

Patching Mission Critical Systems
White Paper

Table of Contents

1. Introduction .. 1
Scope ... 1
Intended Audience.. 1

2. What are Patches?... 2
A Brief History of Patching.. 2
Types of Patches .. 2

3. Benefits and Risks of Patching... 4
Why Patch at All? ... 4
Patching Risks.. 5

4. The Patching Process .. 10
5. Software Management Strategies .. 11

Definition of Strategies.. 11
Strategic Recommendations... 14

6. Patching Best Practices ... 15
Testing.. 15
Use of Templates.. 15
Preparation and Contingency Planning .. 16
Patch Processes... 16
Clustering ... 17
Use of Patch Bundles ... 17
Vendor Partnerships ... 18
Proactive Patching Frequency.. 18

7. Summary.. 19

 1

1. Introduction
This document focuses on patching, which is one aspect of mission critical
operations. The term 'patch' is usually associated with code repair, although
this definition is not comprehensive. Patches may also be used to enable new
hardware, supply new functionality, or deliver utilities. This paper, however,
will confine the discussion of patches to defect fixes. In this context, patching
falls into the area of ongoing operations and maintenance. Because of this, it
is often overlooked or given low priority. Major design efforts and capital
expenditures are usually concentrated at the beginning of the project life cycle,
during systems design and procurement. Once the systems are installed, it
maybe difficult to find additional resources for operations and maintenance
activities. Unfortunately, it can take a catastrophic event to drive home the
necessity and benefits of proactive support.

Deciding when and how to patch is not always straightforward. It requires both
experience in managing software and an understanding of the operational
requirements of the business involved. This paper begins with discussion of
what patches are and the benefits and risks of patching. It then reviews the
process of patching and offers guidelines for developing a patching strategy
within the larger context of software change management. It also presents
some patching "best practices" from companies that have been successful in
managing software in their computing environments.

The recommendations that follow cover areas that are important to the
maintenance of systems software in mission critical environments. But even
in this area, there is no one "right way" to do things. Every operation is
different. Because operations availability involves a tradeoff between
investment and uptime, it is up to the business to decide what they are willing
to invest for increased system and application availability.

Scope
The recommendations given in this document are targeted for the HP-UX
operating system. However, many of them apply to other operating systems.
The intent of this paper is to present a mindset and an approach rather than
step-by-step instructions. Many of the same principles that work for a
mainframe in a data center apply to a laptop in someone's briefcase.

Intended Audience
This paper is intended for IT managers and systems administrators. It
includes both general background information on how to approach patching
and specific recommendations for improving success. The primary area of
focus is mission critical computing. As such, this paper should be useful to
any IT personnel involved with mission critical operations and planning.

 2

2. What are Patches?

A Brief History of Patching
Originally, patching was purely reactive. When defects were discovered in a
product after it had been released, the development team would create a fix
or workaround. These were subsequently released as patches. If a customer
encountered the defect and contacted the vendor for support, they were given
the patch. Existing users were rarely notified when a problem had been
identified and a patch had been created to fix it. Understandably, users
weren't happy when they experienced a failure due to a known problem.
Even so, many operations today continue to approach patching as a primarily
reactive activity.

Customer dissatisfaction over limited access to information eventually led to a
different approach to patching. Vendors began making information about
patches publicly available. Either through notifications or diligence, systems
administrators began patching machines before problems were encountered.
Subscribing to the idea that this sort of proactive approach would prevent
problems, many systems administrators now undertake to continually apply
every new patch they can find. But this can lead to a different problem.
Because, like the original software, patches can also introduce defects or
side-effects, aggressive proactive patching may introduce new problems as it
solves existing ones.

Clearly, these two approaches are extremes. There is a middle ground
between purely proactive and purely reactive patching. But there is no one
proper approach that applies in all situations. The approach to take depends
on several factors. This paper explores those factors, and it gives guidelines
for determining the best approach to take depending on the situation and the
mission of the system involved.

