
Parallel Programming Guide
for HP-UX Systems

Third Edition

B3909-90006

Customer Order Number: B3909-90006

June 2001



Revision History
Edition: Third

Document Number: B3909-90006
Remarks: June 2001. Document defect corrections.

Edition: Second

Document Number: B3909-90003
Remarks: March 2000. Added OpenMP appendix.

Edition: First

Document Number: B6056-96006
Remarks: June 1998.Initial Release. 

Notice

 Copyright Hewlett-Packard Company 2001. All Rights Reserved. 
Reproduction, adaptation, or translation without prior written 
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without 
notice.

Hewlett-Packard makes no warranty of any kind with regard to this 
material, including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose. Hewlett-Packard 
shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance 
or use of this material.



Table of Contents iii

Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Command syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Associated documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

HP SMP architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Bus-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Hyperplane Interconnect systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Parallel programming model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
The shared-memory paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
The message-passing paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Overview of HP optimizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Basic scalar optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Advanced scalar optimizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Parallelization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2 Architecture overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

System architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Data caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Cache thrashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Physical memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Virtual memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Interleaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Variable-sized pages on HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

3 Optimization levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

HP optimization levels and features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Cumulative Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Using the Optimizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
General guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

4 Standard optimization features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Machine instruction level optimizations (+O0)  . . . . . . . . . . . . . . . . . . . .36
Constant folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Partial evaluation of test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . .36



iv  Table of Contents

Simple register assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Data alignment on natural boundaries . . . . . . . . . . . . . . . . . . . . . . . . 37

Block level optimizations (+O1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Branch optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Dead code elimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Faster register allocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Instruction scheduling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Peephole optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Routine level optimizations (+O2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Advanced constant folding and propagation . . . . . . . . . . . . . . . . . . . . 42
Common subexpression elimination  . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Global register allocation (GRA)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Loop-invariant code motion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Loop unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Register reassociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Software pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Strength reduction of induction variables 
and constants51
Store and copy optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Unused definition elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Loop and cross-module optimization features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Strip mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Inlining within a single source file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Cloning within a single source file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Data localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Conditions that inhibit data localization . . . . . . . . . . . . . . . . . . . . . . . 59

Loop blocking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Data reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Loop distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Loop fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Loop interchange  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Loop unroll and jam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Preventing loop reordering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Test promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Cross-module cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Global and static variable optimizations . . . . . . . . . . . . . . . . . . . . . . . 91
Inlining across multiple source files  . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Parallel optimization features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Levels of parallelism  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Table of Contents v

Loop-level parallelism  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Loop transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Idle thread states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Determining idle thread states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Parallel optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Dynamic selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Inhibiting parallelization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Loop-carried dependences (LCDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Preventing parallelization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Parallelism in the aC++ compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Cloning across multiple source files . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

7 Controlling optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Command-line optimization options. . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Invoking command-line options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
+O[no]aggressive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
+O[no]all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
+O[no]autopar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
+O[no]conservative  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
+O[no]dataprefetch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
+O[no]dynsel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
+O[no]entrysched  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
+O[no]fail_safe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
+O[no]fastaccess  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
+O[no]fltacc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
+O[no]global_ptrs_unique[=namelist] . . . . . . . . . . . . . . . . . .122
+O[no]info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
+O[no]initcheck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
+O[no]inline[=namelist]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
+Oinline_budget=n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
+O[no]libcalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
+O[no]limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
+O[no]loop_block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
+O[no]loop_transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
+O[no]loop_unroll[=unroll factor] . . . . . . . . . . . . . . . . . . . . . . . .127
+O[no]loop_unroll_jam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
+O[no]moveflops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
+O[no]multiprocessor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
+O[no]parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
+O[no]parmsoverlap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130



vi  Table of Contents

+O[no]pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
+O[no]procelim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
+O[no]ptrs_ansi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
+O[no]ptrs_strongly_typed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
+O[no]ptrs_to_globals[=namelist] . . . . . . . . . . . . . . . . . . . . . . 135
+O[no]regreassoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
+O[no]report[=report_type]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
+O[no]sharedgra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
+O[no]signedpointers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
+O[no]size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
+O[no]static_prediction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
+O[no]vectorize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
+O[no]volatile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
+O[no]whole_program_mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
+tm target  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C aliasing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Optimization directives and pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Rules for usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
block_loop[(block_factor=n)] . . . . . . . . . . . . . . . . . . . . . . . . . 148
dynsel[(trip_count=n)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
no_block_loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
no_distribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
no_dynsel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
no_loop_dependence(namelist)  . . . . . . . . . . . . . . . . . . . . . . . . . . 149
no_loop_transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
no_parallel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
no_side_effects(funclist)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
unroll_and_jam[(unroll_factor=n)]  . . . . . . . . . . . . . . . . . . . 150

8 Optimization Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Optimization Report contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Loop Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Supplemental tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9 Parallel programming techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Parallelizing directives and pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Parallelizing loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
prefer_parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
loop_parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
prefer_parallel, loop_parallel attributes . . . . . . . . . . . . . . . 181
Combining the attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Comparing prefer_parallel, loop_parallel . . . . . . . . . . . . . . 184
Stride-based parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
critical_section, end_critical_section  . . . . . . . . . . . . . . . 189



Table of Contents vii

Disabling automatic loop thread-parallelization  . . . . . . . . . . . . . . . .191
Parallelizing tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

Parallelizing regions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
Reentrant compilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Setting thread default stack size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
Modifying thread stack size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

Collecting parallel information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Number of processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Number of threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Thread ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
Stack memory type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

10 OpenMP Parallel Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

What is OpenMP?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

HP’s implementation of OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
OpenMP command-line options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
OpenMP directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
OpenMP data scope clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
Other supported OpenMP clauses. . . . . . . . . . . . . . . . . . . . . . . . . . . .210

From HP Programming Model to OpenMP . . . . . . . . . . . . . . . . . . . . . .211
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
HP Programming Model directives . . . . . . . . . . . . . . . . . . . . . . . . . . .212

More Information on OpenMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

11 Data privatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Directives and pragmas for data privatization  . . . . . . . . . . . . . . . . . . .218
Privatizing loop variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
loop_private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
save_last[(list)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

Privatizing task variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
task_private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Privatizing region variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
parallel_private  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229

12 Memory classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Porting multinode applications to single-node servers . . . . . . . . . . . . .234

Private versus shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
thread_private. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
node_private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Memory class assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
C and C++ data objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237



viii  Table of Contents

Static assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

13 Parallel synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Thread-parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Thread ID assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Synchronization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Using gates and barriers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Synchronization functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
sync_routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
loop_parallel(ordered)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Critical sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Ordered sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Synchronizing code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Using critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Using ordered sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Manual synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

14 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
ANSI algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Type-safe algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Specifying aliasing modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Iteration and stop values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Global variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

False cache line sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Aligning data to avoid false sharing  . . . . . . . . . . . . . . . . . . . . . . . . . 281
Distributing iterations on cache line boundaries  . . . . . . . . . . . . . . . 282
Thread-specific array elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Scalars sharing a cache line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Working with unaligned arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Working with dependences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Floating-point imprecision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Enabling sudden underflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Invalid subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Misused directives and pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Loop-carried dependences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Nondeterminism of parallel execution  . . . . . . . . . . . . . . . . . . . . . . . 294

Triangular loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Parallelizing the outer loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Parallelizing the inner loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Examining the code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Compiler assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304



Table of Contents ix

Incrementing by zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
Trip counts that may overflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Appendix  A: Porting CPSlib functions to 
pthreads309

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309
Accessing pthreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310

Mapping CPSlib functions to pthreads. . . . . . . . . . . . . . . . . . . . . . . . . .311

Environment variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317
Using pthreads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318

Symmetric parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318
Asymmetric parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329
Synchronization using high-level functions  . . . . . . . . . . . . . . . . . . . .332
Synchronization using low-level functions . . . . . . . . . . . . . . . . . . . . .337

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



x  Table of Contents



List of Figures xi

Figures

Symmetric multiprocessor system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Message-passing programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
K-Class bus configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
V2250 Hyperplane Interconnect view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Array layouts—cache-thrashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Array layouts—non-thrashing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
V2250 interleaving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
V2250 interleaving of arrays A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
LCDs in original and interchanged loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Values read into array A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Blocked array access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Spatial reuse of A and B  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
One-dimensional parallelism in threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Conceptual strip mine for parallelization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Parallelized loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Stride-parallelized loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Ordered parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256
LOOP_PARALLEL(ORDERED) synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
Data ownership by CHUNK and NTCHUNK blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303



xii List of Figures 



List of Tables xiii

Tables

Locations of HP compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Optimization levels and features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Loop transformations affecting data localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Form of no_loop_dependence directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Computation sequence of A(I,J): original loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Computation sequence of A(I,J): interchanged loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Forms of block_loop, no_block_loop directives and pragmas . . . . . . . . . . . . . . . . . . . . . .70
Form of no_distribute directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Forms of unroll_and_jam, no_unroll_and_jam directives and pragmas . . . . . . . . . . . . .85
Form of no_loop_transform directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Form of MP_IDLE_THREADS_WAIT environment variable. . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Form of dynsel directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Form of reduction directive and pragma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Form of no_parallel directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Command-line optimization options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
+O[no]fltacc and floating-point optimizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Optimization Report contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
+tm target and +DA/+DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Directive-based optimization options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Form of optimization directives and pragmas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Optimization Report contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Loop Report column definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
Reordering transformation values in the Loop Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Optimizing/special transformations values in the Loop Report  . . . . . . . . . . . . . . . . . . . . . . .157
Analysis Table column definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Privatization Table column definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
Variable Name Footnote Table column definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Parallel directives and pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
Forms of prefer_parallel and loop_parallel directives and pragmas  . . . . . . . . . . . .181
Attributes for loop_parallel, prefer_parallel   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
Comparison of loop_parallel and prefer_parallel  . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Iteration distribution using chunk_size = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
Iteration distribution using chunk_size = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
Forms of critical_section/end_critical_section directives and pragmas. . . . . . . . . . . . . . . . . .189
Forms of task parallelization directives and pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Attributes for task parallelization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Forms of region parallelization directives and pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Attributes for region parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Forms of CPS_STACK_SIZE environment variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
Number of processors functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204



xiv List of Tables 

Number of threads functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Thread ID functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Stack memory type functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
OpenMP Directives and Required Opt Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
OpenMP and HPPM Directives/Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Data Privatization Directives and Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Form of loop_private directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Form of save_last directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Form of task_private directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Form of parallel_private directive and pragma  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Form of memory class directives and variable declarations  . . . . . . . . . . . . . . . . . . . . . . . . . 236
Forms of gate and barriers variable declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Forms of allocation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Forms of deallocation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Forms of locking functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Form of unlocking functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Form of wait functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Form of sync_routine directive and pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Forms of critical_section, end_critical_section directives and pragmas  . . . . . . 257
Forms of ordered_section, end_ordered_section directives and pragmas. . . . . . . . . 258
Initial mapping of array to cache lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Default distribution of the I loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
CPSlib library functions to pthreads mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
CPSlib environment variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319



Preface xv

Preface

This guide describes efficient methods for shared-memory programming 
using the following HP-UX compilers: HP Fortran, HP aC++ (ANSI C++), 
and HP C. 

The Parallel Programming Guide for HP-UX is intended for use by 
experienced Fortran, C, and C++ programmers. This guide describes the 
enhanced features of HP-UX 11.0 compilers on single-node 
multiprocessor HP technical servers. These enhancements include new 
loop optimizations and constructs for creating programs to run 
concurrently on multiple processors.

You need not be familiar with the HP parallel architecture, programming 
models, or optimization concepts to understand the concepts introduced 
in this book.



xvi Preface 

Preface

Scope
This guide covers programming methods for the following HP compilers 
on V2200 and V2250 and K-Class machines running HP-UX 11.0 and 
higher:

• HP Fortran Version 2.0 (and higher)

• HP aC++ Version 3.0 (and higher)

• HP C Version 1.2.3 (and higher)

The HP compilers now support an extensive shared-memory 
programming model. HP-UX 11.0 and higher includes the required 
assembler, linker, and libraries.

This guide describes how to produce programs that efficiently exploit the 
features of HP parallel architecture concepts and the HP compiler set. 
Producing efficient programs requires the use of efficient algorithms and 
implementation. The techniques of writing an efficient algorithm are 
beyond the scope of this guide. It is assumed that you have chosen the 
best possible algorithm for your problem. This manual should help you 
obtain the best possible performance from that algorithm.



Preface xvii

Preface

Notational conventions
This section discusses notational conventions used in this book.

bold monospace In command examples, bold monospace 
identifies input that must be typed exactly as 
shown.

monospace In paragraph text, monospace identifies 
command names, system calls, and data 
structures and types. 
In command examples, monospace identifies 
command output, including error messages.

italic In paragraph text, italic identifies titles of 
documents.
In command syntax diagrams, italic identifies 
variables that you must provide.
The following command example uses 
brackets to indicate that the variable 
output_file is optional:
command input_file [output_file] 

Brackets ( [ ] ) In command examples, square brackets 
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text 
surrounded by curly brackets indicates a 
choice. The choices available are shown inside 
the curly brackets and separated by the pipe 
sign (|).
The following command example indicates 
that you can enter either a or b:
command {a | b}



xviii Preface 

Preface

The directives and pragmas described in this book can be used with the 
Fortran and C compilers, unless otherwise noted. The aC++ compiler 
does not support the pragmas, but does support the memory classes. 
In general discussion, these directives and pragmas are presented in 
lowercase type, but each compiler recognizes them regardless of their 
case. 

References to man pages appear in the form mnpgname(1), where 
“mnpgname” is the name of the man page and is followed by its section 
number enclosed in parentheses. To view this man page, type:

% man 1 mnpgname

NOTE A Note highlights important supplemental information.

Command syntax
Consider this example:

COMMAND input_file [...] {a | b} [output_file]

• COMMAND must be typed as it appears.

• input_file indicates a file name that must be supplied by the user.

• The horizontal ellipsis in brackets indicates that additional, optional 
input file names may be supplied.

• Either a or b must be supplied.

• [output_file] indicates an optional file name.

Horizontal ellipses 
(...)

In command examples, horizontal ellipses 
show repetition of the preceding items. 

Vertical ellipses Vertical ellipses show that lines of code have 
been left out of an example.

Keycap Keycap indicates the keyboard keys you must 
press to execute the command example.



Preface xix

Preface

Associated documents
The following documents are listed as additional resources to help you 
use the compilers and associated tools:

• HP Fortran Programmer’s Guide—Provides extensive usage 
information (including how to compile and link), suggestions and 
tools for migrating to HP Fortran, and how to call C and HP-UX 
routines for HP Fortran 90.

• HP Fortran Programmer’s Reference—Presents complete Fortran 90 
language reference information. It also covers compiler options, 
compiler directives, and library information.

• HP aC++ Online Programmer’s Guide—Presents reference and 
tutorial information on aC++. This manual is only available in html 
format.

• HP MPI User’s Guide—Discusses message-passing programming 
using Hewlett-Packard’s Message-Passing Interface library.

• Programming with Threads on HP-UX—Discusses programming 
with POSIX threads.

• HP C/HP-UX Reference Manual—Presents reference information on 
the C programming language, as implemented by HP.

• HP C/HP-UX Programmer’s Guide—Contains detailed discussions of 
selected C topics.

• HP-UX Linker and Libraries User's Guide—Describes how to develop 
software on HP-UX, using the HP compilers, assemblers, linker, 
libraries, and object files.

• Managing Systems and Workgroups—Describes how to perform 
various system administration tasks.



xx Preface 

Preface

• Threadtime by Scott J. Norton and Mark D. DiPasquale—Provides 
detailed guidelines on the basics of thread management, including 
POSIX thread structure; thread management functions; and the 
creation, termination and synchronization of threads.

• HP MLIB User’s Guide VECLIB and LAPACK—Provides usage 
information about mathematical software and computational kernels 
for engineering and scientific applications.



Chapter 1 1

1 Introduction

Hewlett-Packard compilers generate efficient parallel code with little 
user intervention. However, you can increase this efficiency by using the 
techniques discussed in this book.

This chapter contains a discussion of the following topics:

• HP SMP architectures

• Parallel programming model

• Overview of HP optimizations



2 Chapter 1 

Introduction
HP SMP architectures

HP SMP architectures
Hewlett-Packard offers single-processor and symmetric multiprocessor 
(SMP) systems. This book focuses on SMP systems, specifically, those 
that utilize different bus configurations for memory access. These are 
briefly described in the following sections, and in more detail in the 
“Architecture overview” section on page 9.

Bus-based systems
The K-Class servers are midrange servers with a bus-based architecture. 
It contains one set of processors and physical memory. Memory is shared 
among all the processors, with a bus serving as the interconnect. The 
shared-memory architecture has a uniform access time from each 
processor. 

Hyperplane Interconnect systems
The V-Class servers configurations range from one to 16 processors on 
the V-Class single-node system. These systems have the following 
characteristics:

• Processors communicate with each other through memory and by 
using I/O devices through a Hyperplane Interconnect nonblocking 
crossbar.

• Scalable physical memory. The current V-Class server support up to 
16 Gbytes of memory. 

• Each process on an HP system can access a 16-terabyte (Tbyte) 
virtual address space. 



Chapter 1 3

Introduction
Parallel programming model

Parallel programming model
Parallel programming models provide perspectives from which you can 
write—or adapt—code to run on a high-end HP system. You can perform 
both shared-memory programming and message-passing programming 
on an SMP. This book focuses on using the shared-memory paradigm, 
but includes reference material and pointers to other manuals about 
message passing.

The shared-memory paradigm
In the shared-memory paradigm, compilers handle optimizations, and, if 
requested, parallelization. Numerous compiler directives and pragmas 
are available to further increase optimization opportunities. 
Parallelization can also be specified using POSIX threads (Pthreads). 
Figure 1 shows the SMP model for the shared-memory paradigm.

 Figure 1 Symmetric multiprocessor system

The directives and pragmas associated with the shared-memory 
programming model are discussed in  “Parallel programming 
techniques,” on page 175,  “Memory classes,” on page 233, and  “Parallel 
synchronization,” on page 243.

CPU CPU CPU CPU

Memory
I/O

Symmetric multiprocessor system



4 Chapter 1 

Introduction
Parallel programming model

The message-passing paradigm
HP has implemented a version of the message-passing interface (MPI) 
standard known as HP MPI. This implementation is finely tuned for HP 
technical servers. 

In message-passing, a parallel application consists of a number of 
processes that run concurrently. Each process has its own local memory. 
It communicates with other processes by sending and receiving 
messages. When data is passed in a message, both processes must work 
to transfer the data from the local memory of one to the local memory of 
the other.

Under the message-passing paradigm, functions allow you to explicitly 
spawn parallel processes, communicate data among them, and 
coordinate their activities. Unlike the previous model, there is no shared-
memory. Each process has its own private 16-terabyte (Tbyte) address 
space, and any data that must be shared must be explicitly passed 
between processes. Figure 2 shows a layout of the message-passing 
paradigm.

 Figure 2 Message-passing programming model

Distributed memory model

I/O
Memory

CPU

I/O
Memory

CPU

I/O
Memory

CPU

I/O
Memory

CPU



Chapter 1 5

Introduction
Parallel programming model

Support of message passing allows programs written under this 
paradigm for distributed memory to be easily ported to HP servers. 
Programs that require more per-process memory than possible using 
shared-memory benefit from the manually-tuned message-passing style.

For more information about HP MPI, see the HP MPI User’s Guide and 
the MPI Reference.



6 Chapter 1 

Introduction
Overview of HP optimizations

Overview of HP optimizations
HP compilers perform a range of user-selectable optimizations. These 
new and standard optimizations, specified using compiler command-line 
options, are briefly introduced here. A more thorough discussion, 
including the features associated with each, is provided in  “Optimization 
levels,” on page 25.

Basic scalar optimizations
Basic scalar optimizations improve performance at the basic block and 
program unit level.

A basic block is a sequence of statements that has a single entry point 
and a single exit. Branches do not exist within the body of a basic block. 
A program unit is a subroutine, function, or main program in Fortran or 
a function (including main) in C and C++. Program units are also 
generically referred to as procedures. Basic blocks are contained within 
program units. Optimizations at the program unit level span basic 
blocks.

To improve performance, basic optimizations perform the following 
activities:

• Exploit the processor’s functional units and registers

• Reduce the number of times memory is accessed

• Simplify expressions

• Eliminate redundant operations

• Replace variables with constants

• Replace slow operations with faster equivalents



Chapter 1 7

Introduction
Overview of HP optimizations

Advanced scalar optimizations
Advanced scalar optimizations are primarily intended to maximize data 
cache usage. This is referred to as data localization. Concentrating on 
loops, these optimizations strive to encache the data most frequently 
used by the loop and keep it encached so as to avoid costly memory 
accesses.

Advanced scalar optimizations include several loop transformations. 
Many of these optimizations either facilitate more efficient strip mining 
or are performed on strip-mined loops to optimize processor data cache 
usage. All of these optimizations are covered in  “Controlling 
optimization,” on page 113.

Advanced scalar optimizations implicitly include all basic scalar 
optimizations.

Parallelization
HP compilers automatically locate and exploit loop-level parallelism in 
most programs. Using the techniques described in Chapter 9, “Parallel 
programming techniques”, you can help the compilers find even more 
parallelism in your programs.

Loops that have been data-localized are prime candidates for 
parallelization. Individual iterations of loops that contain strips of 
localizable data are parcelled out among several processors and run 
simultaneously. For example, the maximum number of processors that 
can be used is limited by the number of iterations of the loop and by 
processor availability.

While most parallelization is done on nested, data-localized loops, other 
code can also be parallelized. For example, through the use of manually 
inserted compiler directives, sections of code outside of loops can also be 
parallelized.

Parallelization optimizations implicitly include both basic and advanced 
scalar optimizations.



8 Chapter 1 

Introduction
Overview of HP optimizations



Chapter 2 9

2 Architecture overview

This chapter provides an overview of Hewlett-Packard’s shared memory 
K-Class and V-Class architectures. The information in this chapter 
focuses on this architecture as it relates to parallel programming.

This chapter describes architectural features of HP’s K-Class and 
V-Class. For more information on the family of V-Class servers, see the 
V-Class Architecture manual.



10 Chapter 2 

Architecture overview
System architectures

System architectures
PA-RISC processors communicate with each other, with memory, and 
with peripherals through various bus configuration. The difference 
between the K-Class and V-Class servers are presented by the manner in 
which they access memory. The K-Class maintains a bus-based 
configuration, shown in Figure 3.

 Figure 3 K-Class bus configuration

On a V-Class, processors communicate with each other, memory, and 
peripherals through a nonblocking crossbar. The V-Class implementation 
is achieved through the Hyperplane Interconnect, shown in Figure 4.

The HP V2250 server has one to 16 PA-8200 processors and 256 Mbytes 
to 16 Gbytes of physical memory. Two CPUs and a PCI bus share a single 
CPU agent. The CPUs communicate with the rest of the machine 
through the CPU agent. The Memory Access Controllers (MACs) provide 
the interface between the memory banks and the rest of the machine. 

CPUs communicate directly with their own instruction and data caches, 
which are accessed by the processor in one clock (assuming a full 
pipeline). V2250 servers use 2-Mbyte off-chip instruction caches and 
data caches.

Processor 1 Processor n...

Memory

I/O
System

Processor-Memory Bus



Chapter 2 11

Architecture overview
System architectures

 Figure 4 V2250 Hyperplane Interconnect view

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

Hyperplane

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

Crossbar

PCI: PCI Bus Controller

Agent: CPU Agent
MAC: Memory Access Controller



12 Chapter 2 

Architecture overview
System architectures

Data caches
HP systems use cache to enhance performance. Cache sizes, as well as 
cache line sizes, vary with the processor used. Data is moved between the 
cache and memory using cache lines. A cache line describes the size of a 
chunk of contiguous data that must be copied into or out of a cache in one 
operation.

When a processor experiences a cache miss—requests data that is not 
already encached—the cache line containing the address of the requested 
data is moved to the cache. This cache line also contains a number of 
other data objects that were not specifically requested. 

One reason cache lines are employed is to allow for data reuse. Data in a 
cache line is subject to reuse if, while the line is encached, any of the data 
elements contained in the line besides the originally requested element 
are referenced by the program, or if the originally requested element is 
referenced more than once.

Because data can only be moved to and from memory as part of a cache 
line, both load and store operations cause their operands to be encached. 
Cache-coherency hardware, as found on a V2250, invalidates cache lines 
in other processors when they are stored to by a particular processor. 
This indicates to other processors that they must load the cache line from 
memory the next time they reference its data. 

Data alignment
Aligning data addresses on cache line boundaries allows for efficient data 
reuse in loops (refer to “Data reuse” on page 71). The linker 
automatically aligns data objects larger than 32 bytes in size on 
a 32-byte boundary. It also aligns data greater than a page size on a 64-
byte boundary.

Only the first item in a list of data objects appearing in any of these 
statements is aligned on a cache line boundary. To make the most 
efficient use of available memory, the total size, in bytes, of any array 
appearing in one of these statements should be an integral multiple 
of 32. 

Sizing your arrays this way prevents data following the first array from 
becoming misaligned. Scalar variables should be listed after arrays and 
ordered from longest data type to shortest. For example, REAL*8 scalars 
should precede REAL*4 scalars.



Chapter 2 13

Architecture overview
System architectures

You can align data on 64-byte boundaries by doing the following. These 
apply only to parallel executables:

• Using Fortran ALLOCATE statements

• Using the C functions malloc or memory_class_malloc

NOTE Aliases can inhibit data alignment. Be careful when equivalencing arrays in 
Fortran.

Cache thrashing
Cache thrashing occurs when two or more data items that are frequently 
needed by the program both map to the same cache address. Each time 
one of the items is encached, it overwrites another needed item, causing 
cache misses and impairing data reuse. This section explains how 
thrashing happens on the V-Class.

A type of thrashing known as false cache line sharing is discussed in the 
section “False cache line sharing” on page 279. 

 Example Cache thrashing

The following Fortran example provides an example of cache thrashing:

REAL*8 ORIG(131072), NEW(131072), DISP(131072)
COMMON /BLK1/ ORIG, NEW, DISP
.
.
.
DO I = 1, N
  NEW(I) = ORIG(I) + DISP(I)
ENDDO

In this example, the arrays ORIG and DISP overwrite each other in 
a 2-Mbyte cache. Because the arrays are in a COMMON block, they are 
allocated in contiguous memory in the order shown. Each array element 
occupies 8 bytes, so each array occupies one Mbyte (8 × 131072= 1048576 
bytes). Therefore, arrays ORIG and DISP are exactly 2-Mbytes apart in 
memory, and all their elements have identical cache addresses. The 
layout of the arrays in memory and in the data cache is shown in 
Figure 5.



