
HP-UX Assembler Reference
and Supporting Documents

HP 9000 Series 300 Computers

HP Part Number 98597-90020

Flin- HEWLETT
~~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETI-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct. indirect. special. incidental or consequential damages in connection with the furnishing. performance.
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright © Hewlett-Packard Company 1986. 1987. 1988

This document contains information which is protected by copyright. All rights are reserved. Reproduction. adaptation. or translation without
prior written premission is prohibited. except as allowed under the copyright laws.

Restricted Rights Legend

Use. duplication or disclosure by the U.S. Govemment Department of Defense is subject to restrictions as set forth in paragraph (bX3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations. is expressly prohibited.

Copyright © AT&T. Inc. 1980. 1984

Copyright © The Regents of the University of California 1979. 1980. 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

Portions of this documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University of
California.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

March 1986 ... Edition 1

May 1986 ... Update

July 1986 ... Edition 2. Update incorporated.

July 1987 ... Edition 3

April 1988 ... Edition 4. Minor bug fixes. New information on how to determine which
processor is used at run time. Tutorial added for atime assembly timing facility.

December 1988 ... Edition 5. Information added to Chapter 7 on the new version
pseudo-op.

Printing History iii

iv Printing History

Table of Contents

Chapter 1: Introdudion
Manual Contents .. ~ 1
Related Documentation. .. 3

MC68010 Documents .. 3
M C68020 /30 Documents. .. 3
The HP-UX Reference. .. 4

Assembler Versions .. 4
Precautions 5

Comparison Instructions .. 5
Simplified Instructions .. 6
Specific Forms .. 6

Invoking the Assembler .. 7
Using ccCl) to Assemble .. 10
Overview of Assembler Operation .. 10

Chapter 2: Assembly Language Building Blocks
Identifiers .. 11
Register Identifiers ... 12

MC68000 Registers ... 13
M C680 1 0 Registers. .. 14
M C68020 /30 Registers. .. 14
MC68881 Registers ... 15
Floating-Point Accelerator Registers 15

Constants. .. 16
Integer Constants .. 16
Character Constants ... 16
String Constants ... 18
Floating-Point Constants ... 18

Chapter 3: Assembly Language Syntax
Syntax of the Assembly Language Line 21
Labels " .. 22
Statements .. 22
Comments .. 22

Table of Contents v

Chapter 4: Segments, Location Counters, and Labels
Segments ... 23
Location Counters ... 24
Labels .. , 25

Chapter 5: Expressions
Expression Types .. 27

Absolute. .. 27
Relocatable ... 27
External .. 28

Expression Rules. .. 28
Precedence and Associativity Rules 30
Determining Expression Type 30
Pass-One Absolute Expressions .. 33
Floating-Point Expressions .. 34

Chapter 6: Span-Dependent Optimization
U sing the -0 Option ... 35
Restrictions When Using the -0 Option. .. 40
Span-Dependent Optimization and Lalign .. 41
Symbol Subtractions ... 41

Chapter 7: Pseudo-Ops
Segment Selection Pseudo-Ops .. 44
Data Initialization Pseudo-Ops .. 46
Symbol Definition Pseudo-Ops .. 48
Alignment Pseudo-Ops ... 49

A Note about lalign .. 50
A Note about align ... 50
Pseudo-Ops to Control Expression Calculation
with Span-Dependent Optimization 51

Floating-Point Pseudo-Ops .. 52
Version Pseudo-Ops .. 53
CDB Support Pseudo-Ops .. 54

Chapter 8: Address Mode Syntax
Notes on Addressing Modes .. 59
as20 Addressing Mode Optimization. .. 61

Examples .. 61
Forcing Small Displacements (-d) 62

vi Table of Contents

Chapter 9: Instruction Sets
MC68000/10/20 Instruction Sets ... 63
M C68881 Instructions .. 76
FPA Macros. .. 86

Chapter 10: Assembler Listing Options .. 93

Appendix A: Compatibility Issues
U sing the -d Option .. 96
Determining Processor at Run Time. .. 97

Appendix B: Diagnostics. .. 99

Appendix C: Interfacing Assembly Routines to Other Languages
Linking .. 101
Register Conventions .. 102

Frame and Stack Pointers .. 102
Scratch Registers ... 102
Function Result Registers .. 102
Temporary Registers and Register Variables 102

Calling Sequence Overview ... 103
Calling Sequence Conventions 103
Example. .. 104

C and FORTRAN .. 107
C and FORTRAN Functions 107
FORTRAN Subroutines ... 109
FORTRAN CHARACTER Parameters 110
FORTRAN CHARACTER Functions. .. 110
FORTRAN COMPLEX*8 and COMPLEX*16 Functions 111

Pascal ... 112
Static Links .. 112
Passing Large Value Parameters .. 113
Parameter-Passing Rules ... 113
Example of Parameter Passing , 114
Pascal Functions Return Values 114
Example with Static Link .. 115
Example with Result Area ... 115
Pascal Conformant Arrays ... 116
Example Using Conformant Arrays 116
Pascal "var string" Parameters. .. 117

Table of Contents vii

Appendix D: Example Programs
Interfacing to C. .. 119

The C Source File (prog.c) .. 120
The Assembly Source File (count1.s) 121

Using MC68881 Instructions .. 124

Appendix E: Translators
atrans(l) .. 127
astrn(l) ... 127

Appendix F: Unsupported Instructions for Series 300'8
Notes Regarding Unsupported Instructions 129

Instructions Not Supported by the Model 310 129
Instructions Not Supported by the Model 320 130
Instructions Not Supported by the Model 330 130
Instructions Not Supported by the Model 350, 360 or 370 130

viii Table of Contents

Introduction 1
The two HP-UX assemblers for Series 300 computers, asi0 and as20, enable you to write
assembly language programs for Model 310, 320, 330, 350, 360, and 370 computers.
The Model 310 computer uses the MC68010 processor; the Models 320, 330, 350, 360,
and 370 use the MC68020/30 processor and the MC68881 floating point coprocessor.
The HP 98248 Floating-Point Accelerator is also supported by the as20 assembler. Both
assemblers can be accessed through the general-purpose' HP -UX assembler command
as(1). This reference manual describes how to use both assemblers so that the full
capabilities of supported hardware can be effectively used.

Manual Contents
Chapter 1: Introduction identifies related processor manuals, lists various precautions
related to using the assemblers, introduces the two assemblers, asi0 and as20, and the as
command driver that can be used to access either assembler as appropriate, and provides
a brief description of how to invoke the assembler and use its different command options,
how to use the C compiler, cc(1), to assemble programs, and finally, provides a brief
overview of how the assembler operates.

Chapter 2: Assembly Language Building Blocks discusses the basic building blocks of as
assembly language programs: identifiers, register identifiers, and constants.

Chapter 3: Assembly Language Syntax describes the syntax of as assembly language
programs and introduces labels, statements, and comments.

Chapter 4: Segments, Location Counters, and Labels provides a detailed discussion of
the text, data, and bss segments, and their relation to location counters and labels.

Chapter 5: Expressions defines the rules for creating expressions in as assembly language
programs.

Chapter 6: Span-Dependent Optimization describes optional optimization of branch
instructions.

Introduction 1

Chapter 7: Pseudo-Ops describes the various pseudo-ops supported by the as assembler.
Pseudo-ops can be used to select a new segment for assembly output, initialize data,
define symbols, align the assembly output to specific memory boundaries, set the
rounding mode mode for floating point input, and set the floating point co-processor
id.

Chapter 8: Address Mode Syntax defines the syntax to use for the addressing modes
supported by as. Helpful notes on using various addressing modes are given. It also
discusses how the as2D assembler optimizes address formats and displacement size.

Chapter 9: Instruction Sets describes instructions sets for the MC68000, MC68010,
and MC68020/30 microprocessors, the MC68881 Floating-Point Co-processor, and the
HP 98248 Floating-Point Accelerator.

Chapter 10: Assembler Listing Options describes use of the assembler listing options (-a
and -A).

Appendix A: Compatibility Issues discusses issues that you should consider if you wish
to write code that is compatible between MC68010- and MC68020/30-based computers.

Appendix B: Diagnostics provides information on diagnostic error messages output by
the assembler.

Appendix C: InterfacIng Assembly Routines to Other Languages describes how to write
assembly language routines to interface to C, FORTRAN, and Pascal languages.

Appendix D: Examples contains examples of as assembly language source code.

Appendix E: 'rranslators describes translators which can be used to convert PLS (Pascal
Language System) and old Series 200/300 HP-UX assembly code to as-compatible format.

Appendix F: Unsupported Instructions for Series 300s provides information on
MC680XX instructions that are not supported by the Series 300 machines.

2 Introduction

Related Documentation
This manual deals mainly with the use of the as(1) assembler. This manual does not
contain detailed information about the actual instructions, status register bits, handling
of interrupts, processor architecture, and many other issues related to the M68000 family
of processors. For such information, you should refer to the appropriate processor
documentation for your computer.

MC68010 Documents
The HP 9000 Model 310 computer uses an MC68010 microprocessor. Therefore, you will
need the MC68000 16/32-Bit Microprocessor Programmer's Reference Manual, which
contains detailed information on the MC68010 instruction set, status register bits,
interrupt handling, and other issues related to using the MC68010 microprocessor.

MC68020/30 Documents
The HP 9000 Models 320, 330, 350, 360, and 370 computer uses an MC68020/30
microprocessor and MC68881 Floating-Point Coprocessor. The Models 330, 350, 360,
and 370 will also support an optional HP 98248 Floating-Point Accelerator. You will
need the following:

• MC68020 32-Bit Microprocessor User's Manual, which describes the MC68020
instruction set, status register bits, interrupt handling, cache memory, and other
issues

• MC68030 32-Bit Microprocessor User's Manual, which describes the MC68030
instruction set, status register bits, interrupt handling, cache memory, and other
issues

• MC68881 Floating-Point Coprocessor User's Manual, which describes the floating
point coprocessor, its instruction set, and other related issues.

• HP 98248 Floating-Point Accelerator Manual, which describes the floating-point
accelerator, its instruction set and other related issues.

IMPORTANT

The reference manuals described above are not provided with the
standard HP-UX Documentation Set. If you intend to use the
HP-UX Assembler on your system, you can order these manuals
through your local Hewlett-Packard Sales Representative.

Introduction 3

The HP-UX Reference
The following entries from the HP-UX Reference may also be of interest:

• as(l) - describes the assembler and its options.

• ld(l) - describes the link editor, which converts as relocatable object files to
executable object files.

• a. out(4) and magic(4) -describe the format of object files.

Assembler Versions
The Series 300 HP-UX operating system supports two different versions of the as
assembler, asl0 and as20. The asl0 assembler (/bin/asl0) is compatible with the
MC68010 instruction set. The as20 assembler (/bin/as20) supports the MC68020/30,
MC68881, and the HP 98248 Floating-Point Accelerator instruction set.

The separate driver program /bin/as, when executed, makes a run-time check to
determine the type of microprocessor that is present on the host computer, then starts
the appropriate assembler: /bin/asl0 on MC68010-based computers (Model 310), and
/bin/as20on MC68020/30-based machines (Models 320,330,350,360, and 370). Options
to the as(l) command are available to override the run-time default assembler selection.
Use of these options (+x and +X) are explained later in this chapter under the heading
"Invoking the Assembler". You also have the option of invoking asl0 or as2D directly as
a standard HP-UX command, thus bypassing the as driver program.

4 Introduction

Precautions
Though for the most part as notation corresponds directly to notation used in the
previously described processor manuals, several exceptions exist that could lead the
unsuspecting user to write incorrect as code. These exceptions are described next.
(Note that further differences are described in the chapters "Address Mode Syntax"
and "Instruction Sets" .)

Comparison Instructions
One difference that may initially cause problems for some programmers is the order of
operands in compare instructions: the convention used in the M68000 Programmer's
Reference Manual is the opposite of that used by as. For example, using the M68000
Programmer's Reference Manual, one might write:

CMP.W D5.D3
BLE IS_LESS

Is register D3 <= register D5?
Branch if less or equal.

U sing the as convention, one would write:

cmp.w Y.d3.Y.d5
ble is_less

Is register d3 <= register d5?
Branch if less or equal.

This follows the convention used by other assemblers supported in the UNIX 1 operating
system. This convention makes for straightforward reading of compare-and-branch
instruction sequences, but does, nonetheless, lead to the peculiarity that if a compare
instruction is replaced by a subtract instruction, the effect on condition codes will be
entirely different.

This may be confusing to programmers who are used to thinking of a comparison as
a subtraction whose result is not stored. Users of as who become accustomed to the
convention will find that both the compare and subtract notations make sense in their
respective contexts.

1 UNIX@ is a trademark of AT&T Bell Laboratories, Inc.

Introduction 5

Simplified Instructions.
Another issue that may cause confusion for some programmers is that the M68000
processor family has several different instructions to do basically the same operation.
For example, the M68000 Programmer's Reference Manual lists the instructions SUB,

SUBA, SUB!, and SUBQ, which all have the effect of subtracting a source operand from a
destination operand.

The as assembler conveniently allows all these operations to be specified by a single
assembly instruction, sub. By looking at the operands specified with the sub instruction,
as selects the appropriate M68000 opcode-i.e., either SUB, SUBA, SUB!, or SUBQ.

This could leave the misleading impression that all forms of the SUB operation are
semantically identical, when in fact, they are not. Whereas SUB, SUB!, and SUBQ all
affect the condition codes consistently, SUBA does not affect the condition codes at all.
Consequently, the as programmer should be aware that when the destination of a sub

instruction is an address register (which causes sub to be mapped to SUBA), the condition
codes will not be affected.

Specific Forms
You are not restricted to using simplified instructions; you can use specific forms for each
instruction. For example, you can use the instructions addi, adda, and addq, or subi, suba,

or subq, instead of just add or sub. A specific-form instruction will not be overridden if the
instruction doesn't agree with the type of its operand(s) or if a more efficient instruction
exists. For example, the specific form addi is not automatically translated to another
form, such as addq.

6 Introduction

Invoking the Assembler
The as(l) assembler converts as assembly language programs to relocatable object code.
The syntax for the as command is:

as [options] [file]

The as(l) assembler creates relocatable object code. To make the code executable, the
output relocatable code file (see the "Output Object File (-0)" section below) must be
linked using ld(l). For details on using ld, see the ld(l) page of the HP-UX Reference.

The as program (/bin/as) is really a driver that invokes either /bin/asl0 or /bin/as20
after making a run-time check to determine the hardware processor. The +x and +X

options override the run-time check and specify that /bin/as200r /bin/asl0, respectively,
be invoked regardless of the hardware. The specific assemblers can also be invoked
directly, bypassing the /bin/as driver. To bypass the /bin/as driver, use one of these
commands:

as10 [options] [file]
as20 [options] [file]

Input Source File
The file argument specifies the filename of the assembly language source program.
Typically, assembly source files have a . s suffix; e.g., my _prog. s. If no file is specified or
it is simply a hyphen (-), then the assembly source is read from standard input (stdin).

Generate Assembly Listing (-A)
Generate an assembly listing with offsets, a hexadecimal dump of the generated code,
and the source text. The listing goes to standard out {stdout}. This option cannot be
used when the input is stdin.

Generate Assembly Listing in Listfile (-a listfile)
Generate an assembly listing in the file listfile. The listing option cannot be used when
the input is stdin. The listfile name cannot be of the form *. [cs] and cannot start with
the character - or +.

Introduction 7

Local Symbols in LST (-L)
When the -L option is used, entries are generated in the linker symbol table (LST) for
local symbols as well as global symbols. Normally, only global and undefined symbols are
entered into the LST. This is a useful option when using the adb(l) to debug assembly
language programs.

Linker Symbol Table (-I)
Generates entries in the linker symbol table for all global and undefined symbols, and
for all local symbols except those with "." or "L" as the first character. This option is
useful when using tools like prof(l) on files generated by the cc(l) or fc(l) compilers. It
generates LST entries for user-defined local names but not for compiler-generated local
names.

Invoking the Macro Preprocessor (-m)
The -m option causes the m4(1) macro preprocessor to process the input file before as
assembles it.

Short Displacement (-d)
When the -d flag is used with the as20 assembler, as20 generates short displacement
forms for MC68010-compatible syntaxes, even for forward references. (For details on this
option, see the "as20 Addressing Optimization" section of the "Address Mode Syntax"
chapter; also see the appendix "Compatibility Issues.") The -d option is ignored by asl0.

Span-dependent Optimization (-0)
Turns on span-dependent optimization. This optimization is off by default.

Output Object File (-0 objfile)
When as is invoked with the -0 flag, the output object code is stored in the file objfile.
If the -0 flag is not specified and the source is read from stdin, then the object file is
written to a. out. Otherwise, if no object file is specified, output is left in the current
directory in a file whose name is formed by removing the . s suffix (if there is one) from
the assembly source base filename (file) and appending a . 0 suffix. To prevent accidental
corruption of source files, as will not accept an output filename of the form *. [cs]. To
avoid confusion with other options, as will not accept an output filename that starts with
the character - or +.

The as(l) page of the HP-UX reference provides detailed information about the as
command and its options.

8 Introduction

Suppress Warning Messages (-w)
Warning messages are suppressed when this option is used with the assembly invocation
commands (Le., as, as2D, or asl D).

As10 Selection (+X)
This option causes /bin/as to invoke /bin/aslD, overriding the run-time processor check.
It is ignored when either aslD or as2D is invoked directly.

As20 Selection (+x)
This option causes /bin/as to invoke /bin/as2D, overriding the run-time processor check.
It is ignored when either aslD or as2D is invoked directly.

Set Version Stamp Field (-V <number»
This option causes the a_stamp field in the a.out header (see a.out(4)) to be set to
<number>. The -v option overrides any version pseudo-op in the assembly source. See
Chapter 7.

As mentioned at the start of. this section, as creates relocatable object files. There
fore, the .0 files created by as use the magic number RELOC_MAGIC as defined in the
/usr/include/magic.h header file. The linker, ld{l), must be used to make the file exe
cutable. For details on the linker and magic numbers, see the following pages from the
HP- UX Reference: ld{l), a. out{ 4), and magic{ 4).

Introduction 9

Using cc(1) to Assemble
The as assembler can also be invoked using the C compiler, cc{ 1). Options can be passed
to the assembler via the -w a option. For example,

cc -c -w a,-L file.s

would assemble file.s to generate file.o, with the assembler generating LST entries for
local symbols.

cc -0 cmd xyz.s abc.c

will compile abc.c and assemble xyz.s. The resulting .0 files (xyz.o and abc.o) are then
linked, together with libc, to give the executable program cmd.

When invoked via cc{l), the cc +x, +X options can be used to select /bin/as20 or /bin/aslO.
If no +x or +X is specified, cc will select the assembler to run based on a run-time check
of the hardware.

Overview of Assembler Operation
The as assembler operates in two passes. Pass one parses the assembly source program.
As it parses the so'urce code, it determines operand addressing modes and assigns values
to labels. The determination of the addressing mode used for each instruction is based
on the information the assembler has available when the instruction is encountered.
Preliminary code is generated for each instruction.

Throughout this reference, you will encounter the term pass-one absolute. For example,
some expressions allow only pass-one absolute expressions. A pass-one absolute expres
sion is one whose value can be determined when it is first encountered.

Pass two of as processes the preliminary code and label values (determined in pass one) to
generate object code and relocation information. In addition, as generates a relocatable
object file that can be linked by ld{l) to produce an executable object code file. If you
want to know more about the format of object files generated by ld, see the following
HP-UX Reference pages: ld{l), a.out(4), and magic(4).

10 Introduction

Assembly Language Building Blocks 2
This chapter discusses the basic building blocks used to create assembly language
programs: identifiers, register identifiers, and constants.

Identifiers
An identifier is a string of characters taken from a-z, A-Z, 0-9, and _ (the underscore
character). The first character of an identifier must be a letter (a-z or A-Z) or the
underscore (_).

NOTE

Identifiers can also begin with a dot (.), although this is used
primarily for certain reserved symbols used by the assembler (. b,

.w, .1, .s, .d, .x, and .p). To avoid conflict with internal assembler
symbols, you should not use identifiers that start with a dot. In
addition, the names ., . text, . data, and . bss are predefined.

The dot (.) identifier is the location counter. . text, . data,
and . bss are relocatable symbols that refer to the start of the
text, data, and bss segments respectively. These three names are
predefined for compatibility with other UNIX assemblers. (See the
chapter "Segments, Location Counters, and Labels" for details on
segments.)

The as assembler is case-sensitive; for example, loop_35, Loop_35, and LOOP _35 are all
distinct identifiers. Identifiers cannot exceed 256 characters in length.

Assembly Language Building Blocks 11

The as assembler maintains two name spaces in the symbol table: one for instruction and
pseudo-op mnemonics, the other for all other identifiers-user-defined symbols, special
reserved symbols, and predefined assembler names. This means that a user symbol can
be the same as an instruction mnemonic without conflict; for example, addq can be used
as either a label or an instruction. However, an attempt to define a predefined identifier
(e.g., using. text as a label) will result in a symbol redefinition error. Since all special
symbols and predefined identifiers start with a dot (.), user-defined identifiers should not
start with the dot.

Register Identifiers
A register identifier represents an MC68010, MC68020/30, or MC68881 processor
register. The first character of a register identifier is the % character (the % is part of
the identifier). Register identifiers are the only identifiers that can use the % character.
In this section, register identifiers are described for the following groups of registers:

• MC68000 registers, common to the MC68000, MC68010, and MC68020/30 proces
sors

• MC68010 registers, common to both the MC68010 and MC68020/30 processors

• MC68020/30 registers, used only by the MC68020/30 processor

• MC68881 registers, used only by the MC68881 coprocessor.

• HP 98248 Floating-Point Accelerator registers.

12 Assembly Language Building Blocks

MC68000 Registers
Both the MC68010 and MC68020/30 processors use a common set of MC68000 registers:
eight data registers; eight address registers; and condition code, program counter, stack
pointer, status, user stack pointer, and frame pointer registers.

The predefined MC68000 register identifiers are:

%dO

%d1

%d2

%d3

%d4

%d5

%d6

%d7

%aO

%a1

%a2

%a3

%a4

%a5

%a6

%a7

%cc

%pc

%sp

%sr

%usp

%fp

Table 2-1 succinctly defines these registers.

Table 2-1. MC68000 Register Identifiers

Name

Yedn Data Register n

Yean Address Register n

Yecc Condition Code Register

Yepc Program Counter

Yesp Stack Pointer (this is Yea7)

Yesr Status Register

Yeusp User Stack Pointer

Yefp Frame Pointer Address Register (this is
YeaS)

Assembly Language Building Blocks 13

MC68010 Registers
In addition to the MC68000 registers, the MC68010 processor supports the registers
shown in Table 2-2.

Table 2-2. MC68010 Register Identifiers

Name

%sfc Source Function Code Register

%dfc Destination Function Code Register

%vbr Vector Base Register

MC68020/30 Registers
The entire register set of the MC68000 and MC68010 is included in the MC68020/30
register set. Table 2-3 shows additional control registers available on the MC68020/30
processor.

Table 2-3. MC68020/30 Control Register Identifiers

Name

%caar Cache Address Register

%cacr Cache Control Register

%isp Interrupt Stack Pointer

%msp Master Stack Pointer

Various addressing modes of the MC68020/30 allow the registers to be suppressed (not
used) in the address calculation. Syntactically, this can be specified either by omitting
a register from the address syntax or by explicitly specifying a suppressed register (also
known as a zero register) identifier in the address syntax. Table 2-4 defines the register
identifiers that can be used to specify a suppressed register.

14 Assembly Language Building Blocks

Table 2-4. Suppressed (Zero) Registers

Name

%zdn Suppressed Data Register n, where n is
the register number (0 through 7)

%zan Suppressed Address Register n, where n
is the register number (0 through 7)

%zpc Suppressed Program Counter

MC68881 Registers
Table 2-5 defines the register identifiers for the MC68881 floating-point coprocessor.

Table 2-5. MC68881 Register Identifiers

Name Description

%fpO, %fp1, %fp2, %fp3, Floating Point Data Registers
%fp4, %fp5, %fp6, %fp7

Y.fpcr Floating Point Control Register

Y.fpsr Floating Point Status Register

y'fpiar Floating Point Instruction Address
Register

Floating-Point Accelerator Registers
Table 2-6 defines the register identifiers for the floating-point accelerator.

Table 2-6. Floating-Point Accelerator Registers

Name Description

%fpaO - Y.fpa15 Floating Point Data Registers

Y.fpacr Floating Point Control Register

Y.fpasr Floating Point Status Register

Assembly Language Building Blocks 15

Constants
The as assembler allows you to use integer, character, string, and Boating point constants.

Integer Constants
Integer constants can be represented as either decimal (base 10), octal (base 8), or
hexadecimal (base 16) values. A decimal constant is a string of digits (0-9) starting with
a non-zero digit (1-9). An octal constant is a string of digits (0-7) starting with a zero
(0). A hexadecimal constant is a string of digits and letters (0-9, a-f, and A-F) starting
with Ox or OX (zero X). In hexadecimal constants, upper- and lower-case letters are not
distinguished.

The as assembler stores integer constants internally as 32-bit values. When calculating
the value of an integer constant, overflow is not detected.

Following are example decimal, octal, and hexadecimal constants:

35 Decimal 35
035 Octal 35 (Decimal 29)
OX35 Hexadecimal 35 (Decimal 53)
OxfF Hexadecimal ff (Decimal 255)

Character Constants
An ordinary character constant consists of a single-quote character (') followed by an
arbitrary ASCII character other than the backslash (\), which is reserved for specifying
special characters. Character constants yield an integer value equivalent to the ASCII
code for the character; because they yield an integer value, they can be used anywhere
an integer constant can. The following are all valid character constants:

Constant Value

'0 Digit Zero

'A Upper-Case A

'a Lower-Case a

'\' Single-Quote Character (see following de-
scription of special characters)

16 Assembly Language Building Blocks

A special character consists of \ followed by another character. All special characters
are listed in Table 2-6.

Table 2-6. Special Characters

Constant Value Meaning

\b Ox08 Backspace

\t Ox09 Horizontal Tab

\n OxOa Newline (Line Feed)

\v OxOb Vertical Tab

\f OxOc Form Feed

\r OxOd Carriage Return

\\ Ox5c Backslash

\' Ox27 Single Quote

\" Ox22 Double Quote

Note: If the backslash precedes a character other than the special characters shown in
Table 2-6, then the character is produced. For example, \A is equivalent to A; \= is
equivalent to =; and so on.

In addition to the special characters shown in Table 2-6, you can optionally represent
any character by following the backslash with an octal number containing up to three
digits:

\ddd

For example, \11 represents the horizontal tab (\t); \0 represents the NULL character;
and \377 represents the value 255, whatever character it may be.

Assembly Language Building Blocks 17

String Constants
A string consists of a sequence of characters enclosed in double quotes. String constants
can be used only with the byte and asciz pseudo-ops, described in the "Pseudo-Ops"
chapter.

Special characters (see Table 2-6) can be imbedded anywhere in a string. A double-quote
character within a string must be preceded by the \ character.

Strings may contain no more than 256 characters.

String constants can be continued across lines by ending nonterminating line (s) with the
\ character. Spaces at the start of a continued line are significant and will be included
in the string. For example,

The following lines start in the first column.

byte "This\
string \

contains a double-quote (\") character."

produces the string:

This string contains a double-quote (II) character.

Floating-Point Constants
Floating-point constants can only be used as either:

• immediate operands to MC68881 floating-point instructions, or

• as the operand of one of the following data-allocation pseudo-ops: float, double,
extend, and packed.

18 Assembly Language Building Blocks

A floating-point constant starts with Of (zero f) or OF and is followed by _a string of
digits containing an optional decimal point and followed by an optional exponent. The
floating-point data formats are described in the MC68881 User's Manual. The following
are examples of floating-point constants:

fadd.d ctOf1.2e+02.%fp1 # the constant is "double"!
inferred from instr. size (.d)

float Of-1.2e3

The type of a floating-point constant (float, double, extend, or packed) is determined by
the pseudo-op used or, for immediate operands, by the operation size (. s, . d, . x, or . p).
When a floating-point constant is used as an immediate operand to an instruction, an
operation size must be specified in order to define the type of the constant.

