
HP-UX Reference

Vol. 2: Sections 1M, 2, 3, 4, 5, and 7

HP 9000 Series 500 Computers
HP-UX Release 5.3

HP Part Number 09000-90010

rli~ HEWLETT
~~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
fOf errOfS contained herein or direct. indirect. special. incidental Of consequential damages in connection with the furnishing. performance.

or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local

Sales and Service Office.

Copyright © Hewlett-Packard Company 1987. 1988. 1989

This document contains infOfmation which is protected by copyright. All rights are reserwd. Reproduction, adaptation. or translation without
prior written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (bX3Xii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980,1984

Copyright © The Regents of ttJf: University of California 1979, 1980. 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

ii

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

April 1987 ... Edition_1

February 1988 ... Update 1. Replaced incorrect manual entry for fsck [SDF](lM) in
Volume 2.

April 1989 ... Update 2. Replaced the following incorrect manual entries: awk(l) in Volume
1; csh(l) in Volume 1; grep(l) in Volume 1; lifcp(l) in Volume 1; sort(l) in Volume
1; spell(l) in Volume 1; cron(lM) in Volume 2; fsck[SDF](lM) in Volume 2.

Printing History iii

iv Printing History

AWK(l) HP-UX AWK(l)

NAME
awk - text pattern scanning and processing language

SYNOPSIS
awk [-F c 1 [prog I -f awkfile 1 [parameters 1 [files ... 1

DESCRIPTION
Awk scans each input fiie for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a file
matches the pattern. The set of patterns may appear literally as prog, or in a file specified as -f
file. The prog string should be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name - means the
standard input. Each line is matched against the pattern portion of every pattern-action state­
ment; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS; see below). The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a sequence
of statements. A statement can be one of the following:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement 1 ... }
variabk = expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, -, *, /, %, and concatenation (indicated by a blank). The C opera­
tors ++, --, +=, -=, *=, /=, and %= are also available in expressioll:S. Variable:s may be
scalars, array elements (denoted xli]) or fields. Variables are initialized to the null string. Array
subscripts may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted ("); single quotes (') are not recognized.

The print statement prints its arguments on the standard output (or on a file if > expr is present),
separated by the current output field separator, and terminated by the output record separator.
The printj statement formats its expression list according to the format (see printj(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and into The last truncates
its argument to an integer; substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintj(Jmt, expr, expr, ...) formats the expressions according to the
printj(3S) format given by jmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep (see grep (1)). Isolated regular expressions in a pattern apply to the entire line. Regular

Hewlett-Packard Company - 1 - HP-UX Release 5.3: April 1989

AWK(l) HP-UX AWK(l)

expressions may also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines between an occurrence of
the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for contains)
or !- (for does not contain). A conditional is an arithmetic expression, a relational expression, or
a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is
read and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with:

BEGIN { FS = c }

or by using the -F c option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current input
file; OFS, the output field separator (default blank); ORS, the output record separator (default
new-line); and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, average is", s/NR }

Print fields in reverse order:

{ for (i = NF: i > 0; -i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print fik. filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

Hewlett-Packard Company - 2 - HP-UX Release 5.3: April 1989

CSH(l)

ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

prompt

shell

Hewlett-Packard Company

HP-UX CSH(l)

If set, csh ignores end-of-file characters from input devices that are ter­
minals. Csh will exit normally when it encounters the end-of-file condi­
tion, which is control-D typed as the first character on a command line.
Setting ignoreeof prevents your current shell from being killed by an
accidental control-D.

This variable contains a list of the files where csh checks for your mail.
Csh periodically (default is 10 minutes) checks this variable after a com­
mand completion which results in a prompt. If the variable contains a
filenanle that has been modified since the last check (resulting; from mail
being put in the file), csh prints You have new mail.

If the first word of the value of mail is numeric, that number specifies a
different mail checking interval in seconds.

If multiple mail files are specified, then the shell says
Newmailinfile--1lame, where file_name is the file containing the mail.

This variable places restrictions on output redirection to insure that files
are not accidentally destroyed, and that commands using append redirec­
tion (> » refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is no longer an error for a filename expansion to not match any
existing files. If there is no match, the primitive pattern is returned. It
is still an error for the primitive pattern to be malformed, i.e. 'echo ['
still gives an error.

If set, csh notifies you immediately (through your standard output dev­
ice) of background job completions. The default is unset (indicate job
completions just before printing a prompt).

Each word of the path variable specifies a directory in which commands
are to be sought for execution. A null word specifies your current work­
ing directory. If there is no path variable then only full path names can
be executed. When path is not set and when users do not specify full
pathnames, csh searches for the command through the directories . (your
current directory), /bin, /lbin, /usr/bin, and /usr/lbin. A csh which is
given neither the --c nor the -t option normally hashes the contents of
the directories in the path variable after reading . cshrc, and each time
the path variable is reset. If new commands are added to these direc­
tories while the shell is active, it is necessary to execute rehash for csh to
access these new commands.

This variable lets you select your own prompt character string. The
prompt is printed before each command is read from an interactive ter­
minal input. If a ! appears in the string it is replaced by the current
command history buffer event number unless a preceding \ is given.
The default prompt is the percent sign (%) for users and the pound sign
(#) for the super-user.

This variable contains the name of the file in which the csh program
resides. This variable is used in forking shells to interpret files which
have their execute bits set, but which are not executable by the system.
(See the description of Non-built-In Command Execution).

- 15 - HP-UX Release 5.3: April 1989

CSH(I)

status

time

verbose

HP-UX CSH (1)

This variable contains the status value returned by the last command.
If the command terminated abnormally, 0200 is added to the status
variable's value. Built-in commands which terminated abnormally
return exit status 1, and all other built-in commands set status to O.

This variable contains a numeric value which controls the automatic
timing of commands. If set, then csh prints. for any command which
takes more than the specified number of cpu seconds, a line of informa­
tion to your standard output device giving user, system, and real execu­
tion times plus a utilization percentage. The utilization percentage is the
ratio of user plus system times to real time. This message is printed
after the command finishes execution.

This variable is set by the -v command line option. If set, the words of
each command are printed on the "taudard output device after history
substitutions have been made.

Command and Filename Substitution
The remaining substitutions, command and filename substitution, are appli!'d sPiectiv!'ly to the
arguments of built-in commands. This means that portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal to the
shell, the command name is substituted separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a child of the main shell.

Command Substitution
Command substitution is indicated by a command enclosed in grave accents (' ... '). The output
from such a command is normally broken into separate words at blanks, tabs and newlines, with
null words being discarded, this text then replacing the original string. Within double quotes,
only new lines force n!'w words: blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a
command substitution to yield only part of a word, even if the command outputs a complete line.

Filename Substitution
If a word contains any of the characters *, ?, [, or {, or begins with the character -, then that
word is a candidate for filename substitution, also known as globbing. This word is th('n regarded
as a pattern, and replaced with an alphabetically sorted list of file names which match the pat­
tern. In a list of words specifying filename substitution it is an error for no pattern to match an
!'xisting tile name, but it is not required for each pattern to match. Only the metacharacters *, ?,
and [imply pattern matching, while the characters - and { are more like abbreviations.

In matching filenames, the character . at the beginning of a filename or immediately following a /'
as well as the character / itself, must be matched explicitly. The character * matches any string
of characters, including the null string. The character ? matches any single character. The
s!'quenc!' [... J matches any on!' of the charact!'rs enclosed. Within the square brack<>ts. a pair of
characters separated by matches any character kxically b!'tw!'!'n and including th(' two.

The tilde character C) at the beginning of a filename is used to refer to home directories. By
itself, the tilde expands to your home directory as reflected in the value of the variable home.
When followed by a name consisting of letters, digits and - characters, the shell searches for a
user with that name and substitutes their home directory: thus -ken might expand to
/users/ken and -ken/chmach to /usr/ken/chmach. If the - is followed by a character other
than a letter or /, or appears somewhere other than at the beginning of a word, it is left undis­
turbed.

The metanotation a{b,c,d}e is a shorthand for "abe ace ade". Left to right order is preserved,
with results of matches being sorted separat!'ly at a low l!'vel to preserve this ord!'r. This con­
struct may be nested. Thus

Hewlett-Packard Company - 16 - HP-UX Release 5.3: April 1989

GREP(l} HP-UX GREP(l}

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
Levels Band C

grep [options 1 expression [files 1

Level COnly
egrep [options 1 [expression 1 [files 1
fgrep [options 1 [strings 1 [files 1

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ed(I); it uses a compact non-deterministic algorithm. Egrep
patterns are full regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following options
are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (jgrep only).
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons.
-I Only the names of files with matching lines are listed (once), separated by new-lines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is sometimes useful

in locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are suppressed (grep only).
-e expression

Same as a simple expression argument, but useful when the expression begins with a -
(does not work with grep).

-f file The regular expression (egrep) or strings list (jgrep) is taken from the file.

In all cases, the file name is output if there is more than one input file. Care should be taken
when using the characters $, *, [, A, I, (,), and \ in expression, because they are also meaningful
to the shell. It is safest to enclose the entire expression argument in single quotes ' ... '.

Fgrep searches for lines that contain one of the strings, each of which is separated from the next
by a new-line.

Egrep accepts regular expressions as in ed(I), except for \(, \), \{ and \}, with the addition of:

1. A regular expression followed by + matches one or more occurrences of the regular expres­
sion.

2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expression.
3. Two regular expressions separated by 1 or by a new-line match strings that are matched by

either.
4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [], then *? +, then concatenation, then 1 and new-line.

EXAMPLES
The following example searches two files, finding all lines containing occurrences of any of four
strings:

fgrep 'if
then
else
fi' scriptl script2

Hewlett-Packard Company - 1 - HP-UX Release 5.3: April 1989

GREP(l) HP-UX GREP(l)

Note that the single quotes are necessary to tell fgrep when the strings have ended and the file
names have begun.

This example searches for a new-line in a file:

grep -v '\.' file 1

The -v option causes grep to print those lines that do not match the expression. Since a new-line
cannot be matched with dot, only lines containing a new-line are printed.

SEE ALSO
ed(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files (even if
matches were found).

Ideally there should be only one grep, but we do not know a single algorithm that spans a wide
enough range of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is defined in
/usr /include/stdio.h.)
Egrep does not recognize ranges, such as [a-z], in character classes.
Grep finds lines in the input file by searching for a new-line. Thus, if there is no new-line at the
end of the file, grep will ignore the last line of the file.
If there is a line with embedded nulls, grep will only match up to the first null; if it matches, it
will print the entire line.

INTERNATIONAL SUPPORT
grep: 8- and 16-bit data, 8-bit filenames, messages
egrep: 8-bit data and filenames
fgrep: 8-bit data and filenames, messages.

Hewlett-Packard Company - 2 - HP-UX Release 5.3: April 1989

LIFCP (1) HP-UX LIFCP (1)

NAME
lifcp - copy to or from LIF files

SYNOPSIS
lifcp [-Txxx] [-Lxxx] [-vxxx] [-a] [-b] [-ixxx] [-r] [-t] filel file2
lifcp [-Txxx] [-Lxxx] [-v xxx] [-a] [-b] [-ixxx] [-rJ [-t] filel [file2 ...] directory

DESCRIPTION
Lifcp copies a LIF file to an HP-UX file, an HP-UX file to a LIF file, or a LIF file to another LIF
file. It also copies a list of (HP-UX/LIF) files to a (LIF /HP-UX) directory. The last name on the
argument list is the destination file or directory.

Options may appear singly or be combined in any order before the file names. The space between
option and argument is optional.

-Txxx Used only when copying files to a LIF volume. This option will force the file type
of the LIF directory entry to be set to the argument given, which may be
decimal, octal or hex in standard "C" notation.

-Lxxx

-vxxx

-a

-b

-ixxx

-r

-t

Used only when copying files to a LIF volume. This option will set the "last
volume flag" to xxx (0 or 1). The default "last volume flag" is one.

Used only when copying files to a LIF volume. This option will set the "volume
number" to xxx. The default "volume number" is one.

causes an ASCII copy. In the case of copying from HP-UX to LIF, this creates a
LIF ASCII file.

This option will force a BINARY mode of copying regardless of the file type.
When copying in BINARY mode from HP-UX to LIF the default file type is
BINARY(-2). (For details on available modes of copying refer to lif(4)). This
option is a no-op when copying from LIF to LIF.

Used only when copying files to a LIF volume. This option sets the "implemen­
tation" field of the LIF directory entry to the argument given, which may be
decimal, octal or hex in standard "C" notation. The "implementation" field can
only be set for file types -2001 to -100000 (octal). The "implementation" field is
set to zero for all interchange file types and for file types -2 to -200 (octal).

This option will force a RAW mode of copying regardless of the file type. When
copying in RAW mode from HP-UX to LIF the default file type is BIN(-23951).
-T option will override the default file type. (various modes of copying are
explained in lif(4).) This option is a no-op in case of LIF to LIF copying.

will cause the HP-UX file names to be translated to a name acceptable by a LIF
utility. That is, all the lower-case letters will be up-shifted and all other charac­
ters except numeric will be changed to an underscore (_). If the HP-UX file
name starts with a non-letter, the file name will be preceded by the capital letter
(X). Note that if there are two files named colon (:) and semicolon (;), both of
them will be translated to X_. File names will be truncated to a maximum of 10
characters. When copying a LIF file to (HP-UX/LIF) file -t is a no-op. Omitting
-t will cause error to be generated if an improper name is used.

Hewlett-Packard Company - 1 - HP-UX Release 5.3: April 1989

LIFCP (1) HP-UX LIFCP (1)

The default copying modes when copying from LIF to HP-UX are summarized in the following
table:

file type

ASCII
BINARY
BIN
other

default copying mode

ASCII
BINARY
RAW
RAW

When copying from HP-UX to LIF, the default copying mode is ASCII and an ASCII file is
created.

When copying from LIF to LIF, if no options are specified then all the LIF directory fields and
content of the file are duplicated from source to destination.

A LIF file name is recognized by the embedded colon (:) delimiter (see 1'1(4) for LIF file naming
conventions). A LIF directory is recognized by a trailing colon. If an HP-UX file name contain­
ing a colon is used, the colon must be escaped with two backslash characters (\ \) (the shell
removes one of them).

The file name '-' (dash) will be interpreted to mean standard input or standard output, depending
on its position in the argument list. This is particularly useful if the data requires non-standard
translation. When copying from standard input, if no other name can be found, the name
"STDIN" is used.

The LIF file naming conventions are known only by the LIF utilities. Since file name expansion is
done by the shell, this mechanism cannot be used for expansion of LIF file names.

Note that the media should not be mounted while using li/cp.

HARDW ARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

Series 800:

EXAMPLES

The following option is also supported:

-Knnn forces each file copied in to begin on a nnn * 1024 byte boundary from
the beginning of the volume. This is useful when files are used for Series
800 boot media. This option has no effect when copying from a LIF
volume.

lifcp abc lifvoI:CDE
copy HP-UX file abc to LIF file CDE on LIF volume lifvol which is actually an HP-UX file
initialized to be a LIF volume.

lifcp -t * .. jlifvoI:
will copy all the HP-UX files in the current directory to the LIF volume lifvol which is
present in the parent directory. File names are translated to appropriate LIF file names.

lifcp -r -T -5555 -t *.0 lifvol:
will copy all the HP-UX object files in the current directory to the LIF volume lifvol. Copy­
ing mode is RA W and LIF file types are set to -5555.

Hewlett-Packard Company - 2 - HP-UX Release 5.3: April 1989

LIFCP(l) HP-UX LIFCP(l)

lifcp - /dev /dsk/ls2:AJILE
copy standard input to LIF file AJILE on LIF volume /dev /dsk/ls2.

lifcp lifvol:ABC /dev /dsk/ls2:CDE
copy LIF file ABC in lifvol to LIF file CDE on /dev /dsk/ls2.

pr abc I lifcp -lifvol:ABC
copy the output of PI' to the LIF fiie ABC.

pr abc I lifcp - lifvol:
copy the output of pr to the LIF volume lifvol. LIF file STDIN is crated since no files
names are specified.

lifcp lifvol:ABC -
copy LIF file ABC in lifvol to stannard out.

lifcp • .. /lifvol:
copy all files within current directory to LIF files of the same name on LIF volume lifvol
(may cause errors if file names in the current directory do not obey LIF naming conven­
tions!).

AUTHOR
Lifcp was developed by the Hewlett-Packard Company.

SEE ALSO
lifinit(l), lifls(l), lifrename(l), lifrm(l), lif(4).

DIAGNOSTICS
Lifcp returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and
returns non-zero.

Hewlett-Packard Company - 3 - Version B.l, December 1986

LIFINIT(l) HP-UX LIFINIT(l)

NAME
lifinit - write LIF volume header on file

SYNOPSIS
lifinit [-vnnn] [-dnnn] [-n string] file

DESCRIPTION
Lifinit writes a LIF volume header on a volume or file. Options may appear in any order. Their
meanings are:

-vnnn Sets the volume size to nnn bytes. If nnn is not a multiple of 256, it will be rounded
down to the next such multiple.

-dnnn Sets the directory size to nnn file entries. If nnn is not a mUltiple of 8, it will be
rounded up to next such multiple.

-n string sets the volume name to be string. If the -n option is not specified, the volume name
is set to the last component of the path name specified by file. A legal LIF volume
name is 6 characters long and is limited to upper case letters (A-Z), digits (0-9) and
the underscore character (_). The first character (if any) must be a letter. The util­
ity will automatically perform translation to create legal LIF volume names. There­
fore, all lower-case letters are up-shifted and all other characters except numeric and
underscore will be replaced with capital letter (X). If the volume name does not start
with a letter, the volume name will be preceded by the capital letter (X). The
volume name will also be right padded with blanks or truncated as needed to be 6
characters long. If -n is used with no string, the default volume name is set to 6
blanks.

If file does not exist, a regular HP-UX disk file is created and initialized.

The default values for volume size are 256K bytes for regular files, and the actual capacity of the
device for device files.

The default directory size is a function of the volume size. A percentage of the volume size is allo­
cated to the volume directory as follows:

VOLUME SIZE
<2MB
> 2MB

DIRECTORY SIZE
-1.3%
-0.5%

Each directory entry occupies 32 bytes of storage. The actual directory space is subject to the
rounding rules stated above.

Note that you should not mount the special file before using lifinit.

HARDW ARE DEPENDENCIES
Series 200, Series 300

If your media has never been initialized, it must be initialized using mediainit(1} before
lifinit can be used. (Refer to the System Administrator Manual for details concerning
mediainit.)

Series 500
You must use a character special file to access the media.

If your media has never been initialized, it must be initialized using sdfinit(1M} before
lifinit can be used.

Series 800:

Hewlett-Packard Company - 1 - Version B.I, December 1986

SLP(l) HP-UX SLP(l)
Series 200, 300, 800 Only

SEE ALSO
ioctl(2), Ip(7).

Hewlett-Packard Company - 2 - Version B.I, October 1986

SORT(l) HP-UX SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [--emu I [-ooutput I [-ykmem I [-zrecsz 1 [-Tdir I [-tx I

[-bdfilnrM I [+posl [-pos2 II [file ... I
DESCRIPTION

Sort sorts lines of all the named files together and writes the result on the standard output. The
standard input is read if - is used as a file name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of input. By default,
there is one sort key, the entire input line, and ordering is lexicographic by bytes in machine col­
lating sequence.

The following options alter the default behavior:

--e

-m

-u

-ooutput

-ykmem

-zrecsz

-Tdir

Check that the input file is sorted according to the ordering rules; give no output
unless the file is out 'of sort.

Merge only, the input files are already sorted.

Unique: suppress all but one in each set of lines having equal keys.

The argument given is the name of an output file to use instead of the standard
output. This file may be the same as one of the inputs. There may be optional
blanks between -0 and output.

The amount of main memory used by the sort has a large impact on its perfor­
mance. Sorting a small file in a large amount of memory is a waste. If this
option is omitted, sort begins using a system default memory size, and continues
to use more space as needed. If this option is presented with a value, kmem, sort
will start using that number of kilobytes of memory, unless the administrative
minimum or maximum is violated, in which case the corresponding extremum
will be used. Thus, -yO is guaranteed to start with minimum memory. By con­
vention, -y (with no argument) starts with maximum memory.

The size of the longest line read is recorded in the sort phase so buffers can be
allocated during the merge phase. If the sort phase is omitted via the -c or -m
options, a popular system default size will be used. Lines longer than the buffer
size will cause sort to terminate abnormally. Supplying the actual nmnl)('r of
bytes in the longest line to be merged (or some larger value) will prevent abnor­
mal termination.

Use dir as the directory for temporary sort records rather than the default direc­
tory, which is /usr/tmp.

The following options override the default ordering rules:

-d

-f

-i

Quasi-dictionary order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons. The -d option recognizes ASCII characters only (see
the DIAGNOSTICS section).

Fold lowercase letters into uppercase. The -f option is ignored if a language
other than n-computer is specified.

Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons.
The -i option will be ignored if a language other than n-computer is specified.

Hcwktt-Packard Company - 1 - HP-UX Release 5.3: April 1989

SORT(l)

-M

-n

-r

HP-UX SORT(l)

Compare as months; however, the -M option compares American month names
only (see the DIAGNOSTICS section). The first three non-blank characters of
the field are folded to uppercase and compared so that "JAN" < "FEB" < ... <
"DEC". An invalid field is considered less than "JAN". The -M option implies
the -b option (see below).

An initial numeric string, consisting of optional blanks, optional minus sign, and
zero or more digits with optional decimal point, is sorted by arithmetic value.
The -n option recognizes only the English radix character (decimal point) in
numeric comparisons (see the DIAGNOSTICS section). The -n option implies
the -b option (see below). Note that the -b option is only effective when res­
tricted sort key specifications are in effect.

Reverse the sense of comparisons.

The following option applies to International Support:

-I Collate characters using the collation rules associated with the user's LANG vari­
able (see environ(5)). If the language is not specified or is set to n-computer,
the ordering is lexicographic by bytes in machine-collating sequence. If the user's
language includes two-byte characters, one-byte characters are machine-collated
before two-byte characters.

The notation +posl -pos2 restricts a sort key to one beginning at posl and ending at pos2. The
characters at positions posl and pos2 are included in the sort key (provided that pos2 does not
precede posl). A missing -pos2 means the end of the line.

When ordering options appear before restricted sort key specifications, the requested ordering
rules are applied globally to all sort keys. When attached to a specific sort key (described below),
the specified ordering options override all global ordering options for that key.

Specifying posl and pos2 involves the notion of a field, a minimal sequence of characters followed
by a field separator or a new-line. By default, the first blank (space or tab) of a sequence of
blanks acts as the field separator. All blanks in a sequence of blanks are considered to be part of
the next field; for example, all blanks at the beginning of a line are considered to be part of the
first field. The treatment of field separators can be altered using the options:

-tx

-b

Use x as the field separator character; x is not considered to be part of a field
(although it may be included in a sort key). Each occurrence of x is significant
(for example, xx delimits an empty field).

Ignore leading blanks when determining the starting and ending positions of a
restricted sort key. If the -b option is specified before the first +posl argument,
it will be applied to all +posl arguments. Otherwise, the b flag may be
attached independently to each +posl or -pos2 argument (see below). .

Posl and pos2 each have the form m.n optionally followed by one or more of the flags bdfinrM.
A starting position specified by +m.n is interpreted to mean the n+1st character in the m+1st
field. A missing . n means .0, indicating the first character of the m+ 1st field. If the b flag is in
effect, n is counted from the first non-blank in the m+1st field; +m.Ob refers to the first non­
blank character in the m+ 1st field.

A last position specified by -m.n is interpreted to mean the nth character (including separators)
after the last character of the m th field. A missing . n means .0, indicating the last character of
the mth field. If the b flag is in effect, n is counted from the last leading blank in the m+ 1st
field; -m.1 b refers to the first non-blank in the m+ 1st field.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

Hewlett-Packard Company - 2 - HP-UX Release 5.3: April 1989

SORT (1) HP-UX SORT(I)

DIAGNOSTICS
Sort comments and exits with non-zero status for various trouble conditions (for example, when
input lines are too long), and for disorder discovered under the -c option.

When the last line of an input file is missing a new-line character, sort appends one, prints a
warning message, and continues.

If an error occurs when accessing the tables that contain the collation rules for the specified
language, sort prints a warning message and defaults to n-cornputer.

If a -d, -n or -M option is used with a language other than n-cornputer, sort prints a warning
message and defaults to n-cornputer.

EXAMPLES
Sort the contents of t"nfile with the second field as the sort key:

sort + 1 ~ 2 infile

Sort, in reverse order, the contents of injilel and injile2, placing the output in outfile and using
the first character of the second field as the sort key:

sort ~r ~o out file + 1.0 ~ 1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2, using the first non-blank character of the
second field as the sort key:

sort ~r +1.0b ~1.lb infilel infile2

Print the password file (passwd(4)) sorted by the numeric user ID (the third colon-separated
field):

sort ~t: +2n ~3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first occurrence of lines hav­
ing the same third field (the options -urn with just one input file make the choice of a unique
r£'presentative from a set of equal lines predictable):

sort ~um + 2 ~3 infile

WARNINGS

FILES

When using the specified ordering option(s) with two-byte characters, posl and pos2 must specify
byte position, not character position.

Th£' -t option only recognizes a charact£'r £'ncod£'d in on£' bytr as a fi£'ld s£'parator charact£'r.

/usr/tmp/stm???

SEE ALSO
comm(l), join(l), uniq(l), coL.seq_8(4), environ(5), hpnls(5), langid(5).

INTERNATIONAL SUPPORT
8- and 16-bit data, 8-bit file names, messages.

Hewlett-Packard Company - 3 - HP-UX Release 5.3: April 1989

SPELL (1) HP-UX SPELL (1)

NAME
spell, hashmake, spellin, hashcheck ~ find spelling errors

SYNOPSIS
spell [-v 1 [-b 1 [-x 1 [-I 1 [-i 1 [+local~le 1 [files 1

/usr /lib / spell/hashmake

/usr/lib/spell/spellin n

/ usr /lib / spell/hashcheck spelling-list

DESCRIPTION
Spell collects words from the named files and looks them up in a spelling list. Words that neither
occur among nor are derivable (by applying certain inflections, p'refixes, and/or suffixes) from
worus in the spelling list are printed on the standard output. If no files are named, words are col­
lected from the standard input.

Spell ignores most troff, tbl(l), and eqn constructions.

Options
-v All words not literally in the spelling list are printed, and plausible derivations

from the words in the spelling list are indicated.

-b British spelling is checked. Besides preferring centre, colour, programme, speci-
ality, travelled, etc., this option insists upon -ise in words like standardise.

-x Every plausible stem is printed with = for each word.

By default, spell (like deroff(1)) follows chains of included files (.so and .nx troff requests), unless
the names of such included files begin with /usr /lib. Under the -I option, spell will follow the
chains of all included files. Under the -i option, spell will ignore all chains of included files.

Under the +locaLfile option, words found in locaLfile are removed from spell's output.
LocaLfile is the name of a user-provided file that contains a sorted list of words, one per line.
With this option, the user can specify a set of words that are correct spellings (in addition to
spell's own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an ordinary diction­
ary, is also more effective with respect to proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, "ndicated below with their default
settings (see FILES). Copies of all output are accumulated in the history file. The stop list filters
out misspellings (e.g., thier=thy~y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hash make

spellin n

hashcheck

Reads a list of words from the standard input and writes the corresponding
nine-digit hash code on the standard output.

Reads n hash codes from the standard input and writes a compressed spelling list
on the standard output. Information about the hash coding is printed on stan­
dard error.

Reads a compressed spelling_list and recreates the nine-digit hash codes for all
the words in it; it writes these codes on the standard output.

Hewlett-Packard Company - 1 - HP-UX Release 5.3: April 1989

SPELL (1) HP-UX SPELL (1)

EXAMPLES
To create a personal spelling list, incorporating the words already present in the default American
spelling list, /usr/lib/spell/hlista:

cat /usr/lib/spell/hlista I /usr/lib/spell/hashcheck >tmp1
/usr /lib/spell/hashmake <addwds > >tmp1
sort -u -0 tmp1 tmp1
/usr/lib/spell/spellin 'we -I <tmp1' <tmp1 >hlista

To modify the default British spelling list, /usr/lib/spell/hlistb, replace all occurrences of
hlista with hlistb in the above example.

To add words to the default spelling list, change login to root, change the current working direc­
tory to /usr /lib/spell and enter the commands listed in the above example.

WARNINGS

FILES

The spelling list's coverage is uneven. New installations will probably wish to monitor the history
file for several months to gather local additions. Typically, these are kept in a separate local file
that is added to the hashed spelling_list via spellin, as shown above.

The British spelling feature was done by an American.

D_SPELL=/usr/lib/spell/hlist[ab]

S_SPELL=/usr/lib/spell/hstop

H_SPELL=/usr/lib/spell/spellhist

/usr /lib/spell/spellprog

hashed spelling lists, American & British

hashed stop list

history file

program

VARIABLES
D_SPELL

SEE ALSO

Your hashed spelling list. (Default as above.)

Spelling history. (Default as above.)

Your hashed stop list. (Default as above.)

deroff(l), sed(l), sort(l), tbl(1), tee(l).

Hewlett-Packard Company - 2 - HP-UX Release 5.3: April 1989

CRON(lM) HP-UX CRON(lM)

NAME
cron ~ clock daemon

SYNOPSIS
/ete/eron

DESCRIPTION
Gran executes cOIllillands at specified dates ana times. Regularly scheduled commands can be
specified according to instructions found in crontab files; users can submit their own crontab file
via the crontab command. Commands which are to be executed only once may be submitted via
the at command. Since cran never exits, it should only be executed once. This is hest done by
running cron from the initialization process through the file /ete/re (see init(1M)).

On the days of daylight savings time transition (in time zones where daylight savings time
applies), cron will schedule commands differently than normal.

In the following description, an ambiguous time refers to an hour and minute that occurs twice in
the same day because of a daylight savings time transition (usually on a day during the Autumn
season). A non-existent time refers to an hour and minute that does not occur because of a day­
light savings time transition (usually on a day during the Spring season). DST-shift refers to the
offset that is applied to standard time to result in daylight savings time. This is normally one
hour, but may be any combination of hours and minutes up to 23 hours and 59 minutes (See
tztab(4)).

When a command is specified to run at a time that is ambiguous, the command will be executed
only at the first time that such a time occurs.

When a command is specified to run a time that is non-existent, the command will be executed
after the specified time by an amount of time equal to the DST -shift. When such an adjustment
would conflict with another time specified to run the command, the command is run only once
rather than running the command twice at the same time.

For commands that are scheduled to run during all hours by specifying a ,*, in the hour field of
the crontab entry, the command will be scheduled without any adjustment.

Gron only examines crontab files and at(1) command files during process initialization and when a
file changes. This reduces the overhead of checking for new or changed files at regularly scheduled
intervals.

EXAMPLES
The following examples assume that the time zone is MST7MDT. In this time zone the DST
transition occurs one second before 2:00 a.m. and the DST-shift is 1 hour.

Consider the following crontab entries:

Minute Hour Month Day Month Weekday Command
0 01 * Job_1
0 02 * Job_2
0 03 * * * Job_3
0 04 * Job_4
0 * Job---.hourly
0 2,3,4 * Multiple_1
0 2,4 * * * Multiple_2

Hewlett-Packard Company - 1 - HP-UX Release 5.3: April 1989

CRON(lM) HP-UX CRON(lM)

BUGS

FILES

For the period of 01:00 a.m. to 04:00 a.m. on the days of DST transition, the results will be:

Job
Job_l
Job_2
Job_3
Job_4
Job---.hourly

Times Run in Fall
01:00 MDT
02:00 MDT
03:00 MST
04:00 MST
01:00 MDT
02:00 MDT
02:00 MST
03:00 MST
04:00 MST
02:00 MDT
03:00 MST
04:00 MST
02:00 MDT
04:00 MST

Times Run in Spring
01:00 MST
03:00 MDT
03:00 MDT
04:00 MDT
01:00 MST

03:00 MDT
04:00 MDT

03:00 MDT
04:00 MDT
03:00 MDT
04:00 MDT

In the Spring, when there is a non-existent hour because of daylight savings time, a command
that is scheduled to run multiple times during the non-existent hour will only run once. For
example, a command scheduled to run at 2:00 and 2:30 a.m. in the MST7MDT time zone will
only run at 3:00 a.m. The command that was scheduled at 2:30 a.m. will not be run at all,
instead of running at 3:30 a.m.

The log file does not include the time zone in the time and date stamps, so it can be confusing
when reading the log for a day when an hour occurs twice because of a daylight savings time tran­
sition.

j usr jli b j cron
jusrjspooljcron
jusrjlibjcronjlog

main cron directory
spool area
accounting information

SEE ALSO
at(I), crontab(l)' init(IM), sh(I).

DIAGNOSTICS
A history of all actions taken by cron are recorded in /usr/libjcron/log.

Hewlett-Packard Company - 2 - HP-UX Release 5.3: April 1989

THIS PAGE INTENTIONALLY LEFT BLANK.

DECODE(lM) DECODE(lM)
Series 800 only

NAME
decode - read and decode diagnostic events from the error log

SYNOPSIS
decode [-L logfile] [-d device file] [-e physical path]
[-m major number] [-n driver name] [-p port] [-t [number]]
[-w]

DESCRIPTION
Decode reads from stdin a raw diagnostic event message. The message is then decoded into a
human-readable format and written to stdout. Decode continues reading event messages until
EOF is detected.

Decode accepts the following list of parameters:

-L logfile set the error log path name. (Default is stdin.)

-d device file set the path for a special device file.

-e physical path set the hardware path. (Uses the 1.2.3 notation.)

-m major number set the major number.

-n driver name set the driver name.

-p port set the port number.

-t number set the tail parameter. See below for a description of number. (Default is last
10 events.)

-w causes decode to wait after printing each event.

When specifying a logfile to read with the -L, the full file path name must be used. Events are
then read from this file until EOF is detected.

The options -d, -e, -m, -n, and -p are used to alter the information that decode prints. The
options may be used singularly or in combination.

The -t option has a numeric parameter, number. When number is positive it Rhows the last
number events in the log file. When number is negative the first number events in the log file are
skipped over.

After decode decodes an eveLt it is written to stdout in the following format:

Diagnostic Event number X, Date = DATE k TIME
**

Port number of originating event = aa

Manager of originating event = bb

Physical path = a.b.c

Diagnostic event status:
error - cc
proc num - dd
subsystem - ee

Hewlett-Packard Company - 1 - October 1986

FSCK[SDFj (1M) FSCK[SDFj (1M)
Series 500 Only

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck -p [file system ... I
/etc/fsck -P [file system ... I
jetc/fsck [-y] [-n] [-s] [-<II [file system ... I

DESCRIPTION
Fsck checks for and interactively repairs inconsistent conditions in the SDF file systems. If the
file system is consistent, /sck reports the number of files, the number of blocks used, the number
of blocks free, and the percent of volume unused. If the file system is inconsistent, /sck provides a
mechanism to fix these inconsistencies depending on which form of the /sck command is used.

Fsck makes multiple passes over the file system, so care should be taken to ensure that the system
is quiescent. You should unmount the file system being checked, if possible. At the least, the sys­
tem should be single-user, and spurious processes (such as cron) should be killed.

The following options are interpreted by /sck:

-p Preen the file system. This option implies the -y and -s options. If no file system
argument is given, eligible file systems in the /etc/checklist file (see discussion below
on file system) which have the same pass number value are checked in parallel, thus
permitting a faster boot-up on large systems with multiple mounted disks.

-P The -P option operates in the same manner as the -p option except that those file
systems which were cleanly unmounted (marked FS_CLEAN) will not be checked (see
/sclean(1M)). This can greatly decrease the amount of time required to reboot a sys­
tem that was brought down cleanly. The -P option is intended to be invoked during
the boot process by the script /etc/bcheckrc.

-y Assume a yes response to all questions asked.

-n Assume a no response to all questions asked; do not open the file system for writing.

-s Ignore the actual free list and unconditionally reconstruct a new one. This option is
useful in correcting multiply claimed blocks when one of the claimants is the free list.
When using this option, the number of unclaimed blocks reported by /sck includes all
the blocks in the free map. This can produce extensive output if -d is also selected.

The -s option should only be selected after a previous /sck indicates a conflict between
a file and the free map. After fsck -s has executed, the integrity of the conflicting
file(s) should be checked.

If -s is used to correct a problem on a virtual memory device, there is a high probabil­
ity that the final step in /sck will fail, and you will be forced to reboot. Should this
occur, an appropriate error message will be printed. No damage should occur.

-d Dump additional information. The more d's that are present, the more information
that is dumped. You may specify up to five d's. However, using more than two can
result in an overwhelming amount of output.

Fsck also recognizes, and ignores, the -8 and -t options found in other versions of /sck. An
appropriate warning is printed.

File system is a device file name describing the device on which the file system to be checked
resides. If no file system (s) are specified, /sck will read a list of default file systems from the file
/etc/checklist (see checklist(4)). If only the first field is present in the checklist file, the file sys­
tems are checked in the order of appearance. If the optional fields (through the pass number
field) are present, only the file systems with type of "rw" or "ro" are processed. If the -p or -P
options are used, the pass number field is interpreted as follows:

Hewlett-Packard Company - 1 - January 1988

FSCK[SDFj (1M) FSCK[SDFj (1M)

pass number
-1
o
1
2
n

Series 500 Only

action
Process these entries sequentially after all other entries.
Ignore these entries.
The root file system. Process first.
Additional file systems. Process these in parallel after pass number 1 is complete.
Process these file systems in parallel after pass number n-l.

If neither -p nor -P are used, the actions are similar except that sequential rather than parallel
checking is performed on entries with the same pass number value.

Error messages from fsck are written to stderr. Information generated because of the -d option
and normal output is written to stdout. Both are unbuffered.

Inconsistencies checked include:

1. Blocks claimed by more than one inode, or by the free list;

2. Blocks claimed by an inode or the free list outside the range of the file system;

3. Incorrect link counts;

4. Blocks not accounted for anywhere;

5. Bad inode format;

6. Directory checks:
Files pointing to unallocated inodes,
Inode numbers out of range,
Multiply linked directories,
Link to the parent directory.

Orphaned files (allocated but unreferenced) with non-zero sizes are, with the operator's con­
currence, reconnected by placing them in the lost+found directory. The name assigned is the
inode number. The only restriction is that lost+found must exist in the root of the file system
being checked, and must have empty slots in which entries can be made. This is accomplished by
creating lost+found, copying a number of files to it, and then removing them (before fsck is exe­
cuted).

Orphaned directories and files with zero size, with the operator's concurrence, are returned
directly to the free list. This will also happen if the lost+ found directory does not exist.

After fsck has checked and fixed the file system. it will store the correct fs_clean flag in the super
block if it is not already there (see fs[SDFJ(4)).

You should run a backup prior to running fsck for repairs.

DIAGNOSTICS
The diagnostics are intended to be self-explanatory.

WARNINGS
All SDF file systems being checked must be described by a character special device file.

Do not redirect stdout or stderr to a file on the device being checked. This includes pipes when
checking the root volume.

Fsck cannot check devices with a logical block size greater than 4096.

FILES
fetcfchecklist contains the default list of file systems to check

SEE ALSO
fsclean(1M), checklist(4), fs[SDFJ(4), reboot(1M), stopsys(1M), shutdown(1M).

Series 500 HP-UX System Administrator Manual.

Hewlett-Packard Company - 2 - January 1988

HP-UX Reference

Vol. 2: Sections 1M, 2, 3, 4, 5, and 7

HP 9000 Series 500 Computers
HP-UX Release 5.2

HP Part Number 09000-90010

r/i~ HEWLETT
a:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct. Indirect. special. incidental or consequential damages in connection with the furnishing. performance.
or use of this material

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright 1987 Hewlett-Packard Company

ThiS document contains proprietary Information which IS protected by copynght All nghts are reserved No part of thiS document may be
photocopied. reproduced or translated to another language without the prior written consent of Hewlett-Packard Company The information
contained in this document IS subject to change without notice

Restricted Rights Legend

Use. duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and
Software clause In DAR 7-104.9(a).

Copyright 1980.1984. AT&T. Inc.

Copyright 1979. 1980. 1983. The Regents of the University of California.

ThiS software and documentation IS based in part on the Fourth Berkeley Software Distribution under license from the Regents of the UniverSity
of California

ii

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

April 1987 ... Edition 1

Printing History iii

iv Printing History

TABLE OF CONTENTS

VOLUME 1

1. Commands

intro introduction to command utilities and application programs
acctcom .. search and print process accounting file (s)
adb debugger
adjust simple text formatter
admin .. create and administer SCCS files
ar archive and library maintainer for portable archives
arcv ... convert archives to new format
as assembler
as (Series 300 only) ... assembler for MC68000, MC6801O, and MC68020
as (Series 800 only) .. assembler (Precision Architecture)
aslO, as20 ... (see as(1) Series 300 version)
asa ... interpret ASA carriage control characters
astrn (Series 200/300 only) ... translate assembly language
at, batch execute commands at a later time
aterm (Series 500 only) ... general purpose asynchronous terminal emulation
atrans (Series 200/300 only) ... translate assembly language
awk text pattern scanning and processing language
banner make posters in large letters
basename, dirname .. extract portions of path names
basic (Series 200/300, 500 only) ... Technical BASIC interpreter
batch .. (see at(1))
bc .. arbitrary-precision arithmetic language
bdiff big diff
bfs .. big file scanner
bifchgrp ... (see bifchown(I))
bifchmod .. change mode of a BIF file
bifchown, bifchgrp .. change file owner or group
bifcp .. copy to or from BIF files
biffind ... find files in a BIF system
bifls ... list contents of BIF directories
bitinkdir .. make a BIF directory
bifrm, bifrmdir .. remove BIF files or directories
bifrmdir .. (see bifrm(1))
bs a compiler/interpreter for modest-sized programs
cal print calendar
calendar ... reminder service
cancel (see lp(1))
cat concatenate, copy, and print files
cb ... C program beautifier, formatter
cc C compiler
cd ... change working directory
cdb, fdb, pdb .. C, FORTRAN, Pascal symbolic debugger
cdc .. change the delta commentary of an SCCS delta
cflow .. generate C flow graph
chatr (Series 200/300 only) .. change program's internal attributes
chatr (Series 500 only) .. change program's internal attributes
chgrp ... (see chown(1))
chmod change mode
chown, chgrp .. change file owner or group
chsh change default login shell
clear .. clear terminal screen
cmp .. compare two files

-1-

Table of Contents

col .. filter reverse line-feeds and backspaces
comb ... combine sees deltas
comm ... select or reject lines common to two sorted files
compact, uncompact, ccat (Series 200/300, 500 only) compress and uncompress files, and cat them
compress, uncompress, zcat (Series 300 and 500 only) ... compress and expand data
cp, In, mv .. copy, link or move files
cpio .. copy file archives in and out
cpp the C language preprocessor
crontab user crontab file
crypt .. encode/decode files
csh a shell (command interpreter) with C-like syntax
csplit context split
ct ... spawn getty to a remote terminal (call terminal)
ctags create a tags file
cu call another (UNIX) system; terminal emulator
cut .. cut out selected fields of each line of a file
cxref generate C program cross-reference
date ... print and set the date
dc desk calculator
dd .. convert, reblock, translate, and copy a (tape) file
delta ... make a delta (change) to an sees file
deroff ... remove nroff/troff, tbl, and eqn constructs
diff, diffh differential file comparator
diff3 3-way differential file comparison
diffh (see diff(1))
diffmk .. mark differences between files
dircmp .. directory comparison
dirname .. (see basename(l))
disable (see enable (1))
dos2ux (Series 300 only) convert ASCII file format
doschmod (Series 300 only) .. change attributes of a DOS file
doscp (Series 300 only) ... copy to or from DOS files
dosdf (Series 300 only) ... report number of free disk clusters
dosls, dosll (Series 300 only) .. list contents of DOS directories
dosmkdir (Series 300 only) ... make a DOS directory
dosrm, dosrmdir (Series 300 only) remove DOS files or directories
du .. summarize disk usage
dumpmsg ... (see findmsg(l))
echo echo (print) arguments
ed, red text editor
edit ... text editor (variant of ex for casual users)
egrep (see grep(1))
enable, disable .. enable/disable LP printers
env .. set environment for command execution
err (Series 500 only) ... report error information on last failure
ex text editor
expand, unexpand ... expand tabs to spaces, and vice versa
expr evaluate arguments as an expression
f77, fc ... FORTRAN 77 compiler
factor, primes .. factor a number, generate large primes
false .. (see true(l))
fc '" (see f77 (1))
fdb ... (see cdb(l))
fgrep ... (see grep(l))
file determine file type

-2-

Table of Contents

find find files
findmsg, dumpmsg .. create message catalog file for modification
findstr ... find strings for inclusion in message catalogs
fixman ... fix manual pages for faster viewing with man(l)
fold fold long lines for finite width output device
from ... who is my mail from?
ftio ... faster tape I/O
gencat generate a formatted message catalog file
get ... get a version of an sees file
getopt ... parse command options
getprivgrp get special attributes for group
grep, egrep, fgrep ... search a file for a pattern
groups show group memberships
hashcheck ... (see spell(I))
hashmake ... (see spell(I))
head give first few lines
help ask for help
hostname .. set or print name of current host system
hp .. handle special functions of HP 2640 and 2621-series terminals
hp9000s200 ... (see machid(I))
hp9000s300 ... (see machid(I))
hp9000s500 ... (see machid(I))
hp9000s800 ... (see machid(I))
hpiutil (Series 800 only) .. ALLBASE/HP-UX HPIMAGE database utilities
hyphen ... find hyphenated words
id ... print user and group IDs and names
insertmsg ... use findstr(l) output to insert calls to getmsg(3C)
insf (Series 800 only) .. install special files
inv ... (see vis(I))
iostat report I/O statistics
ipcrm remove a message queue, semaphore set or shared memory id
ipcs report inter-process communication facilities status
iquery (Series 800 only) ALLBASE/HP-UX HPIMAGE database access interactive tool
isl (Series 800 only) .. initial system loader
isql (Series 800 only) ... ALLBASE/HP-UX interactive SQL interface
join .. relational database operator
kermit (Series 200/300 and 500 only) ... KERMIT protocol file transfer program
kill terminate a process
I .. (see Is(I))
last, lastb indicate last logins of users and teletypes
lastb ... (see last(I))
ld ... link editor
leave remind you when you have to leave
lex .. generate programs for lexical analysis of text
lifcp .. copy to or from LIF files
lifinit ... write LIF volume header on file
lifts ... list contents of a LIF directory
lifrename ... rename LIF files
lifrm remove a LIF file
line ... read one line from user input
linkinfo (Series 500 only) .. object file link information utility
lint .. ,. a C program checker/verifier
II ... (see Is(I))
In ... (see cp(I))
lock reserve a terminal

-3-

Table of Contents

login sign on
logname get login name
lorder find ordering relation for an object library
Ip, cancel .. send/cancel requests to an LP line printer
Ipstat print LP status information
Is, I, II, Isf, Isr, Isx .. list contents of directories
Isdev (Series 200/300 implementation) .. list device drivers in the system
Isdev (Series 500 implementation) .. list device drivers in the system
Isf .. (see Is(1))
Isr ... (see Is(1))
Issf (Series 800 only) ... list a special file
Isx ... (see Is(1))
m4 .. macro processor
machid ... provide truth value about your processor type
mail, rmail ... send mail to users or read mail
mailx .. interactive message processing system
make ... maintain, update, and regenerate groups of programs
makekey ... generate encryption key
man find manual information by keywords; print out the manual
man (Series 300/500 Compressed Implementation) ... print compressed manual pages
mediainit initialize hard disk, flexible disk, or cartridge tape media
mesg permit or deny messages to terminal
mkdir make a directory
mksf (Series 800 only) make a special file
mkstr ... extract error messages from C source into a file
mm, osdd ... print/check documents formatted with the MM macros
more, page file perusal filter for crt viewing
mt magnetic tape manipulating program
mv ... (see cp(1))
lleqn ... fonnat Inathelnatical text for Ilroff
new form ... change or reformat a text file
newgrp log in to a new group
news print news items
nice run a command at low priority
nl ... line numbering filter
nm print name list of common object file
nm (Series 200/300 implementation) ... print name list (symbol table) of object file
nm (Series 500 implementation) ... print name list (symbol table) of object file
nohup run a command immune to hangups, logouts, and quits
nroff format text
od, xd .. octal and hexadecimal dump
osdd ... (see mm(1))
pack, pcat, unpack compress and expand files
page ... (see more(l))
pam .. Personal Applications Manager, a visual shell
passwd .. change login password
paste .. merge same lines of several files or subsequent lines of one file
pathalias .. electronic address router
pc Pascal compiler
pcat .. (see pack(l))
pdb .. (see cdb(l))
pdpll ... (see machid(l))
pg ... file perusal filter for soft-copy terminals
pr print files
prealloc ... preallocate disk storage

-4-

Table of Contents

primes (see factor(1))
prmail ... print out mail in the post office
prof display profile data
prs ,. print and summarize an sees file
ps report process status
psqlc, psqlpas, psqlfor (Series 800 only) ALLBASE/HP-UX preprocessors for C, Pascal and FORTRAN
ptx permuted index
pwd .. working directory name
query (Series 500 only) .. interactive IMAGE database access
rat for .. rational Fortran dialect
red ... (see ed(l))
rev .. . reverse lines of a file
revision (Series 500 only) .. get HP-UX revision information
rm, rmdir .. remove files or directories
rmail ... (see mail(l))
rmdel remove a delta from an sees file
rmdir ... (see rm{l))
rmnl ... remove extra new-line characters from file
rsh ... (see sh(l))
rtprio execute process with realtime priority
sact print current sees file editing activity
sccsdiff , compare two versions of an sees file
sdb symbolic debugger
sdfchmod change mode of an SDF file
sdfchown, sdfchgrp .. '" change owner or group of an SDF file
sdfcp, sdfln, sdfmv .. copy, link, or move files to/from an SDF volume
sdffind find files in an SDF system
sdfll (see sdfls(1))
sdfln (see sdfcp(1))
sdfls, sdfll list contents of SDF directories
sdfmkdir ... , make an SDF directory
sdfmv .. (see sdfcp{l))
sdfrm, sdfrmdir remove SDF files or directories
sdfrmdir (see sdfrm (1))
sdiff ... side-by-side difference program
sed .,. stream text editor
sh, rsh ... shell, the standard/restricted command programming language
shl shell layer manager
size print section sizes of object files
sleep suspend execution for an interval
sIp set the options for a printer
sort .. sort and/or merge fileR
spell, hashmake, spellin, hashcheck find spelling errors
spell in ... (see spell{l))
split split a file into pieces
sqlutil (Series 800 only) ... ALLBASE/HP-UX DBCore utilities
ssp .. remove multiple line-feeds from output
strings ... find the printable strings in a object, or other binary, file
strip (Series 200/300, 500) ... remove symbols and debug information
strip (Series 800) .. strip symbol and line number information from an object file
stty set the options for a terminal port
stty (Series 300/500 Release 5.2 implementation) ... set the options for a terminal port
su ... become super-user or another user
sum print checksum and block count of a file
tabs set tabs on a terminal

-5-

Table of Contents

tail ... deliver the last part of a file
tar tape file archiver
tbl format tables for nroff
tcio ... Command Set 80 Cartridge Tape Utility
tcio (Series 500 only) .. Command Set 80 Cartridge Tape Utility
tee pipe fitting
test condition evaluation command
time time a command
touch ... update access, modification, and/or change times of file
tput query terminfo database
tr translate characters
true, false provide truth values
tset terminal dependent initialization
tsort topological sort
tty ... get the name of the terminal
tty (Series 300/500 Release 5.2 implementation) ... get the name of the terminal
u3b ... (see machid{l))
u3b5 ... (see machid{l))
ul do underlining
umask .. set file-creation mode mask
umodem XMODEM-protocol file transfer program
uname .. print name of current HP-UX version
uncompact ... (see compact{l))
uncompress ... (see compress{l))
unexpand ... (see expand{l))
unget ... undo a previous get of an sees file
uniq .. report repeated lines in a file
units conversion program
unpack ... (see pack{l))
upm (Series 500 only) ... unpack cpio archives from HP media
uucp, uulog, uuname UNIX system to UNIX system copy
uulog .. (see uucp(l))
uuname .. (see uucp(l))
uupick .. (see uuto{l))
uustat uucp status inquiry and job control
uuto, uupick .. public UNIX system to UNIX system file copy
uux .. UNIX system to UNIX system command execution
uxgen (Series 800 only) ... generate an HP-UX system
val.... validate sees file
vax .. (see machid(l))
vc version control
vi ... screen-oriented (visual) display editor based on ex
vis, inv make unprintable characters in a file visible or invisible
vms tat ... report virtual memory statistics
vstat collect virtual memory performance statistics
vt .. login to another system over Ian
wait await completion of process
wc word, line, and character count
what identify files for sees information
whereis ... locate source, binary, and/or manual for program
which ... locate a program file including aliases and paths (csh(l) only)
who who is on the system
whoami print effective current user id
write ... interactively write (talk) to another user
xargs ... construct argument list{s) and execute command

-6-

Table of Contents

xd .. (see od(I))
xdb (Series 800 only) ... C, FORTP~A~N, and Pascal symbolic debugger
yacc .. yet another compiler-compiler
zcat .. (see compress(I))

9. Glossary

intro introduction to the glossary
glossary... glossary of terms

VOLUME 2

1M. System Maintenance Utilities

intro introduction to system maintenance commands and application programs
accept, reject allow/prevent LP requests
acct: acctdisk, acctdusg, accton,

acctwtmp overview of accounting and miscellaneous accounting commands
acctcms .. (see acct(IM))
acctconl, acctcon2 ... connect-time accounting
acctdisk.. (see acct(IM))
acctdusg ... (see acct(IM))
acctmerg merge or add total accounting files
accton .. (see acct(IM))
acctprcl, acctprc2 ... process accounting
acctsh: chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,

runacct, shutacct, startup, turnacct shell procedures for accounting
acctwtmp ... (see acct(IM))
autobkup (Series 500 only) ... backup or archive file system
backup (Series 200/300 implementation) .. backup or archive file system
backup (Series 500 implementation) ... backup or archive file system
bcheckrc .. (see brc(IM))
bifdf report number of free disk blocks
biffsck ... Bell file system consistency check and interactive repair
biffsdb Bell file system debugger
bifinkfs .. construct a Bell file system
boot (Series 800 only) bootstrap process
brc, bcheckrc, rc, powerfail ... system initialization shell scripts
captoinfo convert a termcap description into a terminfo description
catman .. create the cat files for the manual
catman (Series 300 and 500 Compressed Implementation) create compressed manual page cat files
chargefee .. (see acctsh(IM))
chroot .. change root directory for a command
chsys (Series 500 only) .. change to different operating system or version
ckpacct ... (see acctsh(IM))
clri ., clear inode
clrsvc .. ,. clear x25 switched virtual circuit
config (Series 200/300 only) ... configure an HP-UX system
cpset .. install object files in binary directories
cron clock daemon
decode (Series 800 only) ... read and decode diagnostic events from the error log
delog (Series 800 only) ... diagnostic event logger for I/O subsystem.
devnm ... device name

-7-

Table of Contents

df report nUIllber of free disk blocks
disksecn (Series 800 only) .. calculate default disc section sizes
diskusg ... generate disk accounting data by user ID
dmesg .. collect system diagnostic messages to form error log
dodisk ... (see acctsh(lM))
fsck ([HFS]) ... file system consistency check and interactive repair
fsck ([SDF]) .. file system consistency check and interactive repair
fsclean .. determine shutdown status of specified file system
fsdb ([HFS]) .. file system debugger
fsdb ([SDF]) .. file system debugger
fwtmp, wtmpfix manipulate connect accounting records
getty............. set terminal type, modes, speed, and line discipline
getx25 get x25 line
hpux (Series 800 only) ... (see hpuxboot(lM))
hpuxboot (Series 800 only) .. HP-UX bootstrap and installation utility
init, telinit process control initialization
install .. . install commands
isl (Series 800 only) .. initial system loader
killall .. kill all active processes
lastlogin .. (see acctsh(lM))
link, unlink .. exercise link and unlink system calls
Ipadmin configure the LP spooling system
lpmove ... (see Ipsched(lM)
lpsched, lpshut, lpmove .. start/stop the LP request scheduler and move requests
lpshut ... (see Ipsched(lM)
mkdev make device files
mvdevs (Series 300 only temporary command) move mass storage device files to /dev subdirectories
mkfs ([HFS]) .. construct a file system
mklp ... configure the LP spooler subsystem
mknod ... create special and fifo files
mkrs (Series 200/300 and 500 only) .. construct a recovery system
monacct .. (see acctsh(lM))
mount, umount ([HFS]) mount and dismount file system
mount, umount ([non-HFS]) .. mount and dismount file system
mvdevs (temporary command for Series 300 Release 5.2 only) move disk/tape device files to /dev subdirectories
mvdir .. move a directory
ncheck ([non-SDF]) .. generate names from i-numbers
newfs ([HFS]) ... construct a new file system
nulladm .. (see acctsh(lM))
opx25 ... execute HALGOL programs
osck (Series 500 only) .. check integrity of OS in SDF boot area(s)
oscp (Series 500 only) .. copy, create, append to, split operating system
osmark (Series 500 only) ... mark SDF volume boot area as loadable/non-Ioadable
osmgr (Series 500 only) ... operating system manager package description
pdc (Series 800 only) .. Processor-dependent code
powerfail ... (see brc(lM))
prctmp ... (see acctsh(lM))
prdaily .. (see acctsh(lM))
prtacct .. (see acctsh(lM))
pwck, grpck .. password/group file checkers
rc .. (see brc(lM))
reboot reboot the system
reconfig (Series 300 only) ... configure an HP-UX system
reject .. (see accept(lM))
revck (Series 200/300 and 500 only) .. check internal revision numbers of HP-UX files

-8-

Table of Contents

rootmark (Series 500 only) ... mark/unmark volume as HP-UX root volume
runacct .. run daily accounting
savecore .. save a core dump of the operating system
sdfdf ... report number of free SDF disk blocks
sdffsck SDF file system consistency check, interactive repair
sdffsdb .. examine/modify an SDF file system
sdfinit " initialize Structured Directory Format volume
setmnt establish mount table mnttab
setprivgrp set special attributes for group
shutacct .. (see acctsh(lM))
shutdown .. terminate all processing
startup ... (see acctsh(lM))
stopsys (Series 500 only) ... stop operating system with optional reboot
swapon ([HFSJ) enable additional device for paging and swapping
sync ... update the super block
syncer ... periodically sync for file system integrity
sysdiag (Series 800 only) .. on-line diagnostic system interface
sysrm (Series 200/300 and 500 only) .. remove optional HP-UX products
telinit .. (see init(lM))
tic .. terminfo compiler
tunefs ([HFS]) ... tune up an existing file system
tumacct .. (see acctsh(lM))
uconfig (Series 500 only) ... system reconfiguration
umount .. (see mount(lM))
unlink ... (see link(lM))
untic terminfo de-compiler
update (Series 200/300, and 500 only) .. update optional HP-UX products
uucico uucp copy in and copy out
uuclean .. uucp spool directory clean-up
uuls list spooled uucp transactions grouped by transaction
uusnap show snapshot of the UUCP system
uusub monitor uucp network
uuxqt uucp command execution
vtdaemon ... respond to vt requests
wall write to all users
whodo ... which users are doing what
wtmpfix .. (see fwtmp(lM))

2. System Calls

intro introduction to system calls
_exit ... (see exit(2))
access ... determine accessibility of a file
acct ... enable or disable process accounting
alarm .. set a process's alarm clock
brk, sbrk change data segment space allocation
chdir ... change working directory
chmod, fchmod .. change access mode of file
chown, fchown .. change owner and group of a file
chroot ... change root directory
close .. close a file descriptor
creat create a new file or rewrite an existing one
dup duplicate an open file descriptor
dup2 .. duplicate an open file descriptor to a specific slot

-9-

Table of Contents

ems ... Extended Memory System
errinfo (Series 500 only) .. error indicator
ermo .. error indicator for system calls
exec: execl, execv, execle, execve, execlp, execvp .. execute a file
execl .. (see exec(2))
execle .. (see exec(2))
execlp .. (see exec(2))
execv ... (see exec(2))
execve ... (see exec(2))
execvp ... (see exec(2))
exit, _exit .. terminate process
fchmod .. (see chmod(2))
fchown ... (see chown(2))
fcntl file control
fork .. create a new process
fstat ... (see stat(2))
fsync .. synchronize a file's in-core state with its state on disk
ftime ... get date and time more precisely
ftruncate .. (see truncate(2))
getegid ... (see getuid(2))
geteuid ... (see getuid(2))
getgid ... (see getuid(2))
getgroups .. get group access list
gethostname get name of current host
getitimer, setitimer ... get/set value of interval timer
getpgrp .. (see getpid(2))
getpgrp2 .. (see getpid(2))
getpid, getpgrp, getppid, getpgrp2 get process, process group, and parent process ID
getppid .. (see getpid(2))
getprivgrp, setprivgrp get and set special attributes for group
gettimeofday, settimeofday .. get/set date and time
getuid, geteuid, getgid, getegid get real user, effective user, real group, and effective group IDs
gtty ... (see stty(2))
ioctl .. control device
kill ... send a signal to a process or a group of processes
link link to a file
lockf .. provide semaphores and record locking on files
lseek .. move read/write file pointer; (seek)
memadvise ... advise as about segment reference patterns
memallc, memfree .. allocate and free address space
memchmd .. change memory segment access modes
memfree .. (see memallc(2))
memIck, memuIck lock/unlock process address space or segment
memuIck .. (see memIck(2))
memvary .. modify segment length
mkdir ... make a directory file
mknod ... make a directory, or a special or ordinary file
mount ... mount a file system
msgctl .. message control operations
msgget ... get message queue
msgop .. message operations
nice change priority of a process
open open file for reading or writing
pause suspend process until signal
pipe create an interprocess channel

-10-

Table of Contents

plock lock process, text, or data in memory
prealloc .. '.""",, preallocate fast disk storage
profil .. execution time profile
ptrace .. process trace
read, readv .. read input
readv .. (see read(2))
reboot boot the system
rmdir .. remove a directory file
rtprio .. change or read realtime priority
sbrk .. (see brk(2))
select ... synchronous I/O multiplexing
semctl semaphore control operations
semget .. get set of semaphores
semop ... semaphore operations
setgid ... (see setuid(2))
setgroups .. set group access list
sethostname .. set name of host cpu
setitimer .. (see getitimer(2))
setpgrp, setpgrp2 set process group ID
setpgrp2 ... (see setpgrp(2))
setprivgrp .. (see getprivgrp(2))
setresgid .. (see setresuid(2))
setresuid, setresgid .. set real, effective, and saved user and group IDs
settimeofday .. (see gettimeofday(2))
setuid, setgid .. ,.. set user and group IDs
shmctl ... shared memory control operations
shmget get shared memory segment
shmop ... shared memory operations
sigblock .. block signals
signal.......... specify what to do upon receipt of a signal
sigpause atomically release blocked signals and wait for interrupt
sigsetmask ... set current signal mask
sigspace .. assure sufficient signal stack space
sigvector ... software signal facilities
stat, fstat get file status
stime .. set time and date
stty, gtty .. control device
swapon ... add a swap device for interleaved paging/swapping
sync update super-block
time .. get time
times ... get process and child process times
trapno (Series 500 only) .. hardware trap numbers
truncate, ftruncate truncate a file to a specified length
ulimit get and set user limits
umask .. set and get file creation mask
umount ... unmount a file system
uname .. get name of current HP-UX system
unlink remove directory entry; delete file
ustat ... get file system statistics
utime set file access and modification times
vfork spawn new process in a virtual memory efficient way
vsadv .. advise system about backing store usage
vsoff ... (see vson(2))
vson, vsoff ... advise OS about backing store devices
wait .. wait for child process to stop or terminate

-11-

Table of Contents

write, writev ... write on a file
writev .. (see write(2))

3. Subroutines

intro ... introduction to subroutines and libraries
_tolower .. (see conv(3C))
_toupper ... (see conv(3C))
a641, 164a convert between long integer and base-64 ASCII string
abort generate an lOT fault
abs return integer absolute value
acos .. (see trig(3M))
asctime ... (see ctime(3C))
asin ... (see trig(3M))
assert ... verify program assertion
atan .. (see trig(3M))
atan2 .. (see trig(3M))
atof .. (see strtod(3C))
atoi ... (see strtol(3C))
atol ... (see strtol(3C))
bessel: jO, jl, jn, yO, yl, yn ... Bessel functions
blmode terminal block mode library interface
bsearch ... binary search a sorted table
calloc .. (see malloc(3C))
calloc .. (see malloc(3X))
catread ... MPE/RTE-style message catalog support
ceil .. (see floor(3M))
chpibegin (Series 800 only) .. (see HPlMAGE(3X))

chpiclose (Series 800 only) ... (sec HPlMAGE(3X))
chpicontrol (Series 800 only) .. (see HPlMAGE(3X))
chpidelete (Series 800 only) ... (see HPlMAGE(3X))
chpiend (Series 800 only) ... (see HPlMAGE(3X))
chpierror (Series 800 only) ... (see HPlMAGE(3X))
chpifind (Series 800 only) .. (see HPlMAGE(3X))
rhpifinciset (Series 800 only) (Sf'f' HPJMM~E(3X))

chpiget (Series 800 only) .. (see HPlMAGE(3X))
chpiinfo (Series 800 only) ... (see HPlMAGE(3X))
chpilock (Series 800 only) .. (see HPlMAGE(3X))
chpimemo (Series 800 only) ... (see HPlMAGE(3X))
chpiopen (Series 800 only) ... (see HPlMAGE(3X))
chpiput (Series 800 only) ... (see HPlMAGE(3X))
chpiundo (Series 800 only) ... (see HPlMAGE(3X))
chpiupdate (Series 800 only) .. (see HPlMAGE(3X))

clearerr ... (see ferror(3S))
clock .. report CPU time used
closedir ... (see directory(3C))
conv: toupper, tolower, _toupper, _tolower ... translate characters
cos .. (see trig(3M))
cosh ... (see sinh(3M))
CRTO (Series 300 only) .. execution startup routines
crtO.o (Series 300 only) ... (see CRTO(3))
crypt, setkey, encrypt .. generate hashing encryption
ctermid .. generate file name for terminal
ctime, nl_ctime, localtime, gmtime, asctime,

-12-

Table of Contents

nL-asctime, timezone, daylight, tzname, tzset convert date and time to string
ctype classify characters
currlangid ... (see langinfo(3C))
curses ... CRT screen handling and optimization package
cuserid get character login name of the user
cvtnum (Series 300 only) .. convert string to floating point number
datalock .. lock process into memory, after allocating data and stack space
daylight .. (see ctime(3C))
dial, undial .. establish an out-going terminal line connection
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir directory operations)
drand48, erand48, Irand48, nrand48 , mrand48, jrand48,

srand48, seed48, lcong48 generate uniformly distributed pseudo-random numbers)
ecvt, fcvt, gcvt, nl-gcvt convert floating-point number to string
edata ... (see end(3C))
encrypt ... (see crypt(3C))
end, etext, edata last locations in program
endfsent .. (see getfsent{3X))
endgrent ... (see getgrent{3C))
endpwent .. (see getpwent{3C))
erand48 .. (see drand48{3C))
erf, erfc .. error function and complementary error function
errno ... (see perror(3C))
etext .. (see end(3C))
exp, log, loglO, pow, sqrt .. exponential, logarithm, power, square root functions
fabs ... (see floor{3M))
fclose, fHush close or flush a stream
fcvt ... (see ecvt{3C))
fdopen ... (see fopen{3S))
feof .. (see ferror{3S))
ferror, feof, clearerr, fileno .. stream status inquiries
fHush ... (see fclose(3S))
fgetc .. (see getc(3S))
fgetgrent .. (see getgrent{3C))
fgetpwent .. (see getpwent(3C))
fgets .. (see gets(3S))
fileno ... (see ferror(3S))
floor, ceil, fmod, fabs ... floor, ceiling, remainder, absolute value functions
fmod .. (see floor{3M))
fopen, freopen, fdopen .. open or re-open a stream file; convert file to stream
fprintf ... (see printf{3S))
fprintmsg .. (see printmsg{3C))
fputc ... (see putc{3S))
fputs ... (see puts(3S))
fread, fwrite ... buffered binary input/output to a stream file
free ... (see malloc(3C))
free ... (see malloc{3X))
freopen .. (see fopen{3S))
frexp, ldexp, modf split floating-point into mantissa and exponent
frtO.o (Series 300 only) .. (see CRTO(3))
fscanf ... (see scanf{3S))
fseek, rewind, ftell ... reposition a file pointer in a stream
ftell .. (see fseek(3S))
ftok ... (see stdipc(3C))
ftw walk a file tree
fwrite ... (see fread(3S))

-13-

Table of Contents

gamma, signgaIll ... log gamma function
gcvt .. (see ecvt(3C))
getc, getchar, fgetc, getw ... get character or word from a streaIll file
getchar .. (see getc(3S))
getcwd get path-naIlle of current working directory
getenv return value for environment naIlle
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent get file system descriptor file entry
getfsfile ... (see getfsent(3X))
getfsspec ... (see getfsent(3X))
getfstype ... (see getfsent(3X))
getgrent, getgrgid, getgrnaIll, setgrent, endgrent, fgetgrent get group file entry
getgrgid .. (see getgrent(3C))
getgrnaIll .. (see getgrent(3C))
getlogin get login naIlle
getmsg .. get message from a catalog
getopt, optarg, optind, opterr get option letter from argument vector
getpass .. . read a password
getpw get naIlle from DID
getpwent, getpwuid, getpwnaIll, setpwent, endpwent, fgetpwent get password file entry
getpwnaIll ... (see getpwent(3C))
getpwuid ... (see getpwent(3C))
gets, fgets .. get a string from a streaIll
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpnaIlle access utmp file entry
getutent .. (see getut(3C))
getutid .. (see getut(3C))
getw .. (see getc(3S))
gmtime ... (see ctime(3C))
gpio_geL . ..status ... return status lines of GPIO card
gpio---Bet_ctl set control lines on GPIO card
gsignal .. (see ssignal(3C))
hcreate .. (see hsearch(3C))
hdestroy .. (see hsearch(3C))
hpib_abort .. stop activity on specified HP-IB bus
hpib_bus---Btatus ... return status of HP-IB interface
hpib_carLppolLJesp ... control response to parallel poll on HP-IB
hpib_eoi_ctl .. control EOI mode for HP-IB file
hpib~o ... perform I/O with an HP-IB channel from buffers
hpib_pass_ctl change active controllers on HP-IB
hpib_ppoll ... conduct parallel poll on HP-IB bus
hpib_ppoILJesp_ctl Define interface parallel poll response
hpib--.reD-ctl ... control the Remote Enable line on HP-IB
hpib--.rqst---Brvce .. allow interface to enable SRQ line on HP-IB
hpib---BenLcmnd ... send command bytes over HP-IB
hpib---Bpoll .. conduct a serial poll on HP-IB bus
hpib---Btatus_wait wait until the requested status condition becomes true
hpib_wait_oD-ppoll wait until a particular parallel poll value occurs
HPIMAGE(3X) (Series 800 only) ALLBASE/HP-DX HPIMAGE prograIllmatic calls

hpibegin (Series 800 only) .. (see HPIMAGE(3X))
hpiclose (Series 800 only) ... (see HPIMAGE(3X))
hpicontrol (Series 800 only) ... (see HPIMAGE(3X))
hpidelete (Series 800 only) ... (see HPIMAGE(3X))
hpiend (Series 800 only) .. (see HPIMAGE(3X))
hpierror (Series 800 only) .. (see HPIMAGE(3X))
hpifind (Series 800 only) .. (see HPIMAGE(3X))
hpifindset (Series 800 only) .. (see HPIMAGE(3X))

-14-

Table of Contents

hpiget (Series 800 only) ... (see HPIMAGE(3X))
hpiinfo (Series 800 only) .. (see HPIMAGE(3X))
hpi!ock (Series 800 only) .. (see HPIMAGE(3X))
hpimemo (Series 800 only) ... (see HPIMAGE(3X))
hpiopen (Series 800 only) ... (see HPIMAGE(3X))
hpiput (Series 800 only) ... (see HPIMAGE(3X))
hpiundo (Series 800 only) .. (see HPIMAGE(3X))
hpiupdate (Series 800 only) ... (see HPIMAGE(3X))

hsearch, hcreate, hdestroy manage hash search tables
hypot .. Euclidean distance function
idtolang .. (see langinfo(3C))
initgroups initialize group access list
intrapoff, intrapon (Series 500 only) .. disable/enable integer trap handler
intrapon (Series 500 only) ... (see intrapoff(3M))
io_burst .. perform low-overhead I/O on an HP-IB/GPIO channel
io_eoLctl ... set up read termination character on special file
io~et_terIILJeason ... determine how last read terminated
io--interrupt_ctl .. enable/disable interrupts for the associated eid
io--Iock, io_unlock .. lock and unlock an interface
io_on--interrupt .. device interrupt (fault) control
iO--I'eset reset an I/O interface
io---speeLctl .. inform system of required transfer speed
io_timeout_ctl establish a time limit for I/O operations
io_unlock ... (see io--Iock(3I))
io_widtLctl .. set width of data path
isalnum ... (see ctype(3C))
is alpha .. (see ctype(3C))
isascii .. (see ctype(3C))
isatty ... (see ttyname(3C))
iscntrl ... (see ctype(3C))
isdigit ... (see ctype(3C))
isgraph ... (see ctype(3C))
islower .. (see ctype(3C))
isprint ... (see ctype(3C))
ispunct ... (see ctype(3C))
isspace .. (see ctype(3C))
isupper ... (see ctype(3C))
isxdigit ... (see ctype(3C))
jO, jl, jn .. (see bessel(3M))
jrand48 ... (see drand48(3C))
13tol, Itol3 convert between 3-byte integers and long integers
164a .. (see a641(3C))
langinfo, langtoid, idtolang, currlangid information on user's native language as given by NLS
langtoid .. (see langinfo(3C))
lcong48 ... (see drand48(3C))
ldexp ... (see frexp(3C))
lfind ... (see Isearch(3C))
localtime ... (see ctime(3C))
log .. (see exp(3M))
log10 ... (see exp(3M))
logname .. return login name of user
longjmp .. (see setjmp(3C))
Irand48 ... (see drand48(3C))
lsearch, lfind .. linear search and update
Itol3 ... (see 13tol(3C))

-15-

Table of Contents

mallinfo .. (see malloc(3X))
malloc, free, realloc, calloc (3C) ... main memory allocator
malloc, free, realloc, calloc, mallopt, mallinfo (3X) ... fast main memory allocator
mallopt ... (see malloc(3X))
matherr ... error-handling function
mcrtO.o (Series 300 only) .. (see CRTO(3))
memchr .. (see memory(3C))
memcmp ... (see memory(3C))
memcpy .. (see memory(3C))
memory: memccpy, memchr, memcmp, memcpy, memset memory operations
memset ... (see memory(3C))
mfrtO.o (Series 300 only) ... (see CRTO(3))
mktemp make a unique file name
modf ... (see frexp(3C))
monitor ... prepare execution profile
mrand48 ... (see drand48(3C))
nl_asctime ... (see ctime(3C))
nl-B.tof .. (see strtod(3C))
nl_conv: nl_toupper, nl_tolower translate characters for use with NLS
nl_ctime .. (see ctime(3C))
nl_ctype: nl~salpha, nl~supper, nLjslower, nUsalnum, nl~spunct,

nl~sprint, nl~sgraph classify characters for use with NLS
nLgcvt .. (see ecvt(3C))
nl~salnum ... (see nl_ctype(3C))
nl~salpha .. (see nl_ctype(3C))
nl~sdigit .. (see nl_ctype(3C))
nl~sgraph .. (see nl_ctype(3C))
nl~slower .. (see nl_ctype(3C))
nl~sprint ... (see nLctype(3C))
nl~spunct .. (see nl_ctype(3C))
nl~supper .. (see nl_ctype(3C))
nl~sxdigit .. (see nl_ctype(3C))
nL_Btring: strcmp8, strncmp8, strcmp16, strncmp16 ... non-ASCII string collation
nl---Btrtod ... (see strtod(3C))
nl_tolower ... (see nl_conv(3C))
nl_tools_16 ... tools to process 16-bit characters
nl_toupper .. (see nLconv(3C))
nlist get entries from name list
nrand48 .. (see drand48(3C))
opendir ... (see directory(3C))
optarg ... (see getopt(3C))
opterr .. (see getopt(3C))
optind ... (see getopt(3C))
pc lose ... (see popen(3S)
perror, errno, sys_errlist, sYS----.ll.err ... system error messages
popen, pclose .. initiate pipe I/O to/from a process
pow ... (see exp(3M))
printf, fprintf, sprintf print formatted output
printmsg, fprintmsg, sprintmsg print formatted output with numbered arguments
putc, putchar, fputc, putw ... put character or word on a stream
putchar ... (see putc(3S))
putenv .. change or add value to environment
putpwent write password file entry
puts, fputs put a string on a stream
putw ... (see putc(3S))

-16-

Table of Contents

qsort quicker sort
rand, srand simple random-number generator
readdir .. (see directory(3C))
realloc ... (see malloc(3C))
realloc .. . (see malloc (3X))
regcmp, regex .. compile and execute regular expression
regex ... (see regcmp(3X)
rewind .. (see fseek(38))
rewinddir .. (see directory(3C))
scanf, fscanf, sscanf formatted input conversion, read from stream file
seed48 .. (see drand48(3C))
seekdir .. (see directory(3C))
setbuf, setvbuf .. assign buffering to a stream file
setfsent ... (see getfsent(3X))
setgrent .. (see getgrent(3C))
setjmp, longjmp ... non-local goto
setkey ... (see crypt(3C))
setpwent ... (see getpwent(3C))
setv buf .. . (see set buf(38))
sgetl .. (see sputl(3X))
signgam .. (external variable - see gamma(3M))
sin .. (see trig(3M))
sinh, cosh, tanh .. hyperbolic functions
sleep .. suspend execution for interval
sprintf ... (see printf(38))
sprintmsg .. (see printmsg(3C))
sputl, sgetl ... access long integer data in a machine-independent fashion
sqrt ... (see exp(3M))
srand ... (see rand(3C))
srand48 .. (see drand48(3C))
sscanf ... (see scanf(38))
ssignal, gsignal .. software signals
stdio .. standard buffered input/output stream file package
stdipc: ftok standard interprocess communication package
strcat (see string(3C))
strchr ... (see string(3C))
strcmp ... (see string(3C))
strcmp16 .. (see nL_....Btring(3C))
strcmp8 .. (see nl----Btring(3C))
strcpy ... (see string(3C))
strcspn ... (see string(3C))
string .. translate characters
string: strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,

strchr, strrchr, strpbrk, strspn, strcspn, strtok ... character string operations
strlen ... (see string(3C))
strncat ... (see string(3C))
strncmp ... (see string(3C))
strncmp16 .. (see nl----Btring(3C))
strncmp8 .. (see nl----Btring(3C))
strncpy ... (see string(3C))
strpbrk ... (see string(3C))
strrchr .. (see string(3C))
strspn ... (see string(3C))
strtod, atof, nutrtod, nl_atof .. convert string to double-precision number
strtok ... (see string(3C))

-17-

Table of Contents

strtol, atol, atoi convert string to integer
swab swap bytes
sys_errlist ... (see perror(3C))
sYS---1lerr .. (see perror(3C))
system issue a shell command
tan .. (see trig(3M))
tanh ... (see sinh(3M))
tdelete .. (see tsearch(3C))
telldir .. (see directory(3C))
tempnam .. (see tmpnam(3S))
termcap: tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs emulate /etc/termcap access routines
tfind (see tsearch(3C))
tgetent ... (see termcap(3X))
tgetfiag ... (see termcap(3X))
tgetnum ... (see termcap(3X))
tgetstr .. (see termcap(3X))
tgoto .. (see termcap(3X))
timezone ... (see ctime(3C))
tmpfile create a temporary file
tmpnam, tempnam create a name for a temporary file
toascii .. (see conv(3C))
tolower .. (see conv(3C))
toupper .. (see conv(3C))
tputs .. (see termcap(3X))
trig: sin, cos, tan, asin, acos, atan, atan2 trigonometric functions
tsearch, tfind, tdelete, twalk manage binary search trees
ttyname, isatty ... find name of a terminal
tty slot find the slot in the utmp file of the current user
twalk ... (see tsearch(3C))
tzname ... (see ctime(3C))
tzset ... (see ctime(3C))
undial .. (see dial(3C))
ungetc .. push character back into input stream
vfprintf ... (see vprintf(3S))
vprintf, vfprintf, vsprintf print formatted output of a varargs argument list
vsprintf ... (see vprintf(3S))
yO, yl, yn .. (see bessel(3M))

4. File Formats

intro introduction to file formats
a.out assembler and link editor output
a.out (Series 200/300 implementation) .. assembler and link editor output
a.out (Series 500 implementation) .. executable linker output file
a.out (Series 800 only) .. assembler and link editor output
acct ... per-process accounting file format
ar .. common archive file format
bif ... bell interchange format utilities
btmp ... (see utmp(4))
checklist .. static information about the file systems
coL.seq_8 .. collating sequence table for languages with 8-bit character sets
core .. format of core image file
core (Series 200/300 Implementation) .. format of core image file
core (Series 500 Implementation) ... format of core image file

-18-

Table of Contents

cpio ... fonnat of cpio archive
Lpasswd ... (see dialups(4))
devices (Series BOO only) ... file of driver infonnation for insf, mksf, lssf
dialups, Lpasswd .. dialup security control
dir[HFS] .. fonnat of directories
dir[SDF] (Series 500 Implementation) ... format of directories
disktab .. disk description file
dosif (Series 300 only) ... DOS Interchange Fonnat description
errfile (Series 500 Implementation) ... system error logging file
fs[HFS] fonnat of file system volume
fs[SDF] (Series 500 only) .. format of system volume
fspec fonnat specification in text files
gettydefs speed and tenninal settings used by getty
group group file, grp.h
inittab script for the in it process
inode[HFS] .. fonnat of an inode
inode([SDF] Series 500 Implementation) ... fonnat of an i-node
issue .. issue identification file
lif logical interchange fonnat description
magic ... magic numbers for HP-UX implementations
master (Series 200/300 only) ... master device information table
mknod ... create a special file entry
mnttab mounted file system table
model ... HP-UX machine identification
nlist .. nlist structure fonnat
passwd password file, pwd.h
privgrp ... fonnat of privileged values
profile set up user's environment at login time
ranlib (Series 200/300 and 500 only) archive symbol table fonnat for object libraries
sccsfile .. fonnat of SCCS file
sdf ... structured directory fonnat description
tenn ... fonnat of compiled tenn file
tenninfo ... terminal capability data base
ttytype data base of terminal types by port
tztab .. time zone adjustment table for date(l) and ctime(3C)
utmp, wtmp, btmp utmp, wtmp, btmp entry fonnat
wtmp .. (see utmp(4))

5. Miscellaneous Facilities

intro introduction to miscellany
advance ... (see regexp(5))
ascii .. map of ASCII character set
compile .. (see regexp(5))
environ user environment
ERROR .. (see regexp(5))
fcntl file control options
GETC .. (see regexp(5))
hier .. file system hierarchy
hpnls ... HP Native Language Support (NLS) Model
INIT .. (see regexp(5))
ioctl .. generic device control commands
kanaB ... map of KanaB katakana character set
langid .. language identification variable

-19-

Table of Contents

man macros for formatting entries in this manual
math .. math functions and constants
mm the MM macro package for formatting documents
PEEKC .. (see regexp(5))
prof .. profile within a function
regexp: INIT, GETC, PEEKC, UNGETC, RETURN, ERROR,

compile, step, advance regular expression compile and match routines
RETURN ... (see regexp(5))
roman8 .. map of Roman8 character set
stat ... data returned by stat/fstat system call
step ... (see regexp(5))
term conventional names for terminals
types primitive system data types
UNGETC ... (see regexp(5))
values machine-dependent values
varargs handle variable argument list

6. Games

No games are currently supported.

7. Special Files

intro introduction to special files
CRT graphics (Series 200/300 only) .. (see graphics(7))
afi (Series 800 only) ... (see gpio(7))
console .. system console interface
ct cartridge tape access
diagO (Series 800 only) ... diagnostic interface to I/O subsystem
disk direct disk access
gpio (Series 800 only) ... asynchronous FIFO interface
graphics: CRT graphics (Series 200/300 only) information for CRT graphics devices
hpib ... Hewlett-Packard Interface Bus driver
iomap (Series 200/300 only) ... physical address mapping
kmem ... (see mem(7))
lp line printer
mem, kmem main memory
modem ... asynchronous serial modem line control
mt ... magnetic tape interface and controls
null .. null file
pty ... pseudo terminal driver
stty .. (see sttyV6(7))
sttyV6 ... terminal interface for Version 6/PWB compatibility
termio .. general terminal interface
tty controlling terminal interface

9. Glossary

The glossary is located in Volume 1 after Section 1.

-20-

INTRO(lM) HP-UX INTRO(lM)

NAME
intro - introduction to system maintenance commands and application programs

DESCRIPTION
This section describes commands that are used chiefly for system maintenance and administration
purposes. The commands in this section should be used in conjunction with other sections of this
manual, as well as the HP~UX System Administrator Manual for your system.

Command Syntax
Unless otherwise noted, commands described in this section accept options and other arguments
according to the following syntax:

name [option(s)] [cmdarg(s)]
where:

name

option

noargletter

argletter

optarg

cmdarg

DIAGNOSTICS

The name of an executable file.

- noargletter(s) or,
- argletter<>optarg
where <> is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with - or, - by itself
indicating the standard input.

Upon termination, each command returns two bytes of status, one supplied by the system and
giving the cause for termination, and (in the case of "normal" termination) one supplied by the
program (see wait(2) and exit(2)). The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such as erroneous parame­
ters, bad or inaccessible data, or other inability to cope with the task at hand. It is called vari­
ously "exit code", "exit status", or "return code", and is described only where special conventions
are involved.

SEE ALSO
getopt(I), getopt(3C), hier(5).

HP-UX System Administrator Manual.

The introduction to this manual.

Hewlett-Packard Company - 1 - Version B.I, October 1986

ACCEPT(lM) HP-UX ACCEPT(lM)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usr /lib/ accept destinations
/usr /lib/reject [-r[reason Il destinations

DESCRIPTION

FILES

Accept allows lp(l) to accept requests for the named destinations. A destination can be either a
printer or a class of printers. Use Ipstat(l) to find the status of destinations.

Reject prevents Ip(l) from accepting requests for the named destinations. A destination can be
either a printer or a class of printers. Use Ipstat(l) to find the status of destinations. The follow­
ing option is useful with reject:

-r[reason 1 Associates a reason with preventing lp (1) from accepting requests. This reason
applies to all printers mentioned up to the next -r option. Reason is reported by
Ip(l) when users direct requests to the named destinations and by Ipstat(l). If the
-r option is not present or the -r option is given without a reason, then a default
reason will be used.

/usr/spool/lp/*

SEE ALSO
enable(l), Ip(l), Ipadmin(lM), Ipsched(lM), Ipstat(l).

INTERNATIONAL SUPPORT
8- and 16-bit data, messages.

Hewlett-Packard Company - 1 - Version B.1, October 1986

ACCT(1M) HP-UX ACCT(lM)

NA~1E

acctdisk, acctdusg, accton, acctwtmp - overview of accounting and miscellaneous accounting com­
mands

SYNOPSIS
/usr /lib / acct/ acctdisk

/usr/lib/acct/acctdusg [-u file] [-p file]

/usr/lib/acct/accton [file]

/usr/lib/acct/acctwtmp "reason"

DESCRIPTION

FILES

Accounting software is structured as a set of tools (consisting of both C programs and shell pro­
cedures) that can be used to build accounting systems. Acctsh(IM) describes the set of shell pro­
cedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into /etc/utmp, as
described in utmp(4). The programs described in acctcon(IM) convert this file into session and
charging records, which are then summarized by acctmerg(IM).

Process accounting is performed by the HP-UX system kernel. Upon termination of a process, one
record per process is written to a file (normally /usr/adm/pacct). The programs in
acctprc(IM) summarize this data for charging purposes; acctcms(IM) is used to summarize com­
mand usage. Current process data may be examined using acctcom(IM).

Process accounting and connect time accounting (or any accounting records in the format
described in acct(4)) can be merged and summarized into total accounting records by acctmerg
(see tacct format in acct(4)). Prtacct (see acctsh(IM)) is used to format any or all accounting
records.

Acctdisk reads lines that contain user ID, login name, and number of disk blocks and converts
them to total accounting records that can be merged with other accounting records.

Acctdusg reads its standard input (usually from find / -print) and computes disk resource con­
sumption (including indirect blocks) by login. If -u is given, records consisting of those file names
for which acctdusg charges no one are placed in file (a potential source for finding users trying to
avoid disk charges). If -p is given, file is the name of the password file. This option is not
needed if the password file is /etc/passwd. (See diskusg(IM) for more details.)

Accton turns process accounting off if the optional file argument is omitted. If file is given, it
must be the name of an existing file, to which the kernel appends process accounting records (see
acct(2) and acct(4)).

Acctwtmp writes a utmp(4) record to its standard output. The record contains the current time
and a string of characters that describe the reason for writing the record. A record type of
ACCOUNTING is assigned (see utmp(4)). Reason must be a string of 11 or fewer characters,
numbers, $, or spaces. For example, the following are suggestions for use in reboot and shutdown
procedures, respectively:

acctwtmp 'uname' »/etc/wtmp
acctwtmp "file save" » /etc/wtmp

/usr/lib/acct

/usr / adm/pacct

/etc/passwd

/etc/wtmp

holds all accounting commands listed in section (1M) of this manual

current process accounting file

used for login name to user ID conversions

login/logoff history file

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCT(1M) HP-UX ACCT(lM)

SEE ALSO
acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM), diskusg(lM),
fwtmp(lM), runacct{1M), acct(2), acct(4), utmp(4),

System Accounting chapter in HP-UX System Administrator Manual.

Hewlett-Packard Company - 2 - Version B.l, October 1986

ACCTCMS (1M) HP-UX ACCTCMS (1M)

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
/usr /lib / acct/ acctclDB [options 1 files

DESCRIPTION
Acctcms reads one or more files, normally in the form described in acct(4). It adds all records for
processes that executed identically-named commands, sorts them, and writes them to the standard
output, normally using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The output
includes command name, number of times executed, total kcore-minutes, total
CPU minutes, total real minutes, mean size (in K), mean CPU minutes per invo­
cation, "hog factor", characters transferred, and blocks read and written, as in
acctcom(l). Output is normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "***other".
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal summary format.
-t Process all records as total accounting records. The default internal summary

format splits each field into prime and non-prime time parts. This option com­
bines the prime and non-prime time parts into a single field that is the total of
both, and provides upward compatibility with old (Le., UNIX System V) style
acctcms internal summary format records.

The following options may be used only with the -a option.

-p Output a prime-time-only command summary.

-0 Output a non-prime (offshift) time only command summary.

When -p and -0 are used together, a combination prime and non-prime time report is produced.
All the output summaries will be total usage except number of times executed, CPU minutes, and
real minutes which will be split into prime and non-prime.

A typical sequence for performing daily command accounting and for maintaining a running total
is:

acctcms file ... >today
cp total previoustotal
acctcms -s today previoustotal >total
acctcms -a -s today

SEE ALSO

BUGS

acct(1M), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM), fwtmp(lM),
runacct(lM), acct(2), acct(4), utmp(4).

Unpredictable output results if -t is used on new style internal summary format files, or if it is
not used with old style internal summary format files.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCTCON(lM) HP-UX ACCTCON(lM)

NAME
acctconl, acctcon2 - connect-time accounting

SYNOPSIS
/usr /lib / acct/ acctconl [options 1

/usr /lib / acct / acctcon2

DESCRIPTION
Acctconl converts a sequence of login/logoff records read from its standard input to a sequence of
records, one per login session. Its input should normally be redirected from /etc/wtmp. Its out­
put is ASCII, giving device, user ID, login name, prime connect time (seconds), non-prime connect
time (seconds), session starting time (numeric), and starting date and time. The options are:

-p Print input only, showing line name, login name, and time (in both numeric and
date/time formats).

-t Acctconl maintains a list of lines on which users are logged in. When it reaches the end
of its input, it emits a session record for each line that still appears to be active. It nor­
mally assumes that its input is a current file, so that it uses the current time as the end­
ing time for each session still in progress. The -t flag causes it to use, instead, the last
time found in its input, thus assuring reasonable and repeatable numbers for non-current
files.

-1 file File is created to contain a summary of line usage showing line name, number of minutes
used, percentage of total elapsed time used, number of sessions charged, number of logins,
and number of logoffs. This file helps track line usage, identify bad lines, and find
software and hardware oddities. Hang-up, termination of login(l) and termination of the
login shell each generate logoff records, so that the number of logoffs is often three to four
times the number of sessions. See init(lM) and utmp(4).

-0 file File is filled with an overall record for the accounting period, giving starting time, ending
time, number of reboots, and number of date changes.

Acctcon2 expects as input a sequence of login session records and converts them into total
accounting records (see tacct format in acct(4)).

EXAMPLES

FILES

These commands are typically used as shown below. The file ctmp is created only for the use of
acctprc(lM) commands:

acctconl -t -1 lineuse -0 reboots <wtmp I sort + In +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

/etc/wtmp

SEE ALSO

BUGS

acet(1M), acetcms(lM), acctcom(l), acctmerg(lM}, acctprc(lM), acctsh(lM), fwtmp(lM),
init(lM), login(l), runacct(1M), acct(2), acet(4), utmp(4).

The line usage report is confused by date changes. Use wtmpfix (see fwtmp(lM)) to correct this
situation.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCTMERG(lM) HP-UX ACCTMERG(lM)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
/usr/lib/acct/acctmerg [options) [file) ...

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in the tacct format (see
acct(4)) or an ASCII version thereof. It merges these inputs by adding records whose keys (nor­
mally user ID and name) are identical, and expects the inputs to be sorted on those keys. Options
are:

-a Produce output in ASCII version of tacct.
-i Input files are in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user ID, rather than user ID and name.
-v Produce output in verbose ASCII format, with more precise notation for floating point

numbers.

EXAMPLES
The following sequence is useful for making "repairs" to any file kept in this format:

SEE ALSO

acctmerg -v <filel >file2
edit file2 as desired . ..

acctmerg -i <file2 >filel

acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctprc(lM), acctsh(lM), fwtmp(lM),
runacct(lM), acct(2), acct(4), utmp(4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCTPRC(IM) HP-UX ACCTPRC (1M)

NAME
acctprc1, acctprc2 - process accounting

SYNOPSIS
/usr/lib/acct/acctprcl [ctmp]

/ usr /lib / acct / acctprc2

DESCRIPTION

FILES

Acctprc1 reads input in the form described by acct(4), adds login names corresponding to user
IDs, then writes for each process an ASCII line giving user ID, login name, prime CPU time (tics),
non-prime CPU time (tics), and mean memory size (in memory segment units). If ctmp is given,
it is expected to contain a list of login sessions, in the form described in acctcon(lM), sorted by
user ID and login name. If this file is not supplied, it obtains login names from the password file.
The information in ctmp helps it distinguish among different login names that share the same
user ID.

Acctprc2 reads records in the form written by acctprc1, summarizes them by user ID and name,
then writes the sorted summaries to the standard output as total accounting records.

These commands are typically used as shown below:

acctprc1 ctmp </usr/adm/pacct I acctprc2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct(1M), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctsh(lM), cron(lM),
fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).

Although it is possible to distinguish among login names that share user IDs for commands run
normally, it is difficult to do this for those commands run from cron(lM), for example. More pre­
cise conversion can be done by faking login sessions on the console via the acctwtmp program in
acct(1M).

CAVEAT
A memory segment of the mean memory size is a unit of measure for the number of bytes in a
logical memory segment on a particular processor.

HARDW ARE DEPENDENCIES
Series 500

Each memory segment unit contains 512-bytes. Therefore, memory usage statistics are
rounded up to 5l2-byte units.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCTSH(lM) HP-UX ACCTSH(lM)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, runacct, shu­
tacct, startup, turnacct - shell procedures for accounting

SYNOPSIS
/usr/lib/acct/chargefee login-name number

/usr/lib/acctickpacct [blocks]

/usr/lib/acct/dodisk [-0) [files ...)

/usr /lib/ acct/lastlogin

/usr/lib/acct/monacct number

/usr/lib/acct/nulladm file

/usr /lib/ acct/prctmp

/usr/lib/acct/prdaiIy [-I) [-c) [mmdd)

/usr/lib/acct/prtacct file ["heading")

/usr/lib/acct/runacct [mmdd) [mmdd state)

/usr/lib/acct/shutacct ["reason")

/usr /lib/acct/startup

/usr/lib/acct/turnacct on I off I switch

DESCRIPTION
Chargefee can be invoked to charge a number of units to login-name. A record is written to
/usr / adm/fee, to be merged with other accounting records during the night.

Ckpacct should be initiated via cron(lM). It periodically checks the size of /usr/adm/pacct. If
the size exceeds blocks, 1000 by default, turnacct will be invoked with argument switch. If the
number of free disk blocks in the /usr file system falls below 500, ckpacct will automatically turn
off the collection of process accounting records via the off argument to turnacct. When at least
this number of blocks is restored, the accounting will be activated again. This feature is sensitive
to the frequency at which ckpacct is executed, usually by cron.

Dodisk should be invoked by cron to perform the disk accounting functions. By default, it will do
disk accounting on the special files in /etc/checklist. If the -0 flag is used, it will do a slower
version of disk accounting by login directory. Files specify the one or more filesystem names
where disk accounting will be done. If files are used, disk accounting will be done on these filesys­
terns only. If the -0 flag is used, files should be mount points of mounted filesystem. If omitted,
they should be the special file names of mountable filesystems.

Lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog, which shows the last
date on which each person logged in.

Monacct should be invoked once each month or each accounting period. Number indicates which
month or period it is. If number is not given, it defaults to the current month (01-12). This
default is useful if monacct is to executed via cron(lM) on the first day of each month. Monacct
creates summary files in /usr/adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

Nulladm creates file with mode 664 and insures that owner and group are adm. It is called by
various accounting shell procedures.

Prctmp can be used to print the session record file (normally /usr/adm/acct/nite/ctmp
created by acctconl (see acctcon(lM)).

Hewlett-Packard Company - 1 - Version B.1, October 1986

ACCTSH(lM) HP-UX ACCTSH(lM)

FILES

Prdaily is invoked by runacct to format a report of the previous day's accounting data. The
report resides in /usr/adm/aeet/sum/rprtmmdd where mmdd is the month and day of the
report. The current daily accounting reports may be printed by typing prdaily. Previous days'
accounting reports can be printed by using the mmdd option and specifying the exact report date
desired. The -I flag prints a report of exceptional usage by login id for the specifed date. Previ­
ous daily reports are cleaned up and therefore inaccessible after each invocation of monacct. The
-e flag prints a report of exceptional resource usage by command, and may be used on current
day's accounting data only.

Prtacct can be used to format and print any total accounting (taeet) file.

Runacct performs the accumulation of connect, process, fee, and disk accounting on a daily basis.
It also creates summaries of command usage. For more information, see runacct(1M).

Shutacct should be invoked during a system shutdown (usually in Jete/shutdown) to turn pro­
cess accounting off and append a "reason" record to /ete/wtmp.

Startup should be called by /ete/re to turn the accounting on whenever the system is brought
up.

Turnacct is an interface to accton (see acct(1M)) to turn process accounting on or off. The
switch argument turns accounting off, moves the current /usr/adm/paeet to the next free
name in /usr/adm/paeetincr (where incr is a number starting with 1 and incrementing by one
for each additional paeet file), then turns accounting back on again. This procedure is called by
ckpacct and thus can be taken care of by the cron and used to keep paeet to a reasonable size.

/usr/lib/acct

/usr/adm/fee

/usr/adm/acct/nite

/usr/adm/pacct

/usr/adm/pacch

holds all accounting commands listed in section (1M) of this manual

accumulator for fees

working directory

current file for per-process accounting

used if pacct gets large and during execution of daily accounting procedure

/usr/lib/acct/ptecms.awk
contains the limits for exceptional usage by command name

/usr /lib/ acctfptelus.awk
contains the limits for exceptional usage by login id

/usrfadmfacct/sum
summary directory, should be saved

/etc/wtmp login/logoff summary

SEE ALSO
acct(1M), acctcms(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M), cron(1M),
diskusg(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).

Hewlett-Packard Company - 2 - Version B.1, October 1986

AUTOBKUP(lM) AUTOBKUP(lM)
Series 500 Implementation

autobkup - backup or archive file system

SYNOPSIS
fetcfautobkup [-archive] [-rsck]

Remarks:
This manual entry describes autobkUp as implemented on the Series 500 computers.

A utobkup is only supported on the HP 90000 Series 500.

DESCRIPTION
Autobkup uses find(l) and cpio(l) to save on the default tape drive (/dev frct, which must be a
tape autochanger) a cpio archive of all files which have been modified since the modification time
of /etc/archivedate. Autobkup should be periodically invoked by cron(IM) at night, or when
the system is otherwise idle.

The -archive option causes autobkup to save all files, regardless of their modification date, then
update /etcfarchivedate using touch(1).

The -rsck option causes autobkup to start a file system consistency check (without correction)
after the backup is complete. This is the normal mode of nightly operation. For correct results,
it is important that the system be effectively single-user while fsck is running, especially if it is
allowed to automatically fix whatever inconsistencies it finds. A utobkup does not ensure that the
system is single-user.

Autobkup is an enhanced version of backup(IM) and supports tape autochangers such as the HP
35401. Autobkup executes a background process /etc/bkserver which intercepts and responds to
tcio's prompts for a new special file name and allows the next tape in the magazine to be loaded
automatically by the tape autochanger.

You should edit /etc/autobkup to customize it for your system.

The following parameters are supported and can be customized:

backupdirs specifies which directories to recursively back up (usually., meaning all direc­
tories);

backuplog

archive

remind

rootdev

outdev

masterpty

slavepty

fscklog

mytty

file name where start and finish times, block counts, and error messages are
logged;

file name whose date is the date of the last archive;

file name that is checked by /etc/profile to remind the next person who logs
in to change the backup tape;

character special file of root device for fsck;

specifies the output device for the backed-up files.

filename of the master side of the pseudo-terminal.

filename of the slave side of the pseudo-terminal.

file name where start and finish times and fsck output is logged.

the terminal from which attributes are taken for the pseudo-terminal.

You may want to make other changes, such as whether or not fsck does automatic correction
(according to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from autobkup is a normal cpio archive file (or volume) which can be read
using tcio (if used to generate the backup) and cpio with the -e option.

To run autobkup from cron, use a crontab entry similar to this:

Hewlett-Packard Company - 1 - October 1986

AUTOBKUP(lM) AUTOBKUP(lM)

FILES

Series 500 Implementation

* 2 * * 1-6 (cd / ; /etc/autobkup) >/dev/null 2>&1

/ etc /bkserver
/ etc / archivedate
parameterized file names

SEE ALSO

BUGS

backup(IM), cpio(I), find(I), touch(I), cron(IM), fsck(IM).

See the HP-UX System Administrator Manual provided with your system for recommended ways
to backup and restore your file system.

Refer to BUGS in cpio(I).

A utobkup cannot archive file systems that are larger than the capacity of a single magazine of
tapes. For larger file systems, duplicate the autobkup script and customize each copy to
separately archive the file systems mounted on separate mass storage devices.

If autobkup is left running overnight and runs out of tapes, autobkup terminates, leaving the find
process still waiting. You need to kill this process when you return.

Under some error conditions /etc/bkserver terminates, leaving the find, cpio and tcio processes
still waiting. You need to kill these processes when you return.

Hewlett-Packard Company - 2 - October 1986

BACKUP(lM) BACKUP(lM)
Series 200/300 Implementation

NAME
backup - backup or archive file system

SYNOPSIS
/etc/backup [-archive] [-fsck]

Remarks:
This manual page describes backup as it is implemented on Series 200 and 300 computers. Refer
to other backup(1M) manual pages for information valid for other implementations.

DESCRIPTION

FILES

Backup uses find(1) and cpio(1) to save a cpio archive of all files which have been modified since
the modification time of / etc / archivedate on the default tape drive (f dev /rct). Backup should
be periodically invoked to ensure adequate file backup.

The -archive option causes backup to save all files, regardless of their modification date, and
then update /etc/archivedate using touch(1).

Backup prompts you to mount a new tape and continue if there is no more room on the current
tape. Note that this prompting does not occur if you are running backup from cron(1M).

The -fsck option causes backup to start a file system consistency check (without correction) after
the backup is complete. For correct results, it is important that the system be effectively single­
user while fsck is running, especially if -fsck is allowed to automatically fix whatever inconsisten­
cies it finds. Backup does not ensure that the system is single-user.

You may edit /etc/backup to "customize" it for your system. For example, backup uses tcio(1)
with cpio to backup your files on an HP Command Set 80 disc's streaming tape. You will need to
modify backup to use cpio(1) if you want to access a standard HP Tape Drive.

Several local values are used which can be customized:

backupdirs

backuplog

archive

remind

outdev

fscklog

specifies which directories to recursively back up (usually /, meaning all direc­
tories);

file name where start and finish times, block counts, and error messages are
logged;

file name whose date is the date of the last archive;

file name that is checked by fete/profile to remind the next person who logs
in to change the backup tape;

specifies the output device for the backed-up files;

file name where start and finish times and fsck output is logged.

You may want to make other changes, such as whether or not fsck does automatic correction
(according to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from backup is a normal cpio archive file (or volume) which can be read
using tcio and cpio with the e option.

/ etc/ archivedate
parameterized file names

SEE ALSO

BUGS

cpio(1), find(1), touch(1), cron(1M), fsck(1M).

Refer to BUGS in cpio(1).

When cpio runs out of tape, it sends an error to stderr and demands a new special file name from
/dev/tty.

Hewlett-Packard Company - 1 - October 1986

BACKUP(lM) BACKUP(lM)
Series 200/300 Implementation

To continue, rewind the tape, mount the new tape, type the name of the new special file at the
system console, and press RETURN.

If backup is left running overnight and the tape runs out, backup terminates, leaving the find pro­
cess still waiting. You need to kill this process when you return.

Hewlett-Packard Company - 2 - October 1986

BACKUP(lM) BACKUP(lM)
Series 500 Implementation

backup - backup or archive file system

SYNOPSIS
/etc/backup [-archive] [-fsck]

Remarks: This manual page describes backup as it is implemented on the Series 500 computers.
Refer to other backup(IM} manual pages for information valid for other implementations.

DESCRIPTION

FILES

Backup uses jind(1) and cpio(I} to save on the default tape drive (f dev /rmt79xx) a cpio archive
of all files which have been modified since the modification time of /etc/archivedate. Backup
should be periodically invoked by cron(IM} at night, or when the system is otherwise idle.

The -archive option causes backup to save all files, regardless of their modification date, and
then update /etc/archivedate using touch(I}.

Backup prompts you to mount a new tape and continue if there is no more room on the current
tape. Note that this prompting does not occur if you are running backup from cron(IM}.

The -fsck option causes backup to start a file system consistency check (without correction) after
the backup is complete. This is the normal mode of nightly operation. For correct results, it is
important that the system be effectively single-user while /sck is running, especially if it is allowed
to automatically fix whatever inconsistencies it finds. Backup does not ensure that the system is
single-user.

You should edit /etc/backup to "customize" it for your system. For example, backup uses
tcio(l} by default. You will need to modify backup to use cpio(l} if you want to access a raw dev­
ice.

Several parameters are used which can be customized:

backupdirs specifies which directories to recursively back up (usually /, meaning all direc­
tories);

backuplog

archive

remind

rootdev

fscklog

file name where start and finish times, block counts, and error messages are
logged;

file name whose date is the date of the last archive;

file name that is checked by /etc/profile to remind the next person who logs
in to change the backup tape;

list of places for /sck (usually a character special file that points to the root
device);

file name where start and finish times and /sck output is logged.

You may want to make other changes, such as whether or not /sck does automatic correction
(according to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from backup is a normal cpio archive file (or volume) which can be read
using tcio (if used to generate the backup) and cpio with the -c option.

/ etc / archivedate
parameterized file names

SEE ALSO
cpio(I}, find(I}, touch(I}, cron(IM}, fsck(IM}.

BUGS
Refer to BUGS in cpio(I}.

Hewlett-Packard Company - 1 - October 1986

BACKUP(lM) BACKUP(lM)
Series 500 Implementation

When cpio runs out of tape, it sends an error to stderr (which is logged, so it does not appear on
your CRT), and demands a new special file name from /dev/tty. To continue, rewind the tape,
mount the new tape, type the name of the new special file at the system console, and press
RETURN.

If backup is left running overnight and the tape runs out, backup terminates, leaving the find pro­
cess still waiting. You need to kill this process when you return.

Hewlett-Packard Company - 2 - Version B.l, October 1986

BIFDF(lM) HP-UX
Series 200, 300, 500 Only

NAME
bifdf - report number of free disk blocks

SYNOPSIS
bifdf [-t 1 [-f 1 [file-systems 1

DESCRIPTION

BIFDF(lM)

Bifdf prints out the number of free blocks and free inodes available for online Bell file systems by
examining the counts kept in the super-blocks. File-systems can be specified by device name, e.g.,
/dev /dsk/ls0.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is made (free inodes are
not reported). With this option, bifdf will report on raw devices.

AUTHOR
Bifdf was developed by HP.

SEE ALSO
biffsck(lM), df(lM), bif(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

BIFFSCK (1M) HP-UX
Series 200, 300, 500 Only

BIFFSCK (1M)

NAME
biffsck - Bell file system consistency check and interactive repair

SYNOPSIS
bift'sck I -y 1 I -n 1 I --sX 1 I -8X 1 I -tfilename 1 I file-system 1

DESCRIPTION
BiJJsck audits and interactively repairs inconsistent conditions in a Bell file system. If the file sys­
tem is consistent, the number of files, number of blocks used, and number of blocks free are
reported. If the file system is inconsistent, the operator is prompted for concurrence before each
correction is attempted. It should be noted that most corrective actions will result in some loss of
data. The amount and severity of data lost can be determined from the diagnostic output. The
default action for each consistency correction is to wait for the operator to respond yes or no. If
the operator does not have write permission, biJJsck will default to the -n option described below.

The following flags are interpreted by biJJsck.

-y Assume a yes response to all questions asked by biJJsck.

-n Assume a no response to all questions asked by biJJsck, and do not open the file system for
writing.

--sX Ignore the actual free list and unconditionally reconstruct a new one by rewriting the
super-block of the file system. The file system should be unmounted while this is done.

The --sX option allows for creating an optimal free-list organization. The following forms
of X are supported for the following devices:

--sBlocks-per-cylinder:Blocks-to-skip

If X is not given, the values used when the file system was created are used. If these
values were not specified, the default values shown below are used:

An HP 7908A uses 35:2;
An HP 7933A uses 23:15;
An HP 7911A uses 16:12;
An HP 7912A uses 16:12;
An HP 7914A uses 16:12;
The default for biJJsck{IM) is 400:9;
The default for bifmkfs{IM) is 500:3.

-8X Conditionally reconstruct the free list. This option is like --sX above except that the free
list is rebuilt only if there were no discrepancies discovered in the file system. Using -8 will
force a no response to all questions asked by biJJsck. This option is useful for forcing free
list reorganization on uncontaminated Bell file systems.

-t If biJJsck cannot obtain enough memory to keep its tables, it uses a scratch file. If the -t
option is specified, the file named in the next argument is used as the scratch file, if needed.
Without the -t flag, biJJsck will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked. If the file does not exist, biJJsck
will create it. If the scratch file is not a special file, it is removed when biJJsck completes.

File-system is a device file name on which the file system to be checked resides, i.e.,
/ dey / dsk/ IsO.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the range of the file system.

Hewlett-Packard Company - 1 - Version B.l, October 1986

BIFFSCK (1M)

3. Incorrect link counts.

4. Size checks:

HP-UX
Series 200, 300, 500 Only

Incorrect number of blocks.
Directory size not 16-byte aligned.

5.
Bad inode format.

6.
Blocks not accounted for anywhere.

7.
Directory checks:
File pointing to unallocated inode.
Inode number out of range.

8.
Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.

9.
Bad free block list format.

10.
Total free block and/or free inode count incorrect.

BIFFSCK (1M)

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence,
reconnected by placing them in the /lost+found directory on the BIF volume. The name
assigned is the inocle number. The only restriction is that the directory lost+found must pre­
exist in the root of the file system being checked and must have empty slots in which entries can
be made. This is accomplished by making lost+found, copying a number of files to the directory
(optimally in multiples of 64), and then removing them before biffsck is executed.

Biffsck can check file systems on both raw and blocked devices. Checking raw devices is almost
always faster, but should not be used on a mounted file system.

RETURNS
The diagnostics produced by biffsck are intended to be self-explanatory.

WARNINGS
Inode numbers for. and .. in each directory should be checked for validity.

AUTHOR
Bif was developed by HP.

SEE ALSO
bif(4).

Hewlett-Packard Company - 2 - Version B.l, October 1986

BIFFSDB (1M) HP-UX
Series 200, 300, 500 Only

BIFFSDB (1M)

NAME
biffsdb - Bell file system debugger

SYNOPSIS
biffsdb special [- 1

DESCRIPTION
Biffsdb can be used to patch up a damaged Bell file system after a crash/failure. It has conver­
sions to translate block and i-numbers into their corresponding disk addresses. Also included are
mnemonic offsets to access different parts of an inode. These greatly simplify the process of
correcting control block entries or descending the Bell file system tree.

Biffsdb contains several error checking routines to verify inode and block addresses. These can be
disabled if necessary by invoking biffsdb with the optional - argument or by the use of the 0
symbol. (Biffsdb reads the i-size and f-size entries from the superblock of the file system as the
basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero. During
any assignment operation, numbers are checked for a possible truncation error due to a size
mismatch between source and destination.

Biffsdb reads a block at a time and will therefore work with raw as well as block I/O. A buffer
management routine is used to retain commonly used blocks of data in order to reduce the
number of read system calls. All assignment operations result in an immediate write-through of
the corresponding block.

The symbols recognized by biffsdb are:

absolute address
i convert from i-number to inode address
b convert to block address
d directory slot offset
+,- address arithmetic
q quit
>,< save, restore an address

numerical assignment
=+ incremental assignment

decremental assignment
character string assignment

o error checking flip flop
p general print facilities
f file print facility
B byte mode
W word mode
D double word mode

escape to shell

The print facilities generate a formatted output in various styles. The current address is normal­
ized to an appropriate boundary before printing begins. It advances with the printing and is left
at the address of the last item printed. The output can be terminated at any time by typing the
delete character. If a number follows the p symbol, that many entries are printed. A check is
made to detect block boundary overflows since logically sequential blocks are generally not physi­
cally sequential. If a count of zero is used, all entries to the end of the current block are printed.
The print options available are:

i
d

Hewlett-Packard Company

print as inodes
print as directories

- 1 - Version B.1, October 1986

BIFFSDB (1M)

o
e
c
b

HP-UX
Series 200, 300, 500 Only

print as octal words
print as decimal words
print as characters
print as octal bytes

BIFFSDB (1M)

The f symbol is used to print data blocks associated with the current inode. If followed by a
number, that block of the file is printed. (Blocks are numbered from zero.) The desired print
option letter follows the block number, if present, or the f symbol. This print facility works for
small as well as large files. It checks for special devices and that the block pointers used to find
the data are not zero.

Dots, tabs and spaces can be used as function delimiters but are not necessary. A line with just a
new-line character will increment the current address by the size of the data type last printed.
That is, the address is set to the next byte, word, double word, directory entry or inode, allowing
the user to step through a region of a file system. Information is printed in a format appropriate
to the data type. Bytes, words and double words are displayed with the octal address followed by
the value in octal and decimal. A.B or .D is appended to the address for byte and double word
values, respectively. Directories are printed as a directory slot offset followed by the decimal i­
number and the character representation of the entry name. Inodes are printed with labeled fields
describing each element.

The following mnemonics are used for inode examination and refer to the current working inode:

EXAMPLES
386i

In=4

In=+1

fc

2i.fd

d5i.fc

Ib.pOo

md
In
uid
gid
sO
sl
a#
at
mt
maj
min

2i.aOb.d7=3

mode
link count
user ID number
group ID number
high byte of file size
low word of file size
data block numbers (0 - 12)
access time
modification time
major device number
minor device number

prints i-number 386 in an inode format. This now becomes the current working
inode.

changes the link count for the working inode to 4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated with the working inode.

prints the first 32 directory entries for the root inode of this file system.

changes the current inode to that associated with the 5th directory entry (num­
bered from zero) found from the above command. The first 512 bytes of the file
are then printed in ASCII.

prints the superblock of this file system in octal.

changes the i-number for the seventh directory slot in the root directory to 3.
This example also shows how several operations can be combined on one com-
mand line.

d7.nm=" name" changes the name field in the directory slot to the given string. Quotes are
optional when used with nm if the first character is alphabetic.

Hewlett-Packard Company - 2 - Version B.1, October 1986

BIFFSDB (1M)

AUTHOR
Biffsdb was developed by HP.

SEE ALSO
bif(4), biffsck(lM).

Hewlett-Packard Company

HP-UX
Series 200, 300, 500 Only

- 3 -

BIFFSDB (1M)

Version B.1, October 1986

BIFMKFS (1M) HP-UX
Series 200, 300, 500 Only

BIFMKFS (1M)

NAME
bifmkfs - construct a Bell file system

SYNOPSIS
bifmkfs special blocks[:inodes] [gap blocks]
bifmkfs special proto [gap blocks]

DESCRIPTION
Bifmkfs constructs a Bell file system by writing on the special file according to the directions
found in the remainder of the command line. If the second argument is given as a string of digits,
bifmkfs builds a file system with a single empty directory on it. The size of the file system is the
value of blocks interpreted as a decimal number. The boot program is left uninitialized. If the
optional number of inodes is not given, the default is the number of blocks divided by 4.

If the second argument is a file name that can be opened, bifmkfs assumes it to be a prototype file
proto, and will take its directions from that file. The prototype file contains tokens separated by
spaces or new-lines. The first token is the name of a file to be copied onto block zero as the
bootstrap program. The second token is a number specifying the size of the created file system.
Typically it will be the number of blocks on the device, perhaps diminished by space for swapping.
The next token is the i-list size in blocks The next set of tokens comprise the specification for the
root file. File specifications consist of tokens giving the mode, the user ID, the group ID, and the
initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters -bed specify regular, block special, character special and directory files respec­
tively.) The second character of the type is either u or - to specify set-user-id mode or not. The
third is g or - for the set-group-id mode. The rest of the mode is a three digit octal number giv­
ing the owner, group, and other rea,d, write, execute permissions, see bifchmod(I).

Two decimal number tokens come after the mode; they specify the user and group ID's of the
owner of the file.

If the file is a regular file, the next token is a path name that designates the file from which the
contents and size are copied. If the file is a block or character special file, two decimal number
tokens follow which give the major and minor device numbers. If the file is a directory, bifmkfs
makes the entries. and.. and then reads a list of names and (recursively) file specifications for
the entries in the directory. The scan is terminated with the token $.

A sample prototype specification follows:

/stand/ diskboot
4872 110
d--77731
usr d--7773 1

sh ---755 3 1 /bin/sh
ken d--755 6 1

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

In both command syntaxes, the rotational gap and the number of blocks can be specified. (For
RP04 type drives, these numbers should be 7 and 418.)

EXAMPLES
To put a Bell file system on a disk with 770 lK blocks of capacity:

Hewlett-Packard Company - 1 - Version B.l, October 1986

BIFMKFS (1M) HP-UX
Series 200, 300, 500 Only

bifmkfs /dev /rdsk/ls0 770

where /dev /rdsk/ls0 is the device special file for the micro floppy.

WARNINGS

BIFMKFS (1M)

If a prototype is used, it is not possible to initialize a file with second- or third-level indirects.

AUTHOR
Bi! was developed by HP.

SEE ALSO
bif(4).

Hewlett-Packard Company - 2 - Version B.1, October 1986

BOOT(lM) BOOT(lM)
Series 800 Only

NAME
boot - bootstrap process

DESCRIPTION
The bootstrap process on the Series 800 Model 840 involves the execution of three software com­
ponents: pdc{lM}, isl{lM}, and hpuxboot{lM}. After the processor is RESET, pdc, the proces­
sor dependent code or firmware, performs a self-test and initializes the processor. It then loads
and transfers control to isl, the operating system independent initial system loader. lsi in turn
loads and transfers control to the hpuxboot utility, the HP-UX specific bootstrap loader. Lastly,
hpuxboot downloads the HP-UX kernel object file from an HP-UX file system and then transfers
control to the loaded kernel image.

SEE ALSO
hpuxboot(IM), isl(IM), pdc(IM).

Hewlett-Packard Company - 1 - October 1986

BRC(lM) HP-UX BRC(lM)

NAME
brc, bcheckrc, rc, powerfail - system initialization shell scripts

SYNOPSIS
/etc/brc

/ etc /bcheckrc

/etc/rc

/ etc / powerfail

DESCRIPTION
These shell procedures are executed via entries in /etc/inittab by init(lM). Bcheckrc and brc are
executed when the system is changed out of SINGLE USER mode. Rc is executed upon entering a
new, numbered, run-level. Power/ail is executed whenever a system power failure is detected.

The brc procedure clears the mounted file system table, /etc/mnttab (see mnttab(4)), and loads
any programmable micro-processors with their appropriate scripts.

The bcheckrc procedure performs all the necessary consistency checks to prepare the system to
change into multi-user mode. It will prompt to set the system date and to check the file systems
with /sck(lM).

The rc procedure starts all system daemons before the terminal lines are enabled for multi-user
mode. In addition, file systems are mounted and accounting, error logging, system activity log­
ging and the Remote Job Entry (RJE) system are activated in this procedure.

The power/ail procedure is invoked when the system detects a power failure condition. Its chief
duty is to reload any programmable micro-processors with their appropriate scripts, if suitable. It
also logs the fact that a power failure occurred.

SEE ALSO
fsck(lM), init(lM), shutdown(lM), inittab(4), mnttab(4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

CAPTOINFO (1M) HP-UX
Series 200, 300, 500 Only

captoinfo - convert a tenncap description into a terminfo description

SYNOPSIS
captoinfo [-Iv J [-wn J [filenames J

DESCRIPTION

CAPTOINFO (1M)

Captoinfo looks in filenames for termcap(3X) descriptions. For each one found, an equivalent ter­
minfo(4) description is written to standard output along with any comments found. The short
two letter name at the beginning of the list of names in a termcap entry, a hold-over from Version
6 UNIX, is removed. Any description that is expressed relative to another description (as specified
in the tenncap tc= field) is reduced to the minimum superset before output.

If no filename is given, the environment variable TERM CAP is used for the filename or entry. If
TERM CAP is a full pathname to a file, only the tenninal whose name is specified in the environ­
ment variable TERM is extracted from that file. If the environment variable TERM CAP is not
set, the file /etc/termcap is read.

Options
-1

-v

-wn

WARNINGS

Print one field per line. If this option is not selected multiple fields are printed
on each line up to a maximum width of 60 characters.

Print (verbose) tracing infonnation as the program runs. Additional -v options
print more infonnation (for example -v -v -v or -vvv).

Change the output width to n characters.

Certain termcap defaults are assumed to be true. For example, the bell character (terminfo bel) is
assumed to be A G. The linefeed capability (tenncap nl) is assumed to be the same for both
cursor_down and scro/Lforward (tenninfo cudl and ind, respectively.) Padding infonnation is
assumed to belong at the end of the string.

The algorithm used to expand parameterized infonnation for termcap fields such as
cursor_position (tenncap cm, tenninfo cup) sometimes produces a string which, though techni­
cally correct, may not be optimal. In particular, the rarely used termcap operation %n produces
strings that are especially long. Most occurrences of these non-optimal strings are flagged with a
warning message, and may need to be recoded by hand.

HP only supports tenninals listed on the current list of supported devices. However, non­
supported and supported tenninals can be in the tenninfo database. If you use such non­
supported tenninals, they may not work correctly.

DIAGNOSTICS
tgetent failed with return code n (reason).

The tenncap entry is not valid. In particular, check for an invalid 'tc=' entry.

unknown type given for the termcap code 'cc '.
The termcap description had an entry for 'cc' whose type was not boolean, numeric or
string.

wrong type given for the boolean (numeric, string) termcap code 'cc '.
The boolean termcap entry 'cc' was entered as a numeric or string capability.

the boolean (numeric, string) termcap code 'cc' is not a valid name.
An unknown termcap code was specified.

tgetent failed on TERM =term.
The tenninal type specified could not be found in the tenncap file.

TERM=term: cap cc (info ii) is NULL: REMOVED
The termcap code was specified as a null string. The correct way to cancel an entry is

Hewlett-Packard Company - 1 - Version B.l, October 1986

CAPTOINFO (1M) HP-UX
Series 200, 300, 500 Only

CAPTOINFO (1M)

with an '@', as in ':bs@:'. Giving a null string could cause incorrect assumptions to be
made by any software that uses termcap or terminfo.

a function key for 'cc' was specified, but it already has the value 'vv'.
When parsing the 'ko' capability, the key 'cc' was specified as having the same value as
the capability 'cc', but the key 'cc' already had a value assigned to it.

the unknown termcap name 'cc' was specified in the 'ko' termcap capability.
A key that could not be handled was specified in the 'ko' capability.

the vi character 'v' {info 'ii '} has the value 'xx', but 'rna' gives 'n '.
The 'ma' capability specified a function key with a value different from that specified in
another setting of the same key.

the unknown vi key 'v' was specified in the 'ma' terrncap capability.
A vi key unknown to captoinfo was specified in the 'ma' capability.

Warning: termcap sg {nn} and termcap ug {nn} had different values.
Terminfo assumes that the sg (now xmc) and ug values were the same.

Warning: the string produced for 'ii' may be inefficient.
The parameterized string being created should be rewritten by hand.

Null termname given.
The terminal type was null. This occurs when $TERM is null or not set.

cannot open" %s" for reading.
The specified file could not be opened.

Warning: cannot translate <capability> {unsupported in terminfo}.
This termcap capability is no longer supported in terminfo, and therefore cannot be
translated.

AUTHOR
Captoinfo was developed by AT&T.

SEE ALSO
curses (3X), termcap (3X), terminfo (4), tie (1M), untie (1M).

Hewlett-Packard Company - 2 - Version B.1, October 1986

CATMAN(lM) HP-UX CATMAN(lM)

NAME
catman - create the cat files for the manual

SYNOPSIS
/etc/catman [-p J [-n J [-w J [sections J

DESCRIPTION

FILES

Catman creates the prefonnatted versions of the online manual from the nroff input files. Each
manual page is examined and those whose prefonnatted versions are missing or out of date are
recreated. If any changes are made, catman will recreate the /usr /lib/whatis database.

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to look
in. For example

catman 123

will cause the updating to only happen to manual sections 1, 2, and 3.

Options:

-n

-p

prevents creation of /usr /lib/whatis .

prints what would be done instead of doing it.

-w causes only the /usr /lib/whatis database to be created. No manual reformat­
ting is done.

/usr/man/man*/*
/usr /man/ cat* 1*
/usr /local/man/man * 1*
/usr/local/man/cat* 1*
/usr/contrib/man/man* /*
/usr/contrib/man/cat* 1*
/usr /lib/mkwhatis

raw (nroff input) manual pages
fonnatted manual pages

commands to make what is database

AUTHOR
Catman was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
man(I).

Hewlett-Packard Company - 1 - Version B.l, October 1986

CATMAN(lM) CATMAN(lM)
Series 300/500 Compressed Implementation

NAME
catman - create the cat files for the manual

SYNOPSIS
/etc/catman [-p] [-n] [-w] [sections]

DESCRIPTION

FILES

Catman creates the formatted versions of the online manual from the nroff source files. Each
manual page is examined and those whose formatted versions are missing or out of date are
recreated. If the cat*.Z directory exists, Catman compresses the formatted version and puts it
there. Otherwise, Catman puts the formatted version in the cat* directory. If any changes are
made, catman will recreate the /usr /lib/whatis database.

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to look
in. For example

cat man 123

will cause the updating to only happen to manual sections 1, 2, and 3.

Options:

-n

-p

prevents creation of /usr/lib/whatis .

prints what would be done instead of doing it.

-w causes only the /usr/lib/whatis database to be created. No manual reformat­
ting is done.

/usr/man/man*[.Z]/*
/usr/man/cat*[.ZI/*
/usr /local/man/man * [.Z]I*
/usr/local/man/cat*[.Z]1*
/usr/contrib/man/man*[.Z]1*
/usr/contrib/man/cat*[.Z]1*
/usr/lib/mkwhatis

raw (nroff source) manual pages [compressed]
formatted manual pages [compressed]

commands to make whatis database

AUTHOR
Catman was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science and by the Hewlett­
Packard Company.

SEE ALSO
man(I), compress(I).

Hewlett-Packard Company - 1 - October 1986

CHROOT(lM) HP-UX

NAME
chroot - change root directory for a command

SYNOPSIS
/ etc / chroot new root command

DESCRIPTION

CHROOT(lM)

The given command is executed relative to the new root. The meaning of any initial slashes U)
in path names is changed for a command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

Command includes both the command name and any arguments.

This command is restricted to the super-user.

The new root path name is always relative to the current root. Even if a chroot is currently in
effect, the newroot argument is relative to the current root of the running process.

WARNINGS
Command cannot be in a shell script.
One should exercise extreme caution when referencing special files in the new root file system.
Chroot does not search PATH for the location of command, so the absolute path name of com­
mand must be given.

SEE ALSO
chdir(2), chroot(2).

INTERNATIONAL SUPPORT
8- and 16-bit data, 8-bit filenames.

Hewlett-Packard Company - 1 - Version B.1, October 1986

CHSYS(lM) CHSYS(lM)
Series 500 Only

NAME
chsys - change to different operating system or version

SYNOPSIS
/ etc / chsys sysname

Remarks:
Chsys is implemented on the Series 500 only.

DESCRIPTION
Chsys is a shell script that enables you to boot a different operating system, or a different version
of the same operating system, using only one boot area on one disc. Sysname is one of a number
of operating system names defined within chsys. Chsys uses oscp(1M) to rebuild the boot area on
/dev/rhd with the selected system, reading from ordinary files containing operating system code.
Chsys then invokes osck(1M) to confirm that the new system is "healthy". (Note that osck per­
forms a redundant check, so its invocation in chsys may be removed if you want to save time.)

Chsys invokes oscp as quietly as possible. Chsys causes oscp to read the new system ID string
from a file selected by the sysname given, and redirects the output from oscp to /dev/null. If oscp
and osck are successful, chsys calls stopsys(1M) to switch to the new operating system. Note that
oscp and osck together can take longer than a minute to run. During this time, chsys keeps you
informed as to what actions are being taken.

If you simply want to re-boot the operating system already in the boot area, do not use chsys.
Instead, invoke stopsys(1M) directly.

If you want to allocate and use several boot areas on several discs, see osmgr(1M).

You should modify chsys to localize it for your system. You may want to add or delete available
sysnames, change the names or meanings of sysnames, change the name of the character special
file (ldev/rhd) which points to the boot volume, etc. Chsys recognizes four default sysnames.
They stand for:

HP-UX Model 520 single-user minimal system;
HP-UX Model 520 single-user complete system;
BASIC minimal system;
BASIC complete system.

These sysnames serve as examples for any others you may want to add. They mayor may not be
useful to you.

Chsys should only be invoked by the effective super-user unless both of the following are true:

the special file which points to the boot device must be readable and writable by whoever
invokes chsys;

the stopsys command must be owned by root and have the set-user-ID bit set.

If either of the above are not true, either the oscp or the stopsys command will fail.

Chsys must be invoked with a $P A TH that includes the directories containing the oscp, osck,
stopsys, and echo commands.

RETURN VALUES
If any of the invoked commands fails, chsys writes a message to standard error and exits with the
same return value as that returned by the unsuccessful command. Chsys returns 1 if invoked
improperly.

SEE ALSO
sh(1), osmgr(1M), shutdown(1M), stopsys(1M), sync(1M).

WARNINGS
Chsys does not check that the system is idle, and it does not notify all users that the system is

Hewlett-Packard Company - 1 - October 1986

CHSYS(lM) CHSYS(lM)
Series 500 Only

going oown. You should usually execute shutdown{lM) before executing chsys.

Chsys does not ask you to confirm that the intended operating system or version has been selected
before the system is re-booted. However, osck ensures that the system is rebootable, and stopsys
performs a sync(IM). Note that new operating systems built in the boot area by oscp are always
marked as loadable (see osmark(IM)).

Hewlett-Packard Company - 2 - October 1986

CLRI[NON-SDFj (1M) HP-UX
Series 200, 300, 800 Only

CLRI[NON-SDFj (1M)

NAME
clri - clear inode

SYNOPSIS
/etc/clri file-system i-number

DESCRIPTION
Clri writes zeros on the inode numbered i-number. File-system must be a special file name refer­
ring to a device containing a file system. After clri is executed, any blocks in the affected file will
show up as "missing" in an fsck(lM) of the file-system. This command should only be used in
emergencies and extreme care should be exercised.

Read and write permission is required on the specified file-system device. The inode becomes allo­
catable.

The primary purpose of this routine is to remove a file which for some reason appears in no direc­
tory. If it is used to zero out an inode which does appear in a directory, care should be taken to
track down the entry and remove it. Otherwise, when the inode is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the
new file. The new entry will again point to an unallocated inode, so the whole cycle is likely to be
repeated again and again.

SEE ALSO

BUGS

fsck[BFS](lM), fsck[HFS](lM), fsdb[BFS](lM), fsdb[HFS](lM), ncheck[non-SDF](lM), fs[BFS](4),
fs[HFS](4).

If the file is open, clri is likely to be ineffective.

Hewlett-Packard Company - 1 - Version B.l, October 1986

CLRSVC(lM) HP-UX CLRSVC(lM)

NA~Y{E

clrsvc - clear x25 switched virtual circuit

SYNOPSIS
clrsvc line pad-type

DESCRIPTION
Clrsvc clears any virtual circuit that might be established on the line specified. The pad-type indi­
cates to clrsvc what opx25 script to run from /usr/lib/uucp/X25.

HARDW ARE DEPENDENCIES
HP2334A is the only PAD supported at this time, and results in an opx25 execution of
HP2334A.clr.

EXAMPLES
A typical invocation is:

/usr /lib /uucp /X25 / clrsvc / dey /x25.1 HP2334A

AUTHOR
Clrsvc was developed by HP.

SEE ALSO
getx25(lM), opx25(lM), getty(lM), login(l), uucp(l).

Hewlett-Packard Company - 1 - Version B.1, March 1987

CONFIG(lM) CONFIG(lM)
Series 200/300 Only

NAME
config - configure an HP-UX system

SYNOPSIS
/etc/config [-t] [-m master] [-c file] [- I file] [-a file] dfile

DESCRIPTION
Config enables the user to configure the following parts of the operating system:

1. device switch drivers and I/O cards

2. root and swap devices

3. selected system parameters

4. kernel code that handles messages, semaphores, and shared memory

It takes as input, a user-provided description of an HP-UX system (dfile) and always generates two
files, with an optional third file. The first file is a C program that defines the configuration tables
for the various devices on the system. The second file is a makefile script that will compile the C
program produced and relink the newly configured system. The third file (if specified) contains a
mknod command for each device specified in dfile.

The options available:

-t gives a short table of major device numbers for the character and block devices
named in dfile. This can facilitate the creation of special files.

-m master specifies that the file master contains all the information regarding supported
devices. The default file name is jete/master. This file is supplied with the HP-UX
system and should not be modified unless the user fully understands its con­
struction.

-c file specifies the name of the configuration table file produced by running the user­
data file, dfile, through eonfig(lM). The default file name is eonf.e

-I file specifies the name of the makefile script that will compile the configuration pro­
gram and relink the newly configured system. The default file name is eonfig. mk

-a file serves two functions:

1. When specified without dfile, a mkdev script of templates is produced.

2. If dfile is giv('Il, this indicates that the user will supply addresses for devices so
that eonfig can produce a script that contains both the mkdev templates and a
list of mknod commands for each device specified in dfile. If this option is chosen,
all devices must have addresses. Zero (0) as a dummy address, is valid and
necessary for many of the devices, e.g., the card drivers. The default file name is
mkdev.

Hewlett-Packard Company - 1 - December 1986

CONFIG(lM) CONFIG(lM)
Series 200/300 Only

The only required argument is either djile or -a. If djile is given it must contain device informa­
tiou for the user's system. Thit:; file it:; divided iuto two parts. The first part contains physIcal
device and driver specifications; the second part contains system-dependent information. Any line
with an asterisk (*) in column 1 is a comment.

The following devices are not configurable and should not be specified in the system descrition
file, djile:

swap cons
tty sy
mm ite200
iomap graphics
r8042 hil
nimitz

Part 1 of dfile:
This part of djile allows you to configure:

1. device switch drivers

2. I/O cards

3. pseudo-drivers, e.g., ieee802, pty

Each line contains 1, 2, or 3 fields, delimited by blanks and/or tabs in the following format:

devname [address] [speciaijiiename]

where:

devname is the driver name for the device (e.g., cs80 for the HP7912 64MB disc drive)
or card (98629 for the SRM card) or the name of the pseudo-driver (e.g.,
iee802 for the ieee802 protocol) you wish to configure.

address is the minor number for that device as given to mknod or the select code of
the card if addressing checking is desired. For pseudo-drivers, i.e., iee802, pty,
ethernet, the address field is o. (in hexadecimal, without the preceding Ox).

specialfilename
is what you want the device's special file to be called in the afile.

For example, to specify a 7914 disc at select code 14, bus address 0 with mknod name /dev/hd:

cs80 OEOOOO hd

The complete list of configurable devices, cards, and pseudo-drivers is given in the EXAMPLE
section.

It is not necessary to specify the address field, but if you do specify this field and use the -a
option, conjig will produce a file containing a mknod command for each device you specify. It will
also check for the unique use of addresses. The -a option allows you to name this file.

Part 2 of dfile:
The second part contains four different types of lines; none of these specifications are required.

1. Root device specification lines which have the following form:

root devname address

where devname is the product number (without the suffix) of the device you wish to configure,
e.g., cs80 for the HP7912 64MB disc drive, and address is the minor device number (in hexade­
cimal, without the preceding Ox).

