginning of the program,

7-11
Jumping to end of the program, 7-11

K

keyboard
ITF, 1-2,4-9

Keyboard
ITF, 11-1
live, 8-7

key board uses
control program execution, 4-9
load and run programs, 4-9
perform calculations, 4-10
type and execute commands, 4-11

KEY LABELS ON/OFF, 4-12
KEY LABELS ON statement, 4-4,8-6
Keys used for scrolling, 7-10

Index .. 5

Index

Index

Keywords, 7-1
keywords, and letter-case, 4-1
Keywords, and letter-case, 7-7

L

Languages, foreign, 9-7
letter-case in identifiers, 4-1
letter-case significance, 4-1
Letters

Lower-case, 7-7
Upper-case, 7-7

LFN, 6-1
LIF catalog contents, 6-18
LIF catalog listings, 6-17
LIF directory format, 5-4
LIF disks, formatting, 5-10
LIF protect codes, 6-31
Line identifiers

with DEL command, 7-21
with EDIT command, 7-5
with SAVE, 7-27

Line labels
with EDIT command, 7-5

line numbers
and examples in this manual, 4-2

Line numbers
and inserted lines, 7-11
changing to copy a line, 7-12
renumbering, 7-15
required for using GET, 8-5
with EDIT command, 7-5

Linking files on an HFS volume, 6-36
LINK statement, 6-36
Listing

contents of a directory, 6-5
listing programs, 7-25
Listing windows, 3-3
LIST KEY statement, 4-19
LIST statement, 4-4, 4-5, 7-7
Live keyboard, 8-7
loading

Index-6

soft keys , 4-20
loading BASIC lUX, 2-7
loading BASIC/UX with HP VUE, 2-7
Loading programs, 8-1, 8-3
LOAD KEY statement, 4-20
LOAD statement, 8-3, 8-4
Localization, 9-7
Locking

automatic, on an I/O interface, 10-6
Locking SRM files, 6-30
Locking text area, 10-2
Locks, SRM, 6-26
LOCK statement, 6-30
logging in, 2-4
logging in, problems, 2-5
logging out, 2-11
Logical Interchange Format, 5-4
login, 2-1, 2-4
login incorrect, 2-5
Long file name systems, 6-1
Looping, and indenting, 7-15
Lower-case letters, 7-7
Is, 9-4

M

mailx, 9-4
Making new directories, 6-13
man, 9-4
MANAGER, SRM access capability,

6-26
Mapping HP-UX directories to BASIC

msvs, 10-7
Mapping msvs to HFS directories, 10-6
Mapping terminal keys to ITF keyboards,

11-17
Mass storage concepts, 5-1
MASS STORAGE IS, 6-14, 6-22
Mass storage organization, 5-1
Mass storage volume format

choosing, 5-4
recommendations, 5-4

Mass storage volume specifiers, mapping
to HFS directories, 10-6

memory available for soft key definitions,
4-16

(Menu) key, 4-4, 4-6, 8-6
mkdir, 9-4
MODIFIED, 6-6
more, 9-4
MOVELINES command, 7-14, 7-20
Moving lines into a subprogram, 7-20
Moving program segments, 7-20
Moving windows, 3-6
MSI, 6-14
msus, 5-5
msvs, 5-5, 10-7
Multi-tasking, 9-2
mv,9-4
mv command, and converting error

messages, 9-8

N

Native language support, 9-7
Networking, not with EXECUTE, 9-3
NLS, 9-8
NLS_CORE fileset, 9-7
normal., and automatic locking or

mapping, 10-6
notation, for inverse-video, 4-18
notations used in this manual, 1-2
numeric keypad, ITF keyboard, 11-6
NUM RECS, 6-6

o
Open files, 6-22
OTHER, HFS user class, 6-23
OWNER, 6-6
OWNER, HFS user class, 6-23

p

Parameters
with CAT command, 6-10

with CHANGE command, 7-19
with COPYLINES command, 7-19
with DEL command, 7-21
with EDIT command, 7-5
with FIND command, 7-17
with GET statement, 8-5
with INDENT command, 7-16
with LOAD statement, 8-4
with MOVELINES command, 7-20
with PERMIT, 6-25
with RUN command, 8-6

password, 2-1, 2-4
conventions, 2-6
creating or changing, 2-6

Passwords, SRM, 6-26
Passwords, SRM, specifying, 6-30
Path, 5-3
Path names, 6-2
PAUSE statement, 4-5
pausing programs, 4-5
PERMISSION, 6-6
Permission bits, HFS files and directories,