Types of Patches
The issue of when to apply patches would be easier if patches were limited to
defect fixes. But the fact is that many things are released as patches.
Patches can be used to deliver driver changes for new hardware, product and
application enhancements, utilities, diagnostics, and more. In short, some
very useful features are delivered as patches. This fact broadens the scope
and importance of strategic patch planning.

Patches are available individually, and they may be combined into groups of
related patches known as patch bundles. The grouping can be done by
subsystem, platform, or any other logical association. Some patches address
a single issue, while others combine several fixes. A patch can range in size
and complexity from changing a single character in a file to replacing
complete application binaries.

 3

Patches may be used in different ways depending on the task involved.
Some examples include:

♦ New system installations
♦ Proactive patching
♦ Reactive patching
♦ Operating system upgrades
♦ Hardware and application upgrades

Clearly, there needs to be a plan for each type of patching. For example, an
organization may choose to apply patch bundles when performing a new
system installation but use individual patches in reactive situations. Or
systems administrators may develop a standard system template and create
a master image which is applied to all new systems. In short, there is no one
"right way" to patch that covers all situations. This topic will be explored in
more detail in a separate white paper on patch usage models. For the
purposes of this paper, it is enough to say that strategies need to be
developed for all aspects of mission critical operations.

 4

3. Benefits and Risks of Patching

Why Patch at All?
Complex software invariably contains some defects. The most common
method of correcting software defects is through the application of patches.
Patches can also be used to enable new hardware, deliver new or improved
functionality, or provide useful utilities. Whatever their use, patches are an
important means of software delivery. In terms of reactive support, patches
can be used to repair problems and get an operation back up and running.
Proactively, patches can prevent failures due to known problems or defects.
They can be installed using standard software management tools. They can
make complex modifications to critical subsystems, yet they are relatively
small, allowing them to be distributed easily in a number of different ways.

Clearly, when used appropriately, patches provide many benefits. Because
the application of patches results in changes to system software, patching is a
key part of overall software change management. As such, processes and
strategies need to be developed for the selection, application, and
management of patches.

Proactive Patching
The purpose of proactive patching is to prevent systems downtime due to
known defects. In some cases, these are latent defects that will surface
under certain conditions or at a certain point in time. Other examples of
defects that can be corrected through proactively patching include panics,
hangs, security holes, and memory leaks.

The specific methodology used for proactive patching will vary depending on
the operating systems, subsystems, products, and applications involved, but
the basic mindset should remain the same. A consistent approach to
proactive maintenance should be used with all mission critical systems,
regardless of what they do or where they are located. This is discussed in
more detail in the section on patching strategies.

Reactive Patching
Unlike proactive patching, which can be scheduled and carefully controlled,
reactive patching is usually done under stressful conditions. But it is
particularly important during this kind of exception situation that care be taken
to clearly identify the cause of the problem and then to fix only what is broken.
The tendency may be to apply several fixes at once, hoping that one of them
will solve the problem, but this is exactly the wrong approach. At best, the
problem will be fixed, but the solution will be unclear. At worst, the problem
may be compounded, making restoration even more difficult. When
approaching reactive patching, it is vital to devote sufficient time to diagnosis

 5

of the problem and to ensure that the patch to be installed will solve it. Taking
more time to understand the cause of a problem will lead to a quicker overall
solution. Like a physician with a patient, the first rule of reactive patching
should be "do no harm". It is also vital to develop a contingency plan before
applying any patches. The plan should include a way to back out changes, if
necessary.

For mission critical operations, the focus of reactive patching should be the
restoration of operation. Even if this means operating with degraded
performance, this is usually better than rushing to make changes without
proper planning. Unplanned downtime should not be used an opportunity to
make changes, even if those changes are already scheduled. The focus
during unplanned downtime should be to correct only what is wrong. The
problem can then be documented and avoided in the future. A thorough
understanding of the problem can be gained through the process of
diagnosis, isolation, and resolution. As with any changes to a mission critical
system, all reactive changes should first be applied to a test environment.