14 Chapter 2 

Architecture overview
System architectures

 Figure 5 Array layouts—cache-thrashing

When the addition in the body of the loop executes, the current elements 
of both ORIG and DISP must be fetched from memory into the cache. 
Because these elements have identical cache addresses, whichever is 
fetched last overwrites the first. Processor cache data is fetched 32 bytes 
at a time. 

To efficiently execute a loop such as this, the unused elements in the 
fetched cache line (three extra REAL*8 elements are fetched in this case) 
must remain encached until they are used in subsequent iterations of the 
loop. Because ORIG and DISP thrash each other, this reuse is never 
possible. Every cache line of ORIG that is fetched is overwritten by the 
cache line of DISP that is subsequently fetched, and vice versa. The 
cache line is overwritten on every iteration. Typically, in a loop like this, 
it would not be overwritten until all of its elements were used. 

Memory accesses take substantially longer than cache accesses, which 
severely degrades performance. Even if the overwriting involved the NEW 
array, which is stored rather than loaded on each iteration, thrashing 
would occur, because stores overwrite entire cache lines the same way 
loads do.

The problem is easily fixed by increasing the distance between the 
arrays. You can accomplish this by either increasing the array sizes or 
inserting a padding array. 

ORIG

DISP

NEW

Memory

Processor data cache

ORIG,

NEW

DISP



Chapter 2 15

Architecture overview
System architectures

 Example Cache padding

The following Fortran example illustrates cache padding:

REAL*8 ORIG(131072), NEW(131072), P(4),DISP(131072)
COMMON /BLK1/ ORIG, NEW, P, DISP
.
.
.

In this example, the array P(4) moves DISP 32 bytes further from ORIG 
in memory. No two elements of the same index share a cache address. 
This postpones cache overwriting for the given loop until the entire 
current cache line is completely exploited. 

The alternate approach involves increasing the size of ORIG or NEW by 4 
elements (32 bytes), as shown in the following example:

REAL*8 ORIG(131072), NEW(131080), DISP(131072)
COMMON /BLK1/ ORIG, NEW, DISP
.
.
.

Here, NEW has been increased by 4 elements, providing the padding 
necessary to prevent ORIG from sharing cache addresses with DISP. 
Figure 6 shows how both solutions prevent thrashing. 

 Figure 6 Array layouts—non-thrashing

ORIG

DISP

NEW

Memory

Processor data cache

ORIG
DISP

pad NEW



16 Chapter 2 

Architecture overview
System architectures

It is important to note that this is a highly simplified, worst-case 
example. 

Loop blocking optimization (described in “Loop blocking” on page 70) 
eliminates thrashing from certain nested loops, but not from all loops. 
Declaring arrays with dimensions that are not powers of two can help, 
but it does not completely eliminate the problem. 

Using COMMON blocks in Fortran can also help because it allows you to 
accurately measure distances between data items, making thrashing 
problems easier to spot before they happen.



Chapter 2 17

Architecture overview
Memory Systems

Memory Systems
HP’s K-Class and V-Class servers maintain a single level of memory 
latency. Memory functions and interleaving work similarly on both 
servers, as described in the following sections. 

Physical memory
Multiple, independently accessible memory banks are available on both 
the K-Class and V-Class servers. In 16-processor V2250 servers, for 
example, each node consists of up to 32 memory banks. This memory is 
typically partitioned (by the system administrator) into system-global, 
and buffer cache. It is also interleaved as described in “Interleaving” on 
page 18”. The K-Class architecture supports up to four memory banks.

System-global memory is accessible by all processors in a given system. 
The buffer cache is a file system cache and is used to encache items that 
have been read from disk and items that are to be written to disk.

Memory interleaving is used to improve performance. For an 
explanation, see the section “Interleaving” on page 18. 

Virtual memory
Each process running on a V-Class or K-Class server under 
HP-UX accesses its own 16-Tbyte virtual address space. Almost all of 
this space is available to hold program text, data, and the stack. The 
space used by the operating system is negligible. 

The memory stack size is configurable. Refer to the section “Setting 
thread default stack size” on page 202 for more information. 

Both servers share data among all threads unless a variable is declared 
to be thread private. Memory class definitions describing data 
disposition across hypernodes have been retained for the V-Class. This is 
primarily for potential use when porting to multinode machines. 



18 Chapter 2 

Architecture overview
Memory Systems

thread_private

This memory is private to each thread of a process. A 
thread_private data object has a unique virtual 
address for each thread. These addresses map to 
unique physical addresses in hypernode-local physical 
memory.

node_private

This memory is shared among the threads of a process 
running on a single node. Since the V-Class and 
K-Class servers are single-node machines, 
node_private actually serves as one common shared 
memory class.

Memory classes are discussed more fully in  “Memory classes,” on 
page 233.

Processes cannot access each other’s virtual address spaces. This virtual 
memory maps to the physical memory of the system on which the process 
is running. 

Interleaving
Physical pages are interleaved across the memory banks on a cache-line 
basis. There are up to 32 banks in the V2250 servers; there are up to four 
on a K-Class. Contiguous cache lines are assigned in round-robin 
fashion, first to the even banks, then to the odd, as shown in Figure 7 for 
V2250 servers.

Interleaving speeds memory accesses by allowing several processors to 
access contiguous data simultaneously. It also eliminates busy bank and 
board waits for unit stride accesses. This is beneficial when a loop that 
manipulates arrays is split among many processors. In the best case, 
threads access data in patterns with no bank contention. Even in the 
worst case, in which each thread initially needs the same data from the 
same bank, after the initial contention delay, the accesses are spread out 
among the banks.



Chapter 2 19

Architecture overview
Memory Systems

 Figure 7 V2250 interleaving

Cache line
10

Cache line
1

Cache line
9

Cache line
16

Cache line Cache line
0 8

Cache line
2

Cache line Cache line
4 12

Cache line Cache line
6 14

Cache line
3 11

Cache line Cache line
5 13

Cache line Cache line
7 15

Cache line

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 4

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 6

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 7

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 5

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 3

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 2

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 0

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 1



20 Chapter 2 

Architecture overview
Memory Systems

 Example Interleaving

The following Fortran example illustrates a nested loop that accesses 
memory with very little contention. This example is greatly simplified for 
illustrative purposes, but the concepts apply to arrays of any size.

REAL*8 A(12,12), B(12,12)
...
DO J = 1, N
  DO I = 1, N
    A(I,J) = B(I,J)
  ENDDO
ENDDO

Assume that arrays A and B are stored contiguously in memory, with A 
starting in bank 0, processor cache line 0 for V2250 servers, as shown in 
Figure 8 on page 22.

You may assume that the HP Fortran compiler parallelizes the J loop to 
run on as many processors as are available in the system (up to N). 
Assuming N=12 and there are four processors available when the 
program is run, the J loop could be divided into four new loops, each with 
3 iterations. Each new loop would run to completion on a separate 
processor. These four processors are identified as CPU0 through CPU3.

NOTE This example is designed to simplify illustration. In reality, the dynamic 
selection optimization (discussed in “Dynamic selection” on page 102) 
would, given the iteration count and available number of processors 
described, cause this loop to run serially. The overhead of going parallel 
would outweigh the benefits.

In order to execute the body of the I loop, A and B must be fetched from 
memory and encached. Each of the four processors running the J loop 
attempt to simultaneously fetch its portion of the arrays. 

This means CPU0 will attempt to read arrays A and B starting at 
elements (1,1), CPU1 will attempt to start at elements (1,4) and so 
on. 

Because of the number of memory banks in the V2250 architecture, 
interleaving removes the contention from the beginning of the loop from 
the example, as shown in Figure 8.

• CPU0 needs A(1:12,1:3) and B(1:12,1:3)

• CPU1 needs A(1:12,4:6) and B(1:12,4:6) 

• CPU2 needs A(1:12,7:9) and B(1:12,7:9) 



Chapter 2 21

Architecture overview
Memory Systems

• CPU3 needs A(1:12,10:12) and B(1:12,10:12)

The data from the V2250 example above is spread out on different 
memory banks as described below:

• A(1,1), the first element of the chunk needed by CPU0, is on cache 
line 0 in bank 0 on board 0

• A(1,4), the first element needed by CPU1, is on cache line 9 in bank 
1 on board 1

• A(1,7), the first element needed by CPU2, is on cache line 18 in 
bank 2 on board 2

• A(1,10) the first element needed by CPU3, is on cache line 27 in 
bank 3 on board 3

Because of interleaving, no contention exists between the processors 
when trying to read their respective portions of the arrays. Contention 
may surface occasionally as the processors make their way through the 
data, but the resulting delays are minimal compared to what could be 
expected without interleaving.



22 Chapter 2 

Architecture overview
Memory Systems

 Figure 8 V2250 interleaving of arrays A and B

Cache line
0

Cache line
8

Cache line
16

Cache line
24

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 0

Cache line
2

Cache line
10

Cache line
18

Cache line
26

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 2

Cache line
4

Cache line
12

Cache line
20

Cache line
28

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 4

Cache line
6

Cache line
14

Cache line
22

Cache line
30

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 6

Cache line
1

Cache line
9

Cache line
17

Cache line
25

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 1

Cache line
3

Cache line
11

Cache line
19

Cache line
27

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 3

Cache line
5

Cache line
13

Cache line
21

Cache line
29

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 5

Cache line
7

Cache line
15

Cache line
23

Cache line
31

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 7

A(1:4,1) A(9:12,3) A(5:8,6) A(1:4,9) A(5:8,1) A(1:4,4) A(9:12,6) A(5:8,9)

A(9:12,1) A(5:8,4) A(1:4,7) A(9:12,9) A(1:4,2) A(9:12,4) A(5:8,7) A(1:4,10)

A(1:4,3) A(9:12,5) A(5:8,8) A(1:4,11) A(5:8,3) A(1:4,6) A(9:12,8) A(5:8,11)

Cache line
56

Cache line
36

Cache line
54

Cache line
63

B(9:12,7)

B(1:4,1)

B(1:4,7) B(1:4,10)

A(5:8,2) A(1:4,5) A(9:12,7) A(5:8,10) A(9:12,2) A(5:8,5) A(1:4,8) A(9:12,10)



Chapter 2 23

Architecture overview
Memory Systems

Variable-sized pages on HP-UX
Variable-sized pages are used to reduce Translation Lookaside Buffer 
(TLB) misses, improving performance. A TLB is a hardware entity used 
to hold a virtual to physical address translation. With variable-sized 
pages, each TLB entry used can map a larger portion of an application’s 
virtual address space. Thus, applications with large data sets are 
mapped using fewer TLB entries, resulting in fewer TLB misses.

Using a different page size does not help if an application is not 
experiencing performance degradation due to TLB misses. Additionally, 
if an application uses too large a page size, fewer pages are available to 
other applications on the system. This potentially results in increased 
paging activity and performance degradation.

Valid page sizes on the PA-8200 processors are 4K, 16K, 64K, 256K, 
1 Mbyte, 4 Mbytes, 16 Mbytes, 64 Mbytes, and 256 Mbytes. The default 
configurable page size is 4K. Methods for specifying a page size are 
described below. Note that the user-specified page size only requests a 
specific size. The operating system takes various factors into account 
when selecting the page size.

Specifying a page size
The following chatr utility command options allow you to specify 
information regarding page sizes.

• +pi affects the page size for the application’s text segment

• +pd affects the page size for the application’s data segment

The following configurable kernel parameters allow you to specify 
information regarding page sizes.

• vps_pagesize represents the default or minimum page size (in 
kilobytes) if the user has not used chatr to specify a value. The 
default is 4Kbytes.

• vps_ceiling represents the maximum page size (in kilobytes) if the 
user has not used chatr to specify a value. The default is 16Kbytes.

• vps_chatr_ceiling places a restriction on the largest value (in 
kilobytes) a user can specify using chatr. The default is 64 Mbytes.

For more information on the chatr utility, see the chatr(1) man page. 



24 Chapter 2 

Architecture overview
Memory Systems



Chapter 3 25

Optimization levels

3 Optimization levels

This chapter discusses various optimization levels available with the HP 
compilers, including:

• HP optimization levels and features

• Using the Optimizer

The locations of the compilers discussed in this manual are provided in 
Table 1.

Table 1 Locations of HP compilers

For detailed information about optimization command-line options, and 
pragmas and directives, see  “Controlling optimization,” on page 113.

Compiler Description Location

f90 HP Fortran /opt/fortran90/bin/f90

cc  ANSI C /opt/ansic/bin/c89

aC++ ANSI C++ /opt/aCC/bin/aCC



26 Chapter 3 

Optimization levels
HP optimization levels and features

HP optimization levels and features
This section provides an overview of optimization features which can be 
through either the command-line optimization options or manual 
specification using pragmas or directives. 

Five optimization levels are available for use with the HP compiler: +O0 
(the default), +O1, +O2, +O3, and +O4. These options have identical 
names and perform identical optimizations, regardless of which compiler 
you are using. They can also be specified on the compiler command line 
in conjunction with other options you may want to use. HP compiler 
optimization levels are described in Table 2.

Table 2 Optimization levels and features

Optimization 
Levels Features Benefits

+O0 (the default) Occurs at the machine-instruction 
level
Constant folding
Data alignment on natural 
boundaries
Partial evaluation of test conditions
Registers (simple allocation)

Compiles fastest.

+O1

includes all of 
+O0

Occurs at the block level
Branch optimization
Dead code elimination
Instruction scheduler
Peephole optimizations
Registers (faster allocation)

Produces faster programs 
than +O0, and compiles faster 
than level +O2.



Chapter 3 27

Optimization levels
HP optimization levels and features

+O2 (-O)

 includes all of 
+O0, +O1

Occurs at the routine level
Common subexpression elimination
Constant folding (advanced) and 
propagation
Loop-invariant code motion
Loop unrolling
Registers (global allocation)
Register reassociation
Software pipelining
Store/copy optimization
Strength reduction of induction 
variables and constants
Unused definition elimination

Can produce faster run-time 
code than +O1 if loops are 
used extensively.

Run-times for loop-oriented 
floating-point intensive 
applications may be reduced 
up to 90 per cent.

Operating system and 
interactive applications that 
use the optimized system 
libraries may achieve 30 per 
cent to 50 per cent additional 
improvement.

+O3

 includes all of 
+O0,+O1,+O2

Occurs at the file level
Cloning within a single source file
Data localization
Automatic and directive-specified loop 
parallelization
Directive-specified region 
parallelization
Directive-specified task 
parallelization

Can produce faster run-time 
code than +O2 on code that 
frequently calls small 
functions, or if loops are 
extensively used. Links faster 
than +O4.

Optimization 
Levels Features Benefits



28 Chapter 3 

Optimization levels
HP optimization levels and features

Inlining within a single source file
Loop blocking
Loop distribution
Loop fusion
Loop interchange
Loop reordering - preventing
Loop unroll and jam
Parallelization
Parallelization, preventing
Reductions
Test promotion
All of the directives and pragmas of the HP 
parallel programming model are available 
in the Fortranand 
C compilers.
prefer_parallel requests 
parallelization of the following loop
loop_parallel forces 
parallelization on the last loop
parallel, end_parallel 
parallelizes a single code region to run 
on multiple threads.
begin_tasks, next_task, 
end_tasks forces parallelization of 
following code section

+O4 
includes all of 
+O0, +O1, +O2, 
+O3
Not available in 
Fortran

Occurs at the cross-module level and 
performed at link time
Cloning across multiple source files
Global/static variable optimizations
Inlining across multiple source files

Produces faster run-time code 
than when +O3 global 
variables are used or when 
procedure calls are inlined 
across modules.

Optimization 
Levels Features Benefits



Chapter 3 29

Optimization levels
HP optimization levels and features

Cumulative Options
The optimization options that control an optimization level are 
cumulative so that each option retains the optimizations of the previous 
option. For example, entering the following command line compiles the 
Fortran program foo.f with all +O2, +O1, and +O0 optimizations shown in 
Table 2:

% f90 +O2 foo.f

In addition to these options, the +Oparallel option is available for use 
at +O3 and above; +Onoparallel is the default, When the +Oparallel 
option is specified, the compiler:

• Looks for opportunities for parallel execution in loops

• Honors the parallelism-related directives and pragmas of the HP 
parallel programming model.

The +Onoautopar (no automatic parallelization) option is available for 
use with +Oparallel at +O3 and above. +Oautopar is the default. 
+Onoautopar causes the compiler to parallelize only those loops that 
are immediately preceded by loop_parallel or prefer_parallel 
directives or pragmas. For more information, refer to  “Parallel 
programming techniques,” on page 175.



30 Chapter 3 

Optimization levels
Using the Optimizer

Using the Optimizer
Before exploring the various optimizations that are performed, it is 
important to review the coding guidelines used to assist the optimizer. 
This section is broken down into the following subsections: 

• General guidelines

• C and C++ guidelines

• Fortran guidelines

General guidelines

The coding guidelines presented in this section help the optimizer to 
optimize your program, regardless of the language in which the program 
is written.

• Use local variables to help the optimizer promote variables to 
registers.

• Do not use local variables before they are initialized. When you 
request +O2, +O3, or +O4 optimizations, the compiler tries to detect 
and indicate violations of this rule. See “+O[no]initcheck” on 
page 123 for related information.

• Use constants instead of variables in arithmetic expressions such as 
shift, multiplication, division, or remainder operations.

• Position the loop inside the procedure or use a directive to call the 
loop in parallel, when a loop contains a procedure call.

• Construct loops so the induction variable increases or decreases 
toward zero where possible. The code generated for a loop termination 
test is more efficient with a test against zero than with a test against 
some other value.

• Do not reference outside the bounds of an array. Fortran provides 
the -C option to check whether your program references outside array 
bounds.

• Do not pass an incorrect number of arguments to a function.



Chapter 3 31

Optimization levels
Using the Optimizer

C and C++ guidelines
The coding guidelines presented in this section help the optimizer to 
optimize your C and C++ programs. 

• Use do loops and for loops in place of while loops. do loops and for 
loops are more efficient because opportunities for removing loop-
invariant code are greater.

• Use register variables where possible.

• Use unsigned variables rather than signed, when using short or 
char variables or bit-fields. This is more efficient because a signed 
variable causes an extra instruction to be generated.

• Pass and return pointers to large structs instead of passing and 
returning large structs by value, where possible.

• Use type-checking tools like lint to help eliminate semantic errors.

• Use local variables for the upper bounds (stop values) of loops. Using 
local variables may enable the compiler to optimize the loop.

During optimization, the compiler gathers information about the use of 
variables and passes this information to the optimizer. The optimizer 
uses this information to ensure that every code transformation 
maintains the correctness of the program, at least to the extent that the 
original unoptimized program is correct.

When gathering this information, the compiler assumes that while 
inside a function, the only variables that are accessed indirectly through 
a pointer or by another function call are:

• Global variables (all variables with file scope)

• Local variables that have had their addresses taken either explicitly 
by the & operator, or implicitly by the automatic conversion of array 
references to pointers.



32 Chapter 3 

Optimization levels
Using the Optimizer

In general, the preceding assumption should not pose a problem. 
Standard-compliant C and C++ programs do not violate this assumption. 
However, if you have code that does violate this assumption, the 
optimizer can change the behavior of the program in an undesirable way. 
In particular, you should follow the coding practices to ensure correct 
program execution for optimized code:

• Avoid using variables that are accessed by external processes. Unless 
a variable is declared with the volatile attribute, the compiler 
assumes that a program’s data is accessed only by that program. 
Using the volatile attribute may significantly slow down a 
program.

• Avoid accessing an array other than the one being subscripted. For 
example, the construct a[b-a], where a and b are the same type of 
array, actually references the array b, because it is equivalent to 
*(a+(b-a)), which is equivalent to *b. Using this construct might 
yield unexpected optimization results.

• Avoid referencing outside the bounds of the objects a pointer is 
pointing to. All references of the form *(p+i) are assumed to remain 
within the bounds of the variable or variables that p was assigned to 
point to.

• Do not rely on the memory layout scheme when manipulating 
pointers, as incorrect optimizations may result. For example, if p is 
pointing to the first member of a structure, do not assume that p+1 
points to the second member of the structure. Additionally, if p is 
pointing to the first in a list of declared variables, p+1 is not 
necessarily pointing to the second variable in the list.

For more information regarding coding guidelines, see “General 
guidelines” on page 30.



Chapter 3 33

Optimization levels
Using the Optimizer

Fortran guidelines
The coding guidelines presented in this section help the optimizer to 
optimize Fortran programs.

As part of the optimization process, the compiler gathers information 
about the use of variables and passes this information to the optimizer. 
The optimizer uses this information to ensure that every code 
transformation maintains the correctness of the program, at least to the 
extent that the original unoptimized program is correct.

When gathering this information, the compiler assumes that inside a 
routine (either a function or a subroutine) the only variables that are 
accessed (directly or indirectly) are:

• COMMON variables declared in the routine

• Local variables

• Parameters to this routine

Local variables include all static and nonstatic variables.

In general, you do not need to be concerned about the preceding 
assumption. However, if you have code that violates it, the optimizer can 
adversely affect the behavior of the program. 

Avoid using variables that are accessed by a process other than the 
program. The compiler assumes that the program is the only process 
accessing its data. The only exception is the shared COMMON variable in 
Fortran. 

Also avoid using extensive equivalencing and memory-mapping schemes, 
where possible.

See the section “General guidelines” on page 30 for additional guidelines.



34 Chapter 3 

Optimization levels
Using the Optimizer



Chapter 4 35

Standard optimization features

4 Standard optimization features

This chapter discusses the standard optimization features available with 
the HP-UX compilers, including those inherent in optimization levels 
+O0 through +O2. This includes a discussion of the following topics:

• Constant folding

• Partial evaluation of test conditions

• Simple register assignment

• Data alignment on natural boundaries

• Branch optimization

• Dead code elimination

• Faster register allocation

• Instruction scheduling

• Peephole optimizations

• Advanced constant folding and propagation

• Common subexpression elimination

• Global register allocation (GRA)

• Loop-invariant code motion, and unrolling

• Register reassociation

• Software pipelining

• Strength reduction of induction variables and constants

• Store and copy optimization

• Unused definition elimination

For more information as to specific command-line options, pragmas and 
directives for optimization, please see  “Controlling optimization,” on 
page 113.



36 Chapter 4 

Standard optimization features
Machine instruction level optimizations (+O0)

Machine instruction level optimizations 
(+O0)
At optimization level +O0, the compiler performs optimizations that span 
only a single source statement. This is the default. The +O0 machine 
instruction level optimizations include:

• Constant folding

• Partial evaluation of test conditions

• Simple register assignment

• Data alignment on natural boundaries

Constant folding
Constant folding is the replacement of operations on constants with the 
result of the operation. For example, Y=5+7 is replaced with Y=12. 

More advanced constant folding is performed at optimization level +O2. 
See the section “Advanced constant folding and propagation” on page 42 
for more information.

Partial evaluation of test conditions
Where possible, the compiler determines the truth value of a logical 
expression without evaluating all the operands. This is known as short-
circuiting. The Fortran example below describes this:

IF ((I .EQ. J) .OR. (I .EQ. K)) GOTO 100

If (I .EQ. J) is true, control immediately goes to 100; otherwise, 
(I .EQ. K) must be evaluated before control can go to 100 or the 
following statement.

Do not rely upon partial evaluation if you use function calls in the logical 
expression because:

• There is no guarantee on the order of evaluation.

• A procedure or function call can have side effects on variable values 
that may or may not be partially evaluated correctly.



Chapter 4 37

Standard optimization features
Machine instruction level optimizations (+O0)

Simple register assignment
The compiler may place frequently used variables in registers to avoid 
more costly accesses to memory. 

A more advanced register assignment algorithm is used at optimization 
level +O2. See the section “Global register allocation (GRA)” on page 43 
for more information.

Data alignment on natural boundaries
The compiler automatically aligns data objects to their natural 
boundaries in memory, providing more efficient access to data. This 
means that a data object’s address is integrally divisible by the length of 
its data type; for example, REAL*8 objects have addresses integrally 
divisible by 8 bytes. 

NOTE Aliases can inhibit data alignment. Be especially careful when equivalencing 
arrays in Fortran.

Declare scalar variables in order from longest to shortest data length to 
ensure the efficient layout of such aligned data in memory. This 
minimizes the amount of padding the compiler has to do to get the data 
onto its natural boundary. 

 Example Data alignment on natural boundaries

The following Fortran example describes the alignment of data objects to 
their natural boundaries:

C CAUTION: POORLY ORDERED DATA FOLLOWS:
LOGICAL*2 BOOL
INTEGER*8 A, B
REAL*4 C
REAL*8 D

Here, the compiler must insert 6 unused bytes after BOOL in order to 
correctly align A, and it must insert 4 unused bytes after C to correctly 
align D.



38 Chapter 4 

Standard optimization features
Machine instruction level optimizations (+O0)

The same data is more efficiently ordered as shown in the following 
example:

C     PROPERLY ORDERED DATA FOLLOWS:
      INTEGER*8 A, B
      REAL*8 D
      REAL*4 C
      LOGICAL*2 BOOL

Natural boundary alignment is performed on all data. This is not to be 
confused with cache line boundary alignment. 



Chapter 4 39

Standard optimization features
Block level optimizations (+O1)

Block level optimizations (+O1)
At optimization level +O1, the compiler performs optimizations on a 
block level. The compiler continues to run the +O0 optimizations, with 
the following additions:

• Branch optimization

• Dead code elimination

• Faster register allocation

• Instruction scheduling

• Peephole optimizations

Branch optimization
Branch optimization involves traversing the procedure and transforming 
branch instruction sequences into more efficient sequences where 
possible. Examples of possible transformations are:

• Deleting branches whose target is the fall-through instruction (the 
target is two instructions away)

• Changing the target of the first branch to be the target of the second 
(unconditional) branch when the target of a branch is an 
unconditional branch

• Transforming an unconditional branch at the bottom of a loop that 
branches to a conditional branch at the top of the loop into a 
conditional branch at the bottom of the loop

• Changing an unconditional branch to the exit of a procedure into an 
exit sequence where possible

• Changing conditional or unconditional branch instructions that 
branch over a single instruction into a conditional nullification in the 
following instruction

• Looking for conditional branches over unconditional branches, where 
the sense of the first branch could be inverted and the second branch 
deleted. These result from null THEN clauses and from THEN clauses 
that only contain GOTO statements.



40 Chapter 4 

Standard optimization features
Block level optimizations (+O1)

 Example Conditional/unconditional branches

The following Fortran example provides a transformation from a branch 
instruction to a more efficient sequence:

      IF (L) THEN
        A=A*2
      ELSE
        GOTO 100
      ENDIF
      B=A+1
100   C=A*10

becomes:

      IF (.NOT. L) GOTO 100
      A=A*2
      B=A+1
100   C=A*10

Dead code elimination
Dead code elimination removes unreachable code that is never executed.

For example, in C:

if(0) 
  a = 1;
else 
  a = 2;

becomes:

  a = 2;

Faster register allocation
Faster register allocation involves:

• Inserting entry and exit code

• Generating code for operations such as multiplication and division

• Eliminating unnecessary copy instructions

• Allocating actual registers to the dummy registers in instructions

Faster register allocation, when used at +O0 or +O1, analyzes register 
use faster than the global register allocation performed at +O2.