Floating-point constants are converted to IEEE floating-point formats using the cvt
num{3C) routine. (See the cvtnum{3C) page in the HP-UX Reference for details.) The
rounding modes can be set with the fpmode pseudo-op. Also, special IEEE numbers can
be specified with the NAN (Not A Number) and INF (INFinity) syntaxes:

Ofinf
Of Nan (abcdeeo)

1 The "&" operator in the floating-point constant example specifies to as that the floating-point constant
is an immediate operand. For details, see the chapter "Addressing Mode Syntax."

Assembly Language Building Blocks 19

Notes

20 Assembly Language Building Blocks

Assembly Language Syntax 3
This chapter discusses the syntax of as assembly language programs.

Syntax of the Assembly Language Line
Assembly language source lines conform to the following syntax:

[labe~... [statement] [comment]

An assembly language line is comprised of up to three main parts: label, statement, and
comment. Each part is optional (as denoted by the brackets []). Therefore, a line can
be entirely blank (no parts present), or it may contain any combination of the parts in
the specified order. A line can also have more than one label.

Labels, statements, and comments are separated by white space (i.e., any number of
spaces or tabs), and there can also be white space before labels.

Note: We recommend that you use tabs to align the columns of your assembly language
programs. This is not required by the assembler. However, it does make your programs
easier to read.

Assembly Language Syntax 21

Labels
A label is an identifier followed by a colon (although the colon is not considered to be
part of the label). A label can be preceded by white space. There can be more than one
label per line. (This feature is used primarily by compilers.)

Labels can precede any instruction or pseudo-op, except the text, data, and bss pseudo
ops. For details on label types and label values, see the chapter "Segments, Location
Counters, and Labels."

Statements
A statement consists of an MC68010/20/30 opcode or an as pseudo-op and its operand(s),
if any:

statement == opcode [operand [,operandj ...]

Several statements can appear on the same line, but they must be separated by
semicolons:

statement [; statement] ...

Comments
The # character signifies the start of a comment. Comments are ignored by the assembler.
Comments start at the # ccharacter and continue to the end of the line. A # character
within a string or character constant does not start a comment.

NOTE

Some users invoke cpp(l) to make use of macro capabilities. In
such cases, care should be taken not to start comments with the #

in column one because the # in column one has special meaning to
cpp.

22 Assembly Language Syntax

Segments, Location Counters,
and Labels
This chapter discusses segments, location counters, and their relation to labels.

Segments

4

An as assembly language program may be divided into separate sections known as
segments. Three segments exist in as assembly language: text, data, and bss. The
resulting object code from as assembly is the concatenation of the text, data, and bss
segments.

By convention, instructions are placed in the text segment; initialized data is placed in
the data segment; and storage for uninitialized data is allocated in the bss segment. By
default, as begins assembly in the text segment.

Instructions and data can be intermixed in either the text or data segment, but only
uninitialized data can be allocated in the bss segment.

The pseudo-ops text, data, and bss cause as to switch to the specified segment. You can
switch between different segments as often as needed. These pseudo-ops are discussed in
the "Pseudo-Ops" chapter.

NOTE

The as assembler also maintains dntt, sit, and vt segments for
support of the symbolic debugger, cdb(l). These are generated, for
example, when the cc(l) compiler is invoked with the -g option.
These segments are mainly for compiler use and are not generally
of interest to as programmers.

Segments, Location Counters, and Labels 23

Location Counters
The assembler maintains separate location counters for the text, data, and b88 segments.
The location counter for a given segment is incremented by one for each byte generated
in that segment.

The symbol dot (.) is a predefined identifier which represents the value of the location
counter in the current segment. It can be used as an operand for an instruction or a
data-allocation pseudo-op. For example:

text
jmp # this is an infinite loop

Or,

data
x: long ., . ,

When allocating data, as in the second example, the location counter is updated after
every data item. So the second example is equivalent to:

x:
data
long x, x+4, x+8 # "long" data items consume 4 bytes each

24 Segments, Location Counters, and Labels

Labels
A label has an associated segment and value. A label's segment is equivalent to the
segment in which the label is defined. A label's value is taken from the location counter
for the segment. Thus, a label represents a memory location relative to the beginning of
a particular segment.

A label is associated with the next assembly instruction or pseudo-op that follows it, even
if it is separated by comments or newlines. If the instruction or pseudo-op which follows
a label causes any implicit alignment to certain memory boundaries (e.g., instructions
are always aligned to even addresses), the location counter is updated before the label's
value is assigned. Explicit assignments using the lalign pseuo-op occur after the label
value is set.

The following example should help clarify what a label's segment and value are:

Switch to the data segment and enter the first initialized
data into it:

x:

y:
z:

data
long
byte

long

Ox1234
2

Oxabcd

allocate 4 bytes for this number
allocate 1 byte for this number
now initialize the variable "y"

Assuming these lines are the first statements in the data segment, then label x is in the
data segment and has value 0; labels y and z are also in the data segment and each has
value 6 (because the long pseudo-op causes implicit alignment to even addresses, i.e.,
word boundaries). Note that both y and z are labels to the long pseudo-op.

Padding or filler bytes generated by implicit alignment are initialized to zeroes.

Segments, Location Counters, and Labels 25

Notes

26 Segments, Location Counters, and Labels

Expressions 5
This chapter discusses as assembly language expressions. An expression can be extremely
simple; for example, it can be a single constant value. Expressions can also be complex,
comprised of many operators (e.g., +, -, *, /) and operands (constants and identifiers).

Expression Types
All identifiers and expressions in an as program have an associated type, which can be
one of the following:

• absolute

• relocatable

• external.

Absolute
In the simplest case, an expression or identifier may have an absolute value, such as
56, -9000, or 256 318. All constants are absolute expressions. Identifiers used as labels
cannot have an absolute value because they are relative to a segment. However, other
identifiers (e.g., those whose values are assigned via the set pseudo-op) can have absolute
values.

Relocatable
Any expression or identifier may have a value relative to the start of a segment. Such
a value is known as a relocatable value. The memory location represented by such
an expression cannot be known at assembly time, but the relative values of two such
expressions (i.e., the difference between them) can be known if they are in the same
segment.

Identifiers used as labels have relocatable values.

Expressions 27

External
If an identifier is never assigned a value, it is assumed to be an undefined external. Such
identifiers may be used with the expectation that their values will be defined in another
program, and therefore known at link time; but the relative value of undefined externals
cannot be known.

Expression Rules
The basic building blocks of expressions are operators, constants, and identifiers. Table
5-1 shows all the operators supported by as.

Table 5-1. Expression Operators

Unary Opera tors

Op Description

+ Unary Plus (no-op)

- Negation

- 1's Complement (Bitwise
Negate)

Binary Operators

Op Description

+ Addition

- Subtraction

* Multiplication

/1 Division
@1 Modulo

> Bit Shift Right

< Bit Shift Left

& Bitwise AND

I Bitwise OR
A Bitwise Exclusive-OR

1 If the result of a division is anon-integer, truncation is performed so that the sign of the remainder is
the same as the sign of the quotient.

28 Expressions

U sing the following abbreviations:

• expr - expression

• unop - unary operator

• binop - binary operator

• const - constant

• id - identifier

expressions can be constructed from the following rule:

expr == const
id
unop expr
expr binop expr
(expr)

Note that the definition is recursive; that is, expressions can be built from other
expressions. All of the following are valid expressions:

Ox7ffa091c
125
Default_X_Col
- 1
BitMask & Ox3fc9 # BitMask must be absolute.
(0)
(MinValue + X_offset) * ArraySize # MinValue. X_offset. and ArraySize all

must be absolute.

Expressions 29

Precedence and Associativity Rules
To resolve the ambiguity of the evaluation of expressions, the following precedence rules
are used:

unary + - -
* / @

+-
<>
&

HIGHEST

LOWEST

Parentheses () are used to override the precedence of operators. Unary operators group
(associate) right-to-Ieft; binary operators group left-to-right. Note that the precedence
rules agree with those of the C programming language.

Determining Expression Type
The resulting type of an expression depends on the type of its operand(s). Using the
following notation:

• abs - integer absolute expression

• rei - relocatable expression

• ext - undefined external

• dabs - double floating point constant

• fabs - floating point constant (float, extend, or packed).

30 Expressions

The resulting expression type is determined as follows:

abs binop abs = abs
unop abs = abs

dabs binop dabs = dabs (where binop can be +, -, *, /)
unop dabs = dabs (where unop can be +, -)
fabs (fabs expressions are limited to single constants)

abs + rei = rei
rei + abs = rei
rei - abs = rei

abs + ext = ext
ext + abs = ext
ext - abs = ext

rei - rei = abs (provided both reI expressions are relative to the same segment)

Absolute integer constants are stored internally as 32-bit signed integer values. Evalua
tion of absolute integer expressions uses 32-bit signed integer arithmetic. Integer overflow
is not detected.

Note: The value of a rei - rei expression can be computed only when the values of
both rei expressions are known. Therefore, a rei - rei expression can appear in a larger
expression (e.g., rel- rei + abs) only if both rels are defined before the expression occurs;
this is so that the assembler can do the subtraction during pass one. If either of the rels
is not defined prior to a rei - rei subtraction, the calculation is delayed until pass two;
then the expression can be no more complex than identifier - identifier.

When the -0 option is used to turn on span-dependent optimization, all subtraction
calculations of text symbols (labels defined in the text segment) are normally delayed until
pass two since the final segment relative offset of a text symbol cannot be determined in
pass one. This means that expressions involving subtraction of text symbols are limited
to identifier - identifier. This default can be overridden with the allow_plsub pseudo-op
which directs the assembler to compute subtractions in pass one even if the symbols are
text symbols. The difference will be calculated using the (preliminary) pass one values of
the symbols; the two labels in such a subtraction (label1 - label2) should not be separated
by any code operations that will be modified by span-dependent optimization (see Span
Dependent Optimization in Chapter 6 and a description of allow_plsub pseudo-op in
Chapter 7).

Expressions 31

Expressions must eyaluate to absolute numbers or simple relocatable quantities; that
is, identifier [± absolute]. Complex relocation (i.e., expressions with more than one
non-absolute symbol other than the identifier - identifier form) is not permitted, even
in intermediate results. Thus, even though expressions like (rel1 - rel2) + (rel3 -
rel4) are legal (if all reli are in the same segment and defined prior to the expression),
expressions such as (rell + rel2) - (rel3 + rel4) are not.

Since expression evaluation is done during pass one, an expression (and every inter
mediate result of the expression) must be reducible to an absolute number or simple
relocatable form (i.e., identifier [± offset] or identifier - identifier) at pass one. This
means that other than the special form identifier - identifier, an expression can contain
at most one forward-referenced symbol.

For example, the following code stores a NULL-terminated string in the data segment
and stores the length of the string in the memory location login_prompt_length. The
string length (not including the terminating NULL) is computed by subtracting the
relative values of two labels (login_prompt_end - login_prompt) and subtracting 1 (for the
terminating NULL). This is valid because both labels are defined prior to the subtraction
in which they are used.

login_prompt:
login_prompt_end:

data
byte
space

"Login Name: ",0
o

The "space" pseudo-op above causes the label "login_prompt_end"
to have the value of the location counter. If this was not included,
the label would be associated with the following "short" pseudo-op,
which has implicit word-alignment, and which might cause an invalid
value in the "login_prompt_length" calculation.

The next code example contains an invalid expression, because:

1. The expression uses two as-yet-unencountered relative expressions, exit_prompt and
exit_prompt_len.

2. Secondly, the computed expression (exi t_prompt_end - exit_prompt - 1) is too
complex because of the "- 1". Expressions that use as-yet-unencountered relative
expressions cannot be any more complex than identifier - identifier.

exit_prompt_len:
exit_prompt:
exit_prompt_end:

32 Expressions

data
short
byte
space

exit_prompt_end - exit_prompt - 1
"Good-Bye\n",0
o

To solve this problem, you could rewrite the above code as:

data
exit_prompt_len:
exit_prompt:
exit_prompt_end:

short
byte
byte

exit_prompt_end - exit_prompt - 1
"Good-Bye\n".O
o

Notice that the exi t_prompt_len expression has been reduced to a reI - reI expression,
exit_prompt_end - exit_prompt.

Pass-One Absolute Expressions
Throughout this reference you will encounter the term pass-one absolute expression.
For example, some pseudo-op and instruction arguments must be pass-one absolute
expressions. A pass-one absolute expression is one which can be reduced to an absolute
number in pass one of the assembly. A pass-one absolute expression cannot contain any
forward references.

Pass-One Absolute Expressions and Span-Dependent Optimization
A pass-one expression cannot contain any forward references. When the -0 option is
used, a symbol subtraction of two text symbols (identifier - identifier) is not pass-one
absolute because all subtraction calculations for text symbols are delayed until pass two.
This can cause problems in a program segment like the following:

text
Lstart: long 100. 101

Lend:

Lsize:

lalign 1 # no effect except to define the
label Lend.

long (Lend - Lstart)/4 # number of table entries

Tegment would assemble correctly if the -0 option is not used, but the calculation (Lend
- Lstart) /4 would give a syntax error if the -0 option is used because the expression
would be too complex.

This can be remedied by either moving the table declarations to the data segment, or
by using the allow_plsub pseudo-op. The allow_plsub pseudo-op directs the assembler
to perform pass one subtractions where possible even for text symbols. The subtractions
are performed using pass one values; the labels should not be separated by any code that
will be modified by span-dependent optimization (see Span-Dependent Optimization in
Chapter 6 and a description of allow_plsub pseudo-op in Chapter 7).

Expressions 33

Floating-Point Expressions
Floating-point constants can be float (single-precision), double, extended, or packed. The
particular kind of floating-point constant generated by as is determined by the context
in which the constant occurs. (See the float, double, extend, and packed pseudo-ops in
the "Pseudo-Ops" chapter.)

When used with the float, extend, or packed pseudo-ops, floating-point expressions are
restricted to a single constant; for example:

float Ofl.23el0

Double floating-point expressions can be built using the unary operators + and -, and
the binary operators +, -, /, and *. Double expressions are evaluated using C-like
double arithmetic. The following shows a double expression:

double Ofl.2 * Of3.4 + Of.6

34 Expressions

Span-Dependent Optimization 6
The MC680xx branching instructions (bra, bsr, bCC) have a PC-relative address operand.
The size of the operand needed depends on the distance between the instruction and its
target. Choosing the smallest form is called span-dependent optimization.

Using the -0 Option
The assembler -0 option enables span-dependent optimization in the assembler. By
default, span-dependent optimization is not enabled. 1 When the -0 option is enabled,
the asl0 and as20 assemblers will attempt to optimize the PC-relative offset for the
instructions shown in Table 6-1.

Table 6-1.

aslO as20

bCC bCC

bra bra

bsr bsr

fbFPCC (68881)

fpbCC (FPA)

Span-dependent optimizations are performed only within the text segment and affect only
instructions that do not have an explicit size suffix. Any instruction with an explicit size
suffix is assembled according to the specified size suffix and is not optimized.

1 When compiling C or Fortran programs with the cc(l) or /77(1) compilers using the -0 compiler option,
the peephole optimizer (flib/c2) does the span-dependent optimization rather than the assembler. A C
or Fortran program should not be compiled with the -Wa, -0 option.

Span-Dependent Optimization 35

The as20 assembler chooses between . b, . w, and .1 operations. The asl0 assembler
chooses between. band. w operations; when a . w offset is not sufficient, the asl0 assembler
uses equivalent instructions to provide the effect of a long offset. This means that a
program that fails to assemble with the asl0 because of branch offsets that are longer
than a word may assemble when asl0 -0 is used.2

Tables 6-2 and 6-3 show the span-dependent optimizations performed by the asl0 and
as20 assemblers, respectively.

Table 6-2. aslO Span-Dependent Optimizations

Instruction Byte Form Word Form Long Form

br.

bee

bra. bsr byte offset word offset jrnp or jsr with absolute
long address

byte nffset word offset byte offset condi-
tional branch with reversed
condition around jrnp with
absolute long address

Note

A byte branch offset cannot be zero (i.e., branch to the following
address). A br, bra, or bee to the following address is optimized
to a nop. A bsr to the following address uses a word offset.

2 When a branch is too long to fit in the given offset, you will get an error message similar
to as error: "x.s" line 120: branch displacement too large: try -0 assembler option (com
piler option -Waf -0) (with no size on branch statement). If you are using asl0 and the offset is
already word sized, then try using the -0 option and remove the . w suffix from the branch instruction.

36 Span-Dependent Optimization

Table 6-3. as20 Span-Dependent Optimizations

Instruction Byte Form Word Form Long Form

br, bra, bar byte offset word offset long offset

bCC

fbCC

fpbCC

byte offset word offset long offset

- word offset long offset

byte offset word offset long offset

Note

A byte branch offset cannot be zero (i.e., branch to the following
address). A br, bra, or bCC to the following address is optimized to
a nop. A bar to the following address uses a word offset. The FPA
fpbCC optimization refers to optimizing the implied 68020 branch
(see FPA Manua~.

Span-Dependent Optimization 37

The following programs show original assembly source and the corresponding code
produced by span-dependent optimization. The first program shows the optimizations
performed by as20:

Effective Code
after optimization

Original Code with as20

bcs L1 nop
L1 : add %dO.%d1 L1: add %dO.%dl

bne L2 bne.b L2
bra L2 bra.b L2
bsr L2 bsr.b L2
space 80 space 80

L2: add %dO.%d1 L2: add %dO.%dl

beq L3 beq.w L3
bra L3 bra.w L3
bsr L3 bsr.w L3
space 2000 space 2000

L3: add %dO.%d1 L3: add %dO.%dl

bgt L4 bgt.l L4
bra L4 bra.l L4
bsr L4 bsr.l L4
space 40000 space 40000

L4: add %dO.%d1 L4: add %dO.%d1

38 Span-Dependent Optimization

The second program illustrates the optimizations performed by asl0:

Effective Code
after optimization

Original Code with asl0

bcs Ll nop
Ll : add %dO,%dl L1: add %dO,%d1

bne L2 bne.b L2
bra L2 bra.b L2
bsr L2 bsr.b L2
space 80 space 80

L2: add %dO,%dl L2: add %dO,%d1

beq L3 beq.w L3
bra L3 bra.w L3
bsr L3 bsr.w L3
space 2000 space 2000

L3: add %dO,%d1 L3: add %dO,%dl

bgt L4 bIe.l L4x
jmp L4 #absolute.l addressing

L4x:
bra L4 jmp L4 #absolute.l addressing
bsr L4 jsr L4 #absolute.l addressing

space 40000 space 40000
L4: add %dO,%d L4: add %dO,%d1

Span-Dependent Optimization 39

Restrictions When Using the -0 Option
Several caveats should be followed when using the span-dependent optimization option.
These are good programming practices to follow in general when programming in
assembly.

When the span-dependent optimization option is enabled, branch targets should be
restricted to simple labels, such as L1. More complex targets, such as L1+10, are
ambiguous since the span-dependent optimizations can modify instruction sizes. A
branch with a nonsimple target may not assemble as expected.

Absolute (rather than symbolic) offsets in PC-relative addressing modes should be used
only where the programmer can calculate the PC offset and the offset cannot be changed
by potential span-dependent optimization.

Important Recommendation

When using span-dependent optimization, limit text segment tar
gets to simple labels, such as L1. Nonsimple targets, such as L1+10
or PC-relative addressing with a nonsymbolic offset field should be
used only when the programmer knows that the code between la
bel L1 and L1 + 10 will always assemble to a fixed size and cannot
be modified by span-dependent optimization.

40 Span-Dependent Optimization

Span-Dependent Optimization and Lalign
When span-dependent optimization is enabled, the assembler will preserve any even
sized laligm relative to the start of the text segment. This may result in some branch
optimizations being suboptimal.

Only laligm of 1, 2, and 4, however, are guaranteed to be preserved by the linker (ld{l)).
(See "A Note about lalign" in Pseudo-Op section.)

Symbol Subtractions
In normal mode, the assembler calculates symbol subtractions in pass one if both symbols
are already defined. This allows more complex expressions involving symbol differences
to be used.

Table: long 123
long 234

long 231
Tend: lalign 1
Tsize: long (Tend-Table)/4

no effect except to define Tend
number of elements in Table

When span-dependent optimization is enabled, the assembler normally saves all symbols
subtractions involving text segment symbols until pass two because the symbol values
(text relative offset) will not be known until after pass one is complete and span-dependent
optimization is performed. This restricts expressions involving text symbol differences
to identifier - identifier. In the example program above, the line defining Tsize would
assemble correctly if the -0 option is not used but will generate a syntax error (II illegal
di vide II) if the -0 option is enabled.

There are two solutions to this problem. In the above example, the code lines could
be put into the data segment; span-dependent optimization does not affect the rules for
calculating symbol differences of data or bss symbols.

The second alternative is to use the allow_plsub and end_plsub pseudo-ops. The
allow_plsub and end_plsub pseudo-ops bracket areas where the assembler is directed
to calculate text symbol subtractions in pass one (provided both symbols are already
defined), even though the -0 option is enabled. The two text symbols in a difference
Labell - label!! should not be separated by any code that could be modified by span
dependent optimization. If the two symbols are separated by code that is optimized, the
subtraction result will be wrong since it is calculated using pass one offsets.

Span-Dependent Optimization 41

The following code segment is similar to the code generated by the C compiler for a
switch statement. It has been modified to calculate a Lswitch_limit for the size of the
switch table (the compiler generates an in-line constant instead). The line defining
Lswitch_limit is bracketed by allow_plsub and end_plsub so that the subtraction will be
done in pass one and the complex expression will be accepted by the assembler. The
pass one subtraction is valid since labels L22 and Lswitch_end are separated only by long
pseudo-ops which cannot change in size during span-dependent optimization.

L23:

L22:

subq.l
cmp.l
bhi.l
mov.l
jmp

kOxl.%dO
%dO.Lswitch_limit
L21
(L22.%zaO.%dO.l*4).%dO
2(%pc.%dO.l)

lalign 4

long L15-L23
long L16-L23
long L17-L23
long L18-L23
long L19-L23
long L20-L23

Lswitch_end: lalign 1
allow_plsub

Lswitch_limit: (Lswitch_end-L22)/4 - 1
end_plsub

L13:

42 Span-Dependent Optimization

Pseudo-Ops 7
The as assembler supports a number of pseudo-ops. A psuedo-op is a special instruction
that directs the assembler to do one of the following:

• select segments

• initialize data

• define symbols

• align within the current segment.

• floating-point directives

• span-dependent directives for expression calculation

• set the a_stamp field in the a. out header

Pseudo-Ops 43

Segment Selection Pseudo-Ops
You can control in which segment code and/or data is generated via segment selection
pseudo-ops. Table 7-1 describes the three segment selection pseudo-ops.

Table 7-1. Segment Selection Pseudo-Ops

Pseudo-Op Description

text Causes the text segment to be the current segment-i.e.,
all subsequent assembly output (until the next segment
selection pseudo-op) is generated in the text segment.
By default, assembly begins in the text segment.

data Causes the data segment to be the current segment-i.e.,
any subsequent assembly is placed in the data segment.

bss Causes the bss segment to be the current segment.
The bss segment is reserved for uninitialized data only.
Attempting to assemble code or data definition pseudo-
ops (e.g., long, byte, etc) results in an error. The only
data-allocation pseudo-ops that should be used in the
bss segment are space and lcomm.

44 Pseudo-Ops

An assembly program can switch between different segments any number of times. In
other words, you can have a program that switches back and forth between different
segments, such as:

text

assembly code for the text segment

data

put some initialized data here in the data segment

bss

allocate some space for an array in the bss segment

text

more assembly code in the text segment

data

more initialized data in the data segment

Pseudo-Ops 45

Data Initialization Pseudo-Ops
Table 7-2 lists all data initialization pseudo-ops. Data initialization pseudo-ops allocate
the appropriate space and assign values for data to be used by the assembly language
program. Data is allocated in the current segment.

Table 7-2. Data Initialization Pseudo-Ops

Pseudo-Op

byte iexprlstring[, ...]

short iexpr[, ...]

long iexpr[, ...]

asciz string

Hoat !expr[, ...]

46 Pseudo-Ops

Description

The byte pseudo-op allocates successive bytes of data
in the assembly output from a specified list of integer
expressions (iexpr) and/or string constants (string).

The iexpr can be absolute, relocatable, or external.
However, only the . low-order byte of each relocatable or
external iexpr is stored.

A string operand generates successive bytes of data for
each character in the string; as does not append the
string with a terminating NULL character.

The short psuedo-op generates 16-bit data aligned on
word (16-bit) boundaries from a list of integer expres
sions (iexpr). The iexpr can be absolute, relocatable, or
external. However, only the low-order 16-bit word of
each relocatable or external iexpr is stored.

The long pseudo-op generates 32-bit data from a list
of one or more integer expressions (iexpr) separated by
commas. Data is generated on word (16-bit) boundaries.
An iexpr can be absolute, relocatable, or external.

The asciz pseudo-op puts a null-terminated string into
the assembly output: one byte is generated for each
character, and the string is appended with a zero byte.

Generates single-precision (32-bit) floating point values!
from the specified list of one or more absolute floating
point expressions (Jexpr). Data is stored on word (16-
bit) boundaries. Only simple floating point constants
are allowed.

Table 7-2. Data.Initialization Pseudo-Ops (continued)

Pseudo-Op

double Jexpr[, ...]

packed Jexpr[, ...]

extend Jexpr[, ...]

space abs

Description

Generates double-precision (64-bit) floating point
values 1 from the specified list of one or more absolute
floating point expressions (fexpr). Data is stored on word
(16-bit) boundaries.

Generates word-aligned, packed floating point values l

(12 bytes each) from the list of floating point expres
sions. Only simple floating point constants are allowed
for Jexpr.

Generates word-aligned, extended floating point values l

(12 bytes each) from the list of floating point expres
sions. Only simple floating point constants are allowed
for Jexpr.

When used wi thin the data or text segment, this pseudo
op generates abs bytes of zeroes in the assembly output,
where abs is a pass-one absolute integer expression 2:: O.

When used in the bss segment, it allocates abs number
of bytes for uninitialized data. This data space is not
actually allocated until the program is loaded.

lcomm identijier,size,align Allocate size bytes within bss, after aligning to align
within the bss assembly segment. Both size and align
must be absolute integer values computable on the first
pass. Size must be 2:: 0; align must be > O.

lcomm always allocates space within bss, regardless
of the current assembly segment; however, it does not
change the current assembly segment.

1 For float, double, packed, and extend, conversions are performed according to the IEEE floating
point standard using the cvtnum(3C) routine. (See the cvtnum(3C) page of the HP-UX Reference for
details on this routine.) The current value of fpmode defines the rounding mode to be used.

Pseudo-Ops 47

Symbol Definition Pseudo-Ops
Symbol definition pseudo-ops allow you to assign values to symbols (identifiers), define
common areas, and specify symbols as global. Table 7-3 describes the symbol definition
pseudo-ops.

Table 7-3. Symbol Definition Pseudo-Ops

Pseudo-Op Description

set id, iexpr Sets the value of the identifier id to iexpr which may
be pass-one integer absolute or pass-one relocatable. A
pass-one relocatable expression is defined as:

sym [± abs]

where sym has been defined prior to encountering the
expression in pass one, and abs is pass-one absolute.

comm id,abs Allocates a common area named id of size abs bytes. The
abs parameter must be pass-one absolute. The linker will
allocate space for it. The symbol id is marked as global.

global id[,id] Declares the list of identifiers to be global symbols. The
names will be placed in the linker symbol table and will
be available to separately assembled .0 files. This allows
the linker (ld(1)) to resolve references to id in other
programs.

48 Pseudo-Ops

Alignment Pseudo-Ops
Table 7-4 defines the two alignment pseudo-ops provided by as.