Patching Risks
Whatever the intended use, it is clear that patches introduce change into the
operating environment. When the change is necessary to prevent or correct
a problem or to enable needed functionality, patches are extremely valuable
tools. However, patches also have the potential to cause as well as solve
problems. The key, then, is to understand the risk involved in making
changes and to manage that risk.

What Causes Risk?
The core concept to software change management is that change introduces
risk. The type and magnitude of the risk depend on the nature of the change.
Clearly, care needs to be taken whenever changes are made, especially
when dealing with mission critical systems.

This might seem to be an argument against any sort of proactive patching.
Why make changes to a working system? The answer is that the risk of
making a change needs to be balanced against the risk of not making a
change. Take as an example a security hole that leaves key systems
exposed. By the time the vulnerability has been discovered, critical
information may have been compromised. Proactive maintenance can help
to avoid this sort of problem. It can also prevent system hangs, panics,
memory leaks, and data corruption.

On the other hand, not all updates are beneficial. All too often, what starts as
a minor upgrade turns into a major problem. The key question that must be
asked before any change is made is whether its benefits outweigh its risks.

 6

Software Quality
Ideally, original software would be perfect, and there would be little or no
need for patches. Unfortunately, as software grows in size and complexity,
defects are inevitable. While vendors perform rigorous testing of new
software prior to release, testing can only catch a percentage of defects. It is
nearly impossible for test environments to simulate every possible end-user
configuration of hardware, software, and loading. This is true of new versions
of operating systems and applications. It is also true of patches.

Following initial development, testing, and release, additional software defects
are discovered and corrected over time. This trend is depicted qualitatively
in Figure 1. Stated simply, software that has been in use for a long time and
in many different environments is less likely to contain critical defects than
brand new software. The practical implication of this fact is that brand new
patches introduce more risk than patches with more cumulative experience.
If experience is defined as total hours of operation, then a rough measure of
experience is the age of the patch. Since defects are more likely to be found
when a patch is new, older patches are safer and introduce less risk than
newer patches.

Figure 1: Discovered Software Defects Over Time

Time from Initial Release

D
ef

ec
ts

 R
em

ai
n

in
g

Looking at HP-UX patches specifically, there is a common misconception that
once a patch has been superceded, it should no longer be used. However,
this is not the case. Patch releases follow a "release stream" similar to the
products or subsystems they address. The changes are cumulative. So, for
example, a new mass storage patch that supercedes a previous patch has all
of the fixes of the older patch along with some new changes. If a mass
storage problem is encountered that is solved by two patches, one older and
one newer, the older patch is often the better choice.

The only time an HP-UX patch should be avoided is when it has been
recalled. Hewlett-Packard recalls patches that introduce either explicit
defects or undesirable side-effects. Even with recalled patches, though, it is

 7

important to carefully review the purpose of the patch and the availability of
alternatives or workarounds. There are times when it may make sense to
keep or even add a recalled patch to a system, if the benefits outweigh the
risks.

Types of Risk
Risk cannot be completely eliminated in an IT environment. Just because
systems are functioning well today does not mean that they will continue to do
so indefinitely. Conditions and requirements may change over time. There
are several types of risk involved with software. Some are risks inherent in
the product. Others are risks related to the way in which the software is used.
Some of the risks involved with patches and the patching process are listed
below. In many cases, there are two risks -- one of doing nothing, and
another of doing something -- that must be balanced.

Unplanned Downtime
The biggest risk to systems from software quality is downtime. If a critical
system or application is unavailable, the negative consequences can include
substantial loss of revenue or even loss of life. For mission critical systems
and applications, all efforts should be focused on maximization of availability.

Poor Performance
Even if a system is running, it may run the risk of delivering unacceptable
performance. If system response is slow, end-users will only wait a limited
amount of time before giving up. Some may try again later. Others will find
an alternative. In the case of e-commerce, this can mean the difference
between a company's survival and its extinction.