Chapter 4 41

Standard optimization features
Block level optimizations (+O1)

Instruction scheduling
The instruction scheduler optimization performs the following tasks:

• Reorders the instructions in a basic block to improve memory 
pipelining. For example, where possible, a load instruction is 
separated from the use of the loaded register.

• Follows a branch instruction with an instruction that is executed as 
the branch occurs, where possible.

• Schedules floating-point instructions.

Peephole optimizations
A peephole optimization is a machine-dependent optimization that 
makes a pass through low-level assembly-like instruction sequences of 
the program. It applies patterns to a small window (peephole) of code 
looking for optimization opportunities. It performs the following 
optimizations:

• Changes the addressing mode of instructions so they use shorter 
sequences

• Replaces low-level assembly-like instruction sequences with faster 
(usually shorter) sequences and removes redundant register loads 
and stores



42 Chapter 4 

Standard optimization features
Routine level optimizations (+O2)

Routine level optimizations (+O2)
At optimization level +O2, the compiler performs optimizations on a 
routine level. The compiler continues to perform the optimizations 
performed at +O1, with the following additions:

• Advanced constant folding and propagation

• Common subexpression elimination

• Global register allocation (GRA)

• Loop-invariant code motion

• Loop unrolling

• Register reassociation

• Software pipelining

• Strength reduction of induction variables and constants

• Store and copy optimization

• Unused definition elimination

Advanced constant folding and propagation
Constant folding computes the value of a constant expression at compile 
time. Constant propagation is the automatic compile-time replacement of 
variable references with a constant value previously assigned to that 
variable. 

 Example Advanced constant folding and propagation

The following C/C++ code example describes an advanced constant 
folding and propagation:

a = 10;
b = a + 5;
c = 4 * b;

Once a is assigned, its value is propagated to the statement where b is 
assigned so that the assignment reads:

b = 10 + 5;



Chapter 4 43

Standard optimization features
Routine level optimizations (+O2)

The expression 10 + 5 can then be folded. Now that b has been assigned 
a constant, the value of b is propagated to the statement where c is 
assigned. After all the folding and propagation, the original code is 
replaced by:

a = 10;
b = 15;
c = 60;

Common subexpression elimination
Common subexpression elimination optimization identifies expressions 
that appear more than once and have the same result. It then computes 
the result and substitutes the result for each occurrence of the 
expression. Subexpression types include instructions that load values 
from memory, as well as arithmetic evaluation.

 Example Common subexpression elimination

In Fortran, for example, the code first looks like this:

A = X + Y + Z
B = X + Y + W

After this form of optimization, it becomes:

T1 = X + Y
A = T1 + Z
B = T1 + W

Global register allocation (GRA)
Scalar variables can often be stored in registers, eliminating the need for 
costly memory accesses. Global register allocation (GRA) attempts to 
store commonly referenced scalar variables in registers throughout the 
code in which they are most frequently accessed.

The compiler automatically determines which scalar variables are the 
best candidates for GRA and allocates registers accordingly.

GRA can sometimes cause problems when parallel threads attempt to 
update a shared variable that has been allocated a register. In this case, 
each parallel thread allocates a register for the shared variable; it is then 
unlikely that the copy in memory is updated correctly as each thread 
executes.



44 Chapter 4 

Standard optimization features
Routine level optimizations (+O2)

Parallel assignments to the same shared variables from multiple threads 
make sense only if the assignments are contained inside critical or 
ordered sections, or are executed conditionally based on the thread ID. 
GRA does not allocate registers for shared variables that are assigned 
within critical or ordered sections, as long as the sections are 
implemented using compiler directives or sync_routine-defined 
functions (refer to Chapter 13, “Parallel synchronization” for a discussion 
of sync_routine). However, for conditional assignments based on the 
thread ID, GRA may allocate registers that may cause wrong answers 
when stored.

In such cases, GRA is disabled only for shared variables that are visible 
to multiple threads by specifying +Onosharedgra. A description of this 
option is located in “+O[no]sharedgra” on page 138.

In procedures with large numbers of loops, GRA can contribute to long 
compile times. Therefore, GRA is only performed if the number of loops 
in the procedure is below a predetermined limit. You can remove this 
limit (and possibly increase compile time) by specifying +O[no]limit. A 
description of this option is located in “+O[no]limit” on page 126.

This optimization is also known as coloring register allocation because of 
the similarity to map-coloring algorithms in graph theory.

Register allocation in C and C++
In C and C++, you can help the optimizer understand when certain 
variables are heavily used within a function by declaring these variables 
with the register qualifier. 

GRA may override your choices and promote a variable not declared 
register to a register over a variable that is declared register, based 
on estimated speed improvements.



Chapter 4 45

Standard optimization features
Routine level optimizations (+O2)

Loop-invariant code motion
The loop-invariant code motion optimization recognizes instructions 
inside a loop whose results do not change and then moves the 
instructions outside the loop. This optimization ensures that the 
invariant code is only executed once.

 Example Loop-invariant code motion

This example begins with following C/C++ code:

x = z;
for(i=0; i<10; i++)
  a[i] = 4 * x + i;

After loop-invariant code motion, it becomes:

x = z;
t1 = 4 * x;
for(i=0; i<10; i++)
  a[i] = t1 + i;

Loop unrolling
Loop unrolling increases a loop’s step value and replicates the loop body. 
Each replication is appropriately offset from the induction variable so 
that all iterations are performed, given the new step.

Unrolling is total or partial. Total unrolling involves eliminating the loop 
structure completely by replicating the loop body a number of times 
equal to the iteration count and replacing the iteration variable with 
constants. This makes sense only for loops with small iteration counts. 

Loop unrolling and the unroll factor are controlled using the 
+O[no]loop_unroll[=unroll factor]. This option is described on 
page 127.

Some loop transformations cause loops to be fully or partially replicated. 
Because unlimited loop replication can significantly increase compile 
times, loop replication is limited by default. You can increase this limit 
(and possibly increase your program’s compile time and code size) by 
specifying the +Onosize and +Onolimit compiler options.

 Example Loop unrolling

Consider the following Fortran example:

SUBROUTINE FOO(A,B)
REAL A(10,10), B(10,10)
DO J=1, 4



46 Chapter 4 

Standard optimization features
Routine level optimizations (+O2)

  DO I=1, 4
    A(I,J) = B(I,J)
  ENDDO
ENDDO
END

The loop nest is completely unrolled as shown below:

A(1,1) = B(1,1)
A(2,1) = B(2,1)
A(3,1) = B(3,1)
A(4,1) = B(4,1)

A(1,2) = B(1,2)
A(2,2) = B(2,2)
A(3,2) = B(3,2)
A(4,2) = B(4,2)

A(1,3) = B(1,3)
A(2,3) = B(2,3)
A(3,3) = B(3,3)
A(4,3) = B(4,3)

A(1,4) = B(1,4)
A(2,4) = B(2,4)
A(3,4) = B(3,4)
A(4,4) = B(4,4)

Partial unrolling is performed on loops with larger or unknown iteration 
counts. This form of unrolling retains the loop structure, but replicates 
the body a number of times equal to the unroll factor and adjusts 
references to the iteration variable accordingly. 

 Example Loop unrolling

This example begins with the following Fortran example:

DO I = 1, 100
  A(I) = B(I) + C(I)
ENDDO

It is unrolled to a depth of four as shown below:

DO I = 1, 100, 4
  A(I) = B(I) + C(I)
  A(I+1) = B(I+1) + C(I+1)
  A(I+2) = B(I+2) + C(I+2)
  A(I+3) = B(I+3) + C(I+3)
ENDDO

Each iteration of the loop now computes four values of A instead of one 
value. The compiler also generates ‘clean-up’ code for the case where the 
range is not evenly divisible by the unroll factor.



Chapter 4 47

Standard optimization features
Routine level optimizations (+O2)

Register reassociation
Array references often require one or more instructions to compute the 
virtual memory address of the array element specified by the subscript 
expression. The register reassociation optimization implemented in 
PA-RISC compilers tries to reduce the cost of computing the virtual 
memory address expression for array references found in loops.

Within loops, the virtual memory address expression is rearranged and 
separated into a loop-variant term and a loop-invariant term. 

• Loop-variant terms are those items whose values may change from 
one iteration of the loop to another. 

• Loop-invariant terms are those items whose values are constant 
throughout all iterations of the loop. The loop-variant term 
corresponds to the difference in the virtual memory address 
associated with a particular array reference from one iteration of the 
loop to the next.

The register reassociation optimization dedicates a register to track the 
value of the virtual memory address expression for one or more array 
references in a loop and updates the register appropriately in each 
iteration of a loop.

The register is initialized outside the loop to the loop-invariant portion of 
the virtual memory address expression. The register is incremented or 
decremented within the loop by the loop-variant portion of the virtual 
memory address expression. The net result is that array references in 
loops are converted into equivalent, but more efficient, pointer 
dereferences.

Register reassociation can often enable another loop optimization. After 
performing the register reassociation optimization, the loop variable may 
be needed only to control the iteration count of the loop. If this is the 
case, the original loop variable is eliminated altogether by using the PA-
RISC ADDIB and ADDB machine instructions to control the loop iteration 
count.

You can enable or disable register reassociation using the 
+O[no]regreassoc command-line option at +O2 and above. The default 
is +Oregreassoc. See “+O[no]regreassoc” on page 136 for more 
information.



48 Chapter 4 

Standard optimization features
Routine level optimizations (+O2)

 Example Register allocation

This example begins with the following C/C++ code:

int a[10][20][30];

void example (void)
{
    int i, j, k;

    for (k = 0; k < 10; k++)
      for (j = 0; j < 10;j++)
        for (i = 0; i < 10; i++)
           a[i][j][k] = 1;
}

After register reassociation is applied, the innermost loop becomes:

int a[10][20][30];

void example (void)
{
    int i, j, k;
    register int (*p)[20][30];

    for (k = 0; k < 10; k++)
      for (j = 0; j < 10; j++)
        for (p = (int (*)[20][30]) &a[0][j][k], i = 0; i < 10; 
i++)
            *(p++[0][0]) = 1;
}

As you can see, the compiler-generated temporary register variable, p, 
strides through the array a in the innermost loop. This register pointer 
variable is initialized outside the innermost loop and auto-incremented 
within the innermost loop as a side-effect of the pointer dereference.



Chapter 4 49

Standard optimization features
Routine level optimizations (+O2)

Software pipelining
Software pipelining transforms code in order to optimize program loops. 
It achieves this by rearranging the order in which instructions are 
executed in a loop. Software pipelining generates code that overlaps 
operations from different loop iterations. It is particularly useful for 
loops that contain arithmetic operations on REAL*4 and REAL*8 data in 
Fortran or on float and double data in C or C++.

The goal of this optimization is to avoid processor stalls due to memory 
or hardware pipeline latencies. The software pipelining transformation 
partially unrolls a loop and adds code before and after the loop to achieve 
a high degree of optimization within the loop.

You can enable or disable software pipelining using the 
+O[no]pipeline command-line option at +O2 and above. The default is 
+Opipeline. Use +Onopipeline if a smaller program size and faster 
compile time are more important than faster execution speed. See 
“+O[no]pipeline” on page 130 for more information.

Prerequisites of pipelining
Software pipelining is attempted on a loop that meets the following 
criteria:

• It is the innermost loop

• There are no branches or function calls within the loop 

• The loop is of moderate size

This optimization produces slightly larger program files and increases 
compile time. It is most beneficial in programs containing loops that are 
executed many times.

 Example Software pipelining

The following C/C++ example shows a loop before and after the software 
pipelining optimization:

#define SIZ 10000
float x[SIZ], y[SIZ];
int i;
init();
for (i = 0;i<= SIZ;i++)
    x[i] = x[i] / y[i] + 4.00;



50 Chapter 4 

Standard optimization features
Routine level optimizations (+O2)

Four significant things happen in this example:

• A portion of the first iteration of the loop is performed before the loop.

• A portion of the last iteration of the loop is performed after the loop.

• The loop is unrolled twice.

• Operations from different loop iterations are interleaved with        
each other.

When this loop is compiled with software pipelining, the optimization is 
expressed as follows:

R1 = 0;       Initialize array index

R2 = 4.00;   Load constant value

R3 = X[0]; Load first X value

R4 = Y[0]; Load first Y value

R5 = R3 / R4; Perform division on first element: n = 
X[0]/Y[0]

do { Begin loop

R6 = R1; Save current array index

R1++; Increment array index

R7 = X[R1]; Load current X value

R8 = Y[R1]; Load current Y value

R9 = R5 + R2; Perform addition on prior row: X[i] = 
n + 4.00

R10 = R7 / R8; Perform division on current row: m = 
X[i+1]/Y[i+1]

X[R6] = R9; Save result of operations on prior row

R6 = R1; Save current array index

R1++; Increment array index

R3 = X[R1]; Load next X value

R4 = Y[R1]; Load next Y value



Chapter 4 51

Standard optimization features
Routine level optimizations (+O2)

This transformation stores intermediate results of the division 
instructions in unique registers (noted as n and m). These registers are 
not referenced until several instructions after the division operations. 
This decreases the possibility that the long latency period of the division 
instructions will stall the instruction pipeline and cause processing 
delays.

Strength reduction of induction variables 
and constants
This optimization removes expressions that are linear functions of a loop 
counter and replaces each of them with a variable that contains the 
value of the function. Variables of the same linear function are computed 
only once. This optimization also replaces multiplication instructions 
with addition instructions wherever possible.

 Example Strength reduction of induction variables and constants

This example begins with the following C/C++ code:

for (i=0; i<25; i++) {
  r[i] = i * k;
}

After this optimization, it looks like this:

t1 = 0;
for (i=0; i<25; i++) {
  r[i] = t1;
  t1 += k;
}

R11 = R10 + R2; Perform addition on current row: 
X[i+1] = m + 4.00

R5 = R3 / R4; Perform division on next row: n = 
X[i+2]/Y[i+2]

X[R6] = R11; Save result of operations on current row

} while (R1 <= 100); End loop

R9 = R5 + R2; Perform addition on last row: X[i+2] = 
n + 4.00

X[R6] = R9; Save result of operations on last row



52 Chapter 4 

Standard optimization features
Routine level optimizations (+O2)

Store and copy optimization
Where possible, the store and copy optimization substitutes registers for 
memory locations, by replacing store instructions with copy instructions 
and deleting load instructions.

Unused definition elimination
The unused definition elimination optimization removes unused memory 
location and register definitions. These definitions are often a result of 
transformations made by other optimizations.

 Example Unused definition elimination

This example begins with the following C/C++ code:

f(int x){
  int a,b,c;

  a = 1;
  b = 2;
  c = x * b;
  return c;
}

After unused definition elimination, it looks like this:

f(int x) {
  int a,b,c;

  c = x * 2;
  return c;
}

The assignment a = 1 is removed because a is not used after it is 
defined. Due to another +O2 optimization (constant propagation), the 
c = x * b statement becomes c = x * 2. The assignment b = 2 is 
then removed as well.



Chapter 5 53

Loop and cross-module optimization features

5 Loop and cross-module 
optimization features

This chapter discusses loop optimization features available with the 
HP-UX compilers, including those inherent in optimization level +O3. 
This includes a discussion of the following topics:

• Strip mining

• Inlining within a single source file

• Cloning within a single source file

• Data localization

• Loop blocking

• Loop distribution

• Loop fusion

• Loop interchange

• Loop unroll and jam

• Preventing loop reordering

• Test promotion

• Cross-module cloning

For more information as to specific loop optimization command-line 
options, as well as related pragmas and directives for optimization, 
please see “ “Controlling optimization,” on page 113.



54 Chapter 5 

Loop and cross-module optimization features
Strip mining

Strip mining
Strip mining is a fundamental +O3 transformation. Used by itself, 
strip mining is not profitable. However, it is used by loop blocking, 
loop unroll and jam, and, in a sense, by parallelization.

Strip mining involves splitting a single loop into a nested loop. The 
resulting inner loop iterates over a section or strip of the original loop, 
and the new outer loop runs the inner loop enough times to cover all the 
strips, achieving the necessary total number of iterations. The number of 
iterations of the inner loop is known as the loop’s strip length.

 Example Strip mining

This example begins with the Fortran code below:

DO I = 1, 10000
  A(I) = A(I) * B(I)
ENDDO

Strip mining this loop using a strip length of 1000 yields the following 
loop nest:

DO IOUTER = 1, 10000, 1000
  DO ISTRIP = IOUTER, IOUTER+999
    A(ISTRIP) = A(ISTRIP) * B(ISTRIP)
  ENDDO
ENDDO

In this loop, the strip length integrally divides the number of iterations, 
so the loop is evenly split up. If the iteration count was not an integral 
multiple of the strip length—if I went from 1 to 10500 rather than 1 to 
10000, for example—the final iteration of the strip loop would execute 
500 iterations instead of 1000.



Chapter 5 55

Loop and cross-module optimization features
Inlining within a single source file

Inlining within a single source file
Inlining substitutes selected function calls with copies of the function’s 
object code. Only functions that meet the optimizer’s criteria are inlined. 
Inlining may result in slightly larger executable files. However, this 
increase in size is offset by the elimination of time-consuming procedure 
calls and procedure returns.

At +O3, inlining is performed within a file; at +O4, it is performed across 
files. Inlining is affected by the +O[no]inline[=namelist] and 
+Oinline_budget=n command-line options. See  “Controlling 
optimization,” on page 113 for more information.

 Example Inlining within single source file

The following is an example of inlining at the source code level. Before 
inlining, the C source file looks like this:

/* Return the greatest common divisor of two positive integers,*/
/* int1 and int2, computed using Euclid's algorithm. (Return 0 */
/* if either is not positive.) */

int gcd(int int1,int int2)
{
  int inttemp;

  if ( (int1 <= 0) || (int2 <= 0) ) {
    return(0);
  }
  do {
      if (int1 < int2) {
        inttemp = int1;
        int1    = int2;
        int2    = inttemp;
      }
      int1 = int1 - int2;
  } while (int1 > 0);
  return(int2);
}

main()
{
  int xval,yval,gcdxy;
  .
  .       /* statements before call to gcd */
  .
  gcdxy = gcd(xval,yval);
  .
  .       /* statements after call to gcd */
  .
}



56 Chapter 5 

Loop and cross-module optimization features
Inlining within a single source file

After inlining, main looks like this:

main()
{
  int xval,yval,gcdxy;
  .
  .       /* statements before inlined version of gcd */ 
  .
  { 
    int int1;
    int int2;

      int1 = xval;
      int2 = yval;
      {
        int inttemp;

        if ( (int1 <= 0) || (int2 <= 0) ){
           gcdxy = (0);
           goto AA003;
        }
        do {
            if (int1 < int2){
              inttemp = int1;
              int1    = int2;
              int2    = inttemp;
            }
            int1 = int1 - int2;
        } while (int1 > 0);
        gcdxy = (int2);
      }
  }
AA003 : ;
  .
  .       /* statements after inlined version of gcd */
  .
}



Chapter 5 57

Loop and cross-module optimization features
Cloning within a single source file

Cloning within a single source file
Cloning replaces a call to a routine by calling a clone of that routine. The 
clone is optimized differently than the original routine.

Cloning can expose additional opportunities for interprocedural 
optimization. At +O3, cloning is performed within a file, and at +O4, 
cloning is performed across files. Cloning is enabled by default, and is 
disabled by specifying the +Onoinline command-line option.



58 Chapter 5 

Loop and cross-module optimization features
Data localization

Data localization
Data localization occurs as a result of various loop transformations that 
occur at optimization levels +O2 or +O3. Because optimizations are 
cumulative, specifying +O3 or +O4 takes advantage of the 
transformations that happen at +O2. 

Table 3 Loop transformations affecting data localization

Data localization keeps frequently used data in the processor data cache, 
eliminating the need for more costly memory accesses.

Loops that manipulate arrays are the main candidates for localization 
optimizations. Most of these loops are eligible for the various 
transformations that the compiler performs at +O3. These 
transformations are explained in detail in this section.

Loop 
transformation Options required for behavior to occur

Loop unrolling +O2 +Oloop_unroll
(+Oloop_unroll is on by default at +O2 and above)

Loop distribution +O3 +Oloop_transform 
(+Oloop_transform is on by default at +O3 and above)

Loop interchange +O3 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop blocking +O3 +Oloop_transform +Oloop_block 
(+Oloop_transform is on by default at +O3 and above)
(+Oloop_block is off by default)

Loop fusion +O3 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop unroll and 
jam

+O3 +Oloop_transform +Oloop_unroll_jam 
(+Oloop_transform is on by default at +O3 and above)
(+Oloop_unroll_jam is off by default at +O3 and above)



Chapter 5 59

Loop and cross-module optimization features
Data localization

Some loop transformations cause loops to be fully or partially replicated. 
Because unlimited loop replication can significantly increase compile 
times, loop replication is limited by default. You can increase this limit 
(and possibly increase your program’s compile time and code size) by 
specifying the +Onosize and +Onolimit compiler options.

NOTE Most of the following code examples demonstrate optimization by showing 
the original code first and optimized code second. The optimized code is 
shown in the same language as the original code for illustrative purposes 
only.

Conditions that inhibit data localization
Any of the following conditions can inhibit or prevent data localization:

• Loop-carried dependences (LCDs)

• Other loop fusion dependences

• Aliasing

• Computed or assigned GOTO statements in Fortran

• return or exit statements in C or C++

• throw statements in C++

• Procedure calls

The following sections discuss these conditions and their effects on data 
localization. 

Loop-carried dependences (LCDs)
A loop-carried dependence (LCD) exists when one iteration of a loop 
assigns a value to an address that is referenced or assigned on another 
iteration. In some cases, LCDs can inhibit loop interchange, thereby 
inhibiting localization. Typically, these cases involve array indexes that 
are offset in opposite directions. 



60 Chapter 5 

Loop and cross-module optimization features
Data localization

To ignore LCDs, use the no_loop_dependence directive or pragma. 
The form of this directive and pragma is shown in Table 4.

NOTE This directive and pragmas should only be used if you are certain that there 
are no loop dependences. Otherwise, errors will result.

Table 4 Form of no_loop_dependence directive and pragma

where

namelist is a comma-separated list of variables or arrays that 
have no dependences for the immediately following 
loop. 

 Example Loop-carried dependences

The Fortran loop below contains an LCD that inhibits interchange:

DO I = 2, M
  DO J = 2, N
    A(I,J) = A(I-1,J-1) + A(I-1,J+1)
  ENDDO
ENDDO

C and C++ loops can contain similar constructs, but to simplify 
illustration, only the Fortran example is discussed here.

As written, this loop uses A(I-1,J-1) and A(I-1,J+1) to compute 
A(I,J). Table 5 shows the sequence in which values of A are computed 
for this loop.

Language Form

Fortran C$DIR NO_LOOP_DEPENDENCE(namelist)

C #pragma _CNX no_loop_dependence(namelist)



Chapter 5 61

Loop and cross-module optimization features
Data localization

Table 5 Computation sequence of A(I,J): original loop

As shown in Table 5, the original loop computes the elements of the 
current row of A using the elements of the previous row of A. For all rows 
except the first (which is never written), the values contained in the 
previous row must be written before the current row is computed. This 
dependence must be honored for the loop to yield its intended results. If a 
row element of A is computed before the previous row elements are 
computed, the result is incorrect.

Interchanging the I and J loops yields the following code:

DO J = 2, N
  DO I = 2, M
    A(I,J) = A(I-1,J+1) + A(I-1,J-1)
  ENDDO
ENDDO

After interchange, the loop computes values of A in the sequence shown 
in Table 6.

I J A(I,J) A(I-1,J-1) A(I-1,J+1)

2 2 A(2,2) A(1,1) A(1,3)

2 3 A(2,3) A(1,2) A(1,4)

2 4 A(2,4) A(1,3) A(1,5)

... ... ... ... ...

3 2 A(3,2) A(2,1) A(2,3)

3 3 A(3,3) A(2,2) A(2,4)

3 4 A(3,4) A(2,3) A(2,5)

... ... ... ... ...



62 Chapter 5 

Loop and cross-module optimization features
Data localization

Table 6 Computation sequence of A(I,J): interchanged loop

Here, the elements of the current column of A are computed using the 
elements of the previous column and the next column of A.

The problem here is that columns of A are being computed using 
elements from the next column, which have not been written yet. This 
computation violates the dependence illustrated in Table 5. 

The element-to-element dependences in both the original and 
interchanged loop are illustrated in Figure 9.

 Figure 9 LCDs in original and interchanged loops

The arrows in Figure 9 represent dependences from one element to 
another, pointing at elements that depend on the elements at the arrows’ 
bases. Shaded elements indicate a typical row or column computed in the 
inner loop:

I J A(I,J) A(I-1,J-1) A(I-1,J+1)

2 2 A(2,2) A(1,1) A(1,3)

3 2 A(3,2) A(2,1) A(2,3)

4 2 A(4,2) A(3,1) A(3,3)

... ... ... ... ...

2 3 A(2,3) A(1,2) A(1,4)

3 3 A(3,3) A(2,2) A(2,4)

4 3 A(4,3) A(3,2) A(3,4)

... ... ... ... ...

1 2 3 ...

1

2

3

.
.
.

I

J
1 2 3 ...

1

2

3

.
.
.

I

J

Original loop Interchanged loop



Chapter 5 63

Loop and cross-module optimization features
Data localization

• Darkly shaded elements have already been computed.

• Lightly shaded elements have not yet been computed.

This figure helps to illustrate the sequence in which the array elements 
are cycled through by the respective loops: the original loop cycles across 
all the columns in a row, then moves on to the next row. The 
interchanged loop cycles down all the rows in a column first, then moves 
on to the next column.

 Example Avoid loop interchange

Interchange is inhibited only by loops that contain dependences that 
change when the loop is interchanged. Most LCDs do not fall into this 
category and thus do not inhibit loop interchange.

Occasionally, the compiler encounters an apparent LCD. If it cannot 
determine whether the LCD actually inhibits interchange, it 
conservatively avoids interchanging the loop.

The following Fortran example illustrates this situation:

DO I = 1, N
  DO J = 2, M
    A(I,J) = A(I+IADD,J+JADD) + B(I,J)
  ENDDO
ENDDO

In these examples, if IADD and JADD are either both positive or both 
negative, the loop contains no interchange-inhibiting dependence. 
However, if one and only one of the variables is negative, interchange is 
inhibited. The compiler has no way of knowing the runtime values of 
IADD and JADD, so it avoids interchanging the loop. 

If you are positive that the IADD and JADD are both negative or both 
positive, you can tell the compiler that the loop is free of dependences 
using the no_loop_dependence directive or pragma, described in this 
chapter Table 4 on page 60.

The previous Fortran loop is interchanged when the 
NO_LOOP_DEPENDENCE directive is specified for A on the J loop as shown 
in the following code:

      DO I = 1, N
C$DIR   NO_LOOP_DEPENDENCE(A)
        DO J = 2, M
          A(I,J) = A(I+IADD,J+JADD) + B(I,J)
        ENDDO
      ENDDO



64 Chapter 5 

Loop and cross-module optimization features
Data localization

If IADD and JADD acquire opposite-signed values at runtime, these loops 
may result in incorrect answers.