Pseudo-Op

lalign abs

even

align name, abs

Table 7-4. Alignment Pseudo-Ops

Description

Align modulo abs in the current segment. abs must be
a pass-one absolute integer expression. The most useful
forms are:

lalign 2
lalign 4

within the data or bss segments. These force 16-bit
(word) and 32-bit alignment, respectively, in the current
segment. When used in the data or text segment, the
"filler" bytes generated by the alignment are initialized
to zeroes. If the statement is labeled, the label's value
is assigned before the "filler" bytes are added. (See "A
Note about lalign" below for details on how this pseudo
op is used.)

Same as lalign 2.

This pseudo-op creates a global symbol of type align.
When the linker sees this symbol, it will create a hole
beginning at symbol name whose size will be such that
the next symbol will be aligned on a abs modulo bound
ary. abs must be a pass-one absolute integer expres
sion. (See "A Note about align" below for details on
this pseudo-op.)

Pseudo-Ops 49

A Note about lalign
The assembler concatenates text, data, and bss segments when forming its output (object)
file. The assembler rounds each segment size up to the next multiple of four bytes, which
mayor may not leave unused space at the end of each segment.

When multiple object (.0) files are linked, Id(l) concatenates all text segments into one
contiguous text segment, all data segments into one contiguous data segment, and all bss
segments into one contiguous bss segment. Because of this, only lalign values of 1, 2, and
4 can be guaranteed to be preserved; any other lalign values cannot be guaranteed. This
also applies to the lcomm pseudo-op.

A Note about align
The align pseudo-op should be used with care. Consider the following example:

Table:

bss
align gap, 1024
space 4096

The align pseudo-op causes Table to be aligned on a 1Kb boundary in memory. The
symbol gap is the address of the hole created before the start of Table. Because the actual
alignment of gap is performed by the linker and not the assembler (the assembler assigns
addresses as though the hole size were zero), any expression calculation which spans the
alignment hole will yield incorrect results. For example:

x:

Table:
Table_end:

bss_size:

50 Pseudo-Ops

bss
space 10
align gap,
space 4096
space 0
data
Table_end - x

1024

The assembler assumes the size of
"gap" to be zero, so this expression
will yield incorrect results.

Pseudo-Ops to Control Expression Calculation with Span-Dependent
Optimization
Table 7-5 describes pseudo-ops provided to control pass one symbol subtraction calcula
tions when the -0 (span-dependent optimization) option is used. These pseudo-ops have
no effect and are ignored if the -0 option is not in effect.

Table 7-5. Symbol Subtraction

Pseudo-Op Description

allow_plsub Directs the assembler to perform symbol subtractions
in pass one when both symbols are known, even if the
symbols are text symbols. Two text symbols in a differ-
ence (identifier 1 - identifier2) should not be separated
by any code that could be modified by span-dependent
optimization.

end_plsub Directs the assembler to revert to the default for subtrac-
tions when the -0 option is used; subtractions involving
text symbols will be delayed until pass two.

When the -0 option is used, all subtraction calculations of text symbols are normally
delayed until pass two since the final segment relative offset of a text symbol cannot be
determined in pass one. This limits expressions involving the subtraction of text symbols
to identifier - identifier. The allow_plsub and end_plsub pseudo-ops bracket areas where
the assembler is directed to calculate text symbol subtractions in pass one provided the
symbols are already defined. Two text symbols in a difference (label1 - label2) should not
be separated by any code that could be modified by span-dependent optimization since
the subtraction is calculated using pass one offsets.

Pseudo-Ops 51

Floating-Point Pseudo-Ops
Table 7-6 describes the floating-point pseudo-ops.

Table 7-6. Floating-Point Pseudo-Ops

Pseudo-Op Description

fpmode abs Sets the floating point mode for the conversion of float-
ing point constants used with the float, double, ex-
tend, and packed pseudo-ops or as immediate operands
to MC68881 or FPA instructions. Valid modes are de-
fined by cvtnum{3C}. (See the cvtnum{3C) page of the
HP-UX Reference for details on modes.) By default, the
fpmode is initially 0 (C_NEAR).

Valid values for fpmode, as defined on the cvtnum{3C}
page of the HP-UX Reference, are:

0 (C_NEAR)
1 (C_POS_INF)
2 (C_NEG_INF)
3 (C_TOZERO)

fpid abs Sets the co-processor id-number for the MC68881 float-
ing point processor. By default, the id-number is initially
1. This pseudo-op is available with the as20 as-
sembler only.

fpareg %an Sets the FPA base register to be used in translating FPA
pseudo instructions to memory-mapped move instruc-
tions. By default, register %a2 is used. Note that this
does not generate code to load the FP A base address
into %a2. The user must explicitly load the register (see
HP 98248A Floating-Point Accelerator Reference).

52 Pseudo-Ops

Version Pseudo-Ops
Table 7-7 describes the version pseudo-op. Beginning with the HP-UX 6.5 release, the
assembler supports a version pseudo-op for setting the a_stamp field in the a. out header
(see a.out(4». Prior to release 6.5, this field was always set to 0 by the assembler.

Table 7-7. Version Pseudo-Ops

Pseudo-Op Description

version abs where abs must be a pass-one absolute integer expres-
sion. Multiple version pseudo-op's will generate a warn-
ing from the assembler and the last occurrence will be
used.

The -V <number> command line option can also be
used to set the a_stamp field. If the -V command line
option is used, that overrides any version pseudo-op in
the source file.

The 68020 HP-UX compilers save and restore the non-scratch floating point registers
that they use (y'fp2 through Y.fp7 and %fpa3 through y'fpa15), and will assume that called
functions will do the same. The 68010 compilers do not allocate floating point registers
(there is no 68881 on the Model 310). This incompatibility with the pre-6.5 compiler
conventions can cause a problem if new code allocates a floating point register and calls
old code which uses that register as a scratch register.

The 6.5 compilers use the a_stamp field to mark the type of code being generated so
that the linker (ld(1» can give warning messages about possible incompatibilities with
pre-6.5 object files. The a_stamp field is set by the compilers according to the following
conventions:

o pre-6.5 or unknown 6.5 floating point usage

1 68010 code

2 code which does not depend on new save/restore assumptions

3 68020 code which depends on called-routine save/restore of floating point
registers

You should set an appropriate version value using either the version pseudo-op or the
-V option.

Pseudo-Ops 53

The linker (ld(1)) issues a warning if an attempt is made to link a combination of
version 0 and version 3 files. The linker warning is:

warning: possible floating point incompatibility in object files
-- recompile with +01 (see appropriate language reference manual)

The assembler issues a warning if no version is set and floating point opcodes are used.
The assembler warning is:

as: warning: "x.s" line 2: no version specified and floating point ops
present; version may not be properly set (set Assembler Reference Manual)

Set the a_stamp field using version to an appropriate value (using version or -v) to
eliminate these warnings.

If you use permanent floating point registers but do not call any routines that could
corrupt those registers, you can safely include a version 2 directive to avoid any warning
messages when linking.

If no version pseudo-op or -V option is specified, the assembler sets the a_stamp field
according to the following rules:

o as20 invoked, floating point operations are present, and a warning message is
generated

1 asl0 invoked

2 as20 invoked and no floating point operations are present

COB Support Pseudo-Ops
The as assembler also supports pseudo-ops for use by the C debugger, cdb(1). These are
not of much use to as programmers and are shown here merely for completeness:

dntt
dnLTYPE
sit normal
sltspecial
vt

54 Pseudo-Ops

Address Mode Syntax 8
Table 8-1 summarizes the as syntax for MC68000, MC68010, and MC68020/30 addressing
modes. Addressing modes specific to the MC68020/30 processor (and, therefore, to the
as20 assembler) are appropriately noted. All other modes can be used on all three
processors.

The following conventions are used in Table 8-1:

%an Address register n, where n is any digit from 0 through 7.

%dn Data register n, where n is any digit from 0 through 7.

%ri Index register ri may be any address or data register with an optional size
designation (Le., ri.w for 16 bits or ri.l for 32 bits); default size is .w.

sci Optional scale factor. An index register may be multiplied by the scaling factor
in some addressing modes. Values for sel are 1, 2, 4, or 8; default is 1. For the
MC68010, only the default scale factor 1 is allowed.

bd Two's complement base displacement added before indirection takes place; its
size can be 16 or 32 bits. (This addressing mode is available on the MC68020/30
only.)

od Two's-complement outer displacement added as part of effective address calcu
lation after memory indirection; its size can be 16 or 32 bits. (This addressing
mode is available on the MC68020/30 only.)

d Two's complement (sign-extended) displacement added as part of the effective
address calculation; its size may be 8 or 16 bits; when omitted, the assembler
uses a value of zero.

%pc Program counter.

[] Square brackets are used to enclose an indirect expression; these characters are
required where shown. (MC68020/30 Only.)

o Parentheses are used to enclose an entire effective address; these characters are
required where shown.

{} Braces indicate that a scaling factor (sc~ is optional; these characters should
not appear where shown.

Address Mode Syntax 55

Table 8-1. Effective Address Modes

Register Register
M68000 as Effective Address Encoding Encoding

Family Notation Notation Mode as20 aslO

Dn %dn Data Register Direct OOO/n OOO/n

An %an Address Register Di- OOI/n OOl/n
rect

(An) (%an) Address Register In- OIO/n OIO/n
direct

(An)+ (%an)+ Address Register In- OH/n Oll/n
direct with
Post-Increment

-(An) -(%an) Address Register In- IOO/n IOO/n
direct with
Pre-Decrement

d(An)l d(%an) Address Register In- IOI/nl IOl/n
direct or (d,%an) HO/n
with Displacement full fmt

d(An,Ri)2 d(%an,%ri) Address Register In- HO/n2 HO/n
direct or (d,%an, brieffmt
%ri) with Index Plus HO/n
Displacement full fmt

(bd,An,Ri{*scl}) (bd,%an,%ri{*scl}) Address Register Di- HO/n -
(MC68020/30 Only) reet with Index Plus full fmt

Base Displacement

([bd,An,Ri{*scl}],od) ([bd,%an,%ri{*scl}],od) Memory HO/n -
(MC68020/30 Only) indirect with Pre- full fmt

Indexing plus Base
and Outer Displace-
ment

([bd,An] ,Ri {*scl} ,od) ([bd, %an], %ri {*scl} ,od) Memory HO/n -
(MC68020/30 Only) indirect with Post- full fmt

Indexing plus Base
and Outer Displace-
ment

1 If d is pass-one, l6-bit absolute and the base register (%an or %pc is not suppressed), then the MC68010-
compatible mode is chosen; otherwise, the more general MC68020/30 full form is assumed.

2 If d is not pass-one 8-bit absolute, or the base register (%an or %pc) is suppressed, the more general
MC68020/30 full-format form is assumed.

56 Address Mode Syntax

Table 8-1. Effective Address Modes (continued)

Register Register
M68000 as Effective Address Encoding Encoding

Family Notation Notation Mode as20 as10

d(PC) d(%pc) Program Counter 111/0103 111/010
Indirect or (d,%pc) 111/011
with Displacement full fmt

d(PC,Ri) d(%pc,%ri.l) Program 111/0114 111/011
Counter Direct or brieffmt
(d,%pc,%ri) with In- 111/011
dex and Displace- full fmt
ment

(bd,PC,Ri{*scl})5 (bd,%pc,%ri{*scl}) Program 111/011 -
(MC68020/30 Only) Counter Direct with full fmt

Index and Base Dis-
placement

([bd,PC],Ri{*scl},od)5 ([bd, %pc], %ri {*scl} ,od) Program 111/011 -
(MC68020/30 Only) Counter Memory In- full fmt

direct with Post-
Indexing Plus Base
and Outer Displace-
ment

([bd,PC,Ri {*scl}] ,od)5 ([bd, %pc, %ri {*scl}] ,od) Program 111/011 -
(MC68020/30 Only) Counter Memory In- full fmt

direct with Pre-
Indexing Plus Base
and Outer Displace-
ment

3 If d is pass-one, 16-bit absolute and the base register (%an or %pc is not suppressed), then the MC68010-
compatible mode is chosen; otherwise, the more general MC68020j30 full form is assumed.

4 If d is not pass-one 8-bit absolute, or the base register (%an or %pc) is suppressed, the more general
MC68020j30 full-format form is assumed.

5 The size of the bd and od displacement fields is 16 bits if the displacement is pass-one 16-bit absolute;
otherwise, a 32-bit displacement is used. (For details, see the section below entitled "as20 Addressing
Mode Optimization.")

Address Mode Syntax 57

Table 8-1. Effective Address Modes (continued)

Register Register
M68000 as Effective Address Encoding Encoding

Family Notation Notation Mode as20 as10

xxx.W xxx or xxx.w6 Absolute Short Ad- 111/000 111/000
dress (xxx signifies
an expression yield-
ing a 16-bit memory
address)

xxx.L xxx or xxx.l6 Absolute Long Ad- 111/001 111/001
dress (xxx signifies
an expression yield-
ing a 32-bit memory
address)

#xxx &xxx Immediate data (xxx 111/100 111/100
signifies a constant
expression)

6 If no size suffix is specified for an absolute address, the assembler will use absolute-word if xxx is pass-one
absolute and fits in 16 bits; otherwise, absolute-long is chosen.

58 Address Mode Syntax

Notes on Addressing Modes
The components of each addressing syntax must appear in the order shown in Table 8-1.

It is important to note that expressions used for absolute addressing modes need not be
absolute expressions, as described in the "Expressions" chapter. Although the addresses
used in those addressing modes must ultimately be filled-in with constants, that can
be done later by the linker, ld(l). There is no need for the assembler to be able
to compute them. Indeed, the Absolute Long addressing mode is commonly used for
accessing undefined external addresses.

Address components which are expressions (bd, od, d, absolute, and immediate) can,
in general, be absolute, relocatable, or external expressions. Relocatable or external
expressions generate relocation information with the final value set by the linker, ld(l).
It should be noted that relocation of byte- or word-sized expressions will result in
truncation. The base displacement (bd or d) of a PC-relative addressing mode can
be an absolute or relocatable expression, but not an external expression.

In Table 8-1, the index register notation should be understood as ri.size*scale, where
both size and scale are optional. For the MC68010 processor, only the default scale
factor * 1 is allowed.

Refer to Section 2 of the M68000 Programmer's Reference Manual for additional infor
mation about effective address modes. Section 2 of the MC68020 S2-Bit Microprocessor
User's Manual also provides information about generating effective addresses and assem
bler syntax.

Note that suppressed address register %zan can be used in place of address register
%an; suppressed PC register %zpc can be used in place of %pc; and suppressed data
register %zdn can be used in place of %dn, if suppression is desired. (This applies to
MC68020/30 full-format forms only.)

Note also that an expression used as an address always generates an absolute addressing
mode, even if the expression represents a location in the current assembly segment. If
the expression represents a location in the current assembly segment and PC-relative
addressing is desired, this must be explicitly specified as xxx(%pc).

Address Mode Syntax 59

The new address modes for the MC68020/30 use two different formats of extension. The
brief format provides fast indexed addressing, while the full format provides a number
of options in size of displacement and indirection. The assembler will generate the brief
format if the following conditions are met:

• the effective address expression is not memory indirect

• the value of displacement is within a byte and this can be determined at pass one

• no base or index suppression is specified.

Otherwise, the assembler will generate the full format.

In the MC68020/30 full-format addressing syntaxes, all the address components are
optional, except that "empty" syntaxes, such as 0 or ([] ,10), are not legal. Omitted
displacements are assumed to be 0; an omitted base register defaults to %zaO; an omitted
index register defaults to %zdO. To specify a PC-relative addressing mode with the base
register (PC) suppressed, %zpc must be explicitly specified since an omitted base register
defaults to %zaO.

Some source code variations of the new modes may be redundant with the MC68000
address register indirect, address register indirect with displacement, and program
counter with displacement modes. The assembler will select the more efficient mode
when redundancy occurs. For example, when the assembler sees the form (An), it will
generate address register indirect mode (mode 2). The assembler will generate address
register indirect with displacement (mode 5) when seeing either of the following forms
(as long as bd is pass-1 absolute and will fit in 16 bits or less):

bd(An)
(bd,An)

For the PC-addressing modes

bd(PC)
bd(PC,Ri)
([bd,PC] ,Ri,od)
([bd,PC,Ri] ,od)

bd can either be relocatable in the current segment or absolute. If bd is absolute, it is
taken to be the displacement value; the value is never adjusted by the assembler. If bd is
relocatable and in the current segment, it is taken to be a target; the assembler calculates
the appropriate displacement. bd cannot be an external symbol or a relocatable symbol
in a different segment.

60 Address Mode Syntax

as20 Addressing Mode Optimization
As mentioned in the "Introduction" chapter, there are actually two HP-UX assemblers:
asl0 for the MC68010 processor (Model 310 computers), and as20 for the MC68020/30
and MC68881 processors (Model 320 computers). For the as20 assembler, there are
several addressing mode syntaxes that could produce either 8-, 16-, or 32-bit offsets. The
as20 assembler attempts to select the smallest displacement, based on the information it
has available at pass one when an instruction is assembled.

Examples
The addressing mode syntax

(bd, %an, %ri)

will be translated to the most efficient form possible (Le., the shortest form of the
instruction possible), based on the information the assembler has available at pass one
when the assembler first encounters it.

If bd is pass-one absolute and fits in 8 bits (-127 .. 128), and neither the base (%an) nor
index (%ri) register is suppressed, then the MC68020/30 brief format "Address Register
Indirect with Index and 8-bit Displacement" mode is chosen. (Note that if the scale
factor is the default (*1), then this is a MC68010-compatible addressing mode.)

Otherwise, the MC68020/30 full format "Address Register Indirect with Index and Base
Displacement" mode is used. The size of the Base Displacement (16- or 32-bit) is based
on whether or not bd is pass-one absolute and if it fits in 16 bits. The following examples
should help clarify:

Example One:

set offset. 10
tst.w (offset.Y.a6.Y.d2) # Brief format with 8-bit

displacement is chosen.

In the above example, brief format with 8-bit displacement was chosen by the assembler
because the value of the base displacement (in this case, offset) was known prior to
the tst. w instruction (it was pass-one absolute) and neither Y.a6 nor Y.d2 is a suppressed
register.

Address Mode Syntax 61

Example Two:

tst.w (offset.%a6.%d2)

set offset.l0

Full format is used and 32 bits
are reserved for the offset.

In this example, full format is used for the instruction and a 32-bit displacement is
generated, even though only 8 bits are required for the base displacement (offset). This
is because the assembler does not know the value of off set before encountering the tst . w
instruction; therefore, it cannot assume that the base displacement will fit in 8 bits.

Similarly, the addressing mode syntax

(bd, %an)

is converted to "Address Register Indirect with 16-bit Displacement" (Mode 5) if the base
displacement (bd) is pass-one absolute and fits in 16 bits, and if %an is not a suppressed
register. Otherwise, the assembler uses a 32-bit base displacement with the equivalent
form

(bd, %an, %zdO)

A similar situation holds for the displacements in PC addressing modes.

Forcing Small Displacements (-d)
Invoking as (as20) with the -d option forces the assembler to use the shortest form and
smallest base displacement possible for all MC68010-compatible addressing modes.

For example, the addressing mode syntax

(bd, %an, %ri)

always assumes an 8-bit displacement. And,

(bd, %an)

always assumes a 16-bit displacement. In both cases the registers cannot be suppressed,
and the only index scale allowed is the default *1.

Note: Refer to the "Compatibility Issues" appendix for details on using this option.

62 Address Mode Syntax

Instruction Sets 9
This chapter describes the instructions available for the MC680xO family of processors
and the MC68881 floating point coprocessor.

MC68000/10/20 Instruction Sets
Table 9-1 shows how MC68000, MC68010, and MC68020/30 instructions should be
written if they are to be interpreted correctly by the as assembler. For details on each
instruction, see the appropriate processor manual.

The entire instruction set can be used on the MC68020/30. Instructions that are
MC68010/MC68020/30-only or MC68020/30-only are noted appropriately in the Op
eration column of Table 9-1. (For further details on portability, see the "Compatibility
Issues" appendix.)

The following abbreviations are used in Table 9-1:

S

A

The letter S, as in add.S, stands for one of the operation size attribute
letters: b (byte), w (16-bit word), or I (32-bit word).

The letter A, as in add.A, stands for one of the address operation
size attribute letters: w (16-bit word), or I (32-bit word).

Instruction Sets 63

CC In the contexts bCC, dbCC, sCC, tCC and tpCC, the letters CC
represent any of the following condition code designations (except
that the f and t conditions may not be used in the bCC instruction):

cc carry clear 10 low (=cs)

cs carry set Is low or same

eq equal It less than

f false mi minus

ge greater or equal ne not equal

gt greater than pI plus

hi high t true

hs high or same (=cc) vc overflow clear

Ie less or equal vs overflow set

EA This represents an arbitrary effective address. You should consult
the appropriate reference manual for details on the addressing modes
permitted for a given instruction.

I An expression used as an immediate operand.

Q A pass-one absolute expression evaluating to a number from 1 to 8.

L A label reference, or any expression, representing a memory address
in the current segment.

d Two's complement or sign-extended displacement added as part of
effective address calculation; size may be 8 or 16 bits; when omitted,
the assembler uses a value of zero.

%dx, %dy, %dn Data registers.

% ax, %ay, %an Address registers.

%rx, %ry, %rn Represent either data or address registers.

%rc Represents a control register (%sfc, %dfc, %cacr, %usp, %vbr,
%caar, %msp, %isp).

64 Instruction Sets

reglist

offset

width

Specifies a set of registers for the movm instruction. A reglist is a set
of components (register identifiers) separated by slashes. Ranges of
registers can be specified as %am-%an and/or %dm-%dn (where m
< n). For example, the following are valid reglists:

%dO/%d3
%al/%a2/%d3-Y.d6

Either an immediate operand or a data register. An immediate
operand must be pass-one absolute.

Either an immediate operand or a data register. An immediate
operand must be pass-one absolute.

When I represents a standard immediate mode effective address (i.e., MC68020/30 Mode
7, Register 4), as for the addi instruction, the expression can be absolute, relocatable, or
external. However, when I represents a special immediate operand that is a field in the
instruction word (e.g., for the bkpt instruction), then the expression must be pass-one
absolute.

Instruction Sets 65

Table 9-1. MC680xO Instruction Formats

Default Operation
Size When None

Mnemonic Assembler Syntax. Operation Specified

ABCD abcd.b %dy,%dx Add Decimal with Extend .b
abcd.b -(%ay),-(%ax)

ADD add.S EA, %dn Add Binary .w
add.S %dn,EA

ADDA add.A EA,%an Add Address .w
adda.A EA,%an

ADDI add.S &I,EA Add Immediate .w
addi.S &I,EA

ADDQ add.S &Q,EA Add Quick .w
addq.S &Q,EA

ADDX addx.S %dy,%dxA Add Extend .w
addx.S -(%ay),-(%ax)

AND and.S EA, %dn AND Logical .w
and.S %dn,EA

ANDI and.S &I,EA AND Immediate .w
andi.S &I,EA

ANDI and.b &I,%cc AND Immediate to Condition .b
to CCR andi.b &I,%cc Codes

ANDI and.w &1, %sr AND Immediate to the Status .w
to SR andi.w &I,%sr Register

ASL asl.S %dx,%dy Arithmetic Shift Left .w
asl.S &Q, %dy

asl.w &l,EA .w
asl.w EA

ASR asr.S %dx,%dy Arithmetic Shift Right .w
asr.S &Q,%dy

asr.w &l,EA .w
asr.w EA

66 Instruction Sets

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation SpeCified

Bcc bCC.w L Branch Conditionally .w required
(l6-Bit Displacement)

bCC.b L Branch Conditionally Short .b required
(8-Bit Displacement)

bCC.l L Branch Conditionally Long .I required
(32-Bit Displacement)
(MC68020/30 Only)

bCCL Same as bCC.w I .w

BCHG bchg %dn,EA Test a Bit and Change .I if second operand is
bchg &I,EA data register, else . b

BCLR beIr %dn,EA Test a Bit and Clear .I if second operand is
belr &I,EA data register, else . b

BFCHG bfchg Complement Bit Field No suffix allowed
EA { offset:width} (MC68020/30 Only)

BFCLR bfelr EA {ofl'set:width} Clear Bit Field (MC68020/30 No suffix allowed
Only)

BFEXTS bfexts Extract Bit Field (Signed) No suffix allowed
EA{ offset:width},%dn (MC68020/30 Only)

BFEXTU bfextu Extract Bit Field (Unsigned) No suffix allowed
EA{ offset:width},%dn (MC68020/30 Only)

BFFFO bfffo Find First One in Bit Field No suffix allowed
EA{ offset:width},%dn (MC68020/30 Only)

BFINS bfins Insert Bit Field (MC68020/30 No suffix allowed
%dn,EA {offset:width} Only)

BFSET bfset Set Bit Field (MC68020/30 No suffix allowed
EA {offset:width} Only)

1 Defaults to .w if -0 option not used. When -0 option is used, assembler sets the size based on the
distance to the target L.

Instruction Sets 67

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

BFTST bftst Test Bit Field (MC68020/30 No suffix allowed
EA {offset:width} Only)

BKPT bkpt &12 Breakpoint (MC68020 /30 Only) No suffix allowed

BRA bra.w L Branch Always .w required
br.w L (16-Bit Displacement)

bra.b L Branch Always (Short) .b required
br.b L (8-Bit Displacement)

bra.l L Branch Always (Long) .l required
br.l L (32-Bit Displacement)

(MC68020/30 Only)

br L Defaults to br. w 3 .w

BSET bset %dn,EA Test a Bit and Set .l if second operand is
bset &1,EA data register, else .b

BSR bsr.w L Branch to Subroutine .w required
(16-bit Displacement)

bsr.b L Branch to Subroutine (Short) .b required
(8-bit Displacement)

bsr.l L Branch to Subroutine (Long) .l required
(32-bit Displacement)
(M C68020 / 30 Only)

bsr L Same as bsr. w 3 .w

BTST btst %dn,EA Test a Bit .1 if second operand is
btst &1,EA data register, else . b

CALLM callm &1,EA Call Module No suffix allowed
(MC68020/30 Only)

2 The immediate operand must be a pass-one absolute expression.
3 Defaults to .w when -0 is not used. When -0 option is used, the assembler sets the size based on the

distance to the target L.