Impaired Function
Even though a system may be available and performing its primary mission
well, it may still have problems. These can range from minor annoyances to
severe usability issues. Take, for example, a problem with a system utility. If
the utility is used by only a few users, and if an adequate workaround exists,
then making modifications to the system may not be a good idea. If,
however, the problem affects a large number of users and hampers their
ability to do their jobs, then a fix will provide substantial benefit. In evaluating
when to make changes, an assessment must be made as to whether the
problem is severe enough to warrant an attempted solution.

 8

The Role of Change Management
Patching falls within the larger context of software change management. It is
not enough to just identify and apply patches. There needs to be a consistent
framework within which the patch process takes place. Software change
management plays a vital role in increasing systems availability. It includes
software selection, installations, upgrades, daily operation, and eventual
software removal. Formal change management establishes who is
authorized to perform which actions on what systems or subsystems at what
times. It covers areas such as security and auditing, and it provides oversight
so that possible mistakes can be detected and avoided before they are
placed into production. The greater the consequences of downtime, the
greater the need for formal software change management. For mission
critical environments, change management must be fully integrated into all
aspects of production operations.

Some of the key elements of software change management include:

♦ Defined roles and responsibilities
♦ Documented operating processes and procedures
♦ Coordinated, cross-functional planning
♦ System and application templates along with a configuration database
♦ A formal release-to-production process for new hardware, software, and

applications
♦ Established support and escalation processes
♦ A detailed change log for each system
♦ A test environment that closely resembles the production environment
♦ Procedures for testing and validation of proposed changes
♦ Contingency and back-out planning
♦ A comprehensive, validated disaster recovery plan

All of these elements combine to foster a mission critical mindset within the
data center.

Business/IT Alignment
Increased system uptime is not free; it requires significant investment. Failure
to make the necessary investment puts the business at risk. Investments that
increase the availability of mission critical systems should be seriously
considered. For critical operations that cannot get sufficient funding to
support proper software change management, there may be an alignment
problem between business and IT.

At the same time, many operations are classified as 24x7x365 unnecessarily.
Since IT spending is limited, the needs of different systems and operations
must be balanced against one another. One way to do this is by ranking
different operations in the enterprise in terms of priority. This will bring focus
to the relative importance of each system. By setting priorities, it becomes
clearer where to invest IT resources.

 9

Systems versus Operations
At this point, a further note is warranted on the difference between systems
and operations. A system is a machine, while an operation is a function. It is
the business function that is important. If it happens to run or depend on a
single system or application, then the system or application is mission critical
and it represents a single point of failure. If, however, the system has built-in
redundancy -- perhaps through the use of system clusters -- then the failure
of one component does not cause a loss of function.

 10

4. The Patching Process
The typical software lifecycle involves investigation, planning, implementation,
continuous delivery, and obsolescence. While the process of applying
patches clearly fits into the delivery phase, there are elements of the patching
process that fit into other phases, as well. The success of the overall
patching process depends on the successful execution of each step.

The basic stages of patching include:

♦ Strategic planning to determine an appropriate approach to patching
for the operations involved

♦ Diagnosis to determine whether patches are needed in a given
situation, and why

♦ Identification of an appropriate patch or patches
♦ Dependency analysis to find if the selected patch(s) depends on

additional patches, and if those patches, in turn have dependencies
♦ Conflict resolution to resolve any possible structural conflicts among

patches resulting from multiple patches affecting the same subsystem
♦ Retrieval of the selected patches, either electronically or via physical

media
♦ Installation planning, including allowances for scheduled downtime

and procedures for making changes and contingency planning to back
out changes if they appear to have undesirable side-effects

♦ Installation and testing of the patches on a target system. This
should be a multi-step process, with changes being made first on a
pre-production system to validate the changes, and later in the
production environment. Pre-production testing may last for an
extended period to verify proper function.

♦ Verification that the patch(s) installed correctly and that it has the
desired effect. This includes checking the installation logs and
verifying that the patch was correctly configured.