Other loop fusion dependences
In some cases, loop fusion is also inhibited by simpler dependences than 
those that inhibit interchange. Consider the following Fortran example:

DO I = 1, N-1
  A(I) = B(I+1) + C(I)
ENDDO
DO J = 1, N-1
  D(J) = A(J+1) + E(J)
ENDDO

While it might appear that loop fusion would benefit the preceding 
example, it would actually yield the following incorrect code:

DO ITEMP = 1, N-1
  A(ITEMP) = B(ITEMP+1) + C(ITEMP)
  D(ITEMP) = A(ITEMP+1) + E(ITEMP)
ENDDO

This loop produces different answers than the original loops, because the 
reference to A(ITEMP+1) in the fused loop accesses a value that has not 
been assigned yet, while the analogous reference to A(J+1) in the 
original J loop accesses a value that was assigned in the original I loop.

Aliasing
An alias is an alternate name for an object. Aliasing occurs in a program 
when two or more names are attached to the same memory location. 
Aliasing is typically caused in Fortran by use of the EQUIVALENCE 
statement. The use of pointers normally causes the problem in C and 
C++. Passing identical actual arguments into different dummy 
arguments in a Fortran subprogram can also cause aliasing, as can 
passing the same address into different pointer arguments in a C or C++ 
function.

 Example Aliasing

Aliasing interferes with data localization because it can mask LCDs 
where arrays A and B have been equivalenced. This is shown in the 
following Fortran example:

INTEGER A(100,100), B(100,100), C(100,100)
EQUIVALENCE(A,B)
.
.
.



Chapter 5 65

Loop and cross-module optimization features
Data localization

DO I = 1, N
  DO J = 2, M
    A(I,J) = B(I-1,J+1) + C(I,J)
  ENDDO
ENDDO

This loop has the same problem as the loop used to demonstrate LCDs in 
the previous section; because A and B refer to the same array, the loop 
contains an LCD on A, which prevents interchange and thus interferes 
with localization.

The C and C++ equivalent of this loop follows. Keep in mind that C and 
C++ store arrays in row-major order, which requires different 
subscripting to access the same elements.

int a[100][100], c[100][100], i, j;
int (*b)[100];
b = a;
.
.
.
for(i=1;i<n;i++){
  for(j=0;j<m;j++){
    a[j][i] = b[j+1][i-1] + c[j][i];
  }
}

Fortran’s EQUIVALENCE statement is imitated in C and C++; through the 
use of pointers, arrays are effectively equivalenced, as shown.

Passing the same address into different dummy procedure arguments 
can yield the same result. Fortran passes arguments by reference while 
C and C++ pass them by value. However, pass-by-reference is simulated 
in C and C++ by passing the argument’s address into a pointer in the 
receiving procedure or in C++ by using references.

 Example Aliasing

The following Fortran code exhibits the same aliasing problem as the 
previous example, but the alias is created by passing the same actual 
argument into different dummy arguments.

NOTE The sample code below violates the Fortran standard.

.

.

.
CALL ALI(A,A,C)
.
.
.
SUBROUTINE ALI(A,B,C)
INTEGER A(100,100), B(100,100), C(100,100)



66 Chapter 5 

Loop and cross-module optimization features
Data localization

DO J = 1, N
  DO I = 2, M
    A(I,J) = B(I-1,J+1) + C(I,J)
  ENDDO
ENDDO
.
.
.

The following (legal ANSI C) code shows the same argument-passing 
problem in C:

.

.

.
ali(&a,&a,&c);
.
.
.
void ali(a,b,c)
int a[100][100], b[100][100], c[100][100];
{
  int i,j;
  for(j=0;j<n;j++){
    for(i=1;i<m;i++){
      a[j][i] = b[j+1][i-1] + c[j][i];
    }
  }
}



Chapter 5 67

Loop and cross-module optimization features
Data localization

Computed or assigned GOTO statements in Fortran
When the Fortran compiler encounters a computed or assigned GOTO 
statement in an otherwise interchangeable loop, it cannot always 
determine whether the branch destination is within the loop. Because an 
out-of-loop destination would be a loop exit, these statements often 
prevent loop interchange and therefore data localization.

I/O statements
The order in which values are read into or written from a loop may 
change if the loop is interchanged. For this reason, I/O statements inhibit 
interchange and, consequently, data localization. 

 Example I/O statements

The following Fortran code is the basis for this example:

DO I = 1, 4
  DO J = 1, 4
    READ *, IA(I,J)
  ENDDO
ENDDO

Given a data stream consisting of alternating zeros and ones 
(0,1,0,1,0,1...), the contents for A(I,J) for both the original loop and the 
interchanged loop are shown in Figure 10.

 Figure 10 Values read into array A

1 2 3

1

2

3
I

J

1 2 3

I

J

Original loop Interchanged loop

4

4

4

1

2

3

4

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 1 1 1

0 00 0

1 1 1 1

0 00 0



68 Chapter 5 

Loop and cross-module optimization features
Data localization

Multiple loop entries or exits
Loops that contain multiple entries or exits inhibit data localization 
because they cannot safely be interchanged. Extra loop entries are 
usually created when a loop contains a branch destination. Extra exits 
are more common, however. These are often created in C and C++ using 
the break statement, and in Fortran using the GOTO statement. 

As noted before, the order of computation changes if the loops are 
interchanged.

 Example Multiple loop entries or exits

This example begins with the following C code:

for(j=0;j<n;j++){
  for(i=0;i<m;i++){
    a[i][j] = b[i][j] + c[i][j];
    if(a[i][j] == 0) break;
    .
    .
    .
  }
}

Interchanging this loop would change the order in which the values of a 
are computed. The original loop computes a column-by-column, whereas 
the interchanged loop would compute it row-by-row. This means that the 
interchanged loop may hit the break statement and exit after computing 
a different set of elements than the original loop computes. Interchange 
therefore may cause the results of the loop to differ and must be avoided.

RETURN or STOP statements in Fortran
Like loops with multiple exits, RETURN and STOP statements in Fortran 
inhibit localization because they inhibit interchange. If a loop containing 
a RETURN or STOP is interchanged, its order of computation may change, 
giving wrong answers.

return or exit statements in C or C++
Similar to Fortran’s RETURN and STOP statements (discussed in the 
previous section), return and exit statements in C and C++ inhibit 
localization because they inhibit interchange. 



Chapter 5 69

Loop and cross-module optimization features
Data localization

throw statements in C++
In C++, throw statements, like loops containing multiple exits, inhibit 
localization because they inhibit interchange.

Procedure calls
HP compilers are unaware of the side effects of most procedures, and 
therefore cannot determine whether or not they might interfere with 
loop interchange. Consequently, the compilers do not perform loop 
interchange in an embedded procedure call. These side effects may 
include data dependences involving loop arrays, aliasing (as described in 
the section “Aliasing” on page 64), and processor data cache that use 
conflicts with the loop’s cache. This renders useless any data localization 
optimizations performed on the loop.

NOTE The compiler can loop parallel on a loop with a procedure call if it can verify 
that the procedure will not cause any side effects.



70 Chapter 5 

Loop and cross-module optimization features
Loop blocking

Loop blocking
Loop blocking is a combination of strip mining and interchange that 
maximizes data localization. It is provided primarily to deal with nested 
loops that manipulate arrays that are too large to fit into the cache. 
Under certain circumstances, loop blocking allows reuse of these arrays 
by transforming the loops that manipulate them so that they manipulate 
strips of the arrays that fit into the cache. Effectively, a blocked loop 
accesses array elements in sections that are optimally sized to fit in the 
cache.

The loop-blocking optimization is only available at +O3 (and above) in 
the HP compilers; it is disabled by default. To enable loop blocking, use 
the +Oloop_block option. Specifying +Onoloop_block (the default) 
disables both automatic and directive-specified loop blocking. Specifying 
+Onoloop_transform also disables loop blocking, as well as loop 
distribution, loop interchange, loop fusion, loop unroll, and loop unroll 
and jam.

Loop blocking can also be enabled for specific loops using the 
block_loop directive and pragma. The block_loop and 
no_block_loop directives and pragmas affect the immediately 
following loop. You can also instruct the compiler to use a specific block 
factor using block_loop. The no_block_loop directive and pragma 
disables loop blocking for a particular loop.

The forms of these directives and pragmas is shown in Table 7.

Table 7 Forms of block_loop, no_block_loop directives and pragmas

Language Form

Fortran C$DIR BLOCK_LOOP[(BLOCK_FACTOR = n)]

C$DIR NO_BLOCK_LOOP

C #pragma _CNX block_loop[(block_factor = n)]

#pragma _CNX no_block_loop



Chapter 5 71

Loop and cross-module optimization features
Loop blocking

where

n is the requested block factor, which must be a 
compile-time integer constant. The compiler uses this 
value as stated. For the best performance, the block 
factor multiplied by the data type size of the data in the 
loop should be an integral multiple of the cache line 
size.

In the absence of the block_factor argument, this directive is useful 
for indicating which loop in a nest to block. In this case, the compiler 
uses a heuristic to determine the block factor.

Data reuse
Data reuse is important to understand when discussing blocking. There 
are two types of data reuse associated with loop blocking:

• Spatial reuse

• Temporal reuse

Spatial reuse
Spatial reuse uses data that was encached as a result of fetching another 
piece of data from memory; data is fetched by cache lines. 32 bytes of 
data is encached on every fetch on V2250 servers. Cache line sizes may 
be different on other HP SMPs. 

On the initial fetch of array data from memory within a stride-one loop, 
the requested item is located anywhere in the 32 bytes. The exception is 
if array is aligned on cache line boundaries. Refer to  “Standard 
optimization features,” on page 35, for a description of data alignment.

Starting with the cache-aligned memory fetch, the requested data is 
located at the beginning of the cache line, and the rest of the cache line 
contains subsequent array elements. For a REAL*4 array, this means the 
requested element and the seven following elements are encached on 
each fetch after the first. 

If any of these seven elements could then be used on any subsequent 
iterations of the loop, the loop would be exploiting spatial reuse. For 
loops with strides greater than one, spatial reuse can still occur. 
However, the cache lines contain fewer usable elements.



72 Chapter 5 

Loop and cross-module optimization features
Loop blocking

Temporal reuse
Temporal reuse uses the same data item on more than one iteration of 
the loop. An array element whose subscript does not change as a function 
of the iterations of a surrounding loop exhibits temporal reuse in the 
context of the loop.

Loops that stride through arrays are candidates for blocking when there 
is also an outermost loop carrying spatial or temporal reuse. Blocking the 
innermost loop allows data referenced by the outermore loop to remain 
in the cache across multiple iterations. Blocking exploits spatial reuse by 
ensuring that once fetched, cache lines are not overwritten until their 
spatial reuse is exhausted. Temporal reuse is similarly exploited.

 Example Simple loop blocking

In order to exploit reuse in more realistic examples that manipulate 
arrays that do not all fit in the cache, the compiler can apply a blocking 
transformation.

The following Fortran example demonstrates this:

REAL*8 A(1000,1000),B(1000,1000)
REAL*8 C(1000),D(1000)
COMMON /BLK2/ A, B, C
.
.
.
DO J = 1, 1000
  DO I = 1, 1000
    A(I,J) = B(J,I) + C(I) + D(J)
  ENDDO
ENDDO

Here the array elements occupy nearly 16 Mbytes of memory. Thus, 
blocking becomes profitable.

First the compiler strip mines the I loop:

DO J = 1, 1000
  DO IOUT = 1, 1000, IBLOCK
    DO I = IOUT, IOUT+IBLOCK-1
      A(I,J) = B(J,I) + C(I) + D(J)
    ENDDO
  ENDDO
ENDDO

IBLOCK is the block factor (also referred to as the strip mine length) the 
compiler chooses based on the size of the arrays and size of the cache. 
Note that this example assumes the chosen IBLOCK divides 1000 evenly.



Chapter 5 73

Loop and cross-module optimization features
Loop blocking

Next, the compiler moves the outer strip loop (IOUT) outward as far as 
possible.

DO IOUT = 1, 1000, IBLOCK
  DO J = 1, 1000
    DO I = IOUT, IOUT+IBLOCK-1
      A(I,J) = B(J,I) + C(I) + D(J)
    ENDDO
  ENDDO
ENDDO

This new nest accesses IBLOCK rows of A and IBLOCK columns of B for 
every iteration of J. At every iteration of IOUT, the nest accesses 1000 
IBLOCK-length columns of A (or an IBLOCK × 1000 chunk of A) and 1000 
IBLOCK-width rows of B are accessed. This is illustrated in Figure 11.

 Figure 11 Blocked array access

Fetches of A encache the needed element and the three elements that are 
used in the three subsequent iterations, giving spatial reuse on A. 
Because the I loop traverses columns of B, fetches of B encache extra 
elements that are not spatially reused until J increments. IBLOCK is 
chosen by the compiler to efficiently exploit spatial reuse of both A and B. 

Figure 12 illustrates how cache lines of each array are fetched. A and B 
both start on cache line boundaries because they are in COMMON. The 
shaded area represents the initial cache line fetched.

IOUT=1

IOUT=

IOUT=1000
-IBLOCK

I 

J COLUMNS

A

B

C

IBLOCK+1

ROWS

I COLUMNS

IOUT
=1

IOUT=
IBLOCK+1

J 
ROWS

IOUT=
1000
-IBLOCK

D



74 Chapter 5 

Loop and cross-module optimization features
Loop blocking

 Figure 12 Spatial reuse of A and B

• When A(1,1) is accessed, A(1:4,1) is fetched; A(2:4,1) is used on 
subsequent iterations 2,3 and 4 of I.

• B(1:4,1) is fetched when I=1, but B(2:4,1) is not be used until J 
increments to 2, 3, 4. B(1:4,2) is fetched when I=2.

Typically, IBLOCK elements of C remain in the cache for several 
iterations of J before being overwritten, giving temporal reuse on C for 
those iterations. By the time any of the arrays are overwritten, all 
spatial reuse has been exhausted. The load of D is removed from the I 
loop so that it remains in a register for all iterations of I.

 Example Matrix multiply blocking

The more complicated matrix multiply algorithm, which follows, is a 
prime candidate for blocking:

REAL*8 A(1000,1000),B(1000,1000),C(1000,1000)
COMMON /BLK3/ A, B, C
.
.
.
DO I = 1, 1000
  DO J = 1, 1000
    DO K = 1, 1000
      C(I,J) = C(I,J) + A(I,K) * B(K,J)
    ENDDO
  ENDDO
ENDDO

B(1,1)

B(2,1)

B(3,1)

B(4,1)

A(1,1)

A(2,1)

A(3,1)

A(4,1)

A(5,1)

A(1,2)

A(2,2)

A(3,2)

A(4,2)

A(5,2)

J COLUMNS

I
ROWS
(elements
accessed
down
rows first) B(5,1)

B(1,2)

B(2,2)

B(3,2)

B(4,2)

B(5,2)

I COLUMNS

J
ROWS

(elements are
accessed across
columns first)



Chapter 5 75

Loop and cross-module optimization features
Loop blocking

This loop is blocked as shown below:

DO IOUT = 1, 1000, IBLOCK
  DO KOUT = 1, 1000, KBLOCK
    DO J = 1, 1000
      DO I = IOUT, IOUT+IBLOCK-1
        DO K = KOUT, KOUT+KBLOCK-1
          C(I,J) = C(I,J) + A(I,K) * B(K,J)
        ENDDO
      ENDDO
    ENDDO
  ENDDO
ENDDO

As a result, the following occurs:

• Spatial reuse of B with respect to the K loop

• Temporal reuse of B with respect to the I loop

• Spatial reuse of A with respect to the I loop

• Temporal reuse of A with respect to the J loop

• Spatial reuse of C with respect to the I loop

• Temporal reuse of C with respect to the K loop

An analogous C and C++ example follows with a different resulting 
interchange:

static double a[1000][1000], b[1000][1000];
static double c[1000][1000];
. 
. 
. 
for(i=0;i<1000;i++)
    for(j=0;j<1000;j++) 
      for(k=0;k<1000;k++)
        c[i][j] = c[i][j] + a[i][k] * b[k][j];

The HP C and aC++ compilers interchange and block the loop in this 
example to provide optimal access efficiency for the row-major C and C++ 
arrays. The blocked loop is shown below:

for(jout=0;jout<1000;jout+=jblk)
  for(kout=0;kout<1000;kout+=kblk) 
    for(i=0;i<1000;i++)
      for(j=jout;j<jout+jblk;j++)
        for(k=kout;k<kout+kblk;k++)
          c[i][j]=c[i][j]+a[i][k]*b[k][j];



76 Chapter 5 

Loop and cross-module optimization features
Loop blocking

As you can see, the interchange was done differently because of C and 
C++’s different array storage strategies. This code yields:

• Spatial reuse of b with respect to the j loop

• Temporal reuse of b with respect to the i loop

• Spatial reuse of a with respect to the k loop 

• Temporal reuse of a with respect to the j loop

• Spatial reuse on c with respect to the j loop

• Temporal reuse on c with respect to the k loop

Blocking is inhibited when loop interchange is inhibited. If a candidate 
loop nest contains loops that cannot be interchanged, blocking is not 
performed.

 Example Loop blocking

The following example shows the affect of the block_loop directive on 
the code shown earlier in “Matrix multiply blocking” on page 74:

      REAL*8 A(1000,1000),B(1000,1000)
      REAL*8 C(1000,1000)
      COMMON /BLK3/ A, B, C
      . 
      . 
      . 
      DO I = 1,1000
        DO J = 1, 1000
C$DIR     BLOCK_LOOP(BLOCK_FACTOR = 112)
          DO K = 1,1000
            C(I,J) = C(I,J) + A(I,K)*B(K,J)
          ENDDO
        ENDDO
      ENDDO

The original example involving this code showed that the compiler blocks 
the I and K loops. In this example, the BLOCK_LOOP directive instructs 
the compiler to use a block factor of 112 for the K loop. This is an efficient 
blocking factor for this example because 112 × 8 bytes = 896 bytes, 
and 896/32 bytes (the cache line size) = 28, which is an integer, so partial 
cache lines are not necessary. The compiler-chosen value is still used on 
the I loop.



Chapter 5 77

Loop and cross-module optimization features
Loop distribution

Loop distribution
Loop distribution is another fundamental +O3 transformation necessary 
for more advanced transformations. These advanced transformations 
require that all calculations in a nested loop be performed inside the 
innermost loop. To facilitate this, loop distribution transforms 
complicated nested loops into several simple loops that contain all 
computations inside the body of the innermost loop.

Loop distribution takes place at +O3 and above and is enabled by default. 
Specifying +Onoloop_transform disables loop distribution, as well as 
loop interchange, loop blocking, loop fusion, loop unroll, and loop unroll 
and jam.

Loop distribution is disabled for specific loops by specifying the 
no_distribute directive or pragma immediately before the loop. 

The form of this directive and pragma is shown in Table 8.

Table 8 Form of no_distribute directive and pragma

 Example Loop distribution

This example begins with the following Fortran code:

DO I = 1, N
  C(I) = 0
  DO J = 1, M
    A(I,J) = A(I,J) + B(I,J) * C(I)
  ENDDO
ENDDO

Loop distribution creates two copies of the I loop, separating the nested 
J loop from the assignments to array C. In this way, all assignments are 
moved to innermost loops. Interchange is then performed on the I and J 
loops. 

Language Form

Fortran C$DIR NO_DISTRIBUTE

C #pragma _CNX no_distribute



78 Chapter 5 

Loop and cross-module optimization features
Loop distribution

The distribution and interchange is shown in the following transformed 
code:

DO I = 1, N
  C(I) = 0
ENDDO
DO J = 1, M
  DO I = 1, N
    A(I,J) = A(I,J) + B(I,J) * C(I)
  ENDDO
ENDDO

Distribution can improve efficiency by reducing the number of memory 
references per loop iteration and the amount of cache thrashing. It also 
creates more opportunities for interchange.



Chapter 5 79

Loop and cross-module optimization features
Loop fusion

Loop fusion
Loop fusion involves creating one loop out of two or more neighboring 
loops that have identical loop bounds and trip counts. This reduces loop 
overhead, memory accesses, and increases register usage. It can also lead 
to other optimizations. By potentially reducing the number of 
parallelizable loops in a program and increasing the amount of work in 
each of those loops, loop fusion can greatly reduce parallelization 
overhead. Because fewer spawns and joins are necessary. 

Loop fusion takes place at +O3 and above and is enabled by default. 
Specifying +Onoloop_transform disables loop fusion, as well as 
loop distribution, loop interchange, loop blocking, loop unroll, and 
loop unroll and jam.

Occasionally, loops that do not appear to be fusible become fusible as a 
result of compiler transformations that precede fusion. For instance, 
interchanging a loop may make it suitable for fusing with another loop.

Loop fusion is especially beneficial when applied to Fortran array 
assignments. The compiler translates these statements into loops; when 
such loops do not contain code that inhibit fusion, they are fused.

 Example Loop fusion

This example begins with the following Fortran code:

DO I = 1, N
  A(I) = B(I) + C(I)
ENDDO
DO J = 1, N
  IF(A(J) .LT. 0) A(J) = B(J)*B(J)
ENDDO

The two loops shown above are fused into the following loop using loop 
fusion:

DO I = 1, N
  A(I) = B(I) + C(I)
  IF(A(I) .LT. 0) A(I) = B(I)*B(I)
ENDDO



80 Chapter 5 

Loop and cross-module optimization features
Loop fusion

 Example Loop fusion

This example begins with the following Fortran code:

REAL A(100,100), B(100,100), C(100,100)
.
.
.
C = 2.0 * B
A = A + B

The compiler first transforms these Fortran array assignments into 
loops, generating code similar to that shown below.

DO TEMP1 = 1, 100
  DO TEMP2 = 1, 100
    C(TEMP2, TEMP1) = 2.0 * B(TEMP2, TEMP1)
  ENDDO
ENDDO
DO TEMP3 = 1, 100
  DO TEMP4 = 1, 100
    A(TEMP4,TEMP3)=A(TEMP4,TEMP3)+B(TEMP4,TEMP3)
  ENDDO
ENDDO

These two loops would then be fused as shown in the following loop nest:

DO TEMP1 = 1, 100
  DO TEMP2 = 1, 100
    C(TEMP2,TEMP1) = 2.0 * B(TEMP2, TEMP1)
    A(TEMP2,TEMP1)=A(TEMP2,TEMP1)+B(TEMP2,TEMP1)
  ENDDO
ENDDO

Further optimizations could be applied to this new nest as appropriate.

 Example Loop peeling

When trip counts of adjacent loops differ by only a single iteration (+1 
or -1), the compiler may peel an iteration from one of the two loops so 
that the loops may then be fused. The peeled iteration is performed 
separately from the original loop. 

The following Fortran example shows how this is implemented: 

DO I = 1, N-1
  A(I) = I
ENDDO

DO J = 1, N
  A(J) = A(J) + 1
ENDDO



Chapter 5 81

Loop and cross-module optimization features
Loop fusion

As you can see, the Nth iteration of the J loop is peeled, resulting in a trip 
count of N - 1. The Nth iteration is performed outside the J loop. As a 
result, the code is changed to the following:

DO I = 1, N-1
  A(I) = I
ENDDO

DO J = 1, N-1
  A(J) = A(J) + 1
ENDDO

A(N) = A(N) + 1

The I and J loops now have the same trip count and are fused, as shown 
below:

DO I = 1, N-1
  A(I) = I
  A(I) = A(I) + 1
ENDDO

A(N) = A(N) + 1



82 Chapter 5 

Loop and cross-module optimization features
Loop interchange

Loop interchange
The compiler may interchange (or reorder) nested loops for the following 
reasons:

• To facilitate other transformations

• To relocate the loop that is the most profitable to parallelize so that it 
is outermost 

• To optimize inner-loop memory accesses

Loop interchange takes place at +O3 and above and is enabled by default. 
Specifying +Onoloop_transform disables loop interchange, as well as 
loop distribution, loop blocking, loop fusion, loop unroll, and loop unroll 
and jam.

 Example Loop interchange

This example begins with the Fortran matrix addition algorithm below:

DO I = 1, N
  DO J = 1, M
    A(I, J) = B(I, J) + C(I, J)
  ENDDO
ENDDO

The loop accesses the arrays A, B and C row by row, which, in Fortran, is 
very inefficient. Interchanging the I and J loops, as shown in the 
following example, facilitates column by column access.

DO J = 1, M
  DO I = 1, N
    A(I, J) = B(I, J) + C(I, J)
  ENDDO
ENDDO

Unlike Fortran, C and C++ access arrays in row-major order. An 
analogous example in C and C++, then, employs an opposite nest 
ordering, as shown below.

for(j=0;j<m;j++)
  for(i=0;i<n;i++)
    a[i][j] = b[i][j] + c[i][j];



Chapter 5 83

Loop and cross-module optimization features
Loop interchange

Interchange facilitates row-by-row access. The interchanged loop is 
shown below.

for(i=0;i<n;i++)
  for(j=0;j<m;j++)
    a[i][j] = b[i][j] + c[i][j];



84 Chapter 5 

Loop and cross-module optimization features
Loop unroll and jam

Loop unroll and jam
The loop unroll and jam transformation is primarily intended to increase 
register exploitation and decrease memory loads and stores per 
operation within an iteration of a nested loop. Improved register usage 
decreases the need for main memory accesses and allows better 
exploitation of certain machine instructions. 

Unroll and jam involves partially unrolling one or more loops higher in 
the nest than the innermost loop, and fusing (“jamming”) the resulting 
loops back together. For unroll and jam to be effective, a loop must be 
nested and must contain data references that are temporally reused with 
respect to some loop other than the innermost (temporal reuse is 
described in “Data reuse” on page 71). The unroll and jam optimization is 
automatically applied only to those loops that consist strictly of a basic 
block.

Loop unroll and jam takes place at +O3 and above and is not enabled by 
default in the HP compilers. To enable loop unroll and jam on the 
command line, use the +Oloop_unroll_jam option. This allows both 
automatic and directive-specified unroll and jam. Specifying 
+Onoloop_transform disables loop unroll and jam, loop distribution, 
loop interchange, loop blocking, loop fusion, and loop unroll.

The unroll_and_jam directive and pragma also enables this 
transformation. The no_unroll_and_jam directive and pragma is used 
to disable loop unroll and jam for an individual loop.



Chapter 5 85

Loop and cross-module optimization features
Loop unroll and jam

The forms of these directives and pragmas are shown in Table 9.

Table 9 Forms of unroll_and_jam, no_unroll_and_jam directives and 
pragmas

where

unroll_factor=n allows you to specify an unroll factor 
for the loop in question.

NOTE Because unroll and jam is only performed on nested loops, you must ensure 
that the directive or pragma is specified on a loop that, after any compiler-
initiated interchanges, is not the innermost loop. You can determine which 
loops in a nest are innermost by compiling the nest without any directives 
and examining the Optimization Report, described in  “Optimization Report,” 
on page 151.