68 Instruction Sets

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

CAS cas.S %dx, %dy,EA Compare and Swap Operands .w
(MC68020/30 Only)

CAS2 cas2.A %dx:%dy, Compare and Swap Dual .w
%dx:%dy, %rx:%ry Operands (MC68020/30 Only)

CHK chk.w EA,%dn Check Register Against Bounds .w

chk.l EA,%dn Check Register Against Bounds .1
(Long) (MC68020/30 Only)

CHK2 chk2.S EA,%rn Check Register Against Bounds .w
(MC68020/30 Only)

CLR clr.S EA Clear an Operand .w

CMP cmp.S %dn,EA 4 Compare .w

CMPA cmp.A %an,EA 4 Compare Address .w
cmpa.A %an,EA 4

CMPI cmp.S EA,&I4 Compare Immediate .w
cmpi.S EA,&I4

CMPM cmp.S Compare Memory .w
(%ax)+,(%ay)+ 4

cmpm.S
(%ax)+,(%ay)+ 4

CMP2 cmp2.S %rn,EA 4 Compare Register Against .w
Bounds (MC68020/30 Only)

DBcc dbCC.w %dn,L Test Condition, Decrement, and .w
Branch

dbra.w %dn,L Decrement and Branch Always .w

dbr.w %dn,L Same as dbra. w .w

4 The order of the operands for this instruction is reversed from that in the MC68000 Programmer's
Reference Manual.

Instruction Sets 69

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

DIVS divs.w EA,%dx Signed Divide 32-bit -;- 16-bit => .w
32-bit

tdivs.l EA,%dx Signed Divide (Long) J
divs.l EA,%dx 32-bit -;- 32-bit => 32-bit .1 required

(MC68020/30 only)

tdivs.l EA,%dx:%dy Signed Divide (Long) J
divsl.l EA, %dx:%dy 32-bit -;- 32-bit => 32r:32q .1

(MC68020/30 only)

divs.l EA, %dx:%dy Signed Divide (Long) .1
64-bit -;- 32-bit => 32r:32q
(MC68020/30 only)

DIVU divu.w EA,%dn Unsigned Divide 32-bit -;- 16-bit .w
=> 32-bit

tdivu.l EA,%dx Unsigned Divide (Long) .1
divu.l EA, %dx 32-bit -;- 32-bit => 32-bit .1 required

(MC68020/30 only)

tdivu.l EA,%dx:%dy Unsigned Divide (Long) .1
divul.l EA, %dx:%dy 32-bit -;- 32-bit => 32r:32q .1

(MC68020/30 only)

divu.l EA, %dx:%dy Unsigned Divide (Long) .1
64-bit -;- 32-bit => 32r:32q
(MC68020/30 only)

EOR eor.S %dn,EA Exclusive OR Logical .w

EORI eor.S &I,EA Exclusive OR Logical .w
eorLS &I,EA

EORI to eor.b &I,%cc Exclusive OR Immediate to .b
CCR eorL b &1, %cc Condition Code Register

EORI to SR eor.w &I,%sr Exclusive OR Immediate to Sta- .w
eori.w &I,%sr tus Register

EXG exg.l %rx, %ry Exchange Registers .1

70 Instruction Sets

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

EXT ext.w %dn Sign-Extend Low-Order Byte of .w
Data to Word

ext.l %dn Sign-Extend Low-Order Word .l required
of Data to Long

extb.l %dn Sign-Extend Low-Order Byte .1
of Data to Long (MC68020j30

extw.l %dn
Only)

.l
Same as ext.l (MC68020j30
Only)

ILLEGAL illegal Take Illegal Instruction Trap No suffix allowed

JMP jmpEA Jump No suffix allowed

JSR jsr EA Jump to Subroutine No suffix allowed

LEA lea.l EA,%an Load Effective Address .1

LINK link.w %an,&I Link and Allocate .w

link.l %an,&I Link and Allocate .1 required
(MC68020j30 Only)

LSL ls1.S %dx, %dy Logical Shift Left .w
ls1.S &Q,%dy

lsl.w &l,EA .w
lsl.w EA

LSR lsr.S %dx,%dy Logical Shift Right .w
lsr.S &Q,%dy

lsr.w &l,EA .w
lsr.w EA

MOVE mov.S EA,EA Move Data from Source to Des- .w
tination

MOVto mov.w EA,%cc Move to Condition Codes .w
CCR

MOVE from mov.w %cc,EA Move from Condition Codes .w
CCR (MC68010 and MC68020j30

Only)

Instruction Sets 71

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

MOVE to mov.w EA,%sr Move to Status Register .w
SR

MOVE from mov. w %sr ,EA Move from Status Register .w
SR

MOVEUSP mov.l %usp,%an Move User Stack Pointer .l
mov.l %an,%usp

MOVEA mov.A EA,%an Move Address .w
mova.A EA,%an

MOVEC to mov.l %rn,%rc Move to .l
CR Control Register (MC68010 and

M C68020 / 30 Only)

MOVEC mov.l %rc, %rn Move from Control Register .l
from CR (MC68010 and MC68020/30

Only)

MOVEM movm.A &I,EA Move Multiple Registers .w
movm.A EA,&I

movm.A reglist,EA Same as above, but using the .w
movm.A EA,reglist reglist notation.

MOVEP movp.A %dx,d(%ay) Move Peripheral Data .w
movp.A d(%ay),%dx

MOVEQ mov.l &1, %dn Move Quick .l
movq.l &I,%dn

MOVES movs.S %rn,EA Move to/from Address Space .w
movs.S EA, %rn (MC68010 and MC68020/30

Only)

MULS muls.w EA, %dw Signed Multiply .w
16-bit x 16-bit => 32-bit

tmuls.l EA,%dx Signed Multiply (Long) .l
muls.l EA, %dx 32-bit x 32-bit => 32-bit .l required

(MC68020/30 Only)

muls.l EA, %dx:%dy Signed Multiply (Long) .l
32-bit x 32-bit => 64-bit
(MC68020/30 Only)

72 Instruction Sets

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

MULU mulu.w EA,%dx Unsigned Multiply .w
16-bit x 16-bit => 32-bit

tmulu.l EA, %dx Unsigned Multiply (Long) .l
mulu.l EA, %dx 32-bit x 32-bit => 32-bit .l required

(MC68020/30 Only)

mulu.l EA, %dx:%dy Unsigned Multiply (Long) .l
32-bit x 32-bit => 64-bit
(MC68020/30 Only)

NBCD nbcd.b EA Negate Decimal with Extend .b

NEG neg.S EA Negate .w

NEGX negx.S EA Negate with Extend .w

NOP nop No Operation No suffix allowed

NOT not.S EA Logical Complement .w

OR or.S EA,%dn Inclusive OR Logical .w
or.S %dn,EA

ORI or.S &I,EA Inclusive OR Immediate .w
ori.S &I,EA

ORI to or.b &I,%cc Inclusive OR Immediate to Con- .b
CCR orLb &I,%cc dition Codes

ORI to SR or.w &I,%sr Inclusive OR Immediate to Sta- .w
ori.w &I,%sr tus Register

PACK pack Pack BCD No suffix allowed
-{%ax),-{%ay),&I (MC68020/30 Only)
pack %dx, %dy,&I

PEA pea.l EA Push Effective Address .l

RESET reset Reset External Devices No suffix allowed

ROL rol.S %dx,%dy Rotate (without Extend) Left .w
rol.S &Q,%dy

rol.w &l,EA .w
rol.w EA

Instruction Sets 73

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

ROR ror.S %dx, %dy Rotate (without Extend) Right .w
ror.S &Q,%dy

ror.w &l,EA .w
ror.w EA

ROXL roxl.S %dx, %dy Rotate with Extend Left .w
roxl.S &Q,%dy

roxl.w &l,EA .w
roxl.w EA

ROXR roxr.S %dx,%dy Rotate with Extend Right .w
roxr.S &Q,%dy

roxr.w &l,EA .w
roxr.w EA

RTD rtd &1 Return and Deallocate Param- No suffix allowed
eters (MC68010 and
MC68020/30 Only)

RTE rte Return from Exception No suffix allowed

RTM rtm %rn Return from Module No suffix allowed
(MC68020/30 Only)

RTR rtr Return and Restore Condition No suffix allowed
Codes

RTS rts Return from Subroutine No suffix allowed

SBCD sbcd.b %dy,%dx Subtract Decimal with Extend .b
sbcd.b -(%ay),-(%ax)

Scc sCC.b EA Set According to Condition .b

STOP stop &1 Load Status Register and Stop No suffix allowed

SUB sub.S EA, %dn Subtract Binary .w
sub.S %dn,EA

SUBA sub.A EA, %an Subtract Address .w
suba.A EA,%an

SUB I sub.S &I,EA Subtract Immediate .w
subi.S &I,EA

14: Instruction Sets

Table 9-1. MC680xO Instruction Formats (continued)

Default Operation
Size When None

Mnemonic Assembler Syntax Operation Specified

SUBQ sub.S &Q,EA Subtract Quick .w
subq.S &Q,EA

SUBX subx.S %dy,%dx Subtract with Extend .w
subx.S -(%ay),-(%ax)

SWAP swap.w %dn Swap Register Halves .w

TAS tas.b EA Test and Set an Operand .b

TRAP trap &15 Trap No suffix allowed

TRAPV trapv Trap on Overflow No suffix allowed

TRAPcc tCC Trap on Condition No suffix allowed
tpCC.A &1 (M C68020 / 30 Only) .w

TST tst.S EA Test an Operand .w

UNLK unlk %an Unlink No suffix allowed

UNPK unpk -(%ay),-(%ay), Unpack BCD No suffix allowed
&1 (MC68020/30 Only)
unpk %dx, %dy,&1

5 The immediate operand must be a pass-one absolute expression.

Instruction Sets 75

MC68881 Instructions
Table 9-4 ("MC68881 Instruction Formats"), found at the end of this chapter, shows how
the floating-point coprocessor (MC68881) instructions should be written to be understood
by the as assembler. In Table 9-4, FPCC represents any of the floating-point condition
code designations shown in Table 9-2.

Table 9-2. Floating-Point Condition Code Designations

Trap on Unordered

FPCC Meaning

ge greater than or equal

gl greater or less than

gle greater or less than or equal

gt greater than

Ie less than or equal

It less than

nge not greater than or equal

nIt not less than

ngl not greater or less than

nle not less than or equal to

ngle not greater or less than or equal

sneq not equal

sne not equal

sf never

seq equal

st always

76 Instruction Sets

No Trap on Unordered

FPCC Meaning

eq equal

oge greater than or equal

ogl greater or less than

ogt greater than

ole less than or equal

olt less than

or ordered

t always

ule unordered or less or equal

ult unordered less than

uge unordered greater than or equal

ueq unordered equal

ugt unordered greater than

un unordered

neq unordered or greater or less

ne unordered or greater or less

f never

Instruction Sets 77

In Table 9-4, the designation ccc represents a group of constants in MC68881 constant
ROM. The values of these constants are defined in Table 9-3. (The description of the
FMOVECR instruction in the MC68881 User's Manual provides detailed information on
these constants.)

Table 9-3. MC68881 Constant ROM Values

ccc Value

00 pi

OB loglO(2)

OC e

OD log2(e)

OE log10(e)

OF 0.0

30 logn(2)

31 logn(10)

32 10**0

33 10**1

34 10**2

35 10**4

36 10**8

37 10**16

38 10**32

39 10**64

3A 10**128

3B 10**256

3C 10**512

3D 10**1024

3E 10**2048

3F 10**4096

78 Instruction Sets

Other abbreviations used in Table 9-4 are:

EA Represents an effective address. See the MC68881 User's Manual
for details on the addressing modes permitted for each instruc
tion.

L A label reference or any expression representing a memory ad
dress in the current segment.

I Represents an absolute expression used as an immediate operand.

%dn Represents a data register.

%fpm, %fpn, %fpq Represent floating point data registers.

fpreglist A list of floating point data registers for an fmovm. instruction.
(See description of reglist in the description for Table 9-1.)

%fpcr Represents floating point control register.

%fpsr Represents floating point status register.

%fpiar Represents floating point instruction address register.

fpcrlist A list of one to three floating point control register identifiers,
separated by slashes (e.g., y'fpcr/y'fpiar).

&ccc An immediate operand for the fmover instruction. Must be pass
one absolute.

SF Represents source format letters; consult the MC68881 User's
Manual for restrictions on SF in combination with the EA
(effective address) mode used:

b ~ byte integer (8 bits)
w ~ word integer (16 bits)
I =} long word integer (32 bits)
s ~ single precision
d ~ double precision
x ~ extend precision
p ~ packed binary coded decimal

A represents source format letters w or I

Note: When .SF is shown, a size suffix must be specified; there is no default size. In
forms where .x is shown, size defaults to .x.

Instruction Sets 79

An effective address for a packed-format operation has the form

<EA> {&k}

or

<EA> {&dn}

The first form requires k to be a pass-one absolute value.

80 Instruction Sets

Table 9-4. MC68881 Instruction Formats

Default
Mnemonic Assembler Syntax Operation Operation Size

FABS fabs.SF EA,%fpn Absolute Value Function No default; give size
fabs.x %fpm, %fpn .x
fabs.x %fpn .x

FACOS facos.SF EA,%fpn Arcosine Function No default; give size
facos.x %fpm, %fpn .x
facos.x %fpn .x

FADD fadd.SF EA,%fpn Floating Point Add No default; give size
fadd.x %fpm,%fpn .w

FA SIN fasin.SF EA, %fpn Arcsine Function No default; give size
fasin.x %fpm,%fpn .x
fasin.x %fpn .x

FATAN fatan.SF EA, %fpn Arctangent Function No default; give size
fatan.x %fpm, %fpn .x
fatan.x %fpn .x

FATANH fatanh.SF EA,%fpn Hyperbolic Arctangent Func- No default; give size
fatanh.x %fpm, %fpn tion .x
fatanh.x %fpn .x

FBfpcc fbFPCC.A L Co-Processor Branch Condi- .w l

tionally .w
fbr.A L Same as fbt. .w
fbra.A L

FCMP fcmp.SF %fpn,EA 2 Floating Point Compare No default; give size

FCOS fcos.SF EA, %fpn Cosine Function No default; give size
fcos.x %fpm, %fpn .x
fcos.x %fpn .x

FCOSH fcosh.SF EA,%fpn Hyperbolic Cosine Function No default; give size
fcosh.x %fpm, %fpn .x
fcosh.x %fpn .x

1 Defaults to . w if -0 is not used. When -0 option is used, assembler sets the size based on the distance
to the target L.

2 The order of the operands for the FCMP instruction is reversed from that in the MC68881 Programmer's
Reference Manual.

Instruction Sets 81

Table 9-4. MC68881 Instruction Formats (continued)

Default
Mnemonic Assembler Syntax Operation Operation Size

FDBfpcc3 fdbFPCC.w %dn,L Decrement and Branch on Con- .w
fdbr.w L dition .w
fdbra.w L Same as fdbf. .w

FDIV fdiv.SF EA, %fpn Floating Point Divide No default; give size
fdiv.x %fpm, %fpn .x

FETOX fetox.SF EA, %fpn e**x Function No default; give size
fetox.x %fpm, %fpn .x
fetox.x %fpn .x

FETOXMl fetoxml.SF EA, %fpn e**x - 1 Function No default; give size
fetoxml.x %fpm, %fpn .x
fetoxml.x %fpn .x

FGETEXP fgetexp.SF EA, %fpn Get the Exponent Function -No default; give a size
fgetexp.x %fpm, %fpn .x
fgetexp.x %fpn .x

FGETMAN fgetman.SF EA,%fpn Get the Mantissa Function No default; give size
fgetman.x %fpm, %fpn .x
fgetman.x %fpn .x

FINT fint.SF EA, %fpn Integer Part Function No default; give size
fint.x %fpm, %fpn .x
fint.x %fpn .x

FINTRZ fintrz.SF EA, %fpn Integer Part, Round to Zero No default; give size
fintrz.x %fpm, %fpn Function .x
fintrz.x %fpn .x

FLOG2 flog2.SF EA,%fpn Binary Log Function No default; give size
flog2.x %fpm, %fpn .x
flog2.x %fpn .x

FLOG 10 floglO.SF EA,%fpn Common Log Function No defualt, give size
floglO.x %fpm, %fpn .x
floglO.x %fpn .x

3 The description of the FDBfpcc instruction found in the First Edition of the MC68881 User's Manual
incorrectly states that "The value of the PC used in the branch address calculation is the address of the
FDBcc instruction plus two." It should say "the address of the FDBcc instruction plus (our." If you
always reference this instruction using a label, then it should not cause any problems, as the assembler
will automatically generate the correct offset.

82 Instruction Sets

Table 9-4. MC68881 Instruction Formats (continued)

Default
Mnemonic Assembler Syntax Operation Operation Size

FLOGN flogn.SF EA,%fpn Natural Log Function No default; give size
flogn.x %fpm,%fpn .x
flogn.x %fpn .x

FLOGNPl flognp1.SF EA,%fpn Natural Log (x+l) Function No default; give size
flognpl.x %fpm, %fpn .x
flognp1.x %fpn .x

FMOD fmod.SF EA,%fpn Floating Point Modulus No default; give size
fmod.x %fpm, %fpn .x

FMOVE fmov.SF EA,%fpn Move to Floating Point Register No default; give size
fmov.x %fpm, %fpn .x

fmov.SF %fpn,EA Move from Floating Point Reg- No default; give size
fmov.p ister to Memory .p
%fpn,EA {%dn}
fmov.p .p
%fpn,EA{&I}4

fmov.l EA,%fpcr5 Move from Memory to Special .1
fmov.l EA, %fpsr5 Register .1
fmov.l EA,%fpiar5 .1

fmov.l %fpcr ,EA 5 Move from Special Register to .1
fmov.l %fpsr ,EA 5 Memory .1
fmov.l %fpiar ,EA 5 .1

FMOVECR fmovcr.x &ccc,%fpn4 Move a ROM-Stored to a Float- .x
ing Point Register

4 The immediate operand must be a pass-one absolute expression.
5 See the MC68881 User's Manual for restrictions on EA (effective address) modes with this command.

Instruction Sets 83

Table 9-4. MC68881 Instruction Formats (continued)

Default
Mnemonic Assembler Syntax: Operation Operation Size

FMOVEM fmovm.x EA,&I Move to Multiple Floating Point .x
fmovm.x EA,fpreglist Registers .x
fmovm.x EA,%dn .x

fmovm.x &I,EA Move from Multiple to .x
fmovm.x fpreglist,EA MC68881 Control Registers .x
fmovm.x %dn,EA .x

fmovm.l EA,fpcrlist6 Move Multiple to MC68881 .I
Control Registers

fmovm.l fpcrlist,EA 6 Move from Multiple Registers .I
Registers to Memory

FMUL fmul.SF EA, %fpn Floating Point Multiply No default; give size
fmul.x %fpm, %fpn .x

FNEG fneg.SF EA, %fpn Negate Function No default; give size
fneg.x %fpm,%fpn .x
fneg.x %fpn .x

FNOP fnop Floating Point No-Op No suffix allowed

FREM frem.SF EA, %fpn Floating Point Remainder No default; give size
frem.x %fpm, %fpn .x

FRESTORE frestore EA Restore Internal State of Co- N 0 suffix allowed
Processor

FSAVE fsave EA Save Internal State of Co- No suffix allowed
Processor

FSCALE fscale.SF EA,%fpn Floating Point Scale Exponent No default; give size
fscale.x %fpm, %fpn .x

FSfpcc fsFPCC.b EA Set on Condition .b

FSGLDIV fsgldiv.SF EA, %fpn Floating-Point Single-Precision No default; give size
fsgldiv.x %fpm, %fpn Divide .x

FSGLMUL fsglmul.SF EA, %fpn Floating-Point Single-Precision No default; give size
fsglmul.x %fpm, %fpn Multiply .x

FSIN fsin.SF EA, %fpn Sine Function No default; give size
fsin.x %fpm, %fpn .x
fsin.x %fpn .x

6 See the MC68881 User's Manual for restrictions on EA (effective address) modes with this command.

84 Instruction Sets

Table 9-4. MC68881 Instruction Formats (continued)

Default
Mnemonic Assembler Syntax Operation Operation Size

FSINCOS fsincos.SF Sine / Cosine Function No default; give size
EA,%fpn:%fpq
fsincos.x
%fpm, %fpn:%fpq .x

FSINH fsinh.SF EA, %fpn Hyperbolic Sine Function No default; give size
fsinh.x %fpm,%fpn .x
fsinh.x %fpn .x

FSQRT fsqrt.SF EA,%fpn Square Root Function No default; give size
fsqrt.x %fpm,%fpn .x
fsqrt.x %fpn .x

FSUB fsub.SF EA,%fpn Floating Point Subtract No default; give size
fsub.x %fpm,%fpn .x

FTAN ftan.SF EA, %fpn Tangent Function No default; give size
ftan.x %fpm, %fpn .x
ftan.x %fpn .x

FTANH ftanh.SF EA,%fpn Hyperbolic Tangent Function No default; give size
ftanh.x %fpm, %fpn .x
ftanh.x %fpn .x

FTENTOX ftentox.SF %fpn 10* *x Function No default; give size
ftentox.x %fpm, %fpn .x
ftentox.x %fpn .x

FTfpcc ftFPCC '!rap on Condition without a No suffix allowed
Parameter

FTPfpcc ftpFPCC.A &1 '!rap on Condition with a Pa- .w
rameter

FTEST ftest.SF EA Floating Point Test an Operand No default; give size
ftest.x %fpm .x

FTWOTOX ftwotox.SF EA, %fpn 2**x Function No default; give size
ftwotox.x %fpm, %fpn .x
ftwotox.x %fpn .x

Instruction Sets 85

FPA Macros
The table in this section entitled "FPA-Macro Formats" shows how floating-point
accelerator macros are written for use with the as assembler.

To help you interpret the Assembler Syntax column of the following table, here is a list
of notations used:

%fpaS

%fpaD

<ea>

%fpacr

%fpasr

[]

SF

SB

is the floating-point accelerator source.

is the floating-point accelerator destination.

is the non-floating-point accelerator source.

is the floating-point accelerator control register.

is the floating-point accelerator status register.

indicates that the text between these square brackets is optional.

is a floating-point size suffix that is required where shown.

s ~ single precision
d ~ double precision

is an MC68020/30 size suffix for a branch instruction that is optional.
If this suffix is omitted and the -0 option for span-dependent opti
mization was not used, the default is . w. However, if the -0 option is
used span-dependent optimization selects the size.

b ~ byte integer (8 bits)
w ~ word integer (16 bits)
1 ~ long word integer (32 bits)

86 Instruction Sets

Table 9-5. FPA-Macro Formats

Mnemonic Assembler Syntax Operation

FPABS fpabs.SF Y.fpaS [• y'fpaD] absolute value of operand

FPADD fpadd.SF Y.fpaS.'-fpaD addition

FPAREG fpareg '-an resets the address register to be used as
the base register

FPBEQ fpbeq.SB <label> branch if equal

FPBF fpbf.SB <label> branch if false

FPBGE fpbge.SB <label> branch if greater than or equal

FPBGL fpbgl.SB <label> branch if greater than or less than

FPBGLE fpbgle.SB <label> branch if greater than, less than, or
equal

FPBGT fpbgt.SB <label> branch if greater than

FPBLE fpble.SB <label> branch if less than or equal

FPBLT fpblt.SB <label> branch if less than

FPBNE fpbne.SB <label> branch if not equal

FPBNGE fpbnge.SB <label> branch if not greater than or equal

FPBNGL fpbngl.SB <label> branch if not greater than or less than

FPBNGLE fpbngle.SB <label> branch if not greater than, less. than, or
equal

FPBNGT fpbngt.SB <label> branch if not greater than

FPBNLE fpbnle.SB <label> branch if not less than or equal

FPBNLT fpbnlt.SB <label> branch if not less than

FPBOGE fpboge.SB <label> branch if ordered greater than or equal

FPBOGL fpbogl.SB <label> branch if ordered greater than or less
than

FPBOGT fpbogt.SB <label> branch if ordered greater than

Instruction Sets 87

Table 9-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPBOLE fpbole.SB <label> branch if ordered less than or equal

FPBOLT fpbolt.SB <label> branch if ordered less than

FPBOR fpbor.SB <label> branch if ordered

FPBSEQ fpbseq.SB <label> branch if signalling equal

FPBSF fpbsf.SB <label> branch if signalling false

FPBSNE fpbsne.SB <label> branch if signalling not equal

FPBST fpbst.SB <label> branch if signalling true

FPBT fpbt.SB <label> branch if true

FPBUEQ fpbueq.SB <label> branch if unordered or equal

FPBUGE fpbuge.SB <label> branch if unordered or greater than or
equal

FPBUGT fpbugt.SB <label> branch if unordered or greater than

FPBULE fpbule.SB <label> branch if unordered or less than or equal

FPBULT fpbult.SB <label> branch if unordered or less than

FPBUN fbpun.SB <label> branch if unordered

FPCMP fpcmp.SF %fpaS.Y.fpaO compare

FPCVD fpcvd.l %fpaS[. %fpaO] converts long word integer to double
precision

FPCVD fpcvd.s %fpaS[. %fpaO] converts single precision to double pre-
cision

FPCVL fpcvl.d %fpaS[. %fpaO] converts double precision to a long word
integer

88 Instruction Sets

Table 9-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax

FPCVL fpcvl.s Y.fpaS[• y'fpaD]

FPCVS fpcvs.d Y.fpaS[• YefpaD]

FPCVS fpcvs.l Y.fpaS[• YefpaD]

FPDIV fpdiv.SF YefpaS.Y.fpaO

FPINTRZ fpintrz . SF Y.fpaS [. y'fpaD]

FPM2ADD fpm2add.SF <ea>.Y.fpaS.Y.fpaD

FPM2CMP fpm2cmp.SF <ea>.Y.fpaS.Y.fpaD

FPM2DIV fpm2div.SF <ea>.Y.fpaS.Y.fpaD

FPM2MUL fpm2mul.SF <ea>.YefpaS.Y.fpaD

FPM2RDIV fpm2rdiv.SF <ea>.YefpaS.Y.fpaD

FPM2RSUB fpm2rsub . SF <ea>. YefpaS. Y.fpaO

FPM2SUB

FPMABS

FPMADD

FPMCVD

fpm2sub.SF <ea>.YefpaS.Y.fpaD

fpmabs.SF <ea>.Y.fpaS[.Y.fpaO]

fpmadd.SF <ea>.Y.fpaS.Y.fpaD

fpmcvd.l <ea>.YefpaS[.Y.fpaO]

Operation

converts single precision to a long word
integer

converts double precision to single pre
cision

converts long word integer to single pre
cision

division

rounds to integer using the round-to
zero mode

combination move to destination and
addition

combination move to destination and
compare

combination move to destination and
division

combination move to destination and
mul ti plication

combination move to destination
and reverse division
(i.e. source -;- destination)

combination move to destination
and reverse subtraction
(Le. source - destination)

combination move to destination and
subtraction

combination move and taking absolute
value of operand

combination move and addition

combination move and convert long
word integer to double precision

Instruction Sets 89

Table 9-5. FPA-Macro Formats (continued)

Mnemonic

FPMCVD

FPMCVL

FPMCVL

FPMCVS

FPMCVS

FPMDIV

FPMINTRZ

FPMMOV

FPMMUL

FPMNEG

FPMOV

FPMRDIV

FPMRSUB

FPMSUB

FPMTEST

Assembler Syntax

fpmcvd.s <ea>. %fpaS[. Y.fpaDj

fpmcvl.d <ea>. %fpaS[. %fpaDj

fpmcvl.s <ea>. %fpaS[. %fpaDj

fpmcvs.d <ea>. %fpaS[. %fpaDj

fpmcvs.l <ea>. %fpaS[. %fpaDj

fpmdiv.SF <ea>.%fpaS[.%fpaDj

fpmintrz.SF <ea>.%fpaS[.%fpaDj

fpmmov.SF <ea>.%fpaS.Y.fpaD

fpmmul.SF <ea>.%fpaS.Y.fpaD

fpmneg.SF <ea>.%fpaS[.%fpaDj

fpmov.SF <ea>.%fpaD
fpmov.SF %fpaS.<ea>
fpmov.SF %fpaS.%fpaD
fpmov.SF <ea>.%fpasr
fpmov.SF %fpasr.<ea>
fpmov.SF <ea>.%fpacr
fpmov.SF %fpacr.<ea>

fpmrdiv.SF <ea>.%fpaS.%fpaD

fpmrsub.SF <ea>.%fpaS.%fpaD

fpmsub.SF <ea>.%fpaS.Y.fpaD

fpmtest.SF <ea>.%fpaS

90 Instruction Sets

Operation

combination move and convert single
precision to double precision

combination move and convert double
precision to long word integer

combination move and convert single
precision to long word integer

combination move and convert double
precision to single precision

combination move and convert long
word integer to single precision

combination move and division

combination move and rounding to
integer using round-to-zero mode

combined move

combination move and multiplication

combination move and negation

move from an external location
move to an external location
move between two FPA registers
move to the status register
move from the status register
move to the control register
move from the control register

combination move and reverse division
(i.e. source -;- destination)

combination move and reverse
subtraction (i.e. source - destination)

combination move and subtraction

combination move and test of operand

Table 9-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPMUL fpmul.SF XfpaS.XfpaD multiplication

FPNEG fpneg. SF XfpaS[. XfpaD] negates the sign of an operand

FPRDIV fprdiv.SF XfpaS.XfpaD reverse division
(i.e. source -7- destination)

FPRSUB fprsub.SF Y.fpaS.XfpaD reverse subtraction
(i.e. source - destination)

FPSUB fpsub.SF XfpaS.Y.fpaD subtraction

FPTEST fptest.SF XfpaS compares the operand with zero

FPWAIT fpwait generates a loop to wait for the comple-
tion of a previously executed instruction

Instruction Sets 91

Notes

92 Instruction Sets

Assembler Listing Options 10
As supports two options for generating assembling listings. The -A option causes a listing
to be printed to stdout. The -a listfile option writes a listing to listfile. In general, listing
lines have the form:

<lineno> <offset> <codebytes> <source>

The <offset> is in hexadecimal, and offsets for data and bss locations are adjusted to
be relative to the beginning of text in the a.out file. The <codebytes> are listed in
hexadecimal. A maximum of 24 code bytes are displayed per source line (8 bytes per
listing line, up to 3 listing lines per source line); excess bytes are not listed. Implicit
alignment bytes are not listed. The <source> field is truncated to 40 characters.