♦ Distribution to other systems in the environment, if applicable.
Possible steps include setting up a patch depot server and scheduling
installation on other systems.

Following established procedures will help to ensure that patching goes
smoothly.

 11

5. Software Management Strategies
This section outlines a set of software management focus areas based on
usage and tolerance to downtime. As mentioned earlier, there is always a
risk that software that has been successfully tested in a lab environment may
cause problems when applied to a “new” configuration. For this reason, it is
important to limit the number of changes made to a target system. This is a
departure from the “install all the latest patches and upgrades” philosophy
that HP has used in the past. The new message is “install only what you
really need, and understand the risk you’re introducing”.

Definition of Strategies
Hewlett-Packard has developed three strategies for dealing with software
change management in mission critical environments. The strategies are
based on operational requirements. The process of selecting an appropriate
strategy seeks to align behavior with the key business objectives of the
systems involved. The goals of evaluating an operation and choosing an
appropriate strategy include:
§ Reduced risk
§ Increased system and application availability
§ Reduced maintenance time

The three strategies for software change management are: Restrictive,
Conservative, and Innovative. Four operational factors are used to determine
the appropriate strategy:

§ New feature requirement: the need to introduce new operating system
and/or application features into the operating environment

§ Unplanned downtime: tolerance for the operation not being available
outside the scheduled maintenance windows

§ Impact on core business: the extent to which the business ceases to
function as a result of downtime

§ Self-maintenance: an indication of whether or not all systems planning
and maintenance activities are performed in-house without vendor or 3rd-
party involvement

Using these factors, Table 1 lists the resulting change management
strategies.

Table 1: Criteria for Software Change Management Strategies

Strategy New

Features
Unplanned
Downtime

Impact on
Core Business Self-Maintenance

Restrictive No Unacceptable High No

Conservative No Unacceptable Medium No

Innovative Yes Acceptable Low Yes

 12

A more detailed description of each strategy now follows.

Restrictive
This strategy focuses on business operations that require maximum stability
and availability. All processes should be designed to eliminate risk and
ensure that nothing interferes with standard function. Air traffic control,
patient monitoring, telecommunications, and online financial transactions are
examples of restrictive environments.

New Features
Since the primary focus of this type of operation is system availability with
zero downtime, there should be virtually no requirement or desire to
implement new features. Any new functionality is first tested within a
stringent test environment and will only be put in place when there is a direct
business need to do so.

Unplanned Downtime
There is zero tolerance for downtime in a restrictive environment. Activities
that could impact standard operations are seen as possibilities for failure.
Restrictive environments often have little or no time available for scheduled
downtime, either.

Impact on Core Business
If the operation comes to a halt the business itself comes to a halt.
There is an absolute one to one relationship between the operation being
available and the business being able to run. There is usually no workable
operational alternative.

Self-Maintenance
This operation usually has a staff of very highly qualified personnel who are
capable of performing many of the routine tasks. However, when it comes to
systems planning and exceptional tasks, the vendor is usually called upon to
provide for assistance, support, and backup.

Conservative
This strategy's goal is to ensure the high availability of its operations. Limited
changes can be made once all risks are investigated and addressed. To
maximize availability, modifications are first evaluated in a test environment.
A Conservative strategy for software change is appropriate for many mission
critical systems. Examples include payroll processing, financial reporting, and
most batch-oriented functions.

 13

New Features
Since the primary focus of this type of operation is high availability, the need
to implement new features or functionality is limited. Only features that will
increase availability or are business-critical are considered.

Unplanned Downtime
Systems that employ a Conservative strategy have a low tolerance for
downtime. Only the most critical changes are considered for implementation.
Available windows for scheduled downtime are usually limited.

Impact on Core-Business
The main difference between Conservative and Restrictive strategies with
regard to impact on core business is in timing. For Restrictive environments,
loss is immediate and catastrophic. For Conservative systems, the impact is
not as sudden. If the operation comes to a halt the business itself will
continue to run, although an extended outage may have considerable impact.