 Example Unroll and jam

Consider the following matrix multiply loop:

DO I = 1, N 
DO J = 1, N 
DO K = 1, N 

A(I,J) = A(I,J) + B(I,K) * C(K,J)
ENDDO

ENDDO
ENDDO 

Here, the compiler can exploit a maximum of 3 registers: one for A(I,J), 
one for B(I,K), and one for C(K,J).

Register exploitation is vastly increased on this loop by unrolling and 
jamming the I and J loops. First, the compiler unrolls the I loop. To 
simplify the illustration, an unrolling factor of 2 for I is used. This is the 
number of times the contents of the loop are replicated.

Language Form

Fortran C$DIR UNROLL_AND_JAM[(UNROLL_FACTOR=n)]

C$DIR NO_UNROLL_AND_JAM

C #pragma _CNX unroll_and_jam[(unroll_factor=n)]

#pragma _CNX no_unroll_and_jam



86 Chapter 5 

Loop and cross-module optimization features
Loop unroll and jam

The following Fortran example shows this replication:

DO I = 1, N, 2
DO J = 1, N
DO K = 1, N 

A(I,J) = A(I,J) + B(I,K) * C(K,J) 
ENDDO

ENDDO 
DO J = 1, N 
DO K = 1, N 

A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 
ENDDO 

ENDDO 
ENDDO 

The “jam” part of unroll and jam occurs when the loops are fused back 
together, to create the following:

DO I = 1, N, 2 
DO J = 1, N 
DO K = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J) 
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 

ENDDO 
ENDDO

ENDDO 

This new loop can exploit registers for two additional references: A(I,J) 
and A(I+1,J). However, the compiler still has the J loop to unroll and 
jam. An unroll factor of 4 for the J loop is used, in which case unrolling 
gives the following: 

DO I = 1, N, 2 
DO J = 1, N, 4 
DO K = 1, N 

A(I,J) = A(I,J) + B(I,K) * C(K,J) 
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 

ENDDO 
DO K = 1, N 

A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1) 
A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1) 

ENDDO 
DO K = 1, N 

A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2) 
A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2) 

ENDDO 
DO K = 1, N 

A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3) 
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3) 

ENDDO 
ENDDO

ENDDO



Chapter 5 87

Loop and cross-module optimization features
Loop unroll and jam

Fusing (jamming) the unrolled loop results in the following:

DO I = 1, N, 2 
DO J = 1, N, 4 
DO K = 1, N 

A(I,J) = A(I,J) + B(I,K) * C(K,J) 
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 
A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1) 
A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1) 
A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2) 
A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2) 
A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3) 
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3) 

ENDDO
ENDDO

ENDDO

This new loop exploits more registers and requires fewer loads and 
stores than the original. Recall that the original loop could use no more 
than 3 registers. This unrolled-and-jammed loop can use 14, one for each 
of the following references: 

Fewer loads and stores per operation are required because all of the 
registers containing these elements are referenced at least twice. This 
particular example can also benefit from the PA-RISC FMPYFADD 
instruction, which is available with PA-8x00 processors. This instruction 
doubles the speed of the operations in the body of the loop by 
simultaneously performing related adds and multiplies. 

This is a very simplified example. In reality, the compiler attempts to 
exploit as many of the PA-RISC processor’s registers as possible. For the 
matrix multiply algorithm used here, the compiler would select a larger 
unrolling factor, creating a much larger K loop body. This would result in 
increased register exploitation and fewer loads and stores per operation.

NOTE Excessive unrolling may introduce extra register spills if the unrolled and 
jammed loop body becomes too large. Each cache line has a 32-bit register 
value; register spills occur when this value is exceeded. This most often 
occurs as a result of continuous loop unrolling. Register spills may have 
negative effects on performance. 

A(I,J) B(I,K) C(K,J) A(I+1,J)

B(I+1,K) A(I,J+1) C(K,J+1) A(I+1,J+1)

A(I,J+2) C(K,J+2) A(I,J+3) A(I+1,J+2)

A(I+1,J+3) C(K,J+3)



88 Chapter 5 

Loop and cross-module optimization features
Loop unroll and jam

You should attempt to select unroll factor values that align data 
references in the innermost loop on cache boundaries. As a result, 
references to the consecutive memory regions in the innermost loop can 
have very high cache hit ratios. Unroll factors of 5 or 7 may not be good 
choices because most array element sizes are either 4 bytes or 8 bytes 
and the cache line size is 32 bytes. Therefore, an unroll factor of 2 or 4 is 
more likely to effectively exploit cache line reuse for the references that 
access consecutive memory regions.

As with all optimizations that replicate code, the number of new loops 
created when the compiler performs the unroll and jam optimization is 
limited by default to ensure reasonable compile times. To increase the 
replication limit and possibly increase your compile time and code size, 
specify the +Onosize and +Onolimit compiler options.



Chapter 5 89

Loop and cross-module optimization features
Preventing loop reordering

Preventing loop reordering
The no_loop_transform directive or pragma allows you to prevent all 
loop-reordering transformations on the immediately following loop. 

The form of this directive and pragma are shown in Table 10.

Table 10 Form of no_loop_transform directive and pragma

Use the command-line option +Onoloop_transform (at +O3 and above) 
to disable loop distribution, loop blocking, loop fusion, loop interchange, 
loop unroll, and loop unroll and jam at the file level.

Language Form

Fortran C$DIR NO_LOOP_TRANSFORM

C #pragma _CNX no_loop_transform



90 Chapter 5 

Loop and cross-module optimization features
Test promotion

Test promotion
Test promotion involves promoting a test out of the loop that encloses it 
by replicating the containing loop for each branch of the test. The 
replicated loops contain fewer tests than the originals, or no tests at all, 
so the loops execute much faster. Multiple tests are promoted, and copies 
of the loop are made for each test. 

 Example Test promotion

Consider the following Fortran loop:

DO I=1, 100
  DO J=1, 100
    IF(FOO .EQ. BAR) THEN
      A(I,J) = I + J
    ELSE
      A(I,J) = 0
    ENDIF
  ENDDO
ENDDO

Test promotion (and loop interchange) produces the following code:

IF(FOO .EQ. BAR) THEN
  DO J=1, 100    
    DO I=1, 100
      A(I,J) = I + J
    ENDDO
  ENDDO
ELSE
  DO J=1, 100    
    DO I=1, 100
      A(I,J) = 0
    ENDDO
  ENDDO
ENDIF

For loops containing large numbers of tests, loop replication can greatly 
increase the size of the code. 

Each DO loop in Fortran and for loop in C and C++ whose bounds are not 
known at compile-time is implicitly tested to check that the loop iterates 
at least once. This test may be promoted, with the promotion noted in the 
Optimization Report. If you see unexpected promotions in the report, 
this implicit testing may be the cause. For more information on the 
Optimization Report, see  “Optimization Report,” on page 151.



Chapter 5 91

Loop and cross-module optimization features
Cross-module cloning

Cross-module cloning
Cloning is the replacement of a call to a routine by a call to a clone of that 
routine. The clone is optimized differently than the original routine. 
Cloning can expose additional opportunities for optimization across 
multiple source files. 

Cloning at +O4 is performed across all procedures within the program, 
and is disabled by specifying the +Onoinline command-line option. 
This option is described on page 124.

Global and static variable optimizations
Global and static variable optimizations look for ways to reduce the 
number of instructions required for accessing global and static variables 
(COMMON and SAVE variables in Fortran, and extern and static 
variables in C and C++). 

The compiler normally generates two machine instructions when 
referencing global variables. Depending on the locality of the global 
variables, single machine instructions may sometimes be used to access 
these variables. The linker rearranges the storage location of global and 
static data to increase the number of variables that are referenced by 
single instructions.

Global variable optimization coding standards
Because this optimization rearranges the location and data alignment of 
global variables, follow the programming practices given below:

• Do not make assumptions about the relative storage location of 
variables, such as generating a pointer by adding an offset to the 
address of another variable.

• Do not rely on pointer or address comparisons between two different 
variables.

• Do not make assumptions about the alignment of variables, such as 
assuming that a short integer is aligned the same as an integer.



92 Chapter 5 

Loop and cross-module optimization features
Cross-module cloning

Inlining across multiple source files
Inlining substitutes function calls with copies of the function’s object 
code. Only functions that meet the optimizer’s criteria are inlined. This 
may result in slightly larger executable files. However, this increase in 
size is offset by the elimination of time-consuming procedure calls and 
procedure returns. See the section “Inlining within a single source file” 
on page 55 for an example of inlining.

Inlining at +O4 is performed across all procedures within the program. 
Inlining at +O3 is done within one file.

Inlining is affected by the +O[no]inline[=namelist] and 
+Oinline_budget=n command-line options. See  “Controlling 
optimization,” on page 113 for more information on these options.



Chapter 6 93

Parallel optimization features

6 Parallel optimization features

This chapter discusses parallel optimization features available with the 
HP-UX compilers, including those inherent in optimization levels +O3 
and +O4. This includes a discussion of the following topics:

• Levels of parallelism

• Threads

• Idle thread states

• Parallel optimizations

• Inhibiting parallelization

• Reductions

• Preventing parallelization

• Parallelism in the aC++ compiler

• Cloning across multiple source files

For more information as to specific parallel command-line options, as 
well as pragmas and directives, please see  “Controlling optimization,” on 
page 113.



94 Chapter 6 

Parallel optimization features
Levels of parallelism

Levels of parallelism
In the HP compilers, parallelism exists at the loop level, task level, and 
region level, as described in Chapter 9, “Parallel programming 
techniques”. These are briefly described as follows.

• HP compilers automatically exploit loop-level parallelism. This type 
of parallelism involves dividing a loop into several smaller iteration 
spaces and scheduling these to run simultaneously on the available 
processors. For more information, see “Parallelizing loops” on 
page 178. 

Using the +Oparallel option at +O3 and above allows the compiler 
to automatically parallelize loops that are profitable to parallelize.

Only loops with iteration counts that can be determined prior to loop 
invocation at runtime are candidates for parallelization. Loops with 
iteration counts that depend on values or conditions calculated within 
the loop cannot be parallelized by any means.

• Specify task-level parallelism using the begin_tasks, next_task 
and end_tasks directives and pragmas, as discussed in the section 
“Parallelizing tasks” on page 192. 

• Specify parallel regions using the parallel and end_parallel 
directives and pragmas, as discussed in the section “Parallelizing 
regions” on page 197. These directives and pragmas allow the 
compiler to run identified sections of code in parallel.

Loop-level parallelism
HP compilers locate parallelism at the loop level, generating parallel 
code that is automatically run on as many processors as are available at 
runtime. Normally, these are all the processors on the same system 
where your program is running. You can specify a smaller number of 
processors using any of the following:

• loop_parallel(max_threads=m) directive and pragma—available 
in Fortran and C

• prefer_parallel(max_threads=m)directive and pragma—
available in Fortran and C



Chapter 6 95

Parallel optimization features
Levels of parallelism

For more information on the loop_parallel and 
prefer_parallel directives and pragmas see Chapter 9, “Parallel 
programming techniques”.

• MP_NUMBER_OF_THREADS environment variable—This variable is 
read at runtime by your program. If this variable is set to some 
positive integer n, your program executes on n processors. n must be 
less than or equal to the number of processors in the system where 
the program is executing. 

Automatic parallelization
Automatic parallelization is useful for programs containing loops. You 
can use compiler directives or pragmas to improve on the automatic 
optimizations and to assist the compiler in locating additional 
opportunities for parallelization.

If you are writing your program entirely under the message-passing 
paradigm, you must explicitly handle parallelism as discussed in the 
HP MPI User’s Guide.

 Example Loop-level parallelism

This example begins with the following Fortran code: 

PROGRAM PARAXPL
. 
. 
. 
DO I = 1, 1024
  A(I) = B(I) + C(I)
  . 
  . 
  . 
ENDDO

Assuming that the I loop does not contain any parallelization-inhibiting 
code, this program can be parallelized to run on eight processors by 
running 128 iterations per processor (1024 iterations divided by 8 
processors = 128 iterations each). One processor would run the loop for 
I = 1 to 128. The next processor would run I = 129 to 256, and so on. The 
loop could similarly be parallelized to run on any number of processors, 
with each one taking its appropriate share of iterations. 

At a certain point, however, adding more processors does not improve 
performance. The compiler generates code that runs on as many 
processors as are available, but the dynamic selection optimization 
(described in the section “Dynamic selection” on page 102) ensures that 



96 Chapter 6 

Parallel optimization features
Threads

parallel code is executed only if it is profitable to do so. If the number of 
available processors does not evenly divide the number of iterations, 
some processors perform fewer iterations than others.

Threads
Parallelization divides a program into threads. A thread is a single flow 
of control within a process. It can be a unique flow of control that 
performs a specific function, or one of several instances of a flow of 
control, each of which is operating on a unique data set.

On a V-Class server, parallel shared-memory programs run as a 
collection of threads on multiple processors. When a program starts, a 
separate execution thread is created on each system processor on which 
the program is running. All but one of these threads is then idle. The 
nonidle thread is known as thread 1, and this thread runs all of the 
serial code in the program. 

Spawn thread IDs are assigned only to nonidle threads when they are 
spawned. This occurs when thread 1 encounters parallelism and “wakes 
up” other idle threads to execute the parallel code. Spawn thread IDs are 
consecutive, ranging from 0 to N-1, where N is the number of threads 
spawned as a result of the spawn operation. This operation defines the 
current spawn context. The spawn context is the loop, task list, or region 
that initiates the spawning of the threads. Spawn thread IDs are valid 
only within a given spawn context.

This means that the idle threads are not assigned spawn thread IDs at 
the time of their creation. When thread 1 encounters a parallel loop, 
task, or region, it spawns the other threads, signaling them to begin 
execution. The threads then become active, acquire spawn thread IDs, 
run until their portion of the parallel code is finished, and go idle once 
again, as shown in Figure 13. 

NOTE Machine loading does not affect the number of threads spawned, but it may 
affect the order in which the threads in a given spawn context complete. 



Chapter 6 97

Parallel optimization features
Threads

 Figure 13 One-dimensional parallelism in threads

Loop transformations

Figure 13 above shows that various loop transformations can affect the 
manner in which a loop is parallelized.

To implement this, the compiler transforms the loop in a manner similar 
to strip mining. However, unlike in strip mining, the outer loop is 
conceptual. Because the strips execute on different processors, there is 
no processor to run an outer loop like the one created in traditional strip 
mining.

Instead, the loop is transformed. The starting and stopping iteration 
values are variables that are determined at runtime based on how many 
threads are available and which thread is running the strip in question.

 Example Loop transformations

Consider the previous Fortran example written for an unspecified 
number of iterations:

DO I = 1, N
  A(I) = B(I) + C(I)
ENDDO

Threads*
0

spawn

idle idle idle idle idle idle idle

spawn spawn spawn spawn spawn spawn

idle idle idle idle idle idle idle

I
=1,128

I 
=129,
256

I 
=257,
384

I 
=385,
512

I 
=513,
640

I 
=641,
768

I 
=769,
896

I 
=897,

1024

* Numbers shown represent spawn thread IDs

PROGRAM PARAXPL
.
.
.
DO I=1,1024

  A(I)=B(I)+C(I)

  . 
  . 
  . 
ENDDO
.
.
.

1 2 3 4 5 6 7



98 Chapter 6 

Parallel optimization features
Threads

The code shown in Figure 14 is a conceptual representation of the 
transformation the compiler performs on this example when it is 
compiled for parallelization, assuming that N >= NumThreads. 
For N < NumThreads, the compiler uses N threads, assuming there is 
enough work in the loop to justify the overhead of parallelizing it. If 
NumThreads is not an integral divisor of N, some threads perform fewer 
iterations than others.

 Figure 14 Conceptual strip mine for parallelization

NumThreads is the number of available threads. ThrdID is the ID 
number of the thread this particular loop runs on, which is between 0 
and NumThreads-1. A unique ThrdID is assigned to each thread, and 
the ThrdIDs are consecutive. So, for NumThreads = 8, as in Figure 13, 
8 loops would be spawned, with ThrdIDs = 0 through 7. These 8 loops 
are illustrated in Figure 15.

For each available thread do:

  DO I = ThrdID*(N/NumThreads)+1,ThrdID*(N/NumThreads)+N/NumThreads

    A(I) = B(I) + C(I)

  ENDDO



Chapter 6 99

Parallel optimization features
Threads

 Figure 15 Parallelized loop

NOTE The strip-based parallelism described here is the default. Stride-based 
parallelism is possible through use of the prefer_parallel and 
loop_parallel compiler directives and pragmas.

In these examples, the data being manipulated within the loop is disjoint 
so that no two threads attempt to write the same data item. If two 
parallel threads attempt to update the same storage location, their 
actions must be synchronized. This is discussed further in  “Parallel 
synchronization,” on page 243.

DO I = 1, 128

  A(I) = B(I) + C(I)

ENDDO

DO I = 129, 256

  A(I) = B(I) + C(I)

ENDDO

DO I = 385, 512

  A(I) = B(I) + C(I)

ENDDO

DO I = 257, 384

  A(I) = B(I) + C(I)

ENDDO

Thread 0 Thread 1

Thread 2 Thread 3

DO I = 513, 640

  A(I) = B(I) + C(I)

ENDDO

DO I = 641, 768

  A(I) = B(I) + C(I)

ENDDO

DO I = 897, 1024

  A(I) = B(I) + C(I)

ENDDO

DO I = 769, 896

  A(I) = B(I) + C(I)

ENDDO

Thread 4 Thread 5

Thread 6 Thread 7



100 Chapter 6 

Parallel optimization features
Idle thread states

Idle thread states
Idle threads can be suspended or spin-waiting. Suspended threads 
release control of the processor while spin-waiting threads repeatedly 
check an encached global semaphore that indicates whether or not they 
have code to execute. This obviously prevents any other process from 
gaining control of the CPU and can severely degrade multiprocess 
performance. 

Alternately, waking a suspended thread takes substantially longer than 
activating a spin-waiting thread. By default, idle threads spin-wait 
briefly after creation or a join, then suspend themselves if no work is 
received.

When threads are suspended, HP-UX may schedule threads of another 
process on their processors in order to balance machine load. However, 
threads have an affinity for their original processors. HP-UX tries to 
schedule unsuspended threads to their original processors in order to 
exploit the presence of any data encached during the thread’s last 
timeslice. This occurs only if the original processor is available. 
Otherwise, the thread is assigned to the first processor to become 
available.

Determining idle thread states
Use the MP_IDLE_THREADS_WAIT environment variable to determine 
how threads wait. The form of the MP_IDLE_THREADS_WAIT 
environment variable is shown in Table 11.

Table 11 Form of MP_IDLE_THREADS_WAIT environment variable

Language Form

Fortran, C setenv MP_IDLE_THREADS_WAIT=n



Chapter 6 101

Parallel optimization features
Idle thread states

where

n is the integer value, represented in milliseconds, that 
the threads spin-wait. These have values as described 
below:

• For n less than 0, the threads spin-wait. 

• For n equal to or greater than 0, the threads spin-wait for n 
milliseconds before being suspended. 

By default, idle threads spin-wait briefly after creation or a join. They 
then suspend themselves if no work is received. 



102 Chapter 6 

Parallel optimization features
Parallel optimizations

Parallel optimizations
Simple loops can be parallelized without the need for extensive 
transformations. However, most loop transformations do enhance 
optimum parallelization. For instance, loop interchange orders loops so 
that the innermost loop best exploits the processor data cache, and the 
outermost loop is the most efficient loop to parallelize. 

Loop blocking similarly aids parallelization by maximizing cache data 
reuse on each of the processors that the loop runs on. It also ensures that 
each processor is working on nonoverlapping array data. 

Dynamic selection
The compiler has no way of determining how many processors are 
available to run compiled code. Therefore, it sometimes generates both 
serial and parallel code for loops that are parallelized. Replicating the 
loop in this manner is called cloning, and the resulting versions of the 
loop are called clones. Cloning is also performed when the loop-iteration 
count is unknown at compile-time.

It is not always profitable, however, to run the parallel clone when 
multiple processors are available. Some overhead is involved in 
executing parallel code. This overhead includes the time it takes to 
spawn parallel threads, to privatize any variables used in the loop that 
must be privatized, and to join the parallel threads when they complete 
their work.

Workload-based dynamic selection
HP compilers use a powerful form of dynamic selection known as 
workload-based dynamic selection. When a loop’s iteration count is 
available at compile time, workload-based dynamic selection determines 
the profitability of parallelizing the loop. It only writes a parallel version 
to the executable if it is profitable to do so. 

If the parallel version will not be needed, the compiler can omit it from 
the executable to further enhance performance. This eliminates the 
runtime decision as to which version to use.

The power of dynamic selection becomes more apparent when the loop’s 
iteration count is unknown at compile time. In this case, the compiler 
generates code that, at runtime, compares the amount of work performed 



Chapter 6 103

Parallel optimization features
Parallel optimizations

in the loop nest (given the actual iteration counts) to the parallelization 
overhead for the available number of processors. It then runs the parallel 
version of the loop only if it is profitable to do so.

When specified with +Oparallel at +O3, workload-based dynamic 
selection is enabled by default. The compiler only generates a parallel 
version of the loop when +Onodynsel is selected, thereby disabling 
dynamic selection. When dynamic selection is disabled, the compiler 
assumes that it is profitable to parallelize all parallelizable loops and 
generates both serial and parallel clones for them. In this case the 
parallel version is run if there are multiple processors at runtime, 
regardless of the profitability of doing so.

dynsel, no_dynsel
The dynsel and no_dynsel directives are used to specify dynamic 
selection for specific loops in programs compiled using the +Onodynsel 
option or to provide trip count information for specific loops in programs 
compiled with dynamic selection enabled. 

To disable dynamic selection for selected loops by using the no_dynsel 
compiler directive or pragma. This directive or pragma is used to disable 
dynamic selection on specific loops in programs compiled with dynamic 
selection enabled.

The form of these directives and pragmas are shown in Table 12.

Table 12 Form of dynsel directive and pragma

Language Form

Fortran C$DIR DYNSEL [(THREAD_TRIP_COUNT = n)]

C$DIR NO_DYNSEL

C #pragma _CNX dynsel [(thread_trip_count = n )]

#pragma _CNX no_dynsel



104 Chapter 6 

Parallel optimization features
Parallel optimizations

where

thread_trip_count

is an optional attribute used to specify threshold 
iteration counts. 
When thread_trip_count = n is specified, the 
serial version of the loop is run if the iteration count is 
less than n. Otherwise, the thread-parallel version is 
run. 
If a trip count is not specified for a dynsel directive or 
pragma, the compiler uses a heuristic to estimate the 
actual execution costs. This estimate is then used to 
determine if it is profitable to execute the loop in 
parallel.

As with all optimizations that replicate loops, the number of new loops 
created when the compiler performs dynamic selection is limited by 
default to ensure reasonable code sizes. To increase the replication limit 
(and possibly increase your compile time and code size), specify the 
+Onosize +Onolimit compiler options. These are described in 
 “Controlling optimization,” on page 113.



Chapter 6 105

Parallel optimization features
Inhibiting parallelization

Inhibiting parallelization
Certain constructs, such as loop-carried dependences, inhibit 
parallelization. Other types of constructs, such as procedure calls and I/O 
statements, inhibit parallelism for the same reason they inhibit 
localization. An exception to this is that more categories of loop-carried 
dependences can inhibit parallelization than data localization. This is 
described in the following sections.

Loop-carried dependences (LCDs)
The specific loop-carried dependences (LCDs) that inhibit data 
localization represent a very small portion of all loop-carried 
dependences. A much broader set of LCDs inhibits parallelization. 
Examples of various parallel-inhibiting LCDs follows.

 Example Parallel-inhibiting LCDs

One type of LCD exists when one iteration references a variable whose 
value is assigned on a later iteration. The Fortran loop below contains 
this type of LCD on the array A.

DO I = 1, N - 1
  A(I) = A(I + 1) + B(I)
ENDDO

In this example, the first iteration assigns a value to A(1) and 
references A(2). The second iteration assigns a value to A(2) and 
references A(3). The reference to A(I) depends on the fact that the 
I+1th iteration, which assigns a new value to A(I), has not yet 
executed. 

Forward LCDs inhibit parallelization because if the loop is broken up to 
run on several processors, when I reaches its terminal value on one 
processor, A(I+1) has usually already been computed by another 
processor. It is, in fact, the first value computed by another processor. 
Because the calculation depends on A(I+1) not being computed yet, this 
would produce wrong answers.

 Example Parallel-inhibiting LCDs

Another type of LCD exists when one iteration references a variable 
whose value was assigned on an earlier iteration.The Fortran loop below 
contains a backward LCD on the array A.



106 Chapter 6 

Parallel optimization features
Inhibiting parallelization

DO I = 2, N
  A(I) = A(I-1) + B(I)
ENDDO

Here, each iteration assigns a value to A based on the value assigned to A 
in the previous iteration. If A(I-1) has not been computed before A(I) 
is assigned, wrong answers result. 

Backward LCDs inhibit parallelism because if the loop is broken up to 
run on several processors, A(I-1) are not computed for the first 
iteration of the loop on every processor except the processor running the 
chunk of the loop containing I = 1.

 Example Output LCDs

An output LCD exists when the same memory location is assigned values 
on two or more iterations. A potential output LCD exists when the 
compiler cannot determine whether an array subscript contains the 
same values between loop iterations. 

The Fortran loop below contains a potential output LCD on the array A:

DO I = 1, N
  A(J(I)) = B(I)
ENDDO

Here, if any referenced elements of J contain the same value, the same 
element of A is assigned several different elements of B. In this case, as 
this loop is written, any A elements that are assigned more than once 
should contain the final assignment at the end of the loop. This cannot be 
guaranteed if the loop is run in parallel.

 Example Apparent LCDs

The compiler chooses to not parallelize loops containing apparent LCDs 
rather than risk wrong answers by doing so.

If you are sure that a loop with an apparent LCD is safe to parallelize, 
you can indicate this to the compiler using the no_loop_dependence 
directive or pragma, which is explained in the section “Loop-carried 
dependences (LCDs)” on page 59.

The following Fortran example illustrates a NO_LOOP_DEPENDENCE 
directive being used on the output LCD example presented previously:

C$DIR NO_LOOP_DEPENDENCE(A)
      DO I = 1, N
        A(J(I)) = B(I)
      ENDDO



Chapter 6 107

Parallel optimization features
Inhibiting parallelization

This effectively tells the compiler that no two elements of J are identical, 
so there is no output LCD and the loop is safe to parallelize. If any of the 
J values are identical, wrong answers could result.



108 Chapter 6 

Parallel optimization features
Reductions

Reductions
In many cases, the compiler can recognize and parallelize loops 
containing a special class of dependence known as a reduction. In 
general, a reduction has the form:

X = X operator Y

where 

X is a variable not assigned or used elsewhere in the loop, 
Y is a loop constant expression not involving X, and 
operator is +, *, .AND., .OR., or .XOR.

The compiler also recognizes reductions of the form:

X = function(X,Y)

where 

X is a variable not assigned or referenced elsewhere in 
the loop, Y is a loop constant expression not involving X, 
and function is the intrinsic MAX function or intrinsic 
MIN function.