Hewlett-Packard Company - 2 - December 1986

CONFIG(lM) CONFIG(lM)
Series 200/300 Only

2. Swap device specification lines:/ffi

If you want the system to auto-configure the swap device but you want to specify the swap size,
then use:

swapsize <#blocks>

If you want to specify both the swap device location and its size then the specification line has the
following form:

where:

swplo:

swap devname address swplo [nswapJ

devname is the product number (with the suffix) of the device you wish to configure,
e.g., cs80 for the HP7912 64MB disc drive (in hexadecimal).

addieSS is the minor device number (in hexadecima.l)

swplo is the location (decimal) of the swap area

nswap is the number of disc blocks (decimal) in the swap area. Only the nswap
parameter is optional. Zero is the default for auto-configuration.

A negative value (typically -1) for swplo specifies that a file system is expected on the device. At
boot-up, the super block will be read to determine the exact size of the file system, and this
value will be put in swplo. If the swap device is auto-configured, this is the mechanism used. If
the super block doesn't appear valid, the entry will be skipped, so that the case of a corrupted
super block won't later cause the entire file system to be corrupted by configuring the swap area
on top of it.

nswap:

If nswap is zero, the entire remainder of the device is automatically configured in as swap area.

If nswap is non-zero, it's absolute value is treated as an upper bound for the size of the swap
area. Then, for the case that the swap area size has actually been cut back, the sign of nswap
determines whether swplo remains as is, resulting in the swap area being adjacent to the reserved
area, or whether swplo is bumped by the size of the unused area, resulting in the swap area
being adjacent to the tail of the device.

Hewlett-Packard Company - 3 - December 1986

CONFIG(lM) CONFIG(lM)
Series 200/300 Only

3. Parameter specification

These parameters should not be modified unless the user fully understands the
ramifications of doing so. See the System Administrator's Manual for more detail on each
parameter.

The format: lines of two fields each (number is decimal). Each line is independent and optional.

System Parameters:

maxusers number or formula
timezone number or formula
dst number or formula
procs number or formula
inodes number or formula
files number or formula
nbuf number or formula
ncallout number or formula
texts number or formula
unlockable-IIlem number or formula
nftocks number or formula
npty number or formula
maxuprc number or formula
dmmin number or formula
dmmax number or formula
dmtext number or formula
dmshm number or formula
maxdsiz number or formula
maxssiz number or formula
maxtsiz number or formula
shmmaxaddr number or formula

System V code: messages (mesg), semaphores (sema) and shared memory (shmem) capability

If mesg, sema, shmem= 1, the kernel code for these features will be included (default); if
they = 0, the kernel code will not be included: they are independent. If they are included any of
the parameters listed below may be modified.

Hewlett-Packard Company

mesg 1
msgmap number or formula
msgmax
msgmnb
msgmni
msgssz
msgtql
msgseg
serna
semmap
semmni
semmns
semmnu
semmsl
semvrnx
semaem
shmem
shmmax
shmmin

number or formula
number or formula
number or formula
number or formula
number or formula
number or formula
1
number or formula
number or formula
number or formula
number or formula
number or formula
number or formula
number or formula
1
number or formula
number or formula

- 4 - December 1986

CONFIG(lM)

EXAMPLE

Series 200/300 Only

shmmni
shmseg
shmbrk

number or formula
number or formula
number or formula

CONFIG(lM)

The dfile below will configure an HP-UX system with all the drivers that are currently supported
on the Series 200 Release 4.0. The tunable parameters given are the system defaults.

* drivers
cs80
flex
amigo
tape
printer
stape
srm
ptymas
ptyslv
ieee802
ethernet
hpib
gpio
ciper
* cards
98624
98625
98626
98628
98642
* reconfigure the swap area to occupy an entire CS/80 drive at
* select code 14 bus address 01
swap cs80 OEOIOO 0 0
* tunable parameters
maxusers
timezone
dst
procs

8
420
1
(20+8*MAXUSERS)

inodes
files

((NPROC+ 16+MAXUSERS)+32)
(16*(NPROC+16+MAXUSERS)/IO+32+2*NETSLOP)

nbuf
ncallout
texts
unlockable----.Inem
nflocks
npty
maxuprc
dmmin
dmmax
dmtext
dmshm
maxdsiz
maxssiz
maxtsiz
shmmaxaddr

Hewlett-Packard Company

o /* configure based on memory * /
(16+NPROC)
(24+MAXUSERS+NETSLOP)
50
200
96
25
16
2048
1365
512
OxOlOOOOoo
OxOIOooOOO
OxO 1 000000
OxOOffffff

- 5 - December 1986

CONFIG(lM)

FILES

Series 200/300 Only

* configure in messages, semas, and shared memory
mesg 1
msgmap {msgtql + 3}
msgmax 8192
msgmnb 16384
msgmni 50
msgssz
msgtql
msgseg
serna
semmap
semmni
semmns
semmnu
semmsl
semvrnx
semaem
shmem
shmmax
shmmin
shmmni
shmseg
shmbrk

/etc/master

conf.c

config.mk

mkdev

1
40
16384
1
10
64
128
30
25
32767
16384
1
{2048*1024}
1
100
10
16

default input master device table

default output configuration table

default makefile script

default mknod script

SEE ALSO
master{4}

Hewlett-Packard Company - 6 -

CONFIG(lM)

December 1986

CPSET(lM) HP-UX CPSET(lM)

NAME
cpset - install object files in binary directories

SYNOPSIS
cpset [-0] object directory [mode [owner [group]] 1

DESCRIPTION
Cpset is used to install the specified object file in the given directory. The mode, owner, and
group, of the destination file may be specified on the command line. If this data is omitted, two
results are possible:

If the user of cpset has administrative permissions (that is, the user's numerical ID is less
than 100), the following defaults are provided:

mode - 0755
owner - bin
group - bin

If the user is not an super-user, the default mode, owner, and group of the destination file
will be that of the invoker.

An optional argument of -0 will force cpset to move object to OLD object in the destination direc­
tory before installing the new object.

For example:

cpset echo /bin 0755 bin bin

cpset echo /bin

cpset echo /bin/echo

All the examples above have the same effect (assuming the user is an administrator). The file
echo will be copied into /bin and will be given 0755, bin, bin as the mode, owner, and group,
respectively.

Cpset utilizes the file /usr/src/destinations to determine the final destination of a file. The
locations file contains pairs of pathnames separated by spaces or tabs. The first name is the
"official" destination (for example: /bin/echo). The second name is the new destination. For
example, if echo is moved from /bin to /usr/bin, the entry in /usr/src/destinations would
be:

/bin/echo /usr/bin/echo

When the actual installation happens, cpset verifies that the "old" pathname does not exist. If a
file exists at that location, cpset issues a warning and continues. This file does not exist on a dis­
tribution tape; it is used by sites to track local command movement. The procedures used to
build the source will be responsible for defining the "official" locations of the source.

Cross Generation
The environment variable ROOT will be used to locate the destination file (in the form
SROOT/usr/src/destinations). This is necessary in the cases where cross generation is being
done on a production system.

SEE ALSO
install(lM), make(l).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CRON(lM) HP-UX CRON(lM)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times. Regularly scheduled conmlands can be
specified according to instructions found in crontab files; users ean submit their own crontab file
via the crontab command. Commands which are to be executed only once may be submitted via
the at command. Since cron never exits, it should only be executed once. This is best done by
running cron from the initialization process through the file /etc/rc (see init(lM)).

Cron only examines crontab files and at(l) command files during process initialization and when a
file changes. This reduces the overhead of checking for new or changed files at regularly scheduled
intervals.

/usr/lib/cron
/usr / spool/ cron
/usr /lib/ cron/log

main cron directory
spool area
accounting information

SEE ALSO
at(l), crontab(l), init(lM), shell.

DIAGNOSTICS
A history of all actions taken by cron are recorded in /usr/lib/cron/log.

Hewlett-Packard Company - 1 - Version B.l, October 1986

DECODE(lM) DECODE(lM)
Series 800 only

NAME
decode - read and decode diagnostic events from the error log

SYNOPSIS
decode [-L logfile] [-d device file] [-e physical path]
[-m major number] [-n driver name] [-p port] [-t [number]]
[-wI

DESCRIPTION
Decode reads from stdin a raw diagnostic event message. The message is then decoded into a
human-readable format and written to stdout. Decode continues reading event messages until
EOF is detected.

Decode accepts the following list of parameters:

-L logfile set the error log path name. (Default is stdin.)

-d device file set the path for a special device file.

-e physical path set the hardware path. (Uses the 1.2.3 notation.)

-m major number set the major number.

-n driver name set the driver name.

-p port set the port number.

-t number set the tail parameter. See below for a description of number. (Default is last
10 events.)

-w causes decode to wait after printing each event.

When specifying a logfile to read with the -L, the full file path name must be used. Events are
then read from this file until EOF is detected.

The options -d, -e, -m, -n, and -p are used to alter the information that decode prints. The
options may be used singularly or in combination.

The -t option has a numeric parameter, number. When number is positive it shows the last
number events in the log file. When number is negative the first number events in the log file are
skipped over.

After decode decodes an event it is written to stdout in the following format:

Diagnostic Event number X, Date = DATE &. TIME
**

Port number of originating event = aa

Manager of originating event = bb

Physical path = a.b.c

Diagnostic event status:
error - cc
proc num - dd
subsystem - ee

Hewlett-Packard Company - 1 - October 1986

DECODE(lM) DECODE(lM)

Where:

X

Series 800 only

Diagnostic class = ff

Number of retries = gg

Hardware status = (status bytes in HEX formatted
string)

Mgr info = (Manager specific information in HEX
formatted string)

the diagnostic event number relative to the start of the log file.

DATE & TIME

aa

hh

a.h.c

cc

dd and ee

ff

gg

the date and time that diagO(7) processed the event.

port number of the I/O subsystem entity that reported the event.

manager name for reporting port number, derived from the I/O tree.

physical path as derived from the I/O tree and the manager specific information.

is an ASCII string corresponding to the L1IO status.

are unique numbers used to identify the I/O subsystem entity.

is replaced with either DIAG-HW---.EVENT or DIAG_SW---.EVENT.

the number of retries made by the reporting entity before sending the event.

RETURNS
If the log file cannot be opened, decode will exit with a non-zero status.

WARNINGS
Decode does not decode the manager specific data that is passed back in each diagnostic event
message. It can only output the information in a hex format.

AUTHOR

FILES

decode was developed by HP.

/etc/rc
/dev/diagO
/usr/adm/diaglog

SEE ALSO
delog(lM), diagO(7).

Hewlett-Packard Company - 2 - October 1986

DELOG(lM) DELOG(lM)
Series 800 only

NAME
delog - diagnostic event logger for I/O subsystem.

SYNOPSIS
delog [[-e [number]] I [-w]] [-b] [-d dev file]
[-f outfile] [-L error log] [-U vmunix] [-V version]

DESCRIPTION
In general, delog only reads in an event message from the diagnostic driver and then writes it to a
log file, with no information being sent to the system console. The event message can then by
decoded into human-readable format at some later time by decode. By using various options delog
can write a synopsis of the messages to the system console and/or to a designated file. These
options, as described below, allow the user to tune the output of delog to the needs of the system.

Delog accepts the following list of parameters:

-e number

-w

-b

-d dev file

-f outfile

print out a brief synopsis for only fatal diagnostic events. See below for a descrip­
tion of number. Number can be 1 or 2.

print out a brief synopsis of the diagnostic event.

send a synopsis to both the system console and a user defined file.

set the device file path name (defaults to /dev/diagO).

set the output file path name (defaults to /dev/nuIQ.

-L error log set the error log path name (defaults to /usr/adm/diaglog).

set the vmunix path name (defaults to /hp-ux). -U vmunix

-V version set the version number of the vmunix file (default is to be determined).

Messages sent either to the system console or a user defined file take on the following format:

Where:

class

type

XX

a.b.c

x

Diagnostic class type from XX (at a.b.c) status = x
Hw stat = (hardware status printout as a HEX string)

is replaced with either hardware or software.

is replaced with either error or warning.

is the name of the driver that reported the event.

is the hardware path derived from the I/O tree.

is an ASCII string corresponding to the L1IO status.

The -w option prints out, on the system console, warning and error information. Warnings are
informational and are not usually significant. Errors may be informational or they may be reports
of fatal errors. Therefore, a large amount of data, mostly informational, will go to the system con­
sole.

The -e option causes delog to print messages that are only I/O subsystem errors. However,
because of the nature of I/O subsystem messages, not all superfluous informational messages can
be suppressed. To further reduce the amount of data written to the system console, the -e option
has a numeric parameter, number. The default value of number is 1 if nothing is specified. When
number is 2, the hardware status is suppressed. The format of the output for the -e option is the
same as that of the -w option. (Note: the -e and -w options are mutually exclusive.)

Hewlett-Packard Company - 1 - October 1986

DELOG(lM) DELOG(lM)
Series 800 only

The synopsis message can be redirected to a file using the -f option. In combination with the -b
option the messages can be sent to the system console and the designated file. If the -b option is
used by itself, the result is the same as if the -w option were specified.

Because the read function of the diagnostic driver is exclusive, only one delog logging process can
be run at a time.

RETURNS
If the diagnostic driver cannot be opened, delog will exit with a non-zero status. If the log file
cannot be opened, delog will not complain, instead delog prints a synopsis of the event on the sys­
tem console (and the user defined file, if specified) and continues.

WARNINGS
Delog does not do any error log manipulation. If the file used for error logging becomes too large,
it is up to a system administrator to clear it out.

AUTHOR

FILES

Delog was developed by HP.

letc/rc
Idev/diagO
lusr I adml diaglog
Ihp-ux

SEE ALSO
decode(IM), diagO(7).

Hewlett-Packard Company - 2 - October 1986

DEVNM(lM) HP-UX DEVNM(lM)

NAME
devnm - device name

SYNOPSIS
/ete/ devnm [names 1

DESCRIPTION
Devnm identifies the special file associated with the mounted file system where the argument
name resides. (As a special case, both the block device name and the swap device name are
printed for the argument name / if swapping is done on the same disk section as the root file sys­
tern.) Argument names must be full path names.

This command is most commonly used by /ete/re (see brc(lM)) to construct a mount table
entry for the root device.

EXAMPLE

FILES

The command:
jetcjdevnm jusr

produces
dskjOs1 jusr
if /usr is mounted on /dev/dsk/Osl.

jdevjdskj*
jetcjmnttab

SEE ALSO
brc(lM), setmnt(lM).

Hewlett-Packard Company - 1 - Version B.1, October 1986

DF(lM) HP-UX DF(lM)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t I [-f I [file-systems I

DESCRIPTION

FILES

D/ prints out the number of free 512-byte blocks and free inodes available for online file systems
by examining the counts kept in the super-block(s). File-systems may be specified either by dev­
ice name (e.g., /dev /dsk/Osl) or by mounted directory name (e.g., /usr). If the file-systems
argument is unspecified, the free space on all of the mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is made (free inodes are
not reported). With this option, d/ will report on raw devices.

When d/ is used on an HFS file system, the file space reported is the space available to the ordi­
nary user, and does not include the reserved file space specified by Is_min/Tee. Unreported
reserved blocks are available only to super-user. See /s[HFS](4) for information about Is_min/Tee.

/dev/dsk/*
/etc/mnttab

SEE ALSO
du(l), fsck(lM), fs(4), mnttab(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

DISKSECN (1M) DISKSECN(1M)
Series 800 Only

NAME
disksecn - calculate default disc section sizes

SYNOPSIS
disksecn [-p I -d) [-b block size) [-n disc name)

DESCRIPTION
Disksecn is used to calculate the disc section sizes based on the Berkeley disc partitioning method.

-p

-d

-b block size

Tables suitable for inclusion in the device driver are output.

Tables suitable for generating the disc description file /etc/disktab are output.

Defines a block size in bytes to be used as the sector size in generating the above
tables. Legal values for blocksize are 256, 512, 1024 and 2048. Defaults to
DEV -BSIZE if not specified.

-n disc name Specifies the disc name to be used in calculating sector sizes. For example,
hp7912 or hp7945. If an unknown disc name is specified, disksecn will prompt
the user for the necessary disc information.

If neither -p nor -d table selection switches are specified a default table of the section sizes and
range of cylinders used is output.

The disc section sizes are based on the total amount of space on the disc as given in the table
below (all values are supplied in units of 256-byte sectors). If the disc is smaller than approxi­
mately 44 MB, disksecn aborts and returns the message "disk too small, calculate by hand".

Section 44-56MB 57-106MB 107-332MB 333+MB
0 97120 97120 97120 97120
1 39064 39064 143808 194240
3 39064 39064 78128 117192
4 unused 48560 110096 429704
6 7992 7992 7992 7992

10 unused unused unused 516096

NOTE:
It is important to note the difference between the block size passed into disksecn via the -b
switch argument and the sector size the user is asked to input when an unknown disc name is
passed to disksecn via the -n switch argument.

The block size is the sector size that disksecn assumes the disc to have when it prints out the
requested tables. All information printed out in the tables is adjusted to reflect this assumed sec­
tor size (block size) passed in by the user. The sector size requested by disksecn when an unk­
nown disc name is passed does not necessarily have to be the same as the assumed sector size
(block size) passed in by the -b switch argument.

For example, a user wishes to see the device driver tables output for the hp7945 with an assumed
sector size (block size) of 256 bytes. The user has the following information about the hp7945
disc:

Disc type = winchester

Sector size = 512

Number of sectors per track (512 byte sectors) = 16

Number of tracks = 7

Number of cylinders = 968

Revolutions per minute = 3600

Hewlett-Packard Company - 1 - October 1986

DISKSECN (1M) DISKSECN (1M)
Series SOO Only

The user invokes disksecn by typing the following corrillland:

disksecn -p -b 256 -n hp7945

Assuming that the hp7945 is an unknown disc name, disksecn will prompt the user for the neces­
sary disc information. The user should input the information as shown above, reflecting a sector
size of 512 bytes. All the information will be adjusted within disksecn to reflect the assumed sec­
tor size (block size) of 256 bytes, passed as the argument of the -b switch, before the requested
device driver table is output.

This adjustment also takes place when the disc name is known and an assumed sector size (block
size) is passed in as the argument of the -b switch which is not DEV -BSIZE bytes, the assumed
sector size (block size) used to create the etc/disktab file.

RETURNS
Disksecn returns 0 for a successful completion, 1 for a usage error, 2 for a user not wanted to
input parameters for an unknown disc and 3 for a disc that is too small or an invalid block size.

Disksecn will abort and print out an error message under the following conditions:

Disksecn is invoked without specifying a disc name.

Both a -p and a -d switch were requested.

A block size other than those specified as legal is requested.

An unknown disc name is specified and user does not wish to supply disc information.

A disc whose maximum storage space is less than approximately 44 MB.

WARNINGS
When using the -d switch alternate names are not included in the output

There must be spaces typed between each of the switches in the command line when invoking
disksecn.

There must be a space between the -n switch and the disc name argument to that switch. For
example:

disksecn -p -b 1024 -n hp9712

At this point in time the program has no way to save the block size that was used to generate the
/etc/disktab disc description file. The system assumes that the block size used was
DEV -BSIZE when it reads the information stored in the etc/disktab file.

AUTHOR
Disksecn was developed by the University of California, Berkeley.

FILES
/etc/disktab

SEE ALSO
disktab(4).

Hewlett-Packard Company - 2 - October 1986

DISKUSG(lM) HP-UX DISKUSG(lM)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
diskusg I options J I files J

DESCRIPTION
Diskusg generates intermediate disk accounting information from data in files, or the standard
input if omitted. Diskusg output lines on the standard output, one per user, in the following for­
mat:

where

uid -

login -

#blocks -

uid login # blocks

the numerical user ID of the user;

the login name of the user; and

the total number of disk blocks allocated to this user.

Diskusg normally reads only the inodes of file systems for disk accounting. In this case, files are
the special filenames of these devices.

Diskusg recognizes the following options:

-s the input data is already in diskusg output format. Diskusg combines all lines for a single
user into a single line.

-v verbose. Print a list on standard error of all files that are charged to no one.

-i fnmlist
ignore the data on those file systems whose file system name is in fnmlist. Fnmlist is a list of
file system names separated by commas or enclosed within quotes. Diskusg compares each
name in this list with the file system name stored in the volume ID (see labelit on vol­
copy(l)).

-p file
use file as the name of the password file to generate login names. /etc/passwd is used by
default.

-u file
write records to file of files that are charged to no one. Records consist of the special file
name, the inode number, and the user ID.

The output of diskusg is normally the input to acctdisk (see acct(1M)) which generates total
accounting records that can be merged with other accounting records. Diskusg is normally run in
dodisk (see acctsh(lM)).

EXAMPLES

FILES

The following will generate daily disk accounting information:

for i in /dev/rpOO /dev/rpOl /dev/rplO /dev/rpll; do
diskusg $i > dtmp. 'basename $i' &

done
wait
diskusg -s dtmp. * I sort +On + 1 I acctdisk > disktacct

/etc/passwd used for user ID to login name conversions

SEE ALSO
acct(lM), acctsh(lM), volcopy(lM), acct(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

DMESG(lM) HP-UX
Series 800 Only

DMESG(lM)

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
/etc/dmesg [- I

DESCRIPTION
Dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the
standard output. The messages are those printed by the system when unusual events occur (such
as when system tables overflow or the system crashes). If the - flag is given, then dmesg com­
putes (incrementally) the new messages since the last time it was run and places these on the
standard output. This is typically used with cTon{l) to produce the error log lusT/adm/messages
by running the command:

/etc/dmesg - » /usr/adm/messages every 10 minutes.

WARNINGS
The system error message buffer is of small finite size. Because dmesg is run only every few
minutes, not all error messages are guaranteed to be logged.

AUTHOR

FILES

Dmesg was developed by the University of California, Berkeley, California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

/usr / adm/messages
/usr / adm/msgbuf

error log (conventional location)
scratch file for memory of - option

Hewlett-Packard Company - 1 - Version B.1, October 1986

FSCK[HFS] (1M) HP-UX
Series 200, 300, 800 Only

FSCK[HFS] (1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck -p [file system ...]
/etc/fsck -P [file system ...]
/etc/fsck [-b block#][-y][-0][-q][file system ...]

MARKETING MODEL
Level C

TECHNICAL MODEL
Large Machine
HP+ (HFS Subset)

DESCRIPTION
Fsck audits and interactively repairs inconsistent conditions for HP-UX file systems. If the file
system is consistent, the number of files on that file system and the number of used and free
blocks are reported. If the file system is inconsistent, fsck provides a mechanism to fix these
inconsistencies depending on which form of the fsck command used.

Fsck checks a default set of file systems or the file systems specified in the command line. If file
system is not specified, fsck reads the table in /etc/checklist, using the first field (special file
name) to determine which file systems to check.

If the -p option is used without specifying a file system, fsck reads the specified pass numbers in
/etc/checklist to inspect groups of disks in parallel, taking maximum advantage of I/O overlap
to preen the file systems as quickly as possible. The -p option is normally used in the script
/etc/bcheckrc during automatic reboot. Normally, the root file system will be checked on pass 1,
and other "root" ("0" section) file systems on pass 2. Other small file systems are checked on
separate passes (e.g. the "section 4" file systems on pass 3 and the "section 7" file systems on
pass 4), and finally the large user file systems are checked on the last pass (e.g. pass 5). A pass
number of zero or a type which is neither "rw" nor "ro" in /etc/checklist causes a file system
not to be checked. If the optional fields are not present on a line in /etc/checklist, or the pass
number is -1, fsck will preen the file system on such lines sequentially after all eligible file systems
with positive pass numbers have been preened.

Below are the inconsistencies that fsck with the -p option will correct; if it encounters other
inconsistencies it exits with an abnormal return status. For each corrected inconsistency, one or
more lines will be printed identifying the file system on which the correction will take place, and
the nature of the correction. The inconsistencies that are corrected are limited to the following:

Unreferenced inodes

Unreferenced pipes and fifos

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super-block wrong.

The -P option operates in the same manner as the -p option except those file systems which were
cleanly unmounted will not be checked (see fsclean(IM)). This can greatly decrease the amount
of time required to reboot a system which was brought down cleanly.

Without the -p or -P option, fsck prompts for concurrence before each correction is attempted
when the file system is inconsistent. It should be noted that some corrective actions will result in
a loss of data. The amount and severity of data lost may be determined from the diagnostic out­
put. The default action for each consistency correction is to wait for the operator to respond yes

Hewlett-Packard Company - 1 - Version B.l, October 1986

FSCK[HFS] (1M) HP-UX
Series 200, 300, SOO Only

FSCK[HFS] (1M)

or no. If the operator does not have write pennission, /sck will default to a -n action. The fol­
lowing options are interpreted by /sck.

-b Use the block specified immediately after the flag as the super block for the file
system. An alternate super block will always be found at block ((SBSIZE +
BBSIZE)/DEV -BSIZE), typically block 16.

-y

-n

-q

Assume a yes response to all questions asked by /sck; this should be used with
great caution as this is a free license to continue after essentially unlimited trou-
ble has been encountered.

Assume a no response to all questions asked by /sck; do not open the file system
for writing.

Quiet /sck. Do not print size-check messages in Phase 1. Unreferenced fifos will
silently be removed. If /sck requires it, counts in the superblock and cylinder
groups will be automatically fixed.

In all cases the inconsistencies checked by /sck are as follows:

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:

Directory size not of proper fonnat.
5. Bad inode fonnat.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:
More blocks for inodes than there are in the file system.

9. Bad free block list fonnat.
to. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence,
reconnected by placing them in the lost+found directory. The name assigned is the inode
number. The only restriction is that the directory lost+found must preexist in the root of the
file system being checked and must have empty slots in which entries can be made. This is
accomplished by making lost+found, copying a number of files to the directory, and then remov­
ing them (before /sck is executed).

After /sck has checked and fixed the file system, it will store the correct fs_clean flag in the super
block if it is not already there. For a non-root file system, FS_CLEAN will be stored there. For
the root file system, which is mounted at the time of the /sck, no changes are required to the
super block if there were no problems found and if FS_OK was already set.

Checking the raw device is almost always faster.

WARNINGS
Fsck should not be run on mounted file systems or on the raw root device.

HARDW ARE DEPENDENCIES
Series 200, 300

The 5.0 release supports only one section per volume.

AUTHOR
Fsck[HFSj was developed by HP, AT&T, and the University of California, Berkeley.

FILES

Hewlett-Packard Company - 2 - Version B.l, October 1986

FSCK[HFSj (1M) HP-UX
Series 200, 300, 800 Only

/etc/checklist contains default list of file systems to check.

SEE ALSO
fsciean(lM), mkfs[HFS](lM), newfs[HFS](lM), checklist(4), fs[HFS](4).

Hewlett-Packard Company - 3 -

FSCK[HFSj (1M)

Version B.l, October 1986

FSCK[SDFj (1M) HP-UX
Series 500 Only

FSCK[SDFj (1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck [-y] [-nJ [-sJ [-dJ [file system J

DESCRIPTION
Fsck checks for and interactively repairs inconsistent conditions in SDF file systems. If the file
system is consistent, fsck reports the number of files, the number of blocks used, the number of
blocks free, and the percent of volume unused. If the file system is inconsistent, fsck prompts the
operator for concurrence before each operation is attempted. Note that certain types of corrective
actions result in some data loss. The amount and severity of the loss can be determined from the
diagnostic output. The default action for each inconsistency correction is to wait for the operator
to respond yes or no. If the operator does not have write permission, fsck will default to a -n
action.

Fsck makes multiple passes over the file system, so care should be taken to ensure that the system
is quiescent. You should unmount the file system being checked, if possible. At the least, the sys­
tem should be single-user, and spurious processes (such as cron) should be killed.

The following flags are interpreted by fsck:

-y Assume a yes response to all questions asked.

-n Assume a no response to all questions asked; do not open the file system for writing.

-s Ignore the actual free list and unconditionally reconstruct a new one. This option is
useful in correcting multiply claimed blocks when one of the claimants is the free
list. When using this option, the number of unclaimed blocks reported by fsck
includes all the blocks in the free map. This can produce extensive output if -d is
also selected.

-s should only be selected after a previous fsck indicates a conflict between a file
and the free map. After fsck -s has executed, the integrity of the conflicting file(s)
should be checked.

If -s is used to correct a problem on a virtual memory device, there is a high proba­
bility that the final step in fsck will fail, and you will be forced to reboot. Should
this occur, an appropriate error message will be printed. No damage should occur.

-d Dump additional information. The more d's that are present, the more information that is
dumped. You may specify up to five d's. However, using more than two can result in an
overwhelming amount of output.

Fsck also recognizes, and ignores, the -8 and -t options found in other versions of fsck. An
appropriate warning is printed.

File system is a device file name describing the device on which the file system to be checked
resides. If no file system(s) are specified, fsck will read a list of default file systems from the file
/ etc / checklist.

Error messages from fsck are written to stderr. Information generated because of the -d option
and normal output is written to stdout. Both are unbuffered.

Hewlett-Packard Company - 1 - Version B.1, October 1986

FSCK[SDF) (1M) HP-UX
Series 500 Only

FSCK[SDF) (1M)

Inconsistencies checked include:

1. Blocks claimed by more than one inode, or by the free list;

2. Blocks claimed by an inode or the free list outside the range of the file system;

3. Incorrect link counts;

4. Blocks not accounted for anywhere;

5. Bad inode format;

6. Directory checks:
Files pointing to unallocated inodes,
Inode numbers out of range,
Multiply linked directories,
Link to the parent directory.

Orphaned files (allocated but unreferenced) with non-zero sizes are, with the operator's con­
currence, reconnected by placing them in the lost+found directory. The name assigned is the
inode number. The only restriction is that lost+found must exist in the root of the file system
being checked, and must have empty slots in which entries can be made. This is accomplished by
creating lost+found, copying a number of files to it, and then removing them (before fsck is exe­
cuted).

Orphaned directories and files with zero size, with the operator's concurrence, are returned
directly to the free list. This will also happen if the losH found directory does not exist.

You should run a backup prior to running fsck for repairs.

DIAGNOSTICS
The diagnostics are intended to be self-explanatory.

WARNINGS
All SDF file systems being checked must be described by a character special device file.

Do not redirect stdout or stderr to a file on the device being checked. This includes pipes when
checking the root volume.

Fsck cannot check devices with a logical block size greater than 4096.

HARDW ARE DEPENDENCIES
SDF file systems are implemented only on Series 500 computers.

FILES
/etc/checklist contains the default list of file systems to check

SEE ALSO
checklist(4), fs(4).

Series 500 HP-UX System Administrator Manual.

Hewlett-Packard Company - 2 - Version B.1, October 1986

FSCLEAN(IM) HP-UX
Series 200, 300, 800 Only

fsclean - determine shutdown status of specified file system

SYNOPSIS
/etc/rsclean [-v I [special ... I

DESCRIPTION

FSCLEAN (1M)

Fsclean determines the shutdown status of the the file system specified by special or, in the
absence of special, the file systems listed in /etc/checklist of type "rw" or "ro". All optional
fields of checklist must be present for Isclean to be able to check each file system.

Fsclean reads the super block to determine if the file system's last shutdown was done correctly.
If all of the checked file systems were shutdown correctly, Isclean returns o. If any were not,
Isclean returns 1. Any other errors, such as "cannot open the specified device file," return 2.
Fsclean is normally silent.

The only option is:

-v Be verbose. Prints the fs_clean value of each file system checked.

AUTHOR
Fsclean was developed by HP.

FILES
/ etc / checklist

SEE ALSO
checklist(4}, brc(lM}, reboot(lM}.

Hewlett-Packard Company - 1 - Version B.1, October 1986

FSDB[HFS) (1M) HP-UX
Series 200, 300, 800 Only

FSDB[HFS) (1M)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [-b block# I [- I

REMARKS
Always execute fsck(IM) after done with fsdb.

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash. It normally uses the first super
block for the file system located at the beginning of the disk section as the effective super block.
If the -b flag is used, the block specified immediately after the flag will be used as the super block
for the file system. An alternate super block will always be found at block ((SBSIZE +
BBSIZE)/DEV -----.BSIZE), typically block 16.

Fsdb deals with the file system in terms of block fragments, which are the unit of addressing in
the file system and the minimum unit of space allocation. To avoid possible confusion, fragment
is used to mean that, and block is reserved for the larger true block. Fsdb has conversions to
translate fragment numbers and i-numbers into their corresponding disk addresses. Also included
are mnemonic offsets to access different parts of an inode. These greatly simplify the process of
correcting control block entries or descending the file system tree.

Fsdb contains several error-checking routines to verify inode and fragment addresses. These can
be disabled if necessary by invoking fsdb with the optional - argument or by the use of the 0
symbol.

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero. Hexa­
decimal numbers must be prefixed with Ox. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between source and destination.

Fsdb reads a fragment at a time. A buffer management routine is used to retain commonly used
fragment of data in order to reduce the number of read system calls. All assignment operations
result in an immediate write-through of the corresponding fragment.

The symbols recognized by fsdb are:
absolute address
i
b
d
+,­
q
>,<

=+

x
o
P
f
B
W
D

convert from i-number to inode address
coIivert from fragment number to disk address (historically "block")
directory slot offset
address arithmetic
quit
save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
hexadecimal flip flop
error checking flip flop
general print facilities
file print facility
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. Octal numbers are prefixed
with a zero. Hexadecimal numbers are prefixed with Ox. The current address is normalized to an

Hewlett-Packard Company - I - Version B.I, October 1986

FSDB[HFS] (1M) HP-UX
Series 200, 300, 800 Only

FSDB[HFS] (1M)

appropriate boundary before printing begins. It advances with the printing and is left at the
address of the last item printed. The output can be teuuinated at any time by typing the inter­
rupt character. If a number follows the p symbol, that many entries are printed. A check is
made to detect fragment boundary overflows since logically sequential blocks are generally not
physically sequential. If a count of zero is used, all entries to the end of the current fragment are
printed. The print options available are:

i print as inodes
d print as directories
o print as octal words
x print as hexadecimal words
e print as decimal words
c print as characters
b print as octal bytes

The f symbol is used to print data fragments associated with the current inode. If followed by a
number, that fragment of the file is printed. (Fragments are numbered from zero). The desired
print option letter follows the fragment number, if present, or the f symbol. This print facility
works for small as well as large files except for special files such as fifos, and device special files.

Dots, tabs, and spaces may be used as function delimiters but are not necessary. A line with just
a new-line character will increment the current address by the size of the data type last printed.
That is, the address is set to the next byte, word, double word, directory entry or inode, allowing
the user to step through a region of a file system. Information is printed in a format appropriate
to the data type. Bytes, words and double words are displayed with the octal (hexadecimal if X
toggle is used) address followed by the value in octal (hexadecimal if X toggle is used) and
decimal. A.B or .D is appended to the address for byte and double word values, respectively.
Directories are printed as a directory slot offset followed by the decimal i-number and the charac­
ter representation of the entry name. Inodes are printed with labeled fields describing each ele­
ment.

The following mnemonics are used for inode examination and refer to the current working inode:
md mode
In link count
uid user ID number
gid group ID number
sz file size in byte unit
a# data block numbers (0 - 14)
at time last accessed
mt time last modified
ct last time inode changed
maj major device number
min minor device number

The following mnemonics are used for directory examination:
di i-number of the associated directory entry
nm name of the associated directory entry

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

EXAMPLES
386i

In=4

prints i-number 386 in an inode format. This now becomes the current working
inode.

changes the link count for the working inode to 4.

Hewlett-Packard Company - 2 - Version B.1, October 1986

FSDB[HFS] (1M)

In=+l

fc

2i.fd

d5i.fc

lb.px

2i.aOb.d7=3

d7.nm="name"

a2b.pOd

AUTHOR

HP-UX
Series 200, 300, 800 Only

increments the link count by 1.

FSDB[HFS] (1M)

prints, in ASCII, fragment zero of the file associated with the working inode.

prints the first fragment-size piece of directory entries for the root inode of this
file system.

changes the current inode to that associated with the 5th directory entry (num­
bered from zero) found from the above command. The first fragment's worth of
bytes of the file are then printed in ASCII.

prints the first fragment of the superblock of this file system in hexadecimal.

changes the i-number for the seventh directory slot in the root directory to 3.
This example also shows how several operations can be combined on one com­
mand line.

changes the name field in the directory slot to the given string. Quotes are
optional if the first character of the name field is alphabetic.

prints the third fragment of the current inode as directory entries.

Fsdb[HFS} was developed by the Hewlett-Packard Company and AT&T Bell Laboratories.

SEE ALSO
fsck[HFS)(lM), dir(4), fs[HFS)(4).

WARNING
The use of /sdb should be limited to experienced /sdb users.

Hewlett-Packard Company - 3 - Version B.l, October 1986

FSDB[SDFj (1M) HP-UX
Series 500 Only

FSDB[SDFj (1M)

NAl\1E
fsdb - examine/modify file system

SYNOPSIS
fsdb file-system

DESCRIPTION
Fsdb provides you with the ability to perform the following functions for each specified SDF file­
system:

1. Find the inode number of a file, given its full path name. The file-system must
be the root file system, or must be mountable to use this feature.

2. Examine and modify the contents of the superblock (volume header).

3. Examine and modify the contents of any inode or other file attribute file
record.

Integer input to /sdb may be entered in decimal (default), octal (with a preceding "0"), or hexa­
decimal (with a preceding "Ox").

File-system is a raw or block special file describing the device on which the file system is located.

Fsdb may be executed only by the super-user.

Fsdb execution is largely self-explanatory. Prompts consist of questions requesting the needed
information. When execution begins, /sdb displays the following menu:

1 - find inode numbers.
2 - examine superblock.
3 - examine inodes.
q - quit.

after which you are requested to enter one of the options shown. Typing 1 causes /sdb to accept
full pathnames of files, in return for which it prints the corresponding inode number. Typing q
returns you to the main menu.

Typing 2 displays the contents of each record in the superblock. Each record is numbered. If a
right parenthesis "r follows the number, then the record can be modified. If a right curly bracket
"r follows the number, then the record cannot be modified. You are then asked whether or not
you want to modify the superblock. An answer beginning with n sends you back to the menu; an
initial y causes /sdb to ask for the record number to be modified. If the record number specified
cannot be modified, you are told about it, and prompted for another record number. If you
specify a record number which can be changed, you are prompted for the new data. Typing q
returns you to the main menu.

Typing 3 causes /sdb to prompt you for a file attribute record number. Upon receipt of a valid
number, the contents of that record are displayed, and you are prompted for the information you
want to change. Parentheses and curly brackets have the same meanings as described above.
Typing q returns you to the main menu.

Typing q at the main menu level terminates the command.

A word of caution: /sdb is deceptively easy to use, and therefore should be used with extreme
care. Be sure you know what you are doing before you enter too deeply into options 2 or 3. You
are given the opportunity to abort (by typing q) any operation before you have changed anything,
so consider carefully what you are about to do before you do it. Fsdb does not provide an "undo"
function - the changes you make are immediate.

SEE ALSO
fsck(lM).

Hewlett-Packard Company - 1 - Version B.1, October 1986

FSDB[SDF] (1M) HP-UX
Series SOO Only

FSDB[SDF] (1M)

BUGS
If fsdb changes a field that is duplicated in an in-memory OS data structure, the change may be
undone by the OS. Forcing a reboot while still in fsdb sometimes circumnavigates this problem.
Changes to inodes 0 and 1 always fall into this category.

Hewlett-Packard Company - 2 - Version B.1, October 1986

FWTMP(lM) HP-UX FWTMP(lM)

NAME
fwtmp, wtmpfix - manipulate connect accOlmting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic)
/usr/lib/acct/wtmpfix [files)

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard output, converting binary
records of the type found in wtmp to formatted ASCII records. The ASCII version is useful to
enable editing, via ed(l), bad records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output is to be written in
binary form. (The arguments i and c are independent, respectively specifying ASCII input and
binary output, thus -I is an ASCII to ASCII copy and -c is a binary to binary copy).

Wtmpfix

FILES

Wtmpfix examines the standard input or named files in wtmp format, corrects the time/date
stamps to make the entries consistent, and writes to the standard output. A - can be used in
place of files to indicate the standard input. If time/date corrections are not performed, acctconl
will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to /usr / adm/wtmp. The
first record is the old date denoted by the string old time placed in the line field and the flag
OLD_TIME placed in the type field of the <utmp.h> structure. The second record specifies the
new date and is denoted by the string new time placed in the line field and the flag
NEW _TIME placed in the type field. Wtmpfix uses these records to synchronize all time stamps
in the file. Wtmpfix nullifies date change records when writing to the standard output by setting
the time field of the <utmp.h> structure in the old date change record equal to the time field in
the new date change record. In this way, wtmpfix and acctconl will not factor in a date change
record pair more than once.

In addition to correcting time/date stamps, wtmpfix will check the validity of the name field to
ensure that it consists solely of alphanumeric characters or spaces. If it encounters a name that is
considered invalid, it will change the login name to INVALID and write a diagnostic to the stan­
dard error. In this way, wtmpfix reduces the chance that acctconl will fail when processing con­
nect accounting records.

/usr /include/utmp.h
/etc/wtmp

SEE ALSO
acct(1M), acctcms(IM)' acctcom(I), acctcon(IM), acctmerg(IM), acctprc{IM), acctsh{IM)' ed{I),
runacct{IM), acct(2), acct(4), utmp(4).

DIAGNOSTICS
Wtmpfix generates these diagnostics:

Cannot make temporary: xxx failed to make temp file
Input truncated at offset: xxx missing half of date pair
New date expected at offset: xxx missing half of date pair
Cannot read from temp: xxx some error reading
Bad file at offset: xxx uL.Jine entry not digit, alpha, nor" I" or "{" (first character only checked)
Out of core: malloc fails. (Saves table of date changes)
No dtab: software error (not seen yet)

Hewlett-Packard Company - 1 - Version B.I, October 1986

FWTMP(lM) HP-UX FWTMP(lM)

BUGS
Fwtmp generates no errors, even on garbage input.

Hewlett-Packard Company - 2 - Version B.l, October 1986

GETTY(lM) HP-UX GETTY(lM)

NAME
getty - set terminai. type, modes, speed, and line discipline

SYNOPSIS
fete/getty [-h 1 [-t timeout 1 line [speed [type [linedisc 1 1 1
fete/getty -c file

DESCRIPTION
Getty is a program that is invoked by init(lM). It is the second process in the series, (init-getty­
login-shell) that ultimately connects a user with the HP-UX system. Initially, if fete/issue
exists, getty prints its contents to the user's terminal, followed by the login message field for the
entry it is using from /ete/gettydefs. Getty reads the user's login name and invokes the
login(l) command with the user's name as argument. While reading the name, getty attempts to
adapt the system to the speed and type of terminal being used.

Line is the name of a tty line in / dev to which getty is to attach itself. Getty uses this string as
the name of a file in the /dev directory to open for reading and writing. Unless getty is invoked
with the -h flag, getty will force a hangup on the line by setting the speed to zero before setting
the speed to the default or specified speed. The -t flag plus timeout in seconds, specifies that
getty should exit if the open on the line succeeds and no one types anything in the specified
number of seconds. The optional second argument, speed, is a label to a speed and tty definition
in the file /ete/gettydefs. This definition tells getty at what speed to initially run, what the
login message should look like, what the initial tty settings are, and what speed to try next should
the user indicate that the speed is inappropriate (by typing a <break> character). The default
speed is 300 baud. The optional third argument, type, is a character string describing to getty
what type of terminal is connected to the line in question. Getty understands the following types:

none
vt61
vt100
hp45
eloo

default
DEC vt61
DEC vt100
Hewlett-Packard HP2645
Concept 100

The default terminal is none; i.e., any crt or normal terminal unknown to the system. Also, for
terminal type to have any meaning, the virtual terminal handlers must be compiled into the
operating system. They are available, but not compiled in the default condition. The optional
fourth argument, linedisc, is a character string describing which line discipline to use in communi­
cating with the terminal. Again the hooks for line disciplines ar~ available in the operating sys­
tem but there is only one presently available, the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the interface to 300 baud, specifies that
raw mode is to be used (awaken on every character), that echo is to be suppressed, either parity
allowed, new-line characters will be converted to carriage return-line feed, and tab expansion per­
formed on the standard output. It types the login message before reading the user's name a char­
acter at a time. If a null character (or framing error) is received, it is assumed to be the result of
the user pushing the "break" key. This will cause getty to attempt the next speed in the series.
The series that getty tries is determined by what it finds in /ete/gettydefs.

The user's name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see ioctl(2)).

The user's name is scanned to see if it contains any lower-case alphabetic characters; if not, and if
the name is non-empty, the system is told to map any future upper-case characters into the
corresponding lower-case characters.

In addition to the typical UNIX operating system's erase and kill characters (# and @), getty also
understands \b and ·U. If the user uses a \b as an erase, or 'U as a kill character, getty sets the
standard erase character and/or kill character to match.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETTY(lM) HP-UX GETTY(lM)

FILES

Getty also underst"ands the "standard" ESS2 protocols for erasing, killing and aborting a line, and
terminating a line. If getty sees the ESS erase character, _, or kill character, $, or abort charac­
ter, &, or the ESS line terminators, / or !, it arranges for this set of characters to be used for
these functions.

Finally, login is called with the user's name as an argument. Additional arguments may be typed
after the login name. These are passed to login, which will place them in the environment (see
login{l)).

A check option is provided. When getty is invoked with the -c option and file, it scans the file as
if it were scanning /etc/gettydefs and prints out the results to the standard output. If there are
any unrecognized modes or improperly constructed entries, it reports these. If the entries are
correct, it prints out the values of the various flags. See ioctl(2} to interpret the values. Note
that some values are added to the flags automatically.

jetcjgettydefs
jetcjissue

SEE ALSO

BUGS

ct(l}, init(lM}, login(l}, ioctl(2}, gettydefs(4}, inittab(4}, termio(7}.

While getty does understand simple single character quoting conventions, it is not possible to
quote the special control characters that getty uses to determine when the end of the line has been
reached, which protocol is being used, and what the erase character is. Therefore it is not possible
to login via getty and type a #, @, /, !, _, backspace, 'U, 'D, or & as part of your login name or
arguments. They will always be interpreted as having their special meaning as described above.

Hewlett-Packard Company - 2 - Version B.l, October 1986

GETX25 (1M)

NAME
getx25 - get x25 line

SYNOPSIS
/etc/getx25 line speed pad-type

DESCRIPTION

HP-UX GETX25 (1M)

Getx25 is very similar to getty in function, but is used only for incoming lines that are connected
to an X.25 PAD. It performs special functions such as setting up an initial PAD configuration. It
also logs the number of the caller in /usr/spool/uucp/X25LOG. The third parameter is the name
of the PAD being used. HP2334A is the only one supported at this time. A typical invokation
would be:

/etc/getx25 x25.1 2 HP2334A

SEE ALSO
getty(1M), login(1), uucp(1)

AUTHOR
Getx25 was developed by HP.

Hewlett-Packard Company - 1 - Version B.1, October 1986

HPUXBOOT(IM) HPUXBOOT (1M)
Series 800 Only

NAME
hpux - HP-UX bootstrap and installation utility

SYNOPSIS
hpux [boot] [-fnumber] [-istring] [-r] [devicefile]
hpux copy devicefile devicefile
hpux -v

DESCRIPTION
Hpux is the HP-UX specific initial system loader (isl(IM)) utility for bootstrap and first-time
installation. Currently it supports two operations: boot and copy. The boot operation loads
an object file from an HP-UX file system or raw device and transfers control to the loaded image.
The copy operation copies data between HP-UX files and/or raw devices and is typically used
during first-time installation.

The command sequences for all operations are presented under SYNOPSIS above. They may be
either entered interactively to isl or present in an isl autoexecute file. The first sequence performs
the boot operation. The second performs the copy operation. The third returns the release and
version numbers of hpux.

NUMBERS
Hpux accepts numbers (i.e. numeric constants) in many of its options. Numbers follow the C
language notation for decimal, octal, and hexadecimal constants. A leading 0 (zero) implies octal
and a leading Ox or OX implies hexadecimal. For example, 037, OxlF, OXlf, and 31 all represent
the same number, decimal 31.

DEVICEFILES
Hpux boot and copy operations accept devicefile specifications, which have the following format:

manager(x.y .z;n,s } filename

They are called devicefiles because they are composed of a device name part and a file name part.
In the device part, manager(x.y.z;n,s), manager is the name of an HP 9000 Series 800 I/O System
manager (i.e. device driver), for example discO. x.y.z is the physical hardware path to the device,
identifying bus converters, slot numbers, and hardware addresses. (Bus converters are not
currently supported.) N is the minor number which controls manager dependent functionality. S
is the file skip count. For tapeO and tapel devices, this parameter describes how many files
must be skipped (from the beginning of the tape) before the desired file can be accessed. It has a
default value of 0, and is completely ignored for other devices. The file name part, filename, is a
standard HP-UX path name. In a devicefile specification, the only required component is the
hardware path. All other components are optional. Some hpux operations have defaults for par­
ticular components. A devicefile specification containing a device part only specifies a raw device.
A devicefile specification containing a file name implies that the associated device part names a
device containing an HP-UX file system. The named file resides in that file system. For example,
the typical boot devicefile specification is discO(8.0.0;0}hp-ux.

Managers
Currently, hpux supports the discO, tapeO, and tapel managers. DiscO manages all CS-80 discs
including cartridge tape devices. TapeO manages the HP 7970 tape drives and tapel manages
the HP 7974 and HP 7978 tape drives.

Hardware Paths
The hardware path in a devicefile specification is an arbitrary length string of numbers separated
by periods. (Commas are also acceptable.) Each number identifies a hardware component. A
single number is the shortest path specification. Currently, path specifications typically contain
three components. In x.y.z above, x would be the MID-BUS slot number, y would be the CIO
slot number, and z would be the HP IB address.

Hewlett-Packard Company - 1 - December 1986

HPUXBOOT (1M) HPUXBOOT (1M)
Series 800 Only

Minor Numbers
The minor number, n, in a devicefile specification controls driver dependent functionality. The
manual pages for the individual drivers describe their specific minor number encodings.
Currently, minor numbers for all device drivers adhere to a standard encoding scheme that places
optional hardware addresses in bit,s 24 through 31. The logical unit number resides in bits 16
through 23. Driver specific options are found in bits 9 through 15 and the transparent mode
(diagnostic bit) flag is bit 8. Hpux manages its own logical units and consequently ignores any
logical unit specification that maybe specified in a devicefile. The minor number formats for
discO, tapeO, and tape! are summarized below:

discO

1 2
8901234567890

I T I C I unused I logical unit

T = Transparent (diagnostic)
C = Cartridge tape device

tapeO and tape!

1 2
8901234567890

I T I R I D I B I N I BPI I logical unit

T = Transparent (diagnostic)
R = RTE style (no tape movement on close)
D = Disable immediate reporting mode
B = Berkeley style
N = No rewind on close

3
234567890

I unit I I section

3
234567890

I unused

BPI = Density (0=800BPI, 1=1600BPI, 2=6250BPI)

Skip Counts
The skip count, 8, in a devicefile specification controls how many files must be skipped before the
desired file is reached. It is relative to the beginning of the tape, and is defined only for tapeO
and tape! devices. It is ignored for all others. If not specified, 0 is assumed.

File Names

BOOT

File names are standard HP-UX path names. No preceding slash U} is necessary and specifying
one will cause no problems. File names are not root (i.e. /) relative. For example, with discO,
they are relative to the section specified in the minor number (in the device part) of the devicefile
specification.

The boot operation loads an object file from an HP-UX file system or raw device as specified by
the optional devicefile. It then transfers control to the loaded image.

The default devicefile for boot is discO(8.0.0;0}hp-ux. Please note that the default hardware path
component is variable, and is derived from the Primary Boot Path maintained by pdc (1M) or
interactively given to pdc. For more details, consult the appropriate HP 9000 Series 800 architec­
ture document. Any missing components in a specified devicefile are supplied from the default
above, For example, a devicefile of vmunix.new would actually yield discO(8.0.0;0}vmunix.new

Hewlett-Packard Company - 2 - December 1986

HPUXBOOT (1M) HPUXBOOT (1M)

COpy

Series 800 Only

and a devicefile of (8.0.1), for booting from the disc at HP-IB address 1, would yield
discO(8.0.1;0)hp-ux. Regardless of how incomplete the specified devicefile may be, boot
announces the complete devicefile specification used to find the object file. Along with this infor­
mation, boot gives the sizes of the TEXT, DATA, and BSS, segments and the entry offset of
the loaded image, before transferring control to it.

The boot operation accepts several options. Their meanings are:

-fnumber This option takes a number (see NUMBERS) and passes it as the flags word to the
loaded image.

-istring This option accepts a string that specifies the initial run-level for init(IM). Note that
the run-level specified will override any run-level specified in an initdefault entry in
/etc/inittab (see inittab(4)).

-r This option is a special case of the -f option. It sets the RDB-.BOOT flag in the
flags word passed to the loaded image (see rdb(lM)).

Boot currently places some minor restrictions on object files it can load. It accepts only the
HP-UX magic numbers SHAREMAGIC (0410) and DEMANDMAGIC (0413) (see
magic(4)). The object file must contain an Auxiliary Header of the HPU~AUX-ID type and
it must be the first Auxiliary Header (see a.out(4)).

The copy operation is used during first-time installation to copy installation images from one
device to another, for example, from tape to disc (see EXAMPLES). The only default for the
devicefile specifications is the skip count. Copy announces the devicefile specifications identifying
the source and destination devices. A running total of kilobytes transferred is displayed on the
console during the copy. At completion, the total size of the transfer (in exact bytes) is displayed.

EXAMPLES
Before going over specific examples of the various options and operations of hpux, here is an out­
line of the steps taken in the automatic boot process. When the system RESET button is
depressed, pdc executes self-test, and assuming the hardware passes, pdc announces itself, issues a
BELL, and gives the user 10 seconds to override the autoboot sequence, by entering any charac­
ter. The following is typically displayed on the console.

Pro('Pssor Dpppmlpnt Coop (PDq rpvision 2544

Console path = 8.1.0
Primary boot path = 8.0.0
Alternate boot path = 8.2.3

Autoboot from primary boot path enabled.
To override, press any key within 10 seconds.

If no character is entered within 10 seconds, pdc commences the autoboot sequence by loading isl
and transferring control to it. Because an autoboot sequence is occurring, isl merely announces
itself, finds and executes the autoexecute file which, on an HP-UX system, requests that hpux be
run with default arguments. The following is displayed on the console.

10 seconds expired.

Booting.

Hewlett-Packard Company - 3 - December 1986

HPUXBOOT (1M)
Series 800 Only

Console 10 Dependent Code (IODC) revision 2544
Boot 10 Dependent Code (lODe) revision 2544

Booted.

ISL Revision 2610 (860303) -- Release 9.1

ISL booting hpux

HPUXBOOT (1M)

Next hpux announces the operation it is performing, in this case boot, the devicefile from which
the load image comes, and the TEXT size, DATA size, BSS size, and start address of the load
image. The following is displayed before control is passed to the image.

Boot
: discO(8.0.0;OxO)hp-ux
966616+397312+409688 start Ox6c50

Lastly, the loaded image, in this case an HP--UX operating system kernel, starts by glvmg
numerous configuration and status messages. The system in the following example eventually
comes to in it run-level 2 for multi-user mode of operation.

Beginning I/O System Configuration.
cio channel expected at 28, found at 8
cio_caO address = 8

hpibO address = 0
discO lu = 0 address = 0
discO lu = 1 address = 1
discO lu = 2 address = 2
discO lu = 3 address = 3

muxO lu = 0 address = 1
hpibO address = 2

IprO Iu = 1 address = 0
IprO lu = 0 address = 1
tapeO lu = 1 address = 2
tape1 lu = 0 address = 3
tape1 lu = 2 address = 4
instrO lu = 0 address = 7

muxO lu = 1 address = 3
lanO lu = 0 address = 4
gpio1 lu = 0 address = 5
hpibO address = 6

discO lu = 4 address = 0
discO lu = 5 address = 1
discO lu = 6 address = 2
discO lu = 7 address = 3

hpibO address = 7
IprO lu = 2 address = 1
tapeO lu = 3 address = 2
tape1 lu = 4 address = 3

Hewlett-Packard Company - 4 - December 1986

HPUXBOOT (1M) HPUXBOOT (1M)
Series 800 Only

instrO lu = 1 address = 7
muxO lu = 2 address = 8
muxO lu = 3 address = 9
muxO lu = 4 address = 10
muxO lu = 5 address = 11
lanO lu = 1 address = 12
iosO lu = 0 address = 13

I/O System Configuration complete.
Configure called
@(#)1.0 HP-UX/RT (sys.ica/S8oo) #1: Mon Mar 312:26:00 PST 1986
real mem = 8386560
lockable mem = 3297280
avail mem = 5197824
using 204 buffers containing 837632 bytes of memory
Fri Mar 7 09:37:57 PST 1986
Checking file systems

In order to use the operations and options of hpux, isl must be brought up in interactive mode.
To do this simply enter a character during the 10 second interval allowed by pdc. Pdc will then
ask if the primary boot path is acceptable. Answering yes (Y) is usually appropriate. Pdc will
then load isl and isl will interactively prompt for commands. The following is displayed.

Boot from primary boot path (Y or N)?> Y

Booting.

Console 10 Dependent Code (IODC) revision 2544
Boot 10 Dependent Code (IODC) revision 2544

Booted.

ISL Revision 2610 (860303) -- Release 9.1

ISL>

Although all the operations and options of hpux may be used from isl interactively, they may also
be executed from an autoexecute file. Refer to the appropriate documentation for building autoex­
ccute files. In the examples below. all user input is in boldface type.

Default Boot

ISL> hpux

Boot
: discO(8.0.0;OxO)hpux
966616+397312+409688 start Ox6c50

Entering hpux initiates the default boot sequence. The default manager is discO, the boot path
read from pdc is 8.0.0, the minor number is 0 specifying not only unit zero of the device but also
section 0 of the disc, and the object file name is hp-ux.

Hewlett-Packard Company - 5 - December 1986

HPUXBOOT (1M)
Series 800 Only

Booting Another Kernel

ISL> hpux vmunix.new

Boot
: discO(8.0.0;OxO)vmunix.new
966616+397312+409688 start Ox6c50

HPUXBOOT (1M)

Here hpux initiates a boot operation where the name of the object file is vmunix.new.

Booting from Another Section

ISL> hpux (;3)sys.azure/S800/vrnunix

Boot
: discO(8.0.0;Ox3)sys.azure/S800/vmunix
966616+397312+409688 start Ox6c50

In this example, a kernel is booted from another section of the root disc. For example, let's say
that kernel development takes place under /mnt/azure/root.port which happens to reside in its
own section, section 3 of the root (i.e. default boot) disc. By specifying a minor number of 3, in
the above example, the object file sys.azure/S800/vmunix is loaded from
/mnt/azure/root.port.

Booting from Cartridge Tape

ISL> hpux (;4194336)hp-ux

Boot
: discO(8.0.0;Ox400020)hp-ux
966616+397312+409688 start Ox6c50

In this example, the default boot device is an HP 7914 disc with a cartridge tape at unit 1. The
minor number has the cartridge tape flag set and specifies unit 1, section 0 of the device.
Although the minor number was entered in decimal format, the hexadecimal form would be
accepted. Since a file name is specified, it is assumed that section 0 contains a file system.

Booting from Another Disc

ISL> hpux (8.0.1)hp-ux

Boot
: discO(8.0.1 ;OxO)hp-ux
966616+397312+409688 start Ox6c50

In this example, only the hardware path is specified. All other values are boot defaults. The
object file comes from the file system in section 0 of the disc, at HP-IB address 1.

Booting from a Raw Device

ISL> hpux tapeO(8.2.2;Ox20000,1)

Boot
: tapeO(8.2.2;Ox20000,1)
966616+397312+409688 start Ox6c50

Hewlett-Packard Company - 6 - December 1986

HPUXBOOT (1M) HPUXBOOT (1M)
Series 800 Only

This example shows booting from a raw device (i.e. no file system is on the device). Note that no
file name is specified in the devicefile. The device is an HP 7970 tape drive and therefore tapeO
is the manager used. The tape drive is at CIO slot 2, HP-IB address 2. The first file on the tape
will be skipped. The minor number specifies a tape density of 1600 BPI. Note that for tapeO the
tape must be written with 512-byte blocks.

Booting to Single User Mode

ISL> hpux -is

Boot
: discO(8.0.0;OxO)hp-ux
966616+397312+409688 start Ox6c50

Kernel Startup Messages Omitted

INIT: Overriding default level with level's'

INIT: SINGLE USER MODE
WARNING: YOU ARE SUPERUSER!!

In this example, the -i option is used to make the system come up in run level s, for single user
mode of operation.

Copying an Installation Image

ISL> hpux copy tapeO(S.2.2jOx20000) discO(S.O.OjO)

Copy
: tapeO(8.2.2;Ox20000,0) discO(8.0.0;OxO)
24576Kb
25165824 hytps copipd

The first file on the currently mounted tape contains an image of the root file system. The image
is copied from the tape to the root disc. The tape was recorded at 1600BPI and the target section
is o. The copy terminates when EOF or EOT is detected on the tape.

Getting the Version

ISL> hpux-y

Version:
Release: 9.1
Release Version: @(#)1.0 HP-UX/RT (sys.hpuxboot/HPUXBOOT)

#2: Thu Feb 27 13:37:43 PST 1986
The -y option is used to get the version numbers of hpux.

DIAGNOSTICS
In the instance of an error hpux prints diagnostic messages which indicate the cause of the error.
These messages may be grouped General, Boot, Copy, Configuration, and System Call. A descrip­
tion of the System Call error messages may be found in errno(2). The remaining messages are

Hewlett-Packard Company - 7 - December 1986

HPUXBOOT (1M) HPUXBOOT (1M)
Series 800 Only

described below.

General
bad minor number in devicefile spec

The minor number in the devicefile specification is illegal.

bad path in devicefile spec
The hardware path in the device/ite specification is illegal.

command too complex for parsing
The command line contains too many arguments.

no path in devicefile spec
The devicefile specification does not contain a hardware path component and must.

panic (in hpuxboot): (display==number, flags==number) string
A severe internal hpux error has occurred. Report to your nearest HP Field Representative.

Boot
bad magic

The specified object file does not have a legal magic number.

bad number in flags spec
The flags specification in the -f option is illegal.

booting from raw character device
In booting from a raw device, the manager specified only has a character interface. This
may cause problems if the block size is incorrect.

lsi not present, please hit system RESET button to continue
An unsuccessful boot operation has overlayed isl in memory. It is impossible to return con­
trol to isl.

short read
The specified object file is internally inconsistent, it is not long enough.

would overlay
Loading the specified object file would overlay hpux.

Copy
cannot open destination device/file

The destination device or file could not be opened for writing.

cannot open source device/file
The source device or file could not be opened for reading.

fchmod failure (warning only)
The access mode of the destination file could not be changed.

fchown failure (warning only)
The owner and/or group of the destination file could not be changed.

fstat failure (warning only)
One or more of the owner, group, or mode of the source file could not be determined. The
default values of owner and group are 0 and O. The default mode is 0777.

read failure
An error was encountered reading from the source device or file.

umount failure on destination device
The destination device could not be dismounted. Its file system may have been damaged as
a result. Fsck should be run before mounting the file system.

Hewlett-Packard Company - 8 - December 1986

HPUXBOOT (1M) HPUXBOOT (1M)
Series 800 Only

umount failure on source device
The source device could not be dismounted. Since it was mounted read~only, the integrity
of its file system is not at risk.

write failure
An error was encountered writing to the destination device or file.

Configuration
cannot add path, error number

An unknown error has occurred in adding the hardware path to the I/O tree. The internal
error number is given. Contact your HP Field Representative.

driver does not exist
The manager specified is not configured into hpux.

driver is not a logical device manager
The manager name given is not that of a logical device manager and cannot be used for
direct I/O operations.

error rewinding device
An error was encountered attempting to rewind a device.

error skipping file
An error was encountered attempting to forward~space a tape device.

negative skip count
The skip count, if specified, must be greater than or equal to zero.

no major number
The specified manager has no entry in the block or character device switch tables.

path incompatible with another path
Multiple incompatible hardware pathes have been specified.

path long
The hardware path specified contains too many components for the specified manager.

path short
The hardware path specified contains too few components for the specified manager.

table full
Too many devices have been specified to hpux.

SEE ALSO
a.out(4), boot(lM), errno(2), fsck(lM), init(lM), inittab(4), isl(lM), magic(4), pdc(lM), rdb(lM).

Hewlett-Packard Company - 9 - Version B.1, December 1986

INIT(lM) HP-UX INIT(lM)

NAME
init, telinit - process control initialization

SYNOPSIS
/etc/init [0123456SsQq]

/etc/telinit [0123456sSQqabc]

DESCRIPTION
Init

Init is a general process spawner. Its primary role is to create processes from a script stored in the
file /etc/inittab (see inittab(4)). This file usually has init spawn getty's on each line that a user
may log in on. It also controls autonomous processes required by any particular system.

Init considers the system to be in a run-level at any given time. A run-level can be viewed as a
software configuration of the system where each configuration allows only a selected group of
processes to exist. The processes spawned by init for each of these run-levels is defined in the init­
tab file. Init can be in one of eight run-levels, 0-6 and S or s. The run-level is changed by having
a privileged user run /etc/init (which is linked to /etc/telinit). This user-spawned init sends
appropriate signals to the original init spawned by the operating system when the system was
rebooted, telling it which run-level to change to.

Init is invoked inside the HP-UX system as the last step in the boot procedure. The first thing
init does is to look for /etc/inittab and see if there is an entry of the type initdefault (see init­
tab(4)). If there is, init uses the run-level specified in that entry as the initial run-level to enter.
If this entry is not in inittab or inittab is not found, init requests that the user enter a run-level
from the virtual system console, /dev /syscon. If an S (s) is entered, init goes into the SINGLE
USER level. This is the only run-level that doesn't require the existence of a properly formatted
inittab file. If /etc/inittab doesn't exist, then by default the only legal run-level that init can
enter is the SINGLE USER level. In the SINGLE USER level the virtual console terminal
/dev /syscon is opened for reading and writing and the command /bin/su is invoked immedi­
ately. To exit from the SINGLE USER run-level one of two options can be elected. First, if the
shell is terminated (via an end-of-file), init will reprompt for a new run-level. Second, the init or
telinit command can signal init and force it to change the run-level of the system.

When attempting to boot the system, failure of init to prompt for a new run-level may be due to
the fact that the device /dev /syscon is linked to a device other than the physical system tele­
type (fdev/systty). If this occurs, init can be forced to relink /dev/syscon by typing a delete
on the system teletype which is collocated with the processor.

When init prompts for the new run-level, the operator may enter only one of the digits 0 through
6 or the letters S or s. If S is entered init operates as previously described in SINGLE USER mode
with the additional result that /dev /syscon is linked to the user's terminal line, thus making it
the virtual system console. A message is generated on the physical console, /dev/systty, saying
where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SINGLE USER state to normal run
states, it sets the ioctl(2) states of the virtual console, /dev /syscon, to those modes saved in the
file /etc/ioctl.syscon. This file is written by init whenever SINGLE USER mode is entered. If
this file does not exist when init wants to read it, a warning is printed and default settings are
assumed.

If a 0 through 6 is entered init enters the corresponding run-level. Any other input will be
rejected and the user will be re-prompted. If this is the first time init has entered a run-level
other than SINGLE USER, init first scans inittab for special entries of the type boot and bootwait.
These entries are performed, providing the run-level entered matches that of the entry before any
normal processing of inittab takes place. In this way any special initialization of the operating
system, such as mounting file systems, can take place before users are allowed onto the system.

Hewlett-Packard Company - 1 - Version B.1, October 1986

INIT(lM) HP-UX INIT(lM)

The inittab file is scanned to find all entries that are to be processed for that run-level.

Run-level 2 is usually defined by the user to contain all of the terminal processes and daemons
that are spawned in the multi-user environment.

In a multi-user environment, the inittab file is usually set up so that init will create a process for
each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an end-of-file either typed
explicitly or generated as the result of hanging up. When init receives a child death signal, telling
it that a process it spawned has died, it records the fact and the reason it died in /etc/utmp and
/etc/wtmp if it exists (see who(l)). A history of the processes spawned is kept in /etc/wtmp
if such a file exists.

To spawn each process in the inittab file, in it reads each entry and for each entry which should be
respawned, it forks a child process. After it has spawned all of the processes specified by the init­
tab file, init waits for one of its descendant processes to die, a powerfail signal, or until init is sig­
naled by init or telinit to change the system's run-level. When one of the above three conditions
occurs, init re-examines the inittab file. New entries can be added to the inittab file at any time;
however, in it still waits for one of the above three conditions to occur. To provide for an instan­
taneous response the init Q or init q command can wake init to re-examine the inittab file.

If init receives a power/ail signal (SIGPWR) and is not in SINGLE USER mode, it scans inittab for
special powerfail entries. These entries are invoked (if the run-levels permit) before any further
processing takes place. In this way init can perform various cleanup and recording functions
whenever the operating system experiences a power failure.

When init is requested to change run-levels (via telinit) , init sends the warning signal
(SIGTERM) to all processes that are undefined in the target run-level. [nit waits 20 seconds
before forcibly terminating these processes via the kill signal (SIGKILL).

Telinit

FILES

Telinit, which is linked to /etc/init, is used to direct the actions of init. It takes a one-character
argument and signals init via the kill system call to perform the appropriate action. The following
arguments serve as directives to init.

~ tells init to place the system in one of the run-level8 ~.

a,b,c tells init to process only those /etc/inittab file entries having the a, b or c
run-level set.

Q,q tells in it to re-examine the /etc/inittab file.

s,S tells init to enter the single user environment. When this level change is
effected, the virtual system teletype, /dev /syscon, is changed to the terminal
from which the command was executed.

Telinit can only be run by someone who is super-user or a member of group sys.

/etc/inittab
/ etc /ioctl.syscon
/ dev / syscon
/dev /systty
/etc/utmp
/etc/wtmp

SEE ALSO
getty(lM), 10gin(1), sh(l), who(l), kill(2), inittab(4), utmp(4).

DIAGNOSTICS
If init finds that it is continuously respawning an entry from /etc/inittab more than 10 times in

Hewlett-Packard Company - 2 - Version B.1, October 1986

INIT(lM) HP-UX INIT(lM)

2 minutes, it v.rill asslL1Jle that there is 3...."1 error in the comm&id string, and generate an error llles­
sage on the system console, and refuse to respawn this entry until either 5 minutes has elapsed or
it receives a signal from a user init (telinit). This prevents init from eating up system resources
when someone makes a typographical error in the inittab file or a program is removed that is
referenced in the inittab.

Hewlett-Packard Company - 3 - Version B.1, October 1986

INST ALL (1M) HP-UX INST ALL (1M)

NAME
install - install commands

SYNOPSIS
jete/install [--c dira] [-f dirb] [-i] [-n dirc] [-0] [-g group] [-s] [-u user] file [dirx ...]

DESCRIPTION
Install is a command most commonly used in "makefiles" (see make(l)) to install a file (updated
target file) in a specific place within a file system. Each file is installed by copying it into the
appropriate directory, thereby retaining the mode and owner of the original command. The pro­
gram prints messages telling the user exactly what files it is replacing or creating and where they
are going.

Install is useful for installing new commands, or new versions of existing commands, in the stan­
dard directories (Le. /bin, / etc, etc.).

If no options or directories (dirx ...) are given, install will search a set of default dirertories
(lbin, /usr/bin, jete, /lib, and /usr/lib, in that order) for a file with the same name as file.
When the first occurrence is found, install issues a message saying that it is overwriting that file
with file (the new version), and proceeds to do so. If the file is not found, the program states this
and exits without further action.

If one or more directories (dirx ...) are specified after file, those directories will be searched
before the directories specified in the default list.

The meanings of the options are:

--c dira Installs a new command (file) in the directory specified by dira, only if it is
not found. If it is found, install issues a message saying that the file
already exists, and exits without overwriting it. May be used alone or with
the -s option.

-f dirb

-i

-n dire

-0

-g group

-u user

-s

Hewlett-Packard Company

Forces file to be installed in given directory, whether or not one already
exists. If the file being installed does not already exist, the mode and
owner of the new file will be set to 755 and bin, respectively. If the file
already exists, the mode and owner will be that of the already existing file.
May be used alone or with the -0 or -s options.

Ignores default directory list, searching only through the given directories
(dirx ...). May be used alone or with any other options other than --c and
-f.

If file is not found in any of the searched directories, it is put in the direc­
tory specified in dire. The mode and owner of the new file will be set to
755 and bin, respectively. May be used alone or with any other options
other than --c and -f.

If file is found, this option saves the "found" file by copying it to OLDfile
in the directory in which it was found. This option is useful when instal­
ling a normally busy text file such as /bin/sh or jete/getty, where the
existing file cannot be removed. May be used alone or with any other
options other than --c.

Causes file to be owned by group group. This option is available only to
the super-user. May be used alone or with any other option.

Causes file to be owned by user user. This option is available only to the
super-user. May be used alone or with any other option.

Suppresses printing of messages other than error messages. May be used
alone or with any other options.

- 1 - Version B.l, October 1986

INSTALL (1M) HP-UX INSTALL (1M)

When no directories are specified (dirx ...), or when file cannot be placed in one of the direc­
tories specified, install checks for the existence of the file /ete/syslist. If /ete/syslist exists,
it is used to determine the final destination of file. If /ete/syslist does not exist, the default
directory list is further scanned in order to determine where file is to be located.

The file /ete/syslist contains a list of absolute pathnames, one per line. The pathname is
the "official" destination (for example /bin/eeho) of the file as it appears on a file system.
/ete/syslist serves as a master list for system command destinations. If there is no entry for
file in the file /ete/syslist then the default directory list is further scanned in order to deter­
mine where file is to be located.

Cross Generation
The environment variable ROOT will be used to locate the locations file (in the form
£ROOT/ete/syslist). This is necessary in the cases where cross generation is being done on a
production system. Furthermore, each pathname in £ ROOT /ete/syslist is appended to $ROOT
(for example, £ROOT/bin/eeho) and used as the destination for file. Also, the default direc­
tories are also appended to £ ROOT so that the default directories are actually
£ ROOT /bin,£ ROOT /UST /bin,£ ROOT jete, £ ROOT/lib, and £ ROOT /UST /lib.

The file /ete/syslist ($ROOT/etc/syslistj does not exist on a distribution tape; it is created and
used by local sites.

SEE ALSO
cpset(lM), make(l).

BUGS
Install cannot create alias links for a command (for example, vi(l) is an alias link for ex(l)).

Hewlett-Packard Company - 2 - Version B.1, October 1986

ISL(lM) ISL(lM)
Series 800 Only

NAME
isl - initial system loader

DESCRIPTION
lsi implements the operating system independent portion of the bootstrap process. It is loaded
and executed after self-test and initialization have completed successfully.

The processor contains special purpose memory for maintaining critical configuration related
parameters (e.g. Primary Boot, Alternate Boot, and Console Paths). Two forms of memory are
supported: Stable Storage and Non-Volatile Memory (NVM).

Typically, when control is transferred to isl, an autoboot sequence takes place. An autoboot
sequence allows a complete bootstrap operation to occur with no intervention from an operator.
lsi executes commands from the autoexecute file in a script-like fashion. Autoboot is enabled by a
flag in Stable Storage .

. 4 utosearch is a mechanism that automatically locates the boot and console devices. It is
currently not implemented on the Model 840 but will be will be implemented on future Series 800
processors.

During an autoboot sequence, isl displays its revision and the name of any utility it executes.
However, if autoboot is disabled, after isl displays its revision, it then prompts for input from the
console device. Acceptable input is any isl command name or the name of any utility available on
the system. If a non-fatal error occurs or the executed utility returns, isl again prompts for input.

Commands
There are several commands available in isl. The following is a list of them with a short descrip­
tion. Parameters may be entered on the command line following the command name. They must
be separated by spaces. lsi prompts for any necessary parameters that are not entered on the
command line.

?
help

listf
Is

autoboot

autosearch

primpath

altpath

conspath

Isautofl
listautofl

display

readnvrn

readss

Help -- Lists commands and available utilities

Lists available utilities

Enables or disables the autoboot sequence
Parameter -- on or off

Enables or disables the autosearch sequence
Parameter -- on or off

Modify the Primary Boot Path
Parameter -- Primary Boot Path in decimal

Modify the Alternate Boot Path
Parameter -- Alternate Boot Path in decimal

Modify the Console Path
Parameter -- Console Path in decimal

Lists contents of the auto execute file

Displays the Primary Boot, Alternate Boot, and Console Paths

Displays the contents of one word of NVM in hexadecimal
Parameter -- NVM address in decimal or standard hexadecimal notation

Displays the contents of one word of Stable Storage in hexadecimal
Parameter -- Stable Storage address in decimal or standard hexadecimal notation

Hewlett-Packard Company - 1 - October 1986

ISL(lM) ISL(lM)
Series 800 Only

DIAGNOSTICS
lsI displays diagnostic information through error messages written on the console and display
codes on the hexadecimal LED display.

For the display codes, CEOx are informative only. CElx and CE2x indicate errors, some of
which are fatal and cause the system to halt. Other errors merely cause isl to display a message.
During normal operation, the self-test light is yellow. However, during fatal errors, the self-test
light is red.

Non-fatal errors during an autoboot sequence cause the autoboot sequence to be aborted and isl to
prompt for input. After non-fatal errors during an interactive isl session, isl merely prompts for
input.

Fatal errors cause the system to halt. The problem must be corrected and the system RESET to
recover.

CEOO

CEOI

CE02

CE03

CE05

CEOO

CE07

CE08

CE09

CEOF

CEIO

CEll

CEl2

CEl3

CE14

CEl5

CEl6

CEl7

CEl8

CEl9

CEIA

CEIB

CEIC

CEID

CEIE

CE21

CE22

lsI is executing.

lsI is auto booting from the auto execute file.

Cannot find an auto execute file. A utoboot aborted.

No console found, isl can only autoboot.

Directory of utilities is too big, isl reads only 2K bytes.

Autoexecute file is inconsistent. Autoboot aborted.

Utility file header inconsistent: SOM values invalid.

Autoexecute file input string exceeds 2048 characters. Autoboot aborted.

lsI command or utility name exceeds 10 characters.

lsI has transferred control to the utility.

Internal inconsistency: Volume label- FATAL.

Internal inconsistency: Directory - FATAL.

Error reading autoexecute file.

Error reading from console - FATAL.

Error writing to console - FATAL.

Not an isl command or utility.

Utility file header inconsistent: Invalid System ID.

Error reading utility file header.

Utility file header inconsistent: Bad magic number.

Utility would overlay isl in memory.

Utility requires more memory than is configured.

Error reading utility into memory.

Incorrect checksum: Reading utility into memory.

Console needed - FATAL.

Internal inconsistency: Boot device class - FATAL.

Destination memory address of utility is invalid.

Utility file header inconsistent: pdc_cache entry.

Hewlett-Packard Company - 2 - October 1986

ISL(lM)

CE23

CE24

CE25

CE26

CE27

SEE ALSO

Series 800 Only

Internal inconsistency: iodc_entTy-init - FATAL.

Internal inconsistency: iodc_entTy-init - console - FATAL.

Internal inconsistency: iodc_entTy-init - boot device - FATAL.

Utility file header inconsistent: Bad aux.......id.

Bad utility file type.

boot(lM), hpuxboot(lM), pdc(lM).

ISL(lM)

Hewlett-Packard Company - 3 - Version B.l, October 1986

KILL ALL (1M) HP-UX KILLALL (1M)

NAME
killall - kill all active processes

SYNOPSIS
/ ete /killall [signal J

DESCRIPTION

FILES

Killall is a procedure used by jete/shutdown to kill all active processes not directly related to
the shutdown procedure.

Kil/all is chiefly used to terminate all processes with open files so that the mounted file systems
will be unbusied and can be unmounted. Killall sends the specified signal to all user processes in
the system, with the following exceptions:

the init process;

all processes (including background processes) associated with the terminal from which
kil/all was invoked;

any ps -ef process, if owned by root;

any sed -e process, if owned by root;

any shutdown process;

any kil/all process;

any /etc/rc process.

Killall obtains its process information from ps(l), and thus may not be able to perfectly identify
which processes to signal.

If no signal is specified, a default of 9 (kill) is used.

Killall is invoked automatically by shutdown(lM). The use of shutdown is recommended over
using kil/all by itself.

/etc/shutdown

SEE ALSO
fuser(lM), kill(l), ps(l), shutdown(lM), signal(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

LINK(lM) HP-UX

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
fete/link file1 file2
fete/unlink file

DESCRIPTION

LINK(lM)

Link and unlink perform their respective system calls on their arguments, abandoning most error
checking. These commands may only be executed by the super-user.

RETURNS
o - successful link.
1 - input syntax error.
2 - link call failed (unlink will never report failure).

SEE ALSO
rm(l), link(2), unlink(2).

INTERNATIONAL SUPPORT
8-bit filenames.

Hewlett-Packard Company - 1 - Version B.1, October 1986

LPADMIN(IM) HP-UX LP ADMIN (1M)

NAME
Ipadmin - configure the LP spooling system

SYNOPSIS
/usr /lib /lpadmin -p printer [options]
/usr/lib/lpadmin -xdest
/usr /lib/lpadmin -d[destJ

DESCRIPTION
Lpadmin configures LP spooling systems to describe printers, classes and devices. It is used to add
and remove destinations, change membership in classes, change devices for printers, change
printer interface programs and to change the system default destination. Lpadmin may not be
used when the LP scheduler, Ipsched(lM), is running, except where noted below.

Exactly one of the -p, -x or -d options must be present for every legal invocation of Ipadmin.

-pprinter

-xdest

-d[dest]

names a printer to which all of the options below refer. If printer does not exist
then it will be created.

removes destination dest from the LP system. If dest is a printer and is the only
member of a class, then the class will be deleted, too. No other options are
allowed with -x.

makes dest, an existing destination, the new system default destination. If dest
is not supplied, then there is no system default destination. This option may be
used when Ipsched(1M) is running. No other options are allowed with -d.

The following options are only useful with -p and may appear in any order. For ease of discus­
sion, the printer will be referred to as P below.

-cclass

-eprinter

-b

-iinterface

-I

-mmodel

-rclass

-ydevice

Restrictions

inserts printer P into the specified class. Class will be created if it does not
already exist.

copies an existing printer's interface program to be the new interface program for
P.

indicates that the device associated with P is hardwired. This option is assumed
when creating a new printer unless the -I option is supplied.

establishes a new interface program for P. Interface is the pathname of the new
program.

indicates that the device associated with P is a login terminal. The LP scheduler,
Ipsched(lM), disables all login terminals automatically each time it is started.
Before re-enabling P, its current device should be established using Ipadmin.

selects a model interface program for P. Model is one of the model interface
names supplied with the LP software (see Models below).

removes printer P from the specified class. If P is the last member of the class,
then the class will be removed.

associates a new device with printer P. Device is the pathname of a file that is
writable by the LP administrator, Ip. Note that there is nothing to stop an
administrator from associating the same device with more than one printer. If
only the -p and -y options are supplied, then Ipadmin may be used while the
scheduler is running.

When creating a new printer, the -y option and one of the -e, -i or -m options must be sup­
plied. Only one of the -e, -i or -m options may be supplied. The -b and -I key letters are
mutually exclusive. Printer and class names may be no longer than 14 characters and must

Hewlett-Packard Company - 1 - Version B.1, October 1986

LP ADMIN (1M) HP-UX LP ADMIN (1M)

consist entirely of the characters A-Z, a-z, 0-9 and _ (underscore).

Models
Model printer interface programs are supplied with the LP software. They are shell procedures, C
programs, or other executable programs which interface between Ipsched(lM) and devices. All
models reside in the directory /usr/spool/lp/model and may be used as is with Ipadmin -m.
Models should have 644 permission if owned by lp and bin, or 664 permission if owned by bin and
bin. Alternatively, LP administrators may modify copies of models and then use Ipadmin -i to
associate them with printers. See mklp(lM) for details of the printer models provided with your
HP-UX system.

The LP model interface program does the actual printing on the device that is currently associated
with the printer. The LP spooler sets standard in to /dev /null and standard out and standard
error to the device specified in the -v option of Ipadmin. The interface program is invoked then
for printer P from the directory /usr/spool/lp as follows:

interface/P id user title copies options file ...

id is the request returned by Ip.

user is the logname of the user who made the request.

title is the optional title specified with the -t option of lp.

copies is the number of copies to be printed.

options is a blank separated list of class-dependent or printer-dependent options specified with
the -0 option of lp.

file is the full pathname of the file to be printed.

Given the command line arguments and the output directed to the device, interface programs may
format their output in any way they choose.

When the printing is completed, it is the responsibility of the interface program to exit with a
code indicative of the success of the print job. A return value of 0 indicates that the job com­
pleted successfully. Values of 1 to 127 indicate that some error was encountered. This problem
will not effect future print jobs. Ipsched notifies users by mail that there was an error in printing
the request. When problems are detected which are likely to effect future print jobs, the interface
program would be well to disable the printer so that print requests are not lost.

EXAMPLES
Assuming there is an existing Hewlett-Packard 2934A line printer named Ip2, it will use the
hp2934a model interface after the command:

/usr/lib/lpadmin -plp2 -mhp2934a

FILES
/usr/spool/lp/*

SEE ALSO
accept(lM), enable(l), lp(l), Ipsched(lM), lpstat(l), mklp(lM), nroff(l).

INTERNATIONAL SUPPORT
messages.

Hewlett-Packard Company - 2 - Version B.l, October 1986

LPSCHED (1M) HP-UX LPSCHED (1M)

NAME
Ipsched, lpshut, lpmove - start/stop the LP request scheduler and move requests

SYNOPSIS
/usr /lib/lpsched [-v 1
/usr/lib/lpshut
/usr /lib/lpmove requests dest
/usr /lib /lpmove destl dest2

DESCRIPTION

FILES

Lpsched schedules requests taken by lp(1) for printing on line printers. Lpsched(1M) is typically
invoked in jete/reo This creates a process which runs in the background untillpshut is executed.
The activity of the process is recorded in /usr/spool/lp/log. If the -v option is invoked, a ver­
bose record of the lpsched process is captured.

Lpshut shuts down the line printer scheduler. All printers that are printing at the time lpshut is
invoked will stop printing. Requests that were printing at the time a printer was shut down will
be reprinted in their entirety after lpsched is started again. All LP commands perform their func­
tions even when lpsched is not running.

Lpmove moves requests that were queued by lp(1) between LP destinations. This command may
be used only when lpsched is not running.

The first form of the command moves the named requests to the LP destination, dest. Requests
are request ids as returned by lp (1). The second form moves all requests for destination dest1 to
destination dest2. As a side effect, lp (1) will reject requests for dest1.

Note that lpmove never checks the acceptance status (see accept(1M)) for the new destination
when moving requests.

/usr/spool/lp/*

SEE ALSO
accept(1M), enable(1), Ip(1), Ipadmin(1M), Ipstat(1).

INTERNATIONAL SUPPORT
messages.

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKDEV(lM) HP-UX
Series 200, 300, 500 Only

MKDEV(lM)

NAME
mkdev - make device files

SYNOPSIS
/etc/mkdev

REMARKS
This command is implemented as a shell script, and will differ between the different implementa­
tions of HP-UX. This description applies to all versions, and further details will be found in the
commentary in the script.

DESCRIPTION
This shell script helps the superuser install and maintain an HP-UX system. It consists of a
machine-dependent list of commands which create one of each possible type of device file, with
suggested default device addresses. It also creates mount directories for mountable volumes and
changes permissions as appropriate for the device files.

This command makes it easier to build (or rebuild) special files all at once.

Mkdev automatically changes the working directory (using cd) to /dev before starting execution.

Mkdev is specifically intended for modification before (each) use. Command lines for non-desired
devices should be commented out with "#" so that they are still available for later use. You may
want to use shorter device names than those suggested, especially for default devices. For HP-UX
naming conventions, see intro(7).

SEE ALSO
chmod{l), mkdir{l), mknod{lM), intro(7).

DIAGNOSTICS
Each command line in mkdev is echoed as it is executed. Error messages, if any, are generated
by the commands invoked.

Since the super-user must modify this script before using it the first time, an error is given if it
has not been modified.

AUTHOR
Mkdev was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKFS[HFS] (1M) HP-UX
Series 200, 300, 800 Only

MKFS[HFS] (1M)

NAME
mkfs - construct a file system

SYNOPSIS
/ete/mkfs special size [nsect ntrack blksize fragsize ncpg minfree rps nbpi]
/ete/mkfs special proto [nsect ntrack blksize fragsize ncpg minfree rps nbpi]

REMARKS
HFS file systems are normally created with the newfs(IM} command.

DESCRIPTION
Mkfs constructs a file system by writing on the special file special. size specifies the number of
DEV -BSIZE blocks in the file system. Mkfs builds a file system with a root directory and a
lost+found directory. (see fsck(IM)} The FS_CLEAN magic number for the file system is stored
in the super block.

The optional arguments allow fine tune control over the parameters of the file system.

N sect specifies the number of sectors per track on the disk.

Ntraek specifies the number of tracks per cylinder on the disk.

Blksize gives the primary block size for files on the file system. It must be a power of two,
currently selected from 4096 or 8192.

Fragsize gives the fragment size for files on the file system. The fragsize represents the smallest
amount of disk space that will be allocated to a file. It must be a power of two currently selected
from the range DEV -BSIZE to MAXBSIZE.

Nepg specifies the number of disk cylinders per cylinder group. This number must be in the
range 1 to 32.

Minfree specifies the minimum percentage of free disk space allowed. Once the file system capa­
city reaches this threshold, only the super-user is allowed to allocate disk blocks. The default
value is 10%. If a disk does not revolve at 60 revolutions per second, the rps parameter may be
specified. nbpi specifies the number of data bytes (amount of user file space) per inode slot. The
number of inodes is calculated as a function of the file system size. If nbpi is not valid, its value
defaults to 2048.

If the second argument is a file name that can be opened, mkfs assumes it to be a prototype file
proto, and will take its directions from that file. The prototype file contains tokens separated by
spaces or new lines. The first token is the name of a file to be copied onto block zero as the
bootstrap program (usually /etc/BOOT). If the name of a file is "" then it is ignored. The
second token is a number specifying the number of DEV -BSIZE byte blocks in the file system.
The next tokens comprise the specification for the root directory. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syntax
of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters -bed specify regular, block special, character special and directory files respec­
tively.) The second character of the type is either u or - to specify set-user-id mode or not. The
third is g or - for the set-group-id mode. The rest of the mode is a three digit octal number giv­
ing the owner, group, and other read, write, execute permissions, see chmod(I}.

Two decimal number tokens come after the mode; they specify the user and group ID's of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKFS[HFS) (1M) HP-UX
Series 200, 300, 800 Only

MKFS[HFS) (1M)

If the file is a directory, mkfs makes the entries. and .. and then reads a list of names and (recur­
sively) file specifications for the entries in the directory. The scan is terminated with the token •.

A sample prototype specification follows:

/etc/BOOT
4872
d-77731
usr d-7773 1

sh -755 3 1 /bin/sh
ken d-7556 1

$
bO b--644 3 1 0 0
cO c---644 3 1 0 0
$

$

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

AUTHOR
Mkfs{HFSJ was developed by the Hewlett-Packard Company, and the University of California,
Berkeley California, Computer Science Division, Department of Electrical Engineering and Com­
puter Science.

SEE ALSO
chmod(l), dir(4), fs[HFS](4), fsck[HFS](lM), fsclean(lM), newfs[HFS](lM).

BUGS
No way to specify links in the proto file.

Hewlett-Packard Company - 2 - Version B.1, October 1986

MKLP{lM) HP-UX MKLP{lM)

NAME
mklp - configure the LP spooler subsystem

SYNOPSIS
/etc/mklp

REMARKS
This command is implemented as a shell script, and will differ between the different implementa­
tions of HP-UX. This description applies to all versions, and further details will be found in the
commentary in the script.

DESCRIPTION
This shell script helps the superuser configure the printers into the LP spooler which are sup­
ported on the particular HP-UX system. The administration of all printers in the LP spooler sub­
system is similar, however in general there are options made available by the printer model which
differ from printer to printer. These are described within the mklp script itself.

This command makes is easier to configure the LP spooler all at once. If desired, it can also be
used to rebuild the subsystem.

While the mklp script gives some indication as to how the device special files are to be defined,
the mkdev script should also be used in determining the major and minor number.

Mklp is specifically intended for modification before (each) use. Command lines for printers
which will not be used should be commented out with "#" so that they are still available for later
use.

DIAGNOSTICS
Each command line in mklp is echoed as it is executed. Error messages, if any, are generated by
the commands invoked.

Since the super-user must modify this script before using it the first time, an error is given if it
has not been modified.

AUTHOR
Mklp was developed by the Hewlett-Packard Company.

SEE ALSO
chmod(l), mkdev(l), mknod(lM).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MKNOD(lM) HP-UX MKNOD(lM)

NAME
mknod - create special and fifo files

SYNOPSIS
/etc/mknod name c I b major minor
/etc/mknod name p
/etc/mknod name n nodename

DESCRIPTION
Mknod makes a directory entry and corresponding inode for a special file. Name is the path name
of the special file to be created.

In the first SYNOPSIS line shown, the second argument should be b if the special file is block­
type (disks, tape), or c if it is character-type (other devices). Major and minor are numbers
specifying the major device type (e.g. device driver number) and the minor device number (typi­
cally, but not exclusively, the unit, drive, HP-IB bus address and/or line number). The assign­
ment of major and minor device numbers is specific to each HP-UX system. Major and minor
may be specified in any of hexadecimal, octal, or decimal, using the C language conventions
(Decimal numbers must not have a leading zero, octal must have a leading zero, and hexadecimal
must have a leading zero followed by 'x'.)

Mknod can also be used to create fifo's (a.k.a named pipes) (second case in SYNOPSIS above).

Mknod can also be used to create a network special file (third case in SYNOPSIS above). A net­
work special file addresses another node on a local area network. Nodename is the name by which
the node is known on the network.

A real ID of 0 (super-user) is required on the first and third synopsis shown above. All users may
use mknod in the form shown in the second synopsis.

The newly created file has a mode of 0666, as modified by the current setting of the user's umask.

HARDW ARE DEPENDENCIES
Integral PC

Creation of network special files using the form of mknod shown in the third line of
SYNOPSIS is not supported.

SEE ALSO
Isdev(lM), mknod(2), mknod(4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKRS(lM) MKRS(lM)
Series 300, and 500 Only

NAME
mkrs - construct a recovery system

SYNOPSIS
/etc/mkrs [-v 1 [-f recoverydevice 1 [-r rootdevice 1 [-t type 1 [-m machinetype 1

Remarks:
This page describes mkrs as implemented on Series 300, and 500 computers.

DESCRIPTION
Mkrs constructs a recovery system on removable media, providing the user with the capability of
booting from and rooting to the recovery system. If a system is unbootable due to a corrupt root
disc, the user can boot the recovery system and use the tools it provides to repair the corrupt
disc.

Mkrs uses both block special and character special files for both the root device and the recovery
system device. All four special files must exist for mkrs to work.

The following options are recognized:

-v

-f recoverydevice

-r rootdevice

-t type

-m machinetype

Normally, mkrs does its work silently. The v (verbose) option prints a
running history of the construction process.

identifies the block special device file on which the recovery system will be
written. The default is ct which selects special files /dev/ct and /dev/rct.

is the name of the block special device file of root file system for which the
recovery system is being built to protect. The default is hd which selects
special files /dev/hd and /dev/rhd.

-t type specifies the type of removable media on which the recovery sys­
tem is to be built. Type can be either ct specifying cartridge tape or md
specifying 3.5-inch double-sided, double-density micro disc. If md is
selected, two micro discs are required to contain the recovery system and
you will be prompted when to change discs. The default is ct.

specifies which type of machine (Series 300, or 500) is running this
software. Normally, mkrs will properly identify the machine type. This
option can be used if your machine does not identify itself to mkrs.

HARDW ARE DEPENDENCIES
Series 300: The recovery system uses the swap area of the system being repaired for its swap
space.

Series 500: The recovery system can only be built on cartridge tape; micro discs are not sup­
ported.

SEE ALSO

BUGS

oscp(IM), sdfinit(IM), rootmark(IM), osck(IM), config(IM), mkfs(IM), and the
HP-UX System Administrator Manual.

Incorrectly specifying the recovery device may cause file system damage during recovery system
construction.

WARNING
The recovery system provides super-user capabilities. It is recommended that the system adminis­
trator have exclusive responsibility for its use.

Hewlett-Packard Company - 1 - October 1986

MOUNT[HFSj (1M) HP-UX
Series 200, 300, BOO Only

MOUNT[HFSj (1M)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
jete/mount [special directory [-r I [-f I I
jete/mount -a

/ete/umount special
/ete/umount -a

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special.
The directory must exist already; it becomes the name of the root of the newly mounted file sys­
tem. Directory must be given as an absolute path name.

These commands maintain a table of mounted devices in /etc/mnttab. If invoked with no argu­
ments, mount prints the table.

The optional argument -r indicates that the file system is to be mounted read-only. Physically
write-protected file systems must be mounted in this way or errors will occur when access times
are updated, whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previously mounted on device
special is to be removed.

The -f option indicates that the file system should be mounted even if the file system clean Hag
indicates that the file system should be fsck'ed before mounting.

If the -a option is present for either mount or umount , and all of the optional fields in
/etc/checklist are included and supported, all of the file systems described in /etc/checklist are
attempted to be mounted or dismounted. In this case, special and directory are taken from
/etc/checklist. The special file name used is the block special name from /etc/checklist.

DIAGNOSTICS
Attempts to mount a currently-mounted volume under another name will result in an error
[EBUSYJ.
Special and directory names recorded in /etc/mnttab are truncated to MNTLEN bytes.

Umount complains if the special file is not mounted or if it is busy. The file system is busy if it
contains an open file or some user's working directory.

HARDWARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

WARNINGS

FILES

Some degree of validation is done on the file system, however it is generally unwise to mount gar­
bage file systems.

/etc/checklist file system table
/etc/mnttab mount table

AUTHOR
Mount[HFSJ was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
fsclean{lM), mount(2), mnttab(4), checklist(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MOUNT[NON-HFSJ (1M) HP-UX
Series 500 Only

MOUNT[NON-HFSJ (1M)

NAME
mount, umount - mount and unmount file system

SYNOPSIS
jete/mount [special directory [-r] [-f]]

/ete/umount special

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special.
The directory must exist already; it becomes the name of the root of the newly mounted file sys­
tem. Directory must be given as an absolute path name.

These commands maintain a table of mounted devices. If invoked with no arguments, mount
prints the table.

The -r option indicates that the file is to be mounted read-only. Physically write-protected and
magnetic tape file systems must be mounted in this way or errors will occur when access times are
updated, whether or not any explicit write is attempted.

The -f option indicates that the file system should be mounted even if the file system clean flag
indicates that the file system should be fsck'ed before mounting.

Umount announces to the system that the removable file system previously mounted on device
special is to be removed.

HARDW ARE DEPENDENCIES

FILES

The Structured Directory Format file system, SDF, is implemented on Series 500. The BFS (Bell
File System) file system is implemented on the Integral PC and on Series 200 prior to HP-UX
Release 5.0.

Series 500:
Warning: if virtual memory is brought up on a volume other than the root volume, and if
that volume is then mounted, it cannot be unmounted.

/etc/mnttab mount table

SEE ALSO
mount(2), mnttab(4).

DIAGNOSTICS

BUGS

Attempts to mount a currently-mounted volume under another name will result in an error
[EBUSY].

If an attempt to read and (partially) verify the disk label information fails, the mount will fail.

Umount complains if the special file is not mounted or if it is busy. The file system is busy if it
contains an open file or some user's working directory.

Some degree of validation is done on the file system, however it is generally unwise to mount gar­
bage file systems.
The third parameter may be anything which has the effect of -r.
An error will occur if mnttab does not exist.
Names are truncated to MNTLEN bytes (see mnttab(4)).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MVDEVS(lM) MVDEVS(lM)
Series 300 and 500 Release 5.2 Only

NAME
mvdevs - move mass storage device files to /dev subdirectories

SYNOPSIS
/etc/mvdevs [-iv1u]

Remarks:
This command is supported only on the Series 300, and is intended as a one time tool to assist in
adopting the new device naming conventions for magnetic storage devices.

DESCRIPTION
This command is provided to assist the HP-UX system administrator in relocating device files for
magnetic storage media (hard and floppy disks, magnetic and cartridge tapes) to the newly sup­
ported device subdirectories /dev/[r]dsk, /dev/rmt, /dev/[r]ct. The command creates the new
directories, taking care not to destroy existing device files with the same names, and moves all
supported magnetic storage devices to these new locations, renaming them with the newly
adopted naming conventions for HP-UX devices as it does so.

A full discussion of the new naming convention is contained in intro(7), disk(7) , ct(7), mt(7) and
in the HP-UX System Adminstrator Manual.

This command also automatically edits the /etc/backup and /etc/backupf scripts as well as the
/etc/checklist data file, changing all occurances of the old names to the new ones. It also leaves a
script, /etc/sed.mvdevs, which can be used to perform the same editing function on any user­
written files that depend upon the absolute names of device files. To edit user-written files using
the sed script, execute the sed command as follows:

sed -f /etc/sed.mvdevs source_file> desLfile

This command copies source_file to desLfile, changing any occurrences of old device file names
so that they conform to the new file naming convention.

Mvdevs attempts to retain the function of specific devices. For example, /dev/rmt8 (the old
default device for the tar(l) command) is moved to /dev/rmt/Om (the new default device for tar).
Similarly, /dev/rmt12 is moved to /dev/rmt/Omn, the new default for the mt(l) command.

Mvdevs interogates CS/80 and SS/80 mass storage devices to determine their type, then selects a
subdirectory for placement. For this reason, devices should be connected and power applied
before running this program.

\Vhile it is not mandatory that mvdevs be used to move devices, it is strongly recommended
because the old device locations in /dev are considered obsolete and some commands may not
work with them in future releases.

The options are:

-i Move files in interactive mode. The user is asked to verify each move. If the default
name is not acknowledged, the user is prompted to provide a name, skip the file, or abort
the program.

-v Verbose mode. Print out details of all actions taken.

-1 Use long names instead of the short names. Devices will be assigned the full name
described in Section 4 of the HP-UX Reference. For example, disk /dev/hdl with a
minor number of OxOe0200 will be moved to /dev/dsk/c1402dOsO instead of
/de v/dsk/l sO. Note that /dev/root will still be moved to /dev/dsk/OsO, since its minor
number is derived at boot time. Use of this option defeats the rational naming of mag­
netic tape devices expected by tar{l) and mt(l).

-u Undo all changes made by the last previously executed mvdevs command. Mvdevs main­
tains a log of all changes made in file /etc/mvdevs.log. The contents of that file are then
used by the -u option to reverse the previous changes. If the file does not exist or is

Hewlett-Packard Company - 1 - March 1987

MVDEVS(lM) MVDEVS(lM)

FILES

Series 300 and 500 Release 5.2 Only

empty, no changes are made.

/etc/sed.mvdevs File containing sed commands that can be used to edit user files containing refer­
ences to device files that were changed by the mvdevs command.

/etc/mvdevs.log File containing a record of all changes made by mvdevs command. This file is
used by the -u option when reversing changes from a previous mvdevs command.
The -u option removes this file when finished.

SEE ALSO
intro(7), disk(7), ct(7), mt(7), sed(1).
HP-UX System Adminstrator Manual.

Hewlett-Packard Company - 2 - March 1987

MVDIR(lM) HP-UX MVDIR(lM)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dir newdir

DESCRIPTION
Mvdir moves one directory tree into another existing directory (within the same file system), or
renames a directory without moving it.

Dir must be an existing directory.

If newdir does not exist but the directory that would contain it does, dir is moved and/or
renamed to newdir. Otherwise, newdir must be an existing directory not already containing an
entry with the same name as the last pathname component of dir. In this case, dir is moved and
becomes a subdirectory of newdir. The last pathname component of dir is used as the name for
the moved directory.

Mvdir will refuse to move dir if the path specified by newdir would be a descendant directory of
the path specified by dir. (For example, mvdir x/y x/y/z/t is prohibited.) Such cases are not
allowed because cyclic sub-trees would be created.

Mvdir will not allow "." to be moved.

Only the super-user can use mvdir.

WARNINGS
The restriction on names is intended to prevent the creation of cyclic sub-trees that may be inac­
cessible. Mvdir checks for such cases strictly by name, thus creating such a sub-tree is still pos­
sible. For example, "mvdir x/y x/y/z/t" will report an error, but "mvdir x/y ./x/y/z/t"
(effectively the same command) will not, and a cyclic sub-tree will result. The super-user is cau­
tioned to be very careful in the use of the names "." and" .. " while moving directories. It is pos­
sible to move "." by using another name which specifies the current working directory, for exam­
ple, "mvdir ./subdir/ .. newdir".

SEE ALSO
mkdir{l), cp{l).

INTERNATIONAL SUPPORT
8-bit filenames.

Hewlett-Packard Company - 1 - Version B.1, October 1986

NCHECK[NON-SDF] (1M)

NAME

HP-UX
Series 200, 300, 800 Only

ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-1 numbers I [-a I [--s I [file-system I

MARKETING MODEL
Level C

TECHNICAL MODEL
Large Machine
svm

DESCRIPTION

NCHECK[NON-SDF] (1M)

Ncheck with no argument generates a path-name vs. i-number list of all files on the volumPA'l
specified by the file /etc/checklist. Names of directory files are followed by / .. The options are
as follows:

-i reduces the report to only those files whose i-numbers are specified on the com­
mand line in the numbers list.

-a allows printing of the names. and .. , which are ordinarily suppressed.

--s reduces the report to special files and files with set-user-ID mode; it is intended
to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sort{l), fsck[BFS](lM), fsck[HFS](lM), checklist(4).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the "parent" of a parent less file and a
path-name beginning with ..• denotes a loop.

INTERNATIONAL SUPPORT
8-bit filenames.

Hewlett-Packard Company - 1 - Version B.1, October 1986

NEWFS[HFS] (1M) HP-UX
Series 200, 300, 800 Only

NEWFS[HFS] (1M)

NAME
newfs - construct a new file system

SYNOPSIS
/etc/newfs [-n 1 [-v 1 [mkfs-options 1 special disk-type

DESCRIPTION

FILES

New/s is a "friendly" front-end to the mk/s(IM) program. New/s will look up the type of disk a
file system is being created on in the disk description file /etc/disktab, calculate the appropriate
parameters to use in calling mk/s, then build the file system by forking mk/s and, if the file system
is a root section, install the necessary bootstrap programs in the initial 8192 bytes of the device.
The -n option prevents the bootstrap programs from being installed. special is the character
special file for the disk and disk-type is the type of the disk as specified in /etc/disktab.

If the -v option is supplied, newts will print out its actions, including the parameters passed to
mk/s.

Options which may be used to override default parameters passed to mk/s are:

-i;I size The size of the file system in DEV ---.BSIZE blocks.

-b block-size The block size of the file system in bytes.

-f frag-size The fragment size of the file system in bytes.

-t #tracks/cylinder
The number of tracks per cylinder.

-c #cylinders/group
The number of cylinders per cylinder group in a file system. The default value
used is 16.

-m free space %
The percentage of space reserved from normal users; the minimum free space
threshold. The default value used is 10%.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-i number of bytes per inode

/etc/disktab

This specifies the density of inodes in the file system. The default is to create an
inode for each 2048 bytes of data space. If fewer inodes are desired, a larger
number should be used; to create more inodes a smaller number should be given.

for disk geometry and file system section information

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

Series 800
New/s will not install bootstrap programs in a root section since the boot programs are kept
in a separate section.

AUTHOR
New/s was developed by the University of California, Berkeley.

SEE ALSO
fsck[HFS)(IM), mkfs[HFS)(IM), tunefs[HFS)(lM), disktab[HFS)(4), fs[HFS)(4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

OPX25(lM) HP-UX OPX25(lM)

NAME
opx25 - execute HALGOL programs

SYNOPSIS
opx25 [-fscriptname 1 [-cchar 1 [-Qfile-descriptor 1 [-ifile-descriptor 1 [-nstring 1 [-d 1 [-y 1

DESCRIPTION
HALGOL is a simple language for communicating with devices such as modems and X.25 PADs.
It has simple statements like 'send xxx' and 'expect yyy' that are described below.

Options:

-f script

-c char

Causes opx25 to read script as the input program. If -f is not specified then opx25 reads
stdin for the script.

Causes opx25 to use 'char' as the first character in the input stream instead of actually
reading it from the input descriptor. This is useful sometimes when the program that calls
opx25 is forced to read a character but then cannot "unread" it.

-Q number
Causes opx25 to use 'number' for the output file descriptor (ie, the device to use for
'send'). The default is l.

-i number
Causes opx25 to use 'number' for the input file descriptor (ie, the device to use for
'expect'). The default is O.

-n string
Causes opx25 to save this string for use when "\#" is encountered in a "send" command.

-d Causes opx25 to turn on debugging mode.

-y Causes opx25 to turn on verbose mode.

An opx25 script file contains lines of the following type:

(empty)
Empty lines are ignored.

/ Lines beginning with a slash "r are ignored (comments)

ID ID denotes a label. ID is limited to alphanumerics or "_".

send STRING
STRING must be surrounded by double quotes. The text is sent to the device specified
by the -0 option. Non-printable characters are represented as in C, ie, as \DDD, where
DDD is the octal ascii character code. "\#" in a send string is the string that followed
the -n option.

break Send a break "character" to the device.

expect NUMBER STRING
Here NUMBER is how many seconds to wait before giving up. 0 means wait forever, but
this isn't advised. Whenever STRING appears in the input within the time allotted, the
command succeeds. Thus, it isn't necessary to specify the entire string. For example, if
you know that the PAD will send several lines followed by a "@" prompt, you could just
use "@" as the string.

run program args
The program (sleep, date, whatever) is run with the args specified. Don't use quotes here.
Also, the program is invoked directly (with execp), so wild cards, redirection, etc. are not
possible.

Hewlett-Packard Company - 1 - Version B.l, October 1986

OPX25(lM) HP-UX OPX25(lM)

error ID
If the most recent expect or run encountered an error, go to the label ID.

exec program args
Like run, but doesn't fork.

echo STRING
Like send, but goes to stderr instead of to the device.

set debug
Sets the program in debug mode. It echoes each line to /tmp/opx25.log, as well as giv­
ing the result of each expect and run. This can be useful for writing new scripts. The
command "set nodebug" will turn off this feature.

set log Sends subsequent incoming characters to /usr/spool/uucp/X25LOG. This can be used
in the *.in file as a security measure, since part of the incoming data stream contains the
number of the caller. There is a similar feature in getx25; it writes the time and the login
name into the same logfile. The command "set nolog" will turn off this feature.

set numlog
Like "set log", only better in some cases, since it sends only digits to the log file, and not
other characters. The command "set nonumlog" will turn off this feature.

timeout NUMBER
Sets a global timeout value. Each expect uses time in the timeout reservoir; when this
time is gone, the program gives up (exit 1). If this command isn't used, there is no global
timeout. Also, the global timeout can be reset any time, and a value of 0 turns it off.

exit NUMBER
Exits with this value. 0 is success, anything else is failure.

You can test configuration files, sort of, by running

SEE ALSO

opx25 by hand, using the argument "-f" followed by the name of the script file. The pro­
gram in this case sends to, and expects from, standard output and input, so you can type
the input, observe the output, and see messages with the "echo" command. See the file
/usr/lib/uucp/X25/ventel.out for a good example of Halgol programming.

getx25(1), uucp(l).

AUTHOR
Opx25 was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 2 - Version B.1, October 1986

OSCK(lM) OSCK(lM)
Series 500 Only

NAME
osck - check integrity of OS in SDF boot area(s)

SYNOPSIS
/etc/08ck [-v 1 volume

Remarks:
Dsck is implemented on the Series 500 only.

DESCRIPTION
Dsck checks the operating system in the boot area on the volume specified by volume (a character
specip.l file).

The OSF must be the first section of an n-section operating system. If n is greater than one, osck
prompts for additional volumes as needed. The volumes must be mounted in order.

The -v (verbose) option causes osck to print additional information about each volume and each
code segment as they are encountered. If -v is not specified, it is silent except for warnings,
errors, and prompts for new volumes.

Dsck checks the following:

SEE ALSO

OSF headers are valid and consistent across multiple volumes;

the first code segment is a power-up segment;

the code segment chain contains correct headers and lengths;

all segment checksums are correct;

the system terminates correctly after the last segment.

oscp(IM), osmark(IM), osmgr(IM), sdfinit(IM).

DIAGNOSTICS
Dsck gives an appropriate error message and returns a non-zero value if volume cannot be
accessed or is not an SDF volume, there is no boot area, or the boot area contents appear invalid.
Error messages are also given if any integrity violation is found. See osmgr(IM) for a complete
list of return values.

Hewlett-Packard Company - 1 - October 1986

OSCP(lM) OSCP(lM)
Series 500 Only

NAME
oscp - copy, create, append to, split operating system

SYNOPSIS
/etc/08cp [-0 1 [-y 1 fromvolume tovolume
/etc/08cp -m [-y 1 file ... tovolume
/etc/08cp -a [-y 1 file ... tovolume
/etc/08cp -s [-y 1 fromvolume
/etc/08cp -f [-y 1 fromvolume tofile

Remarks:
Oscp is implemented on the Series 500 only.

DESCRIPTION
Oscp enables you to perform:

boot-to-boot copy
Copy an operating system from the boot areas on one or more SDF volumes to the boot
area on one SDF volume;

files-to-boot copy (-m, -a options)
Create a new operating system or append to an existing operating system from a list of ordi­
nary files, and put the resulting system in one boot area;

boot-to-files copy (-s option)
Split up the segments in an operating system from one or more boot areas to one or more
ordinary files.

boot-to-file copy (-f option)
Split up the segments in an operating system from one or more boot areas to a single ordi­
nary file.

Fromvolume and tovolume are usually character special files.

Boot-to-Boot Copy
If -m, -a, -s, and -f are not specified, oscp does boot-to-boot copy. For normal, multi-volume
boot-to-boot copy, oscp requires that the OSF on the first fromvolume be the first section of an
n-section operating system. If n is greater than one, oscp prompts you for additional volumes as
required. The additional volumes must be mounted in order.

Before starting the copy. oscp clears the OSF header on tovolume. The OSF header values are
corrected on tovolume after the copy is done. This new header may include a new system ID
string that you enter when you are prompted (the same ID string displayed by the boot loader).

The -0 (one volume only) option tells oscp to copy only one OSF (which may be part or all of a
system) from fromvolume to tovolume, without changing the OSF header.

The -y (verbose) option tells oscp to print additional information about each volume as it is
encountered. Otherwise, oscp is silent except for warnings, errors, and prompts for new volumes
and new system ID strings.

Files-to-Boot Copy
If the -m (merge) option is given, oscp does a files-to-boot copy from the specified files. The
source files may be BASIC/9OO0 BIN files or HP-UX ordinary files. The files must all be accessible
and contain valid code segments. The code segments must all be of the same system type. The
last code segment in each file must be followed by two null bytes.

Note that segments of unknown type, and old power-up segments (before February 1983) are
"generic donors", and may be merged with any other type. Also note that, when creating a new
system, oscp uses the first OSF header magic number in its internal list (Le. 0xE9C28206).

Hewlett-Packard Company - 1 - October 1986

OSCP(lM) OSCP(lM)
Series 500 Only

Once you enter the new system ID string, oscp destroys the old OSF (if any) in the boot area
before writing the new system.

The -a (append) option allows you to append code segments from ordinary files to an existing
OSF on tovolume. There must be enough unused space in the boot area after the OSF, and the
OSF must be a complete system in itself (i.e. volume 1 of 1). The existing OSF is not invalidated
until the last segment is copied to the boot area.

In conjunction with -m or -a, the -v (verbose) option gives you additional information about the
boot area and each segment as it is encountered.

Boot-to-Files Copy
The -s (split) option allows you to split an operating system into one or more ordinary files (HP­
ux ordinary files only, not BASIC BIN files). For each code segment in the operating system, you
are prompted for a file name to which the code segment is appended. If you enter a null line, the
code segment is appended to the same file as was used in the previous append operation.

If the size of the specified file is greater than zero, OScp backs up two bytes from the end of the file
to overwrite the previous terminator before appending the code segment to the file.

The -v (verbose) option gives you additional information about the boot area and each segment
as it is encountered.

Note that the resulting ordinary files may be owned by the owner of the OScp command, depend­
ing on its permissions.

Boot-to-File Copy
The -f option allows you to split an operating system into a single ordinary file (tofile), eliminat­
ing any user interaction (except possibly to change certain types of media, if that is where the
boot area is located). Otherwise, this option behaves exactly like the -s option.

Copying to Boot Areas
Before beginning the copy, OScp prompts you for the 80-character operating system ID string to
use for all volumes.

Before writing to tovolume, OScp first checks that it contains a boot area with sufficient unused
space.

SEE ALSO
osck(IM), osmark(IM), osmgr(IM), sdfinit(IM).

DIAGNOSTICS

BUGS

Oscp prints an appropriate error message and returns a non-zero value if fromvolume or tovolume
cannot be accessed or is not an SDF volume, there is no boot area, the boot area contents appear
invalid, or the source OSF is not section 1 of an n-section system.

Errors are also given if:
fromvolume and tovolume are the same (by name);
fromvolumes are mounted out of order;
a specified ordinary file is inaccessible or has invalid contents;
the first segment is not a power-up segment;
any segment has a mismatching system type.

See osmgr(IM) for the exact list of return values.

OSCp -a checks that all appended segments are mutually compatible, but it does not check them
against the segments in the existing OSF.

Hewlett-Packard Company - 2 - October 1986

OSCP(lM) OSCP(lM)
Series 500 Only

Performing an 08CP -a to a boot area with less than 1024 free bytes results in an error before the
copy completes.

Before appending, 08CP -8 backspaces over the existing two-nulI-byte terminator at the end of
each ordinary file, but it does not check that the bytes overwritten were actually two null bytes.

A boot area of less the 1024 bytes, at the end of a volume, results in a read error.

Hewlett-Packard Company - 3 - October 1986

OSMARK(lM) OSMARK(lM)
Series 500 Only

NAME
osmark - mark SDF volume boot area as loadable/non-Ioadable

SYNOPSIS
/etc/osmark [-m I -u J [-v J volume

Remarks:
Osmark is implemented on the Series 500 only.

DESCRIPTION
Osmark marks an operating system file (OSF) in a boot area as loadable (-m option) or non­
loadable (-u option). Volume is usually a character special file specifying the SDF volume on
which the boot area is found.

If neither -m nor -u are specified, osmark reports the status of the OSF.

The -v (verbose) option causes osmark to print additional information about the volume in the
same format as that used by osck and oscp.

When dealing with a multi-volume operating system, be sure that each OSF in the system is
properly marked, not just the first.

SEE ALSO
osck(1M), oscp(1M), osmgr(1M).

DIAGNOSTICS
Osmark outputs an appropriate error message and returns a non-zero value if filespec cannot be
accessed or is not an SDF volume, there is no boot area, or the boot area contents appear invalid.
Refer to osmgr(1M) for a list of possible return values.

Hewlett-Packard Company - 1 - October 1986

OSMGR(lM) OSMGR(lM)
Series 500 Only

NAME
osmgr ~ operating system manager package description

Remarks:
This entry describes the operating system manager package, which is implemented on the Series
500 only.

DESCRIPTION
This group of three commands helps you manage the operating systems which reside in the boot
areas on your Structured Directory Format (SDF) volumes. The package includes:

oscp
osck

copy systems or create them from ordinary files;
check operating system integrity;

osmark mark an operating system file as loadable or not loadable, or inquire about current
state of operating system file.

Oscp, osck, and osmark are· multiple links to a single program.

Boot Areas:
Each SDF volume has one boot area consisting of zero or more contiguous logical blocks. The
boot area is completely outside the file area. Its size is determined when the volume is initialized.
To change the size of a boot area, you must re-initialize the volume.

Each boot area may contain at most (one part of) one operating system.

The logical block size for a boot area is the same as that for the rest of the volume (i.e., whatever
size you request when you initialize the volume).

Operating Systems:
Every HP 9000 operating system consists of a series of code segments. An operating system may
reside in the boot area on one volume, or it may be distributed in sections over several volumes
(not necessarily with a whole number of segments per volume).

An operating system can also reside in a number of ordinary files, each containing a whole number
of segments, and terminated by two null bytes. This is the same format used for BASIC/9000 BIN
files. In this form, the system is not loadable, but its files can be combined into a loadable system
by oscp.

Operating System Files:
Each boot area contains zero or one operating system files (OSF's). If an operating system resides
in sections in several boot an'as, each section occupies one OSF on one SDF volume.

Operating System File Headers:
Each OSF starts with a header that includes a "loadable" flag, a volume number, and the total
number of volumes over which this operating system is distributed. The loader only boots an
OSF if it is marked loadable. If required, it requests additional volumes until it has loaded from
all volumes in the set. You should ensure that all parts of a multi-volume operating system are
marked loadable.

Each OSF header also includes an 80-character identification string. The loader displays this
string before it starts to load from each volume.

RETURN VALUES
The following list contains all the possible return values, mnemonics, and meanings given by OS
manager commands:

a
1 USAGE
2 FILESYS
3 VOLSEQ

no error;
bad argument list;
error during file system access;
volumes mounted out of order;

Hewlett-Packard Company - 1 - October 1986

OSMGR(lM)

4 VOLCONT
5 HEADER
6 FIRSTSEG
7 SEGTYPE
8 SEGLEN
9 CHECKSUM
10 TERM

SEE ALSO

Series 500 Only

bad volume (not SDF, no boot area, etc.);
invalid or inconsistent OSF header(s);
first segment is not a power-up segment;
incompatible segment system types or revisions;
segment length out of range or not whole words;
segment checksum does not match reference value;
system terminator ("-1" word) missing.

osck(IM), oscp(IM), osmark(IM), sdfinit(IM).

Hewlett-Packard Company - 2 -

OSMGR(lM)

October 1986

PDC(lM) PDC(lM)
Series 800 Only

NAME
pdc - processor dependent code (finnware)

DESCRIPTION
Pdc is the finnware that implements all processor dependent functionality including initialization
and self-test of the processor. Upon completion it loads and transfers control to the initial system
loader (isl{1M)).

In order to load isl from an external medium, pdc must know the particular device on which isl
resides. Typically the device is identified by the Primary Boot Path that is maintained by pdc. A
path specification is a series of decimal numbers separated by periods that gives the various card
and slot numbers and addresses. For the Model 840, the first number is the MID-BUS module
number (i.e. slot number times four) and the next the CIO slot number. If the CIO slot contains
an HP-IB card, the next number is the HP-IB address, followed by the unit number of the device
if the device supports units. If the CIO slot contains a tenninal card, the next number is the port
number, which must be zero for the console.

When the processor is reset, after initialization and self-test are complete, pdc announces the Pri­
mary Boot, Alternate Boot, and Console Paths. If autoboot (see isl{1M)) is enabled then pdc
gives a 10 second delay in which the operator may override the autoboot sequence by entering any
character on the console. If the autoboot sequence is overriden or not enabled in the first place,
pdc interactively prompts the operator for the Boot Path to use. Any required path components
that are not supplied default to zero. The Primary Boot, Alternate Boot, and Console Paths and
autoboot enable may be modified via isl.

SEE ALSO
boot{1M), hpuxboot{1M), isl(1M).

Hewlett-Packard Company - 1 - December 1986

PWCK(lM) HP-UX PWCK(lM)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
/ete/pwek [file]
/ete/grpck [IDe]

DESCRIPTION

FILES

Pwck scans the password IDe and notes any inconsistencies. The checks include validation of the
number of fields, login name, user ID, group ID, and whether the login directory and optional pro­
gram name exist. The criteria for determining a valid login name are taken from HP-UX System
Administrator's Manual for your system. The default password file is /ete/passwd.

Grpck verifies all entries in the group file. This verification includes a check of the number of
fields, group name, group ID, and whether all login names appear in the password file. The default
group file is jete/group.

jetcjgroup
jetcjpasswd

SEE ALSO
group(4), passwd(4).

DIAGNOSTICS
Group entries in / ete / group with no login names are flagged.

Hewlett-Packard Company - 1 - Version B.1, October 1986

REBOOT(lM) HP-UX REBOOT(lM)
Series 200, 300, 800 Only

NAME
reboot - reboot the system

SYNOPSIS
fete/reboot [-h I -r 1 [-n I --s 1 [-d device 1 [-f liLfilename 1 [-t time 1 [-m
message 1

DESCRIPTION
Reboot terminates all currently executing processes, except those essential to the system, then
halts or reboots the system. Reboot with no arguments syncs all disks before rebooting the sys­
tem. The options are:

-h shutdown the system and halt.

-r

-n

--s

-d device

shutdown the system and reboot automatically. (default)

do not sync the file systems before shutdown.

sync the file systems before shutdown; for file systems which were cleanly mounted,
modify the fs_clean flag from FS_OK to FS_CLEAN. (default)

reboot from the specified device. The device must be a lif volume. This option can­
not be used with -h.

-f lif_filename

-t time

reboot from the specified file. If the filename is the NULL string, the power up
search sequence will be made for a system. Otherwise, the filename has to follow the
Iif filename convention. This option cannot be used with -h.

the time when reboot will bring the system down. Time may be the word now
(indicating immediate shutdown) or specify a future time in one of two formats:
+number and hour:min. The first form brings the system down in number minutes
and the second brings the system down at the time of day indicated (as a 24-hour
clock).

-m message At intervals that get closer together as reboot time approaches, message is displayed
at the terminals of all users on the system.

At shutdown time a message is written in the file /usr/adm/shutdownlog(ifitexists), contain­
ing the time of shutdown, who ran reboot, and the reason.

Reboot can be executed only by the super-user.

HARDW ARE DEPENDENCIES
Series 500

Reboot is not supported. A similar non-standard facility is provided for the Series 500 by
stopsys(IM).

Series 800
The -d and -f options and the device and lif_filename parameters are ignored.

AUTHOR
Reboot was developed by HP, and the University of California, Berkeley.

FILES
lusr I adm/shutdownlog

SEE ALSO
lif(I), reboot(2).

Hewlett-Packard Company

shutdown log

- 1 - Version B.l, October 1986

RECONFIG (1M) RECONFIG (1M)
Series 300 Only

NAME
reconfig - configure an HP-UX system

SYNOPSIS
jetcjreconfig [-m]

Remarks:
reconfig is implemented on the Series 300 only.

DESCRIPTION
Reconfig provides a means for system upgrade in the following areas:

• Operating system functionality,

• Adding new users to the system,

• Deleting existing users from the system,

• Adding support for remote-terminal access,

• Adding line printer support to the system,

• Setting up system user access.

Reconfig provides a useful, easy-to-use tool for upgrading and customizing HP-UX systems to
match particular needs. Thus, upgrading an existing operating system to add new users or peri­
pherals becomes a simple task.

Reconfig is a menu-driven command that is easy to use, even with little knowledge. Once a menu
is displayed, the following rules apply:

Softkey Label Definition or Use

HELP Displays information describing your currently available options.

MAINMENU

NEXT / PREVIOUS

QUIT

RESTORE

SELECT

Immediately exits the current menu and returns to the main menu.
No configuration information associated with the current menu is
processed, and any modified values are destroyed.

Moves cursor to next or previous choice on multiple-choice action
menu or field.

Exits reconfig.

restores all fields in the current menu to their original (default)
values before any values were changed.

Initiates the configuration action associated with the current cursor
position (highlighted field).

Many menus also prompt for inputs. Each input is terminated by pressing [RETURN] or by
pressing one of the displayed softkeys. To select a displayed default value from the field asso­
ciated with a given prompt, press [RETURN] without typing an entry.

Some fields offer multiple choices where all valid choices are displayed simultaneously and the
default choice is displayed following the input prompt. Type the preferred choice and press
[RETURN] or use the NEXT or PREVIOUS softkey to display the next/previous choice then
press SELECT or [RETURN] when the correct option is reached.

When responding to prompts that expect a yes/no answer, use y or n or yes or no in any
combination of uppercase or lowercase letters followed by [RETURN].

Some menus (such as adding users) cycle repeatedly so you can perform the operation more
than once in succession. To exit such menus, press MAINMENU. Any completed
configurations associated with the cycling menu are left intact. If MAINMENU is pressed
before a cycle is completed, any partial configurations are abandoned without altering system

Hewlett-Packard Company - 1 - October 1986

RECONFIG (1M) RECONFIG(1M)

FILES

Series 300 Only

configuration.

If the -m option is used, a special mode is used that does not produce escape-code sequences.
This option is useful when using terminals that do not support standard HP terminal escape-code
sequences; that is, terminals that are not officially supported by HP-UX.

This mode of operation is the same as normal operation with the following exceptions:

Menus offering a choice of actions to perform identify each action with an associated number
or letter. To choose an option, press the number or letter (uppercase or lowercase), then press
[RETURN].

The QUIT, RESTORE, MAINMENU, and HELP softkeys are replaced with the letters q, r,
m, and h, respectively. To select one, press the correct letter followed by [RETURN].

When prompted for a choice in a multiple-choice field, type the corresponding number or letter
or type in the choice itself, then press [RETURN].

When a new user is added to the system, the password file in /ete/passwd and the group file in
jete/group are both updated to reflect the addition of the new user. At the same time, a home
directory is created in the /users directory.

When an existing user is deleted from the system, the password file, in /etc/passwd, and the
group file, in /etc/group, will both be updated to reflect the fact that the user no longer has
access privileges to the system. The users home directory, and all files contained therein, will be
deleted, if that option is specified.

When a new printer is added to the system, all required device nodes will automatically be made,
and the line printer spooler will be notified that a new printer is now available for use.

When setting up user access to the system, you can choose whether or not a user login is required.
If login is required, the system must operate in init state 2 (multi-user state) and each user must
be known to the system (use the reeonfig option for adding new users). If login is not required,
the system must operate in init state 1 (single-user state), and the system automatically starts
running PAM (Personal Applications Manager) after power-up.

When remote terminal support is added for a new port, the file /etc/inittab will be updated, so
that the next time the system is powered up, a getty will automatically be started for the specified
port. Any required device nodes will be created, if necessary. Only one getty is permitted to run
on any particular port.

When the user wishes to modify his operating system, he is supplied with three options:

1. Generate a fully loaded operating system.

2. Generate a minimally loaded operating system.

3. Generate a custom kernel.

If a user is not concerned with the size of his operating system, or if the user needs to support a
multitude of devices and I/O cards, then option (1) is a logical choice for him. If the user does
not plan to support many optional devices on his system, then the minimal system, option (2),
might work well for him. However, the majority of the users will be supporting a wide variety of
devices and I/O cards on their systems. For these users, option (3) makes the most sense. This
option allows the user to build a version of the operating system which supports only those dev­
ices and I/O cards specified; thus, this is the most space efficient of the three options.

/etc/master

/etc/conf/dfile

/hp-ux

master device table

description file for current operating system

current operating system

Hewlett-Packard Company - 2 - October 1986

RECONFIG (1M)

/etc/inittab

/etc/p8i3swd

/etc/group

/users

SEE ALSO
config(lm)

Hewlett-Packard Company

Series 300 Only

system initialization tables

system p8i3sword file

system groups identification file

system users identification file

- 3 -

RECONFIG (1M)

Version B.1, October 1986

REVCK(lM) REVCK(lM)
Series 200, 300, and 600 Only

NAME
revck - check internal revision numbers of HP-UX files

SYNOPSIS
/etc/revck reLfiles

Remarks:
Not supported on the Integral Personal Computer.

DESCRIPTION

FILES

Revck checks the internal revision numbers of lists of files against reference lists. Each reI_file
must contain a list of absolute path names (each beginning with"/,,) and whatstrings (revision
information strings from what(l)). Path names begin in column one of a line, and have a colon
appended to them. Each path name is followed by zero or more lines of whatstrings, one per line,
each indented by at least one tab (this is the same format in which what(l) outputs its results).

For each path name, revck checks that the file exists, and that executing what(l) on the current
path name produces results identical to the whatstrings in the reference file. Only the first 1024
bytes of whatstrings are checked.

ReI_files are usually the absolute path names of the revlist files shipped with HP-UX. Each HP­
UX software product includes a file named /system/product/revlist (for example,
/system/97070A/revlist). The revlist file for each product is a reference list for the ordinary files
shipped with the product, plus any empty directories on which the product depends.

/system/ product/rev list

SEE ALSO

lists of HP-UX files and revision numbers

what(I).

DIAGNOSTICS
Revck is silent except for reporting missing files or mismatches. If a reI_file is not in the right
format, you will get unpredictable results.

Hewlett-Packard Company - 1 - October 1986

ROOTMARK (1M)
Series 500 Only

rootmark - mark/unmark volume as HP-UX root volume

SYNOPSIS
/etc/rootmark [-m I -u 1 filespec

Remarks:
Rootmark is implemented on the Series 500 only.

DESCRIPTION

ROOTMARK (1M)

Rootmark enables you to control which mass storage device contains your HP-UX root U) direc­
tory. The HP-UX operating system searches mass storage devices and uses the first root volume
it finds.

Filespec is usually a character special file which points to a mass storage volume initialized with
Structured Directory Format (SDF). If invoked with no option, rootmark tells the current state
of the specified volume. If -m is specified, then the specified volume is marked as a root volume.
If -u is specified, the specified volume is marked as not a root volume. Rootmark is silent if suc­
cessful.

RETURN VALUE
Rootmark sends an error message to standard error and returns a non-zero value if it cannot read
or write a volume, or if a volume is not SDF. Rootmark returns 1 for incorrect syntax, 2 for a file
system problem, and 3 for a volume that is not in SDF.

EXAMPLE
The following example makes /dev /rhd usable as root; you must super-user to execute the exam­
ple:

SEE ALSO

rootmark /dev/rhd # check if /dev/rhd is a root volume
/dev/rhd is marked as NOT a root volume.
rootmark -m /dev/rhd # mart it as the root volume
rootmark /dev /rhd # check results
/dev/rhd is marked as a root volume.

mount{l), osmgr{lM), sdfinit{lM).

WARNINGS
A volume must not be marked as a root volume unless it contains all the directories and files that
HP-UX requires for system initialization.

Never mark any media shipped from Hewlett-Packard as not a root volume, in case you need to
re-install HP-UX from that media.

Hewlett-Packard Company - 1 - October 1986

RUNACCT(lM) HP-UX RUNACCT(lM)

NAME
runacct - run daily accounting

SYNOPSIS
/usr/llb/acct/runacct [mmdd [state]]

DESCRIPTION
Runacct is the main daily accounting shell procedure. It is normally initiated via cron{lM).
Runacct processes connect, fee, disk, and process accounting files. It also prepares summary files
for prdaily or billing purposes.

Runacct takes care not to damage active accounting files or summary files in the event of errors.
It records its progress by writing descriptive diagnostic messages into active. When an error is
detected, a message is written to /dev /console, mail (see mail{l)) is sent to root and adm, and
runacct terminates. Runacct uses a series of lock files to protect against re-invocation. The files
lock and lockl are used to prevent simultaneous invocation, and lastdate is used to prevent
more than one invocation per day.

Runacct breaks its processing into separate, restartable states using stateftle to remember the
last state completed. It accomplishes this by writing the state name into statefile. Runacct then
looks in stateftle to see what it has done and to determine what to process next. States are exe­
cuted in the following order:

SETUP Move active accounting files into working files.

WTMPFIX Verify integrity of wtmp file, correcting date changes if necessary.

CONNECTl Produce connect session records in ctmp.h format.

CONNECT2 Convert ctmp.h records into tacct.h format.

PROCESS

MERGE

FEES

DISK

Convert process accounting records into tacct.h format.

Merge the connect and process accounting records.

Convert output of chargefee into tacct.h format and merge with connect
and process accounting records.

Merge disk accounting records with connect, process, and fee accounting
records.

MERGETACCT
Merge the daily total accounting records in daytacct with the summary
total accounting records in /usr/adm/acct/sum/tacct.

CMS Produce command summaries.

USEREXIT Any installation-dependent accounting programs can be included here.

CLEANUP Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics, then fix up any cor­
rupted data files such as pacct or wtmp. The lock files and lastdate file must be removed
before runacct can be restarted. The argument mmdd is necessary if runacct is being restarted,
and specifies the month and day for which Tunacct will rerun the accounting. Entry point for
processing is based on the contents of stateftle; to override this, include the desired state on the
command line to designate where processing should begin.

EXAMPLES
To start Tunacct.

nohup runacct 2> jusrjadmjacctjnitejfd210g &

To restart Tunacct.
nohup runacct 0601 2» jusrjadmjacctjnitejfd210g &

Hewlett-Packard Company - 1 - Version B.1, October 1986

RUNACCT (1M) HP-UX RUNACCT (1M)

FILES

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2» /usr/adm/acct/nite/fd2Iog &

/usr/adm/acct/nite/active
/usr/src/cmd/acct/ctmp.h
/usr/adm/acct/nite/daytacct
/usr / adm/ acct/nite/lastdate
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lockl
/usr / adm/pacch
/usr/adm/acct/nite/ptacch.mmdd
/usr/adm/acct/nite/statefile
/usr /src/ cmd/ acct/tacct.h
/etc/wtmp

SEE ALSO

BUGS

acctcom(l), mail(l), acct(1M), acctcms(IM), acctcon(IM), acctmerg(IM), acctprc(IM),
acctsh(IM), cron(IM), fwtmp(IM), acct(2), acct(4), utmp(4), System Accounting in the HP-UX
System Administrator's Manual.

Normally it is not a good idea to restart runacct in the SETUP state. Run SETUP manually
and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because it will not be com­
plete.

Hewlett-Packard Company - 2 - Version B.l, October 1986

SAVECORE(lM) HP-UX
Series 800 Only

SAVECORE(lM)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
/etc/savecore [-n 1 [-v 1 dirname [system 1

DESCRIPTION
Savecore is meant to be called near the end of the /etc/rc file. Its function is to save the core
dump of the system (assuming one was made when the system crashed) and to write a reboot
message in the shutdown log.

Save core checks the core dump to be certain it corresponds with the current running system. If it
does it saves the core image in the file dirname /hp-core.n and a copy of the current running sys­
tem file, which contains the namelist, in the file dirname/hp-ux.n. The trailing N.nN in the path­
names is replaced by a number that grows every time savecore is run in that directory. (This
number is kept in the file dirname /bounds, which is created if it does not already exist.)

Before savecore writes out a core image, it reads a number from the file dirname /minfree. The
core dump is not done if the number of free 512-byte blocks on the file system that contains dir­
name is less than the number obtained from the minfree file. If the minfree file does not exist,
savecore always writes out the core file (assuming that a core dump was taken). Note that
repeated system crashes can result in multiple core files that use up large quantities of disk space
(especially on machines with large physical memories).

Savecore also writes a reboot message in the shutdown log (if it already exists). If the system
crashed as a result of a panic, savecore records the panic string in the shutdown log too.