Self-Maintenance
This operation usually has a staff of very highly qualified personnel who are
capable of performing many of the routine tasks. However, when it comes to
systems planning and exceptional tasks, the vendor is usually called upon to
provide for assistance, support, and backup.

Innovative
This strategy is primarily driven by the need to provide new functionality,
cutting-edge technologies, or research and development. This more
aggressive position requires a higher tolerance of downtime than the other
two strategies. Simulations, prototyping, and new hardware or software
qualification are common activities in Innovative environments.

New Features
Since the primary focus of this type of operation is to test and implement new
technologies, the need for new features is high. New features are required to
meet specific needs, and without them, the business is at risk. They operate
at the leading edge.

Unplanned Downtime
Because of the frequent changes required in Innovative environments,
unplanned downtime is not uncommon. This is an operational expense and
should be planned for. Often planned downtime occurs on an ad hoc basis
as well, rather than at pre-planned times.

Impact on Core Business
If the operation stops, there will be little or no short-term impact on the core
business. Downtime must be allowed for and recognized as one of the costs
of maintaining a leading-edge operation.

 14

Self-Maintenance
Environments employing an Innovative strategy will frequently perform all
planning and maintenance activities without vendor involvement. Often
technical staff performing maintenance tasks will use the opportunity to
further their knowledge of the technology involved. Operations may be
performed by developers or software engineers. Only when operations are
stopped for an extended period of time will the vendor be called in to help.

Strategic Recommendations
Recommendations for software change management have been developed
that correspond to each software change strategy. They cover five different
areas:
§ Operating System and Applications: including the core O/S and major

applications used by the operation
§ Proactive Patching: including all patching activities for which no

symptoms or problems are currently evident
§ Reactive Patching: performed in response to a visible system problem
§ Change Management: covering all processes and standards used to

manage data center operations
§ Test Environment: including systems, software, and equipment used to

support the production operations. The test environment is used to
evaluate changes before they are put into production.

Table 2 lists the recommendations for each software strategy.

Table 2: Software Management Recommendations

Strategy O/S & Apps Proactive
Patching

Reactive Patching Change
Management

Test
Environment

Restrictive Stable
releases,

available for
1+ years

Use only
thoroughly-tested
patches with the

highest level of field
experience

Make fewest changes
possible to restore

function; perform full
diagnostic analysis
before attempting a

solution

Formal plan with explicit
roles & responsibilities;
prepared plan to back

out changes if
necessary; documented
DRP that is updated &
tested at least yearly

Dedicated
equipment that

matches production
environment

including simulated
loads

Conservative Stable
release,

available for
6+ months

Use only
thoroughly-tested

patches with
substantial field

experience

Make fewest changes
possible to restore

function; perform full
diagnostic analysis
before attempting a

solution

Formal plan with explicit
roles & responsibilities;
prepared plan to back

out changes if
necessary

Dedicated
equipment that

matches production
environment

Innovative Stable
release,

available for
2+ months

Patches should be
carefully reviewed

for risks and
benefits

Focus on restoration
of function; limit

number of concurrent
changes

Established roles
&responsibilities

Test or
development

equipment or off-
hours on

production
environment

 15

6. Patching Best Practices
As stated previously, there is no single "right way" to patch mission critical
systems. What follows is a collection of best practices from IT organizations
that have successfully increased their systems availability. Some are directly
related to patching. Others fall more within the area of software change
management. What they have in common is the element of planning.
Because all changes to a mission critical environment introduce risk, they
must be planned for as carefully as possible.

Testing
The single most important thing that can be done to ensure the success of
software changes is to test them first in a non-production environment. The
purpose of this testing is to uncover potential problems unique to the systems
environment in which the patches will be used. The success of this approach,
however, depends on how closely the test environment matches the
production systems. Depending on the magnitude of the change and the
required level of confidence, changes may need to be tested for extended
periods of time under simulated loads.