6-23
Permission denied, 6-17
Permissions

and creating HFS directories, 6-14
for CAT of an HFS directory, 6-6

PERMIT statement, 6-23, 6-24
PERMIT statement parameters, 6-25
plock, 10-2, 10-5
Porting BASIC Workstation programs,

errors, 10-3
power-on state, 4-2
Prerun, 8-7
Preventing program listings, 7-24
primary address, 5-6
PRINTALL IS CRT statement, 4-7
Printall printer, 4-7
printer

system, 4-7
PRINTER IS CRT statement, 4-7

Index-7

Index

Index

PRINTER IS statement, 4-4, 4-5
PROG, 6-6
PROG files, 6-11

and LIF protect codes, 6-31
individual, cataloging, 6-11
using LOAD, 8-3
using STORE, 7-26

Program clearing, automatic using GET,
8-4

program control keys, ITF keyboard,
11-9

program currently in memory, 4-5
Program execution, controlling, 8-8
Program lines, 7-2

entering and storing, 7-6
securing, 7-24

Programs
loading, 8-1
running, 8-1, 8-6

Program status, 8-9
program status control, 4-5
program status indicator, 4-3
Protect codes

changing, 6-32
length, 6-32
LIF, 6-31
removing, 6-32
with CREATE, 6-32

Protected access, SRM, 6-26
Protected files, CAT listing, 6-29
Protecting files, 5-3
Protecting HFS files, 6-23
Protecting LIF files, 6-31
Protecting SRM files, 6-26
PROTECT statement

for LIF files and directories, 6-31
SRM files and directories, 6-27

ps -ef, 9-4
PUB ACC column in directory listing,

6-29
Public access, SRM, 6-26

Index-8

PURGE statement, 6-34
using with WILDCARDS, 6-21

Purging
directories, 6-35
files, 6-34

pwd, 9-4

Q

QUIT, 2-11
quitting BASIC/UX, 2-11

R

Read, 6-6
Readable programs, 7-21
READ, HFS permission, 6-24
Reading an ID Module's contents, 7-25
Reading an ID PROM, 7-25
Read, permission, 6-23
READ, SRM access capability, 6-26
Real-time priority, 10-2
Recalling lines, 7-11
Recall soft key , 4-6
REC LEN, 6-6
redefining softkeys, examples, 4-16
Relative path name, 6-2
Removing windows, 3-5
REM statement, 7-22
RENAME statement, 6-31, 6-33
Renaming files, 6-33
REN command, 7-14
Renumbering a program, 7-14
Renumber lines in EDIT, 7-15
RE-SAVE, and linked files, 6-36
Reset

and closing files, 6-22
Reset key, 4-5, 4-6
RE-STORE

and linked files, 6-36
replacing an existing file, 7-26

RE-STORE KEY command, 4-20
(Return] key, ITF keyboard, 11-3

rm,9-4
rmb, 2-7

and autostart files, 10-9
fatal internal error, 2-9
options available, 2-9

rmb.msgs, 9-8
rmbrc, 10-1
.rmbrc file, 10-7
rmb -t, 11-17
rmdir, 9-4
Root directory, 5-2, 5-3, 6-3
RUN command, 8-6
RUN key, 8-6
run light indicator, 4-4
Running concurrent programs, 9-2
Running HP-UX commands, 9-1
running programs, 4-3
Running programs, 8-1, 8-6
RUN soft key , 8-6, 8-7

S

SAVE statement, 7-26, 7-27, 8-1
Saving programs, 7-26
SCRATCH A command, 4-15, 4-20,

6-22
SCRATCH ALL command, 4-20
SCRATCH C command, 4-20
SCRATCH COM command, 4-20
SCRATCH command, 4-20
SCRATCH KEY command, 4-20
SCRATCH R command, 4-20
SCRATCH RECALL command, 4-20
SCRATCH W command, 4-21
SCRATCH WINDOW command, 4-21
Scrolling, keys used, 7-10
SDF directory format, 5-2, 5-4
Search, 6-6
Search and replace operations, 7-18
SEARCH, HFS permission, 6-24
Searching for textual patterns, 7-17
Search, permission, 6-23

SECURE statement, 7-24
Securing program lines, 7-24
Security, software, 8-6
(Select) key, ITF keyboard, 11-5
Selector, device, in volume specifier, 5-6
SELECT statement, 6-10
Set Tab, 7-9
Set Tab/Clr Tab soft key, ITF keyboard,

11-5
SET TIMEDATE statement, 4-12
Setting the environment, 10-1
SFN, 6-1
Shared Resource Manager format, 5-2
Shared Resource Manager systems, 5-4
shmmaxaddr, 10-2
Short file name systems, 6-1
signing on to the system, 2-1
Size of workspace, 10-2
soft key control, ITF keyboard, 11-12
soft key definitions

listing current, 4-19
loading, 4-20
memory available, 4-16
restoring to default, 4-20
storing, 4-20

soft key edit mode, exiting, 4-17
soft key files, 4-20
soft key labels, improving, 4-18
soft key labels, turning on and off, 4-3
Softkey menu changes with EDIT mode,