If the core dump was from a system other than /hp-ux, the name of that system must be supplied
as system.

If the -n option is specified, no copy of the current running system file is saved in dirname /hp­
ux.n. Note that the user must now remember which system file, e.g. /hp-ux, corresponds to the
saved core file. The core file by itself is not very useful.

If the -v option is specified, additional messages are printed under some conditions. This option
is usually used only for debugging.

RETURNS
Savecore returns the following exit status values: A zero exit status indicates that a core dump
was found and saved. An exit status of 1 indicates that a core dump could not be saved due to
some error or minfree limitation. An exit status of 2 indicates that no core dump was found to
save.

WARNINGS
Some implementations may place the core dump in the disk swap area while the system reboots.
In such cases, save core may not be able to recover the crash dump if too many programs have
been swapped out before save core is run.

AUTHOR
Savecore was developed by the Hewlett-Packard Company, and the University of California,
Berkeley California, Computer Science Division, Department of Electrical Engineering and Com­
puter Science.

FILES
/hp-ux
dirname/bounds
dirname/minfree

SEE ALSO
adb(l).

Hewlett-Packard Company

current system /usr/adm/shutdownlog
crash dump number
minimum free blocks on file system

- 1 -

shutdown log

Version B.l, October 1986

SDFDF(lM)

NAME

HP-UX
Series 300, 800 Only

sdfdf - report number of free SDF disk blocks

SYNOPSIS
sdfdf device ...

DESCRIPTION

SDFDF(lM)

Sdfdf prints out the number of free blocks and free inodes available for SDF file systems by exa­
mining the counts kept in the super-blocks; device must be specified by device name.

AUTHOR
Sdfdfwas developed by the Hewlett-Packard Company.

SEE ALSO
sdf(4), du{l), df{lM).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SDFFSCK(lM) HP-UX
Series 300, 800 Only

SDFFSCK(lM)

NAME
sdffsck - SDF file system consistency check, interactive repair

SYNOPSIS
sdffsck [-y] [-n] [-s] [-d] SDFdevice ...

DESCRIPTION
Sdffsck is intended to mimic the series 500 implementation of Isck[SDFJ(lM}.

Sdffsck checks and interactively repairs inconsistent conditions for SDF me systems. If the me
system is consistent, then the number of files, the number of blocks used, the number of blocks
free, and the percent of volume unused are reported. If the file system is inconsistent, the opera­
tor is prompted for concurrence before each correction is attempted. Note that many corrective
actions will result in some loss of data. The amount and severity of the loss can be determined
from the diagnostic output. The default action for each consistency correction is to wait for the
operator to respond yes or no. If the operator does not have write permission, sdffsck defaults to
-no

Sdffsck makes multiple passes over the SDF file system, so care should be taken to ensure that the
SDF device is quiescent.

The following flags are interpreted by sdffsck:

-y Assume a yes response to all questions asked.

-n Assume a no response to all questions asked; do not open the me system for writing.

-s Ignore the actual free list and unconditionally reconstruct a new one. This option is useful in
correcting multiply claimed blocks when one of the claimants is the free list. When using this
option, the number of unclaimed blocks reported by sdffsck includes all the blocks in the free
map. This can produce extensive output if -d is also selected.

-s should only be selected after a previous sdffsck indicates a conflict between a file and the
free map. After sdffsck -s has executed, the integrity of the conflicting file(s} should be
checked.

-d Dump additional information. The more d's that are present, the more information that is
dumped. You may specify up to five d's. Using more than two, however, can result in an
overwhelming amount of output.

Sdffsck also recognizes, and ignores, the -8 and -t options found in other versions of Isck. An
appropriate warning is printed. The diagnostics are intended to be self-explanatory.

SDFdevice is a device me name describing the device on which the SDF file system to be checked
resides (e.g., /dev/rdsk/cld1s4).

Error messages from sdffsck are written to stderr. Information generated because of the -d
option and normal output is written to stdout; both are unbuffered.

Inconsistencies checked include:

1. Blocks claimed by more than one inode, or by the free list;

2. Blocks claimed by an inode or the free list outside the range of the file system;

3. Incorrect link counts;

4. Blocks not accounted for anywhere;

5. Bad inode format;

6. Directory checks:
Files pointing to unallocated inodes;
Inode numbers out of range;

Hewlett-Packard Company - 1 - Version B.1, October 1986

SDFFSCK (1M)

Mult.iply linked directories;
Link to the parent directory.

HP-UX
Series 300, 800 Only

SDFFSCK (1M)

Orphaned files (allocated but unreferenced) with non-zero sizes are, with the operator's con­
currence, reconnected by placing them in the l08t+found directory on the SDF file system. The
name assigned is the inode number. The only restriction is that l08t+found must exist in the
root of the SDF file system being checked, and must have empty slots in which entries can be
made. This is accomplished by executing

sdfmkdir SDFdev:/lost+found

(using the name of the SDF device for SDFdev).

Orphaned directories and files with zero size are, with the operator's concurrence, returned
directly to the free list. This will also happen if the lost+found directory does not exist.

WARNINGS
Sdffsck cannot check devices with a logical block size greater than 4096.

AUTHOR
Sdffsck was developed by HP.

SEE ALSO
sdf(4), fsck[SDF](lM), sdfmkdir(l),

Series 500 HP-UX System Administrator Manual.

Hewlett-Packard Company - 2 - Version B.l, October 1986

SDFFSDB (1M) HP-UX
Series 300, 800 Only

SDFFSDB (1M)

NAME
sdffsdb - examine/modify an SDF file system

SYNOPSIS
sdffsdb SDFdevice

DESCRIPTION
Sdffdsb is intended to mimic the series 500 implementation of /sdb[SDFJ(lM).

Sdffsdb provides you with the ability to perform the following functions on the specified SDFdev­
ice:

1. Find the inode number of a file, given its full path name.

2. Examine and modify the contents of the superblock (volume header).

3. Examine and modify the contents of any inode or other file attribute.

Integer input to sdffsdb may be entered in decimal (default), octal (with a preceding "0"), or
hexadecimal (with a preceding "Ox").

SDFdemce is a raw or block special file describing the device on which the SDF file system is
located.

Sdffsdb execution is interactive. Prompts consist of requests for the needed information. When
execution begins, sdffsdb displays the following menu:

1 - find inode numbers.
2 - examine superblock.
3 - examine inodes.
q - quit.

after which you are requested to enter one of the options shown.

Typing 1 causes sdffsdb to accept full pathnames of files (relative to the door directory of the SDF
file system); it returns the corresponding inode number. Typing q returns you to the main menu.

Typing 2 displays the contents of each record in the superblock. Each record is numbered. If a
right parenthesis ")" follows the number, then the record can be modified. If a right curly bracket
"}" follows the number, then the record cannot be modified. You are then asked whether or not
you want to modify the superblock. An answer beginning with n sends you back to the menu; an
answer beginning with y causes sdffsdb to ask for the record number to be modified. If the record
number specified cannot be modified, you are told about it, and prompted for another record
number. If you specify a record number which can be changed, you are prompted for the new
data. Typing q returns you to the main menu.

Typing 3 causes sdffsdb to prompt you for a file attribute record number. Upon receipt of a valid
number, the contents of that record are displayed, and you are prompted for the information you
want to change. Parentheses and curly brackets have the same meanings as described above.
Typing q returns you to the main menu.

Typing q at the main menu level terminates the sdffsdb command.

WARNINGS
Sdffsdb is deceptively easy to use, and therefore should be used with extreme care. Be sure you
know what you are doing before you enter too deeply into options 2 or 3. You are given the
opportunity to abort any operation before you have changed anything (by typing q), so consider
carefully what you are about to do before you do it. Sdffsdb does not provide an "undo" function
and the changes you make are immediate.

Sdffsdb cannot examine devices with a logical block size greater than 4096.

AUTHOR
Sdffsdb was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SDFFSDB(IM)

SEE ALSO

HP-UX
Series 300, 800 Only

sdf(4), fsck[SDF](lM), fsdb[SDF](lM).

Hewlett-Packard Company - 2 -

SDFFSDB (1M)

Version B.l, October 1986

SDFINIT[SDF] (1M) HP-UX
Series 500 Only

SDFINIT[SDF] (1M)

NAME
sdfinit - initialize Structured Directory Format volume

SYNOPSIS
/etc/sdfinit [-i) pathname [blocksize [bootsize [interleave]]]

DESCRIPTION
Sdfinit initializes a Structured Directory Format (SDF) volume associated with a specified special
file.

Pathname refers to a character or block special file which must be accessible and not mounted.

Blocksize specifies the number of bytes per logical block. It is rounded up, if necessary, to the
next multiple of the physical record size for the volume. If absent or less than one (1), the system
selects a reasonable default.

Bootsize specifies the number of bytes to be allocated for boot area on the volume. It is rounded
up to an integer number of logical blocks. Default is zero (no boot area).

Interleave defines the sector interleave factor. Default is 1 (not necessarily the best value for all
devices). In the special case of initializing memory volumes (those volumes accessed through
driver number 10 as explained in the HP-UX System Administrator Manual), interleave specifies
the number of 256-byte physical sectors that are to be used for the memory volume "device". The
maximum number of sectors allowed is 2047 which yields 524032 bytes.

The root directory on the newly-initialized volume is always owned by super-user and has permis­
sions of 755.

The -i option inhibits certification, limiting the operation to initialization only which consists of
writing a directory structure. This saves a considerable amount of time in most cases. However,
the -i option is not recommended for most removable media, unless the media was recently
certified in the same type of drive.

Sdfinit does not return until the operation is complete which may require considerable time. For
example, certification can consume up to 47 minutes for an HP 7933 disk or up to 67 minutes on
an HP 88140L (DC-600) cartridge tape. Initialization requires an additional one to five minutes.

Note that during this certification and initialization process, sdfinit monopolizes the interface
select code so that no other devices can be accessed. This means that if the root device is using
the same interface as the device being accessed by sdfinit, the root device is also inaccessible for
the duration.

RETURNS
Appropriate error messages are given if the argument list is incorrect, pathname cannot be initial­
ized or any other error occurs.

WARNINGS
The effective user ID must be zero (super-user). The disk must not be mounted.

AUTHOR
Sdfinit was developed by HP.

SEE ALSO
See section (7) device special file manual pages.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SETMNT(lM) HP-UX SETMNT(lM)

NAl'v1E
setmnt - establish mount table mnttab

SYNOPSIS
/etc/setmnt

DESCRIPTION

FILES

Setmnt creates the /etc/mnttab table (see mnttab(4)), which is needed for both the mount{lM)
and umount commands~ Setmnt reads standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where filesys is the name of the file system's special file (e.g., "dsk/?s?") and node is the root
name of that file system. Thus filesys and node become the first two strings in the mnttab(4)
entry.

/etc/mnttab

SEE ALSO

BUGS

devnm{IM), mount{IM), mnttab(4).

Filesys and node are truncated to MNTLEN bytes.
Setmnt silently enforces an upper limit on the maximum number of mnttab entries.
It is unwise to use setmnt to create false entries for mount{IM) and umount.

Hewlett-Packard Company - 1 - Version B.l, October 1986

SETPRIVGRP (1M) HP-UX
Series 200, 300, 800 Only

SETPRIVGRP (1M)

NAME
setprivgrp - set special attributes for group

SYNOPSIS
setprivgrp -g I -n I group-name [privileges 1
setprivgrp -f file

DESCRIPTION

FILES

Setprivgrp associates a group with a kernel capability. This allows subsetting of super-user like
privileges for members of a particular group or groups. In the first form the first argument to set­
privgrp is either a group name, -g, or -n which specifies a particular group, all groups or no
groups respectively. The optional second and subsequent arguments are symbolic names indicating
kernel capabilities. In the second form the -f option is used to specify a file, typically
/etc/privgroup, from which group capabilities are set. The group access privileges are changed to
reflect the specified kernel capabilities.

RTPRIO
gives access to the rtprio(2) system call for setting real-time priorities.

MLOCK
gives access to the plock(2) system call for locking process text and data into memory,
and the SHM-.LOCK command used with shmctl(2) system call.

CHOWN
gives access to the chown(2) system call.

Specifying no access privileges removes any privileges that may currently be assigned. Note that
capabilities set by this command are not additive. If you wish to add a capability for a particular
group, you need to respecify all capabilities that were already set for that group in addition to the
new capability.

The file named using the -f option should contain one or more lines in the following format:

-g I -n I group-name [privileges 1

Only the super user may use this command.

/ etc/privgroup
/etc/group

ERRORS
Setprivgrp returns 1 if caller is not super user, and 2 if there is not enough table space to hold a
new privileged group assignment.

AUTHOR
Setprivgrp was developed by the Hewlett-Packard Company.

SEE ALSO
getprivgrp(I), getprivgrp(2), privgrp(4), rtprio(2), plock(2), shmctl(2), chown(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

SHUTDOWN (1M) HP-UX SHUTDOWN (1M)

NAME
shutdown - terminate all processing

SYNOPSIS
fete/shutdown [-h I -r J [-d device J [-f liLfile J [grace J

DESCRIPTION
Shutdown is part of the HP-UX system operation procedures. Its primary function is to terminate
all currently running processes in an orderly and cautious manner. Shutdown can be used to put
the system in single-user mode for administrative purposes such as backup or file system con­
sistency checks (see Isck(lM)), and to halt or reboot the system. The procedure is designed to
interact with the operator, i.e., the person who invoked shutdown. Shutdown may instruct the
operator to perform some specific tasks or to supply certain responses before execution can
resume,

Shutdown goes through the following steps:

All file systems' super blocks are updated; see sync(lM). This must be done before
rebooting the system to ensure file system integrity.

All users logged on the system are notified to log out by a broadcast message. The opera­
tor may display his/her own message at this time. Otherwise, a standard warning mes­
sage is displayed.

All currently executing processes are terminated except those essential to the system or
associated with the shutdown procedure.

All file systems are unmounted.

The next step depends on which of the following options are selected:

-h Shutdown the system and halt.

-r

-d device

-f lil_Iile

Shutdown the system and reboot automatically.

Reboot from the specified device. The device must be a IiI volume. The
-d option can only be used with the -r option.

Reboot from the specified file. If the filename is the NULL string, the
power-up search sequence will be made for a system. Otherwise, the
filename has to follow the lif filename convention. The -f option can
only be used with the -r option.

grace Grace specifies, in seconds, a grace period for users to log off before shut­
ting down. The default is 60 seconds. If grace is zero, shutdown runs
more quickly, but gives users very little time to log out.

If neither -r or -h is specified, the system will be placed in run-level s; see init(lM).

RETURNS
The most common error diagnostic that will occur is device busy. This happens when a particular
file system could not be unmounted; see mount(lM).

EXAMPLES
To immediately reboot the system and run HP-UX again:

shutdown -r 0

To halt the system in 5 minutes:
shutdown -h 300

To go to init run-level s in 10 minutes:
shutdown 600

Hewlett-Packard Company - 1 - Version B.l, October 1986

SHUTDOWN (1M)

HARDW ARE DEPENDENCIES
Series 500, Series 800

HP-UX SHUTDOWN (1M)

The -d and -f options and device and IiI-file parameters are not supported.

SEE ALSO
init{lM), killall{lM), mount{lM), reboot{lM), sync{lM).

Hewlett-Packard Company - 2 - Version B.l, October 1986

STOPSYS (1M) STOPSYS (1M)
Series 500 Only

NA~fE

stopsys - stop operating system with optional reboot

SYNOPSIS
/etc/stopsys [-r J

Remarks:
Stopsys is implemented on the Series 500 only.

DESCRIPTION
Stopsys dumps all system I/O buffers to mass storage volumes (i.e. performs a sync(lM)), and
shuts down all virtual memory activity. Then, stopsys either stops the operating system so that
the hardware may be powered down (no option), or it reboots the system (resets the machine's
processor(s) to the power-on state) (-r option). The reboot (-r) option results in the activation
of the system boot loader, almost exactly as if the power was just turned on, except that I/O
cards are not power-cycled.

Just before it stops the system, stopsys writes a message to /dev /console indicating that the sys­
tem is stopped and can be safely powered down.

Stopsys may be invoked only by the effective super-user. However, it may be made public by set­
ting the set-user-ID bit and assigning ownership to root.

Stopsys does not ensure that the system is idle. If any user processes are running, the sync(IM)
may be ineffective. You should execute shutdoum(IM), or at least kill all non-essential processes,
prior to running stopsys.

SEE ALSO
chsys(IM), killall(IM), shutdown(IM), sync(IM).

DIAGNOSTICS

BUGS

Stopsys returns only if a non-fatal error occurs, in which case it writes a message to standard error
and returns 1. Non-fatal errors include:

invocation with improper arguments;
invocation by other than the effective super-user;
any failure to stop the system, as long as the system is still usable.

If stopsys fails to stop the system for any reason, but the system is then not in a usable state,
stopsys writes an error message to /dev /console and then attempts to reboot (if -r was specified).
If -r was not specified, or if the reboot attempt fails, stopsys writes H system stopped H on
/dev/console, and you must reboot the system yourself (using the power switch or the front
panel).

Note that if the reboot fails it indicates a hardware problem with the HP 9000 Model 20 keyboard
on select code 6, or the HP 9000 Model 30/40 system control module on select code 7.

At this time, stopsys does not shut down Local Area Net (LAN) activity.

Hewlett-Packard Company - 1 - October 1986

SW APON[HFS) (1M) HP-UX
Series 200, 300, 800 Only

SW APON[HFS) (1M)

NAME
swapon - enable additional device for paging and swapping

SYNOPSIS
/etc/swapon -a
/etc/swapon name

DESCRIPTION
Swapon is used to enable additional devices on which paging and swapping are to take place. The
system begins by swapping and paging on only a single device so that only one disk is required at
bootstrap time. Calls to 8wapon normally occur in the system multi-user initialization file /etc/rc
making all swap devices available, so that the paging and swapping activity is interleaved across
several devices.

Normally, the -a argument is given, causing all devices marked as "sw" swap devices in
/etc/checklist to be made available.

The second form announces individual block devices to be used for paging and swapping. These
block devices must have been setup at system configuration time. Name must specify a block spe­
cial file.

WARNINGS
There is no way to stop paging and swapping on a device.

Exercise due caution when enabling swap space on a device that may be unmounted during sys­
tem operation or removed from the system.

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

FILES
/dev/dsk/#s# Normal paging devices.

AUTHOR
Swapon was developed by the University of California, Berkeley.

SEE ALSO
swapon(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SYNC (1M)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

HP.;UX SYNC (1M)

Sync executes the sync system intrinsic. If the system is to be stopped, sync must be called to
insure file system integrity. It will flush all previously unwritten system buffers out to disk, thus
assuring that all file modifications up to that point will be saved. See sync(2) for details.

SEE ALSO
sync(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SYNCER(lM) HP-UX SYNCER(lM)

NAME
syncer - periodically sync for file system integrity

SYNOPSIS
/ etc / syncer [seconds 1 [-d directory ... 1

DESCRIPTION
Syneer is a program that periodically executes syne(2) at an interval determined by the input
argument seconds. If seconds is not specified, the default interval is every 30 seconds. This
ensures that the file system is fairly up-to-date in case of a crash. This command should not be
executed directly, but should be executed at system boot time via /ete/re, which is invoked at
boot time via /ete/inittab.

The -d option is used to open directories for cache benefit. All directories must be specified by
their full pathname. If the -d option is not used, no directories will be opened.

AUTHOR
Syneer was developed by the Hewlett-Packard Company, and the University of California, Berke­
ley California, Computer Science Division, Department of Electrical Engineering and Computer
Science.

SEE ALSO
brc(lM), init(lM), sync(l), sync(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

SYSDIAG(IM) SYSDIAG (1M)
Series 800 Only

NAME
sysdiag - online diagnostic system interface

SYNOPSIS
sysdiag [filename]

DESCRIPTION
Sysdiag is the conunand interpreter for the online diagnostic system. Its primary role is to pro­
vide a common user interface to all of the online diagnostic programs. The set of conunands
understood by sysdiag is listed below. For a complete description of each command see the
Hardware Support Documentation Set. Sysdiag accepts conunands from eithpr standard input or
the specified filename.

The online diagnostic system allows the user to diagnose the computer system hardware without
placing the system into single-user mode. Certain restrictions apply to running diagnostics in an
online environment. These restrictions are necessary to protect user data. Each diagnostic pro­
gram defines which operations destroy data and which do not. Typically, those operations that
destroy data cannot be run in a multi-user environment. For further information, see the refer­
ence manual for each of the diagnostic programs.

Command Summary
abort Abort an active diagnostic progranl.

ci or ! Fork and exec a shell.

exit Exit sysdiag.

hardcopy

help or?

install

list

Produce a hardcopy of all sysdiag and diagnostic program input and output.

Provide online help for sysdiag and diagnostic programs.

purge

redo

resume

run

showactive

suspend

use

wait

Add a diagnostic program to the diagnostic system.

List the installed diagnostic programs.

Remove a diagnostic program from the diagnostic system.

Edit and execute a previous conunand.

Restart execution of a diagnostic program.

Begin execution of a diagnostic program.

Show active diagnostic programs.

Suspend execution of a diagnostic program.

Redirect standard input for sysdiag.

Wait for background diagnostic programs to terminate.

HARDW ARE DEPENDENCIES
Series 200, Series 300, and Series 500

The online diagnostic system is not supported on these systems.

AUTHOR
Sysdiag was developed by HP.

FILES
jusrjdiagjbin/*
jusr jdiagjinstall/*
jusrjdiagjsecurity
jusrjdiagjcat/*
j dev j diag/*

Hewlett-Packard Company

diagnostic programs
installation information
access list for diagnostic users
native language support catalogs
diagnostic special files

- 1 - December 1986

SYSDIAG(lM) SYSDIAG(lM)
Series 800 Only

SEE ALSO
Hardware Support Documentation Set, Volumes 4 & 5

Hewlett-Packard Company - 2 - December 1986

SYSRM(lM) SYSRM(lM)
Series 200, 300, and 500 Only

NAME
sysrm - remove optional HP-UX products

SYNOPSIS
sysrm product ...

DESCRIPTION

FILES

Sysrm is used to remove an optional product from an HP-UX system, usually to increase the
amount of available disk space.

Only the super-user can execute sysrm.

product is the name or number of the product to be removed. This can be found under the direc­
tory /etc/jiiesets where all products currently on the system can be found. The system adminis­
trator should use .'1ysrm whenever trying to recover mass storage space.

update(lM).

WARNING
The system should be in single-user mode while sysrm is in progress. This means the system
administrator should ensure that only "init", "sh" and any other mandatory processes are active.

Hewlett-Packard Company - 1 - October 1986

TIC(lM) HP-UX TIC(lM)

NAME
tic - tenninfo compiler

SYNOPSIS
tic I -v In]] file ...

DESCRIPTION

FILES

Tic translates tenninfo files from the source fonnat into the compiled fonnat. The results are
placed in the directory /usr /lib/terminfo.

The -v (verbose) option causes tic to output trace infonnation showing its progress. If the
optional integer is appended, the level of verbosity can be increased.

Tic compiles all tenninfo descriptions in the given files. When a use= field is discovered, tic
searches first the current file, then the master file, which is "./tenninfo.src".

If the environment variable TERMINFO is set, the results are placed there instead of
/usr /lib /terminfo.

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed
128 bytes.

/usr/lib/tenninfo/? 1* compiled tenninal capability data base

SEE ALSO
untic(1M), curses(3X), tenninfo(4).

BUGS
Instead of searching ./terminfo.src, it should check for an existing compiled entry.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TUNEFS[HFS] (1M) HP-UX TUNEFS[HFS] (1M)
Series 200, 300, 800 Only

NAME
tunefs - tune up an existing file system

SYNOPSIS
/ete/tunefs tuneup-options special

DESCRIPTION
TuneJ., is designed to change a file system's dynamic parameters that affect the layout policies.
The parameters that are to be changed are indicated by the flags given below:

-a maxcontig This specifies the maximum number of contiguous blocks that will be laid out
before forcing a rotational delay (see --d below). The default value is one, since
most device drivers require one interrupt per disk transfer. Device drivers that
can chain several buffers together in a single transfer should set this to the max­
imum chain length.

--d rotdelay This specifies the expected time (in milliseconds) to service a transfer completion
interrupt and initiate a new transfer on the same disk. It is used to decide how
much rotational spacing to place between successive blocks in a file.

-e maxbpg This indicates the maximum number of blocks any single file can allocate out of
a cylinder group before it is forced to begin allocating blocks from another
cylinder group. Typically this value is set to about one quarter of the total
blocks in a cylinder group. The intent is to prevent any single file from using up
all the blocks in a single cylinder group, thus degrading access times for all files
subsequently allocated in that cylinder group. The effect of this limit is to cause
big files to do long seeks more frequently than if they were allowed to allocate all
the blocks in a cylinder group before seeking elsewhere. For file systems with
exclusively large files, this parameter should be set higher.

-m min/ree This value specifies the percentage of space held back from normal users, i.e., the
minimum free space threshold. The default value used is 10%. This value can
be set to zero; if it is, up to a factor of three in throughput will be lost over the
performance obtained at a 10% threshold. Note that if the value is raised above
the current usage level, users will be unable to allocate files until enough files
have been deleted to get under the higher threshold.

-A This option specifies that redundant super-blocks, as well as the super-block, are
to be modified as indicated above.

special This is the name of the file system that will be tuned. It is either a block or
character special file for an unmounted volume or volume section.

HARDWARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

WARNINGS
This program should work on mounted and active file systems. Because the super-block is not
kept in the buffer cache, the program will only take effect if it is run on dismounted file systems.
If run on the root file system, the system must be rebooted.

Remember: You can tune a file system, but you can't tune a fish.

AUTHOR
Tune/s was developed by the University of California, Berkeley California, Computer Science Divi­
sion, Department of Electrical Engineering and Computer Science.

SEE ALSO
mkfs[HFS](lM), newfs[HFS](lM), fs[HFS](4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

UCONFIG(lM) UCONFIG(lM)
Series 500 Only

NAME
uconfig - system reconfiguration

SYNOPSIS
/etc/uconfig [option boot_device]

Remarks:
Uconfig is implemented on the Series 500 only.

DESCRIPTION
Uconfig enables you to reconfigure certain system parameters. When invoked with no arguments,
uconfig lists the current system configuration. The following options are recognized:

-f file reconfigures the system parameters in the boot area according to the specifications
given in file. File may contain any combination of system parameters. Each line in
file has the following format:

id value [#comment]

where id is a pre-defined system parameter name, value is one or more values associ­
ated with the parameter, and comment is a descriptive comment for that line. All
characters between the comment delimiter (#) and a new-line are ignored. The id,
value, and comment fields are delimited by one or more blanks and/or tabs.

The valid ids and values are:

vIIL-device driver-Ilame addr1 addr2 addr3 addr4
where driver_name is an integer specifying the virtual device driver, and addrl
through addr4 are integers specifying the device select code, HP-IB address, unit,
and volume, respectively.

cache_buf-Bize size
where size is an integer in the range 256 to 524288, specifying the number of
bytes in each individual cache buffer. Size is rounded down to the closest multi­
ple of 256.

cache_buf-Ilum num
where num is an integer in the range 1 to (maximum memory) divided by
(minimum size of cache buffers), specifying the number of individual cache
buffers forming the cache.

rearl-ahea<Ljevel level
where level is an integer in the range 1 to the value of cache_buf-Ilum, speci­
fying the number of buffers that can be filled in one sequential read operation.

swap_time time
where time is an integer in the range of 1 to 32767 ticks (a tick equals 1Omsec),
specifying the time a virtual segment remains memory resident before being
swapped to disc.

page-Bize size
where size is an integer in the range 512 to 8192, specifying the size of paged
data in bytes. If size is an odd number, it is rounded down to the next even
number.

page-Bwap_time time
where time is an integer in the range 1 to 32767 ticks (a tick equals 10 msecs),
specifying the time a page remains memory resident before being swapped to
disc.

vIIL-pool-Bize size
where size is an integer in the range 16384 to maximum memory, specifying the

Hewlett-Packard Company - 1 - October 1986

UCONFIG (1M) UCONFIG (1M)
Series 500 Only

maximum size in bytes of the virtual memory page pool.

scrolLpages nllIIl-.pages
where nUrrL-pages is an integer in the range 1 to 10, specifying the number of
pages of display buffering (one page = 24 lines of display). The actual number of
pages allocated depends on current available memory. This parameter applies to
the Model 520 only.

m3X-proc_per _usr m8.X...-.user_process
where max-user_process is an integer specifying the maximum number of
processes a single user can have.

staclL..size size
where size is an integer in the range 16384 to maximum memory, specifying the
maximum stack size in bytes for any partition.

interactive_time time
where time is an integer in the range 1 to 32767 ticks (a tick equals 10 msecs),
specifying the amount of CPU time a process can consume after an interactive
terminal read before it is no longer favored as interactive.

m3X-Dum..JDsgids n~ds
where nUrrL-ids is an integer in the range 5 to 1000, specifying the maximum
number of message queue identifiers. NUrrL-ids is rounded down to the closest
multiple of 5.

m3X-IDslt--Size size
where size is an integer in the range 256 to either 65536 or maX-lllSg_qbytes,
whichever is less, specifying the maximum size in bytes of anyone message.

m3X-IDs~qbytes size
where size is an integer in the range 256 to either 65536 or m3X-IDsg---space,
whichever is less, specifying the maximum size in bytes of anyone message
queue.

m3X-IDsg---space size
where size is an integer" in the range 256 to 523 264, specifying the maximum size
in bytes the sum of all messages on all message queues.

m3X-Dum---Bemids nuIIL.Jds
where nUrrL-ids is an integer in the range 5 to 1000, specifying the maximum
number of semaphore identifiers. NUrrL-ids is rounded down to the closest multi­
ple of 5.

m3X-Dum---Bhmids nuIIL.Jds
where nUrrL-ids is an integer in the range 5 to 1000, specifying the maximum
number of shared memory identifiers. NUrrL-ids is rounded down to the closest
multiple of 5.

m3X-Dum---Bhm---Begs segs
where segs is an integer in the range 0 to 1000, specifying the maximum number
of shared memory segment attaches per process.

mruL...ShID-vsegsz size
where size is an integer in the range 0 to 523264, specifying the upper size limit
of normal virtual shared memory segments in bytes. Requests for shared memory
segment sizes larger than this value will result in paged virtual shared memory
segments.

worlL..set-.ratio ratio
where ratio is a floating-point number in the range 0 to 1, specifying the

Hewlett-Packard Company - 2 - October 1986

UCONFIG (1M) UCONFIG (1M)

FILES

Series 500 Only

minimum virtual memory working set ratio.

-d reconfigures the system parameters in the boot area to their default values. The
default values, as contained in the file /etc/uconfigtab, are:

vIIL-device

cache_buf----Bize

cache_buL.num

rea~eadLJevel

swap_time

page----Bize

page----Bwap_time

vIIL-poouize

scrolLpages

m8.X....-proc_per _usr

stack..-Bize

interactive_time

m8.X....-nuIIL-mSgids

m8.JL.lll8g----Bize

m8.JL.lll8g_qbytes

max...JIlsg----Bpace

m8.X....-num----Bemids

m8.X....-num----Bhmids

m8.X....-num----Bhm----Begs

max...JlhIIL-vsegsz

work..-Bet.-ratio

o 0 0 0 0; root device as determined by the system at
power-up;

1024 bytes;

0; this value is dynamically computed;

0; this value is dynamically computed;

0; this value is dynamically computed;

1024 bytes;

50 ticks; (one tick = 10 msecs);

0; this value is dynamically computed;

2;

500;

0; this value is dynamically computed;

300 ticks; (one tick = 10 msecs);

100;

8192 bytes;

16384 bytes;

32 768 bytes;

100;

100;

10;

16384 bytes;

0.002.

The -f and -d options are mutually exclusive.

BooLdemce is the path name of a character special file containing a boot area. The new
configuration is written out to the boot area on booLdemce, and takes effect the next time the
system is booted.

/ etc / uconfigtab list of default system configuration parameters

WARNING
Do not use uconfig to change the system parameters of an operating system in a boot area unless
that operating system is identical to the operating system you are currently running. If the two
operating systems differ, uconfig will execute successfully, but the new operating system will either
fail to boot, or, if it boots successfully, exhibit strange behavior.

Hewlett-Packard Company - 3 - October 1986

UNTIC(lM) HP-UX UNTIC(lM)

NAME
untic - terminfo de-compiler

SYNOPSIS
untie [term 1 [-f file 1

DESCRIPTION
Untie translates a terminfo file from the compiled format into the source format. If the environ­
ment variable TERMINFO is set to a path name, untie checks for a compiled terminfo description
of the terminal under that path before checking /usr/lib/terminfo. Otherwise, only
/usr/lib/terminfo is checked.

Normally untie uses the terminal type obtained from the TERM environment variable. With the
term (terminal type) option, however, the user can specify the terminal type used.

With the file option the user can specify the file used for translation. This option bypasses the
use of the TERM and TERMINFO environment variables.

Untie sends the de-compiled terminfo description result to standard output.

AUTHOR
Untie was developed by HP.

FILES
/usr/lib/terminfo/?/* compiled terminal capability data base

SEE ALSO
tic(IM), curses(3X), terminfo(4).

Hewlett-Packard Company - I - Version B.I, October 1986

UPDATE(lM) UPDATE(lM)
Series 200, 300, and 500 Only

NAME
update - update optional HP-UX products

SYNOPSIS
update [-m]

DESCRIPTION

FILES

Update is used to receive a periodic update of an HP-UX system or optional product.

Only the super-user can execute update.

The m option is used to turn off the menu mode in update. This should be used if the system con­
sole is not an HP supported terminal.

The update process is interactive. It prints information about the addresses of the mass storage
devices to be used, and gives the user choices to change them. After the proper addresses are set
and the user has selected the choice to read the table of contents on the update source media,
update will print loading options for the products distributed on the update source media. The
user then must select which optional products are to be loaded. There is also a choice to load all
optional products which can be used to cut down on time delays for user interaction.

When the user is finished loading the products desired then the option to exit the process is used.
This will terminate the update process and reboot the system. If any customize scripts are needed
then they will be run automatically after the reboot. If any of these scripts are executed then the
system administrator must change init states to execute the proper inittab file.

The reader is referred to the section in the System Administrators Manual describing the update
process for an indepth explanation of how to use the process.

mknod(2), sysrm(1M).

WARNING

BUGS

The system must be in single-user mode while the update is in progress. This means the system
administrator should insure that only "init", "sh" and any other mandatory processes are active.
The system administrator should also have a recent backup of the system before performing an
update.

There is no way to prevent accidentally updating an older version of a product over a newer one.

SPECIAL NOTE
Hewlett-Packard Company supports only those terminals in the terminfo data base that are
included in the current list of supported devices for the HP-UX release being used. Other termi­
nal model entries may be included in the terminfo data base that are not officially supported. If
you choose to use such devices, they mayor may not work correctly.

Hewlett-Packard Company - 1 - October 1986

UUCICO(lM) HP-UX UUCICO(lM)

NAME
uucico - uucp copy in and copy out

SYNOPSIS
/usr /lib/uucp/uucico [-rl J [-ssys J [-XIlUIn J

DESCRIPTION
[Jucico scans the /usr/spool directory for work files. If such files exist, a connection to a remove
system is attempted using the line protocol for the remote system specified in the L.sys file.
[Jucico then executes all requests for work and logs the results.

The options are as follows:

-rl Start uucico in the MASTER mode; The default is SLAVE mode.

-ssys Do work only for the system specified by sys. If there is no work for sys on the
local spool directory, initiate a connection to sys to determine if sys has work for
the local system.

-xnum Use debugging option. Num is an integer in the range 1 - 9. More debugging
information is given for larger values of num.

Uucico is usually started by a local program (e.g., cron(lM), uucp(l}, or uuxqt(lM}. It should
only be directly initiated by a user when debugging.

When started by a local program, uucico is considered the MASTER and attempts a connection to
a remote system. If uucico is started by a remote system, it is considered to be in SLAVE mode.

For the uucico connection to a remote system to be successful, there must be an entry in the
/etc/passwd file on the remote system of the form:

uucp::5:5:: jusr jspooljuucppublic: /usr /lib /uucp/uucico

Hewlett-Packard Company - 1 - Version B.1, October 1986

UUCLEAN(IM) HP-UX UUCLEAN (1M)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/usr /lib/uucp/uuclean [options 1

DESCRIPTION

FILES

Uuclean will scan the spool directory for files with the specified prefix and delete all those which
are older than the specified number of hours.

The following options are available.

-ddirectory Clean directory instead of the spool directory. If directory is not a valid spool direc­
tory it cannot contain "work files" i.e., files whose names start with "C. H. These files
have special meaning to uuclean pertaining to uucp job statistics.

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A
-p without any pre following will cause all files older than the specified time to be
deleted.

-ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied.
(default time is 72 hours)

-wfile The default action for uuclean is to remove files which are older than a specified time
(see -n option). The -w option is used to find those files older than time hours,
however, the files are not deleted. If the argument file is present the warning is
placed in file, otherwise, the warnings will go to the standard output.

-8SYS Only files destined for system sys are examined. Up to 10 -8 arguments may be
specified.

-mfile The -m option sends mail to the owner of the file when it is deleted. If a file is
specified then an entry is placed in file.

This program is typically started by cron{lM).

/usr/lib/uucp
/usr /spool/uucp

directory with commands used by uuclean internally
spool directory

SEE ALSO
cron{lM), uucp(l), uux(l).

Hewlett-Packard Company - 1 - Version B.1, October 1986

UULS(lM) HP-UX UULS(lM)

NAME
uuls - iist spooied uucp transactions grouped by transaction

SYNOPSIS
uuls [-m] [directories ...]
uuls ,. [-m] [directories ...]
uuls -k [-m] [directories ... J

DESCRIPTION
This command lists the contents of uucp spool directories (default" /usr/spool/uucp") with the
files grouped into three categories:

Transactions
Each line starts with a transaction control filename and includes the name of each local (same­
directory) subfile referenced by the control file (see below). Each is possibly followed by the total
size in bytes (,. option) or Kbytes (-k option) in the transaction (see below). The -m (mean­
ings) option replaces the subfile names with nodename, user, and commandline information (see
below).

Orphans
All subfiles not referenced by any control file.

Others
All other files in the directory (all files not listed under one of the above categories).

Filenames are columnated so there may be more than one file per line. If a transaction has more
subfiles than fit on one line, it is followed by continuation lines which are indented further.

The,. (size in bytes) and -k (Kbytes) options cause the command to follow each transaction in
the Transactions section with a total size for all stat-able, sendable files in that transaction.
This includes wD.*" files only, not "C.*" or "X.*" files. It does include stat-able files outside the
spool directory which are indirectly referenced by "C.*" files. Sizes are either in bytes or rounded
to the nearest Kbyte (1024 bytes), respectively. A totals line is also added at the end of the
Transactions section.

The -m (meanings) option causes the command to follow "C.*" and "X.*" files with a
"nodename!usemame commandline" line, instead of subfilenames. For "C" files, one line is
printed per remote execution ("D*X*") subfile it references. Nodename is truncated at seven
characters, username at eight, and commandline at however much fits on one line.

If -m is given, for each "C" file with no remote execution files, the command instead shows the
meaning of the "C" file itself on one or more lines. Each line consists of a usemame, then "R"
(receive) or "S" (send), then the name of the file to be transferred. See below for details.

Filenames are listed in alphabetical order within each section, except that the first section is only
sorted by the control filename. Every file in the directory except "." and " •• " appears exactly
once in the entire list, unless -m is used.

Details
Transaction files are those whose names start with "C." or "X.". Subfilenames, which usually
start with ND.", are gleaned from control file lines, at most one per line, from blank-separated
fields, as follows:

C.*: R <remotefrom> <localto> <user> -<options>
C.*: S <localfrom> <remoteto> <user> -<options> <subfile> <mode>
X.*: F <subfile>

Lines that don't begin with the appropriate character CR', 'S', or 'F') are ignored.

In the "R" (receive) case, <remotefrom> is used to print the "C"-file meaning, and its transaction
size is taken as zero (unknown).

Hewlett-Packard Company - 1 - Version B.l, October 1986

UULS(lM) HP-UX UULS(lM)

In the "S" (send) case, if <subfile> is "D.O", <localfrom> is a file not in the spool directory,
resulting from a typical uucp call without the -C (copy) option. In this case <localfrom> is
used for the transaction size, if stat-able, and to print the "C" -file meaning.

uucp -C and uux both set <subfile> to a true (spooled) subfile name.

Orphan files are those whose names start with "D." and which are not referenced by any control
files.

This algorithm extracts from control files the names of all subfiles which should exist in the spool
directory when the transaction is not being actively processed. It is not unusual to see "missing
subfiles" and "orphans" if you uuls a spool directory while uucico, uucp, uux, or uuxqt is
active.

Meanings information is gotten by reading each "D*X*" subfile referenced by each "C.*" file, and
by reading "X*X*" files. Nodename!username is taken from the last line in the file which is of the
form:

U <username> <nodename>

Likewise, commandline is taken from the last line of the form:

C <commandline>

If a subfile name is referenced more than once, references after the first show the subfile as miss­
ing. If a subfile name appears in a (corrupt) directory more than once, the name is only found
once, but then it is listed again under Orphans .

AUTHOR
Uuls was developed by the Hewlett-Packard Company.

SEE ALSO
mail(I), uucp(I), uuto(I), uux(I), uuxqt(IM), stat(2).

DIAGNOSTICS

BUGS

The program writes an appropriate message to standard error if it has any problems dealing with
a specified file (directory), including failure to get heap space. It always returns zero as its exit
value.

If a control file is unopenable (wrong permissions or it disappeared while uuls was running), its
name is preceded by a "*" and the size of the transaction is zero. If a subfile is missing (filename
not found in the directory being listed) or un-stat-able (if required for -s or -k), its name is pre­
ceded by a "*" and it contributes zero bytes to the size of the transaction.

If -m is specified and a "D*X*" file is missing or unreadable, its name is given with a "*"
prepended, as usual.

This command uses chdir(2} to change to each directory in turn. If more than one is specified,
the second through last directories must be absolute (not relative) pathnames, or the chdirO may
fail.

Hewlett-Packard Company - 2 - Version B.l, October 1986

UUSNAP(lM) HP-UX UUSNAP(lM)

NAME
uusnap - show snapshot of the UUCP system

SYNOPSIS
uusnap

DESCRIPTION
Uusnap displays in tabular format a synopsis of the current UUCP situation. The format of each
line is as follows:

site N Cmds N Data N Xqts Message

Where "site" is the name of the site with work, "N" is a count of each of the three possible types
of work (command, data, or remote execute), and "Message" is the current status message for
that site as found in the STST file,

Included in "Message" may be the time left before UUCP can re-try the call, and the count of the
number of times that UUCP has tried to reach the site. The process id of UUCICO may also be
shown if it is in a TALKING state.

AUTHOR
Uusnap was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
uucp(l).

Hewlett-Packard Company - 1 - Version B.1, October 1986

UUSU8(lM) HP-UX UUSU8(lM)

NAME
uusub - monitor uucp network

SYNOPSIS
/usr /lib/uucp/uusub [options 1

DESCRIPTION
Uusub defines a uucp subnetwork and monitors the connection and traffic among the members of
the subnetwork. The following options are available:

-asys Add sys to the subnetwork.

-dsys Delete sys from the subnetwork.

-1

-r

-f

-uhr

Report the statistics on connections.

Report the statistics on traffic amount.

Flush the connection statistics.

Gather the traffic statistics over the past hr hours.

--csys Exercise the connection to the system sys. If sys is specified as all, exercise the
connection to all the systems in the subnetwork.

The connections report is formatted as follows:

sys #call #ok time #dev #login #nack #other

Format interpretation:

sys

call

#ok

time

#dev

login

#nack

other

Hewlett-Packard Company

remote system name,

number of times the local system tried to call sys since the last
flush was done,

number of successful connections,

latest successful connect time,

number of unsuccessful connections because of no available dev­
ice (e.g., ACU),

number of unsuccessful connections because of login failure,

number of unsuccessful connections because of no response (e.g.
line busy, system down),

number of unsuccessful connections because of other reasons.

- 1 - Version B.1, October 1986

UUSUB(lM) HP-UX

Traffic statistics are reported as follows:

sfile sbyte rfile rbyte

Format interpretation:

s/ile number of files sent,

UUSUB(lM)

sbyte number of bytes sent over the period of time indicated in the
latest uusub command with the -uhr option,

The command:

r/ile

rbyte

uusub --c all -u 24

number of files received,

number of bytes received.

is typically started by cron{IM} once a day.

FILES
/usr /lib/uucp/L . ..Bub
/usr /lib/uucp/R-..Bub
/usr /spool/uucp/SYSLOG

SEE ALSO
uucp{I}, uustat{I}.

Hewlett-Packard Company

connection statistics
traffic statistics
system log file

- 2 - Version B.l, October 1986

UUXQT{lM) HP-UX UUXQT{lM)

NAME
uuxqt - uucp command execution

SYNOPSIS
/usr/lib/uucp/uuxqt [-xnum I

DESCRIPTION
The uuxqt daemon performs local command execution of execution files (X.*) on the
/usr/spool/uucp directory. Uux generates work files with an execution (X) grade which become
execution files when transferred to the remote system. The command requested by the execution
file is checked against the list of remotely executable commands in the COMMANDS file. The
USERFILE is then searched to find the first NULL system field for path access permission.

The option -xnum is a parameter specifying debugging information. Num is an integer in the
range 1 - 9. The amount of debugging information increases as the value of num increases.

Hewlett-Packard Company - 1 - Version B.1, October 1986

VTDAEMON(1M) VTDAEMON (1M)
Series 200/300 and 500 Only

NAME
vtdaemon - respond to vt requests

SYNOPSIS
vtdaemon [-g[<ngateway>]] [-n] <Ian device> <Ian device> ...

DESCRIPTION
vtdaemon responds to requests from other systems (via local area network) made by vt{i}. vtdae­
mon will spawn a server to respond to each request that it receives.

The -g option causes vtdaemon to rebroadcast all requests received on one Ian device to all of the
other Ian devices specified on the command line. The optional parameter ngateway specifies the
maximum number of vtgateway servers that can be in operation concurrently. If ngateway is not
specified then there will be no limit on the number of vtgateway servers that can be in operation
concurrently.

The -n option causes vtdaemon to ignore all requests that have come through a gateway.

The remaining arguments are the full path names of Ian devices that vtdaemon will look for
requests on. If no Ian devices are specified then the default Ian device is used. The major number
for this device must correspond to a CIO IEEE802.3 local area network device.

Another function of vtdaemon is to create portals and service portal requests. A portal is a callout
device that can be used by 'U'Ucico{lM} to communicate to another machine via local area net­
work. Portals are created by vtdaemon according to the configuration information found in the
file /usr /lib/uucp/L-vtdevices. Each line in L-vtdevices has the format:

<calldev>[,<lan device>] <nodename>

For each line, vtdaemon will create a portal named calldev in /dev. Whenever this device is
opened, vtdaemon will will spawn a server that will create a connection to the system specified by
nodename via the Ian device specified. If no Ian device is specified then the first one specified on
the command line when vtdaemon was started is used (or the default Ian device is used if no Ian
devices were specified on the command line).

vtdaemon should be terminated by sending signal SIGTERM to it. When vtdaemon receives this
signal it will remove all of the portals it created in /dev before exiting.

HARDW ARE DEPENDENCIES
Series 500:

FILES

The HP 2285A Ian device is not supported by vtdaemon.

Series 200/300:

The -g option is not supported.

/usr/contrib/lib/vtdaemonlog
/dev/ieee

logfile used by vtdaemon.
default Ian device name.

SEE ALSO
uucico(IM), vt(l)

DIAGNOSTICS
Diagnostics messages produced by vtdaemon are written to /usr/contrib/lib/vtdaemonlog.

WARNINGS
vtdaemon uses the Hewlett-Packard LLA (Link Level Access) direct interface to the HP network
drivers. vtdaemon uses the multicast address OxOlAABBCCBBAA. It should not be used or
deleted by other applications accessing the network. vtdaemon uses the following IEEE 802.3
sap (service access point) values: Ox90, Ox94, Ox98, OX9C, OxAO, OxA4, OxA8, OxAC,

Hewlett-Packard Company - 1 - October 1986

VTDAEMON(IM) VTDAEMON (1M)
Series 200/300 and 500 Only

OxBO, 0xB4, 0xB8, OxBC, OxCO, OxC4, OxC8, OxCC, OxDO and 0xD4. They should not
be used by other applications accessing the network.

Hewlett-Packard Company - 2 - October 1986

WALL(lM) HP-UX WALL(lM)

NAME
wall - write to all users

SYNOPSIS
fete/wall [-g groupname] [file]

DESCRIPTION
When wall is invoked without arguments, the standard input is read until an end-of-file. It then
sends this message to all currently logged-in users preceded by:

Broadcast Message from ...

If the -g groupname option is specified, wall sends the message to all currently logged-in group­
name members (as specified in fete/group) preceded by:

Broadcast Message from ... to group groupname

If the file option is specified, wall uses file as its standard input.

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may have invoked (see
mesg(l)).

Wall has timing delays, and will take at least 30 seconds to complete.

FILES
/dev/tty*

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

INTERNATIONAL SUPPORT
8- and 16-bit data, 8-bit filenames.

Hewlett-Packard Company - 1 - Version B.1, October 1986

WHODO(lM)

NAME
whodo - which users are doing what

SYNOPSIS
/etc/whodo

DESCRIPTION

HP-UX WHODO(lM)

Whodo produces merged, reformatted, and dated output from the who(l) and ps(l) commands.

FILES
/etc/passwd

SEE ALSO
ps(l), who(l).

INTERNATIONAL SUPPORT
8- and 16-bit data, 8-bit filenames.

Hewlett-Packard Company - 1 - Version B.1, October 1986

INTRO(2) HP-UX INTRO(2)

NAME
intro - introduction to system calls

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This
result indicates the status of the call. Typically, a zero or positive result indicates that the call
completed successfully, and -1 indicates an error. The individual descriptions specify the details.
An error number is also made available in the external variable errno (see errno(2)}. Note:
Ermo is not cleared on successful calls, so it should be tested only after an error has been indi­
cated.

SEE ALSO
intro(3), errno(2), hier(5).

The introduction to this manual.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCESS (2) HP-UX ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *pathj
int amodej

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessibility accord­
ing to the bit pattern contained in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

A component of the path prefix is not a directory.

Read, write, or execute (search) permission is requested for a null path name.

The named file does not exist.

Search permission is denied on a component of the path prefix.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being exe­
cuted.

Permission bits of the file mode do not permit the requested access and the real
user ID is not the super-user.

Path points outside the allocated address space for the process. The reliable
detection of this error will be implementation dependent.

[ENAMETOOLONG]
The named file exceeds MAXP ATHLEN characters.

The owner of a file has permission checked with respect to the "owner" read, write, and execute
mode bits. Members of the file's group other than the owner have permissions checked with
respect to the "group" mode bits, and all others have permissions checked with respect to the
"other" mode bits.

Access will report that a file currently open for execution is not writable, regardless of the setting
of its mode.

HARDW ARE DEPENDENCIES
Integral PC

Super-user capabilities are provided to the normal user.

A file currently open for execution is writeable.

SEE ALSO
chmod(2), stat(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

ACCT(2) HP-UX ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *pathj

DESCRIPTION
Acct is used to enable or disable the system's process accounting routine. IT the routine is
enabled, an accounting record will be written on an accounting file for each process that ter­
minates. Termination can be caused by one of two things: an exit call or a signal; see exit(2) and
signal(2). The effective user ID of the calling process must be super-user to use this call.

Path points to a path name naming the accounting IDe. The accounting file format is given in
acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the system call.
It is disabled if path is zero and no errors occur during the system call.

The system shuts off accounting when the file size exceeds a system dependent limit.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Acct will fail if one or more of the following are true:

[EPERM]

[EBUSY]

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[ETXTBSY]

The effective user ID of the calling process is not super-user.

An attempt is being made to enable accounting when it is already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file path name do not exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

Path points to an illegal address. The reliable detection of this error will be
implementation dependent.

Path points to a text file which is currently open.

[ENAMETOOLONG]
The accounting file path name exceeds MAXP A THLEN characters.

HARDWARE DEPENDENCIES
Series 200, 300, 500

The system's process accounting routine will ignore any locks placed on the process account­
ing file.

IT the size of the process accounting file reaches 5000 blocks, records for processes terminat­
ing after that point will be silently lost. However, in that case the turnacct command would
still sense that process accounting is still enabled. This loss of records can be prevented by
the use of ckpacct (see acctsh(IM)).

Series 200, 300, 800
When the amount of free space on the file system containing the accounting file falls below a
configurable threshold, the system prints a message on the console and disables process
accounting. Another message is printed and the process accounting is re-enabled when the
space reaches a second configurable threshold.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCT(2) HP-UX ACCT(2)

Series 500
Any child process created by v/ork(2) that does not call exec(2) before terminating will not
generate a process accounting record.

Integral PC
Process accounting is not supported.

SEE ALSO
acct(1M), exit(2), signal(2), acct(4).

Hewlett-Packard Company - 2 - Version B.1, October 1986

ALARM(2) HP-UX ALARM(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned long alarm (sec)
unsigned long sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling
process after the number of real time seconds specified by sec have elapsed; see signal(2). Specific
implementations may place limitations of the maximum alarm time supported. The constant
MAX-ALARM defined in <sys/param.h> specifies the implementation specific maximum. When­
ever sec is greater that this maximum, it is silently rounded down to it. On all implementations,
MAX-ALARM is guaranteed to be at least 31 days (in seconds).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

Alarms are not inherited by a child process across a fork, but are inherited across an exec.

On systems which support the getitimer(2) and setitimer, the timer mechanism used by alarm is
the same as that used by ITIMER-REAL. Thus successive calls to alarm, getitimer, and setiti­
mer will set and return the state of a single timer.

RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm clock of the calling process.

SEE ALSO

BUGS

sleep(I), getitimer(2), pause(2), signal(2), sleep(3C).

In some implementations, error bounds for alarm are -1, +0 seconds (for the posting of the alarm,
not the restart of the process). Thus a delay of 1 second can return immediately. The setitimer
routine can be used to create a more precise delay.

Hewlett-Packard Company - 1 - Version B.l, October 1986

BRK(2) HP-UX BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
lnt brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated for the calling
process's data segment; see exec(2). The change is made by resetting the process's break value
and allocating the appropriate amount of space. The break value is the address of the first loca­
tion beyond the end of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. [ncr can be
negative, in which case the amount of allocated space is decreased.

ERRORS
Brk and sbrk will fail without making any change in the allocated space if one or more of the fol­
lowing are true:

[ENOMEMj Such a change would result in more space being allocated than is allowed by a
system-imposed maximum (see ulimit(2)).

[ENOMEMj Such a change would cause a conflict between addresses in the data segment and
any attached shared memory segment (see shmop(2)).

HARDW ARE DEPENDENCIES
Series 200, 300, 800:

[ENOMEMj can also be returned if there is insufficient swap space available.

Series 500:

WARNINGS

Brk sets the break value to endds.

Brk and sbrk will also fail without making any change in the allocated space if such a
change would move the program break below the beginning of your process' indirect data
area. Note that it is not possible to release the direct data area with this system call.

If your process' indirect data area is paged, then the size of that data area changes in incre­
ments of the page size, which is configurable. Consequently, increasing a paged process data
area by one byte may cause it to increase by one page, and decreasing it by one byte may
do nothing. If your process' data area is not paged, then the size of the process data area
changes similarly in increments of 32 bytes.

The pointer returned by sbrk is not necessarily word-aligned. Loading or storing words through
this pointer could cause word alignment problems.

Care should be taken when using either brk(2) or sbrk(2) in conjunction with calls to the
malloc(3C) or malloc(3X) library routines. There is only one program data segment from which
all three of these routines allocate and deallocate program data memory. Although it is not
recommended practice, it is possible to deallocate program data memory allocated through
malloc(3C) with a subsequent call to brkO.

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Other­
wise, a value of -1 is returned and ermo is set to indicate the error.

Hewlett-Packard Company - 1 - Version B.1, October 1986

BRK(2) HP-UX BRK(2)

AUTHOR
Brk and sork were deveioped by AT&T and HP.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

Hewlett-Packard Company - 2 - Version B.1, October 1986

CHDffi(2) HP-UX CHDffi(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *pathj

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning with

f.
ERRORS

Chdir will fail and the current working directory will be unchanged if one or more of the following
are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

[ENOENT]

A component of the path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

Path is null.

[ENAMETOOLONG]
The named directory exceeds MAXP A THLEN characters.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

AUTHOR
Chdir was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
cd{l), chroot(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CHMOD(2) HP-UX CHMOD(2)

NAME
chmod, fchmod - change access mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

fchmod (fd, mode)
int fd, mode;

DESCRIPTION
Path points to a path name naming a file. Fd is a descriptor for a file. Chmod sets the access
permission portion of the file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000
02000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution
Set group ID on execution
Set file locking mode to enforced (shared with set group ID on execution bit)
Save text image after execution
Read by owner
Write by owner
Execute (or search if a directory) by owner
Read, write, execute (search) by group
Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be super-user to change
the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text image on execu­
tion) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of the process
does not match the group ID of the file and none of the group IDs in the access group list match
the group ID of the file, mode bit 02000 (set group ID on execution and enforced file locking mode)
is cleared.

The set group ID on execution bit is also used to cause file-locking mode (see lockf(2) and fcntl(2))
to be enforced. Files with this bit set that are not group-executable will have enforcement set.
This may affect future calls to open(2), creat(2), read(2), and write(2) on this file.

If an executable file is prepared for sharing then mode bit 01000 prevents the system from aban­
doning the swap-space image of the program-text portion of the file when its last user terminates.
Thus, when the next user of the file executes it, the text need not be read from the file system but
can simply be swapped in, saving time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if one or more of the following are true:

A component of the path prefix is not a directory.

The named file does not exist.

[ENOTDIR]

[ENOENT]

[EACCES] Search permission is denied on a component of the path prefix.

Hewlett-Packard Company - 1 - Version B.1, October 1986

CHMOD(2) HP-UX CHMOD(2)

[EPERM] The effective user II> does not match the owner of the file and the effective user
ID is not super-user.

The named file resides on a read-only file system. [EROFS]

[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENOENT] A component of the path does not exist.

[ENAMETOOLONG]
The named file exceeds MAXP A THLEN characters.

HARDW ARE DEPENDENCIES
Series 500

Chmod changes the mode of files created only in the HP-UX environment (that is, not those
created by the HP 9000 BASIC Language System).

Fchmod is not currently implemented.

Integral PC
Normal users have all super-user capabilities.

AUTHOR
Chmod was developed by AT&T, the University of California, Berkeley, and HP.

Fchmod was developed by the University of California, Berkeley.

SEE ALSO
chmod(I), chown(2), creat(2)' fcntl(2), lockf(2), open(2), mknod(2), read(2), write(2).

Hewlett-Packard Company - 2 - Version B.l, October 1986

CHOWN(2) HP-UX CHOWN(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

fchown (fd, owner, group)
int fd, owner, group;

DESCRIPTION
Path points to a path name naming a file. Fd is a descriptor for a file. The owner ID and group
ID of the file are set to the numeric values contained in owner and group respectively. A value of
-1 can be specified in owner or group to leave unchanged the file's owner ID or group ID respec­
tively. Note that owner and group should be less than or equal to 65535, since only the least
significant 16 bits are used.

Only processes with effective user ID equal to the file owner or super-user may change the owner­
ship of a file. If privilege groups are supported, the owner of a file may change the ownership only
if he is a member of a privilege group allowing chown, as set up by setprivgrp. All users get
chown privileges by default.

The group ownership of a file can be changed to any group in the current process's access list or
to the real or effective group id of the current process. If privilege groups are supported and the
user is permitted the chown privilege, then the file can be given to any group.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the file
mode will be cleared.

ERRORS
Chown will fail and the owner and group of the file will remain unchanged if one or more of the
following are true:

[EBADF] Fd is not a valid file descriptor.

[ENOTDIR]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the path prefix.

EPERM is set when the effective user ID is not super-user and one or more of
the following conditions exist:

The effective user ID does not match the owner of the file.

When changing the owner of the file, if the owner of the file is not a member of a
privilege group allowing chown.

When changing the group of the file, if the owner of the file is not a member of a
privilege group allowing chown and the group number is not in the current
process's access list.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENAMETOOLONG]

Hewlett-Packard Company - 1 - Version B.l, October 1986

CHOWN(2) HP-UX

The named file exceeds MAXP ATHLEN characters.

HARDW ARE DEPENDENCIES
Integral Personal Computer:

CHOWN(2)

For superuser capabilities described above, it is not necessary to be superuser.

Series 500:
Chown changes the owner and group of files created only in the HP-UX environment (that
is, not those created by the HP 9000 BASIC Language System).

Fchown is not currently implemented.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of ~1 is returned and
errno is set to indicate the error.

AUTHOR
Fchown was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
chown(I), chmod(2).

Hewlett-Packard Company - 2 - Version B.l, October 1986

CHROOT(2) HP-UX CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory to become
the root directory, the starting point for path searches for path names beginning with /. The
user's working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .• cannot
be used to access files outside the subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chroot will fail and the root directory will remain unchanged if one or more of the following are
true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT]

[EPERM]

The named directory does not exist or a component of the path does not exist.

The effective user ID is not super-user.

[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENAMETOOLONG]
The named directory exceeds MAXP ATHLEN characters.

HARDW ARE DEPENDENCIES
Integral PC

Normal users have all super-user capabilities.

SEE ALSO
chroot(1M), chdir(2}.

Hewlett-Packard Company - 1 - Version B.1, October 1986

CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (HIdes)
int HIdes;

DESCRIPTION

HP-UX CLOSE(2)

Fildes is a file descriptor obtained from a creat, open, dup, Icntl, or pipe system call. Close closes
the file descriptor indicated by fildes. All associated file segments which have been locked by this
process with the lockl function are released (i.e., unlocked).

ERRORS
[EBADFJ Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2}, dup(2), exec(2), fcntl(2), lockf(2), open(2), pipe(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CREAT(2) HP-UX CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file named by the path name
pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. Otherwise,
the file's owner ID is set to the effective user ID, of the process, the group ID is set to the effective
group ID, of the process, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows:

All bits set in the process's file mode creation mask are cleared. See umask(2).

The "save text image after execution bit" of the mode are cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for writing (only),
even if the mode does not permit writing. The file pointer is set to the beginning of the file. The
file descriptor is set to remain open across exec system calls. See /cntl(2). No process may have
more than a system defined maximum number of files open simultaneously. This is discussed
under open(2). A new file may be created with a mode that forbids writing.

ERRORS
Creat will fail if one or more of the following are true:

(ENOSPC]

(ENOTDIR]

(ENOENT]

(EACCES]

(EACCES]

(EROFS]

[ETXTBSY]

(EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

(ENFILE]

(ENXIO]

Not enough space on the file system.

A component of the path prefix is not a directory.

The named file does not exist (for example, path is null, or a component of path
does not exist).

Search permission is denied on a component of the path prefix.

The file does not exist and the directory in which the file is to be created does
not permit writing.

The named file resides or would reside on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

The file exists and write permission is denied.

The named file is an existing directory.

More than the maximum number of file descriptors are currently open.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

The system file table is full.

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist.

[ENAMETOOLONG]

[EAGAIN]

The path specified exceeds MAXP A THLEN characters.

The file exists, enforcement mode file and record locking is set and there are out­
standing record locks on the file.

Hewlett-Packard Company - 1 - Version B.1, October 1986

CREAT(2) HP-UX CREAT(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor, is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(2), fcnt1(2), Iseek(2), open(2), read(2), truncate (2) , umask(2) , lockf(2),
write(2).

Hewlett-Packard Company - 2 - Version B.1, October 1986

DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (HIdes)
int HIdes;

DESCRIPTION

HP-UX DUP(2)

Fildes is a file descriptor obtained from a ereat, open, dup, lentl, or pipe system call. Dup
returns a new file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (Le., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (see lentl(2), F--.DUPFD).

The new file descriptor is set to remain open across exee system calls. See lentl(2).

The file descriptor returned is the lowest one available.

ERRORS
Dup will fail if one or more of the following are true:

[EBADF]

[EMFILE)

RETURN VALUE

Fildes is not a valid open file descriptor.

The maximum number of file descriptors are currently open.

Upon successful completion a non-negative integer, namely the file descriptor, is returned. Other­
wise, a value of -1 is returned and· errno is set to indicate the error.

AUTHOR
Dup was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
close(2), creat(2)' dup2(2), exec(2), fcntl(2), open(2), pipe(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

DUP2(2) HP-UX DUP2(2)

NAME
dup2 - duplicate an open file descriptor to a specific slot

SYNOPSIS
lnt dup2(fildes, fildes2)
int fildes, fildes2;

REMARKS
This facility is provided for backwards compatability with Version 7 and BSD systems. Fentl
should be used for all new code.

DESCRIPTION
Fildes is a file descriptor obtained from a ereat, open, dup, lentl, or pipe system call. Fildes2 is a
non-negative integer less than the maximum value allowed for file descriptors. Dup2 causes fildes2
to refer to the same file as fildes. If fildes2 already referred to an open file, it is closed first. The
file descriptor returned by dup2 has the following in common with the original:

Same open file (or pipe).

Same file pointer (Le., both file descriptors share one file pointer.)

Same access mode (read, write or read/write).

Same file status flags (see lentl(2), F---.DUPFD).

The new file descriptor is set to remain open across exee system calls. See lentl(2).

This call can be accessed by giving either (for Version 7) the -IV7 or (for 4.1 or 4.2bsd) the -
lBSD option to Id(l).

ERRORS
Dup2 will fail if one or more of the following are true:

[EBADF]

[EINVAL]

RETURN VALUE

Fildes is not a valid open file descriptor.

Fildes2 is not in the range of legal file descriptors.

Upon successful completion a non-negative integer, namely the file descriptor, is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fcnt1(2), open(2), pipe(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

EMS(2) HP-UX
Series 500 Only

EMS(2)

NAME
ems - Extended Memory System

SYNOPSIS

NOTE

#include <sys/ems.h>

System V shared memory is an industry standard mechanism for sharing memory between
processes. When portability to other HP-UX system or other vendor's systems is desired, use Sys­
tem V shared memory instead of EMS (see shmctl(2), shmget(2), and shmop(2)).

DESCRIPTION
Extended Memory System consists of system calls which allocate and deallocate address space,
map files into address spaces, support shared memory, and change the protection of address
spaces. There are separate manual pages for the system calls. This page describes features in
common to all the system calls in EMS.

Definitions
memory space This is the actual physical memory of a machine.

address space This refers to the logical memory of a process. Memory space is shared by hav­
ing processes' address space refer to the same memory space.

segment A contiguous piece of address space.

Properties of a Segment
During the allocation of a segment, the following types of segments can be requested:

ME~HARED

The address space is to be sharable with other processes. The data is shared
across /ork(2) (Le. not copied on a fork).

MEM.J>RIVATE
The address space is process local, and is copied on a /ork(2). All memory seg­
ments will be either MEM-SHARED or MEMJRIV ATE; the default is
MEMJRIVATE.

ME~CODE The address space may, at some time in its lifetime, be made executable.

ME~ATA The address space may, at some time in its lifetime, be read and/or written. A
segment may be MEM_CODE, ME~ATA, or both. The default type is
derived from the initial access permissions:

MEM-R I MEM_ W
MEMJ
(MEM-R I MEM_W) && MEMJ

MEM.J>AGED

ME~ATA
MEM_CODE
MEM_CODE I ME~ATA.

Requests that a segment be created as a paged object. (This is ignored if not
significant for a particular implementation).

File Mapping
EMS provides the facility for mapping a file into process address space. This is done via
memallc(2). Files can be either private or shared.

For private file mapped segments, the address space will contain an image of the file as it existed
at the time of the memallc(2) call. Subsequent alterations of the file will have no effect on the con­
tents of the address space, and vice-versa.

For shared file mapped segments, the address space is identically the file (at least the mapped por­
tion thereof). Changes to the address space represent changes to the file, and vice-versa. For
example, a write or read to or from the address space is, in all ways, equivalent to a file system

Hewlett-Packard Company - I - Version B.I, October 1986

EMS(2) HP-UX
Series 500 Only

EMS(2)

write or read. Similarly, re-creating (using creat(2)) the file will result in the address space con­
taining all zeros.

The access permissions (e.g. read, write) applied to a shared mapped file are established by the
first memallc(2) referencing that file. Subsequent mappings of the same file by other processes
must request identical access permissions.

File mapping, as described above, is only guaranteed to apply to regular local files and block
structured device files. File mapping is not applicable to remote files at this time. Attempting to
map an unsupported file type will result in error EINVAL.

Note that file mapping, either MEMJRIVATE or MEM-SHARED, always requires read per­
mission on fileid. Access modes cannot exceed those on fileid for shared, mapped files.

Shared Memory
It is possible to share a memory space between processes. Access to shared memory can occur in
two ways. The first way is to associate a file name as the name of the shared memory space.
Each related or unrelated process performs a memallc(2) to gain access to the shared memory
through mapping the file.

Another method of sharing, without the file, is for related processes: a process can allocate a non­
file-mapped shared segment; upon a fork(2) , the child process will have access to the same
memory space as the parent.

AUTHOR
Ems was developed by HP.

memadvise(2) , memallc(2) , memchmd(2) , memlck(2) , memvary(2) , shmget(2) , shmop(2),
shmct1(2), vsadv(2), vson(2),

Hewlett-Packard Company - 2 - Version B.l, October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

NAME
errinfo -- error indicator

SYNOPSIS
extern int errinfo;

Remarks:
Errinfo is implemented on the Series 500 only.

DESCRIPTION
When an error occurs in a system call, the external variable errno is set to the standard HP-UX
error number, and more detailed information is stored in the external variable errinfo. Errinfo
obtains its value from the escape code returned by the underlying HP-UX kernel.

Errinfo is not cleared on successful system calls, so it should only be checked after an error has
been indicated.

Software that is intended to be portable across HP-UX implementations should not reference
errinfo.

The errinfo values and their meanings are as follows:

VALUE MEANING

*4 NVM address out of range;
5 buffer request is not within valid range;
6 buffer address space overflow;

*7 address specified does not reference a valid buffer;
* 10 specified process priority level out of range;
* 11 a non-existent code segment is specified;
*12 attempt to delete non-existent partition;
* 13 system parameter not addressable;
*14 system parameter cannot be referenced with an EDS pointer;
*20 invalid message link;
*21 invalid message link;
*22 message limit exceeded;
*23 link limit exceeded;
*24 link being deleted contains processes waiting for messages;
*30 timer canceled;
*31 timer stopped;
*32 cancel already done for specified timer ID;
*33 stop already done for specified timer ID;
*34 timer ID not stopped before cleared;
* 35 timer ID not canceled before cleared;
*36 attempt to set time and date to a value outside accessible range (midnight Janu­

ary 1, 1900 to midnight December 31, 25599);
*37 stack extension error;
40 memory overflow (private partition);
41 memory overflow;
42 no free partition available for allocation;
43 segment table overflow;
44 memory controller block overflow;
45 partition overflow;
46 pointer passed as an argument does not point to a valid segment;
47 segment size is out ofrange;

*48 free space chains are inconsistent, segment map corruption;

Hewlett-Packard Company - 1 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

*49 free space chains are inconsistent, block map corruption;
50 pointer passed as an argument does not point to a valid segment;

*51 block address within a segment is invalid;
56 device or interface card timed out;
57 system call aborted by signal(2);

*59 improper resource management in operating system;
*60 improper resource management in operating system;
*63 routine called for wrong I/O device or at wrong time;
*64 routine called for wrong I/O device or at wrong time;
*65 used in BASIC only;
66 hardware or firmware error in interface card;

*67 I/O transaction aborted by device or interface card;
68 an HP-IO interface card failed its self test;

*69 used during power-up, produces "System halted - incompatible lOP's" message;
*70 no such object;
*73 out of timer ID's;
*74 timer ID out of range;
*75 start_partition parameters not consistent;
*76 parameter to start_partition not addressable;
*77 attempt to change to non-existent partition;
*78 must be a system process to change to partition;
80 device not ready for request, may be busy with some other operation, or power

may be off;
81 media is write-protected and cannot be altered;
82 media has been mis-inserted;
83 format switch disables driver from doing a media format operation;
84 media error was detected, usually a CRC, parity, or checksum error; data may

not be valid;
85 cannot find record on media; usually indicates trouble in reading the

header/servo information on the media;
86 the read check of data written to a record has failed;
88 media may have been changed since last access; buffered data may have to be

thrown away;
*89 used to implement internally generated re-tries;
*90 software failure was detected; perhaps data structures were corrupted, or an

unexpected event occurred;
91 unknown error; indicates some type of device or interconnect malfunction;

*94 medi&...-active (true) request must be made before first access;
95 a parameter for a particular request is not supported by this driver; usually indi-

cates that the type of card does not support a special function;
97 termination mode is not supported by this device driver;
98 EOI must have a data byte associated with it before it can be written;

*99 driver must be opened for request;
100 record number out of allowed range; usually indicates corrupt directory struc­

ture;
*101 the transfer length was negative, zero, or odd for a halfword read or write

request; can also indicate a transfer past the end of the media volume;
102 halfword or byte mode transfers are not supported by this driver;
* 103 cannot close a locked driver; this is a fault of the calling code;
105 the argument specified for this ioctl request is out of range or points to the

wrong type of structure;
106 The ioctl command given is not recognized by this device;

Hewlett-Packard Company - 2 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

107 an attempt was made to attach two different drivers to the same device; these
drivers are incompatible and cannot co-exist; the new driver is not attached, but
the old driver remains unchanged;

108 the size of the string is not correct for this string register access;
109 interleave factor not supported by disc; it is either zero, negative, or too big;
110 invalid address was detected by the driver, or the interface card occupies the

same subaddress as the device;
*111 capacity of disc exceeds 32-bit record address range assumed by driver;
112 reference to an unsupported pseudo-register was made; if the request accessed

multiple registers, the previous (if valid) register accesses were made;
113 HP-IB TCT byte must be at the end of the ATN sequence because you have

passed control;
114 a request is not supported by this driver;
115 no driver with that name was found;
116 no driver is available for that card, or the device address value is out of range;
117 write verify is not supported for this mass storage device;
118 length of -1 specifying that a transfer should be used is invalid;
119 an invalid value was assigned to a pseudo-register;
120 data transfer was terminated due to the reception of a secondary address;
121 for buffered devices, a data transfer cannot be satisfied due to un-transferred

data from the other direction; for example, a write may not be possible if there is
still unread data present on the device;

122 device cannot satisfy this request because of a previous request or the current
state of the device;

123 the beginning of the tape was encountered before the operation could be com­
pleted;

124 the interface cannot be the HP-IB active controller when doing this operation;
125 synchronous data rate could not be met to complete the operation; system may

be too heavily loaded, or the specified bandwidth parameters for this or another
device may be wrong;

126 a hardware fault was detected; controller/status card should be examined for
further information;

127 the device/interface was not found at the specified address; power may be off, or
the address could be wrong;

128 the end of tape was encountered before the operation was complete;
129 the device failed its self test or a diagnostic; no further access to this device

should be attempted;
130 the HP-IB interface is too slow for this synchronous device;
131 tape end of file was encountered before request could be completed;
132 the device was busy and could not handle the request;
133 the media is absent from the device;
134 the media is not formatted, and must be formatted before use;
135 too many media errors prevent formatting to complete; formatting operation

may be only partially done;
136 the media has no more spares left but had to spare some data; the sparing was

not done;
137 the HP-IB interface must be the active controller to execute this operation;
138 the HP-IB interface must be the system controller to execute this operation;
139 no data seen on media after a device specific length of media; this is a sequential

tape error;
140 more data was found in the record than was requested for the read operation;

the remaining data was lost, and cannot be read by the next read request;

Hewlett-Packard Company - 3 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

141 the media physical format is incorrect for this disc;
142 media failure has occurred, or the media has deteriorated such that replacement

is suggested; writing is no longer allowed; media may only last long enough for a
back-up;

143 the HP-IB interface is not addressed to read or write as requested, and because
it is active controller, it cannot become addressed;

144 the read or write request data transfer was aborted by an HP-IB IFC or an HP-
IB device clear operation;

145 not all the data (or commands) were accepted by the device;
146 not all the data was sourced by the device;
147 controller or unit fault was reported by the device;
148 some failure occurred in receiving the device status result; usually means that

not all the status was returned, or the controller reported a failure when the
driver attempted to receive the status;

149 the operation cannot be completed because a user programmed hold off has
occurred;

*150 system problem or failure;
*151 successful completion of task; should not be visible;
157 the volume label specified in the volume specifier does not match the volume

label on the volume;
158 links may not be removed if the file has been opened with the "no purge link"

option;
160 cannot open a directory with write access;
161 two or more volumes have the same voiume iabei and the fiie system is unabie to

distinguish between them for this request;
162 an attempt was made to access an open file in a way forbidden by the file sys­

tem;
163 the disc format does not support the requested operation;
164 the file cannot be opened for writing because it is currently being execed, or the

file may not be opened with execute access because it is currently opened for
writing;

165 the file/device could not be opened because the system open file table is full; this
is caused by a memory overflooverflow

166 a file may not be opened in both "shared" and "exclusive" modes; your access
mode conflicts with the current mode;

167 a signal was received while waiting to read or write to a pipe;
168 the request cannot be performed because the designated file is open or in use at

the current time;
169 an attempt was made to purge a link to the file without obtaining the necessary

access rights;
170 not enough disc space could be allocated to satisfy the request;
171 a file with the same name already exists in the directory;
172 the file ID passed to the system was bad;
173 an attempt was made to read beyond the physical end of the file;
174 tried to write to a pipe for which there are no readers;

* 175 the request made is not supported by the file system;
176 same as error 162, except that the file may not be open;
177 a "position" (lseek) request was made on a pipe;
178 the device driver specified in the volume specifier does not match the current

device driver being used for the volume;
179 the disc format specified in the volume specifier does not match the disc format

on the volume;

Hewlett-Packard Company - 4 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

181 some file in the file path could not be found;
182 the device specified is not a random access blocked device;
183 the disc format on the disc does not support volume labels;
184 the disc format on the disc does not support file passwords;
185 the disc does not contain a recognizable disc format; the disc format name given

for an initialize request is not known to the system;
188 the region of the file that Was accessed is currently locked;
189 a volume may not be initialized while there are open files on it;
193 a non-directory was specified where a directory was required;
198 the request cannot be satisfied because another file cannot be added to the direc­

tory; no i-nodes were available;
201 the request cannot be satisfied because the directory is not empty;
204 the file system was unable to extend a "contiguous" file without creating another

extent;
*210 invalid file code;
216 the select code in the device address in the volume specifier is not within the

acceptable range for this hardware configuration;
*217 an attempt was made to remove or change a password which does not exist;
*218 an attempt was made to put two identical passwords on a file with different

capability sets;
*219 a simple deadlock was encountered when locking a file;
221 the file name is too long (LIF discs support 10 characters, HP 9845 format discs

support 6 characters, and SDF discs support 16 characters);
222 invalid character in LIF or HP 9845 format disc file name;

*223 invalid character in LIF or HP 9845 format disc password;
*224 volume label is too long on a LIF or HP 9845 format disc;
*225 password too long on a LIF or HP 9845 format disc;
*226 invalid character in volume label on a LIF or HP 9845 format disc;
*227 invalid date on LIF or HP 9845 format disc;
*228 invalid record size on LIF or HP 9845 format disc;
229 invalid record mode on LIF or HP 9845 format disc;
230 a file name was expected and none was specified, or an attempt was made to

purge the "." or " .. " links from a directory;
231 a subdirectory was specified when the disc format does not support subdirec-

tories;
232 links not supported on LIF or HP 9845 format discs;
233 non-UNIX systems are not allowed to establish duplicate links to a directory;
234 the device (file) specified for the mount/umount request is not a block special

device;
235 the device (file) specified for the umount request is not currently mounted;
236 a volume could not be unmounted because it is currently being used (there are

open files or working directories established on the mounted volume); a volume
could not be mounted because it is already mounted; the directory being
mounted on is open or is the root directory;

237 an attempt was made to establish a link from ·one volume to another;
238 raw discs must be lseeked and read/write sizes must be multiples of the device's

physical sector size (256 bytes for discs, 1024 bytes for cartridge tapes).
241 the byte address on a file access was outside the acceptable range for the file; the

byte address must be non-negative;
242 the file system saw a directory, i-node, or bit map record which contains incon­

sistent data;
244 an attempt was made to read beyond the logical end of the file;

Hewlett-Packard Company - 5 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

249 an attempt was made to unlock an unlocked file;
*252 time value out of range;
*253 hours, minutes, or seconds value out of range;
*254 day, month, or year value out of range;
*255 invalid date;
256 specified segment does not exist;
257 page table has not been initialized;
258 page has not been initialized;
259 lock count has overflowed;
260 lock count has underflowed;
261 entire working set cannot be locked;
262 lock length is invalid;
263 segment is not locked;
264 locked segment cannot be extended;
265 page is not locked;
266 segment is not paged;
267 segment is not shared;
268 requested segment lengths are inconsistent;
269 minimum working set request cannot be satisfied;
270 frame pool cannot be expanded;
271 virtual memory device table overflow;
272 virtual memory device index is invalid;
273 default virtual memory device cannot be removed;
274 virtual memory device index is inactive;
275 virtual memory device index is in use;
276 a locked page was encountered;
301 escape through user code for exec;
302 target process not found in kill call;
303 target process has the wrong real or saved user ID in kill call;
304 no processes found in a broadcast signal attempt;
305 signal number out of range;
306 not super-user; requires super-user permission;
307 a bad argument was supplied to a system call;
308 an attempt was made to wait with no children;
309 an intrinsic was aborted by a signal;
310 process stack overflow;
311 unrecognized ulimit command;
312 your DB relative argument had an offset greater than 512 Kbytes;
313 fix-up offset exceeds segment size (see a.out(5));
314 stack pointer passed to brk;
315 invalid segment number in user pointer;
316 an attempt was made to kill(O,sig) with no current process group;
317 file number out of range;
318 specified file ID not open;
319 ioctl call not implemented;
320 inappropriate ioctl command for device;
321 ID not in the range 0 to 65535;

322 invalid function address in signal(2) or sigvector(2);
323 floating point divide-by-zero;
324 floating point overflow;
325 floating point underflow;
327 wrong number of system call parameters;

Hewlett-Packard Company - 6 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

328 inconsistent executable file;
329 front panel timeout (series 500, models 30 and 40 oniy);
330 graphics to internal CRT timed out;
331 graphics hardware does not respond;

*332 unexpected error when performing an open;
*333 unexpected error when performing a close;
334 illegal mode of driver was requested;
335 a buffer was passed to an intrinsic that is too large;
336 DMA terminated abnormally;
337 received one more x coordinate than y coordinate;
343 user program called missing kernel segment;
345 attempt to execute a file which is too small;
346 attempt to execute a file with a bad magic number;
347 unimplemented configure function;
348 maximum stack exceeded;
349 fatal stack overflow;
350 the requested heap size is too big;
358 there is no tty device at this address;
359 this request is not supported by this device;
360 semid, msqid or shmid is not a valid IPC identifier;
361 semnum in semctl(2) or mtype in msgsnd(2) out of range;
362 invalid cmd to semctl(2), msgctl(2), or shmctl(2);
363 nsems out of range in semget(2);
364 ID for key exists but nsems or size inconsistent with existing ID;
365 mtext is greater than msgsz and ms~oerror is false in msgrcv(2);
366 IPC key exists but operation permission denied;
367 IPC operation permission denied;
368 operation requires caller to be super-user or owner or creator of specified IPC ID;
369 ID does not exist and IPC_CREATE not specified;
370 system-imposed limit on number of IDs exceeded; ID not created;
371 ID exists for key, but IPC_CREATE and IPC-EXCL both specified;
372 nsops is greater than the system-imposed maximum;
373 seIIL-Ilum is less than zero or greater than or equal to the number of semaphores

in the set associated with semid;
374 operation would result in suspension of the calling process but IPC---.NOW AIT

specified;
375 operation would cause semval or semadj value overflow;
376 specified semaphore or message queue ID has been removed from the system;
377 insufficient memory for IPC structure;
378 message queue does not contain message of desired type and IPCJOW AIT

specified;
379 shared memory size or message size (msgsz) out ofrange;
380 shmaddr is invalid (non-zero);
381 number of shared memory segments per user exceeded;
382 shmflg is invalid (SH~ONLY set);
383 no line discipline of the requested value was found;
384 the ioctl command given is not recognized by this device;
385 the argument specified for this ioctl request is out of range or points to the

wrong type of structure;
386 an attempt was made to enable process accounting when it was already enabled.
387 the file specified for process accounting is not an ordinary file;
388 lockf deadlock detected;

Hewlett-Packard Company - 7 - October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

389 lockf no more free locks;
390 plock permission invalid (not superuser);
391 PROCLOCK is invalid (PROCLOCK, TXTLOCK, or DATLOCK exists);
392 TXTLOCK is invalid (PROCLOCK

or TXTLOCK exists);
393 DATLOCK is invalid (PROCLOCK or DATLOCK exists);
394 UNLOCK is invalid (no lock exists);
395 op is invalid (not PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK);

396 plock invalid in [vfork,exec] window;
397 get/ setitimer invalid in [vfork,exec] window;
398 timer specification is invalid;
399 timeval is invalid;
400 no interrupt packet for this file descriptor;
401 illegal mode mask used in hpib-io function call;

*440 internal error;
441 protection modes do not match with existing segment;
442 device is not a 'CS80' device;
443 attempt to add a device not specified with a device file;
444 attempt to pass an EMS intrinsic a parameter which is out of range;
445 attempt to memchmd segment codes which are shared by more than one process;
446 attempt to filemap a file which has already been filemapped by process;
447 insufficient memory available to complete memallc request;
448 the specified memory address is invalid;
449 attempt to llse EMS intrinsic on memory not. alllX.at.",d by mp.mnllr.;

450 super-user capability is required to create this kind of file;
451 specified file or directory does not exist;
452 an invalid RPM program descriptor was used;
453 an RPM child process was interrupted;
455 attempt to close file failed;
456 abortive file close occurred; data may have been lost;
457 attempt at an abortive file close failed;
458 incorrect select code; device or address does not exist;
459 too much data was given for an RPM request;
460 a string is too long;
461 a name used for RPM is too long;
462 an invalid file ID was used;
463 an open file could not be found;
464 attempt to create a process has failed;
465 connection limit set by the super-user was reached;
466 login not allowed;
467 RPM was not allowed to create a remote process;
470-483 not enough memory could be found; check the network memory limit set with

npowerup;
490 TCP security mismatch;
491 remote login failed;
493 an RPM login is invalid;
494 consumer login sequence is invalid;
496 login sequence is invalid;
497 connection attempt was not accepted by the remote system;
498 new inbound path rejected, possibly due to lack of local resources;
500 RPM cannot set up the login environment;
501 RPM service is denied;

Hewlett-Packard Company - 8 - October 1986

ERRINFO(2)
Series 500 Only

502 service instance is denied;
503 login on the producer system is invalid;
505 illegal socket name length was used for IPC;
506 illegal node name length was used for IPC;
507 too many file name sets were given for RF Ai
508 too many node names were given in an RF A path specifier;
510 attempt was made to copy a directory;
511 parameter contained an illegal value;
513-516 register number or value is unacceptable;
517 internal error; contact qualified HP support personnel;
518 incorrect file type; cannot create RF A remote file;
519 flag specified for RPM is invalid;
520 an option specified for RPM is invalid;
521 unacceptable format for an RPM option;
522 address given could not be used;

*523-524

525
526
529
530
532
533
535
536
537
540
541
543
544
545
546
547
548
559

*560-685

internal error; contact qualified HP support personnel;
illegal characters in an IPC name;
incorrect IPC socket descriptor used;
illegal IPC flag value was used;
illegal IPC data length was used;
illegal IPC control request was used;
illegal IPC option structure was used;
illegal IPC request value was used;
illegal IPC timeout value was specified;
IPC receive size too big;
IPC send size too big;
data unit is too large;
IPC socket specified is not a virtual circuit socket;
illegal address format;
nested remote path names are not allowed;
IPC socket specified is not a destination socket;
IPC socket specified is not a source socket;
error in field endpoint;
no local IPC socket descriptors are available;

internal error; contact qualified HP support personnel;
690 network is already up;
691-692 network is down;

*694 internal error; contact qualified HP support personnel;
695 network is going down;
700 incorrectly formatted network directory was specified;
701 2285A LAN Unit download file is bad;
705 a LAN Interface hardware problem has been detected;
706 LAN Interface failed its selftest;
707 LAN Interface failed during a transmit attempt;
708 LAN Interface failed during a receive attempt;
709-710 2285A LAN Unit failed during a download;
711 HP-IB Interface failed;
720-722 network transport timeout occurred;
723 remote system did not respond to retransmission attempts;
724-725 no activity on a connection; the connection has been aborted;

Hewlett-Packard Company - 9 -

ERRINFO(2)

October 1986

ERRINFO(2) ERRINFO(2)
Series 500 Only

726 attempt to establish a connection has failed;
730-732 remote system has violated network protocol;
733 a message is too long;
734 request was made that is unacceptable to the transport or to a remote service;
735 unrecognized RF A request;
736 request is unserviceable at this time;
737 unrecognized RF A request;
738 invalid response from the remote system;
739 remote RPM process has violated network protocol;
740 remote RPM process has reported an unrecognized error;

*741 an unrecoverable network protocol error has occurred;
745 requested service cannot be supplied;
747 system cannot support an interchange operation;
748 system cannot support a restart operation;
749 checkpointing not supported;
750 system cannot support a transient operation;
751 unknown system type;
752 buffer too small;
753 invalid remote file request;
754 an error response was received;
755 RPM does not support the requested feature;
756 remote node's version of IPC is incompatible;

*757 internal error; contact Qualified HP support personnel;
761 incorrect or unknown path name;
762-763 destination is unreachable;
764 file specified is not a network special file;

*765 internal error; contact qualified HP support personnel;
*767 internal error; contact qualified HP support personnel;
768 system name used is unknown to the local node;
770-774 connection has been lost;
777 IPC connection request failed;
778 connection to producer is down;
780 name specified for the producer system could not be found;
782 name specified for the consumer system could not be found;
784 insufficient resources on the producer system;
785 insufficient resources on the consumer system;
786-787 not enough memory could be obtained on the remote system. The remote system

could be out of physical memory or the network memory limit on the remote
node could be too small;

788 IPC socket already exists;
790 IPC socket name could not be found;
792 IPC virtual circuit connection was killed;
794 IPC virtual circuit socket cannot be named;
796 IPC connection is pending;
798 IPC process does not own the socket;
800 IPC operation would block;
804 the program for RPM is invalid;
806 the program for RPM could not be loaded;
808 LAN Interface failed. If resetting the Interface does not eliminate the problem,

contact qualified HP personnel.

All errinfo values marked with an asterisk (*) indicate a serious system problem which should be
checked by qualified HP support personnel.

Hewlett-Packard Company - 10- October 1986

ERRlNFO(2) ERRINFO(2)
Series 500 Only

For errinfo values 360-382, IPC refers to the interprocess communications facilities provided by
message queues, shared memory, and semaphores. For errinf'o values 450-999, IPC refers to the
interprocess communications facilities provided by local area networking.

SEE ALSO
err(I), errnet(2), errno(2), perror(3C).

WARNING
Errinfo is intended for diagnostic purposes only. Values and meanings may change in future
releases of HP-UX.

Hewlett-Packard Company - 11 - October 1986

ERRNO(2) HP-UX ERRNO(2)

NAME
ermo - error indicator for system calls

SYNOPSIS
#include <errno.h>
extern int errnoj

DESCRIPTION
Errno is an external variable whose value is set whenever an error occurs in a system call. This
value can be used to obtain a more detailed description of the error. An error condition is indi­
cated by an otherwise impossible returned value. This is almost always -1; the individual descrip­
tions specify the details. Errno is not cleared on successful system calls, so its value should be
checked only when an error has been indicated.

Each system call description attempts to list all possible error numbers. The following is a com­
plete list of the error names. The numeric values can be found in <errno.h> but should not nor­
mally be used.

E2BIG

EACCES

Arg list too long
An argument and or environment list longer than maximum supported size is
presented to a member of the exec family. Other possibilities include: message
size or number of semaphores exceeds system limit (msgop, semop), or too many
privileged groups have been set up (setprivgrp).

Permission denied
An attempt was made to access a file or IPC object in a way forbidden by the
protection systern.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL
Can not assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

EAFNOSUPPORT

EAGAIN

EALREADY

EBADF

EBUSY

Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example,
you should not necessarily expect to be able to use PUP Internet addresses with
ARPA Internet protocols.

No more processes
A fork failed because the system's process table is full or the user is not allowed
to create any more processes, or a semop or msgop call would have to block.

Operation already in progress
An operation was attempted on a non-blocking object which already had an
operation in progress.

Bad file number
Either a file descriptor refers to no open file, a read (respectively write) request is
made to a file which is open only for writing (respectively reading), or the file
descriptor is not in the legal range of file descriptors.

Device or resource busy
An attempt to mount a device that was already mounted or an attempt was
made to dismount a device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will also occur if an attempt
is made to enable accounting when it is already enabled. The device or resource

Hewlett-Packard Company - 1 - Version B.I, October 1986

ERRNO(2)

ECHILD

HP-UX ERRNO(2)

is currently unavailable, such as when a non-shareable device file is in use.

No child processes
A wait was executed by a process that had no existing or unwaited-for child
processes.

ECONNABORTED
Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNREFUSED
Connection refused
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the
foreign host.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer
executing a shutdown(2) call.

EDEADLK Resource deadlock would occur
A process which has locked a system resource would have been put to sleep while
attempting to access another process' locked resource.

EDESTADDRREQ

EDOM

EEXIST

EFAULT

Destination address required
A required address was omitted from an operatioI). on a socket.

Math argument
The argument of a function in the math package (3M) is out of the domain of
the function.

File exists
An existing file was menti~ned in an inappropriate context, e.g., link.

Bad address
The system encountered a hardware fault in attempting to use an argument of a
system call; can also result from passing the wrong number of parameters to a
system call. The reliable detection of this error will be implementation depen-
dent. '

EFBIG File too large
The size of a file exceeded the maximum file size (for the file system) or ULIMIT
was exceeded (see ulimit(2)), or a bad semaphore number in a semop(2) call.

EHOSTDOWN Host is down
A socket operation encountered a dead host. Networking activity on the local
host has not been intiated.

EHOSTUNREACH

EIDRM

No route to host
A socket operation was attempted to an unreachable host.

Identifier Removed
This error is returned to processes that resume . execution due to the removal of
an identifier from the file system's name space (see msgctl(2) , semctl(2), and
shmctl(2)). .

., EINPROGRESS Operation now in progress
An operation which takes a long time to complete was attempted on a non­
blocking object (see ioctl(2) and jcntl(2)).

Hewlett-Packard Company - 2 - Version B.1, October 1986

ERRNO(2)

EINTR

EINVAL

EIO

EISCONN

EISDIR

EMFILE

EMLINK

EMSGSIZE

HP-UX ERRNO(2)

Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to
catch, occurred during a system call. If execution is resumed after processing the
signal, it will appear as if the interrupted system call returned this error condi­
tion unless the system call is restarted (see sigvector(2)).

Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mentioning an
undefined signal in signal, or kill; reading or writing a file for which /seek has
generated a negative pointer). Also set by the math functions described in the
(3M) entries of this manual.

I/O error
Some physical I/O error. This error may in some cases occur on a call following
the one to which it actually applies.

Socket is already connected
A connect request was made on an already connected socket, or, a sendto or
sendmsg request on a connected socket specified a destination other than the
connected party.

Is a directory
An attempt to open a directory for writing.

Too many open files
No process may have more than a system defined number of file descriptors open
at a time.

Too many links
An attempt to make more than the maximum number of links to a file.

Message too long
The socket requires that the message be sent atomically, and the size of the mes­
sage to be sent made this impossible.

ENAMETOOLONG

ENET

ENETDOWN

File name too long
A path specified exceeds the maximum path length for the system. The max­
imum path length is specified by MAXP ATHLEN and is kept in
<sys/param.h>. If this MAXPATHLEN is not defined for an implementation,
that implementation does not generate this error. MAXPATHLEN is
guaranteed to be at least 1023 characters.

Local area network error
An error occurred in the software or hardware associated with your local area
network.

Network is down
A socket operation encountered a dead network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ENETUNREACH Network is unreachable

ENFILE

A socket operation was attempted to an unreachable network.

File table overflow
The system's table of open files is full, and temporarily no more opens can be
accepted.

Hewlett-Packard Company - 3 - Version B.l, October 1986

ERRNO(2)

ENOBUFS

ENODEV

ENOENT

ENOEXEC

ENOMEM

ENOMSG

ENOPROTOOPT

ENOSPC

ENOTBLK

ENOTCONN

HP-UX ERRNO(2)

No buffer space available
An operation on a socket was not performed because the system lacked sufficient
buffer space.

No such device
An attempt was made to apply an inappropriate system call to a device; e.g.,
read a write-only device.

No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn't, or when one of the directories in a path name does not exist. It also
occurs with msgget, semget, shmget when key does not refer to any object and
the lPC_CREA T flag is not set.

Exec format error
A request is made to execute a file which, although it has the appropriate per­
missions, does not start with a valid magic number (see a.out(4)), or the file is
too small to have a valid executable file header.

Not enough space
During a system call such as exec, brk, fork, or sbrk, a program asks for more
space than the system is able to supply. This may not be a temporary condition;
the maximum space size is a system parameter. The error may also occur if the
arrangement of text, data, and stack segments requires too many segmentation
registers, or if there is not enough swap space during a fork.

No message of desired type
An attempt was made to receive a message of a type that does not exist on the
specified message queue; see msgop (2).

Protocol not available
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

No space left on device
During a write to an ordinary file, there is no free space left on the device; or, no
space in system table during msgget(2) , semget(2), or semop(2) while
SE~UNDO flag is set.

Block device required
A non-block file was mentioned where a block device was required, e.g., in
mount.

Socket is not connected
An request to send or receive data was disallowed because

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a
path prefix or as an argument to chdir(2).

ENOTEMPTY Directory not empty
An attempt was made to remove a non-empty directory.

ENOTSOCK Socket operation on non-socket
An operation was attempted on something that is not a socket.

ENOTTY Not a typewriter
The (ioctl(2)) command is inappropriate to the selected device type.

ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the

Hewlett-Packard Company - 4 - Version B.1, October 1986

ERRNO(2) HP-UX ERRNO(2)

limits of the device. It may also occur when, for example, a tape drive is not
online or no disk pack is loaded on a drive.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary
users to do things allowed only to the super-user.

EPFNOSUPPORT

EPIPE

Protocol family not supported
The protocol family has not been configured into the system or no implementa­
tion for it exists. the socket is not connected.

Broken pipe
A write on a pipe for which there is no process to read the data. This condition
normally generates a signal; the error is returned if the signal is ignored.

EPROTONOSUPPORT
Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with
type SOCK-STREAM.

ERANGE Result too large
The value of a function in the math package (3M) is not representable within
machine precision, or a semop(2) call would cause either a semaphore value or a
semaphore adjust value to exceed it system-imposed maximum.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read­
only.

ESHUTDOWN Cannot send after socket shutdown
A request to send data was disallowed because the 'socket had already been shut
down with a previous shutdown(2) call.

ESOCKTNOSUPPORT

ESPIPE

ESRCH

ETIMEDOUT

Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

Illegal seek
An lseek was issued to a pipe.

No such process
No process can be found corresponding to that specified by pid in kill, rtprio or
ptrace, or the process is not accessible.

Connection timed out
A connect request failed because the connected party did not properly respond
after a period of time. (The timeout period is dependent on the communication
protocol.)

Hewlett-Packard Company - 5 - Version B.l, October 1986

ERRNO(2) HP-UX ERRNO(2)

ETXTBSY Text file busy

EWOULDBLOCK

EXDEV

An attempt to execute an executable file which is currently open for writing (or
reading). Also, an attempt to open for writing an otherwise writable file which is
currently open for execution.

Operation would block
An operation which would cause a process to block was attempted on a object in
non-blocking mode (see ioctl(2) and fcntl(2)).

Cross-device link
A link to a file on another device was attempted.

HARDW ARE DEPENDENCIES
Series 500:

In the definition of error 12 (ENOMEM), the maximum space size is not a system parameter.
Also, the terms "text, data, and stack segments", "segmentation registers", and "swap
space" are invalid.

In the definition of error 31 (EMLlNK), the maximum number of links is 32767.

This additional errno value is implemented:

EUNEXPECT Unexpected error
An unexpected error was returned from the system, indicating some type of
system problem. This error should never occur; if it does, it indicates a
system bug.

A second error indicator, errinfo, is implemented in addition to errno.

Series 800:
In the definition of error ENOMEM, the term "segmentation registers" is invalid.

Hewlett-Packard Company - 6 - Version B.1, October 1986

EXEC (2) HP-UX EXEC (2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, 0)
char *path, *argO, *argl, ... , *argn;

int execv (path, argv)
char *path, *argv[];

int exec Ie (path, argO, argl, ... , argn, 0, envp)
char *path, *argO, *argl, ... , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, argl, ... , argn, 0)
char *file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *fUe, *argv[];

DESCRIPTION
Exec, in all its forms, loads a program from an ordinary, executable file onto the current process,
replacing the current program. This file is either an executable object file, or a file of data for an
interpreter, called a script file.

An executable object file consists of a header (see a.out(4)), a text segment, and a data segment.
'T'1..~ -l~ .. ~ ~~_~_ .. ~~_ .. ~:_~ ~_ :_: .. :~1:_~-l _~_ .. :~_ ~_-l ~_ •• _:_: .. :~1: __ -l _~-'-:~_ (1.._~\ 1;'~ _____ 1_
~ lit; UCIolrG ;:)t:;lSLllClll! \...UllllGll.10 au .lllllllOUhCU 1-"-'.1 lUll a..uu au. lU..1.l.L11l!JGUIL.rCU }lVll!lVll \ UIiXt). .I." VI. (;,,££:;''''1'

and execvp the shell (lbin/sh) may be loaded to interpret a script instead. There can be no
return from a successful exec because the calling program is overlaid by the new program.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file. (The exit conditions from main are discussed in
exit (2)).

Path points to a path name that identifies the executable file containing the new program.

File (in exeelp or execvp) points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by a search of the directories passed as the
environment line "PATH =" (see environ (5)). The environment is supplied by the shell (see
sh(l)). If file does not have an executable magic number (magic(4)) , then it is passed to /bin/sh
under the assumption that file is a shell script.

ArgO, argJ, ... , argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new program. By convention, at least argO must be present
and point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new program. By convention, argv must have at least one member,
and it must point to a string that is the same as path (or its last component). Argv is terminated
by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings constitute the
environment in which the new program will run. Envp is terminated by a null pointer. For exeel

Hewlett-Packard Company - 1 - Version B.1, October 1986

EXEC (2) HP-UX EXEC (2)

and execv, the C run-time start-off routine places a pointer to the environment of the calling pro­
gram in the global cell:

extern char **environj
and it is used to pass the environment of the calling program to the new program.

File descriptors open in the calling process remain open in the new program, except for those
whose close-on-exec flag is set; see fcntl(2). For those file descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling program will be set to terminate the new program. Signals set
to be ignored by the calling program will be set to be ignored by the new program. Signals set to
be caught by the calling program will be set to their default value in the new program; see sig­
nal(2).

If the set-user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2)),
exec sets the effective user ID of the new program to the owner ID of the executable file. Simi­
larly, if the set-group-ID mode bit of the executable file is set, the effective group ID of the new
program is set to the group ID of the executable file. The real user ID and real group ID of the
new program remain the same as those of the calling program. Note that the set-user{group)-id
function does not apply to scripts, and thus if execlp or execvp executes a script, even if it has the
set-user(group)-id bits set, they will be ignored.

The saved process group ID is set equal to the current process group ID.

The shared memory segments attached to the calling program will not be attached to the new
program (see shmop(2)).

Profiling is disabled for the new program; see profil(2).

The new program also inherits the following attributes from the calling program:

interval timers (see getitimer(2)).
nice value (see nice(2))
process ID
parent process ID
process group ID
semadj values (see semop(2))
tty group ID (see exit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
utime, stime, cutime, and cstime (see times(2))
real-time priority (see rtprio(2))
signal mask (see sigvector(2))
pending signals

A script file begins with a line of the form "#! interpreter" or "#! interpreter argument", where
#! must be the first two bytes of the file. The interpreter name begins with the first character
other than space or tab following the #!. When such a file is exec'd, the system exec's the
specified interpreter, as an executable object file, in its place. Even in the case of execlp or
execvp, no path searching is done on the interpreter name.

The argument is anything after any tabs or spaces following the interpreter name on the #! line,
including any imbedded tabs or spaces. If there is an argument, it is passed to the interpreter as
argv[lj and the name of the script file is passed as argv[2j. Otherwise, the name of the script file
is passed as argv[lj. argv[Oj is passed as specified in the exec call, unless either argvor argv[Oj is

Hewlett-Packard Company - 2 - Version B.l, October 1986

EXEC(2) HP-UX EXEC(2)

null as specified, in which case a pointer to a null string is passed as argv[Oj. All other arguments
specified in the exec call are passed following the name of the script file (that is, beginning at
argv[3j if there is an argument; otherwise at argv[2]).

If the #! line exceeds some system defined maximum number of characters, an error will be
posted and exec will not succeed; the line is terminated by either a new line or null character.
The minimum value for this limit is 32.

Set-user-id and set-group-id bits are honored for the script and not for the interpreter.

RETURN VALUE
If exec returns to the calling program, an error has occurred; the return value will be -1 and
errno will be set to indicate the error.

ERRORS
Exec will fail and return to the calling program if one or more of the following are true:

[ENOENT]

[ENOTDlR]

[EACCES]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

[ENOENT]

[ENOEXEC]

One or more components of the executable file's path name or the interpreter's
path name do not exist.

A component of the executable file's path prefix or the interpreter's path prefix is
not a directory.

Search permission is denied for a directory listed in 'the executable file's or the
interpreter's path prefix.

The executable file or the interpreter is not an ordinary file.

The file pointed to by path or file is not executable. The super-user cannot exec
a file unless at least one of the three execute bits is set in the file's mode.

Read permission is denied for the executable file or the interpreter and the
process's trace flag (see ptrace(2) request 0) is set.

The exec is not an execlp or execvp, and the executable file has the appropriate
access permission but there is neither a valid magic number nor a #! in its
header.

The executable file is currently open for writing. Note: normal executable files
are only open for a short time when they start execution. Other executable file
types may be kept open for a long time, or indefinitely under some cir­
cumstances.

The new program requires more memory than is available, or than is allowed by
the system-imposed maximum MAXMEM.

The number of bytes in the new program's argument list is greater than the
system-imposed limit. This limit will be at least 5120 bytes on HP-UX systems.

The executable file is not as long as indicated by the size values in its header, or
is otherwise inconsistent. The reliable detection of this error will be implementa­
tion dependent.

Path, argv, or envp point to an illegal address. The reliable detection of this
error will be implementation dependent.

Path is null.

The number of bytes in the #! line of a script file exceeds the system's max­
imum.

[ENAMETOOLONG]
The executable file's path name or the interpreter's path name exceeds MAX­
P A THLEN characters.

Hewlett-Packard Company - 3 - Version B.l, October 1986

EXEC(2)

HARDW ARE DEPENDENCIES
Series 500

HP-UX EXEC(2)

References to memory, such as "text segment", "data segment", "initialized portion", "unin­
itialized portion", and "bss", are invalid. See a.out(4) for the Series 500.

Series 800
Unsharable executable files (EXEC_MAGIC magic number produced via the -N option of
Id(l)) are not supported.

Integral PC
Normal users have all super-user capabilities.

SEE ALSO
sh(I), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),
umask(2), a.out(4), environ(5).

Hewlett-Packard Company - 4 - Version B.l, October 1986

EXIT(2) HP-UX EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION
Exit terminates the calling process and passes exit's argument to the system for inspection, see
wait{2}. Returning from main in a C program has the same effect as exit; the exit value is the
function value returned by main. (This value will be undefined if main does not take care to
return a value or explicitly call exit.)

Exit is equivalent to _exit, except that exit flushes stdio buffers, while _exit does not. Both exit
and _exit terminate the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of the calling
process's termination and the low order eight bits, i.e., bits 0377, of status are made avail­
able to it, see wait{2}.

If the parent process of the calling process is not executing a wait, and does not have
SIGCLD set to SIG-IGN, the calling process is transformed into a zombie process. A
zombie process iiS a pruceiSiS that only occupies a siot in the process table. It has no other
space allocated either in user or kernel space. Time accounting information is recorded
for use by times{2}.

The parent process ID of all of the calling process's existing child processes and zombie
processes is set to 1. This means the initialization process {proc1} inherits each of these
processes.

Each attached shared memory segment is detached and the value of shllLJlattach in
the data structure associated with its shared memory identifier is decremented by 1, see
shmop{2}.

For each semaphore for which the calling process has set a semadj value, see semop{2},
that semadj value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is performed, see plock{2}.

An accounting record is written on the accounting file if the system's accounting routine
is enabled, see acct{2}.

If the process ID, tty group ID, and process group ID of the calling process are equal, the
SIGHUP signal is sent to each process that has a process group ID equal to that of the
calling process. If the process ID and process group ID of the calling process are equal,
the process group ID is removed from all processes that belong to the process group of the
calling process. However, if the calling process has previously called setpgrp2{2} without
subsequently calling setpgrp{2}, the SIGHUP signal will not be sent and process groups
will be left unaltered.

If the calling process caused a controlling terminal to be allocated {caused the tty group
ID for the terminal to be defined}, the controlling terminal is now deallocated and all
processes that share this terminal as a controlling terminal have their process group ID
removed.

Hewlett-Packard Company - 1 - Version B.1, October 1986

EXIT(2) HP-UX EXIT(2)

If the cu..'Tent process has any child processes that are being traced, they will be sent a SIGKILL
signal. If it has other child processes that are stopped, they will be sent SIGHUP and SIGCONT
signals.

HARDW ARE DEPENDENCIES
Series 200, 300, 500

Job control is not supported.

AUTHOR
Exit was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
Exit conditions ($1) in sh{l), acct(2), plock(2), semop(2), shmop(2), signal(2), times(2), vfork(2),
wait(2).

Hewlett-Packard Company - 2 - Version B.1, October 1986

FCNTL(2) HP-UX FCNTL(2)

NAME
fcntl - me control

SYNOPSIS
#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd;

union {
int val;
struct flock *lockdes;

} arg;

DESCRIPTION
Fcntl provides for control over open files. Fildes is an open file descriptor obtained from a creat,
open, dup, Jcntl, or pipe system call.

The cmds available are:

F-DUPFD

F_GETFD

F-EETFD

F_GETFL

F-EETFL

F_GETLK

F-EETLK

F-EETLKW

Return a new file descriptor that has the following characteristics:

Lowest numbered available file descriptor greater than or equal to arg.val.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both me descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain open
across exec(2) system calls.

Get the close-on-exec flag associated with the file descriptor fildes. If the low­
order bit is 0 the file will remain open across exec(2), otherwise the file will be
closed upon execution of exec(2).

Set the close-on-exec flag associated with fildes to the low-order bit of argo val (see
F_GETFD).

Get file status flags; see Jcntl(5).

Set file status flags to arg.val. Only certain flags can be set; see Jcntl(5).

Get the first lock which blocks the lock description given by the variable of type
struct flock pointed to by argo The information retrieved overwrites the informa-
tion passed to Jcntl in the flock structure. If no lock is found that would prevent
this lock from being created, the structure is passed back unchanged except for
the lock type which will be set to F _UNLCK.

Set or clear a file segment lock according to the variable of type struct flock
pointed to by arg.lockdes (see Jcntl(5)). The cmd F-EETLK is used to establish
read (F-RDLCK) and write (F_WRLCK) locks, as well as remove either type of
lock (F_UNLCK). If a read or write lock cannot be set, Jcntl will return immedi­
ately with an error value of -l.

This cmd is the same as F -EETLK except that if a read or write lock is blocked
by other locks, the process will sleep until the segment is free to be locked.

A read lock prevents any process from write-locking the protected area. More than one read lock
can exist for a given segment of a file at a given time. The file descriptor on which a read lock is

Hewlett-Packard Company - 1 - Version B.1, October 1986

FCNTL(2) Hp..:UX FCNTL(2)

being placed must have been opened with read access.

A write lock prevents any process from read-locking or write-locking the protected area. Only one
write lock may exist for a given segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write access.

The structure flock describes the type (Ltype), starting offset (Lwhence) , relative offset
(Lstart) , size (Lien), and process id (Lpid) of the segment of the file to be affected. The pro­
cess id field is only used with the F _GETLK cmd to return the value for a block in lock. Locks
may start and extend beyond the current end of a file, but may not be negative relative to the
beginning of the file. A lock may be set to always extend to the end of file by setting Lien to
zero (0). If such a lock also has Lstart set to zero (0), the whole file will be locked. Changing or
unlocking a segment from the middle of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the calling proc('$S c.auses the old lock
type to be removed and the new lock type to take effect. All locks associated with a file for a
given process are removed when a file descriptor for that file is closed by that process or the pro­
cess holding that file descriptor terminates. Locks are not inherited by a child process in a /ork(2)
system call.

When enforcement-mode file and record locking is active on a file, see chmod(2), future read and
write system calls on the file will be affected by the record locks in effect.

ERRORS
Fcntl will fail if one or more of the following conditions are true thus errno is set accordingly:

[EBADF]

[EMFILE]

[EMFILE]

[EINVAL]

[EINVAL]

[EINVAL]

[EACCES]

[ENOSPC]

[EDEADLK]

RETURN VALUE

Fildes is not a valid open file descriptor.

Cmd is F -DUPFD and the maximum number of file descriptors is currently open.

Cmd is F~ETLK or F-BETLKW, the type of lock is a read or write lock and
there are no more file-locking headers available (too many files have segments
locked).

Cmd is F -DUPFD and argo val is negative, greater than or equal to the maximum
number of file descriptors.

Cmd is F _GETLK, F -BETLK, or F ~ETLKW and arg.lockdes or the data it
points to is not valid.

Cmd is not a valid command.

Cmd is F~ETLK, the type of lock (Ltype) is a read (F---RDLCK) lock or write
(F_WRLCK) lock and the segment of a file to be locked is already write-locked
by another process, or the type is a write lock (F -WRLCK) and the segment of a
file to be locked is already read- or write-locked by another process.

Cmd is F -BETLK or F -BETLKW, the type of lock is a read or write lock and
there are no more file-locking headers available (too many files have segments
locked), or there are no more record locks available (too many file segments
locked).

Cmd is F -BETLKW, when the lock is blocked by some lock from another process
and sleeping (waiting) for that lock to become free. This causes a deadlock
situation.

Upon successful completion, the value returned depends on cmd as follows:

F-DUPFD A new file descriptor.

F_GETFD Value of close-on-exec flag (only the low-order bit is defined).

Hewlett-Packard Company - 2 - Version B.l, October 1986

FCNTL(2) HP-UX

F---BETFD Value other than -1.

F_GETFL Value of file status flags.

F---BETFL Value other than -1.

F_GETLK Value other that -1.

F---BETLK Value other than -1.

F---BETLKW Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

HARDW ARE DEPENDENCIES
Series 200, 500

The F _GETLK, F -BETLK, and F -BETLKW commands are not supported.

AUTHOR

FCNTL(2)

Fcntl was developed by the Hewlett-Packard Company, AT&T Bell Laboratories, and The
University of California, Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather than EACCES when a sec­
tion of a file is already locked by another process, portable application programs should expect
and test for either value, for example:

SEE ALSO

fik->Ltype = F---RDLCK;
if (fcntl(fd, F -SETLK, flk) == -I}

if ((errno == EACCES) II (errno == EAGAIN))

else if ...

/*
* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*/

/*
* check for other errors
*/

close(2), exec(2), lockf(2), open(2), fcntl(5).

FUTURE DIRECTIONS
The error condition which currently sets errno to EACCES will instead set errno to EAGAIN [see
also APPLICATION USAGE above].

Hewlett-Packard Company - 3 - Version B.l, October 1986

FORK(2) HP-UX FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process (parent process). This means the child process inherits the following attributes
from the parent process:

environment
close-on-exec Bag (see exec(2))
signal handling settings (Le., SIG-.DFL, SIG---.lGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status (see profil(2))
nice value (see nice(2))
all attached shared memory segments (see shmop(2))
process group ID
tty group ID (see exit(2) and signal(2))
trace Bag (see ptrace(2) request 0)
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
real-time priority (see rtprio(2))
saved process group ID

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro­
cess).

The child process has its own copy of the parent's file descriptors. Each of the child's file
descriptors shares a common file pointer with the corresponding file descriptor of the
parent.

All semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not inherited by the child (see plock(2)}.

The child process's utime, stime, cutime, and cstime are set to 0; see times(2). The time
left until an alarm clock signal is reset to 0, and all interval timers are set to 0 (disabled).

Note that standard I/O buffers are duplicated in the child. Thus, if you fork after a buffered I/O
operation that was not Bushed, you may get duplicate output.

Vfork is provided as a higher performance version of fork on some systems. See vfork(2) for
details.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and ermo is set to indicate the error.

The parent and child processes resume execution immediately after the fork call; they are
identified by the value returned by fork.

Hewlett-Packard Company - 1 - Version B.l, October 1986

FORK(2) HP-UX FORK(2)

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN]

[EAGAIN]

[ENOMEM]

AUTHOR

The system-imposed limit on the total number of processes under execution
would be exceeded.

The system-imposed limit on the total number of processes under execution by a
single user would be exceeded.

Fork will fail if there is not enough swapping and/or physical memory to create
the new process.

Fork was developed by AT&T Bell Laboratories and the University of California, Berkeley Cali­
fornia, Computer Science Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
exec(2)' nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), times(2), ulimit(2), umask(2),
wait(2).

Hewlett-Packard Company - 2 - October 1986

FSYNC(2) HP-UX

NAME
fsync - synchronize a file's in-core state with its state on disk

SYNOPSIS
int fsync(fildes)
int ftIdes;

DESCRIPTION

FSYNC(2)

Fsyne causes all modified data and attributes of fildes to be moved to a permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be written
to a disk. Fsyne applies to ordinary files, and applies to block special devices on systems which
permit I/O to block special devices.

Fsyne should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

ERRORS
Fsyne will fail if one of the following conditions is true and errno will be set accordingly:

Fildes is not a valid descriptor. [EBADF]

[EINVAL]

RETURN VALUE

Fildes refers to a file type to which !syne does not apply.

A 0 value is returned on success. A -1 value indicates an error.

BUGS
The current implementation of this call is expensive for large files.

AUTHOR
Fsyne was developed by the Hewlett-Packard Company, and the University of California, Berke­
ley California, Computer Science Division, Department of Electrical Engineering and Computer
Science.

SEE ALSO
fcntl(2), fcntl(5), open(2), select(2)' sync(2), sync(1M).

Hewlett-Packard Company - 1 - Version B.l, October 1986

FTIME(2) HP-UX
Series 200, 300, 800 Only

FTIME(2)

NAME
ftime - get date and time more precisely

SYNOPSIS
#lnelude <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;

REMARKS
This facility is provided for backwards compatibility with Version 7 systems. Either time or get­
timeo/day should be used for all new code.

DESCRIPTION
Ftime entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

1*
* Structure returned by ftime system call
*/

struct timeb {

};

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time in seconds since 00:00:00 GMT, January 1, 1970, up to 1000 mil­
liseconds of more-precise interval, the local timezone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year. Gettimeo/day should be consulted for more details on the mean­
ing of the timezone field.

This call can be accessed by giving the -IV7 option to Id(l).

Ftime can fail for exactly the same reasons as gettimeo/day(2).

HARDW ARE DEPENDENCIES
Series 500:

Ftime is not currently supported.

SEE ALSO
date(l), gettimeofday(2), stime(2), time(2), ctime(3C).

BUGS
The millisecond value usually has a granularity greater than one due to the resolution of the sys­
tem clock. Depending on any granularity (particularly of one) will render code non-portable.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETGROUPS (2) HP-UX
Series 200, 300, 800 Only

GETGROUPS(2)

NAME
getgroups - get group access Ust

SYNOPSIS
#include <sys/param.h>

get groups (ngroups, gidset)
int ngroups, *gidsetj

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gidset.
The parameter ngroups indicates the number of entries which may be placed in gidset. No more
than NGROUPS, as defined in <sys/param.h>, will ever be returned.

EXAMPLES
The following call to getgroups(2) retrieves the group access list of the calling process and stores
the group ids in array mygidset:

int ngroups = NGROUPS;
int mygidset[NGROUPSj;
int ngrps;

ngrps = getgroups (ngroups, mygidset);

RETURN VALUE
A nonnegative value indicates that the call succeeded, and is the number of elements returned in
gidset. A value of -1 indicates that an error occurred, and the error code is stored in the global
variable ermo.

ERRORS
The possible errors for getgroups are:

[EFAULT] Gidset specifies an invalid address. The reliable detection of this error will be
implementation dependent.

[EINVAL] Ngroups is less than the number of groups in the current group access list of the
process.

HARDW ARE DEPENDENCIES
Series 500:

Getgroups not available.

AUTHOR
Getgroups was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
setgroups(2), initgroups(3C)

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETHOSTNAME (2)

NAME
gethostname - get name of current host

SYNOPSIS
char h08tname[];

HP-UX

geth08tname(hostname, sizeof (hostname»;

DESCRIPTION

GETHOSTNAME(2)

Gethostname returns the standard host name for the current processor, as set by sethostname(2).
The name is truncated to sizeof(hostname)-l and is nuB-terminated.

ERRORS
Gethostname can fail if:

[EFAULT] Hostname points to an illegal address. The reliable detection of this error will be
implementation dependent.

AUTHOR
Gethostname was developed by the University of California, Berkeley California, Computer Sci­
ence Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
hostname(I), uname(I), sethostname(2), uname(2).

Hewlett-Packard Company - I - Version B.I, October 1986

GETITIMER (2) HP-UX GETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

getitimer(which, value)
int whichj
struct itimerval ·valuej

setitimer(which, value, ovalue)
int whichj
struct itimerval ·value, ·ovaluej

DESCRIPTION
The system provides each process with three interval timers, defined in <sys/time.h>. The getiti­
mer call returns the current value for the timer specified in which, while the setitimer call sets the
value of a timer (optionally returning the previous value of the timer).

NOTES

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval
struct timeval

};

it~nterval;

it_value;
1* timer interval * /
1* current value * /

If iLvalue is non-zero,,it indicates the time to the next timer expiration. If iLinterval is non­
zero, it specifies a value to be used in reloading iLvalue when the timer expires. Setting iLvalue
to 0 disables a timer. Setting iLinterval to 0 causes a timer to be disabled after its next expira­
tion (assuming iLvalue is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution.
The machine-dependent clock resolution is l/HZ seconds, where the constant HZ is defined in
<sys/param.h>. Time values larger than an implementation-specific maximum value are rounded
down to this maximum. The maximum values for the three interval timers are specified by the
constants MALALARM, MAL VTALARM, and MALPROF defined in <sys/param.h>. On
all implementations, these values are guaranteed to be at least 31 days (in seconds).

The _whicL parameter specifies which timer to use. The possible values are ITIMElL.....REAL,
ITIMEILVIRTUAL, and ITIMERJROF.

The ITIMEILREAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMEIL VIRTUAL timer decrements in process virtual time. It runs only when the process
is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMERJROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling the
execution of interpreted programs. Each time the ITIMERJROF timer expires, the SIGPROF
signal is delivered. Because this signal may interrupt in-progress system calls, programs using this
timer must be prepared to restart interrupted system calls.

Interval timers are not inherited by a child process across a fork, but are inherited across an exec.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time values
(beware that >= and <= do not work with this macro).

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETITIMER (2) HP-UX GETITIMER (2)

The timer used with ITIMER-REAL. is the same as that used by alarm{2}. Thus successive
calls to alarm, getitimer, and setitimer will set and return the state of a single timer.

EXAMPLES
The following call to setitimer{2} sets the real-time interval timer to expire initially after 10
seconds and every 0.5 seconds thereafter:

struct itimerval rttimer;
struct itimerval olcL.rttimer;

rttimer.it_value.tv--..Sec = 10;
rttimer.it_value.tv_usec = 0;
rttimer.it~nterval.tv---BeC = 0;
rttimer.it~nterval.tv_usec = 500000;

setitimer {ITIMER...JtEAL, &rttimer, &olcL.rttimer};

HARDW ARE DEPENDENCIES
Series 500:

An error is generated if a call is made to getitimer or setitimer in the [vfork, exec] window.

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a
more precise error code is placed in the global variable errno.

ERRORS
Getitimer or setitimer can fail if:

[EFAULT]

[EINVAL]

[EINVAL]

AUTHOR

The value structure specified a bad address. The reliable detection of this error
will be implementation dependent.

A value structure specified a microsecond value less that zero or greater than or
equal to one million.

Which does not specify one of the three possible timers.

Getitimer was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
alarm(2), gettimeofday{2}, signal{2}.

Hewlett-Packard Company - 2 - Version B.l, October 1986

GETPID(2) HP-UX GETPID(2)

NAME
getpid, getpgrp, getppid, getpgrp2 - get process, process group, and parent process ID

SYNOPSIS
int getpid ()
tnt getpgrp ()
tnt getppid ()
int getpgrp2 (pid)

DESCRIPTION
Getpid returns the process ill of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling proc.ess,

Getpgrp2 returns the process group ill of the specified process. If pid is zero, the call applies to
the current process. For this to be allowed, the real or effective user ID of the current process
must match the real or saved user ID of the referenced process, the effective user ID of the current
process must be super-user, or the referenced process must be a descendant of the current process.

ERRORS
Getpgrp2 will fail if any of the following are true:

[EPERMj The effective user ID of the current process is not super-user, the real or effective
user ID of the current process does not match the real or saved user ID of the
specified process, and the specified process is not a descendant of the current pro­
cess.

[ESRCHj No process can be found corresponding to that specified by pid.

HARDW ARE DEPENDENCIES
Series 200, 300, 500

Getpgrp2 is not supported.

AUTHOR
Getpid, getppid, getpgrp, and getpgrp2 were developed by HP, AT&T, and the University of Cali­
fornia, Berkeley.

SEE ALSO
exec(2), fork(2), setpgrp(2), signal(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

GETPRIVGRP(2) HP-UX GETPRIVGRP (2)
Series 200, 300, 800 Only

NAME
getprivgrp, setprivgrp - get and set special attributes for group

SYNOPSIS
#include <sys/privgrp.h>

int getprivgrp(grplist)
struct privgrp~ap grplist[PRIV ----.MAXGRPSj;

int setprivgrp(grpid, mask)
int grpid, mask[PRIV ----.MASKSIZ];

DESCRIPTION
Setprivgrp associates a kernel capability with a group id. This allows subsetting of super-user like
privileges for members of a particular group or groups. Setprivgrp takes two arguments: the
integer group id and a mask of permissions. The mask is created by treating the access types
defined in <sys/privgrp.h> as bit numbers (using 1 for the least significant bit). Thus, privilege
number 5 would be represented by the bit 1«(5-1) or 16. More generally, privilege p is
represented by:

mask[((p-1) / BITSJER-lNT)] & (1 « ((p-1) % BITSJER-lNT)).

As it is possible to have more than word size distinct privileges, mask is a pointer to an integer
array of size PRIV ----.MASKSIZ.

Setprivgrp privileges include those specified in the file <sys/privgrp.h>. A process may access
the system call protected by a specific privileged group if it belongs to or has an effective group id
of a group having access to the system call. All processes are considered to belong to the pseudo­
group PRIV _GLOBAL.

Specifying a grpid of PRIV ----.NONE causes privileges to be revoked on all privileged groups hav­
ing any of the privileges specified in mask. Specifying a grpid of PRIV _GLOBAL causes
privileges to be granted to all processes.

The constant PRIV ----.MAXGRPS in <sys/privgrp.h> defines the system limit on the number
of groups which can be assigned privileges. One of these is always the psuedo-group
PRIV _GLOBAL, allowing for PRIV ----.MAXGRPS-1 actual groups.

Getprivgrp returns a table of the privileged group assignments into a user supplied structure.
Grplist points to an array of structures of type privgrp~ap associating a groupid with a
privilege mask. Privilege masks are formed by oring together elements from the access types
specified in <sys/privgrp.h>. The array may have gaps in it distinguished as having a
priv_groupno field of PRIV ----.NONE. The group number PRIV _GLOBAL gives the global
privilege mask. Only information about groups which are in the user's group access list, or about
his real or effective group id, is returned to an ordinary user. The complete set is returned to the
super-user.

EXAMPLES
The following example prints out PRIV _GLOBAL and the group ids of the privilege groups to
which the user belongs:

struct privgrp~ap pgrplist [PRIV ~AXGRPS];
illt i;
int pgid;

getprivgrp (pgrplist):
for (i=O; i<PRIV ~AXGRPS; i++) {

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETPRIVGRP(2)

NOTES

HP-UX
Series 200, 300, 800 Only

if ((pgid = pgrplist[i].priv~oupno) != PRIV-NONE) {
if (pgid == PRIV_GLOBAL)

printf ("(PRIV _GLOBAL) ")j
printf ("privilege group id = %d\n", pgid)j

Only the super-user may use setprivgrp.

ERRORS
Setprivgrp returns -1 and an error code in erTna if:

The caller is not super user.

GETPRIVGRP(2)

[EPERM]

[EFAULT] Mask points to an illegal address. The reliable detection of this error will be
implementation dependent.

[EINVAL] Mask has bits set for one or more unknown privileges.

[E2BIG] The request would require assigning privileges to more than
PRIV --.MAXGRPS groups.

Getprivgrp returns -1 and an error code in erTna if:

[EF A UL T] Grplist points to an illegal address. The reliable detection of this error will be
implementation dependent.

Both calls return 0 on success.

AUTHOR
Getprivgrp was developed by HP.

SEE ALSO
getprivgrp(l), setgroups(2), setprivgrp(lM), privgrp(4).

Hewlett-Packard Company - 2 - Version B.1, October 1986

GETTIMEOFDAY(2) HP-UX GETTIMEOFDAY(2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time and the system's notion
of the current time zone. Time returned is expressed relative in seconds and microseconds since
midnight January 1, 1970.

The structures pointed to by tp and tzp are defined in <time.h> as:

struct timeval {
unsigned long tV-Bec;
long tv _usec;

/* seconds since Jan. 1, 1970 * /
/* and microseconds * /

};

struct timezone {
int tZ-IIlinuteswest; /* of Greenwich * /
int tz_dsttime; /* type of dst correction to apply * /

};

The timezone structure indicates the local time zone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year. Programs should use this timezone information only in the
absence of the TZ environment variable.

Only the super-user may set the time of day.

EXAMPLES
The following example calls gettimeofday(2) twice. It then computes the lapsed time between the
calls in seconds and microseconds and stores the result in a timeval structure:

struct timeval first,
second,
lapsed;

struct timezone tzp;

gettimeofday (&first, &tzp);

/* lapsed time * /

gettimeofday (&second, &tzp);

if (first.tv_usec > second.tv_usec) {
second.tv_usec += 1000000;
second.tv-Bec--;

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETTIMEOFDAY(2) HP-UX GETTIMEOFDA Y (2)

lapsed.tv---.Sec = second.tv---.SeC - first.tv---..Sec;

RETURNS
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred,
and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory. The reliable detection of this
error will be implementation dependent.

[EPERM] A user other than the super-user attempted to set the time.

WARNINGS
The microsecond value usually has a granularity much greater than one due to the resolution of
the system clock. Depending on any granularity (particularly of one) will render code non­
portable.

HARDW ARE DEPENDENCIES
Normal users have all super-user capabilities.

AUTHOR
Gettimeofday was developed by the University of California, Berkeley.

SEE ALSO
date(l), stime(2), time(2), ctime(3C).

Hewlett-Packard Company - 2 - Version B.l, October 1986

GETUID(2) HP-UX GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned shori geiegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
setuid(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

IOCTL(2) HP-UX IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
foctl performs a variety of functions on character special files (devices). The write-ups of various
devices in Section (7) discuss how ioctl applies to them. The type of arg is dependent on the
specific ioctl call, as described in Section (7).

Request is made up of several fields. They encode the size and direction of the argument (refer­
enced by arg), as well as the desired command. An enumeration of the request fields are:

IOC--.lN Argument is read by the driver. (That is, the argument is copied from the appli­
cation to the driver.)

Argument is written by the driver. (That is, the argument is copied from the
driver to the application.)

IOCSIZE~ASK Number of bytes in the passed argument. A nonzero size indicates that arg is a
pointer to the passed argument. A zero size indicates that arg is the passed
argument (if the driver wants to use it), and is not treated as a pointer.

IOCCMD~ASK

The request command itself.

When both IOC-IN and IOC_OUT are zero, it can be assumed that request is not encoded for
size and direction, for compatibility purposes. Requests which do not require any data to be
passed and requests which use arg as a value (as opposed to a pointer), have the IOC-IN bit set
to one and the IOCSIZE---.MASK field set to zero.

The following macros are used to create the request argument. X and y are concatenated
((x«8) I y) to form IOCCMD and shifted into the proper location according to
IOCCMD~ASK. T is the type (e.g. struct hpib_cmd) of the actual argument that the
request references, and its size is taken and shifted into the appropriate place according to
IOCSIZE~ASK.

--.lOR(x,y,t) Sets IOC_OUT and initializes the values at IOCCMD---.MASK
IOCSIZE---.MASK accordingly.

--.lOW(x,y,t) Sets IOC-IN and initializes the values at IOCCMD---.MASK
IOCSIZE---.MASK accordin gly.

--.lOWR(x,y,t) Sets both IOC-IN and IOC_OUT and initializes the values
IOCCMD---.MASK and IOCSIZE---.MASK.

Note: any data structure referenced by arg may not contain any pointers.

RETURNS
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

foctl will fail if one or more of the following are true:

[EBADF]

[ENOTTY]

[EINVAL]

[EINTR]

Fildes is not a valid open file descriptor.

The request is not appropriate to the selected device.

Request or arg is not valid.

A signal was caught during the ioctl system call.

and

and

at

Hewlett-Packard Company - 1 - Version B.l, October 1986

IOCTL(2) HP-UX IOCTL(2)

[EPERMJ Typically this error indicates that an ioctl request was attempted that is forbid­
den in some way to the calling process.

WARNINGS
Check all references to signal{2} for appropriateness on systems that support sigveetor{2}. Sigvee­
tor{2} can affect the behavior described on this page.

HARDWARE DEPENDENCIES
Series 200, 300, 500

Asynchronous I/O is not supported.

AUTHOR
Ioetl was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
ioctl(5), termio(7).

Hewlett-Packard Company - 2 - Version B.l, October 1986

KILL(2) HP-UX KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
lnt kill (pid, sig)
lnt pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal that is to be sent is specified by Big
and is either one from the list given in signal(2), or O. If Big is 0 (the null signal), error checking
is performed but no signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved user ID of the
receiving process, unless the effective user ID of the sending process is super-user. As a single spe­
cial case on those systems that support job control, the continue signal SIGCONT can be sent to
any process that is a descendant of the current process.

The value KILL-ALL_OTHERS is defined in the file <sys/signal.h> and is guaranteed not to
be the ID of any process in the system or the negation of the ID of any process in the system.

If pid is greater than zero and not equal to KILL-ALL_OTHERS, Big will be sent to the process
whose process ID is equal to pid. Pid can equal 1 unless Big is SIGKILL or SIGSTOP.

If pid is 0, Big will be sent to all processes excluding special system processes whose process group
ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, Big will be sent to all
processes excluding special system processes whose real or saved user ID is equal to the real or
effective users ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, Big will be sent to all processes
excluding special system processes.

If pid is KILL-ALL_OTHERS the behavior is the same as for pid equal to -1 except that Big is
not sent to the calling process.

If pid is negative but not -1 or KILL-ALL_OTHERS, Big will be sent to all processes (excluding
special system processes) whose process group ID is equal to the absolute value of pid, and whose
real and/or effective uid meet the constraints described above for matching uids.

ERRORS
Kill will fail and no signal will be sent if one or more of the following are true:

Big is not a valid signal number or zero.

Big is SIGKILL or SIGSTOP and pid is 1 (proc1).

[EINVAL]

[EINVAL]

[EPERM] The user ID of the sending process is not super-user, and its real or effective user
ID does not match the real or effective user ID of the receiving process.

[ESRCH]

RETURN VALUE

No process can be found corresponding to that specified by pid.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDW ARE DEPENDENCIES
Integral Personal Computer

Normal users have all super-user capabilities.

Series 200, 300, 500
Job control is not supported.

Hewlett-Packard Company - 1 - Version B.1, October 1986

KILL(2) HP-UX KILL(2)

AUTHOR
Kill was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2).

Hewlett-Packard Company - 2 - Version B.1. October 1986

LINK(2) HP-UX LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char *pathl, *path2j

DESCRIPTION
Pathl points to a path name naming an existing file. Path!! points to a path name naming the
new directory entry to be created. Link creates a new link (directory entry) for the existing file.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[ENOTDIRJ

[ENOENT]

[ENOSPC]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[ENOENT]

[EMLINK]

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

The directory to contain the file cannot be extended.

A component of either path prefix denies search permission.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by pathl is a directory and the effective user ID is not super-user.

The link named by path2 and the file named by pathl are on different logical
devices (file systems).

Path2 points to a null path name.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

Pathl or path2 is null.

The maximum number of links to a file would be exceeded.

[ENAMETOOLONG]
Either path specified exceeds MAXP ATHLEN characters.

HARDW ARE DEPENDENCIES
Series 500:

For Structured Directory Format (SDF) disks, if path2 is " .. ", then that directory's inode
will be altered such that its " .. " entry points to the directory specified by path1. In this
way, the super-user can establish the parent directory of an existing directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
cp(l), link(1M), unlink(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

LOCKF(2) HP-UX LOCKF(2)

NAME
lockf - provide semaphores and record locking on files

SYNOPSIS
#include <unistd.h>

lockf(fildes, function, size)
long size;
lnt fildes, function;

DESCRIPTION
Lockf will allow regions of a file to be used as semaphores (advisory locks) or accessible only by
the locking process (enforcement mode record locks). Other processes which attempt to access the
locked resource will either return an error or sleep until the resource becomes unlocked. All the
locks for a process are removed when the process closes the file or terminates.

Fildes is an open file descriptor.

Function is a control value which specifies the action to be taken. The permissible values for
function are defined in <unistd.h> as follows:

#define F _ULOCK
#define F -LOCK
#define F _TLOCK
#define F _TEST

o 1* Unlock a region * /
1 1* Lock a region * /
2 1* Test and Lock a region * /
3 1* Test region for lock * /

All other values of functions are reserved for future extensions and will result in an error return if
not implemented.