Once a change has been tested in a pre-production environment, it should be
released to production in phases. That way, it will be possible to check for
systems interactions that could not be duplicated in the test environment. If
problems are encountered, it is important to factor in recovery time in the
move-to-production process.

Use of Templates
In terms of patching, the approach taken needs to be tailored to the mission
of the system involved. However, it is not practical to develop individual
patching strategies for each system. By grouping systems according to
function, a limited number of patching templates can be created. These
templates can be incorporated into a comprehensive change management
plan and configuration database.

For example, all systems that support enterprise resource planning (ERP)
might be assigned to one group. A template can then be created for the ERP
group that defines patching standards and rules for change management.
The rules should limit the kinds of patches that can be applied and define
specific procedures to follow for backing out changes. They might also point
administrators to a single location where a "master copy" of software is
maintained. This use of a centrally-managed software depot improves
manageability and usability. It also allows administrators to monitor usage
information that would be difficult to gather by other means.

 16

By combining the depot with a knowledge base, it is possible to record
information such as:

♦ Which patches have been installed on what systems, and for how
long?

♦ Which patches have fixed specific problems?
♦ Which patches have caused problems?

Preparation and Contingency Planning
Whenever a change is going to be made to a mission critical system, it is
important to develop a contingency strategy in case something goes wrong.
These precautions will speed the recovery time as well as help in estimating
the duration of performing the change. Some steps that can be taken include:

♦ Performing a full backup before applying changes
♦ Splitting mirrored volumes to maintain an original copy
♦ Making a recovery image
♦ Verifying patch install and de-install on a test system
♦ Developing a plan to back out changes if necessary

Another important part of planning is factoring in the time and number of
personnel necessarily to do each of the steps. These steps should be
calculated in serial since most are dependent upon successful completion of
the prior step, and many functions cannot be easily split among personnel or
done in parallel.

Patch Processes
Patch Selection
A patch selection process provides an added level of safety for production
systems. Stated simply, newer patches are not always better. There may be
multiple patches that fix a particular problem. In deciding which one to use,
consider the fact that older patches have more cumulative time in production
than brand new patches. As a rule of thumb, the best patch to use is the
oldest one that solves the problem. It is a good idea to develop a process for
selecting patches that recognizes this relationship.

Recalled Patches

Likewise, it is a good idea to develop a process for dealing with recalled
patches. It might seem that all recalled patches should be removed
immediately from every system. But even this is not a firm rule. When HP
recalls a patch, it does so because the patch introduces a new defect or an
undesirable side-effect. But that same patch may fix a critical defect. In
analyzing recalls, it is important to determine the following information prior to
taking action:

♦ Why was the patch recalled?
♦ Does the reason for the recall affect local systems?
♦ What does the patch fix?
♦ Do alternate patches exist that fix the same problem?

In the end, judgment needs to be applied.

 17

Clustering
One way to minimize the impact of both planned and unplanned downtime is
through the use of high availability clusters. For HP-UX systems, this
involves the use of products such as MC/ServiceGuard or MC/LockManager1.
For clustered systems with automatic fail-over, the unplanned downtime
benefits are clear. When a system or subsystem fails, the application
automatically moves to another node in the cluster.

System clustering offers advantages from a software management
standpoint, as well. By shifting applications around within a cluster, it is
possible to perform "rolling updates" of software, including patches. That is, it
is possible to move all applications off of one machine in the cluster and
update it without experiencing any downtime. Once the update is complete,
the system is returned to the cluster and another machine is updated until all
systems have been updated. For operations where there is truly no available
downtime, clustering provides the ability to perform maintenance.

Use of Patch Bundles
In many situations, using standard patch bundles is a more efficient and less
risk-prone way to patch than applying individual patches. Especially when
patching proactively, bundles offer the following advantages:
♦ all dependency analysis has been performed
♦ patches in the bundle have been tested together as a group
♦ unlike individual patches, bundles require a single system reboot
♦ bundles can be used to create standard patch depots for easy deployment
♦ bundle labels provide easy tracking of patch levels

For HP-UX, there are a number of standard bundles which available on
support media such as Support Plus. Additionally, customized collections of
patches can created using tools such as Custom Patch Manager.