Generally, the compiler automatically recognizes reductions in a loop and 
is able to parallelize the loop. If the loop is under the influence of the 
prefer_parallel directive or pragma, the compiler still recognizes 
reductions. 

However, in a loop being manipulated by the loop_parallel directive 
or pragma, reduction analysis is not performed. Consequently, the loop 
may not be correctly parallelized unless the reduction is enforced using 
the reduction directive or pragma. 

The form of this directive and pragma is shown in Table 13.

Table 13 Form of reduction directive and pragma

 Example Reduction

Language Form 

Fortran C$DIR REDUCTION

C #pragma _CNX reduction



Chapter 6 109

Parallel optimization features
Reductions

Reductions commonly appear in the form of sum operations, as shown in 
the following Fortran example:

DO I = 1, N
  A(I) = B(I) + C(I)
  . 
  . 
  . 
  ASUM = ASUM + A(I)
ENDDO

Assuming this loop does not contain any parallelization-inhibiting code, 
the compiler would automatically parallelize it. The code generated to 
accomplish this creates temporary, thread-specific copies of ASUM for each 
thread that runs the loop. When each parallel thread completes its 
portion of the loop, thread 0 for the current spawn context accumulates 
the thread-specific values into the global ASUM. 

The following Fortran example shows the use of the reduction directive 
on the above code. loop_parallel is described on on page 179. 
loop_private is described on on page 220.

C$DIR LOOP_PARALLEL, LOOP_PRIVATE(FUNCTEMP), REDUCTION(SUM)
      DO I = 1, N  
        . 
        . 
        . 
        FUNCTEMP = FUNC(X(I))
        SUM = SUM + FUNCTEMP
        . 
        . 
        . 
      ENDDO



110 Chapter 6 

Parallel optimization features
Preventing parallelization

Preventing parallelization
You can prevent parallelization on a loop-by-loop basis using the 
no_parallel directive or pragma. The form of this directive and 
pragma is shown in Table 14.

Table 14 Form of no_parallel directive and pragma

Use these directives to prevent parallelization of the loop that 
immediately follows them. Only parallelization is inhibited; all other 
loop optimizations are still applied. 

 Example no_parallel

The following Fortran example illustrates the use of no_parallel:

      DO I = 1, 1000
C$DIR   NO_PARALLEL
        DO J = 1, 1000
          A(I,J) = B(I,J)
        ENDDO
      ENDDO

In this example, parallelization of the J loop is prevented. The I loop can 
still be parallelized.

The +Onoautopar compiler option is available to disable automatic 
parallelization but allows parallelization of directive-specified loops. 
Refer to  “Controlling optimization,” on page 113, and  “Parallel 
programming techniques,” on page 175, for more information on 
+Onoautopar.

Language Form

Fortran C$DIR NO_PARALLEL

C #pragma _CNX no_parallel



Chapter 6 111

Parallel optimization features
Parallelism in the aC++ compiler

Parallelism in the aC++ compiler
Parallelism in the aC++ compiler is available through the use of the 
following command-line options or libraries:

• +O3 +Oparallel or +O4 +Oparallel optimization options—
Automatic parallelization is available from the compiler; see the 
section “Levels of parallelism” on page 94 for more information.

• HP MPI—HP’s implementation of the message-passing interface; see 
the HP MPI User’s Guide for more information.

• Pthreads (POSIX threads)— See the pthread(3t) man page or the 
manual Programming with Threads on HP-UX for more information.

None of the pragmas described in this book are currently available in the 
HP aC++ compiler. However, aC++ does support the memory classes 
briefly explained in  “Controlling optimization,” on page 113, and more 
specifically in  “Memory classes,” on page 233. These classes are 
implemented through the storage class specifiers node_private and 
thread_private.



112 Chapter 6 

Parallel optimization features
Cloning across multiple source files

Cloning across multiple source files
Cloning is the replacement of a call to a routine by a call to a clone of that 
routine. The clone is optimized differently than the original routine. 
Cloning can expose additional opportunities for interprocedural 
optimization. 

Cloning at +O4 is performed across all procedures within the program. 
Cloning at +O3 is done within one file. Cloning is enabled by default. It is 
disabled by specifying the +Onoinline command-line option.



Chapter 7 113

Controlling optimization

7 Controlling optimization

The HP-UX compiler set includes a group of optimization controls that 
are used to improve code performance. These controls can be invoked 
from either the command line or from within a program using certain 
directives and pragmas. 

This chapter includes a discussion of the following topics:

• Command-line optimization options

• Invoking command-line options

• C aliasing options

• Optimization directives and pragmas

Refer to Chapter 3, “Optimization levels” for information on coding 
guidelines that assist the optimizer. See the f90(1), cc(1), and aCC(1) 
man pages for information on compiler options in general. 

NOTE The HP aC++ compiler does not support the pragmas described in this 
chapter.



114 Chapter 7 

Controlling optimization
Command-line optimization options

Command-line optimization options
This section lists the command-line optimization options available for 
use with the HP C, C++, and Fortran compilers. Table 15 describes the 
options and the optimization levels at which they are used.

Table 15 Command-line optimization options

Optimization options
Valid 

optimization 
levels

Command-line options

+O[no]aggressive +O2, +O3, +O4

+O[no]all all

+O[no]autopar
(must be used with the +Oparallel option at +O3 or 
above)

+O3, +O4

+O[no]conservative +O2, +O3, +O4

+O[no]dataprefetch +O2, +O3, +O4

+O[no]dynsel
(must be used with the +Oparallel option at +O3 or 
above)

+O3, +O4

+O[no]entrysched +O1, +O2,+O3, 
+O4

+O[no]fail_safe +O1, +O2,+O3, 
+O4

+O[no]fastaccess all

+O[no]fltacc +O2, +O3, +O4

+O[no]global_ptrs_unique[=namelist]
(C only)

+O2, +O3, +O4

+O[no]info all



Chapter 7 115

Controlling optimization
Command-line optimization options

+O[no]initcheck +O2, +O3, +O4

+O[no]inline[=namelist] +O3, +O4

+Oinline_budget=n +O3, +O4

+O[no]libcalls all

+O[no]limit +O2, +O3, +O4

+O[no]loop_block +O3, +O4

+O[no]loop_transform +O3, +O4

+O[no]loop_unroll[=unroll_factor] +O2, +O3, +O4

+O[no]loop_unroll_jam +O3, +O4

+O[no]moveflops +O2, +O3, +O4

+O[no]multiprocessor +O2, +O3, +O4

+O[no]parallel +O3, +O4

+O[no]parmsoverlap +O2, +O3, +O4

+O[no]pipeline +O2, +O3, +O4

+O[no]procelim all

+O[no]ptrs_ansi +O2, +O3, +O4

+O[no]ptrs_strongly_typed +O2, +O3, +O4

+O[no]ptrs_to_globals[=namelist]
(C only)

+O2, +O3, +O4

+O[no]regreassoc +O2, +O3, +O4

+O[no]report[=report_type] +O3, +O4

+O[no]sharedgra +O2, +O3, +O4

Optimization options
Valid 

optimization 
levels



116 Chapter 7 

Controlling optimization
Command-line optimization options

+O[no]signedpointers
(C/C++ only)

+O2, +O3, +O4

+O[no]size +O2, +O3, +O4

+O[no]static_prediction all

+O[no]vectorize +O3, +O4

+O[no]volatile +O1, +O2, +O3, 
+O4

+O[no]whole_program_mode +O4

Optimization options
Valid 

optimization 
levels



Chapter 7 117

Controlling optimization
Invoking command-line options

Invoking command-line options
At each optimization level, you can turn specific optimizations on or off 
using the +O[no]optimization option. The optimization parameter is the 
name of a specific optimization. The optional prefix [no] disables the 
specified optimization.

The following sections describe the optimizations that are turned on or 
off, their defaults, and the optimization levels at which they may be used. 
In syntax descriptions, namelist represents a comma-separated list of 
names.

+O[no]aggressive

Optimization level: +O2, +O3, +O4 

Default: +Onoaggressive

+O[no]aggressive enables or disables optimizations that can result in 
significant performance improvement, and can change a program’s 
behavior. This includes the optimizations invoked by the following 
advanced options (these are discussed separately in this chapter): 

• +Osignedpointers (C and C++)

• +Oentrysched 

• +Onofltacc 

• +Olibcalls 

• +Onoinitcheck 

• +Ovectorize



118 Chapter 7 

Controlling optimization
Invoking command-line options

+O[no]all

Optimization level: all

Default: +Onoall

Equivalent option: +Oall option is equivalent to specifying +O4 
+Oaggressive +Onolimit

+Oall performs maximum optimization, including aggressive 
optimizations and optimizations that can significantly increase compile 
time and memory usage. 

+O[no]autopar

Optimization level: +O3, +O4 (+Oparallel must also be specified)

Default: +Oautopar

When used with +Oparallel option, +Oautopar causes the compiler to 
automatically parallelize loops that are safe to parallelize. A loop is 
considered safe to parallelize if its iteration count can be determined at 
runtime before loop invocation. It must also contain no loop-carried 
dependences, procedure calls, or I/O operations. 

A loop-carried dependence exists when one iteration of a loop assigns a 
value to an address that is referenced or assigned on another iteration.

When used with +Oparallel, the +Onoautopar option causes the 
compiler to parallelize only those loops marked by the loop_parallel 
or prefer_parallel directives or pragmas. Because the compiler does 
not automatically find parallel tasks or regions, user-specified task and 
region parallelization is not affected by this option.

C pragmas and Fortran directives are used to improve the effect of 
automatic optimizations and to assist the compiler in locating additional 
opportunities for parallelization. See “Optimization directives and 
pragmas” on page 146 for more information.



Chapter 7 119

Controlling optimization
Invoking command-line options

+O[no]conservative

Optimization level: +O2, +O3, +O4 

Default: +Onoconservative

Equivalent option: +Oconservative is equivalent to 
+Onoaggressive

+O[no]conservative causes the optimizer to make or not make 
conservative assumptions about the code when optimizing. 
+Oconservative is useful in assuming a particular program’s coding 
style, such as whether it is standard-compliant. Specifying 
+Onoconservative disables any optimizations that assume 
standard-compliant code.

+O[no]dataprefetch

Optimization level: +O2, +O3, +O4

Default: +Onodataprefetch

When +Odataprefetch is used, the optimizer inserts instructions 
within innermost loops to explicitly prefetch data from memory into the 
data cache. For cache lines containing data to be written, 
+Odataprefetch prefetches the cache lines so that they are valid for 
both read and write access. Data prefetch instructions are inserted only 
for data referenced within innermost loops using simple loop-varying 
addresses in a simple arithmetic progression. It is only available for 
PA-RISC 2.0 targets.

The math library libm contains special prefetching versions of vector 
routines. If you have a PA-RISC 2.0 application containing operations on 
arrays larger than one megabyte in size, using +Ovectorize in 
conjunction with +Odataprefetch may substantially improve 
performance.

You can also use the +Odataprefetch option for applications that have 
high data cache miss overhead.



120 Chapter 7 

Controlling optimization
Invoking command-line options

+O[no]dynsel

Optimization level: +O3, +O4 (+Oparallel must also be specified)

Default: +Odynsel

When specified with +Oparallel, +Odynsel enables workload-based 
dynamic selection. For parallelizable loops whose iteration counts are 
known at compile time, +Odynsel causes the compiler to generate either 
a parallel or a serial version of the loop—depending on which is more 
profitable.

This optimization also causes the compiler to generate both parallel and 
serial versions of parallelizable loops whose iteration counts are 
unknown at compile time. At runtime, the loop’s workload is compared to 
parallelization overhead, and the parallel version is run only if it is 
profitable to do so. 

The +Onodynsel option disables dynamic selection and tells the 
compiler that it is profitable to parallelize all parallelizable loops. The 
dynsel directive and pragma are used to enable dynamic selection for 
specific loops, when +Onodynsel is in effect. See the section “Dynamic 
selection” on page 102 for additional information.

+O[no]entrysched

Optimization level: +O1, +O2, +O3, +O4

Default: +Onoentrysched

+Oentrysched optimizes instruction scheduling on a procedure’s entry 
and exit sequences by unwinding in the entry and exit regions. 
Subsequently, this option is used to increase the speed of an application. 

+O[no]entrysched can also change the behavior of programs 
performing exception-handling or that handle asynchronous interrupts. 
The behavior of setjmp() and longjmp() is not affected.



Chapter 7 121

Controlling optimization
Invoking command-line options

+O[no]fail_safe

Optimization level: +O1, +O2, +O3, +O4

Default: +Ofail_safe

+Ofail_safe allows your compilations to continue when internal 
optimization errors are detected. When an error is encountered, this 
option issues a warning message and restarts the compilation at +O0. 
The +Ofail_safe option is disabled when you specify +Oparallel with 
+O3 or +O4 to compile with parallelization.

Using +Onofail_safe aborts your compilation when internal 
optimization errors are detected.

+O[no]fastaccess

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onofastaccess at +O0, +O1, +O2 and +O3;
+Ofastaccess at +O4

+Ofastaccess performs optimization for fast access to global data 
items. Use +Ofastaccess to improve execution speed at the expense of 
longer compile times.

+O[no]fltacc

Optimization level: +O2, +O3, +O4

Default: none (See Table 16.)

+O[no]fltacc enables or disables optimizations that cause imprecise 
floating-point results. 

+Ofltacc disables optimizations that cause imprecise floating-point 
results. Specifying +Ofltacc disables the generation of Fused 
Multiply-Add (FMA) instructions, as well as other floating-point 
optimizations. Use +Ofltacc if it is important that the compiler 
evaluates floating-point expressions according to the order specified by 
the language standard.

+Onofltacc improves execution speed at the expense of floating-point 
precision. The +Onofltacc option allows the compiler to perform 
floating-point optimizations that are algebraically correct, but may 



122 Chapter 7 

Controlling optimization
Invoking command-line options

result in numerical differences. These differences are generally 
insignificant. The +Onofltacc option also enables the optimizer to 
generate FMA instructions.

If you optimize code at +O2 or higher, and do not specify +Onofltacc or 
+Ofltacc, the optimizer uses FMA instructions. However, it does not 
perform floating-point optimizations that involve expression reordering. 
FMA is implemented by the PA-8x00 instructions FMPYFADD and 
FMPYNFADD and improves performance. Occasionally, these instructions 
may produce results that may differ in accuracy from results produced by 
code without FMA. In general, the differences are slight.

Table 16 presents a summary of the preceding information.

Table 16 +O[no]fltacc and floating-point optimizations

+O[no]global_ptrs_unique[=namelist]

Optimization level: +O2, +O3, +O4

Default: +Onoglobal_ptrs_unique

NOTE This option is not available in Fortran or C++.

Using this C compiler option identifies unique global pointers so that the 
optimizer can generate more efficient code in the presence of unique 
pointers, such as using copy propagation and common subexpression 
elimination. A global pointer is unique if it does not alias with any 
variable in the entire program.

This option supports a comma-separated list of unique global pointer 
variable names, represented by namelist in 
+O[no]global_ptrs_unique[=namelist]. If namelist is not specified, 
using +O[no]global_ptrs_unique informs the compiler that all [no] 
global pointers are unique.

Option specifieda

a. +O[no]fltacc is only available at +O2 and above.

FMA optimizations Other floating-point 
optimizations

+Ofltacc Disabled Disabled

+Onofltacc Enabled Enabled

neither option 
is specified

Enabled Disabled



Chapter 7 123

Controlling optimization
Invoking command-line options

The example below states that no global pointers are unique, except a 
and b:

+Oglobal_ptrs_unique=a,b

The next example says that all global pointers are unique except a and b:

+Onoglobal_ptrs_unique=a,b

+O[no]info

Optimization level: +O0, +O1, +O2, +O3, +O4 

Default: +Onoinfo

+Oinfo displays informational messages about the optimization process. 
This option is used at all optimization levels, but is most useful at +O3 
and +O4. For more information about this option, see Chapter 8, 
“Optimization Report” on page 113.

+O[no]initcheck

Optimization level: +O2, +O3, +O4

Default: unspecified

+O[no]initcheck performs an initialization check for the optimizer. 
The optimizer has three possible states that check for initialization: on, 
off, or unspecified. 

• When on (+Oinitcheck), the optimizer initializes to zero any local, 
scalar, and nonstatic variables that are uninitialized with respect to 
at least one path leading to a use of the variable.

• When off (+Onoinitcheck), the optimizer issues warning messages 
when it discovers definitely uninitialized variables, but does not 
initialize them.

• When unspecified, the optimizer initializes to zero any local, scalar, 
nonstatic variables that are definitely uninitialized with respect to all 
paths leading to a use of the variable.



124 Chapter 7 

Controlling optimization
Invoking command-line options

+O[no]inline[=namelist]
Optimization level: +O3, +O4

Default: +Oinline 

When +Oinline is specified without a name list, any function can be 
inlined. For successful inlining, follow the prototype definitions for 
function calls in the appropriate header files.

When specified with a name list, the named functions are important 
candidates for inlining. For example, the following statement indicates 
that inlining be strongly considered for foo and bar:

+Oinline=foo,bar +Onoinline

All other routines are not considered for inlining because +Onoinline is 
given.

NOTE The Fortran and aC++ compilers accept only +O[no]inline. No namelist 
values are accepted.

Use the +Onoinline[=namelist] option to exercise precise control 
over which subprograms are inlined. Use of this option is guided by 
knowledge of the frequency with which certain routines are called and 
may be warranted by code size concerns.

When this option is disabled with a name list, the compiler does not 
consider the specified routines as candidates for inlining. For example, 
the following statement indicates that inlining should not be considered 
for baz and x:

+Onoinline=baz,x

All other routines are considered for inlining because +Oinline is the 
default.



Chapter 7 125

Controlling optimization
Invoking command-line options

+Oinline_budget=n
Optimization level: +O3, +O4

Default: +Oinline_budget=100

In +Oinline_budget=n, n is an integer in the range 1 to 1000000 that 
specifies the level of aggressiveness, as follows:

n = 100 Default level of inlining

n > 100 More aggressive inlining 

The optimizer is less restricted by compilation time 
and code size when searching for eligible routines to 
inline

n = 1 Only inline if it reduces code size

The +Onolimit and +Osize options also affect inlining. Specifying the 
+Onolimit option implies specifying +Oinline_budget=200. The 
+Osize option implies +Oinline_budget=1. However, 
+Oinline_budget takes precedence over both of these options. This 
means that you can override the effects on inlining of the +Onolimit 
and +Osize options, by specifying the +Oinline_budget option on the 
same command line. 

+O[no]libcalls

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onolibcalls at +O0 and +O1;
+Olibcalls at +O2, +O3, and +O4

+Olibcalls increases the runtime performance of code that calls 
standard library routines in simple contexts. The +Olibcalls option 
expands the following library calls inline:

• strcpy()

• sqrt()

• fabs()

• alloca()

Inlining takes place only if the function call follows the prototype 
definition in the appropriate header file. A single call to printf() may 
be replaced by a series of calls to putchar(). Calls to sprintf() and 



126 Chapter 7 

Controlling optimization
Invoking command-line options

strlen() may be optimized more effectively, including elimination of 
some calls producing unused results. Calls to setjmp() and longjmp() 
may be replaced by their equivalents _setjmp() and _longjmp(), 
which do not manipulate the process’s signal mask.

Using the +Olibcalls option invokes millicode versions of frequently 
called math functions. Currently, there are millicode versions for the 
following functions:

See the HP-UX Floating-Point Guide for the most up-to-date listing of 
the math library functions. 

+Olibcalls also improves the performance of selected library routines 
(when you are not performing error checking for these routines). The 
calling code must not expect to access ERRNO after the function’s return.

Using +Olibcalls with +Ofltacc gives different floating-point 
calculation results than those given using +Olibcalls without 
+Ofltacc.

+O[no]limit

Optimization level: +O2, +O3, +O4 

Default: +Olimit

The +Olimit option suppresses optimizations that significantly increase 
compile-time or that can consume a considerable amount of memory. 

The +Onolimit option allows optimizations to be performed, regardless 
of their effects on compile-time and memory usage. Specifying the 
+Onolimit option implies specifying +Oinline_budget=200. See the 
section “+Oinline_budget=n” on page 125 for more information.

acos asin atan atan2

cos exp log log10

pow sin tan



Chapter 7 127

Controlling optimization
Invoking command-line options

+O[no]loop_block

Optimization level: +O3, +O4

Default: +Onoloop_block

+O[no]loop_block enables or disables blocking of eligible loops for 
improved cache performance. The +Onoloop_block option disables both 
automatic and directive-specified loop blocking. For more information on 
loop blocking, see the section “Loop blocking” on page 70.

+O[no]loop_transform

Optimization level: +O3, +O4

Default: +Oloop_transform

+O[no]loop_transform enables or disables transformation of eligible 
loops for improved cache performance. The most important 
transformation is the interchange of nested loops to make the inner loop 
unit stride, resulting in fewer cache misses. 

The other transformations affected by +O[no]loop_transform are loop 
distribution, loop blocking, loop fusion, loop unroll, and loop unroll and 
jam. See  “Optimization levels,” on page 25 for information on loop 
transformations.

If you experience any problem while using +Oparallel, 
+Onoloop_transform may be a helpful option.

+O[no]loop_unroll[=unroll factor]
Optimization level: +O2, +O3, +O4

Default: +Oloop_unroll=4

+Oloop_unroll enables loop unrolling. When you use +Oloop_unroll, 
you can also suggest the unroll factor to control the code expansion. The 
default unroll factor is four, meaning that the loop body is replicated four 
times. By experimenting with different factors, you may improve the 
performance of your program. In some cases, the compiler uses its own 
unroll factor. 



128 Chapter 7 

Controlling optimization
Invoking command-line options

The +Onoloop_unroll option disables partial and complete unrolling. 
Loop unrolling improves efficiency by eliminating loop overhead, and can 
create opportunities for other optimizations, such as improved register 
use and more efficient scheduling. See the section “Loop unrolling” on 
page 45 for more information on unrolling.

+O[no]loop_unroll_jam

Optimization level: +O3, +O4

Default: +Onoloop_unroll_jam

The +O[no]loop_unroll_jam option enables or disables loop unrolling 
and jamming. The +Onoloop_unroll_jam option (the default) disables 
both automatic and directive-specified unroll and jam. Loop unrolling 
and jamming increases register exploitation. For more information on 
the unroll and jam optimization, see the section “Loop unroll and jam” on 
page 84.

+O[no]moveflops

Optimization level: +O2, +O3, +O4

Default: +Omoveflops

+O[no]moveflops allows or disallows moving conditional floating-point 
instructions out of loops. The behavior of floating-point exception 
handling may be altered by this option.

Use +Onomoveflops if floating-point traps are enabled and you do not 
want the behavior of floating-point exceptions to be altered by the 
relocation of floating-point instructions.



Chapter 7 129

Controlling optimization
Invoking command-line options

+O[no]multiprocessor

Optimization level: +O2, +O3, +O4

Default: +Onomultiprocesssor

Specifying the +Omultiprocessor option at +O2 and above tells the 
compiler to appropriately optimize several different processes on 
multiprocessor machines. The optimizations are those appropriate for 
executables and shared libraries.

Enabling this option incorrectly (such as on a uniprocessor machine) may 
cause performance problems.

Specifying +Onomultiprocessor (the default) disables the 
optimization of more than one process running on multiprocessor 
machines. 

+O[no]parallel

Optimization level: +O3, +O4

Default: +Onoparallel

The +Onoparallel option is the default for all optimization levels. This 
option disables automatic and directive-specified parallelization.

If you compile one or more files in an application using +Oparallel, 
then the application must be linked (using the compiler driver) with the 
+Oparallel option to link in the proper start-up files and runtime 
support. 

The +Oparallel option causes the compiler to:

• Recognize the directives and pragmas that involve parallelism, such 
as begin_tasks, loop_parallel, and prefer_parallel

• Look for opportunities for parallel execution in loops

The following methods are used to specify the number of processors used 
in executing your parallel programs:

• loop_parallel(max_threads=m) directive and pragma

• prefer_parallel(max_threads=m)directive and pragma



130 Chapter 7 

Controlling optimization
Invoking command-line options

For a description of these directives and pragmas, see  “Parallel 
programming techniques,” on page 175 and  “Parallel 
synchronization,” on page 243. These pragmas are not available in 
the HP aC++ compiler.

• MP_NUMBER_OF_THREADS environment variable, which is read at 
runtime by your program. If this variable is set to some positive 
integer n, your program executes on n processors. n must be less than 
or equal to the number of processors in the system where the program 
is executing. 

The +Oparallel option is valid only at optimization level +O3 and 
above. For information on parallelization, see the section “Levels of 
parallelism” on page 94. 

Using the +Oparallel option disables +Ofail_safe, which is enabled 
by default. See the section “+O[no]fail_safe” on page 121 for more 
information.

+O[no]parmsoverlap

Optimization level: +O2, +O3, +O4

Default (Fortran): +Onoparmsoverlap

Default (C/C++): +Oparmsoverlap

+Oparmsoverlap causes the optimizer to assume that the actual 
arguments of function calls overlap in memory.

+O[no]pipeline

Optimization level: +O2, +O3, +O4

Default: +Opipeline

+O[no]pipeline enables or disables software pipelining. If program 
size is more important than execution speed, use +Onopipeline.

Software pipelining is particularly useful for loops containing arithmetic 
operations on REAL or REAL*8 variables in Fortran or on float or 
double variables in C and C++.



Chapter 7 131

Controlling optimization
Invoking command-line options

+O[no]procelim

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onoprocelim at +O0, +01, +O2, +O3;
+Oprocelim at +O4

When +Oprocelim is specified, procedures not referenced by the 
application are eliminated from the output executable file. The 
+Oprocelim option reduces the size of the executable file, especially 
when optimizing at +O3 and +O4, at which inlining may have removed 
all of the calls to some routines.

When +Onoprocelim is specified, procedures not referenced by the 
application are not eliminated from the output executable file.

If the +Oall option is enabled, the +Oprocelim option is enabled. 

+O[no]ptrs_ansi

Optimization level: +O2, +O3, +O4

Default: +Onoptrs_ansi

The +Optrs_ansi option makes the following two assumptions, which 
the more aggressive +Optrs_strongly_typed does not:

• int *p is assumed to point to an int field of a struct or union.

• char * is assumed to point to any type of object.

NOTE This option is not available in C++.

When both +Optrs_ansi and +Optrs_strongly_typed are specified, 
+Optrs_ansi takes precedence.



132 Chapter 7 

Controlling optimization
Invoking command-line options

+O[no]ptrs_strongly_typed

Optimization level: +O2, +O3, +O4

Default: +Onoptrs_strongly_typed

Use the C compiler option +Optrs_strongly_typed when pointers are 
type-safe. The optimizer can use this information to generate more 
efficient code.

NOTE This option is not available in C++.

Type-safe (strongly-typed) pointers point to a specific type that, in turn, 
only point to objects of that type. For example, a pointer declared as a 
pointer to an int is considered type-safe if that pointer points to an 
object of type int only.

Based on the type-safe concept, a set of groups are built based on object 
types. A given group includes all the objects of the same type.