F _TEST is used to detect if a lock by another process is present on the specified region.
F_TEST returns zero if the region is accessable and minus one (-1) if it is not; in this case errno
will be set to EACCES. F-LOCK and F_TLOCK both lock a region of a file if the region is
available. F _ULOCK removes locks from a region of the file.

Size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts
at the current offset in the file, and extends forward for a positive size, and backward for a nega­
tive size (the preceding bytes up to but not including the current offset). If size is zero the region
from the current offset through the end of the largest possible file is locked (i.e., from the current
offset through the present or any future end-of-file). An area need not be allocated to the file in
order to be locked, as such locks may exist past the end of the file.

The regions locked with F-LOCK or F_TLOCK may, in whole or part, contain or be con­
tained by a previously locked region for the same process. When this occurs or if adjacent regions
occur, the regions are combined into a single region. If the request requires that a new element be
added to the table of active locks and this table is already full, an error is returned, and the new
region is not locked.

F -LOCK and F _ TLOCK requests differ only by the action taken if the resource is not avail­
able: F -LOCK will cause the calling process to sleep until the resource is available, and the
F _TLOCK will return an [EACCESj error if the region is already locked by another process.

F_ULOCK requests may, in whole or part, release one or more locked regions controlled by the
process. When regions are not fully released, the remaining regions are still locked by the process.
Releasing the center section of a locked region requires an additional element in the table of active
locks. If this table is full, an [EDEADLKj error is returned, and the requested region is not
released.

Regular files with the file mode of S-ENFMT not having the group execute bit set will have an
enforcement policy enabled. With enforcement enabled, reads and writes that would access a

Hewlett-Packard Company - 1 - Version B.1, October 1986

LOCKF(2) HP-UX LOCKF(2)

locked region will sleep until the entire region is available if 0-1"iDELA Y is cieared, but will return
-1 with ermo set if O~DELA Y is set. File access by other system functions, such as exec, are
not subject to the enforcement policy. Locks on directories, pipes, and special files are advisory
only; no enforcement policy will be used.

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by access­
ing another process's locked resource. Thus, calls to fcntl, lockf, read, or write scan for a deadlock
prior to sleeping on a locked resource. Deadlock is not checked for the wait and pause system
calls, so potential for deadlock is not eliminated. A creat call or an open call with the
a_CREATE and O_TRUNC flags set on a regular file will return [EAGAINJ error if another
process has locked part of the file and the file is currently in enforcement mode.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Lockf will fail if any of the following occur:

[EBADF] If fildes is not a valid, open file descriptor.

[EACCES]

[EDEADLK]

If the region is already locked by another process.

If a deadlock would occur; or if the number of entries in the lock table would
exceed a system-dependent maximum. HP-UX guarantees this value to be at
least 50.

[EINVAL]

[EINVAL]

WARNINGS

If function is not one of the functions specified above.

If size plus current offset produces a negative offset into the file.

BUGS

Deadlock conditions may arise when either the wait or pause system calls are used in conjunction
with enforced locking, see wait(2) and pause(2) for details.

File and record locking using file descriptors obtained through dup(2) or link(2) may not work as
expected, e.g., unlocking regions which were locked using either file descriptor may also unlock
regions which were locked using the other file descriptor.

Unexpected results may occur in process that do buffering in the user address space. The process
may later read/write data which is/was locked. the standard I/O package, stdio{3S), is the most
common source of unexpected buffering.

In a hostile environment locking may be misused by holding key public resources locked. This is
particularly true with public read files that have enforcement mode enabled.

APPLICATION USAGE
Because in the future the variable ermo will be set to EAGAIN rather than EACCES when a sec­
tion of a file is already locked by another process, portable application programs should expect
and test for either value, for example:

Hewlett-Packard Company - 2 - Version B.l, October 1986

LOCKF(2) HP-UX

if (lockf{fd, F_TLOCK, siz) == -1)
if ({errno == EAGAIN) II (errno == EACCES))

1*
* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*/

else if .. ,
/*
* check for other errors
*/

HARDW ARE DEPENDENCIES
Series 200, 300, 800

LOCKF(2)

For an EINVAL error, the resulting upper bound of the region to be locked would be greater
than 2'30. The current offset is greater than 2'30.

SEE ALSO
chmod(2), close(2), creat(2), fcntl(2), open(2), pause(2), read(2), stat(2), wait(2), write(2).

FUTURE DIRECTIONS
The error condition which currently sets errno to EACCES will instead set errno to EAGAIN [see
also APPLICATION USAGE above].

Hewlett-Packard Company - 3 - Version B.l, October 1986

LSEEK(2) HP-UX LSEEK(2)

NAME
lseek - move read/write file pointer; seek

SYNOPSIS
#include <unistd.h>
long Iseek (HIdes, offset, whence)
int HIdes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or Icntl system call. Lseek sets the
file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes from the begin­
ning of the file, is returned.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer value is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if one or more of the following are true:

[EBADF]

[ESPIPE]

Fildes is not an open file descriptor.

Fildes is associated with a pipe or fifo.

[EINV AL and SIGSYS signal]
Whence is not 0, 1 or 2.

[EINV ALl The resulting file pointer would be negative.

WARNINGS
Some devices are incapable of seeking. The value of the file pointer associated with such a device
is undefined.

Using lseek with a whence of 2 on device special files is not supported and the results are not
defined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

Hewlett-Packard Company - 1 - Version B.I, October 1986

MEMADVISE(2) HP-UX
Series 500 Only

MEMADVISE(2)

NAME
memadvise - advise OS about segment reference patterns

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

memadvise(addr, len, behav, adrtype)
caddr _t addrj
lnt len, behavj
enum memtype {meD1-code, meD1-data} adrtypej

DESCRIPTION
The purpose of this call is to allow an application program to notify the system of its known pat­
terns of reference in specific areas of process memory. The intent is to allow the system to then
adapt its memory management algorithms and/or policies based on this knowledge to maximize
the performance of the program. For example, a program that uses a very large hash table might
inform the system of its random patterns of reference to this area. The system might, then, elect
not to do any pre-fetching or clustered reads in this area.

Addr is the starting address of the area in question and len is the length in bytes. Addr may be
any legal address in the process's address space. Since some implementations use different (and
indistinguishable) addressing formats for code and data space, adrtype is used to indicate whether
addr is a code or data address. On systems with a uniform addressing format for code and data,
adrtype will have no effect.

The boundaries of the address space for which the advice is applied may be rounded up and/or
down to appropriate system dependent values (e.g. pages, segments, blocks, etc).

Variable behav describes the reference pattern in the specified area:

ME~ORMAL No known extraordinary patterns of reference.

MEM-SEQ References are highly sequential in nature.

MEM--RANDOM References are totally random and unpredictable.

ME~EEDED Area is expected to be highly referenced in near future.

ME~OTNEEDED Area is not expected to be referenced in the near future.

Memadvise may be reduced to a no-op, or some of the behavior types may be ignored (treated as
no-ops).

AUTHOR
Memadvise was developed by HP.

SEE ALSO
ems(2), memallc(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MEMALLC(2) HP-UX
Series 500 Only

memallc, memfree - allocate and free address space

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddr_t

DESCRIPTION

memallc(fileid, offset, len, maxlen, type, mode);
fileid, offset, len;
maxlen, type, mode;

memfree(addr);
addr;

MEMALLC(2)

Memallc allocates a memory segment (i.e. a contiguous piece of process address space) and returns
a pointer to it. The memory segment may be shared (i.e. accessible by other processes) or
private. Private segments are copied on fork(2), giving separate, per-process images of the seg­
ment. Shared segments are not copied across fork(2) but, instead, both processes have access to
the same memory space. The segment may optionally be initialized to the contents of a specific
open file (private mapped file) or can be made equivalent to a specific file (shared mapped file).

Fileid is the HP-UX file id of an open file which will be mapped into the process's address space.
Fileid must refer to a file on a CS-80 disk. If fileid is -1, the allocated address space will be ini­
tialized to zeros. A mapping of a file (either shared or private) generates an implicit reference to
the file (similar to the result of dup(2)). Subsequent to the mapping, fileid may safely be closed.

Offset specifies the starting point in fileid (i.e. byte offset) where mapping is to begin. The value
returned by memallc is a pointer to the byte in the new address space that corresponds to byte
offset. If fileid is not specified (Le. set to -1), offset is ignored.

Len specifies the size (in bytes) of the address space. The guaranteed range of accessibility is
from ptr thru ptr+len-l (where ptr is the value returned by the memallc call). Depending on the
value of offset, len, and the specific implementation, additional data space MAY be accessible at
addresses less than ptr and/or greater than ptr+len-l but the effects of reading and/or writing
these areas are undefined.

If len+offset is greater than the size of the file, the additional address space is initialized to zeros.
If the segment is shared, the file is extended to the required size (if fileid is not writable, the call
fails). A creat(2) calIon a file that has a shared mapping applied to it will zero the file but will
not alter the file size.

Maxlen specifies the maximum length to which a segment may grow using memvary(2).

Type specifies the attributes assigned to the segment, which is constructed by taking the union of
the desired attributes: MEM~HARED, MEMJRIVATE, MEMJAGED, MEM-.DATA, or
MEM_CODE (see ems(2)).

Mode specifies the access permissions assigned to the segment for the requesting process.

ME~, MEM_W, ME~:
Initial access modes to be assigned to segment (see memchmd(2)).

Note that all ME~HARED mappings of a specific file must use identical access modes. An
attempt to map a file with access modes different than those already in effect will return an error
[EACCESj.

Memfree deallocates a memory segment created by memallc. It takes, as an argument, a pointer
returned by memallc. When the segment is shared, the memory will not be deallocated until the
last reference to the memory is removed.

Hewlett-Packard Company - 1 - Version B.1, October 1986

MEMALLC(2) HP-UX
Series 500 Only

MEMALLC(2)

The number of segments allocated to a given process at anyone time may be limited to a system
dependent maximum of MAXSEGS found in ems.h.

RETURN VALUE
Upon successful completion, memallc returns the byte pointer to the address space. Otherwise, a
value of -1 is returned and ermo is set to indicate error.

AUTHOR
Memallc was developed by the Hewlett-Packard Company.

SEE ALSO
ems{2}, memchmd{2}, memvary{2}, shmget{2}, shmop{2}.

Hewlett-Packard Company - 2- Version B.t. October 1986

MEMCHMD(2) HP-UX
Series 500 Only

MEMCHMD(2)

NAME
memchmd - change memory segment access modes

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddr_t
int

DESCRIPTION

memchmd (addr, mode);
addr;
mode;

This procedure may be used to change the access mode of a memory segment created by
memallc(2). The procedure returns the previous access mode (or -1 if there is an error).

Addr is the segment pointer returned by memallc(2).

The access modes for a shared segment is an attribute of the segment and is the same for all
processes sharing the segment or any portion thereof. The access mode of a segment may not be
changed if it is being shared with any other process (e.g. more than one me malic of a peculiar file,
or a memallc followed by a fork(2)). An attempt to memchmd such a shared segment will return
an error [EACCESj.

The access mode of a MEMJRIV ATE segment may be changed without restrictions.

The definition of the access modes are:

MEMJ

ME~W

MEM-R

Execute capability

Write capability

Read capability

An error is returned if addr is not a valid segment pointer.

Access modes granted to a ME~SHARED file mapped segment may not exceed the access
modes granted to the user of the file when it was opened.

RETURN VALUE
Upon successful completion, memchmd(2) returns the old set of access modes. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

AUTHOR
Memchmd was developed by the Hewlett-Packard Company.

SEE ALSO
ems(2), memallc(2), memvary(2), shmctl(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MEMLCK(2) HP-UX
Series 500 Only

MEMLCK(2)

NAME
memlck, memulck - lock/unlock process address space or segment

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddr_t
int
enum

int
caddr_t
int
enum

DESCRIPTION

memlck (addr, len, adrtype);
addr;
len;
memtype {meID-code, meID-data} adrtype;

memulck (addr, len, adrtype);
addr;
len;
memtype {meID-code, meID-data} adrtype;

Memlck is used to lock a section of process address space into physical memory. This call may
take a substantial amount of time to complete, but the address space in question is guaranteed to
be in memory and locked upon successful completion of the call. The locked address space will
not migrate to backing store regardless of process state and will, furthermore, remain at the same
physical address space for the duration of the lock. Locks are not inherited across /ork(2}. Multi­
ple locks on any address range can occur (unlocking requires that as many unlocks as locks occur).
The locks will be segment local, and unlocking may be done by a process unrelated to the one
which did the locking. A locked segment will be released when there are no processes with refer­
ences to the locked segment. (This may occur either via mem/ree on memallc(2) or process
death.}

Addr is the starting address of the area in question and len is the length in bytes. Addr may be
any legal address in the process's address space. Since some implementations use different (and
indistinguishable) addressing formats for code and data space, adrtype is used to indicate whether
addr is a code or data address. On systems with a uniform addressing format for code and data,
adrtype will have no effect.

The boundaries of the locked address space may be rounded up (on the upper end of the address
range) and down (on the lower end of the address range) to appropriate system dependent values
(e.g. pages, segments, blocks, etc). Locking will not cross segment boundaries. For example, one
memlck call cannot lock part of a text segment and part of a data segment.

Memulck undoes the effects of a memlck.

The use of this call is restricted to the super-user.

This call may be reduced to a no-op.

RETURN VALUE
Upon successful completion, memlck and memulck return a value of O. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

AUTHOR
Memlck was developed by HP.

SEE ALSO
ems(2}, memallc(2}, plock(2}, shmctl(2}.

Hewlett-Packard Company - 1 - Version B.1, October 1986

MEMVARY(2) HP-UX
Series 500 Only

MEMVARY(2)

NAME
memvary - modify segment length

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddr_t
int

DESCRIPTION

memvary(addr, len);
addr;
len;

Memvaryallows the modification of the size of the memory space allocated by memallc(2).

Addr is the pointer to the address space which can be either shared or private. If the address
space has been file mapped and is extended beyond the the end of the file, then the file will also
reflect the change in length. When the file mapped address space is reduced, the actual file length
will be unchanged and the file space after the end of the mapped file space will also remain
unchanged. A change in length for a private file mapped address space will have no effect on the
source file.

Len specifies the new length of the address space. In the case of an error, the address space and
file space will be the same as before the system call.

When private file mapped address space is extended, the additional address space is initialized to
zeroes. When shared file mapped address space is extended, the additional space is initialized to
the contents of the file, or zeros if the file is extended.

The address space cannot be extended beyond the 'maxlen' specified during the memallc(2) sys­
tem call.

ERRORS
Memvary will fail if one or more of the following are true:

ERRNO

[ENOMEM]
[EINVAL]

RETURN VALUE

ERRlNFO

5, 41
47
256
264
276
449

DESCRIPTION

Insufficient memory
Invalid segment size
Segment does not exist
Cannot extend locked segment
locked page encountered
Segment not allocated with ems(2) subsystem

Upon successful completion, memvary returns O. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

AUTHOR
Memvary was developed by the Hewlett-Packard Company.

SEE ALSO
ems(2), memallc(2), memchmd(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKDffi(2) HP-UX MKDffi(2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char *path;
int mode;

REMARKS
Not all systems implement this as a system call; some use a library call to the mkdir(l) command
to achieve the same effect. The errors documented below will appear in any case, and no error
messages will ever be printed.

DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process's mode mask; see umask(2)).

The directory's owner ID is set to the process's effective user ID. The directory's group ID is set
to the process's effective group ID.
The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set in
the process's file mode creation mask are cleared. See uma8k(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:

Not enough space on the file system.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

[ENOSPC]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT] Path points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

[EIO] An I/O error occured while writing to the file system.

[ENAMETOOLONG]
The path specified exceeds MAXP A THLEN characters.

AUTHOR
Mkdir was developed by the University of California, Berkeley California, Computer Science Divi­
sion, Department of Electrical Engineering and Computer Science.

SEE ALSO
chmod(2), stat(2), umask(2)

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKNOD(2) HP-UX MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode;
dev_t dey;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new file
is initialized from mode, where the value of mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following:

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

Values of mode other than those above are undefined and should not be used.

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is
set to the effective group ID of the process.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set in
the process's file mode creation mask are cleared. See umask(2).

Dev is meaningful only if mode indicates a block or character special file, and is ignored otherwise.
It is an implementation and configuration dependent specification of a character or block I/O dev­
ice. Dev may be created by using the makedev macro defined in <sys/sysmacros.h>. The
argument to makedev are the major and minor device numbers, the value and interpretation of
which are implementation dependent. The result of makedev is an object of type dey_to

Mknod may be invoked only by the super-user for file types other than FIFO special.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mknod will fail and the new file will not be created if one or more of the following are true:

[ENOSPC]

[EPERM]

[ENOTDlR]

[ENOENT]

Not enough space on the file system.

The effective user ID of the process is not super-user, and the file type is not
FIFO special.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKNOD(2)

[EROFSJ

[EACCESJ

[EEXISTJ

[EFAULTJ

[ENOENTJ

[EACCESJ

HP-UX MKNOD(2)

The directory in which the file is to be created is located on a read-only file sys­
tem.

A component of the path prefix denies search permission.

The named file exists.

Path points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

Path is null.

Path is in a directory that denies write permission, mode is for fifo special file,
and the caller is not super-user.

[ENAMETOOLONGJ
The path specified exceeds MAXP A THLEN characters.

HARDW ARE DEPENDENCIES
Series 200, 300, 500

An additional value is available for network special files under file type. Its value is
0110000.

Integral PC
Normal users have all super-user capabilities.

AUTHOR
Mknod was developed by AT&T and HP.

SEE ALSO
mkdir{l), mknod{lM), chmod{2}, exec(2), umask(2), fs(4), mknod(4).

Hewlett-Packard Company - 2 - Version B.l, October 1986

MOUNT (2) HP-UX MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
Mount requests that a removable me system contained on the block special device file identified
by spec be mounted on the directory identified by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the me dir will refer to the root directory on the
mounted me system.

The low-order bit of rwftag is used to control write permission on the mounted file system; if 1,
writing is forbidden, otherwise writing is permitted according to individual me accessibility.

Mount may be invoked only by the super-user.

RETURN VALUE
Upon succ~sful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mount will fail if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY]

[ENOENT]

[EACCES]

The effective user ID is not super-user.

The named me does not exist (for example, path is null or a component of path
does not exist).

A component of a path prefix is not a directory.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address space of the process. The reli­
able detection of this error will be implementation dependent.

Dir is currently mounted on, is someone's current working directory, or is other­
wise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

Spec or dir is null.

A component of the path prefix denies search permission.

[ENAMETOOLONG]
Any of the named mes exceeds MAXP ATHLEN characters.

WARNINGS
If mount is called from the program level (Le. not called from mount(1M)), the table of mounted
devices contained in /etc/mnttab is not updated.

HARDW ARE DEPENDENCIES
Integral PC

Normal users have all super-user capabilities.

SEE ALSO
mount{1M), umount(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MSGCTL(2) HP-UX MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>

int msgetl (msqid, emd, buf)
int msqid, emd;
struet msqiLds * buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd. The following cmds
are available:

IPC_ST A T Place the current value of each member of the data structure associated with msqid
into the structure pointed to by buf. The contents of this structure are defined in
the glossary.

IPC_SET Set the value of the following members of the data structure associated with msqid
to the corresponding value found in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode / * only low 9 bits * /
msg_qbytes

This cmd can only be executed by a process that has an effective user ID equal to either that of
super user or to the value of either msg_perm.uid or msg_perm.euid in the data structure
associated with msqid. Only super user can raise the value of msg_qbytes.

IPC-RMID
Remove the message queue identifier specified by msqid from the system and destroy the message
queue and data structure associated with it. This cmd can only be executed by a process that has
an effective user ID equal to either that of super-user or to the value of either msg_perm.uid or
msg_perm.euid in the data structure associated with msqid.

ERRORS
Msgctl will fail if oue or more of the following are true:

[EINVAL]

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

[EFAULT]

RETURN VALUE

Msqid is not a valid message queue identifier.

Cmd is not a valid command.

Cmd is equal to IPC_ST A T and {READ} operation permission is denied to the
calling process (see the glossary).

Cmd is equal to IPC-RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of super-user and it is not equal to the value of either
msg_perm.uid or msg_perm.euid in the data structure associated with
msqid.

Cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not equal to that
of super user.

Buf points to an illegal address. The reliable detection of this error will be
implementation dependent.

Upon successful completion, a value of 0 is returned. Otherwise. a value of -1 is returned and

Hewlett-Packard Company - 1 - Version B.1. October 1986

MSGCTL(2) HP-UX MSGCTL(2)

errno is set to indicate the error.

SEE ALSO
msgget(2), msgop(2), stdipc(3C).

Hewlett-Packard Company - 2 - Version B.1, October 1986

MSGGET(2) HP-UX MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_i key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure are created for key if
one of the following are true:

Key is equal to IPC---.PRIV ATE.

Key does not already have a message queue identifier associated with it, and (msgftg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue identifier is initialized as
follows:

ERRORS

Ms~perm.cuid, msg_perm.uid, ms~perm.cgid, and ms~perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of ms~perm.mode are set equal to the low-order 9 bits of msgftg.

Ms~qnum, ms~spid, msg.Jrpid, ms~time, and ms~ime are set equal to
o.
Ms~ctime is set equal to the current time.

Ms~qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

[EACCESj

[ENOENTj

[ENOSPCj

[EEXISTj

RETURN VALUE

A message queue identifier exists for key, but operation permission as specified
by the low-order 9 bits of msgftg would not be granted.

A message queue identifier does not exist for key and (msgftg & IPC_CREAT)
is "false".

A message queue identifier is to be created but the system-imposed limit on the
maximum number of allowed message queue identifiers system wide would be
exceeded.

A message queue identifier exists for key but ((msgftg & IPC_CREAT) &, (
msgftg & IPC---.EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a message queue identifier, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
msgctl(2), msgop(2), stdipc(3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MSGOP(2) HP-UX MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#inelude <sys/types.h>
#inelude <sys/ipe.h>
#inelude <sys/msg.h>

tnt msgsnd (msqtd, msgp, msgsz, msgftg)
int msqtd;
struet msgbuf .msgp;
int msgsz, msgfig;

int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struet msgbuf *msgp;
int msgsz;
long msgtyp;
int msgfig;

MARKETING MODEL
Level A
Level B
Level C

TECHNICAL MODEL
Core System Extended
svm

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message queue identifier
specified by msqid. Msgp points to a structure containing the message. This structure is com­
posed of the following members:

long mtypej / * message type * /
char mtextDj /* message text */

Mtype is a positive integer that can be used by the receiving process for message selection (see
msgrcv below). Mtext is any text of length msgsz bytes. Msgsz can range from 0 to a system­
imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to ms~qbytes.

The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are as follows:

If (msgflg & IPC~OWAIT) is "true", the message will not be sent and the calling pro­
cess will return immediately.

If (msgflg & IPC~OW AIT) is "false", the calling process will suspend execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in which case the
message is sent.

Msqid is removed from the system (see msgctl(2)). When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

Hewlett-Packard Company - 1 - Version B.1, October 1986

MSGOP(2) HP-UX MSGOP(2)

The calling process receives a signal that is to be caught. In this case the mes­
sage is not sent and the calling process resumes execution in the manner
prescribed in signal(2).

Msgrcv reads a message from the queue associated with the message queue identifier specified by
msqid and places it in the structure pointed to by msgp. This structure is composed of the follow­
ing members:

long mtype; /* message type */
char mtextlJ; !* message text *!

Mtype is the received message's type as specified by the sending process. Mtext is the text of the
message. Msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg & MSG~OERROR) is "true". The truncated part
of the message is lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to
the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not on the queue. These
are as follows:

If (msgflg & IPC~OW AIT) is "true", the calling process will return immediately with a
return value of -1 and errna set to ENOMSG.

If (msgflg & IPC~OW AIT) is "false", the calling process will suspend execution until
one of the following occurs:

ERRORS

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errna is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case a message
is not received and the calling process resumes execution in the manner
prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

[EAGAIN]

[EINVAL]

[EFAULT]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

Mtype is less than 1.

The message cannot be sent for one of the reasons cited above and (msgflg &
IPC~OWAIT) is "true".

Msgsz is less than zero or greater than the system-imposed limit.

Msgp points to an illegal address. The reliable detection of this error will be
implementation dependent.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid.

Ms~qnum is incremented by 1.

Msg..jspid is set equal to the process ID of the calling process.

Hewlett-Packard Company - 2 - Version B.1, October 1986

MSGOP(2) HP-UX MSGOP(2)

Msg........stime is set equal to the current time.

Msgrcv will fail and no message will be received if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

Msgsz is less than O.

[E2BIG] Mtext is greater than msgsz and (msgftg & MSG---.NOERROR) is "false".

[ENOMSG] The queue does not contain a message of the desired type and (msgtyp &
IPC---.NOWAIT) is "true".

[EFAULT] Msgp points to an illegal address. The reliable detection of this error will be
implementation dependent.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid.

Ms~qnum is decremented by 1.

Msg-Irpid is set equal to the process ID of the calling process.

Ms~time is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to the calling
process and ermo is set to EINTR. If they return due to removal of msqid from the system, a
value of -1 is returned and ermo is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of o.
Msgrcv returns a value equal to the number of bytes actually placed into mtext.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

WARNING
Check all references to signal(2) for appropriateness on systems that support sigvector(2). Sigvec­
tor(2) can affect the behavior described on this page.

SEE ALSO
msgctl(2), msgget(2), signal(2), stdipc(3C).

Hewlett-Packard Company - 3 - Version B.l, October 1986

NICE(2) HP-UX NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process's nice value is a
positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. Requests
for values above or below these limits result in the nice value being set to the corresponding limit.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Note that nice assumes a user process priority value of 20. If the super-user of your system has
changed the user process priority value to something less than 20, certain increments can cause
nice to return -1, which is indistinguishable from an error return.

ERRORS
[EPERMj Nice will fail and not change the nice value if incr is negative or greater than 40

and the effective user ID of the calling process is not super-user.

HARDW ARE DEPENDENCIES
Integral PC

Normal users have all super-user capabilities.

SEE ALSO
nice(l), exec(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

OPEN(2) HP-UX OPEN(2)

NAME
open - open file for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, ofiag [, mode 1)
char *pathj
int ofiag, modej

DESCRIPTION
Path points to a path name naming a file; it may not exceed 1024 bytes in length. Open opens a
file descriptor for the named file and sets the file status flags according to the value of oftag.
Oftag values are constructed by OR-ing flags from the list below.

Note that exactly one of the first three flags below must be used. Several of the other flags can be
changed during the time the file is open using fcntl. See fcntl(2) and fcntl(5) for details.

O..-RDONLY Open for reading only.

0_ WRONL Y Open for writing only.

O.....RDWR Open for reading and writing.

O-.NDELAY This flag may affect subsequent reads and writes. See read(2) and write(2).

When opening a FIFO with O---RDONLY or O_WRONLY set:

If O~DELA Y is set:

An open for reading-only will return without delay. An open for
writing-only will return an error if no process currently has the file open
for reading.

If O~DELA Y is clear:

An open for reading-only will block until a process opens the file for writing. An open for
writing-only will block until a process opens the file for reading.

When opening a file associated with a communication line:

If O~DELAY is set:

The open will return without waiting for carrier.

If O~DELA Y is clear:

The open will block until carrier is present.

O-APPEND
If set, the file pointer will be set to the end of the file prior to each write.

O_CREAT
If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to the effective
user ID of the process, the group ID of the file is set to the effective group ID of the process, and
the low-order 12 bits of the file mode are set to the value of mode modified as follows (see
creat(2)):

All bits set in the file mode creation mask of the process are cleared. See umask(2).

The "save text image after execution", set-user-id and set-group-id bits of the mode is
cleared. See chmod(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

OPEN(2) HP-UX OPEN(2)

O_TRUNC
If the file exists, its length is truncated to 0 and the mode and owner are unchanged.

O--.EXCL
If O--.EXCL and O_CREAT are set, open will fail if the file exists.

O-SYNCIO
If a file is opened with O~YNCIO or is set with the F ~ETFL option of lentl, file system writes for
that file will be done through the cache to the disk as soon as possible, and the process will block
until this is completed. This flag is ignored by all I/O calls except tvrite, and is ignored for files
other than ordinary files and block special devices on those systems which permit I/O to block
special devices.

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across exee system calls, see lentl(2).

EXAMPLES
The following call to open opens file inp'l.l.tjile for reading only and returns a file descriptor for
inputjile. For an example of reading from file inputjile, see the read(2) manual page.

int myfd;

myfd = open ("inputfile", O-RDONLY);

The following call to open opens file outputjile for writing and returns a file descriptor for
outputjile. For an example of preallocating disk space for outputjile, see the prealloe(2) manual
page. For an example of writing to o'l.l.tp'l.l.tjile, see the write(2) manual page.

int outfd;

outfd = open ("outputfile", O_WRONLY);

RETURN VALUE
Upon successful completion, the file descriptor is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Open will fail and the file will not be opened if one of the following conditions is true. Errno will
be set accordingly:

[ENOTDIRj

[ENOENTj

[ENOENTj

[EACCESj

[EACCESj

[EISDIRj

[EROFSj

[EMFILEj

[ENXIOj

A component of the path prefix is not a directory.

O_CREA T is not set.

The named file does not exist (for example, path is null or a component of path
does not exist).

A component of the path prefix denies search permission.

Oflag permission is denied for the named file.

The named file is a directory and oflag is write or read/write.

The named file resides on a read-only file system and oflag is write or read/write.

The maximum number of file descriptors allowed are currently open.

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist.

Hewlett-Packard Company - 2 - Version B.l, October 1986

OPEN(2)

[ENXIO]

[ETXTBSY]

[EEXIST]

[EINTR]

[ENFILE]

[EAGAIN]

[EAGAIN]

[EFAULT]

HP-UX OPEN(2)

O_NDEL_~ Y is set, the named file is a FIFO, 0_ \:l/RO~~L Y is set, and no process
has the file open for reading.

The file is open for execution and oftag is write or read/write. Nonnal execut­
able files are only open for a short time when they start execution. Other exe­
cutable file types may be kept open for a long time, or indefinitely under some
circumstances. The conditions are described in HARDWARE DEPENDENCIES
below.

O_CREAT and O-EXCL are set, and the named file exists.

A signal was caught during the open system call, and the system call was not
restarted (see signal(2) and sigvector(2)).

The system file table is full.

One or more segments of a pre-existing file have been locked with lock! or !cntl
by some other process, and O_TRUNC is set.

The file exists, enforcement mode file/record locking is set, and there are out­
standing record locks on the file (see chmod(2)).

Path points outside the allocated address space of the process.

[EINV AL] Oftag specifies both 0_ WRONL Y and O-RDWR.

[ENAMETOOLONG]
The path specified exceeds MAXP ATHLEN characters.

HARDW ARE DEPENDENCIES
Series 500

AUTHOR

Execute and write access are mutually exclusive.

Shared program files remain open for execution as long as there exists a process executing
the program.

Once a shared program file with its sticky bit set has been loaded, it appears to be open
indefinitely, even if the actual number of processes executing the program drops to zero.
Refer to the system administrator's manual for a description of the sticky bit.

Demand loaded program files that are not shared remain open until all of the code and data
have been loaded. Then they are closed.

Open was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcntl(2), Iseek(2), read(2), select(2), umask(2), write(2)'
lockf(2).

Hewlett-Packard Company - 3 - Version B.l, October 1986

PAUSE(2) HP-UX PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored or blocked {masked} by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal-catching func­
tion (see signal(2)), the calling process resumes execution from the point of suspension; with a
return value of -1 from pause and errno set to EINTR.

WARNING
Check all references to signal{2} for appropriateness on systems that support sigvector{2}. Sigvec­
tor{2} can affect the behavior described on this page.

SEE ALSO
alarm(2), kill{2}, signal{2}, sigvector{2}, wait{2}.

Hewlett-Packard Company - 1 - Version B.l, October 1986

PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (ftldes)
int ftldes[2J;

DESCRIPTION

HP-UX PIPE(2)

Pipe creates an I/O mechanism called a pipe and returns two file descriptors, fildes[O] and
fildes[1]. Fildes[O] is opened for reading and fildes[1] is opened for writing.

Writes up to 5120 bytes of data are buffered by the pipe before the writing process is blocked. A
read only file descriptor fildes[O] accesses the data written to fildes[1] on a first-in-first-out (FIFO)
basis.

EXAMPLES
The following example uses pipe to implement the command string "Is I sort":

int pid;
int pipefd[2];

RETURN VALUE

/* Assumes file descriptor 0 and 1 are open * /
pipe (pipefd);

if ((pid = fork()) == 0) {
close(1); /* close stdout * /
dup (pipefd[1]);
execlp ("ls", "Is", 0);

}
else if (pid > 0) {

}

close{O)j/* close stdin * /
dup {pipefd[O])j
execlp ("sort", "sort", 0);

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Pipe will fail if one or more are true:
[EMFILE] NFILE - 1 or more file descriptors are currently open.
[ENFILE] The system file table is full.
[ENOSPCj Not enough space on file system.

HARDW ARE DEPENDENCIES
Integral PC

Writes of up to 10240 bytes of data are buffered by the pipe before the writing process is
blocked.

SEE ALSO
sh(1), read(2), write(2), popen{3S).

Hewlett-Packard Company - 1 - Version B.1, October 1986

PLOCK(2) HP-UX PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock the text segment of the process (text lock), its data seg­
ment (data lock), or both its text and data segment (process lock) into memory. Locked segments
are immune to all routine swapping. Plock also allows these segments to be unlocked. To use this
call, the calling process must be a member of a privilege group allowing plock (see setprivgrp on
getprivgrp(2» or the effective user ID of the calling process must be super-user. Op specifies the
following:

PROCLOCK

TXTLOCK

DATLOCK

UNLOCK

EXAMPLES

lock text and data segments into memory (process lock)

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

The following call to plock locks the calling process in memory:

plock (PROCLOCK);

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value of
-1 is returned and erma is set to indicate the error.

ERRORS
Plock will fail and not perform the requested operation if one or more of the following are true:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

SEE ALSO

The effective user ID of the calling process is not super-user and the user does
not have PRIV ~LOCK.

Op is equal to PROCLOCK and a process lock, a text lock, or a data lock
already exists on the calling process.

Op is equal to TXTLOCK and a text lock, or a process lock already exists on the
calling process.

Op is equal to DA TLOCK and a data lock, or a process lock already exists on
the calling process.

Op is equal to UNLOCK and no type of lock exists on the calling process.

Op is not equal to either PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.

Plock not allowed in [vfork, exec] window (see v/ork(2».

exec(2), exit(2), fork(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

PREALLOC (2) HP-UX PREALLOC (2)

NAME
prealloc - preallocate fast disk storage

SYNOPSIS
int prealloc (fildes, size)
int fildes;
unsigned size;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup or fcntl system call for an ordinary file
of zero length. Size is the size in bytes to be preallocated for the file specified by fildes, at least
size bytes will be allocated. The space will be allocated in an implementation dependent fashion
for fast sequential reads and writes. The EOF in an extended file will be left at the end of the
preallocated area. The current file pointer is left at zero. The file is zero-filled.

Using prealloc on a file does not give the file an attribute which is inherited when copying or res­
toring the file using a program like cp(l) or tar(l). It simply guarantees that the disk space has
been preallocated for size bytes in a manner suited for sequential access. The file can be extended
beyond these limits by write operations past the original end of file, however this space will be not
necessarily be allocated using any special strategy.

EXAMPLES
Assuming a process opened a file for writing, the following call to prealloc preallocates at least
50000 bytes on disk for the file represented by file descriptor outfd:

prealloc (outfd, 5(000);

HARDW ARE DEPENDENCIES
As the exact effect, and performance benefits, to be obtained by using this call vary with the
implementation of the file system, the performance related details are described in the System
Administrator's Manual for each specific machine.

ERRORS
Prealloc will fail and no disk space will be allocated if one or more of the following are true:

[EBADF]

[ENOTEMPTY]

[ENOSPC]

[EFBIG]

Fildes is not a valid open file descriptor.

Fildes not associated with an ordinary file of zero length.

Not enough space left on device to allocate the requested amount; no space
was allocated.

Size exceeds the maximum file size or the process's file size limit. See
ulimit(2). Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

AUTHOR
Prealloc was developed by the Hewlett-Packard Company.

SEE ALSO

BUGS

prealloc(l), creat(2), dup(2), fcnt1(2), open(2), read(2), ulimit(2), write(2).

The allocation of the file space is highly dependent on the current disk usage. A successful return
does not tell you how fragmented the file actually might be if the disk is reaching its capacity.

Hewlett-Packard Company - 1 - Version B.1, October 1986

PROFIL(2) HP-UX
Series 200, 300, 800 Only

PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
#include <sys/param.h>

void prom (buff, bufsiz, offset, scale)
char .buffj
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user's
program counter (pc) is examined each clock tick, offset is subtracted from it, and the result is
multiplied by scale. If the resulting number corresponds to a word inside buff, that word is incre­
mented. The number of samples per second for a given implementation is given by HZ as found in
<sys/param.h>

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 0177777
(octal) gives a 1-1 mapping of pc's to words in buff; 077777 (octal) maps each pair of instruction
words together. 02{octal) maps all instructions onto the beginning of buff (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of o.
Profiling is turned off when an exec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof{I), monitor{3C).

Hewlett-Packard Company - 1 - Version B.l, October 1986

PTRACE(2) HP-UX
Series 200, 300, 800 Only

PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

MARKETING MODEL
Level A
Level B
Level C

TECHNICAL MODEL
Core System Extended
svm

REMARKS
Much of the functionality of this capability is highly dependent on the underlying hardware. An
application which uses this system call should not be expected to be portable across architectures
or implementations.

DESCRIPTION
Ptraee provides a means by which a parent process may control the execution of a child process.
Its primary use is for the implementation of breakpoint debugging; see adb(I). The child process
behaves normally until it encounters a signal (see signal(2) for the list), at which time it enters a
stopped state and its parent is notified via wait(2). When the child is in the stopped state, its
parent can examine and modify its "core image" using ptraee. Also, the parent can cause the
child either to terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken by ptraee and is one of the fol­
lowing:

o This request must be issued by the child process if it is to be traced by
its parent. It turns on the child's trace flag that stipulates that the child
should be left in a stopped state upon receipt of a signal rather than the
state specified by June; see signal(2). The pid, addr, and data argu­
ments are ignored, and a return value is not defined for this request.
Peculiar results will ensue if the parent does not expect to trace the
child.

The remainder of the requests can only be used by the parent process. For each, pid is the pro­
cess ID of the child. The child must be in a stopped state before these requests are made.

1,2

3

Hewlett-Packard Company

With these requests, the word at location addr in the address space of
the child is returned to the parent process. If instruction (I) and data
(D) space are separated, request 1 returns a word from I space, and
request 2 returns a word from D space. If I and D space are not
separated, either request 1 or request 2 may be used with equal results.
The data argument is ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of -1 is returned to the
parent process and the parent's ermo is set to EIO.

With this request, the word at location addr in the child's USER area in
the system's address space (see <sys/user.h» is returned to the
parent process. Addresses in this area are system dependent, but start
at zero. The limit can be derived from <sys/user.h>. The data argu­
ment is ignored. This request will fail if addr is not the start address of
a word or is outside the USER area, in which case a value of -1 is

- 1 - Version B.l, October 1986

PTRACE(2)

4,5

6

7

8

9

HP-UX
Series 200, 300, 800 Only

PTRACE(2)

returned to the parent process and the parent's errno is set to EIO.

With these requests, the value given by the data argument is written
into the address space of the child at location addr. Request 4 writes a
word into I space, and request 5 writes a word in D space. Upon suc­
cessful completion, the value written into the address space of the child
is returned to the parent. These two requests will fail if addr is not the
start address of a word, or if addr is a location in a pure procedure space
and either another process is executing in that space or the parent pro­
cess does not have write access for the executable file corresponding to
that space. Upon failure a value of -1 is returned to the parent process
and the parent's errno is set to EIO.

With this request, a few entries in the child's USER area can be written.
Data gives the value that is to be written and addr is the location of the
entry. The few entries that can be written are dependent on the archi­
tecture of the system, but include the user data registers, auxiliary data
registers, and status register (the set of registers, or bits in registers,
which the user's program could modify).

This request causes the child to resume execution. If the data argument
is 0, all pending signals including the one that caused the child to stop
are canceled before it resumes execution. If the data argument is a valid
signal number, the child resumes execution as if it had incurred that sig­
nal, and any other pending signals are canceled. The addr argument
must be equal to 1 for this request. Upon successful completion, the
value of data is returned to the parent. This request will fail if data is
not 0 or a valid signal number, in which case a value of -1 is returned to
the parent process and the parent's errno is set to EIO.

This request causes the child to terminate with the same consequences as
exit(2).

This request causes a flag to be set so that an interrupt will occur upon
the completion of one machine instruction, and then executes the same
steps as listed above for request 7. If the processor does not provide a
trace bit, this request returns an error. This effectively allows single
:;tepping of the child.

Whether or not the trace bit remains set after this interrupt is a func­
tion of the hardware.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If a
traced process calls exec, it will stop before executing the first instruction of the new image show­
ing signal SIGTRAP.

ERRORS
Ptrace will in general fail if one or more of the following are true:

[EIO] Request is an illegal number.

[ESRCH] Pid identifies a child that does not exist or has not executed a ptrace with
request O.

HARDW ARE DEPENDENCIES
Series 800

Request 6 is not supported and will return -1 with errno set to EIO.

Two other requests are available:

Hewlett-Packard Company - 2 - Version B.l. October 1986

PTRACE(2)

10

11

SEE ALSO

HP-UX
Series 200, 300, 800 Only

PTRACE(2)

With this request, the word at location addr in the save---Btate structure at
the base of the per-process kernel stack is returned to the parent process.
Addr must be word-aligned and less than STACKSIZE*NBPG (see
<sys/param.h> and <machine/param.h». The save---Btate struc­
ture contains the registers and other information about the process.

The save---Btate structure at the base of the per-process kernel stack is
written, as it is read with request 10. Only a few locations can be written
in this way: the general registers, most floating point registers, a few con­
trol registers, and certain bits of the interruption processor status word.

adb(I), exec(2), signal(2), wait(2).

Hewlett-Packard Company - 3 - Version B.l, October 1986

READ (2) HP-UX READ(2)

NAME
read, ready - read input

SYNOPSIS
lnt read (flldes, bur, nbyte)
lnt flldes;
char *buf;
unsigned nbyte;

#lnclude <sys/types.h>
#include <sys/uio.h>

lnt ready (fildes, iov, iovcnt)
int flldes;
struct iovec *iov;
lnt iovcnt;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to
by buf. Readv performs the same action but scatters the input data into the iovcnt buffers
specified by the elements of the iovec array: iov[O], iov[I], ... , iov[iovcnt - I].

For readv the iovec structure is defined as:

struct iovec {
caddr_t
unsigned iov ~en;

};

iov_base;

Each iovec entry specifies the base address and length of an area in memory where data should be
placed. Readv will always fill one area completely before proceeding to the next area. The iovec
array may be at most MAXIOVlong.

On devices capable of seeking, the read starts at a position in the file given by the file pointer
associated with fildes. Upon return from read, the file pointer is incremented by the number of
bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file
pointer associated with such a device is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if 1) the file is associated with a communication line
(see ioctl(2) and termio(7)), or 2) if the number of bytes left in the file is less than nbyte bytes.
A value of 0 is returned when an end-of-file has been reached.

When attempting to read from an ordinary file with enforcement-mode file and record locking set
(see chmod(2)) , and the segment of the file to be read has a blocking write lock (i.e. a write lock
owned by another process):

If O-.NDELA Y is set, the function read will return -1 and ermo will be set to EAGAIN.

If O-.NDELAY is clear, the function read will sleep until the blocking write lock is
removed.

When attempting to read from an empty pipe (or FIFO):

If O-.NDELA Y is set, the read will return a O.

If O-.NDELA Y is clear, the read will block until data is written to the file or the file is no
longer open for writing.

Hewlett-Packard Company - 1 - Version B.l, October 1986

READ (2) HP-UX READ(2)

When attemptiIig to read a file associated with a tty that has no data currently available:

If OJDELAY is set, the read will return a O.

If OJDELAY is clear, the read will block until data becomes available.

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating the number of bytes
actually read. Otherwise, a -1 is returned and ermo is set to indicate the error.

EXAMPLES
Assuming a process opened a file for reading, the following call to read(2) reads BUFSIZ bytes
from the file into the buffer pointed to by mybu/.

#include <stdio.h> /*include this for BUFSIZ definition* /

char mybuf(BUFSIZ]i
int nbytesi

nbytes = read (myfd, mybuf, BUFSIZ)i

ERRORS
Read will fail if one of the following conditions is true and errno will be set accordingly:

!EBADF]

!EINTR]

IEAGAIN]

!EDEADLK]

!EFAULT]

!ENOLCK]

Fildes is not a valid file descriptor open for reading.

A signal was caught during the read system call.

Enforcement-mode file and record locking was set, OJDELA Y was set, and
there was a blocking write lock.

A resource deadlock would occur as a result of this operation (see lock/(2) and
/cntl(2)).

Bu/ points outside the allocated address space. The reliable detection of this
error will be implementation-dependent.

The system record lock table was full, so the read could not go to sleep until the
blocking write lock was removed.

In addition, readtJ may return one of the following errors:

!EFAULT] loti-base or iotJ points outside of the allocated address space.
tion of this error will be implementation dependent.

IOtJcnt was less then or equal to 0, or greater than MAXIOV.

The reliable detec-

!EINVAL]

!EINVAL] The sum of iov len values in the iov array overflowed a 32-bit integer.

WARNINGS
Record locking mayor may not be enforced by the system depending on the settiIig of the file's
mode bits (see lock/(2)).

The character-special devices, and raw disks in particular, apply constraints on how read can be
used. See the specific Section (7) entries for details on particular devices.

Check all references to signal(2} for appropriateness on systems that support sigtJector(2). Sigvec­
tor(2) can affect the behavior described on this page.

HARDWARE DEPENDENCIES
Series 500

In general, a value of nbyte greater than 512K is not supported when fildes is associated
with a device file. There are two exceptions to this:

Hewlett-Packard Company - 2 - Version B.1, October 1986

READ(2)

AUTHOR

HP-UX READ(2)

the device is a terminal or the null device; or

but points to a local (not global) buffer, and has been locked with memlck(2). A
local buffer is an array that is declared within the procedure and resides on the
stack.

Any request for greater than 5l2K megabytes on unsupported device files results in errno
being set to EINV AL. Requests for less than 512K megabytes could result in ermo being
set to ENOMEM.

Series 500, Integral PC
Readv is not currently supported.

Read was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), lockf(2), open(2), pipe(2), select(2), ustat(2), tty(7).

Hewlett-Packard Company - 3 - Version B.l, October 1986

REBOOT(2) HP-UX
Series 200, 300, SOO Only

REBOOT(2)

NAME
reboot - boot the system

SYNOPSIS
#include <sys/reboot.h>
int reboot (howto, device-.flle, filename)
int howto; char *device---.ftle; char *filenamej

MARKETING MODEL
Level C

TECHNICAL MODEL
LM
HP+

DESCRIPTION
Reboot causes the system to be rebooted. Howto is a mask of reboot options (see
<sys/reboot.h». Only RB--.HALT, RB---.AUTOBOOT, RB~OSYNC, RB~EWDEVICE,
and RB~EWFILE are recognized options.

The howto options are:

RB---.AUTOBOOT
A filesystem sync is performed (unless RB~OSYNC is set) and the processor is
rebooted from the default device and file.

RB--.HALT
The processor is simply halted. A sync of the filesystem will be done unless the
RB~OSYNC flag is set. RB--.HALT should be used with caution.

RB~OSYNC
A sync of the filesystem is not to be performed.

RB~EWDEVICE

The device_file argument to the system call is to be used as the filename of the device
from which to reboot.

RB~EWFILE

The filename argument to the system call is to be used as the name of the file to be
rebooted.

Device_file specifies the device from which the reboot is to take place. Device_file must be a
block or character special file name and is used only if the RB~EWDEVICE option is set.

Filename specifies the name of the file to be rebooted (only used if the RB~EWFILE option is
set). This file will be loaded into memory by the bootstrap and control passed to it.

Only the super-user may reboot a machine.

ERRORS
Reboot will fail if the following is true:

[EPERM] The effective user id of the caller is not super-user.

HARDW ARE DEPENDENCIES
Series 300

Filename must be one of the files listed by the boot rom at power up.

The default device and file for RB--.AUTOBOOT are those from which the system was pre­
viously booted.

Series 800
The RB~EWDEVICE and RB--.NEWFILE options and the device_file and filename
parameters are ignored.

Hewlett-Packard Company - 1 - Version B.1, October 1986

REBOOT (2) HP-UX
Series 200, 300, 800 Only

REBOOT(2)

The default file and device for RB-.AUTOBOOT are jhp-ux on the current root device.

RETURN VALUE
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the
global variable errno.

AUTHOR
Reboot was developed by HP, and the University of California, Berkeley.

SEE ALSO
reboot(lM).

Hewlett-Packard Company - 2 - Version B.1, October 1986

RMDIR(2) IIP-UX RMDIR(2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdlr(path)
char ·path;

REMARKS
Not all systems implement this as a system call; some use a library call to the rmdir(l) command
to achieve the same effect. The errors documented below will appear in any case, and no error
messages will ever be printed.

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must be empty (except
for files "." and " .. ") before it can be removed.

RETURN VALUE
A 0 is returned if the remove succeeds. Otherwise a -1 is returned and an error code is stored in
the global location ermo.

ERRORS
The named file is removed unless one or more of the following are true:

[EACCES] A component of the path prefix denies search permission.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EBUSY] The directory to be removed is the mount point for a mounted file system.

[EFAULT] Path points outside the process's allocated address space. The reliable detection
of -this error will be implementation dependent.

[ENAMETOOLONG]

[ENOENT]

[ENOENT]

The path name exceeds MAXPATHLEN characters.

A component of the path name is too long.

The named file does not exist.

[ENOTDIR] A component of the path is not a directory.

[ENOTEMPTY]
The named directory is not empty. It contains files other than "." and " .. ".

[EROFS] The directory entry to be removed resides on a read-only file system.

HARDW ARE DEPENDENCIES
Series 500:

The directory entries "." and " .. " are recognized, but files of the same names do not
appear in the dir structure.

AUTHOR
Rmdir was developed by the University of California, Berkeley California, Computer Science Divi­
sion, Department of Electrical Engineering and Computer Science.

SEE ALSO
mkdir(2), unlink(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

RTPRIO(2) HP-UX RTPRIO(2)

NAME
rtprio - change or read realtime priority

SYNOPSIS
#include <sys/rtprio.h>

rtprio (pid, prio)
int pid, prio;

DESCRIPTION
Rtprio is used to set or read the realtime priority of a process. If pid is zero, it names the calling
process; otherwise it gives the pid of the process. When setting the realtime priority of another
process, the real or effective user ID of the calling process must match the real or saved user ID of
the process to be modified, or the effective user ID of the calling process must be that of super­
user. The calling process must also be a member of a privilege group allowing rtprio (see get­
privgrp(2)) or the effective user ID of the calling process must be super-user. Simply reading real­
time priorities requires no special privilege.

Real time scheduling policies differ from the normal timesharing policies in that the realtime prior­
ity is used to absolutely order all realtime processes; this priority is not degraded over time. All
realtime processes are of higher priority than normal user processes, although some system
processes may run at realtime priorities themselves. If there are several eligible processes at the
same priority level, they will be run in a round robin fashion as long as no process with higher
priority intercedes. A realtime process will receive cpu service until it either voluntarily gives up
the cpu or is preempted by a process of equal or higher priority. Interrupts may also preempt a
realtime process.

Valid realtime priorities run from zero to 127. Zero is the highest (most important) priority.
This realtime priority is inherited across fork3 and execs.

Prio specifies the following:

0-127 Set process to this realtime priority.

RTPRIO---.-NOCHG

RTPRIO-RTOFF

EXAMPLES

Do not change realtime priority. This is used for reading the process realtime
priority.

Set this process to no longer have a realtime priority. It will resume a normal
timesharing priority. Any process, regardless of privilege, is allowed to turn off
its own realtime priority using a pid of zero.

The following call to rtprio sets the calling process to a real-time priority of 90:

rtprio (0, 90);

RETURN VALUE
If no error occurs, rtprio will return the pid's former (before the call) realtime priority. If the pro­
cess was not a realtime process, RTPRIO-RTOFF will be returned. If an error does occur, -1 is
returned and errno is set to one of the values described in the ERRORS section.

ERRORS
[EINVAL]

[EPERM]

Prio is not RTPRIO~~OCHG, RTPRIO-RTOFF, or in the range of 0 to 127.

The calling process is not the super-user and neither its real or effective user-id
match the real or saved user-id of the process indicated by pid.

Hewlett-Packard Company - 1 - Version B.1. October 1986

RTPRIO(2) HP-UX RTPRIO(2)

[EPE!L¥.] The calling process is not a member with a of a group having PRIV-RTPRIO
capability and prio is not RTPRlO-....NOCHG, or RTPRlO-RTOFF with a pid of
zero.

[ESRCHj No process can be found corresponding to that specified by pid.

HARDW ARE DEPENDENCIES
Series 500

Some of the work done by the system on behalf of users is done with daemon processes
which have various priorities. Some functions such as copying user space on a fork, virtual
memory swapping, and LAN activity are done at a priority lower than any of the rtprio(2)
priorities.

Other functions, sllch as terminal I/O, disk I/O, DIL interrupts, signals, select(2) wakeups,
and system timers, are done at a priority level equivalent to an rtprio(2) priority of 64.

If there is a real-time process that is consuming all available CPU time, the system will not
be able to accomplish any other system activities that have a lower priority, even if the
function is on behalf of the real-time process. In the case of multi-CPU systems, it will take
multiple real-time processes to lock out the system.

The user of rtprio(2) must decide whether the task requiring real-time priorities needs to
have an effective priority greater than or less than the system functions provided.

Integral PC
The normal user may change the real-time priority of any process except that of the
scheduler.

AUTHOR
Rtprio was developed by HP.

SEE ALSO
rtprio(l), getprivgrp(2), nice(2), plock(2).

WARNINGS
Normally, compute bound programs should not be run at realtime priorities, because all time
sharing work on the cpu would come to a complete halt.

Hewlett-Packard Company - 2 - Version B.l, October 1986

SELECT (2) HP-UX SELECT (2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#lnclude <tlme.h>

lnt select(nfds, readfds, writefds, exceptfds, timeout)
lnt nfds, *readfds, *writefds, *exceptfds;
struct tlmeval • timeout;

DESCRIPTION
Select examines the file descriptors specified by the bit masks read/ds, write/ds and except/ds.
The bits from 0 through n/ds-I are examined. File descriptor / is represented by the bit 1 < <f in
the masks. More formally, a file descriptor is represented by:

fds[(f / BITSJER-lNT)] & (1 « (f % BITSJER-lNT))

When select completes successfully it returns the three bit masks modified as follows: For each
file descriptor less than n/ds, the corresponding bit in each mask is set if the bit was set upon
entry and the file descriptor is ready for reading, writing or has an exceptional condition pending.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to com­
plete. If timeout is a zero pointer, the select waits until an event causes one of the masks to be
returned with a valid {non-zero} value. To poll, the timeout argument should be non-zero, point­
ing to a zero valued timeval structure. Specific implementations may place limitations on the
maximum timeout interval supported. The constant MALALARM defined in <sys/param.h>
specifies the implementation-specific maximum (in seconds). Whenever timeout specifies a value
greater than this maximum, it is silently rounded down to this maximum. On all implementa­
tions, MALALARM is guaranteed to be at least 31 days {in seconds}. Note that the use of a
timeout does not affect any pending timers set up by alarm(2) or setitimer(2).

AJiy or all of read/ds, write/ds, and except/ds may be given as 0 if no descriptors are of interest.

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions.

EXAMPLES
The following call to select checks if any of 4 terminals are ready for reading. Select will time out
after 5 seconds if no terminals are ready for reading. Note that the code for opening the terminals
or reading from the terminals is not shown in this example. Also, note that this example must be
modified if the calling process has more than 32 file descriptors open:

#define MASK(f)
#define NTTYS4

int tty[NTTYS]:
int ttymask[NTTYSj;
int readmask = 0;
int readfds;
int nfound, i;
struct timeval timeout;

(1 « (f)

1* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code
* for opening the terminals is not shown here.
*/

for (i=O; i < NTTYS; i++) {

Hewlett-Packard Company - 1 - Version B.I, October 1986

SELECT (2) HP-UX

ttymask[i] = M..!\SK(tty[i]);
readmask 1= ttymask[i]j

timeout.tv---sec = 5j
timeout.tv_UBec = 0;
readfds = readmaskj

/* select on NTIYS+3 file descriptors if stdin, stdout
* and stderr are also open
*/
if ((nfound = select (NTIYS+3, &readfds, 0, 0, &timeout» == -1)

perror (wselect failedW)j
else if (nfound == 0)

printf ("select timed out \n")j
else for (i=Oj i < NTIYSj i++)

if (ttymask[i] & readfds)
1* Read from tty[i]. The code for reading
* is not shown here.
*/

else printf ("tty[%d] is not ready for reading \n",i)j

RETURN VALUE

SELECT (2)

Select returns the number of descriptors contained in the bit masks, or -1 if an error occurred. If
the time limit expires then select returns 0 and all the masks are cleared.

ERRORS
An error return from select indicates:

[EBADF]

[EINTR]

One or more of the bit masks specified an invalid descriptor.

A signal was delivered before any of the selected for events occurred or before the
time limit expired.

[EFAULT] One or more of the pointers was invalid. The reliable detection of this error will
be implementation dependent.

[EINVAL]

[EINVAL]

WARNINGS

Invalid timeval passed for timeout.

nlds < 0

Check all references to signal(2) for appropriateness on systems that support sigtJector(2). Sigvec­
tor(2) can affect the behavior described on this page.

The file descriptor masks are always modified on return, even if the call returns as the result of a
timeout.

HARDW ARE DEPENDENCIES
Series 200, 300

Select(2) supports the following devices and file types:
pipes
fifo special files (named pipes)
All serial interfaces
All ITEs and HP-HIL input devices
pty(7) special files
HP 98643 LAN interface card driver

Hewlett-Packard Company - 2 - Version B.I, October 1986

SELECT(2) HP-UX SELECT(2)

File types not supporting select(2) always return true.

Series 500
Select(2) supports the following devices and file types:

pipes
fifo special files (named pipes)
pty(7) special files
Model 520 Internal Terminal Emulator (ITE)
HP 98700H ITE and HP-HIL input devices

(such as HP 46020A Keyboard and HP 46086A Button Box)
HP 27128A ASI tty driver
HP 27125A LAN interface card driver (LLA)
HP 27130A/B port MUX (with appropriate firmware revision)

Device files that do not support select(2) always return true for those conditions the user is
selecting on.

Series 800

AUTHOR

Select(2) supports the following devices and file types:
pipes
fifo special files (named pipes)
all serial devices
hpib(7) special files
gpio(7) special files
lan(7) special files
pty(7) special files

The convention for device files that do not support select(2) is to always return true for
those conditions the user is selecting on.

Consult the individual device manual pages to determine the extent to which any particular
driver supports select(2).

Select was developed by HP and the University of California, Berkeley.

SEE ALSO
fcntl(2), read(2), write(2).

Hewlett-Packard Company - 3 - Version B.l, October 1986

SEMCTL(2) HP-UX SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#inelude <sys/ipe.h>
#inelude <sys/sem.h>

int semetl (semid, semnum, emd, arg)
int semid, semnum, emdj
union semun {

int val;
struet semiLds *bufj
ushort *arraYj

} arg;

DESCRIPTION
Bemetl provides a variety of semaphore control operations as specified by emd.

The following emds are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval (see the glossary).

SETVAL

GETPID

GETNCNT

GETZCNT

Set the value of semval to arg.val. When this cmd is successfully exe­
cuted, the semadj value corresponding to the specified semaphore in all
processes is cleared.

Return the value of sempid.

Return the value of semncnt.

Return the value of semzcnt.

The following emds return and set, respectively, every semval in the set of semaphores.

GETALL

SETALL

Place semvals into array pointed to by arg.array.

Set semvals according to the array pointed to by argo array. When this
cmd is successfully executed the semadj values corresponding to each
specified semaphore in all processes are cleared.

The following emds are also available:

IPC-STAT Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of this
structure are defined in the glossary.

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to
byarg.buf:

seln-perm. uid
seln-perm.gid
seln-perm.mode / * only low 9 bits * /

This cmd can only be executed by a process that has an effective user ID equal to either that of
super-user or to the value of either seln-perm.uid or seln-perm.euid in the data structure
associated with semid.

IPC-RMID Remove the semaphore identifier specified by semid from the system and destroy
the set of semaphores and data structure associated with it. This cmd can only
be executed by a process that has an effective user ID equal to either that of
super-user or to the value of either seln-perm.uid or seln-perm.euid in the

Hewlett-Packard Company - 1 - Version B.l, October 1986

SEMCTL(2) HP-UX SEMCTL(2)

data structure associated with semid.

EXAMPLES
The following call to semetl initializes the set of 4 semaphores to the values 0, 1, 0 and 1 respec­
tively. This example assumes the process has a valid semid representing a set of 4 semaphores as
shown on the semget(2) manual page. For an example of performing "P" and "V" operations on
the semaphores below, refer to the semop(2) manual page.

ushort semarraY[4Jj

ERRORS

semarray[O] = OJ
semarraY[l] = 1j
semarraY[2] = OJ
semarray[3] = Ii

semctl (mysemid, 0, SETALL, semarraY)i

Semetl will fail if one or more of the following are true:

[EINVAL]

[EINVAL]

[EINVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

RETURN VALUE

Semid is not a valid semaphore identifier.

Semnum is less than zero or greater than or equal sem...Jl8ems.

Cmd is not a valid command.

Operation permission is denied to the calling process (see the glossary).

Cmd is SETV AL or SET ALL and the value to which semval is to be set is
greater than the system imposed maximum.

Cmd is equal to IPC-RMID or IPC-BET and the effective user ID of the calling
process is not equal to that of super-user and it is not equal to the value of either
seDL-perm.uid or seDL-perm.cuid in the data structure associated with
semid.

Arg.buJ or arg.array points to an illegal address. The reliable detection of this
error will be implementation dependent.

Upon successful completion, the value returned depends on emd as follows:

GETV AL The value of semval.

GETNCNT

GETZCNT

GETPID

All others

The value of semncnt.

The value of semzcnt.

The value of sempid.

A value ofO.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
semget(2), semop(2), stdipc(3C).

Hewlett-Packard Company - 2 - Version B.1, October 1986

SHMGET(2} HP-UX SHMGET(2}

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#inc1ude <sys/ipc.h>
#inc1ude <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size
bytes (see glossary) are created for key if one of the following are true:

Key is equal to IPC-PRIV ATE.

Key does not already have a shared memory identifier associated with it, and (shmftg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory identifier is initialized
as follows:

EXAMPLES

Shm........perm.cuid, shm........perm.uid, shm........perm.cgid, and shm........perm.gid are set
equal to the effective user 10 and effective group 10, respectively, of the calling process.

The low-order 9 bits of shm........perm.mode are set equal to the low-order 9 bits of shmftg.
Shm........segsz is set equal to the value of size.

Shm........lpid, shm.....nattch, shm......atime, and shm........dtime are set equal to O.

Shm........ctime is set equal to the current time.

The following call to shmget returns a unique shmid for the newly created shared memory segment
of 4096 bytes:

int myshmid;

myshmid = shmget (IPCJRIVATE, 4096, 0600);

ERRORS
Shmget will fail if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

Size is less than the system-imposed minimum or greater than the system­
imposed maximum.

A shared memory identifier exists for key but operation permission (see glossary)
as specified by the low-order 9 bits of shmftg would not be granted.

A shared memory identifier exists for key but the size of the segment associated
with it is less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmftg & IPC_CREAT)
is "false".

A shared memory identifier is to be created but the system-imposed limit on the
maximum number of allowed shared memory identifiers system wide would be
exceeded.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SHMGET(2) HP-UX SHMGET(2)

[ENOMEMj A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill the
request.

[EEXISTj A shared memory identifier exists for key but { (shmflg & IPC_CREAT) && (
shmflg & IPC---.EXCL)) is "true".

HARDW ARE DEPENDENCIES
Series 500

Shared memory segments iarger than 16384 bytes are paged virtual segments; otherwise
they are non-paged virtual segments.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
shmctl(2), shmop(2), stdipc(3C).

Hewlett-Packard Company - 2 - Version B.1. October 1986

SEMOP(2) HP-UX SEMOP(2)

semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf *sops;
int nsops;

DESCRIPTION
Semop is used to atomically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid. Sops is a pointer to the array of
semaphore-operation structures. Nsops is the number of such structures in the array. The con­
tents of each structure includes the following members:

ushort seIlLJlum; /* semaphore number */
short seI11-Op; / * semaphore operation * /
short seIIL.Jlg; / * operation flags * /

Each semaphore operation specified by serYL-Op is performed on the corresponding semaphore
specified by semid and serYL-num. Semaphore array operations are atomic, in that none of the
semaphore operations will be performed until blocking conditions on all of the semaphores in the
array have been removed.

SeTn-op specifies one of three semaphore operations as follows:

If serYL-Op is a negative integer, one of the following will occur:

If semval (see intro(2)) is greater than or equal to the absolute value of seTn-Op,
the absolute value of serrLOp is subtracted from semval. Also, if (serYL-flg &
SE~UNDO) is "true", the absolute value of serYL-Op is added to the calling
process's semadj value (see exit(2)) for the specified semaphore.

If semval is less than the absolute value of seTn-Op and (seTn-flg &
IPC~OWAIT) is "true", semop will return immediately.

If semval is less than the absolute value of serYL-Op and (seTn-flg &
IPC~OWAIT) is "false", semop will increment the semncnt associated with the
specified semaphore and suspend execution of the calling process until one of the fol­
lowing conditions occur:

Semval becomes greater than or equal to the absolute value of seTn-op. When
this occurs, the value of semncnt associated with the specified semaphore is
decremented, the absolute value of seTn-Op is subtracted from semval and, if
(seTn-flg & SE~UNDO) is "true", the absolute value of seTn-Op is added to
the calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the
system (see semctl(2)). When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(2).

Hewlett-Packard Company - 1 - Version B.I, October 1986

SEMOP(2) HP-UX SEMOP(2)

If serTLOp is a positive integer, the value of serTLOp is added to semval and, if (serTLflg &
SEM-UNDO) is "true", the value of serTLOp is subtracted from the calling process's semadj
value for the specified semaphore.

If serTLOp is zero, one of the following will occur:

EXAMPLES

If semval is zero, semop will proceed to the next semaphore operation specified by sops, or
return immediately if this is the last operation.

If semval is not equal to zero and (senL-flg & IPC-1"JOW AIT) is "true", semop will
return immediately.

If semval is not equal to zero and (serTLflg & IPC~OW AIT) is "false", semop will
increment the semzcnt associated with the specified semaphore and suspend execution of
the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated with the specified
semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the system.
When this occurs, ermo is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value
of semzcnt associated with the specified semaphore is decremented, and the calling pro­
cess resumes execution in the manner prescribed in signal(2)).

The following call to semop atomically performs a "P" or "get" operation on the second sema­
phore in the semaphore set and a NV" or NreleaseN operation on the third semaphore in the set.
This example assumes the process has a valid semid which represents a set of 4 semaphores as
shown on the semget(2) manual page. It also assumes that the semvals of the semaphores in the
set have been initialized as shown on the semctl(2) manual page.

struct sembuf sops[4J;

ERRORS

sops[Oj.se~um = 1;
sops[Oj.seIIL-op = -1; 1* P (get) */
sops[Oj.seID-..flg = 0;
sops[lj.se~um = 2;
sops[lj.seIIL-op = 1; /* V (release) * /
sops[lj.seID-..flg = 0;

semop (mysemid, sops, 2);

Semop will fail if one or more of the following are true for any of the semaphore operations
specified by sops:

[EINVAL]

[EFBIGJ

[E2BIG]

[EACCES]

[EAGAIN]

Semid is not a valid semaphore identifier.

SerTLnum is less than zero or greater than or equal to the number of semaphores
in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see intro(2)).

The operation would result in suspension of the calling process but (serTLflg &
IPC~OW AIT) is "true".

Hewlett-Packard Company - 2 - Version B.1, October 1986

SEMOP(2)

(ENOSPC]

[EINVAL]

[ERANGE]

HP-UX SEMOP(2)

The limit on the number of individual processes requesting an SEM-l.I'NuO
would be exceeded.

The number of individual semaphores for which the calling process requests a
SEM-UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the system-imposed limit.

[EFAULT] Sops points to an illegal address. The reliable detection of this error will be
implementation dependent.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed
to by sops is set equal to the process ID of the calling process. The value of sem......-otlme in the
data structure associated with the semaphore identifier will be set to the current time.

RETURN VALUE
IT semop returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. IT it returns due to the removal of a semid from the system, a value of -1
is returned and errno is set to EIDRM.

Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

WARNING
Check all references to signal(2) for appropriateness on systems that support sigvector(2). SigtJec­
tor(2) can affect the behavior described on this page.

SEE ALSO
exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C).

Hewlett-Packard Company - 3 - Version B.1, October 1986

SETGROUPS(2) HP-UX
Series 200, 300, SOO Only

SETGROUPS(2)

NAME
set groups - set group access list

SYNOPSIS
#include <sys/param.h>
setgroups(ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than
NGROUPS, as defined in <sys/param.h>.

Only the superuser may set new groups by adding to the group access list of the current user pro­
cess; any user may delete groups from it.

RETURN VALUE
A 0 value is returned on success, -Ion error, with an error code stored in erTno.

ERRORS
The setgroups call will fail if:

[EPERM]

[EFAULT]

[EINVAL]

[EINVAL]

AUTHOR

The caller is not the superuser and has attempted to set new groups.

The address specified for gidset is outside the process address space. The reliable
detection of this error will be implementation dependent.

Ngroups is greater than NGROUPS or not positive.

An entry in gidset is not a valid group ID.

Setgroups was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
getgroups(2), initgroups(3C)

Hewlett-Packard Company - 1 - Version B.1, October 1986

SETHOSTNAME(2)

NAME
sethostname - set name of host cpu

SYNOPSIS
sethostname(name, namelen)
ehar *name;
int namelen;

DESCRIPTION

HP-UX SETHOSTNAME (2)

This call sets the name of the host processor to be name, which has a length of namelen charac­
ters. The maximum value of namelen is UTSLEN as defined in <sys/utsname.h>. This is nor­
mally executed when the system is bootstrapped, executed out of the file fete/reo This system
call sets the nodename field in the utsname structure returned by uname(2).

ERRORS
Sethostname will fail and return an error if:

[EPERM] It is not executed by the super-user.

[EFAULT] Name points to an illegal address. The reliable detection of this error will be
implementation dependent.

HARDW ARE DEPENDENCIES
Integral PC

Normal users have all super-user capabilities.

AUTHOR
Sethostname was developed by the University of California, Berkeley.

SEE ALSO
hostname{I), uname{I), gethostname(2)' uname(2).

Hewlett-Packard Company - 1 - Version B.I, October 1986

SETPGRP(2) HP-UX SETPGRP(2)

NAME
setpgrp, setpgrp2 - set process group ID

SYNOPSIS
lnt setpgrp ()

lnt setpgrp2 (pid, pgrp)
lnt pid, pgrp;

DESCRIPTION
Setpgrp sets the process group ID of the calling process to the process ID of the calling process
and returns the new process group ID.

Setpgrp breaks the calling process's terminal affiliation unless it is already the process group
leader, see termio(7). Setpgrp enables the sending of SIGHUP upon process group leader termina­
tion, see ezit(2).

Setpgrpf sets the process group ID of the process specified by pid to be pgrp. If pid is zero, the
process group ID of the current process will be affected.

The following condition must be met for setpgrpf to succeed; otherwise, the error (EINV AL] is
returned:

The value of pgrp must be in the range of valid process group ID values, or it must be
zero ("no process group").

In addition, one or more of the following conditions must be met for setpgrpf to succeed; other­
wise, the error (EPERM] is returned:

The effective user ID of the current process is super-user.

The affected process is a descendant of the current process.

The real or effective user ID of the current process matches the real or saved user ID of
the affected process.

In addition, one or more of the following conditions must be met for setpgrpf to succeed, other­
wise, the error [EPERM] is returned:

The effective user ID of the current process is super-user.

The value of pgrp matches the saved process group ID of the current process.

All processes with a process ID or process group ID that is the same as pgrp have the
same real or saved user ID as the real or effective user ID of the current process, or are
descendants of the current process.

Setpgrpf does not affect the process' terminal affiliation, but does affect whether the process is in
the distinguished process group of the terminal, see termio(7). Setpgrpf disables the sending of
SIGHUP upon process group leader termination, see ezit(2).

ERRORS
Setpgrpf will fail and no change will occur if any of the following are true:

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM]

[EPERM]

The effective user ID of the current process is not super-user; and the real or
effective user ID of the current process does not match the real or saved user ID
of the specified process; and the specified processes are not descendants of the
current process.

The effective user ID of the current process is not super-user; and the value pgrp
does not match the saved process group ID of calling process; and a process
exists that is not a descendant of the calling process and whose process ID or
process group ID match pgrp, while neither the real or saved user ID of this

Hewlett-Packard Company - 1 - Version B.1, October 1986

SETPGRP(2) HP-UX SETPGRP(2)

process match either the real or effective user ill of the caUing process.

[EINVAL] The value for pgrp is outside the range of valid process group ID values and is
non-zero.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

Upon successful completion, setpgrpf returns zero. Otherwise, a value of -1 is returned and ermo
is set to indicate the error.

HARDWARE DEPENDENCIES
Series 200, 300, 500

-Setpgrp2_ is not supported.

AUTHOR
Setpgrp and setpgrpf were developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
exec(2), exit(2), fork(2), getpid(2), kill(2), signal(2), termio(7).

Hewlett-Packard Company - 2 - Version B.I, October 1986

SETRESUID (2) HP-UX
Series 800 Only

SETRESUID (2)

NAME
setresuid, setresgid - set real, effective, and saved user and group IDs

SYNOPSIS
int setresuid (ruid, euid, suid)
int ruid, euid, suid;

int setresgid (rgid, egid, sgid)
int rgid, egid, sgid;

DESCRIPTION
Setresuid sets the real, effective and/or saved user ID of the calling process.

If the current real, effective or saved user ID is equal to the super-user's user ID, setresuid sets the
real, effective and saved user IDs to ruid, euid and suid, respectively. Otherwise, setresuid will
only set the real, effective and saved user IDs if ruid, euid and suid each match at least one of the
current real, effective or saved user IDs.

If ruid, wid or suid is -1, setresuid will leave the current real, effective or saved user ID
unchanged.

Setresgid sets the real, effective and/or saved group ID of the calling process.

If the current real, effective or saved user ID is equal to the super-user's user ID, setresgid sets the
real, effective and saved group IDs to rgid, egid and sgid, respectively. Otherwise, setresgid will
only set the real, effective and saved group IDs if rgid, egid and sgid each match at least one of the
current real, effective or saved group IDs.

If rgid, egid or sgid is -1, setresgid will leave the current real, effective or saved group ID
unchanged.

ERRORS
Setresuid and setresgid will fail and return -1 if:

[EINVAL]

[EPERM]

RETURN VALUE

Ruid, euid or suid (rgid, egid or sgid) is not a valid user (group) ID.

None of the conditions above are met.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errna is set to indicate the error.

HARDW ARE DEPENDENCIES
Integral Personal Computer:

For super-user capabilities described above, it is not necessary to be super-user.

AUTHOR
Setresuid and setresgid were developed by HP.

SEE ALSO
exec(2), getuid(2), setuid(2).

Hewlett-Packard Company - 1 - Version B.1. October 1986

SETUID(2) HP-UX SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid sets the real and/or effective user ID of the calling process. The real, effective, and saved
user IDs are called "ruid", "wid", and "8uid", respectively. The super user's user ID is zero.

If uid and suid are both zero then setuid sets ruid and wid to zero.

Otherwise, if uid is not zero and is equal to ruid then setuid sets euid to ruid.

Otherwise, if uid is not zero and is equal to wid then setuid sets ruid to wid.

Otherwise, if uid is not zero and is equal to suid then setuid sets euid to suid.

Otherwise, if wid is zero then setuid sets ruid and euid to uid.

Setgid sets the real, effective, and/or saved group ID of the calling process ("rgid", "egid", and
"sgid", respectively).

If gid is equal to rgid then setgid sets egid to rgid.

Otherwise, if gid is equal to egid then setgid sets rgid to egid.

Otherwise, if gid is equal to sgid then setgid sets egid to sgid.

Otherwise, if euid is zero then setgid sets rgid, egid, and sgid to gid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errna is set to indicate the error.

ERRORS
Setuid and setgid will fail and return -1 if:

[EPERMj None of the conditions above are met.

[EINVAL] Uid (gid) is not a valid user (group) ID.

HARDW ARE DEPENDENCIES
Integral PC

Saved user IDs or saved group IDs are currently not supported.

Normal users have all super-user capabilities.

SEE ALSO
exec(2), getuid(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

SHMCTL(2) HP-UX SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, but)
int shmid, cmdj
struet shmiLds .bufj

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified by cmd. The following
cmds are available:

IPC-SET

Place the current value of each member of the data structure associated with
shmid into the structure pointed to by bu/. The contents of this structure are
defined in the glossary. {READ}

Set the value of the following members of the data structure associated with
shmid to the corresponding value found in the structure pointed to by bu/:
shllL..perm.uid
shllL..perm.gid
shllL..perm.mode /. only low 9 bits. /

This cmd can only be executed by a process that has an effective user ID equal to either that of
super-user or to the value of either shllL..perm.uid or shllL..perm.cuid in the data structure
associated with shmid.

IPC-RMID
Remove the shared memory identifier specified by shmid from the system and destroy the shared
memory segment and data structure associated with it. If the segment is attached to one or more
processes, then the segment key is changed to IPC-.PRIV A TE and the segment is marked removed.
The segment will disappear when the last attached process detaches it. This cmd can only be exe­
cuted by a process that has an effective user ID equal to either that of super-user or to the value
of either shllL..perm.uid or shllL..perm.cuid in the data structure associated with shmid.

SHM..--LOCK
Lock the shared memory segment specified by shmid in memory. This cmd can only be executed
by a process that either has an effective user ID equal to super-user or has an effective user ID
equal to the value of either shllL..perm.uid or shllL..perm.cuid in the data structure associated
with shmid and has PRIV---.MLOCK privilege (see setprivgrp on getprivgrp(2)).

SHM-UNLOCK
Unlock the shared memory segment specified by shmid. This cmd can only be executed by a pro­
cess that either has an effective user ID equal to super-user or has an effective user ID equal to the
value of either shllL..perm.uid or shllL..perm.cuid in the data structure associated with shmid
and has PRIV---.MLOCK privilege (see setprivgrp on getprivgrp(2)).

EXAMPLES
The following call to shmctl locks in memory the shared memory segment represented by mysh­
mid. This example assumes the process has a valid shmid, which can be obtained by calling
shmget(2).

shmctl (myshmid, SH~OCK, 0);

Hewlett-Packard Company - 1 - Version B.1, October 1986

SHMCTL(2) HP-UX SHMCTL(2)

The following call to shmctl removes the shared memory segment represented by myshmid. This
exampie assumes the process has a valid shmid, which can be obtained by calling shmget(2).

shmctl (myshmid, IPC-RMID, 0);

ERRORS
Shmctl will fail if one or more of the following are true:

[EINVALj

[EINVALj

[EACCESj

[EPERM]

[EPERM]

[EINVAL]

[EFAULTj

[ENOMEM]

RETURN VALUE

Shmid is not a valid shared memory identifier.

Cmd is not a valid command.

Cmd is equal to IPC-BT AT and {READ} operation permission is denied to the
calling process (see glossary).

Cmd is equal to IPC-RMID, IPC-BET, SHM...J.OCK, or SlIM-UNLOCK
and the effective user ID of the calling process is not equal to that of super-user
and it is not equal to the value of either shllL-perm.uid or shllL-perm.culd
in the data structure associated with shmid.

Cmd is equal to SHM......LOCK or SH~UNLOCK and the effective user ID of
the calling process is not equal to that of super-user and the calling process does
not have PRIV-MLOCK privilege (see setprivgrp on getprivgrp(2».

Cmd is equal to SlIM-UNLOCK and the shared-memory segment specified by
shmid is not locked in memory.

Bul points to an illegal address. The reliable detection of this error will be
implementation dependent.

Cmd is equal to SH~OCK and there is not sufficient lockable memory to fill
the request.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
e"no is set to indicate the error.

HARDW ARE DEPENDENCIES
Series 200, 300

[EACCESSj Shmid is the id of a shared memory segment currently being used by the sys­
tem to implement other features (see graphics(7) and iomap(7».

AUTHOR
Shmctl was developed by AT&T and HP.

SEE ALSO
shmget(2), shmop(2), stdipc(3C).

Hewlett-Packard Company - 2 - Version B.1, October 1986

SEMGET(2} HP-UX SEMGET(2}

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores are
created for key if one of the following are true:

Key is equal to IPC-I>RIV ATE.

Key does not already have a semaphore identifier associated with it, and (semftg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier is initialized as fol­
lows:

EXAMPLES

SeIIL-perm.cuid, seIIL-perm.uid, seIIL-perm.cgid, and seIIL-perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of seIIL-perm.mode are set equal to the low-order 9 bits of semftg.

SeIIL-nsems is set equal to the value of nsems.

SeIIL-otime is set equal to 0 and seIIL-ctime is set equal to the current time.

The following call to semget returns a semid associated with the key returned by ftok("myfile",
'A'). If a semid associated with the key does not exist, a new semid, set of 4 semaphores and
associated data structure will be created. If a semid for the key already exists, the semid is simply
returned.

int semid;

mysemid = semget (ftok("myfile",'A'), 4, IPC_CREAT I 0600);

ERRORS
Semget will fail if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPCj

Nsems is either less than or equal to zero or greater than the system-imposed
limit.

A semaphore identifier exists for key, but operation permission as specified by
the low-order 9 bits of semftg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the set
associated with it is less than nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semftg & IPC_CREAT) is
"false".

A semaphore identifier is to be created but the system-imposed limit on the max­
imum number of allowed semaphore identifiers system wide would be exceeded.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SEMGET(2)

[ENOSPC]

[EEXIST]

RETURN VALUE

HP-UX SEMGET(2)

A semaphore identifier is to be created but the system-imposed limit on the max­
imum number of allowed semaphores system wide would be exceeded.

A semaphore identifier exists for key but ((semftg & IPC_CREAT) & (semftg
& IPC-EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
semctl(2), semop(2), stdipc(3C).

Hewlett-Packard Company - 2 - Version B.I, October 1986

SHMOP(2) HP-UX SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#lnclude <sys/types.h>
#lnclude <sys/lpe.h>
#lnclude <sys/shm.h>

char *shmat (shmld, shmaddr, shmflg)
lnt shmld;
char *shmaddr
lnt shmflg;

lnt shmdt (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated with the shared memory identifier specified
by shmid to the data segment of the calling process. IT the shared memory segment has not
already been attached shmaddr must be specified as zero, and the segment will be attached at a
location selected by the operating system. That location will be the same in all processes access­
ing that shared memory object. IT the shared memory segment has already been attached a non­
zero value of shmaddr will be accepted as long as the specified address is the same as the current
attach address of the segment. Some implementations may permit the specification of a non-zero
value as a machine dependent extension, as discussed in HARDWARE DEPENDENCIES below.
Systems which do this do not necessarily guarantee that a given shared memory object will appear
at the same address in all processes which access it, unless the user specifies an address.

The segment is attached for reading if (shmftg & SHM.......RDONLY) is "true" {READ}, otherwise
it is attached for reading and writing {READ/WRITE}. It is not possible to attach a segment for
write only.

EXAMPLES
The following call to shmatO attaches the shared memory segment to the process. This example
assumes the process has a valid shmid, which can be obtained by calling shmget(2).

char *shmptr;

shmptr = (char *) shmat(myshmid, 0, 0);

The following call to shmdtO then detaches the shared memory segment.

shmdt (shmptr);

ERRORS
Shmat will fail and not attach the shared memory segment if one or more of the following are
true:

[EINVAL]

[EACCES]

[ENOMEM]

[EINVAL]

Shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process.

The available data space is not large enough to accommodate the shared memory
segment.

Shmaddr is not zero and the machine does not permit non-zero values or
shmaddr is not equal to the current attach location for the shared memory seg­
ment.

Hewlett-Packard Company - 1 - Version B.l, October 1986

SHMOP(2)

(EMFILEj

HP-UX SHMOP(2)

The number of shared memory segments attached to the calling process would
exceed the system-imposed limit.

Shmdt detaches from the calling process's data segment the shared memory segment located at the
address specified by shmaddr.

Shmdt will fail and return -1 if the following is true.

(EINVAL] Shmdt will fail and not detach the shared memory segment if shmaddr is not the
data segment start address of a shared memory segment.

HARDW ARE DEPENDENCIES
Series 500

Shmaddr must be zero in all cases for shmat. Otherwise, an error is generated. In addi­
tion, SH~ONL Y is not supported, and if it is set in shmftg, an error is generated.

[EINVAL] Shmftg has SHM........RDONL Y set.

Series 200, 300

Shmaddr may be non-zero, and if it is, the segment is attached at the address specified by
one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system. The selected value will vary for each process accessing that
shared memory object.

If shmaddr is not equal to zero and (shmftg & S~D) is "true", the segment is
attached at the address given by (shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmftg & SHM....RND) is "false", the segment is
attached at the address given by shmaddr.

This form of shmat will fail and not attach the shared memory segment if one or more of the fol­
lowing are true:

[EACCESj

[EINVALJ

[EINVALj

[ENOMEM]

Series 800

Shmid is the id of a shared memory segment currently being used by the
system to implement other features (see graphics(7) and iomap(7)).

Shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmftg & SHM......RND) is "false", and the
value of shmaddr is an illegal address.

The calling process is locked (see plock(2)) and there is not sufficient
lockable memory to support the process-related data structure overhead.

Shmat will fail and return -1 if the following is true:

[EINVALj

RETURN VALUES

The calling process is already attached to shmid.

Upon successful completion, the return value is as follows:

Hewlett-Packard Company - 2 - Version B.1, October 1986

SHMOP(2) HP-UX SHMOP(2)

Shmat returns the data segment start address of the attached shared memory segment.

Shmdt returns a value of o.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), shmctl(2), shmget(2), stdipc(3C).

Hewlett-Packard Company - 3 - Version B.l, October 1986

SIGBLOCK(2} HP-UX SIGBLOCK(2}

NAME
sigblock - block signals

SYNOPSIS
long sigblock(mask);
long mask;

DESCRIPTION
Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signal i is blocked if the i-th bit in mask is a 1 (that is, if (mask & (lL
« (i-I))) != 0).

It is not possible to block those signals which cannot be ignored, as documented in signal(2); this
restriction is silently imposed by the system.

Sigsetmask(2) can be used to set the mask absolutely.

EXAMPLES
The following call to sigblock adds the SIGUSR1 and SIGUSR2 signals to the mask of signals
currently blocked for the process:

#define MASK(s) (lL « ((s)-l))

long oldmask;

oldmask = sigblock (MASK (SIGUSR1) I MASK (SIGUSR2));

RETURN VALUE
The previous set of masked signals is returned.

AUTHOR
Sigblock was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
kill(2), sigsetmask(2), sigvector(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SIGNAL(2) HP-UX SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

int (*signal (sig, func» ()
int sig;
int (*func)();

func(sig [, code, scp]
int sig, code;
struct sigcontext *scp;

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is possible to handle the
receipt of a specific signal. Sig specifies the signal and Junc specifies the choice.

Sig can be assigned anyone of the following except SIGKILL or SIGSTOP:

•
t

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR
SIGVTALRM
SIGPROF
SIGIO
SIGWINDOW
SIGSTOP
SIGTSTP
SIGCONT
SIGTTIN
SIGTTOU

01
02
03.
04.-
05.-
06.
07.
08.
09t+%
10.
It.
12*
13
14
15
16
17
18t
19-t
20
21
22t
23t
24t+#
25#
26t%
27#
28#

hangup
interrupt
quit
illegal instruction
trace trap
software generated (sent by abort(3C))
software generated
floating point exception
kill
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user defined signal 1
user defined signal 2
death of a child (see WARNING below)
power fail (see WARNING below)
virtual timer alarm; see getitimer
profiling timer alarm; see getitimer
Asynchronous 10 signal; see select
A window change or mouse signal; see the windowing package
stop
stop signal generated from keyboard
continue after stop
background read attempted from control terminal
background write attempted to control terminal

Indicates that a core dump can be generated .

Indicates that the action on SIG---.DFL is to ignore the signal, rather than ter­
minate the process.

Indicates that the action on SIG---.DFL is to stop rather than terminate the pro­
cess.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SIGNAL (2) HP-UX SIGNAL (2)

•
Indicates that the signal will not be held off by a stopped proces.s.

Indicates that the signal is not reset when it is caught by signal .

Indicates that the signal cannot be ignored.

+ Indicates that the signal cannot be caught.

See below for details.

Func is assigned one of three values: SIG-.DFL, SIG....lGN, or a function address. The actions
prescribed by these values are as follows:

SIG-.DFL - (usually) terminate process upon receipt of a signal.
For those signals not flagged with a dagger (t) or a pound (#) above, upon receipt of
the signal sig, the receiving procE'.8S is to be terminated with all of the consequences
outlined in exit(2). In addition a "core image" will be made in the current working
directory of the receiving process if sig is one for which an asterisk appears in the
above list and the following conditions are met:

The effective user ID and the real group ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the
file must be created, it will have the following properties:

a mode of 0666 modified by the file creation mask, see umask(2)

a file owner ID that is the same as the effective user ID of the
receiving process

a file group ID that is the same as the effective group ID of the
receiving process

SIG-.DFL - (#) stop process upon receipt of a signal.
For those signals flagged with a pound (#) above, upon receipt of the signal sig, the
receiving process is to be stopped. While a process is stopped, any additional signals
(except those marked with a percent (%) above that are processed immediately) that
are sent to the process will be held off until the process is restarted. When the process
is restarted, pending signals will be processed. When a process whose parent is the ini­
tialization process (procl) stops as the result of receiving the SIGTSTP, SIGTTIN, or
SIGTTOU signals, it is sent the SIGKILL signal, which causes the process to ter­
minate.

SIG-.DFL - (t) no action upon receipt of a signal.
For those signals flagged with a dagger (t) above, neither terminate nor stop action is
taken.

SIG....lGN - ignore signal.
The signal sig is to be ignored.

Note: the signals SIGKILL and SIGSTOP cannot be ignored.

function address - catch signal.
Upon receipt of the signal sig, the receiving process is to execute the signal-catching
function pointed to by func. The signal number sig will be passed as the first parame­
ter to the signal-catching function. The HP-UX kernel will also pass two additional
(optional) parameters to signal handler routines. The complete parameter list for func
is:

sig

code

Hewlett-Packard Company

signal number.

a word of information usually provided by the hardware.

- 2 - Version B.l, October 1986

SIGNAL(2}

scp

HP-UX SIGNAL(2}

a pointer to the machine dependent structure sigcontext defined in
the include file signal.h.

Depending on the value of sig, code can be zero and/or scp can be NULL. The mean­
ings of code and scp and the conditions upon which they are other than zero or NULL
are implementation dependent. It is permissible for code to always be zero, and scp to
always be NULL.

The pointer scp will only be valid during the context of the signal handler.

The optional parameters can be omitted from the handler parameter list, in which case
the handler is exactly compatible with System V UNIX.

Truly portable software should not use the optional parameters in signal-catching rou­
tines.

Before entering the signal-catching function, the value of Junc for the caught signal
will be set to SIG-DFL unless the signal is one of those flagged with a bullet (.)
above.

Upon return from the signal-catching function, the receiving process will resume execu­
tion at the point it was interrupted.

When a signal that is to be caught occurs during the execution of calls such as read, a
write, an open, or an ioctl system calIon a slow device (like a terminal; but not a file),
during a pause system call, or during a wait system call that does not return immedi­
ately due to the existence of a previously stopped or zombie process, the signal catch­
ing function will be executed and then the interrupted system call can return a -1 to
the calling process with errno set to EINTR.

Note: The signals SIGKILL and SIGSTOP cannot be caught.

SIGKILL may be sent by the system in the event of an unsuccessful exec, if the original pro­
gram has already been deleted. When signal is called with Junc equal to SIG--.IGN and a signal
sig is pending, the pending signal is cleared.

EXAMPLES
The following call to signal sets up a signal handler for the SIGINT signal:

int myhandlerO;

signal (SIGINT, myhandler);

RETURN VALUE
Upon successful completion, signal returns the previous value of Junc for the specified signal sig.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Signal will fail if one or more of the following are true:

[EINVAL] Sig is an illegal signal number, or is equal to SIGKILL or SIGSTOP.

WARNINGS
Two other signals that behave differently than the signals described above exist in this release of
the system; they are:

SIGCLD
SIGPWR

18t
19-t

death of a child
power fail

There is no guarantee that, in future releases of the HP-UX system, these signals will continue to
behave as described below; they are included only for compatibility with other versions of the
UNIX system. Their use in new programs is strongly discouraged.

Hewlett-Packard Company - 3 - Version B.l, October 1986

SIGNAL(2} HP-UX SIGNAL(2}

For these signals, func is assigned one of three values: SIG-DFL, SIG--.lGN, or a function
address. The actions prescribed by these values are as follows:

SIG-DFL - - ignore signal.
The signal is to be ignored.

SIG--.lGN - - ignore signal.
The signal is to be ignored. Also, if sig is SIGCLD, the calling process's child
processes will not create zombie processes when they terminate, see exit(2).

function address - - catch signal.
If the signal is SIGPWR, the action to be taken is the same as that described above
for func equal to function address. The same is true if the signal is SIGCLD. In
addition, if signal is called to catch SIGCLD in a process that currently has terminated
(zombie) children, a SIGCLD signal is delivered to the process immediately. Thus if
the signal-catching function re-installs itself, the apparent effect is that any SIGCLD
signals received due to the death of children while the function is executing are queued
and the signal-catching function is continually reentered until the queue is empty.
Note that the function must re-install itself after it has called wait(2) or wait9(2).
Otherwise the presence of the child that caused the original signal will cause another
signal immediately, resulting in infinite recursion.

The SI GCLD affects two other system calls (wait (2), and exit (2)) in the following ways:

wait If the func value of SIGCLD is set to SIG--.lGN and a wait is executed, the
wait will block until all of the calling process's child processes terminate; it will
then return a value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the func value of SIGCLD is set to
SIG--.lGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
preceding processes. A process that can be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to be caught.

Some implementations do not generate SIGPWR. For systems without non-volatile memory, it
is not useful. If SIGPWR is generated, it occurs when power is restored and the system has
done all necessary re-initialization. Processes will re-start by responding to SIGPWR.

HARDW ARE DEPENDENCIES
Series 200, 300, 500

The SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, SIGTTOU signals are not supported.

Series 200, Series 300
The signal SIGPWR is not currently generated.

The code word is always zero for all signals except signal 4 (SIGILL) and signal 8
(SIGFPE). For SIGILL, code has the following values:

o illegal instruction;
6 check instruction;
7 TRAPV;
8 privilege violation.

For SIGFPE, code has the following values:

o floating point exception;
5 divide-by-zero.

Hewlett-Packard Company - 4 - Version B.l, October 1986

SIGNAL (2) HP-UX SIGNAL (2)

Refer to the MC68000 processor documentation provided with your system for
more detailed information about the meaning of these errors.

Series 500
The SIGEMT signal means "out of memory," and is generated by the HP-UX Operating
System. When sent by the system, this signal is always fatal to the process, and cannot be
caught or ignored.

SIGIOT can be sent if an invalid string operation is attempted, or if a bounds range check
trap is encountered.

The signal SIGBUS is not currently generated by the operating system.

The signal handler parameter code contains the trap number provided by the hardware in
the event a trap occurs in the user's program; see trapno(2) for a list of these trap numbers.
Otherwise, code will be zero.

The structure pointer scp is -defined when a trap occurs in the user's program, and points to
the structure sigcontext defined in signal.h. If no trap occurs, scp will be NULL.

A zero value is returned on floating point underflow. Floating point overflow, divide-by­
zero, integer divide-by-zero, and illegal floating point operation exceptions result in the sig­
nal SIGFPE being sent to the process. An undefined value is returned as the result of the
operation if the signal SIGFPE is ignored or caught.

SIGFPE is not sent on integer overflow. Instead, a wrapped integer result is returned.

Series 800
The structure pointer scp is always defined.

The code word is always zero for all signals except signal 4 (SIGILL) and signal 8
(SIGFPE). For SIGILL, code has the following values:

8 illegal instruction trap;
9 break instruction trap;

10 privileged operation trap;
11 privileged register trap.

For SIGFPE, code has the following values:
12 overflow trap;
13 conditional trap;
14 assist exception trap;
22 assist emulation trap.

Refer to the Series 800 processor documentation provided with your system for more
detailed information about the meaning of these errors.

Integral PC
The Integral PC implements the signal SIGMOUSE with a value of 20.

AUTHOR
Signal was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), kill(2), lseek(2), pause(2), wait(2), abort(3C), setjmp(3C).

Hewlett-Packard Company - 5 - Version B.1, October 1986

SIGPAUSE(2) HP-UX SIGPAUSE(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
long slgpause(slgmask)
long slgmaskj

DESCRIPTION
Sigpawe blocks signals according to the value of sigmask in the same manner as sigsetmask(2),
then atomically waits for an unmasked signal to arrive. On return sigpawe restores the current
signal mask to the value that existed before the sigpawe call. When no signals are to be blocked,
a value of OL is used for sigmask.

In normal usage, a signal is blocked using sigblock(2). To begin a critical section variables
modified on the occurrence of the signal are examined to determine that there is no work to be
done, and the process pauses, awaiting work by using sigpawe with the mask returned by sig­
block.

EXAMPLES
The following call to sigpawe waits until the calling process receives a signal:

sigpause (OL);

The following example blocks the SIGIO signal until the sigpause is called. When a signal is
received at the sigpause statement, the signal mask is restored to its value before sigpause was
called:

#define MASK(s) (IL « «s)-I))

long savemask;

savemask = sigblock (MASK (SIGIO));

/* critical section * /

sigpause (savemask);

RETURN VALUE
Sigpawe will terminate when it is interrupted by a signal. When sigpawe terminates, it will
return -1 and set ermo to EINTR.

WARNINGS
Check all references to signal(2) for appropriateness on systems that support sigvector(2). Sigvec­
tor(2) can affect the behavior described on this page.

AUTHOR
Sigpawe was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
sigblock(2), sigsetmask(2), sigvector(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

SIGSETMASK (2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
long sigsetmask(mask);
long mask;

DESCRIPTION

HP-UX SIGSETMASK (2)

Sigsetmask sets the current signal mask (those signals which are blocked from delivery). Signal i
is blocked if the i-th bit in mask is a 1 (that is; if (mask & (IL « (i-I))) != 0).

It is not possible to mask those signals which cannot be ignored, as documented in signal(2); this
restriction is silently imposed by the system.

Sigblock(2) can be used to add elements to the set of blocked signals.

EXAMPLES
The following call to sigsetmask causes only the SIGUSRI and SIGUSR2 signals to be blocked:

#define MASK(s) (1 < < ({s)-I))

long oldmask;

oldmask = sigsetmask (MASK (SIGUSRl) I MASK (SIGUSR2));

RETURN VALUE
The previous set of masked signals is returned.

AUTHOR
Sigsetmask was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
kill(2), sigblock(2), sigpause(2), sigvector(2).

Hewlett-Packard Company - 1 - Version B.I, October 1986

SIGSPACE(2) HP-UX SIGSP ACE (2)

NAME
sigspace - assure sufficient signal stack space

SYNOPSIS
#include <signal.h>

long sigspace(ss);
long ss;

DESCRIPTION

NOTES

Sigspace allows users to define additional space for stack use which is guaranteed to be available if
signals are to be processed. If ss is positive, it specifies a space, in bytes, which the system
guarantees will be available when processing a signal. A zero value removes any guarantee of
space and any negative value leaves the guarantee unchanged, and may be used to interrogate the
current guaranteed value. When a signal's action indicates its handler should use the guaranteed
space (specified with a sigvector(2) call), the system checks to see if the process is currently using
that space. If the process is not currently using that space the system arranges for that space to
be available for the duration of the signal handler's execution. If that space has already been made
available (due to a previous signal) no change is made. The normal stack discipline is resumed
when the signal causing the use of the guaranteed space is exited.

The guaranteed space is inherited by child processes after a fork but the guarantee of space is
removed after an exec.

The guaranteed space may not be increased in size automatically, as is done for the normal stack.
If the stack overflows the guaranteed space unpredictable results may occur.

Guaranteeing space for a stack may cause interference with other memory allocation routines, in
an implementation dependent manner.

During normal execution of the program the system checks for possible overflow of the stack.
Guaranteeing space may cause the space available for normal execution to be reduced.

Leaving the context of a service routine in an abnormal way, such as by longjmp on setjmp(3C),
may remove the guarantee that the ordinary execution of the program will not extend into the
guaranteed space. It may also cause the program to forever lose its ability to automatically
increase the stack size, and the program may then be limited to the guaranteed space.

RETURN VALUE
Upon successful completion, a the size of the old guaranteed space is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

ERRORS
Sigspace will fail and the guaranteed amount of space will remain unchanged if one of the follow­
ing occurs.

[ENOMEM] Enough space cannot be guaranteed because of either hardware limitations or
because some software imposed limit would be exceeded.

HARDW ARE DEPENDENCIES
Series 500:

Sigspace is ignored (as a no-op) by Series 500. The return value is always zero.

Series 200, 300:
The guaranteed space is allocated with malloc(3C). This call may thus interfere with other
heap management mechanisms.

The kernel overhead taken in the reserved space is 148 bytes on Series 200 computers and
440 bytes on Series 300. This overhead must be included in the requested amount. These
values are subject to change in future releases.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SIGSPACE(2) HP-UX SIGSPACE(2)

BUGS
Methods for calculating the required size are not yet well developed.

AUTHOR
Sigspace was developed by the Hewlett-Packard Company.

SEE ALSO
sigvector(2), setjmp(3C).

Hewlett-Packard Company - 2 - Version B.l, October 1986

SIGVECTOR (2) HP-UX SIGVECTOR(2)

NAME
sigvector - software signal facilities

SYNOPSIS
#include <signal.h>

sigvector(sig, vec, ovec)
int sig;
struct sigvec ·vec, ·ovecj

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined
in signal(2), along with the meaning and side-effects of each signal. This manual page, along with
those for sigbloek(2) , sigsetmask(2) , sigpause(2), and sigspace(2) define an alternate mechanism
for handling these signals that assures the delivery of signals and integrity of signal handling pro­
cedures. The facilities described here should not be used in the same program as signal(2).

With this interface, signal delivery resembles the occurrence of a hardware interrupt: the signal is
blocked from further occurrence, the current process context is saved, and a new one is built. A
process can specify a handler to which a signal is delivered, or specify that a signal is to be
blocked or ignored. A process can also specify that a default action is to be taken by the system
when a signal occurs. It is possible to assure a minimum amount of stack space for processing sig­
nals using the sigspace(2) call.

All signals have the same priority. Signal routines execute with the signal that caused their invo­
cation blocked, but other signals can yet occur. A global signal mask defines the set of signals
currently blocked from delivery to a process. The signal mask for a process is initialized from that
of its parent (normally 0). It can be changed with a sigblock(2) , sigsetmask(2), or sigpause(2)
call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process, it is delivered to the process. When
a signal is delivered, the current state of the process is saved, a new signal mask is calculated (as
described below), and the signal handler is invoked. The call to the handler is arranged 80 that if
the signal handling routine returns normally, the process will resume execution in the context
from before the signal's delivery. If the process wishes to resume in a different context, it must
arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the duration of the pro­
cess' signal handler (or until a sigblock or sigsetmask call is made). This mask is formed by taking
the current signal mask, adding the signal to be delivered, and or'ing in the signal mask associ­
ated with the handler to be invoked. When the user's signal handler returns normally, the origi­
nal mask is restored.

Sigvector assigns a handler for a specific signal. Vee and ovee are pointers tosigvee structures
that include the following elements:

int {*sv-handler)Oj
long sv~askj
long sv -1lagsj

If vee is non-zero, it specifies a handler routine, a mask to be used when delivering the specified
signal, and a set of flags that can modify the delivery of the signal. If ovec is non-zero, the previ­
ous handling information for the signal is returned to the user. If vee is zero, signal handling is
unchanged: thus, the call can be used to enquire about the current handling of a given signal. If
vee and ovec point to the same structure, the value of vee is read prior to being overwritten.

The sv_flags field can be used to modify the receipt of signals. The following flag bits are
defined:

Hewlett-Packard Company - 1 - Version B.1, October 1986

SIGVECTOR(2)

SV_ONSTACK
SV~SDSIG

HP-UX

Use the sigspace allocated space
Use the Berkeley signal semantics

SIGVECTOR(2)

If SV _ONST ACK is set, then the system will use, or permit the use of, the space reserved for sig­
nal processing in the sigspace(2) system call.

If SV ~SDSIG is set, then the signal will be given the Berkeley semantics. The following signals
are affected by this flag.

SIGCLD In addition to being sent when a child process dies, the signal will also be sent
when any child's status changes from running to stopped. This would normally
be used by a program such as csh when maintaining process groups under Berke­
ley Job Control.

Once a signal handler is installed, it remains installed until another sigvector call is made, or an
exec(2) is performed. The default action for a signal can be reinstated by setting sv_handler to
SIG-DFL; this default is usually termination. If sv_handler is SIG--.lGN the signal is usually
subsequently ignored, and pending instances of the signal are discarded. The exact meaning of
SIG-DFL and SIG--.lGN for each signal is discussed in signal(2). Unlike signal(2) , there is no
category of "reset when caught" signals.

Certain system calls can be interrupted by a signal, the remainder will complete before the signal
is serviced. The scp pointer described in signal(2) is always non-null if sigvector is supported.
Scp points to a machine-dependent sigcontext structure. All implementations of this structure
include the fields:

int sc~yscall;

char sc~yscaILaction;

The value SYS~OTSYSCALL for the sc_syscall field indicates that the signal is not interrupt­
ing a system call; any other value indicates which system call it is interrupting. If a signal that is
being caught occurs during one of the interruptable calls, the signal handler is immediately
invoked. If the signal handler is exited in a normal way, the value of the sc_syscalLaction field
is inspected; if it is SIG-RETURN the system call is aborted and the interrupted program contin­
ues past the call with the result of the interrupted call being -1 and errno set to EINTR. If the
value of the sc_syscalLaction field is SIG-RESTART, the call is restarted. A call is restarted if,
in the case of a read or write, it had transferred no data. If some data had been transferred, the
operation is considered to have completed with a partial transfer, and the sc_syscall value is
SYS----.NOTSYSCALL. Other values are undefined and reserved for future use.

Exiting the handler abnormally (such as with longjmp on set}mp{3C)) will abort the call, and the
user is responsible for the context of further execution. The value of scp->sc_syscaILaction is
ignored when the value of scp->sc_syscall is SYS~OTSYSCALL. Scp->sc_syscaILaction is
always initialized to SIG-RETURN before invocation of a signal handler. When an interruptable
call is interrupted by multiple signals, if any signal handler returns a value of SIG-RETURN in
scp->sc_syscaILaction, all subsequent signal handlers are passed a value of
SYS~OTSYSCALL in scp->sc_syscall.

Hewlett-Packard Company - 2 - Version B.1, October 1986

SIGVECTOR(2) HP-UX SIGVECTOR(2)

NOTES

The interruptable system calls, and corresponding values for sep->se_syseall are listed below.

Call

read (slow devices)
readv (slow devices)
write (slow devices)
writev (slow devices)
open (slow devices)
ioctl (slow requests)
wait
select
pause
sigpause
semop
msgsnd
msgrcv

sL....8yscall value

SYS-READ
SYS-READV
SYS_WRITE
SYS_WRITEV
SYS_OPEN
SYS-IOCTL
SYS_WAIT
SYS-SELECT
SYSJAUSE
SYS_SIGPAUSE
SYS_SEMOP
SYS-.MSGSND
SYS-.MSGRCV

Note that read, write or ioetl on fast devices (disks) is not interruptable, but 10 to a slow device
(teletype) is. Additional system calls, for example those used for networking, can also be inter­
ruptable on some implementations. In these cases additional values can be specified for sep­
>se_syseall. Programs that look at the values of sep->se_syseallshould always compare them to
these symbolic constants; the numerical values represented by these constants may vary among
implementations.

After a /ork(2) or v/ork(2) the child inherits all signals, the signal mask, and the reserved signal
stack space.

Exee(2) resets all caught signals to the default action, ignored signals remain ignored, the signal
mask remains the same, and the reserved signal stack space is released.

The mask specified in vee is not allowed to block those signals that cannot be ignored, as defined
in signal(2). This is enforced silently by the system.

If sigveetor is called to catch SIGCLD in a process that currently has terminated (zombie) chil­
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is
unblocked if it is currently blocked. Thus, in a process that spawns multiple children and catches
SIGCLD, it is sometimes advisable to re-install the handler for SIGCLD after each invocation in
case there are multiple zombies present. This is true even though the handling of the signal is not
reset by the system as with signal(2), because deaths of multiple processes while SIGCLD is
blocked in the handler will only result in delivery of a single signal. Note that the function must
re-install itself after it has called wait(2) or wait9(2). Otherwise the presence of the child that
caused the original signal will always cause another signal to be delivered.

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value indicates an error occurred and
errno is set to indicate the reason.

ERRORS
Bigveetor will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT]

[EINVAL]

Either vee or ovec points to memory that is not a valid part of the process ad­
dress space. The reliable detection of this error will be implementation depen­
dent.

Big is not a valid signal number.

Hewlett-Packard Company - 3 - Version B.l, October 1986

SIGVECTOR(2) HP-UX SIGVECTOR(2)

[EINVAL] An attempt is made to ignore or supply a handler for a signal that cannot be
caught or ignored, see signal(2).

WARNINGS
Restarting a select(2) call can sometimes cause unexpected results. If the select call has a timeout
specified, the timeout is restarted with the call, ignoring any portion that had elapsed prior to
interruption by the signal. Normally this simply extends the timeout and is not a problem. How­
ever, if a handler repeatedly catches signals and the timeout specified to select is longer than the
time between those signals, restarting the select call effectively renders the timeout infinite.

HARDW ARE DEPENDENCIES
Integral PC

Interruptible and restart able kernel calls are not supported. SELECT, READY, and WRI­
TEV are not supported.

Series 200, 300, 500
The SV ~SDSIG flag is not supported.

AUTHOR
Sigvector was developed by HP, and the University of California, Berkeley.

SEE ALSO
kill(l), kill(2), ptrace(2), sigblock(2), signal (2) , sigpause(2), sigsetmask(2), sigspace(2),
setjmp(3C), termio(7).

Hewlett-Packard Company - 4 - Version B.1, October 1986

STAT(2) HP-UX STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#inciude <sys/types.h>
#inciude <sys/stat.h>

int stat (path, but)
char *pathj
strud stat *bufj

int fstat (fildes, but)
int ftIdesj
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permission of the named file is
not required, but all directories listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by the file descriptor fildes, obtained
from a successful open, creat, dup, fcntl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure pointed to by buf include the following members:

dev_t st_devj /* ID of device containing a * /
/* directory entry for this file * /

ino_t st-inOj /* Inode number * /
ushort st-IIlodej /* File modej see mknod(2) * /
short st--I1linkj /* Number of links * /
ushort st_uidj /* User ID of file owner * /
ushort st~dj /* Group ID of file group * /
dev_t st--.-rdevj /* Device IDj this entry defined * /

/* only for char or blk spec files * /
oLt st---Bizej /* File size (bytes) * /
time_t st_atimej /* Time of last access * /
time_t st-IIltimej /* Last modification time * /
time_t st_ctimej /* Last file status change time * /

/* Measured in secs since * /
/* 00:00:00 GMT, Jan 1,1970 */

uint st--.-remote:lj/* Set if file is remote * /
dev_t sL . .netdevj /* ID of device containing * /

/* network special file * /
ino_t sL . .netinoj /* Inode number of network special file * /

sL...atime Time when file data was last accessed. Changed by the following system calls:
creat(2), mknod(2), pipe(2), read(2), readv (on read(2)), and utime(2).

sL . .mtime
Time when data was last modified. Changed by the following system calls: creat(2),
truncate(2), ftruncate (on truncate(2)), mknod(2) , pipe(2), prealloc(2), utime(2),
write(2), and writev (on write (2)). Changed also by close(2) when the file is a named
pipe (FIFO special) and the reference counts are zero.

st_dime Time when file status was last changed. Changed by the following system calls:
chmod(2) , chown(2), creat(2), fchmod(2), fchown(2), truncate(2), /truncate (on trun­
cate(2)), link (2) , mknod(2) , pipe(2), prealloc(2), unlink(2) , utime(2), write (2), and

Hewlett-Packard Company - 1 - Version B.l, October 1986

STAT(2) HP-UX STAT(2)

writev (on write (2)).

st~emote

A zero value indicates that the file is on the local node; non-zero indicates that the file
is on a remote node, and accessed through remote file access (RFA). Not all HP-UX
systems support RF A; sLremote is always zero on those systems which do not.

st--.-netdev, st--.-netino
All remote file access takes place through a special file in the local file system known as
a network special file. Each network special file identifies a particular remote node.
When sLremote is non-zero, sLnetdev and sLnetino identify the appropriate net­
work special file; otherwise these fields are zero.

The touch(1) command can be used to explicitly control the times of a file.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Stat will fail if one or more of the following are true:

[ENOTDlR]

[ENOENT]

[EACCES]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist (for example, path is null or a component of path
does not exist).

Search permission is denied for a component of the path prefix.

But or path points to an invalid address. The reliable detection of this error will
be implementation dependent.

Fstat will fail if one or more of the following are true:

[EBADF]

[EFAULT]

Fildes is not a valid open file descriptor.

But points to an invalid address. The reliable detection of this error will be
implementation dependent.

HARDW ARE DEPENDENCIES
Series 500

SEE ALSO

Besides the definition given above. st-Bize also has meaning in the case of special files
which refer to disks. In such a case, st-Bize either returns the total physical size (in bytes)
of the mass storage volume, when appropriate, or -1 otherwise. This is a property of the
physical device, not any directory structure imposed upon it.

The fields st-Iletdev and st-Iletino are not supported.

touch(1). chmod(2). chown(2). creat(2). link(2). mknod(2). pipe(2). read(2). time(2}. truncate(2}.
unlink(2), utime(2), write(2). stat(5).

Hewlett-Packard Company - 2 - Version B.l. October 1986

STIME(2)

NAME
stime - set time and date

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

HP-UX STIME(2)

Stime sets the system's idea of the time and date. Tp points to the value of time as measured in
seconds from 00:00:00 GMT January 1, 1970.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] Stime will fail if the effective user ID of the calling process is not super-user.

HARDW ARE DEPENDENCIES
Integral PC

Normal users have all super-user capabilities.

SEE ALSO
date(1), gettimeofday(2), time(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

STTY(2) HP-UX STTY(2)

NAME
stty, gtty - control device

SYNOPSIS
#include <sgtty.h>

stty (flldes,argp)
int flldes;
struct sgttyb *argp;

gtty(flldes,argp)
int flldes;
struct sgttyb *argp;

REMARKS
These system calls are preserved for backward compatibility with Bell Version 6. They provide as
close an approximation as possible to the old Version 6 functions. All new code should use the
TCSETA/TCGETA ioctl calls described in termio(7).

DESCRIPTION
For certain status setting and status inquiries about terminal devices, the functions stty and gtty
are equivalent to

ioct1{fildes, TIOCSETP, argp)
ioct1{fildes, TIOCGETP, argp)

respectively; see sttyV6(7) and termio(7).

RETURNS
Zero is returned if the call was successful; -1 if the file descriptor does not refer to the kind of file
for which it was intended.

SEE ALSO
stty{l), exec(2), tty(7), sttyV6(7), termio(7).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SWAPON[HFS] (2)

NAME

HP-UX
Series 200, 300, 800 Only

8wapon - add a swap device for interieaved pagingiswapping

SYNOPSIS
swapon (special)
char *specialj

DESCRIPTION

SWAPON[HFS] (2)

Swapon makes the block device special available to the system for allocation for paging and swap­
ping. The names of potentially available devices are known to the system and defined at system
configuration time. See the System Administrator's Manual for information on how the size of the
swap area is calculated.

Swapon may be invoked only by the super-user.

RETURNS
Swapon will fail if one or more of the following are true:

[ENOTBLKj Special is not the name of a block special file.

[ENXIOj The device associated with special could not be opened.

[EBUSYj

[ENODEVj

[EPERMj

WARNINGS

The device associated with special is already in use.

The device associated with special does not exist.

The effective user ID is not super-user.

There is no way to stop swapping on a disk so that the pack may be dismounted.

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

AUTHOR
Swap on was developed by the University of California, Berkeley.

SEE ALSO
swapon(lM).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SYNC(2) HP-UX SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out. This includes
modified super blocks, modified inodes, and delayed block I/O.

It should be used by programs which examine a file system, for example /sck, d/, etc. It is man­
datory before a shutdown.

The writing, although scheduled, is not necessarily complete upon return from sync.

In some HP-UX systems, sync may be reduced to a no-op. This is permissible on a system which
does not cache buffers, or in a system that in some way ensures that the disks are always in a con­
sistent state.

SEE ALSO
sync(IM).

Hewlett-Packard Company - 1 - Version B.l, October 1986

TIME(2) HP-UX TIME(2)

NAME
time - get time

SYNOPSIS
long time ((long *) 0)

long time (tloc)
long *tlocj

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tloe (taken as an integer) is non-zero, the return value is also stored in the location to which
tloe points.

ERRORS
[EFAULT]

RETURN VALUE

Time will fail if tloe points to an illegal address. The reliable detection of this
error will be implementation dependent.

Upon successful completion, time returns the value of time. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
date(I), gettimeofday(2), stime(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

TIMES (2) HP-UX TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#lnclude <sys/types.h>
#include <sys/param.h>
#lnclude <sys/tlmes.h>

long times (buffer)
struct tms * buffer j

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information. The structure
defined in sys/tlmes.h is as follows:

struct tms {

}j

time_t tms_utime;
time_t tms-Btimej
time_t tIruLcutimej
time_t tms_cstime;

/* user time * /
/* system time * /
/* user time, children * /
/* system time, children * /

This information comes from the calling process and each of its terminated child processes for
which it has executed a wait. The times are in units of 11HZ seconds, where HZ is processor
dependent (see <sys/param.h».

Tms_utime is the CPU time used while executing instructions in the user space of the calling pro­
cess.

Tms-stime is the CPU time used by the system on behalf of the calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

ERRORS
[EFAULT] Times will fail if buffer points to an illegal address. The reliable detection of this

error will be implementation dependent.

HARDW ARE DEPENDENCIES
Series 500:

For computers with multiple CPU's, the child CPU times listed can be greater than the
actual elapsed real time, since the CPU time is counted on a per-CPU basis. Thus, if all
three CPUs are executing, the CPU time is the sum of the three execution times of the
CPUs.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in units of 11HZ of a second, since
an arbitrary point in the past (e.g., system start-up time). This point does not change from one
invocation of times to another. If times fails, a -1 is returned and ermo is set to indicate the
error.

SEE ALSO

BUGS

time(l), gettimeofday(2), exec(2), fork(2), time(2), wait(2).

Not all CPU time expended by system processes on behalf of a user process is counted in the sys­
tem CPU time for that process.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TRAPNO(2) TRAPNO(2)
Series 500 Only

NAME
trapno - hardware trap numbers

Remarks:
The following description of hardware trap numbers is valid for the Series 500 only.

DESCRIPTION
The following trap numbers refer to hardware traps occurring on the HP 9000 Series 500 comput­
ers. Trapno values are reported by the err{l} command, and are passed to signal handlers (see
signal{2)} when hardware traps cause signals to be sent to the current process.

The trapno value, trap name, and description are listed below for each possible trap condition.
By convention, trap numbers are shown in octal.

VALUE

01

02
03
04
05
06
07
010
011

012

013

014
015

016

017
020

021
022
023

024

025

026

Hewlett-Packard Company

NAME: DESCRIPTION

Bounds Violation: An address is outside the limits for the program,
stack, or global data segments. [2]
Check Trap: A user value is outside a prescribed range. [1]
Breakpoint Trap: Debugging trap. [1]
Machine Instruction Trap: Used by the operating system.
String Trap: Illegal string operation or data. [2]
Unused.
Unused.
Reset: Used by the operating system.
Page Table Violation: The page table entry referenced is beyond the
current length of the page table. [2]
Inconsistent Registers: An attempt was made to set up an inconsistent
set of registers describing the global data segment, stack segment, or
program segment. [2]
External Data Segment Bounds Violation: An address is outside the
limits of an external data segment. [2]
System Error: Used by the operating system.
External Data Segment Pointer Violation: Illegal data segment
pointer; probably a pointer between 0 and 524287 decimal. [2]
Pointer Conversion Violation: An attempt was made to form a data
segment pointer with an offset which is too large for the type of
pointer being used. [2]
External Program Pointer Violation: Illegal procedure pointer. [2]
Unimplemented Instruction: Attempt to execute an undefined instruc­
tion. [1]
STT Violation: Illegal procedure pointer. [2]
CST Violation: Illegal procedure pointer. [2]
DST Violation: megal segment number in an external data segment
pointer. [21
Stack Overflow: The operating system normally handles this trap by
extending the stack segment.
Stack Underflow: An attempt to pop a word from the local stack when
the local stack is empty. [2]
Privileged Mode Violation: An attempt to execute a privileged
instruction or return to a privileged procedure while in unprivileged
mode. [21

- 1 - October 1986

TRAPNO(2)

027

030

031
032

033

034

035

036

037
040
041

042
043
044
045
046
047
050
051
052
053
054
055

056
057

060
061
062
063
064

TRAPNO(2)
Series 500 Only

Privileged Mode Data Violation: An attempt to reference a privileged
data segment while in unprivileged mode. [2]
Unexpected Pointer Type: An instruction has encountered a pointer
type which it cannot handle. [2]
User Traps: Integer divide by zero. [1]
Illegal Decimal Number: A decimal math instruction has been sup­
plied an illegal operand. [2]
Exponent Size Trap: Exponent too large during a number conversion
instruction. [2]
Floating Point Operand Trap: Attempt to operate on illegal numbers,
divide by zero, or convert a 64-bit number to a 32-bit number which
cannot accommodate the exponent. [1]
Floating Point Result Trap: Floating point overflow; also caused by
an explicit request to trap on an inexact result. [I]
Unexpected External Data Segment Type: A paged external data seg­
ment was encountered when an unpaged segment was expected, or
vice versa. [2]
Absent Code Segment: Handled by the operating system.
Absent Page: Handled by the operating system.
Uncallable PPOcedure: Attempt to call an uncallable privileged pro­
cedure while in unprivileged mode. [2]
Absent Data Segment: Handled by the operating system.
Absent Page Table: Handled by the operating system.
Start-of-Line: Debugging trap. [1]
Variable Trace: Debugging trap. [1]
Start-of-Procedure: Debugging trap. [I]
End-of-Procedure: Debugging trap. [I]
Start-of-Subroutine: Debugging trap. [1]
End-of-Subroutine: Debugging trap. [1]
Code Segment Violation: Attempt to modify a code segment. [2]
Branch Violation: Illegal branch instruction. [2]
Message Trap: Used internally by the operating system.
Instruction Sequencing Bounds Violation: Program destination is out
of bounds; probably a stack marker has been incorrectly modified.
Start-of-Line-Check Trap: Debugging trap. [1]
Data Segment Write Violation: Attempt to modify a write-protected
data segment. [2]
System semaphore trap on up; relative pointer. [I]
System semaphore trap on up; absolute pointer. [1]
System semaphore trap on down; relative pointer. [1]
System semaphore trap on down; absolute pointer. [1]
Invalid internal math transformation. [1]

The footnotes are as follows:

[1]: If the program returns from the trap (signal) handler, execution will resume with the
next instruction.

[2J: If the program returns from the trap (signal) handler. execution will resume at the
current instruction.

SEE ALSO
err(I). signal(2).

Hewlett-Packard Company - 2 - October 1986

TRAP NO (2) TRAPNO(2)
Series 500 Only

WARNING
Trapno is intended for diagnostic purposes only. Values and meanings may change in future
releases of HP-UX.

Hewlett-Packard Company - 3 - October 1986

TRUNCATE (2) HP-UX TRUNCATE (2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
unsigned long length;

ftruncate(fd, length)
lni fd;
unsigned long length;

DESCRIPTION
Truncate causes the file named by path or referenced by /d to be truncated to at most length bytes
in size. If the file previously was larger than this size, the extra data is lost. With /truncate, the
file must be open for writing; for truncate the user must have write permission for the file.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global vari­
able errno specifies the error.

ERRORS
Truncate succeeds unless:

[ENOENTj

[ENOTDIRj

[ENOENTj

[EACCESj

[EACCESj

[EISDIRj

[EROFSj

[ETXTBSYj

[EFAULTj

The pathname was too long.

A component of the path prefix of path is not a directory.

A component of the path name is too long.

A component of the path prefix denies search permission.

Write permission is denied on the file.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

Path points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

[ENAMETOOLONGj
The path name exceeds MAXP ATHLEN characters.

Ftruncate succeeds unless:

[EBADFj

[EINVALj

AUTHOR

The /d is not a valid descriptor.

The /d references a file that was opened without write permission.

Truncate was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
open(2).

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

Hewlett-Packard Company - 1 - Version B.1, October 1986

ULIMIT(2) HP-UX ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimitj

DESCRIPTION
This function provides for control over process limits. The cmd values available are:

1 Get the file size limit of the process. The limit is in units of 512-byte blocks and is inherited
by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process may decrease this
limit, but only a process with an effective user ID of super-user may increase the limit. Note
that the limit must be specified in units of 512-byte blocks.

3 Get the maximum possible break value. See brk(2). Depending on system resources such as
swap space, this maximum may not be attainable at a given time.

ERRORS
Ulimit will fail if one or more of the following conditions is true.

[EINVALJ

[EPERMJ

RETURN VALUE

cmd is not in the correct range.

Ulimit will fail and the limit will be unchanged if a process with an effective user
ID other than super-user attempts to increase its file size limit.

Upon successful completion, a non-negative value is returned. Errors return a -1, with errno set
appropriately.

SEE ALSO
brk(2), write(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

UMASK(2)

NAME
umask ~ set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

HP-UX UMASK(2)

Umask sets the process's file mode creation mask to cmask and returns the previous value of the
mask. Only the low-order 9 bits of cmask and the file mode creation mask are used.

The bits that are set in cmask specify which permission bits to tum off in the mode of the created
file. For example, suppose a value of 007 is specified for cmask. Then, if a file is normally created
with permissions of 0777, its mode after creation would be 0770.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir{I), mknod{IM), sh{I), chmod(2), creat(2), mknod(2), open(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

UMOUNT(2) HP-UX UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *specj

DESCRIPTION
Umount requests that a previously mounted file system contained on the block special device
identified by spec be unmounted. Spec is a pointer to a path name. After unmounting the file
system, the directory upon which the file system was mounted reverts to its ordinary interpreta­
tion.

Umount may be invoked only by the super-user.

ERRORS
Umount will fail if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOTBLK]

[EINVAL]

[EBUSY]

[EFAULT]

[ENXIO]

[ENOTDIR]

[ENOENT]

The process's effective user ID is not super-user.

Spec does not exist.

Spec is not a block special device.

Spec is not mounted.

A file on spec is busy.

Spec points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

The device associated with spec does not exist.

A component of spec is not a directory.

Spec is null.

[ENAMETOOLONG]
Spec exceeds MAXP A THLEN characters.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDW ARE DEPENDENCIES
Integral Personal Computer:

For superuser capabilities described above, it is not necessary to be superuser.

SEE ALSO

BUGS

mount(lM), mount(2).

If umount is called from the program level (i.e. not from the mount(lM) level), the table of
mounted devices contained in fetcfmnttab is not updated.

Hewlett-Packard Company - 1 - Version B.1, October 1986

UNAME(2) HP-UX UNAME(2)

NAME
uname - get name of current HP -UX system

SYNOPSIS
#lnclude <sys/utsname.h>

lnt uname (name)
struct utsname * name;

DESCRIPTION
Uname stores information identifying the current HP-UX system in the structure pointed to by
name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

#define UTSLEN
#define SNLEN

char
char
char
char
char
char

9
15

sysname[UTSLENl j
nodename[UTSLENlj
release [UTSLENl j
version[UTSLENlj
machine[UTSLENlj
idnumber[SNLENl j

Uname returns a null-terminated string in each field. Sysname contains HHP_UX". Similarly,
nodename contains the name that the system is known by on a communications network and is
accessible via hostname(I), sethostname(2), and gethostname(2). Release contains the release
number of the operating system, e.g. "1.0" or "3.0.1". Version contains additional information
about the operating system. The first character of the version field is set to H A" for single user
systems, "B" for 16-user systems, "C" for 32-user systems, and "D" for 64-user systems. (Note
that the contents of the version field may change on future releases as AT&T license agreement
restrictions change.) Machine contains a standard name that identifies the hardware on which the
idnumber contains an identification number which is unique within that class of hardware, possi­
bly a hardware or software serial number. This field may return the null string to indicate the
lack of an identification number.

ERRORS
[EFAULT]

RETURN VALUE

Uname will fail if name points to an invalid address. The reliable detection of
this error will be implementation dependent.

Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

AUTHOR
Uname was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
hostname(I), uname(I), gethostname(2), sethostname(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

UNLINK (2) HP-UX UNLINK (2)

NAME
unlink - remove directory entry; delete file

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to by path.

ERRORS
The named file is unlinked unless one or more of the following are true:

[ENOTDIRj A component of the path prefix is not a directory.

[ENOENT!

[EACCESj

[EACCESj

[EPERMj

[EBUSYj

[ETXTBSYj

[EROFSj

[EFAULTj

The named file does not exist (for example, path is null or a component of path
does not exist).

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be removed.

The named file is a directory and the effective user ID of the process is not
super-user.

The entry to be unlinked is the mount point for a mounted file system.

The entry to be unlinked is the last link to a pure procedure (shared text) file
that is being executed.

The directory entry to be unlinked is part of a read-only file system.

Path points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

[ENAMETOOLONGj
The named file exceeds MAXP A THLEN characters.

When all links to a file have been removed and no process has the file open, the space occupied by
the file is freed and the file ceases to exist. If one or more processes have the file open when the
last link is removed, the removal is postponed until all references to the file have been closed.

HARDW ARE DEPENDENCIES
Series 500

The last link to a directory cannot be unlinked if the directory is not empty.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
rm(I), close(2), link(2), open(2).

Hewlett-Packard Company - 1 - Version B.I, October 1986

USTAT(2) HP-UX USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (deY, buf)
dey_t dey;
struct ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device number identifying a dev­
ice containing a mounted file system. But is a pointer to a ustat structure (defined in ustat.h)
that includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free in odes */
char f~name[61; /* Filsys name */
char f~pack[61; /* Filsys pack name */
int f_blksize; / * Block size * /

ERRORS
Ustat will fail if one or more of the following are true:

[EINVAL] Dev is not the device number of a device containing a mounted file system.

[EFAULT] But points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

HARDW ARE DEPENDENCIES
Series 200, 300:

f_tfree and f_blksize are reported in fragment size units.

Series 500:
In the above structure,f~name[61 is the driver name, not the file system name.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
erTna is set to indicate the error.

AUTHOR
Ustat was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
touch(I), stat(2), fs(4).

Hewlett-Packard Company - 1 - Version B.I, October 1986

UTIME(2) HP-UX UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <unistd.h>

int utime (path, times)
char *pathj
struct utimbuf *timesj

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification times of the
named file.

If times is NULL, the access and modification times of the file are set to the current time. A pro­
cess must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbu/ structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of
the file or the super-user may use utime this way.

The times in the following structure, found in unistd.h, are measured in seconds since 00:00:00
GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; / * access time * /
time_t modtime; /* modification time */

};

ERRORS
Utime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[EFAULT]

Search permission is denied by a component of the path prefix.

The effective user ID is not super-user and not the owner of the file and times is
not NULL.

The effective user ID is not super-user and not the owner of the file and times is
NULL and write access is denied.

The file system containing the file is mounted read-only.

Times is not NULL and points outside the process's allocated address space.
The reliable detection of this error will be implementation dependent.

Path points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

[ENAMETOOLONG]
The named file exceeds MAXP A THLEN characters.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDW ARE DEPENDENCIES
Integral Personal Computer:

For superuser capabilities described above, it is not necessary to be superuser.

Hewlett-Packard Company - 1 - Version B.1, October 1986

UTIME(2) HP-UX UTIME(2)

SEE ALSO
touch{l), stat(2).

Hewlett-Packard Company - 2 - Version B.l, October 1986

VFORK(2) HP-UX VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
lnt vfork{)

REMARKS
Vfork is provided as a higher performance version of fork on those systems which choose to pro­
vide it and for which there is a performance advantage.

Vfork differs from fork only in that the child process may share code and data with the calling
process (parent process). This speeds the cloning activity significantly at a risk to the integrity of
the parent process if vfork is misused.

The use of vfork for any purpose except as a prelude to an immediate exec or exit is not sup­
ported. Any program which relies upon the differences between fork and vfork is not portable
across HP-UX systems.

All implementations of HP-UX must provide the entry vfork, but it is permissible for them to treat
it identically to fork. Some implementations may not choose to distinguish the two because their
implementation of fork is as efficient as possible, and others may not wish to carry the added
overhead of two similar calls.

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old pro­
cess. If a forked process is simply going to do an exec(2), the data space copied from the parent
to the child by fork(2) is not used. This is particularly inefficient in a paged environment. Vfork
is useful in this case. Depending upon the size of the parent's data space, it can give a significant
performance improvement over fork.

Vfork differs from fork in that the child borrows the parent's memory and thread of control until
a call to exec or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns 0 in the child's context and (later) the pid ofthe child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the child's context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather than
exit if you cannot exec, since exit will flush and close standard I/O channels, and thereby mess up
the parent process's standard I/O data structures. (Even with fork it is wrong to call exit since
buffered data would then be flushed twice.)

The [vfork,exec] window begins at the vfork call and ends when the child completes its exec call.

RETURN VALUE
Upon successful completion, vfork returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent,
no child process is created, and errno is set to indicate the error.

ERRORS
Vfork will fail and no child process will be created if one or more of the following are true:

[EAGAINJ

[EAGAINJ

The system-wide limit on the total number of processes under execution would
be exceeded.

The system-imposed limit on the total number of processes under execution by a
single user would be exceeded.

HARDW ARE DEPENDENCIES
Series 200, 300, 800

A call to signal(2) in the [vfork,exec] window which is used to catch a signal can affect

Hewlett-Packard Company - 1 - Version B.l, October 1986

VFORK(2) HP-UX VFORK(2)

handling of the signal by the parent. This is not true if the signal is set SIG---.DFL or
SIG-1GN, or if sigvector(2} is used.

Series 500
Shared memory segments generated with the EMS intrinsics will be inherited over vfork.
Private memory segments will not be copied over vfork.

Vfork will also fail in the following cases:

[ENOMEM] There is not enough physical memory to create the new process.

[EAGAIN) The child process attempts to do a second vfork or a fork while in the
[vfork,exec] window.

The parent and child processes share the same stack space within the [vfork,exec] window.
If the size of the stack has been changed within this window by the child process (return
from or call to a function, for example), it is likely that the parent and child processes will
be killed with signal SIGSEGV.

Series 500, 800
Process times for the parent and child processes within the [vfork,exec] window may be inac­
curate.

Series 800
The parent and child processes share the same stack space within the [vfork,exec] window.
If the size of the stack has been changed within this window by the child process (return
from or call to a function, for example), it is likely that the parent and child processes will
be killed with signal SIGSEGV or SIGBUS.

Integral PC

AUTHOR

Vforked children have a unique 2K-byte stack allocated to them. Any stack space used
beyond this 2K limit is shared between the child and the parent. Vfork does not work with
shared text programs. Also, to access vfork on the Integral PC, one must link in
/usr/lib/librt.a with the program at compile or load time.

Vfork was developed by the University of California, Berkeley.

SEE ALSO
exec(2), exit(2}, fork(2}, wait(2}.

Hewlett-Packard Company - 2 - Version B.l, October 1986

VSADV(2)

NAME

HP-UX
Series 500 Only

vsadv - advise system about backing store usage

SYNOPSIS
#include <sys/ems.h>

vsadv (index);
int index;

DESCRIPTION

VSADV(2)

This call requests that all future backing store space allocated for this process be placed on the
backing store device specified by index (see vson(2)). It may be used to tune an application to
the local system environment. This request remains in effect until the next call to vsadv by this
process. An index of -1 will set backing store allocation back to the default system policy.

This call is advisory in nature and will never cause subsequent program failures (e.g. if the device
has no room, the system will simply override the request and use another device).

This characteristic is inherited across fork(2) and exec(2).

This call may be reduced to a no-op.

HARDW ARE DEPENDENCIES
Implemented on Series 500 only.

AUTHOR
Vsadv was developed by the Hewlett-Packard Company.

SEE ALSO
ems(2), vson(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

VSON(2) HP-UX
Series 500 Only

VSON(2)

NAME
vson, vsoff - advise OS about backing store devices

SYNOPSIS
#include <sys/ems.h>

int vson(pathname, size, q)j
int size, qj
char *pathnamej

int vsoff(index, force)j
int index, forcej

DESCRIPTION
Vson is used to make the block special file pathname available for use by the system as a backing
store device for whatever form of backing store is needed by the system. The call returns an id by
which the backing store device may be referenced in subsequent vsoff or vsadv(2) calls. Multiple
vson calls for the same device will return the same id (here "same device" means identical devno -
major and minor - and not necessarily the same file name).

Pathname specifies a block special device file, which mayor may not contain a mounted file sys­
tem, and which must be a CS-80 device. If device does not contain a file system (Le. an "empty"
disk), size specifies the available backing storage space (in blocks) to be made available (the
storage space is assumed to start at block 0 in this case). If size is set to -1 and the device does
not contain a file system, the whole block special device will be used for backing store.