The lister options cannot be used when the assembly source is stdin.

The following example shows a listing generating by assembling a small program using
the -A option.

1 0034 data
2 0034 lalign 4
3 0034 global _x
4 0034 _x:
5 0034 0000 0064 long 100
6 0038 lalign 4
7 0038 global _y
8 0038 _y:
9 0038 0000 0000 long 0

10 0000 text
11 0000 global _main
12 0000 _main:
13 0000 2FOE mov.l Y.a6.-(Y.sp)
14 0002 2C4F mov.l Y.sp.Y.a6
15 0004 DFFC FFFF FFF8 adda.l kLF1.Y.sp
16 OOOA 48D7 ooeo movm.l kLS1.(1.sp)
17 OOOE 7COO movq kO.1.d6
18 0010 7EOO movq kO.1.d7
19 0012 L16:
20 0012 BEB9 0000 0034 cmp.l Y.d7._x
21 0018 6COO OOOA bge L15
22 001C DC87 add.l Y.d7.1.d6
23 001E L14:
24 001E 5287 addq.l kl.Y.d7

Assembler Listing Options 93

25 0020 6000 FFFO bra L16
26 0024 L15:
27 0024 23C6 0000 0038 mov.l %d6,_y
28 002A L13:
29 002A 4CD7 OOCO
30 002E 4E5E

movm.l (%sp),&192
unlk %a6

31 0030 4E75
32 0032
33 0032
34 003C

rts
set LF1,-8
set L81,192
data

94 Assembler Listing Options

Compatibility Issues A
When writing as assembly language code, you should be aware that each processor has
a different register set. Because of this, it is possible to write assembly code that works
on a Model 320 computer but doesn't work on a Model 310. Therefore, if your goal is to
write portable code, keep the following in mind:

• Instructions that use the MC68020/30's additional registers will not work on either
the MC68000 or MC68010.

• Likewise, instructions that use the MC68010's special registers will not work on the
MC68000. However, such instructions will work on the MC68020/30 because the
MC68010 register set is a subset of the MC68020/30 register set.

• The MC68010 instruction set is a subset of the MC68020/30 instruction set.
Therefore, some MC68020/30 instructions will not work on the MC68010.

• Model 320, 330, 350, 360, and 370 computers use the MC68881 floating point co
processor. Therefore, if you have a Model 310 computer, you cannot write assembly
language code to use th~ MC68881.

Compatibility Issues 95

Using the -d Option
The -d option to as is used under special circumstances. It is typically used when you
wish to write code that meets the following conditions:

• The code is intended to run on either a Model 310 or Model 320,330,350, 360, or
370 computers.

• There are actually two versions of the code: one for the MC68010 processor; the
other for the MC68020/30 and MC68881 processors.

• The program makes a run-time decision on which code to execute.

For example, suppose you write some code to perform floating point operations. You
want the code to run on either a Model 310 or Model 320 computer. When the code
runs on a Model 310, all floating point operations must be performed in software; when
the code runs on a Model 320, you want the code to use the MC68881 floating point
co-processor so that it will run faster. The following pseudo-code illustrates this concept:

if this code is running on a computer with MC68020/30 and MC68881 then

perform floating point operations using Me68881

else 1* code is running on a Model 310 computer *1

perform floating point operations using library routines

endif

If you write code that meets these conditions, then you should use the /bin/ as20
assembler with the -d option. The -d option ensures that only MC68010-compatible
address displacements will be generated. Therefore, the MC68010 code generated by
as20 will run on a Model 310.

96 Compatibility Issues

Determining Processor at Run Time
The type of code discussed in the previous section is special in that it must determine
which processor it is running on at run time. One way to make this run-time determina
tion on current Series 300 computers is to look at the flag_68010 flag in ertO. o. If this
word is non-zero, then the processor is a MC68010; otherwise, it is a MC68020/30.

Another method would be to write a routine that sets up signal-catching for the signal
SIGILL. (The SIGILL interrupt is generated if an illegal instruction is executed.) Then
the routine would execute an MC68020/30-only instruction. If the illegal instruction
interrupt occurs, then the code is not running on an MC68020/30 processor. (See
signal{2) in the HP-UX Reference for details on setting up a signal handler.)

Two additional flag words are defined in crtO.o beginning with the 5.5 HP-UX release.
These words are as follows:

is non-zero if there is a HP 98248 Floating-Point Accelerator in the
system; otherwise, the word is zero (0).

is non-zero if there is an M68881 Floating-Point Coprocessor in the
system; otherwise, the word is zero (0).

Compatibility Issues 97

Notes

98 Compatibility Issues

Diagnostics B
Whenever as detects a syntactic or semantic error, a single-line diagnostic message is
written to standard error output (stderr). The message provides descriptive information
along with the line number and filename in which the error occurred.

Most of the error messages generated by as are descriptive and self-explanatory. Two
general messages require further comment:

• "syntax error": as generates this message when a line's syntax is illegal. If you
encounter this error, check the overall format of the line and the format of each
operand .

• "syntax error (opcode/operand mismatch)": The overall syntax of the line is legal,
and the format of each operand is also legal; however, the combination of opcode,
operation size, and operand types is not legal. Check the addressing modes for each
operand and the operation sizes that are legal for the given opcode.

Diagnostics 99

Notes

100 Diagnostics

Interfacing Assembly Routines
to Other Languages c
This appendix describes information necessary to interface assembly language routines
to procedures written in C, FORTRAN, or Pascal.

Linking
In order for a symbol defined in an assembly language source file (such as the name of an
assembly language routine) to be known externally, it must be declared with the global
pseudo-op. (The comm pseudo-op also marks identifiers as global.) (For details on these
pseudo-ops, see the "Pseudo-Ops" chapter.)

It is not necessary for an externally defined symbol, used in an assembly program, to be
declared in a global statement: if a syml)ol is used but not defined, it is assumed to be
defined externally. However, to avoid possible name confusion with local symbols, it is
recommended that you use the global pseudo-op to declare all external symbols.

Interfacing Assembly Routines to Other Languages 101

Register Conventions
Several registers are reserved for run-time stack use and other purposes.

Frame and Stack Pointers
Register A6 is designated as a pointer to the current stack frame; its value remains
constant during the execution of a routine; all local variables are addressed from it.
Register A7 is designated the run-time stack pointer. Its value changes during the
execution of the routine.

Scratch Registers
Registers DO, DI, AO, and Al are "scratch registers" which are reserved to contain
intermediate results or temporary values which do not survive through a call to a function.
That is, a called routine is free to alter these registers without saving and restoring
previous values, and a calling routine must save the value (in memory or a non-scratch
register) before making a call if it wants the value preserved. All float registers, if they
are present, are considered to be scratch registers by the C and F77 compilers; Pascal
preserves their values across procedure and function calls.

Function Result Registers
All functions return their result in register DO except when the result is a 64-bit real
number in which case the result is returned in the DO-Dl register pair. Register Al is
used to pass to the called routine the address in the runtime stack of temporary storage
where a C structure-valued function is to write its value. That address is passed back to
the calling routine in DO in the same way as any other address valued function.

Temporary Registers and Register Variables
Registers which are not reserved as described above (D2-D7, A2-A5) are available for two
uses: First, they may be used as temporary value storage. Unlike the scratch registers,
though, their integrity is guaranteed across function calls because their values are saved
and restored. Second, they may be reserved by the user in C and by the F77 and Pascal
compilers as "register variable" locations. If the FPA option is selected, A2 is reserved
as the floating-point accelerator base register and only registers A3-A5 are available as
address registers for scratch registers and register variables.

102 Interfacing Assembly Routines to Other Languages

Calling Sequence Overview
This section describes the procedure calling conventions as they are currently imple
mented by the Series 300 C, FORTRAN, and Pascal compilers. These conventions must
be followed in order to interface an assembly language routine to one of these higher level
languages.

Calling Sequence Conventions
The following calling conventions are used whenever a routine is called:

• The calling routine pushes function arguments onto the runtime stack in reverse
order. The called routine can always access a given parameter at a fixed offset from
%a6 (the stack frame pointer).

• The calling routine pops the parameters from the stack upon return.

• The called routine must save any registers that it uses except the scratch registers
DO, Dl, AO, AI. The float registers can be treated as scratch registers, except when
interfacing to Pascal.

• The called routine stores its return value in DO. A 64-bit real return value is stored
in the register pair DO, D 1.

• The called routine uses the link instruction in its prologue code to allocate local
data space and to set up A6 and A7 for referencing local variables and parameters.
(The link instruction modifies the values of A6 and A7. The extension of stack
space is done by the HP-UX operating system when a %a7-relative reference would
extend beyond the current stack space.)

• The called routine epilogue code uses the unlk and rts instructions to deallocate
local data space and return to the calling procedure, respectively.

Interfacing Assembly Routines to Other Languages 103

Example
For example, consider the following simple C program.

int z;

main()
{

}

int x,y;
z = test(x,y);

test(i, j)
int i;
register int j;
{

}

int k;
k = i + j;
return(k);

104 Interfacing Assembly Routines to Other Languages

When compiled (but not optimized), it will generate assembly code like the following.
(Comments have been added to point out features of the calling conventions.)

1 comm _z.4
2 global _main
3 _main:
4 link. I %a6.&LF1 # Allocate local data space
5 movm.l &LS1. (%sp) # Save non-scratch registers
6 mov.l -8(%a6).-(%sp) # Push argument "y"
7 mov.l -4(%a6).-(%sp) # Push argument "x"
8 jsr _test # Call "test II
9 addq &8.%sp # Pop arguments

10 mov.l %dO._z # Save function result
11 movm.l (%sp) .&LS1 # Restore registers
12 unlk %a6 # Deallocate local space
13 rts # and return
14 set LF1. -8 # Gives size for local data
15 set L81.0 # Register mask of affected

non-scratch registers.

16 global _test
17 _test:
18 link. I %a6.&LF2 # Allocate local data space
19 movm.l &L82. (%sp) # Save non-scratch registers

20 mov.l 12(%a6).%d7 # Parameter "j". Parameters
are at positive offsets off
%a6 (moved to %d7 because
of the "register" declaration.)

21 mov.l 8(%a6).%dO
22 add.l %d7.%dO
23 mov.l %dO.-4(%a6) # Local vars are at negative

offsets off %a6
24 mov.l -4(%a6).%dO # Put return value in %dO
25 bra.l L15
26 L15:
27 movm.l (%sp),&LS2 # Restore registers
28 unlk %a6 # Deallocate and return
29 rts
30 set LF2,-8 # Displacement for link to

allocate local data space
31 set LS2,128
32 data

Interfacing Assembly Routines to Other Languages 105

Immediately before execution of the jsr _test instruction (line 8), the user stack looks
like:

A7 -+

(TOS)

Larger addresses

y

x

'oJ

Smaller addresses

4(%sp)
(%sp)

Following the link instruction in function test, the stack looks like:

A6 -+

A7 -+

(TOS)

Larger addresses

rl" ,.~

y

x
return addr
previous A6

k

'oJ ,..1,.

Smaller addresses

12(%a6)
8(%a6)
4(%a6}

(%a6)
-4(%a6)

106 Interfacing Assembly Routines to Other Languages

C and FORTRAN
This section describes some of the language-specific dependencies of C and Fortran. You
should consult the manual pages for these compilers for further information.

Assembly files can be generated by C and Fortran. You can examine the generated
assembly files for additional information. (The only current means for looking at the
code generated by the Pascal compiler is through the debugger adb.)

NOTE

All stack pictures in the remainder of this document depict the
state of the stack immediately preceding execution of the j sr
sub_name instruction. Larger addresses are always at the top; the
stack grows from top to bottom.

C and FORTRAN Functions
In C and FORTRAN, all global-level variables and functions declared by the user are
prefixed with an underscore. Thus, a variable name xyz in C would be known as _xyz
at the assembly language level. All global variables can be accessed through this name
using a long absolute mode of addressing.

C and FORTRAN push their arguments on the stack in right-to-Ieft order. C always uses
call-by-value, so actual argument values are placed on the stack. The current definition of
C requires that argument values be extended to int's before pushing them on the stack;
float's are extended to double's.

FORTRAN's parameter-passing mechanism is always call-by-reference, unless forced
to call-by-value via the SALlAS directive. In this document, all examples are call-by
reference. For each argument, the address of the most significant byte of the actual value
is pushed on the stack.

Function results are returned in register DO, or register pair DO, Dl for a 64-bit real
result.

Note: For exceptions to FORTRAN's parameter-passing and return-value conventions,
see the subsequent sections "FORTRAN CHARACTER Parameters," "FORTRAN
CHARACTER Functions," and "FORTRAN COMPLEX Functions."

Interfacing Assembly Routines to Other Languages 107

When a C structure-valued function is called, temporary storage for the return result
is allocated on the runtime stack by the calling routine. The beginning address of this
temporary storage space is passed to the called function through register AI.

The following shows the state of the stack after a routine with n arguments is called.

C: long func (argl, arg2, ... , argn)
FORTRAN: INTEGER FUNCTION func (argl, arg2, ... , argn)

A7 --+

DO

argn (C: value; FORTRAN: address of value)

arg2
argl

Will contain result value on return.

C and FORTRAN Functions Returning 64-Bit Double Values
For C and FORTRAN functions which return a 64-bit double value, the stack looks like:

C: double func (argl, arg2, ... , argn)
FORTRAN: REAL*8 FUNCTION func (argl, arg2, ... , argn)

A7 --+

DO
Dl

arg2
argl

Most-significant 4 bytes of function value
Least-significant 4 bytes

108 Interfacing Assembly Routines to Other Languages

C Structure-Valued Functions
The calling routine is responsible for allocating a result area of the proper size and
alignment. It may be anywhere on the stack above the arguments, or it may be in static
space. The address of the result area is passed to the called routine in register AI.

(struct s) func (arg1. arg2 •.... argn)

A7 -+

Al
DO

FORTRAN Subroutines

Calling routine may allocate result area here.
argn

arg2
argl

Address of result area passed to called routine.
Address of result area returned to calling routine.

FORTRAN subroutines have the same calling sequences as FORTRAN functions de
scribed above, except that no results or result areas are dealt with.

SUBROUTINE sub (arg1. arg2 argn)

A7 -+

argn (address of actual value)

arg2
argl

Interfacing Assembly Routines to Other Languages 109

FORTRAN CHARACTER Parameters
Each argument of type CHARACTER*n causes two items to be pushed on the stack.
The first is a "hidden parameter" which gives the length of the CHARACTER argument.
The second is the pointer to the argument value.

FORTRAN CHARACTER Functions
CHARACTER-valued FUNCTIONs are implemented differently from other FORTRAN
functions. The calling routine is responsible for allocating the result area. However, the
address of the result area is neither passed to nor returned from the called routine in
registers. Instead, after all parameters are pushed on the stack, the length of the return
value is pushed, followed by the address of the return area.

For example, suppose you call a character function as:

INTEGER inti, int3
CHARACTER*7 stri
CHARACTER*8 str2
CHARACTER*15 func, result
result = func (inti, strl, str2, int3)

Then the resulting stack is:

CHARACTER*15 FUNCTION func (argi. arg2. arg3, arg4)

8 (size of str2)
7 (size of strl)
int3 (address of actual value)
str2 (address of actual value)
str 1 (address of actual value)
intl (address of actual value)
15 (size of result)

A7 --t address of result area

" rJ

110 Interfacing Assembly Routines to Other Languages

FORTRAN COMPLEX*8 and COMPLEX*16 Functions
All FORTRAN COMPLEX functions return their results through a result area.

COMPLEX*16 FUNCTION func (argl. arg2. arg3)

':-'

A7~

'v

'1"

r

(result area may be allocated here)
arg3 (address of actual value)
arg2 (address of actual value)
argi (address of actual value)
address of result area

Interfacing Assembly Routines to Other Languages 111

Pascal
In Pascal, any exported user-defined function is prefixed by the module name surrounded
by underscores. A function named funk in module test would be known as _test_funk
to an assembly language programmer. If a procedure is declared to be external, as in

procedure proc; external;

then all calls to proc will be represented by _proc in assembly language.

Pascal uses both the call-by-value and call-by-reference mechanisms discussed for C and
FORTRAN. Pascal also pushes its parameters on the stack in right-to-Ieft order. All
parameter information is stored in the parameter stack in multiples of four bytes (e.g.,
an argument of type char will occupy 4 bytes on the stack, not 1). No parameter or
result area information is communicated to the called routine through registers. Pascal
has a number of conventions not found in either C or FORTRAN. They are described
below.

Static Links
All procedures and functions declared at level 2 or greater (main program is at level
0; contained procedures and functions are at level 1; routines inside these routines are
at level 2,) expect a static link word on the stack below all parameter information.
This word contains the address of the enclosing routine's stack frame (Le., the value in
register A6 when the routines immediately surrounding the called routine is executing).
The called routine needs this information to access intermediate (i.e., non-local, non
global) variables on the stack.

112 Interfacing Assembly Routines to Other Languages

Passing Large Value Parameters
Large value parameters are passed via a copyvalue mechanism. Calling routines pass
copyvalue parameters by pushing the address of the value on the stack (Le., treat them
the same as call-by-reference parameters). Then the called routine makes a local copy of
the parameter by dereferencing the pointer.

Parameter-Passing Rules
The rules used by the Pascal compiler for passing parameters are described here.

Call-By-Reference ("var" Parameters)
For all var parameters, push the address of the most significant byte.

Call-By-Value (Copyvalue Parameters)
If a value parameter meets either of the following criteria:

• it is a string

• it is larger than four bytes but is not a longrealor a procedure/function variable

then the address of the variable is pushed (as if by call-by-reference). Then the called
routine uses the copyvalue mechanisim to make a local copy of the parameter.

Call-By-Value (Non-Copyvalue Parameters)
For alllongreal, procedure/function variables, and for all items that use four or less bytes
(except strings), the value of the variable is pushed.

Interfacing Assembly Routines to Other Languages 113

Example of Parameter Passing
The following Pascal procedure definition produces the stack below:

procedure proc (var argl: real; arg2: integer; arg3: string[3]);
1* proc is declared at level 1 ==> no static link in calling sequence *1

oJ

A7~

'oJ

'to'

rL..

arg3 (address of actual value - copyvalue)
arg2 (actual value)
argl (address of actual value)

Pascal Functions Return Values
Like C and FORTRAN functions, Pascal functions return small results in registers DO
and Dl. Larger function values are passed through a result area. The address of the result
area is pushed before the argument values. The result area address is not communicated
through any registers.

The following Pascal function types return values in DO and possibly Dl:

• scalar (includes char, boolean, enum, and integer)

• subrange

• real

• longreal

• pointer

The following Pascal function types return values through a result area:

• procedure-valued

• set

• array

• string

• record

• file

114 Interfacing Assembly Routines to Other Languages

Example with Static Link
Suppose you've declared a Pascal procedure as:

function func argl: longreal;
var arg2: typel;

arg3: arraytype) (* assume sizeof(arraytype) > 4 *)
longreal;

(* func is declared at level 2 ==> static link required *)

Then the arguments and static link would be placed on the stack as follows:

A7 -+

DO
Dl

't-'

..-

,.

, "

arg3 (address of actual value - copyvalue)
arg2 (address of actual value)
argl (actual value, 4 LSB's)
argl (actual value, 4 MSB's)
static link (stack frame address of level 1

routine containing ''func'')

4 MSB's of longreal result
4 LSB's of longreal result

Example with Result Area
Suppose you've declared a Pascal function of a set type, which returns the result in a
result area:

function func (argl: longreal;
var arg2: typel;

arg3: arraytype) (* assume sizeof(arraytype) > 4 *)
settype;

(* "func" is declared at level 1 ==> no static link expected *)

Then the resulting stack would be:

't-' 'r-'

A7 -+

v , "

address of result area
arg3 (address of actual value - copyvalue)
arg2 (address of actual value)
argl (actual value, 4 LSB's)
argt (actual value, 4 MSB's)

Interfacing Assembly Routines to Other Languages 115

Pascal Conformant Arrays
Several words of information are passed for conformant arrays. For every dimension, the
length (including padding bytes), upper, and lower bounds are pushed. Last of all, the
address of the array is placed on the stack.

Example Using Conformant Arrays
Consider the following Pascal code which calls a subroutine, sub, which performs
operations on a conformant array.

var ary: array [1 .. 3, 2 .. 5] of integer;

sub (ary);

The called routine is declared as:

procedure sub(ary[lb1 .. ub1: integer; lb2 .. ub2: integer] of integer);
(* sub declared at level 3 ==> static link required *)

The resulting stack will be:

I'"'

A7 -+

"

r"

,iJ

16 - length of dimension 1
1 - lower bound of dim 1 (identifier "lbl")
3 - upper bound of dim -1 (identifier "ubI")
4 - length of dimension 2
3 - lower bound of dim 2 (identifier "lb2")
5 - upper bound of dim 2 (identifier "ub2")
address of "ary"
static link

116 Interfacing Assembly Routines to Other Languages

Pascal "var string" Parameters.
var string parameters without a declared length have the maximum length passed as
a hidden parameter. The subroutine must have this information to avoid writing past
the end of string storage. The maximum size is pushed on the stack before the string
address.

For example, suppose you've written the following Pascal code:

var string20: string [20] ;

sub (string20);

The routine sub is declared as:

procedure sub (var s: string);
(* "sub" declared at level 1 ==> no static link expected *)

The resulting stack looks like:

A7 ---?

20 - maximum length of string
address of "string20"

Interfacing Assembly Routines to Other Languages 117

Notes

118 Interfacing Assembly Routines to Other Languages

Example Programs D
This appendix provides sample assembly language programs. The intent of the programs
is to show as many features of the as assembler as possible.

Interfacing to C
The following example illustrates a complete assembly example, and the interface of
assembly and C code. The assemly source file count1.s contains an assembly language
routine, _count_chars, which counts all the characters in an input string, incrementing
counters in a global array (count). It checks for certain errors and uses the fprintf(3C)
routine to issue error messages.

The example illustrates calling conventions between C and assembly code, including
access to parameters, and the sharing of global variables between C and assembly
routines. The variable Stderr is defined in count1.s but accessed in prog. C; the array
count is defined in prog.c and accessed from count1.s.

The cc (1) command can be used to build a complete command from these sources:

cc -0 ccount prog.c count1.s

Example Programs 119

The C Source File (prog.c)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

120

1* Main driver for a program to count all occurences of each (7-bit)
* ascii character in a sequence of input lines, and then dump the
* results.
* The loop to do the counting is done by a routine written in
* assembly.
*1

include <stdio.h>
define SMAX 100 1* maximum string size *1
char input_string[SMAX] ;

define NCHAR 128
unsigned short count [NCHAR] ;

extern int count_chars();

unsigned int totalcount;
extern FILE * Stderr;

mainO {

1* Routine to do the count. It returns
* a count of the total number of
* characters it counted.
*1

1* Total letter count *1

Stderr stderr; 1* Set up error descriptor required by

}

* count_chars.
*1

while (fgets(input_string, SMAX, stdin) != NULL
totalcount += count_chars(input_string);

dump_counts 0 {
register int i;

printf("Char Value Count\n");
printf("========= =====\n");
for (i =0; i<NCHAR; i++)

printf(l\t%02X\t%4u\n", i, count[i]);

printf("\nTotal Letters Counted = %d\n", totalcount);
}

Example Programs

The Assembly Source File (count1.s)
1 # count_chars (s)
2 # Routine to count characters in input string
3 # Called as
4 # count_chars(s)
5 # from C.
6 # Count the occurrences of each (7-bit) ascii character in the
7 # input line pointed to by "s".
8 # The input lines are guaranteed to be null-terminated.
9 # The counts are stored in external array

10 # unsigned short count[NCHAR]
11 # where NCHAR in 128.
12 # Give an error (using fprintf from libc) if
13 # * an input char in not in the 7-bit aSC11 range.
14 # * the count overflows for a given character.
15 # The return value is the total number of characters counted.
16 # Illegal characters are not included in the total character
17 # count.
18 # Calling routine must set global variable Stderr to file descriptor
19 # for error messages. We make this require because a C program
20 # can more portably calculate the necessary address.
21
22
23
24
25
26
27

global

global
global

_count

_fprintf
_count_chars

28 # Register usage:

Array of unsigned short
is defined externally
External function
Make _count_characters
externally

for storing cnts

visible

29 # NOTE: We don't use scratch registers for variables we would want
30 # preserved across calls to _printf. An alternative strategy would be
31 # to use all scratch registers and save them around any calls to
32 # _printf. on the assumption that such calls will be rare.
33 # %a2 address of count[] array
34 # %a3 step through input string
35 # %d2 total character count
36 # %dl value of current character (scratch register)

Example Programs 121

31
38
39
40
41
42
43
44
45
46
41
48
49
50
51
52
53
54
55
56
51
68
59
60
61
62
63
64
65
66
61
68

global _Stderr # Stderr file descriptor - must be
externally set.

bss
_Stderr: space 4

text
_count_chars:

link.l
mow.l
mov.l
mov.l
clr.l

%a6.&-12 # No local vars. 3 registers to save
%a2-%a3/%d2.(%sp)
&_count.%a2 # Count array
8(%a6).%a3 # Input string pOinter
%d2 # Total character count

Loop:
(%a3)+.%d1 # Next character mov.b

beq.b
bmi.b
addq.l
ext.w
addq.w
bcs.b
bra.b

Ldone # Null character terminates string
Lneg # Illegal character
&1.%d2 # Increment total count
%d1 # Make %d1 usuable as an index
&1. (%a2.%d1.w*2) # Increment the appropriate counter
Lovflw
Loop # Go back for next character

Lneg: # illegal character seen -- give an error
push args for fprintf. in reverse order
and.l tOxff.%d1 # Only want low 2 bytes
mov.l %dl.-(%sp)
mov.l &Errl.-(%sp)
mov.l _Stderr.-(%sp)
jsr _fprintf

Pop the 3 arguments

in arg passed.

add.l &12.%sp
bra..b Loop # Go back for next character

69
10 Lovflw: # count overflowed give an error
11 # push args for fprintf. in reverse order
12 and. I &Oxff.%d1 # Only want low 2 bytes in arg passed.
13 mov.l %d1.-(%sp)
14 mov.l &Err2.-(Y~p)
15 mov.l _Stderr.-(%sp)
16 jsr _fprintf
11 add.l &12.%sp # Pop the 3 arguments
18 bra.b Loop # Go back for next character
19

122 Example Programs

80
81 Ldone:
82 mov.l 1d2.1dO • return value
83 movm.l (~sp).~a2-1a3/1d2 • restore registers
84 unlk 1a6
86 rts
86
87
88 data
89 Err1: asciz "Illegal character (102X) in input\n"
90 Err2: asciz "Count overflowed for character (%02X)\n"

Example Programs 123

Using MC68881 Instructions
The following assembly language program uses MC68881 instructions to approximate a
fresnel integral.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19 .
20
21
22
23
24
25
26
27
28

double fresnel(z) double z;

Approximate fresnel integral by calculating first hundred terms of
series expansion. For n=O to n=99. each term is:

set
text
global

_fresnel:
link
mov.l
fmov
fmov

movq
movq
fmov.w
fmov.b
fmov.d
fmov
fmul
fmul
fmov.b

PI.O

_fresnel

Yea6.1k-8
Yed2.-4(Yea6)
Yefpcr.-8(Yea6)
1k0.Yefpcr

1k0.YedO
1k1.Yed1
1k0.YefpO
1k1.Yefp1
8(Yea6).Yefp3
Yefp3.Yefp2
'/~ 9. ·/~ 9.
,. ... !" .. '.,. ... !'''''