In type-inferred aliasing, any pointer of a type in a given group (of 
objects of the same type) can only point to any object from the same 
group. It cannot point to a typed object from any other group.

Type casting to a different type violates type-inferring aliasing rules. 
Dynamic casting is, however, allowed, as shown in Example 41.

 Example Data type interaction

The optimizer generally spills all global data from registers to memory 
before any modification to global variables or any loads through pointers. 
However, the optimizer can generate more efficient code if it knows how 
various data types interact.



Chapter 7 133

Controlling optimization
Invoking command-line options

Consider the following example (line numbers are provided for 
reference):

1  int *p;
2  float *q;
3  int a,b,c;
4  float d,e,f;
5  foo()
6  {
7    for (i=1;i<10;i++) {
8              d=e;
9             *p=...;
10             e=d+f;
11             f=*q;
12   }
13 }

With +Onoptrs_strongly_typed turned on, the pointers p and q are 
assumed to be disjoint because the types they point to are different types. 
Without type-inferred aliasing, *p is assumed to invalidate all the 
definitions. So, the use of d and f on line 10 have to be loaded from 
memory. With type-inferred aliasing, the optimizer can propagate the 
copy of d and f, thus avoiding two loads and two stores.

This option is used for any application involving the use of pointers, 
where those pointers are type safe. To specify when a subset of types are 
type-safe, use the ptrs_strongly_typed pragma. The compiler issues 
warnings for any incompatible pointer assignments that may violate the 
type-inferred aliasing rules discussed in the section “C aliasing options” 
on page 143.

 Example Unsafe type cast

Any type cast to a different type violates type-inferred aliasing rules. Do 
not use +Optrs_strongly_typed with code that has these “unsafe” 
type casts. Use the no_ptrs_strongly_typed pragma to prevent the 
application of type-inferred aliasing to the unsafe type casts.

struct foo{
        int a;
        int b;
      } *P;

     struct bar {
        float a;
        int b;
        float c;
      } *q;

     P = (struct foo *) q;
        /* Incompatible pointer assignment
      through type cast */   



134 Chapter 7 

Controlling optimization
Invoking command-line options

 Example Generally applying type aliasing

Dynamic casting is allowed with +Optrs_strongly_typed or 
+Optrs_ansi. A pointer dereference is called a dynamic cast if a cast is 
applied on the pointer to a different type.

In the example below, type-inferred aliasing is generally applied on P, 
not just to the particular dereference. Type-aliasing is applied to any 
other dereferences of P.

     struct s {
        short int a;
        short int b;
        int c;
      } *P
      * (int *)P = 0;

For more information about type aliasing, see the section “C aliasing 
options” on page 143.



Chapter 7 135

Controlling optimization
Invoking command-line options

+O[no]ptrs_to_globals[=namelist]
Optimization level: +O2, +O3, +O4

Default: +Optrs_to_globals

By default, global variables are conservatively assumed to be modified 
anywhere in the program. Use the C compiler option 
+Onoptrs_to_globals to specify which global variables are not 
modified through pointers. This allows the optimizer to make the 
program run more efficiently by incorporating copy propagation and 
common subexpression elimination.

NOTE This option is not available in C++.

This option is used to specify all global variables that are not modified 
using pointers, or to specify a comma-separated list of global variables 
that are not modified using pointers.

The on state for this option disables some optimizations, such as 
aggressive optimizations on the program’s global symbols.

For example, use the command-line option 
+Onoptrs_to_globals=a,b,c to specify global variables a, b, and c to 
not be accessible through pointers. The result (shown below) is that no 
pointer can access these global variables. The optimizer performs copy 
propagation and constant folding because storing to *p does not modify a 
or b.

int a, b, c;
      float *p;
      foo()
      {
         a = 10;
         b = 20;
        *p = 1.0;
         c = a + b;
      }

If all global variables are unique, use the +Onoptrs_to_globals option 
without listing the global variables (that is, without using namelist).



136 Chapter 7 

Controlling optimization
Invoking command-line options

In the example below, the address of b is taken. This means b is accessed 
indirectly through the pointer. You can still use +Onoptrs_to_globals 
as:

+Onoptrs_to_globals +Optrs_to_globals=b. 
int b,c;
int *p
p=&b;
foo()

For more information about type aliasing, see the section “C aliasing 
options” on page 143.

+O[no]regreassoc

Optimization level: +O2, +O3, +O4

Default: +Oregreassoc

+O[no]regreassoc enables or disables register reassociation. This is a 
technique for folding and eliminating integer arithmetic operations 
within loops, especially those used for array address computations. 

This optimization provides a code-improving transformation 
supplementing loop-invariant code motion and strength reduction. 
Additionally, when performed in conjunction with software pipelining, 
register reassociation can also yield significant performance 
improvement.



Chapter 7 137

Controlling optimization
Invoking command-line options

+O[no]report[=report_type]
Optimization level: +O3, +O4

Default: +Onoreport

+Oreport[=report_type] specifies the contents of the Optimization 
Report. Values of report_type and the Optimization Reports they produce 
are shown in Table 17.

Table 17 Optimization Report contents

The Loop Report gives information on optimizations performed on loops 
and calls. Using +Oreport (without =report_type) also produces the 
Loop Report.

The Privatization Table provides information on loop variables that are 
privatized by the compiler.

+Oreport[=report_type] is active only at +O3 and above. 
The +Onoreport option does not accept any of the report_type values. 
For more information about the Optimization Report, see  “Optimization 
Report,” on page 151.

+Oinfo also displays information on the various optimizations being 
performed by the compilers. +Oinfo is used at any optimization level, 
but is most useful at +O3 and above. The default at all optimization 
levels is +Onoinfo.

report_type value Report contents

all Loop Report and Privatization Table 

loop Loop Report

private Loop Report and Privatization Table

report_type not given 
(default)

Loop Report 



138 Chapter 7 

Controlling optimization
Invoking command-line options

+O[no]sharedgra

Optimization level: +O2, +O3, +O4

Default: +Osharedgra

The +Onosharedgra option disables global register allocation for 
shared-memory variables that are visible to multiple threads. This 
option may help if a variable shared among parallel threads is causing 
wrong answers. See the section “Global register allocation (GRA)” on 
page 43 for more information.

Global register allocation (+Osharedgra) is enabled by default at 
optimization level +O2 and higher.

+O[no]signedpointers

Optimization level: +O2, +O3, +O4

Default: +Onosignedpointers

NOTE This option is not available in the HP Fortran compiler.

The C and C++ option +O[no]signedpointers requests that the 
compiler perform or not perform optimizations related to treating 
pointers as signed quantities. This helps improve application runtime 
speed. Applications that allocate shared memory and that compare a 
pointer to shared memory with a pointer to private memory may run 
incorrectly if this optimization is enabled.

+O[no]size

Optimization level: +O2, +O3, +O4 

Default: +Onosize

The +Osize option suppresses optimizations that significantly increase 
code size. Specifying +Osize implies specifying +Oinline_budget=1. 
See the section “+Oinline_budget=n” on page 125 for additional 
information.

The +Onosize option does not prevent optimizations that can increase 
code size. 



Chapter 7 139

Controlling optimization
Invoking command-line options

+O[no]static_prediction

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onostatic_prediction

+Ostatic_prediction turns on static branch prediction for 
PA-RISC 2.0 targets. Use +Ostatic_prediction to better optimize 
large programs with poor instruction locality, such as operating system 
and database code.

PA-RISC 2.0 predicts the direction conditional branches go in one of two 
ways: 

• Dynamic branch prediction uses a hardware history mechanism to 
predict future executions of a branch from its last three executions. It 
is transparent and quite effective, unless the hardware buffers 
involved are overwhelmed by a large program with poor locality.

• Static branch prediction, when enabled, predicts each branch based 
on implicit hints encoded in the branch instruction itself. The static 
branch prediction is responsible for handling large codes with poor 
locality for which the small dynamic hardware facility proves 
inadequate. 

+O[no]vectorize

Optimization level: +O3, +O4

Default: +Onovectorize

+Ovectorize allows the compiler to replace certain loops with calls to 
vector routines. Use +Ovectorize to increase the execution speed of 
loops.

NOTE This option is not available in the HP aC++ compiler.

When +Onovectorize is specified, loops are not replaced with calls to 
vector routines.

Because the +Ovectorize option may change the order of floating-point 
operations in an application, it may also change the results of those 
operations slightly. See the HP-UX Floating-Point Guide for more 
information.



140 Chapter 7 

Controlling optimization
Invoking command-line options

The math library contains special prefetching versions of vector routines. 
If you have a PA2.0 application containing operations on large arrays 
(larger than 1 Megabyte in size), using +Ovectorize in conjunction 
with +Odataprefetch may improve performance.

+Ovectorize is also included as part of the +Oaggressive and +Oall 
options.

+O[no]volatile

Optimization level: +O1, +O2, +O3, +O4

Default: +Onovolatile

NOTE This option is not available in the HP Fortran compiler.

The C and C++ option +Ovolatile implies that memory references to 
global variables cannot be removed during optimization.

The +Onovolatile option indicates that all globals are not of volatile 
class. This means that references to global variables are removed during 
optimization.

Use this option to control the volatile semantics for all global variables.

+O[no]whole_program_mode

Optimization level: +O4

Default: +Onowhole_program_mode

Use +Owhole_program_mode to increase performance speed. This 
should be used only when you are certain that only the files compiled 
with +Owhole_program_mode directly access any globals that are 
defined in these files. 

NOTE This option is not available in the HP Fortran or aC++ compilers.

+Owhole_program_mode enables the assertion that only the files that 
are compiled with this option directly reference any global variables and 
procedures that are defined in these files. In other words, this option 
asserts that there are no unseen accesses to the globals.

When this assertion is in effect, the optimizer can hold global variables 
in registers longer and delete inlined or cloned global procedures.



Chapter 7 141

Controlling optimization
Invoking command-line options

All files compiled with +Owhole_program_mode must also be compiled 
with +O4. If any of the files were compiled with +O4, but were not 
compiled with +Owhole_program_mode, the linker disables the 
assertion for all files in the program.

The default, +Onowhole_program_mode, disables the assertion noted 
above.

+tm target
Optimization level: +O0, +O1, +O2, +O3, +O4

Default target value: corresponds to the machine on which you invoke 
the compiler.

This option specifies the target machine architecture for which 
compilation is to be performed. Using this option causes the compiler to 
perform architecture-specific optimizations. 

target takes one of the following values:

• K8000 to specify K-Class servers using PA-8000 processors

• V2000 to specify V2000 servers

• V2200 to specify V2200 servers

• V2250 to specify V2250 servers

This option is valid at all optimization levels. The default target value 
corresponds to the machine on which you invoke the compiler. 

Using the +tm target option implies +DA and +DS settings as described in 
Table 18. +DAarchitecture causes the compiler to generate code for the 
architecture specified by architecture. +DSmodel causes the compiler to 
use the instruction scheduler tuned to model. See the f90(1) man page, 
aCC(1) page, or the cc(1) man page for more information describing the 
+DA and +DS options.



142 Chapter 7 

Controlling optimization
Invoking command-line options

Table 18 +tm target and +DA/+DS

If you specify +DA or +DS on the compiler command line, your setting 
takes precedence over the setting implied by +tm target.

target value specified +DAarchitecture 
implied

+DSmodel 
implied

K8000 2.0 2.0

V2000 2.0 2.0

V2200 2.0 2.0

V2250 2.0 2.0



Chapter 7 143

Controlling optimization
C aliasing options

C aliasing options
The optimizer makes a conservative assumption that a pointer can point 
to any object in the entire application. Command-line options to the C 
compiler are available to inform the optimizer of an application’s pointer 
usage. Using this information, the optimizer can generate more efficient 
code, due to the elimination of some false assumptions.

You can direct pointer behavior to the optimizer by using the following 
options:

• +O[no]ptrs_strongly_typed 

• +O[no]ptrs_to_globals[=namelist] 

• +O[no]global_ptrs_unique[=namelist] 

• +O[no]ptrs_ansi

where 

namelist is a comma-separated list of global variable names.

The following are type-inferred aliasing rules that apply when using 
these +O optimization options:

• Type-aliasing optimizations are based on the assumption that pointer 
dereferences obey their declared types.

• A C variable is considered address-exposed if and only if the address 
of that variable is assigned to another variable or passed to a function 
as an actual parameter. In general, address-exposed objects are 
collected into a separate group, based on their declared types. Global 
and static variables are considered address-exposed by default. Local 
variables and actual parameters are considered address-exposed only 
if their addresses have been computed using the address operator &.

• Dereferences of pointers to a certain type are assumed to only alias 
with the corresponding equivalent group. An equivalent group 
includes all the address-exposed objects of the same type. The 
dereferences of pointers are also assumed to alias with other pointer 
dereferences associated with the same group.



144 Chapter 7 

Controlling optimization
C aliasing options

For example, in the following line:

int *p, *q;

*p and *q are assumed to alias with any objects of type int. Also, *p 
and *q are assumed to alias with each other.

• Signed/unsigned type distinctions are ignored in grouping objects into 
an equivalent group. Likewise, long and int types are considered to 
map to the same equivalent group. However, the volatile type 
qualifier is considered significant in grouping objects into equivalent 
groups. For example, a pointer to int is not considered to alias with a 
volatile int object.

• If two type names reduce to the same type, they are considered 
synonymous.

In the following example, both types type_old and type_new reduce 
to the same type, struct foo.

typedef struct foo_st type_old;
typedef type_old type_new;

• Each field of a structure type is placed in a separate equivalent group 
that is distinct from the equivalent group of the field’s base type. The 
assumption here is that a pointer to int is not assigned the address 
of a structure field whose type is int. The actual type name of a 
structure type is not considered significant in constructing equivalent 
groups. For example, dereferences of a struct foo pointer and a 
struct bar pointer is assumed to alias with each other even if 
struct foo and struct bar have identical field declarations.

• All fields of a union type are placed in the same equivalent group, 
which is distinct from the equivalent group of any of the field’s base 
types. This means that all dereferences of pointers to a particular 
union type are assumed to alias with each other, regardless of which 
union field is being accessed.

• Address-exposed array variables are grouped into the equivalent 
group of the array element type.

• Applying an explicit pointer typecast to an expression value causes 
any later use of the typecast expression value to be associated with 
the equivalent group of the typecast expression value.



Chapter 7 145

Controlling optimization
C aliasing options

For example, an int pointer typecast into a float pointer and then 
dereferenced is assumed to potentially access objects in the float 
equivalent group—and not the int equivalent group.

However, type-incompatible assignments to pointer variables do not 
alter the aliasing assumptions on subsequent references of such 
pointer variables.

In general, type-incompatible assignments can potentially invalidate 
some of the type-safe assumptions. Such constructs may elicit 
compiler warning messages.



146 Chapter 7 

Controlling optimization
Optimization directives and pragmas

Optimization directives and pragmas
This section lists the directives, and pragmas available for use in 
optimization. Table 19 below describes the options and the optimization 
levels at which they are used. The pragmas are not supported by the 
aC++ compiler.

The loop_parallel, parallel, prefer_parallel, and 
end_parallel options are described in  “Parallel programming 
techniques,” on page 175.

Table 19 Directive-based optimization options

Directives and Pragmas
Valid 

Optimization 
levels

block_loop [(block_factor=n)] +O3, +O4

dynsel[(trip_count=n)] +O3, +O4

no_block_loop +O3, +O4

no_distribute +O3, +O4

no_dynsel +O3, +O4

no_loop_dependence(namelist) +O3, +O4

no_loop_transform +O3, +O4

no_parallel +O3, +O4

no_side_effects +O3, +O4

no_unroll_and_jam +O3, +O4

reduction(namelist) +O3, +O4

scalar +O3, +O4

sync_routine(routinelist) +O3, +O4

unroll_and_jam[(unroll_factor=n)] +O3, +O4



Chapter 7 147

Controlling optimization
Optimization directives and pragmas

Rules for usage
The form of the optimization directives and pragmas is shown in 
Table 20.

NOTE The HP aC++ compiler does not support the optimization pragmas 
described in this section.

Table 20 Form of optimization directives and pragmas

where 

directive-list 
is a comma-separated list of one or more of the 
directives/pragmas described in this chapter. 

• Directive names are presented here in lowercase, and they may be 
specified in either case in both languages. However, #pragma must 
always appear in lowercase in C. 

• In the sections that follow, namelist represents a comma-separated 
list of names. These names can be variables, arrays, or COMMON 
blocks. In the case of a COMMON block, its name must be enclosed 
within slashes. The occurrence of a lowercase n or m is used to 
indicate an integer constant. 

• Occurrences of gate_var are for variables that have been or are being 
defined as gates. Any parameters that appear within square brackets 
([ ]) are optional.

Language Form

Fortran C$DIR directive-list

C #pragma _CNX directive-list



148 Chapter 7 

Controlling optimization
Optimization directives and pragmas

block_loop[(block_factor=n)]
block_loop[(block_factor=n)]indicates a specific loop to block and, 
optionally, the block factor n. This block factor is used in the compiler’s 
internal computation of loop nest-based data reuse; this is the number of 
times that the data reuse has resulted as a result of loop nesting. This 
figure must be an integer constant greater than or equal to 2. If no 
block_factor is specified, the compiler uses a heuristic to determine 
the block_factor. For more information on loop blocking, refer to 
“Optimization levels” on page 25. 

dynsel[(trip_count=n)]
dynsel[(trip_count=n)] enables workload-based dynamic selection for 
the immediately following loop. trip_count represents the 
thread_trip_count  attribute, and n is an integer constant. 

• When thread_trip_count = n is specified, the serial version of the 
loop is run if the iteration count is less than n. Otherwise, the 
thread-parallel version is run. 

• For more information on dynamic selection, refer to the description of 
the optimization option “+O[no]dynsel” on page 120.

no_block_loop

no_block_loop disables loop blocking on the immediately following 
loop. For more information on loop blocking, see the description of 
block_loop[(block_factor=n)] in this section, or refer to the 
description of the optimization option “+O[no]loop_block” on 
page 127.

no_distribute

no_distribute disables loop distribution for the immediately following 
loop. For more information on loop distribution, refer to the description of 
the optimization option “+O[no]loop_transform” on page 127.



Chapter 7 149

Controlling optimization
Optimization directives and pragmas

no_dynsel

no_dynsel disables workload-based dynamic selection for the 
immediately following loop. For more information on dynamic selection, 
refer to the description of the optimization option “+O[no]dynsel” on 
page 120.

no_loop_dependence(namelist)
no_loop_dependence(namelist) informs the compiler that the arrays 
in namelist do not have any dependences for iterations of the 
immediately following loop. Use no_loop_dependence for arrays only. 
Use loop_private to indicate dependence-free scalar variables.

This directive or pragma causes the compiler to ignore any dependences 
that it perceives to exist. This can enhance the compiler’s ability to 
optimize the loop, including parallelization.

For more information on loop dependence, refer to “Loop-carried 
dependences” on page 292.

no_loop_transform

no_loop_transform prevents the compiler from performing reordering 
transformations on the following loop. The compiler does not distribute, 
fuse, block, interchange, unroll, or unroll and jam a loop on which this 
directive appears. For more information on no_loop_transform, refer 
to the optimization option “+O[no]loop_transform” on page 127.

no_parallel

no_parallel prevents the compiler from generating parallel code for 
the immediately following loop. For more information on no_parallel, 
refer to the optimization option “+O[no]parallel” on page 129. 



150 Chapter 7 

Controlling optimization
Optimization directives and pragmas

no_side_effects(funclist)
no_side_effects(funclist)informs the compiler that the functions 
appearing in funclist have no side effects wherever they appear lexically 
following the directive. Side effects include modifying a function 
argument, modifying a Fortran COMMON variable, performing I/O, or 
calling another routine that does any of the above. The compiler can 
sometimes eliminate calls to procedures that have no side effects. The 
compiler may also be able to parallelize loops with calls when informed 
that the called routines do not have side effects.

unroll_and_jam[(unroll_factor=n)]
unroll_and_jam[(unroll_factor=n)] causes one or more 
noninnermost loops in the immediately following nest to be partially 
unrolled (to a depth of n if unroll_factor is specified), then fuses the 
resulting loops back together. It must be placed on a loop that ends up 
being noninnermost after any compiler-initiated interchanges. For more 
information on unroll_and_jam, refer to the description of 
“+O[no]loop_unroll_jam” on page 128.



Chapter 8 151

8 Optimization Report

The Optimization Report is produced by the HP Fortran, HP  aC++, and 
HP C compilers.  It is most useful  at optimization levels +O3 and +O4.  
This chapter includes a discussion of the following topics:

• Optimization Report contents

• Loop Report



152 Chapter 8 

Optimization Report
Optimization Report contents

Optimization Report contents
When you compile a program with the +Oreport[=report_type] 
optimization option at the +O3 and +O4 levels, the compiler generates an 
Optimization Report for each program unit. The 
+Oreport[=report_type] option determines the report’s contents based 
on the value of report_type, as shown in Table 21.

Table 21 Optimization Report contents

The +Onoreport option does not accept any of the report_type values. 
Sample Optimization Reports are provided throughout this chapter.

report_type values Report contents

all Loop Report and Privatization Table

loop Loop Report 

private Loop Report and Privatization Table

report_type not given 
(default)

Loop Report 



Chapter 8 153

Optimization Report
Loop Report

Loop Report
The Loop Report lists the optimizations that are performed on loops and 
calls.  If appropriate, the report gives reasons why a possible 
optimization was not performed. Loop nests are reported in the order in 
which they are encountered and separated by a blank line. 

Below is a sample optimization report.

            Optimization Report

Line      Id    Var       Reordering        New       Optimizing / Special
Num.      Num.  Name      Transformation    Id Nums         Transformation
-----------------------------------------------------------------------------
    3        1  sub1     *Inlined call      (2-4)    
    8        2  iloopi:1  Serial                      Fused
   11        3  jloopi:2  Serial                      Fused
   14        4  kloopi:3  Serial                      Fused
                         *Fused             (5)       (2 3 4) -> (5)
    8        5  iloopi:1  PARALLEL                   

Footnoted   User
Var Name    Var Name
-----------------------------------------------------------------------------
iloopi:1    iloopindex
jloopi:2    jloopindex
kloopi:3    kloopindex

            Optimization for sub1

Line      Id    Var       Reordering        New       Optimizing / Special
Num.      Num.  Name      Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
    8        1  iloopi:1  Serial                      Fused
   11        2  jloopi:2  Serial                      Fused
   14        3  kloopi:3  Serial                      Fused
                         *Fused             (4)       (1 2 3) -> (4)
    8        4  iloopi:1  PARALLEL                   

Footnoted   User
Var Name    Var Name
-----------------------------------------------------------------------------
iloopi:1    iloopindex
jloopi:2    jloopindex
kloopi:3    kloopindex



154 Chapter 8 

Optimization Report
Loop Report

A description of each column of the Loop Report is shown in Table 22.

Table 22 Loop Report column definitions

Column Description

Line Num. Specifies the source line of the beginning of the loop or of the loop 
from which it was derived. For cloned calls and inlined calls, the 
Line Num. column specifies the source line at which the call 
statement appears.

Id Num. Specifies a unique ID number for every optimized loop and for every 
optimized call. This ID number can then be referenced by other parts 
of the report. Both loops appearing in the original program source 
and loops created by the compiler are given loop ID numbers.  Loops 
created by the compiler are also shown in the New Id Nums column 
as described later. No distinction between compiler-generated loops 
and loops that existed in the original source is made in the Id Num. 
column.  Loops are assigned unique, sequential numbers as they are 
encountered.

Var Name Specifies the name of the iteration variable controlling the loop or the 
called procedure if the line represents a call. If the variable is 
compiler-generated, its name is listed as *VAR*. If it consists of a 
truncated variable name followed by a colon and a number, the 
number is a reference to the variable name footnote table, which 
appears after the Loop Report and Analysis Table in the 
Optimization Report.

Reordering 
Transformation

Indicates which reordering transformations were performed. 
Reordering transformations are performed on loops, calls, and loop 
nests, and typically involve reordering and/or duplicating sections of 
code to facilitate more efficient execution. This column has one of the 
values shown in Table 23 on page 155.

New Id Nums Specifies the ID number for loops or calls created by the compiler. 
These ID numbers are listed in the Id Num. column and is referenced 
in other parts of the report. However, the loops and calls they 
represent were not present in the original source code. In the case of 
loop fusion, the number in this column indicates the new loop created 
by merging all the fused loops. New ID numbers are also created for 
cloned calls, inlined calls, loop blocking, loop distribution, loop 
interchange, loop unroll and jam, dynamic selection, and test 
promotion.



Chapter 8 155

Optimization Report
Loop Report

The following values apply to the Reordering Transformation column 
described in Table 22 on page 154.

Table 23 Reordering transformation values in the Loop Report

Optimizing / 
Special 
Transformation

Indicates which, if any, optimizing transformations were performed. 
An optimizing transformation reduces the number of operations 
executed, or replaces operations with simpler operations. A special 
transformation allows the compiler to optimize code under special 
circumstances. When appropriate, this column has one of the values 
shown in Table 24 on page 157.

Column Description

Value Description

Block Loop blocking was performed. The new loop order is indicated under 
the Optimizing/Special Transformation column, as shown in 
Table 24. 

Cloned call A call to a subroutine was cloned.

Dist Loop distribution was performed.

DynSel Dynamic selection was performed. The numbers in the New Id Nums 
column correspond to the loops created.  For parallel loops, these 
generally include a PARALLEL and a Serial version.

Fused The loops were fused into another loop and no longer exist. The 
original loops and the new loop is  indicated under the Optimizing/
Special Transformation column, as shown in Table 24.

Inlined call A call to a subroutine was inlined.

Interchange Loop interchange was performed. The new loop order is  indicated 
under the Optimizing/Special Transformation column, as 
shown in Table 24.

None No reordering transformation was performed on the call.

PARALLEL The loop runs in thread-parallel mode.

Peel The first or last iteration of the loop was peeled in order to fuse the loop 
with an adjacent loop.

Promote Test promotion was performed.



156 Chapter 8 

Optimization Report
Loop Report

Serial No reordering transformation was performed on the loop.

Unroll and Jam The loop was unrolled and the nested loops were jammed (fused).

VECTOR The loop was fully or partially replaced with more efficient calls to one 
or more vector routines.

* Appears at left of loop-producing transformation optimizations 
(distribution, dynamic selection, blocking, fusion, interchange, call 
cloning, call inlining, peeling, promotion, unroll and jam).

Value Description



Chapter 8 157

Optimization Report
Loop Report

The  following values apply to the Optimizing/special 
transformations  column described in Table 22 on page 154.

Table 24 Optimizing/special transformations values in the Loop Report

Value Explanation

Fused The loop was fused into another loop and no longer 
exists. 

Reduction The compiler recognized a reduction in the loop. 

Removed The compiler removed the loop.

Unrolled The loop was completely unrolled.

(OrigOrder) -> (InterchangedOrder) This information appears when Interchange is 
reported under Reordering Transformation. 
OrigOrder indicates the order of loops in the original 
nest. InterchangedOrder indicates the new order that 
occurs due to interchange. OrigOrder and 
InterchangedOrder consist of user iteration variables 
presented in outermost to innermost order. 