The use of bundles is rarely if ever appropriate for reactive patching. When
trying to repair a particular problem, it is important to apply changes carefully.
A good rule for reactive patching is to apply the minimum change necessary
to restore function. This means that more time needs to be spent in
diagnosing the problem than in rushing to fix it.

1 More information on this topic is available in the book "Clusters for High Availability" by
Peter Weygant, ©1996 by Prentice Hall [ISBN 0-13-494758-4].

 18

Vendor Partnerships
Given the rapid pace of change in computing, it is not possible to keep
abreast of everything. Although open systems promise a wide selection
hardware and software components, there clearly are variations among
vendors. One of the key things a business can do to ensure the availability of
their systems and applications is to form support partnerships with their key
hardware and software vendors.

The word 'partnership' is important. It goes much farther than the purchase a
support contract that allows the owner to make calls to a support line. Often
vendors can provide specific expertise and economies of scale. Internal IT
staff should be focused on managing the business. Time spent on operating
system and application software maintenance is time that is not available for
other activities. By forming support partnerships, an IT operation gains
expertise they could not develop and maintain in-house.

In terms of patching, vendors like Hewlett-Packard offer support plans that
include patching analysis and consulting. With the cumulative experience of
HP's field personnel, they will be able to do a safer, more thorough, and more
cost-effective job of patching than an individual company's IT staff.

Proactive Patching Frequency
The final best-practice relates to patching frequency. How often to patch
depends on several factors. The important point is that changes should be
driven by business needs. If a configuration is stable, with no required
changes to hardware or software, semi-annual proactive patching may be all
that is needed. For more dynamic environments, monthly updates may be
required. It should be pointed out, though, that the burden on systems
administrators of proactive patching is proportional to frequency.
Organizations that choose to make frequent changes must be willing to
accept not only the higher risk, but also the higher IT costs.

As a rule of thumb, operations that adopt a Conservative strategy should
proactively patch no more than once every three months, while semi-annual
patching is more appropriate for Restrictive environments. This frequency
balances the need for system stability with the need to stay abreast of
important updates and fixes. Because Hewlett-Packard releases standard
media updates quarterly, it may be worthwhile to synchronize proactive
patching with these releases.

 19

7. Summary
Patching plays an important role in systems availability. Making changes to
an environment introduces risk. For this reason, changes need to be carefully
planned and managed. For all systems, and especially for mission critical
ones, the process of patching needs to be part of a larger change
management plan. By adopting strategies and best practices for software
change management and patching, it is possible to improve uptime while
reducing administrative workload.

While there is no one "right way" to patch, steps can be taken to improve
success. Careless or ad hoc processes are an invitation to disaster.
Strategies for both proactive and reactive patching should be developed with
the collective involvement of all those who have a stake in the outcome. By
working in close partnership with systems and software vendors, it is possible
to develop patching strategies that minimize risk and maximize uptime of
production operations.

	Patching Mission Critical Systems
	1. Introduction
	Scope
	Intended Audience

	2. What are Patches?
	A Brief History of Patching
	Types of Patches

	3. Benefits and Risks of Patching
	Why Patch at All?
	Proactive Patching
	Reactive Patching
	Patching Risks
	What Causes Risk?
	Software Quality
	Types of Risk

	The Role of Change Management
	Business/IT Alignment

	Systems versus Operations

	4. The Patching Process
	5. Software Management Strategies
	Definition of Strategies
	Restrictive
	Conservative
	Innovative

	Strategic Recommendations

	6. Patching Best Practices
	Testing
	Use of Templates
	Preparation and Contingency Planning
	Patch Processes
	Patch Selection
	Recalled Patches

	Clustering
	Use of Patch Bundles
	Vendor Partnerships
	Proactive Patching Frequency

	7. Summary