Yefp3.Yefp3
1k1.Yefp4

save d2
save control register
disable traps; round to
nearest extended format
n
4*n+1
initialize sum
(pi/2) A (2*n)
z
initialize ZA (4*n+1)
z A 2
z A 4
initialize (2*n) !

124 Example Programs

29 fmovcr &:PI.%fp5 # pi
30 fdiv.b &:2.%fp5 # pi/2
31 fmul %fp5.%fp5 # (pi/2)A2
32 loop:
33 fmov %fp1.%fp6 # (pi/2)A(2*n)
34 fdiv %fp4.%fp6 # divide by (2*n)!
35 fdiv.l %d1.%fp6 # divide by 4*n+1
36 fmul %fp2.%fp6 # multiply by zA(4n+1)
37 movq &:1.%d2
38 and.b %dO.%d2 # odd or even term?
39 bne.b L1
40 fadd %fp6.%fpO # add term
41 bra.b L2
42 L1: fsub %fp6.%fpO # subtract term
43 L2: addq.l &:1. %dO # n=n+1
44 cmp.l %dO.&:100 # end of loop?
45 beq.b L3
46 mov.l %dO.%d2 # new n
47 asl.l &:1. %d2 # n*2
48 fmul.l %d2.%fp4 # update (2*n)!
49 subq.l &:1.%d2
50 fmul.l %d2.%fp4
51 addq.l &:4.%d1 # update 4*n+1
52 fmul %fp3.%fp2 # update zA(4*n+1)
53 fmul %fp5.%fp1 # update (pi/2)A(2*n)
54 bra.b loop
55 L3: fmov.d %fpO.-(%sp) # get result
56 movm.l (%sp)+.%dO-%d1
57 mov.l -4(%a6).%d2 # restore d2
58 fmov -8(%a6).%fpcr # restore control register
59 unlk %a6
60 rts

Example Programs 125

Notes

126 Example Programs

Translators E
Two assembly source translators are provided to assist in converting assembly code from
other HP systems to as assembly language for Series 300 computers.

atrans(1)
The atrans translator converts Pascal Language System (PLS) assembly language to
as assembly language format. You should consult the atrans{l} page of the HP-UX
Reference for details on using the atrans command.

astrn(1)
The as assembler uses a UNIX-like assembly syntax which differs in several ways from
the syntax of previous HP-UX assemblers. The astrn translator translates old HP-UX
Series 200/300 assembly language to the new as assembly language for Series 200/300
HP-UX systems. Consult the astrn{l} page of the HP-UX Reference for details on the
astrn command.

NOTE

The translators are able to perform most of the translation to as
assembly language format. However, some translation is beyond
the capabilities of the translators. Lines that require human
intervention to change will generate warning messages. See the
appropriate page-atrans(l} or astrn{l}-of the HP- UX Reference
for details on warning messages.

Translators 127

Notes

128 Translators

Unsupported Instructions
for Series 300's F
HP-UX Series 300 assemblers support the complete MC68010 and MC68020/30 instruc
tion sets. However, some instructions are not fully supported by the HP-UX hardware.
These instructions are as follows:

• tas

• cas

• cas2

• bkpt

The assembler generates code for these instructions, but gives warning messages that the
instructions are not fully supported by the HP-UX hardware.

Notes Regarding Unsupported Instructions
This section provides detailed notes regarding the previously mentioned unsupported
assembler instructions for Series 300 computers. Topics covered are as follows:

• Instructions Not Supported by the Model 310

• Instructions Not Supported by the Model 320

• Instructions Not Supported by the Model 330

• Instructions Not Supported by the Model 350,360 or 370

Instructions Not Supported by the Model 310
The tas instruction is not supported by the Model 310. Executing a tas instruction will
either generate a bus error or corrupt memory.

The instructions cas and cas2 are illegal instructions. These instruction will cause normal
exception processing for an illegal instruction.

The bkpt instruction is not illegal, but it will end up in illegal instruction processing.

Unsupported Instructions for Series 300's 129

Instructions Not Supported by the Model 320
The instructions tas, cas, and cas2 will execute; however, they may cause cache
consistency problems. These instructions completely bypass the cache, so if you reference
the same memory locations with a different instruction you will get the old data stored
in the cache instead of the new data written to memory.

The bkpt instruction will cause illegal instruction exception processing.

Instructions Not Supported by the Model 330
The instructions tas, cas, and cas2 execute properly because there is no cache to be
inconsistent.

The bkpt instruction causes illegal instruction exception processing.

Instructions Not Supported by the Model 350, 360 or 370
The instructions tas, cas, and cas2 execute properly. The cache consistency is maintained.

The instruction bkpt will cause illegal instruction exception processing.

130 Unsupported Instructions for Series 300's

Index

a
abs .. 30,53
Absolute addressing modes ... 59
Absolute expressions ... 27, 59
Absolute integer constants .. 31
Absolute long addressing ... 59
Absolute offsets ... 40
Accessibility, assembler ... 1
Addition ... 28
Address mode syntax .. 55
Address register ... 13
Addressing modes ... 59
SALlAS directive .. 107
align . .. 49
align pseudo-op ... 50
Alignment pseudo-ops ... 49
allow_plsub 51
allow_plsub pseudo-op ... 33
a.out ... 8, 53
a.out(4) ... 4
as syntax ... 21
as(l) .. 1, 3, 4, 7
as(I):

command options .. 7
generate assembly listing .. 7
input source file .. 7

asl0 ... 1, 4
asl0 selection .. 9
as20 ... 1,4
as20 addressing mode optimization .. 61
as20 selection .. 9
ASCII character in character constants 16
asciz -.. 46
asciz pseudo-ops .. 18
Assembler accessibility .. 1
Assembler compatibility ... 4

Index 131

Assembler invocation ... 7
Assembler listing options ... 93
Assembler operation ... 10
Assembler versions ... 4
Assembly language expressions .. 27
Assembly language interfaces to high-level languages 101
Assembly language program creation .. 11
Assembly language program sections ... 23
Assembly language syntax .. 21
Assembly source file .. 121
Associativity rules ... 30
a_stamp 9, 53
astrn(l} ... 127
atrans(l} .. 127

b
Backslash ... 16, 17, 18
Backspace .. 17
Binary operators .. 28
/bin/as ... 7
/bin/ as driver program ... 4
/bin/asl0 ... 9
/bin/as20 ... 9
Bit shift right, bit shift left ... 28
Bitwise AND ... 28
Bitwise exclusive-OR .. 28
Bitwise OR ... 28
bkpt ... 127, 128
Branch offsets .. 36
bss segment 23
Byte .. 18
byte ... 46

c
C ... 101, 102, 107
C compiler ... 102, 103, 107
C functions .. 107
C functions returning 64-bit double values 108
C source file ... 120
C structure-valued functions ... 109
Cache address register ... 14

132 Index

Cache control register 14
Call-by-reference .. 107, 112, 113
Call-by-value ... 107, 112, 113
Calling sequence ' ... 103
Carriage return ... 17
cas .. 127, 128
cas2 ... 127, 128
Case sensitivity ... 11
CBD support Pseudo-Ops .. 54
cc(l) .. 1, 10
ccp(1) .. 22
cdb(1) .. 54
Character constants ... 16
C_NEAR ...•..... 52
C_NEG_INF•••...............••.......... 52
comm .. 48
comm pseudo-op ... 101
Comments 21, 22
compare instructions .. 5
Comparison instructions .. 5
Compatibility, assembler .. 4
Compatibility issues ... 95
Compiler-generated local names .. 8
Condition code register .. 13
Conformant arrays ... 116
Constants ... 11, 16, 28
Copyvalue mechanism .. 113
countl.s ... 119
C_POS_INF .. 52
Creating assembly language programs .. 11
crtO.o .. 97
C_TOZERO ..•................ 52
cvtnum{3C) .. 52
cvtnum{3C) routine .. 19

d
dabs ... 30
Data initialization pseudo-ops ... 46
Data register ... 13
data segment ... 23
Debugging assembly language programs 8

Index 133

Destination function code register ... 14
Determining expression type .. 30
Diagnostics ... 99
Displacement .. 8
Division .. 28
dntt ... 54
dnt_ TYPE ... 54
Dot (.) ... 24
Double ... 34
double ... 47
Double floating-point expressions .. 34
Double pseudo-ops .. 52
Double quote ... 17
Driver program .. 7
Driver program /bin/ as ... 4

e
EA .. 64
Effective address ... ~..... 64
end_plsub .. 51
Error messages 99
Evaluating expressions ... 32
even ... 49
Executable code .. 7
Expression evaluation .. 32
Expression rules 28
Expression types .. 27
Expression:

absolute 27
external .. 27
relocatable ... 27

Expressions ... 27
ext .. 30
extend ... 47
Extend pseudo-ops .. 52
Extended 34
External expressions ... 27, 28
Externally defined symbols .. 101

134 Index

f
F77 compiler .. 102
labs ... 30
Filler bytes ... 25
float ... 46
float pseudo-ops ... 52
Floating-Point condition code designations 76
Floating-Point accelerator registers .. 15
Floating-Point constants ... 18, 34
Floating-Point control register .. 15
Floating-Point data register .. 15
Floating-Point directives ... 43
Floating-Point expressions .. 34
Floating-Point format, IEEE .. 19
Floating-Point instruction address register 15
Floating-Point Pseudo-Ops ... 52
Floating-Point status register ... 15
Forcing small displacements (-d) .. 62
Form feed .. 17
FORTRAN ... 101, 107
FORTRAN CHARACTER functions 110
FORTRAN CHARACTER parameters 110
FORTRAN compilers ... 103
FORTRAN COMPLEX*16 functions 111
FORTRAN COMPLEX*8 functions .. 111
FORTRAN functions ... 107
FORTRAN functions returning 64-bit double values 108
FORTRAN subroutines ... 109
FPA base register ... 52
FPA macros .. 86
fpareg .. 52
fpid .. , , .. 52
fpmode ... 52
fprintl(3C) .. 119
Frame pointer address register .. 13
Frame pointers ;.................... 102
Function result registers ... 102

9
Generating assembly listing .. 7
global .. 48

Index 135

global pseudo-op .. 101
Global symbols .. 8

h
Hexadecimal dump ... 7
High-level language interfaces .. 101
Horizontal tab .. 17
HP 98248 Floating-Point Accelerator Manual , 3
HP 98248 floating-point registers .. 12

.
I

Identifiers .. 11, 28
IEEE floating-point format ... 19
Immediate operand .. 64, 65
Implicit alignment ... 25
INF (INFinity) .. 19
Initialized data .. 23, 43
Input source file .. 7
Instruction mnemonic .. 12
Instruction sets ... 63
Instructions .. 23
Integer constants .. 16
Interfaces ... 101
Interfacing to C .. 119
Intermediate variables .. 112
Interrupt stack pointer ... 14
Invoking the assembler .. 7
Invoking the macro preprocessor ... 8

I
Label reference 64
Label values .. 10
Labels ... 21, 22, 25, 27
lalign .. 49, 50
lalign pseudo-op ... 41
Language routines .. 101
lcomm ... 47
Id(l) ... 4, 7
Linker, Id(l) .. 59
Linker symbol table (LST) .. 8

136 Index

Linking ... 101
listjile ... 7
listjile option ... 93
Local symbols ... 8
Location counter update ... 25
Location counters ... 24, 25
long ... 46
Long offsets ... 36
long pseudo-op .. 25

m
Macro preprocessor ... 8
magic number 9
magic(4) .. 4
Master stack pointer ... 14
MC68000 16/32-Bit Microprocessor Programmer's Reference Manual 3
M C68000 instruction sets 63
M C68000 registers ... 12
MC68010 instruction sets ... 63
MC68010 processor .. 96
MC68010 registers ... 12, 14
MC68020 32-Bit Microprocessor User's Manual 3
MC68020/30 instruction sets .. 63
MC68020/30 processor ... 96
MC68020/30 registers. 12, 14
MC68030 32-Bit Microprocessor User's Manual 3
MC68881 Floating-Point Coprocessor User's Manual 3
MC68881 instruction sets ... 76
M C68881 processor .. 96
MC68881 registers. .. 12, 15
Model 310 .. 95
Model 320 .. 95
Modulo .. 28
Multiplication .. 28

n
NAN (Not A Number) ... 19
Negation ... 28
Newline (line feed) .. 17
N on-copyvalue parameters ... 113
N onterminating lines, backslash ... 18

Index 137

Note about align .. 50
Note about lalign .. 50
NULL character 17

o
Object code .. 23
offset .. 65
Operand addressing modes ... 10
Operand size ... 35
Operators .. 28
Order of operands .. 5
Output object file .. 8
Overriding precedence ... 30

p
packed ... 34
packed ... 47
Packed pseudo-ops .. 52
Padding .. 25
Parameter-passing rules ... 113
Parentheses 30
Pascal ... 101, 102
Pascal compilers ... 103
Pascal conformant arrays .. 116
Pascal functions return values .. 114
Pascal Language System (PLS) .. 127
Pascal result area .. 115
Pascal user-defined functions ... 112
Pascal "var string" parameters ... 117
Pass one .. 10, 33, 41
Pass two ... 10
Pass-One absolute ... 10
Pass-One absolute expression ... 33, 64
Passing large value parameters ... 113
Passing parameters, rules for .. 113
PC-relative addressing mode .. 59
Pointers ... 102
Precautions•........................... 5
Precedence override ... 30
Precedence rules .. 30
Predefined assembler names .. 12

138 Index

Preliminary code .. 10
Program counter .. 13
Pseudo-Op mnemonic '" 12
Pseudo-Ops .. 43
Pseudo-Ops:

abs .. 53
align . .. 49
allow_plsub .. 51
asciz ... 46
byte ... 46
comm .. 48
dntt ... 54
dnt_ TYPE ... 54
double ... 18, 47
end_plsub .. 51
even ... 49
extend ... 18, 47
float ... 18, 46
/pareg .. 52
/pid " .. 52
/pmode ... 52
global .. 48
lalign .. 41, 49
lcomm ... 47
long ... 25, 46
packed ... 18, 47
set .. 48
short .. 46
sltnormal .. 54
sltspecial ... 54
space .. 47
vt ... 54

r
Register conventions .. 102
Register identifier ... 11, 12
Register suppression ... 14
Register variables .. 102
reglist .. 65
rei ... 30
rei - rei expression .. 31
Relocatable expressions .. 27

Index 139

Relocatable object code ... 7
Relocatable object file .. 9, 10
Relocatable value ... 27
RELOC_MAGIC ...•.....•... 9
Restrictions on span-dependent optimization option 40
Result area .. 115
Rules for associativity ... 30
Rules for expressions 28
Rules for precedence ... 30
Run-time check .. 4, 7, 97
Run-Time check, overriding 9
Run-time stack pointer .. 102
Run-time stack use ... 102

s
Scratch registers ... 102
Segment selection pseudo-ops ... 43, 44
Segment:

bss .. 23
data ... 23
text .. 23

Segments 23
Semantic error .. 99
set .. 48
short .. 46
Short displacement ... 8
SIGILL interrrupt .. 97
Sign-extended displacement ... 64
Signal SIGILL ... 97
Simplified instructions .. 6
Single quote .. 17
Single-line diagnostic message ... 99
Size of operands .. 35
sltnormal 54
sltspecial ... 54
Small displacements ... 62
Source file ... 7
Source function code register ... 14
Source translators .. 127
space .. 47
Span-Dependent directives .. 43
Span-Dependent optimization 8, 31, 33, 35, 36, 37, 40, 51

140 Index

Span-Dependent optimization option restrictions 40
Special characters ... 16, 18
Special characters:

backslash .. 17
backspace .. 17
carriage return .. 17
double quote 17
form feed 17
horizontal tab .. 17
new line (line feed) ... 17
single quote .. 17
vertical tab ... 17

Special reserved symbols ... 12
Specific forms .. 6
Stack pointer .. 13, 102
Standard error output (stderr) .. 99
Statements ... 21, 22
Static link .. 112, 115
Status register .. 13
stdin .. 7
stdout " ... 7
String constants 18
subtract instructions .. 5
Subtraction 28
Suppressing address registers ... 14
Suppressing program counters .. 14
Suppressing registers 14
Suppressing warning messages ... 9
Symbol definition pseudo-ops ... 48
Symbol subtractions ... 41, 51
Symbol table ... 12
Symbolic offsets ... 40
Syntactic error .. 99
Syntax, assembly language ... 21

t
tas .. 129, 130
Temporary registers .. 102
text segment .. 23
Text segments .. 35
Thanslators .. 127

Index 141

u
U nary operators 28
Unary plus ... 28
Undefined external .. 28
Undefined external addresses ... 59
Undefined symbols ... 8
Uninitialized data ... 23
Updating the location counter .. 25
User stack pointer ... 13
User-defined identifiers ... 12
U ser-Defined local names .. 8

v
Var parameters .. 113
Var string parameters ... 117
Vector base register .. 14
Version Pseudo-Op override ... 9
Version Pseudo-Op .. 53
Vertical tab ... 17
vt ... 54

w
Warning messages .. 9
width .. 65

z
Zero register .. 14

142 Index

Table of Contents

ADB Tutorial
Invocation ... 1
ADB Command Format ... 2
Displaying Information .. 4
Debugging C Programs ... 7

Debugging a Core Image ... 7
Setting Breakpoints .. 10
Advanced Breakpoint Usage ... 15
Other Breakpoint Facilities .. 17
Maps ... 19
Variables and Registers ... 21
Formatted Dumps ... 23
Patching. .. 27
Anomalies .. 28
Command Summary ... 29

Formatted Printing .. 29
Breakpoint and Program Control 29
Miscellaneous Printing. .. 30
Calling the Shell .. 30
Assignment to Variables 30

Format Summary .. 31
Expression Summary .. 32

Expression Components .. 32
Dyadic Operators .. 32
Monadic Operators. .. 32

Table of Contents

ADB Tutorial
ADB is a debugging program that is available on HP-UX. It provides capabilities to look
at "core" files resulting from aborted programs, print output in a variety of formats, patch
files, and run programs with embedded breakpoints. This document provides examples
of the more useful features of ADB.

Invocation
To use ADB, you must execute (invoke) the adb(l) command; its syntax is:

adb [-w] [obJfile [corefile]]

where obJfile is an executable HP-UX file and corefile is a core image file. Often times,
adb is invoked as:

adb a.out core

or more simply:

adb

where the defaults are a. out and core respectively. The filename minus (-) means "ignore
this argument," as in:

adb - core

The obJfile can be written to if adb is invoked with the -w flag as in:

adb -w a.out -

ADB catches signals; therefore, a user cannot use a quit signal to exit from ADB. The
request $q or $Q (or I CTRL ~[[]) must be used to exit from ADB.

For details on invoking the adb command, see the adb(l) page in the HP-UX Reference.

ADB Tutorial 1

ADB Command Format
You interact with ADB by entering (typing) requests. The general format of a request
is:

[address] [, count] [command] [modifier]

ADB maintains a current address, called dot, similar in function to the current pointer
in the HP-UX editor, vi(l). When address is entered, dot is set to that location. The
command is then executed count times.

Address and count are represented by expressions. You can create expressions from
decimal, octal, and hexadecimal integers, and symbols from the program under test.
These may be combined with the following operators:

+ addition

*
%

&

subtraction or negation (when used as a unary operator)

multiplication

integer division

bitwise AND

bitwise inclusive OR

round up to the next multiple

unary not.

All arithmetic within ADB is 32 bits.

When typing a symbolic address for a C program, the user can type name or _name; ADB
will recognize both forms. The default base for integer input is initialized to hexadecimal,
but can be changed.

2 ADB Tutorial

Table 1 illustrates some commonly used ADB commands and their meanings:

Table 1. Commonly Used ADD Commands

Command Description

? Print contents from a. out file

/ Print contents from core file

Print value of "dot"

Breakpoint control

$ Miscellaneous requests

Request separator

Escape to shell

I CTRL ~[]] terminates execution of any ADB command.

ADB Tutorial 3

Displaying Information
ADB has requests for examining locations in either the ob;'jile or the corejile. The?
request examines the contents of ob;'jile, the / request examines the corejile.

Following the? or / command the user specifies a format.

The following are some commonly used format letters:

c one byte as a character

x two bytes in hexadecimal

X four bytes in hexadecimal

d two bytes in decimal

F eight bytes in double floating point

i M C68xxx instruction

s a null-terminated character string

a print in symbolic form

n print a new line

r print a blank space

backup dot .

.J.
A... command to print the first hexadecimal element of an array of long integers naTiled
ints in C would look like:

ints/X

This instruction would set the value of dot to the symbol table value of _ints. It would
also set the value of the dot increment to four. The dot increment is the number of bytes
printed by the format.

Let us say that we wanted to print the first four bytes as a hexadecimal number and the
next four as a decimal one. We could do this by:

ints/XD

4 ADB Tutorial

In this case, dot would still be set to _ints and the dot increment would be eight bytes.
The dot increment is the value which is used by the newline command. Newline is a special
command which repeats the previous command. It does not always have meaning. In
this context, it means to repeat the previous command using a count of one and an
address of dot plus dot increment. In this case, newline would set dot to ints+Ox8 and
type the two long integers it found there, the first in hex and the second in decimal.
The newline command can be repeated as often as desired and this can be used to scroll
through sections of memory.

Using the above example to illustrate another point, let us say that we wanted to print
the first four bytes in long hex format and the next four bytes in byte hex format. We
could do this by:

ints/X4b

Any format character can be preceded by a decimal repeat character.

The count field can be used to repeat the entire format as many times as desired. In
order to print three lines using the above format we would type

ints.3/X4bn

The n on the end of the format is used to output a carriage return and make the output
much easier to read.

In this case the value of dot will not be _ints. It will rather be _ints+Oxl0. Each time
the format was re-executed dot would have been set to dot plus dot increment. Thus
the value of dot would be the value that dot had at the beginning of the last execution
of the format. Dot increment would be the size of the format: eight bytes. A newline
command at this time would set dot to ints+Ox18 and print only one repetition of the
format, since the count would have been reset to one.

In order to see what the value of dot is at this point the command

.=a

could be typed. = is a command which can be used to print the value of address in any
format. It is also possible to use this command to convert from one base to another:

Ox32=oxd

ADB Tutorial 5

This will print the value Ox32 in octal, hexadecimal and decimal.

Complicated formats are remembered by ADB. One format is remembered for each of
the ? , / and = commands. This means that it is possible to type

Ox64=

and have the value Ox64 printed out in octal, hex and decimal. And after that, type

ints/

and have ADB print out four bytes in long hex format and four bytes in byte hex format.

To an observant individual it might seem that the two commands

main,10?i

and

main?10i

would be the same.

There are two differences. The first is that the numbers are in a different base. The
repeat factor can only be a decimal constant, while the count can be an expression and
is therefore, by default, in a hex base.

The second difference is that a newline after the first command would print one line,
while a newline after the second command would print another ten lines.

6 ADB Tutorial

Debugging C Programs
The following examples illustrate various features of ADB. Certain parts of the output
(such as machine addresses) may depend on the hardware being used, as well as how the
program was linked (unshared, shared, or demand loaded).

Debugging a Core Image
Consider the C program in Figure 1. The program is used to illustrate some of the
useful information that can be obtained from a core file. The object of the program is
to calculate the square of the variable ivaI by calling the function sqr with the address
of the integer. The error is that the value of the integer is being passed rather than the
address of the integer. Executing the program produces a core file because of a bus error.

int ints[]=

int ivaI;
main 0
{

Figure 1. C Program with a Pointer Bug

{1.2.3.4.5.6.7.8.9.0.
1.2.3.4.5.6.7.8.9.0.
1.2.3.4.5.6.7.8.9.0.
1.2.3.4.5.6.7.8.9.0};

register int i;
for(i=0;i<10;i++)

}

sqr(x)
int *x;
{

}

{ ivaI = ints[i];
sqr(ival);
printf(lIsqr of Y.d is Y.d\n".ints[i] .ival);

}

ADB is invoked by:

adb

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. This request can be used
to check the validity of the parameters passed. As shown in Figure 2 we can see that the
value passed on the stack to the routine sqr is a 1, which is not what we are expecting.

ADB Tutorial 7

$c
_main+Ox30:
start+Ox5S:
$r

OxO

Figure 2. ADB Output from Program of Figure 1

_sqr (Ox1)
_main (Ox1. OxFFFF7DAC)

ps
pc Ox11C _sqr+Ox42: unlk %a6

sp OxFFFF7DS4

dO Ox1AE9
d1 Ox53
d2 OxFFC01
d3 OxFFCSF405
d4 OxFFCSF401
d5 Ox700
d6 OxO
sqr+Ox38.5?ia
_sqr+Ox3S:
_sqr+Ox3A:
_sqr+Ox3C:
_sqr+Ox40:
_sqr+Ox42:
_sqr+Ox44:
$e
flag_S8881:
_environ:
_argc_value:
float_soft:
_argv_value:
_ints: Ox1
_ivaI: Ox1
__ iob: OxO
__ ctype:
__ bufendtab:
__ smbuf:
__ lastbuf:
_errno: OxO
__ stdbuf:
__ sobuf:
__ sibuf:
_asm_mhfl:
_end: OxO
_errnet:
_edata: Ox1

The next request:

8 ADB Tutorial

aO Ox1
a1 OxFFFF7DAC
a2 OxFFCSA004
a3 Ox1F626
a4 Ox1F66C
a5 Ox1F3AC
a6 OxFFFF7D8S

mov.w
mulu.w
mov.l
mov.l
unlk

Ox10000
OxFFFF7DB4
Ox1
OxFFFF0001
OxFFFF7DAC

Ox202020
OxO
OxO
Ox39D4

Ox40DC
OxO
OxO
OxO

OxO

(%a7)+.%dO
%d1. %dO
Ox8(%a6).%aO
%dO. (%aO)
%a6

$r

prints out the registers including the program counter and an interpretation of the
instruction at that location. The instruction printed for the pc does not always make
sense. This is because the pc has been advanced and is either pointing at the next
instruction, or is left at a point part way through the instruction that failed. In this
case the pc points to the next instruction. In order to find the instruction that failed we
could list the instructions and their offsets by the following command.

sqr+Ox38.5?ia

This would show us that the instruction that failed was

_sqr+Ox40:move.l Y.dO. (Y.aO)

This is the first instruction before the value of the pc. The value printed out for register
aO also indicates that a write to location Ox!, which is in the text part of the user space,
would fail in a shared a.out file. The text segment is write-protected in files that are
shared or demand-loaded.

The request:

Se

prints out the values of all external variables at the time the program crashed.

ADB Tutorial 9

Setting Breakpoints
Consider the C program in Figure 3. This program, which changes tabs into blanks, is
adapted from Software Tools by Kernighan and Plauger, pp. 18-27.

Figure 3. C Program to Decode Tabs

#include <stdio.h>
#define MAXLINE 80
#define YES
#define NO

1
o
8 #define TABSP

char
FILE
int
char

main 0
{

}

input (] "data";
*stream;
tabs [MAXLINE] ;
ibuf[BUFSIZ];

int col, *ptab;
char c;

setbuf(stdout,ibuf);
ptab = tabs;
settab(ptab); I*Set initial tab stops *1
col = 1;
if «stream = fopen(input, "r"» == NULL) {

printf("Yes : not found\\n",input);
exit(8);

}

while«c = getc(stream» != EOF) {
switch(c) {

}
}

case '\t': 1* TAB *1
while (tabpos (col) != YES) {

}
break;

putchar(' '); 1* put BLANK *1
col++ ;

case '\n': I*NEWLINE *1
put char ('\n') ;
col = 1;
break;

default:
putchar(c);
col++ ;

10 ADB Tutorial

1* Tabpos return YES if col is a tab stop *1
tabpos(col)
int col;
{

}

if(col > MAXLINE)
return(YES);

else
return(tabs[col]);

1* Settab - Set initial tab stops *1
settab(tabp)
int *tabp;
{

}

int i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] = NO) (tabs [i] = YES);

We will run this program under the control of ADB (see Figure 4) by:

adb a.out -

Breakpoints are set in the program as:

address:b [request]

The requests:

settab+e:b
fopen+4:b
tabpos+e:b

set breakpoints at the starts of these functions. The addresses for user-defined functions
(settab and tabpos) are entered as symbol +e so that they will appear in any C backtrace;
this is because the first few instructions of each function are instructions which link in
the new function. Note that one of the functions, fopen, is from the C library; for this
routine, fopen+4 is appropriately used.