Q is a quality (Le. performance) factor for the device. It is used by the system in load balancing
decisions. Higher values suggest secondary choices for backing store devices. There is no inherent
significance to the value of q other than its value relative to the q factor of the other devices in the
list. This parameter may be ignored on some implementations.

Vsoff is used to remove a device from the list of backing store devices available to the system.
Index is the value returned by vson when the device was added to the list.

If force is not set (Le. is 0) the system attempts to "gracefully" eliminate backing store usage of
device by migrating backing store space onto other devices. If force is set (if, for instance, the
device has failed) no attempt is made to salvage images stored on the disk. Processes with images
on the device will, in all probability, be rather ungracefully terminated in the near future (i.e.
when the images are required).

Only the super-user may add or remove backing store devices. A normal user may call vson to
get the id for a device already known to the system as a backing store device (for subsequent use
in a vsadv(2) call).

RETURN VALUES
Upon successful completion, vson returns the index for the device and vsoff returns O. If there is
an error, a value of -1 is returned and errno is set to indicate the error.

AUTHOR
Vson was developed by the Hewlett-Packard Company.

SEE ALSO
ems(2), memallc(2), swapon(2), vsadv(2)

Hewlett-Packard Company - 1 - Version B.1, October 1986

WAIT(2) HP-UX WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat-Ioc)
int *stat-Ioc;

int wait «int *)0)

#include <sys/wait.h>
int walt3 (stat-Ioc, options, (int *)0)
int *stat-Ioc;
int options;

DESCRIPTION
Wait suspends the calling process until one of the immediate children terminates or until a child
that is being traced stops, because it has hit a break point. The wait system call will return
prematurely if a signal is received. If a child process stopped or terminated prior to the calIon
wait, return is immediate.

If staLloc (taken as an integer) is non-zero, 16 bits of information called status are stored in the
low order 16 bits of the location pointed to by staLloc. Status can be used to differentiate
between stopped and terminated child processes. If the child process is terminated, status
identifies the cause of termination and passes useful information to the parent. This is accom­
plished in the following manner:

If the child process stopped, the high order 8 bits of status will contain the number of the
signal that caused the process to stop and the low order 8 bits will be set equal to 0177.

If the child process t~rminated due to an exit or _exit call, the low order 8 bits of status
will be zero and the high order 8 bits will contain the low order 8 bits of the argument
that the child process passed to exit; see en·t(2).

If the child process terminated due to a signal, the high order 8 bits of status will be zero
and the low order 8 bits will contain the number of the signal that caused the termina­
tion. In addition, if the low order seventh bit (i.e., bit 02(0) is set, a "core image" will
have been produced; see signal(2).

If the wait9 variant is used, then there are two options available for modifying the behavior of the
system call. They may be combined by oring them together. The first is WNOHANG which
prevents wait9 from suspending the calling process even if there are children to wait for. In this
case, a value of zero is returned indicating there are no children which have stopped or died. If
the second option WUNTRACED is set, then in addition to traced children which are stopped,
wait9 will also return information when children of the current process are stopped but not traced
(with ptrace(2)) because they received a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal.

The third parameter to wait9 is currently unused and must always be a null pointer.

If a parent process terminates without waiting for its child processes to terminate, the parent pro­
cess ID of each child process is set to 1. This means the initialization process inherits the child
processes.

ERRORS
Wait will fail if one or more of the following are true:

[ECHILD]

[EFAULT]

The calling process has no existing unwaited-for child processes. In this case,
wait returns immediately.

StaLloc points to an illegal address. The reliable detection of this error will be
implementation dependent.

Hewlett-Packard Company - 1 - Version B.1, October 1986

WAIT(2) HP-UX WAIT(2)

[EINVAL] WaitS was passed a non-null pointer value for its third argument.

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. If wait returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. If waitS is called, the WNOHANG option is used,
and there are no stopped or terminated children, then a value of zero is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

WARNINGS
The behavior of wait is affected by setting the SIGCLD signal to SIG--.IGN. Check all references
to signal(2) for appropriateness on systems that support sigvector(2). Sigvector(2) can affect that
behavior described on this page. See WARNINGS on signal(2).

HARDW ARE DEPENDENCIES
Series 200, 300, 500

_ W ait3_ is not supported.

AUTHOR
Wait and waitS were developed by the Hewlett-Packard Company, AT&T Bell Laboratories, and
the University of California, Berkeley California, Computer Science Division, Department of
Electrical Engineering and Computer Science.

SEE ALSO
Exit conditions ($?) in sh(1), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(2).

Hewlett-Packard Company - 2 - Version B.l, October 1986

WRITE(2) HP-UX WRITE(2)

NAME
write, writev - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *bufj
unsigned nbyte;

#include <sys/types.h>
#include <sys/uio.h>

int writev (fildes, iov, iovcnt)
int fildes;
struct iovec *iov;
int iovcnt;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, Icntl, or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by bul to the file associated with
the fildes. Writev performs the same action, but gathers the output data from the iovlen buffers
specified by the elements of the iovec array: iov[O], iov[I], ... , iov[iovcnt - 1].

For writev the iovec structure is defined as:

struct iovec {
caddr_t
int

};

iov_base;
iov---.len;

Each iovec entry specifies the base address and length of an area in memory where data should be
copied from. The iovec array maybe at most MAXIOV long.

On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file pointer. Upon return from write, the file pointer is incremented by the
number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the device's current posi­
tion. The value of a file pointer associated with such a device is undefined.

If the O--.APPEND flag of the file status flags is set, the file pointer will be set to the end of the file
prior to each write.

If a write requests that more bytes be written than there is room for (e.g., the ulimit (see
ulimit(2)) or the physical end of a medium), only as many bytes as there is room for will be writ­
ten. For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a non-zero number of bytes will give a failure
return (except as noted below).

A write to an ordinary file will be blocked if enforcement-mode file and record locking is set, and
there is a lock owned by another process on the segment of the file to be written:

IfO~DELAY is set, the write will return -1 and set errno to EAGAIN.

If O~DELA Y is clear, the write will sleep until the blocking record lock is removed.

If the file being written is a pipe (or FIFO), there is a system dependent maximum number of
bytes which it can store (PIPSIZ as defined in <sysjinode.h». The minimum value of PIPSIZ on
any HP-UX system is 4096. In writing a pipe, the following conditions apply:

Hewlett-Packard Company - 1 - Version B.I, October 1986

WRITE(2) HP-UX WRITE(2)

If the O---.NDELA Y flag of the file flag word is set:

If nbyte is less than or equal to PIPSIZ and there is sufficient room in the pipe or
FIFO, then the write is successful and returns the number of bytes written;

If nbyte is less than or equal to PIPSIZ but there is not enough room in the pipe
or FIFO, the write returns without error, having written nothing, and with a
return value of o.
If nbyte is greater than PIPSIZ the write fails and returns -1. [EINVAL]

If the O---.NDELA Y flag of the file Hag word is clear:

RETURN VALUE

the write always executes correctly (blocking as necessary) and returns the
number of bytes written.

Upon successful completion the number of bytes actually written is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

EXAMPLES
Assuming a process opened a file for writing, the following call to write(2) attempts to write
mybufsize bytes to the file from the buffrer pointed to by mybuf.

#include <string.h>

int mybufsize;
char *mybuf = "aeiou and sometimes y";
int nbytes;

mybufsize = strlen (mybuf);
nbytes = write (outfd, mybuf, mybufsize);

ERRORS
Write will fail and the file pointer will remain unchanged if one of the following conditions is true
and errno will be set accordingly:

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]

[EINTR]

[EDEADLK]

[EAGAIN]

[ENOLCK]

An attempt is made to write to a pipe that is not open for reading by any pro­
cess.

A signal was caught during the write system call.

A resource deadlock would occur as a result of this operation (see lockf(2) and
fcntl(2)).

Enforcement-mode file and record locking was set, O.-NDELA Y was set, and
there was a blocking record lock.

The system record lock table was full. so the write could not go to sleep until the
blocking record lock was removed.

In addition, writev may return one of the following errors:

[EFAULT]

[EINVAL]

[EINVAL]

[EINVAL]

Iov_base or iov points outside of the allocated address space. The reliable detec­
tion of this error will be implementation dependent.

Iovcnt was less than or equal to 0, or greater then MAXIOV.

One of the iov len values in the iov array was negative.

The sum of iov len values in the iov array overflowed a 32-bit integer.

Hewlett-Packard Company - 2 - Version B.l, October 1986

WRITE(2) HP-UX WRITE(2)

[ENOSPC] Not enough space on the file system.

Write or write v will fail and the file pointer will be updated to reflect the amount of data
transferred if one of the following conditions is true and ermo will be set accordingly:

[EFBIG] An attempt was made to write a file that exceeds the process's file size limit or
the maximum file size. See ulimit(2}.

[EFAULT] Bul points outside the process's allocated address space. The reliable detection
of this error will be implementation dependent.

WARNINGS
Check all references to signal(2} for appropriateness on systems that support sigvector(2). Sigvec­
tor(2} can affect the behavior described on this page.

The character special devices, and raw disks in particular, apply constraints on how write can be
used. See the specific DEV entries for details on particular devices.

HARDW ARE DEPENDENCIES
Series 500

If you perform a write operation following an lseek past the previous end-of-file, all "unused"
bytes from the previous end-of-file up to your new position are zeroed-out before writing
your data.

In general, a value of nbyte greater than 512K is not supported when fildes is associated
with a device file. There are two exceptions to this:

the device is a terminal or the null device; or

bul points to a local (not global) buffer, and has been locked with memlck(2}. A
local buffer is an array that is declared within the procedure and resides on the
stack.

Any request for greater than 512K megabytes on unsupported device files results in errno
being set to EINVAL. Requests for less than 512K megabytes could result in errno being
set to ENOMEM.

Writev is not currently supported.

The size of a pipe (PIPSIZ) is currently 5120 bytes.

Integral PC
Under the conditions for whigh O--l~DELAY is set, nbyte can be less than or equal to 10240
bytes.

Write v is not currently supported.

Series 200, 300, 800
The size of a pipe (PIPSIZ) is currently 8192.

AUTHOR
Write was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2}, dup(2}, lockf(2}, Iseek(2}, open(2}, pipe(2), ulimit(2}, ustat(2}.

Hewlett-Packard Company - 3 - Version B.l, October 1986

INTRO(3) HP-UX INTRO(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include <stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other than those functions that directly
invoke HP-UX system primitives, which are described in Section (2) of this volume. Certain major
collections are identified by a letter after the section identifier (3):

(3C)

(31)

(3M)

(3S)

(3X)

Definitions

These functions, together with the Operating System Calls and those marked
(3S), constitute the Standard C Library, which is automatically loaded by the C
compiler, cc(1). The link editor Id(1) searches this library under the -Ie option.
Declarations for some of these functions may be obtained from #include files
indicated on the appropriate pages.

These functions constitute the instrument support library.

These functions constitute the Math Library. They are automatically loaded as
needed by the FORTRAN compiler /77(1). They are not automatically loaded by
the C compiler, cc(1); however, the link editor searches this library under the
-1m option. Declarations for these functions may be obtained from the
#inelude file <math.h>. Several generally useful mathematical constants are
also defined there (see math(5)).

These functions constitute the "standard I/O package" (see stdio(3S)). These
functions are in the library libc, already mentioned. Declarations for these func­
tions may be obtained from the #include file <stdio.h>.

Various specialized libraries. The files in which these libraries are found are
given on the appropriate pages.

A character is any bit pattern able to fit into a byte on the machine. The null character is a
character with value 0, represented in the C language as "\0". A character array is a sequence of
characters. A null-terminated character array is a sequence of characters, the last of which is the
null character. A string is a designation for a null-terminated character array. The null string is
a character array containing only the null character. A NULL pointer is the value that is
obtained by casting 0 into a pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return pointers return it to indicate an
error. NULL is defined as 0 in <stdio.h>; the user can include an appropriate definition if not
using <stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names that do not require
explicit or implicit type declaration. The type of the function will be determined by the type of
its argument(s). For example, the generic function max will return an integer value if given
integer arguments (maxO), a real value if given real arguments (amaxl), or a double-precision
value if given double-precision arguments (dmaxl).

DIAGNOSTICS
Functions in the C and Math Libraries, (3C) and (3M), may return the conventional values 0 or
±HUGE (the largest-magnitude single-precision floating-point numbers; HUGE is defined in the
<math.h> header file) when the function is undefined for the given arguments or when the value
is not representable. In these cases, the external variable errno (see errno(2)) is set to the value
EDOM or ERANGE. As many of the FORTRAN intrinsic functions use the routines found in the
Math Library, the same conventions apply.

Hewlett-Packard Company - 1 - Version B.1, October 1986

INTRO(3) HP-UX INTRO(3)

WARNINGS

FILES

Many of the functions in the libraries call and/or refer to other functions and external variables
described in this section and in Section (2), Operating Systems Calls. If a program inadvertently
defines a function or external variable with the same name, the presumed library version of the
function or external variable may not be loaded. The lint(l) program checker reports name
conflicts of this kind as "multiple declarations" of the names in question. Definitions for the Sec­
tions (2), (3C), and (3S) are checked automatically. Other definitions can be included by using
the -1 option (for example, -1m includes definitions for the Ma.th Libra.'1', (3M). Use of !int(l) is
highly recommended.

/lib/libc.a
/lib/libm.a
/usr /lib/libF77.a

SEE ALSO
intro(2), stdio(3S), math(5), hier(5), ar(l), cc(l), £17(1), Id(l), lint(l), nm(l).

The introduction to this manual.

Hewlett-Packard Company - 2 - Version B.1, October 1986

A64L(3C) HP-UX A64L(3C)

NAME
0041, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (8)
char *8;

char *164a (I)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a nota­
tion by which long integers can be represented by up to six characters; each character represents a
H digit H in a radix-64 notation.

The characters used to represent HdigitsH are . for 0, / for 1, 0 through 9 for 2-11, A through Z
for 12-37, and a through z for 38--63.

The leftmost character is the least significant digit. For example,
aO = (38 x 64°) + (2 x 641

) = 166

A641 takes a pointer to a null-terminated base-64 representation and returns a corresponding long
value. If the string pointed to by s contains more than six characters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64 representation.
If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which are overwritten
by each call.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ABORT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION

HP-UX ABORT(3C)

Abort first closes all open files if possible, then causes the SIGIOT signal to be sent to the process.
This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case the value
returned is that of the ki//(2) system call.

SEE ALSO
adb(I), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is
produced and the message "abort - core dumped" is written by the shell.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int ahs (i)
int ij

DESCRIPTION

HP-UX

Abs returns the absolute value of its integer operand.

The largest negative integer returns itself.

WARNINGS

ABS(3C)

In two's-complement representation, the absolute value of the negative integer with largest magni­
tude is undefined. Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

Hewlett-Packard Company - 1 - Version B.1, October 1986

ASSERT(3X) HP-UX ASSERT (3X)

NAME
assert - verify program assertion

SYNOPSIS
#lnclude <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if expression is
false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"
on the standard error output and aborts. In the error message, xyz is the name of the source file
and nnn the source line number of the assert statement.
Compiling with the preprocessor option -DNDEBUG (see cpp(l)), or with the preprocessor con­
trol statement "#define NDEBUG" ahead of the "#include <assert.h>" statement, will stop
assertions from being compiled into the program.

SEE ALSO
cpp(l), abort(3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

BESSEL (3M) HP-UX BESSEL (3M)

NAME
jO, j1, jn, yO, y1, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double Xj

double jl (x)
double Xj

double jn (n, x)
int nj

double Xj

double yO (x)
double Xj

double yl (x)
double Xj

double yn (n, x)
int nj

double Xj

DESCRIPTION
JO and j1 return Bessel functions of x of the first kind of orders 0 and 1 respectively. In returns
the Bessel function of x of the first kind of order n.

YO and y1 return the Bessel functions of x of the second kind of orders 0 and 1 respectively. Yn
returns the Bessel function of x of the second kind of order n. The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, y1 and yn to return the value -HUGE and to set errno to
EDOM. They also cause a message indicating DOMAIN error to be printed on the standard error
output; the process will continue.

Arguments too large in magnitude cause jO, j1, jn, yO, y1 and yn to return zero and to set errno
to ERANGE. In addition, a message indicating TLOSS error is printed on the standard error out­
put.

These error-handling procedures may be changed with the function matherr(3M}.

SEE ALSO
matherr(3M}.

Hewlett-Packard Company - 1 - Version B.1, October 1986

BLMODE(3C) HP-UX
Series 800 Only

BLMODE(3C)

NAME
blmode - terminal block mode library interface

SYNOPSIS
#include <sys/blmodeio.h>

int bfdesj

bfdes = blopen(fUdes)
int fildesj

int blclose (bfdes)
int bfdesj

int blread (bfdes, buf, nbyte)
int bfdesj
char *bufj
unsigned nbyte;

int blget (bfdes, arg)
int bfdesj
struct blmodeio * argj

int blset (bfdes, arg)
int bfdesj
struct blmodeio * argj

DESCRIPTION
This terminal library interface allows support of block mode transfers with HP terminals. Block
mode only affects input processing. Therefore, data is written with the standard write(2) inter­
face.

In character mode the terminal sends each character to the system as it is typed. However, in
block mode data is buffered and possibly edited locally in the terminal memory as it is typed, then
sent as a block of data when the <ENTER> key is pressed on the terminal. During block mode
data transmissions, the incoming data is not echoed by the interface and no special character pro­
cessing is performed, other than recognizing a data block terminator character. For subsequent
character mode transmissions, the existing termio state (see termio(7)) will continue to determine
echo and character processing.

There are two parts of the block mode protocol, the block mode handshake and the block mode
transmission.

Block mode handshake
At the beginning of a read, a trigger character is sent to the terminal to notify it that the system
wants a block of data. (The trigger character, if defined, is sent at the beginning of all reads,
character or block mode. It is necessary for block mode reads to work correctly.)

After receiving the trigger character, and when the user has typed all the data into the terminal's
memory and pressed the <ENTER> key, the terminal will send an alert character to the system
to notify it that the terminal has a block of data to send.

The system may then send user-definable cursor positioning or other data sequences, such as for
home cursor or iock keyboard, to the terminal.

The system will then send a second trigger character to the terminal. The terminal will then
transmit the data block as described in the Block mode transmission section.

Block mode transmission
The second part of the block mode protocol is the block mode transmission. After the block mode

Hewlett-Packard Company - 1 - Version B.1, October 1986

BLMODE(3C) HP-UX
Series 800 Only

BLMODE(3C)

handshake has successfully completed, the terminal will transmit the data block to the system.
During this transmission of data, the incoming data is not echoed by the system and no special
character processing is performed, other than recognizing the data block termination character. It
is possible to bypass the block mode handshake and have the block mode transmission occur after
only the first trigger character is sent, see CB-BMTRANS below.

It is possible to intermix both character mode and block mode data transmissions. If
CB-BMTRANS (see below) is set, all transfers will be block mode transfers. When CB-BMTRANS
is not set, character mode transmissions will be processed as described in termio(7). In this case,
if an alert character is received anywhere in the input data, the transmission mode will be
switched to block mode automatically for a single transmission. Any data received before the
alert will be discarded. The alert character may be escaped with a backslash ("\ ") character.

XON /XOFF flow control
To prevent data loss, XON/XOFF flow control should be used between the system and the termi­
nal. The IXOFF bit (see termio(7)) should be set and the terminal strapped appropriately. If
flow control is not used, it is possible for incoming data to overflow and be lost. (Note: some
older terminals do not support this flow control.)

Read requests
Read requests that receive data from block mode transmissions will not be returned until the
transmission is complete (the terminal has transmitted all characters). If the read is satisfied by
byte count or if a data transmission error occurs, all subsequent data will be discarded until the
transmission is complete. The read will wait until a terminator character is seen, or a time inter­
val specified by the system has passed that is longer than necessary for the number of characters
specified.

The data block terminator character will be included in the data returned to the user, and is
included in the byte count. If the number of bytes transferred by the terminal in a block mode
transfer exceeds the number of bytes requested by the user, the read will return the requested
number of bytes and the remaining bytes will be discarded. The user can determine if data was
discarded by checking the last character of the returned data. If the last character is not the ter­
minator character, then more data was received than was requested and data was discarded.

The EIO error can be caused by several events, including errors in transmission, framing, parity,
break, and overrun, or if the internal timer expires. The internal timer starts when the second
trigger character is sent by the computer, and ends when the terminating character is received by
the computer. The length of this timer is determined by the number of bytes requested in the
read and the current baud rate, plus an additional ten seconds.

User control of handshaking
If desired, the application program can provide its own handshake mechanism in response to the
alert character by selecting the OWNTERM mode, see CB_OWNTERM below. With this mode
selected, the driver will complete a read request when the alert character is received. No data will
be discarded before the alert, and the alert will be returned in the data read. The alert character
may be escaped with a backslash ("\") character. The second trigger will be sent when the appli­
cation issues the next read.

Blmode control calls
First, the standard open(2) call to a tty device must be made to obtain a file descriptor for the
subsequent block mode control calls (an open(2) will be done automatically by the system for
stdin on the terminal).

int bfdesj

bfdes = blopen (fildes)
int fildesj

Hewlett-Packard Company - 2 - Version B.l, October 1986

BLMODE(3C) HP-UX
Series 800 Only

BLMODE(3C)

A call to blopen must be made before any block mode access is allowed on the
specified file descriptor. Blopen will initialize the block mode parameters as
described below. The return value from blopen is a block mode file descriptor
that must be passed to all subsequent block mode control calls.

int blc108e (bfdes)
int bfdesj

A call to blelose must be issued before the standard close(2) to ensure proper closure of
the device. Otherwise unpredictabie resuits may occur. The argument bfdes is the file
descriptor returned from a previous blopen system call.

int blread (bfdes, buf, nbyte)
int brdesj
char *bufj
unsigned nbytej

The blread routine has the same parameters as the read(2) sytem call. At the beginning
of a read, the eb_trigle character (if defined) is sent to the device. If CB---.BMTRANS is
not set, and no eb_alertc character is received, the read data will be processed according
to termio(7). If CB---.BMTRANS is set, or if a non-escaped eb_alerte character is received,
echo will be turned off for the duration of the transfer, and no further special character
processing will be done other than that required for the termination character. The argu­
ment brdes is the file descriptor returned from a previous blopen system call.

int blget (brdes, arg)
int brdesj
struct bimodeio '" argj

A call to blget will return the current values of the blmodeio structure (see below). The
argument brdes is the file descriptor returned from a previous blopen system call.

int blset (brdes, arg)
int bfdesj
struct blmodeio * argj

A call to blset will set the block mode values from the structure whose address is argo The
argument brdes is the file descriptor returned from a previous blopen system call.

Blmode structure
The two block mode control calls, blget and blset, use the following structure, defined in
<sys/blmodeio.h>:

#define NBREPL Y 64

struct

1.
j,

blmodeio
unsigned long
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
char

c b--.fiags;
cb_trig1c;
cb_trig2c;
cb_alertc;
cb_termc;
cb---.replen;
cb---.reply[NBREPL Yj;

The eb_ftags field controls the basic block mode protocol:

/* Modes */
/ * First trigger * /
/ * Second trigger * /
/ * Alert character * /
/ * Terminating char * /
/* cb---.reply length */
/ * optional reply * /

CB---.BMTRANS 0000001
CB_OWNTERM 0000002

Enable mandatory block mode transmission.
Enable user control of handshake.

Hewlett-Packard Company - 3 - Version B.1, October 1986

BLMODE(3C) HP-UX
Series 800 Only

BLMODE(3C)

If CB-.BMTRANS is set, all transmissions are processed as block mode transmissions. The
biock mode handshake is not required and data read is processed as block mode transfer
data. The block mode handshake may still be invoked by receipt of an alert character as
the first character seen. A blread issued with the CB-.BMTRANS bit set will cause any
existing input buffer data to be flushed.

If CB-.BMTRANS is not set, and if the alert character is defined and is detected anywhere
in the input stream, the input buffer will be flushed and the block mode handshake will be
invoked. The system will then send the cb_trigfc character to the terminal, and a block
mode transfer will follow. The alert character can be escaped by preceding it with a
backslash (N\ H).

If CB_OWNTERM is set, reads will be terminated upon receipt of a non-escaped alert
character. No input buffer flushing is performed, and the alert character is returned in
the data read. This allows application code to perform its own block mode handshaking.
If the bit is clear, a non-escaped alert character will cause normal block mode handshak­
ing to be used.

The initial cb_ftags value is all-bits-cleared.

There are several special characters (both input and output) that are used with block mode.
These characters and the initial values for these characters are described below. Any of these
characters may be undefined by setting its value to 0377.

is the initial trigger character sent to the terminal at the beginning of a read
request.

is the secondary trigger character sent to the terminal after the alert character
has been seen.

is the alert character sent by the terminal in response to the first trigger charac­
ter. It signifies that the terminal is ready to send the data block. The alert
character can be escaped by preceding it with a backslash ("\ H).

is sent by the terminal after the block mode transfer has completed. It signifies
the end of the data block to the computer.

The cb_replen field specifies the length in bytes of the cb_reply field. If set to zero, the cb_reply
string will not be used. The cb_replen field is initially set to zero.

The cb_replyarray contains a string to be sent out after receipt of the alert character, but before
the second trigger character is sent by the computer. Any character may be included in the reply
string. The number of characters sent is specified by cb_replen. The initial value of all characters
in the cb_reply array is NULL.

RETURNS
If an error occurs, all calls will return a value of -1 and errno will be set to indicate the error. If
no error is detected, blread will return the number of characters read. All other calls will return 0
upon successful completion.

During a read, it is possible for the user's buffer to be altered even if an error value is returned.
The data in the user's buffer should be ignored as it will not be complete. The following errors
may be returned by various library calls described in this document.

blopen
[ENOTTYJ The file descriptor specified is not related to a terminal device.

blclose
[ENOTTYJ No previous blopen has been issued for the specified file descriptor.

blread

Hewlett-Packard Company - 4 - Version B.I, October 1986

BLMODE(3C)

[EDEADLK]

[EFAULT]

[EINTR]

[EIO]

[Ei'JOTTY]

blget
[ENOTTY]

blset
[EINVAL]

[ENOTTYj

WARNINGS

HP-UX
Series 800 Only

BLMODE(3C)

A resource deadlock would occur as a result of this operation (see
lockf(2)).

Buf points outside the allocated address space. The reliable detection of
this error will be implementation dependent.

A signal was caught during the read system call.

An I/O error occured during block mode data transmissions.

No previous blopen has been issued for the specified file descriptor.

No previous blopen has been issued for the specified file descriptor.

An illegal value was specified in the structure passed to the system.

No previous blopen has been issued for the specified file descriptor.

Once blopen has been called with a file descriptor and returned successfully, that file descriptor
should not subsequently be used as a parameter to the following system calls: close (2), dup(2),
dup2(2), fcntl(2), ioctl(2), read(2), or select(2) until a blclose is called with the same file descrip­
tor as its parameter. Additionally, scanf(libc), fscanf(libc), getc (libc), getchar (libc), fgetc (libc)
and fgetw(libc) should not be called for a stream associated with a file descriptor that has been
used in a blopen call but has not been used in a blclose call. These functions call read(2) and
calling these routines will result in unpredictable behavior.

AUTHOR
Blmode was developed by HP.

SEE ALSO
termio(7).

Hewlett-Packard Company - 5- Version B.L October 1986

BSEARCH (3C) HP-UX BSEARCH (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
include <search.h>

char *bsearch «char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a
pointer into a table indicating where a datum may be found. The table must be previously sorted
in increasing order according to a provided comparison function. Key points to a datum instance
to be sought in the table. Base points to the element at the base of the table. Nel is the number
of elements in the table. Compar is the name of the comparison function, which is called with
two arguments that point to the elements being compared. The function must return an integer
less than, equal to, or greater than zero as accordingly the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h>

#define T ABSIZE 1000

struct node { / * these are stored in the table * /
char *string;
int length;

};
struct node table[TABSIZE]; / * table to be searched * /

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str-space[20]; /* space to read string into */

node.string = str-space;
while (scanf("%s", node.string) != EOF) {

Hewlett-Packard Company

node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr- >string, node_ptr- > length);
} else {

(void)printf("not found: %s\n", node.string);

- 1 - Version B.1, October 1986

BSEARCH (3C) HP-UX BSEARCH (3C)

NOTES

}
/ * This routine compares two nodes based on an

alphabetical ordering of the string field. * /
int
node_compare {node 1 , node2)
struct node *nodel, *node2;
{

return strcmp{nodel-> string, node2- >string);

The pointers to the key and the element at the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

SEE ALSO
hsearch{3C), Isearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

If more than one entry matches the selection criteria, bsearch returns one of them; which one of
them is unspecified.

If the table being searched contains two or more entries that match the selection criteria, a ran­
dom entry is returned by bsearch as detennined by the search algorithm.

Hewlett-Packard Company - 2 - Version B.l, October 1986

CATREAD (3C) HP-UX

NAME
catread - MPE/RTE-style message catalog support

SYNOPSIS
int catread (fd, set-.num, mSg-Dum, ms~buf, buften [,arg] ...)
int fd, set-.num, msg-.num, buftenj
char *ms~buf, *argj

DESCRIPTION

CATREAD (3C)

Catread is layered on getmsg(3C) for supporting message catalog applications from MPE/RTE.
Refer to the external specifications for message catalogs on these systems for use of this routine.

The message read from the catalog may have embedded formatting information in the form
![digit]. An exclamation mark followed by a digit n is replaced by the nth argument string. If
exclamation marks are not numbered, they are replaced by the arguments in serial order. Either
all or none must be numbered.

If successful, returns the number of non-null bytes placed in the buffer.

DIAGNOSTICS
Catread returns a negative integer if seLnum or msy-num are not found in the catalog.

AUTHOR
Catread was developed by the Hewlett-Packard Company.

SEE ALSO
gencat(l), getmsg(3C), hpnls(5).

INTERNATIONAL SUPPORT
8-bit data, messages.

Hewlett-Packard Company - 1 - Version B.1, October 1986

CLOCK (3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION

HP-UX CLOCK(3C)

Clock returns the amount of CPU time (in microseconds) used since the first call to dock. The
time reported is the sum of the user and system times of the calling process and its terminated
child processes for which it has executed wait(2) or system{3S).

The resolution of the clock varies, depending on the hardware and on the software configuration.

WARNINGS
The value returned by dock is defined in microseconds for compatibility with systems that have
CPU clocks with much higher resolution. Because of this, the value returned will wrap around
after accumulating only 2147 seconds of CPU time (about 36 minutes).

HARDW ARE DEPENDENCIES
Series 200, 300

The clock resolution is 20 milliseconds.

Series 500, 800
The default clock resolution is 10 milliseconds.

SEE ALSO
times(2), wait(2), system{3S).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CONV(3C) HP-UX CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers from -1 through 255. If
the argument of toupper represents a lower-case letter, the result is the corresponding upper-case
letter. If the argument of tolower represents an upper-case letter, the result is the corresponding
lower-case letter. All other arguments in the domain are returned unchanged.

The macros _toupper and _tolower accomplish the same thing as toupper and tolower but have
restricted domains and are faster. _toupper requires a lower-case letter as its argument; its result
is the corresponding upper-case letter. The macro _tolower requires an upper-case letter as its
argument; its result is the corresponding lower-case letter. Arguments outside the domain cause
undefined results. Use of this form will never work with foreign character sets.

Toascii yields its argument with all bits turned off that are not part of a standard 7 bit ASCII
character; it is intended for compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CRTO(3) CRTO(3)
Series 300 Only

NAME
crtO.o, mcrtO.o, frtO.o, mfrtO.o - execution startup routines

DESCRIPTION
The C and Pascal compilers link in either ertO.o or mertO.o to provide startup capabilities and
environment for program execution. The only difference between the two is that the latter pro­
vides additional functionality for profiling. Similarly, the Fortran compiler will link in either
frtO.o or mfrtO. o.

The following are defined in these routines:

start Execution start address.

--&gc_value A variable of type int containing the number of arguments.

--&gv_value An array of character pointers to the arguments themselves.

_environ An array of character pointers to the environment in which the program will run.
This array is terminated by a null pointer.

floaL.soft A variable of type short which is zero if the 98635 floating point card is present;
non-zero if it is not present.

floaLloe A constant defining the location in memory of the 98635 floating point card.

flag_68881 A variable of type short which is non-zero if the 68881 floating point coprocessor
is present; zero if it is not present.

In addition, mertO.o and mfrtO.o define _exit and _cntbase which are only useful to profiling
routines.

ORIGIN
AT&T System III

SEE ALSO
cc(l), fc(l), prof(l), pc(l), profil(2), exec(2), monitor(3C).

Hewlett-Packard Company - 1 - October 1986

CRYPT (3C) HP-UX CRYPT (3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *saltj

void set key (key)
char *key;

void encrypt (block, fake)
char *block;
int fake;

DESCRIPTION
Crypt is the password encryption function. It is based on a one way hashing encryption algorithm
with variations intended (among other things) to frustrate use of hardware implementations of a
key search.

Key is a user's typed password. Salt is a two-character string chosen from the set [a-zA-Z0-9./]j
this string is used to perturb the hashing algorithm in one of 4096 different ways, after which the
password is used as the key to encrypt repeatedly a constant string. The returned value points to
the encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual hashing algorithm.
The argument of setkey is a character array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each group
is ignored; this gives a 56-bit key which is set into the machine. This is the key that will be used
with the hashing algorithm to encrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only the charac­
ters with numerical value 0 and 1. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the hashing algorithm using
the key set by setkey. Fake is not used and is ignored, but should be present if lint(l) is used.

SEE ALSO
login(l), passwd(l), getpass(3C), passwd(4).

BUGS
The return value points to static data that are overwritten by each call.

Hewlett-Packard Company - 1 - Version B.1, October 1986

CTERMID (3S) HP-UX CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <8tdio.h>
char *ctermid (8)
char *8;

DESCRIPTION
Ctermid generates the path name of the controlling terminal for the current process, and stores it
in a string.

NOTES

If s is a NULL pointer, the string is stored in an internal static area, the contents of which are
overwritten at the next call to ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid elements; the path name is placed in
this array and the value of s is returned. The constant L_ctermid is defined in the <stdio.h>
header file.

The difference between ctermid and ttyname(3C) is that ttyname must be handed a file descriptor
and returns the actual name of the terminal associated with that file descriptor, while ctermid
returns a string (jdev jtty) that will refer to the terminal if used as a file name. Thus ttyname is
useful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

Hewlett-Packard Company - 1 - Version B.1. October 1986

CTIME(3C) HP-UX CTIME(3C)

NAME
ctime, nl_ctime, localtime, gmtime, asctime, nLasctime, timezone, daylight, tzname, tzset - con­
vert date and time to string

SYNOPSIS
#include <time.h>

char *ctime (clock)
long *clockj

char *nLctime (clock, format, langid)
long *clockj char *formatj int langidj

struct tm *localtime (clock)
long *clockj

struct tm *gmtime (clock)
long *clockj

char *asctime (tm)
struct tm *tmj

char *nLasctime (tm, format, langid)
struct tm *tmj char *formatj int

extern long timezonej

extern int daylightj

extern char *tzname[2]j

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing the time in seconds since 00:00:00
GMT, January 1, 1970, and returns a pointer to a 26-character string in the following form. All
the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

NLctime extends the capabilities of ctime in two ways. First the format specification allows the
date and time to be output in a variety of ways. Format uses the field descriptors defined in
date(l). If the format is the null string, the D_T---.FMT string defined by langinfo(3C) is used.
Second langid provides month and weekday names (when selected as alphabetic by the format
string) to be in the user's native language.

Localtime and gmtime return pointers to "tm" structures, described below. Localtime corrects
for the time zone and any summer time zone adjustments (Daylight Savings time in the U.S.A.),
according to the TZ string in the user's environment. Gmtime converts directly to Greenwich
Mean Time (GMT), which is the time the HP-UX System uses.

Asctime converts a time value contained in a "tm" structure (as a whole) to a 26-character
string, as shown in the above example, and returns a pointer to the string.

NLasctime, like nLctime, allows the date string to be formatted, and month and weekday
names to be in the user's native language. However, like asctime , it takes "tm" as its argument.

Declarations of all the functions and externals, and the "tm" structure, are in the <time.h>
header file. The structure declaration is:

struct tm {
int tm----.Sec:
int tm-----IDin:
int tm--11our:

Hewlett-Packard Company

/* seconds (0 - 59) */
/* minutes (0 - 59) */
/* hours (0 - 23) */

- 1 - Version B.1, October 1986

CTIME(3C)

}:

int tIIL.II1day;
int tIIL.II1on;
int tIlL-year;
int tIlL-wday;
int tIlL-yday;
int tm.....Jsdst;
long tIlL-tzadj;

HP-UX

/* day of month (I - 31) */
/* month of year (O - 11) */
/* year - 1900 */
/* day of week (Sunday = 0) */
/* day of year (O - 365) */

CTIME(3C)

TTTLisdst is non-zero if a summer time zone adjustment such as Daylight Savings time is in
effect. TTTLtzadj is the difference between GMT and local time expressed in seconds.

The external long variable timezone contains the difference, in seconds, between GMT and local
standard time (in EST, timezone is 5*60*60); the external variable daylight is non-zero if and only
if you have specified a summer time zone adjustment in your TZ environment variable. Daylight
and timezone are derived only from the TZ variable value and are independent of any time value.
TTTLisdst and tTTLtzadj indicate what time zone adjustment is in effect for the value contained in
the "tm" structure. The method by which TZ is used for summer time zone adjustment is some­
what complex and is described in tztab(4). The values of the external variables timezone, day­
light, and tzname are set from the environment variable TZ by the function tzset, which can be
called directly, or indirectly through the functions loealtime, ctime, or nLetime. TZ is set by
default when the user logs on, to a value in the local fete/profile file, see profile(4).

WARNINGS
The return values point to static data whose content is overwritten by each call.

,£a\UTHOR
Ctime was developed by AT&T and Hewlett-Packard Company.

SEE ALSO
time(2), getenv{3C), langinfo{3C), profile(4)' tztab(4), environ(5), hpnls(5).

INTERNATIONAL SUPPORT
8-bit data, messages.

Hewlett-Packard Company - 2 - Version B.1, October 1986

CTVPE(3C) HP-UX CTYPE(3C)

NAME
isaipha, isupper, isiower, isdigit, isxdigit, isainum, isspace, ispunct, isprint, isgraph, iscntrl, isascii
- classify characters

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each is a predicate return­
ing nonzero for true, zero for false. Isascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCn value EOF (-1 - see stdio(3S)).

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

DIAGNOSTICS

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-91.

c is a hexadecimal digit [0-9], [A-FI or [a-ij.

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, vertical tab, or form-feed.

c is a punctuation character (any printing character except space, digit, letter).

c is a printing character, code 040 (space) through 0176 (tilde).

c is a printing character, like isprint except false for space.

c is a delete character (0177) or an ordinary control character (less than 040).

c is an ASCII character, code less than 0200.

If the argument to any of these macros is not in the domain of the function, the result is
undefined.

SEE ALSO
stdio(3S), ascii(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CURSES (3X) HP-UX CURSES (3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>
cc [flags 1 files -lcurses [libraries 1

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. In order
to initialize the routines, the routine initscr() must be called before any of the other routines that
deal with windows and screens are used. The routine endwin() should be called before exiting.
To get character-at-a-time input without echoing, (most interactive, screen oriented-programs
want this) after calling initscr() you should call "nonl(); cbreak(); noecho();"

The full curses interface permits manipulation of data structures called windows which can be
thought of as two dimensional arrays of characters representing all or part of a CRT screen. A
default window called stdscr is supplied, and others can be created with newwin. Windows are
referred to by variables declared "WINDOW *", the type WINDOW is defined in curses.h to be a C
structure. These data structures are manipulated with functions described below, among which
the most basic are move, and addch. (More general versions of these functions are included with
names beginning with 'w', allowing you to specify a window. The routines not beginning with 'w'
affect stdscr.) Then refresh() is called, telling the routines to make the users CRT screen look
like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than one window.
To invoke this subset, use -DMINICURSES as a cc option. This level is smaller and faster than
full curses.

If the environment variable TERMINFO is defined, any program using curses will check for a local
terminal definition before checking in the standard place. For example, if the standard place is
/usr/lib/terminfo, and TERM is set to "vt100", then normally the compiled file is found in
/usr /lib/terminfo/v /vtlOO. (The "v" is copied from the first letter of "vt100" to avoid crea­
tion of huge directories.) However, if TERMINFO is set to /usr/mark/myterms, curses will
first check /usr /mark/myterms/v /vtlOO, and if that fails, will then check
/usr /lib/terminfo/v /vtlOO. This is useful for developing experimental definitions or when
write permission in /usr /lib/terminfo is not available.

SEE ALSO
terminfo(4).

FUNCTIONS
Routines listed here may be called when using the full curses. Those marked with an asterisk may
be called when using Mini-Curses.

addch(ch)*

addstr(str)*
attroff(attrs) *
attron(attrs)*
attrset(attrs) *
baudrate()*
beep()*
box(win, vert, hor)

clear()
clearok(win, bf)

Hewlett-Packard Company

add a character to StdSCT

(like put char) (wraps to next
line at end of line)
calls addch with each character in StT

turn off attributes named
turn on attributes named
set current attributes to attTs
current terminal speed
sound beep on terminal
draw a box around edges of win
veTt and hOT are chars to use for vert.
and hor. edges of box
clear StdSCT

clear screen before next redraw of win

- 1 - Version B.l, October 1986

CURSES (3X)

clrtobot()
clrtoeol()
cbreak()*
delay_output (ms)*
delch()
deleteln()
delwin(win)
doupdate()
echo()*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch()*
getstr(str)
gettmode()
getyx(win, y, x)
has---.ic()
has---.il()
idlok(win, bf)*
inch()
initscr()*
insch(c)
insertln()
intrflush(win, bf)
keypad(win, bf)
killchar()
leaveok(win, flag)

longname()
meta(win, flag)*
move(y, x)*
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)

Hewlett-Packard Company

HP-UX

clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode
insert illS millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throwaway any typeahead
get a char from tty
get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's insert/delete line if bf != 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input
return current user's kill character
OK to leave cursor anywhere after refresh if
flag!=O for win, otherwise cursor must be left
at current position.
return verbose name of terminal
allow meta characters on input if flag != 0
move to (y, x) on stdscr
move(y, x) then addch(ch)
similar ...

low level cursor motion
like delch, but move(y, x) first
etc.

CURSES (3X)

- 2 - Version B.l, October 1986

CURSES (3X)

mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)
newterm(type, outfd, infd)

newwin(lines, cols, begiD-y, begiD-x)

HP-UX

create a new pad with given dimensions
set up new terminal of given type to output
on outfd, using input (it needed) from infd

create a new window
nl()* set newline mapping
nocbreak()* unset cbreak mode
nodelay(win, bf) enable nodelay input mode through getch
noecho() * unset echo mode
nonl() * unset newline mapping
noraw()* unset raw mode
overlay(winl, win2) overlay wini on win2
overwrite(winl, win2) overwrite wini on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

CURSES (3X)

like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

printw(fmt, argl, arg2, ...)

raw()*
refresh()*
resetterm() *
resetty()*
saveterm()*
savetty()*
scanw(fmt, argl, arg2, ...)

scroll(win)
scrollok(win, flag)
set_term(new)
setscrreg(t, b)
setterm(type)
setupterm(term, filenum, errret)
standend()*
standout()*
subwin(win, lines, cols, begin......y, begiIl-X)

touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)*
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)

Hewlett-Packard Company

refresh from pad starting with given upper left
corner of pad with output to given
portion of screen

printf on stdscr
set raw mode
make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value
save current modes as "in curses" state
store current tty flags

scanf through stdscr
scroll win one line
allow terminal to scroll if flag != 0
now talk to terminal new
set user scrolling region to lines t through b
establish terminal with given type

clear standout mode attribute
set standout mode attribute

create a subwindow
change all of win
turn off debugging trace output
turn on debugging trace output
use file descriptor fd to check typeahead
printable version of ch

add char to win
add string to win
turn off attrs in win
turn on attrs in win

- 3 - Version B.1, October 1986

CURSES (3X)

wattrset(win, attrs}
wclear(win}
wclrtobot(win}
wclrtoeol(win}
wdelch(win, c}
wdeleteln(win}
werase(win)
wgetch(win}
wgetstr(win, str}
winch(win)
winsch(win, c}
winsertln(win}
wmove(win, y, Xl
wnoutrefresh(win}
wprintw (win , fmt, argl, arg2, ... }

wrefresh(win}
wscanw(win, fmt, argl, arg2, ... }

wsetscrreg(win, t, b}
wstandend(win}
wstandout(win)

TERMINFO LEVEL ROUTINES

lIP-UX

set attrs in win to attrs
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y, x) in win
insert char into win
insert line into win
set current (y, x) co-ordinates on win
refresh but no screen output

printf on win
make screen look like win

scanf through win
set scrolling region of win
clear standout attribute in win
set standout attribute in win

CURSES (3X)

These routines should be called by programs wishing to deal directly with the tenninfo database.
Due to the low level of this interface, it is discouraged. Initially, setupterm should be called. This
will define the set of tenninal dependent variables defined in tenninfo(4). The include files
<curses.h> and <term.h> should be included to get the definitions for these strings, numbers,
and flags. Parameterized strings should be passed through tparm to instantiate them. All ter­
minfo strings (including the output of tparm) should be printed with tputs or putp . Before exit­
ing, resetterm should be called to restore the tty modes. (Programs desiring shell escapes or
suspending with control Z can call resetterm before the shell is called and fixterm after returning
from the shell.)
fixterm(} restore tty modes for terminfo use

(called by setupterm)

resetterm(}

setupterm(term, fd, rc)

tparm(str, pI, p2, ... , p9)

tputs(str, affcnt, putc}

Hewlett-Packard Company

reset tty modes to state before program entry

read in database. Terminal type is the
character string term, all output is to HP-UX
System file descriptor /d. A status value is
returned in the integer pointed to by rc: I
is normal. The simplest call would be
setupterm(O, 1, 0) which uses all defaults.

instantiate string str with parms Pi.

apply padding info to string str.
affcnt is the number of lines affected,
or I if not applicable. Putc is a
putchar-like function to which the characters
are passed, one at a time.

- 4 - Version B.l, October 1986

CURSES (3X)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

TERMCAP COMPATIBILITY ROUTINES

HP-UX

handy function that calls tputs
(str, 1, putchar)

output the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like
function pv.tc.

Like vidputs but outputs through
putchar

CURSES (3X)

These routines were included as a conversion aid for programs that use termcap. Their parame­
ters are the same as for termcap. They are emulated using the term info database. They may go

look up termcap entry for name
get boolean entry for id
get numeric entry for id
get string entry for id
apply parms to given cap

away at a later date.
tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id, area)
tgoto(cap, col, row)
tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar

ATTRIBUTES
The following video attributes can be passed to the functions attron,attroff,attrset.
A-'sTANDOUT Terminal's best highlighting mode
A_UNDERLINE Underlining
A--REVERSE Reverse video
A-.BLINK Blinking
A--.DIM Half bright
A-.BOLD Extra bright or bold
A-.BLANK Blanking (invisible)
AJROTECT Protected
A-AL TCHARSET Alternate character set

FUNCTION KEYS
The following function keys might be returned by getch if keypad has been enabled. Note that not
all of these are currently supported, due to lack of definitions in terminfo or the terminal not
transmitting a unique code when the key is pressed.
Name
KEY-BREAK
KEY-DOWN
KEY_UP
KEY-LEFT
KEY-R,IGHT
KEY-HOME
KEY-BACKSPACE
KEYJO
KEYJ(n)
KEY-DL
KEY-IL
KEY-DC
KEY-IC
KEY-EIC
KEY_CLEAR

Hewlett-Packard Company

Value
0401
0402
0403
0404
0405

Key name
break key (unreliable)
The four arrow keys ...

0406 Home key (upward+left arrow)
0407 backspace (unreliable)
0410 Function keys. Space for 64 is reserved.
(KEYJO+(n» Formula for fn.
0510 Delete line
0511
0512
0513
0514
0515

Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen

- 5 - Version B.L October 1986

CURSES (3X) HP-UX CURSES (3X)

KEY-EOS 0516 Clear to end of screen
KEY-EOL 0517 Clear to end of line
KEY-SF 0520 Scroll 1 line forward
KEY-SR 0521 Scroll 1 line backwards (reverse)
KEY---.NPAGE 0522 Next page
KEYJPAGE 0523 Previous page
KEY-STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY-ENTER 0527 Enter or send (unreliable)
KEY-SRESET 0530 soft (partial) reset (unreliable)
KEY-RESET 0531 reset or hard reset (unreliable)
KEYJRINT 0532 print or copy
KEY-LL 0533 home down or bottom (lower left)

WARNINGS
The plotting library plot(3X) and the curses library curses(3X) both use the names erase() and
move(). The curses versions are macros. If you need both libraries, put the plot(3X) code in a
different source file than the curses(3X) code, and/or #undef move() and erase() in the plot(3X)
code.

WARNINGS
HP only supports tenninals listed on the current list of supported devices. However, non­
supported and supported tenninals can be in the tenninfo database. If you use such non­
supported terminals, they may not work correctly.

Hewlett-Packard Company - 6 - Version B.l, October 1986

CUSERID (3S) HP-UX CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
Cuserid generates a character-string representation of the login name that the owner of the
current process is logged in under. If s is a NULL pointer, this representation is generated in an
internal static area, the address of which is returned. Otherwise, s is assumed to point to an
array of at least L_cuserid characters; the representation is left in this array. The constant
L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS

BUGS

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer, a
null character (\0) will be placed at s[O].

Cuserid uses getpwnam on getpwent(3C); thus the results of a user's call to the latter will be obli­
terated by a subsequent call to the former.

SEE ALSO
getlogin(3C), getpwent(3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CVTNUM(3C) CVTNUM(3C)
Series 300 Only

NAME
cvtnum - convert string to floating point number

SYNOPSIS
#include <cvtnum.h>

int cvtnum(src,dst,typ,rnd,ptr,inx)
unsigned char *src, *dst, **ptr;
int typ,rnd, *inx;

DESCRIPTION
The function cvtnum converts an ASCII character string to a number in one of four floating point
formats: single precision, double precision, extended precision, or packed decimal string.

The string pointed to by arc is the string representation of a standard number, an infinity, or a
not-a-number. A standard number begins with an optional sign followed by a string of digits
optionally containing a decimal point. It may then have an optional e or E followed by an
optional sign followed by an integer. Infinities are represented by INF preceded by an optional
sign. The string for a not-a-number is an optional sign followed by NaN followed by any number
of hexadecimal digits enclosed in parentheses.

The result is moved to dst and will be of the size and format as defined for the 68881 floating­
point coprocessor.

typ indicates the type of conversion to be done. It may be one of four values: C_SNGL,
C--.DBLE, C-EXT, or C--.DPACK indicating single precision, double precision, extended pre­
cision and packed decimal string respectively.

rnd specifies the type of rounding mode and may be one of four values: C~EAR,
C--.POSJNF, C~EGJNF, or C_TOZERO indicating round to nearest, to positive
infinity, to negative infinity and to zero respectively.

If the value of *ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no number can be formed, *ptr is set to str .

If inx is not (int *)NULL, cvtnum will use this to return an indication of the inexactness of the
conversion. A zero indicates exact; a non-zero value, inexact.

SEE ALSO
scanf(3S), strtod(3C), strtol(3C)
MC68881 Floating-Point Coprocessor User's Manual

DIAGNOSTICS
If no errors occur or no non-standard conversions are done, cvtnum returns o. Otherwise, it will
return one of the following:

C-BADCHAR - Illegal character or unexpected end of string
C_OVER - Overflow
C_UNDER - Underflow
CJNF - Infinity
C_QNAN - Quiet NaN
C-SNAN - Signalling NaN

Hewlett-Packard Company - 1 - October 1986

DATALOCK(3C) HP-UX
Series 800 Only

DATALOCK(3C)

NAME
datalock - lock process into memory, after allocating data and stack space

SYNOPSIS
#include <sys/lock.h>
int datalock (datsiz, stsiz);
int datsiz, stsiz;

DESCRIPTION
Dataloek allocates at least datsiz bytes of data space and stsiz bytes of stack space, then locks the
program in memory. The data space is allocated with either malloe(3C) or malloe{3X) (which­
ever is linked with the program). After the program is locked, this space is released with free (on
malloe{3C» or free (on malloe{3X», making it available for use. This allows the calling program
to use that much space dynamically without receiving the SIGSEGV signal.

The effective user ID of the calling process must be super-user or be a member of or have an
effective group ID of a group having PRIV~LOCK access to use this call (see getprivgrp(2».

EXAMPLES
The following call to dataloek allocates 4096 bytes of data space and 2048 bytes of stack space and
then locks the process in memory:

datalock (4096, 2048);

RETURN VALUE
Returns -1 if malloe cannot allocate enough memory or ploek(2) returned an error.

AUTHOR
Dataloek was developed by the Hewlett-Packard Company.

SEE ALSO
getprivgrp(2), plock(2).

BUGS
Multiple datalock's may not be the same as one big one.

Methods for calculating the required size are not yet well developed.

Hewlett-Packard Company - 1 - Version B.1, October 1986

DIAL(3C) HP-UX DIAL(3C)

NAME
dial, undial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

tnt dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for read/write. The argument to dial is a
CALL structure (defined in the <dial.h> header file).

When finished with the terminal line, the calling program must invoke undial to release the sema­
phore that has been set during the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio
int
int
char
char
int
char

int

} CALL;

*attr;
baud;
speed;
*line;
*telno;
modem;
*device;

dev-Ien;

/* pointer to termio attribute struct */
/ * transmission data rate * /
/* 212A modem: low=3oo, high=1200 */
/ * device name for out-going line * /
/* pointer to tel-no digits string */
/* specify modem control for direct lines */
/*Will hold the name of the device used

to make a connection * /
/* The length of the device used to

make connection * /

The CALL element speed is intended only for use with an outgoing dialed call, in which case its
value should be either 300 or 1200 to identify the 113A modem, or the high- or low-speed setting
on the 212A modem. Note that the 113A modem or the low-speed setting of the 212A modem will
transmit at any rate between 0 and 300 bits per second. However, the high-speed setting of the
212A modem transmits and receivers at 1200 bits per second only. The CALL element baud is for
the desired transmission baud rate. For example, one might set baud to 110 and speed to 300 (or
1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should be placed in
the line element in the CALL structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element need not be specified as it will be
determined from the L-devices file.

The telno element is for a pointer to a character string representing the telephone number to be
dialed. Such numbers may consist only of symbols described below. The termination symbol will
be supplied by the dial function, and should not be included in the telno string passed to dial in
the CALL structure.

Hewlett-Packard Company

Permissible codes
0-9 dial 0-9
* or :
or;

e or <
w or =

dial *
dial #
4-second delay for second dial tone
end-of-number
wait for secondary dial tone

- 1 - Version B.1, October 1986

DIAL(3C) HP-UX DIAL(3C)

FILES

flash off hook for 1 second

The CALL element modem is used to specify modem control for direct lines. This element should
be non-zero if modem control is required. The CALL element attr is a pointer to a termio struc­
ture, as defined in the termio.h header file. A NULL value for this pointer element may be passed
to the dial function, but if such a structure is included, the elements specified in it will be set for
the outgoing terminal line before the connection is established. This is often important for certain
attributes such as parity and baud-rate.

The CALL element device is used to hold the device name (cul ..) that establishes the connection.

The CALL element dev_len is the length of the device name that is copied into the array device.

/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK .. tty-device

SEE ALSO
uucp{l), alarm(2), read(2), write(2), termio(7).

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be returned. Mnemonics for
these negative indices as listed here are defined in the <dial.h> header file.

INTRPT -1
D...JIUNG -2
NO-ANS -3
ILL-BD -4
AJROB -5
LJROB --{)
NO--.Ldv -7
DV-.NT-A -8
DV-.NT-K -9
NO-BD-A -10
NO-BD-K -11

/ * interrupt occurred * /
/* dialer hung (no return from write) */
/* no answer within 10 seconds */
/* illegal baud-rate */
/* automatic call unit (acu) problem (openO failure) */
/ * line problem (openO failure) * /
/* can't open LDEVS file */
/ * requested device not available * /
/ * requested device not known * /
/ * no device available at requested baud * /
/ * no device known at requested baud * /

WARNINGS

BUGS

Including the <dial.h> header file automatically includes the <termio.h> header file.

The above routine uses <stdio.h>, which causes unexpected increases in the size of programs, not
otherwise using standard I/O.

An alarm(2) system call for 3600 seconds is made (and caught) within the dial module for the
purpose of "touching" the LCK .. file and constitutes the device allocation semaphore for the termi­
nal device. Otherwise, uucp{l) may simply delete the LCK .. entry on its 9O-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to be around for an hour or more,
error returns from reads should be checked for (errno==EINTR), and the read possibly reis­
sued.

Hewlett-Packard Company - 2 - Version B.1, October 1986

DmECTORY (3C) HP-UX DIRECTORY (3C)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <ndir.h>

Dffi *opendir(Wename)
char *fl.lename;

struct direct *readdir(dirp)
Dffi *dirp;

long telldir(dirp)
Dffi *dirp;

seekdir(dirp, Icc)
Dffi *dirp;
long Icc;

rewinddir(dirp)
Dffi *dirp;

closedir(dirp)
Dffi *dirp;

DESCRIPTION
The purpose of this library package is to provide functions which allow programs to read directory
entries without having to know the actual directory format associated with the file system. This
allows programs to be ported from one file system to another. Therefore, this is the recommended
way to read directory entries.

Opendir opens the directory named by filename and associates a directory stream with it. Open­
dir returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, if filename is not a directory, or if
sufficient memory cannot be allocated for a buffer of size DIRBLKSIZ blocks (see HARDWARE
DEPENDENCIES) .

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end of
the directory or detecting an invalid seekdir operation.

Telldir returns the current location, in bytes, associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. Loc is a byte offset
within the directory file. The new position reverts to the one associated with the directory stream
when the telldir operation was performed. Values returned by telldir are good only for the lifetime
of the DIR pointer from which they are derived. If the directory is closed and then re-opened, the
telldir value may be invalidated due to undetected directory compaction. It is safe to use a previ­
ous telldir value immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

Closedir causes the named directory stream to be closed, and the structure associated with the
DIR pointer to be freed.

See /usr/include/ndir.h for a description of the fields available in a directory entry. The preferred
way to search the current directory for entry "name" is:

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp)) {

if (dp->d......namlen == len && !strcmp(dp->d......name, name)) {
closedir(dirp);

Hewlett-Packard Company - 1 - Version B.1, October 1986

DIRECTORY(3C)

return FOUND;

}
closedir(dirp};
return NOTJOUND;

HARDW ARE DEPENDENCIES
Series 200, 300, 800:

HP-UX

Malloc(3} is used to allocate memory.

Series 500:
Memallc(2) is used to allocate memory.

AUTHOR

DIRECTORY (3C)

Directory was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

FILES
/usr /include/ndir.h

SEE ALSO
close(2), Iseek(2), open(2), read(2).

Hewlett-Packard Company - 2 - Version B.1. October 1986

DRAND48 (3C) HP-UX DRAND48 (3C)

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate uni­
formly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-known linear congruen­
tial algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point values uni­
formly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly distributed over the
interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the inter­
val [_231 , 231).

Functions srand48, seed48 and lcong48 are initialization entry points, one of which should be
invoked before either drand48, Irand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automatically if drand48, lrand48 or
mrand48 is called without a prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi, according to the linear
congruential formula

Xn+l = (aXn + C)mod m n 2:0.

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless lcong48 has been
invoked, the multiplier value a and the addend value c are given by

a = 5DEECE66D 16 = 2736731631558
C = B 16 = 138.

The value returned by any of the functions drand48, erand48, lrand48, nrand48, mrand48 or
jrand48 is computed by first generating the next 48-bit Xi in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned, are copied from the high-order
(leftmost) bits of Xi and transformed into the returned value.

Hewlett-Packard Company - 1 - Version B.1, October 1986

DRAND48 (3C) HP-UX DRAND48 (3C)

The functions drand48, lrand48 and mrand48 store the last 48-bit Xi generated in an internal
buffer; that is why they must be initialized prior to being invoked. The functions erand48,
nrand48 and jrand48 require the calling program to provide storage for the successive Xi values
in the array specified as an argument when the functions are invoked. That is why these routines
do not have to be initialized; the calling program merely has to place the desired initial value of
Xi into the array and pass it as an argument. By using different arguments, functions erand48,
nrand48 and jrand48 allow separate modules of a large program to generate several independent
streams of pseudo-random numbers, i.e., the sequence of numbers in each stream will not depend
upon how many times the routines have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits contained in its
argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16.

The initializer function seed48 sets the value of Xi to the 48-bit value specified in the argument
array. In addition, the previous value of Xi is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seed48. This returned pointer, which
can just be ignored if not needed, is useful if a program is to be restarted from a given point at
some future time - use the pointer to get at and store the last Xi value, and then use this value
to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi, the multiplier value a,
and the addend value c. Argument array elements param{O-f} specify Xi, param{9-5} specify the
multiplier a, and param{6} specifies the l6-bit addend c. After lcong48 has been called, a subse­
quent call to either srand48 or seed48 will restore the "standard" multiplier and addend values, a
and c, specified on the previous page.

SEE ALSO
rand(3C).

Hewlett-Packard Company - 2 - Version B.l, October 1986

ECVT(3C) HP-UX ECVT(3C)

NAME
ecvt, fcvt, gcvt, nLgcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
lnt ndlglt, *decpt, *signj

char *gcvt (value, ndigit, but)
double value;
int ndigit;
char *buf;

char *nLgcvt (value, ndigit, buf, langid)
double value;
int ndigit;
char *buf;
int langid;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and returns a pointer thereto. The
high-order digit is non-zero, unless the value is zero. The low-order digit is rounded. The posi­
tion of the decimal point relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). The decimal point is not included in the
returned string. If the sign of the result is negative, the word pointed to by sign is non-zero, oth­
erwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been rounded for printf "%r' (FOR­
TRAN F-format) output of the number of digits specified by ndigit.

Gcvt converts the value to a null-terminated string in the array pointed to by buf and returns
buj. It attempts to produce ndigit significant digits in FORTRAN F -format if possible, otherwise
E-format, ready for printing. A minus sign, if there is one, or a decimal point will be included as
part of the returned string. Trailing zeros are suppressed.

NLgcvt differs from gcvt only in that it uses langid to determine what the radix character should
be (e.g., '.' or ','). If langid is not valid, or information for langid has not been installed, the radix
character defaults to a period.

SEE ALSO
printf(3S), hpnls(5), langid(5).

BUGS
The values returned by ecvt and fcvt point to a single static data array whose content is overwrit­
ten by each call.

INTERNATIONAL SUPPORT
8-bit data, messages.

Hewlett-Packard Company - 1 - Version B.1, October 1986

END(3C) HP-UX END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of
etext is the first address above the program text, edata above the initialized data region, and end
above the uninitialized data region. Note that the definition of each of these is implementation­
dependent. See HARDWARE DEPENDENCIES below.

When execution begins, the program break (the first location beyond the data) coincides with
end, but the program break may be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S)), the profile (-p) option of cc(I), and so on. Thus, the current value of
the program break should be determined by sbrk(O) (see brk(2)).

HARDW ARE DEPENDENCIES
Series 500:

End is the lowest heap address available to the user. Etext and edata are not supported.

SEE ALSO

Memallc(2) is more efficient than malloc(3C) for setting the program break.

In C, these names must look like addresses. Thus, you would write &end instead of end to
access the current value of end.

cc(1), brk(2), malloc(3C), stdio(3S).

Hewlett-Packard Company - 1 - Version B.l, October 1986

ERF(3M) HP-UX

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double Xj

DESCRIPTION

Erl returns the error function of x, defined as + r e- t2 dt.
V7r u

ERF(3M)

ErIc, which returns 1.0 - erl(x) , is provided because of the extreme loss of relative accuracy if
erl(x) is called for large x and the result subtracted from 1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

Hewlett-Packard Company - 1 - Version B.1, October 1986

EXP(3M) HP-UX EXP(3M)

NAME
exp, log, 10glO, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS
#include <math.h>

double exp (x)
double Xj

double log (x)
double Xj

double loglO (x)
double Xj

double pow (x, Y)
double x, Yi

double sqrt (x)
double Xj

DESCRIPTION
Exp returns eX.

Log returns the natural logarithm of x. The value of x must be positive.

Logl0 returns the logarithm base ten of x. The value of x must be positive.

Pow returns 1f1. If x is zero, y must be positive. If x is negative, y must be an integer.

Sqrt returns the non-negative square root of x. The value of x may not be negative.

HARDW ARE DEPENDENCIES
Series 200, 300, 500:

The algorithms used are those from HP 9000 BASIC.

ERRORS
Exp returns HUGE when the correct value would overflow, or 0 when the correct value would
underflow, and sets errno to ERANGE.

Log and log10 return -HUGE and set errno to EDOM when x is non-positive. A message indi­
cating DOMAIN error (or SING error when x is 0) is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when x is 0 and y is non-positive, or when x is negative
and y is not an integer. In these cases a message indicating DOMAIN error is printed on the stan­
dard error output. When the correct value for pow would overflow or underflow, pow returns
±HUGE or 0 respectively, and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A message indicating DOMAIN error
is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

Hewlett-Packard Company - 1 - Version B.1, October 1986

FCLOSE(3S)

fclose, mush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *streamj

int mush (stream)
FILE *streamj

DESCRIPTION

HP-UX FCLOSE(3S)

Felose causes any buffered data for the named stream to be written out, and the stream to be
closed. Buffers allocated by the standard input/output system may be freed.

Felose is performed automatically for all open files upon calling exit(2).

Fflush causes any buffered data for the named stream to be written to that file. The stream
remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to write to a file that
has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

Hewlett-Packard Company - 1 - Version B.l, October 1986

FERROR(3S) HP-UX FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (stream)
FILE
*stream;

int feof (stream)
FILE
*stream;

void clearerr (stream)
FILE
*stream;

int fileno (stream)
FILE
*stream;

DESCRIPTION

NOTE

Ferror returns non-zero when an I/O error has previously occurred reading from or writing to the
named stream, otherwise zero. Unless cleared by clearerr, or unless the specific stdio routine so
indicates, the error indication lasts until the stream is closed.

Feo! returns non-zero when EOF has previously been detected reading the named input stream,
otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.

Fileno returns the integer file descriptor associated with the named stream; see open(2).

All these functions are implemented as macros; they cannot be declared or redeclared.

SEE ALSO
open(2), fopen(3S).

Hewlett-Packard Company - 1 - Version B.1. October 1986

FLOOR(3M) HP-UX

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double Xj

double ceil (x)
double Xj

double fmod (x, y)
double x, Yj

double fabs (x)
double Xj

DESCRIPTION

FLOOR(3M)

Floor returns the largest integer (as a double-precision number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero if y is zero or if x/y
would overflow; otherwise the number f with the same sign as x, such that x = iy + f for some
integer i, and I f I < I y I .

Fab8 returns the absolute value of x, I x I .

SEE ALSO
abs(3C).

Hewlett·Packard CompallY Version B.l, Octuber 1986

FOPEN(3S) HP-UX FOPEN(3S)

NAME
fopen, freopen, fdopen - open or re-open a stream file; con-vert file to stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (file-1lame, type)
char *file-1lame, *type;

FILE *freopen (file-1lame, type, stream)
char * file-1lame , *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
Fopen opens the file named by file_name and associates a stream with it. Fopen returns a
pointer to the FILE structure associated with the stream.

File_name points to a character string that contains the name of the file to be opened.

Type is a character string having one of the following values:

"r+"

"w+"

"a+"

open for reading

truncate or create for writing

append; open for writing at end of file, or create for writing

open for update (reading and writing)

truncate or create for update

append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream is closed,
regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE struc­
ture associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin, stdout and
stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are obtained from open, dup,
creat, or pipe(2), which open files but do not return pointers to a FILE structure stream. Streams
are necessary input for many of the Section 3S library routines. The type of stream must agree
with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening !seek or rewind,
and input may not be directly followed by output without an intervening !seek, rewind, or an
input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to overwrite
information already in the file. Fseek may be used to reposition the file pointer to any position in
the file, but when output is written to the file, the current file pointer is disregarded. All output
is written at the end of the file and causes the file pointer to be repositioned at the end of the out­
put. If two separate processes open the same file for append, each process may write freely to the
file without fear of destroying output being written by the other. The output from the two
processes will be intermixed in the file in the order in which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), popen(3S).

Hewlett-Packard Company - 1 - Version B.l, October 1986

FOPEN(3S) HP-UX FOPEN(3S)

DIAGNOSTICS
Fopen and /reopen return a NULL pointer if lile-name cannot be accessed, if there are too many
open files, or if the arguments are incorrect.

Fdopen returns a NULL if there are too many open files, or if the arguments are ill-formed.

Hewlett-Packard Company - 2 - Version B.l, October 1986

FREAD (3S) HP-UX FREAD(3S)

NAME
fread, fwrite ~ buffered binary input/output to a stream file

SYNOPSIS
#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int size, nit ems;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION
Fread copies, into an array pointed to by ptr, nitems items of data from the named input stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null byte) of length
size. Fread stops appending bytes if an end-of-file or error condition is encountered while reading
stream, or if nitems items have been read. Fread leaves the file pointer in stream, if defined,
pointing to the byte following the last byte read if there is one. Fread does not change the con­
tents of stream.

Fwrite appends at most nit ems items of data from the array pointed to by ptr to the named out­
put stream. Fwrite stops appending when it has appended nitems items of data or if an error
condition is encountered on stream. Fwrite does not change the contents of the array pointed to
by ptr.

The argument size is typically sizeo!(*ptr) where the pseudo-function sizeo! specifies the length of
an item pointed to by ptr. If ptr points to a data type other than char it should be cast into a
pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Fread and !write return the number of items read or written. If size or nitems is non-positive, no
characters are read or written and 0 is returned by both tread and !write.

Hewlett-Packard Company - 1 - Version B.1, October 1986

FREXP(3C) HP-UX FREXP(3C)

NAME
frexp, ldexp, modf - split floating-point into mantissa and exponent

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2n

, where the "mantissa" (fraction) x is in
the range 0.5 ~ I x I < 1.0, and the "exponent" n is an integer.

Frexp returns the mantissa of a double value, and stores the exponent indirectly in the location
pointed to by eptr. If value is zero, both results returned by Irexp are zero.

Ldexp returns the quantity value * 2exp
•

ModI returns the signed fractional part of value and stores the integral part indirectly in the loca­
tion pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, ±HUGE is returned (according to the sign of value), and errno is
set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set to ERANGE.

Hewlett-Packard Company - 1 - Version B.1, October 1986

FSEEK(3S) HP-UX FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, from the current position, or from the end
of the file, according as ptrname has the value 0, 1, or 2.

Rewind{stream) is equivalent to !seek (stream, OL, 0), except that no value is returned.

Fseek and rewind undo any effects of ungetc{3S).

After !seek or rewind, the next operation on a file opened for update may be either input or out­
put. Rewind also does an implicit clearerr (on !error{3S» call.

Fteii returns the offset of the current byte relative to the beginning of the file associated with the
named stream.

SEE ALSO
Iseek(2), ferror{3S), fopen{3S), popen{3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can be, for example,
an !seek done on a file that has not been opened via !open; in particular, !seek may not be used
on a terminal, or on a file opened via popen(3S).

Ftell returns -1 for error conditions.

WARNING
Although on HP-UX an offset returned by /tell is measured in bytes, and it is permissible to seek
to positions relative to that offset, portability to non-UNIX operating systems requires that an
offset be used by !seek directly. Arithmetic may not meaningfully be performed on such an offset,
which is not necessarily measured in bytes.

Hewlett-Packard Company - 1 - Version B.l, October 1986

FTW(3C) HP-UX FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path. For each object in the hierarchy,
ftw calls In, passing it a pointer to a null-terminated character string containing the name of the
object, a pointer to a stat structure (see stat(2)) containing information about the object, and an
integer. Possible values of the integer, defined in the <ftw.h> header file, are FTWJ for a file,
FTW -D for a directory, FTW -DNR for a directory that cannot be read, and FTW ~s for an
object for which stat could not successfully be executed. If the integer is FTW -DNR, descendants
of that directory will not be processed. If the integer is FTW ~S, the stat structure will contain
garbage. An example of an object that would cause FTW ~s to be passed to In would be a file in
a directory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of In returns a nonzero
value, or some error is detected within Itw (such as an I/O error). If the tree is exhausted, Itw
returns zero. If In returns a nonzero value, Itw stops its tree traversal and returns whatever value
was returned by In. If Itw detects an error, it returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument limits the number of
file descriptors so used. If depth is zero or negative, the effect is the same as if it were 1. Depth
must not be greater than the number of file descriptors currently available for use. Ftw will run
more quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because Itw is recursive, it is possible for it to terminate with a memory fault when applied to
very deep file structures.
It could be made to run faster and use less storage on deep structures at the cost of considerable
complexity.
Ftw uses malloc(3C) to allocate dynamic storage during its operation. If Itw is forcibly ter­
minated, such as by longjmp being executed by In or an interrupt routine, Itw will not have a
chance to free that storage, so it will remain permanently allocated. A safe way to handle inter­
rupts is to store the fact that an interrupt has occurred, and arrange to have In return a nonzero
value at its next invocation.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GAMMA (3M) HP-UX GAMMA (3M)

NAME
gamma, signgam - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

DESCRIPTION

Gamma returns In{ I r{x) I), where r{x) is defined as le-ttx-ldt. The sign ofr{x) is returned

in the external integer signgam. The argument x may not be a non-positive integer. (Gamma is
defined over the reals excluding the non-positive integers).

The following C program fragment might be used to calculate r:

if ({y = gamma{x)) > LN---.MAXDOUBLE)
error{);

y = signgam * exp{y);

where LN---.MAXDOUBLE is the least value that causes exp{3M) to return a range error, and is
defined in the <values.h> header file.

DIAGNOSTICS
For non-positive integer arguments HUGE is returned, and erTna is set to EDOM. A message
indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and sets erTna to ERANGE.

These error-handling procedures may be changed with the function matherr{3M).

SEE ALSO
exp{3M), matherr{3M), values(5).

Hewlett-Packard Company - 1 - Venion B.I, October 1986

GETC(3S) HP-UX GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream file

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE *streamj

int getchar ()

int fgetc (stream)
FILE *streamj

int getw (stream)
FILE *streamj

DESCRIPTION
Gete returns the next character (i.e., byte) from the named input stream, as an integer. It also
moves the file pointer, if defined, ahead one character in stream. Getehar is defined as
gete(stdin). Gete and getehar are macros.

Fgete behaves like gete, but is a function rather than a macro. Fgete runs more slowly than getc,
but it takes less space per invocation and its name can be passed as an argument to a function.

Getw returns the next word (Le. int in C) from the named input stream. Getw increments the
associated file pointer, if defined, to point to the next word. The size of a word is the size of an
integer and varies from machine to machine. Getw assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error. Because EOF is a valid
integer, terror(3S) should be used to detect getw errors.

WARNING

BUGS

If the integer value returned by gete, getehar, or tgete is stored into a character variable and then
compared against the integer constant EOF, the comparison may never succeed, because sign­
extension of a character on widening to integer is machine-dependent.

Because it is implemented as a macro, gete treats incorrectly a stream argument with side effects.
In particular, getc(*f++) does not work sensibly. Fgete should be used instead.
Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor.

Hewlett-Packard Company - 1 - Version B.l, October 1986

GETCWD(3C) HP-UX

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *buf;
int size;

DESCRIPTION

GETCWD(3C)

Getcwd returns a pointer to the current directory path-name. The value of size must be at least
two greater than the length of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc{3C). In this case, the
pointer returned by getcwd may be used as the argument in a subsequent call to free.

EXAMPLE

}

char *cwd, *getcwdOj

if ({cwd = getcwd{{char *)NULL, 64» == NULL) {
perror{" pwd") j
exit{l)j

printf{"%s\n", cWd)j

SEE ALSO
pwd(l), malloc(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error ocurrs in a lower-level
function.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETENV(3C) HP-UX

getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *namej

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ(5») for a string of the form name=value, and
returns a pointer to the value in the current environment if such a string is present, otherwise a
NULL pointer. Name may be either the desired name, null-terminated, or of the form
name=value, in which case getenv uses the portion to the left of the "=" as the search key.

SEE ALSO
exec(2), putenv(3C), environ(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETFSENT(3X) HP-UX GETFSENT (3X)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry

SYNOPSIS
#include <checklist.h>

struct checklist *getfsentO

struct checklist *getfsspec(spec)
char *specj

struct checklist *getfsfile(file)
char *filej

struct checklist * getfstype(type)
char *typej

int setfsent 0
int endfsentO

DESCRIPTION

FILES

Get/sent, get/sspec, get/sfile, and get/stype each return a pointer to an object with the following
structure containing the broken-out fields of a line in the /etc/checklist file. The structure is
declared in the <checklist.h> header file:

struct checklist{
char *fs-Bpec;
char *fs_bspec;
char *fs_dir;
char *fs_type;
int fs_passno;
int fs---.freq;

};

1* special file name * /
1* block special file name * /
/* file sys directory name * /
1* type: ro, rw, sw, xx * /
1* fsck pass number * /
/* backup frequency * /

The fields have meanings described in checklist(4). If the block special file name, the file system
directory name, and the type are not all defined on the associated line in /etc/checklist, these rou­
tines will return pointers to NULL in the fs_bspec, fs----.file and fs_type fields. If the pass number
or the backup frequency field are not present on the line, these routines will return -1 in the
corresponding structure member. Fs---.freq is reserved for future use.

Get/sent reads the next line of the file, opening the file if necessary.

Set/sent opens and rewinds the file.

End/sent closes the file.

Get/sspec and get/sfile sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Get/stype does likewise,
matching on the file system type field.

/ etc / checklist

AUTHOR
Get/sent was developed by the Hewlett-Packard Company, and the University of California,
Berkeley California, Computer Science Division, Department of Electrical Engineering and Com­
puter Science.

SEE ALSO
checklist (4)

DIAGNOSTICS
Null pointer (0) returned on EOF, invalid entry or error.

Hewlett-Packard Company - 1 - Version B.l, October 1986

GETFSENT (3X) HP-UX GETFSENT (3X)

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Hewlett-Packard Company - 2 - Version B.l, October 1986

GETGRENT (3C) HP-UX GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry

SYNOPSIS
#inelude <grp.h>

struct group *getgrent ()

struet group *getgrgid (gid)
int gid;

struet group *getgrnam (name)
ehar *name;

void setgrent ()

void endgrent ()

struet group *fgetgrent (f)
FILE *f;

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the fete/group file. Each line contains a "group"
structure, defined in the <grp.h> header file.

struct group {
char *gr---Ilamej
char *gr_passwdj
int gr_gidj
char **gr---IIlemj

}j

/ * the name of the group * /
/ * the encrypted group password * /
/ * the numerical group ID * /
/* null-terminated vector of pointers to member names */

Getgrent when first called returns a pointer to the first group structure in the filej thereafter, it
returns a pointer to the next group structure in the filej so, successive calls may be used to search
the entire file. Getgrgid searches from the beginning of the file until a numerical group id match­
ing gid is found and returns a pointer to the particular structure in which it was found. Get­
grnam searches from the beginning of the file until a group name matching name is found and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

Fgetgrent returns a pointer to the next group structure in the stream I, which matches the format
ot fete/group.

/etc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not other­
wise using standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin ()j

DESCRIPTION

HP-UX GETLOGIN(3C)

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same user ID is shared by
several login names.

FILES

If getlogin is called within a process that is not attached to a terminal, it returns a NULL pointer.
The correct procedure for determining the login name is to call cuserid, or to call getlogin and if it
fails to call getpwuid.

/etc/utmp

SEE ALSO
getgrent(3C), getpwent(3C), cuserid(3S), utmp(4).

DIAGNOSTICS
Getlogin returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETMSG(3C) HP-UX GETMSG(3C)

NAME
getmsg ~ get message from a catalog

SYNOPSIS
char *getmsg (fd, set-Dum, msg-Dum, buf, buffen)
int fd, set-Dum, msg-Dum, buflen;
char bufn;

DESCRIPTION
Getmsg attempts to read up to buften-l bytes of a message string into the area pointed to by buf.
A null byte is inserted to terminate the string placed in the buffer.

Fd is the file descriptor returned by a call to open(2) the catalog containing the messages.
SeLnum is available to group messages together into a logical unit. For instance, messages in
Finnish could be grouped in set number 6 to match the language id for Finnish (See langinfo(3C)
and langid(5)).

DIAGNOSTICS
Returns a pointer to an empty (nUll) string if fd is invalid or seLnum or msg_num is not in the
catalog.

AUTHOR
Getmsg was developed by the Hewlett-Packard Company.

SEE ALSO
gencat(l), insertmsg(l), read(2), hpnls(5).

INTERNATIONAL SUPPORT
8- and 16-bit data, messages.

Hf'w!Ptt-Packard Company - 1- \·pr~i()n B.l Octohpr 1986

GETOPT(3C) HP-UX GETOPT(3C)

NAME
getopt, optarg, optind, opterr - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, opt string)
int argCj
char **argv, *opstringj

extern char *optargj
extern int optind, opterrj

DESCRIPTION
Getopt returns the next option letter in argv (starting from argv[l]) that matches a letter in opt­
string. Optstring is a string of recognized option letters; if a letter is followed by a colon, the
option is expected to have an argument that mayor may not be separated from it by white space.
Optarg is set to point to the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. The external vari­
able optind is initialized to I before the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns
EOF. The special option - may be used to delimit the end of the options; EOF will be returned,
and - will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when it encounters an
option letter not included in optstring. This error message may be disabled by setting opterr to
zero.

WARNING
Options can be any ASCII characters except colon (:), question mark (?), or null (\0). It is
impossible to distinguish between a ? used as a legal option, and the character that getopt returns
when it encounters an invalid option character in the input.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can
take the mutually exclusive options a and b, and the options f and 0, both of which require argu­
ments:

main (argc, argv)
int argc;
char **argv;

int c;
extern char *optarg;
extern int optind;

while ((c = getopt(argc, argv, "abf:o:")) != EOF)
switch (c) {

Hewlett-Packard Company

case 'a':
if (bfig)

errfig++;
else

break;
case 'b':

if (afig)

afig++;

errfig++;

- I - Version B.I, October 1986

GETOPT(3C)

SEE ALSO
getopt(1).

HP-UX

else
bproc();

break;
case 'f':

ifile = optarg;
break;

case '0':

ofile = optarg;
break;

case '?':
errflg++;

}
if (errflg) {

}

fprintf(stderr, "usage: ... ");
exit (2);

for (; optind < argc; optind++) {
if (access (argv[optind], 4)) {

Hewlett-Packard Company - 2 -

GETOPT(3C)

Version B.1, October 1986

GETPASS(3C)

NAME
get pass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

HP-UX GETPASS(3C)

Getpass reads up to a newline or EOF from the file /dev/tty, after prompting on the standard
error output with the null-terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most 8 characters. If /dev /tty cannot be opened, a NULL
pointer is returned. An interrupt will terminate input and send an interrupt signal to the calling
program before returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs not otherwise
using standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, bur)
int uidj
char *bufj

DESCRIPTION

HP-UX GETPW(3C)

Getpw searches the password file for a user id number that equals uid, copies the line of the pass­
word file in which uid was found into the array pointed to by bul, and returns O. Getpw returns
non-zero if uid cannot be found. The line is null-terminated.
This routine is included only for compatibility with prior systems and should not be used; see
getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase, more than might be expected, the
size of programs not otherwise using standard I/O.

Hewlett-Packard Company - 1 - Version B.l, October 1986

GETPWENT(3C) HP-UX GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwenL - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uidj

struct passwd *getpwnam (name)
char *namej

void setpwent ()

void endpwent ()

struct passwd *fgetpwent (f)
FILE *fj

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the /etc/passwd file. Each line in the file contains a
"passwd" structure, declared in the <pwd.h> header file:

struct passwd {
char
char
int
int
char
char
char
char
char

};

*pw---Ilame;
*pw _passwd;
pw_uid;
pw_gid;
*pW-Boge;
*pw_comment;
*pw~ecos;

*pw_dir;
*pw----oShell;

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The pw_comment field is unused; the others have meanings described in passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter, it
returns a pointer to the next passwd structure in the file; so successive calls can be used to search
the entire file. Getpwuid searches from the beginning of the file until a numerical user id match­
ing uid is found and returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login name matching name is found, and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches.
Endpwent may be called to close the password file when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the stream f, which matches the for­
mat of /etc/passwd.

/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETPWENT (3C) HP-UX GETPWENT(3C)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not other­
wise using standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Hewlett-Packard Company - 2 - Version B.l, October 1986

GETS (3S) HP-UX GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *streamj

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array pointed to by s, until
a new-line character is read or an end-of-file condition is encountered. The new-line character is
discarded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by s, until n-1 characters are
read, or a new-line character is read and transferred to s, or an end-of-file condition is encoun­
tered. The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred to s
and a NULL pointer is returned. If a read error occurs, such as trying to use these functions on a
file that has not been opened for reading, a NULL pointer is returned. Otherwise s is returned.

Hewlett-Packard Company - 1 - Version B.l, October 1986

GETUT(3C) HP-UX GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp file entry

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent (

void utmpname (file)
char *file;

DESCRIPTION

(line)

Getutent, getutid and getutline each return a pointer to a structure of the following type:

struct

}:

char
char
char
short
short
struct

utmp {
ut_user[8] ;
uLjd[4];
ut-.line[12];
ut_pid;
ut_type;
exit-Btatus
short
short
uLexit:
ut __ time;

/ * User login name * /
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */
/* process id */
/ * type of entry * /
{
e_termination: / * Process termination status * /
L_exit: /* Process exit status */
/ * The f'xit status of a proress
/ * time entry was made * /

(;etutent reads ill the next entry from a utmp-1Ike hIe. If the tile is not already open, it opens it.
If it reaches the em! of the file, It fails.

Getutid searches forward from the Cllrn'nt point in the utmp file until it finds an entry with a
lit type matching lrl >l1t flJ'pr' ;f thP type sprritif'd i" RF\T LVL BOOT TI\l1':. OLD TI\1E
or :'IiE\V TI\IE. If rjjf' 'VP("!)("(d!f·d :ll ld is l:\fT PROf E:-;;-;. LOCI:'Ii FR()(f>.S.
T-~F.R PR()(L,,:-: ')r Dr:·\ii PIH)('F,,, flf'/'liuJ wiii f"''!Tn;\ po)!,:pr til ,h.· 1\·,h/,-:p

["tl;e .. :: ullt_ \)1 "_~~t~~<t" fU~ll L __

wnhout a lIlat(l:. it iails.

f t

!j'~jt lil'~llt :11 th~' 1drrlJl ~;!f:- il!!tll It ~:TlrL ... '-1n f"ntr-v !)f thr

i:')1 I,..., rb II 1],,0 Lat. :t utillu ,~iIlllg 11!,ltcblI1g the
j"; . i " l: ~1' j'lr ,1 Illat(tJ t L: i;

;;.:

n:,; :hc "tmp jk. It
.-\],-f'ldv :H t fa' prupN

o! .:,('/,t,.t l"lj_

GETUT(3C) HP-UX GETUT(3C)

Setutent resets the input stream to the beginning of the file. This should be done before each
search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from /etc/utmp to any
other file. It is most often expected that this other file will be /etc/wtmp. If the file does not
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname
does not open the file. It just closes the old file if it is currently open and saves the new file name.

The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. Each call to either getutid or getutline sees the routine examine
the static structure before performing more I/O. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each success, or getutline would just
return the same pointer over and over again. There is one exception to the rule about removing
the structure before further reads are done. The implicit read done by pututline (if it finds that it
is not already at the correct place in the file) will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just modified those contents
and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an unbuffered non-standard
write to avoid race conditions between processes trying to modify the utmp and wtmp files.

RETURNS
A NULL pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write.

A NULL pointer is also returned if the size of the file is not an integral mUltiple of sizeof{struct
utmp).

WARNINGS

FILES

Some vendors' versions of getutent erase the utmp file if the file exists but is not an integral multi­
ple of sizeof(struct utmp). Given the possiblity of user error in providing a name to utmpname
(such as giving improper arguments to who(l», HP-UX does not do this, but instead returns an
error indication.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

Hewlett-Packard Company - 2 - Version B.l, October 1986

GPIO_GET~TATUS (31) HP-UX GPIO_GET~TATUS (31)

NAME
gpio~eL . ..status - return status lines of GPIO card

SYNOPSIS
int gpio~eL....8tatu8 (eid)
int eid;

DESCRIPTION
Gpio_geLstatus enables you to read the status register of the GPIO interface associated with the
device file identified by eid. Eid is an entity identifier of an open GPIO device file obtained from
an open(2), dup(2), !cntl(2), or creat(2). The current state of each status line on the interface
card is mapped to the value returned, with STSO mapped to the least significant bit. Only x
least-significant bits are used, where x is the number of status lines available on the hardware
interface being used.

HARDW ARE DEPENDENCIES
Series 200/300 and 500

Eid is an integer file descriptor (fildes) that identifies an open device special file.
For the current GPIO card, x is 2.

RETURNS
Gpio_geLstatus returns the value of the status register of the GPIO interface associated with eid,
and -1 if an error was encountered.

ERRORS
Gpio_geLstatus fails under the following conditions and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF);

eid does not refer to a GPIO device file [ENOTTY).

Hewlett-Packard Company - 1 - Version B.l, October 1986

GPIO-BET_CTL (31) HP-UX GPIO-BET_CTL(31)

NAME
gpio-sct_ctl- set control lines on GPIO card

SYNOPSIS
int gpio---.Set_ctl (eid, value)
int eid, value;

DESCRIPTION
Gpio_seLctl enables you to set the control register of a GPIO interface. Eid is an entity
identifier of an open GPIO device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call.
Value is the value to be written into the control register of the GPIO interface associated with eid.

Value is mapped onto the control lines on the interface card, with the least significant bit mapped
to eTLO. Only the x least significant bits are used, where x is the number of control lines avail­
able on the hardware interface being used.

HARDW ARE DEPENDENCIES
Series 200, Series 300, Series 500

Eid is an integer file descriptor (fildes) that identifies an open device special file.

For the current GPIO card, x is 2.

RETURNS
Gpio_seLctl returns 0 if successful, and -1 if an error was encountered.

ERRORS
Gpio_seLctl fails under the following circumstances and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF];

eid does not refer to a GPIO device file [ENOTTY].

Hewlett-Packard Company - 1 - Version B.1, October 1986

HPm-ABORT (31) HP-UX

NAME
hpib_abort - stop activity on specified HP-IB bus

SYNOPSIS
int hpib-Abort (eid);
int eid;

DESCRIPTION

HPm-ABORT (31)

Hpib_abort terminates activity on the addressed HP-IB bus by pulsing the IFC line. Eid is an
entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), !cntl(2), or
creat(2) call.

Hpib_abort also sets the REN line and clears the ATN line. The status of the SRQ line is not
affected. The interface must be the system controller of the bus.

HARDW ARE DEPENDENCIES
Series 200/300:

The HP 98625A/B HP-IB interface does not clear the ATN line.

RETURN VALUE
Hpib_abort returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_abort fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

[EBADF]

[ENOTTY]

[EIO] the specified interface is not the system controller [EIO].

AUTHOR
Hpib_abort was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.1, October 1986

HPffi-BUS_ST ATUS (31) HP-UX HPIB-BUS-STATUS (31)

NAME
hpib_bus-Btatus - return status of HP-IB interface

SYNOPSIS
int hpib_bus---Btatus (eid, status);
int eid, status;

DESCRIPTION
Hpib_bus_status enables you to determine various status infonnation about an HP-IB chan­
nel. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2),
dup(2), jcntl(2) , or creat(2) calL Status is an integer detennining what status infonnation is
returned for a particular call. The values defined for status and their associated meanings are:

Value

o

2
3
4
5
6
7

Meaning

Is the channel currently in remote state?
What is the current state of the SRQ line?
What is the current state of the NDAC line?
Is the channel currently system controller?
Is the channel currently active controller?
Is the channel currently addressed as talker?
Is the channel currently addressed as listener?
What is the channel's bus address?

The remote state status is not defined when the interface is the active controller, although
reading remote state status in such a situation is not an error. Detennining the status of the
NDAC line is not available on all machines, and its use is therefore discouraged to ensure
compatibility among various systems. Machines which do not support sensing the NDAC line
return an error.

HARDW ARE DEPENDENCIES
Series 200, Series 300

The status of those lines being driven by the interface is undefined, although reading them
in such a situation is not an error. Non-active controllers cannot sense the SRQ line. Active
listeners cannot sense the NDAC line.

The HP 98625A/B HP-IB interface cannot detennine the current state of the NDAC line.
Attempts to read this line will fail and set ERRNO (see errno(2)) to EINVAL.

Series 500
A bug in the HP271l0A HP-IB interface causes an erroneous report of the state of the SRQ
line. There is a small window when hpib_bus_status(eid, 1) reports that the SRQ line is
clear when in reality it is set. OR-ing together five successive readings of the state of
the SRQ line yields a reading of about 99% accuracy.

RETURN VALUE
Hpib_bus_status's return value depends upon the value of status, as follows:

ERRORS

Status Return Value Meaning

0-6
0-6

7

-1
o
1

o - 30

Error condition.
False condition (line is clear).
True condition (line is set).
Bus address of interface card.

Hpib_bus_status fails under the following conditions, and sets errno (see errno(2)) to the value in
square brackets:

[EBADF] eid does not refer to an open file.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HPm---.BUS--ST A TUS (31) HP-UX

[ENOTTYj

AUTHOR

eid does not refer to an HP-IB raw bus device file

Hpib_bus_status was developed by HP.

Hewlett-Packard Company - 2 -

HPm---.BUS--ST A TUS (31)

Version B.1, October 1986

HPm_CARDJPOLL-RESP (31) HP-UX HPIB_CARDJPOLL-RESP (31)

NAME
hpib_carLppolLresp - control response to parallel poll on HP-IB

SYNOPSIS
int hpih_carLppolLresp (eid,fiag) j
int eid,fiagj

DESCRIPTION
Hpib_carLppolLresp enables an interface to enable (or disable) itself for parallel polls. It
also controls the sense, and determines the line on which the response is sent. This gives the
interface the ability to either ignore or respond to a parallel poll depending upon whether or
not it is enabled to respond.

Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2),
/cnt/(2), or creat(2) call. Flag is an integer having one of the following bit patterns:

Bit Pattern

10000
OSPPP

Meaning

Disable parallel poll response.
Enable parallel poll response, where
S = sense of the response, and
PPP = 3-bit binary number specifying the line on which the
response is sent (0 - 7 octal).

RETURN VALUE
Hpib_carLppolLresp returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_carLppolLresp fails under the following circumstances, and sets ermo (see errno(2)) to
the value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTY]

[EINVAL]

eid does not refer to an HP-IB raw bus device file.

the device cannot respond on the line number specified by flag.

HARDW ARE DEPENDENCIES
Series 500

Note that the HP 27110A HP-IB interface supports only enabling and disabling the parallel
poll response (bit 4 of flag). The sense and response line number are not programmable on
this card.

Series 200/300
The HP 98625A/B HP-IB interface supports only enabling and disabling the parallel poll
response (bit 4 of flag). The sense and response line number are not programmable on this
card.

Series 800

AUTHOR

Since the sense and response line number are not programmable on the HP27110B HP-IB
interface, the equivalent parallel poll configuration commands are sent over the HP-IB to the
interface. Therefore, this function will fail if the interface is not active controller.

Hpib_carLppolLresp was developed by HP.

SEE ALSO
hpib_ppoll{ 3I), hpib_ppoILresp_ctl{ 31).

Hewlett-Packard Company - 1 - Version B.l, October 1986

HPm-EOLCTL(31) HP-UX HPm-EOLCTL (31)

NAME
hpib_eoi_ctl - control EOI mode for HP-IB file

SYNOPSIS
int hpib_eoLctl (eid, flag);
int eid, flag;

DESCRIPTION
Hpib_eoLctl enables you to turn EOI mode on or off. Eid is an entity identifier of an open HP-IB
raw device file obtained from an open(2), dup(2), Jcntl(2), or creat(2) call. Flag is an integer
which, if non-zero, enables EOI mode, and otherwise disables it.

EOI mode causes the last byte of all subsequent write operations to be written out with the EOI
line asserted, signifying the end of the data transmission. By default, EOI mode is disabled when
the device file is opened.

Entity ids for the same device file obtained by separate open(2) requests have their own EOI
modes associated with them. Entity ids for the same device file obtained by dup(2) or inherited
hy a fnrk(2) request share the same EO! mode. In the latter case, if one process enables EO!
mode, then EOI mode is ill effect for all such entity ids.

RETURN VALUE
Hpib_eoLctl returns a 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_eoLctl fails under any of the following circumstances and sets errno (see errno(2)) to the
value in square brackets:

[EBADFj eid does not refer to an open file.

[ENOTTYj eid does not refer to an HP-IB device file [ENOTTYJ.

HARDW ARE DEPENDENCIES
Series 800

EOl mode is enabled when the device file is first opened.

EOl mode is associated with a given device. Therefore, multiple opens of the same device
share EOI mode.

AUTHOR
Hpib_eoLctl was developed by HP.

Hewlett-Packard Company - 1 - Version B.1. October 1986

HPIB~O(3I) HP-UX HPIB~O(3I)

NAME
hpib~o - perform I/O with an HP-IB channel from buffers

SYNOPSIS
#include <dvio.h>
int hpib~o(eid, iovec, iolen)
int eid;
struct iodetaiI *iovec;
int iolen;

DESCRIPTION
Hpib_io enables you to perform and control read and/or write operations on the specified HP-IB
bus. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2),
d1.lp(2) , fcntl(2), or creat(2) call. lovec is a pointer to an array of structures of the form:

struct iodetail { I I 1.
charmode;
char terminator;
int count;
char *buf;

The iodetail structure is defined in the include file libdvio.h. lolen specifies the number of struc­
tures in iovec.

The mode parameter in the iodetail structure describes what is to be done during I/O on the
buffer pointed to by buf Mode is constructed by OR-ing flags from the following list:

Only one of the following two flags must be specified:

HPIBREAD

HPIBWRITE

Perform a read of the HP-IB bus, placing data into the accompany­
ing bufl·er.

Perform a write to the HP-IB bus, using data from the accompany­
ing buffer.

The following flags may be used in most combinations (not all combinations are valid), or
not at all:

HPIBATN

HPIBEOI

HPIBCHAR

Data is written with ATN enabled.

Data written is terminated with EOI (this flag is ignored when HPI­
BA TN is enabled).

Data read is terminated with the character given in the terminator
element of the iodetail structure.

Terminator describes the termination character, if any, that should be checked for on input.
Count is an integer specifying the maximum number of bytes to be transferred.

A read operation terminates when either count is matched, an EOI is detected, or the desig­
nated terminator is detected (if HPIBCHAR is set in mode).

A write operation terminates when count is matched, and the final byte is sent with EOI asserted
(if HPIBEOI is set in mode).

If HPIBATN is set in mode, then write operations occur with ATN enabled. Setting HPIBATN for
a read operation is ignored and has no effect.

The members of the iovec array are accessed in order.

RETURN VALUES
If all transactions are successful, hpib_io returns a zero and updates the count element in each
structure in the iovec array to reflect the actual number of bytes read or written.

Hewlett-Packard Company - 1 - Version B.1, October 1986

HPIB--.lO (31) HP-UX HPIB--.lO(31)

If an error is encountered during a transaction defined by an element of iovec, hpib_io
returns without completing any transactions that might follow. In particular, if an error occurs,
hpib_io returns a -1, and the count element of the transaction which caused the error is set to -l.

ERRORS
Hpib_io fails under any of the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

[EBADFJ eid does not refer to an open file.

[ENOTIYJ

[EIOJ

[EIOJ

AUTHOR

eid does not refer to an HP-IB raw bus device file.

a timeout occurs.

eid is not the active controller.

Hpib_io was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 2 - Version B.l, October 1986

HP-UX

NA:ME
hpib_pasB-ctl- change active controllers on HP-IB

SYNOPSIS
int hpih_pasB-ctl (eid, ha)
int eid, haj

DESCRIPTION
Hpib_pasB-ctl passes control of a bus to an inactive controller on that bus. The inactive con­
troller becomes the active controller of that bus. Eid is an entity identifier of an open HP-IB raw
bus device file obtained from an open(2), dup(2), /cntl(2), or creat(2) call. Ba is the bus address
of the intended device.

Not all devices can accept control. Pass control passes only active control of the bus. It cannot
pass system control of the bus. The specified interface must be the current active controller
but need not be the system controller. The pass control operation does not suspend your pro­
gram if the inactive controller does not take active control of the bus. However, the interface is
no longer active controller.

RETURN VALUE
Hpib_pasB-ctl returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_pasB-ctl fails under any of the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTY]

[EIO]

AUTHOR

eid does not refer to an HP-IB raw bus device file.

the interface is not the active controller.

Hpib_pasB-ctl was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HPIB--.PPOLL (31) HP-UX HPIB--.PPOLL (31)

NAME
hpib_ppoll - conduct parallel poll on HP-IB bus

SYNOPSIS
int hpih_ppoll (eid);
int eid;

DESCRIPTION
Hpib_ppoll conducts a parallel poll on an HP-IB bus. Eid is an entity identifier of an open HP-IB
raw bus device file obtained from an open(2), dup(2), /cntl(2), or creat(2) call.

Devices enabled to respond and that are in need of service can then assert the appropriate DIO
line. This enables the controller to determine which devices, if any, need service at a given time.
Hpib_ppoll delays for 25 microseconds before returning with the response. The interface must
be the active controller to conduct a parallel poll.

RETURN VALUE
Hpib_ppoll returns an integer value whose least significant byte corresponds to the byte formed
by the 8 data input/output (DIO) lines. Devices enabled to respond to a parallel poll do so on
the appropriate DIO line. DIO line 0 corresponds to the least significant bit in the response
byte. A -1 return value indicates that an error occurred.

ERRORS
Hpib_ppoll fails under the following situations, and sets errno (see errno(2)) to the value in
square brackets:

[EBADF]

[ENOTTY]

[EIO]

AUTHOR

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the interface is not current the active controller.

Hpib_ppoll was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HPm-.PPOLL-.RESP _CTL (31) HP-UX HPm-.PPOLL-.RESP _CTL (31)

NAME
hpib_ppolu'esp_ctl - Define interface parallel poll response

SYNOPSIS
int hpib_ppolLresp_ctl (eid, response)
int eid, response;

DESCRIPTION
Eid is an entity identifier of an open HP-IB raw bus device file, obtained from an open(2), dup(2),
fcntl(2), or creat(2) call.

Hpib_ppoILresp_ctl defines a response to be sent when an active controller performs a parallel
poll on an HP-IB interface. The value of response indicates whether this computer does or does
not need service. A non-zero response value indicates that service is required. This statement only
sets up a potential response; no actual response if generated when the statement is executed. The
sense of the response and the line number to respond on are set by hpib_carLppoILresp(3I) or
by the active controller.

RETURN VALUE
Hpib_ppoILresp_ctl returns 0 if the response is successfully set, or -1 if an error has occured.

ERRORS
Hpib_ppoILresp_ctl fails under the following situations, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF]

[ENOTTY]

AUTHOR

eid does not refer to an open file.

eid does not refer to a raw HP-IB device file.

Hpib_ppoILresp_ctl was developed by the Hewlett-Packard Company.

SEE ALSO
hpib_ppoll(3I), hpib_carLppoILresp(3I)

Hewlett-Packard Company - 1 - Version B.I, October 1986

HP-UX

NAME
hpib---.rell-ctl - control the Remote Enable line on HP-IB

SYNOPSIS
int hpib-.reIL-ctl (eid, flag);
int eid, flag;

DESCRIPTION
Hpib_reTLctl enables/disables the Remote Enable (REN) line depending upon the value of
flag. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2),
dup(2), /cntl(2), or creat(2) call. Flag is an integer which, if non-zero, enables the REN line, and
otherwise disables it.

Hpib_reTLctl, in conjunction with hpib_senLcmnd(3I), enables you to place devices into the
remote state or local state. The REN line is normally enabled at all times, and is in this state at
power-up. Only the system controller may enable/disable the REN line.

RETURN VALUE
Hpib_reTLctl returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_reTLctl fails under the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

[EBADF]

IENOTTY]

IEIO]

AUTHOR

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the interface is not the system controller.

Hpib_reTLctl was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.I, October 1986

HPm-RQST~RVCE(3I) HP-UX HPm---RQST~RVCE(3I)

NAME
hpib-I"qsLsrvce - allow interface to enable SRQ line on HP-IB

SYNOPSIS
int hpib-I"qsL . ..srvce (eid, cv) j
int eid, CVj

DESCRIPTION
Hpib_rqsLsrvce specifies the response byte that the interface sends when it is serially polled by
the active controller. Eid is an entity identifier of an open HP-IB raw bus device file obtained
from an open(2), dup(2), /cntl(2}, or creat(2} call. Cv is an integer control value representation of
the desired response byte.

Hpib_rqsLsrvce optionally enables the SRQ line depending upon the response byte. If bit 6 of
the response byte is set, the SRQ line is enabled. It remains enabled until the active controller
conducts a serial poll or until the computer executes the request function with bit 6 cleared. The
SRQ line is not enabled, however, as long as the interface is active controller. If bit 6 is set, the
interface remembers its response byte, and enables the SRQ line when control is passed to another
device on the bus.

The response byte looks as follows:

Bit Meaning

o SPOLL bit (least significant bit of response byte)
1 SPOLL bit
2 SPOLL bit
3 SPOLL bit
4 SPOLL bit
5 SPOLL bit
6 SRQ line
7 SPOLL bit (most significant bit ofresponse byte)

HARDW ARE DEPENDENCIES
Series 500, 800:

Note that the HP 27110A HP-IB interface card allows only bit 6 to be set. All other bits are
cleared.

Series 200, 300:
The HP 98625AjB HP-IB interface card allows only bit 6 to be set. All other bits are
cleared.

RETURN VALUE
Hpib_rqsLsrvce returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_rqsLsrvce fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTY]

AUTHOR

eid does not refer to an HP-IB raw bus device file.

Hpib_rqsLsrvce was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.1, October 1986

HPm--SEND_CMND (31) HP-UX

NAME
hpib-BenLcmnd - send command bytes over HP-IB

SYNOPSIS
int hpib---BenLcmnd (eid, ca, length);
int eid, length;
char *caj

DESCRIPTION
Hpib_senLcmnd enables you to send arbitrary bytes of information on the HP-IB with the ATN
line asserted. This enables you to configure and control the bus. Eid is an entity identifier of
an open HP-IB raw bus device file obtained from an open(2), dup(2), !cntl(2), or creat(2) call. Ca
is a character pointer to a string of bytes to be written to the HP-IB bus as commands. Length is
an integer specifying the number of bytes in the string pointed to by ca.

The interface must currently be the active controller in order to send commands over the
bus.

Note that, for all HP-IB interfaces, both built~in and plug~in, the most significant bit of each byte
is overwritten with a parity bit. All commands are written with odd parity.

RETURN VALUE
Hpib_senLcmnd returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Hpib_senLcmnd fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF]

[ENOTTY]

[ElO]

AUTHOR

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the interface is not currently the active controller.

Hpib_senLcmnd was developed by HP.

Hewlett-Packard Company - I - Version B.I, October 1986

HPIB_SPOLL (31) HP-UX HPIB~POLL (31)

NAME
hpib-llpoll - conduct a serial poll on HP-IB bus

SYNOPSIS
int hpib-spoll (eid, ba);
int eid, ba;

DESCRIPTION
Hpib_spoll conducts a serial poll of the specified device. Eid is an entity identifier of an open RP­
IB raw bus device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Ba is the bus
address of the intended device.

Hpib_spoll polls a single device for its response byte. The infonnation stored in the response
byte is device specific with the exception of bit 6. If bit 6 of the response byte is set, the
addressed device has asserted the SRQ line, and is requesting service. (Note that the least
significant (right-most) bit of the response byte is bit 0.)

Not all devices respond to the serial poll function. Consult the device documentation. Specifying
a device that does not support serial polling may cause a timeout error or suspend your pro­
gram indefinitely (see hpib_rqsLsrvce(3I)). The interface cannot serial poll itself. The inter­
face must be the active controller.

RETURN VALUE
If hpib_spoll is successful, the device response byte is returned in the least significant byte of the
return value. Otherwise, -1 is returued, indicating an error.

ERRORS
Hpib_spoll fails under the following circumstances, and sets erTnO (see erTno(2)) to the value in
square brackets:

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

[EBAD]

[ENOTTY]

[EIO] the device polled did not respond before timeout, or the interface is not the
active controller.

[EINVAL]

AUTHOR

ba is the address of the polling interface itself.

Hpib_spoll was developed by the Hewlett-Packard Company.

SEE ALSO
hpib-Iqst-llrvce(31).

Hewlett-Packard Company - 1 - Version B.I, October 1986

HPIB-BT ATUS_ WAIT (31) HP-UX HPIB-BT ATUS_ WAIT (31)

NAME
hpib----Btatus_wait - wait until the requested status condition becomes true

SYNOPSIS
int hpib----Btatus_wait (eid, status);
int eid,status;

DESCRIPTION
Hpib_statUJLWait enables you to wait until a specific condition has occurred before returning.
Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2) , dup(2) ,
fcntl(2), or creat(2) call. Status is an integer specifying what information is returned. The possi­
ble values for status and their associated meanings are:

Status ~eaning

1 Wait until the SRQ line is enabled.
4 Wait until this channel is the active controller.
5 Wait until this channel is addressed as talker.
6 Wait until this channel is addressed as listener.

The wait is subject to the current timeout in effect. If a timeout occurs before the desired con­
dition occurs, the function returns with an error.

RETURN VALUE
Hpib_status_wait returns zero when the condition requested becomes true. A value of -1 is
returned if an error occurs. A -1 is also returned if a timeout occurs before the desired condition
becomes true.

ERRORS
Hpib_status_wait fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTY]

[EIO]

[EINVAL]

AUTHOR

eid does not refer to an HP-IB raw bus device file.

a timeout occurred.

status contains an invalid value.

Hpib_status_wait was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.1, October 1986

HP-UX HPIB_ W AIT_ON---.PPOLL (31)

NAME
hpib_wait_oD-ppoll - wait until a particular parallel poll value occurs

SYNOPSIS
int hpib_wait_o~ppoll (eid, mask, sense);
int eid, mask, sense;

DESCRIPTION
Hpib_waiLo11-ppoli waits for a parallel poll response to occur on one or more lines. Eid is an
entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), /cntl(2), or
creat(2) call.

Mask is an integer that specifies on which line the parallel poll response is expected. Mask's value
is obtained from an 8-bit binary number, each bit of which corresponds to one of the eight lines.
For example, if you want to wait for a response on lines 2 and 6, the correct binary number is
010001()(). This converts to a decimal equivalent of 68, which is the number you should assign to
mask.

Sense simply specifies what response you are expecting on the selected lines. Sense is constructed
in the same way as mask - eight bits for eight lines. If a bit is set, then the function returns when
the line corresponding to that bit is cleared. Similarly, if a bit in sense is clear, the function
returns when the corresponding line is set. Using the previous example, a sense = 000001()() = 4
(decimal) causes the function to return when line 6 is set, and return when line 2 is cleared.

RETURN VALUE
Hpib_waiLo11-ppoli returns a value of -1 if an error or timeout condition occurs. A successful
completion of the function returns the response byte XOR-ed with the sense value and AND-ed
with the mask.

ERRORS
Hpib_waiLo11-ppoli fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF]

[ENOTTY]

[EIO]

[EIO]

AUTHOR

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

a timeout occurred.

the interface is not currently the active controller.

Hpib_waiLo11-ppoli was developed by the Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HPIMAGE(3X) HPIMAGE(3X)

NAME

Series SOO Only

hpibegin, hpiclose, hpicontrol, hpidelete, hpiend, hpierror, hpifind, hpifindset, hpiget, hpiinfo, hpi­
lock, hpimemo, hpiopen, hpiput, hpiundo, hpiupdate, chpibegin, chpiclose, chpicontrol, chpidelete,
chpiend, chpierror, chpifind, chpifindset, chpiget, chpiinfo, chpilock, chpimemo, chpiopen, chpiput,
chpiundo, chpiupdate - ALLBASE/HP-UX HPIMAGE programmatic calls

REMARKS
The ALLBASE/HP-UX product must be previously installed on the system for hpimage program­
matic calls to function.

DESCRIPTION

FILES

This set of calls invokes the appropriate hpimage procedure or function calls for programmatically
accessing an ALLBASE/HP-UX HPIMAGE network database. FORTRAN and Pascal calls are
invoked with the calls that begin with "hpi." C calls are invoked with the calls that begin with
"chpi." The following descriptions apply to the C calls as well:

hpibegin

hpiclose

hpicontrol

hpidelete

hpiend

hpierror

hpifind

hpifindset

hpiget

hpiinfo

hpilock

hpimemo

hpiopen

hpiput

hpiundo

Designates the beginning of a transaction, and optionally writes user information
to the log file.

Terminates access to a database or a data set.

Enables or disables the return of chain information.

Deletes an entry from the database.

Defines the end of a transaction, commits the transaction, and optionally writes
user information to the log file.

Supplies a natural language message that interprets the status array as set by
any hpimage procedure.

Locates the first and last entries of a data chain in preparation for accessing that
chain.

Locates entries satisfying a given expression in preparation for access to those
entries.

Retrieves an entry in a data set.

Provides structural information about the database being accessed.

Locks a database or one or more data sets for exclusive access.

Writes user information to the log file.

Initiates access to a database.

Adds a new entry to a data set.

Undoes an uncommitted tranaction and optionally writes user information to the
log file. This procedure also defines the end of a transaction.

hpiupdate Modifies an existing entry in a database.

The hpimage programmatic calls can be executed by all system users.

/usr /bin/hpdbdaemon
/usr /bin/hpimage
/usr /lib/hpicaOOO

cleanup daemon program file
hpimage program file
hpimage message catalog file

AUTHOR
The hpimage programmatic calls were developed by Hewlett-Packard.

SEE ALSO
ALLBASE/HP-UX HPIMAGE Reference Manual.

Hewlett-Packard Company - 1 - October 1986

HSEARCH (3C) HP-UX HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION
Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a
pointer into a hash table indicating the location at which an entry can be found. Item is a struc­
ture of type ENTRY (defined in the <search.h> header file) containing two pointers: item.key
points to the comparison key, and item. data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to-character.) Action is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is indi­
cated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before hsearch is used. Nel is
an estimate of the maximum number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain mathematically favorable cir­
cumstances.

Hdestroy destroys the search table, and may be followed by another call to hcreate.

EXAMPLE
The following example will read in strings followed by two numbers and store them in a hash
table, discarding duplicates. It will then read in strings and find the matching entry in the hash
table and print it out.

#include <stdio.h>
#include <search.h>

struct info { / * this is the info stored in the table * /
int age, roomj /* other than the key. */

}j
#define NUM---.EMPL 5000 / * # of elements in search table * /

main(
{

/ * space to store strings * /
char string---space[NUM---.EMPL*20] j

/ * space to store employee info * /
struct info info---space[NUM---.EMPLlj

/ * next avail space in string---space * /
char *str_ptr = string---spacej

/ * next avail space in info---space * /

Hewlett-Packard Company - 1 - Version B.l, October 1986

HSEARCH (3C) HP-UX

struct info *info_ptr = info---space;
ENTRY item, *foun<LJtem, *hsearch();
/ * name to look for in table * /

char namEL-to---.find[30j;
int i = 0;

/ * create table * /
(void) hcreate(NU~MPL);

HSEARCH (3C)

while (scanf("%s%d%d", str_ptr, &info_ptr->age,
&info_ptr->room) != EOF && i++ < NU~MPL)

/* put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/ * put item into table * /
(void) hsearch(item, ENTER);

/ * access table * /
item.key = name_to---.find;
while (scanf("%s", item.key) != EOF) {

if ((foun<LJtem = hsearch(item, FIND)) != NULL) {

/ * if item is in the table * /
(void)printf("found %s, age = %d, room = %d\n",

foun<LJtem - > key,
((struct info *)foun<LJtem->data)->age,
((struct info *)foun<LJtem - > data) - > room);

} else {
(void)printf("no such employee %s\n",

name_to---find)

SEE ALSO
bsearch(3C), Isearch(3C), malloc(3C), string(3C), tsearch(3C), malloc(3X).

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or
the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the table.

WARNING
Hsearch and hcreate use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

Hewlett-Packard Company - 2 - Version B.1, October 1986

HYPOT(3M)

hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, Yi

DESCRIPTION

HP-UX HYPOT(3M)

Hypot returns sqrt(x * x + Y * y), taking precautions against unwarranted overflows.

ERRORS
When the correct value would overflow, hypot returns HUGE and sets errno to ERANGE.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

Hewlett-Packard Company - 1 - Version B.1, October 1986

INITGROUPS (3C) HP-UX INITGROUPS (3C)

NAME
initgroups - initialize group access list

SYNOPSIS
initgroups(name, basegid)
char *name;
int basegid;

DESCRIPTION

FILES

Initgroups reads through the login group file and sets up, using the setgroups(2) call, the group
access list for the user specified in name. The basegid is automatically included in the groups list.
Typically this value is given as the group number from the password file. If the login group file is
non-existent or empty basegid is the only member of the list.

/ etc /logingroup

AUTHOR
Initgroups was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
login(1), su(1), setgroups(2), group(4)

DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on getgrent(3C). If the invoking program uses any of these
routines, the group structure will be overwritten in the call to initgroups.

On most systems, no one seems to keep /etc/logingroup up to date.

Hewlett-Packard Company - 1 - Version B.L October 1986

INTRAPOFF (3M) INTRAPOFF (3M)
Series 500 Only

NAME
intrapoff, intrapon - disable/enable integer trap handler

SYNOPSIS
int intrapoff()

int intrapon()

Remarks:
Intrapoff and intrapon are implemented on the Series 500 only.

DESCRIPTION
The Series 500 architecture has a single trap handler for both integer overflow (an integer value
greater than 2'31-1) and integer divide-by-zero. By default, an operation which results in integer
overflow or integer divide-by-zero invokes the integer trap handler. Any integer divide-by-zero
generates the signal SIGFPE. As a side effect, any integer overflow also invokes the integer trap
handler. The trap handler recognizes integer overflow as a special case and simply returns to the
calling routine. A user sees no difference in results, but could see a severe performance degrada­
tion depending on how often the trap handler is invoked.

Intrapoff disables this integer trap handler. Integer overflow and integer divide-by-zero do not
invoke the integer trap handler. Instead, integer divide-by-zero returns a large integer (2'31-1).
Integer overflow operations simply overflow into the most significant bit. There is no performance
penalty since the trap handler is not entered.

A program doing many integer overflows could see a significant performance improvement. A
user must take care however, since integer divide-by-zero does not give signal SIGFPE while the
integer trap handler is disabled.

Intrapon restores the default condition. Integer divide-by-zero and integer overflow operations
invoke the integer trap handler. Integer divide-by-zero gives signal SIGFPE; integer overflow
results in a performance penalty caused by entering and leaving the integer trap handler.

When intrapoff is used, the integer trap handler is disabled at that procedural level and all levels
below it. It is not disabled for any procedural level above the procedure within which intrapoff
was called. For example,

a();
{

b();
{

c();
{

}

b(); /* Call function b. */

intrapoff() ;
c(); /* Call function c. */

/ * Do some work. * /

The integer trap handler is disabled for functions b and c. It is automatically re-enabled on exit
from function b. The integer trap handler can also be re-enabled at any time using intrapon.

EXAMPLES
The math library routine rand generates random integers using:

randx = randx * (((1103515245L + 12345»>16) & Ox7ffff)

Hewlett-Packard Company - 1 - October 1986

INTRAPOFF (3M) INTRAPOFF (3M)
Series 500 Only

where randx is an unsigned integer. The value assigned to randx is often greater than 2'31-1. To
avoid the performance degradation of entering the integer trap handler each time this occurs, the
integer trap can be turned off before the assignment using intrapoff.

Hewlett-Packard Company - 2 - October 1986

IO-.BURST(31) IO-.BURST (31)
Series 200/300 Only

NAME
io_ourst - perform low-overhead I/0 on an HP-IB/GPIO channel

SYNOPSIS
#include <dvio.h>
io_burst (eid, flag)

DESCRIPTION
lo_burst enables you to perform low-overhead burst transfers on the specified HP-IB or GPIO
channel. Eid is the entity identifier for an open HP-IB/GPIO device file returned by a previous
call to open(2), dup(2), creat(2), or /cntl(2) with an FDUPD command option. Flag is an integer
which, if non-zero, enables burst mode or, if zero, disables it.

In burst mode, memory-mapped I/O address space assigned to the interface card select code is
mapped directly into user space such that data can be transferred directly between user memory
and the interface card, eliminating the need for kernel calls and the associated overhead. Burst
mode affects only read(2), write(2), gpio_geLstatus(31) , gpio_seLctl(31) , hpib_io(31) , and
hpib_senLcmd(31) calls. All other operations are unaffected. When burst mode is enabled, the
interface is locked so that no other process can access it until burst mode is disabled.

To minimize overhead, termination reason (see io_geLterfn-reason(31)) is not supported in
burst mode.

HARDW ARE DEPENDENCIES
Series 200/300:

Eid is in integer file descriptor (fildes) that identifies an open device special file.

Timeouts for read(2), uirite(2) , gpio_geLstatus(31) , gpio_seLctl(31) , hpib_io(31) , and
hpib_senLcmd{3I) do not work while in burst mode, but these commands can be inter­
rupted by signals.

RETURN VALUE
lo_burst returns zero if successful or -1 if an error is detected.

DIAGNOSTICS
lo_burst fails under any of the following circumstances and sets errno (see errno(2)} to the value
in square brackets:

[EBADF]

[ENOTTY]

[EIO]

WARNING

eid does not refer to an open file.

eid does not refer to an HP-IB or GPIO device special file.

a timeout occurred during the call to ioburst.

Enabling burst mode locks the interface from all other processes, so it should never be used with
any interface that supports a system disk or swap device.

SEE ALSO
read(2), write(2), gpio_geL . ..Btatus(31), gpio-.Set_ctl(31), hpib---.io(31), hpib-.SenLcmd(31).

Hewlett-Packard Company - 1 - October 1986

IO-EOL_CTL (31) HP-UX

NAME
io_eoLctl - set up read termination character on special file

SYNOPSIS
int io_eoLctl (eid, 8ag, match);
int eid, 8ag, match;

DESCRIPTION
Io_eoLctl enables you to specify a character to be used in terminating a read operation from
the specified file id.

Eid is an entity identifier of an open HP-IB raw bus or GPIO device file obtained from an open(2),
dup(2), /cntl(2), or creat(2) call. Flag is an integer which enables or disables character-match ter­
mination. A non-zero value enables character-match termination, while a zero value disables it.
Match is an integer containing the numerical equivalent of the termination character. Match is
ignored if flag is zero. When in 8-bit mode, the lower 8 bits of match are used as the termination
character. In 16-bit mode, the lower 16 bits are used.

Upon opening a file, the default condition is character-match termination disabled. When
enabled, the character specified by match is checked for during read operations. The read is ter­
minated upon receipt of this character, or upon any of the other termination conditions nor­
mally in effect for this file. Examples of other conditions are satisfying the specified byte
count, and receiving a character when the EOI line is asserted (HP-IB). When the read is ter­
minated by a match character, this character is the last character returned in the buffer.

Entity ids for the same device file obtained by separate open(2) requests have their own ter­
mination characters associated with them. Entity ids for the same device file inherited by a
/ork(2) request share the same termination character. In the latter case, if one process
changes the termination character, the new termination character is in effect for all such
entity ids.

RETURN VALUE
Io_eoLctl returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Io_eoLcti fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

[EBADF]

[ENOTTY]

eid does not refer to an open file [EBADF];

eid does not refer to a channel device file.

HARDW ARE DEPENDENCIES
Series 500

When termination is requested in 16-bit mode, the upper byte of the halfword is examined
first, and then the lower byte. If the lower byte matches the termination character, all is as
expected. However, if the upper byte matches, the following action is taken:

both the upper and lower bytes are moved into the given buffer; and the count returned is
odd, indicating that there is a lower byte following the matching upper byte. This informa­
tion is passed to the upper level software to deal with as it pleases.

Series 800

AUTHOR

Termination patterns are associated with a given device. Therefore, multiple opens of the
same device share termination characters.

The GPIO interface does not support this function.

Io_eoLctl was developed by HP.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SEE ALSO
io_widtLctl{3I).

Hewlett-Packard Company

HP-UX

- 2 - Version B.l, October 1986

HP-UX

NAME
io~eLterm........reason - determine how last read terminated

SYNOPSIS
int io_get_term........reason (eid);
int eid;

DESCRIPTION
[o_geLterfn-reason returns the termination reason for the last read made on this entity id.
Eid is an entity identifier of an open HP-IB raw bus or GPIO device file obtained from an open(2),
dup(2), /cntl(2), or creat(2) call.

All entity ids descending from an open(2) request (such as from dup(2) or /ork(2» set this status.
For example, if the calling process had opened this entity id, and later forked, the status returned
would be from the last read done by either the calling process or its child.

RETURN VALUE
[o_geLterfn-reason returns a value indicating how the last read on the specified entity id was
terminated. This value is interpreted as follows (note that combinations are possible): I I r 1.
Value Description -1 An error was encountered while making this function
request. 0 Last read encountered some abnormal termination

reason not covered by any of the other reasons. 1 Last read terminated by reading
the number of bytes requested. 2 Last read terminated by detecting the specified

ERRORS

termination character. 4 Last read terminated by detecting some device-imposed
termination condition. Examples are: EOI for
HP-IB, PSTS line on GPIO, or
some other end-of-record condition, such as the physical
end-of-record mark on a 9-track tape.

[o_geLterfn-reason fails under the following circumstances, and sets errno (see errno(2» to the
value in square brackets:

[EBADFJ eid does not refer to an open file.

[ENOTTYJ eid does not refer to a channel device file.

HARDW ARE DEPENDENCIES
Series 200, Series 300

For the GPIO interface, PSTS is checked only at the beginning of a transfer. An interrupt
caused by an EIR will also terminate a transfer. The value of the termination reason in this
case is also 4.

Series 500
If the last read had multiple applicable termination reasons, such as having EOI asserted on
the last byte when that byte was the termination match character (see io_eoLctl(3I», the
highest numbered reason is used (in this case, 4). Since interactive terminals are treated
as record-oriented devices when they are in cooked mode, the termination reason is 4 when
terminated by a new-line character. If no read has been done on the entity id since it
was opened, the value of the termination reason is O.

Series 800
If a read request times out, io_geLterfn-reason will return a value of 8.

The GPIO interface does not support this function.

AUTHOR
[o_geLterfn-reason was developed by HP.

SEE ALSO
read(2), io_eoLctl(3I).

Hewlett-Packard Company - 1 - Version B.1, October 1986

IO-INTERRUPT_CTL (31) HP-UX IO-INTERRUPT _CTL (31)

NAME
io-.interrupt_ctl - enable/disable interrupts for the associated eid

SYNOPSIS
int io-1nterrupt_ctl (eid, enable-Hag)
int eid, enable-Hagj

DESCRIPTION
Eid is an entity identifier of an open HP-IB raw bus or GPIO device file, obtained from an open(2),
dup(2), !cntl(2), or creat(2) call. Flag is an integer which enables or disables interrupts for the
associated eid. A non-zero value enables interrupts.

Interrupts may be disabled or enabled by the user as desired. When an interrupt occurs for a
given eid the interrupts associated with this eid are automatically disabled from reoccurring.
Interrupts for this eid may be re-enabled by the user with io_interrupLctl.

RETURN VALUE
io_interrupLctl returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Io_interrupLctl fails under the following situations, and sets errno (see errno(2)) to the value in
square brackets:

[EBADF]

[ENOTTY]

[EINVAL]

AUTHOR

eid does not refer to an open file.

eid does not refer to a device that supports interrupts.

no interrupt conditions were specified for this eid.

Io_interrupLctl was developed by the Hewlett-Packard Company.

SEE ALSO
io_ofLinterrupt(31)

Hewlett-Packard Company - 1 - Version B.1, October 1986

IOJ.OCK(31) HP-UX IOJ.OCK (31)
Series 200, 300, 500 Only

NAME
io~ock, io_unlock - lock and unlock an interface

SYNOPSIS
int io~ock (eid)
int eidj
int io_unlock (eid)
int eidj

DESCRIPTION
Eid is an entity identifier of an open HP-IB or GPIO, device file, obtained from an open(2), dup(2) ,
/cntl(2), or creat(2) call.

This function attempts to lock the interface associated with an entity identifier to the requesting
process. Locking an interface gives exclusive use of the interface associated with the eid to the
requesting process, thus avoiding unintended interference from other processes during a series of
separate I/O requests. All the locks for a process are removed when the process closes the file or
terminates.

Other processes that attempt to access or lock a locked interface will either return an error or
sleep until the interface becomes unlocked. The action taken is determined by the current setting
of the O_NDELAY flag (see open(2). If the O_NDELAY flag is set, accesses to a locked inter­
face will fail and set errno to indicate the error. If the O_NDELA Y flag is not set, accesses to a
locked interface will block until the interface is unlocked, the current timeout expires, or the
request is interrupted by a signal.

A lock is associated with a process, not an eid. Locking an interface with a particular eid does not
prevent the process that owns the lock from accessing the interface through another eid. A lock
associated with an eid is not inherited by a child process during a /ork(2).

Nested locking is fully supported. If a process owns a locked interface and calls a generic subrou­
tine that does a lock and unlock, the calling process does not lose its lock on the interface. Lock­
ing requests produced by a given process for an interface already locked by the same process will
increment the current lock count for that interface.

lo_unlock allows a process to remove a lock from the interface associated with the eid. A locked
interface can be unlocked only by the process directly owning the lock. When an unlock operation
is applied to an eid that is currently multiply locked, the unlock operation decrements the current
lock counter for that interface, and the interface remains locked until the count is reduced to zero.

RETURNS
lo_lock and io_unlock return the integer value of the current lock count if successful. A lock
count greater than zero indicates that the interface is still locked. A lock count of zero indicates
that the interface is no longer locked. A -1 indicates that an error has occured.

lo_lock and io_unlock fail in the following situations, and set errno (see errno(2)) to the value in
square brackets:

[EACCES]

[EBADF]

[EINTR]

[EINVAL]

[EIO]

[ENOTTY]

an attempt is made to lock an interface locked by another process with
O--.NDELA Y set.

an eid does not refer to an open file.

a signal is caught while attempting to perform the lock with O--.NDELAY clear.

an attempt is made to unlock when the interface is not locked.

a timeout occurs while attempting to perform the lock with O--.NDELAY clear.

an eid does not refer to a channel device file.

Hewlett-Packard Company - 1 - Version B.l, October 1986

IO---LOCK (31)

[EPERM]

WARNING

HP-UX IO---LOCK (31)
Series 200, 300, 500 Only

an attempt is made to unlock when lock is not owned by this user.

lo_lock provides a mandatory lock enforced by the system and should not be used with any inter­
face supporting a system disk or swap device.

AUTHOR
lo_lock and io_unlock were developed by HP.

SEE ALSO
io_timeout_ctl(3I), open(2).

Hewlett-Packard Company - 2 - Version B.l, October 1986

IO_ON--.lNTERRUPT (31) HP-UX IO_ON--.lNTERRUPT (31)

NAME
io_oIL-interrupt - device interrupt (fault) control

SYNOPSIS
int (*io_on..jnterrupt (eid, causevec, handler»O
int eid;
struct interrupt-Btruct *causevec;
int (*handler)0;

handler (eid, causevec)
int eid;
struct interrupt-Btruct *causevec;

DESCRIPTION
Eid is an entity identifier of an open HP-IB raw bus. or GPIO device file, obtained from an
open(2), dup(2), !cntl(2), or creat(2) call.

Causevec is a pointer to a structure of the form:

struct interrupt~truct {
integer cause;
integer mask;

};

The interrupLstruct structure is defined in the file dvio.h.

The cause parameter is a bit vector specifying which of the interrupt or fault events will cause the
handler routine to be invoked. The interrupt causes are often specific to the type of interface
being considered. As well, certain exception (error) conditions can be handled using the
io_o1L-interrupt capability. Specifying a zero valued cause vector effectively turns off the inter­
rupt for that eid.

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. Mask is an
integer that specifies which parallel poll response lines are of interest. Mask's value is obtained
from an 8-bit binary number, each bit of which corresponds to on of the eight lines. For example,
if you want an interrupt handler invoked for a response on lines 2 or 6, the correct binary number
is 01000100. This converts to a decimal equivalent of 68, which is the number you should assign to
mask.

Upon occurrence of an enabled interrupt condition on the specified eid, the receiving process is to
execute the interrupt-handler function pointed to by handler. The Entity identifier eid and the
interrupt condition cause will be returned as the first and second parameters respectively.

When a interrupt that is to be caught occurs during a read, a write, an open, or an ioctl system
call on a slow device (like a terminal; but not a file), during a pause system call, during a sig­
pause(2) system call, or during a wait system call that does not return immediately due to the
existence of a previously stopped or zombie process, the interrupt handling function will be exe­
cuted and then the interrupted system call will return a -1 to the calling process with erTnO set to
EINTR.

Interrupts handlers are not inherited across a !ork(2). Eids for the same device file produced by
dup(2) share the same handler.

An interrupt for a given eid is implicitly disabled after the occurrence of the event. The interrupt
condition may be re-enabled with io_interrupLctl(3I).

Upon the occurrence of an event specified by cause, the receiving process is to execute the inter­
rupt handler function pointed to by handler. When the handler returns the user process resumes
at the point of execution left when the event occurred.

Hewlett-Packard Company - 1 - Version B.l, March 1987

IO_ON-INTERRUPT (31) HP-UX IO_ON-INTERRUPT (31)

Handler will he pa..'1Red two parameters, the eid associated with the event, alld a pointer to a
causevec structure. The cause of the interrupt can be detennined by the value returned in the
cause field of the causevec structure. If the interrupt handler was invoked due to a parallel poll
interrupt, then the mask field of the causevec structure will contain the parallel poll response
byte.

HPm INTERRUPTS
This section describes interrupt causes specific to an hpib device. For an hpib device the cause is a
bit vector which is used as follows. To enable a given event, the appropriate bit (in cause), shown
below, must be set to 1:

SRQ
TLK
LTN
TCT
IFC
REN
DCL
GET
PPOLL

GPIO INTERRUPTS

SRQ and active controller.
Talker addressed.
Listener addressed.
Controller in charge.
IFC has been asserted
Remote enable
Device clear
Group execution trigger
Parallel poll

This section describes interrupt causes specific to a GPIO device. For a GPIO device the cause is
a bit vector which is used as follows. To enable a given event, the appropriate bit (in cause),
shown below, must be set to 1:

EIR
SIEO
SIEI

RETURN VALUE

External interrupt
Status line 0
Status line 1

Io_oTLinterrupt returns a pointer to the previous handler if the new handler is successfully
installed, otherwise it returns a -1 and errno is set.

ERRORS
Io_oTLinterrupt can fail for any of the following reasons:

[EBADF] Eid does not refer to an open file.

[ENOTTY] Eid does not refer to a GPIO or a raw HP-IB device file.

[EFAULT] Handler points to an illegal address. The reliable detection of this error will be
implementation dependent.

[EFAULT] causevec points to an illegal address. [EFAULT] The reliable detection of this
error will be implementation dependent.

HARDW ARE DEPENDENCIES
Series 200

The default timeout for the GPIO interface is 15 seconds.

Series 200, 300
Timeout resolution is 20 msec.

Series 500
Parallel poll interrupts are not supported. The internal HP-IB supplied with the Model 550
will not support talker addressed, listener addressed, controller in charge, and remote enable
interrupts. GPIO interrupts on the EIR lines are not supported.

Hewlett-Packard Company - 2 - Version B.l, March 1987

IO_ON......INTERRUPT(3I) HP-UX IO_ON-INTERRUPT(3I)

Series 800
For the HP 27112 GPIO interface, the EIR interrupt is not available. For the HP 27114 GPIO
interface, only the EIR interrupt is available.

For the
HP 98622 GPIO interface, only the EIR interrupt is available. For the HP 98265A/B HP-IB
interface, the IPC and GET interrupts are not available.

AUTHOR
Io_o1L-interrupt was developed by HP.

SEE ALSO
pause(2), sigpause(2), io~nterrupt_ctl(3I).

Hewlett-Packard Company - 3 - Version B.1, March 1987

IO-RESET (31) HP-UX IO-RESET (31)

NAME
iO-Ieset - reset an I/O interface

SYNOPSIS
int iO-Ieset (eid);
int eid;

DESCRIPTION
lo_reset resets the interface associated with the device file that was opened. It also pulses the
peripheral reset line on the GPIO interface, or the IFC line on the HP-IB. Eid is an entity
identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2) , /cntl(2) , or
creat(2) call.

lo_reset also causes an interface to go through its self-test, and returns a failure indication if
the interface fails its test.

RETURN VALUE
lo_reset returns ° (zero) if successful, or -1 if an error was encountered.

ERRORS
lo_reset fails under the following circumstances, and sets ermo (see errno{f)} to the value in
square brackets:

IEBADF]

IENOTTY]

IEIO]

eid does not refer to an open file.

eid does not refer to a channel device file.

the interface could not be reset, or failed self-test.

HARDW ARE DEPENDENCIES
Series 200, Series 300

When an HP-IB interface is reset, the interrupt mask is set to 0, the parallel poll response is
set to 0, the serial poll response is set to 0, the HP-IB address is assigned, the IFC line is
pulsed (if system controller), the card is put on line, and REN is set (if system controller).

AUTHOR

When a GPIO interface is reset, the peripheral reset line is pulled low, the PCTL line is
placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out lines
are all cleared. The interrupt enable bit is also cleared.

Interface self-test is not supported.

lo_reset was developed by HP.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HP-UX IO-.SPEED_CTL(3I)

NAME
io-speeLctl - infonn system of required transfer speed

SYNOPSIS
int iO----8peeLctl (eid, speed);
int eid, speed;

DESCRIPTION
Io_speeLctl enables you to select the data transfer speed for a data path used for a particular
interface. The transfer method (i.e., DMA, fast-handshake) chosen by the system is detennined by
the speed requirements.

Eid is an entity identifier of an open HP-IB raw bus or GPIO device file obtained from an open(2),
dup(2), !cntl(2), or creat(2) call. Speed is an integer specifying the data transfer speed in K-bytes
per second (one K-byte equals 1024 bytes).

RETURN VALUE
Io_speeLctl returns 0 if successful, and -1 otherwise.