7-6
softkeys

examples of redefining, 4-16
using, 4-13

Softkeys, 7-10
softkeys, ITF keyboard, 11-12-16
soft keys , redefining, 4-16
Software security, 8-6
SRM access capability, 6-26
SRM catalog contents, 6-7
SRM directory format, 5-2

Index-9

Index

Index

SRM files, locking and unlocking, 6-30
SRM passwords and locks, 6-26
SRM passwords, specifying, 6-30
SRM systems, 5-4
SRM/UX systems, 5-4
Statement, 7-1
status

of a program, 4-3
of the system, 4-3

(STOP) key, 4-5
stopping a program, 4-5
Stopping a program from a terminal,

11-18
STOP statement, 4-5
Storage media, 5-1
STORE KEY statement, 4-20
STORE statement, 7-26, 8-1
Storing a line, 7-6
Storing programs, 7-1, 7-26
Structured Directory format, 5-4
Structured Directory Format, 5-2, 5-4
SUBEND statement, 8-7

and moving lines, 7-20
Subordinate files and directories, 5-2
Subprograms

and DEL command, 7-21
moving lines, 7-20

Sub-shell
creating to use vi editor, 9-5
to run HP-UX commands, 9-1

SUB statement, 8-7
Superior files and directories, 5-2
Syntax, BASIC/UX editor checks, 7-7
Syntax of volume specifier, 5-6
system administrator

provides login information, 2-1
role, 1-3

System administrator
and loading NLS_CORE, 9-7
and modifying the message file, 9-7
labeling devices, 5-8

Index-10

obtaining codeword, 8-6
SYSTEM$("AVAILABLE MEMORY"),

4-7
system control keys, ITF keyboard,

11-9-11
system defaults, 4-7
system dump device, 4-7
SYSTEM$("DUMP DEVICE IS"), 4-7
(System) key, 4-13
system menu, 4-15
SYSTEM$("MSI"), 4-7
SYSTEM$("PRINTALL IS"), 4-7
system printer, 4-7
SYSTEM$("PRINTER IS"), 4-7
system prompt, 2-4
SYSTEM$("SERIAL NUMBER"), 7-25
system status, default values, 4-2
system status indicators, 4-3
System variables, 10-1
System variables in environment file,

10-1
SYSTEM$("VERSION :BASIC/UX"),

4-7
SYSTEM$("VERSION :ERR"), 4-7
SYSTEM$("VERSION:OS"),4-8
SYSTEM$("WILDCARDS"), 4-8

T

Tab, 7-9
{Tab] key, ITF keyboard, 11-5
Template environment file, 10-1
term_control, 10-5
TERM_CONTROL=, 11-18
Terminal keyboard mappings, 10-2, 10-5
Terminal keyboards, 11-16
terminal type, 2-1
Terminal types supported, 11-16
Text area, locking, 10-2
TIME, 4-12
Typing mistakes, correcting, 7-6

u
Undocumented vs. documented

programs, 7-22
Unit number, in volume specifier, 5-6
Unlocking SRM files, 6-30
UNLOCK statement, 6-30 o key, 7-11
Upper address for BASIC/UX, 10-2
Upper-case letters, 7-7
upper-case letters in keywords, 4-1
(User) key, 4-13
user name, 2-1
Using BASIC/UX files in HP-UX, 9-5
Using HP-UX files in BASIC/UX, 9-5

V

Variables, system, 10-1
vi, HP-UX editor, 10-7
Volume format

choosing, 5-4
Volume number, in volume specifier,

5-6
Volume specifiers, 5-5

W

whoami, 9-4
Wildcards, 6-18
WILDCARDS

disabling, 6-19

enabling, 6-19
escape character, 6-21
file name completion, 6-20
file name expansion, 6-19
restrictions, 6-21
using with CAT, 6-10

Windowing operations, 3-1
Windows, clearing the contents of, 3-8
Windows, copying data between, 3-10
Windows in a window stack, lowering,

3-8
Windows in a window stack, raising,

3-8
Windows, listing, 3-3
Windows, moving, 3-6
Windows, outputting graphics to, 3-7
Windows, removing, 3-5
Window stack, 3-8
workspace, 10-2
Workspace, 10-2, 10-6
Write, 6-6
Write, permission, 6-23
WRITE, SRM access capability, 6-26

x
X Window System

and output from EXECUTE, 9-1
creating a password, 2-5
exiting, 2-11
using EXECUTE command, 4-11

Index-11

Index

HP Part Number
E2040-9000 1

Printed in U.S.A. E0891

Flin- HEWLETT
a.:~ PACKARD

111

E2040-90601 Manufacturing Number