ADB Tutorial 11

Figure 4. ADD Output from C Program of Figure 3

adb a.out -
executable file = a.out
ready
settab+e:b
fopen+4:b
tabpos+e:b
$b
breakpoints
count bkpt command
Ox1 _tabpos+OxE
Ox1 _fopen+Ox4
Ox1 _settab+OxE
:r
process 5139 created
a.out: running
breakpoint _settab+OxE:
settab+e:d
:c
a.out: running
breakpoint _fopen+Ox4:
$c

clr.l -Ox4(Y.a6)

jsr __ findiop

_main+Ox48: _fopen (Ox4000. Ox4006)
start+Ox58: _main (Ox1. OxFFFF7DAC)
tabs/24X
_tabs: Ox1 OxO OxO

OxO OxO OxO
Ox1 OxO OxO
OxO OxO OxO
Ox1 OxO OxO
OxO OxO OxO

:c
a.out: running
breakpoint _tabpos+OxE: movq ctOx50.Y.dO
:s
a.out: running
stopped at _tabpos+Ox10: cmp.l Y.dO.Ox8(Y.a6)
<newline>

a.out: running
stopped at _tabpos+Ox14: bge.w _tabpos+OxlE
<newline>

12 ADB Thtorial

OxO
OxO
OxO
OxO
OxO
OxO

a.out: running
stopped at

<newline>
a.out: running
stopped at

<newline>
a.out: running
stopped at
<newline>

a.out: running
stopped at

<newline>
a.out: running
stopped at
:d*
:c
a.out: running
This is it

_tabpos+OxlE:

_tabpos+Ox22:

_tabpos+Ox24:

_tabpos+Ox2A:

_tabpos+Ox2C:

process terminated
settab+e:b settab.5?ia
tabpos+e.3:b ibuf/20c
:r
process 5248 created
a.out: running
settab.5?ia
_settab:
_settab+Ox2:
_settab+Ox4:
_settab+OxA:
_settab+OxE:

mov.l
mov.l
add. I
movm.l
clr.l

_settab+Ox12:
breakpoint _settab+OxE:
:c
a.out: running
ibuf/20c
ibuf:

ibuf/20c
_ibuf:
ibuf/20c
_ibuf:
breakpoint
$q

This

This

This
_tabpos+OxE:

process 5248 killed

mov.l Ox8(%a6) .%dO

asl.l &Ox2.%dO

addi.l &Ox4A50.%dO

mov.l %dO.%aO

mov.l (%aO) .%dO

%a6.-(%a7)
%a7.%a6
&OxFFFFFFFC.%a7
&<>. (%a7)
-Ox4(%a6)

clr.l -Ox4(%a6)

movq &Ox50.%dO

To print the location of breakpoints type:

ADB Tutorial 13

$b

The display indicates a count field. A breakpoint is bypassed count-l times before causing
a stop. The command field indicates the ADB requests to be executed each time the
breakpoint is encountered. In our example no command fields are present.

By displaying the original instructions at the function settab we see that the breakpoint is
set after the instruction to save the registers on the stack. We can display the instructions
using the ADB request:

settab.5?ia

This request displays five instructions starting at settab with the addresses of each
location displayed.

To run the program simply type:

:r

To delete a breakpoint, for instance the entry to the function settab, type:

settab+4:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for fopen), ADB requests
can be used to display the contents of memory. For example:

$c

to display a stack trace, or:

tabs.3/8X

to print three lines of 8 locations each from the array called tabs. The format X is used
since integers are four bytes on M680xO processors. By this time (at location fopen) in
the C program, set tab has been called and should have set a one in every eighth location
of tabs.

14 ADB Tutorial

Advanced Breakpoint Usage
When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This" word of
the data. We can execute one instruction by

:s

and can single step again by pressing the I Return I key. Doing this we can quickly single
step through tabpos and get some confidence that it is working. We can look at twenty
characters of the buffer of characters by typing:

>ibuf/20c

Several breakpoints of tabpos will occur until the program has changed the tab into
equivalent blanks. Since we feel that tabpos is working, we can remove all the breakpoints
by:

:d*

If the program is continued with:

:c

it resumes normal execution and continues to completion after ADB prints the message:

a.out: running

It is possible to add a list of commands we wish to execute as part of a breakpoint. By
way of example let us reset the breakpoint at set tab and display the instructions located
there when we reach the breakpoint. This is accomplished by:

settab+e:b settab.5?ia

It is also possible to execute the ADB requests for each occurrence of the breakpoint but
only stop after the third occurrence by typing:

tabpos+e.3:b ibuf/20c

ADB Tutorial 15

This request will print twenty character from the buffer of characters at each occurrence
of the breakpoint.

If we wished to print the buffer every time we passed the breakpoint without actually
stopping there we could type

tabpos+e.-l:b ibuf/20c

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+e:b settab.5?ia;ptab/o

could be entered after typing the above requests. The semicolon is used to separate
multiple ADB requests on a single line.

Now the display of breakpoints:

$b

shows the above request for the set tab breakpoint. When the breakpoint at settab is
encountered the ADB requests are executed.

Note

Setting a breakpoint causes the value of dot to be changed;
executing the program under ADB does not change dot. Therefore:

settab+e:b .. 5?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen) not
the current location (settab) at which the program is executing.

The HP-UX quit and interrupt signals act on ADB itself rather than on the program
being debugged. If such a signal occurs then the program being debugged is stopped and
control is returned to ADB. The signal is saved by ADB and is passed on to the test
program if:

:c

16 ADB Tutorial

is typed. This can be useful when testing interrupt handling routines. The signal is not
passed on to the test program if:

:c 0

is typed.

Other Breakpoint Facilities
Arguments and change of standard input and output are passed to a program as:

:r arg1 arg2 ... <infile> outfile

This request kills any existing program under test and starts the a. out afresh. The
process will run until a breakpoint is reached or until the program completes or crashes.

If it is desired to start the program without running it the command

:e arg1 arg2 ... <infile> outfile

can be executed. This will start the process, and leave it stopped without executing the
first instruction.

If the program is stopped at a subroutine call it is possible to step around the subroutine
by

:s

This sets a temporary breakpoint at the next instruction and continues. This may cause
unexpected results if : S is executed at a branch instruction.

ADB allows a program to be entered at a specific address by typing:

address:r

The count field can be used to skip the first n breakpoints as:

.n:r

The request:

ADB Tutorial 17

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

A program can be continued at an address different from the breakpoint by:

address:c

The program being debugged runs as a separate process and can be killed by:

:k

All of the breakpoints set so far can be deleted by

:d*

A subroutine may be called by

:x address [parameters]

18 ADB Tutorial

Maps
HP-UX supports several executable file formats. These are used to tell the loader how to
load the program file. A shared text program file is the most common and is generated
by a C compiler invocation such as cc pgm. c. A non-shared text file is produced by a C
compiler command of the form cc -N pgm.c, while a demand-loaded a.out file is produced
by a C compiler command of the form cc -q pgm. c. ADB interprets these different file
formats and provides access to the different segments through the maps. To print the
maps type:

$m

In nonshared files, both text (instructions) and data are intermixed. In shared files the
instructions are separated from data and ?* accesses the data part of the a. out file. The
?* request tells ADB to use the second part of the map in the a. out file. Accessing data
in the core file shows the data after it was modified by the execution of the program.
Notice also that the data segment may have grown during program execution. Figure 5
shows the display of three maps for the same program linked as nonshared, shared, and
demand-loaded, respectively. The b, e, and f fields are used by ADB to map addresses
into file addresses. The f1 field is the length of the header at the beginning of the file. The
f2 field is the displacement from the beginning of the file to the data. For a nonshared
file with mixed text and data this is the same as the length of the header; for shared files
this is the length of the header plus the size of the text portion.

Figure 5: ADB output for maps

$ adb a.out.unshared core.unshared
executable file = a.out.unshared
core file = core.unshared
ready
$m
? map , a . out. unshared '
b1 = OxO e1 = Ox19C f1 = Ox40
b2 = OXO e2 = Ox19C f2 = Ox40
/ map 'core.unshared'
b1 = OXO e1 = Ox1000 f1 = Ox3000
b2 = OxFFFF5000 e2 = OxFFFF8000 f2 = Ox4000
$v
variables
d = Ox1000
m = Ox107
s = Ox3000
$q

$ adb a.out.shared core.shared

ADB Tutorial 19

executable file = a.out.shared
core file = core. shared
ready
$m
? map 'a. out. shared'
b1 = OxO e1 = Ox18C f1 = Ox40
b2 = Ox1000 e2 = Ox1010 f2 = Ox1CC
/ map 'core.shared'
b1 = Ox1000 e1 = Ox2000 f1 = Ox3000
b2 = OxFFFF5000 e2 = OxFFFF8000 f2 = Ox4000

$v
variables
b = Ox1000
d = Ox1000
m = Ox108
s = Ox3000
t = Ox1000

$q

$ adb a.out.demand core.demand
executable file = a.out.demand
core file = core.demand
ready
$m
? map 'a.out.demand'
b1 = OxO e1 = Ox18C f1 = Ox1000
b2 = Ox1000 e2 = Ox1010 f2 = Ox2000
/ map 'core.demand'
b1 = Ox1000 e1 = Ox2000 f1 = Ox3000
b2 = OxFFFF5000 e2 = OxFFFF8000 f2 = Ox4000

$v
variables
b = Oxl000
d = Ox1000
m = Ox10B
s = Ox3000
t = Ox1000
$q

The band e fields are the starting and ending locations for a segment. Given an address,
A, the location in the file (either a. out or core) is calculated as:

bl::;A::;el ~ file address = (A-bl)+f1
b2::;A::;e2 ~ file address = (A-b2)+f2

20 ADB Tutorial

Variables and Registers
ADB provides a set of variables which are available to the user. A variable is composed
of a single letter or digit. It can be set by a command such as

Ox32>5

which sets the variable 5 to hex 32. It can be used by a command such as

<5=X

which will print the value of the variable 5 in hex format.

Some of these variables are set by ADB itself. These variables are:

o last value printed
b base address of data segment
d length of the data segment
e The entry point
m execution type (Ox107 (nonshared),Ox108 (shared),

or Ox10b (demand loaded))
s length of the stack
t length of the text

These variables are useful to know if the file under examination is an executable or core
image file. ADB reads the header of the core image file to find the values for these
variables. If the second file specified does not seem to be a core file, or if it is missing,
the header of the executable file is used instead.

Variables can be used for such purposes as counting the number of times a routine is
called. Using the example of Figure 3, if we wished to count the number of times the
routine tabpos is called we could do that by typing the sequence

0>5
tabpos+4.-1:b <5+1>5
:r
<5=d

The first command sets the variable 5 to zero. The second command sets a breakpoint
at tabpos+4. Since the count is -1 the process will never stop there but ADB will execute
the breakpoint command every time the breakpoint is reached. This command will
increment the value of the variable 5 by 1. The : r command will cause the process to
run to termination, and the final command will print the value of the variable.

ADB Thtorial 21

$v can be used to print the values of all non-zero variables.

The values of individual registers can be set and used in the same way as variables. The
command

Ox32>dO

will set the value of the register dO to hex 32. The command

<dO=X

will print the value of the register dO in hex format. The command $r will print the value
of all the registers.

22 ADB Tutorial

Formatted Dumps
It is possible to combine ADB formatting requests to provide elaborate displays. Below
are some examples.

The line:

<b.-1/404-aCn

prints 4 octal words followed by their ASCII interpretation from the data space of the
core image file. Broken down, the various request pieces mean:

<b The base address of the data segment.

<b. -1 Print from the base address to the end of file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition (like
end of file) is detected.

The format 404-aCn is broken down as follows:

40

ac

n

Print 4 octal locations.

Backup the current address 4 locations (to the original start of the field).

Print 8 consecutive characters using an escape convention; each character
in the range 0 to 037 is printed as <0 followed by the corresponding character
in the range 0140 to 0177. An <0 is printed as <0<0.

Print a newline.

The request:

<b.<d/404-aCn

could have been used instead to allow the printing to stop at the end of the data segment
«d provides the data segment size in bytes).

The formatting requests can be combined with ADB's ability to read in a script to
produce a core image dump script. ADB is invoked as:

adb a.out core < dump

ADB Tutorial 23

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n I Registers"
$r
O$s
=3n"Data Segment"
<b.-l/8ona

The request 120$w sets the width of the output to 120 characters (normally, the width is
80 characters). ADB attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic
address from 255 (default) to 4095. The request = can be used to print literal strings.
Thus, headings are provided in this dump program with requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all non-zero
ADB variables. The request O$s sets the maximum offset for symbol matches to zero
thus suppressing the printing of symbolic labels in favor of octal values. Note that this
is only done for the printing of the data segment. The request:

<b.-l/8ona

prints a dump from the base of the data segment to the end of file with an octal address
field and eight octal numbers per line.

24 ADB Tutorial

Figure 7 shows the results of some formatting requests on the C program of Figure 6.

Figure 6. Simple C Program That Illustrates

Formatting and Patching

char str1 [] "This is a character string";
int one 1 ;
int number 456;
long lnum 1234;
float fpt 1.25;
char str2 [] "This is the second character string";
mainO
{

one = 2;
}

Figure 7. ADB Output Showing Fancy Formats

adb a.out.shared -
executable file = a.out.shared
ready

<b.-1?Sona
_str1: 052150 064563 020151 071440 060440 061550 060562 060543

_str1+0x10: 072145 071040 071564 071151 067147 0 0 01

_number:
_number: 0 0710 0 02322 037640 0 052150 064563

_str2+0x4: 020151 071440 072150 062440 071545 061557 067144 020143

_str2+0x14: 064141 071141 061564 062562 020163 072162 064556 063400
<b.20?404-SCn

_str1: 052150 064563 020151 071440 This is
060440 061550 060562 060543 a charac
072145 071040 071564 071151 ter stri
067147 0 0 01 ngG'G'G'G'G'Ga

_number: 0 0710 0 02322 G'G'GaHG'G'GdR

_fpt: 037640 0 052150 064563 ? CI'CI'This
020151 071440 072150 062440 is the
071545 061557 067144 020143 second c
064141 071141 061564 062562 haracter
020163 072162 064556 063400

address not found in a.out file
<b.20?404-StSCna
_str1: 052150 064563 020151 071440 This is

ADB Tutorial 25

_str1+0x8: 060440 061550 060562 060543 a charac
_str1+0x10: 072145 071040 071564 071151 ter stri
_str1+0x18: 067147 0 0 01 ngO'O'CI'O'O'Oa
_number:
_number: 0 0710 0 02322 O'O'OaH(O'(O'CldR
_fpt:
_fpt: 037640 0 052150 064563 ? O'O'This
_str2+0x4: 020151 071440 072150 062440 is the
_str2+0xC: 071545 061557 067144 020143 second c
_str2+0x14: 064141 071141 061564 062562 haracter
_str2+0x1C: 020163 072162 064556 063400
address not found in a.out file

<b,a?2b8t A 2cn
_str1: Ox54 Ox68 Th

Ox69 Ox73 is
Ox20 Ox69 i
Ox73 Ox20 s
Ox61 Ox20 a
Ox63 Ox68 ch
Ox61 Ox72 ar
Ox61 Ox63 ac
Ox74 Ox65 te
Ox72 Ox20 r

$q

26 ADB Tutorial

Patching
Patching files with ADB is accomplished with the write, w or W, request (which is not
like the ed editor write command). This is often used in conjunction with the locate, I
or L request. In general, the request syntax for 1 and ware similar as follows:

11 value

The request I is used to match on two bytes, L is used for four bytes. The request w is
used to write two bytes, whereas W writes four bytes. The value field in either locate
or write requests is an expression. Therefore, decimal and octal numbers, or character
strings are supported.

In order to modify a file, ADB must be called as:

adb -w fi1e1 fi1e2

When called with this option, fi1e1 is created if necessary and opened for both reading
and writing. fi1e2 can be opened for reading but not for writing.

For example, consider the C program shown in Figure 6. We can change the word "This"
to "The " in the executable file for this program, ex7, by using the following requests:

adb -w ex7 -
11 'Th'
1W 'The '

The request 11 starts at dot and stops at the first match of "Th" having set dot to the
address of the location found. Note the use of 1 to write to the a.out file. The form 1*
would have been used for a shared text file.

More frequently the request will be typed as:

11 'Th'; 18

and locates the first occurrence of "Th" and print the entire string. Execution of this
AD B request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has
an intemallogic flag. The flag could be set by the user through ADB and the program
run. For example:

ADB Tutorial 27

adb a.out -
:e argl arg2
flag/w 1
:c

The : e request is used to start a. out as a subprocess with arguments argl and arg2. If
there is a subprocess running ADB writes to it rather than to the file so the w request
causes flag to be changed in the memory of the subprocess.

Anomalies
Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the link instruction. Putting
breakpoints at the entry point to routines means that the function appears not to
have been called when the breakpoint occurs.

2. If a : S command is executed at a branch instruction, and the branch is taken, the
command will act as a : c command. This is because a breakpoint is set at the next
instruction and if is not reached, the process will not stop.

28 ADB Tutorial

Command Summary

Formatted Printing

? format

/ format

= format

?w expressz'on

/w expressz'on

?I expressz'on

print from a. out file according to format

print from core file according to format

print the value of dot

write expression into a. out file

write expression into core file

locate expression in a. out file

Breakpoint and Program Control

:b set breakpoint at dot

:c continue running program

:d delete breakpoint

:k kill the program being debugged

:r run a. out file under ADB control

:8 single step

AD B Tutorial 29

Miscellaneous Printing
$b print current breakpoints

$e C stack trace

$e external variables

$f floating registers

$m print ADB segment maps

$q exit from ADB

$r general registers

$s set offset for symbol match

$v print ADB variables

$w set output line width

Calling the Shell
call shell to read rest of line

Assignment to Variables
>name assign dot to variable or register name

30 ADB Tutorial

Format Summary
a the value of dot

b one byte in hexadecimal

c one byte as a character

d two bytes in decimal

f four bytes in floating point

MC68xxx instruction

0 two bytes in octal

n print a newline

r print a blank space

s a null terminated character string

nt move to next n space tab

u two bytes as unsigned integer

x hexadecimal

y date

backup dot

" " print string

ADB Tutorial 31

Expression Summary

Expression Components
decimal integer

octal integer

hexadecimal

symbols

variables

registers

(expression)

Dyadic Operators
+ add

*
%

&

subtract

multiply

integer division

bitwise and

bitwise or

e.g. Od256

e.g. 0277

e.g. Oxff

e.g. flag _main

e.g. <b

e.g. <pc <dO

expression grouping

round up to the next multiple

Monadic Operators
not

* contents of location

integer negate

32 ADB Tutorial

Index

a
+ (addition operator) ... 2
ADB commands (requests) .. 2
AD B expressions ... 2
AD B registers ... 21-22
AD B variables ... 21-22
adb(l) .. 1
advanced breakpont usage ... 15-16
anamolies .. 29

b
& (bitwise AND operator) ... 2
I (bitwise OR operator) ... 2
breakpoints, advanced usage ... 15-16
breakpoints, effect on dot 16
breakpoints, setting ... 10-14

c
! command .. 3
/ command .. 3
; command .. 3
= command ... 3
? command .. 3
$ command .. 3

command ... 3
commonly used ADB commands ... 3
core file .. 1, 7
I CTRL ~[£] ... 2

d
debugging C programs .. 7-9
displaying information .. 4-6
dot (.) location counter ... 2, 3, 4, 16

Index 33

dumps, formatted 23-26

e
executable file formats ... 18

f
format, executable files ... 18
format letters .. 4
formatted dumps ... 23-26

.
I

% (integer division operator) ... 2
internal arithmetic ... 2

I
link ... 29

m
* (multiplication operator) .. 2
maps ... 18-20

o
operators .. 2

p
patching 27-28

r
(round up to the next multiple) .. 2
registers, ADB ... 21-22

s
- (subtraction or negation operator) ... 2
setting breakpoints ... 10-14
signal, interrupt ... 16
signal, quit ... 16
symbolic address ... 2

34 Index

t
terminating ADB commands ... 2

U
-(unary not) ... 2

v
variables, ADB ... 21-22

Index 35

Table of Contents

atime
Continuing to Get Information ... 1
Prerequisites ... 2
Getting Additional Information. .. 2
Manual Contents ... 3
Atime and Assembly Code 4

The Overall Picture .. 4
The atime Features ... 5

Syntax with Examples. .. 6
The atime Syntax. 6
atime Options .. 7
An Example of an Input-file .. 8
A Second Example of an Input-file 10
This Page Left Blank for Notes: 11

The Input File ... 12
Section One: atime Initialization 12
Section Two: Code Initialization 12
Section Three: Timed .. 13
Section Four: Verify. .. 13
Input-file Requirements ... 13

The atime Instructions ... 14
Restrictions on atime Instructions. .. 14
A Quick Look at the Instructions 15
assert .. 16
assert file 18
code odd .. 18
code even ... 18
comment .. 19
dataname .. 19
dataset ... 20
include ... 21
iterate .. 21
ldopt ... 22
nolist ... 22
output· .. 23
stack odd .. 23

Table of Contents i

stack even .. 23
time .. 24
title .. 24
verify ... 25

Performance Analysis Mode .. 26
U sing Command Line Options. .. 26
Getting and Reading Output (the analysis) 26
An Example. .. 27
Showing the Average Time. .. 27

Execution Profiling Mode .. 28
U sing Command Line Options. .. 28
Getting and Reading Output (the profile) .. 29
An Example. .. 29

Assertion Listing Mode .. 30
U sing Command Line Options. .. 30
Getting and Using Output .. 30
An Example. .. 31

Recovering from Errors .. 32
'!'racking Errors .. 32
Data Set Errors. .. 33
Assert Instruction Errors ... 34
Some Notes About Error Recovery Procedures 34

ii Table of Contents

atime
This manual describes a 680xO assembly language sequence timing utility called atime.
After you have developed and debugged assembly language code for a 680xO processor
(Series 300 computer), you can use atime to:

• analyze the performance of the code (performance analysis mode);

• determine the number of times each instruction is hit (execution profiling mode);
or

• assert (verify) particular values in a code sequence to assure that various algorithms
produce identical results (assertion listing mode).

Continuing to Get Information
Now that you know what atime does, please read the next three brief sections which:

• describe prerequisites for using atime,

• mention where to get additional or related information, and

• describe the sections in this manual. The descriptions of sections include sugges
tions for reading them.

atime 1

Prerequisites
The following items mention requirements for using atime:

• Your system needs /bin/ as and /bin/ld.

• You have a sequence of assembler instructions you want to test and have developed
an input file containing the assembler instructions and special atime instructions
(more on this later).

• You must run atime on a quiescent single-user system to get valid results. (The
reason is that the utility returns empirically determined performance information.)

Getting Additional Information
In the HP-UX Reference Manual, you might want to examine the following related
commands:

as (1 J The assembler

ld(lJ The link editor

prof{1J A program that lets you display profile data

gprof(lJ A program that lets you display call graph profile data

2 atime

Manual Contents
The following paragraphs name and describe subsequent sections in the manual. They
also suggest how to use the information.

Atime and Assembly Code discusses the overall picture and shows how atime fits into
the scheme of developing assembly code. (Skip this section if you already know what to
expect or do not need to see this type of information.)

The Syntax with Examples describes atime's syntax and options. Then, the section
shows an example of running atime in performance analysis mode using an example of
an input-file. (Some users may find that this section is all they need. Remaining sections
simply discuss the input-file, atime instructions, modes, output, and errors.)

The Input File describes the four sections in an input-file. (Read this section to get more
information if the previous examples did not provide enough information.)

The atime Instructions describes the atime instructions, including examples. (Read this
section as necessary to learn how to use the instructions.)

Performance Analysis Mode describes performance analysis mode (the default mode).
(Read this and the next two sections about modes according to your needs.)

Execution Profiling Mode describes execution profiling mode (use the -p option).

Assertion Listing Mode describes assertion listing mode (use the -1 option).

Recovering from Errors describes error situations and how to handle them.

atime 3

Atime and Assembly Code
In most cases, you develop assembly code to obtain maximum performance from, for
example, a critical routine. During development, it may frequently be unclear as to which
instruction, sequence of instructions, or algorithm can be executed most efficiently by the
assembly instruction set. After you have developed and debugged two or more assembler
instruction sequences, you can use atime to determine which sequence provides optimal
performance. To do this, you run atime on each sequence and compare the results.

This section shows how atime fits into the development of assembly code and describes
atimes features. (The remaining sections describe how to use them.)

The Overall Picture
Figure 1 shows where atime fits into the scheme of developing assembly language. It also
shows the relationships between atime and the input-file, modes, and output.

4 atime

Output is an

analysis

(1) Develop and debug

functionally equivalent

assembler instruction

sequences to be timed

(2) Develop the input-file:

a file that has assembler

and atime instructions.

(3) Run atime with desired

options and the input-file

in one of three modes

ana get related output

of performance

Figure 1. How atime Fits Into Developing Assembly Language

The atime Features
The atime utility has the following features:

• You can check the timing (speed) of functionally equivalent assembler instruction
sequences (e.g. finding the most significant bit in a data register).

• You can specify sets of input data and the relative probability that each of them
will occur.

• The utility runs in one of performance analysis, execution profiling, Qr assertion
listing modes.

• Performance analysis mode (the default) causes a code sequence to execute
many times in a loop with atime calculating and reporting the average time
per iteration.

• Execution profiling mode (use the -p option) makes atime run all or selected
data sets and reports the number of times each executable instruction is hit.

• Assertion listing mode (use the -1 option) causes atime to assert particular
values in a code sequence for the purpose of assuring that various algorithms
product identical results. You use this output to verify data for subsequent
performance analyses and execution profiles.

• The utility provides output containing information you can compare with the out
put obtained from other runs to select the best sequence of assembler instructions.

atime 5

Syntax with Examples
This section shows the general syntax. Then, it describes the command line options and
shows two examples of an input-file: bit_find and max_integers.

The atime Syntax
The syntax is:

atime [options] input-file [output-file]

6 atime

1 1
1 1_ Output goes to a specified file
1 (if given) or to standard output
1 if the name is - or is
1 omitted. Otherwise, if the mode
1 is performance analysis and the
1 input-file has an output
1 instruction, output goes to the
1 file specified there.
1
1_ Has four sections with assembly code source

instructions and atime instructions.

1_ Use options to control such things as:
* Specifying the mode;
* Specifying an assertion data file;
* Specifying a minimum number of timing iterations;
* Turning off code sequence listing.

atime Options
-afile

-icount

-l[name]

-n

-p[name]

-ttext

Specify an assertion data file to be used for assertion data. The file
must have been created by a previous run of atime with the -1 option.
Only one -a option can be given and it will supersede any assert file
instruction in the input-file.

Specify the minimum number of timing iterations where count is an
integer in the range 1 through 232 - 1 (you get an error otherwise).
When data sets exist, the actual value used equals or exceeds the given
count because the number of iterations must be an integral multiple of
the sum of counts in all dataset instructions. Only one - i option can
be used and it supersedes any iterate instruction in the input-file.