ERRORS
Io_speeLctl fails under the following condition, and sets errno to the value enclosed in square
brackets:

[ENOTTY]

[EBADF]

eid does not refer to channel device file.

eid does not refer to an open file.

HARDW ARE DEPENDENCIES
Series 200, Series 300

For values of speed less than 7, the system will use an interrupt transfer. For larger values,
DMA will be used if available; otherwise, the system will use an interrupt transfer. The
default transfer method is DMA.

Series 500, Series 800
DMA is the only supported transfer method.

AUTHOR
Io_speeLctl was developed by HP.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HP-UX

NAME
io_timeout_ctl - establish a time limit for I/O operations

SYNOPSIS
int io_tlmeout_ctl (eid, time);
int eid;
long time;

DESCRIPTION
Io_timeouLcti enables you to assign a timeout value to the specified entity id. Eid is an entity
identifier of an open HP-IB raw bus or GPIO device file obtained from an open(2), dup(2), fcntl(2),
or creat(2) call. Time is a 32-bit integer value specifying the length of the timeout in
microseconds.

This timeout applies to future read and write requests on this entity id. If a read or write request
does not complete within the specified time limit, the request is aborted and returns an error indi­
cation. If an operation is aborted due to a timeout, ermo(2) is set to ETIMEOUT.

Although the timeout value is specified in microseconds, the resolution of the timeout is system­
dependent. For example, a particular system might have a resolution of 10 milliseconds, in which
case the specified timeout value is rounded up to the next 10 msec boundary. A timeout value of
zero means that the system never causes a timeout. When a file is opened, a zero timeout value is
assigned by default.

Entity ids for the same device file obtained by separate open(2) requests have their own timeout
values associated with them. Entity ids for the same device file obtained by dup(2) or inherited
by a fork(2) request share the same timeout value. In the latter case, if one process changes the
timeout, the new timeout is in effect for all such entity ids.

RETURN VALUE
Io_timeouLctl returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
Io_timeouLcti fails under the following circumstances, and sets ermo (see errno(2)) to the value
in square brackets:

(EBADFJ eid does not refer to an open file.

[ENOTTYJ eid does not refer to a channel device file.

HARDWARE DEPENDENCIES
Series 200, Series 300

System timeout resolution is 20 msec.

Series 500
The ermo value for a timed-out request is EIO, specifying that a timeout has occurred. An
errinfo value of 56 is returned.

Series 800
Timeouts are associated with a given device. Therefore, multiple opens of the same device
share timeouts.

AUTHOR
Io_timeouLctl was developed by HP.

Hewlett-Packard Company - 1 - Version B.I, October 1986

10_ WIDTlLCTL (31) HP-UX 10_ WIDTlLCTL (31)

NAME
io_widtLctl - set width of data path

SYNOPSIS
int io_widtLctl (eid, width)
int eid, width;

DESCRIPTION
Io_widtLctl enables you to select the width of the data path to be used for a particular inter­
face. Eid is an entity identifier of an open device file obtained from an open(2), dup(2), fcntl(2),
or creat(2) call. Width is an integer specifying the width of the data path in bits.

An error is given if an invalid width is specified. Specifying a width with this function sets the
width for all users of the device file associated with the given entity id. When first opened, the
default width is 8 bits.

For the GPIO interface only widths of 8 and 16 bits are currently supported. FQr the HP-IB
interface only a width of 8 bits is supported.

RETURN VALUE
Io_widtLctl returns 0 if successful, and -1 if an error was encountered.

ERRORS
Io_widtLctl fails under the following circumstances, and sets ermo (see errno(2)) to the value in
square brackets:

[EBADF]

[ENOTTY]

[EINVALJ

AUTHOR

eid does not refer to an open file.

eid does not refer to a channel device file.

the specified width is not supported on this device file.

Io_widtLctl was developed by HP.

Hewlett-Packard Company - 1 - Version B.1, October 1986

L3TOL(3C) HP-UX L3TOL(3C)

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (lp, cp, n)
long *lpj
char *CPj
int nj

void Itol3 (cp, lp, n)
char *CPj
long *lpj
int nj

DESCRIPTION
L9tol converts a list of n three-byte integers packed into a character string pointed to by cp into
a list of long integers pointed to by Ip.

Ltol9 perfonns the reverse conversion from long integers (lp) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three bytes
long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent.

Hewlett-Packard Company - 1 - Version B.l, October 1986

LANGINFO (3C) HP-UX LANGINFO(3C)

NAME
langinfo, langtoid, idtolang, currlangid - information on user's native language as given by NLS

SYNOPSIS
#include <langinfo.h>

char *langinfo(langid, item)
int langid, itemj

int langtoid(langname)
char *langnamej

char *idtolang(langid)
int langidj

int currlangidO

DESCRIPTION
Langinfo retrieves a null-terminated string containing information unique to a language or cul­
tural area. For example langinfo{currlangid(), DAY _1) returns a pointer to the string "Dom" if
LANG (see environ(5)) is set to "portuguese", and "sun" if LANG is set to "finnish". The fol­
lowing items have been defined.

D_T--.FMT string for formatting date(l}

DA Y_l Name of the first day of the week ("Sunday" in English)

DAY_7 Name of the seventh day of the week

ABDA Y _1 Abbreviated name of the first day of the week ("Sun" in English)

ABDA Y _7 Abbreviated name of the seventh day of the week

MON_l Name of the first month in the Gregorian year

MON_12 Name of the twelfth month

ABMON_l Abbreviated name of the first month

ABMON_12 Abbreviated name of the twelfth month

RADIXCHAR radix character ("decimal point" in English)

THOUSEP

YESSTR

NOSTR

separator for thousands

affirmative response for yes/no questions

negative response for yes/no questions

CRNCYSTR symbol for currency preceded by '-' if it precedes the number, '+' if it follows the
number. For example, "-DM" would be used for German, "+ Kr" for Danish.

Currlangid looks for a LANG string in the user's environment. If it finds it, it returns the
corresponding integer listed in /angid(5). Otherwise it returns 0 to indicate a default to native-

Hewlett-Packard Company - 1 - Version B.1, October 1986

LANGINFO (3C) HP-UX LANGINFO (3C)

computer, the method used before Native Language Support (NLS) was available.

Idtolang takes the integer langid and attempts to return the corresponding character string
defined in langid(5). If langid is not found, an empty string is returned.

Langtoid is the reverse, trying to convert a string to a language ID, and returning 0 to indicate
native-computer if a match cannot be found.

AUTHOR
Langinfo was developed by the Hewlett-Packard Company.

SEE ALSO
getenv(3C), environ(5), hpnls(5), langid(5).

BUGS
Langinfo returns a pointer to a static area which is overwritten on each call.

INTERNATIONAL SUPPORT
8-bit data, messages.

Hewlett-Packard Company - 2 - Version B.l, October 1986

LOGNAME(3X)

NAME
logname - return login name of user

SYNOPSIS
char .logname()

DESCRIPTION

HP-UX LOGNAME(3X)

Logname returns a pointer to the null-terminated login name; it extracts the SLOGNAME vari­
able from the user's environment.

This routine is kept in /llb /libPW .a.

FILES
/etc/profile

SEE ALSO
env(l}, login(l}, profile(4}, environ(5}.

BUGS
The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

Hewlett-Packard Company - 1 - Version B.1, October 1986

LSEARCH (3C) HP-UX LSEARCH (3C)

NAME
lsearch, Hind - linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char *lsearch «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelpj
int (*compar)()j

char *lfind «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelpj
int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer
into a table indicating where a datum may be found. If the datum does not occur, it is added at
the end of the table.

Key

Base

Nelp

Compar

points to the datum to be sought in the table.

points to the first element in the table.

points to an integer containing the current number of elements in the table. The
integer is incremented if the datum is added to the table.

is the name of the comparison function which the user must supply (strcmp, for
example). It is called with two arguments that point to the elements being com-
pared. The function must return zero if the elements are equal and non-zero
otherwise.

Lfind is the same as lsearch except that if the datum is not found, it is not added to the table.
Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

EXAMPLE
This fragment will read in ~ T ABSIZE strings of length ~ ELSIZE and store them in a table, elim­
inating duplicates.

#include <stdio.h>

#define T ABSIZE 50
#define ELSIZE 120

char line [ELSIZEj, tab[TABSIZE][ELSIZEj, *lsearch()j
unsigned nel = OJ
int strcmp() j

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,

Hewlett-Packard Company - 1 - Version B.1, October 1986

LSEARCH (3C) HP-UX LSEARCH (3C)

ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both lsearch and lfind return a pointer to it. Otherwise, lfind
returns NULL and lsearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

Hewlett-Packard Company - 2 - Version B.l, October 1986

MALLOC(3C) HP-UX MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned sizej

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned sizej

char *calloc (nelem, elsize)
unsigned nelem, elsizej

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package. Mal/oc returns a
pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by mal/oc; after free is per­
formed this space is made available for further allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by mal/oc is overrun or if some random number
is handed to free.

Mal/oc allocates the first big enough contiguous reach of free space found in a circular search from
the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk (see
brk(2)) to get more memory from the system when there is no suitable space already free.

Real/oc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.
If no free block of size bytes is available in the storage arena, then realloc will ask mal/oc to
enlarge the arena by size bytes and will then move the data to the new space.

Realloc also works if ptr points to a block freed since the last call of mal/oc, realloc, or cal/oc;
thus sequences of free, malloc and realloc can exploit the search strategy of malloc to do storage
compaction.

Galloc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS

BUGS

NOTE

Malloc, realloc and calloc return a NULL pointer if there is no available memory or if the arena
has been detectably corrupted by storing outside the bounds of a block. When this happens the
block pointed to by ptr may be destroyed.

Free does not check its pointer argument for validity. When passed a null pointer (value 0), it
causes a memory fault.

Search time increases when many objects have been allocated; that is, if a program allocates but
never frees, then each successive allocation takes longer. For an alternate, more flexible imple­
mentation, see malloc(3X).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MALLOC(3X) HP-UX MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator

SYNOPSIS
#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *reaUoc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation package, which runs consid­
erably faster than the malloc(3C) package. It is found in the library "malloc" , and is loaded if
the option "-lmalloc" is used with cc(l) or Id(l).

Malloc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a point"er to a block previously allocated by malloc; after free is per­
formed this space is made available for further allocation, and its contents will usually have been
destroyed (but see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloc is overrun or if some random number
is handed to free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros.

Mallopt provides for control over the allocation algorithm. The available values for cmd are:
M-MXF AST Set maxfast to value. The algorithm allocates all blocks below the size of max fast in
large groups and then doles them out very quickly. The default value for maxfast is 24.
M-NLBLKS Set numlblks to value. The above mentioned "large groups" each contain numlblks
blocks. Numlblks must be greater than 1. The default value for numlblks is 100. M-GRAIN Set
grain to value. The sizes of all blocks smaller than maxfast are considered to be rounded up to
the nearest multiple of grain. Grain must be greater than O. The default value of grain is the
smallest number of bytes which will allow alignment of any data type. Value will be rounded up
to a multiple of the default when grain is set. M---.KEEP Preserve data in a freed block until the
next malloc, realloc, or calloc. This option is provided only for compatibility with the old version
of malloc and is not recommended.

These values are defined in the <malloc.h> header file.

Mallopt may be called repeatedly, but may not be called after the first small block is allocated.

Mallinfo provides instrumentation describing space usage, but may not be called until the first
small block is allocated. The max argument to mallinfo should always be specified as 0 for compa­
tibility with other systems. It returns the structure:

Hewlett-Packard Company - 1 - Version B.1, October 1986

MALLOC(3X)

struct mallinfo {
int arenaj
int ordblksj
int smblksj
int hblkhdj
int hblksj
int usmblksj
int fsmblksj
int uordblks;
int fordblks;
int keepcostj

HP-UX

/* total space in arena * /
1* number of ordinary blocks * /
1* number of small blocks * /
/* space in holding block headers * /
1* number of holding blocks * /
i* space in small blocks in use * /
1* space in free small blocks * /
1* space in ordinary blocks in use * /
1* space in free ordinary blocks * I
/* space penalty if keep option * /
/* is used */

This structure is defined in the <malloe.h> header file.

MALLOC(3X)

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
Malloe, realloe and ealloe return a NULL pointer if there is not enough available memory. When
realloe returns NULL, the block pointed to by ptr is left intact. If mallopt is called after any allo­
cation of a small block or if emd or value are invalid, non-zero is returned. Otherwise, it returns
zero.

WARNINGS
This package usually uses more data space than malloe(3C).
The code size is also bigger than malloe(3C).
Note that unlike malloe(3C), this package does not preserve the contents of a block when it is
freed, unless the ~EEP option of mallopt is used.
Undocumented features of malloe(3C) have not been duplicated.

Hewlett-Packard Company - 2 - Version B.l, October 1986

MATHERR(3M) HP-UX MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
#inelude <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are detected. Users may define
their own procedures for handling errors, by including a function named matherr in their pro­
grams. Matherr must be of the form described above. When an error occurs, a pointer to the
exception structure x will be passed to the user-supplied math err function. This structure, which
is defined in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double arg1, arg2, retval;

};

The element type is an integer describing the type of error that has occurred, from the following
list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurred the error.
The variables argl and arg2 are the arguments with which the function was invoked. Retval is
set to the default value that will be returned by the function unless the user's matherr sets it to a
different value.

If the user's matherr function returns non-zero, no error message will be printed, and errno will
not be set.

H matherr is not supplied by the user, the default error-handling procedures, described with the
math functions involved, will be invoked upon error. These procedures are also summarized in
the table below. In every case, errno is set to EDOM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 */
if (!strcmp(x->name, "sqrt")) {

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno * /

case SING:

Hewlett-Packard Company - 1 - Version B.1, October 1986

MATHERR(3M) HP-UX MATHERR(3M)

/ * all other domain or sing errors, print message and abort * /
fprintf(stderr, "domain error in %s\n", x->name)j
abort()j

case PLOSS:

}

/ * print detailed error message * /
fprintf(stderr, "loss of significance in %s(%g) = %g\n",

x-->name, x->argI, x->retval)j
return (1); 1* take no other action * /

return (0); /* all other errors, execute default procedure */

DEFAULT ERROR HANDLING PROCEDURES
Typ_es oLErrors

type DOMAIN SING OVERFLOW UNDERFLOW

ermo EDOM EDOM ERANGE ERANGE

BESSEL: - - - -

yO yl yn (arl!: < 0) M -H - - -

EXP: - - H 0

LOG, LOGlO:

(arg < 0) M,-H - - -

(arll: = 0) - M -H - -

POW: - - ±H 0

neg ** non-int M,O - - -

0.* non-pos

SQRT: M,O - - -

GAMMA: - MH H -

HYPOT: - - H -

SINH: - - ±H -

COSH: - - H -

SIN COS TAN: - - - -

ASIN ACOS ATAN2: M 0 - - -

ABBREVIATIONS
As much as possible of the value is returned.

M Message is printed (EDaM error).
H HUGE is returned.
-H -HUGE is returned.
±H HUGE or -HUGE is returned.
o 0 is returned.

Hewlett-Packard Company - 2 -

TLOSS PLOSS

ERANGE ERANGE

M,O *
- -

- -

- -

-

- -

- -

- -

- -

- -

- -

- -

M 0 *
-

Version B.I, October 1986

MEMORY (3C) HP-UX MEMORY (3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memory .h>

char *memccpy (81, 82, c, n)
char *81, *82;
int c, n;

char *memchr (8, c, n)
char *8;
int c, n;

int memcmp (81, 82, n)
char *81, *82;
int n;

char *memcpy (81, 82, n)
char *81, *82;
int n;

char *mem8et (8, c, n)
char *8;
int c, n;

DESCRIPTION

NOTE

BUGS

These functions ooerate as efficientlv as pOssible on memory areas (arrays of characters bounded
by a count, not terminated by a ~ull ~haracter). They do not check- for the overflow of any
receiving memory area.

Memccpy copies characters from memory area 82 into 81, stopping after the first occurrence of
character c has been copied, or after n characters have been copied, whichever comes first. It
returns a pointer to the character after the copy of c in 81, or a NULL pointer if c was not found
in the first n characters of 82.

Memchr returns a pointer to the first occurrence of character c in the first n characters of
memory area 8, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and returns an integer
less than, equal to, or greater than 0, according as 81 is lexicographically less than, equal to, or
greater than 82. (n less than or equal to zero yields eqUality). This routine uses unsigned char
for character comparison on HP-UX. This may not be true for other implementations.

Memcpy copies n characters from memory area 82 to 81. It returns 81.

Memset sets the first n characters in memory area 8 to the value of character c. It returns 8.

For user convenience, all these functions are declared in the optional <memory.h> header file.

Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

Hewlett-Packard Company - 1 - Version B.l, October 1986

MKTEMP(3C) HP-UX MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template by a unique file name, and
returns the address of template. The string in template should look like a file name with six trail­
ing Xs; mktemp will replace the XS with a letter and the current process ID. The letter will be
chosen so that the resulting name does not duplicate the name of an existing file. If there are less
than 6 Xs, the letter will be dropped first, and then high order digits of the process ID will be
dropped.

RETURN VALUE
Mktemp returns its argument except when it runs out of letters, in which case the result is a
pointer to the empty string "".

SEE ALSO
getpid(2).

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

Mktemp does not check to see if the file name part of template exceeds the maximum length of a
file name.

Hewlett-Packard Company - 1 - Version B.1, October 1986

MONITOR (3C) HP-UX
Series 200, 300, 800 Only

MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc -p automatically includes calls for monitor with default
parameters; monitor need not be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer
is the address of a (user supplied) array of bu/size WORDs (defined in the <mon.h> header file).
Monitor arranges to record a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The lowest address sampled is that of
lowpc and the highest is just below highpc. Lowpc may not equal ° for this use of monitor. At
most n/unc call counts can be kept; only calls of functions compiled with the profiling option -p
of cc(l) are recorded. (The C Library and Math Library supplied when cc -p is used also have
call counts recorded.)

For results to be significant, especially where there are small, heavily used routines, it is suggested
that the buffer be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)())2, ((int(*)())& etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor ((int (*)())O, (int(*)())O, 0, 0, 0);

Pro/(l) can then be used to examine the results.

/lib/libp/libc.a
/lib/libp/libm.a
mon.out

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

Hewlett-Packard Company - 1 - Version B.l, October 1986

HP-UX

NAME
~toupper, ~tolower - translate characters for use with NLS

SYNOPSIS
int nLtoupper (c, langid)
int c, langid;

int nLtolower (c, langid)
lnt c, langld;

DESCRIPTION
These routines are extensions of their counterparts in conv(3C). They function in the same way,
but have a second parameter whose value is expected to be one of the values defined in langid(5).
If langid is not one of these legal values, or if shift information for langid has not been installed,
they function as toupper() and tolower().

AUTHOR
NLconv was developed by the Hewlett-Packard Company.

SEE ALSO
conv(3C), ascii(5), hpnls(5), kana8(5), langid(5), roman8(5).

INTERNATIONAL SUPPORT
8-bit data

Hewlett-Packard Company - 1 - Version B.1, October 1986

NAME

HP-UX

nLjgalpha, I11-isupper, nLjglower, I11-isalnum, nUspunct, I11-isprint, I11-isgraph - classify
characters for use with NLS

SYNOPSIS
#include <nLctype.h>

int nLisalpha (c, langid)
int Cj int langidj

DESCRIPTION
These routines classify character-coded integer values by table lookup. Langid is as defined in
langid(5). Each is a predicate returning nonzero for true, zero for false. All are defined for the
range -1 to 255. If langid is not defined, or if type information for that language is not installed,
isalpha, isupper, etc. will be used, returning 0 for values above octal 0200.

nLisalpha c is a letter.

nLisupper

nLislower

nLisalnum

nLispunct

nLisprint

nLisgraph

DIAGNOSTICS

c is an upper-case letter.

c is a lower-case letter.

c is an alphanumeric (letter or digit).

c is a punctuation character (neither control nor alphanumeric).

c is a printing character.

c is a printing character, Hke nLisprint except false for space.

If the argument to any of these is not in the domain of the function, the result is undefined.

AUTHOR
NLctype was developed by the Hewlett-Packard Company.

SEE ALSO
ctype(3C), stdio(3S), ascii(5), hpnls(5) kana8(5), roman8(5).

INTERNATIONAL SUPPORT
8-bit data

Hewlett-Packard Company - 1 - Version B.1, October 1986

NL-BTRING (3C) HP-UX NL-BTRING (3C)

NAME
strcmp8, strncmpB, strcmp16, strncmp16 - non-ASCII string collation

SYNOPSIS
int strcmp8 (81, s2, langid, status)
unsigned char *sl, *s2;
int langid,*status;

int strncmp8 (sl, s2, n, langid, status)
unsigned char *sl, *s2;
int n, langid, *status;

int strcmp16 (sl, s2, flle--1lame, status)
unsigned char *sl, *s2, *file--1lame;
int *status;

int strncmp16 (sl, s2, n, flle--1lame, status)
unsigned char *sl, *s2, *flle--1lame;
int n, *status;

DESCRIPTION
These functions do not check for overflow of any receiving string.

Strcmp8 compares string sl and s2 according to the collating sequence specified by langid (See
langid(5)). An integer greater than, equal to, or less than 0 is returned, depending on whether sl
is, respectively, greater than, equal to, or less than s2. If langid or the collation sequence file is not
installed, the native machine collating sequence is used. Trailing blanks in string sl or s2 are
ignored. Strncmp8 makes the same comparison but looks at n characters at most.

Strcmp16 compares strings sl and s2 and returns an integer greater than, equal to, or less than 0
depending on whether sl is, respectively, greater than, equal to, or less than s2. Strings sl and s2
may contain 16-bit characters mixed with 7-bit and 8-bit characters (See hpnls(5)). Strings sl
and s2 are compared with 8-bit characters collating before 16-bit characters. Strncmp16 makes
the same comparison but looks at n characters at most.

Langinit (See nLtools_16{3C)) must be called before the first call to strcmp16 or strncmp16.

ERRORS
The integer pointed to by status is set to one of the following non-zero values defined in
usr/include/langin/o.h if an error condition is encountered. For ENOCFFILE and ENOLFILE,
errno indicates that a file system call failed.

[ENOCFFILE] access of the file /usr/lib/nls/config has failed.

[ENOCONV]

[ENOLFILE]

the entry for the language sought is not in the file /usr/lib/nls/config.

access of the data file /usr/lib/nls/LANG/collate8 or file_name has failed
(where LANG is the language name associated with the value of langid).

WARNINGS
The current versions of strcmp16 and strncmp16 do not support a collation sequence table (a null
string should be passed as file_name to maintain the correct argument count).

AUTHOR
NLstring was developed by HP.

SEE ALSO
nLtools_16(3C), coL..seq_8(4), hpnls(5), langid(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

HP-UX

NAME
DL-tools_16 - tools to process 16-bit characters

SYNOPSIS
int langinit (langname)
char *langname;

int firstof2(c)
int c;

int secof2(c)
int c;

int byte-Btatus(c, laststatus)
int c, laststatus;

#inc1ude <nLctype.h>

FffiSTof2(c)
int c;

SECof2(c)
int c;

BYTE---BTATUS(c, laststatus)
int c, laststatus;

CHARAT(p)
char *p;

ADVANCE(p)
char *p;

CHARADV(p)
char *p;

PCHAR(c, p)
int c;
char *p;

PCHARADV(c, p)
int c;
char *p;

DESCRIPTION
Langinit initializes a table according to the specified language name. This table is used by the
other 16-bit tools described herein to determine whether a byte may be the first or second byte of
a 16-bit character. This same table is also used by the 8-bit nLctype{3C) routines for character
classification. The nLctype{3C) routines implicitly call langinit if the table has not yet been
loaded or if the language specified is different from the language currently loaded in the table.
The 16-bit tools do not automatically call langinit: you must explicitly call langinit as appropri­
ate.

The argument to langinit, which is langname, must be a pointer to a null terminated string con­
taining a language name as defined in langid(5). If langname is NULL or points to a zero-length
string, langname defaults to "n-computer". Langinit returns zero if the table for the specified
language is loaded without error. If the table for the specified language cannot be loaded, langinit
loads the table with "n-computer" language data and returns a non-zero value.

FIRSTof2 takes a byte and returns a non-zero value if it may be the first byte of a two-byte char­
acter according to the currently loaded langinit table, and zero if it is not.

Hewlett-Packard Company - 1 - Version B.l, October 1986

HP-UX

SECo!~ takes a byte and returns a non=zero value if it may be the second byte of a two-byte char­
acter according to the currently loaded langinit table, and zero if it is not.

B YTE_ST A TUS returns one of the following values based on the value of the byte and the
status of the (presumably) last byte passed in as a parameter. These are the status values as
defined in <nLctype.h>:

ONEBYTE

SECOF2

FIRSTOF2

single byte character

second byte of 2-byte

first byte of 2-byte

Note that in order to validate a two-byte character, both the first and second bytf'.8 must be
judged individually to be valid. If the value of laststatus is FIRSTOF2 but SECo/2(c) returns
false, BYTE_STATUS(c, laststatus) will return ONEBYTE.

For the macros FIRSTo/2, SECo/2, and BYTE_STATUS results are undefined for values of c
less than zero or greater than 255.

CHARAT takes as an argument a pointer "p", which is assumed to be pointing at either a one­
byte character or the first byte of a two-byte character. In either case it returns the value of the
character; analogous to "*p".

ADVANCE advances its pointer argument by the width of the character it is pointing at (either
one or two bytes); analogous to "p++".

CHARADV combines the functions of CHARAT and ADVANCE in a single subroutine that
returns a character and advances a pointer argument beyond the last byte of the character; analo­
gous to "*p++".

PCHAR places one (c<256) or two (c>255) bytes of its integer argument, more significant byte
first, at the byte location specified by the pointer argument; analogous to "*p = c".

PCHARADV places one (c<256) or two (c>255) bytes of its integer argument, more significant
byte first, at the byte location specified by the pointer argument, and advances the pointer past
the last byte; analogous to "*p++ = c".

Note that PCHAR and PCHARADV should not be considered "replace_char" macros. For
example, they take no steps to ensure that the second byte of a two-byte character is not left dan­
gling if they over-write the first byte with a single-byte character.

CHARAT, ADVANCE, and CHARADVexamine the byte following the location pointed to by
the argument in order to check that it is a valid SECo/2 byte. If it is not a valid SECo/2 byte, the
preceding byte will always be treated as a single-byte character.

The functions firsto/2{} , seco/2{}, and by te_status{} , are subroutine versions of the corresponding
macros, and can be called from languages other than C.

AUTHOR
NLtools_16 was developed by HP.

SEE ALSO
langinfo(3C), nl_ctype(3C), hpnls(5), langid(5).

Hewlett-Packard Company - 2 - Version B.l, October 1986

NLIST(3C) HP-UX
Series 200, 300, 800 Only

NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (file-name, nl)
char .file-name;
struct nlist .nl;

REMARKS
The use of symbol table type and value information is inherently non-portable. Use of nlist
should reduce the effort required to port a program which uses such information, but complete
portability across all implementations of HP-UX cannot be expected.

DESCRIPTION
Nlist examines the name list in the executable file whose name is pointed to by file-name, and
selectively extracts a list of values and puts them in the array of nlist structures pointed to by nl.
The array of nlist structures initially contains only the names of variables. Once nlist has been
called, the variable names are augmented with types and values. The list is terminated by a null
name, which consists of a null string in the variable name position of the structure. The name list
of the file is searched for each variable name. If the name is found, type and value information
from the file is inserted into the name list structure. If the name is not found, type and value
fields are set to zero. The structure nlist is defined in the include file <nlist.h>. See a.out(4)
and nlist{ 4) for further description of the symbol table structure.

The file must have the organization and symbol table described for an a.out file in a.out(4). The
information is extracted from the symbol table used by the loader, Id{l).

On machines which have such a file, this subroutine is useful for examining the system name list
kept in the file /hp-ux. In this way programs can obtain system addresses that are up to date.

RETURNS

NOTES

All nlist structure fields are set to 0 if the file cannot be found or if it is not a valid object file con­
taining a linker symbol table.

Nlist returns -1 upon error; otherwise it returns O.

The <nlist.h> header file is automatically included by <a.out.h> for compatibility. However, if
the only information needed from <a.out.h> is for use of nlist, then including <a.out.h> is
discouraged. If <a.out.h> is included, the line "#undef IL....llame" may need to follow it.

SEE ALSO
a.out(4), nlist(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

PERROR(3C) HP-UX PERROR(3C)

NAME
perror, errno, sys-errlist, sys---.nerr - system error messages

SYNOPSIS
void perror (s)
char *S;

extern int errno;

extern char *sys-errlist[];

extern int sYS-I1err;

DESCRIPTION
Perror produces a message on the standard error output, describing the last error encountered
during a call to a system or library function. The argument string s is printed first, then a colon
and a blank, then the message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The error number is taken from the
external variable ermo, which is set when errors occur but not cleared when non-erroneous calls
are made.

If given a null-string, the function perror prints only the message and a new-line.

To simplify variant formatting of messages, the array of message strings sYlLerrlist is provided;
errno can be used as an index in this table to get the message string without the new-line.
SYlLnerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

If the user's LANG shell variable is set, perror also attempts to return a translation of the error
message.

HARDW ARE DEPENDENCIES
Series 500:

The error indicator errin/o is implemented in addition to ermo, enabling you to obtain a
more detailed description of the error.

SEE ALSO
errno(2).

Hewlett-Packard Company - 1 - Version B.1, October 1986

POPEN(3S) HP-UX POPEN(3S)

NAME
popen, pclose - initiate pipe I/O to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (command, type)
char *command, *typej

int pclose (stream)
FILE *streamj

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing, respectively, a shell
command line and an I/O mode, either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed. The value returned is a stream
pointer such that one can write to the standard input of the command, if the I/O mode is w, by
writing to the file stream; and one can read from the standard output of the command, if the I/O
mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and a type w as
an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created, or if the shell cannot be
accessed.

Pclose returns -1 if stream is not associated with a "popened" command.

If the original and "popened" processes concurrently read or write a common file, neither should
use buffered I/O, because the buffering gets all mixed up. Problems with an output filter may be
forestalled by careful buffer Hushing, e.g. with fflush; see jclose(3S).

Hewlett-Packard Company - 1 - Version B.1, October 1986

PRINTF(3S) HP-UX PRINTF(3S)

NAME
printf, fprintf, sprintf - print ionnatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg 1
char *format;

int fprintf (stream, format [, arg 1 ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg 1 ...)
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprintf places "output", followed by the null character (\0), in consecutive bytes
starting at *s; it is the user's responsibility to ensure that enough storage is available. Each func­
tion returns the number of characters transmitted (not including the \0 in the case of sprint!), or
a negative value if an output error was encountered.

Each of these functions converts, fonnats, and prints its args under control of the format. The
format is a character string that contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient args for the fonnat. If the
fonnat is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value
has fewer characters than the field width, it will be padded on the left (or right, if the
left-adjustment flag '-', described below, has been given) to the field width. If the field
width for an s conversion is preceded by a 0, the string is right adjusted with zero­
padding on the left.

A precision that gives the minimum number of digits to appear for the d, 0, u, x, or X
conversions, the number of digits to appear after the decimal point for the e and f conver­
sions, the maximum number of significant digits for the g conversion, or the maximum
number of characters to be printed from a string in s conversion. The precision takes the
fonn of a period (.) followed by a decimal digit string; a null digit string is treated as
zero.

An optionall (ell) specifying that a following d, 0, u, x, or X conversion character applies
to a long integer arg, or an optional h specifying that a following d, 0, u, x, or X conver­
sion character applies to a short integer argo A 1 before any other conversion character is
ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this
case, an integer arg supplies the field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen, so the args specifying field width or precision must
appear before the arg (if any) to be converted.

The flag characters and their meanings are:

Hewlett-Packard Company - 1 - Version B.1, October 1986

PRINTF(3S)

+
blank

HP-UX PRINTF(3S)

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign (+ or -).
If the first character of a signed conversion is not a sign, a blank will be prefixed to the
result. This implies that if the blank and + flags both appear, the blank flag will be
ignored.
This flag specifies that the value is to be converted to an "alternate form." For c, d,
s, and u conversions, the flag has no effect. For ° conversion, it increases the precision
to force the first digit of the result to be a zero. For x or X conversion, a non-zero
result will have Ox or OX prefixed to it. For e, E, f, g, and G conversions, the result
will always contain a decimal point, even if no digits follow the point (normally, a
decimal point appears in the result of these conversions only if a digit follows it). For
g and G conversions, trailing zeroes will not be removed from the result (which they
normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal, decimal, or hexade­
cimal notation (x and X), respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For compatibility with older versions,
padding with leading zeroes may alternatively be specified by prepending a zero to the
field width. This does not imply an octal value for the field width.) The default preci­
sion is 1. The result of converting a zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the style "[-Jddd.ddd",
where the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, six digits are output; if the precision is expli­
citly 0, no decimal point appears.

e,E The float or double arg is converted in the style "[-Jd.ddde±ddd", where there is one
digit before the decimal point and the number of digits after it is equal to the preci­
sion; when the precision is missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits.

g,G The float or double arg is printed in style for e (or in style E in the case of a G for­
mat code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent result­
ing from the conversion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters from the string are

printed until a null character (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are printed. A NULL value
for arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by print/ and /print/ are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form " Sunday, July 3, 10:02", where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

Hewlett-Packard Company - 2 - Version B.1, October 1986

PRINTF(3S) HP-UX PRINTF(3S)

To print 1r to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

Hewlett-Packard Company - 3 - Version B.I, October 1986

PRINTMSG (3C) HP-UX PRINTMSG (3C)

NAME
printmsg, fprintmsg, sprintmsg - print formatted output with numbered arguments

SYNOPSIS
#include <stdio.h>

int printmsg (format [, arg I ...
char *formatj

int fprintmsg (stream, format [, arg I ...)
FILE *streamj
char *formatj

int sprintmsg (s, format [, arg I ...)
char *s, formatj

DESCRIPTION
Printmsg , fprintmsg , and sprintmsg are derived from their counterparts in printf(3S), with the
amplification that the conversion character % is replaced by the sequence %digitS. Digit is a
decimal digit n in the range 1-9, and indicates that this conversion should be applied to the nth
argument, rather than to the next unused one. All other aspects of formatting are unchanged.
All conversion specifications must contain the %digitS sequence, and it is the user's responsibility
to make sure the numbering is correct. All parameters must be used exactly once.

EXAMPLE
To create a language independent date and time printing routine we would write

printmsg(format, weekday, month, day, hour, min);

For American usage format would be a pointer to the string

"%l$s, %2$s %3$d, %4$d:%5$.2d"

and for German usage to a string

"%l$s, %3$d %2$s %4$d:%5$.2d"

the resulting outputs will be "Sunday, July 3, 10:02", and "Sonntag, 3 Juli 10:02", assuming
that the proper strings have been passed in.

AUTHOR
Printmsg was developed by the Hewlett-Packard Company.

SEE ALSO
getmsg(3C), printf(3S), hpnls(5).

INTERNATIONAL SUPPORT
8-bit data, messages.

Hewlett-Packard Company - 1 - Version B.1, October 1986

PUTC(3S) HP-UX PUTC(3S)

NA~.fE

putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
tnt c;
FILE *stream;

int putchar (c)
int e;

int fpute (e, stream)
int c;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION
Pute writes the character e onto the output stream (at the position where the file pointer, if
defined, is pointing). Putehar{ e) is defined as pute{ e, stdout). Pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro; it may therefore be used as an
argument. Fpute runs more slowly than pute, but it takes less space per invocation and its name
can be passed as an argument to a function.

Putw writes the word (i.e., tnt in C) w to the output stream (at the position at which the file
pointer, if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. Putw neither assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by default buffered if
the output refers to a file and line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of /reopen (see /open(3S» will cause it to
become buffered or line-buffered. When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as written; when it is buffered, many characters
are saved up and written as a block. When it is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed (that is, as soon as a new-line
character is written or terminal input is requested). Fflush can also be used to explicitly write the
buffer. Setbu/(3S) or setvbu/ (on setbu/(3S») may be used to change the stream's buffering stra­
tegy.

SEE ALSO
fclose(3S), ferror{3S), fopen{3S), getc(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

DIAGNOSTICS

BUGS

On success, these functions each return the value they have written. On failure, they return the
constant EOF. This will occur if the file stream is not open for writing or if the output file cannot
be grown. Because EOF is a valid integer, /error(3S) should be used to detect putw errors.

Line buffering may cause confusion or malfunctioning of programs which use standard I/O rou­
tines but use read(2) themselves to read from standard input. In cases where a large amount of
computation is done after printing part of a line on an output terminal, it is necessary to ffiush
(on /close(3S») the standard output before going off and computing so that the output will
appear.

Because it is implemented as a macro, pute treats incorrectly a stream argument with side effects.
In particular, putc(e, *f++); doesn't work sensibly. Fpute should be used instead.

Hewlett-Packard Company - 1 - Version B.1, October 1986

PUTC(3S) HP-UX PUTC(3S)

Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor.

Hewlett-Packard Company - 2 - Version B.1, October 1986

PUTENV(3C) HP-UX PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *stringj

DESCRIPTION
String points to a string of the form "name = value. " Putenv makes the value of the environment
variable name equal to value by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environment, so altering the string will
change the environment. The space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via malloe for an expanded
environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS
Putenv manipulates the environment pointed to by environ, and can be used in conjunction with
getenv. However, envp (the third argument to main) is not changed.
This routine uses malloe(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then exit the cal­
ling function while string is still part of the environment.

Hewlett-Packard Company - 1 - Version B.1, October 1986

PUTPWENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION

HP-UX PUTPWENT(3C)

Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure as created by
getpwent (or getpwuid or getpwnam) , putpwent writes a line on the stream /, which matches the
format of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise zero.

SEE ALSO
getpwent(3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

PUTS (3S) HP-UX PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *streamj

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line character, to the
standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character. Note that puts appends a new-line charac­
ter, but /puts does not.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that has
not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while /puts does not.

Hewlett-Packard Company - 1 - Version B.1, October 1986

QSORT(3C) HP-UX QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort «char *) base, nel, sizeof (*base), compar)
unsigned nel;
int (*compar)();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

Base points to the element at the base of the table. Nel is the number of elements in the table.
Compar is the name of the comparison function, which is called with two arguments that point to
the elements being compared. The function passed as compar must return an integer less than,
equal to, or greater than zero as a consequence of whether its first argument is to be considered
less than, equal to, or greater than the second. This is the same return convention that strcmp
uses.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
sort(l), bsearch(3C), Isearch(3C), string(3C).

BUGS
If width is zero, a divide-by-zero error may be generated.

Hewlett-Packard Company - 1 - Version B.1, October 1986

RAND (3C) HP-UX

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

RAND (3C)

Rand uses a multiplicative congruential random-number !\enerator with period 232 that returns
successive pseudo-random numbers in the range from 0 to 2 5_1.

NOTE

Brand can be called at any time to reset the random-number generator to a random starting
point. The generator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired. Drand48(3C) provides a much
better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

REGCMP(3X) HP-UX REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (stringl [, string2, 000], (char *)0)
char *stringl, *string2, 000;

char *regex (re, subject[, retO, 000])
char ue, *subject, *retO, 000;

extern char *--1ocl;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled form. Malloc(3C) is
used to create space for the vector. It is the user's responsibility to free unneeded space so allo­
cated. A NULL return from regcmp indicates an incorrect argument. Regcmp(l) has been writ­
ten to generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional arguments are passed to
receive values back. Regex returns NULL on failure or a pointer to the next unmatched character
on success. A global character pointer _loc1 points to where the match began. Regcmp and
regex were mostly borrowed from the editor, ed(l); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated meanings.

[] * 0 A

S

These symbols retain their current meaning.

Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For example, [a-z] is equivalent to
[abcd 0 0 oxyz]. The - can appear as itself only if used as the first or last charac­
ter. For example, the character class expression []-] matches the characters
] and-.

+ A regular expression followed by + means one or more times. For example,
[0--9]+ is equivalent to [0--9][0--9]*.

{m} {m,} {m,u}

(.. 0)Sn

(...)

Integer values enclosed in {} indicate the number of times the preceding regular
expression is to be applied. The value m is the minimum number and u is a
number, less than 256, which is the maximum. If only m is present (e.g., {m}),
it indicates the exact number of times the regular expression is to be applied.
The value {m,} is analogous to {m,infinity}. The plus (+) and star (*) opera­
tions are equivalent to {I,} and {O,} respectively.

The value of the enclosed regular expression is to be returned. The value will be
stored in the (n+l)th argument following the subject argument. At most ten
enclosed regular expressions are allowed. Regex makes its assignments uncondi­
tionally.

Parentheses are used for grouping. An operator, e.g., *, +, {}, can work on a
single character or a regular expression enclosed in parentheses. For example,
(M(cb+)*)$O.

By necessity, all the above defined symbols are special. They must, therefore, be escaped to be
used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp(''' \n", 0)), cursor);

Hewlett-Packard Company - 1 - Version B.1, October 1986

REGCMP(3X) HP-UX REGCMP(3X)

free{ptr);

This example will match a leading new-line in the subject string pointed at by cursor.

Example 2:
char retO[9J;
char *newcursor, *name;

name = regcmp{" ([A-Za-zj[A-za-zo-9_]{0,7})$0",0);
newcursor = regex{name, "123Testing321", retO);

This example will match through the string "Testing3" and will return the address of the charac­
ter after the last matched character (cursor+ll). The string "Testing3" will be copied to the
character array retO.

Example 3:
#include "file.i"
char *string, *newcursor;

newcursor = regex{name, string);

This example applies a precompiled regular expression in file.i (see regcmp{l)) against string.

This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(l), regcmp(l), malloc(3C).

The user program may run out of memory if regcmp is called iteratively without freeing the vec­
tors no longer required. The following user-supplied replacement for malloc(3C) reuses the same
vector saving time and space:

/* user's program */

char *
malloc(n)
unsigned n;
{

static char rebuf[512Jj
return (n <= sizeof rebuf) ? rebuf : NULL;

}

Hewlett-Packard Company - 2 - Version B.1, October 1986

SCANF(3S) HP-UX SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion, read from stream file

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer 1 ...
char *format;

int fscanf (stream, format [, pointer 1
FILE *stream;
char *format;

int sscanf (s, format [, pointer 1 ...
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input .stream.
Sscanf reads from the character string 8. Each function reads characters, interprets them accord­
ing to a format, and stores the results in its arguments. Each expects, as arguments, a control
string format described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to direct interpreta­
tion of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in two cases
described below, cause input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing

character *, an optional numerical maximum field width, an optional 1 (ell) or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the
variable pointed to by the corresponding argument, unless assignment suppression was indicated
by *. The suppression of assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non-space characters; it extends to the next inap­
propriate character or until the field width, if specified, is exhausted. For all descriptors except
"[" and "c", white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding pointer argu­
ment must usually be of a restricted type. For a suppressed field, no pointer argument is given.
The following conversion codes are legal:

% a single % is expected in the input at this point; no assignment is done.

d

u

o

x

a decimal integer is expected; the corresponding argument should be an integer
pointer.

an unsigned decimal integer is expected; the corresponding argument should be
an unsigned integer pointer.

an octal integer is expected; the corresponding argument should be an integer
pointer.

a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SCANF(3S)

e,f,g

s

c

HP-UX SCANF(3S)

a floating point nnmber is expected; the next field is converted accordingly and
stored through the corresponding argument, which should be a pointer to a float.
The input format for floating point numbers is an optionally signed string of
digits, possibly containing a decimal point, followed by an optional exponent field
consisting of an E or an e, followed by an optional +, -, or space, followed by an
integer.

a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a
terminating \0, which will be added automatically. The input field is terminated
by a white-space character. Note that scan/will not read a null string.

a character is expected; the corresponding argument should be a character
pointer. The normal skip over white space is suppressed in this case; to read the
next non-space character, use % Is. If a field width is given, the corresponding
argument should refer to a character array; the indicated number of characters is
read.

indicates string data and the normal skip over leading white space is suppressed.
The left bracket is followed by a set of characters, which we will call the scanset,
and a right bracket; the input field is the maximal sequence of input characters
consisting entirely of characters in the scanset. The circumflex ('), when it
appears as the first character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters not contained in the
remainder of the scanset string. There are some conventions used in the con­
struction of the scanset. A range of characters may be represented by the con­
struct first-last, thus [0123456789] may be expressed [0-9]. Using this conven­
tion, first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last
character in the scanset. To include the right square bracket as an element of
the scanset, it must appear as the first character (possibly preceded by a
circumflex) of the scanset, and in this case it will not be syntactically interpreted
as the closing bracket. The corresponding argument must point to a character
array large enough to hold the data field and the terminating \0, which will be
added automatically. At least one character must match for this conversion to
be considered successful.

The conversion characters d, u, 0, and x may be preceded by I or h to indicate that a pointer to
long or to short rather than to int is in the argument list. Similarly, the conversion characters
e, f, and g may be preceded by I to indicate that a pointer to double rather than to float is in
the argument list. The I or h modifier is ignored for other conversion characters.

Scan! conversion terminates at EOF, at the end of the control string, or when an input character
conflicts with the control string. In the latter case, the offending character is left unread in the
input stream.

Scan! returns the number of successfully matched and assigned input items; this number can be
zero in the event of an early conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%t%s", &i, &x, name);

Hewlett-Packard Company - 2 - Version B.l, October 1986

SCANF(3S) HP-UX SCANF(3S)

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain
thompson\O. Or:

int i; float x; char name[50);
(void) scanf("%2d%f%*d %[0-9)", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar (see getc(3S» will return a.

SEE ALSO
getc(3S), printf(3S), strtod(3C), strtol(3C).

NOTE
Trailing white space (including anew-line) is left unread unless matched in the control string.

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

Hewlett-Packard Company - 3 - Version B.l, October 1986

SETBUF(3S) HP-UX SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream file

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE *streamj
char *buf;

lnt setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION
Setbu! may be used after a stream has been opened but before it is read or written. It causes the
array pointed to by bu! to be used instead of an automatically allocated buffer. If bu! is the NULL
pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is needed:

char buf[BUFSlzj;

Setvbu! may be used after a stream has been opened but before it is read or written. Type deter­
mines how stream will be buffered. Legal values for type (defined in stdio.h) are:

--IOFBF

--IOLBF

--IONBF

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be flushed when a newline is writ­
ten, the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

If bu! is not the NULL pointer, the array it points to will be used for buffering, instead of an
automatically allocated buffer (from malloe). Size specifies the size of the buffer to be used. The
constant BUFSIZ in <stdio.h> is suggested as a good buffer size. If input/output is unbuffered,
bu! and size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully buffered.

HARDW ARE DEPENDENCIES
Series 500:

The system call memalle(2) is used instead of malloe.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

NOTE

If an illegal value for type or size is provided, setvbu! returns a non-zero value. Otherwise, the
value returned will be zero.

A common source of error is allocating buffer space as an "automatic" variable in a code block,
and then failing to close the stream in the same block.

Hewlett-Packard Company - 1 - Version B.l, October 1986

SETJMP(3C) HP-UX SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

int -Betjmp(env)
jmp_buf enVj

void --.longjmp(env, val)
jmp_buf enVj
int valj

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a low-level sub­
routine of a program.

Setjmp saves its stack environment in env (whose type, jmp_bu/, is defined in the <setjmp.h>
header file) for later use by longjmp. It returns the value o.
Longjmp restores the environment saved by the last call of setjmp with the corresponding env
argument. After longjmp is completed, program execution continues as if the corresponding call
of setjmp (which must not itself have returned in the interim) had just returned the value val.
Longjmp cannot cause setjmp to return the value o. If longjmp is invoked with a second argu­
ment of 0, setjmp will return 1. All accessible data have values as of the time longjmp was called.

Upon the return from a setjmp call caused by a longjmp, the values of any non-static local vari­
ables belonging to the routine from which setjmp was called are undefined. Code which depends
on such values is not guaranteed to be portable.

Setjmp and longjmp save and restore the signal mask (see sigvector(2)) , while _setjmp and
_longjmp manipulate only the stack and registers. This distinction is only significant for pro­
grams which use sigvector(2), sigblock(2), and/or sigsetmask(2).

If a longJ'mp is executed and the environment in which the setjmp was executed no longer exists,
errors can occur. The conditions under which the environment of the setjmp no longer exists
include: exiting the procedure which contains the setjmp call, and exiting an inner block with tem­
porary storage (e.g. a block with declarations in C, a with statement in Pascal), This condition
mayor may not be detectable. An attempt is made by determining if the stack frame pointer in
env points to a location not in the currently active stack. If this is the case, longJ'mp will return a
-1. Otherwise, the longjmp will occur, and if the environment no longer exists, the contents of the
temporary storage of an inner block are unpredictable. This condition may also cause unexpected
process termination. If the procedure has been exited the results are unpredictable.

Passing longjmp a pointer to a buffer not created by setjmp, or a buffer that has been modified by
the user, can cause all the problems listed above, and more.

Some implementations of Pascal support a try/recover mechanism, which also creates stack
marker information. If a longjmp operation occurs in a scope which is nested inside a try/recover,
and the corresponding setJ'mp is not inside the scope of the try/recover, the recover block will not
be executed and the currently active recover block will become the one enclosing the setjmp (if
there is one).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SETJMP(3C) HP-UX SETJMP(3C)

NOTES
A call to /ongjmp to leave the guaranteed stack space reserved by sigspace(2) may remove the
guarantee that the ordinary execution of the program will not extend into the guaranteed space.
It may also cause the program to forever loose its ability to automatically increase the stack size,
and the program may then be limited to the guaranteed space.

The result of using setjmp within an expression may be unpredictable.

SEE ALSO
sigblock(2), signal(2), sigsetmask(2), sigspace(2), sigvector(2).

WARNING
If longjmp is called even though env was never primed by a call to setjmp, or when the last such
call was in a function which has since returned, absolute chaos is guaranteed.

Hewlett-Packard Company - 2 - Version B.l, October 1986

SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

HP-UX SINH (3M)

Sinh, cosh, and tanh return respectively the hyberbolic sine, cosine and tangent of their argu­
ment.

ERRORS
Sinh and cosh return HUGE (and sinh may return -HUGE for negative x) when the correct
value would overflow and set ermo to ERANGE.

These error-handling procedures may be changed with the function matherr{3M).

SEE ALSO
matherr{3M).

Hewlett-Packard Company - 1 - Version B.1, October 1986

SLEEP (3C) HP-UX SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned long sleep (seconds)
unsigned long seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the argu­
ment. The actual suspension time may be less than that requested for two reasons: (1) Because
scheduled wakeups occur at fixed I-second intervals, (on the second, according to an internal
clock) and (2) because any caught signal will terminate the sleep following execution of that
signal's catching routine. Also, the suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The value returned by sleep will be
the "unslept" amount (the requested time minus the time actually slept) in case the caller had an
alarm set to go off earlier than the end of the requested sleep time, or premature arousal due to
another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal)
occurs. The previous state of the alarm signal is saved and restored. The calling program may
have set up an alarm signal before calling sleep. If the sleep time exceeds the time till such alarm
signal, the process' sleeps only until the alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine returns. If the sleep time is less than the
time till such alarm, the prior alarm time is reset to go off at the same time it would have without
the intervening sleep.

Seconds must be less than 232.

SEE ALSO
alarm(2), pause(2), signal(2).

Hewlett-Packard Company - 1 - Version B.I, October 1986

SPUTL(3X) HP-UX SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
void sputl (value, buffer)
long value;
char * buffer;

long sgetl (buffer)
char * buffer;

DESCRIPTION
Sputl takes the four bytes of the long integer value and places them in memory starting at the
address pointed to by buffer. The ordering of the bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer and returns
the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent way of storing long numeric
data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object-file access routine library
libld.a.

Hewlett-Packard Company - 1 - Version B.l, October 1986

SSIGNAL(3C) HP-UX SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action»()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar to signal(2). This facility is used by the
Standard C Library to enable users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 15. A call to ssignal associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a software signal causes the action esta­
blished for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user-defined)
action function or one of the manifest constants SIG-DFL (default) or SIG---IGN (ignore). Ssig­
nal returns the action previously established for that signal type; if no action has been established
or the signal number is illegal, ssignal returns SIG-DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG-DFL and
the action function is entered with argument sig. Gsignal returns the value returned to it
by the action function.

If the action for sig is SIG---IGN, gsignal returns the value 1 and takes no other action.

If the action for sig is SIG-DFL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value 0
and takes no other action.

SEE ALSO
signal(2).

NOTES
There are some additional signals with numbers outside the range 1 through 15 which are used by
the Standard C Library to indicate error conditions. Thus, some signal numbers outside the
range 1 through 15 are legal, although their use may interfere with the operation of the Standard
C Library.

Hewlett-Packard Company - 1 - Version B.l, October 1986

STDIO(3S) HP-UX STDIO(3S)

NAME
stdio - standard buffered input/output stream me package

SYNOPSIS
#include <stdio.h>

FILE *stdin, *stdout, *stderrj

DESCRIPTION
The functions described in the entries of sub-class LIBS of this manual constitute an efficient,
user-level I/O buffering scheme. The in-line macros getc(3S) and putc(3S) handle characters
quickly. The macros getchar and putchar, and the higher-level routines fgetc, fgets, fprintf, fputc,
fputs, fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use or act as if they use
getc and putCj they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to designate
the stream in all further transactions. Normally, there are three open streams with constant
pointers declared in the <stdio.h> header file and associated with the standard open mes:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-I) is returned upon end-of-file or error by most integer functions that
deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular implementa­
tion.

Any program that uses this package must include the header file of pertinent macro definitions, as
follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class LIBS of this manual are
declared in that header file and need no further declaration. The constants and the following
"functions" are implemented as macros (redeclaration of these names is perilous): getc, getchar,
putc, putchar, ferror, feof, clearerr, and fileno.

A constant ~FILE defines the maximum number of open files allowed per process.

SEE ALSO
close(2}, Iseek(2), open(2), pipe (2) , read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S),
ferror(3S}, fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S),
puts(3S), scanf(3S), setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including program termination.
Individual function descriptions describe the possible error conditions.

Hewlett-Packard Company - 1 - Version B.I, October 1986

STDIPC(3C) HP-UX STDIPC(3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char *pathj
char idj

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used by the
msgget(2), semget(2), and shmget(2) system calls to obtain interprocess communication
identifiers. One suggested method for forming a key is to use the flok subroutine described below.
Another way to compose keys is to include the project ID in the most significant byte and to use
the remaining portion as a sequence number. There are many other ways to form keys, but it is
necessary for each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each other's opera­
tion. Therefore, it is strongly suggested that the most significant byte of a key in some sense refer
to a project so that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget
system calls. Path must be the path name of an existing file that is accessible to the process. Id
is a character which uniquely identifies a project. Note that ftok will return the same key for
linked files when called with the same id and that it will return different keys when called with
the same file name but different ids.

EXAMPLES
The following call to ftokO returns a key associated with the file myfi/e and id 'A':

key_t mykey;

mykey = ftok ("myfile", 'A');

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key _t) -1 if path does not exist or if it is not accessible to the process.

WARNING
If the file whose path is passed to flok is removed when keys still refer to the file, future calls to
flok with the same path and id will return an error. If the same file is recreated, then flok is likely
to return a different key than it did the original time it was called.

Hewlett-Packard Company - 1 - Version B.l, October 1986

STRING (3C) HP-UX STRING (3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn,
strtok - character string operations

SYNOPSIS
#include <string.h>

char *strcat (sl, s2)
char *sl, *s2j

char *strncat (sl, s2, n)
char *sl, *s2j
int nj

lnt strcmp (sl, s2)
char *sl, *s2j

int strncmp (sl, s2, n)
char *sl, *s2j
lnt nj

char *strcpy (sl, s2)
char *sl, *s2j

char *strncpy (sl, s2, n)
char *sl, *s2;
int nj

int strlen (s)
char *Sj

char *strchr (s, c)
char *Sj
int Cj

char *strrchr (s, c)
char *Sj
int Cj

char *strpbrk (sl, s2)
char *sl, *s2j

int strspn (sl, s2)
char *sl, *s2j

int strcspn (sl, s2)
char *sl, *s2j

char *strtok (sl, s2)
char *sl, *s2j

DESCRIPTION
The arguments sl, s2 and s point to strings (arrays of characters terminated by a null character).
The functions strcat, strncat, strcpy, and strncpy all alter s1. These functions do not check for
overflow of the array pointed to by sf.

Strcat appends a copy of string s2 to the end of string sl. Strncat appends at most n characters.
It copies less if sft is shorter than n characters. Each returns a pointer to the null-terminated
result (the original value of sl).

Strcmp compares its arguments and returns an integer less than, equal to, or greater than 0,
according as sl is lexicographically less than, equal to, or greater than s2. (NULL values for sl
and sft are treated the same as pointers to null strings.) Strncmp makes the same comparison but

Hewlett-Packard Company - 1 - Version B.l, October 1986

STRING (3C) HP-UX STRING (3C)

NOTE

BUGS

looks at at most n characters (n less than or equal to zero yields equality). Both of these routines
use un8igned char for character comparison.

Strcpy copies string 82 to 81, stopping after the null character has been copied. Strncpy copies
exactly n characters, truncating 82 or adding null characters to 81 if necessary. The result will
not be null-terminated if the length of 82 is n or more. Each function returns 81. Note that
strncpy should not be used to copy n bytes of an arbitrary structure. If that structure contains a
null byte anywhere, strncpy will terminate the copy when it encounters the null byte, thus return­
ing less than n bytes.

Strlen returns the number of characters in 8, not including the terminating null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c in string 8, or a
NULL pointer if c does not occur in the string. The null character terminating a string is con­
sidered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string 81 of any character from string 82, or a
NULL pointer if no character from 82 exists in 81.

Strspn (strcspn) returns the length of the initial segment of string 81 which consists entirely of
characters from (not from) string 82.

Strtok considers the string 81 to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string 82. The first call (with pointer 81
specified) returns a pointer to the first character of the first token, and will have written a null
character into 81 immediately following the returned token. The function keeps track of its posi­
tion in the string between separate calls, so that subsequent calls (which must be made with the
first argument a NULL pointer) will work through the string 81 immediately following that token.
In this way subsequent calls will work through the string 81 until no tokens remain. The separa­
tor string 82 may be different from call to call. When no token remains in 81, a NULL pointer is
returned.

For user convenience, all these functions are declared in the optional <string.h> header file.

The copy operations cannot check for overflow of any receiving string. NULL destinations cause
errors; NULL sources are treated as zero-length strings.

Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

Hewlett-Packard Company - 2 - Version B.1, October 1986

STRTOD(3C) HP-UX STRTOD(3C)

NAME
strtod, atof, nL..strtod, nLatof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

double nLstrtod (str, ptr, langid)
char *str, **ptr;
int langid;

double nLatof (str, langid)
char *strj
inl langid;

DESCRIPTION
Strtod returns as a double-precision floating-point number the value represented by the character
string pointed to by str. The string is scanned up to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters (as defined by isspace in
ctype(3C)), then an optional sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)NULL, the variable to which it points is set to point at the char­
acter after the last number, if any, that was recognized. If no number can be formed, *ptr is set
to str, and zero is returned.

Atof(str) is equivalent to strtod (str, (char **)NULL).

NLstrtod and nLatof are similar to the above routines, but use langid to determine what the
radix character should be, e.g. '.' or ','. If langid is not valid, or information for langid has not
been installed, the radix character defaults to a period.

SEE ALSO
ctype(3C), scanf(3S), strtol(3C), hpnls(5), langid(5).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is returned (according to the sign of the value),
and errno is set to ERANGE. HUGE_VAL may be used instead of HUGE.
If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

AUTHOR
Strtod was developed by AT&T Laboratories and the Hewlett-Packard Company.

INTERNATIONAL SUPPORT
8-bit data, messages.

Hewlett-Packard Company - 1 - Version B.1, October 1986

STRTOL(3C) HP-UX STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptrj
int base;

long atol (str)
char *strj

int atoi (str)
char *strj

DESCRIPTION
Strtol returns as a long integer the value represented by the character string pointed to by str.
The string is scanned up to the first character inconsistent with the base. Leading "white-space"
characters (as defined by isspace in ctype(3C)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no integer can be formed, that location is set to str,
and zero is returned.

If base is greater than 1 (and not greater than 36), it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional leading sign a leading
zero indicates octal conversion, and a leading "Ox" or "OX" hexadecimal conversion. Otherwise,
decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an explicit cast.

Atol(str) is equivalent to strtol (str, (char **)NULL, 10).

Atoi (str) is equivalent to (int) strtol (str, (char **)NULL, 10).

SEE ALSO
ctype(3C), strtod(3C), scanf(3S).

BUGS
Overflow conditions are ignored.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char .from, .to;
int nbytes;

DESCRIPTION

HP-UX SWAB(3C)

Swab copies nbytes bytes pointed to by from to the array pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between byte-swapped and non-byte­
swapped machines. Nbytes should be even and non-negative. If nbytes is odd and positive swab
uses nbytes-1 instead. If nbytes is negative, swab does nothing.

Hewlett-Packard Company - 1 - Version B.1, October 1986

SYSTEM(3S)

NAME
system - issue a shell cOlllIIlanu

SYNOPSIS
#include <stdio.h>

int system (string)
char *string;

DESCRIPTION

HP-UX SYSTEM(3S)

System causes the string to be given to sh(l} as input, as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

FILES
/bin/sh

SEE ALSO
sh(l), exec(2}.

DIAGNOSTICS
System forks to create a child process that in turn exec's /bin/sh in order to execute string. If
the fork or exec fails, system returns a negative value and sets errno.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TERMCAP(3X) HP-UX TERMCAP (3X)

NAME
tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - emulate /etc/termcap access routines

SYNOPSIS
tgetent(bp, name)
char *bp, *namej

tgetnum(id)
char *idj

tgetftag(id)
char *idj

char *tgetstr(id, area)
char *id, **areaj

char *tgoto(cm, destcol, destline)
char *cmj

tputs(cp, afi'cnt, outc)
register char *cpj
int affcntj
int (*outc)Oj

DESCRIPTION
The termcap(3X) functions extract and use capabilities from the compiled terminal capability
data bases (see terminfo(4)). They are emulation routines that are provided as a part of the
curses(3X) library.

Tgetent extracts the compiled entry for terminal name into buffers accessible by the programmer.
Unlike previous termcap routines, all capability strings (except cursor addressing and padding
information) are already compiled and stored internally upon return from tgetent. The buffer
pointer bp is redundant in the emulation, and is ignored. It should not be relied upon to point to
meaningful information. Tgetent returns -1 if it cannot access the terminfo directory, 0 if there is
no capability file for name, and 1 if all goes well. If a TERMINFO environment variable is set,
tgetent first looks for TERMINFO/? /name (where? is the first character of name), and if that
file is not accessible, it looks for /usr /lib/terminfo/? /name.

Tgetnum gets the numeric value of capability id, returning -1 if it is not given for the terminal.
Tgetnum is useful only with capabilities having numeric values.

Tgetftag returns 1 if the specified capability is present in the terminal's entry, and 0 if it is not.
Tgetftag is useful only with capabilities that are boolean in nature (Le. either present or missing in
terminfo(4)).

Tgetstr returns a pointer to the string value of capability id. In addition, if area is not a NULL
pointer, tgetstr will place the capability in the buffer at area and advance the area pointer. The
returned string capability is compiled except for cursor addressing and padding information.
Tgetstr is useful only with capabilities having string values.

Tgoto returns a cursor addressing string decoded from em to go to column destcol in line destline.
(Programs which call tgoto should be sure to turn off the TAB3 bit(s), since tgoto may now out­
put a tab. See termio(7). Note that programs using termcap should in general turn off TAB3
anyway since some terminals use control-I for other functions, such as nondestructive space.) If a
% sequence is given which is not understood, then tgoto returns OOPS.

Tputs decodes the padding information of the string cpo Affcnt gives the number of lines affected
by the operation, or 1 if this is not applicable. Outc is a routine which is called with each charac­
ter in turn. The terminfo variable paLchar should contain a pad character to be used (from

Hewlett-Packard Company - 1 - Version B.1, October 1986

TERMCAP (3X) HP-UX

the pc capability) if a null C@) is inappropriate.

FILES
/usr /lib/libcurses.a
/usr/lib/terminfo/? 1*

SEE ALSO

-!curses library
data bases

ex(l), terminfo(4), termio(7).

Hewlett-Packard Company - 2 -

TERMCAP (3X)

Version B.l, October 1986

TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE .tmpfile ()

DESCRIPTION

HP-UX TMPFILE(3S)

Tmpfile creates a temporary file using a name generated by tmpnam(3S) , and returns a
corresponding FILE pointer. If the file cannot be opened, an error message is printed using
perror(3C), and a NULL pointer is returned. The file will automatically be deleted when the pro­
cess using it terminates. The file is opened for update ("w+").

SEE ALSO
creat(2), unlink(2), mktemp(3C), perror(3C), fopen(3S), tmpnam(3S).

Hewlett-Packard Company - 1 - Version B.1, October 1986

TMPNAM(3S) HP-UX TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)
char *Sj

char *tempnam (dir, pfx)
char *dir, *pfxj

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary file.

Tmpnam always generates a file name using the path-prefix defined as P _tmpdir in the
<stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will destroy the contents of the area. If
s is not NULL, it is assumed to be the address of an array of at least L_tmpnam bytes, where
L_tmpnam is a constant defined in <stdio.h>; tmpnam places its result in that array and
returns s.

Tempnam allows the user to control the choice of a directory. The argument dir points to the
name of the directory in which the file is to be created. If dir is NULL or points to a string which
is not a name for an appropriate directory, the path-prefix defined as P _tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, /tmp will be used as a last
resort. This entire sequence can be up-staged by providing an environment variable TMPDIR in
the user's environment, whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in
their names. Use the pfx argument for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and returns a pointer to
this area. Thus, any pointer value returned from tempnam may serve as an argument to free (see
malloc(3C)). If tempnam cannot return the expected result for any reason, i.e. malloc(3C) failed,
or none of the above mentioned attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are unique. It is
the user's responsibility to use unlink(2) to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), malloc(3C), mktemp(3C), fopen(3S), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start recycling previously
used names.
Between the time a file name is created and the file is opened, it is possible for some other process
to create a file with the same name. This can never happen if that other process is using these
functions or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TRIG (3M) HP-UX TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#lnclude <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their argument, x, measured
in radians.

Asin returns the arcsine of x, in the range --7r/2 to 7r/2.

Acos returns the arccosine of x, in the range 0 to 7r.

Atan returns the arctangent of x, in the range --7r/2 to 7r/2.

Atanf returns the arctangent of y/x, in the range --7r to 7r, using the signs of both arguments to
determine the quadrant of the return value.

HARDW ARE DEPENDENCIES
Series 200, 300, 500:

The approximate limit for the values returned by these functions is 1.49A 8.

The algorithms used for all functions except atanf are from HP 9000 BASIC.

ERRORS
Sin, cos, and tan lose accuracy when their argument is far from zero. For arguments sufficiently
large, these functions return zero when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the standard error output. For less
extreme arguments causing partial loss of significance, a PLOSS error is generated but no message
is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both arguments of
atanf are zero, zero is returned and errno is set to EDOM. In addition, a message indicating
DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

Hewlett-Packard Company - I - Version B.I, October 1986

TSEARCH (3C) HP-UX TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch «char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind «char *) key, (char **) rootp, compar)
int (*compar)();

char *tdelete «char *) key, (char **) rootp, compar)
int (*compar)();

void twalk «char *) root, action)
void (*action)();

DESCRIPTION
Tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees. They are
generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user­
supplied routine, compar. This routine is called with two arguments, the pointers to the elements
being compared. It returns an integer less than, equal to, or greater than 0, according to whether
the first argument is to be considered less than, equal to or greater than the second argument.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being eompared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be accessed or
stored. If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to
this found datum is returned. Otherwise, *key is inserted, and a pointer to it returned. Only
pointers are copied, so the calling routine must store the data. Rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum which will be at the root of
the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. However,
if it is not found, tfind will return a NULL pointer. The arguments for tfind are the same as for
tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the root of the tree.
Tdelete returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not
found.

Twalk traverses a binary search tree. Root is the root of the tree to be traversed. (Any node in
a tree may be used as the root for a walk below that node.) Action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three arguments. The first argument is
the address of the node being visited. The second argument is a value from an enumeration data
type typedef enum { pre order, postorder, endorder, leaf} VISIT; (defined in the <search.h>
header file), depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The
third argument is the level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to
type pointer-to-character. Similarly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in

Hewlett-Packard Company - I - Version B.I, October 1986

TSEARCH (3C)

alphabetical order.

#include <search.h>
#include <stdio.h>

HP-UX TSEARCH (3C)

struct node { / * pointers to these are stored in the tree * /
char *string;
int length;

};
char string---.8pace[l0000j;
struct node nodes[500j;
struct node *root = NULL;

/ * space to store strings * /
/ * nodes to store * /
/* this points to the root */

main()
{

char *strptr = string---Bpace;
struct node *nodeptr = nodes;
void prinLnode(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 5(0)

/* set node */
nodeptr- >string = strptr;
nodeptr-> length = strlen(strptr);

/ * put node into the tree * /
(void) tsearch((char *)nodeptr, &root,

node_compare);

/* adjust pointers, so we don't overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;

}

}
twalk(root, print---Dod~);

/* This routine compares two nodes, based on an
alphabetical ordering of the string field. * /

int
node_compare(node1, node2)
struct node *node1, *node2;
{

return strcmp(node1->string, node2->string);
}
/ * This routine prints out a node, the first time

twalk encounters it. */
void
print---Dode(node, order, level)
struct node **node;
VISIT order;
int level;
{

if (order == preorder II order == leaf) {

Hewlett-Packard Company - 2 - Version B.1, October 1986

TSEARCH (3C) HP-UX TSEARCH (3C)

}
}

(void)printf(" string = %208, length = %d\n N ,

{*node)->string, (*node)->length);

SEE ALSO
bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not, tfind returns NULL,
and tsearch returns a pointer to the inserted item.

WARNINGS

BUGS

The root argument to twalk is one level of indirection less than the rootp arguments to tsearch
and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are visited. Tsearch
uses preorder, postorder and endorder to respectively refer to visting a node before any of its chil­
dren, after its left child and before its right, and after both its children. The alternate nomencla­
ture uses preorder, ,inorder and postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Hewlett-Packard Company - 3 - Version B.l, October 1986

TTYNAME(3C) HP-UX

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int lsatty (fildes)
int fildes;

DESCRIPTION

TTYNAME (3C)

Ttyname returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

[satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES
/dev/* /dev/pty/*

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not describe a terminal device in directory / dev.

BUGS
The return value points to static data whose content is overwritten by each call.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TTYSLOT (3C) HP-UX

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
lnt ttyslot ()

DESCRIPTION

TTYSLOT (3C)

Ttyslot returns the index of the current user's entry in the /etc/utmp file. This is accomplished
by actually scanning the file /etc/inittab for the name of the terminal associated with the stan­
dard input, the standard output, or the error output (0, lor 2).

FILES
/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the terminal name or if
none of the above file descriptors is associated with a terminal device.

Hewlett-Packard Company - 1 - Version B.1, October 1986

UNGETC(3S) HP-UX UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
int Cj

FIT..E *streamj

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an input stream. That character, c,
will be returned by the next getc(3S) calIon that stream. Ungetc returns c, and leaves the file
stream unchanged.

One character of pushback is guaranteed, provided something has already been read from the
stream and the stream is actually buffered. In the case that stream is stdin, one character may
be pushed back onto the buffer without a previous read statement.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DiAGNOSTiCS
Ungetc returns EOF if it cannot insert the character.

Hewlett-Packard Company - 1 - Version B.1, October 1986

VPRINTF (3S) HP-UX

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *formatj
va.....Jist apj

int vfprintf (stream, format, ap)
FILE *streamj
char *formatj
va.....Jist apj

int vsprintf (s, format, ap)
char *s, * format j
va.....Jist apj

DESCRIPTION

VPRINTF (3S)

vprint/, v/print/, and vsprint/ are the same as print/, /print/, and sprint/ respectively, except that
instead of being called with a variable number of arguments, they are called with an argument list
as defined by varargs(5).

EXAMPLE
The following demonstrates how v/print/ could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

* error should be called like
* error(functiolL...Ilame, format, arg1, arg2 ...)j
*/

/ * V ARARGSO* /
void
error (v~alist)
/* Note that the functiolL...Ilame and format arguments cannot be
* separately declared because of the definition of varargs.
*/
v~dcl

{
vuist argSj
char *fmtj

v~tart(args)j

/ * print out name of function causing error * /
(void)fprintf(stderr, "ERROR in %s: ", v~arg(args, char *))j
fmt = v~arg(args, char *) j

/ * print out remainder of message * /
(void)vfprintf(stderr, fmt, args)j
v~end(args)j

Hewlett-Packard Company - 1 - Version B.1, October 1986

VPRINTF (3S) HP-UX VPRINTF (3S)

(void) abort ();

SEE ALSO
printf(3S), varargs(5).

Hewlett-Packard Company - 2 - Version B.l, October 1986

INTRO(4) HP-UX INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for the file formats
are given where applicable. Usually, these structures can be found in the directories
/usr/lnclude or /usr/lnclude/sys.

SEE ALSO
hier(5).

The introduction to this manual.

Hewlett-Packard Company - 1 - Version B.1, October 1986

A.OUT(4)

NAME
a.out - assembler and link editor output

REMARKS

HP-UX A.OUT(4)

There will be separate manual pages for each implementation that wishes to describe its a. out for­
mat to its customers.

DESCRIPTION
The a.out (i.e., object me) format is completely machine-dependent except for the first word,
which contains a magic number as defined in magic(4).

The archive symbol table is also completely machine dependent except for its name in the archive.
See ar(4). This page should also describe the format of the archive symbol table.

SEE ALSO
ar(4), magic(4)

Hewlett-Packard Company - 1 - Version B.l, October 1986

A.OUT(4) A.OUT(4)
Series 200/300 Implementation

NAME
a.out - assembler and link editor output

Remarks:
This manual page describes the a. out file format for Series 200 and 300 computers. Refer to other
a.out(5) manual pages for descriptions of other valid implementations.

DESCRIPTION
A.out is the output file of the link editor ld. Ld will make a.out executable if there were no link­
ing errors and no unresolved external references. The assembler as produces non-executable files
with the same structure.

File a.out has seven sections: a header, the program text and data segments, a pascal interface
section, a symbol table, information for debugger support, and text and data relocation informa­
tion (in that order). The pascal interface text will only be present in those pascal code segments
that have not been linked. The last three sections may be missing if the program was linked with
the -s option of ld{l) or if the symbol table, debug information, and relocation bits were removed
by strip(I). Also note that if there were no unresolved external references after linking, the relo­
cation information will be removed.

The file section containing information for debugger support has three tables - the debug name
table (DNTT), the source line table (SLT) , and the value table (VT). These tables contain sym­
bolic information used by the HP-UX debugger cdb(I). HP-UX compilers create this information
under control of the -g option.

When an a.out file is loaded into memory for execution, three logical segments are set up: the
text segment, the data segment (initialized data followed by uninitialized, the latter actually being
initialized to all O's), and a stack. The text segment begins at location 0x0 in the core image; the
header is not loaded. If the magic number (the first field in the header) is EXEC--MAGIC, it indi­
cates that the text segment is not to be write-protected or shared, so the data segment will be
contiguous with the text segment. If the magic number is SHARE-MAGIC or DEMAND--MAGIC,
the data segment begins at the first 0 mod Oxl000 byte boundary following the text segment, and
the text segment is not writable by the program; if other processes are executing the same a.out
file, they will share a single text segment. If the magic number is DEMAND-MAGIC, the text and
data segments are not read in from the file until they are referenced by the program.

The stack will occupy the highest possible locations in the core image and grow downward (the
stack is automatically extended as required). The data segment is only extended as requested by
the brk(2) system call.

The start of the text segment in the a.out file is given by the macro TEXT_OFFSET{hdr), where
hdr is a copy of the file header. The macro DATLOFFSET{hdr) provides the starting location of
the data segment.

The value of a word in the text or data portions that is not a reference to an undefined external
symbol is exactly the value that will appear in memory when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the relo­
cation information (discussed below) for that word, then the value of the word as stored in the file
is an offset from the associated external symbol. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol will be added to the word in the file.

Hewlett-Packard Company - 1 - October 1986

A.OUT(4) A.OUT(4)
Series 200/300 Implementation

Header
The format of the a.out header for the MC68000 is as follows (segment sizes are in bytes):

struct exec {
MAGIC

};

short
short
long
long
long
long
long
long
long
long
long
long
long
long
long
long

8.-Jllagic;
~tamp;

~unused;

~arehp;
~text;

~data;

~bss;

~trsize;

~drsize;
~pasint;

~esyms;

~dnttsize;
~entry;

~ltsize;
~vtsize;

~pare3;

~pare4;

Pascal Interface Section

/* magic number */
/ * version stamp * /

/ * size of text segment * /
/ * size of data segment * /
/ * size of bss segment * /
/ * size of text relocation info * /
/ * size of data relocation info * /
/ * size of interface text * /
/ * size of symbol table * /
/* debug name table size */
/* entry point of program */
/* source-line table size */
/ * value table size * /

The Pascal interface section consists of the ascii representation of the interface text for that Pas­
cal module.

The start of the Pascal interface section is given by the macro MODCAL_OFFSET(hdr).

Symbol Table
The symbol table consists of entries of the form:

struct nlist {
long

};

unsigned char
unsigned char
short
short

IL-value;
IL-type;
IL...length;
IL...almod;
Ii-UTIused;

Following this structure is TLlength ascii characters which compose the symbol name.

The TLtype field indicates the type of the symbol; the following values are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
04 bss segment symbol

One of these values ANDed with 040 indicates an external symbol. One of these values ANDed
with 020 indicates an aligned symbol.

The start of the symbol table is given by the macro LESYM-OFFSET(hdr).

Hewlett-Packard Company - 2 - October 1986

A.OUT(4) A.OUT(4)
Series 200/300 Implementation

Relocation
Ii reiocation information is present, it amounts to eight bytes per relocatable datum.

The format of the relocation data is:

struct r-info {
long L_addresSj
short r ---SYIIlbolnumj
char r......segmentj
char LJengthj

}j

The r_address field indicates the position of the relocation within the segment.

The r_segment field indicates the segment referred to by the text or data word associated with
the relocation word:

00 indicates the reference is to the text segmentj
01 indicates the reference is to initialized dataj
02 indicates the reference is to bss (uninitialized data)j
03 indicates the reference is to an undefined external symbol.

The field r_symbolnum contains a symbol number in the case of external references, and is
unused otherwise. The first symbol is numbered 0, the second 1, etc.

The field r_Iength indicates the length of the datum to be relocated.

00 indicates it is a byte
01 indicates it is a short
02 indicates it is a long
03 indicates it is a special align symbol

The start of the text relocation section is provided by the macro RTEXT_OFFSET{hdr).

The start of the data relocation section is provided by the macro RDATLOFFSET{hdr).

SEE ALSO
as{I), Id{I), nm{I), strip{I), magic(5).

Hewlett-Packard Company - 3 - October 1986

A.OUT(4) A.OUT(4)
Series 500 Implementation

NAME
a.out - executable linker output file

Remarks:
This manual entry describes the a.out file format for the Series 500. Refer to other a.out manual
pages for information valid for other implementations.

DESCRIPTION
A.out is the output file of the linker Id(I). Ld makes a.out executable if no errors occured during
compilation and linking, and there are no remaining unresolved external references.

The a.out file has five sections: a file header, a segment table, a segment information section, a
symbol table(s) section, and a name pool(s) section, logically arranged as follows:

a. out File Structure

File header

Segment Table

Segment Information:

• segment image (code/data)
• fix-up information (loader)
• relocation information (It!)

Symbol Tables:

• linker symbol table
• information for debugger support

Name Pool (strings)

Note that this pictorial representation depicts the logical structure of the file, but does not neces­
sarily reflect the physical arrangement of data in the file. The following topics discuss each logical
section of the a. out file.

File Header
The a.out file header is conceptually divided into two parts. The first part contains "scalar"
values, while the second part contains "file map" data pertaining to the rest of the file. The
entire file header contains 128 bytes of information, 32 of which make up the scalar section. The
scalar section can be represented pictorially as follows:

Byte Arrangement: File Header Scalar Section

Bytes Contents

o thru 3 System ID (2 bytes) I File Type (2 bytes)
4 thru 7 Reserved for future use

8 thru 11 Flags
12 thru 15 Program Entry Point
16 thru 19 Version Stamp
20 thru 23 Memory Offset
24 thru 27 Working Set gurarantee
28 thru 31 Reserved for future use

Hewlett-Packard Company - 1 - October 1986

A.OUT(4) A.OUT(4)
Series 500 Implementation

Each group of four bytes forms a word that has a specific function:

Magic Number

Flags

Program Entry Point

Version Stamp

The first word, called the "magic number", is divided into two
half-words containing the system ID and the file type. The sys­
tem ID identifies the target machine upon which the object code
can run. The file type specifies whether or not the file is execut­
able (hex 107), shareable (hex 108), or relocatable (hex 106).

The third word specifies the settings of five flags. The left-most
five bits of this word are significant; the remainder of the word is
ignored.

Bit 1 (the left-most of the flag bits) If set, bit 1 marks the
program as using a single data segment. You can
override this with the -T or -A ld options, which
force the program to reside in one or two data seg­
ments, respectively.

Bit 2 If set, marks the file as relinkable (meaning that the
file contains relocation records and a symbol table).

Bit 3 If set, the file is debuggable.

Bit 5 If set, marks the program as allowing null pointer
dereferencing. To set bit 5, use the -Z option of ld.

This word contains an external program pointer (EPP) that refer­
ences the starting code for the program. Ld normally assigns the
starting address of the main program to this word. This can be
changed with the 4! linker option.

The Version Stamp is a user-supplied 32-bit integer used to distin­
guish one version of an application program from another. The
user can specify this integer by using the -V ld(1) option at link
time.

The file map portion of the header is structured as follows:

Byte Arrangement: File Header File Map Section

Bytes Contents Bytes Contents

32 thru 35 Code Segment Table: offset 80 thru 83 VT: offset
36 thru 39 Code Segment Table: size 84 thru 87 VT: size
40 thru 43 Code Segment Images: offset 88 thru 91 SLT: offset
44 thru 47 Code Segment Images: size 92 thru 95 SLT: size
48 thru 51 Data Segment Table: offset 96 thru 99 Name Pool: offset
52 thru 55 Data Segment Table: size 100 thru 103 Name Pool: size
56 thru 59 Data Segment Images: offset 104 thru 107 Interface Information: offset
60 thru 63 Data Segment Images: size 108 thru 111 Interface Information: size
64 thru 67 Link Symbol Table: offset 112 thru 115 Reserved for future use
68 thru 71 Link Symbol Table: size 116 thru 119 Reserved for future use
72 thru 75 DNTT: offset 120 thru 123 Reserved for future use
76 thru 79 DNTT: size 124 thru 127 Reserved for future use

Each offset entry in the file map shows where the given section starts, relative to the beginning
of the a.out file. Each size entry gives the size (in bytes) for that section.

Hewlett-Packard Company - 2 - October 1986

A.OUT(4) A.OUT(4)
Series 500 Implementation

Each offset entry in the file map shows where the given section
starts, relative to the beginning of the a.out file. Each size
entry gives the size (in bytes) for that section.

DNTT is the Debug Symbol Table, VT is the Value Table,
and SLT is the Source Line Table. All are used by the sym­
bolic debugger, cdb.

Segment Table
The segment table collects, in one place, all information about the code and data segments making
up the program. The segment table consists of an array of entries. Each entry describes one code
or data segment of the program.

Both code and data segment table entries include the following information:

segment name

segment type

list of segment attributes

Begment off Bet

segment size

segment fixup size

Consists of an offset into the name pool, relative to the beginning
of the name pool. Useful for symbolically referring to code or data
segments (not currently implemented).

Specifies one of three possible types of segments: code; direct data
(in GDS), or indirect data (in GDS or EDS).

Segments can be paged, virtual, demand loadable, writable, or
privileged. The linker sets the attributes for executable files.

References a pa..rticular code or data segment within the segment
image area. The reference is given relative to the beginning of the
segment image area.

Size (in bytes) of the particular code or data segment being
described in the entry.

Specifies the size (in bytes) of the loader fixup area in the particu­
lar segment being described.

segment relocation information size
Specifies the number of bytes of relocation records for this seg­
ment.

The following entries appear only in data segment table entries:

segment limit Specifies the maximum number of bytes that the indirect data
segment can contain. Attempting to increase the size beyond this
stated limit produces an error. The linker assigns a default value
of 1.5 Mbytes to this field, but it can be changed with the -m
chatr(1) option.

segment zero-padding size A byte count of the uninitialized data area. The linker computes
this value from the data relocation records.

The following entries appear only in code segment table entries:

segment local procedures count
Specifies the number of procedures defined in that segment, that
are only known locally within the segment.

segment external procedures count
Specifies the number of procedures defined in that segment, that
are externally known.

Several words are left unused in each segment table entry to allow for future growth.

Hewlett-Packard Company - 3 - October 1986

A.OUT(4) A.OUT(4)
Series 500 Implementation

Segment Information
This section of the file contains the segment images for each segment included in the final, execut­
able file. This section contains a subsection for each program segment. Each subsection is in turn
made up of three parts - the contents of the segment (code or data), a list of pointers that the
loader must "fix up" in that segment, and the relocation records for that segment. Each subsec­
tion looks as follows:

Segment Information Structure

Code/Data Image
Loader Initialization Information

Loader Fixup Information
RelocatIon Records

The code image contains the compiled machine code for each program segment. The data image
contains an image of initialized data for the program. Contained in this code are pointers. The
loader fixup information area contains offsets that reference these pointers (the offsets are given
relative to the beginning of the code/data image area). These offsets must be "fixed up" at run
time (i.e., the program loader exec must update the segment number fields with the correct
values). The linker generates the loader fixup information.

Symbol Tables
The linker symbol table contains data on relocatable symbols relevant to the linker (e.g. name and
type for each global symbol). Refer to nm{l) (Series 500 only version) for a complete description
of each symbol type and the parameters associated with them. The contents of the symbol table
may be listed in several different ways with nm.

Name Pool
The name pool contains a list of null-terminated strings, which specify the names of the symbols
in the program. The symbol table entries contain indexes into the name pool instead of the
names themselves. This permits arbitrarily long names to be used instead of fixed-length names.
The first string in the name pool is always a null string. This enables zero to be used as an index
into the name pool for entities which have no names.

SEE ALSO
chatr{I), Id{I), nm{I), strip{I), magic(5).

Hewlett-Packard Company - 4 - October 1986

A.OUT(4) A.OUT(4)
Series 800 Only

NAME
a.out - assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
The file name a.out is the output file from the assembler as(l), the compilers, and the linker
Id(l). The assembler and compilers create relocatable object files ready for input to the linker;
the linker creates executable object files.

An object file consists of a file header, auxiliary headers, space dictionary, subspace dictionary,
symbol table, relocation information, compiler records, space string table, symbol string table, and
the data for initialized code and data. Not all of these sections are required for all object files.
The file must begin with the file header, but the remaining sections do not have to be in any par­
ticular order; the file header contains pointers to each of the other sections of the file.

A relocatable object file, created by the assembler or compiler, must contain at least the following
sections: file header, space dictionary, subspace dictionary, symbol table, relocation information,
space string table, symbol string table, and code and data. It may also contain auxiliary headers
and compiler records. Relocatable files generally contain unresolved symbols; the linker combines
relocatable files and searches libraries to produce an executable file. The linker can also be used
to combine relocatable files and produce a new relocatable file as output, suitable for input to a
subsequent linker run.

An executable file, created by the linker, typically contains the following sections: file header, an
HP-UX auxiliary header, space dictionary, subspace dictionary, symbol table, space string table,
symbol string table, and code and data. The linker also copies any auxiliary headers and compiler
records from the input files to the output file. If the file has been stripped (see strip(l)), it will
not contain a symbol table, symbol string table, or compiler records. An executable file must not
contain any unresolved symbols.

Programs for the Series 800 architecture consist of two loadable spaces: a shared, non-writable,
code space named "$TEXT$"; and a private, writable, data space named "$PRIVATE$". A pro­
gram may contain other non-Ioadable spaces that contain data needed by development tools; for
example, symbolic debugging information is contained in a space named "$DEBUG$". The linker
treats loadable and unloadable spaces exactly the same, so the full generality of symbol resolution
and relocation is available for the symbolic debugging information. Spaces have an addressing
range of 4,294,967,296 (2·32) bytes; each loadable space is divided into four 1,073,741,824 (2·30)
byte quadrants. The HP-UX operating system places all code in the first quadrant of the
$TEXT$ space, and all data in the second quadrant of the $PRIV A TE$ space. (Thus, it is
sufficient to use a 32-bit pointer to access any address in either space.)

Each space is also divided into logical units called subspaces. When the linker combines relocat­
able object files, it groups all subspaces from the input files by name, then arranges the groups
within the space by a sort key associated with each subspace. Subspaces are not architecturally
significant; they merely provide a mechanism for combining individual parts of spaces indepen­
dently from many input files. Some typical subspaces in a program are shown in the following
table.

Hewlett-Packard Company

$MILLICODE$
LIT
$CODE$
$UNWIND$
$GLOBAL$
$DATA$
$COMMON$
BSS

Code for millicode routines
Sharable literals
Code
Stack unwind information
Outer block declarations for Pascal
Static initialized data
FORTRAN common
Uninitialized data

- 1 - October 1986

A.OUT(4) A.OUT(4)
Series 800 Only

Subspaces can be initialized or uninitialized (typically, only BSS is uninitialized). The subspace
diction8.J."""y entry for an initialized subspace contains a file pointer to the initialization data, whiie
the entry for an uninitialized subspace contains only a 32-bit pattern used to initialize the entire
area at load time.

In a relocatable file, initialized code and data often contains references to locations elsewhere in
the file, and to unresolved symbols defined in other files. These references are patched at link
time using the relocation information. Each entry in the relocation information (a "fixup")
specifies a location within the initialized data for a subspace, and an expression that defines the
actual value that should be placed at that location, relative to one or two symbols.

The linker summarizes the subspace dictionary in the HP-UX auxiliary header when creating an
executable file. HP-UX programs contain only three separate sections: one for the code, one for
initialized data, and one for uninitialized data. By convention, this auxiliary header is placed
immediately following the file header.

When an a.out file is loaded into memory for execution, three areas of memory are set up: the
code is loaded into the first quadrant of a new, sharable space; the data (initialized followed by
uninitialized) is loaded into the second quadrant of a new, private space; and a stack is created
beginning at a fixed address near the middle of the second quadrant of the data space.

The file format described here is a common format for all operating systems designed for HP's
Precision Architecture. Therefore, there are some fields and structures that are not used on HP­
UX or have been reserved for future use.

File Header
The format of the file header is described by the following structure declaration from
<filehdr.h>.

struct header {
short int systeIIL-id;
short int a........magic;
unsigned int version.....Jd;
struct sys_clock {

unsigned int secs;
unsigned int nanosecs;

} file_time;
unsigned int entry----Bpace;
unsigned int entry----Bubspace;
unsigned int entry_offset;
unsigned int aUX-headeL.location;
unsigned int aUX-header----Bize;
unsigned int soIIL..length;
unsigned int presumeLdp;
unsigned int space-.location;
unsigned int space_total;
unsigned int subspace-.location;
unsigned int subspace_total;
unsigned int loader-Hxup-.location;
unsigned int loader-Hxup_total;
unsigned int space----Btrings-.location;
unsigned int space----Btrings----Bize;
unsigned int init-8.lTay -.location;
unsigned int init-8.lTay _total;
unsigned int compiler-.location;
unsigned int compiler_total;

Hewlett-Packard Company - 2 -

1* Ox020b */
1* magic number * /
1* a.out format version * /

1* timestamp * /
1* reserved * /
1* reserved * /
1* reserved * /
1* file ptr to aux hdrs * /
1* sizeof aux hdrs * /
1* length of object module * /
1* reserved * /
1* file ptr to space dict * /
1* # of spaces * /
1* file ptr to subsp diet * /
1* # of subspaces * /
1* reserved * /
1* reserved * /
1* file ptr to sp. strings * /
1* sizeof sp. strings * /
1* reserved * /
1* reserved * /
1* file ptr to comp recs * /
1* # of compiler recs * /

October 1986

A.OUT(4)
Series 800 Only

};

unsigned int symboLlocation;
unsigned int symboLtotal;
unsigned int furup----requesLJocation;
unsigned int furup----request_total;
unsigned int symboLstrings-.location;
unsigned int symboLstrings-Bize;
unsigned int unloadable-Bp-.location;
unsigned int unloadable---sp---size;
unsigned int checksum;

Auxiliary Headers

/* file ptr to sym table * /
/* # of symbols * /
/* file ptr to furups * /
/* # of furups * /
/* file ptr to sym strings * /
/* sizeof sym strings * /
/* file ptr to debug info * /
1* size of debug info * /
1* header checksum * /

A.OUT(4)

The auxiliary headers are contained in a single contiguous area in the file, and are located by a
pointer in the file header. Auxiliary headers are used for two purposes: users can attach version
and copyright strings to an object file, and an auxiliary header contains the information needed to
load an executable program. In an executable program, the HP-UX auxiliary header must pre­
cede all other auxiliary headers. The following declarations are found in <aouthdr .h>.

struct aux.....Jd {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

mandatory : 1;
copy: 1;
append: 1;
ignore: 1;
reserved : 12;
type: 16;
length;

};

/* Values for the aux.....Jd.type field * /
#define HPU~U:}LHEADER4
#define USEILAU)LHEADER 6

struct sOID-exec~uxhdr {
struct aux.....Jd so~uxhdr;
long exec_tsize;
long exec_tmem;
long exec_tfile;
long exec_dsize;
long exec_dmem;
long exec_dfile;
long exec_bsize;
long exec_entry;
long exec-Hags;
long exec_bfill;

};

/* Values for exec-Hags * /
#define TRAP --.NILJTRS 01

struct user---string~ux........hdr {
struct aux.....Jd header-.id;
unsigned int string-.length;
char user---string[l];

};

Hewlett-Packard Company - 3 -

1* reserved * /
/* reserved * /
/* reserved * /
/* reserved * /
/* reserved * /
/* aux hdr type * /
1* sizeof rest of aux hdr * /

/* aux header id * /
/* text size * /
/* start address of text * /
/* file ptr to text * /
1* data size * /
1* start address of data * /
1* file ptr to data * /
/* bss size * /
1* address of entry point * /
/* loader Hags * /
/* bss initialization value * /

/* aux header id * I
/* strlen(user---string) * /
1* user-defined string * /

October 1986

Series 800 Only

Space Dictionary
The space dictionary consists of a sequence of space records as defined in <spacehdr .h>.

struct space_dictionary -Iecord {
union name_pt namej
unsigned int is-Ioadable: 1;
unsigned int is_defined: 1;
unsigned int is_private: 1;
unsigned int reserved: 13;
unsigned int sort-key: 8;
unsigned int reserved2: 8;
int space-.llumberj
int subspace-index;
unsigned int subspace_quantity;
int loader~ndexj

unsigned int loader~quantity;
int init_pointer-indexj
unsigned int init_pointer_quantity;

};

1* index to space name * /
1* space is loadable * /
i* space is defined within file * /
1* space is not sharable * /
/* reserved * /
1* sort key for space * /
1* reserved * /
1* space index * /
!* index to first subspace * /
1* # of subspaces in space * /
1* index to first Idr fixup * /
1* # of Idr fixups in space * /
1* index to first init ptr * /
1* # of init ptrs in space * /

The strings for the space names are contained in the space strings table, which is located by a
pointer in the file header. Each entry in the space strings table is preceded by a 4-byte integer
that defines the length of the string, and is terminated by at one to five null characters to pad the
string out to a word boundary. Indices to this table are relative to the start of the table, and
point to the first byte of the string (not the preceding length word). The union defined below is
used for all such string pointersj the character pointer is defined for programs that read the string
table into memory and wish to relocate in-memory copies of space records.

union name_pt {
char *ll-.llame;
unsigned int IL....Strx;

};

Subspace Dictionary
The subspace dictionary consists of a sequence of subspace records as defined in <scnhdr.h>.
Strings for subspace names are contained in the space strings table.

struct subspace_dictionary-Iecord {
int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

Hewlett-Packard Company

space-indexj
access_controLbits: 7;
memory-Iesident: 1;
dup_common: 1;
is_common: 1;
is-Ioadable: 1;
quadrant: 2j
initially-frozen: 1;
is-lirst: 1;
code_only: 1;
sort-key: 8j
reserved: 8;
file-Ioc-init_ value;
initialization-Iength;
subspace---.Start;
subspace-Iength;
reserved2: 16;
alignment: 16;

- 4 -

1* reserved * /
/* reserved * /
1* COBOL-style common * /
1* subspace is a common block * /
1* subspace is loadable * /
1* reserved * /
1* reserved * /
1* reserved * /
1* subspace contains only code * /
1* subspace sort key * /
1* reserved * /
1* file location or init value * /
1* length of initialization * /
1* starting offset * /
1* total subspace length * /
1* reserved * /
1* alignment required * /

October 1986

A.OUT(4)

};

Series 800 Only

union name_pt name;
int fixup-IequesL . .index;
unsigned int fixup-Iequest_quantity;

/* index of subspace name * /
/* index to first fixup * /
/* # of fixup requests * /

Symbol Table

A.OUT(4)

The symbol table consists of a sequence of entries described by the structure shown below, from
<syms.h>. Strings for symbol and qualifier names are contained in the symbol strings table,
whose structure is identical with the space strings table.

struct symboLdictionary-Iecord {
unsigned int hidden: 1;
unsigned int symboLtype: 7;
unsigned int symboLscope: 4;
unsigned int check--1.evel: 3;
unsigned int must_qualify: 1;
unsigned int initially--.lrozen: 1;
unsigned int memory-Iesident: 1;
unsigned int is-common: 1;
unsigned int dup_common: 1;
unsigned int xleast: 2;
unsigned int arg-Ieloc: 10;
unIon name_pt name;
union name_pt qualifier-Dame;
unsigned int symboLinfo;
unsigned int symboLvalue;

};

/* Values for symboLtype * /
#define ST -.NULL 0
#define ST~BSOLUTE
#define ST~ATA 2
#define ST _CODE 3
#define STJRLPROG 4
#define ST ~ECJROG 5
#define ST-ENTRY 6
#define ST~TORAGE 7
#define ST ~TUB 8
#define ST ~ODULE 9
#define ST~YM-EXT 10
#define ST ~RG-EXT 11
#define ST~ILLICODE 12
#define ST JLABEL 13
#define ST_OCT~IS 14
#define ST ~ILLI-EXT 15

/* Values for symboLscope * /
#define SS_UNSAT 0
#define SS-EXTERNAL
#define SS--LOCAL 2
#define SS_UNIVERSAL 3

/* reserved * /
/* symbol type * /
/* symbol value * /
/* type checking level * /
/* qualifier required * i
/* reserved * /
/* reserved * /
/* common block * /
/* COBOL-style common * /
/* reserved * /
/* reserved * /
1* index to symboi name * /
/* index to qual name * /
/* subspace index * /
/* symbol value * /

1* unused symbol entry * /
/* non-relocatable symbol * /
1* data symbol * /
1* generic code symbol * /
1* program entry point * /
/* secondary prog entry pt. * /
/* procedure entry point * /
/* storage request * /
1* reserved * /
/* Pascal module name * /
/* symbol extension record * /
1* argument extension record * /
1* millicode entry point * /
1* reserved * /
/* reserved * /
1* reserved * /

/* unsatisfied reference * /
/* reserved * /
1* local symbol * /
1* global symbol * /

The meaning of the symbol value depends on the symbol type. For the code symbols (generic
code, program entry points, procedure and millicode entry points), the low-order two bits of the
symbol value encode the execution privilege level, which is not used on HP-UX, but is generally

Hewlett-Packard Company - 5 - October 1986

A.OUT(4) A.OUT(4)
Series 800 Only

set to 3. The symbol value with those bits masked out is the address of the symbol (which is
always a multiple of 4). For data symbols, the symbol value is simply the address of the symbol.
For storage requests, the symbol value is the number of bytes requested; the linker allocates space
for the largest request for each symbol in the BSS subspaces, unless a local or universal symbol
is found for that symbol (in which case the storage request is treated like an unsatisfied reference).

If a relocatable file was compiled with parameter type checking, then extension records follow
symbols that define and reference procedure entry points and global variables. The first extension
record, the symbol extension record, defines the type of the return value or global variable, and (if
a procedure or function) the number of parameters and the types of the first three parameters. If
more parameter type descriptors are needed, one or more argument extension records follow, each
containing four more descriptors. A check level of 0 specifies no type checking; no extension
records follow. A check level of 1 or more specifies checking of the return value or global variable
type. A check level of 2 or more specifies checking of the number of parameters, and a check level
of 3 specifies checking the types of each individual parameter. The linker performs the requested
level of type checking between unsatisfied symbols and local or universal symbols as it resolves
symbol references.

union arg_descriptor {

};

struct {
reserved: 3;
packing: 1;
alignment: 4;
reserved2: 1;
mode: 3;
structure: 4;
hash: 1;

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
int arg_type: 15;

arg_desc;
unsigned int word;

struct symboLextensioILIecord {

};

unsigned int type: 8;
unsigned int ma.x........nllIIl-args: 8;
unsigned int mllLnllIIl-args: 8;
unsigned int nllIIl-args: 8;
union arg_descriptor symboLdesc;
union arg_descriptor argument_desc[3];

struct argument_desc-8.ITay {
unsigned int type: 8;
unsigned int reserved: 24;
union arg_descriptor argument_desc[4];

};

1* not used * /
1* reserved * /
1* byte alignment * /
1* not used * /
1* use of symbol * /
1* structure of symbol * /
1* set if arg_type is hashed * /
1* data type * /

1* always ST~YM-EXT */
1* max # of parameters * /
1* min # of parameters * /
1* actual # of parameters * /
1* symbol type desc. * /
1* first 3 parameters * /

1* always ST-..ARG-EXT * /
/* not used * /
1* next 4 parameters * /

The values for the alignment, mode, structure, and arg_type (when the data type is not hashed)

Hewlett-Packard Company - 6 - October 1986

A.OUT(4)
Series 800 Only

fields are given in the following table.
value alignment mode

o byte any
1 half-word value parm
2 word reference parm
3 dbl word value-result
4
5
6
7
8
9

10
11
12
13
14
15
16
17

64-byte

page

Relocation Information

name
variable
function return
procedure
long ref parm

structure
any
scalar
array
struct
pointer
long ptr
C string
Pascal string
procedure
function
label

any
void
signed byte
unsigned byte
signed short
unsigned short
signed long
unsigned long
signed dbl word
unsigned dbl word
short real
real
long real
short complex
complex
long complex
packed decimal
struct/array

A.OUT(4)

Each initialized subspace defines a range of fixups that apply to the data in that subspace. A
fixup request is associated with every word that requires relocation or that contains a reference to
an unsatisfied symbol. Fixups can compute an expression involving zero, one, or two symbols and
a constant, then extract a field of bits from that result, and deposit those bits in any of several
different fonnats (corresponding to the Precision Architecture instruction set). The structure of a
fixup request is contained in <reloc.h>.

struct fixup-.request-.record {
unsigned int neeLdata-.ref: 1;
unsigned int arg-.reloc: 10;
unsigned int expressioIL-type: 5;
unsigned int exec--1evel: 2;
unsigned int fixupJonnat: 6;
unsigned int fixup--1ield: 8;
unsigned int subspace_offset;
unsigned int symboLindex-one;
unsigned int symboLindeX-two;
int fixup_constant;

};

1* Values for expressioIL-type * /
#define e_one 0
#define e_two 1
#define e_pcrel 2
#define e_con 3
#define L . ..8ubst 4
#define e-Bubend 5
#define e-Bubrel 6
#define e_plabel 7

1* reserved * /
1* reserved * /
1* how to compute value * /
1* reserved * /
1* how to deposit bits * /
1* field to extract * /
1* subspace offset of word * /
1* index of first symbol * /
1* index of second symbol * /
1* constant * /

1* symboll +- constant * /
1* symboll - symbol2 + constant * /
1* symboll - pc + constant * /
1* constant * /
1* reserved * /
1* reserved * /
1* reserved * /
1* symboll + constant * /

1* Values for fixup--1ield (assembler mnemonics shown) * /
#define eJsel 0 1* F': no change * /

Hewlett-Packard Company - 7 - October 1986

A.OUT(4)
Series 800 Only

1* LS': inverse of RS' * /
i* RS': rightmost 11 bits, signed * /
1* L': leftmost 21 bits * /
1* R': rightmost 11 bits * /
1* LD': inverse of RD' * /

A.OUT(4)

#define e-Issel
#define e-I"S8el
#define e-Isel
#define e--..rsel
#define e-Idsel
#define e-I"dsel
#define e-Irsel
#define e-I"rsel

2
3
4
5
6
7

1* RD': rightmost 11 bits, filled left with ones * /
1* LR': L' with "rounded" constant */

8 1* RR': R' with "rounded" constant * /

1* Values for fixupJormat (typical instructions shown) * /
#define Lexp14 0 1* 14-bit immediate (LDW, STW) */
#define Lexp21 1 1* 21-bit immediate (LDIL, ADDIL) * /
#define LE'.xpl1 2 1* 11-bit immediate (ADDI, SUBI) * /
#define ue117 3 1* 17-bit pc-relative (BL) */
#define ue112 4 1* 12 bit pc-relative (COMBT, COMBF, etc.) */
#define Ldata 5 1* whole word * /
#define Luone 6 1* not used * /
#define Labs17 7 1* 17-bit absolute (BE, BLE) */
#define Lmilli 8 1* 17-bit millicode call (BLE) * /
#define Lbreak 9 1* reserved (no effect on HP-UX) * /

Compiler Records
Compiler records are placed in relocatable files by each compiler or assembler to identify the ver­
sion of the compiler that was used to produce the file. These records are copied into the execut­
able file by the linker, but are strippable. The structure of a compiler record is shown below. All
strings are contained in the symbol string table.

struct compilatioD--unit {

};

SEE ALSO

union name_pt name;
union name_pt language-Dame;
union name_pt product..-id;
union name_pt version..-id;
int reserved;
struct sys_clock compile_time;
struct sys_clock source_time;

as(I), cc(I), Id(I), nm(I), strip(I).

Hewlett-Packard Company - 8 - October 1986

ACCT(4) HP-UX ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined by <sys/acct.h>,
whose contents are:

typedef ushort comp_t;
struct acct {

char

};

char
ushort
ushort
dev_t
time_t
comp_t
comp_t
comp_t
comp_t
comp_t

#define AFORK
#defme ASU
#define ACCTF

ac---.flag;
ac.-Stat;
ac_uid;
ac~id;
ac_tty;
ac_btime;
ac_utime;
ac.-Stime;
ac_etime;
aC----Illem;
ac--.io;

01
02
0300

/* Hfloating pointH: 13-bit fraction, 3-bit exponent */

/* Accounting flag */
/ * Exit status * /
/* Accounting user ID */
/ * Accounting group ID * /
/* control typewriter */
/ * Beginning time * /
/ * acctng user time in clock ticks * /
/ * acctng system time in clock ticks * /
/ * acctng elapsed time in clock ticks * /
/ * memory usage in clicks * /
/* chars trnsfrd by read/write */
/* number of block reads/,vrites */
/ * command name * /

/ * has executed fork, but no exec * /
/* used super-user privileges */
/ * record type: 00 = acct * /

In ac_ftag, the AFORK flag is turned on by each /ork(2) and turned off by an exec(2). The
ac_comm field is inherited from the parent process and is reset by any exec. Each time the sys­
tem charges the process with a clock tick, it also adds to ac_mem the current process size, com­
puted as follows:

(data size) + (text size) + (number of in-core processes sharing text) +
sum of ((shared memory segment size) / (number of in-core processes
attached to segment))

For systems with virtual memory, the text, data, and shared memory sizes refer to the resident
portion of the memory segments. The value of ac_mem / (ac_stime + ac_utime) can be viewed
as an approximation to the mean process size, as modified by text-sharing.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ACCT(4) HP-UX ACCT(4)

The structure tacct.h, which resides with the source files of the accounting commands, represents
the total accounting format used by the various accounting commands:

/*
* total accounting (for acct period), also for day
*/

struct
ui<Lt
char
float
float
float
float
long

tacct {

unsigned short
unsigned short
short

}j

tIL-uid;
t1L-llame[8] ;
tIL-cpu[2]i
ta........kcore[2]i
tIL-con[2]j
tIL-du;
tIL-pcj
tIL-SCj
tIL-dcj
tlL-feej

/* userid */
/ * login name * /
/* cum. cpu time, p/np (mins) */
/* cum kcore-minutes, p/np */
/* cum. connect time, p/np, mins */
! * cum. disk usage *!
/ * count of processes * /
/ * count of login sessions * /
/ * count of disk samples * /
/ * fee for special services * /

HARDW ARE DEPENDENCIES
Series 500

AC-Illem includes only certain resident segments still held by a process when it terminates.
Because aC-Illem does not account for shared or vitual memory, or for changes in the
amount of memory allocated dynamically, ac-Illem / (ac---Btime + ac_utime) may not
always furnish a good approximation of memory usage.

SEE ALSO

BUGS

acct(2), acct(1M), acctcom(IM), exec(2), fork(2).

The ac_mem value for a short-lived command gives little information about the actual size of the
command, because ac_mem may be incremented while a different command (e.g., the shell) is
being executed by the process.

Hewlett-Packard Company - 2 - Version B.I, October 1986

AR(4) HP-UX AR(4)

NAME
ar - common archive file format

SYNOPSIS
#include <ar .h>

DESCRIPTION
Ar(l) is used to concatenate several files into an archival file. Archives are used mainly as
libraries to be searched by the link editor ld(l).

Each archive begins with the archive magic string.

#define ARMAG " karch> \n"
#define SARMAG 8

I * magic string *1
I * length of magic string * I

Each archive which contains object files (see a.out(4)) includes an archive symbol table. This
symbol table is used by the link editor ld(l) to determine which archive members must be loaded
during the link edit process. The archive symbol table (if it exists) is always the first file in the
archive (but is never listed) and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file member is preceded by
a file member header which is of the following format:

#define ARFMAG "'\n"

struct ar-.hdr {

};

char ar-Ilame[16J;
char ar_date[12J;
char ar_uid[6J;
char ar~id[6J;
char ar--.lllode[8J;
char ar-Bize[lOJ;
char ar-Imag[2J;

I * header trailer string * I

I * file member header *1
1* 'I' terminated file member name *1
1* file member date *1
I * file member user identification *1
I * file member group identification *1
1* file member mode (octal) *1
1* file member size *1
I * header trailer string * I

All information in the file member headers is in printable ASCII. The numeric information con­
tained in the headers is stored as decimal numbers (except for ar_mode which is in octal). Thus,
if the archive contains printable files, the archive itself is printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date field is the
modification date of the file at the time of its insertion into the archive. Common format archives
can be moved from system to system as long as the portable archive command ar(l) is used.
Note that older versions or ar(l) did not use the common archive format, and those archives can­
not be read or written by the common archiver.

Each archive file member begins on an even byte boundary; a newline is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file. If the archive symbol table exists,
the first file in the archive has a zero length name (i.e., ar-Dame[O] == 'I'). The contents of
this archive member are machine dependent. Further details can be found in the a.out(4) manual
page for each machine.

SEE ALSO
ar(l), ld(l), strip(l), a.out(4), magic(4).

CAVEATS

Hewlett-Packard Company - 1 - Version B.l, October 1986

AR(4) HP-UX AR(4)

Strip{l) will remove all archive symbol entries from the header. The archive symbol entries must
be restored via the ts option of the ar(l) command before the archive can be used with the link
editor Id{l}.

Hewlett-Packard Company - 2 - Version B.l, October 1986

BIF(4)

NAME

HP-UX
Series 200, 300, 500 Only

bif - bell interchange format utilities

BIF(4)

DESCRIPTION
BIF (Bell Interchange Format) is the name given to the format of mounted media used by HP-UX
Series 200, revisions 2.0 and 2.1, and the Integral Personal Computer. This format is based upon
that used in System III Unix.

The BIF utilities listed under SEE ALSO below are provided for non-Series 200 (revision 2.0 and
2.1) and non-Integral Personal Computer access to the BIF media. These utilities read and write
data to and from BIF volumes, as well as retrieve and store information on BIF volumes.

The BIF utilities listed below are the only HP-UX utilities that recognize the internal contents of
a BIF volume. To the rest of HP-UX, a BIF volume is simply a file/disk containing unspecified
data. Therefore, do not use mount{l} on a BIF volume; the operating system cannot recognize it.

BIF file names are specified to the BIF utilities by concatenating the HP-UX path name for the
BIF volume with the BIF file name, separating the two with a colon (:). For example,

/dev /rdsk/lsO:/users/ivy
specifies BIF file /users/ivy within HP-UX device special file
/dev /rdsk/lsO

Note that this file naming convention is applicable only for use as arguments to the BIF utilities
and does not constitute a legal path name for any other use within HP-UX. The shell sh{l}
"meta" characters * ? and [... J do not work for specifying an arbitrary pattern for file name
matching when using the BIF utilities.

If the device name and a trailing colon are specified without a file or directory name following,
e.g., /dev /rdsk/lsO:, the root (f) of the BIF file system is assumed by convention.

A primitive form of data protection is provided by a lockfile /tmp/BIF .. LCK that only allows
one process and its immediate children to use the BIF utilities at a time.

AUTHOR
Bit was developed by HP.

SEE ALSO
bifchmod{I), bifchown{I), bifcp{I), bifdf{IM), biffind{I), biffsck{IM), biffsdb{IM), bifls{l)' bifmk­
dir{I), bifmkfs{IM), bifrm{I).

Hewlett-Packard Company - 1 - Version B.l, October 1986

CHECKLIST (4) HP-UX CHECKLIST (4)

NAME
checklist - static information about the file systems

SYNOPSIS
#include <checklist.h>

DESCRIPTION
Checklist is an ASCII file and resides in directory / etc. It is only read by programs, and not writ­
ten; it is the duty of the system administrator to properly create and maintain this file.
/etc/checklist contains a list of mountable file system entries. The fields within each entry of a
file system are separated by one or more blanks. Each file system entry is contained on a separate
line. The order of entries in /etc/checklist is important because fsck, mount, and umount
sequentially iterate through /etc/checklist.

Each file system entry must contain a special file name and may additionally contain all of the
following fields, in order:

block special file name
directory
type
pass number on parallel fsck
backup frequency
comment

These additional fields are ignored in an HP-UX system if the set of system administration tools
implemented on that system does not support them:

special file name is either a character or block special file name. This field is used by the fsck{lM)
command.

block special file name

directory

type

pass number

is used by the mount{lM) and other commands.

is the name of the root of the mounted file system which corresponds to the
block special file name. The directory must already exist and must be given as
an absolute path name.

can be "rw", "ro" , "sw" or "xx". If type is "rw" or "ro" then the file system
whose name is given in the block special file field is mounted read-write or read­
only on the specified directory by mount -a. If type is "sw" then the special file
name is made available as a piece of swap space by the swapon{lM) command.
The fields pass number and backup frequency are ignored for "sw" entries.
Entries marked "xx" are ignored by all commands and can be used to mark
unused sections. If type is specified as either "xx" or "sw" the entry is ignored
by the mount{lM} command.

field is used by the fsck{lM) command to determine the order in which file sys­
tem checks are done when using the -p option of fsck. The root file system
should be specified with a pass number of 1, and other file systems should have
larger numbers. File systems within a drive should have distinct numbers, but
file systems on different drives can be checked on the same pass to utilize possi­
ble parallelism available in the hardware. A file system with a pass number of
zero will be ignored by the fsck{lM) command. If a pass number is not present,
fsck will check each such file system sequentially after all eligible file systems
with pass numbers have been checked.

Hewlett-Packard Company - 1 - Version B.l, October 1986

CHECKLIST (4) HP-UX CHECKLIST (4)

backup frequency field is reserved for possible use by future backup utilities.

comment field is an optional field which starts with a pound sign (#) and ends with a
newline. Space from the backup frequency up to the comment field, if present, or
the newline is reserved for future use.

Examples of file system entries specified in /etc/checklist:

For system which supports only special file name field:
/dev/rdsk/OsO

For system which supports multi-fields:
/dev/rdsk/OsO /dev/dsk/OsO / rw 1 0 #root disk

HARDW ARE DEPENDENCIES
Series 500:

All of the optional fields in a file system entry will be ignored.

Series 200, 300, 800:
There is no limit to the number of special file names in /etc/checklist. However, the com­
mands mount-a and umount-a give an error if the number of mountable file system entries
in /etc/checklist exceeds NMOUNT.

AUTHOR
Checkli:Ji was developed by the Hewlett-Packard Company, AT&T Dell Laboratories, and the
University of California, Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

SEE ALSO
fsck[HFS](1M), mount[HFS](1M), swapon[HFS](1M), getfsent(3X),

Hewlett-Packard Company - 2 - Version B.1, October 1986

COL--SEQ-8 (4) HP-UX COL--SEQ-8 (4)

NAME
coueq_8 - collating sequence table for languages with 8-bit character sets

DESCRIPTION
There are four language dependent collation algorithms for European languages. These algorithms
are:

Two_to_one conversions: Some languages such as Spanish require two adjacent characters to
occupy one position in the collating sequence. Examples are "CH" (which follows "C") and "Ll"
(which follows "L").

One_to_two conversions: Some languages such as German require one character (e.g. "sharp
S") to occupy two adjacent positions in the collating sequence.

Don't care characters: Some languages designate certain characters to be ignored in character
comparisons. For example, if "-" is a "don't care" character, then the strings "REACT" and
"RE-ACT" would equal each other when compared.

Case and accent priority: Many languages require a "two pass" collating algorithm: in pass
one, the accents are stripped off the letters and the resulting two strings are comparedj if they are
equal, a second pass with the accents back in place is performed to break the tie. The case of
letters may also be used in this fashion.

This table has four sections: a file header, a sequence table, a two_to_one mapping table, and a
one_to_two mapping table.

The file header has the following format:
struct header {

short int
short int
short int
short int
short int
short int
short int
short int
short int

}

char
char

Sequence Table

table~enj

lan~dj
reservedlj
seq_tabj
seq~enj

two_to_onej
two_to_one~enj

one_to_twOj
one_to_two~enj

low_charj
higLcharj

1* Table length * /
1* Language id number * /
1* Reserved * /
1* Address of sequence table * /
1* Length of sequence table * /
1* Address of two_to_one table * /
1* Length of two_to_one table * /
1* Address of one_to_two table * /
1* Length of one_to_two table * /
1* Lowest character * /
1* Highest character * /

Entries in the sequence table have the following format:

struct seq_ent {
unsigned char
unsigned char

seq-IlOj
type--infoj

1* Sequence number * /
1* Character type * /

The byte value of a given character is used as an index into the sequence table. The first two bits
of type_info are used to keep track of the character type. A value zero means the character is a
one_to_one character, and the other six bits in typf-info contain its priority. A value of one or
two means that type_info contains an index value into either the two_to_one or the

Hewlett-Packard Company - 1 - Version B.l, October 1986

COL-SEQ-8 (4) HP-UX COL-SEQ-8 (4)

one_to_two mapping table respectively. A value zero in seq_no means the character is a "don't
care" character.

Mapping Table for two_to_one Mapped Characters

Entries in the two_to_one table have the following format:

struct two_to_one {
char
char

/* Reserved * /
/* Legal character * /

struct seq_ent

reservedl;
legaLchar;
seq2; /* Sequence entry for this pair * /

"Legal" two_to_one characters are listed for each particular character. "Legal" means that the
combination of two characters is treated as a single character. If a match is found, then the
corresponding sequence entry is used for the two. Whenever a legal successor is not found in
table, the character is treated according to one_to_one mapping, and the priority in the last
entry combined with sequence number of the character creates the sequence entry.

Mapping Table for one_to_two Mapped Characters

Entries in the one_to_two mapping table have the same format as entries in the sequence table.
The sequence number of the first character is known from the entry in the sequence table. The
sequence number of the second character is found in the one_to_two mapping entry, and the
priority is used for both characters.

AUTHOR
CoLseq_8 was developed by the Hewlett-Packard Company.

SEE ALSO
nLstring{3C), sort{l).

INTERNATIONAL SUPPORT
8-bit data.

Hewlett-Packard Company - 2 - Version B.l, October 1986

CORE(4) HP-UX CORE(4)

NAME
core - format of core image file

DESCRIPTION
The HP-UX system writes out a core image of a terminated process when any of various errors
occur. See signal(2) for the list of reasons; the most common are memory violations, illegal
instructions, bus errors, and user-generated quit signals. The core image is called core and is
written in the process's working directory (provided it can be; normal access controls apply). A
process with an effective user ID different from the real user ID will not produce a core image.

The file contains sufficient information to determine what the process was doing at the time of its
termination. Debuggers such as cdb(l) and adb(l) provide a uniform user interface to this infor­
mation. The actual contents of the file are implementation-dependent; refer to the documentation
for a specific HP-UX implementation for further details.

SEE ALSO
adb(l), cdb(l), setuid(2), signal(2).

Hewlett-Packard Company - I - Version B.I, October 1986

CORE(4) CORE(4)
Series 200/300 Implementation

NAME
core - format of core image file

Remarks:
Core(5) is implemented on Series 200 and 300 only.

DESCRIPTION
The HP-UX system writes out a core image of a terminated process when any of various errors
occur. See signal(2) for the list of reasons; the most common are memory violations, illegal
instructions, bus errors, and user-generated quit signals. The core image is called core and is
written in the process's working directory (provided it can be; normal access controls apply). A
process with an effective user ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for the process, includ­
ing the registers as they were at the time of the fault. The size of this section depends on the
parameter UPAGES which is defined in /usr/include/sys/param.h. The remainder represents
the actual contents of the user's core area when the core image was written. If the text segment
is read-only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user structure of the system,
defined in /usr/include/sys/user.h. The important stuff not detailed therein is the locations of
the registers, which are outlined in /usr/include/sys/reg.h.

SEE ALSO
SI,nh(l), roh(l), I'Iptnio(2) , Rignal(2)

Hewlett-Packard Company - 1 - October 1986

CORE(4) CORE (4)
Series 500 Implementation

NAME
core - format of core image file

DESCRIPTION
The HP-UX system writes out a core image of a terminated process when any of various errors
occur. See signal{2} for the list of reasons; the most common are memory violations, illegal
instructions, floating point exceptions, and user-generated quit signals. The core image is called
core and is written in the process's working directory (provided it can be; normal access controls
apply). A process with an effective user ill different from the real user ID will not produce a core
image.

The first section of the core image is a header which contains information about the terminated
process. The remainder represents the actual contents of the user's core area when the core image
was written. This area contains the stack, user global data, and heap segments. The last object in
the core image is the code segment fixup map which maps user code segments into real addresses.

The format of the information in the first section is described by the user structure of the system,
defined in <sys/user.h>.

SEE ALSO
cdb(I}, setuid(2}, signal(2}.

Hewlett-Packard Company - 1 - October 1986

CPIO(4) HP-UX CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(l) is not used, is:

struct {

} Hdr;

short

ushort

~agic,

Ldev;
Lino,
~ode,

Luid,
Lgid;

short Lnlink,
Lrdev,
~time[21,
~amesize,

Llilesize[2] ;
char ~ame[~amesize rounded to word];

When the -c option is used, the header information is described by:

sscanf(Chdr, "%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%lllo%6ho%lllo",
&Hdr.~agic,&Hdr.Ldev,&Hdr.Lino,&Hdr.~ode,

&Hdr.Luid,&Hdr.Lgid,&Hdr.Lnlink,&Hdr.Lrdev,
&Longtime,&Hdr.~amesize,&Longfile) ;

Longtime and Longjile are equivalent to Hdr.Lmtime and Hdr.Ljilesize, respectively. The con­
tents of each file are recorded together with other items describing the me. Every instance of
Lmagic contains the constant 070707 (octal). The items Ldev through Lmtime have mean­
ings explained in stat(2). The length of the null-terminated path name Lname, including the
null byte, is given by Lnamesize.

The last record of the archive always contains the name TRAILER!!!. Directories and the trailer
are recorded with Ljilesize equal to zero.

It will not always be the case that Ldev and Lino correspond to the results of stat(2j, but the
values are always sufficient to tell whether two files in the archive are linked to each other.

When a device special file is archived by HP-UX cpio (using -x), Lrdev will contain a magic con­
stant which is dependent upon the implementation which is doing the writing. H-rdev flags the
device file as an HP-UX 32-bit device specifier, and Llilesize will contain the 32-bit device
specifier (see stat(2)). If the -x option is not present, special files are not archived or restored.
Non-HP-UX device special files are never restored.

SEE ALSO
cpio(I), find(I), stat(2).

Hewlett-Packard Company - 1 - Version B.l, October 1986

DEVICES (4) DEVICES (4)
Series 800 Only

NAME
devices - file of driver information for insf, mksf, Issf

DESCRIPTION
The devices file contains a description of I/O drivers, pseudo-drivers, hardware addresses and
block/character major numbers. It is created by uxgen(I). Normally, this file resides in the direc­
tory jete.

This is an ASCII file consisting of zero or more lines where each line is terminated by a newline
character. Each line begins with a name which normally represents an I/O driver or pseudo­
driver. Tokens are separated by white space.

Each parameter in the line is preceded by a keyword. All parameters are optional. The keywords
are: lu, address, b---.lllajor, c---.lllajor. They represent logical unit number, hardware address, block
major number, character major number, respectively. Parameters may appear in any order after
the name; however, they must be directly preceded by their keyword.

For example, lines from a devices file follow:

cn
discO lu 0
discO lu 1

AUTHOR

address 28.0.0 b---.lllajor 0
address 28.0.2 b---.lllajor 0

Devices was developed by HP.

SEE ALSO
insf(I), mksf(I), Issf(I).

Hewlett-Packard Company - 1 -

c---.lllajor 0
c---.lllajor 4
c---.lllajor 4

October 1986

DIALUPS(4) HP-UX DIALUPS(4)

NAME
dialups, Lpasswd - dialup security control

DESCRIPTION

FILES

Dialups and Lpasswd are used to control the dialup security feature of login(l). If /etc/dialups
is present, the first word on each line is compared with the name of the line upon which the login
IS bemg performed. (Indudmg the i dey i, as returned by ttyname (J). If the iogin is occurrmg on
a line found in dialups, dialup security is invoked. Anything after a space or tab is ignored.

When dialup security is invoked, login(l) will request an additional password, and check it
against that found in /etc/Lpasswd. The command name found in the "program to use as
shell" field of /etc/passwd is used to select the password to be used. Each entry in Lpasswd con­
sists of three fields, separated by colons. The first is the command name, matching an entry in
passwd. The second is the encrypted password to be used for dialup security for those users log­
ging in to use that program. The third is commentary, but the second colon is required to delimit
the end of the password. A null password is designated with two adjacent colons. The entry for
/bin/sh is used if no other entry matches the command name taken from passwd.

/etc/dialups Dial in tty lines
/etc/Lpasswd Passwords

SEE ALSO
login(l), passwd(4).

Hewlett-Packard Company - 1 - Version B.1, October 1986

DIR[HFS](4) HP-UX
Series 200, 300, 800 Only

DIR[HFS](4)

NAME
dir - format of directories

SYNOPSIS
#include <types.h>
#include <sys/dir.h>

REMARKS
This entry describes the directory format for the HFS file system. Refer to other dir(4) manual
pages for information valid for other implementations.

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
/8(4)). The structure of a directory entry as given in the dir.h include file is:

#define DIRSIZ 14
#define DIRJ> ADSIZE 10

struct direct {
tLJong
lL...Short
lL...Short
char
char

};

LiDo; 1* inode number of entry * /
Lreclen; 1* length of this record * /
~amlen; 1* length of string in ~ame * /
~ame[DIRSIZ]; 1* name must be no longer than this * /
Lpad[DIRJ> ADSIZE];

By convention, the first two entries in each directory are for. and •• ("dot" and "dot dot"). The
first is an entry for the directory itself. The second is for the parent directory. The meaning of ••
is modified for the root directory of the master file system; there is no parent, so •• and. have
the same meaning.

The direct structure defined here is the actual directory format for the HFS file system and is not
compatible with other HP-UX supported file systems. The direct structure defined in
/u8r /include/ndir.h should be used in conjunction with the directory(3C) library routines for com­
patibility across all HP-UX supported file systems.

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

AUTHOR
Dir was developed by the Hewlett-Packard Company, and the University of California, Berkeley
California, Computer Science Division, Department of Electrical Engineering and Computer Sci­
ence.

SEE ALSO
fs(4), directory(3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

DIR(4) DIR(4)
Series 500 Implementation

NAME
dir - format of directories

SYNOPSIS
#include <types.h>
#include <sys/dir.h>

Remarks:
This entry describes the SDF directory format for Series 500. Refer to other dir(5) manual pages
for information valid for other implementations.

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
inode(5)). The structure of a directory entry as given in sys/dir.h is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

};

char
short
short
ino_t

<Lname[DIRSIZ+2] ;
Lobject_type;
~le_code:

Lino;

/* 16-char file name */
/* not referenced by HP-UX */
/* not referenced bv HP-UX */
1* use fir # for i-n~e */ .

The SDF directory implementation eliminates entries for . and •.. Instead, this information is
available as part of the i-node.

File names are stored in directories in a special manner in two cases:

When a file name contains embedded blanks, the blanks are represented by null charac­
ters on the disc. This is apparent when accessing the disc in raw (character) mode.

When a file name is blank padded, all unspecified characters are set to blanks. Again,
this is apparent only when reading from the disc in raw mode.

When a director has been opened vi open(2), file names appear as null-terminated, and contain
embedded blanks where they belong.

The direct structure defined here is the actual directory format for the SDF file system, and is not
compatible with other file systems supported on HP-UX. The direct structure defined in
/usr/include/ndir.h should be used in conjunction with the directory(3C) library routines for com­
patibility across all HP-UX supported file systems.

SEE ALSO
fs(4), inode(4), directory(3C).

Hewlett-Packard Company - 1 - October 1986

DISKTAB[HFS) (4) HP-UX
Series 200, 300, 800 Only

DISKTAB[HFS) (4)

NAME
disktab - disk description file

SYNOPSIS
#include <disktab.h>

DESCRIPTION
Disktab is a simple data base which describes disk geometries and disk section characteristics.
Entries in disktab consist of a number of ":' separated fields. The first entry for each disk gives
the names which are known for the disk, separated by 'I' characters. The last name given should
be a long name fully identifying the disk.

The following list indicates the normal values stored for each disk entry. Sectors are of size
DEV -BSIZE, defined in <sys/param.h> on your system.

Name Type Description
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
bO num Block size for section '0' (bytes)
bI num Block size for section '1' (bytes)
b<n> num Block size for section '<n>' (bytes)
fO num Fragment size for section '0' (bytes)
f1 num Fragment size for section '1' (bytes)
f<n> num Fragment size for section '<n>' (bytes)
sO num Size of section '0' in sectors
sl num Size of section '1' in sectors
s<n> num
rm num
ty str

Example:

hp7914:

Size of section '<n>' in sectors
Revolution per minute
Type of disk (e.g. removable, winchester)

:ty=winchester:ns#I6:nt#7:nc#I06I:sO#II8832\
:bO#8192:fO#1024:rm#36oo:

HARDW ARE DEPENDENCIES

FILES

The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

Series 200:
The Series 200 5.0 release can have only one section per disk drive.

/etc/disktab

AUTHOR
Disktab was developed by the Hewlett-Packard Company, and the University of California, Berke­
ley California, Computer Science Division, Department of Electrical Engineering and Computer
Science.

SEE ALSO
newfs(IM)

Hewlett-Packard Company - 1 - Version B.I, October 1986

DOSIF(4) DOSIF(4)
Series 300 Only

NAME
DOSIF - DOS Interchange Format description

DESCRIPTION
DOSIF (DOS Interchange Format) is the name given to the media format used by the DOS operat­
ing system. This format is based upon that used in IBM PC and PCAT, HP Vectra, and HP 150
syst~ms_

The DOS utilities described in Section 1 are provided for reading and writing data to and from
DOSIF volumes. These utilities (referred to hereafter as dos* (1) can be used to retrieve informa­
tion from a DOSIF volume.

The dos* (I) utilities in Section 1 are the only entities within the HP-UX operating system that can
interact directly with the contents of a DOSIF volume. All other HP-UX uti lites and facilities can
only treat a DOSIF volume as a file containing unspecified data. Mount{l) must not be used on a
DOSIF volume because the operating system cannot recognize it.

When specifying file names for DOSIF cOlllmands, concatenate the HP-UX path name in front of
the DOSIF volume and file name, separating the two with a colon (:). For example,

/dev /fd.O:/users/ivy

specifies DOSIF file /users/ivy accessed through HP-UX device special file /dev//d.O.

Note that this file naming convention is only suitable for use as arguments to the dos*{I) utilities,
and does not constitute a legal path name for any other use within HP-UX. Also, the shell (sh{I))
meta characters: * '! and [...] cannot be used to specify an arbitrary pattern for file name match­
ing when using DOSIF utilities.

If the HP-UX device name and a trailing colon are specified but no file or directory name is pro­
vided (e.g. /dev/rfd.O:), the root (/) of the DOS file system is assumed by convention.

A primitive form of data protection is provided by a lockfile /tmp/DOS .. LCK that permits only
one process and its immediate children to use the DOSIF utilities at any given time.

SEE ALSO
doschmod{I), doscp(I), dosdf(I), dosls{I), dosmkdir{I), dosrm{I).

WARNINGS
Dos* routines maintain a cache in order to reduce the number of mass storage device accesses.
When referring to several DOSIF files within a single command, be sure to refer to the device file
in exactly the same way. For example,

doscp /dev/x:alpha / /dev/x:beta

is sure to create unexpected results because the DOSIF utilities treat /dev /x and / /dev /x as two
different devices.

Hewlett-Packard Company - 1 - December 1986

ERRFILE(4) ERRFILE(4)
Series 500 Implementation

NAME
errfile - system error logging file

Remarks:
This manual page describes errfile as implemented on the Series 500. Refer to other errfile
manual pages for information valid for other implementations.

DESCRIPTION

FILES

Errfile is a logging file containing lines of ASCII text. Each line describes certain system errors
that have occurred, or warnings about serious system conditions. Only those system error mes­
sages deemed serious enough to be of interest to the system administrator are logged. Urgent
messages are also written to / dev / console.

HP-UX creates errfile if it does not exist.

The system administrator should check the contents of errfile periodically and note errors that
need attention. Also, errfile tends to grow without bounds, so outdated information needs to be
removed on a regular basis.

usr / adm/ errfile

SPECIAL NOTE
errfile reports the number of logical blocks left on the disk. The size of those logical blocks is
defined at system installation and configuration.

Hewlett-Packard Company - 1 - December 1986

FS[HFS](4)

NAME

HP-UX
Series 200, 300, 800 Only

fs - format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs.h>
#include <sys/ino.h>
#include <sys/inode.h>
#include <sys/sysmacros.h>

MARKETING MODEL
To be determined.

TECHNICAL MODEL
Core System Base
HP+ (HFS Subset)

DESCRIPTION

FS[HFS](4)

Every file system storage volume has a common format for certain vital information. The first 8
kbytes on a volume contain a volume header which identifies that volume as a LIF volume. Such
volume may be divided into a number of sections.

Each section can contain a file system. The first 8 kbytes in each section is ignored, except where
it coincides with the volume header discussed above. The actual file system begins next ,vith the
super block. The layout of the super block as defined by the include file <sys/!s.h> is:

#define FS---.MAGIC
#define FS_CLEAN
#define FS_OK
#define FS---.NOTOK

struct fs {

OX011954
Ox17
Ox53
Ox37

struct fs *fs--1ink;
struct fs *fs--.rlink;
daddr_t fS-Bblkno;
daddr_t fs_cblkno;
daddr_t fs---.lblkno:
daddr_t fs_dblkno;
long fs_cgoffset;
long fs_cgmask;
time_t fs_time;
long fS-Bize;
long fs_dsize;
long fs~cg;

long fs_bsize;
long fs~size;

long fs~rag;

/* these are configuration parameters * /
long fS----IIlinfree;
long fs--.rotdelay;
long fs-Ips;

/* these fields can be computed from the others * /
long fs_bmask;
long fs~mask;

long fs_bshift;

Hewlett-Packard Company - 1 -

/* linked list of file systems * /
/* used for incore super blocks * /
/* addr of super-block in filesys * /
/* offset of cyl-block in filesys * /
/* offset of in ode-blocks in filesys * /
/* offset of first data after cg * /
/* cylinder group offset in cylinder * /
/* used to calc mod fs~trak * /
/* last time written * /
/* number of blocks in fs * /
/* number of data blocks in fs * /
/* number of cylinder groups * /
/* size of basic blocks in fs * /
/* size of frag blocks in fs * /
/* number of frags in a block in fs * /

/* minimum percentage of free blocks * /
/* num of ms for optimal next block * /
/* disk revolutions per second * /

/* "blkoff" calc of blk offsets * /
/* "fragoff" calc of frag offsets * /
/* "lblkno" calc of logical blkno * /

Version B.l, October 1986

FS[HFS) (4) HP-UX
Series 200, 300, SOO Only

long fs-.fshiftj

FS[HFS) (4)

/* "numfrags" calc number of frags * /
/* these are configuration parameters * /

long fs-IIlaxcontigj
long fS-IIlaxbpgj

/* these fields can be computed from the others * /

/* max number of contiguous blks * /
/* max number of blks per cyl group * /

long fs-.fragshiftj /* block to frag shift * /
long fs-.fsbtodbj 1* fsbtodb and dbtofsb shift constant * /
long fs-sbsizej /* actual size of super block * /
long fs_csmaskj /* csum block offset * /
long fs_csshift; 1* csum block number * /
long fS-Ilindirj /* value of NINDIR * /
long fs---.inopbj /* value of INOPB * /
long fS-Ilspfj /* value of NSPF * /
long fs-sparecon[6]j /* reserved for future constants * /

/* sizes determined by number of cylinder groups and their sizes * /
daddr_t fs_csaddrj /* blk addr of cyl grp summary area * /
long fs_cssizej /* size of cyl grp summary area * /
long fs_cgsizej /* cylinder group size * /

1* these fields should be derived from the hardware * /
long fS-Iltrakj
long fS-Ilsect;
long fs-spc;

/* this comes from the disk driver partitioning * /
long fS-Ilcyl;

/* these fields can be computed from the others * /
long fs_cpg;
long fs---.ipgj
long fs---.fpg;

/* this data must be re-computed after crashes * /
struct csum fs_cstotal;

/* these fields are cleared at mount time * /

/* tracks per cylinder * /
/* sectors per track * /
/* sectors per cylinder * /

/* cylinders in file system * /

/* cylinders per group * /
/* inodes per group * /
/* blocks per group * fs-.frag * /

/* cylinder summary information * /

char fs--.lmod; /* super block modified flag * /
char fs_clean; /* file system is clean flag * /
char fS-I'onlYj /* mounted read-only flag * /
char fB-llags; /* currently unused flag * /
char fs-.fsmnt[MAXMNTLEN]; /* name mounted on * /

/* these fields retain the current block allocation info * /
long fs_cgrotor; /* last cg searched * /
struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers * /
long fs_cpc; /* cyl per cycle in postbl * /
short fs_postbl[MAXCPGj(NRPOS];/* head of blocks for each rotation * /
long fS-IIlagic; /* magic number * /
char fS-Ilame[6]; /* name of file system * /
char fs---.fpack[6]; /* pack name of file system * /
11-char fS-I'otbl[I]; /* list of blocks for each rotation * /

/* actually longer * / };

A file system consists of a number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

Hewlett-Packard Company - 2 - Version B.l, October 1986

FS[HFS] (4) HP-UX
Series 200, 300, 800 Only

FS[HFS](4)

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system blocks of at
most size MAXBSIZE can be optionally broken into smaller pieces, each of which is addressable;
these pieces may be DEV -BSIZE, or some multiple of a DEV -BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a file is allocated only as many fragments of a large block as are necessary, if that
file is small enough to not require indirect data blocks. The file system format retains only a single
pointer to such a fragment, which is a piece of a single large block that has been divided. The size
of such a fragment is determinable from information in the inode, using the "blksize(fs, ip, Ibn)"
macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

I-numbers begin at O. Inodes 0 and 1 are reserved. Inode 2 is used for the root directory of the
file system. The lost+/ound directory is given the next available inode when it is initially created
by mk/s.