Print asserted values. If name is given, the code sequence is executed
using the dataset called name in the input-file. Multiple -1 options are
allowed. Omitting name prints assertions for all data sets. As each
assert instruction in the input-file is executed, it prints its associated
name and value. If an assertion file is specified by a -a option or an
assert file instruction and there is a mismatch between the asserted
value and the value in the file, that value is also printed. Also, an error
is printed when a value is missing from the assertion file. Output goes
to standard out unless you specify an output-file. An output instruction
in the input-file is ignored. The output-file can be used as an assertion
file in subsequent runs of atime. The -1 option cannot be used with
the -p option.

Turn off listing the input-file to output. It is ignored if you use -p or
-1. This is equivalent to nolist in the input-file.

Do execution profiling by printing hit counts for each timed instruction
where name specifies the data set to analyze from the input-file.
Multiple -p options print counts as the sums for all designated data
sets. Omitting name profiles all data sets. The -n and -i options are
ignored. Do not use the -p option with the -1 option.

Specify text as the output title (enclose multi-word titles in quotes,
for example, liThe First Sequence"). Leading and trailing blanks are
ignored. Only one -t option can be given, and it will supersede any
title instruction in the input-file.

atime 7

An Example of an Input-file
This section shows two examples of input-files, which you create before running atime.
The input-file contains assembler and atime instructions, and with command line options,
it determines how atime works. Be sure to debug the assembler instruction sequence in
the input-file.

A Rationale for Using atime
The two columns show two assembler instruction sequences that do the same thing (locate
the most significant bit in the %dO data register on a 68000 processor).

Sequence One

L1 :
movq
btst
dbne

&31.Yed1
Yed1.%dO
Yed1.L1

Sequence Two

L1 :

movq
cmp.l
bhi.b
movq
btst
dbne

&31.Yed1
YedO.&OxFFFF
L1
&15.Yed1
Yed1. YedO
Yed1.L1

The question is: "Which code sequence finds the bit in the least amount of time?" To
get an answer, run atime and compare the returned information.

A Complete Input File
The following input-file named bit_find helps you examine code that finds the most
significant bit. The example shows the four sections of an input-file. To help you
differentiate instructions:

• A ~ precedes lines containing atime instructions.

• N 0 ~ precedes lines having assembler instructions.

You could, for example, run atime in performance analysis mode (the default) and send
the output to /usr/stats/test-1 with:

atime bit_find /usr/stats/test-1

The four sections in the input-file, bit_find, look like this:

-------- atime initialization section -------

title
comment
comment

8 atime

Example 1
The algorithm finds the most significant bit set
in an 8-bit number (original no. not destroyed)

~ dataname $number
~ dataset bit7. Ox80
~ dataset bit6. Ox40
~ dataset bitS. Ox20
~ dataset bit4. Ox10
~ dataset bit3. Ox08
~ dataset bit2. Ox04
~ dataset bit1. Ox02
~ dataset bitO. Ox01
~ dataset zero. OxOO
~ iterate 5000000
~ assert "assertfile"
~ output "logfile"

---------- code initialization section ---------

stack
mov.l

code

even
&$number.Y.dO

even

---------- timed section --------

~ time
mov.l Y.dO.-(Y.sp)
beq.b L2
movq &31.Y.d1

L1 :
btst Y.d1.Y.dO
dbne Y.d1.L1
bra.b L3

L2:
movq &-1, Y.d1

L3:
mov.l (Y.sp)+.Y.dO

---------- verify section -------

verify
assert.l
assert.l

original_value.y'dO
bit_number.Y.d1

atime 9

A Second Example of an Input-file
Here is another input-file called max_integers (the ~ points to atime instructions).

--------- atime initialization section --------

~ title Find the maximum of three integers
~ comment Developed by T. R. Crew
~ comment June 9. 1987
~ nolist
~ dataname $argl. $arg2. $arg3
~ dataset maxl(70). 10. 4. 2
~ dataset max2(35). 5. 11. 0
~ dataset max3(20). 8. 13. 21
~ iterate 500000
~ assert "assertfile"
~ output "logfile"
~ Idopt -1m -Ic

--------- code initialization section --------

stack even
mov.l &$argl.Y.dO
mov.l &$arg2.Y.dl
mov.l &$arg3.Y.d2
code even

--------- timed section --------

~ time
cmp.l Y.dO.Y.dl
bge.b Ll
exg Y.dO.Y.dl

Ll: cmp.l Y.dO.Y.d2
bge.b L2
exg Y.dO.Y.d2

L2:

--------- verify section --------

~ verify
~ assert. 1 max.y'dO

10 atime

This Page Left Blank for Notes:

atime 11

The Input File
To use atime, you must create an input-file, which is specified in the atime command line.
The input-file contains assembly code source instructions and special atime instructions,
which look like assembler instructions. Together, these instructions let you obtain the
timing data you need. The input-file has four sections, which are described next.

Section One: atime Initialization
Purpose: Set up the atime environment

Location: First line of file to first line of assembly code or atime time, code, or stack
instruction.

Requirements: The following atime instructions can appear only in this section (the
number in parentheses shows the maximum number of times an instruction can appear):

• assert file (1), comment, dataname (1), dataset, 1linclude, iterate (1), ldopt (1),
nolist (1), output (1), title (1).

• dataname (if used) must precede dataset instructions.

Section Two: Code Initialization
Purpose:; Set up environment for code to be timed

Location: Follows the atime initialization section and continues up to
the time instruction.

Requirements: Note the following:

• Can contain any valid 680xO assembler instruction.

• Can contain code even/odd, stack even/odd, or include instructions.

• Can contain instructions using dataname names; each possible replacement for
name must yield a valid 680xO instruction.

• You cannot make assumptions about the initial contents of registers. However, the
stack pointer does point to a valid stack which can be used by code sequences. Be
careful not to destroy data above this initial stack pointer. Registers (including
stack and frame pointers) need not be saved and restored by the code sequence.

12 atime

Section Three: Timed
Purpose: Time code sequence

Location: The time instruction up to the verify instruction, or to the end of the file.

Requirements: Any valid 680xO assembler instruction or include.

Section Four: Verify
Purpose: Verify results

Location: From verify instruction to the end of the file.

Requirements: Any valid 680xO instruction or include and/or:

assert. {blwll}

Input-file Requirements

• No branching among sections. Enter each section by falling into it from the end of
the previous section. No checking occurs to report errors to the user. Trying to do
this is undefined.

• Can use any valid 680xO instruction where appropriate.

• Cannot use m4(l) macros or multiple instructions per line.

• Assembly code can reference external variables/routines if you provide for resolving
them during linking.

atime 13

The atime Instructions
The input-file contains two types of instructions: standard assembler instructions (the
code you want to test for speed, code to do initialization, and code to aid in verification
of results); and atime instructions (instructions that dictate how atime does its work).

Restrictions on atime Instructions

• Each instruction must be on a separate line.

• An instruction cannot be labeled.

• Comments cannot follow on the same line.

• If an instruction has a corresponding command line option, the option takes
precedence.

14 atime

A Quick Look at the Instructions
Table 1 lists the instructions; each instruction is described in detail following the table.

Table 1. The atime Instructions

Instruction Function/Purpose

assert. {blwll} name,location Verify a datum

assert file Specifies a file used for assertion data

code odd Changes code to odd or even word alignment.
code even

comment text Writes comments to the output

dataname name, ... , name Defines names of data entries in dataset
instructions

dataset Defines one data set

include "file" Includes text from file

iterate count Specifies minimum number of timing iterations

ldopt options Specifies link editor options

nolist Turns off listing input-file contents to output-file

output file Specifies an output-file

stack odd Adjusts stack for odd or even word alignment
stack even

time Designates section of code to be timed

title text Specifies text used as the title for output

verify Designates section of code used for algorithm
verification

atime 15

assert
The syntax is:

assert. {blwll} name, location

Use assert to verify a datum, which enables consistency checking to verify that you get
identical results when you compare two or more code sequences for performance.

assert in Performance Analysis/Execution Profiling Modes
Executing an assert instruction during performance analysis or execution profiling modes
searches for name in an assertion file. The size and value associated with the name is
compared with that of the location in the assert instruction. A mismatch gives an error.
You also get an error when name is missing from the assertion file; or when an assertion
file is not specified with either the assert file instruction or the -a command line option.

assert in Assertion Listing Mode
Executing assert in assertion listing mode prints the name and asserted value. If an
assertion file is specified either with the assert file instruction or the -a command line
option, the name is searched for there (you get an error if name is missing). The value
in the file is printed when name exists and there is a size or value mismatch between it
and the given location.

16 atime

Additional Information About assert

• name identifies an asserted datum across atime executions.

• For name, use an alphabetic character followed by 0 or more alphanumeric or
underscore characters.

• For location, use any data addressing mode such as Y.dO or 4 (Y.a4 . Y.d2 . w)

• The non-optional b, w, and 1 suffixes to assert indicate a size of byte, word, and
long (respectively). Do not use the b suffix with the address register direct mode.

• Asserted values are treated as 2's complement signed integers.

• assert does not affect registers, stack, or condition codes.

• The size of this instruction in number of code bytes is not specified.

• An assert instruction must appear in the text segment and within the verify section
of code. A given assert can be executed only once in a particular execution of a
code sequence (ignores other attempts).

Example:

assert.l range.Y.d2
assert.w slip.-2(y'a6)
tst.l 12 (Y.a6)
smi Y.dO
assert.b sign.Y.dO

atime 17

assert file
Syntax is:

assert file

Lets you specify a file used for assertion data.

• Can appear only once in the atime initialization section of the input-file.

• For file, use an absolute or relative pathname.

• Having the -a option in the command line supersedes assert in the input-file.

• You can use the -1 option to create an assertion file.

Example:

assert lIassertdata"

code odd
code even
Changes the code to odd or even word alignment.

• Must appear in the text segment in the code initialization section.

• Cannot be executed in the timed section, but can be executed just before entering
that section.

• Does not affect registers, stack, or condition codes.

• The actual size of these instructions in nu..lJlber of bytes is unspecified.

Example:

code even

18 atime

comment
Syntax is:

comment text

Lets you write any number of comments to the output.

• Must appear in the atime initialization section.

Example:

comment H. I. Que developed the code sequence
comment using a new algorithm.

data name
Syntax is:

dataname name,name, ... ,name

Defines the names of data entries in dataset instructions.

• The first name corresponds to first datum in all dataset instructions, second name
to second datum, and so on.

• Can have only one dataname instruction; it must be in the atime initialization section
and precede all dataset instructions.

• Number of names in a dataname instruction must equal the number of data entries
in dataset instructions.

• Names begin with $ followed by one or more alphanumeric or underscore characters.

• Whitespace is ignored in the dataname list to allow specification of data sets in
tabular form; whitespace cannot appear in a name.

Example:

dataname $time, $speed, $mass, $part
dataset bicycle (100) , Of120.0, Of32.4, Of55.2, 100
dataset train(37) , Of24.14, Of 114 .8, Of 1. 5E4 , 16
dataset boat, Of71.6, Of37.7, Of2500.0, -6

atime 19

dataset
Syntax is:

dataset name! (count) j, datum, datum, ... , datum

Lets you define one data set. The input-file must have at least one dataset instruction
when you include a dataname instruction (see dataname).

• name identifies the data set. It permits specifying a data set with the -p option for
execution profiling or with the -1 option for listing assertions.

• An optional count (greater than or equal to 1 and in parentheses) can follow name
to specify the relative number of uses of the data set during timing (e.g. if one data
set is 100 and another is 37, then, for each 100 executions of the first data set, the
second set is executed 37 times). This lets you specify the probability of a data set
being executed in a real environment. An omitted count defaults to 1.

• The sum of the counts in all dataset instructions (declared or defaulted) must have
an integral multiple greater than or equal to the number of timing iterations and
less than or equal to 232 - 1.

• You must give at least one datum

• The number of data items must be the same for all dataset instructions and must
match the number of names in the dataname instruction.

• Data items must not contain commas because they are treated as strings.

• Having a name from a dataname instruction appear in an assembly instruction
replaces the name with the corresponding string from the dataset instruction
currently considered.

• Whitespace between items in a dataset list is ignored to provide for specifying data
sets in a tabular format.

Example:

dataname $time, $speed, $mass, $part
dataset bicycle (100) , Of120.0, Of32.4, Of55.2, 100
dataset train(37) , Of24'.14, Of 114 .8, Of 1. 5E4 , 16
dataset boat, Of71.6, Of37.7, Of2500.0, -6

20 atime

include
Syntax is:

include llfile ll

Includes text from file as follows:

• The file name can be an absolute or relative pathname.

• The include llfile ll instruction can appear anywhere in an input-file, but not in an
incl ude-file.

Example:

include "srcdata"

iterate
Syntax is:

iterate count

Specify the minimum number of timing iterations. (See count in dataset above for range.)

• With data sets, the value used for count is equal to or greater than the value given
here because the number of iterations must be an integral multiple of the sum of
the counfB in all dataset instructions.

• You get an error if the calculated iteration count falls outside the range; atime
terminates.

• Only one iterate instruction can be used and it must appear in the atime
initialization section.

• The -i option supersedes an iterate instruction.

• The default (not specified) timing iteration value is 1000000.

Example:

iterate 3000000

atime 21

Idopt
Syntax is:

1dopt options

Specffies link editor options. An 1dopt instruction passes its options to the link editor.
Only one instruction can be used and it must appear in the atime initialization section.

Example:

1dopt ext_func.o -1m

nolist
Syntax is:

no1ist

Turns off listing the input-file contents to the output-file.

• Only one instruction can be used and it must appear in the atime initialization
section.

• Listing is turned off for the whole file and for any include-file(s).

• A no1ist instruction is ignored when you use the -p or -1 options.

Example:

nolist

22 atime

output
Syntax: is:

output file

Specifies an output-file where file can be an absolute or relative pathname.

• Output is appended to this file.

• Only one output instruction can be used and it must appear in the atime initial
ization section.

• An output instruction is ignored when you use the -p or -1 options.

Example:

output "/usr/stats/structmove"

stack odd
stack even
Adjusts the stack for odd or even word alignment by checking the current alignment and
subtracting 2 (if necessary) from the stack pointer.

• Use only in the code initialization section.

• Because the stack pointer can change, memory locations referenced as offsets from
the stack pointer can have their offsets changed.

• These instructions do not affect condition codes or any registers other than the
stack pointer.

• The size of these instructions in terms of number of code bytes is not specified.

Example:

stack odd

atime 23

time
Syntax is:

time

Designates a section of code to be timed.

• Timing of code begins with the line following the time instruction and continues up
to a verify instruction or to the end of the file .

• There can be only one timed section and it must be wholly within the program's
text segment.

Example:

mov.l
time
mov.l
swap
add.l
mov.l
verify
movq
and.l

title
Syntax is:

title text

&$value,%dO

%dO,%dl
%dO
%dl,%dO
%dO, (%aO)

&1, %dO
(%aO),%dO

Specifies text used as a title for output.

• Only one title instruction can be used and it must appear in the atime initialization
section .

• A -t option supersedes a title instruction.

Example:

title ALGORITHM 1 - values saved on stack

24 atime

verify
Syntax is:

verify

Designates a section of code used for algorithm verification .

• The verify section begins with the line following the verify instruction and
continues to the end of the file.

• This section normally contains one or more assert instructions.

Example:

mov.l
time
mov.l
swap
add.l
mov.l
verify
assert.l

&$value.%dO

%dO.%dl
%dO
%dl. %dO
%dO. (%aO)

result.%dO

atime 25

Performance Analysis Mode
This default mode lets you analyze the performance of your assembly code.

To analyze performance, an assembly code sequence is conceptually executed many times
in a loop. The total time for execution (minus overhead) divided by the number of
iterations gives an average execution time, which is reported to you. For sequences of
code that do the same thing, the sequence having the lowest average has the greatest
speed.

Using Command Line Options

• Valid options include: -a, -i, -n, and -to

• Do not use -p or -1 because they cause atime to do execution profiling or assertion
listing, respectively.

• Use an option only once in any order before the input-file name.

Getting and Reading Output (the analysis)
You get output as follows:

• appends to the output-file if you specified one in the command line.

• appends to the file in an output instruction if you specified one in the input-file.

• goes to standard out if you:

• did not specify anything .

• used - (minus) for the output-file in the command line.

26 atime

An Example
The following example with annotations shows the order and appearance of the output.

----------------------------- Separator line between sequences
Find the Maximum of Three Integers Title if given by -t or title
Developed by T. R. Crew Comment in comment instruction (s)
June 9, 1987 Comment in comment instruction(s)
name: robert Login name
machine: system1 Computer hostname
date: Tue Jun 9 16:33:04 1987 Date (day, month, date, time, year)
size: 12 bytes Size of timed section in bytes
instructions: 6 Number of executable instructions

in timed section
iterations: 50000
avg. time: 780.408 nsec
(Note: The entire contents of

Number of actual iterations
verage execution time
The input-file (including text
from include-files) when -n
and nolist are not given.

the input-file and any
include-file(s) appears here.)

Showing the Average Time
The average time is presented according to the following format:

0.0 sec

ddd.ddd nsec

ddd.ddd usec

ddd.ddd msec

dd.ddd sec

dd min dd.ddd sec

dddd hr dd min dd.ddd sec

for less than 1 nsec

for 1 nsec to 999.999 nsec

for 1 J.lsec to 999.999 J.lsec

for 1 msec to 999.999 msec

for 1 sec to 59.999 sec

for 1 min to 59 min, 59.999 sec

for 1 hour or greater

atime 27

Execution Profiling Mode
The execution profiling mode of atime gives you a profile by executing a code sequence,
tallying how many times each instruction is executed. Here is the overall scheme:

• Given a list of data sets for doing execution profiling, the number of times a
particular data set is executed in the process of tallying instruction hits equals
the count associated with its particular dataset instruction (not specifying count
defaults it to 1; and if there are no data sets, the code sequence executes once).

• The mode tallies those instructions recognized as executable by the 680xO assem
bier. It excludes other instructions such as data initialization (e.g. byte), symbol
definition (e.g. set), and alignment (e.g. 1a1ign).

• The mode aids in defining data sets. In setting up code for timing, you will usually
specify at least one data set to execute a particular set of paths in the code. Having
the execution printing mode on for that data set verifies that the set of paths is
what is executed.

• After defining data sets, atime can determine if all code will be executed by
running execution profiling for all data sets collectively. When you notice certain
instructions not getting hit, you can add more data sets to cover those cases.

Using Command Line Options

• You must have at least one -p option to use the mode.

• Other options include -a, -i, -n, and -t; but -i and -n have no effect. Use at
most one of each of the "other" options in any order before the input-file name.
Duplicate usage of a particular option prints a warning message and ignores all but
the first usage.

• Using -1 causes an error and terminates execution.

28 atime

Getting and Reading Output (the profile)
You get output as follows:

• appends to the output-file if specified in the command line.

• goes to standard out if you did not specify anything or you
used - for the output-file.

• ignores an output instruction in the input-file

An Example
The following example shows how execution profiling mode prints information.

----------------------------- Separator line between sequences
Find the Maximum of Three Integers Title if given by -t or title
Developed by T. R. Crew Comment in comment instruction (s)
June 9. 1987 Comment in comment instruction(s)
name: robert Login name
machine: systeml Computer hostname
date: Tue Jun 9 16: 33 : 04 1987 Date (day, month, date, time, year)

The remaining output has dataname and dataset lines as they appeared in the input
file and profile information in two fields: number of executions and executed assembler
instructions.

$argl. $arg2, $arg3
max1(70) • 10. 4, 2
max2(35). 5. 11, 0
max3(20). 8. 13, 21

125 cmp.l Y.dO.Y.dl
125 bge.b Ll
55 exg ·Y.dO.Y.dl

125 Ll: cmp.l Y.dO.Y.d2
125 bge.b L2
20 exg Y.dO.Y.d2

L2:

atime 29

Assertion Listing Mode
The assertion listing mode of atime lets you determine that results are identical for every
code sequence variation.

• Upon executing a code sequence for a specified data set, each assert instruction
prints its asserted value. If an assertion file is specified, the value is checked against
its corresponding value in the file; and on a mismatch, the value in the assertion
file is also printed. Not having a value in the assertion file prints an error message.

• Besides printing code sequence results, output of an assertion listing can be put
into a file and used as the assertion file in subsequent runs of atime.

Using Command Line Options

• You must specify at least one -1 option.

• Other valid options include: -a, -i, -n, and -t, but -i and -n have no effect. Use
at most one each of valid "other" options. Any order is accepted; the options
must appear before the input-file. Having more than one of any particular option
generates a message and atime ignores the extras.

• Using -p generates an error and terminates execution.

Getting and Using Output
You get output as follows:

• The information in the first six lines is the same as that shown for other modes.

• The assertion listing information begins with dataset: followed by the name of the
data set (each data set requires a name).

• Then, you see each datum in the data set as its name followed by its value.

• On executing a code sequence, each asserted value is printed as its name followed
by its value.

• If an assertion file is specified and it has a different corresponding value, that value
is also printed.

• You get MISSING when a value is missing from the assertion file.

• Asserted values have a size suffix.

30 atime

An Example
The following example shows how assertion listing mode prints information.

----------------------------- Separator line between sequences
Find the Maximum of Three Integers Title if given by -t or title
Developed by T. R. Crew Comment in comment instruction (s)
June 9, 1987 Comment in comment instruction(s)
name: robert Login name
machine: systeml Computer hostname
date: Tue Jun 9 16:33:04 1987 Date (day, month, date, time, year)

The remaining output shows the assertion information according to the above description
on getting ouptut.

dataset: maxl
$argl 10
$arg2 4
$arg3 2
max 10.1

dataset: max2
$argl 5
$arg2 11
$arg3 0
max 11.1

dataset: max3
$argl 8
$arg2 13
$arg3 21
max 21.1

atime 31

Recovering from Errors
The atime utility provides self-explanatory error messages. In addition, you can get
error messages from the assembler or link editor. When assembly fails, an intermediate,
temporary file is retained with the error message indicating its name. The file is
important because it contains comments that help you correlate assembly errors with
errors in the input-file.

Tracking Errors
Recall that bit_find, the input-file for finding the most significant bit, contained the
line:

btst ~d1 . ~dO

Suppose, for example, the line had a typing mistake and read:

btst ~a1 . ~dO

Running atime on this file would return an error message similar to:

as error: "/usr/tmp/aaaa22982" line 37: syntax error
(opcode/operand mismatch)

ERROR: cannot assemble file: "/usr/tmp/aaaa22982"

Looking at lines 36 and 37 in /usr/tmp/aaaa22982, you would see:

"bit_find". line 25
btst ~a1.~dO

This information tells you the error is in line 25 in the input-file called bit_find. Knowing
this, you can locate the error in the original input-file and make necessary corrections
(Le. change %a1 to %d1).

Remember to remove the temporary file when you finish using it.

32 atime

Data Set Errors
Suppose you made a typing error for data set bit5 by typing:

dataset bit5, Ox2X

which will create the erroneous instruction:

mov.l kOx2x,Y.dO

You would get an error similar to:

as error: l/usr/tmp/aaaa22997" line 116: syntax error
(opcode/operand mismatch)

as error: "/usr/tmp/aaaa22997" line 116: syntax error
ERROR: cannot assemble file: "/usr/tmp/aaaa22997II

The code in /usr/tmp/aaaa22997 around line 116 could look like:

___ Zcode2:

mov.w
mov.l
addq.w
mov.w
mov.l
mov.w
mov.l
mov.w
rtr

"bit_find", line 18, dataset: bit5
mov.l k$number,Y.dO

Y.cc, __ Zcodecc
(y'sp)+, __ Zcodesp
k4,Y.sp
__ Zcodecc,Y.dO
kOx2X,Y.dO
Y.cc, __ Zcodecc
__ Zcodesp,-(y'sp)
__ Zcodecc,-(y'sp)

Backing up from line 116 and looking at the comments, you see:

• The file is bit_find.

• The error occurred on line 18, which is:

mov.l k$number,Y.dO

• The offending data set is called bi t5.

atime 33

Assert Instruction Errors
Suppose you made an error in one of the assert instructions:

assert.l original_value,%d9

Running atime would return:

as error: l/usr/tmp/aaaa23012" line 58:
invalid register symbol (%d9)

as error: l/usr /tmp/aaaa23012" line 58: syntax error
(opcode/operand mismatch)

as error: l/usr/tmp/aaaa23012" line 58: syntax error
ERROR: cannot assemble file: l/us r /tmp/aaaa23012"

Lines 57 and 58 in /usr/tmp/aaaa23012 look like:

mov.w
mov.l

%cc, __ Z
%d9, __ ZEA

"bit_find", line 33
assert.l original_value,%d9

Again, the comments indicate the file, offending line, and instruction in the original file.

Some Notes About Error Recovery Procedures
Looking back at the three examples of error recovery, you see a similar pattern:

• Examine the error messages, looking for clues.

• Look at the temporary file according to implied line numbers.

• Study the code and comments to find the error.

• Correct the error in the appropriate files,

Atime catches errors associated with setting up the analysis environment. With
assertions, it also detects differing results between code sequences. In addition, certain
types of errors are caught by the assembler or link editors. Beyond this, there are
particular runtime errors that cannot be tracked down effectively except outside of using
atime. Such errors include bad pointer de references and executing infinite loops. In
all cases, it is best to run atime only on code sequences you have thoroughly tested
beforehand.

34 atime

Index

a
assert file instruction .. 18
assert instruction ... 16
assertion listing mode .. 30
assertion listing mode output ... 30
atime:

error recovery ... 32
features ... 5
input-file ... 12
input-file code initialization ... 12
input-file initialization ... 12
input-file timed section ... 13
input-file verify section ... 13
instructions 14
introduction ... 1
options ... 7
prerequisites :.................................... 2
rationale for use 8
restrictions on atime instructions .. 14
syntax .. 6
table of instructions ... 15
the overall picture .. 4

c
code even instruction .. 18
code odd instruction ... 18
comment text instruction .. 19
contents of manual ... 3

Index 35

d
dataname name,name, ... ,name instruction 19
datas et name {(count) j, datum, datum, ... , datum instruction 20

e
error recovery ... 32
examples: .

executing atime .. 8
input-file .. 8, 10
input-file atime initialization ... 8
input-file code initialization .. 9
input-file timed section '" ... 9
input-file verify section .. 9
output from assertion listing mode .. 31
output from execution profiling mode 29
output from performance analysis mode 27

execution profiling mode '. 28
execution profiling mode output ... 29

9
getting additional information ... 2
getting information ... 1

.
I

include "file" instruction ... 21
information about the manual ... 1
input-file ... 12
input-file example .. 8
input-file:

atime initialization .. 12
code initialization ... 12
requirements 13
timed section ... 13
verify section ... 13

instructions for atime .. 14

36 Index

instructions:
assert ... 16
assert file .. 18
code even .. 18
code odd ... 18
comment text .. 19
dataname name,name, ... ,name '" 19
dataset name[(count)j,datum,datum, ... ,datum 20
include C C filet t ••• 21
iterate count ... 21
ldopt options .. ' 22
nolist ... 22
output file 23
stack even ... 23
stack odd .. 23
time ... 24
title text .. 24
verify ... 25

introduction to atime ... 1
iterate count instruction ... 21

I
ldopt options instruction ... 22

m
manual contents .. '. 3
modes:

assertion listing ... 30
execution profiling. .. 5, 28
output from assertion listing mode .. 30
output from execution profiling mode ; 29
output from performance analysis mode 26
performance analysis 5, 26

n
nolist instruction ... 22

Index 37

o
options for atime ... 7
output file instruction ... 23
output:

assertion listing mode .. 30
execution profiling mode ... 28, 29
performance analysis mode ... 26

p
performance analysis mode ... 26
performance analysis mode output ... 26
prerequisites for running atime ... 2

r
recovering from errors 32
restrictions on atime instructions .. 14

s
stack even instruction ... 23
stack odd instruction .. 23
syntax for atime .. 6

t
time instruction ... 24
title text instruction .. 24

v
verify instruction ... 25

38 Index

HP Part Number
98597 -90020
Microfiche No. 98597-99020
Printed in U.S.A. E1288

Flio- HEWLETT
a!~ PACKARD

I
98597-90638
For Internal Use Only