Fs_min/ree gives the minimum acceptable percentage of file system blocks which may be free. If
the freelist drops below this level only the super-user may continue to allocate blocks. This may
be set to 0 if no reserve of free blocks is deemed necessary, however severe performance degrada­
tions will be observed if the file system is run at greater than 90% full; thus the default value of
/lL-min/ree is 10%.

The best trade-off bct\vccn block fragmentation and overall disk utilization and performance
varies for each intended use of the file system. Suggested values can be found in the System
Administrator's Manual for each implementation.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. For example, with NRPOS
8 the resolution of the summary information is 2ms for a typical 3600 rpm drive.

Fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within a
file; the default value for /s_rotdelay is 2ms. Suggested values of fS-fotdelay for different disks
can be found in the System Administrator's Manual.

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI
bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the struc­
ture simpler by having only a single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create
files of size 2'32 with only two levels of indirection. MINBSIZE must be big enough to hold a
cylinder group block, thus MINBSIZE must always be greater than sizeof(struct cg). Note that
super blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in /s_/smnt. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the amount
of summary information per file system is defined by MAXCSBUFS. It is currently parameterized
for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's
data blocks. These blocks are read in from /lL-csaddr (size /s_cssize) in addition to the super
block.

Hewlett-Packard Company - 3 - Version B.l, October 1986

FS[HFS](4) HP-UX
Series 200, 300, 800 Only

FS[HFS] (4)

N.B.: sizeof (struct csum) must be a power of two in order for the "fs_cs" macro to work.

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is lim­
ited by the fact that the super block is of size SBSIZE. The size of these tables is inversely pro­
portional to the block size of the file system. The size of the tables is increased when sector sizes
are not powers of two, as this increases the number of cylinders included before the rotational pat­
tern repeats (flLcpc). The· size of the rotational layout tables is derived from the number of
bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact that
cylinder groups are at most one block. The size of the free block table is derived from the size of
blocks and the number of remaining bytes in the cylinder group structure (struct cg).

Inode: The inode is the focus of all file activity in the There is a unique inode allocated for each
active file, each current directory, each mounted-on file, text file, and the root. An inode is
'named' by its device/i-number pair. For the format of an inode and its flags, see inode{4}

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

Series 200

AUTHOR

Series 200 5.0 release supports only one section per volume. Thus, there can only be one file
system on each volume and the first 8 kbytes of a file system is the boot area. This area
contains the LIF volume header, the directory that defines the contents of the volume and
the bootstrapping program.

Fs[HFS] was developed by HP, and the University of California, Berkeley.

SEE ALSO
inode [HFS](4), lif(4).

Hewlett-Packard Company - 4 - Version B.l, October 1986

FS[SDFJ(4) FS[SDFJ(4)
Series 500 Implementation

NAME
fs - format of system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/filsys.h>

Remarks: This manual page describes the format of the system volume as implemented on the
Series 500. Refer to other fs manual pages for information valid for other implementations.

DESCRIPTION
Every Structured Directory Format (SDF) volume is divided into logical blocks, the size of which
is selected when init is executed. Block 0 is the superblock. It has the following format:

struct filsys {
ushort
ushort

};

char
time.-ios
int
daddr_t
int
daddr_t
int
daddr_t
char
time.-ios

B-.iormat;
s_corrupt;
s-Iname[16J;
s.-init;
s_blksz;
s_boot;
s_bootsz;
sJa;
s_version;
s-IIlaxblk;
s_passwd[16J;
s_bkup;

/* disc fmt, should = Ox700 Unix */
/ * non-zero if directory corrupt * /
/ * root dir name, blank padded * /
/ * date initialized / unique id * /
/ * no. bytes per block * /
/ * boot area starting block * /
/ * size of boot area in blks * /
/ * FA file starting block * /
1* version no., 0 for Unix ~/
/ * largest addressable blk * /
/* volume password, Unix unused */
/* last backup date, Unix unused */
/ * rest of blk unused * /

The file attributes file (FA file) begins at the block specified by s_fa in the superblock. It has five
major sections:

Hewlett-Packard Company - 1 - October 1986

FS[SDF] (4) FS{SDF] (4)

FILES

Series 500 Implementation

Each entry consists of 128 bytes. -Entry 0 is the i-node of the FA file itself (see inode(5) for a
description of the i-node structure). Entry 1 is the i-node for the file system's root directory, f.
Entry 3 through entry n consists of the free map, which keeps track of every free (unused) block
of memory on the device. The free map contains a bit for each block on the device. If a bit is set,
the corresponding block of memory is freej otherwise, the corresponding block is being used. The
free map is zero-padded to guarantee that it ends on a 128-byte boundary.

Entry n+l through the end of the FA file contains an entry for every file in the system. Each
entry is either an i-node, an extent map, or unused. An extent map contains 128 bytes of infor­
mation, and looks as follows:

struct eIIL....rec {
ushort
ushort
int
ino_t
ino_t
ino_t
daddr_t
struct {

e_type;
e_exnumj
e-..reslj
e--..llextj
e-.Jastj
e-inodej
e_boffsetj

/ * =2 for extent maps * /
/ * # extents in this rec. * /
/* unused */
/ * next map in listj none = neg * /
/* last map in list; none = neg */
/* owner i-node no. */
/ * blk offset of 1st extent from start of file * /

daddr_t e-Btartblkj / * extent start blk * /
/* # blks in extent */ int e--..llumblk;

e_extent[13Jj
}j

/usr /inc1ude / sys/param.h
/usr/include/sys/filsys.h
/usr/inc1ude/sys/ino.h

SEE ALSO
inode(4), fsck(IM).

Hewlett-Packard Company - 2 - October 1986

FSPEC(4) HP-UX FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the HP-UX system with non-standard tabs,
(i.e., tabs which are not set at every eighth column). Such files must generally be converted to a
standard format, frequently by replacing all tabs with the appropriate number of spaces, before
they can be processed by HP-UX system commands. A format specification occurring in the first
line of a text file specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded
by the brackets <: and :>. Each parameter consists of a keyletter, possibly followed immediately
by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must
be one of the following:

8size

mmargin

d

e

1. a list of column numbers separated by commas, indicating tabs set at the
specified columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of
n columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t-8, or equivalentiy, tl,9,17,25,etc. The canned
tabs which are recognized are defined by the tabs(l) command.

The 8 parameter specifies a maximum line size. The value of size must be an
integer. Size checking is performed after tabs have been expanded, but before
the margin is prepended.

The m parameter specifies a number of spaces to be prepended to each line.
The value of margin must be an integer.

The d parameter takes no value. Its presence indicates that the line contain­
ing the format specification is to be deleted from the converted file.

The e parameter takes no value. Its presence indicates that the current for­
mat is to prevail only until another format specification is encountered in the
file.

Default values, which are assumed for parameters not supplied, are t-8 and mO. If the 8 parame­
ter is not specified, no size checking is performed. If the first line of a file does not contain a for­
mat specification, the above defaults are assumed for the entire file. The following is an example
of a line containing a format specification:

* <:t5,1O,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code the d parame­
ter.

Several HP-UX system commands correctly interpret the format specification for a file. Among
them is ed(l), which may be used to convert files to a standard format acceptable to other HP-UX
system commands.

SEE ALSO
ed(l), newform(l), tabs(l).

Hewlett-Packard Company - 1 - Version B.l, October 1986

GETTYDEFS(4) HP-UX GETTYDEFS(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty{lM) to set up the speed and terminal
settings for a line. It supplies information on what the login prompt should look like. It also sup­
plies the speed to try next if the user indicates the current speed is not correct by typing a
<break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. The various fields can contain quoted characters of the
form \b, \n, \c, etc., as well as \nnn, where nnn is the octal value of the desired character. The
various fields are:

label This is the string against which getty tries to match its second argument. It is
often the speed, such as 1200, at which the terminal is supposed to run, but it
need not be (see below).

initial-flags These flags are the initial ioctl(2) settings to which the terminal is to be set if a
terminal type is not specified to getty. The flags that getty understands are the
same as the ones listed in /usr/include/sys/termio.h (see termio(7)). Normally
only the speed flag is required in the initial-flags. Getty automatically sets the ter­
minal to raw input mode and takes care of most of the other flags. The initial-flag
settings remain in effect until getty executes login{l).

final-flags These flags take the same values as the initial-flags and are set just prior to getty
executes login. The speed flag is again required. The composite flag SANE takes
care of most of the other flags that need to be set so that the processor and termi­
nal are communicating in a rational fashion. The other two commonly specified
final-flags are T AB3, so that tabs are sent to the terminal as spaces, and HUPCL,
so that the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above fields where
white space is ignored (a space, tab or new-line), they are included in the login­
prompt field.

next-label If this entry does not specify the desired speed, indicated by the user typing a
<break> character, then getty will search for the entry with next-label as its label
field and set up the terminal for those settings. Usually, a series of speeds are
linked together in this fashion, into a closed set; For instance, 2400 linked to
1200, which in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of /etc/gettydefs is used, thus
making the first entry of /etc/gettydefs the default entry. It is also used if getty can not find
the specified label. If /etc/gettydefs itself is missing, there is one entry built into the command
which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be run through
getty with the check option to be sure there are no errors.

EXAMPLES
The following two lines show an example of 300/1200 baud toggle, which is useful for dial-up
ports:

1200# B1200 HUPCL # B1200 SANE IXANY IXANY T AB3 #login: #300
300# B300 HUPCL # B300 SANE IXANY IXANY TAB3 #login: #1200

Hewlett-Packard Company - 1 - Version B.1, October 1986

GETTYDEFS(4) HP-UX GETTYDEFS(4)

The following line shows a typical 9600 baud entry for a hard-wired connection:

9600# B9600 # B9600 SANE IXANY IXANY ECHOE TAB3 #login: #9600

FILES
/ etc/ gettydefs

SEE ALSO
getty(lM), login(l), ioctl(2), termio(7).

Hewlett-Packard Company - 2 - Version B.l, October 1986

GROUP(4) HP-UX GROUP (4)

NAME
group - group file, grp.h

DESCRIPTION
Group contains for each group the following infonnation:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colonsj each group is separated from the next by
a new-line. If the password field is null, no password is associated with the group.

There are two files of this fonn in the system, fete/group and /etc/logingroup. /etc/group exists
to supply names for each group, and to support changing groups via newgrp(l). /etc/logingroup
provides a default group access list for each user via login(l) and initgroups(3C).

The real and effective group ID set up by login for each user is defined in /etc/passwd (see
passwd(4). If /etc/logingroup is empty or non-existent, the default group access list is empty. If
/etc/logingroup and /etc/group are links to the same file, the default access list includes the entire
set of groups associated with the user. The group name and password fields in /etc/logingroup
are never usedj they are included only to give the two files a unifonn fonnat, allowing them to be
linked together.

All group ID's used in /etc/logingroup or /etc/passwd should be defined in /etc/group. No user
should be associated with more than NGROUPS (see setgroups(2)) groups in /etc/logingroup.

These files reside in directory fete. Because of the encrypted passwords, they can and do have
general read pennission and can be used, for example, to map numerical group ID's to names.

Grp.h describes the group structure returned by getgrent(3C), etc:

1* see getgrent(3C) * /
struct group {

char

};

char
int
char

*gr-1lamej
*gr_passwdj
gr_gidj
**gr-..lIlemj

WARNINGS

FILES

The gid 9 is reserved for the Pascal Language operating system and the BASIC Language operat­
ing system. These are operating systems for the Series 200 and Series 300 computers that can co­
exist with HP-UX on the same disk. Using this gid for other purposes can inhibit file transfer and
sharing.

fete/group
/ etc /logingroup

SEE ALSO

BUGS

groups(l), newgrp(l), passwd(l), setgroups(2), erypt(3C), getgrent(3C), initgroups(3C),
passwd(4).

There is no tool that helps you ensure that /ete/passwd, fete/group, and /ete/logingroup are
compatible.

There is no tool that helps you set group passwords in fete/group.

Hewlett-Packard Company - 1 - Version B.l, October 1986

INITTAB(4) HP-UX INITTAB(4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process dispatcher. The process that
constitutes the majority of init's process dispatching activities is the line process fete/getty that
initiates individual terminal lines. Other processes typically dispatched by in it are daemons and
the shell.

The inittab file is composed of entries that are position dependent and have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per entry are permitted. Comments may be
inserted in the process field using the sh (1) convention for comments. Comments for lines that
spawn gettys are displayed by the who(1) command. It is expected that they will contain some
information about the line such as the location. There are no limits (other than maximum entry
size) imposed on the number of entries within the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate

action

This defines the run-level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system. That is, each
process spawned by init is assigned a run-level or run-levels in which it is allowed
to exist. The run-levels are represented by a number ranging from 0 through 6.
As an example, if the system is in run-levell, only those entries having a 1 in
the rstate field will be processed. When init is requested to change run-levels, all
processes which do not have an entry in the rstate field for the target run-level
will be sent the warning signal (SIGTERM) and allowed a 20-second grace
period before being forcibly terminated by a kill signal (SIGKILL). The rstate
field can define multiple run-levels for a process by selecting more than one run­
level in any combination from~. If no run-level is specified, then the process
is assumed to be valid at all run-levels~. There are three other values, a, b
and e, which can appear in the rstate field, even though they are not true run­
levels. Entries which have these characters in the rstate field are processed only
when the telinit (see init(1M)) process requests them to be run (regardless of the
current run-level of the system). They differ from run-levels in that init can
never enter run-level a, b or c. Also, a request for the execution of any of these
processes does not change the current run-level. Furthermore, a process started
by an a, b or e command is not killed when init changes levels. They are only
killed if their line in /ete/inittab is marked off in the action field, their line is
deleted entirely from /ete/inittab, or init goes into the SINGLE USER state.

Key words in this field tell init how to treat the process specified in the process
field. The actions recognized by init are as follows:

respawn If the process does not !'xist then start th!' process, do not wait for its t!'rmi­
nation (continue scanning the inittab file), and when it dies restart the pro­
cess. If the process currently exists then do nothing and continue scanning
the inittab file.

wait Upon init's entering the run-level that matches the entry's rstate, start the
process and wait for its termination. All subsequent reads of the inittab file
while init is in the same run-level will cause init to ignore this entry.

once Upon in it 's entering a run-level that matches the entry's rstate, start the
process, do not wait for its termination. When it dies, do not restart the pro­
cess. If upon entering a new run-level, where the process is still running from

Hewlett-Packard Company - 1 - Version B.t. October 1986

INITTAB(4) HP-UX INITTAB(4)

FILES

boot

a previous run-level change, the program Will110t be restarted.

The entry is to be processed only at init's boot-time read of the inittab file.
Init is to start the process, not wait for its termination; and when it dies, not
restart the process. In order for this instruction to be meaningful, the rstate
should be the default or it must match init's run-level at boot time. This
action is useful for an initialization function following a hardware reboot of
the system.

bootwait The entry is to be processed only at init's boot-time read of the inittab file.
Init is to start the process, wait for its termination and, when it dies, not res­
tart the process.

powerfail Execute the process associated with this entry only when init receives a
power fail signal (SIGPWR see signal(2)).

powerwait
Execute the process associated with this entry only when init receives a
power fail signal (SIGPWR) and wait until it terminates before continuing
any processing of inittab.

off If the process associated with this entry is currently running, send the warn­
ing signal (SIGTERM) and wait 20 seconds before forcibly terminating the
process via the kill signal (SIGKILL). If the process is nonexistent, ignore
the entry.

ondemand
This instruction is really a synonym for the respawn action. It is function­
ally identical to respawn but is given a different keyword in order to divorce
its association with run-levels. This is used only with the a, b or c values
described in the rstate field.

in it default
An entry with this action is only scanned when init initially invoked. Init
uses this entry, if it exists, to determine which run-level to enter initially. It
does this by taking the highest run-level specified in the rstate field and
using that as its initial state. If the rstate field is empty, this is interpreted as
0123456 and so init will enter run-level 6. Also, the initdefault entry can­
not specify that init start in the SINGLE USE..R state. Additionally, if init
does not find an initdefault entry in /etc/inittab, then it will request an
initial run-level from the user at reboot time.

sysinit Entries of this type are executed before init tries to access the console. It is
expected that this entry will be only used to initialize devices on which in it
might try to ask the run-level question. These entries are executed and
waited for before continuing.

process This is a sh command to be executed. The entire process field is prefixed with
exec and passed to a forked sh as sh -c 'exec command'. For this reason, any
legal sh syntax can appear in the process field. Comments can be inserted with
the; #comment syntax.

/etc/inittab

SEE ALSO
getty(IM), sh(I), exec(2), open(2), signal(2),

Hewlett-Packard Company - 2 - Version B.l, October 1986

INODE[HFSj (4) HP-UX INODE[HFSj (4)
Series 200, 300, 800 Only

NAME
inode - format of an inode

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

REMARKS
This entry describes the inode structure for the HFS file system. Refer to other inode(4) manual
pages for information valid for other implementations.

DESCRIPTION
An inode for a plain file or directory in a file system has the following structure defined by
<sys/ino.h>.

I * !node structure as it appears on a disk block *1
struct dinode {

~hort dLmodej I * mode and type of file *1
short dLnlinkj 1* number of links to file *1
short di-uidj 1* owner's user id *1
short dLgidj I * owner's group id *1
quad duizej 1* number of bytes in file *1
time_t di-atimej I * time last accessed * I
long di-atsparej
time_t dLmtimej I * time last modified *1
long dLmtsparej
time_t di-ctimej I * time of last file status change * I
long di-ctsparej
daddr_t di-db[NDADDRlj I * disk block addresses *1
daddr_t dUb[NlADDRlj I * indirect blocks * I
long d~agsj I * status, currently unused * I
long di-blocksj I * blocks actually held *1
long dupare[51; 1* reserved, currently unused *1

}j

For the meaning of the defined types 1L-short, quad, daddr_t and time_t see types(5).

See /usr/include/sys/inode.h for the definition of inode structures for special files, pipes, or
FIFO's.

HARDW ARE DEPENDENCIES
The HFS file system is implemented on Series 200 beginning with HP-UX Release 5.0, and on
Series 300 and Series 800.

FILES
lusr linclude I sys/ino.h

SEE ALSO
stat(2), fs[HFSI(4), types(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

INODE[SDF] (4)

NAME
inode - format of an i-node

SYNOPSIS
#inc1ude <sys/types.h>
#include <sys/param.h>
#include <sys/ino.h>

Remarks:

INODE[SDF] (4)
Series 500 Implementation

This entry describes the i-node structure for the Series 500. Refer to other inode manual pages for
information valid for other implementations.

DESCRIPTION
An i-node for an ordinary file or directory in a file system has the following structure, as defined
in sys/ino.h:

/*
* I-node structure as it appears on disc. This i-node is actually
* a file information record (FIR) in the HP SDF disc format.
*/
struct dinode {

ushort dLtype
dLftypej
dLcountj
dLuftypej
dLctimej
dLotherj
dLprotectj
dLlabelj
dLblkszj
dLmaxj
dLexszj
dLexnumj

/* =1 for inodes */
/* file type */ ushort

ushort
short
time-ios
unsigned
ino_t
ino_t
int
int
ushort
ushort
struct {

int
} dLextent[4Jj
ino_t dLexmapj

/ * reference count * /
/ * user file type (LlF) * /
/ * time created * /
/ * public capabilities * /
/* file protect ree. none=-1 */
/ * file label rec. none=-1 * /
/ * file size in blocks * /
* largest byte writable * /
/ * recom. extent size * /
/* no. i-node extents (1-4) */

dLstartblkj/* extent start blk */
dLnumblkj/* no. blks in extent */

/* inode 1st extent map */
/* none = -1 */

int dL.size; / * current size, bytes * /

/* Warning! Next 2 fields apply only to directories */

ino_t dLparentj / * inode of parent * /
char dLname[16Jj /* name of this directory */

/ * The remaining fields defined only for local * /
/ * implementation of structured directory format. * /

time_t dLatimej / * time last accessed * /
time-ios dLmtimej / * time last mod. * /
int dLrecszj /* logical record size */
ushort dLuidj / * owner's user id * /
ushort dLgidj / * owner's group id * /
ushort dLmodej /* mode, type of file */
char dLres2[2Jj /* unused */

Hewlett-Packard Company - 1 - October 1986

INODE[SDF] (4)
Series 500 Implementation

/ * The next field used only if file is * /
/ * a device filej otherwise it is zero * /
dev _t dLdevj / * description of device * /

}j

The meaning of the type declarations included above can be found in types(7).

FILES
/usr/include/sys/ino.h

SEE ALSO
dir(4), fs(4), types(5).

Hewlett-Packard Company - 2 -

INODE[SDF] (4)

October 1986

ISSUE(4) HP-UX ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file fete/issue contains the issue or project identification to be printed as a login prompt.
This is an ASCII file which is read by program getty and then written to any terminal spawned or
respawned from the inittab file.

FILES
/etc/issue

SEE ALSO
getty(1), login(1).

Hewlett-Packard Company - 1 - October 1986

LlF(4) HP-UX LlF(4)

NAME
lif - logical interchange fonnat description

DESCRIPTION
LIF (Logical Interchange Fonnat) is a Hewlett-Packard standard disk format that may be used
for interchange of files among various HP computer systems. A LIF volume contains a header
(identifying it as a LIF volume) and a directory that defines the contents (i.e. files) of the volume.
The size of the directory is fixed when the volume is initialized (see lifinit(l)) and sets an upper
bound on the number of files that may be created on the volume.

HP-UX contains a set of utilities (referred to as li!*(l)) that may be used to initialize a LIF
volume (i.e. create a header and an empty directory), copy files to and from LIF volumes, list the
contents of LIF volumes, remove LIF files, and rename LIF files.

The li!*(1} utilities are the only utilities within HP-UX where the internal structure of a LIF
volume is known. To the rest of HP-UX, a LIF volume is simply a file containing some unspecified
data. The term 'LIF volume' should in no way be confused with the HP-UX notion- of a file sys­
tem volume or mountable volume.

The LIF utility on HP-UX currently supports three file types, ASCII(l}, BINARY(-2} and BIN(-
23951).

There are three copying modes associated with them.

ASCII If the copying mode is ASCII, and an HP-UX file is being copied to a LIF
volume, the utility strips the trailing LF and prepends two bytes of record length
to each record. These records are then written to a LIF formatted media. When
copying a LIF ASCII file to HP-UX the two byte record length are stripped and
a trailing LF is appended. These records are then written to the destination. In
this mode of copying the length of the file is preserved. The default file type for
this mode of copying is ASCII(l).

BINARY

RAW

If the copying mode is BINARY, and an HP-UX file is being copied to a LIF
volume, the utility simply appends two bytes for record length to each 1K byte
record. A trailing fractional block will have a count reflecting the number of
bytes in that block. No interpretation is placed on the content of the records.
These records are then written to a LIF-format media. When copying a LIF file
to an HP-UX file in BINARY copying mode, the record lengths are stripped and
the content of records is directly written to the destination. In this mode of
copying the length of the binary file is preserved. The default file type for this
mode of copying is BINARY(-2).

If the copying mode is RAW, and an HP -UX file is being copied to a LIF
volume, the utility simply copies the raw data to the destination. File sizes
which are not multiples of 256 bytes will be padded with nulls to the next higher
multiple. Therefore, the file sizes are not preserved. When copying a LIF file to
an HP-UX file in RAW mode, the information is directly copied without any
interpretation placed on the content of the source. The default file type for this
mode of copying is BIN(-23951}.

A LIF volume may be created on any HP-UX file (either regular disk file or device special file)
that supports random access via Iseek(2}. Note that you should not mount the special file before
using the li!*(1} routines. See lifinit(l} for details. Within a LIF volume, individual files are
identified by 1 to 10 character file na...."Ilcs. File names may consist of upper-case alphanumeric
characters (A through Z, 0 through 9) and the underscore character (_). The first character of a
LIF file name must be a letter. The li!*(1} utilities will accept any file name, including illegal file
names generated on other systems, but will only create legal names. For example, file names con­
taining lower-case letters will be read but not created.

Hewlett-Packard Company - 1 - Version B.1, October 1986

LIF(4) HP-UX LIF(4)

LIF file names are specified to the li/*(1) utilities by concatenating the HP-UX path name for the
LIF volume with the LIF file name, separating the two with a colon (:). For example:

/dev/fd.O:ABC specifies LIF file ABC within HP-UX device special file /dev/fd.O.

myfile:ABC specifies LIF file ABC within HP-UX disk file 'myfile'.

Note that this file naming convention is applicable only for use as arguments to the lif*(1) utilities
and do not constitute legal path names for any other use within HP-UX.

HARDW ARE DEPENDENCIES
Series 500

You must use a character special file to access the media.

SEE ALSO
lifcp(I), lifinit(I), lifls(I), lifrename(I), lifrm{I).

Hewlett-Packard Company - 2 - Version B.l, October 1986

MAGIC(4) HP-UX

NAME
magic - magic numbers for HP-UX implementations

SYNOPSIS
#inc1ude <magic.h>

DESCRIPTION

MAGIC(4)

Magic.h localizes all information about HP-UX "magic numbers" in one file, and thus facilitates
uniform treatment of magic numbers. This file specifies the location of the magic number in a file
(always the start of the file) and the structure of the magic number:

struct magic---..number {
unsigned short systeIIL-id;
unsigned short file_type;

};
typedef struct magic---..number MAGIC;

Magic.h includes definitions for the system IDs of all HP machines running HP-UX, and file
types that are common to all implementations. There may be additional implementation­
dependent file types. The predefined file types are:

/* for object code files * /
#define RELOC--.MAGIC
#define EXEC--.MAGIC
#define SHARE--.MAGIC
#define LISP --.MAGIC
#define HPE--.MAGIC

Ox106
Ox107
Ox108
OxlOC
Ox150

/* relocatable only * /
/* normal executable * /
/* shared executable * /
/* compiled Lisp * /
/* HPE boot image * /

The values for systerrLid are defined in model(4).

WARNINGS
Cpio files use a different form of magic number that is incompatible with magic(4).

HARDW ARE DEPENDENCIES
Series 200, 300, 800

An additional file type is defined:

#define DEMAND--.MAGIC OxlOB /* demand-load executable * /
SEE ALSO

ar(l), Id(l), a.out(4), ar(4), model(4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

MASTER (4) MASTER(4)
Series 200/300 Only

NAME
master - master device information table

HP-UX COMPATIBILITY
Level: Config(1M} Support -- HP-UXjRUN ONLY

Origin: System V and HP

DESCRIPTION
This file is used by config(1M} to obtain device information that enables it to generate the
configuration file. Master contains lines of various forms.

Software drivers are defined as follows:

Field 1: device name, used in the user-specified dfile (8 chars maximum)

Field 2: handler name, used by the kernel to prefix routines such as cs80-.read, lp_write, ...

Field 3: element characteristics: 5 bits make up the mask
Bit 1 - card
Bit 2 - specified only once
Bit 3 - required driver
Bit 4 - block device
Bit 5 - character device (LSB)

Field 4: functions for the device: 10 bits make up the mask
Bit 1 - size handler
Bit 2 - link routine
Bit 3 - open handler
Bit 4 - close handler
Bit 5 - read handler
Bit 6 - write handler
Bit 7 - ioctl handler
Bit 8 - select handler
Bit 9 - seltru handler
Bit 10 - C---.ALLCLOSES flag (LSB)

Field 5: major device number if a block-type device; otherwise -l.

Field 6: major device number if a character-type device; otherwise -1.

Aliases for names are defined as follows:

Field 1: alias name => product number
Field 2: device name

Parameters are defined as follows:

Field 1: parameter name, as used in the user-specified
dfile

Field 2: parameter name, as used in the #define statement
in conf.c

Field 3: parameter value

SEE ALSO
config(1M)

Hewlett-Packard Company - 1 - October 1986

MKNOD(4) HP-UX MKNOD(4)

NAME
mknod - create a special file entry

SYNOPSIS
#include <sys/mknod.h>

DESCRIPTION
Mknod.h provides utilities to pack and unpack device names as used by mknod(2). It contains
the macro dey = makedev(major, minor) which packs the major and minor fields into a form
suitable for mknod(2). It also contains major (dev) and minor (dev) which extract the
corresponding fields.

The macro MINOR....J'ORMA T is a print! specification that prints the minor field in the format
best suited to the particular implementation. The specification given by MINOR....J'ORMAT
must cause the resulting string to indicate the base of the number in the same format as that used
for C: no leading zero for decimal, leading zero for octal, and leading zero and 'x' for hexadecimal.

When a minor field is printed in the format specified by MINOR....J'ORMAT, each sub-field con­
tained in the minor will be wholly contained in the mininum possible number of digits of the
resulting string. (Splitting a field across unnecessary digits for the sake of packing is not done.)

SEE ALSO
mknod(IM), mknod(2).

Hewlett-Packard Company - I - Version B.I, October 1986

MNTTAB(4) HP-UX MNTTAB(4)

NAME
rnnttab - mounted file system table

SYNOPSIS
#include <sys/types.h>
#include <mnttab.h>

DESCRIPTION
Mnttab resides in directory fete and contains a table of devices, mounted by the mount(lM)
command, in the following structure as defined by <mnttab.h>:

struct IllIlttab {
char
char
short
time_t
};

mt_dev[MNTLEN);
mLJilsys[MNTLEN) ;
mt---1o--Bg;
mt_time;

Each entry is (2 x MNTLEN + 6) bytes in length (MNTLEN is defined in /usr/include/mnttab.h).
The first MNTLEN bytes are the null-padded name of the place where the special file is mounted;
the next MNTLEN bytes represent the null-padded root name of the mounted special file; the
remaining 6 bytes contain the mounted special file's read/write permissions and the date on
which it was mounted.

The maximum number of entries in mnttab is based on the system parameter NMOUNT located
in /usr/include/mnttab.h, which defines the number of allowable mounted special files.

CAVEATS
The table is present only for programs to return information about the mounted file systems. It
does not matter to mount if there arc duplicated entries nor toumount if a name cannot be
found.

SEE ALSO
mount(lM), setmnt(lM).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MODEL (4) HP-UX MODEL(4)

NAME
model - HP-UX machine identification

SYNOPSIS
#include <model.h>

DESCRIPTION
There are some distinctions between the implementations of HP-UX due to hardware differences.
Where such distinctions exist, conditional compilation or other definitions can be used to isolate
the differences. Flags and typedefs to resolve these distinctions are collected in model.h. This file
contains constants identifying various HP-UX implementations.

For example the header file mode/.h contains the following constants for the HP 9000 Series 200.
/* model.h for the HP 9000 Series 200 * /

#define
#define
#define

HP_S.-200
HP_S_500
HP_S_800

Ox20A
Ox208
Ox20B

Other such constants will be added as HP-UX extends to other machines.

In addition, model.h has a statement defining the preprocessor constant MYSYS to represent the
specific implementation for which compilation is desired. MYSYS will be equal to one of the con­
stants above.

Conditional compilation may be used to adapt one file for execution on more than one HP-UX
implementation, if it contains implementation- or architecture-dependent features. For instance,

#if MYSYS==HP ~_200
<statements>

#endif

will cause the statements following the if statement to be compiled only for the HP 9000 Series
200.

Mode/.h also contains typedefs for several predefined types to enhance portability of certain types
of code and of files.

int8, t1-int8 Signed and unsigned 8-bit integers.
int16, t1-int16 Signed and unsigned 16-bit integers.
int32, u_int32 Signed and unsigned 32-bit integers.
machptr, lLJIlachptr Signed and unsigned integers large enough to hold a pointer.

Certain C preprocessor conditional compilation variables are defined to aid in implementation­
dependent code, see cpp(1).

SEE ALSO
cc(1), cpp(1), magic(4).

Hewlett-Packard Company - 1 - December 1986

NLIST(4) HP-UX
Series 200, 300, 800 Only

NLIST(4)

NAME
nlist - nlist structure format

SYNOPSIS
#include <nlist.h>

REMARKS
The exact content of the structure defined below can be best found by exammmg
/usr/include/nlist.h. It varies somewhat between the various implementations of HP-UX.

DESCRIPTION
Nlist(3C) can be used to extract information from a the symbol table in an object file. Because
symbol tables are machine dependent (as defined in each implementation's copy of <a.out.h» a
header file, nlist.h is defined to encapsulate the differences.

The nlist function, when used with the nlist structure can be used to extract certain information
about selected symbols in the symbol table. The data associated with each symbol is machine
specific, thus only the name and position of the TLname field in the nlist structure is standardized
by HP-UX. The rest of the structure includes at least the value and type of the symbol. The
names and meanings of all fields not standardized will change no more than necessary.

struct nlist {

};

SEE ALSO
nlist(3C), a.out(4).

Hewlett-Packard Company

char *IL.name;
1* other fields as needed; the following are suggested

if they apply * /
long
unsigned char
uns~gned char
short
short

- 1 -

D-value;
D-type;
ILlength;
D-unit;
ILBdindex;

Version B.1, October 1986

PASSWD(4) HP-UX PASSWD(4)

NAME
passwd - password file, pwd.h

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
reserved field which will be used for identification
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded. If the shell field is null, /bin/sh is used.

This file resides in directory jete. Because of the encrypted passwords, it can and does have gen­
eral read permission and can be used, for example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character set of "digits"
described below, except when the password is null, in which case the encrypted password is also
null. Login can be prevented by entering in the password field a character that is not part of the
set of digits(e.g. *).

The characters used to represent "digits" are . for 0, j for 1, 0 through 9 for 2-11, A through Z
for 12-37, and a through z for 38-63.

Password aging is effected for a particular user if his encrypted password in the password file is
followed by a comma and a non-null string of characters from the above alphabet. (Such a string
must be introduced in the first instance by the super-user.) This string defines the "age" needed
to implement password aging.

The first character of the age, M say, denotes the maximum number of weeks for which a pass­
word is valid. A user who attempts to login after his password has expired will be forced to sup­
ply a new one. The next character, m say, denotes the minimum period in weeks which must
expire before the password may be changed. The remaining characters define the week (counted
from the beginning of 1970) when the password was last changed. (A null string is equivalent to
zero.) M and m have numerical values in the range 0-63 that correspond to the 64-character set
of "digits" shown above. If m = M = 0 (derived from the string. or ..) the user will be forced to
change his password the next time he logs in (and the "age" will disappear from his entry in the
password file). If m > M (signified, e.g., by the string .j) only the super-user will be able to
change the password.

Pwd.h designates the broken out password file as obtained by getpwent(3C):

struct passwd {
char *pw -.name;
char
int
int
char
char
char
char
char

};

Hewlett-Packard Company

*pw_passwd;
pw_uid;
pw_gid;
*pw_age;
*pw_comment;
*pw_geculS;
*pw_dir;
*pw-Bhell;

- 1 - Version B.1, October 1986

PASSWD(4) HP-UX PASSWD(4)

It is suggested that the range 0-99 not be used for user and group ID's (pULuid and pULgid in
the above structure) so that IDs which may be assigned for system software do not conflict.

WARNINGS
The uid 17 is reserved for the Pascal Language operating system. The uid 18 is. reserved for the
BASIC Language operating system. These are operating systems for the Series 200 and Series 300
computers that can co-exist with HP-UX on the same disk. Using these uids for other purposes
may inhibit file transfer and sharing.

HARDW ARE DEPENDENCIES
Series 200, 300, 500:

FILES

The following fields have character limitations as noted:

the login name field can be no longer than 8 characters;

the initial working directory field can be no longer than 63 characters;

the program field can be no longer than 44 characters.

The results are unpredictable if these fields are longer than the limits specified above.

The reserved field, called pW_gC08 in the data structures used by getpwent(3C) , is reserved
for future use. It currently may be used to contain any information the system manager
desires, but such use may conflict with the use of future HP features. The correct operation
of the system will never depend on this field, but some optional feature may specify its for­
mat and content.

/etc/passwd

SEE ALSO
10gin(I), passwd(I), a64I(3C), crypt(3C), getpwent(3C), group(4).

Hewlett-Packard Company - 2 - Version B.l, October 1986

PRIVGRP(4) HP-UX
Series 200, 300, 800 Only

PRIVGRP(4)

NAME
privgrp - format of privileged values

SYNOPSIS
#include <sys/privgrp.h>

DESCRIPTION
Setprivgrp(2) sets a mask of privileges, and getprivgrp(2) returns an array of structures giving
privileged group assignments on a per group-id basis. Privgrp.h contains the constants and struc­
tures needed to deal with these system calls, and contains:

1*
* Privileged group definitions --
* the numeric values may vary between implementations.
*/

#define PRIV -RTPRIO 1
#define PRIV ~LOCK 2
#define PRIV _CHOWN 3

1* Maximum number of privileged groups in system * /
#define PRIV ~AXGRPS 32

1*
* Size of the privilege mask,
* based on largest numbered privilege
*/

#define PRIV ~ASKSIZ

1*
* Structure defining the privilege mask
*/

struct privgrp---Illap {
int priv _groupno;
unsigned int priv---Illask[PRIV ~ASKSIZJ;

};

PRIV -RTPRIO allows access to the rtprio(2) system call.
PRIV ~LOCK allows access to the plock(2) system call.
PRIV _CHOWN allows access to the chown(2) system calls.

Privileges are described in a multi-word mask. The value of the #define for each privilege is
interpreted as a bit index (counting from 1). Thus a group-id may have several different
privileges associated with it by having different bits or'ed into the mask.

The system is configured with a maximum number of groups with special privileges.
PRIV ~AXGRPS defines this maximum. Of this maximum, one is reserved for global privileges
(granted to all processes), and the remainder can be assigned to actual group-ids.

PRIV ~ASKSIZ defines the size of the multi-word mask used defining privileges associated with
a group-id.

Privileges are returned to the user from the getprivgrp(2) system call in an array of structures of
type struct privgrp----Dlap. The structure associates a multi-word mask with a group-id.

SEE ALSO
getprivgrp(2)

Hewlett-Packard Company - 1 - Version B.1, October 1986

PROFILE (4) HP-UX PROFILE (4)

NAME
profile - set up user;s environment at login time

DESCRIPTION

FILES

If the file jete/profile exists, it is executed by the shell for every user who logs in. The file
jete/profile should be set up to do only those things that are desirable for every user on the sys­
tem, or to set reasonable defaults. If your login (home) directory contains a file named .profile,
that file will be executed (via the shell's exec .profile) before your session begins. .Profile files
are useful for setting various environment parameters, setting terminal modes, or overriding some
or all of the results of executing /ete/prome.

The following example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL= /usr /mail/myname
Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

3(0)
300s)
450)

esac

hp)
7451735)
43)
4014 1 tek)
*)

stty cr2 nlO tabs; tabs;;
stty cr2 nlD tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlD tabs; tabs;;
stty crl nll -tabs; TERM=745;;
stty crl nlD -tabs;;
stty crO nlO -tabs ill; TERM=40l4; echo "33;";;
echo "$TERM unknown";;

A more complete model .profile may be found in /ete/d.profile.

$HOME/ .profile
/etc/profile

HARDW ARE DEPENDENCIES
Integral PC

The file /ete/d.profile is not supported.

SEE ALSO
env(l), login(l), mail(l), sh(l), stty(l), sU(l), environ(5), term(5).

Hewlett-Packard Company - 1 - Version B.l, October 1986

RANLIB(4) RANLm(4)
Series 200/300 and 500 Only

NAME
ranlib - archive symbol table fonnat for object libraries

SYNOPSIS
#include <ranlib.h>

DESCRIPTION
Any archive containing object files also includes an archive symbol table, thus allowing the linker
ld to scan libraries in random (rather than sequential) order.

The archive symbol table (if it exists) is always the first file in the archive, but it is never listed.
It is automatically created and/or updated by ar.

The archive symbol table lists each externally known name in the archive, together with the offset
of the archive element that defines that name. This offset is useful as an input argument to
Iseek(2) or fseek(3).

HARDW ARE DEPENDENCIES
Series 500:

The archive symbol table file contains the symbol table and a name pool of strings (the
names of external symbols). This allows for symbols with arbitrarily long names. The
r1-hdr structure defines the layout of the file, and the ruef structure defines the con­
tents of an archive symbol table entry. These structures have the following fonnat:

struct rLhdr {

};

long int rLtcbas;
long int rLtclen;
long int rLnmbas;
long int rLnmlen;

struct rLref {

};

long int name_pos;
long int lib_pos;

1* offset of table * /
1* length of table * /
1* offset of name pool * /
1* length of name pool * /

1* index into name pool * /
1* offset of defining file * /

Series 200/300:

SEE ALSO

The archive symbol table file contains a header, a name pool of strings (the names of
external symbols), and the archive symbol table. This allows for symbols with arbitrarily
long names. The header contains a short integer which specifies the number of entries,
and a long integer which specifies the size of the string table. Following this is the name
pool. The last section of the file contains the archive symbol table entries. The structure
of these entries is defined below:

typedef long off_t;

struct ranlib {
union {

off_t ran--Strx;
char *raJL....D.ame;

} rliIl-un;
off_t rliIl-off;

/ * string table index * /

/* lib member offset */

ar(l), Id(l), ar(4).

Hewlett-Packard Company - 1 - October 1986

SCCSFILE (4) HP-UX SCCSFILE (4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An sees file is an ASCII file. It consists of six logical parts: the checksum, the delta table (con­
tains information about each delta), user names (contains login names and/or numerical group
IDs of users who may add deltas), flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH (start of heading)
character (octal (01). This character is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD
The value of the checksum is the sum of all characters, except those of the first line. The
@h provides a magic number consisting of the two bytes OxOl and Ox68. (Other versions
of the UNIX operating system usually use this same value but it may be displayed or
documented as a single number with a different byte order.)

Delta table
The delta table consists of a variable number of entries of the form:

@sDDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD ..•
@xDDDDD •..
@gDDDDD ...
@m <MR number>

@c <comments> •..

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged, respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the sees ID of the delta, the date and time of creation of the delta, the login name
corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c
lines contain comments associated with the delta.

Hewlett-Packard Company - 1 - Version B.l, October 1986

SCCSFILE (4) HP-UX SCCSFILE (4)

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @u and @U. An empty list allows any­
one to make a delta. Any line starting with a ! prohibits the succeeding group or user
from making deltas.

Keywords used internally (see admin(l) for more information on their use). Each flag
line takes the form:

@f <flag> <optional text>

The following flags are defined:
@f t <type of program>
@f v <program name>
@f i <keyword string>
@fb
@f m <module name>
@ff <floor>
@f c <ceiling>
@f d <default-sid>
@fn
@fj
@f I <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword. The v flag con­
trols prompting for MR numbers in addition to comments; if the optional text is present
it defines an MR number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When the i flag is not present,
this message is only a warning; when the i flag is present, this message will cause a
"fatal" error (the file will not be gotten, or the delta will not be made). When the b flag
is present the -b key letter may be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement text of the %M%
identification keyword. The f flag defines the "floor" release; the release below which no
deltas may be added. The c flag defines the "ceiling" release; the release above which no
deltas may be added. The d flag defines the default SID to be used when none is specified
on a get command. The n flag causes delta to insert a "null" delta (a delta that applies
no changes) in those releases that are skipped when a delta is made in a new release (e.g.,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence of the
n flag causes skipped releases to be completely empty. The j flag causes get to allow con­
current edits of the same base SID. The 1 flag defines a list of releases that are locked
against editing (get(l) with the -e keyletter). The q flag defines the replacement for the
%Q% identification keyword. The z flag is used in certain specialized interface programs.

Comments

Body

Arbitrary text is surrounded by the bracketing lines @t and @T. The comments section
typically will contain a description of the file's purpose.

The body consists of text lines and control lines. Text lines do not begin with the control

Hewlett-Packard Company - 2 - Version B.1, October 1986

SCCSFILE (4) HP-UX SCCSFILE (4)

character, control lines do. There are three kinds of control lines: insert, delete, and end,
represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for the control line.

SEE ALSO
admin(l), delta(l), get(l), prs(l).

Hewlett-Packard Company - 3 - Version B.l, October 1986

SDF(4)

NAME

HP-UX
Series 300, 800 Only

sdf - structured directory format description

SDF(4)

DESCRIPTION
SDF (Structured Directory Format) is the name given to the format of mounted media used by
HP 9000 series 500 HP-UX. This format is based upon the format used in the series 500 Basic
workstations.

The utilities listed under SEE ALSO below are provided for non-Series 500 access to the SDF
media. These utilities read and write data to and from SDF volumes, as well as retrieve informa­
tion from an SDF volume.

The SDF utilities listed below are the only HP-UX utilities that recognize the internal contents of
an SDF volume. To the rest of HP-UX, an SDF volume is simply a file containing unspecified
data. Therefore, to access SDF media on any HP-UX system other than the series 500, mount(1)
cannot be used because the operating system cannot recognize it.

SDF file names are specified to the SDF utilities by concatenating the HP-UXpath name for the
SDF volume with the SDF file name, separating the two with a colon (:). For example,

/dev /rdsk/c5dls2:/users/ivy specifies SDF file /users/ivy within HP-UX device special file
/dev /rdsk/c5dls2

Note that this file naming convention is applicable only for use as arguments to the SDF utilities
and does not constitute a legal path name for any other use within HP-UX. The shell
"wild-card" characters *, ?, and [...] do not work for specifying an arbitrary pattern for matching
SDF file names when using the SDF utilities.

If the device name and a trailing colon are specified without a file or directory name following (for
example /dev /rdsk/c5dls2:), then the root U) of the SDF file system is assumed by conven­
tion.

Files cannot be created with the SDF utilities unless there is at least one free block of storage on
the device.

Although Shared Resource Management (SRM) storage media implement the SDF file system,
Hewlett-Packard does not support the use of the SDF utilities on SRM workstation storage
media.

WARNINGS
The SDF lltilitif's are intf'nded to be nm on non-SC'riC's 500 HP UX systems. If the SDF utilities
are executed on a Series 500, however, you are cautioned to not run them on a disk that has a
mounted file system on it.

AUTHOR
Sd[{ 4) was developed by the Hewlett-Packard Company.

FILES
/trnp/SDF .. LCK lock file for singlf' user access

SEE ALSO
sdfchmod{l), sdfchown{l), sdfcp(l), sdfdf{IM), sdffind{l), sdffsck(1 M), sdffsdb{IM), sdfts{l),
sdfmkdir{l), sdfrrn{l).

Hewlett-Packard Company - 1 - Version B.1. October 1986

TERM(4) HP-UX TERM(4)

NAME
tenn - fonnat of compiled tenn file

SYNOPSIS
term

DESCRIPTION
Compiled tenninfo descriptions are placed under the directory /usr/lib/terminfo. In order to
avoid a linear search of a huge HP-UX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the terminal, and c is the first character
of name. Thw;, act4 can be found in the file /usr/lib/terminfo/a/act4. Synonyms for the
same terminal are implemented by multiple links to the same compiled file.

The fonnat has been chosen so that it will be the same on all hardware. An 8 or more bit byte is
assumed, but no assumptions about byte ordering or sign extension are made.

The compiled file is created with the tic program, and read by the routine setupterm. Both of
these pieces of software are part of curses(3X). The file is divided into six parts: the header, ter­
minal names, boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short integers in the format described
below. These integers are (1) the magic number (octal 0432); (2) the size, in bytes, of the names
section; (3) the number of bytes in the boolean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings section; (6) the size, in
bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of
the value, and the second byte contains the most significant 8 bits. (Thus, the value represented
is 256*second+first.) The value -1 is represented by 0377, 0377, other negative value are illegal.
The -1 generally means that a capability is missing from this tenninal. Note that this format
corresponds to the hardware of the VAX and PDP-1l. Machines where this does not correspond to
the hardware read the integers as two bytes and compute the result.

The terminal names section comes next. It contains the first line of the terminfo description, list­
ing the various names for the terminal, separated by the' I' character. The section is terminated
with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is present or
absent. The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be inserted, if necessary, to
ensure that the number section begins on an even byte. All short integers are aligned on a short
word boundary.

The numbers section is similar to the flags section. Each capability takes up two bytes, and is
stored as a short integer. If the value represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the format
above. A value of -1 means the capability is missing. Otherwise, the value is taken as an offset
from the beginning of the string table. Special characters in AX or \c notation are stored in their
interpreted form, not the printing representation. Padding information $<nn> and parameter
information %x are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities referenced in
the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are actually
present in the file. Either the database may have been updated since setupterm has been recom­
piled (resulting in extra unrecognized entries in the file) or the program may have been recompiled
more recently than the database was updated (resulting in missing entries). The routine setup­
term must be prepared for both possibilities - this is why the numbers and sizes are included.

Hewlett-Packard Company - 1 - Version B.I, October 1986

TERM(4) HP-UX TERM(4)

Also, new capabilities must always be added at the end of the lists of boolean, number, and string
capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is included:

microterm I act41 micro term act iv,

000

020

040

060

100

120

140

160

200

520

540

560

600

cr='M, cudl=' J, ind=' J, bel='G, am, cubl='H,
ed=' _, el=", clear='L, cup='T%pl%c%p2%c,
cols#80, lines#24, cuf1='X, cuul='Z, home='J,

032 001 \0 025 \0 \b \0 212 \0 \0

I

v \0 \0

\0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

\0 \0 p \0 377 377 030 \0 377 377 377 377 377

377 377 377 377 \0 \0 002 \0 377 377 377 377 004

\b \0 377 377 377 377 \n \0 026 \0 030 \0 377

377 377 377 377 034 \0 377 377 036 \0 377 377 377

377 377 377 377 377 377 377 377 377 377 377 377 377

377 377 377 377 \0 377 377 377 377 377 377 377

377 377 377 377 377 377 007 \0 \r \0 \f \0 036

024 % p c \0 \n

\b \0 030 \0 032 \0 \n \0

001 \0 \0

\0 \0 \0

377 377 377

\0 006 \0

377 032 \0

377 377 377

377 377 377

377 377 377

\0 037 \0

\0 035 \0

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed
128 bytes.

WARNINGS

FILES

HP only supports terminals listed on the current list of supported devices. However, non­
supported and supported terminals can be in the terminfo database. If you use such non­
supported terminals, they may not work correctly.

jusrjlibjterminfoj? 1* compiled terminal capability data base

SEE ALSO
curses(3X), terminfo(4), tic(I), untic(IM).

Hewlett-Packard Company - 2 - Version B.l, October 1986

TERMINFO (4)

term info - terminal capability data base

SYNOPSIS
/usr/lib/terminfo/? /*

DESCRIPTION

HP-UX TERMINFO (4)

Terminfo is a data base describing terminals used by, for example, vi(l) and cur8e.~(3X). Termi­
nals are described in terminfo by giving a set of capabilities which they have, and by describing
how operations are performed. Padding requirements and initialization sequences are included in
terminfo.

Entries in terminfo consist of a number of ',' separated fields. White space after each ',' is
ignored. The first entry for each terminal gives the names which are known for the terminal,
separated by 'I' characters. The first name given is the most common abbreviation for the termi­
nal, the last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should be in lower case
and contain no blanks; the last name may well contain upper case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conven­
tions. The particular piece of hardware making up the terminal should have a root name chosen,
thus "hp2621". This name should not contain hyphens, except that synonyms may be chosen
that do not conflict with other names. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode. Thus, a vt100 in 132
column mode would be vt100-w. The following suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video c100-rv

CAP ABILITIES
The variable is the name by which the programmer (at the terminfo level) accesses the capability.
The capname is the short name used in the text of the database, and is used by a person updating
the database. The Lcode is the two letter internal code used in the compiled database, and
always corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been
adopted to keep them short and to allow the tabs in the source file caps to line up nicely. When­
ever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specification.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm withparms as given (#i).

(*) indicates that padding may be based on the number of lines affected

(# i) indicates the ,th parameter.

Variable
Booleans
auto-Ieft-1llargin,

auto-fight-1llargin,
beehive_glitch,

Hewlett-Packard Company

Cap-
name
bw

am

xsb

I. Description
Code
bw cub! wraps from column 0 to last

column
am Terminal has automatic margins
xb Beehive (f1=escape, f2=ctrl C)

- 1 - Version B.1, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

ceoLlltandout_glitch, xhp xs Standout not erased by overwriting
(hp)

eat-Ilewline_glitch, xenl xn newline ignored after 80 cols
(Concept)

erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Ceneric line type (e.g." dialup,

switch).
harLcopy, hc hc Hardcopy terminal
has-Illeta......key, km km Has a meta key (shift, sets parity

bit)
has-----BtatuLJine, hs hs Has extra "status line"
insert-IluILglitch, in in Insert mode distinguishes nulls
mE'mory _ahovE'. da da Display may bE' retainE'd above the

screen
memory_below, db db Display may be retained below the

screen
move~nsert--.lnode, mir mi Safe to move while in insert mode
move-----Btandout-Illode, msgr ms Safe to move in standout modes
over-----Btrike, os os Terminal overstrikes
status--1.ine_esc_ok, eslok es Escape can be used on the status line
teleray _glitch, xt xt Tabs ruin, magic so char (Teleray

1061)
tilde~litch, hz hz Hazeltine; can not print - 's
transparent_underline, ul ul underline character overstrikes
XOIL..Xoff. xon xo Terminal uses xonjxoff handshaking

Numbers:
columns, cols co Number of columns in a line
init_tabs, it it Tabs initially every # spaces
lines, lines Ii Number of lines on screen or page
lines_of-Illemory, 1m 1m Lines of memory if > lines. o means

varies
magic_cook ie_glitch, xmc sg Number of blank chars left by smso or

rmso
padding_bau<1-rate, pb pb Lowest baud where cr jnl padding is

needed
virtual_terminal, vt vt Virtual terminal number (HP-UX system)
width-----Btatus--1.ine, wsl ws No. colullllls in status line

Strings:
back_tab. cbt ht Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriage----1"eturn, cr cr Carriage return (P*)
change-----Bcroll----1"egion, csr cs change to lines #1 through #2 (vt100)

(PC)
clear_all_tabs, tbc ct Clear all tab stops (P)
clear-----Bcreen, clear cl Clear screen and home cursor (P*)
elr_eo!, e! ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P*)
columIL-address, hpa ch Set cursor column (PC)
commanLcharacter. cmdch CC Term. settahle cmd char in prototype
cursor_address. cup cm Screen reI. cursor motion row # 1

col #2 (PC)

Hewlett-Packard Company - 2 - Version B.l, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

cursor_down, cud1 do Down one line
cursor-home, home ho Home cursor (if no cup)
cursor~nvisible, civis vi Make cursor invisible
cursor-Ieft, cub1 Ie Move cursor left one space
cursor ---1lleIl1-address, mrcup CM Memory relative cursor addressing
cursor ---1lormal, cnorm ve Make cursor appear normal (undo vs/vi)
cursor-I"ight, cufl nd Non-destructive space (cursor right)
cursor _to-II, II II Last line, first column (if no cup)
cursor_up, cuu1 up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dch1 dc Delete character (P*)
delete-line, dll dl Delete line (P*)
dis-----Etatus-line, dsl dr,; Disable status line
down-half-line, hd hd Half-line down (forward 1/2 linefeed)
enter _alt_charset---1llode, smacs as Start alternate character set (P)
enter_blinLmode, blink mb Turn on blinking
enter_bold---1llode, bold md Turn on bold (extra bright) mode
enter _ca---1llode, smcup ti String to begin programs that use cup
enter _delete---1llode, smdc dm Delete mode (enter)
en ter _diffi---1llode, dim mh Turn on half-bright mode
enter~nsert---1llode, smir im Insert mode (enter);
enter _protected---1llode, prot mp Turn on protected mode
enter -I"everse---1llode, rev mr Turn on reverse video mode
enter-----Eecure---1llode, invis mk Turn on blank mode (chars invisible)
enter-----Etandout---1llode, smso so Begin stand out mode
enter _underline---1llode. smul us Start underscore mode
erase_chars ech ec Erase # 1 characters (PC)
exit_alt_charset---1llode, rmacs ae End alternate character set (P)
exit_attribute---1llode, sgrO me Turn off all attributes
exit_ca---1llode, rmcup te String to end programs that use cup
exit_delete---1llode, rmdc ed End delete mode
exit~nsert---1llode, rmir ei End insert mode
exit-----Etandout---1llode, rmso se End stand out mode
exit_underline---1llode, rmul ue End underscore mode
flash-----Ecreen, flash vb Visible bell (may not move cursor)
foI111-feed, ff ff Hardcopy terminal page eject (P*)
from-----Etatus-line, fsl fs Return from status line
init_1string, is1 it Terminal initialization string
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init-lile, if if Name of file containing is
insert_character, ichl ic Insert character (P)
insert-line, ill aJ Add new blank line (P*)
insert_padding, ip ip Insert pad after character inserted

(p*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_dl, kdll kL Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode

Hewlett-Packard Company - 3 - Version B.I, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key
key...JO, kfO kO Sent by function key fO
key--.fl, kfl kl Sent by function key fl
key--.flO, kflO ka Sent by function key flO
key---.l2, kf2 k2 Sent by function key f2
key-±'3, kf3 k3 Sent by function key f3
key--.f4, kf4 k4 Sent by function key f4
key-.f5, kf5 k5 Sent by function key f5
key--.f6, kffi k6 Sent by function key ffi
key-.f7, kf7 k7 Sent by function key f7
key-ffi, kf8 k8 Sent by function key f8
key-ID, km k9 Sent by function key m
key--1lome, khome kh Sent by home key
key~c, kichl kI Sent by ins char/enter ins mode key
key~l, kill kA Sent by insert line
key--Ieft, kcubl kl Sent by terminal left arrow key
key--II, kll kH Sent by home-down key
keY-Ilpage, knp kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key
keY-I"ight, kcufl kr Sent by terminal right arrow key
keY-Bf, kind kF Sent by scroll-forward/down key
keY-Br, kri kR Sent by scroll-backward/up key
keY-Btab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypad....Jocal, rmkx ke Out of "keypad transmit" mode
keypa~it, smkx ks Put terminal in "keypad transmit" mode
lab...JO, lfO 10 Labels on function key fO if not fO
lab--.fl, Ifl II Labels on function key fl if not fl
lab--.flO, IflO la Labels on function key flO if not flO
lab--.f2, If2 12 Labels on function key f2 if not f2
lab-±'3, 1f3 13 Labels on function key f3 if not f3
lab--.f4, If4 14 Labels on function key f4 if not f4
lab--.f5, If5 15 Labels on function key f5 if not f5
lah_m. 1m 16 Lahels on function key m if not m
lab-.f7, 1f7 17 Labels on function key f7 if not f7
I ab--.f8 , If8 18 Labels on function key f8 if not f8
lab-ID, 1m 19 Labels on function key m if not m
memory --Iock, meml ml Lock memory above cursor
memory_unlock, memu mu Turn memory lock off
met~on. smm mm Turn on "meta mode" (8th bit)
met~off. rmm mo Turn off "meta mode"
newline, nel nw Newline (behaves like cr followed

by If)
paLchar, pad pc Pad character (rather than null)
parID-dch, dch DC Delete #1 chars (PG*)
parm_delete--line, dl DL Delete # 1 lines (PG *)
parID-dowD-cursor, cud DO Move cursor down #1 lines (PG*)
parm~ch. ich Ie Insert #1 blank chars (PG*)
pa~ndex, indn SF Scroll forward #1 lines (PG)
pa~nsert--line. il AL Add #1 new blank lines (PG*)
parm--Ieft_cursor, cub LE Move cursor left #1 spaces (PG)
parm-I"ight_cursor, cuf RI Move cursor right #1 spaces (PG*)

Hewlett-Packard Company - 4 - Version B.l, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

p~index, rin SR Scroll backward #1 lines (PG)
ParIIl-.Up_cursor, cuu UP Move cursor up #1 lines (PG*)
pkey---.key, pfkey pk Prog funct key #1 to type string #2
pkey..-local, pfloc pI Prog ftmct key #1 to execute string #2
pkeY-XIllit, pfx px Prog funct key #1 to xmit string #2
print--.Screen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, mc5 po Turn on the printer
repeat_char , rep rp Repeat char #1 #2 times. (PG*)
reset_lstring, rsl rl Reset tenninal completely to sane modes.
reset-2string, rs2 r2 Reset tenninal completely to sane modes.
reset_3string, rs3 r3 Reset tenninal completely to sane modes.
reset-lile, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute

(set row) (PG)
save_cursor, sc sc Save cursor position (P)
scrolUorward, ind sf Scroll text up (P)
scroll-I"everse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current colunm
set_window, wind wi Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to--.Status..-line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move past it
up..-llalf..-line, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_aI, kal Kl Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_el, kel K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
prtr---Ilon, mc5p pO Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept-IOO, is among the more complex entries in the
terminfo file as of this writing.

concept100 I clOOI concept I c104 I c100-4p I concept 100,

am, bel="G, blank=\EH, blink=\EC, ciear="L$<2*>, cnorm=\Ew,

cols#80, cr="M$<9>, cub1="H, cud1=" J, cufl=\E=,

cup=\Ea%p1%' '%+%c%p2%' '%+%c,

cuu1=\E;, cvvis=\EW, db, dch1=\E" A$<16*>, dim=\EE, dl1=\E"B$<3*>,

ed=\E"C$<16*>, el=\E"U$<l6>, eo, fiash=\Ek$<20>\EK, ht=\t$<8>,

ill=\E"R$<3*>, in, ind=" J . .ind=" J$<9>, ip=$<16*>,

is2=\EU\Ef\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs="h, kcub1=\E>, kcud1=\E<, kcufl=\E=, kcuu1=\E;,

kfl=\E5, kf2=\E6, kf3=\E7, khome=\E?,

lines#24, mir, pb#9600, prot=\EI, rep=\Er%p1%c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,

rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\200,

smcup=\EU\Ev 8p\Ep\r, smir=\E"P, smkx=\EX, smso=\EE\ED,

smul=\EG, tabs, ul, vt#8, xenl,

Hewlett-Packard Company - 5 - Version B.l, October 1986

TERMINFO (4) HP-UX TERM INFO (4)

Entries may continue onto multiple lines by placing white space at the beginning of each line
except the first. Comments may be included on lines beginning with "#". Capabilities in ter­
minfo are of three types: Boolean capabilities which indicate that the terminal has some particu­
lar feature, numeric capabilities giving the size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be used to perform particular terminal opera­
tions.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has automatic margins (i.e.,
an automatic return and line feed when the end of a line is reached) is indicated by the capability
am. Hence the description of the Concept includes am. Numeric capabilities are followed by the
character '#' and then the value. Thus co1s, which indicates the number of columns the terminal
has, gives the value '80' for the Concept.

Finally, string valued capabilities, such as e1 (clear to end of line sequence) are given by the two­
character code, an ;=', and then a string ending at the next following ','. A delay in milliseconds
may appear anywhere in such a capability, enclosed in $< .. > brackets, as in e1=\EK$<3>, and
padding characters are supplied by tputs to provide this delay. The delay can be either a number,
e.g., '20', or a number followed by an '*', i.e., '3*'. A ,*, indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given is the per­
affected-unit padding required. (In the case of insert character, the factor is still the number of
lines affected. This is always one unless the terminal has xen1 and the software uses it.) When a
,*, is specified, it is sometimes useful to give a delay of the form '3.5' to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for easy encoding of
characters there. Both \E and \e map to an ESCAPE character, 'x maps to a control-x for any
appropriate x, and the sequences \n \1 \r \t \b \f \s give a newline, linefeed, return, tab, back­
space, formfeed, and space. Other escapes include \ A for A, \ \ for \, \, for comma, \: for :, and \0
for null. (\0 will produce \200, which does not terminate a string but behaves as a null character
on most terminals.) Finally, characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a period before the
capability name. For example, see the second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effpctivp way to prepare a
terminal description is by imitating the description of a similar terminal in terminfo and to build
up a description gradually, using partial descriptions with vi to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability' of the terminfo file to
describe it or bugs in vi. To easily test a new terminal description you can set the environment
variable TERMINFO to a pathname of a directory containing the compiled description you are
working on and programs will look there rather than in /usr/lib/terminfo. To get the padding for
insert line right (if the terminal manufacturer did not document it) a severe test is to edit
/etc/passwd at 9600 baud, delete 16 or so lines from the middle of the screen, then hit the 'u' key
several times quickly. If the terminal messes up, more padding is usually needed. A similar test
can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the co1s numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the lines capability. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, leaving the cursor in
the home position, then this is given by the clear string capability. If the terminal overstrikes
(rather than clearing a position when a character is struck over) then it should have the os

Hewlett-Packard Company - 6 - Version B.l, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

capability. If the terminal is a printing terminal, with no soft copy unit, give it both hc and os.
(os applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as hard copy and
APL terminals.) If there is a code to move the cursor to the left edge of the current row, give this
as cr. (Normally this will be carriage return, control M.) If there is a code to produce an audible
signal (bell, beep, etc) give this as bel.

If there j!; a code to move the cursor one position to the left (such as backspace) that capability
should be given as cubl. Similarly, codes to move to the right, up, and down should be given as
cufl, cuul,and cudl. These local cursor motions should not alter the text they pass over, for
example, you would not normally use 'cufl= ' because the space would erase the character moved
over.

A very important point here is that the local cursor motions encoded in terminfo are undefined at
the left and top edges of a CRT terminal. Progranls should never attempt to backspace around
the left edge, unless bw is given, and never attempt to go up locally off the top. In order to scroll
text up, a program will go to the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri (reverse
index) string. The strings ind and ri are undefined when not on their respective corners of the
screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same seman­
tics as ind and ri except that they take one parameter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is out­
put, but this does not necessarily apply to a cufl from the last column. The only local motion
which is defined from the left edge is if bw is given, then a cubl from the left edge will move to
the right edge of the previous row. If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the terminal has switch selectable
automatic margins, the terminfo file usually assumes that this is on; i.e., am. If the terminal has
a command which moves to the first column of the next line, that command can be given as nel
(newline). It does not matter if the command clears the remainder of the current line, so if the
terminal has no cr and If it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 tele­
type is described as

33 I tty33 I tty I model 33 teletype,
bel=AG, eols#72, er=AM, eudl=A J, he, ind=A J, os,

while the Lear Siegler ADM-3 is described as

adm3 I 3 I lsi adm3,
am, bel=AG, clear=AZ, eols#80, er=AM, eubl=AH, eudl=AJ,
ind=A J, lines#24,

Parameterized Strings

Cursor addressing and other strings reqUlrmg parameters in the terminal are described by a
parameterized string capability, with printf(3S) like escapes %x in it. For example, to address
the cursor, the cup capability is given, using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and- refer to the physical screen visible to the user,
not to any unseen memory.) If the terminal has memory relative cursor addressing, that can be
indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence will push one of the parameters onto the stack and then print it in some format. Often
more complex operations are necessary.

Hewlett-Packard Company - 7 - Version B.l, October 1986

TERMINFO (4) HP-UX

The % encodings have the following meanings:

%%
%d
%2d
%3d
%02d
%03d
%c
%s

%p[I-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}

outputs '%'
print pop() as in printf
print popO like %2d
print popO like %3d

as in printf
print popO gives %c
print popO gives %s

push ith parm
set variable [a-z] to popO
gpt variahlp [a-z] and push it

char constant c
integer constant nn

%+ %- %* %/ %m
arithmetic (%m is mod): push(pop() op popO)

%& % I % A bit operations: push(popO op pop())
%= %> %< logical operations: push(popO op pop 0)
%! %- unary operations push(op pop())
%i add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e.elsepart is optional.
else-irs are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;
ci are conditions, bi are bodies.

TERMINFO (4)

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5
one would use "%gx%{5}%-".

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y pad­
ded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and that the
row and column are printed as two digits. Thus its cup capability is
cup=6\E&%p2%2dc%p1 %2dY.

The Microterm ACT-IV needs the current row and column sent preceded by a AT, with the row
and column simply encoded in binary, cup=AT%p1%c%p2%c. Terminals which use %c need to be
able to backspace the cursor (cubl), and to move the cursor up one line on the screen (cuul).
This is necessary because it is not always safe to transmit \n AD and \r, as the system may
change or discard them. (The library routines dealing with terminfo set tty modes so that tabs
are never expanded, so \t is safe to smd. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character. thus
cup=\E=%p1%' '%+%c%p2%' '%+%c. After sending '\E=', this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the sum on the stack in place of the
two previous values) and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as single parame­
ter capabilities hpa (horizontal position absolute) and vpa (vertical position absolute). Some­
times these are shorter than the more general two parameter sequence (as with the hp2645) and
can be used in preference to cup. If there are parameterized local motions (e.g .. move n spaces to
the right) these can be given as cud, cub. cuf. and cuu with a single parameter indicating how

Hewlett-Packard Company - 8 - Version B.l. October 1986

TERMINFO (4) HP-UX TERMINFO (4)

many spaces to move. These are primarily useful if the terminal does not have cup, such as the
TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left comer of screen) then this
can be given as home; similarly a fast way of getting to the lower left-hand comer can be given as
11; this may involve going up with cuul from the home position, but a program should never do
this itself (unless 11 does) because it can make no assumption about the effect of moving up from
the home position. Note that the home position is the same as addressing to (0,0): to the top left
comer of the screen, not of memory. (Thus, the \EH sequence on HP terminals cannot be used
for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as el. If the terminal can clear from the current position to the end of
the display, then this should be given as ed. Ed is only defined from the first column of a line.
(Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not avail­
able.)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given
as ill; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dll; this is done only from the first position on the line to be deleted. Versions of ill
and dll which take a single parameter and insert or delete that many lines can be given as il and
dl. If the terminal has a settable scrolling region (like the vt100) the command to set this can be
described with the csr capability, which takes two parameters: the top and bottom lines of the
scrolling region. The cursor position is, alas, undefined after using this command. It is possible to
get the effect of insert or delete line using this command - the sc and rc (save and restore cursor)
commands are also useful. Inserting lines at the top or bottom of the screen can also be done
using ri or ind on many terminals without a true insert/delete line, and is often faster even on
terminals with those features.

If the terminal has the ability to define a window as part of memory, which all commands affect,
it should be given as the parameterized string wind. The four parameters are the starting and
ending lines in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if
display memory can be retained below, then db should be given. These indicate that deleting a
line or scrolling may bring non-blank lines up from below or that scrolling back with ri may bring
down non-blank lines.

Insert /Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using terminfo. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other termi­
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks. You can determine the
kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the end, then your terminal
does not distinguish between blanks and untyped positions. If the abc shifts over to the def which

Hewlett-Packard Company - 9 - Version B.1, October 1986

TERM INFO (4) HP-UX TERMINFO (4)

then move together around the end of the current line and onto the next as you insert, you have
the second type of terminal, and should give the capability in, which stands for insert null. While
these are two logically· separate attributes (one line vs. multiline insert mode, and special treat­
ment of untyped spaces) we have seen no terminals whose insert mode cannot be described with
the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals which send a sim­
ple sequence to open a blank position on the current line. Give as smir the sequence to get into
insert mode. Give as rmir the sequence to leave insert mode. Now give as ichl any sequence
needed to be sent just before sending the character to be inserted. Most terminals with a true
insert mode will not give iehl; terminals which send a sequence to open a screen position should
give it here. (If your terminal has both, insert mode is usually preferable to ichl. Do not give
both unless the terminal actually requires both to be used in combination.) If post insert padding
is needed, give this as a number of milliseconds in ip (a string option). Any other sequence which
may need to be sent after an insert of a single character may also be given in ip. If your terminal
needs both to be placed into an 'insert mode' and a special code to precede each inserted charac­
ter, then both smir/rmir and ichl can be given, and both will be used. The ich capability, with
one parameter, n, will repeat the effects of ichl n times.

It is occasionally necessary to move around while in insert mode to delete characters on the same
line (e.g., if there is a tab after the insertion position). If your terminal allows motion while in
insert mode you can give the capability mir to speed up inserting in this case. Omitting mir will
affect only speed. Some terminals (notably Datamedia's) must not have mir because of the way
their insert mode works.

Finally, you can specify dehl to delete a single character, deh with one parameter, n, to delete n
characters, and delete mode by giving smde and rmde to enter and exit delete mode (any mode
the terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor)
can be given as eeh with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented in a number
of different ways. You should choose one display form as standout mode, representing a good,
high contrast, easy-on-the-eyes, format for highlighting error messages and other attention getters.
(If you have a choice, reverse video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and rmso, respectively. If the code
to change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then xme should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If
the terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as ue.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or
extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rev
(reverse video) sgrO (tum off all attribute modes) smaes (enter alternate character set mode) and
rmaes (exit alternate character set mode). Turning on any of these modes singly mayor may
not tum off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set
attributes), taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attribute
is on or off. The 9 parameters are, in order: standout, underline, reverse, blink, dim, bold, blank,
protect, alternate character set. Not all modes need be supported by sgr, only those for which
corresponding separate attribute commands exist.

Hewlett-Packard Company - 10 - Version B.l, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits for each
character. Some terminals, such as the HP 2621, automatically leave standout mode when they
move to a new line or the cursor is addressed. Programs using standout mode should exit stan­
dout mode before moving the cursor or sending a newline, unless the msgr capability, asserting
that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
make, for example, a non-blinking underline into an easier to find block or blinking underline) give
this sequence as evvis. If there is a way to make the cursor completely invisible, give that as
civis. The capability enorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities,
the codes to enter and exit this mode can be given as smeup and rmeup. This arises, for exam­
ple, from terminals like the Concept with more than one page of memory. If the terminal has
only memory relative cursor addressing and not screen relative cursor addressing, a one screen­
sized window must be fixed into the terminal for cursor addressing to work properly. This is also
used for the TEKTRONIX 4025, where smeup sets the command character to be the one used by
terminfo.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be given. Note that it is not possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or
not transmit, give these codes as smkx: and rmkx:. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as keubl, keufl, keuul, keudl, and khome respectively. If there are function
keys such as ro, fl, ... , flO, the codes they send can be given as km, kfl, ... , kflO. If these keys
have labels other than the default fO through flO, the labels can be given as 1m, If 1 , ... , IflO.
The codes transmitted by certain other special keys can be given: kll (home down), kbs (back­
space), ktbe (clear all tabs), ketab (clear the tab stop in this column), kclr (clear screen or erase
key), kdehl (delete character), kdll (delete line), krmir (exit insert mode), kel (clear to end of
line), ked (clear to end of screen), kiehl (insert character or enter insert mode), kill (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of keys includ­
ing the four arrow keys, the other five keys can be given as kal, ka3, kb2, kel, and ke3. These
keys are useful when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as
ht (usually control I). A "backtab" command which moves leftward to the next tab stop can be
given as ebt. By convention, if the teletype modes indicate that tabs are being expanded by the
computer rather than being sent to the terminal, programs should not use ht or ebt even if they
are present, since the user may not have the tab stops properly set. If the terminal has hardware
tabs which are initially set every n spaces when the terminal is powered up, the numeric parame­
ter it is given, showing the number of spaces the tabs are set to. This is normally used by the
tset command to determine whether to set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be saved in nonvolatile memory, the ter­
minfo description can assume that they are properly set.

Hewlett-Packard Company - 11 - Version B.1, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

Other capabilities include is!, is2, and is3, initialization strings for the terminal, iprog, the path
name of a program to be run to initialize the terminal, and if, the name of a file containing long
initialization strings. These strings are expected to set the terminal into modes consistent with
the rest of the terminfo description. They are normally sent to the terminal, by the tset program,
each time the user logs in. They will be printed in the following order: is!; is2; setting tabs
using tbe and hts; if; running the program iprog; and finally is3. Most initialization is done
with is2. Special terminal modes can be set up without duplicating strings by putting the com­
mon sequences in is2 and special cases in is! and is3. A pair of sequences that does a harder
reset from a totally unknown state can be analogously given as rsI, rs2, rf, and rs3, analogous to
is2 and if. These strings are output by the reset program, which is used when the terminal gets
into a wedged state. Commands are normally placed in rs2 and rf only if they produce annoying
effects on the screen and are not necessary when logging in. For example, the command to set the
vt100 into 80-column mode would normally be part of is2, but it causes an annoying glitch of the
screen and is not normally needed since the terminal is usually already ill 80 COIUlllll mode.

If there are commands to set and clear tab stops, they can be given as tbe (clear all tab stops)
and hts (set a tab stop in the current column of every row). If a more complex sequence is
needed to set the tabs than can be described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily needed by hard
copy terminals, and are used by the tset program to set teletype modes appropriately. Delays
embedded in the capabilities cr, ind, cub!, ff, and tab will cause the appropriate delay bits to be
set in the teletype driver. If pb (padding baud rate) is given, these values can be ignored at baud
rates below the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad.
Only the first character of the pad string is used.

If the terminal has an extra "status line" that is not normally used by software, this fact can be
indicated. If the status line is viewed as an extra line below the bottom line, into which one can
cursor address normally (such as the Heathkit hl9's 25th line, or the 24th line of a vt100 which is
set to a 23-line scrolling region), the capability hs should be given. Special strings to go to the
beginning of the status line and to return from the status line can be given as tsl and fsI. (fsI
must leave the cursor position in the.same place it was before tsI. If necessary, the sc and rc
strings can be included in tsl and fsI to get this effect.) The parameter tsl takes one parameter,
which is the column number of the status line the cursor is to be moved to. If escape sequences
and other special commands, such as tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or otherwise erases its contents) should be given
as dsI. If the terminal has commands to save and restore the position of the cursor, give them as
sc and rc. The status line is normally assumed to be the same width as the rest of the screen,
e.g., cols. If the status line is a different width (possibly because the terminal does not allow an
entire line to be loaded) the width, in colunms, can be indicated with the numeric parameter wsI.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and
hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy termi­
nals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usually control
L).

If there is a command to repeat a given character a given number of times (to save time transmit­
ting a large number of identical characters) this can be indicated with the parameterized string
rep. The first parameter is the character to be repeated and the second is the number of times to
repeat it. Thus, tparm(repeat_char. 'x', 10) is the same as 'xxxxxxxxxx'.

Hewlett-Packard Company - 12 - Version B.l, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

If the terminal has a settable command character, such as the TEKTRONIX 4025, this can be indi­
cated with cmdch. A prototype command character is chosen which is used in all capabilities.
This character is given in the cmdch capability to identify it. The following convention is sup­
ported on some HP-UX systems: The environment is to be searched for a CC variable, and if
found, all occurrences of the prototype character are replaced with the character in the environ­
ment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,
dialup, patch, and network, should include the gn (generic) capability so that programs can com­
plain that they do not know how to talk to the terminal. (This capability does not apply to vir­
tual terminal descriptions for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding information should
still be included so that routines can make better decisions ahout costs; but actual pad characters
will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8th bit
is parity and it will usually be cleared. If strings exist to turn this "meta mode" on and off, they
can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of
memory can be indicated with 1m. A value of Im#O indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the HP-UX virtual terminal protocol, the terminal
number can be given as vt.

Media copy strings, which control an auxiliary printer connected to the terminal, can be given as
mcO: print the contents of the screen, mc4: turn off the printer, and mcS: turn on the printer.
When the printer is on, all text sent to the terminal will be sent to the printer. It is undefined
whether the text is also displayed on the terminal screen when the printer is on. A variation
mcSp takes one parameter, and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255. All text, including
mc4, is transparently passed to the printer while an mcSp is in effect.

Strings to program function keys can be given as pfkey, pftoc, and pfx. Each of these strings
takes two parameters: the function key number to program (from 0 to 10) and the string to pro­
gram it with. Function key numbers out of this range may program undefined keys in a terminal
dependent manner. The difference between the capabilities is that pfkey causes pressing the
given key to be the same as the user typing the given string; pftoc causes the string to be exe­
cuted by the terminal in local; and pfx causes the string to be transmitted to the computer.

Glitches

Hazeltine terminals, which do not allow ,-, characters to be displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and vt100,
should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xhp
should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (des­
tructive tabs). This glitch is also taken to mean that it is not possible to position the cursor on
top of a "magic cookie", that to erase standout mode it is instead necessary to use delete and
insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or control C characters,
has xsb, indicating that the f1 key is used for escape and f2 for control C. (Only certain Super­
bees have this problem, depending on the ROM.)

Hewlett-Packard Company - 13 - Version B.1, October 1986

TERMINFO (4) HP-UX TERMINFO (4)

Other specific terminal problems may be corrected by adding more capabilities of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type invoked by use. A capability can
be cancelled by placing xx@ to the left of the capability definition, where xx is the capability.
For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not turn on
the function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

WARNINGS

FILES

HP only supports terminals listed on the current list of supported devices. However, nOll­
supported and supported terminals can be in the terminfo database. If you use such non­
supported terminals, they may not work correctly.

/usr/lib/terminfo/? 1* files containing terminal descriptions

SEE ALSO
tic(IM), untic(IM), curses(3X), printf(3S), term(4).

Hewlett-Packard Company - 14 - Version B.l. October 1986

TTYTYPE(4) HP-UX TTYTYPE(4)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of terminal that is
attached to that port. There is one line per port, containing the terminal kind (as a name listed
in terminfo(4)), a space, and the name of the tty, less the initial "jdev/". For example, for an HP
2622 terminal on tty02:

2622 tty02

This information is read by tset(l) and by login(l) to initialize the TERM variable at login time.

AUTHOR
Ttytype was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
login(l), tset(l).

BUGS
Some lines are merely known as "dialup" or "plugboard".

Hewlett-Packard Company - 1 - Version B.1, October 1986

TZTAB(4) HP-UX TZTAB(4)

NAME
tztab - time zone adjustment table for date(l) and ctime(3C)

DESCRIPTION
The tztab file describes the differences between Greenwich Mean Time (GMT) and local time.
Several local areas can be represented simultaneously with historical detail.

The file tztab consists of one or more time zone adjustment entries. The first line of the entry
contains a unique string that may match the value of the TZ string in the user's environment.
The format is tznamediffdstzname where tzname is the time zone name or abbreviation, dzff is
the difference in hours from GMT, and dstzname is the name or abbreviation of the "Daylight
Savings" time zone. Fractional values of diff are expressed in minutes preceded by a colon. Each
such string will start with an alphabetic character.

The second and subsequent lines of each entry will detail the time zone adjustments for that timE'
zone. The lines contain seven fields each. The first six fields specify the first minute in which the
time zone adjustment, specified in the seventh field, applies. The fields are separated by spaces or
tabs. The first six are integer patterns that specify the minute (0-59), hour (0-23), day of the
month (1-31), month of the year (1-12), year (1970-1999), and day of the week (0-6, with O=Sun­
day). The minute, hour, and month of the year must contain a number in the (respective) range
indicated above. The day of the month, year, and day of the week may contain a number as
above or two numbers separated by a minus (indicating an inclusive range). Either the day of the
month or the day of the week field must be a range, the other must be simple number.

The seventh field is a string that describes the time zone adjustment in its simplest form:
tznamediff where tzname is an alphabetic string giving the time zone name or abbreviation, and
diff is the difference in hours from GMT. Tzname must match either the tzname field or the
dstzname field in the first line of the time zone adjustment entry. Any fractional diff is shown in
minutes.

Comments begin with # and include all characters up to a new-line. Comments are ignored.

If the value of the TZ string does not match any line in the table, it is interpreted according to
the current American pattern.

EXAMPLES
The time zone adjustment table for the Eastern Time Zone in the United States is:

EST5EDT
036 1 19740--6 EDT4
o 3 22-28 2 1975 0 EDT4
o 3 24-30 4 1976-1986 0 EDT4
03 1-741987-19990 EDT4
o 1 24-30 11 19740 EST5
o 1 25-31 10 1975-19990 EST5

Normally (as indicatE'd in the first line) Eastern Standard TimE' is five hours earlier than GMT.
During Daylight Savings time, it changes to a 4 hour difference. The first time Daylight Savings
Time took effect (second line) was on January 6, 1974 at 3:00 a.m. EDT. Note that the minute
before was 1:59 a.m. EST. The change back to standard time took effect (sixth line) on the last
Sunday in November of the same year. At that point, the time went from 1:59 a.m. EDT to 1:00
a.m. EST. The transition to Daylight Savings Time since then has gone from the last Sunday in
February (third line) to the last Sunday in April (fourth line) to the first Sunday in April (fifth
line). The return to standard time for the same period has remained at the last Sunday in
October (seventh line).

AUTHOR
Tztab was developed by Hewlett-Packard Company.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TZTAB(4)

FILES
jusrjlibjtztab

SEE ALSO
date{l), ctime{3C), environ(5).

INTERNATIONAL SUPPORT
8-hit. oata.

Hewlett-Packard Company

HP-UX TZTAB(4)

- 2 - Version B.l, October 1986

UTMP(4) HP-UX UTMP(4)

NAME
utmp, wtmp, btmp - utmp, wtmp, btmp entry format

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands as last(I), who(I),
write(I), and login(I), have the following structure as defined by <utmp.h>:

#define UTMP -FILE "/etc/utmp"
#define WTMP -FILE "/etc/wtmp"
#define BTMP -FILE "/etc/btmp"
#define ut-.name ut_user

struct

};

char
char
char
short
short
struct

utmp {
ut_user[8];
ut~d[4];
uL..line[12];
ut_pid;
ut_type;
exit-status {
short
short
} ut_exit;

/ * Definitions for ut_type * /
#define EMPTY
#define RUN-LVL

/ * User login name * /
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */
/ * process id * /
/* type of entry */

e_termination;
e_exit;
/ * The exit status of a process

/ * time entry was made * /

o
1
2
3
4

/ * Process termination status * /
/* Process exit status */

/ * marked as DEADJROCESS. * /

#define BOOT_TIME
#define OLD_TIME
#define NEW _TIME
#define INIT JROCESS
#define LOGINJROCESS
#define USERJROCESS
#define DEADJROCESS
#define ACCOUNTING
#define UTMAXTYPE

5 /* Process spawned by "init" */
6
7

/* A "getty" process waiting for login */
/ * A user process * /

8
9
ACCOUNTING /* Largest legal value of ut_type */

/* Special strings or formats used in the "ut-line" field when */
/ * accounting for something other than a process * /
/* No string for the ut-line field can be more than 11 chars + */
/ * a NULL in length * /
#define RUNLVL--.MSG "run-level %c"
#define BOOT --.MSG "system boot"
#define OTIME--.MSG "old time"
#define NTIME--.MSG "new time"

File btmp contains bad login entries for each invalid logon attempt.

Hewlett-Packard Company - 1 - Version B.l, October 1986

UTMP(4) HP-UX UTMP(4)

FILES

Note that wtmp and btmp tend to grow without bound, and should be checked regularly. Infor­
mation that is no longer useful should be removed periodically to prevent it from becoming too
large.

/etc/utmp
/etc/wtmp
/etc/btmp

AUTHOR
Btmp was developed by the Hewlett-Packard Company, and the University of California, Berkeley
California, Computer Science Division, Department of Electrical Engineering and Computer Sci­
ence.

SEE ALSO
acctcon(lM), fwtmp(lM), last(l), login(l), who(l), write(l), getut(3C).

Hewlett-Packard Company - 2 - Version B.l, October 1986

INTRO(5)

NAME
intro - introduction to miscellany

DESCRIPTION

HP-UX INTRO(5)

This section describes miscellaneous facilities such as macro packages, character set tables, and
the file system hierarchy.

SEE ALSO
The introduction to this manual.

Hewlett-Packard Company - 1 - Version B.l, October 1986

ASCII(5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION

HP-UX ASCII(5)

Ascii is a map of the ASCII character set, giving both octal and hexadecimal equivalents of each
character, to be printed as needed. It contains:

FILES

000 nul
OlD bs
020 dIe
030 can
040 sp
050 (
060 0
070 8
100 @
110 H
120 P
130 X
140
150 h
160 P
170 x

00 nul
08 bs
10 dIe
18 can
20 sp
28 (
30 0
38 8
40 @

48 H
50 P
58 X
60
68 h
70 p
78 x

001 soh 002 s tx
011 ht 012 nl
021 del 022 dc2
031 em 032 sub
041 ! 042 "
051) 052 *
061 1 062 2
071 9 072 :
101 A 102 B
111 I 112 J
121 Q 122 R
131 Y 132 Z
141 a 142 b
151 i 152 j
161 q 162 r
171 y 172 z

01 soh
09 ht
11 dc1
19 em
21 !
29)
31 1
39 9
41 A
49 I
51 Q
59 Y
61 a
69 i
71 q
79 y

02 stx
Oa nl
12 dc2
1a sub
22 "
2a *
32 2
3a :
42 B
4a J
52 R
5a Z
62 b
6a j
72 r
7a z

/usr/pub/ascii

SEE ALSO
kana8(5), roman8(5).

Hewlett-Packard Company

003 etx 004 eot
013 vt 014 np
023 dc3 024 dc4
033 esc 034 fs
043 # 044 $
053 + 054 ,
063 3 064 4
073 , 074 <
103 C 104 D
113 K 114 L
123 S 124 T
133 [134 \
143 c 144 d
153 k 154 I
163 s 164 t
173 { 174 I

03 etx
Ob vt
13 dc3
1b esc
23 #
2b +
33 3
3b ,
43 C
4b K
53 S
5b [
63 e
6b k
73 s
7b {

04 eot
Oc np
14 dc4
1c fs
24 $
2c ,
34 4
3c <
44 D
4c L
54 T
5c \
64 d
6e I
74 t

7e I

- 1 -

005 enq
015 cr
025 nak
035 gs
045 %
055 -
065 5
075 =
105 E
115 M
125 U
135 J

145 e
155 m
165 u
175 }

05 enq
Od cr
15 nak
1d gs
25 %
2d -
35 5
3d =
45 E
4d M
55 U
5d J
65 e
6d m
75 u
7d }

006 ack 007 bel
016 so 017 si
026 syn 027 etb
036 rs 037 us
046 & 047
056 057 /
066 6 067 7
076 > 077 ?
106 F 107 G
116 N 117 0
126 V 127 W
136 137_
146 f 147 g
156 n 157 0

166 v 167 w
176 - 177 de I

06 aek
Oe so
16 syn
Ie rs
26 &
2e
36 6
3e >
46 F
4e N
56 V
5e
66 f
6e n
76 v
7e

07 bel
Of s i
17 etb
If us
27
2f /
37 7
3f ?
47 G
4f 0
57 W
5f _
67 g
6f 0

77 w
7f del

Version B.1, October 1986

ENVIRON (5) HP-UX ENVmON(5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2) when a process begins.
By convention, these strings have the form "name=value". The following names are used by vari­
ous commands:

PATH

HOME

TERM

TZ

LANG

The sequence of directory prefixes that sh{l), time(l), nice(l), nohup{l), etc.,
apply in searching for a file known by an incomplete path name. The prefixes
are separated by colons (:). Login(l) sets PATH=:/bin:/usr/bin.

Name of the user's login directory, set by login{l) From the password file, see
passwd(4).

The kind of terminal for which output is to be prepared. This information is
used by commands, such as mm{l) or tplot{l), that can exploit special capabili-
ties of that terminal.

Time zone information. The minimum format is tznamediJT where tzname is an
"alphabetic" string giving the time zone name or abbreviation, and diJT is the
difference in hours from GMT. DiJT may be positive (west of Greenwich) or
negative (east of Greenwich). Fractional hours are indicated as minutes pre­
ceded by a colon. If a summer time zone adjustment (such as Daylight Savings
in the US) is to be applied the format is tznamediJTdstzname where dstzname
is the name of the "Daylight Savings" time zone. The entire string is compared
with entries in the tztab file to determine the details of the time zone adjustment
that should be applied, see tztab(4).

Language selection. This is one of the names listed in langid (5). It is used to
select the character set, lexical order, up and down shift tables, and other infor-
mation that varies from one area to another.

Further names may be placed in the environment by the export command and "name=value"
arguments in sh(l), or by exec(2). It is unwise to conflict with certain shell variables that are fre­
quently exported by .profile files: MAIL, PSI, PS2 , IFS .

A process's environment is accessible from C via the global variable:

char **environ;

that points to an array of pointers to the strings which comprise the environment. The array is
terminated by a null pointer.

AUTHOR
Environ was developed by AT&T and HP.

SEE ALSO
env{l), login{l), sh{l), exec(2), ctime(3C), getenv(3C), profile(4), term(5), tztab(4).

Hewlett-Packard Company - 1 - Version B.l, October 1986

FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
#inc1ude <fcntl.h>

DESCRIPTION

HP-UX FCNTL(5)

The Icntl(2) function provides for control over open files. This include file describes requests and
arguments to Icntl and open(2).

/* Flag values accessible to open(2) and fcntl(2) */
/* (The first three can only be set by open) */

#define O-RDONL Y 0
#define 0_ WRONL Y 1
#define O-RD WR 2

/* Non-blocking I/O */
2568.if 1416<1416 .nr 50 1416
#define O-.NDELA Y 04
#define O-APPEND 010
*/

/* append (writes guaranteed at the end)

#define O-SYNCIO 0100000 / * Do write through caching * /

/* Flag values accessible only to open(2) */
#define O_CREAT 00400 /* Open with file create (uses third open arg)*/
#define O_TRUNC 01000 /* Open with truncation */
#define O-EXCL 02000 /* Exclusive open */

/* fcntl(2) requests */
#define F-DUPFD 0
#define F _GETFD 1
#define F -SETFD 2
#define F_GETFL 3
#define F -SETFL 4
#define F _GETLK 5

/ * Duplicate fildes * /
/ * Get fildes flags * /
/ * Set fildes flags * /
/ * Get file flags * /
/ * Set file flags * /
/ * Get blocking file lock * /

#define F -SETLK 6
#define F -SETLKW 7

/ * Set or clear file locks and fail on busy * /
/ * Set or clear file locks and wait on busy

*/

/ * file segment locking control structure * / struct flock {
short Ltypej
short Lwhencej
long Lstartj
long LIenj
int Lpid;

}j

/ * file segment locking types * /
#define F-RDLCK 01 /* Read lock */
#define F_WRLCK 02 /* Write lock */
#define F_UNLCK 03 /* Remove locks */

HARDW ARE DEPENDENCIES
Series 200, 500

The F _GETLK, F -SETLK, and F -SETLKW commands are not supported.

Hewlett-Packard Company - 1 - Version B.1, October 1986

FCNTL(5) HP-UX FCNTL(5)

SEE ALSO
fcntl(2), open(2).

Hewlett-Packard Company - 2 - Version B.l, October 1986

HIER(5) HP-UX HIER(5)

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative HP-UX directory hierarchy.
Some of the directories listed only appear with HP-UX versions which support certain optional
commands or packages which use those directories. Some HP-UX versions add special directories
not shown here.

/
/bin

/dev

/etc

/etc/newconfig

/lib

/lost+found

/rbin

/tmp

/users

/users/guest

/usr

/usr/adm

/usr/adm/sa

Root directory.

Frequently-used commands and those required to boot, restore, recover,
and/or repair the system.

Special files (device files); see mknod(l).

New (updated) versions of customizable (localizable) configuration files and
shell scripts. Shipped here so as not to overwrite current versions. Copied
to regular locations for newly installed systems. Administrators may wish
to keep them around for later reference.

Frequently-used object code libraries and related utilities.

For connecting detached files; for use by fsck(l).

An analog to /bin for users in the restricted environment of rsh(l).

Place to put temporary files (those normally with short lifetimes and which
may be removed without notice).

User home directories; sometimes immediate, sometimes at lower levels.

Default home directory for user "guest"; see passwd(4). Directory exists
for novice users; you may wish to remove it.

Less-frequently-used commands and other miscellaneous things; historically,
often a separate, mounted volume.

/usr/bin Less-frequently-used commands and those not required to boot, restore,
recover, and/or repair the system.

/usr/bin/graph Gutil(l) graphics commands.

/usr/contrib User-contributed (unsupported, internal) commands, files, etc. Files under
this directory come from outside the local site or organization, e.g. from
users groups, HP service engineers, etc. See /usr/local for local-site com­
mands and files.

/usr/contrib/bin User-contributed commands.

/usr/contrib/games User-contributed games.

/usr/contrib/include User-contributed include files. To include them, you must (in C) give a
complete pathname, for example, # include
" /usr/contrib/include/symtab.h".

/usr/contrib/lib User-contributed libraries.

/usr/contrib/man/cat[1-8]
User-contributed manual entries, post-nroff form.

Hewlett-Packard Company - 1 - Version B.1, October 1986

HIER(5) HP-UX HIER(5)

/usr/contrib/man/man[1-8]
User-contributed manual entries, pre-nroff form.

/usr/contrib/man/$LANG/cat[1-8]
User-contributed manual entries, formatted form for installed native
languages. The LANG environment variable may take on values given in
the /usr /lib/nls/conflg table.

/usr/contrib/man/$LANG/man[1-8]
User-contributed manual entries, unformatted form for installed native
languages.

/usr/include High-level C-Ianguage header files (shared definitions).

/usr /include/sys

/usr/lib

Low-level (kernel-related) C-Ianguage header files.

Less-frequently-used object code libraries, related utilities, miscellaneous
data files, etc.

/usr/lib/acct Certain system-administrative commands.

/usr/lib/cron For cron(lM) and at(l) scheduling information.

/usr/lib/graphics/c Device-independent Graphics Library (DGL) special C-Ianguage include
files. Optional on some systems.

/usr /lib/ graphics/demos
DGL demonstration software.

/usr /lib/ graphics/fortran
DGL special FORTRAN-language include files.

/usr/lib/graphics/pascal
DGL special Pascal-language include files.

/usr/lib/help Data files for help(l).

/usr/lib/lex

/usr/lib/macros

/usr/lib/nls

/usr /lib /nls / config

/usr /lib/nls/$LANG

/usr/lib/sa

/usr /lib/spell

/usr /lib/tabset

/usr /lib/term

/usr /lib/tmac

/usr /lib/uucp[j *]

/usr/local

/usr /local/bin

Hewlett-Packard Company

Data files for lex(l).

Macro definition packages for nroJT(l) and troJT.

native language support

correspondence between integer language id and name

Language definition (Character Set Support, Local Customs, and Messages)
for installed native languages. The LANG environment variable may take
on values given in the /usr/lib/nls/conflg table.

Data files for spell(l).

Data files to set tabstops.

Terminal initialization files.

Macro definition packages for nroJT(l) and troJT.

Commands, configuration files, and working directories for uucp(l).

Site-local commands, files, etc. Files under this directory come from inside
the local site or organization. See /usr/contrib for non-local unsupported
commands and files.

Site-local commands.

- 2 - Version B.l, October 1986

HIER(5)

/usr /local/ games

/usr /local/include

HP-UX HIER(5)

Site-local games.

Site-local include files. To include them, you must (in C) give a complete
pathname, for example, #include "/usr/locaIfinclude/symtab.h".

/usr/local/lib Site-local libraries.

/usr /local/man/ cat[I-8J
Site-local manual entries, post-nroff form.

/usr/local/man/man[I-8J
Site-local manual entries, pre-nroff form.

/usr/local/man/$LANG/cat[I-8J
Site-local manual entries, unformatted form for installed native languages.
The LANG environment variable may take on values given in the
/usr/lib/nls/config table.

/usr/local/man/$LANG/man[I-8]

/usr/mail

/usr/man

/usr/man/cat[I-8J

/usr /man/man[1-8J

Site-local manual entries, formatted form for installed native languages.

User mailboxes.

Online documentation.

Optional formatted (post-nroff) versions of online documentation for use by
man(I).

Unformatted (pre-nroff) versions of online documentation for use by
man(I).

/usr/man/$LANG Online documentation for installed native languages. The LANG environ­
ment variable may take on values given in the /usr/lib/nls/conflg table.

/usr/man/$LANG/cat[I-8J
Formatted native language versions of online documentation for use by
man(I).

/usr/man/$LANG/man[I-8J

/usr/news

/ usr / preserve

/usr/rbin

/usr/spool

/usr/spool/cron

Unformatted native language versions of online documentation for use by
man(I).

Local-system news articles for news(I).

Place where eX(I) and vi{l) save lost edit sessions until recovered.

An analog to /usr/bin for users in a restricted environment (as imposed by
rsh(I)).

Spooled (queued) files for various programs.

Spooled jobs for cron(IM) and at(I).

/usr/spool/cron/atjobs
Spooled jobs for at(I).

/usr/spool/lp Control and working files for /p(I).

/usr/spool/lp/class Printer class definition files.

/usr/spool/lp/interface
Printer interface shell scripts.

/usr/spool/lp/member
Printer class member definition files.

Hewlett-Packard Company - 3 - Version B.l, October 1986

HIER(5) HP-UX HIER(5)

/usr/spool/lp/request Spool directories for each logical destination.

/usr/spool/uucp Queued work, lockfiles, logfiles, status files, and other files for uuep(l).

/usr/spool/uucppublic[j*]

/usr/src

/usr/src/cmd/*

/usr/src/games/*

/usr/src/head

/usr/src/lib

/usr/src/lib/libF77

/usr / src /lib /lib177

/usr/src/lib/libPW

/usr / src /lib /libc

Publicly-accessible directory for use with uuep(l).

Source files. Only present on HP-UX implementations which support
source.

Source for commands. Simple command sources reside at the top level.
Subdirectories are named after specific commands, e.g. /usr/sre/emd/ee,
and contain the source for multi-file or otherwise complicated commands.
Directory structure below here depends on the individual command; see the
associated makefiles.

Source for games. Simple game sources reside at the top level. Subdirec­
tories are named after specific games, e.g. /usr /sre/games/master, and
contain the source for multi-file or otherwise complicated games. Directory
structure below here depends on the individual game; see the associated
makefiles.

Include files which are copied into /usr/include/*.

Source for libraries, in many subdirectories.

Source for FORTRAN-77 miscellaneous (mostly math) libraries.

Source for FORTRAN-77 I/O libraries.

Source for Programmer's Workbench libraries.

Source for standard C libraries.

/usr / src /lib/libcurses/ *
Source for curses (cursor control) libraries.

/usr/src/lib/libl Source for lex(l) libraries.

Source for C math libraries.

Source for yacc(l) libraries.

/usr/src/lib/libm

/usr/src/lib/liby

/usr/tmp Alternate place to put temporary files; usually used when there may be
very many of them or if they will be large.

HARDW ARE DEPENDENCIES
Series 500 systems support shared libraries loaded by the kernel at powerup time. They reside in
the directory /ete/sslibs.

Some directories include commands or files not supported on all HP-UX implementations.

SEE ALSO
find(l), grep(l), Is(l), whereis(l).

Hewlett-Packard Company - 4 - Version B.1, October 1986

HPNLS(5) HP-UX HPNLS(5)

NAME
hpnls - HP Native Language Support (NLS) Model

SYNOPSIS
Is /usr /lib/nls/*

DESCRIPTION
The HP Native Language Support (NLS) model includes several capabilities that reduce or elim­
inate the barriers that would otherwise make HP-UX difficult to use in a non-English language.
The three main categories, Character Set Support, Local Customs, and Messages, are subdivided
into smaller categories in order to adequately reflect the extent of the Native Language Support.

CHARACTER SET SUPPORT -
A major NLS objective is to provide capabilities for adapting character sequences to local
language needs.

CHARACTER CODE SIZE -
The length of the character code governs the number of distinct characters that can be
included in the character set.

7-BIT -
The ASCII character set consists of 33 control characters including DEL, space, and
94 printable characters. (See ascii(5).) This is sufficient to span the Latin alpha­
bet, upper and lowercase, plus punctuation and special symbols. Seven bits of infor­
mation is sufficient to distinguish the characters in such a set.

8-BIT -
The use of an 8 bit character code allows 67 control codes, space, and 188 printable
characters. In the case of European characters, this provides sufficient space for
accented vowels, consonants with special forms, and other special symbols. (See
roman8(5)). This is also sufficient to hold the phonetic Japanese character set
Katakana. (See kana8(5).)

16-BIT -
A number of languages have very large character sets that require more than the
188 printable characters provided by the 8-bit character codes. Sixteen-bit charac­
ter codes are available for these languages. To simplify processing, 16-bit printable
characters are formed from pairs of 8-bit printable characters (neither byte may
contain a control code or a space). This allows representation of up to 35344 char­
acters.

CHARACTER TYPING-
Character processing which depends on character type must take into account the character
type changes that vary with the character set being used. For example, an alphabetic char­
acter in the ROMAN8 character set may align with a punctuation character in the kanaB
set.

SHIFTING -
While the ROMAN8 character set has uppercase and lowercase for most alphabetic charac­
ters, some languages discard accents when characters are shifted to uppercase. Other alpha­
betic characters may not be shifted at all, when there is no notion of "case" in the underly­
ing language.

COLLATING -
The ASCII collation order, while generally tolerated, is not adequate for American diction­
ary usage. Different languages sort characters from the ROMAN8 set in different orders.
Some languages require that character pairs, such as "ch" and "II" in Spanish, be sorted as
single characters. Ideographic character sets may have multiple orderings. For example,
Japanese characters may be sorted in phonetic order; in a different order based on the

Hewlett-Packard Company - 1 - Version B.1, October 1986

HPNLS(5) HP-UX HPNLS(5)

number of strokes in the ideogram; or according, first, to the radical (root) of the character
and, second, to the number of strokes added to the radical.

DIRECTIONALITY -
The assumption that displayed text goes from left to right does not hold for all languages.
Some Middle Eastern languages go from right to left. Far Eastern languages usually use
vertical columns, starting from the right.

CODING SCHEME CONSIDERATIONS-
Although most HP supported 8-bit character sets preserve the ASCII codes in the range of 0
to 127, IS-bit character sets may use these byte values in 2-byte characters. Software that
assigns special meaning to bytes (metacharacters) in this range must distinguish between
I-byte and 2-byte characters. In multilingual environments, standard escape code
sequences are used to indicate change to alternate character sets. Since these sequences are
not usually printed or displayed, the number of characters output is usually less than the
number of bytes in the sequence. Any software that must locate a character within a
sequence must accommodate this.

LOCAL CUSTOMS -
Some aspects of Native Language Support relate more to local customs of a particular geographic
location than to the characters used to write the language.

REPRESENTATION OF NUMBERS-
The character used to denote the radix of a decimal number varies for different
regions. Similarly the use of a "thousands" indicator or grouping of (usually three)
digits may vary with local custom.

CURRENCY REPRESENTATION -
The symbol for currency varies from country to country. The symbol may either
precede or follow the numeric value. Some currencies allow decimal fractions while
others use alternate methods of representing smaller monetary values.

DATE AND TIME REPRESENTATION -
Month and weekday names vary with language (if they are not omitted entirely).
Abbreviations may be other than three characters, or may not be allowed at all.
Even when a strictly numeric representation is used, the order of year, month, and
day as well as the delimiters which separate them is not universal.

DATE AND TIME ADJUSTMENTS -
The HP-UX system clock runs on Greenwich Mean Time (GMT). Corrections to
local time zones consist of adding or subtracting whole or fractional hours from
GMT. The Gregorian calendar is most common, but some locales use different
methods for determining meridian day and year; usually based on seasonal, astro­
nomical, or historical events.

MESSAGES -
The need for messages to be readable by users is perhaps the most significant justification for
implementing Native Language Support.

MESSAGE CONTENT -
Error messages, prompts, expected responses, and mnemonic command names
should be based on the user's native language.

MESSAGE STRUCTURE -
Messages must often be built from segments. To accommodate grammatical
differences, it may be necessary to change the order in which the fragments are con­
nected.

Hewlett-Packard Company - 2 - Version B.1, October 1986

HPNLS(5) HP-UX

EXAMPLE
A "fully localized" version of "pr" would

FILES

Never strip the 8th bit of a character code.

Properly format the date in each page header.

Account for non-printing escape sequences.

Use the message catalog system to select user error messages.

usr /lib/nls/*

AUTHOR
Hpnls was developed by the Hewlett-Packard Company.

SEE ALSO

HPNLS(5)

date(l), sort(l), ctime(3C), ecvt(3C), nLconv{3C), nLctype(3C), nLstring(3C), strtod(3C),
ascii(5), kana8(5), roman8(5).

Hewlett-Packard Company - 3 - Version B.l, October 1986

IOCTL(5) HP-UX IOCTL(5)

ioctl - generic device control commands

SYNOPSIS
#include <sys/ioctl.h>
ioctl(ftldes, request, arg)
int fildes, request;

DESCRIPTION
The ioctl(2) system call provides for control over open devices. This include file describes
requests and arguments used in ioctl(2) which are of a generic nature. For details about how
individual requests will affect any particular device, see the corresponding device manual page sec­
tion (7). If a device does not support an ioctl request it will return EINVAL.

FIONREAD
Returns in the long integer whose address is arg the number of characters immediately
readable from the device file.

FIOSSAIOST AT
For those character device files which support this command, if the integer whose address
is arg is non-zero, system asynchronous I/O is enabled. That is, enable SIGIO to be sent
to the process currently designated with FIOSSAIOOWN (see below) whenever device-file
dependent events occur. If no process has been designated with FIOSSAIOOWN, then
enable SIGIO to be sent to the first process to open the device file.

If the designated process has exited, the SIGIO signal will not be sent to any process.

If the integer whose address is arg is 0, system asynchronous I/O is disabled.

FIOGSAIOSTAT
For those character device files which support this command, the integer whose address is
arg is set to 1, if system asynchronous I/O is enabled. Otherwise, the integer whose
address is arg is set to O.

FIOSSAIOOWN
For those character device files which support this command, set process ID to receive the
SIGIO signals with system asynchronous I/O to the value of the integer whose address is
argo The super-user may designate that any process receive the SIGIO signals. If the
request is not made by the super-user, the calling process is only
allowed to designate that itself or another process whose real or saved
effective user ID matches its real or effective user ID, or a process which is a descendant
of the calling process, receive the SIGIO signals. If no process can be found corresponding
to that specified by the integer whose address is arg, the call will fail, with errno set to
ESRCH. If the request is not made by the super-user, and the calling process attempts to
designate a process other than itself or another process whose real or saved effective user
ID matches its real or effective user ID, or a process which is not a descendant of the cal­
ling process, the call will fail, with errno set to EPERM.

If the designated process subsequently exits, the SIGIO signal will not be sent to any pro­
cess.

The default on open of a device file is that the process performing the open is set to

Hewlett-Packard Company - 1 - Version B.1, October 1986

IOCTL(5) HP-UX IOCTL(5)

receive the SIGIO signals.

FIOGSAIOOWN
For those character device files which support this command, the integer whose address is
arg is set to the process ID designated to receive SIGIO signals.

FIOSNBIO
For those character device files which support this command, if the integer whose address
is arg is non-zero, non-blocking I/O is enabled. That is, subsequent reads and writes to
the device file will be handled in a non-blocking manner (see below). If the integer whose
address is arg is 0, non-blocking I/O is disabled.

For reads, non-blocking I/O will prevent all read requests to that device from blocking,
whether the requests succeed or fail. Such a read request will complete in one of three
ways: (1) If there is enough data available to satisfy the entire request, the read will com­
plete successfully, having read all of the data, and return the number of bytes read; (2) If
there is not enough data available to satisfy the entire request, the read will complete suc­
cessfully, having read as much data as possible, and return the number of bytes it was
able to read; (3) If there is no data available, the read will fail and errno will be set to
EWOULDBLOCK.

For writes, non-blocking I/O will prevent all write requests to that device file from block­
ing, whether the requests succeed or fail. Such a write request will complete in one of
three ways: (1) If there is enough space available in the system to buffer all the data, the
write will complete successfully, having written out all of the data, and return the number
of bytes written; (2) If there is not enough space in the buffer to write out the entire
request, the write will complete successfully, having written as much data as possible, and
return the number of bytes it was able to write; (3) If there is no space in the buffer, the
write will fail and errno will be set to EWOULDBLOCK.

To prohibit non-blocking I/O from interfering with the O--.NDELAY flag (see open(2)
and fcntl(2)), the functionality of O--.NDELAY always supercedes the functionality of
non-blocking I/O. This means that if O--.NDELAY is set, the driver will perform read
requests in accordance with, the definition of O--.NDELAY. When O~DELAY is not
set, the definition of non-blocking I/O applies.

The default on open of a device file is that non-blocking I/O is disabled.

FIOGNBIO

WARNINGS

For those character device files which support this command, the integer whose address is
arg is set to 1, if non-blocking I/O is enabled. Otherwise, the integer whose address is arg
is set to O.

FIOSSAIOSTAT is similar to 4.2 BSD FIOASYNC, with the addition of provisions for security.
FIOGSAIOSTAT is of HP origin, complements FIOSSAIOSTAT, and allows saving and restoring
system asynchronous I/O TTY state for BSD style job control. FIOSSAIOOWN is similar to 4.2
BSD FIOSETOWN, with the addition of provisions for security. FIOGSAIOOWN is similar to 4.2
BSD FIOGETOWN. Note also the difference that the 4.2 BSD version of this functionality used
process groups, while the HP-UX version only uses processes. FIOSNBIO is the same as 4.2 BSD
FIONBIO, except that it does not interfere with the AT&T O--NDELAY open and fcntl flag.
FIOGNBIO is of HP origin, complements FIOSNBIO, and allows saving and restoring non-blocking

Hewlett-Packard Company - 2 - Version B.1, October 1986

IOCTL(5) HP-UX

I/0 TTY state for BSD style job control.

HARDW ARE DEPENDENCIES
Series 200, 300, 500

Asynchronous I/O is not supported.

SEE ALSO
ioctl(2}.

Section (7) of this manual.

Hewlett-Packard Company - 3 -

IOCTL(5)

Version B.l, October 1986

KANA8(5) HP-UX KANA8(5)

NAME
kanaB - map of KANA8 character set used by NLS

SYNOPSIS
Is jusrjllbjnls/*

DESCRIPTION
KanaB is a map of the KANA8 character set, gIvmg the octal, decimal, and hexadecimal
equivalents of each character, to be printed as needed. It contains:

000 0 00 nuL 001 1 01 soh
002 2 02 stx 003 3 03 etx
004 4 04 eot 005 5 05 enq
006 6 06 ack 007 7 07 beL
010 8 08 bs 011 9 09 ht
012 10 Oa nL 013 11 Ob vt
014 12 Oc np 015 13 Od cr
016 14 Oe so 017 15 Of s i
020 16 10 dLe 021 17 11 del
022 18 12 dc2 023 19 13 dc3
024 20 14 dc4 025 21 15 nak
026 22 16 syn 027 23 17 etb
030 24 18 can 031 25 19 em
032 26 1a sub 033 27 1b esc
034 28 Ie fs 035 29 1d 9S
036 30 Ie rs 037 31 If us
040 32 20 sp 041 33 21 I

042 34 22 " 043 35 23
** 044 36 24 $ 045 37 25 %

046 38 26 & 047 39 27
050 40 28 (051 41 29
052 42 2a >I< 053 43 2b +
054 44 2c 055 45 2d -
056 46 2e 057 47 2f /
060 48 30 0 061 49 31 1
062 50 32 2 063 51 33 3
064 52 34 4 065 53 35 5
066 54 36 6 067 55 37 7
070 56 38 8 071 57 39 9
072 58 3a 073 59 3b
074 60 3c < 075 61 3d
076 62 3e > 077 63 3f '!

100 64 40 @ 101 65 41 A
102 66 42 B 103 67 43 C
104 68 44 D 105 69 45 E
106 70 46 F 107 71 47 G
110 72 48 H 111 73 49 I
112 74 4a J 113 75 4b k
114 76 4c L 115 77 4d M
114 70 /.- " "...., ('7 4f 0 .l.l (

Hewlett-Packard Company - 1 - Version B.1, December 1986

KANA8(5) HP-UX KANA8(5)

i i ,
120 80 50 P 121 81 51 Q

122 82 52 R 123 83 53 S
124 84 54 T 125 85 55 U
126 86 56 V 127 87 57 W
130 88 58 X 131 89 59 y
132 90 Sa Z 133 91 5b [
134 92 5e if' yen 135 93 5d)
136 94 5e A 137 95 5f -
140 96 60 ' 141 97 61 a
142 98 62 b 143 99 63 e
144 100 64 d 145 101 65 e
146 102 66 f 147 103 67 9
150 104 68 h 151 105 69 ;
152 106 6a j 153 107 6b k
154 108 6e L 155 109 6d m
156 110 6e n 157 111 6f 0

160 112 70 p 161 113 71 q
162 114 72 r 163 115 73 s
164 116 74 t 165 117 75 u
166 118 76 v 167 119 77 w
170 120 78 x 171 121 79 y

172 122 7a z 173 123 7b {
174 124 7e 175 125 7d }
176 126 7e

~

177 127 7f deL
200 128 80 201 129 81
202 130 82 203 131 83
204 132 84 205 133 85
206 134 86 207 135 87
210 136 88 211 137 89
212 138 8a 213 139 8b
214 140 8e 215 141 8d
216 142 8e ss2 217 143 8f ss3
220 144 90 221 145 91
222 146 92 223 147 93
224 148 94 225 149 95
226 150 96 227 151 97
230 152 98 231 153 99
232 154 9a 233 155 9b
234 156 ge 235 157 9d
236 158 ge 237 159 9f
240 160 aO 241 161: a1 o ku-ten
242 162 a2 r hook 243 163 a3 J unhook
244 164 a4 to-ten 245 165 as dot
246 166 a6 7 wo 247 167 a7 'J' smaLL a
250 168 a8 -1' smaLL i 251 169 a9 ..., smaLL u
252 170 aa I sma L L e 253 171 ab :t smaLL 0

254 172 ae r> smaLL ya 255 173 ad 2 smaLL YU
256 174 ae 3 sma LL yo 257 175 af ':,J smaLL tsu
260 176 bO - dash 261 177 b1 }' a
262 178 b2 l' i 263 179 b3 'j u
264 180 b4 I e 265 181 bS ;t 0

Hewlett-Packard Company - 2 - Vers ion B.l, December 1986

KANA8(5)

266 182
270 184
272 186
274 188
276 190
300 192
302 194
304 196
306 198
310 200
312 202
314 204
316 206
320 208
322 210
324 212
326 214
330 216
332 218
334 220
336 222
340 224
342 226
344 228
346 230
350 232
352 234
354 236
356 238
360 240
362 242
364 244
366 246
370 248
372 250
374 252
376 254

WARNINGS

b6 h ka
b8 ? ku
ba] ko
be ~ shi
be t se
cO ? ta
e2 ';I tsu
e4 r to
e6 : ni
c8 ~ ne
ea }\ ha
ce 7 fu
ee ;t; ho
dO _ mi
d2 :J. me
d4 t' ya
d6 :3 vn

d8 I) r i
da l; re
de 'J wa
de " voiced
eO
e2
e4
e6
e8
ea
ee
ee
fO
f2
f4
f6
f8
fa
fc
fe

267 183
271 185
273 187
275 189
277 191
301 193
303 195
305 197
307 199
311 201
313 203
315 205
317 207
321 209
323 211
325 213
327 215
331 217
333 219
335 221
337 223
341 225
343 227
345 229
347 231
351 233
353 235
355 237
357 239
361 241
363 24'3
365 245
367 247
371 249
373 251
375 253
377 255

HP-UX

b7 :to ki
b9 7 ke
bb '1 sa
bd 1, su
bf 'J so
c1 f chi
e3 'f te
e5 j na
e7 ~ nu
e9) no
eb t hi
cd '\ he
cf -:z ma
d1 L. mu
d3 f rna
d5 1 yu
d? '5 ra
d9 Jv ru
db 0 ro
dd :" n
df 0 non-voiced pLosive
e1
e3
e5
e7
e9
eb
ed
ef
fl
f3
f5
f7
f9
fb
fd
ff

KANA8(5)

Peripheral or software limitations may garble this manual page. Many printers and terminals do
not support the KANA8 character set.

AUTHOR
KanaB was developed by HP.

FILES
jusr jlibjnls/*

SEE ALSO
ascii(5), hpnls(5), roman8(5).

Hewlett-Packard Company - 3 - Version B.l, December 1986

LANGID(5) HP-UX LANGID(5)

NAME
langid - language identification variable

DESCRIPTION
This page defines integer values corresponding to values of the variable LANG in the user's
environment. These are the values returned by currlangid{3C), and are passed as parameters into
native language support library routines.

LANGUAGE NAMES
The following languages are currently supported by HP-UX.

Language
Num Abbreviation Name

00 n-computer native computer
01 american american
02 c-french canadian french
03 danish danish
04 dutch dutch
05 english english
06 finnish finnish
07 french french
08 german german
09 italian italian
10 norwegian norwegian
11 portuguese portuguese
12 spanish spanish
13 swedish swedish
41 katakana katakana
51 arabic arabic
52 arabic-w western arabic
61 greek greek
71 hebrew hebrew
81 turkish turkish
221 japanese japanese

901-999 available for user defined languages

WARNINGS
Right-to-Ieft character processing is not yet supported by all HP-UX commands for the arabic,
western arabic, and hebrew languages.

AUTHOR
Langid was developed by the Hewlett-Packard Company.

SEE ALSO
langinfo{3C), environ(5), hier(5), hpnls(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MAN(5) HP-UX MAN(5)

NAME
man - macros for formatting entries in this manual

DESCRIPTION
These nroff and troff macros are used to layout the format of the entries of this manual. These
macros are used by the man (1) command.

The default page size is 8.5x 11, with a 6.5x 10 text area; the -rel option reduces these dimen­
sions to 6x9 and 4.75x8.375, respectively. This option (which is not effective in nroff) also
reduces the default type size from 10-point to 9-point, and the vertical line spacing from 12-point
to 10-point. The -rV2 option may be used to set certain parameters to values appropriate for
certain Versatec printers: it sets the line length to 82 characters, the page length to 84 lines, and
it inhibits underlining. This option should not be confused with the -Tvp option of the man(l)
command, which is available on some UNIX operating systems.

Any text argument below may be one to six "words". Double quotes ("") may be used to include
blanks in a "word". If text is empty, the special treatment is applied to the next line that con­
tains text to be printed. For example, .1 may be used to italicize a whole line, or .SM followed by
.B to make small bold text. By default, hyphenation is turned off for nroff, but remains on for
troff·

Type font and size are reset to default values before each paragraph and after processing font- and
size-setting macros, e.g., .1, .RB, .SM. Tab stops are neither used nor set by any macro except
.DT and .TH .. TH invokes .DT (see below).

Default units for indents in are ens. When in is omitted, the previous indent is used. This
remembered indent is set to its default value (7.2 ens in troff, 5 ens in nroff-this corresponds to
0.5 inch in the default page size) by .TH, .P, and .RS, and restored by .RE.

.TH t sen 0 i

. SH text

. SS text

. B text

. 1 text

. 8M text

.RI a b

.P

. HP in

.TP in

Hewlett-Packard Company

Set the title and entry heading; t is the title, s is the section number, c is
extra commentary, e.g., "local", n is new manual name, 0 and i are used in
printing HP-UX manual pages. If 0 is "HP-UX", it is a standard page and
HP-UX will be the center title, overriding the c and n options. If 0 is empty,
the page is non-standard and there is no center title printed. The i option is
used to set the second line of the header to reflect which HP-UX systems sup­
port that page. If i is empty, the page is supported by all the systems. If
one or more systems do not support it, a quoted string is used to list the sys­
tems that do support the page. For example:
"Series 200, 300, 800 Only"

Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate these two fonts for up to six
arguments. Similar macros alternate between any two of roman, italic, and
bold:

.IR .RB .BR .m .BI
Begin a paragraph with normal font, point size, and indent. .PP is a
synonym for .P.
Begin paragraph with hanging indent .
Begin indented paragraph with hanging tag. The next line that contains text
to be printed is taken as the tag. If the tag does not fit, it is printed on a
separate line.

- 1 - Version B.1, October 1986

MAN(5) HP-UX MAN(5)

.IP tin

.RS in

.REk

.PMm

. DT

.PDt!

Same as .TP in with tag tj often used to get an indented paragraph without a
tag.
Increase relative indent (initially zero). Indent all output an extra in units
from the current left margin.
Return to the kth relative indent level (initially, k=lj k=O is equivalent to
k=l)j if k is omitted, return to the most recent lower indent level.
Produces proprietary markingsj where m may be P for PRIV ATE, or N for
NOTICE, BP for BELL LABORATORIES PROPRIETARY, or BR for
BELL LABORATORIES RESTRICTED.
Restore default tab settings (every 7.2 ens in troff, 5 ens in nroff) .
Set the interparagraph distance to v vertical spaces. If v is omitted, set the
interparagraph distance to the default value (O.4v in troff, Iv in nroff).

The following strings are defined:

*R (Reg.) in nroff, Registered Trademark symbol in troff, if available.
*S Change to default type size.
*(Tm Trademark indicator.

The following number registers are given default values by . TH:

IN Left margin indent relative to subheads (default is 7.2 ens in troff, 5 ens in nroff).
LL Line length including IN.
PD Current interparagraph distance.

CAVEATS

FILES

In addition to the macros, strings, and number registers mentioned above, there are defined a
number of internal macros, strings, and number registers. Except for names predefined by troff
and number registers d, m, and y, all such internal names are of the form XA, where X is one of
),], and }, and A stands for any alphanumeric character.

The programs 1ihat prepare the Table of Contents and the Permuted Index for this Manual
assume the NAME section of each entry consists of a single line of input that has the following for­
mat:

name[, name, name ... J \- explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity) in the SYNOPSIS sec­
tion of each entry.

The macro package itself uses only the roman font (so that one can replace, for example, the bold
font by the constant-width font--see cw{I». Of course, if the input text of an entry contains
requests for other fonts (e.g., .1, .RB, \fI), the corresponding fonts must be mounted.

/usr/lib/macros/cmp. [ntJ. [dtJ.an
/usr /lib/tmac/tmac.an
/usr /lib/macros/ucmp. [ntJ.an

SEE ALSO
man{I), nroff{I).

WARNINGS
If the argument to .TH contains any blanks and is not enclosed by double quotes (....), the output
can be incorrectly formatted.

Hewlett-Packard Company - 2 - Version B.l, October 1986

MATH(5) HP-UX MATH(5)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION

FILES

This file contains declarations of all the functions in the Math Library (described in Section
(3M)), as well as various functions in the C Library (Section (3C)) that return floating-point
values.

It defines the structure and constants used by the math err (3M) error-handling mechanisms,
including the following constant used as an error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M-LOG2E

M-LOGlOE

M-LN2

M-LNlO

MJ'I

The base of natural logarithms (e).

The base-2 logarithm of e.

The base-1O logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

The ratio of the circumference of a circle to its diameter. (There are also
several fractions of its reciprocal and its square root.)

M-SQRT2 The positive square root of 2.

M-SQRTl-2 The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see the description of the
<values.h> header file.

/usr /include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MM(5) HP-UX MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options J [files J

nroft' -mm [options J [files J

nroft' -em [options J [files J

DESCRIPTION
This package provides a formatting capability for a very wide variety of documents. The manner
in which a document is typed in and edited is essentially independent of whether the document is
to be eventually formatted at a terminal or is to be phototypeset. See the references below for
further details.

The -mm option causes nroff(l) and troff to use the non-compacted version of the macro pack­
age, while the -em option results in the use of the compacted version, thus speeding up the pro­
cess of loading the macro package.

HARDW ARE DEPENDENCIES
Series 500

Compacted macros are not supported.

FILES
/usr/lib/macros/cmp.n.[dtJ.m
/usr /lib/macros/mmn
/usr /lib/tmac/tmac.m
/usr /lib/macros/ucmp.n.m

SEE ALSO
mm(l), nroff(l).

Hewlett-Packard Company

compacted version of the package
non-compacted version of the package
pointer to the non-compacted version of the package
initializers for the compacted version of the package

- 1 - Version B.l, October 1986

PROF(5) HP-UX
Series 800 Only

PROF(5)

NAME
prof - profile within a function

SYNOPSIS
#deftne MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a function entry point.
Execution of the mark will add to a counter for that mark, and program-counter time spent will
be accounted to the immediately preceding mark or to the function if there are no preceding
marks within the active function.

Name may be any combination of up to six letters, numbers or underscores. Each name in a sin­
gle compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header file <pro/.h> is
included. This may be defined by a preprocessor directive as in the synopsis, or by a command
line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK{name) statements may be left in the source files containing
them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each loop. Unless
this example is compiled with MARK defined on the command line, the marks are ignored.

#include <prof.h>

foo{)
{

SEE ALSO

int i, j;

MARK{loop1);
for (i = 0; i < 2000; i++) {

}
MARK(loop2);
for (j = 0; j < 2000; j++) {

prof{l), profil(2), monitor{3C).

Hewlett-Packard Company - 1 - Version B.1, October 1986

REGEXP(5) HP-UX REGEXP(5)

NAME
INIT, GETC, PEEKC, UNGETC, RETURN, ERROR, compile, step, advance - regular expres­
sion compile and match routines

SYNOPSIS
#deftne INIT <declarations>
#define GETC() <getc code>
#deftne PEEKC() <peekc code>
#deftne UNGETC(c) <ungetc code>
#deftne RETURN(pointer} <return code>
#deftne ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *string, *expbuf;

int advance (string, expbuf)
char *string, *expbuf;

extern char *locl, *loc2, *locs;

extern lnt circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines in the form of ed(l),
defined in /usr/include/regexp.h. Programs such as ed(l), sed(l), grep(l), bs(l), expr(l),
etc., which perform regular expression matching use this source file. In this way, only this file
need be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the "#include <regexp.h>" statement. These macros are
used by the compile routine.

GETC()

PEEKC()

Return the value of the next character in the regular expression pattern. Succes­
sive calls to GETC() should return successive characters of the regular expres­
sion.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the next char­
acter returned by GETC()).

UNGETC(c) Cause the argument c to be returned by the next call to GETC() (and
PEEKC()). No more than one character of pushback is ever needed and this
character is guaranteed to be the last character read by GETC(}. The value of
the macro UNGETC(c) is always ignored.

RETURN(pointer)

ERROR(val)

This macro is used on normal exit of the compile routine. The value of the argu­
ment pointer is a pointer to the character after the last character of the compiled
regular expression. This is useful to programs which have memory allocation to
manage.

This is the abnormal return from the compile routine. The argument val is an
error number (see table below for meanings). This call should never return.

Hewlett-Packard Company - 1 - Version B.l, October 1986

REGEXP(5)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

HP-UX

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\ (\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf, eof)

REGEXP(5)

The first parameter instring is never used explicitly by the compile routine but is useful for pro­
grams that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of ((char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the compiled regu­
lar expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expression
may be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to
ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. For example,
in ed(l), this character is usually a /.

Each program that includes this file must have a #define statement for INIT. This definition will
be placed right after the declaration for the function compile and the opening curly brace (0. It
is used for dependent declarations and initializations. Most often it is used to set a register vari­
able to point to the beginning of the regular expression so that this register variable can be used
in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be used to declare
external variables that might be used by GETC() , PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(l).

There are other functions in this file which perform actual regular expression matching, one of
which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This
string should be null terminated.

The second parameter expbuf is the compiled regular expression which was obtained by a call of
the function compile.

The function step returns non-zero if the given string matches the regular expression, and zero if
the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to step. The variable set in step is loc1. This is a pointer to the first char­
acter that matched the regular expression. The variable loce, which is set by the function
advance, points to the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire line, loc1 will point to the first character of
string and loce will point to the null at the end of string.

Hewlett-Packard Company - 2 - Version B.l, October 1986

REGEXP(5} HP-UX REGEXP(5}

Ste.p llReR the external variable eire! which is set by compile if the regular expression begins with
A. If this is set then step will try to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled before the first is executed the value
of circ! should be saved for each compiled expression and circ! should be set to that saved value
before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step is
to step through the string argument and call advance until advance returns non-zero indicating a
match or until the end of string is reached. If one wants to constrain string to the beginning of
the line in all cases, step need not be called; simply call advance.

When advance encounters a • or \ {\} sequence in the regular expression, it will advance its
pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string that
initially matched the. or \{ \}. It is sometimes desirable to stop this backing up before the ini­
tial point in the string is reached. If the external character pointer locs is equal to the point in
the string at sometime during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed(l) and sed(l) for substitutions done globally
(not just the first occurrence, but the whole line) so, for example, expressions like s/y./ /g do not
loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls look from grep(l):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (-sp)
#define RETURN(c) return;
#define ERROR (c) regerr()

#include <regexp.h>

(void) compile(*argv, expbuf, &expbuf[ESIZEJ, '\0');

FILES

if (step(linebuf, expbuf))
succeed();

/usr/include/regexp.h

SEE ALSO
bS(l), ed(l), expr(l), grep(l), sed(l).

BUGS
The handling of circ! is poor.

Hewlett-Packard Company - 3 - Version B.l, October 1986

ROMAN8(5) HP-UX

NAME
roman8 - map of ROMAN8 character set used by NLS

SYNOPSIS
Is /usr/lib/nls/*

DESCRIPTION

ROMAN8(5)

Roman8 is a map of the ROMAN8 character set, giving the octal, decimal, and hexadecimal
equivalents of each character, to be printed as needed. It contains:

000 0 00 nul 001 1 01 soh
002 2 02 stx 003 3 03 etx
004 4 04 eot 005 5 05 enq
006 6 06 ack 007 7 07 bel
010 8 08 bs 011 9 09 ht
012 10 Oa nl 013 11 Ob vt
014 12 Oc np 015 13 Od cr
016 14 Oe so 017 15 Of si
020 16 10 dIe 021 17 11 dc1
022 18 12 dc2 023 19 13 dc3
024 20 14 dc4 025 21 15 nak
026 22 16 syn 027 23 17 etb
030 24 18 can 031 25 19 em
032 26 1a sub 033 27 1b esc
034 28 1c fs 035 29 1d gs
036 30 1e rs 037 31 1f us
040 32 20 sp 041 33 21 !
042 34 22 " 043 35 23 1#
044 36 24 $ 045 37 25 %
046 38 26 & 047 39 27 ,
050 40 28 (051 41 29)
052 42 2a * 053 43 2b +
054 44 2c , 055 45 2d -
056 46 2e • 057 47 2f /
060 48 30 0 061 49 31 1
062 50 32 2 063 51 33 3
064 52 34 4 065 53 35 5
066 54 36 6 067 55 37 7
070 56 38 8 071 57 39 9
072 58 3a : 073 59 3b ;
074 60 3c < 075 61 3d =
076 62 3e > 077 63 3f ?
100 64 40 @ 101 65 41 A

Hewlett-Packard COmpany - 1 - Version B.1, ~tober 1986

ROMAN8(5) HP-UX ROMAN8(5)

102 66 42 B 103 67 43 C
104 68 44 D 105 69 45 E
106 70 46 F 107 71 47 G
110 72 48 H 111 73 49 I
112 74 4a J 113 75 4b K
114 76 4c L 115 77 4d M
116 78 4e N 117 79 4f 0
120 80 50 P 121 81 51 Q

122 82 52 R 123 83 53 S
124 84 54 T 125 85 55 U
126 86 56 V 127 87 57 W
130 88 58 X 131 89 59 Y
132 90 5a Z 133 91 5b [
134 92 5c \ 135 93 5d]
136 94 5e " 137 95 5f
140 96 60 ' 141 97 61 a
142 98 62 b 143 99 63 c
144 100 64 d 145 101 65 e
146 102 66 f 147 103 67 g
150 104 68 h 151 105 69 i
152 106 6a j 153 107 6b k
154 108 6c 1 155 109 6d m
156 110 6e n 157 111 6f 0

160 112 70 P 161 113 71 q
162 114 72 r 163 115 73 s
164 116 74 t 165 117 75 u
166 118 76 v 167 119 77 w
170 120 78 x 171 121 79 Y
172 122 7a z 173 123 7b {
174 124 7c I 175 125 7d }
176 126 7e - 177 127 7f del
200 128 80 201 129 81
202 130 82 203 131 83
204 132 84 205 133 85
206 134 86 207 135 87
210 136 88 211 137 89
212 138 8a 213 139 8b
214 140 8c 215 141 8d
216 142 8e ss2 217 143 8f ss3
220 144 90 221 145 91
222 146 92 223 147 93
224 148 94 225 149 95
226 150 96 227 151 97
230 152 98 231 153 99
232 154 9a 233 155 9b
234 156 9c 235 157 9d
236 158 ge 237 159 9f
240 160 aO 241 161 a1 A A accent grave
242 162 a2 A A circumflex 243 163 a3 E E accent grave
244 164 a4 t E circumflex 245 165 a5 E E umlaut
246 166 a6 i I circumflex 247 167 a7 t I umlaut

Hewlett-Packard Company - 2 - Version B.1, Cktober 1986

ROMAN8(5) HP-UX ROMAN8(5)

250 168 a8 accent acute 251 169 a9 accent grave
252 170

A

circumflex 253 171 ab
..

umlaut accent aa
254 172 ac - tilde accent 255 173 ad U U accent grave
256 174 ae U U circumflex 257 175 af f. Italian lira

-260 176 bO over line 261 177 b1
262 178 b2 263 179 b3 degree
264 180 b4 C; C cedilla 265 181 b5 c;: c cedilla
266 182 b6 N N tilde 267 183 b7 fi n tilde
270 184 b8 i inv. exclamation 271 185 b9 l inv. question
272 186 ba l:l general currency 273 187 bb £ British pound
274 188 bc ¥ Japanese yen 275 189 bd § section
276 190 be f Dutch guilder 277 191 bf ¢ U.S. cent
300 192 cO a a circumflex 301 193 c1 e e circumflex
302 194 c2 0 o circumflex 303 195 c3 11 u circumflex
304 196 c4 a a accent acute 305 197 c5 e e accent acute
306 198 c6 6 0 accent acute 307 199 c7 U u accent acute
310 200 c8 it a accent grave 311 201 c9 e e accent grave
312 202 ca b 0 accent grave 313 203 cb U u accent grave
314 204 cc a a umlaut 315 205 cd e e umlaut
316 206 ce 0 0 umlaut 317 207 cf i.i u umlaut
320 208 dO A A degree 321 209 d1 i i circumflex
322 210 d2 0 0 crossbar 323 211 d3 If. AE ligature
324 212 d4 a a degree 325 213 d5 i i accent acute
326 214 d6 0 0 crossbar 327 215 d7 CE ae ligature
330 216 d8 A A umlaut 331 217 d9 i i accent grave
332 218 da 6 0 umlaut 333 219 db U U umlaut
334 220 dc E E accent acute 335 221 dd i i umlaut
336 222 de B sharp s 337 223 df 6 0 circumflex
340 224 eO A A accent acute 341 225 e1 A A tilde
342 226 e2 a a tilde 343 227 e3 D D stroke
344 228 e4 d d stroke 345 229 e5 f I accent acute
346 230 e6 t I accent grave 347 231 e7 6 0 accent acute
350 232 e8 b 0 accent grave 351 233 e9 6 0 tilde
352 234 ea o 0 tilde 353 235 eb S S caron
354 236 ec S s caron 355 237 ed U U accent acute
356 238 ee Y Y umlaut 357 239 ef y y umlaut
360 240 fO P THORN 361 241 f1 P thorn
362 242 f2 363 243 f3
364 244 f4 365 245 f5
366 246 f6 - long dash 367 247 f7 1 one fourth {

370 248 f8 1 one half 371 249 f9 II femin. ordinal I

372 250 fa g masc. ordinal 373 251 fb « open guillemets
374 252 fc • solid 375 253 fd » close guillemets
376 254 fe ± plus/minus 377 255 ff

WARNINGS
Peripheral or software limitations may garble this manual page. Some printers and terminals do
not support the ROMAN8 character set.

AUTHOR
Roman8 was developed by HP.

FILES
jusr jlibjnls/*

SEE ALSO
ascii(5), hpnls(5), kana8(5).

Hewlett-Packard Company - 3 - Version B.l, October 1986

STAT(5) HP-UX

NAME
stat - data returned by stat/fstat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

STAT(5)

The system calls stat and fstat return data whose structure is defined by this include file. The
encoding of the field sLmode is defined in this me also.

FILES

The contents of the stat structure include the following members:

ino_t
ushort
short
ushort

st--inoj
st-IIlodej
sL . ..nlinkj
st_uidj
st_gidj
st-I"devj

off_t st-Bizej
time_t st~timej
time_t st-IIltimej
time_t st_ctimej

uint st-I"emote:1j
dev_t sL . ..netdevj

1* ID of device containing a * /
1* directory entry for this file * /
1* Inode number * /
1* File modej see mknod(2) * /
1* Number of links * /
1* User ID of file owner * /
1* Group ID of file group * /
1* Device IDj this entry defined * /
1* only for char or blk spec files * /
1* File size (bytes) * /
1* Time of last access * /
1* Last modification time * /
1* Last file status change time * /
1* measured in seconds since * /
1* 00:00:00 GMT, Jan 1, 1970 * /
1* Set if file is remote * /
1* ID of device containing * /
1* network special file * /

ino_t sL . ..netinoj 1* Inode number of network special file * /
#define S-IFMT 0170000 / * type of file * /
#define S-IFDIR 0040000 / * directory * /
#define S-IFCHR 0020000 / * character special * /
#define S-IFBLK 0060000 / * block special * /
#define S-IFREG 0100000 /* regular */
#define S-IFIFO 0010000 /* fifo */
#define S-ISUID 04000 / * set user id on execution * /
#define S-ISGID 02000 / * set group id on execution * /
#define S-ISVTX 01000 /* save swapped text even after use */
#define S-IREAD 00400 / * read permission, owner * /
#define S-IWRITE 00200 / * write permission, owner * /
#define S-IEXEC 00100 /* execute/search permission, owner */
#define S-ENFMT 02000 /* set file-locking mode to enforced */

/usr /include/sys/stat.h
/usr/include/sys/types.h

SEE ALSO
stat(2), types(5).

HARDW ARE DEPENDENCIES
Series 500:

The following inode types are defined only for the Series 500:

Hewlett-Packard Company - 1 - Version B.1, October 1986

STAT(5)

#define
#define

S--.lFSRM
S--.lFNWK

0150000
011()()()()

HP-UX

The fields st-»etdev and st-»etino are not supported.

Hewlett-Packard Company - 2-

STAT(5)

Version B.l, October 1986

TERM(5) HP-UX TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION
The environment variable TERM is used by certain commands (e.g., tabs(l), and is maintained as
part of the shell environment (see pro/ile(4), and environ(5}} The tset(l} command can be used to
set the TERM variable. The name to which TERM is set usually exists as a compiled terminfo
data base (see terminfo(4)}. The following names are always available in the terminfo data base

hp Minimal subset of the capabilities of all Hewlett-Packard terminals and terminal
emulators supported on HP-UX systems. Note that entries for specific models of ter­
minals are generally available, and that they often provide better use of the features
of those terminals.

dumb Generic name for terminals that lack reverse line-feed and other special escape
sequences.

dialup Generic name for dial-in ports connected to unknown terminals.

The TERM variable is also used by certain commands (e.g. nro.D{l) , man(l}, tabs(l)), some of
which use terminal and printer description files from the /usr/lib/terms directory. One TERM
name which has a file in this directory is

lp Generic name for a line printer.

A basic terminal name can be up to eight characters chosen from A-Z, a-z, 0-9, and -. Terminal
sub-models and operational modes are distinguished by suffixes beginning with a -. Names should
generally be based on original vendors, rather than local distributors. A terminal acquired from
one vendor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept arguments of the form
-Tterm where term is one of the names given above; if no such argument is present, such com­
mands should obtain the terminal type from the environment variable STERM, which, in turn,
should contain term.

NOTES
The inclusion of other names in the terminfo data base or the /usr /lib/terms directory does not
imply support of these devices.

AUTHOR
Term was developed by AT&T Bell Laboratories and the University of California, Berkeley Cali­
fornia, Computer Science Division, Department of Electrical Engineering and Computer Science.

SEE ALSO

BUGS

man(l}, mm(l}, nroff(l}, sh(l}, stty(l}, tabs(l}, tplot(l}, tset(l}, ul(l}, curses(3X}, profile(4}, ter­
minfo(4}, ttytype(4}, environ(5}.

The TERM variable is used differently by commands which originated from UCB code (such as
vi(l) and more(l}} and commands which originated from Bell System III code (such as nro.D{l)
and tabs(l}}. These different usages of TERM can be confusing.

Hewlett-Packard Company - 1 - Version B.1, October 1986

TYPES(5) HP-UX TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

REMARKS
The example given on this page is a typical version; the type names are in general expected to be
present, although exceptions can be described in HARDWARE DEPENDENCIES. In most cases
the fundamental type which implements each typedef is implementation dependent, as long as
source code which uses those typedefs need not be changed. In some cases the typedef is actually
a shorthand for a commonly used type, and it will not vary.

DESCRIPTION
The data types defined in the include file are used in HP-UX system code; some data of these types
are accessible to user code:

typedef struct { int r[IJ; } *physadr;
typedef long daddr_t;
typedef char *caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef long dev_t;
typedef long o~t;
typedef long paddr_t;
typedef long key_t;

Note that the defined names above are standardized, but the actual type to which they are
defined may vary between HP-UX implementations.

The meanings of the types are:

physadr used as a pointer to memory; the pointer is aligned to follow hardware-dependent
instruction addressing conventions.

daddr_t used for disk addresses except in an inode on disk, see /s(4).

'Uint

'Ushort

ino_t

cnLt

off-t

paddr_t

key-t

SEE ALSO

used as an untyped pointer or a pointer to untyped memory.

shorthand for 'Unsigned integer.

shorthand for 'Unsigned short.

used to specify I-numbers.

used in some implementations to hold reference counts for some kernel data
structures.

time encoded in seconds since 00:00:00 GMT, January 1, 1970.

specifies kind and unit number of a device, encoded in two parts known as major
and minor.

offsets measured in bytes from the beginning of a file.

used as an integer type which is properly sized to hold a pointer.

the type of a key used to obtain a message queue, semaphore, or shared memory
identifier, see stdipc{3C).

fs(4), stdipc(3C).

Hewlett-Packard Company - 1 - Version B.l, October 1986

VALUES(5) HP-UX VALUES (5)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION

FILES

This file contains a set of manifest constants, conditionally defined for particular processor archi­
tectures.

The model assumed for integers is binary representation (one's or two's complement), where the
sign is represented by the value of the high-order bit.
BITS(type) The number of bits in a specified type (e.g., int).
HIBITS The value of a short integer with only the high-order bit set (in most implemen­

tations, Ox8(00).
HIBITL The value of a long integer with only the high-order bit set (in most implementa­

tions, Ox80000000).
HIBITI The value of a regular integer with only the high-order bit set (usually the same

as HIBITS or HIBITL).
MAX SHORT The maximum value of a signed short integer (in most implementations, Ox7FFF

== 32767).
MAXLONG The maximum value of a signed long integer (in most implementations,

Ox7FFFFFFF == 2147483647).
MAXINT The maximum value of a signed regular integer (usually the same as MAXSHORT

or MAXLONG).
MAXFLOAT,LN~AXFLOAT

The maximum value of a single-precision floating-point number, and its natural
logarithm.

MAXDOUBLE, LN~AXDOUBLE
The maximum value of a double-precision floating-point number, and its natural
logarithm.

MINFLOAT, LN~INFLOAT
The minimum positive value of a single-precision floating-point number, and its
natural logarithm.

MINDOUBLE, LN~INDOUBLE
The minimum positive value of a double-precision floating-point number, and its
natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a single-precision floating-point
number.

DSIGNIF The number of significant bits in the mantissa of a double-precision floating­
point number.

/usr /include /values.h

SEE ALSO
intro(3), math(5).

Hewlett-Packard Company - 1 - Version B.1, October 1986

VARARGS(5) HP-UX VARARGS(5)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

VL.A1ist

v8-dcl

void v8-8tart(pvar)
vLJist pvarj

type vL-arg(pvar, type)
vLJist pvarj

void v8-end(pvar)
vLJist pvarj

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists to be written.
Routines that have variable argument lists (such as print/(3S)) but do not use varargs are
inherently nonportable, as different machines use different argument-passing conventions.

VL.A1ist is used as the parameter list in a function header.

V8-dcl is a declaration for v~alist. No semicolon should follow v~dcl.

vLJist is a type defined for the variable used to traverse the list.

V8-8tart is called to initialize pvar to the beginning of the list.

vL.Arg will return the next argument in the list pointed to by pvar. Type is the type the argu­
ment is expected to be. Different types can be mixed, but it is up to the routine to know what
type of argument is expected, as it cannot be determined at runtime.

v8-end is used to clean up.

Multiple traversals, each bracketed by v~start ... v~end, are possible.

EXAMPLE
This example is a possible implementation of execl (on exec(2):

#include <varargs.h>
#define MAXARGS 100

/ * execl is called by
execl(file, arg1, arg2, ... , (char *)0);

*/
execl(v&-alist)
v&-dcl
{

va.....Jist ap;
char *file;
char *args[MAXARGS!;
int argno = 0;

v&-Start(ap);
file = v&-arg(ap, char *);
while ((args[argno++! = vB--arg(ap, char *)) != (char *)0)

v&-end(ap);

Hewlett-Packard Company - 1 - Version B.1, October 1986

VARARGS(5) HP-UX VARARGS(5)

return p.xecv(file, args);

SEE ALSO

BUGS

exec(2), vprintf(3S).

It is up to the calling routine to specify how many arguments there are, since it is not always p0s­

sible to determine this from the stack frame. For example, execl is passed a zero pointer to signal
the end of the list. Print! can tell how many arguments are there by the format.
It is non-portable to specify a second argument of char, short, or float to 'Vd...-arg, since arguments
seen by the called function are not char, short, or float. C converts char and short arguments to
int and converts float arguments to double before passing them to a function.

Hewlett-Packard Company - 2 - Version B.l, October 1986

INTRO(7) HP-UX INTRO(7)

NAME
intro - introduction to special files

DESCRIPTION
This section describes various special files that refer to specific HP peripherals and device drivers.
The names of the entries are generally derived from the type of device being described (disk,
plotter, etc.), not the names of the special files themselves. Characteristics of both the hardware
device and the corresponding HP-UX device driver are discussed where applicable.

The devices are divided into two categories, unblocked and blocked. An unblocked device is
also called a raw or a character mode device. An unblocked device, such as a line printer, uses a
character special file.

Blocked devices, as the name implies, transfer data in blocks via the systems normal buffering
mechanism. Block devices use block special files.

For specific details about the default special files shipped with your system, consult the System
Administrator Manual for your system.

You associate the name you want with a specific device when you create a special file for that dev­
ice using the mkdev{lM) and mknod{lM) commands. When creating special files, it is recom­
mended that the following naming convention be followed. For disk and tape, it is identical with
that used on other UNIX systems, and is independent of the hardware.

The following format is for 9 track tape device file names:

/dev / {r }mt/ {c#d)#[hml]{ n}

where r indicates a raw device, c#d indicates the controller number (which is optionally specified
by the system administrator), # is the device number, hml indicates the density (h (high) for
6250 bpi, m (medium) for 1600 bpi, and I (low density) for 800 bpi), and n indicates no rewind on
close, e.g., /dev /mt/2mn.

The following format is for hard disk device file names:

/dev/{r}dsk/(rHc#d)#s#

where r indicates a raw interface to the disk, the second r indicates that this disk is on a remote
system, the c#d indicates the controller number (which is optionally specified by the system
administrator), and #s# indicates the drive and section numbers, respectively.

HARDW ARE DEPENDENCIES
Series 500:

You cannot open a block special file for reading or writing.

The IBM format is not supported for the HP 9895A.

WARNINGS
There have been several other naming conventions in the past for similar devices. Using In (on
cp(l)) to create a link between the old name and the new standard name is useful as a temporary
expedient until all the programs using the old naming convention have been converted.

In general, device drivers are not portable across systems; however, every effort has been made to
make their behavior portable. Due to variation in hardware, this is not always possible. Pro­
grams which use these drivers directly are at higher than average risk of not being portable.

SEE ALSO
hier(5).

The introduction to this manual.

Hewlett-Packard Company - 1 - Version B.1, October 1986

INTRO(7) HP-UX INTRO(7)

The System Administrator Manual for your system.

Hewlett-Packard Company - 2 - Version B.1, October 1986

CONSOLE(7) HP-UX CONSOLE(7)

NAME
console - system console interface

DESCRIPTION
/dev /console is a generic name given to the system console. It is usually linked to a particular
machine dependent special file. It provides a basic I/O interface to the system console through
the termio interface.

SEE ALSO
termio(7).

Hewlett-Packard Company - 1 - Version B.1, October 1986

CT(7) HP-UX CT(7)

NAME
ct - cartridge tape access

DESCRIPTION
This page describes the actions of the general HP-UX cartridge tape drivers when referring to a
cartridge tape as either a block- or character-special (raw) device.

Cartridge tapes are designed to work optimally as "streaming" devices, and are not designed to
start and stop frequently. Technically, they are "random access" devices, like disks, but such
access is both less efficient and more stressful than streaming mode. Thus it is possible to use a
cartridge tape as a file system, or in general access it randomly, but such use will more rapidly
wear either or both of the tape drive and the media.

Cartridge tape units in either Command-Set 80 disk drives or in stand-alone devices can be
accessed as blocked or raw devices.

Block special files access cartridge tapes via the system's normal buffering mechanism. Buffering
is done in such a way that concurrent access through multiple opens or a mount of the same phy­
sical device do not get out of phase. Block special files may be read and written without regard to
physical cartridge tape records. Each I/O operation results in one or more logical block transac­
tions. In general, this mode is not recommended as it stresses the hardware.

There is also a raw interface via a character special file which provides for direct transmission
between the cartridge tape and the user's read or write buffer. A single read or write operation
results in exactly one transaction. Therefore raw I/O is considerably more efficient when many
bytes are transmitted in a single operation because blocked cartridge tape access requires poten­
tially several transactions and does not transmit directly to user space.

In raw I/O, there may be implementation dependent restrictions on the alignment of the user
buffer in memory and its maximum size. Also, each transfer must occur on a record boundary
and must read a whole number of records. The record size is a hardware dependent value.

Selecting the proper buffer size when accessing a cartridge tape device through the raw interface is
critical to the performance of the cartridge tape device and other devices connected on the same
HPIB. A large buffer in certain situations can increase performance but has the potential to block
other devices on the HPIB until all the data for a request has been transferred. On the other
hand when a small buffer is used and the application is unable to keep the cartridge tape device
streaming, performance and the wear and tear of the device suffer because of tape repositioning.
The optimal solution is to keep the tape streaming while using a small buffer. To select the
proper buffer size, consider two factors: the cartridge tape device being accessed and the applica­
tion which is accessing the cartridge tape device.

Some cartridge tape units (see HARDWARE DEPENDENCIES) support a feature called immedi­
ate report mode. During writing, this mode enables the drive to complete a write transaction
with the host before the data has actually been written to the tape from the drive's buffer. This
allows the host to start gathering data for the next write request while the data for the previous
request is still in the process of being written. During reading, this mode enables the drive to
read ahead after completing a host read request. This allows the drive to gather data for future
read requests while the host is still processing data from the previous read request. When data is
requested or supplied at a sufficient rate, immediate report mode allows the drive to stream the
tape continuously across multiple read/write requests, as opposed to having to reposition the tape
between each read/write request. Repositioning adds to the wear and tear of the cartridge tape
device and decreases the performance. Some cartridge tape devices (see HARDWARE DEPEN­
DENCIES) do not support immediate report mode and as such cannot stream across multiple
requests.

If the cartridge tape device being accessed supports immediate report mode and the application
can maintain a data rate that allows the cartridge tape device to stream multiple requests, a small

Hewlett-Packard Company - 1 - Version B.l, October 1986

CT(7) HP-UX CT(7)

buffer (1 Kbyte to 12 Kbytes) is suggested so that the HPIB is not blocked for a significant
amount of time. For cartridge tape devices that do not support the immediate report mode or
applications that cannot maintain a data rate that allows the cartridge tape device to stream mul­
tiple requests, a large buffer (64 Kbytes) is suggested so that the number of tape repositions is
reduced.

Each raw access is independent of other raw accesses and of block accesses to the same physical
device. Thus, transfers are not guaranteed to occur in any particular order. Having multiple pro­
grams access the cartridge tape is in effect random access, and is subject to the warnings above.

In raw I/O, each operation is completed to the device before the call returns. For block-mode
writes, the data may be cached until it is convenient for the system to write it. In addition,
block-mode reads potentially do a one (or more) block read-ahead. The interaction of block-mode
and raw access to the same cartridge tape is not specified, and in general is unpredictable.
Because block-mode writes can be delayed, it is possible for a program to generate requests much
more rapidly than the drive can actually process them. Flushing a large number of requests could
take several minutes, and during that time the system will not have use of the buffers taken by
these requests, and thus will suffer a possibly severe performance degradation. If the tape is
integral with the system disk, very little disk activity may be possible until the buffers are flushed.

Cartridge tape device file names are in the following format:

/dev /(r)ct/(r)c#(d#) (8#)

where the first r indicates a raw interface to the cartridge tape, the second r is reserved to indi­
cate that this cartridge tape is on a remote system, the c# indicates the controller number, the
d# optionally indicates the drive, and the 8# optionally indicates a section number. The assign­
ment of controller, drive, and section numbers is described in the System Administrator's manual
for your system.

WARNINGS
Like disks, the cartridge tape units in Command Set 80 (CS/80) disk drives can be accessed as
blocked or raw devices. However, using a cartridge tape as a file system will severely limit the life
expectancy of the tape drive. Tapes should be used only for system back-up and other needs
where data must be stored on tape for transport or other purposes.

HARDW ARE DEPENDENCIES
Series 500

Block-special devices cannot be opened for I/O.

HP7941CT /HP9144A/HP35401
These cartridge tape devices support the immediate report mode.

HP7942/HP7946
These cartridge tape devices support the immediate report mode. The use of a small
buffer size is not recommended with these shared controller devices when there is simul­
taneous access to the disk, because the disk accesses will prevent proper tape streaming.

HP7908/HP7911/HP7912/HP7914
These cartridge tape devices do not support the immediate report mode.

AUTHOR
Ct was developed by HP and AT&T.

SEE ALSO
mkdev(lM), mknod(lM), tcio(l), disk(7), intro(7), mt(7).

Hewlett-Packard Company - 2 - Version B.1, October 1986

DIAGO(7) DIAGO(7)
Series 800 only

NAME
diagO - diagnostic interface to I/O subsystem

SYNOPSIS
pseudo-device diagO

DESCRIPTION
DiagO is the diagnostic global port for the system. All diagnostic events are sent to it on
subqueue one.

The only commands that diagO supports are open(2), close(2), and read(2). The open(2)command
is exclusive and the opening process must have an effective super-user user ID. A read of the
diagnostic device file returns a diagnostic event message. If a diagnostic event has been logged
since the last read, the next read call will be satisfied with that event message and will return
immediately. If no diagnostic events are queued and waiting, the process that made the read call
is put to sleep waiting for an event to be sent to the diagnostic port. When an event finally
arrives, the sleeping process is awakened and the read is satisfied. If during the read an error is
encountered, the read will be terminated and ermo will be set.

RETURNS
Upon successful completion, a zero is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

DiagO does not support any ioctl(2) calls or write(2) commands. If either command is issued then
the following error is returned:

[ENODEV] ioctl not supported.

[EBADF] write not supported.

When opening diagO the following errors may be returned:

[EPERM]

[EBUSYj

permission denied, not superuser.

device file already opened.

When attempting a read of diagO the following errors may be returned:

[EIO]

[ENXIO]

AUTHOR

error occurred while retrieving message.

unknown message type received.

FILES

DiagO was developed by HP.

/dev/diagO
/hp-ux

SEE ALSO
open(2), close(2), read(2).

Hewlett-Packard Company - 1 - October 1986

DISK(7) HP-UX DISK(7)

NAME
disk - direct disk access

DESCRIPTION
This page describes the actions of the general HP-UX disk drivers when referring to a disk as
either a block-special or character-special (raw) device.

Block special files access disks via the system's normal buffering mechanism. Buffering is done in
such a way that concurrent access through multiple opens or a mount of the same physical device
do not get out of phase. Block special files may be read and written without regard to physical
disk records. Each I/O operation results in one or more logical block transactions. The size of the
logical block request can be found in Lblksize as returned by ustat{ 2).

There is also a raw interface via a character special file which provides for direct transmission
between the disk and the user's read or write buffer. A single read or write operation results in
exactly one transaction. Therefore raw I/O is considerably more efficient when many bytes are
transmitted in a single operation because blocked disk access requires potentially several transac­
tions and does not transmit directly to user space.

In raw I/O, there may be implementation dependent restrictions on the alignment of the user
buffer in memory. Also, each transfer must occur on a sector boundary and must read a whole
number of sectors. The sector size is a hardware dependent value.

Each raw access is independent of other raw accesses and of block accesses to the same physical
device. Thus, transfers are not guaranteed to occur in any particular order.

In raw I/O, each operation is completed to the device before the call returns. For block-mode
writes, the data may be cached until it is convenient for the system to write it. In addition,
block-mode reads potentially do a one (or more) block read-ahead. The interaction of block-mode
and raw access to the same disk is not specified, and in general is unpredictable.

Disk device file names are in the following format:

jdev j{r}dskj(r)(c#d)#s#

where r indicates a raw interface to the disk, the second r should not be used and is reserved for
future use, the c#d indicates the controller number (which is optionally specified by the system
administrator), and #s# indicates the drive and section numbers, respectively. The assignment
of controller, drive, and section numbers is described in the System Administrator's manual for
your system.

WARNING
On some systems, having both a mounted file system and a block special file open on the same
device is asking for trouble; this should be avoided if possible. This is because it may be possible
for some files to have private buffers in some systems.

HARDW ARE DEPENDENCIES
Series 500

Block-special devices cannot be opened for I/O.

Series 800
All transfers must begin on a DEV -BSIZE boundary.

AUTHOR
Disk was developed by HP and AT&T.

SEE ALSO
mkdev{lM), mknod{lM}, ct{7}, intro(7).

HP-UX System Administrator's Manual included with your system.

Hewlett-Packard Company - 1 - Version B.1, October 1986

GPIO(7) GPIO(7)
Series 800 Only

NAME
afi - asynchronous FIFO interface

SYNOPSIS
#include <ioctl.h>
#include <sys/gpio.h>

ioctl(fildes, 10_CONTROL, gpio_control)
int fildesj
struct io_ctutatus *gpio_control;

ioctl(fildes, GPIO_COMMAND, gpio_cmd)
int fildesj
struct gpio_command *gpio_cmd;

ioctl(fildes, 10_STATUS, gpio-Btatus)
int fildesj
struct io_ctutatus *gpio-Btatus;

ioctl(fildes, IO-ENVIRONMENT, gpio_env)
int fildesj
struct io_environment *gpio_env;

DESCRIPTION
AFI is a general purpose I/O interface supporting high speed parallel communication with an
arbitrary peripheral. It includes sixteen data lines, two handshake lines for transfer protocol, a
peripheral-controlled interrupt line, a user-controlled peripheral reset line, and several lines for
application-dependent control and status. This section describes the use of the GPIO driver in
the HP-UX system.

Transfer Requests: The standard read(2) and write (2) requests (q.v.) are used for data
transfer over AFI.

Control Requests: A user can configure the AFI driver via ioctl(2) calls:

struct io_ctutatus {
int typej
int arg[3];

} gpio_controlj

ioctl (filedes, 10_CONTROL, &gpio_control)j

In the io_ctLstatus structure, the type field specifies the type of control function to be done,
while the arg array holds any associated arguments. The allowable values for type are:

GPIO_TIMEOUT
Set the timeout. If any transaction for this file takes longer than arg[Oj
microseconds, it will be aborted with a status of ETIMEDOUT returned to the
user; this is mainly used for detecting device failure. A timeout of 0 is equivalent
to infinity; i.e., no transaction will time out.

GPIO_ WIDTH Set the width of the interface. This request specifies the number of valid data
lines on transfers; arg[Oj holds the desired interface width in bits. All future
read requests will inspect only the least significant arg[Oj data lines, and all
future writes will present data on only those lines. The state of all other data
lines is indeterminate.

Hewlett-Packard Company - 1 - October 1986

GPIO(7) GPIO(7)
Series 800 Only

GPIO~OOPBACK

Initiate a loopback test on the card.

GPIO-.EDGE Select the triggering edge for the peripherals. arg[Oj has one of the following
values:

LDG-.EDG

FAL-.EDG

GPIO_SIGNAL--MASK

Trigger off the leading edge.

Trigger off the trailing edge.

Define signaling events. This request allows the calling process to receive a sig­
nal when some event occurs on the GPIO. In arg[Oj is an event mask, con­
structed by or-ing flags from the list below. Each request overwrites the previ­
ous mask for the filej therefore events can be disabled by using a zero. Currently
any non-zero value will enable interrupt mask.

When the interrupt mask is enabled and interrupt line is asserted, the process
will be sent SIGEMTj the user should set up a handler to trap this signal (see
signal(2)). The reason for interrupt can be obtained via the 10_STATUS
request GPIO~IGNAL--MASK.

GPIO~OCK Lock/unlock the GPIO interface. Locking is done by opening the device file with
the O-.EXCL flag set. See open(2).

GPIO-RESET Reset the device/bus. This request restores a device or bus to a known state;
arg[Oj has one of the following values:

DEVICE_CLR Reset the state machine on the card and put the device in a
known state. Assert Device Clear(DCL).

Reset card interface hardware

Status Requests: These requests are used to obtain information about the state of a device or
the GPIO in general. They use a calling sequence similar to that of control requests:

struct io_ctL.status gpio-Btatus;

ioctl (ftledes, 10_STATUS, &gpio-Btatus);

Type specifies the type of information to obtain, while the arg array holds clarification dataj the
allowable status requests for GPIO are:

GPIO_TIMEOUT
Return the interface's timeout in microseconds in arg[Oj.

GPIO_WIDTH Return the interface's path width in bits in arg[Oj.

GPIO~OCK If the device is locked to a process, return that process id in arg[Oj. If the device
is not locked, arg[Oj holds a-I.

GPIO-INTERF ACE_TYPE
Return the type of interface. This will return one of two values in arg[Oj:

GPIO-INTERF ACE
the open file is a GPIO raw bus file

GPIO-DEVICE
the open file is a GPIO device file

Extended Status Request: In the event that the user wishes to obtain several of the status
variables in one request, the following request can be used:

Hewlett-Packard Company - 2 - October 1986

GPIO(7) GPIO(7)

struct io_environment {
int interface_type;
int timeout;
int status;
int terDLJ'eason;
int reaLpattern;
int slgnaL.mask;
lnt width;
int speed;
int lockin~pid;

} gpio;

Series 800 Only

loctl (filedes, IO--ENVIRONMENT, &gpio_env)j

Default Configuration:
Timeout
Path Width
Enabled Signals
Locking

The default configurat.ion of any GPIO file is:
Infinite
16 bits
None
Unlocked

RETURNS
A -1 return value for a driver request indicates an error occurred; ermo is set to indicate the rea­
son. In addition to those errors defined in open(2), close(2}, read(2), write(2), and ioctl(2}, a
driver request can fail if any of the following are true:

[EACCES]

[EBUSY]

[EINTR]

[EIO]

[ENXIO]

The interface is not active controller or system controller, and this request
requires it.

Either the interface is currently locked (see GPIO-LOCK), or the driver has no
software resources available.

An interface power failure occurred during the processing of this request; the
device might have lost state.

Some unclassified error occurred.

There is no bus interface associated with the device file.

[ETIMEDOUT] The transaction did not complete within the timeout specified.

In addition, the following messages can appear on the system console as a result of errors:

gpioO unit %d: device adapter failure.

The bus hardware is no longer functioning. This is a fatal error.

gpioO unit %d: unexpected message (message type = %d, from port %d).

The driver received an unclassified message.

AUTHOR
GPIO was developed by HP.

FILES
/ dev / gpio 1*

SEE ALSO
ioctl(2), signal(2), particular device documentation.

Hewlett-Packard Company - 3 - October 1986

GRAPHICS (7) GRAPHICS (7)
Series 200 and 300 Only

NAME
CRT graphics - information for CRT graphics devices

Remarks:
This information is valid for Series 200 and 300 only.

DESCRIPTION
CRT graphics devices are frame-buffer based raster displays. These devices use memory-mapped
I/O to obtain much higher performance than is possible with tty-based graphics terminals. CRT
graphics devices should only be accessed through the STARBASE libraries. They cannot be piped
or redirected to because they are not serial devices.

Special (device) files for CRT graphics devices are character special files with major number 12.

The minor number for CRT graphics devices is of the form:

OxSSTTXX

where SS is a one-byte select code number, TT is a one-byte type specifier, and XX is zero or con­
tains device-specific information as defined in the appropriate Starbase Device Driver manual.

The type field in the minor number is defined as follows:

o auto-configures to one of the following:

a) low resolution graphics device at physical address Ox520000 (if present).

b) high resolution graphics device at physical address Ox560000 if low resolution
device at Ox520000 not present.

high resolution graphics device at physical address Ox560000 (unless there is no low
resolution device at Ox520000, in which case type 1 is invalid).

2 high or low resolution graphics device at the select code specified by the select code
field in the minor number.

Communication with a CRT graphics device is begun with an open system call. Multiple
processes may concurrently have the graphics device open.

Close shuts down the file descriptor associated with the graphics device. If the close is for the
last system wide open on the device then the graphics device is also unmapped from the user
address space; otherwise it is left mapped into the user address space (see GCUNMAP below).

Read and write system calls are undefined and will always return ENXIO.

[octl is used to control the graphics device. The valid ioctl commands (see <sys/graphics.h>)
are:

GCID Return the identity of the CRT graphics device. Possible identities are:
1 = 98204A
2 = 9826A
3 = 9836A
4 = 9836C
5 = 98627A
6 = 98204B
7 = 9837
8 = 98700
9 = hp9000s300 displays
10 = 98720

GCON, GCOFF Turn graphics "on" or "off". May be a no-op for some devices.

GCAON, GCAOFF turn alpha "on" or "off". May be a no-op for some devices.

Hewlett-Packard Company - 1 - October 1986

GRAPHICS (7)

GCMAP

GCUNMAP

GRAPHICS (7)
Series 200 and 300 Only

map the CRT graphics device into the user address space at the address
specified in the ioctl argument. The argument is 'char **arg'. The value
*arg is used as a requested address. The actual mapping address is then
returned in *arg. If *arg is 0 then the system selects the first available
address (see GCLOCK/GCUNLOCK below).

remove the mapping of the CRT graphics device from the user address
space.

GCLOCK ensure exclusive use of the CRT graphics device.

GCUNLOCK relinquish exclusive use of the CRT graphics device.

For all frame buffers the data bytes scan from left to right and from top to bottom. Some
displays map in control areas which must be skipped over to reach the frame buffer. Some devices
map individual bits to pixels, (dots on the screen.) Some map bytes or parts of bytes to pixels.
Lsb stands for least significant bit; msb stands for most significant bit.

HP 98204A There are 300 lines of 100 bytes each. Only the odd numbered bytes are used.

HP 98204B

HP 98627A

Model 237

HP 98700

HP 98720

There is a one bit per pixel, with msb left, and Isb right.

There are 390 lines of 64 bytes each. There is a one bit per pixel, with msb left,
and Isb right.

Starting Ox8000 bytes from the base address, there are 3 buffers of Ox8000 bytes
each. The 3 buffers are the data for red, green, and blue. There is one bit per
pixel, with msb left, and Isb right. There are 64 bytes per line. The number of
lines depends on the setting of control registers.

Starting Ox10000 bytes from the base address, there are 768 lines of 1024 bytes
each. There is one pixel per byte. The Isb of each byte corresponds to a pixel.

Starting OxI0000 bytes from the base address, there are 768 lines of 1024 bytes
each. There is one pixel per byte. Each byte corresponds to the color map index
of a pixel.

Starting Ox20000 bytes from the base address, there are 1024 lines of 2048 bytes
each (1280 bytes by 1024 lines are displayable); one pixel per byte.

Hewlett-Packard Company - 2 - October 1986

GRAPHICS (7) GRAPHICS (7)
Series 200 and 300 Only

Series 300 Displays:
These displays have registers describing the display size. The following code computes frame
buffer width and height and determines what portion of the frame buffer is being displayed:

1* unsigned char *base = <base address for display mapping>; * /
buffer_width = (base[5] « 8) + base[7];
buffeL . ..height = (base[9] « 8) + base[ll];
displaye<Lwidth = (base[13] « 8) + base[15];
displayeLbeight = (base[17] « 8) + base[19];
not---Bquare = ((base[23] & 1) == 1);

Starting Oxl0000 bytes from the base address, there are <buffer-.height> lines of
<buffer_width> bytes each. There is one pixel per byte. Each byte corresponds to the color
map index of a pixel. On a monochrome display, the byte value is either 0, (black), or 1 (white).
If ((base[23] & 1) == 1) then pixels are twice as high as they are wide, and may be used in pairs
to produce square double pixels.

One shared memory descriptor (see shmget(2)) is used for each graphics device. Each shared
memory descriptor is accessible only through its graphics interface. Thus, any attempt to access
them through shmat(2)), shmctl(2))' shmdt(2)), etc. results in EACCESS errors.

ERRORS
[ENXIO] no such device or read/write not supported.

[ENOSPCj

[ENOMEM]

[ENOTTY]

SEE ALSO
mknod(IM).

cannot allocate required resources for mapping.

cannot allocate sufficient memory for mapping.

bad ioctl command, or an ioctl was attempted on an open file.

Hewlett-Packard Company - 3 - October 1986

HPIB(7) HPIB(7)
Series 800 Only

NAME
hpib - Hewlett-Packard Interface Bus driver

SYNOPSIS
#include <iactl.h>
#include <sys/hpibio.h>

iactl (fildes, IO_CONTROL, hpib_control)
int fildes;
struet io_ct~tatus *hpib_control;

iactl (fildes, HPIB_COMMAND, hpib_cmd)
int fildes;
struct hpib_command *hpib_cmd;

ioctl (fildes, IO---STATUS, hpib---.Status)
int fildes;
struct io_et~tatus *hpib---.Status;

iactl (fildes, IO-ENVIRONMENT, hpib_env)
int fildes;
struct io_environment *hpib_env;

DESCRIPTION
HP-IB is Hewlett-Packard's implementation of the Institute of Electrical and Electronic Engineers
Standard Digital Interface for Programmable Instrumentation (IEEE Std 488-1978). This section
describes the use of the HP-IB driver in the HP-UX system.

Auto-addressed Files vs. Raw Bus Files
A major distinction is made in the HP-UX driver between "auto-addressed" files and "raw bus"
files. An "auto-addressed" file is associated with a specified address on the HP-IB. The user need
not be concerned with any HP-IB addressing or commands; the driver handles device addressing
and unaddressing during data transfers. However, the user is limited to transactions to and from
a single device. A "raw bus" file, on the other hand, gives the user access to the entire HP-IB;
responsibility for all commands and addressing lies with the user. The raw bus file is typically
used to access multiple devices on the same bus, as well as provide universal device commands,
such as interface clear and parallel poll.

Even though differences exist between auto-addressed and raw bus files, the user/driver interface
is consistent across both types. Therefore, each category of requests will be presented with
separate subsections for auto-addressed and raw bus files.

Naming Convention
HP-IB device file names are in the following format:

/dev /hpib/#(a#)

where the first # specifies the bus number (which is specified by the system administrator) and
the second # specifies the address on that bus. Device files without an address suffix denote the
raw bus. Files with the address suffix are auto-addressed.

Transfer Requests
The standard read(2} and write(2} requests are used for data transfer over HP-IB. However,
their actions are slightly different for each type of file. Raw bus files place data directly onto the
bus. No addressing or unaddressing of devices is done; this is the user's responsibility.

On the other hand, transactions with auto-addressed files have all addressing done by the driver.
The actual sequence of events is:

UNL, <device addressing>, <data>, <terminator>

Hewlett-Packard Company - 1 - October 1986

HPm(7) HPm(7)
Series 800 Only

Write requests end on count. Optionally, the End or Identify (EOI) line can be asserted on the
last byte written, via the HPIB.J;OI request. All reads end on count or device assertion of EO!.
In addition, a single character can be defined to end the read buffer via the
HPIR_READJ ATTERN request.

Control Requests
This form of request takes some action on the bus. All requests have the same format:

struct io_ctLstatus {
int type;
int arg[3];

} hplb_control;

loctl (fildes, IO_CONTROL, &hplb_control);

In the io_ctLstatus structure, the type field specifies the type of control function to be done,
while the arg array holds any associated arguments. The allowable values for type are:

HPIB_TIMEOUT
Set the timeout. If any transaction for this file takes longer than arg[Oj
microseconds, it will be aborted with a status of ETIMEDOUT returned to the
user. This is mainly used for detecting device failure. A timeout of 0 is
equivalent to infinity, i.e., no transaction will time out.

HPIB_ WIDTH Set the width of the interface. This request specifies the number of valid data
lines on transfers; arg[Oj holds the desired interface width in bits. All future
read requests will inspect only the least significant arg[Oj data lines, and all
future writes will present data on only those lines. The state of all other data
lines is indeterminate.

HPIB-BPEED Set the transfer speed of the interface. The desired data transfer speed in kilo­
bytes per second is specified in arg[Oj. Note that this value is ADVISORY only,
and is typically used by the driver to determine the method of data transfer
(e.g., DMA or non-DMA).

HPIB.J;OI Enable/disable EOI assertion on writes. If arg[Oj is nonzero, all subsequent
writes will end with EO! asserted on the last byte transferred. A zero arg[Oj dis­
ables EO! assertion.

HPIB......READJATTERN
Enable/disable pattern matching on reads. If arg[Oj is nonzero, all subsequent
reads will terminate when the pattern specified in arg[lj is encountered in the
input stream. This termination condition is subject to all other termination con­
ditions in effect for the file. Only the n least significant bits of the pattern are
used in the match, where n is the interface's current width, set via
HPIB_ WIDTH. A zero arg[Oj disables read pattern matching.

HPIB-BIGNAL--.MASK
Define signaling events. This request allows the calling process to receive a sig­
nal when some event occurs on the HP-IB. The event(s} are specified by or-ing
together bits from the list below, and placing the mask in arg[Oj. All these
events can be enabled on raw bus files, but only ST -BRQ and ST JPOLL
apply to auto-addressed files.

ST-BRQ

STJPOLL

Hewlett-Packard Company

Signal on assertion of Service Request (SRQ).

Signal when device responds to Parallel Poll.

- 2 - October 1986

HPm(7)
Series SOO Only

ST---REN Signal when interface enters remote state.

ST -.A.CTIVE_CTLR

ST_TALK

ST --.LISTEN

ST---.lFC

ST---.l)CL

ST_GET

Signal when interface becomes active controller.

Signal when interface is addressed to talk.

Signal when interface is addressed to listen.

Signal on assertion of Interface Clear (IFC).

Signal on receipt of Device Clear (DCL).

Signal on receipt of Group Execute Trigger (GET).

HPm(7)

When any flagged event occurs, the process will be sent SIGEMT. The user
should set up a handler to trap this signal, via signal(2) or sigvector(2). The
reason for interrupt can be obtained via the IO~T ATUS request
HPIB~IGNAL---.MASK. Each request overwrites the previous mask for the file,
therefore events can be disabled by using a zero arg[O}.

If STJPOLL is flagged, the user supplies additional information in the arg
array. For raw bus files, the low order bytes of arg[l} and arg[2} contain eight­
bit masks with each bit corresponding to a Data I/O (DIO) line, with the least
significant bit mapped to DIO line O. When a device responds to parallel poll, it
asserts the appropriate line; arg[lj's bits indicate the sense of this assertion. Set
bits in arg[2} indicate that the corresponding address is capable of response to
polling. For auto-addressed files, arg[l} specifies the sense of the assigned
device's response to parallel poll.

HPIB--.LOCK Lock/unlock the HP-IB interface. Note that the semantics for this request have
not yet been defined. Check the HARDWARE DEPENDENCIES section.

HPIB-.A.DDRESS
Set the HP-IB address to which the interface will respond when it is not active
controller. The bus address is set via arg[O} , and must be between 0 to 30
decimal. This request is applicable only to raw bus files.

HPIB----RESET Reset the device/bus. This request restores a device or bus to a known state,
depending on which of the following values is in arg[O}:

DEVICE_CLR Address the device and send a selective device clear (SDC).
This applies only to auto-addressed files.

BUS_CLR Assert Interface Clear (IFC) and Remote Enable (REN), and
clear Attention (ATN).

HPIBJPOLL---RESP

Reset bus interface hardware. This applies only to raw bus
files.

Control interface's response to parallel poll. When the interface is not acting as
active controller, it can be enabled to respond to parallel polling by the current
active controller. If arg[O} is nonzero, the interface will respond to parallel poll.
The DIO line on which the card is to respond is specified in arg[l}; it has a value
between 0 and 7. The sense of the response is determined by arg[2}. An arg[O}
of zero disables the interface's response to parallel poll.

For auto-addressed files, the file's associated device address is configured, rather
than the interface.

HPIBJPOLL---.lST
Enable/disable response to parallel poll. If arg[O} is nonzero, the interface will

Hewlett-Packard Company - 3 - October 1986

HPIB(7)

HPIB-REN

HPIB(7)
Series 800 Only

respond to parallel poll. An arg[O} of zero disables the interface's response. This
differs from the previous request, in that the sense and address of the interface's
response is unchanged. This request applies only to raw bus files.

Place a device int%ut of the remote state. For a raw bus file, this request
merely asserts or deasserts the Remote Enable line, if arg[O} is nonzero or zero
respectively. For auto-addressed files, a nonzero arg[O} asserts the Remote
Enable line and addresses the device. If arg[O} is zero, the device is removed
from the remote state by sending it a Go To Local command (GTL).

HPIB~RQ Request service. This request causes the interface to assert the Service Request
line (SRQ), until it is serially polled. At that time it will respond with the
status byte given in arg[l}. This request applies only to raw bus files.

HPIBJ ASS_CONTROL
Pass active control of the bus. If the interface is currently active controller, this
request relinquishes control of the bus, passing it instead to the device at the bus
address in arg[O}. Passing control should be done with care, since it is not possi­
ble to detect if the named device can indeed assume bus control. This request
applies only to raw bus files.

HPIB_GET_CONTROL
Become active controller. This request causes the interface to assert Interface
Clear (IFC) and Remote Enable (REN) as a means of regaining control of the
HP-IB. It applies only to raw bus files.

Transparent Bus Request
This request allows a user to send. direct commands over the HP-IBj it should be used with care,
since without proper precautions the bus can be placed in an unusable state.

The format of the transparent bus request is:

struct hpib_command {
int lengthj
char buffer[MAXJIPIB_COMMANDS]j

} hpib_cmdj

ioctl (fildes, HPIB_COMMAND, &hpib_cmd)j

The effect of this call is to transmit the length bytes of data in buffer over the HP-IB with Atten­
tion (ATN) asserted. On completion of the request, ATN will remain asserted.

For commands sent through an auto-addressed file, buffer is surrounded with the appropriate dev­
ice addressing. What appears on the bus is:

UNL, TALK CIC, LISTEN device, <buffer>

This differs from the approach toward a raw bus file. For such files, the buffer is merely placed
on the bus with ATN asserted, with no addressing or unaddressing.

Status Requests
These requests are used to obtain information about the state of a device or the HP-IB in general.
They use a calling sequence similar to that of control requests:

struct io_ctL.Btatus hpib---Btatusj

ioctl (fildes, IO_STATUS, &hpib---Btatus)j

Type specifies the type of information to obtain, while the arg array holds clarification data. The
allowable status requests for HP-IB are:

Hewlett-Packard Company - 4 - October 1986

HPm(7) HPm(7)
Series 800 Only

HPIB-ADDRESS
Return the bus address associated with the file in arg[Oj.

HPIB_TIMEOUT
Return the interface's timeout in microseconds in arg[Oj.

HPIB_WIDTH Return the interface's path width in bits in arg[O}.

HPIB-.SPEED Return the interface's data transfer rate in K-bytes per second in arg[O}.

HPIB-READJ ATTERN
Return the interface's read termination pattern in arg[O}; if pattern matching is
not enabled, arg[O} will hold a-I.

HPIB-.SIGNAL...MASK
Return the reason for the last signal. This request returns a mask in arg[O}, with
bits set indicating the reason(s) for the last SIGEMT sent to the user process.
Bit definitions are the same as for the corresponding IO_CONTROL request.

HPIB-LOCK Return lock status. If the device is locked to a process, return that process id in
arg[Oj. If the device is not locked, arg[O} will hold a-I.

HPIB_TERM-REASON
Return end conditions for the last read from this device/bus. This request
returns a byte in arg[O}, with a mask of reason(s) for the completion of the last
read from the device or raw bus. Applicable bits are:

TR-COUNT Read requested number of bytes.

TR-MATCH Detected specified match pattern.

TR-TIMEOUT Timed out.

TR-END Device asserted EO!.

TR-ERROR Detected bus error.

TR-NOTERM No read done since open.

HPIBJPOLL Conduct a parallel poll. This request returns the bus response to parallel poll in
the least significant byte of arg[Oj. DIO line 0 corresponds to the least
significant bit in the response byte. This request applies equally to auto­
addressed and raw bus files.

HPIB-.SPOLL Conduct a serial poll. For raw bus files, this request will conduct a serial poll of
the device address in arg[l}; the status byte returned by the device will be avail­
able in arg[Oj. Auto-addressed files will ignore any address in arg[l}, polling
instead the device's predefined address.

HPIB---.BUS-.ST A TUS
Return the status of the HP-IB. This request, applicable to both types of files,
returns information related to the current bus state. On return, arg[O} holds a
value with bits set indicating:

ST--.NDAC NDAC is being asserted.

ST -.SRQ SRQ is being asserted.

ST-REN interface is in the remote state.

ST-ACTIVE_CTLR interface is active controller.

ST-.SYSTE1LCTLR
interface is system controller.

Hewlett-Packard Company - 5 - October 1986

HPm(7)

ST_TALK

ST-.LISTEN

HPm(7)
Series 800 Only

interface is addressed to talk.

interface is addressed to listen.

HPIB_WAIT_ONJPOLL
Wait (sleep) until a given device responds to parallel poll. This request will
block the user until either the user's device responds to parallel poll (for auto­
addressed files), or until any enabled devices respond (for raw bus files).

For a raw bus file, arg[lj and arg[2j contain eight-bit masks as defined in the
HPIB~IGNAL--.MASK request. The return value of the request, in arg[Oj,
shows which devices responded to parallel poll.

For an auto-addressed file, arg[lj specifies the sense of the particular device's
assertion. Successful completion of the request implies that the device
responded.

HPIB_ WAIT_ON~TATUS
Wait (sleep) until any of a set of given states is entered. The event(s) to await
are specified by or-ing together bits from the list below, and placing the mask in
arg[Oj. Applicable bits are:

ST ~RQ wait until SRQ is asserted.

ST-ACTIVE_CTLR wait until user is active controller.

ST_TALK

ST-.LISTEN

wait until user is addressed to talk.

wait until user is addressed to listen.

Note that more than one bit can be set, thereby waiting for any of the events to
occur. The return value in arg[Oj will be modified to show the actual event(s)
that ended the wait. This is only applicable to raw bus files.

HPIB-INTERF ACE_TYPE
Return the type of interface. This will return one of two values in arg[Oj:

HPIB-INTERFACE the open file is a HP-IB raw bus file

HPIB-DEVICE the open file is a HP-IB auto-addressed file

Extended Status Request
If the user wishes to obtain several status variables in one request, the following request can be
used:

struct io_environment {
int interface_type;
int timeout;
int status;
int terDLJ"eason;
int reaLpattern;
int signaLmask;
int width;
int speed;
int loeking_pid;

} hpib_env;

ioetI (fildes, IO---ENVIRONMENT, &hpib_env);

Default Configuration
The default configuration of any HP-IB file is:

Hewlett-Packard Company - 6 - October 1986

HPm(7)

RETURNS

Timeout
Path Width
Transfer Speed
EOI Assertion
Pattern Match
Enabled Signals
Locking
Bus Address
Termination Reason

Series 800 Only

Infinite
8 bits
DMA
Enabled
Disabled
None
Unlocked
Raw Bus: hardware switch settings
TR-NOTERM

HPm(7)

A -1 return value for a driver request indicates an error occurred; errno is set to specify the rea­
son. In addition to those errors defined in open(2), close(2), read(2), write (2), and ioctl(2), a
driver request can fail if any of the following are true:

[EACCES] The interface is not active controller or system controller, and this request
requires it.

[EBUSY]

[EINTR]

Either the interface is currently locked via HPIB-LOCK, or the driver has no
software resources available.

An interface power failure occurred during the processing of this request; the
device might have lost state.

[EIO]

[ENXIOJ

Some unclassified error occurred.

There is no bus interface associated with the device file.

[ETIMEDOUT] The transaction did not complete within the timeout specified.

In addition, the following messages can appear on the system console as a result of errors:

instrO unit %d: device adapter failure. The bus hardware is no longer functioning.

instrO unit %d.l unexpected message (message type = %d, from port %d). The driver received an
unclassifiable message.

WARNINGS
It is possible to circumvent the bus protection mechanisms afforded by the auto-addressed and
raw bus dichotomy. Specifically, an auto-addressed file user can send commands to any or all
devices on the bus with the HPIB_COMMAND request, if the proper device addressing is done
within the data buffer.

By default, some HP-IB peripherals respond to parallel poll on DIO line n, where n is (7 - the
device's bus address). That is, a device at address 6 can respond on DIO line 1. Therefore, the
results of an HPIBJPOLL request can be misleading, if some devices have not been remotely
configured.

It is impossible to send a secondary address with a data transfer in a single driver request.

HARDW ARE DEPENDENCIES
Series 800

The following IO_CONTROL requests are not supported: HPIB_SPEED and
HPIB-LOCK.

The following IO_ST ATUS requests are not supported: HPIB-SPEED and HPIB-LOCK.
Locking is done by opening the device file with the O-.EXCL flag set.

The HPIB_SRQ request can only affect the RQS bit of the serial poll response byte; all
other bits are masked to zero by the hardware.

Hewlett-Packard Company - 7 - October 1986

HPm(7)

AUTHOR
Hpib was developed by HP.

FILES
/dev/hpib/*

SEE ALSO

Series 800 Only

ioctl(2), signal(2), sigvector(2), particular device documentation.

Hewlett-Packard Company - 8 -

HPm(7)

October 1986

IOMAP(7) IOMAP(7)
Series 200/300 Only

NAME
iomap -- physical address mapping

Remarks:
This information is valid for Series 200 and 300 only.

DESCRIPTION
The iomap mechanism allows the mapping (thus direct access) of physical addresses into the user
process address space. For Series 200 and Series 300 Models 310 and 320 computers, the physical
address space begins at 0x000000 and extends to Oxffffff.

The special (device) files for iomap devices are character special files with major number 10.

The minor number for iomap devices is of the form:

OxAAAANN

where AAAA is a two-byte address, and NN is a one-byte field.

The address portion of the minor number is formed by dividing the physical address by 65536.
NN*65536 is the size of the region to be mapped. For example, the minor number for a device at
Ox720000 and 128k in size is OXOO7202.

Access to the iomap devices is controlled by the file permissions set on the character special file.

Multiple processes may concurrently have iomap devices opened and mapped. It is the responsi­
bility of the processes to synchronize their accesses.

Read and write system calls are not supported.

Ioctl is used to control the iomap device. The valid ioctl commands (see <iomap.h>) are:

IOMAPMAP
map the iomap device into user address space at the location specified in the ioctl
argument. If the user address specified in the ioctl argument is 0, the system
selects an appropriate address. The ioctl then returns the user address where the
device was mapped, storing it in the original ioctl argument (see EXAMPLES
below). Multiple processes may concurrently have the iomap device mapped.

IOMAPUNMAP
unmap the iomap device from the user address space.

Close shuts down the file descriptor associated with the iomap device. If the close is for the last
system wide open on the device then the iomap device is also unmapped from the user address
space; otherwise it is left mapped into the user address space (see IOMAPUNMAP above).

One shared memory descriptor (see shmget(2)) is used for each iomap device. Shared memory
descriptors are accessible only through the iomap interface. Consequently, attempts to access
them through shmat(2), shmctl(2), shmdt(2), etc. result in EACCESS errors.

WARNING
lomap devices should be created and used with extreme caution. Inappropriate accesses to io dev­
ices or ram may result in a system crash.

ERRORS
[ENINVAL]

[ENOMEM]

[ENODEV]

[ENXIO]

[ENOSPC]

address field out of range, ioctl command invalid.

cannot allocate required memory for mapping.

read/write unsupported.

no such address.

cannot allocate required resources for mapping.

Hewlett-Packard Company - 1 - October 1986

IOMAP(7)
Series 200/300 Only

[ENOTTY]

EXAMPLES

bad ioct! command, or an ioctl was attempted on an open file.

Consider the following code fragment:

#include <iomap.h>

int fildes;
char* addr;

addr=REQUESTED-ADDRESS;
ioctl(fildes,IOMAPMAP ,&addr);
printf(" actual address=Ox%x/n,addr);

IOMAP(7)

where fildes is the device special file descriptor and addr is a pointer to a character variable.

If addr is zero, the system selects a suitable address then returns the selected address, in addr.

If the value in addr is non-zero, it is used as a specified address for allocating memory. If the
specified address cannot be used, an error is returned (see ERRORS).

SEE ALSO
mknod(IM).

Hewlett-Packard Company - 2 - October 1986

LP(7) HP-UX LP(7)

NAME
lp - line printer

DESCRIPTION
All file names in / dey containing the mnemonic /p are special files providing the interface to a
particular line printer. A line printer is a character special device which may optionally have an
interpretation applied to the data.

If the /p mnemonic is preceded by the character r, then data is sent to the printer in raw mode.
(This could assume, for example, a graphic printer operation.) In raw mode, no interpretation is
done on the data to be printed, and no page formatting is performed. The bytes are simply sent
to the printer and printed as is.

If the /p mnemonic is not preceded by the character r, then the data is interpreted according to
rules discussed below. The driver understands the concept of a printer page in that it has a page
length (in lines), line length (in characters), and offset from the left margin (in characters). The
default line length, indent, lines per page, open and close page eject, and handling of backspace
are set to defaults determined when the printer is opened and recognized by the system the first
time. If the printer is not recognized, the default line length is 132 characters, indent is 4 charac.:
ters, lines per page is 66, one page is ejected on close and none on open, and backspace is handled
for a character printer.

The following rules describe the interpretation of the data stream:

A form feed causes a page eject and resets the line counter to zero.

Multiple consecutive form-feeds are treated as a single form-feed.

The new-line character is mapped into a carriage-return/line-feed sequence, and if an
offset is specified a number of blanks are inserted after the carriage-return/line-feed
sequence.

A new-line that extends over the end of a page is turned into a form-feed.

Tab characters are expanded into the appropriate number of blanks (tab stops are
assumed to occur every eight character positions).

Backspaces are interpreted to yield the appropriate overstrike either for a character
printer or a line printer.

Lines longer than the line length minus the indent (i.e., 128 characters, using the above
defaults) are truncated.

Carriage-return characters cause the line to be overstruck.

When it is opened or closed, a suitable number of page ejects is generated.

Two ioctl(2) system calls are available to control the lines per page, characters per line, indent,
handling of backspaces, and number of pages to be ejected at open and close times. At either open
or close time, if no page eject is requested the paper will not be moved. For opens, line and page
counting will start assuming a top-of-form condition.

#include <sys/lprio.h>
ioctl (fildes, command, arg)
struct lprio *argj

The commands are:

LPRGET Get the current printer status information and store in the /prio structure refer­
enced by argo

LPRSET Set the current printer status information from the structure referenced by argo

Hewlett-Packard Company - 1 - Version B.1, October 1986

LP(7) HP-UX LP(7}

These are remembered across opens, and thus, indent, page width and page length can be set with
an external program. If the columns field is set to zero, the defaults are restored at the next open.

The structure passed to the LPRGET and LPRSET ioctl calls, as defined in <sys/lprio.h>, is:

struct lprio {

};

short
short
short
short
short
short

ind;
col;
line;
bksp;
ope11-ej;
close_ej;

/* indent */
/ * columns per page * /
/ * lines per page * /
/ * backspace handling flag * /
/ * pages to eject on open * /
/* pages to eject on close */

If the backspace handling flag is 0, a character printer is assumed and backspaces are passed
through the driver unchanged. If the flag is a 1, a line printer is assumed, and sufficient
print operations are generated to generate the appropriate overstruck characters.

HARDW ARE DEPENDENCIES
Integral PC

This version of /p is not supported on the Integral PC. Refer to the Integral Personal Com­
puter Programmer's Guide for more information about the lp implementation on the Intre­
gral PC.

Series 200, Series 300
The uppercase-only flag, the no-overprint flag, the raw-mode flag, and no-page-eject-on­
open-or-close flag can be selected (enabled) by appropriate use of the minor number in the
mknod(lM) command. See the HP~UX System Administrator's Manua/for details.

See also slp(l).

Series 500
The number of characters per line (80 or 132) and wrap-around can be selected/enabled via
the minor number in the mknod(1M) command. See the System Administrator Manual for
details.

The LPRGET and LPRSET ioctl commands are not supported and the include file
/usr /include/sys/lprio.h is not available.

AUTHOR
Lp was developed by HP and AT&T.

FILES
/dev/lp

/ dey / [rllp*

default or standard printer used by some HP-UX commands;

special files for printers

SEE ALSO
Ip(l), ioctl(2), intro(7).

Hewlett-Packard Company - 2 - Version B.1, October 1986

MEM(7) HP-UX
Series 200, 300, 800 Only

MEM(7)

NAME
mem, kmem - main memory

DESCRIPTION
M em is a special file that is an image of the main memory of the computer. It may be used, for
example, to examine and patch the system.

Byte addresses in mem are interpreted as physical memory addresses. References to non-existent
locations cause errors to be returned.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

WARNINGS

FILES

Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.

jdevjmem
jdevjkmem

Hewlett-Packard Company - 1 - Version B.1, October 1986

MODEM(7) HP-UX MODEM(7)

NAME
modem - asynchronous serial modem line control

DESCRIPTION
This section describes the two modes of modem line control and the three types of terminal port
access. It also discusses the effect of the bits of the termio structure that affect modem line con­
trol. The modem related ioctl(2) system calls are discussed at the end of the document.

Definitions

There are several terms that are used within the following discussion which will be defined here
for reference. "Modem control lines" (CONTROL) are generally defined as those outgoing modem
lines that are automatically controlled by the driver. "Modem status lines" (STATUS) are gen­
erally defined as those incoming modem lines that are automatically monitored by the driver.
CONTROL and STATUS for a terminal file vary according to the modem line control mode of the
file (see Modem line control modes below). An open(2) to a port will be considered to be
BLOCKED if it is waiting for another file on the same port to be closed. An open to a port will be
considered to be PENDING if it is waiting for the STATUS to be raised. An open to a port will be
considered to be SUCCESSFUL if the open system call has returned to the calling process without
error.

Open fiag bits

Currently, the only open flag bit recognized by the driver is the OJDELAY bit. When this bit is
set, an open call to the driver will never become blocked. If possible, the open will be returned
immediately as SUCCESSFUL, and the driver will continue the process of opening the tty file. If it
is not possible, then the open will be returned immediately with the appropriate error code as
described in the appropriate section.

Termio bits

When set, the CLOCAL bit in the termio structure (see termio(7)) is used to remove the driver's
automatic monitoring of the modem lines. However, the user's ability to control the modem lines
is determined only by the mode in effect and does not depend on the state of CLOCAL. Normally,
the driver will monitor and require the STATUS to be raised. An open system call will raise the
CONTROL and wait for the STATUS before completing unless the CLOCAL bit is set. (If the
OJDELA Y bit is set, the open will be returned immediately, but the driver will otherwise con­
tinue to monitor the modem lines as normal based on the state of the CLOCAL bit.) Normally,
loss of the STATUS will cause the driver to break the modem connection and lower the CONTROL.
However, if CLOCAL is set, any changes in the STATUS will be ignored. A connection is required
before any data may be read or written, unless CLOCAL is set. Any timers that would normally
be in effect (see Modem line control modes and Modem timers below) will be stopped while
CLOCAL is set.

When the CLOCAL bit is changed from clear to set, the driver will assume the existence of an
active device (such as a modem) on the port regardless of the STATUS. If any of the CONTROL
are raised at that point in time, they will continue in that state. The STATUS will no longer be
actively monitored. When the CLOCAL bit is changed from set to clear, the driver will resume
actively monitoring the STATUS. If all of the CONTROL and STATUS are raised at that point in
time, the driver will continue the modem connection. If any of the STATUS are not raised, the
driver will act as though those signals were lost (as described in Modem line control modes
below) and, if the device is a controlling terminal, a hangup signal will be sent to the process
group. If any of the CONTROL are not raised, the driver will break the modem connection by
lowering all the CONTROL.

The HUPCL bit in the termio structure determines the action of the driver regarding the CON­
TROL when the last close system call is issued to a terminal file. If the HUPCL bit is set, the
driver will lower the CONTROL at close time and the modem connection will be broken. If

Hewlett-Packard Company - 1 - Version B.1, October 1986

MODEM(7) HP-UX MODEM(7)

HUPCL is not set and a modem connection exists, it will continue to exist, even after the close is
issued. The driver will not change the CONTROL.

Terminal port access types

There are three types of modem access: call-in connections, call-out connections, and direct (no
modem control) connections. A given port may be accessed through all three types of connection
by accessing different files. The modem access type of a terminal file is determined by the me's
major and/or minor device numbers.

The call-in type of access is used when the connection is expected to be established by an incom­
ing call. This is the type that would be used by getty{IM) to accept logins over a modem. When
an open is issued to such a file, the driver may wait for an incoming call and will then raise the
CONTROL based on the current mode (see below) of the port. When the port is closed, the driver
mayor may not lower the CONTROL depending on the HUPCL bit.

The call-out type of access is used when the connection is expected to be established by an outgo­
ing call. This would be used by programs such as uucp{I). When an open is issued to such a file,
the driver will immediately raise the CONTROL and wait for a connection based on the mode
currently in effect. When the port is closed, the driver mayor may not lower the CONTROL
depending on the HUPCL bit.

The direct type of access is used when no driver modem control is desired. This could then be
used for directly connected terminals that use a three-wire connection, or to talk to a modem
before a connection has been established. The second case allows a program to give dialing
instructions to the modem. Neither the CLOCAL nor the HUPCL bits have any effect on a port
accessed through a direct file. (However, both bits may be inherited by other types of files; see
Terminal port access interlock below.) An open to a direct file does not affect the CONTROL
and does not depend on any particular state of the STATUS to succeed. When the file is closed,
the driver will not affect the state of the CONTROL. If a modem connection has been established,
it will continue to exist. Setting the speed of a direct file to BO (see termio(7)) will be considered
an impossible speed change and will be ignored. It will not affect the CONTROL.

Modem line control modes

There are two modes of modem line control: CCITT mode and simple mode. A given port may
have only one of these two modes in effect at any given point in time. An attempt to open a port
with a mode other than the one in effect (from a PENDING or SUCCESSFUL open on a different
file) will cause the open to be returned with an ENXIO error. The modem access type of a termi­
nal file is determined by the file's major and/or minor device numbers.

CCITT mode is used for connections to switched line modems. The CONTROL for CCITT mode
are Data Terminal Ready (DTR) and Request to Send (RTS). The STATUS are Data Set Ready
(DSR) , Data Carrier Detect (DCD), and Clear to Send (CTS). Additionally, the Ring Indicate
(RI) signal indicates the presence of an incoming call. When a connection is begun (an incoming
call for a call-in file or an open issued to a call-out file), the CONTROL are raised and a connection
timer (see Modem timers below) is started. If the STATUS become raised before the time period
has elapsed, a connection is established and the open request is returned successfully. If the time
period expires, the CONTROL are lowered and the connection is aborted. For a call-in file, the
driver will wait for another incoming call; for a call-out file, the open will be returned with an EIO
error. Once a connection is established, loss of either DSR or CTS will cause the CONTROL to be
lowered and a hangup signal to be generated if the device is a controlling terminal.

If DCD is lost, a timer is started. If DCD resumes before the time period has expired, the connec­
tion will be maintained. However, no data transfer will occur during this time. The driver will
stop transmitting characters, and any characters received by the driver will be discarded. (How­
ever, on some implementations data transmission cannot be stopped. See HARDWARE
DEPENDENCIES.) If DCD is not restored within the allotted time, the connection will be

Hewlett-Packard Company - 2 - Version B.l, October 1986

MODEM(7) HP-UX MODEM(7)

broken as described above for DSR and CTS.

If the modem connection is to be broken when the close system call is issued (i.e. HUPCL is set),
then the CONTROL will be lowered and the close will be returned as successful. However, no
further opens will be allowed until after both DSR and CTS have been lowered by the modem, and
the hangup timer (see Modem timers below) has expired. The action taken in response to an
open during this t.ime will he the same as if the port were still open. (See Terminal port access
interlock below.)

When a port is in CCITT mode, the driver has complete control of the modem lines and the user
is not allowed to change the setting of the CONTROL or affect which STATUS are actively moni­
tored by the driver (see Modem ioctls below). This is to provide strict adherence with the
CCITT recommendations.

Simple mode is used for connections to devices which require only a simple method of modem line
control. This can include devices such as black boxes, data switches, or for system-to-system con­
nections. It can also be used with modems which cannot operate under the CCITT recommenda­
tions. The CONTROL for simple mode consists of only DTR. The STATUS consists of only DCD.
When an open is issued, the CONTROL is raised but no connection timer is started. When the
STATUS becomes raised, a connection is established and the open request is returned as SUCCESS­
FUL. Once a connection is established, loss of the STATUS will cause the CONTROL to be lowered
and a hangup signal to be generated if the device is a controlling terminal.

When a port is in simple mode, the driver will normally control the modem lines. However, the
user is allowed to change the setting of the CONTROL (see Modem ioctls below).

Terminal port access interlock

An interlock mechanism is provided between the three access types of terminal files. It prevents
more than one file from being successfully opened at a time, but allows certain opens to succeed
while others are PENDING so that a port can be opened through a call-out connection while getty
has a pending open at a call-in connection. The three access types are given a priority that deter­
mines which open will succeed if more than one file has an open issued against it. The three
access types are ordered from lowest priority to highest as follows: call-in, call-out, and direct.

If an open is issued to a port which already has a SUCCESSFUL open on it of a lower priority
type, the new open will be returned with an EBUSY error. (EBUSY will also be returned by an
attempted open on a CCITT call-out file if an incoming call indication is currently being received.
In this case, if there is a PENDING open on the corresponding CCITT call-in file, this PENDING
open will complete.) If the lower priority open is PENDING, the new open will succeed if possible,
or will be left PENDING if waiting for the STATUS and the lower priority open will become
BLOCKED. If a higher priority open has succeeded or is PENDING, the new open will be
BLOCKED, unless the new open has the O~DELA Y flag bit set, in which case the open will be
returned with an EBUSY error. Once an open on one type of file is SUCCESSFUL, any PENDING
opens on lower priority files will become BLOCKED.

When a file of one priority is closed, a BLOCKED open on the next lower priority type file will
become active. If all of the STATUS are raised, the open will be SUCCESSFUL, otherwise the open
will become PENDING waiting for the STATUS. If the lower priority open is SUCCESSFUL
(because the connection was maintained when the higher priority file was closed), the port charac­
teristics (speed, parity, etc.) that were set by the higher priority file will be inherited by the lower
priority file. If the connection is not maintained through the close, the port characteristics will be
set to default values.

Hewlett-Packard Company - 3 - Version B.l, October 1986

MODEM(7) HP-UX MODEM(7)

Modem timers

There are four timers currently defined for use with modem connections. The first three of the
timers are applicable only to CCITT mode connections. In general, the effect of changing a timer
value while the timer is running is system dependent. However, setting the timer value to zero is
guaranteed to disable the timer even if it is running.

The connect timer is used to limit the amount of time to wait for a connection to be established
once it has been begun. This timer is started when an incoming call has been received on a call-in
file, or when an open has been issued on a call-out file for which no opens are already pending. If
the connection is completed in time, the timer is aborted. If the time period expires, the connec­
tion is aborted. For a call-in file, the driver will again wait for an incoming call and the open will
remain pending. For a call-out file, the open will be returned with an EIO error.

The carrier detect timer is used to limit the amount of time to wait before causing a disconnect if
DCD drops. If carrier is not re-established in this time, a disconnect will occur. If carrier is re­
established before the timeout, the timer will be aborted and the connection maintained. During
the period when carrier is not raised, no data will be transferred across the line.

The no activity timer is used to limit the amount of time a connection will remain open with no
data transfer across the line. When the data line becomes quiescent with no data transfer, this
timer will be started. If data is again transferred over the line in either direction before the time
limit, the timer will be aborted. If no activity occurs before the timeout has occurred, the driver
will disconnect the line. This can be used to avoid long and costly telephone connections when
data transfer has been stopped either normally or abnormally.

The last timer defined, the hangup timer, is used for both CCITT and simple modes. This timer
controls the amount of time to wait after disconnecting a modem line before allowing another
open to be allowed. This time period should be made long enough to guarantee that the connec­
tion has been terminated by the telephone switching equipment. If this period is not long enough,
the telephone connection may not be broken and a succeeding open may complete with the old
connection.

Modem ioctls

Several ioctl system calls apply to manipulation of modem lines. They use the following informa­
tion defined in <sys/modem.h>.

#define NMTIMER 6
typedef unsigned long mflag;
struct mtimer {

unsigned short IIL.timers[NMTIMER];
};

Each bit of the mftag long corresponds to one of the modem lines as follows:

MRTS Request to Send outbound
MCTS Clear to Send inbound
MDSR Data Set Ready inbound
MDCD Data Carrier Detect inbound
MDTR Data Terminal Ready outbound
MRI Ring Indicator inbound
MDRS Data Rate Select outbound

The timer values are defined in the array IIL.timers. The relative position of the timer and
default initial values and units for each timer are as follows:

o MTCONNECT 25s
1 MTCARRIER 400 ms
2 MTNOACTIVITY 0 min

Hewlett-Packard Company - 4 - Version B.1, October 1986

MODEM(7) HP-UX

3 MTHANGUP 250 ms
4 Reserved
5 Reserved

A value of zero for any timer will disable that timer.

The modem line ioctl system calls have the form:

ioctl (fildes, command, arg)
mftag *argj

The commands using this form are:

MODEM(7)

MCGETA Get the current state of both inbound and outbound modem lines and store in
the mflag long referenced by argo A raised line will be indicated by a one bit in
the appropriate position.

MCSETA Set the outbound modem lines from the mflag long referenced by argo Setting
an outbound bit to one causes that line to be raised and zero to be lowered. Set­
ting bits for inbound lines has no effect. Setting any bits while in CCITT mode
has no effect. The change to the modem lines is immediate and using this form
while characters are still being output may cause unpredictable results.

MCSETAW

MCSETAF

Wait for the output to drain and set the new parameters as described above.

Wait for the output to drain, then flush the input queue and set the new param­
eters as described above.

The timer value ioctl system calls have the form:

ioctl (fildes, command, arg)
struct mtimer *argj

The commands using this form are:

MCGETT Get the current timer value settings and store in the mtimer structure referenced
byarg.

MCSETT Set the timer values from the structure referenced by argo

For any timer, setting the timer value to its previous value has no effect.

WARNING
Occasionally it is possible that a process may open a call-out file at approximately the same time
as an incoming call is received. In some cases, the call-out connection may be satisfied by the
incoming call. In general, however, the results are indeterminate. If necessary, the situation can
be avoided by the use of two modems and ports, one for call-out connections and the other for
receiving incoming calls.

HARDW ARE DEPENDENCIES
Some hardware implementations may not have access to all modem lines supported by MCSETA.
If a particular hardware does not support a given line, attempts to set the value of a line will be
ignored, and reading the current state of the line will return zero. The I/O card manual should
be referenced to determine the lines supported by the hardware installed.

Some hardware implementations may not have access to all timers supported by MCSETT. Also,
the granularity of the individual timers may vary depending on the hardware and system in use.
The effect of setting a timer out of range or with a granularity outside the capability of a particu­
lar system should be documented by that system. The effect of changing the value for a timer
while that timer is running is system dependent and should be documented by each system.

Setting the CLOCAL bit while a timer is running will cause the timer to be stopped. It is a sys­
tem dependency whether or not the timer is restarted, and if so, the value at which it is restarted
when the CLOCAL bit is subsequently cleared.

Hewlett-Packard Company - 5 - Version B.l, October 1986

MODEM(7) HP-UX MODEM(7)

FILES

On those implementations supporting the HP27140A 6-Channel Multiplexer, transmission of char­
acters cannot be stopped during loss of DCD. The driver cannot detect loss of DCD until the con­
nection is broken. Also, the I/O card may still have characters in its internal buffers and will still
try to transmit them.

Series 500
For the HP27140A 6-port modem multiplexor, the ranges and resolutions of the timers
are as follows:

MTCONNECT
MTCARRIER
MTNOACTIVITY
MTHANGUP

0-255 sec, 1 sec resolution
0-2550 msec, 10 msec resolution
0-1092 min, 1 min resolution
0-65535 msec, 10 msec resolution

If a timer is set out of its range, the maximum value that timer can assume is used
instead.

For the HP27128A Asynchronous Serial Interface, the ioctl requests described above are
not supported. The timers have fixed values as follows:

MTCONNECT
MTCARRIER
MTNOACTIVITY
MTHANGUP

25 sec
400 msec
o min
500 msec

This interface only supports the call-in and call-out port access types, and does not sup­
port the direct access type.

It is not possible to change the state of the CLOCAL bit when using CCITT mode.

Simultaneous call-in and call-out open attempts in CCITT mode are not allowed.

The default state of the CLOCAL bit upon first open is determined by the state of switch
on the interface (see your system administration manual).

/dev/cua*
/dev/cul*
/dev/tty*
/dev /ttyd*

AUTHOR
Modem was developed by HP and AT&T.

SEE ALSO
mknod(lM), stty(l), ioctl(2), termio(7).

Hewlett-Packard Company - 6 - Version B.1, October 1986

MT(7) HP-UX MT(7)

NAME
mt - magnetic tape interface and controls

DESCRIPTION
The files /dev/mt/* and /dev/rmt/* refer to specific tape drives; the behavior of the specific
unit is specified in the major and minor numbers of the device special file which describes the tape
unit.

The following naming convention is recommended for tape devices, and serves to connect most of
the mode flags with the device name:

/dev / {r }mt/ (c#d)#[bml]{n}

where r indicates a raw device, c#d indicates the controller number (which is optionally !Specified
by the system administrator), # is the device number, hml indicates the density (h (high) for
6250 bpi, m (medium) for 1600 bpi, and 1 (low density) for 800 bpi), and n indicates no rewind on
close. For example, /dev /rmt/2mn is raw device 2 at 1600 bpi with no rewind. Blocked mag
tapes are used only for special situations and are supported only in some implementations. See
HARDWARE DEPENDENCIES below for details. The selection of controller and unit numbers is
system dependent, and is discussed in the appropriate System Administrator's Guide.

The operation of a tape drive is controlled by mode flags, which are usually encoded as bits in the
minor number of the device special file.

no-rewind

style

density

Unless this mode is requested, the tape is automatically rewound upon close.
When a rewind on close is not desired, the n flag should be used in the device
name.

When this mode is requested, the tape drive behaves as on Berkeley systems;
when not requested, the drive behaves as on AT&T UNIX operating systems.
The details are described below. The ioctloperations described below work in
both modes on raw tapes only. The mt(l) tape movement utility requires that
the Berkeley mode be specified.

This may be used to select the density of the tape being written. Possible values
that may be selected may include 6250, 1600, and 800 bpi, depending on the
capabilities of the specific tape drive. This corresponds to the h, m and I flags
in the recommended device name.

Refer to the System Administrator Manual for your computer for more specific details of how to
select the modes for a given device.

The special files associated with a raw tape interface are named rmt/*. Unless otherwise stated,
the following discussion refers to raw magnetic tapes.

When opened for reading or writing, the tape is assumed to be positioned as desired.

When a file opened for writing is closed, two consecutive EOF marks are written if, and only if,
one or more writes to the file have occurred. The tape is rewound unless the no-rewind mode has
been specified, in which case the tape is positioned before the second EOF just written.

When a file open only for reading is closed, and the no-rewind bit is not set, the tape is rewound.
If the no-rewind bit is set, the behavior depends on the style mode. For AT&T-style devices, the
tape is positioned after the EOF following the data just read. For Berkeley-style devices, the tape
is not re-positioned in any way.

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buffer given (within the limits of the hardware).

During a read, the record size is passed back as the number of bytes read, up to the buffer size
specified. The number of bytes ignored is available in the mLresid field of the mtget structure

Hewlett-Packard Company - 1 - Version B.l, October 1986

MT(7) HP-UX MT(7)

via the MTIOCGET call of ioctl. The buffer and size may have implementation dependent align­
ment restrictions.

Reading an EOF mark is returned as a zero-length read, i.e., the data count returned will be zero,
and the tape is positioned after the EOF, so that the next read will return the next record.

Seeks on a raw magnetic tape device are ignored. Instead, the ioctl operations below can be used
to position the tape and determine its status.

The following is included from <sys/mtio.h> and describes the possible operations:

/* mag tape I/O control requests it< /

#define MTIOCTOP -IOW(m,l,struct mtop) 1* do mag tape op * /
#define MTIOCGET -IOR(m,2,struct mtget) 1* get tape status * /
1* structure for MTIOCTOP - mag tape op request * /
struct mtop {

short mt_op; 1* operations defined below * /
daddr_t mt_count; 1* how many of them * /

};

1* operations * /

#define MTWEOF 0 1* write end-of-file record * /
#define MTFSF 1 1* forward space file * /
#define MTBSF 2 1* backward space file * /
#define MTFSR 3 1* forward space record * /
#define MTBSR 4 1* backward space record * /
#define MTREW 5 1* rewind * /
#define MTOFFL 6 1* rewind, put drive offiine * /
#define MTNOP 7 1* no-op, may set status * /
/* structure for MTIOCGET - mag tape get status command * /
struct mtget {

long mt_type;
long mt--.resid;

1* The following two registers are device dependent * /
long mt_dsregl;
long mt_dsreg2;

1* The following is a device independent status word * /
long mt_gstat;
long mt_erreg;

1* The following are used only when block devices are supported * /
daddr_t mt~leno;

daddr_t mt_blkno;
};

Hewlett-Packard Company - 2 - Version B.l, October 1986

MT(7) HP-UX MT(7)

1*
* Constants for mLtype; the first three are historical
*/
#define MT-.lSTS 01
#define MT -.lSHT 02
#define MT -.lSTM 03
#define MT -.lS7970E 04
#define MT-.lSSTREAM 05

HARDWARE DEPENDENCIES
Series 200, 300, and 500:

Block magnetic tape is not supported.

Series 800:
The MTNOP operation does not set the device independent status word.

The files /dev /mt/* refer to block magnetic tapes. They should only be used for system
installation or for treating a pre-written mag tape as a read-only block file system. A read­
only block tape can best be created with dd(l) using raw mode and a record size of 512
bytes.

Although the size of records on a block tape is always 512 bytes, the block I/O system deals
with block sizes that are a multiple of DEV ---.BSIZE (param.h) with the tape driver making
the translation. For this reason, if a user is attempting to write 512 bytes in block mode,
the block I/O system will attempt to pre-read from the block tape prior to merging in the
new data and writing it to the tape. Since a pre-read of a blank tape or a tape of unknown
format will terminate with an error, it is strongly suggested that dd(l) be used to create the
tape as described above, and that block magnetic tape be used only for seeking and reading.
Alternatively, always writing a byte count which is an even multiple of BLKDEV -.lOSIZE
(param.h) bytes will avoid the hazards of a block pre-read.

A tape treated as a block-special device consists of several 512-byte records terminated by
an EOF.

The system makes it possible to treat a pre-written block tape like an ordinary file, with the
exception that writing in the "middle" of a file truncates the file at that point. Seeks have
their usual meaning and it is possible to read or write a byte at a time.

The efficient use of streaming tape drives with large internal buffers and immediate­
reporting require the following end-of-tape procedures:

All writes near the EOT foil (which is not on the recording surface) will complete without
error if actually written to the tape. When the tape drive determines the foil has been
passed, subsequent writes will not occur and an error will be returned.

Since some applications require the writing of a trailer for multiple tape operations, a user
request for mag tape status, which will reflect the EOT condition, signals the driver to drop
all write barriers. Caution must be exercised in order to keep the tape on the reel.

When reading near the end-of-tape, the user will not be made aware of the EOT foil marker.
Instead, the typical double EOF marks or a pre-arranged trailer will signal the logical end­
of-tape.

The EOT description above applies in the default case when immediate-reporting mode is
allowed in the minor. When it is specifically dis-allowed in the minor, the EOT operation
attempts to emulate compatibility-mode on other HP-UX machines. In this mode, the write
that encounters the EOT foil returns an error with the tape automatically backing up over
that record. The read that encounters the EOT foil returns an error.

Hewlett-Packard Company - 3 - Version B.l, October 1986

MT(7)

FILES

HP-UX MT(7)

Since there are differences in EOT sensing among various types of mag tape drives because of
the physical placement of sensors, any application (such as multiple tape cpio{l) backups)
requiring that data be continued from the EOT area of one tape to another tape must be res­
tricted. Therefore, the tape drive type and mode should be the same for the creation and
reading of the tapes.

The following macros are defined in <sys/mtio.h> for decoding the generic status of the
tape drive (returned in the mt_gstat field):

GMT--.EOF{x) 1* At an EOF mark * /
GMT--.BOT{x) 1* At beginning of tape * /
GMT--.EOT{x) 1* At end of tape * /
GMT_WR....J>ROT{x) 1* Tape is write protected */
GMT_ONLINE{x) 1* Drive is online * /
GMT-D_6250{x) 1* Density is 6520 bpi * /
GMT-D_l600{x) 1* Density is 1600 bpi * /
GMT-D_800{x) 1* Density is 800 bpi * /
GMT-DLOPEN{x) 1* Drive door is open */
GMT--.lMJ.EP --.EN (x) 1* Immediate reporting on * /
(which means that the drive will report completion immediately)

/dev/mt/*
/dev/rmt/*

AUTHOR

BUGS

Mt was developed by HP, and the University of California, Berkeley.

It is impossible to write a program that will leave a tape positioned at the beginning on an
AT&T-style raw device with the no-rewind bit set, because closing the device file upon the
program's termination will reposition the tape after the first EOF mark.

SEE ALSO
ct(7), dd(l), mt(l).

Hewlett-Packard Company - 4 - Version B.1, October 1986

NULL(7) HP-UX NULL(7)

NAME
null - null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
jdevjnull

Hewlett-Packard Company - 1 - Version B.1, October 1986

PTY(7) HP-UX PTY(7)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The pty driver provides support for a device-pair termed a pseudo terminal. A pseudo terminal is
a pair of character devices, a master device and a slave device. The slave device provides
processes an interface identical to that described in termio(7). However, whereas all other devices
which provide the interface described in termio(7) have a hardware device of some sort behind
them, the slave device has, instead, another process manipulating it through the master half of the
pseudo terminal. That is, anything written on the master device is given to the slave device as
mput an d h·· hId . ed he master device. anyt mg Written on t e save eVlce IS present as mput on t
HP-UX termio(7) Slave : pty : Master Server

Application <--> Side : : Side <--> Process
Processes

The following ioctl requests, defined in <sys/ptyio.h>, apply only to the master side of pty:

TIOCBREAK Causes a break operation to be done on the slave side of the pty. This action is
the same as if a user had hit the break key on a real terminal. Takes no parame­
ter.

TIOCSIGSEND Causes a signal to be sent on the slave side of the pty to the current tty process
group of the slave side. The value of the parameter is taken to be the signal
number to be sent. An EINV AL error will be returned and no signal sent if the
specified signal number does not refer to a legal signal (see signal (2)). Note that
this request allows the server process to send signals to processes that are not
owned by the same user id.

TIOCSTOP Stops data flowing from the slave side of the pty to the master side (e.g. like typ­
ing AS). Takes no parameter.

TIOCSTART Restarts output (stopped by TIOCSTOP or by typing AS). Takes no parameter.

TIOCPKT Enable/disable packet mode. Packet mode is enabled by specifying (by refer­
ence) a nonzero int parameter and disabled by specifying (by reference) a zero
int parameter. When applied to the master side of a pseudo terminal, each sub­
sequent read from the master side will return data written on the slave part of
the pseudo terminal preceded by a zero byte (symbolically defined as
TIOCPKT---.DATA), or a single byte reflecting control status information. In
the latter case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKTJLUSHREAD
Whenever the read queue for the slave side is flushed.

TIOCPKTJLUSHWRITE

TIOCPKT~TOP

Whenever the write queue for the slave side is flushed.

Whenever data flowing from the slave side of the pty to the
master side is stopped by means of AS, TIOCSTOP, or
TCXONC.

TIOCPKT~TART

Hewlett-Packard Company

Whenever data flowing from the slave side of the pty to the
master side is restarted.

- 1 - Version B.1, October 1986

PTY(7)

TIOCREMOTE

HP-UX PTY(7)

T!OCPKT ----DOSTOP
Whenever the stop and start characters get set to ·SrQ.

TIOCPKTJOSTOP
Whenever the stop and start characters get set to something
other than ·SrQ.

A mode for the master half of a pseudo terminal, independent of TIOCPKT. This mode causes
input to the pseudo terminal to be flow controlled and not input edited (regardless of the terminal
mode). Each write to the master side produces a record boundary for the process reading the
slave side. In normal usage, a write of data is like the data typed as a line on the terminal; a
write of 0 bytes is like typing an end-of-file character (the EOF character as defined in termio(7)).
The data read by the slave side is identical to the data written on the master side. Data written
on the slave side and read on the master side with TIOCREMOTE enabled is still subject to the
normal termio(7) processing. TIOCREMOTE can be used when doing remote line editing in a
window manager, or whenever flow controlled input is required. The request takes one int sized
parameter, passed by value. When zero, it disables TIOCREMOTE; when one it enables
TIOCREMOTE. TIOCREMOTE is only effective when TIOCTTY (explained below) is also
enabled, and all data buffered in the pseudo terminal will be flushed when this request is made.

TIOCTTY
Enable or disable all termio(7) processing by pty. When disabled, all data is passed through the
pty with no modification. Termio(7) processing (of input and output such as tab expansion) is
enabled by specifying (by reference) a nonzero int parameter and disabled by specifying (by refer­
ence) a zero int parameter. Default is to be enabled. When TIOCTTY is disabled, the following
pty modes are also inoperable: TIOCBREAK, TIOCSTOP, TIOCSTART, TIOCPKT,
TIOCREMOTE, and TIOCMONITOR. Issuing a TIOCTTY ioctl request will also flush all data
buffered in the pseudo terminal, and release any processes currently blocked waiting for data.

When TIOCTTY is enabled (the default case), all termio(7) ioctl requests are handled by the pty
driver itself. When TIOCTTY is disabled, slave side termio(7) ioctl requests are either ignored
completely or passed to the master side depending upon the state of TIOCTRAP below. Slave
side non-termio ioctl requests are not affected by the state of TIOCTTY. They are always
ignored completely or passed to the master side depending upon the state of TIOCTRAP below.

Data being written through a pseudo terminal with TIOCTTY disabled will be handled in a
manner similar to the way data flows through a pipe. A write request will block in the pty until
all of its data has been written into the pty. A read request will block if there is no data available
unless the O-.NDELAY flag is set (see /cntl(2)). When data is available to be read, the read
request will return whatever is available, and will not wait for the number of bytes requested to
be satisfied. The number of bytes a pty can contain in its internal memory is implementation
dependent, but will always be at least 256 bytes in each direction. For example, a write on the
slave side of a pty of 1024 bytes might be read on the master side by four read requests returning
256 bytes each. The size of the chunks of data that are read is not guaranteed to be consistent,
but no data will be lost.

Opening and closing of the master side acts as a modem connection/disconnection on a real termi­
nal as far as the slave side is concerned. Having no server on the master side will cause opens on
the slave side to hang until there is a server. (Termio{7) description of O-.NDELAY interaction
with pty is also supported.) Opens to the master side are exclusive. Attempts to open an already
open master side of a pty will return errno(2) error EBUSY. (Attempts to open a non-existent
pty will return errno(2) ENXIO.) Closing the master side of a pty sends a SIGHUP hangup sig­
nal to the tty process group number of the corresponding slave side and flushes pending input and

Hewlett-Packard Company - 2 - Version B.1, October 1986

PTY(7) HP-UX PTY(7)

output.

Any termio(7) ioctl request can also be applied to the master side of the pty, unless TIOCTTY
has been disabled.

IOCTL/OPEN/CLOSE TRAPPING

The capabilities that follow give additional flexibility and control for servers connected to the
master side.

When trapping of ioctl/open/close is enabled, ioctl(2), open(2), and close(2) requests made to the
slave side will notify the server on the master side of each request. The close request will only
notify the server and continue to completion, while the open and ioctl requests will not complete
until the master side has had a chance to handle them. The master side acknowledges completion
via an ioctl to the master side. If the pty is not enabled to pass ioctl(2), open(2), and close(2)
from the slave to the master, then they will be ignored (except for termio(7) related processing).

The following ioctl calls apply only to the master side of a pty and pertain to trapping open, close,
and ioctl. They are also defined in <sys/ptyio.h>:

TIOCTRAP Enable or disable trapping of ioctl, open, and close from the slave side. Trapping
is enabled by specifying (by reference) a nonzero int parameter and disabled by
specifying (by reference) a zero int parameter. Default is to be disabled. (ter­
mio(7) ioctl requests will not be trapped, unless TIOCTTY is also disabled or
TIOCMONITOR is enabled.)

TIOCTRAPSTATUS
Find out if any ioctl/open/close traps are pending. The argument points to an
int, that will be set to one if anything is pending and zero if nothing is pending.
This ioctl request is used when the preferred method of a select(2) "exceptional
condition" is not available.

TIOCREQGET In response to a select(2) "exceptional condition" on the master side, this ioctl
request will read the pending ioctl, open, or close information into memory
pointed to by the argument in the form:

struct request~nfo {
int requestj
int arggetj
int argset;
short pgrpj
short pidj

};

int errno_errorj
int retllfIl-value;

All elements of request~nfo refer to the slave side of the pty. Enumerating the
elements:

request

argget

argset

Hewlett-Packard Company

is the ioctl command received.

is the ioctl request to apply to master side to receive the trapped
ioctl structure if there is one to receive, (a zero value means there
is none). (When nonzero, argget is a TIOCARGGET request
with the size field precomputed.)

is the ioctl request to apply to master side to send back the
resulting ioctl structure if there is one to send back, (a zero value
means there is none). (When nonzero, argset is a TIOCARGSET
request with the size field precomputed.)

- 3 - Version B.I, October 1986

PTY(7) IIP-UX PTY(7)

pgrp is the process group number of the process doing the operation.

pid is the process id of the process doing the operation.

ermo_error is the errno(2) error code (initialized to zero) to be returned by
ioctl on the slave side.

ret11I"D-value (initialized to zero) is the success value to be returned by ioctl on
the slave side when errno_error is not set.

For the case that the ioctl argument received on the slave side is not a pointer,
its value is stored as four bytes that can be retrieved with an ioctl request to the
master side equal to argget.

When an open or close is being passed, request will be set to TIOCOPEN or
TIOCCLOSE, respectively. For TIOCOPEN and TIOCCLOSE, both argget and
argset will be of zero because there is no ioctl structure. When TIOCTTY is
enabled, the termio(7) definition of open/close will be executed first, before being
passed to the master side. Note, while all opens are trapped, only the last close
on a particular inode for a pty slave side is trapped by the pty.

If a TIOCREQGET is done before anything has been trapped, this master side
ioctl will block until a slave side ioctl, open, or close is trapped.

TIOCREQSET Done to complete the handshake started by a previous TIOCREQGET. The
argument should point to the requesL..info structure as defined by the
TIOCREQGET.

Before doing this ioctl, to complete the handshake, the server should set
errno_error to an errno(2) error value to be passed back to the slave side. If
there is no error, errno_error can be left alone because the pty will have initial­
ized it to zero. Also, when there is no error, retur1L-value should be set, if other
than a zero result is desired. It should be noted that t1;J.e ability to determine the
return value and error code for a request to the slave side is only available for
trapped ioctl requests. The server will not be able to set these values if the
trapped request is an open or a close.

If the TIOCREQSET request is made and the request value in the passed
request~fo structure does not equal the trapped value, error(2) EINVAL will
be returned. (EINVAL is also returned ifthere is no trapped ioctl/open/close.)

If the trapped slave-side request has been interrupted by a signal between the
time that the server has done the TIOCREQGET and the TIOCREQSET, an
EINV AL error will be returned by the TIOCREQSET request.

TIOCMONITOR Enable or disable read only trapping of termio ioctl requests when TIOCTTY is
also enabled. (When TIOCTTY is disabled, TIOCMONITOR has no effect.
Also TIOCMONITOR is independent of TIOCTRAP.) Trapping is enabled by
specifying (by reference) a nonzero int parameter and disabled by specifying (by
reference) a zero int parameter. Default is to be disabled.

This allows a server process attached to the master side of the pty to know when
characteristics of the line discipline in the pty are changed by an application on
the slave side. The mechanism for handshaking trapped termio(7) requests
(when TIOCTTY is enabled) is the same as that for non-termio ioctl requests;
except that any changes or error conditions set by the server on the master side
will have no effect. (It is recommended that termio(7) ioctl requests be used on
the master side to interrogate the configured state of the line discipline in the
pty. One reason for this is to compensate for the window of time before TIOC­
MONITOR is enabled, when termio(7) ioctls were not trapped.)

Hewlett-Packard Company - 4 - Version B.l, October 1986

PTY(7) HP-UX PTY(7)

When using select{2} on the master side of a pty, the "exceptional condition" refers to an open,
close, or ioctl pending on the slave side. Ready for reading or writing refers to a read, or write
pending respectively, from the point of view of the master side.

Of the ioctls that are subject to being trapped, only one per pty may be handled at one time.
This means that when an application does a non-termio ioctl to the slave side, all other ioctls to
the same pty slave side will be blocked until the first one is handshaked back by the master side.
{Ioctls that are not trapped, such as termio{7} when TIOCTTY is enabled and TIOCMONITOR
is disabled, will not be blocked.} This permits the implementation of indivisible operations by an
ioctl calIon the slave side that is passed to the server process.

In summary, handshaking of an ioctl/open/close on the master side is done using the following
steps:

Slave Side open/close/ioctl Trapped.
This is indicated via a select{2} exceptional condition or via the TIOC­
TRAPST ATUS ioctl request.

TIOCREQGET ioctl request.
This is done to find out what slave open/close/ioctl is trapped.

argget ioctl request.
This optional ioctl is done if argget is nonzero and the server wants to
do more than just reject the trapped slave ioctl.

argset ioctl request.
This optional ioctl is done if argset is nonzero and the server wants to
pass back a modified ioctl structure. It is done after the trapped ioctl is
processed via the server on the master side.

TIOCREQSET ioctl request.
This is done to complete the trapped slave open/close/ioctl. In case the
trapped request is an ioctl, errno_error should be set appropriately.
retuI"IL-value should be set for trapped slave ioctls if ermo_error is set
to zero.

While a process is waiting in the slave side of the pty for the server to complete a handshake, it is
susceptible to receiving signals. The following master side ioctl allows the server process to con­
trol how the pty will respond when a signal attempts to interrupt a trapped open or ioctl request.

TIOCSIGMODE Sets the signal handling state of the pty to the mode specified as the argument.
The mode can have three values, which are TIOCSIGBLOCK, TIOCSIGA­
BORT, and TIOCSIGNORMAL.

TIOCSIGBLOCK Causes some signals that are destined for the process whose
open/ioctl is trapped to be postponed. The signals that are
blocked are those which would otherwise cause the process to
jump to an installed signal handler. Signals that are currently
being ignored or would cause the slave-side process to be
aborted will not be held off. When the server process completes
the handshake by means of the TIOCREQSET ioctl request,
the slave-side process will return to the calling program, and
any pending signals will then be acted upon. Any signals that
the user has blocked by means of sigblock{2} will continue to be
blocked.

TIOCSIGABORT Forces all signals that interrupt a trapped open/ioctl request to
not be restartable. The server process will set this mode when
it wants the interrupted requests to return to the calling

Hewlett-Packard Company - 5 - Version B.1, October 1986

PTY(7) HP-UX PTY(7)

program with an EINTR error.

TIOCSIGNORMAL
This is the default mode of the pty. If a signal interrupts a
trapped open/ioctl request, the user's signal handler routine has
the option of specifying whether the request is to be restarted.
If the request is to be restarted, it will be executed again from
the beginning, and the server will have to do another
TIOCREQGET to start the handshake over again. If the user's
signal handler routine specifies that the interrupted request is
not to be restarted, then the request will return to the calling
program with EINTR upon completion of the signal handler.
Note that it is not guaranteed that the restarted request will be
the very next one to be trapped.

WARNINGS
It is not possible for the slave side to indicate an End Of File condition to the master side.

When using TIOCREMOTE, a single write to the master side of greater than 256 bytes may
result in multiple smaller records being read from the slave side, instead of only one record.

HARDW ARE DEPENDENCIES
Series 200, 300 and 500

The largest ioctl argument passable between master and slave sides is currently limited to
128 bytes.

Series 500
The TIOCREMOTE mode is not currently implemented.

AUTHOR

FILES

Pty was developed by the University of California, Berkeley California, Computer Science Divi­
sion, Department of Electrical Engineerfug and Computer Science.

/dev /pty[pqr]*
/dev /tty[pqr]*
/dev /ptym/pty[pqr]*
/dev /pty/tty[pqr]*

master pseudo terminals
slave pseudo terminals
master pseudo terminals
slave pseudo terminals

SEE ALSO
ioctl(2), select(2), signal(2), termio(7).

Hewlett-Packard Company - 6 - Version B.l, October 1986

STTYV6(7) HP-UX STTYV6(7)

NAME
stty - terminal interface for Version 6/PWB compatibility

REMARKS
These facilities are included to aid in conversion of old programs, and should not be used in new
code. Use the interface described in termio(7). Note that these conversions do not work for pro­
grams ported from UNIX Time-Sharing System, Seventh Edition (Version 7), since some V7 flags
are defined differently.

DESCRIPTION
These routines attempt to map the UNIX Time-Sharing System, Sixth Edition (Version 6), and
PWB stty and gtty calls into the current ioctls that perform the same functions. The mapping
cannot be perfect. The way the features are translated is described below. The reader should be
familiar with termio(7) before studying this page.

The following data structure is defined in the include file sgtty.h:

struct sgttyb {
char
char
char
char
int

sg~speed;

sg_ospeed;
sg_erase;
s g---.kill;
sg---.flags;

The flags, as defined in sgtty.h, are:

#define HUPCL
#define XTABS
#define LCASE
#define ECHO
#define CRMOD
#define RAW
#define ODDP
#define EVENP
#define ANYP
#define NLDELA Y
#define TBDELA Y
#define CRDELA Y
#define VTDELA Y
#define BSDELA Y

#define CRO
#define CR1
#define CR2
#define CR3
#define NLO
#define NL1
#define NL2
#define NL3
#define TABO
#define TAB1
#define NOAL
#define FFO
#define FF1
#define BSO

Hewlett-Packard Company

01
02
04
010
020
040
0100
0200
0300
001400
002000
030000
040000
0100000

o
010000
020000
030000
o
000400
001000
001400
o
002000
004000
o
040000
o

- 1 -

1* input speed * /
1* output speed * /
1* erase character * /
1* kill character * /
1* mode flags * /

Version B.1, October 1986

STTYV6(7) HP-UX STTYV6(7)

#define BSI 0100000

When the stty(2) command (ioctl TIOCSETP) is executed, the flags in the old sgttyb structure
are mapped into their new equivalents in the termio structure. Then the TCSET A command is
executed.

The following table shows the mapping between the old sgttyb flags and the current termio
flags. Note that flags contained in the termio structure that are not mentioned below are
cleared.
HUPCL
HUPCL
XTABS
XTABS
TBDELAY
TBDELAY
LCASE
LCASE
ECHO
ECHO
NOAL
NOAL
CRMOD

CRMOD

RAW

RAW

ODDP

VTDELAY
VTDELAY
BSDELAY
BSDELAY

(if set) sets the termio HUPCL flag;
(if clear) clears the termio HUPCL flag;
(if set) sets the termio TAB3 flag;
(if clear) clears the termio T AB3 flag;
(if set) sets the termio TABI flag;
(if clear) clears the termio TABI flag;
(if set) sets the termio IUCLC, OLCUC, and XCASE flags;
(if clear) clears the termio IUCLC, OLCUC, and XCASE flags;
(if set) sets the termio ECHO flag;
(if clear) clears the termio ECHO flag;
(if set) sets the termio ECHOK flag;
(if clear) clears the termio ECHOK flag;
(if set) sets the termio ICRNL and ONLCR flags; also, if CRI is set, the ter­
mio CRI flag is set, and if CR2 is set, the termio ONOCR and CR2 flags are
set;
(if clear) sets the termio ONLRET flag; also, if NLI is set, the termio CRI flag
is set, and if NL2 is set, the termio CR2 flag is set;
(if set) sets the termio CS8 flag, and clears the termio ICRNL and IUCLC
flags; also, default values of 6 characters and 0.1 seconds are assigned to MIN
and TIME, respectively;
(if clear) sets the termio BRKINT, IGNPAR, ISTRIP, IXON, IXANY, OPOST,
CS7, PARENB, ICANON, and ISIG flags; also, the default values control-D and
null are assigned to the control characters EOF and EOL, respectively;
(if set) if EVENP is also set, clears the termio INPCK flag; otherwise, sets the
termio P ARODD flag;
(if set) sets the termio FFDLY flag;
(if clear) clears the termio FFDL Y flag;
(if set) sets the termio BSDLY flag;
(if clear) clears the termio BSDLY flag.

In addition, the termio CREAD bit is set, and, if the baud rate is 110, the CSTOPB bit is set.

When using TIOCSETP, the ispeed entry in the sgttyb structure is mapped into the appropri­
ate speed in the termio CBAUD field. The erase and kill sgttyb entries are mapped into the
termio erase and kill characters.

When the gtty(2) (ioctl TIOCGETP) command is executed, the termio(7) TCGETA command
is first executed. The resulting termio structure is then mapped into the sgttyb structure,
which is then returned to the user.

The following table shows how the termio flags are mapped into the old sgttyb structure. Note
that all flags contained in the sgttyb structure that are not mentioned below are cleared.
HUPCL (if set) sets the sgttyb HUPCL flag;
HUPCL (if clear) clears the sgttyb HUPCL flag;
ICANON (if set) sets the sgttyb RAW flag;
ICANON (if clear) clears the sgttyb RAW flag;

Hewlett-Packard Company - 2 - Version B.l, October 1986

STTYV6(7)

XCASE
XCASE
ECHO
ECHO
ECHOK
ECHOK
PARODD
PARODD
INPCK
PARODD,
ONLCR

ONLCR

TAB3
TAB3
TAB!
TAB!
FFDLY
FFDLY
BSDLY
BSDLY

HP-UX

(if set) sets the sgttyb LCASE flag;
(if clear) clears the sgttyb LCASE flag;
(if set) sets the sgttyb ECHO flag;
(if clear) clears the sgttyb ECHO flag;
(if set) sets the sgttyb NOAL flag;
(if clear) clears the sgttyb NOAL flag;
(if set) sets the sgttyb ODDP flag;
(if clear) clears the sgttyb ODDP flag;
(if set) sets the sgttyb EVENP flag;
INPCK (if both clear) sets the sgttyb ODDP and EVENP flags;

STTYV6(7)

(if set) sets the sgttyb CRMOD flag; also, if CR1 is set, the sgttyb CR1 flag is
set, and if CR2 is set, the sgttyb CR2 flag is set;
(if clear) if CR1 is set, the sgttyb NL1 flag is set, and if CR2 is set, the sgttyb
NL2 flag is set;
(if set) sets the sgttyb XT ABS flag;
(if clear) clears the sgttyb XT ABS flag;
(if set) sets the sgttyb TBDELAY flag;
(if clear) clears the sgttyb TBDELAY flag;
(if set) sets the sgttyb VTDELAY flag;
(if clear) clears the sgttyb VTDELAY flag;
(if set) sets the sgttyb BSDELAY flag;
(if clear) clears the sgttyb BSDELAY flag.

When using TIOCGETP, the termio CBAUD field is mapped into the ispeed and ospeed
entries of the sgttyb structure. Also, the termio erase and kill characters are mapped into the
erase and kill sgttyb entries.

Note that, since there is not a one-to-one mapping between the sgttyb and termio structures,
unexpected results may occur when using the older TIOCSETP and TIOCGETP calls. Thus,
the TIOCSETP and TIOCGETP calls should be replaced in all future code by the current
equivalents, TCSETA and TCGETA, respectively.

SEE ALSO
stty(2), termio(7).

Hewlett-Packard Company - 3 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

NAME
termio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same general interface, no matter what
hardware is involved. The remainder of this section discusses the common features of this inter­
face.

Opening a Terminal File
When a terminal file is opened, it normally causes the process to wait until a connection is esta­
blished. In practice, users' programs seldom open these files; they are opened by getty and become
a user's standard input, output, and error files. When a process group leader without a control­
ling terminal opens a terminal that is not already a controlling terminal, that terminal becomes
the controlling terminal for that process and the terminal's distinguished process group (tty group
ID) is set to the process group of that process. The control terminal plays a special role in han­
dling QUIT and INTERRUPT signals, as discussed below. It is also used in handling the process
group control signals. The control terminal is inherited by a child process during a /ork(2). A
process can break this association by changing its process group using setpgrp(2). When the pro­
cess group leader that acquired the controlling terminal terminates, the distinguished process
group of the controlling terminal is set to zero (indicating no distinguished process group). This
allows the terminal to be acquired as a controlling terminal by a new process group leader.

If the O--.NDELAY bit (see open(2)) is clear, an open will block until the type of modem connec­
tion requested (see modem(2)) is completed. If the O--.NDELAY bit is set, an open will succeed
and return immediately without waiting for the modem connection requested to complete.

Reading Characters
A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even whlle output is occurring, and are only lost when the system's
character input buffers become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been read by some program.
This limit is dependent on the particular implementation, but is at least 256. When the input
limit is reached, all the saved characters are thrown away without notice.

Canonical Mode Input Processing (Erase and Kill Processing)

Normally, terminal input is processed in units of lines. A line is delimited by a new-line (ASCII
LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character. This means that
a program attempting to read will be suspended until an entire line has been typed. Also, no
matter how many characters are requested in the read call, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, the character # erases the
last character typed, except that it will not erase beyond the beginning of the line. By default,
the character kills (deletes) the entire input line, and optionally outputs a new-line character.
Both these characters operate on a key-stroke basis, independently of any backspacing or tabbing
that may have been done. Both the erase and kill characters may be entered literally by preced­
ing them with the escape character (\). In this case the escape character is not read. The erase
and kill characters may be changed.

Process Group Control During I/O

For those drivers that support process group control, if a process is not in the distinguished pro­
cess group of its control terminal, and both the process group of the process and the control ter­
minal are non-zero, the process is said to be a background process. Any attempts by a back­
ground process to read from its controlling terminal will cause the process group to be sent a
SIGTTIN signal, which will normally cause the members of that process group to stop. If,

Hewlett-Packard Company - 1 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

however, a process is ignoring or holding the SIGTTIN signal, or (on systems that implement vfork
separately from fork) has made a call to vfork(2) but not yet made a call to exec(2), then the pro­
cess is instead returned an EIO error and no signal is sent to any process.

It is frequently undesirable for background processes to write to a terminal or to issue certain ioctl
system calls which set tty parameters. In the following discussion, the response to writing should
be assumed to also be the response to those ioctl calls. If the LTOSTOP bit is set, then a back­
ground process is prohibited from writing to that terminal. Attempts to write will cause the pro­
cess group to be sent a SIGTTOU signal, which will normally cause the members of the process
group to stop. If the L TOSTOP bit is not set, the process is ignoring or holding SIGTTOU signals,
or is in the middle of the vfork(2) window described above, the process is allowed to write to the
terminal.

Non-blocking Reads (O---.NDELAY Flag)

If the O---.NDELAY bit (see open(2) or fcntl(2» is clear, the read request will complete whenever
data is available. If the O---.NDELA Y bit is set, then the read request will complete, without
blocking, in one of three ways: (1) If there is enough data available to satisfy the entire request,
the read will complete successfully, having read all of the data, and return the number of bytes
read; (2) If there is not enough data available to satisfy the entire request, the read will complete
successfully, having read as much data as possible, and return the number of bytes it was able to
read; (3) If there is no data available, the read will complete successfully, having read no data,
and return a count of O.

Special Characters
Certain characters have special functions on input. These functions and their default character
values are summarized as follows:

INTR

QUIT

ERASE

KILL

EOF

NL

EOL

STOP

START

(Rubout or ASCII DEL) generates an interrupt signal which is sent to all
processes with the associated control terminal. Normally, each such process is
forced to terminate, but arrangements may be made either to ignore the signal or
to receive a trap to an agreed-upon location; see signal(2).

(Control-lor ASCII FS) generates a quit signal. Its treatment is identical to the
interrupt signal except that, unless a receiving process has made other arrange­
ments, it will not only be terminated but a core image file (called core) will be
created in the current working directory if the implementation supports core
files.

(#) erases the preceding character. It will not erase beyond the start of a line,
as delimited by a NL, EOF, or EOL character.

(@) deletes the entire line, as delimited by a NL, EOF, or EOL character.

(Control-d or ASCII EOT) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are immediately passed to
the program, without waiting for a new-line, and the EOF is discarded. Thus, if
there are no characters waiting, which is to say the EOF occurred at the begin­
ning of a line, zero characters will be passed back, which is the standard end-of­
file indication.

(ASCII LF) is the normal line delimiter. It can not be changed or escaped.

(ASCII NUL) is an additional line delimiter, like NL. It is not normally used.

(Control-s or ASCII DC3) can be used to temporarily suspend output. It is useful
with CRT terminals to prevent output from disappearing before it can be read.
While output is suspended, STOP characters are ignored and not read.

(Control-q or ASCII DCI) is used to resume output which has been suspended by
a STOP character. While output is not suspended, START characters are ignored

Hewlett-Packard Company - 2 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

and not read. The start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be changed to suit indivi­
dual tastes. The ERASE, KILL, and EOF characters may be escaped by a preceding \ character, in
which case no special function is done.

Writing Characters
When one or more characters are written, they are transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. If a process produces characters more rapidly than they can
be typed, it will be suspended when its output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.

Closing a Terminal File
When the last process to have a terminal device file open closes the file, the output data is drained
before the close returns.

Modem Disconnect
When a modem disconnect is detected, a hang-up signal is sent to all processes that have this ter­
minal as the control terminal. Unless other arrangements have been made, this signal causes the
processes to terminate. If the hang-up signal is ignored, any subsequent read returns with an
end-of-file indication. Thus, programs that read a terminal and test for end-of-file can terminate
appropriately when hung up on.

Termlo Structure
Several ioctl(2) system calls apply to terminal files. The primary calls use the following structure,
defined in <termio.h>:

#define NCC 8
struet termio {

unsigned short c--.ifiagj
unsigned short c_ofiagj
unsigned short c_cfiagj
unsigned short c..lfiagj
char c--.linej
unsigned char c_cc[NCC)j

}j

/ * input modes * /
/ * output modes * /
/ * control modes * /
/ * local modes * /
/ * line discipline * /
/ * control chars * /

The special control characters are defined by the array c_cc. The relative positions and initial
values for each function are as follows:

o VINTR DEL
1 VQUIT FS
2 VERASE #
3 VKILL @

4 VEOF EOT
5 VEOL NUL
6 reserved
7 reserved

Input Modes
The c_iftag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.

Hewlett-Packard Company - 3 - Version B.1, October 1986

TERMIO(7)

INLCR
IGNCR
ICRNL
IUCLC
IXON
IXANY
IXOFF
IENQAK

HP-UX

0000100 Map NL to CR on input.
0000200 Ignore CR.
()()()()4()() Map CR to NL on input.
0001000 Map upper-case to lower-case on input.
0002000 Enable start/stop output control.
0004000 Enable any character to restart output.
0010000 Enable start/stop input control.
0020000 Enable output pacing control.

TERMIO(7)

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored,
that is, not put on the input queue and therefore not read by any process. Otherwise if BRKINT
is set, the break condition will generate an interrupt signal and flush both the input and output
queues. If IGNP AR is set, characters with other framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error which is not ignored is read as the
three-character sequence: 0377, 0, X, where X is the data of the character received in error. To
avoid ambiguity in this case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 0377.
If P ARMRK is not set, a framing or parity error which is not ignored is read as the character NUL
(0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is dis­
abled. This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise all 8-bits are pro­
cessed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
received CR character is ignored (not read). Otherwise if ICRNL is set, a received CR character is
translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding
lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP character will suspend out­
put and a received START character will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character, will restart output which has been suspended.

If IXOFF is set, start/stop input control is enabled. When the number of characters in the input
queue exceeds a system defined value (high water mark), the system will transmit a STOP charac­
ter. This should cause the attached device to stop transmitting data before the maximum allowed
input has been reached. When enough characters have been read from the input queue that the
number of remaining characters is less than another system defined value (low water mark), then
the system will transmit a START character to cause input to be resumed. In order to avoid
potential deadlock, the IXOFF bit is ignored in canonical mode whenever there is no line delimiter
in the input buffer. In this case, the STOP character is not sent at the high water mark, but will
be transmitted later if a delimiter is received. If all complete lines are read from the input queue
leaving only a partial line with no line delimiter, the START character will be sent even though
the number of characters may not be less than the low water mark. When ICANON is set and the
input stream contains more characters between line delimiters than the high water mark allows, it
is not guaranteed that IXOFF will prevent buffer overflow and data loss, since the STOP character
may not be sent in time or at all.

If IENQAK is set, the system will transmit ASCII ENQ after every 80 characters sent and then wait
until the terminal responds with ASCII ACK. The terminal will respond in this way when it has
sufficiently emptied its buffer. If the terminal does not respond after 5 seconds, the system will
resume transmission anyway. The ASCII ACK that the terminal sends will not get entered into
the input queue if it was sent in response to ASCII ENQ.

Hewlett-Packard Company - 4 - Version B.l, October 1986

TERMIO(7) HP-UX TERMIO(7)

The initial input control value is all-hits-clear.

Output Modes
The c_oftag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column O.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:
NLO 0
NLl 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRl 0001000
CR2 0002000
CRa 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays;
BSO 0
BSl 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTl 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FFl 0100000

If OPOST is set, output characters are post-processed as indicated by the remaining flags, other­
wise characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case
character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR character is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLRET is set, the NL character is assumed to
do the carriage-return function; the column pointer will be set to 0 and the delays specified for CR
will be used. Otherwise the NL character is assumed to do just the line-feed function; the column
pointer will remain unchanged. The column pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.

Hewlett-Packard Company - 5 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used
instead of the new-line delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill charac­
ters, and type 2, four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10
seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set, two fill char­
acters will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

Control Modes
The c_cflag field describes the hardware control of the terminal:

CBAUD 0000037 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
Bll0 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B900 0000011 900 baud
B1200 0000012 1200 baud
B1800 0000013 1800 baud
B2400 0000014 2400 baud
B3600 0000015 3600 baud
B4800 0000016 4800 baud
B7200 0000017 7200 baud
B9600 0000020 9600 baud
B19200 0000021 19200 baud
B38400 0000022 38400 baud
EXTA 0000036 External A
EXTB 0000037 External B
CSIZE 0000140 Character size:
CS5 0 5 bits
CS6 0000040 6 bits
CS7 0000100 7 bits
CS8 0000140 8 bits
CSTOPB 0000200 Send two stop bits, else one.
CREAD 0000400 Enable receiver.
PARENB 0001000 Parity enable.
PARODD 0002000 Odd parity, else even.
HUPCL 0004000 Hang up on last close.
CLOCAL 0010000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connec­
tion. If BO is specified, the modem control lines (see modem(7)} will cease to be asserted.

Hewlett-Packard Company - 6 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

Normally, this will disconnect the line. For any particular hardware, impossible speed changes are
:_~ __ ..l
'5llV1 t:U.

The CSIZE bits specify the character size in bits for both transmission and reception. This size
does not include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one
stop bit. For example, at 110 baud, two stops bits are required.

If P ARENB is set, parity generation and detection is enabled and a parity bit is added to each
character. If parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity
is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

The specific effects of the HUPCL and CLOCAL bits depend on the mode and type of the modem
control in effect. See modem(7) for the details.

If HUPCL is set, the modem control lines for the port will be disconnected when the last process
with the port open closes it or terminates.

If CLOCAL is set, a connection does not depend on the state of the modem status lines.

If the CLOCAL bit has been set, an open will return immediately without waiting for the connec­
tion. For those files on which the connection has not been established or has been lost, and for
which the CLOCAL bit is not set, both read and write will return a zero character count. For
read, this is equivalent to an end-of-file condition.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

Local Modes
The c_lflag field of the argument structure is used by the line discipline to control terminal func­
tions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper flower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kiIl character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt, quit, or suspend.

If ISIG is set, each input character is checked against the special control characters INTR, QUIT,
and the suspend characters (see Process Group Control below). If an input character matches one
of these control characters, the function associated with that character is performed. If ISIG is not
set, no checking is done. Thus these special input functions are possible only if ISIG is set. These
functions may be disabled individually by changing the value of the control character to an
unlikely or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kiIl edit functions,
and the assembly of input characters into lines delimited by NL, EOF, and EOL. If ICANON is not
set, read requests are satisfied directly from the input queue. A read wiIl not be satisfied until at
least MIN characters have been received or the timeout value TIME has expired between charac­
ters. (See Non-canonical Mode Input Processing (MIN/TIME Interaction) below). This
allows fast bursts of input to be read efficiently while still allowing single character input. The
MIN and TIME values are stored in the position for the EOF and EOL characters, respectively.
The time value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it
with a \ character, and is output preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

Hewlett-Packard Company - 7 - Version B.1, October 1986

TERMIO(7) HP-UX

for: use:

\ '
\!
\'

{ \(
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

TERMIO(7)

When ICANON is set, the following echo functions are possible. If ECHO and ECHOE are set, the
erase character is echoed as ASCII BS SP BS, which will clear the last character from a CRT screen.
If ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If ECHOK is
set, the NL character will be echoed after the kill character to emphasize that the line will be
deleted. Note that an escape character preceding the erase or kill character removeR any special
function. If ECHONL is set, the NL character will be echoed even if ECHO is not set. This is use­
ful for terminals set to local echo (so-called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents terminals that respond to EOT
from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with the quit, inter­
rupt, and suspend characters will not be done.

The initial line-discipline control value is all bits clear.

Unless otherwise noted for a specific ioctl command, the ioctls are restricted from use by back­
ground processes. An attempt to issue an ioctl from a background process will cause the process
to block and may cause a SIGTTOU signal to be sent to the process group.

Non-canonical Mode Input Processing (MIN/TIME Interaction)

The MIN and TIME values are stored in c_cc[VMINJ and c_cc[VTIMEJ, respectively, and are used
when ICANON is clear. MIN represents the minimum number of characters that should be
received when the read is satisfied (i.e., the characters are returned to the user). TIME is a timer
of 0.10 second granularity that is used to timeout burst and short term data transmissions. The
four possible values for MIN and TIME and their interactions are described below.

A. MIN > 0, TIME > 0

In this case TIME serves as an intercharacter timer and is activated after the first character is
received. Since it is an intercharacter timer, it is reset after a character is received. The interac­
tion between MIN and TIME is as follows: as soon as one character is received, the intercharacter
timer is started. If MIN characters are received before the intercharacter timer expires (remember
that the timer is reset upon receipt of each character), the read is satisfied. If the timer expires
before MIN characters are received, the characters received to that point are returned to the user.
Note that if TIME expires, at least one character will be returned because the timer would not
have been enabled unless a character was received. In this case (MIN > 0, TIME > 0) the read
will sleep until the MIN and TIME mechanisms are activated by the receipt of the first character.

B. MIN> 0, TIME = 0

In this case, since the value of TIME is zero, the timer plays no role and only MIN is significant. A
pending read is not satisfied until MIN characters are received after any previous read completes
(i.e., the pending read will sleep until MIN characters are received). A program that uses this case
to handle record-based terminal I/O may block.

Hewlett-Packard Company - 8 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

C. MIN = 0, TIME> 0

In this case, since MIN = 0, TIME no longer represents an intercharacter timer. It now serves as a
read timer that is activated as soon as the read system call is processed. A read is satisfied as
soon as a single character is received or the read timer expires. Note that in this case if the timer
expires, no character will be returned. If the timer does not expire, the only way the read can be
satisfied is if a character is received. Note that in this case the read will not sleep indefinitely
waiting for a character. If no character is received within TIME * 0.10 seconds after the read is
initiated, the read will return with zero characters.

D. MIN = 0, TIME = 0

In this case return is immediate. If characters are present, they will be returned to the user.

Some points to note about MIN and TIME:

1. In the above explanations one may notice that the interactions of MIN and TIME are
not symmetric. For example, when MIN > 0 and TIME = 0, TIME has no effect.
However, in the opposite case where MIN = 0 and TIME> 0, both MIN and TIME
playa role in that MIN is satisfied with the receipt of a single character.

2. Also note that in case A (MIN> 0, TIME> 0), TIME represents an intercharacter
timer while in case C (MIN = 0, TIME> 0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B, where MIN
> 0, exist to handle burst mode activity (e.g., file transfer programs) where a program would like
to process at least MIN characters at a time. In case A, the intercharacter timer is activated by a
user as a safety measure while in case B it is turned off.

Cases C and D exist to handle single character timed transfers. These cases are readily adaptable
to screen based applications that need to know if a character is present in the input queue before
refreshing the screen. In case C the read is timed, while in case D it is not.

Another important note is that MIN is always just a minimum. It does not denote a record
length. That is, if a program does a read of 20 bytes and MIN is 10 and 25 characters are present,
20 characters will be returned to the user. If the program had requested all characters, then all 25
characters would be returned to the user.

Primary TERMIO IOCTL Commands
The primary ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *argj

The commands using this form are:

TCGETA

TCSETA

TCSETAW

TCSETAF

Hewlett-Packard Company

Get the parameters associated with the terminal and store in the termio
structure referenced by argo This command is allowed from a back­
ground process; however, the information may be subsequently changed
by a foreground process.

Set the parameters associated with the terminal from the structure refer­
enced by argo The change is immediate.

Wait for the output to drain before setting the new parameters. This
form should be used when changing parameters that will affect output.

Wait for the output to drain, then flush the input queue and set the new
parameters.

- 9 - Version B.l, October 1986

TERMIO(7) HP-UX TERMIO(7)

Additional ioctl(2) calls have the fonn:

ioetl (fildes, command, arg)
int arg;

The commands using this fonn are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for
at least 0.25 seconds).

TCXONC

TCFLSH

Start/stop control. If arg is 0, suspend output; if 1, restart suspended
output.

If arg is 0, flush the input queue; if 1, flush the output queue; if 2, flush
both the input and output queues.

The following command has the form:

ioetl (fildes, command, arg)
long *arg;

FIONREAD Returns in the long integer whose address is arg the number of characters
immediately readable from the terminal device file. This command is
allowed from a background process; however, the data itself may not be
read from a background process.

System Asynchronous I/O
The following commands have the fonn:

ioetl (fildes, command, arg)
int *arg;

FIOSSAIOST AT If the integer whose address is arg is non-zero, system asynchronous
I/O is enabled. That is, enable SIGIO to be sent to the process
currently designated with FIOSSAIOOWN (see below) whenever the
terminal device file status changes from "no read data available" to
"read data available". If no process has been designated with FIOS­
SAIOOWN, then enable SIGIO to be sent to the first process to open
the tenninal device file.

If the designated process has exited, the SIGIO signal will not be sent
to any process.

If the integer whose address is arg is 0, system asynchronous I/O is
disabled.

FIOGSAIOSTAT The integer whose address is arg is set to 1, if system asynchronous
I/O is enabled. Otherwise, the integer whose address is arg is set to O.

FIOSSAIOOWN Set process ID to receive the SIGIO signals with system asynchronous
I/O to the value of the integer whose address is argo The super-user
may designate that any process receive the SIGIO signals. If the
request is not made by the super-user, the calling process is only
allowed to designate that itself or another process whose real or saved
effective user ID matches its real or effective user ID, or a process
which is a descendant of the calling process, receive the SIGIO signals.
If no process can be found corresponding to that specified by the
integer whose address is arg, the call will fail, with errno set to
ESRCH. If the request is not made by the super-user, and the calling
process attempts to designate a process other than itself or another
process whose real or saved effective user ID matches its real or

Hewlett-Packard Company - 10 - Version B.1, October 1986

TERMIO(7)

FIOGSAIOOWN

HP-UX TERMIO(7)

effective user ID, or a process which if! not a descendant of the caning
process, the call will fail, with ermo set to EPERM.

If the designated process subsequently exits, the SIGIO signal will not
be sent to any process.

The default on open of a terminal device file is that the process per­
forming the open is set to receive the SIGIO signals.

The integer whose address is arg is set to the process ID designated to
receive SIGIO signals.

Non-blocking I/O
FIOSNBIO

If the integer whose address is arg is non-zero, non-blocking I/O is enabled. That is, sub­
sequent reads and writes to the terminal device file will be handled in a non-blocking
manner (see below). If the integer whose address is arg is 0, non-blocking I/O is disabled.

For reads, non-blocking I/O will prevent all read requests to that device file from block­
ing, whether the requests succeed or fail. Such a read request will complete in one of
three ways: (1) If there is enough data available to satisfy the entire request, the read
will complete successfully, having read all of the data, and return the number of bytes
read; (2) If there is not enough data available to satisfy tb,e entire request, the read will
complete successfully, having read as much data as possible, and return the number of
bytes it was able to read; (3) If there is no data available, the read will fail and errno will
be set to EWOULDBLOCK.

For writes, non-blocking I/O will prevent all write requests to that device file from block­
ing, whether the requests succeed or fail. Such a write request will complete in one of
three ways: (1) If there is enough space available in the system to buffer all the data, the
write will complete successfully, having written out all of the data, and return the number
of bytes written; (2) If there is not enough space in the buffer to write out the entire
request, the write will complete successfully, having written as much data as possible, and
return the number of bytes it was able to write; (3) If there is no space in the buffer, the
write will fail and errno will be set to EWOULDBLOCK.

To prohibit non-blocking I/O from interfering with the O~DELAY flag (see open(2)
and /cntl(2)), the functionality of O~DELAY always supercedes the functionality of
non-blocking I/O. This means that if O~DELA Y is set, the driver will perform read
requests in accordance with the definition of O~DELA Y. When O~DELA Y is not
set, the definition of non-blocking I/O applies.

The default on open of a terminal device file is that non-blocking I/O is disabled.

FIOGNBIO
The integer whose address is arg is set to 1, if non-blocking I/O is enabled. Otherwise,
the integer whose address is arg is set to O.

Process Group Control
Some implementations support process group control. The following structure, used with process
group control, is defined in <bsdtty.h>:

struct ltchars
unsigned char
unsigned char
unsigned char

Hewlett-Packard Company

L..suspc;
t_dsuspc;
L.rprntc;

/ * stop process character * /
/ * delayed stop process character * /
/ * reserved; must be 0377 * /

- 11 - Version B.l, October 1986

TERMIO(7)

};

unsigned char
unsigned char
unsigned char

L..flushc;
t_werasc;
t.--lnextc;

HP-UX

/ * reserved; must be 0377 * /
/* reserved; must be 0377 */
/* reserved; must be 0377 */

TERMIO(7)

The initial value for all these characters is 0377 which causes them to be disabled. The meaning
for each character is as follows:

L . ..suspc is used to suspend the currently active process group. A suspend signal
(SIGTSTP) is sent to all processses in the currently active process group. Nor­
mally, each process is forced to stop, but arrangements may be made either to
ignore the signal or to receive a trap to an agreed-upon location; see signal(2).
When enabled, the typical value for this character is control-z or ASCII SUB.

functions like t.-auspc does, except that the suspend signal is sent when a pro­
cess reads the character rather than when it is typed. When enabled, the typical
value for this character is control-y or ASCII EM.

Attempts to set any of the reserved characters to a value other than 0377 will cause the ioetl to
be returned with an EINVAL error code and no change will occur.

The ioetl(2) system calls which use the above structure have the form:

ioctl (fildes, command, arg)
struct ltchars *argj

The commands using this form are:

TIOCGL TC Get the process group control characters and store in the ltehars struc­
ture whose address is argo This command is allowed from a background
process; however, the information may be subsequently changed by a
foreground process.

TIOCSL TC Set the process group control characters from the structure whose
address is arg.

Additional process group control ioetl(2) commands have the form:

ioctl (fildes, command, arg)
unsigned int *argj

The commands using this form are:

TIOCGPGRP

TIOCSPGRP

Returns in the integer whose address is arg the currently active process
group associated with the terminal. This command is allowed from a
background process; however, the information may be subsequently
changed by a foreground process.

Sets the currently active process group associated with the terminal to
be the one whose address is arg.

The following condition must be met for the request to succeed; other­
wise, the error [EINV ALl is returned:

The new process group value must be in the range of valid process
group ID values, or it must be zero ("no process group").

One or more of the following conditions must be met for the request to succeed; otherwise, the
error [EPERMl is returned:

The effective user ID of the current process is super-user.

Hewlett-Packard Company - 12 - Version B.1, October 1986

TERMIO(1) HP-UX TERMIO(1)

The process group ID whose address is arg matches the saved process group
ID of the calling process.

If any processes exist with a process ID or process group ID that is the
same as the process group whose address is arg, those processes must have
the same real or saved user ID as the real or effective user ID of the calling
process, or be descendants of the calling process.

TIOCLGET
Get the process group control mode word and store in the int pointed to by argo This command
is allowed from a background process; however, the information may be subsequently changed by
a foreground process.

TIOCLSET
Set the process group control mode word from the int pointed to by argo

TIOCLBIS
Use the int pointed to by arg as a mask of bits to set in the process group control mode word.

TIOCLBIC
Use the int pointed to by arg as a mask of bits to clear in the process group control mode word.

The following bit is defined in the process group control mode word:

LTOSTOP Send SIGTTOU for background write or ioctl.

If the LTOSTOP bit is set, then an attempt by a process which is not in the distinguished process
group to write data or to issue an ioctl(2) system call which will change the tty state will cause a
SIGTTOU signal to be sent to that process group.

WARNINGS
Because various HP-UX implementations use non-serial interfaces which look like terminals (e.g.
internal CRTs) or 'smart cards' which cannot implement the capabilities described above exactly,
not all the systems can meet the standard stated above exactly. Each implementation is required
to state any deviations from the standard as part of its system specific documentation.

FIOSSAIOSTAT is similar to 4.2 BSD FIOASYNC, with the addition of provisions for security.
FIOGSAIOST AT is of HP origin, complements FIOSSAIOST AT, and allows saving and restoring
system asynchronous I/O TTY state for BSD style job control. FIOSSAIOOWN is similar to 4.2
BSD FIOSETOWN, with the addition of provisions for security. FIOGSAIOOWN is similar to 4.2
BSD FIOGETOWN. Note also the difference that the 4.2 BSD version of this functionality used
process groups, while the HPUX version only uses processes. FIOSNBIO is the same as 4.2 BSD
FIONBIO, except that it does not interfere with the ATT O~DELAY open and fcntl flag.
FIOGNBIO is of HP origin, complements FIOSNBIO, and allows saving and restoring non-blocking
I/O TTY state for BSD style job control.

HARDW ARE DEPENDENCIES
Series 200, 300:

Data loss may occur with HP 98626/98644 serial interfaces if the effective combined data
rate for all installed serial interfaces exceeds 2400 baud (for example, two interfaces running
at 1200 baud and a third at 300 baud is equivalent to 2700 baud combined).

The c_iftag field parameter IXANY (enable any character to restart output) is not sup­
ported by the HP 98628B interface card.

The c_iftag field parameter IENQAK (enable output pacing control) is not supported.

Timed delays are not supported.

The HP 98628B interface does not support the following baud rates: 900, 7200, 38400.

Hewlett-Packard Company - 13 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

The c_Iftag field parameter XCASE is not supported.

Series 200, 300, 500
Job control and asynchronous I/O are not supported.

Series 500:
The baud rate of 38400 is not supported by the RS-232 interface.

HP27140 Six-Channel Modem Multiplexer:
Timed output delays (as opposed to fill-character delays) are not supported.

The XCASE flag is not supported.

These baud rates are not supported: 200, 38400, EXTA, and EXTB.

HP27128 Asynchronous Serial Interface, HP27130 Eight-Channel Multiplexer:

Series 800:

These baud rates are not supported: 200, 38400, EXTA, and EXTB.

There is no support for tab expansion, case mapping, or output delays for control
characters.

The line kill character is always echoes as <backslash><CR><LF>, so the ECHOK
flag is not setable, and will always have the same state as the ECHO flag.

When type-ahead limit is reached, input is not flushed, but further input is simply
ignored.

The P ARMRK flag is not supported.

The echoing of carriage-return and new-line characters may not be quite as expected
in the more obscure driver configurations.

The echoing of the EOF character is not suppressed.

The ONLRET, ON OCR, and OCRNL flags are not supported.

The VMIN and VTIME parameters for raw terminal input are not supported.

The ECHONL flag is not supported.

When ECHOE is set and ECHO is clear, a <SP><BS> is not echoes for the erase
character.

(27130 only) The CLOCAL flag is permanently set.

(27128 only) The default setting of baud rate, bits per character, parity, and CLO­
CAL bit are determined by the switches on the interface.

(27128 only) The "direct connect" cable (female connector) does not contain a Data
Carrier Detect line, so a hangup signal will be sent if the CLOCAL flag is cleared
when this cable is being used.

Model 520 Console, HP98700 Terminal, Pseudo Terminal (pty): Since these devices
do not deal with real asynchronous serial data links, the following flags have no
effect: IGNPAR, PARMRK, INPCK, IXOFF, IENQAK, CBAUD, CSIZE, CSTOPB,
P ARENB, P ARODD, HUPCL, and CLOCAL.

ENQ/ ACK protocol and IENQAK bit are not supported.

Timed output delays are not directly supported. If used, an appropriate number of fill characters
(based on the current baud rate) is output. The total time to output the fill characters is at least
as long as the time requested.

The baud rate of 38400 is not supported by the RS-232 interface.

Hewlett-Packard Company - 14 - Version B.1, October 1986

TERMIO(7) HP-UX TERMIO(7)

The system specified input flow control values are as follows: low water mark is 60, high water
mark is lBO, and maximum allowed input is 512.

AUTHOR

FILES

Termio was developed by HP, AT&T, and the University of California, Berkeley.

I dev / console
/dev/tty*

SEE ALSO
mknod(1M), stty(1), fork(2), ioctl(2), setpgrp(2), signal(2), stty(2), blmode(3C), sttyV6(7), tty(7),
modem(7).

Hewlett-Packard Company - 15 - Version B.I, October 1986

TTY(7) HP-UX TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION
The file /dev /tty is, in each process, a synonym for the control terminal associated with the pro­
cess group of that process, if any. It is useful for programs or shell sequences that wish to be sure
of writing messages on the terminal no matter how output has been redirected. It can also be
used for programs that demand the name of a file for output, when typed output is desired and it
is tiresome to find out what terminal is currently in use.

FILES
/dev/tty
/dev/tty*

SEE ALSO
termio(7).

Hewlett-Packard Company - 1 - Version B.1, October 1986

MANUAL COMMENT CARD

HP-UX Reference

HP Part Number 09000-90010 4/87

Please help us improve this manual. Circle the numbers in the following
statenlent that best indicate how useful you found this rnanual. Then add
any further comments in the spaces below. In appreciation of your time, we
will enter your name in a quarterly drawing for an HP calculator. Thank
you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors? _________________ _

Comments: ________________________ ___

Name: __________________________ ___

Job Title: ________________________ _

Company: _________________________ __

Address: _________________________ ___

D Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

111111
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
09000-90010
Microfiche No. 09000-99010
Printed in U.S.A. 4/87

Flin- HEWLETT
~~ PACKARD

[]9[][][]-9[]bb5
For Internal Use Only