(OrigLoops)->(NewLoop) This information appears when Fused is reported 
under Reordering Transformation. OrigLoops 
indicates the original loops that were fused by the 
compiler to form the loop indicated by NewLoop. 
OrigLoops and NewLoop refer to loops based on the 
values from the Id Num. and New Id Nums columns 
in the Loop Report.

(OrigLoopNest)->(BlockedLoopNest) This information appears when Block is reported 
under Reordering Transformation. 
OrigLoopNest indicates the order of the original loop 
nest containing a loop that was blocked. 
BlockedLoopNest indicates the order of loops after 
blocking. OrigLoopNest and BlockedLoopNest refer to 
user iteration variables presented in outermost to 
innermost order.



158 Chapter 8 

Optimization Report
Loop Report

Supplemental tables
The tables described in this section may be included in the 
Optimization Report to provide information supplemental to the
Loop Report.

Analysis Table
If necessary, an Analysis Table is included in the Optimization Report to 
further elaborate on optimizations reported in the Loop Report. 

A description of each column in the Analysis Table is shown in Table 25.

Table 25 Analysis Table column definitions

Column Description

Line Num. Specifies the source line of the beginning of the loop 
or call.

Id Num. References the ID number assigned to the loop or call 
in the Loop Report.

Var Name Specifies the name of the iteration variable 
controlling the loop, *VAR* (as discussed in the Var 
Name description in the section “Loop Report” on 
page 153).

Analysis Indicates why a transformation or optimization was 
not performed, or additional information on what 
was done. 



Chapter 8 159

Optimization Report
Loop Report

Privatization Table
This table reports any user variables contained in a parallelized loop 
that are privatized by the compiler. Because the Privatization Table 
refers to loops, the Loop Report is automatically provided with it. 

A description of each column in the Privatization Table is shown in Table 
26.

Table 26 Privatization Table column definitions

Column Definitions

Line Num. Specifies the source line of the beginning of the 
loop.

Id Num. References the ID number assigned to the loop 
in the loop table.

Var Name Specifies the name of the iteration variable 
controlling the loop. *VAR* may also appear in 
this column, as discussed in the Var Name 
description in the section “Loop Report” on 
page 153.

Priv Var Specifies the name of the privatized user 
variable. Compiler-generated variables that are 
privatized are not reported here.

Privatization 
Information 
for Parallel 
Loops

Provides more detail on the variable 
privatizations performed. 



160 Chapter 8 

Optimization Report
Loop Report

Variable Name Footnote Table
Variable names that are too long to fit in the Var Name columns of the 
other tables are truncated and followed by a colon and a footnote 
number. These footnotes are explained in the Variable Name Footnote 
Table. 

A description of each column in the Variable Name Footnote Table is 
shown in Table 27.

Table 27 Variable Name Footnote Table column definitions

 Example Optimization Report

The following Fortran program is the basis for the Optimization Report 
shown in this example.  Line numbers are provided for ease of reference.

1     PROGRAM EXAMPLE99
2     REAL A(100), B(100), C(100)
3     CALL SUB1(A,B,C)
4     END
5
6     SUBROUTINE SUB1(A,B,C)
7     REAL A(100), B(100), C(100)
8     DO ILOOPINDEX=1,100
9       A(ILOOPINDEX) = ILOOPINDEX
10    ENDDO
11    DO JLOOPINDEX=1,100
12      B(JLOOPINDEX) = A(JLOOPINDEX)**2
13    ENDDO
14    DO KLOOPINDEX=1, 100
15      C(KLOOPINDEX) = A(KLOOPINDEX) + B(KLOOPINDEX)
16    ENDDO
17    PRINT *, A(1), B(50), C(100)
18    END

The following Optimization Report is generated by compiling the 
program EXAMPLE99 with the command-line options +O3 +Oparallel 
+Oreport=all +Oinline=sub1:

% f90 +O3 +Oparallel +Oreport=all +Oinline=sub1 EXAMPLE99.f

Column Definition

Footnoted Var Name Specifies the truncated variable name and 
its footnote number.

User Var Name Specifies the full name of the variable as 
identified in the source code.



Chapter 8 161

Optimization Report
Loop Report

Optimization for EXAMPLE99

Line      Id    Var       Reordering        New       Optimizing / Special
Num.      Num.  Name      Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
    3        1  sub1     *Inlined call      (2-4)    
    8        2  iloopi:1  Serial                      Fused
   11        3  jloopi:2  Serial                      Fused
   14        4  kloopi:3  Serial                      Fused
                         *Fused             (5)       (2 3 4) -> (5)
    8        5  iloopi:1  PARALLEL                  
Footnoted   User
Var Name    Var Name
-----------------------------------------------------------------------------
iloopi:1    iloopindex
jloopi:2    jloopindex
kloopi:3    kloopindex

            Optimization for sub1

Line      Id    Var       Reordering        New       Optimizing / Special
Num.      Num.  Name      Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
    8        1  iloopi:1  Serial                      Fused
   11        2  jloopi:2  Serial                      Fused
   14        3  kloopi:3  Serial                      Fused
                         *Fused             (4)       (1 2 3) -> (4)
    8        4  iloopi:1  PARALLEL                   

Footnoted   User
Var Name    Var Name
-----------------------------------------------------------------------------
iloopi:1    iloopindex
jloopi:2    jloopindex
kloopi:3    kloopindex

The Optimization Report for EXAMPLE99 provides the following 
information:

• Call to sub1 is inlined
The first line of the Loop Report shows that the call to sub1 was 
inlined, as shown below:

       3        1  sub1     *Inlined call      (2-4)

• Three new loops produced
The inlining produced three new loops in EXAMPLE99: Loop #2, 
Loop #3, and Loop #4. Internally, the EXAMPLE99 module that 
originally looked like:



162 Chapter 8 

Optimization Report
Loop Report

   1     PROGRAM EXAMPLE99
   2     REAL A(100), B(100), C(100)
   3     CALL SUB1(A,B,C)
   4     END

     now looks like this:

      PROGRAM EXAMPLE99
      REAL A(100), B(100), C(100)
      DO ILOOPINDEX=1,100                   !Loop #2
        A(ILOOPINDEX) = ILOOPINDEX
      ENDDO
      DO JLOOPINDEX=1,100                   !Loop #3
        B(JLOOPINDEX) = A(JLOOPINDEX)**2
      ENDDO
      DO KLOOPINDEX=1, 100                  !Loop #4
        C(KLOOPINDEX) = A(KLOOPINDEX) + B(KLOOPINDEX)
      ENDDO
      PRINT *, A(1), B(50), C(100)
      END

• New loops are fused
These lines indicate that the new loops have been fused.  The 
following line indicates that the three loops were fused into one new 
loop, Loop #5.

    8        2  iloopi:1  Serial                      Fused
   11        3  jloopi:2  Serial                      Fused
   14        4  kloopi:3  Serial                      Fused
                         *Fused             (5)       (2 3 4) (5)

After fusing, the code internally appears as the following:

      PROGRAM EXAMPLE99
      REAL A(100), B(100), C(100)
      DO ILOOPINDEX=1,100                   !Loop #5
        A(ILOOPINDEX) = ILOOPINDEX
        B(ILOOPINDEX) = A(ILOOPINDEX)**2
        C(ILOOPINDEX) = A(ILOOPINDEX) + B(ILOOPINDEX)
      ENDDO
      PRINT *, A(1), B(50), C(100)
      END



Chapter 8 163

Optimization Report
Loop Report

• New loop is parallelized
In the following Loop Report line:

       8        5  iloopi:1  PARALLEL    

Loop #5 uses iloopi:1 as the iteration variable, referencing the 
Variable Name Footnote Table; iloopi:1 corresponds to iloopindex. 
The same line in the report also indicates that the newly-created 
Loop #5 was parallelized.

• Variable Name Footnote Table lists iteration variables
According to the Variable Name Footnote Table (duplicated below), 
the original variable iloopindex is abbreviated by the compiler as 
iloopi:1 so that it fits into the Var Name columns of other reports.  

jloopindex and kloopindex are abbreviated as jloopi:2 and 
kloopi:3, respectively. These names are used throughout the report 
to refer to these iteration variables.

                      Footnoted   User
                      Var Name    Var Name
                      -----------------------
                      iloopi:1    iloopindex
                      jloopi:2    jloopindex
                      kloopi:3    kloopindex

 Example Optimization Report

The following Fortran code provides an example of other transformations 
the compiler performs. Line numbers are provided for ease of reference. 

1     PROGRAM EXAMPLE100
2
3     INTEGER IA1(100), IA2(100), IA3(100)
4     INTEGER I1, I2
5
6     DO I = 1, 100
7       IA1(I) = I
8       IA2(I) = I * 2
9       IA3(I) = I * 3
10    ENDDO
11
12    I1 = 0
13    I2 = 100
14    CALL SUB1 (IA1, IA2, IA3, I1, I2)
15    END
16
17    SUBROUTINE SUB1(A, B, C, S, N)
18    INTEGER A(N), B(N), C(N), S, I, J
19      DO J = 1, N
20        DO I = 1, N
21          IF (I .EQ. 1) THEN



164 Chapter 8 

Optimization Report
Loop Report

22            S = S + A(I)
23          ELSE IF (I .EQ. N) THEN
24            S = S + B(I)
25          ELSE
26            S = S + C(I)
27          ENDIF
28        ENDDO
29      ENDDO
30    END

The following Optimization Report is generated by compiling the 
program EXAMPLE100 for parallelization:

% f90 +O3 +Oparallel +Oreport=all example100.f

            Optimization for SUB1

Line     Id    Var        Reordering        New       Optimizing / Special
Num.     Num.  Name       Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
   19       1  j         *Interchange       (2)       (j i) -> (i j)
   20       2  i         *DynSel            (3-4)    
   20       3  i          PARALLEL                    Reduction
   19       5  j         *Promote           (6-7)    
   19       6  j          Serial                     
   19       7  j          Serial                     

   20       4  i          Serial                     
   19       8  j         *Promote           (9-10)   
   19       9  j          Serial                     
   19      10  j         *Promote           (11-12)  
   19      11  j          Serial                     
   19      12  j          Serial                     

Line     Id    Var       Analysis
Num.     Num.  Name
-----------------------------------------------------------------------------
   19       5  j         Test on line 21 promoted out of loop
   19       8  j         Test on line 21 promoted out of loop
   19      10  j         Test on line 23 promoted out of loop

The report is continued on the next page.

            Optimization for clone 1 of SUB1 (6_e70_cl_sub1)

Line     Id    Var        Reordering        New       Optimizing / Special
Num.     Num.  Name       Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
   19       1  j         *Interchange       (2)       (j i) -> (i j)
   20       2  i          PARALLEL                    Reduction
   19       3  j         *Promote           (4-5)    
   19       4  j          Serial                     
   19       5  j         *Promote           (6-7)    
   19       6  j          Serial                     
   19       7  j          Serial                     

Line     Id    Var       Analysis



Chapter 8 165

Optimization Report
Loop Report

Num.     Num.  Name
-----------------------------------------------------------------------------
   19       3  j         Test on line 21 promoted out of loop
   19       5  j         Test on line 23 promoted out of loop

            Optimization for example100

Line     Id    Var        Reordering        New       Optimizing / Special
Num.     Num.  Name       Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
    6       1  i          Serial                     

   14       2  sub1      *Cloned call       (3)      
   14       3  sub1       None                       

Line     Id    Var       Analysis
Num.     Num.  Name
-----------------------------------------------------------------------------
   14       2  sub1      Call target changed to clone 1 of SUB1 (6_e70_cl_sub1)

The Optimization Report for EXAMPLE100 shows Optimization Reports 
for the subroutine and its clone, followed by the optimizations to the 
subroutine.  It includes the following information:

• Original subroutine contents
Originally, the subroutine appeared as shown below:

17    SUBROUTINE SUB1(A, B, C, S, N)
18    INTEGER A(N), B(N), C(N), S, I, J
19      DO J = 1, N
20        DO I = 1, N
21          IF (I .EQ. 1) THEN
22            S = S + A(I)
23          ELSE IF (I .EQ. N) THEN
24            S = S + B(I)
25          ELSE
26            S = S + C(I)
27          ENDIF
28        ENDDO
29      ENDDO
30    END

• Loop interchange performed first
The compiler first performs loop interchange (listed as Interchange 
in the report) to maximize cache performance:

19        1  j        *Interchange       (2)       (j i) -> (i j)



166 Chapter 8 

Optimization Report
Loop Report

• The subroutine then becomes the following

17    SUBROUTINE SUB1(A, B, C, S, N)
18    INTEGER A(N), B(N), C(N), S, I, J
19      DO I = 1, N                        ! Loop #2
20        DO J = 1, N                      ! Loop #1
21          IF (I .EQ. 1) THEN
22            S = S + A(I)
23          ELSE IF (I .EQ. N) THEN
24            S = S + B(I)
25          ELSE
26            S = S + C(I)
27          ENDIF
28        ENDDO
29      ENDDO
30    END

• The program is optimized for parallelization 
The compiler would like to parallelize the outermost loop in the nest, 
which is now the I loop. However because the value of N is not known, 
the compiler does not know how many times the I loop needs to be 
executed. To ensure that the loop is executed as efficiently as possible 
at runtime, the compiler replaces the I loop nest with two new copies 
of the I loop nest, one to be run in parallel, the other to be run 
serially. 

• Dynamic selection is executed
An IF is then inserted to select the more efficient version of the loop 
to execute at runtime. This method of making one copy for parallel 
execution and one copy for serial execution is known as 
dynamic selection, which is enabled by default when 
+O3 +Oparallel is specified (see “Dynamic selection” on page 102 for 
more information). This optimization is reported in the Loop Report 
in the line:

   20        2  i        *DynSel            (3-4)

• Loop#2 creates two loops
According to the report, Loop #2 was used to create the new loops, 
Loop #3 and Loop #4. Internally, the code now is represented as 
follows:

      SUBROUTINE SUB1(A, B, C, S, N)
      INTEGER A(N), B(N), C(N), S, I, J

      IF (N .GT. some_threshold) THEN



Chapter 8 167

Optimization Report
Loop Report

        DO (parallel) I = 1, N             ! Loop #3
          DO J = 1, N                      ! Loop #5
            IF (I .EQ. 1) THEN
              S = S + A(I)
            ELSE IF (I .EQ. N) THEN
              S = S + B(I)
            ELSE
              S = S + C(I)
            ENDIF
          ENDDO
        ENDDO
      ELSE
        DO I = 1, N                        ! Loop #4
          DO J = 1, N                      ! Loop #8
            IF (I .EQ. 1) THEN
              S = S + A(I)
            ELSE IF (I .EQ. N) THEN
              S = S + B(I)
            ELSE
              S = S + C(I)
            ENDIF
          ENDDO
        ENDDO
      ENDIF
      END

• Loop#3 contains reductions
Loop #3 (which was parallelized) also contained one or more 
reductions. The Reordering Transformation column indicates 
that the IF statements were promoted out of Loop #5, Loop #8, and 
Loop #10. 

• Analysis Table lists new loops
The line numbers of the promoted IF statements are listed. The first 
test in Loop #5 was promoted, creating two new loops, Loop #6 and 
Loop #7. Similarly, Loop #8 has a test promoted, creating Loop #9 
and Loop #10. The test remaining in Loop #10 is then promoted, 
thereby creating two additional loops. A promoted test is an IF 
statement that is hoisted out of a loop. See the section “Test 
promotion” on page 90 for more information. The Analysis Table 
contents are shown below:

    19     5   j     Test on line 21 promoted out of loop
    19     8   j     Test on line 21 promoted out of loop
    19     10   j     Test on line 23 promoted out of loop



168 Chapter 8 

Optimization Report
Loop Report

• DO loop is not reordered
The following DO loop does not undergo any reordering 
transformation:

    6     DO I = 1, 100
    7       IA1(I) = I
    8       IA2(I) = I * 2
    9       IA3(I) = I * 3
    10    ENDDO

      This fact is reported by the line

    6        1  i         Serial

• sub1 is cloned
The call to the subroutine sub1 is cloned. As indicated by the 
asterisk (*), the compiler produced a new call. The new call is given 
the ID (3) listed in the New Id Nums column. The new call is then 
listed, with None indicating that no reordering transformation was 
performed on the call to the new subroutine.

    14        2  sub1     *Cloned call       (3)
    14        3  sub1      None

• Cloned call is transformed
The call to the subroutine is then appended to the Loop Report to 
elaborate on the Cloned call transformation. This line shows that 
the clone was called in place of the original subroutine.

14    2  sub1  Call target changed to clone 1 of SUB1 (6_e70_cl_sub1)



Chapter 8 169

Optimization Report
Loop Report

 Example Optimization Report

The following Fortran code  shows loop blocking, loop peeling, loop 
distribution, and loop unroll and jam.  Line numbers are listed for ease of 
reference.

1     PROGRAM EXAMPLE200
2  
3     REAL*8 A(1000,1000), B(1000,1000), C(1000)
4     REAL*8 D(1000), E(1000)
5     INTEGER M, N
6  
7     N = 1000
8     M = 1000
9  
10    DO I = 1, N
11      C(I) = 0
12      DO J = 1, M
13        A(I,J) = A(I,J) + B(I,J) * C(I)
14      ENDDO
15    ENDDO
16  
17    DO I = 1, N-1
18      D(I) = I
19    ENDDO
20  
21    DO J = 1, N
22      E(J) = D(J) + 1
23    ENDDO
24  
25    PRINT *, A(103,103), B(517, 517), D(11), E(29)
26  
27    END

The following Optimization Report is generated by compiling program 
EXAMPLE200 as follows:

% f90 +O3 +Oreport +Oloop_block example200.f



170 Chapter 8 

Optimization Report
Loop Report

            Optimization for example3

Line     Id    Var        Reordering        New       Optimizing / Special
Num.     Num.  Name       Transformation    Id Nums   Transformation
-----------------------------------------------------------------------------
   10       1  i:1       *Dist              (2-3)    
   10       2  i:1        Serial                     

   10       3  i:1       *Interchange       (4)       (i:1 j:1) -> (j:1 i:1)
   12       4  j:1       *Block             (5)       (j:1 i:1) -> (i:1 j:1 i:1)
   10       5  i:1       *Promote           (6-7)    
   10       6  i:1        Serial                      Removed
   10       7  i:1        Serial                     
   12       8  j:1       *Unroll And Jam    (9)      
   12       9  j:1       *Promote           (10-11)  
   12      10  j:1        Serial                      Removed
   12      11  j:1        Serial                     
   10      12  i:1        Serial                     

   17      13  i:2        Serial                      Fused
   21      14  j:2       *Peel              (15)     
   21      15  j:2        Serial                      Fused
                         *Fused             (16)      (13 15) -> (16)
   17      16  i:2        Serial                     

Line     Id    Var       Analysis
Num.     Num.  Name
-----------------------------------------------------------------------------
   10       5  i:1       Loop blocked by 56 iterations
   10       5  i:1       Test on line 12 promoted out of loop
   10       6  i:1       Loop blocked by 56 iterations
   10       7  i:1       Loop blocked by 56 iterations
   12       8  j:1       Loop unrolled by 8 iterations and jammed into the 
innermost loop 
   12       9  j:1       Test on line 10 promoted out of loop
   21      14  j:2       Peeled last iteration of loop

The Optimization Report for EXAMPLE200 provides the following results:

    10       1  i:1       *Dist              (2-3)    

• Several occurrences of variables noted
In this report, the Var Name column has entries such as i:1, j:1, 
i:2, and j:2. This type of entry appears when a variable is used 
more than once. In EXAMPLE200, I is used as an iteration variable 
twice.  Consequently, i:1 refers to the first occurrence, and i:2 
refers to the second occurrence.



Chapter 8 171

Optimization Report
Loop Report

• Loop #1 creates new loops
The first line of the report shows that  Loop #1, shown on line 10, is 
distributed to create Loop #2 and Loop #3:

      Initially, Loop #1 appears as shown.

      DO I = 1, N                            ! Loop #1
        C(I) = 0
        DO J = 1, M
          A(I,J) = A(I,J) + B(I,J) * C(I)
        ENDDO
      ENDDO

      It is then distributed as follows:

      DO I = 1, N                            ! Loop #2
        C(I) = 0
      ENDDO
     
      DO I = 1, N                            ! Loop #3
        DO J = 1, M
          A(I,J) = A(I,J) + B(I,J) * C(I)
        ENDDO
      ENDDO

• Loop #3 is interchanged to create Loop#4
The third line indicates this:

10       3  i:1       *Interchange       (4)       (i:1 j:1) ->
  (j:1 i:1)

      Now, the loop looks like the following code:

      DO J = 1, M                            ! Loop #4
        DO I = 1, N
          A(I,J) = A(I,J) + B(I,J) * C(I)
        ENDDO
      ENDDO

• Nested loop is blocked
The next line of the Optimization Report indicates that the nest 
rooted at Loop #4 is blocked:

12       4  j:1       *Block            (5)       (j:1 i:1) ->
  (i:1 j:1 i:1)

The blocked nest internally appears as follows:

      DO IOUT = 1, N, 56                     ! Loop #5
        DO J = 1, M                          
          DO I = IOUT, IOUT + 55
            A(I,J) = A(I,J) + B(I,J) * C(I)
          ENDDO
        ENDDO
      ENDDO



172 Chapter 8 

Optimization Report
Loop Report

• Loop #5 noted as blocked
The loop with iteration variable i:1 is the loop that was actually 
blocked. The report shows *Block on Loop #4 (the j:1 loop) because 
the entire nest rooted at Loop #4 is replaced by the blocked nest. 

• IOUT variable facilitates loop blocking
The IOUT variable is introduced to facilitate the loop blocking. The 
compiler uses a step value of 56 for the IOUT loop as reported in the 
Analysis Table:

   10       5  i:1       Loop blocked by 56 iterations

• Test promotion creates new loops
The next three lines of the report show that a test was promoted out 
of Loop #5, creating Loop #6 (which is removed) and Loop #7 
(which is run serially). This test—which does not appear in the source 
code—is an implicit test that the compiler inserts in the code to 
ensure that the loop iterates at least once.

   10       5  i:1       *Promote         (6-7)    
   10       6  i:1        Serial                    Removed
   10       7  i:1        Serial            

This test is referenced again in the following line from the 
Analysis Table:

   10       5  i:1       Test on line 12 promoted out of loop

• Unroll and jam creates new loop
The report indicates that the J is unrolled and jammed, creating 
Loop #9:

   12       8  j:1       *Unroll And Jam    (9)

• J loop unrolled by 8 iterations
This line also indicates that the J loop is unrolled by 8 iterations and 
fused:

   12     8  j:1     Loop unrolled by 8 iterations and jammed
                     into the innermost loop



Chapter 8 173

Optimization Report
Loop Report

The unrolled and jammed loop results in the following code:

      DO IOUT = 1, N, 56                     ! Loop #5
        DO J = 1, M, 8                       ! Loop #8
          DO I = IOUT, IOUT + 55             ! Loop #9
            A(I,J) = A(I,J) + B(I,J) * C(I)
            A(I,J+1) = A(I,J+1) + B(I,J+1) * C(I)
            A(I,J+2) = A(I,J+2) + B(I,J+2) * C(I)
            A(I,J+3) = A(I,J+3) + B(I,J+3) * C(I)
            A(I,J+4) = A(I,J+4) + B(I,J+4) * C(I)
            A(I,J+5) = A(I,J+5) + B(I,J+5) * C(I)
            A(I,J+6) = A(I,J+6) + B(I,J+6) * C(I)
            A(I,J+7) = A(I,J+7) + B(I,J+7) * C(I)
          ENDDO
        ENDDO
      ENDDO

• Test promotion in Loop #9 creates new loops
The Optimization Report indicates that the compiler-inserted test in 
Loop #9 is promoted out the loop, creating Loop #10 and 
Loop #11.

   12     9     j:1   *Promote     (10-11)
   12     10    j:1    Serial                Removed
   12     11    j:1    Serial

• Loops are fused
According to the report, the last two loops in the program are fused 
(once an iteration is peeled off the second loop), then the new loop is 
run serially.

   17      13  i:2        Serial                  Fused
   21      14  j:2       *Peel            (15)
   21      15  j:2        Serial                  Fused
                         *Fused           (16)   (13 15) -> (16)
   17      16  i:2        Serial

    That information is combined with the following line from the
    Analysis Table:

   21       14  j:2        Peeled last iteration of loop

• Loop peeling creates loop, enables fusion
Initially, Loop #14 has an iteration peeled to create Loop #15, as 
shown below. The loop peeling is performed to enable loop fusion.

      DO I = 1, N-1                         ! Loop #13
        D(I) = I
      ENDDO
    
      DO J = 1, N-1                         ! Loop #15
        E(J) = D(J) + 1
      ENDDO



174 Chapter 8 

Optimization Report
Loop Report

• Loops are fused to create new loop
Loop #13 and Loop #15 are then fused to produce Loop #16:

      DO I = 1, N-1                         ! Loop #16
        D(I) = I
        E(I) = D(I) + 1
      ENDDO



Chapter 9 175

9 Parallel programming 
techniques

The HP compiler set provides programming techniques that allow you to 
increase code efficiency while achieving three-tier parallelism. This 
chapter describes the following programming techniques and 
requirements for implementing low-overhead parallel programs:

• Parallelizing directives and pragmas

• Parallelizing loops

• Parallelizing tasks

• Parallelizing regions

• Reentrant compilation

• Setting thread default stack size

• Collecting parallel information

NOTE The HP aC++ compiler does not support the pragmas described in this 
chapter.



176 Chapter 9 

Parallel programming techniques
Parallelizing directives and pragmas

Parallelizing directives and pragmas
This section summarizes the directives and pragmas used to achieve 
parallelization in the HP compilers. The directives and pragmas are 
listed in the order of how they would typically be used within a given 
program.

Table 28 Parallel directives and pragmas

Pragma / Directive Description Level of 
parallelism

prefer_parallel
[(attribute_list)]

Requests parallelization of the immediately 
following loop, accepting attribute combinations 
for thread-parallelism, strip-length adjustment, 
and maximum number of threads. The compiler 
handles data privatization and does not 
parallelize the loop if it is not safe to do so.

Loop

loop_parallel 
[(attribute_list)]

Forces parallelization of the immediately 
following loop. Accepts attributes for thread-
parallelism, strip-length adjustment, maximum 
number of threads, and ordered execution. 
Requires you to manually privatize loop data and 
synchronize data dependences.

Loop

parallel
[(attribute_list)]

Allow you to parallelize a single code region to 
run on multiple threads. Unlike the tasking 
directives, which run discrete sections of code in 
parallel, parallel and end_parallel run 
multiple copies of a single section. Accepts 
attribute combinations for thread-parallelism 
and maximum number of threads.

Within a parallel region, loop directives 
(prefer_parallel, loop_parallel) and 
tasking directives (begin_tasks) may appear 
with the dist attribute.

Region

end_parallel Signifies the end of a parallel region (see 
parallel).

Region



Chapter 9 177

Parallel programming techniques
Parallelizing directives and pragmas

begin_tasks
(attribute_list)

Defines the beginning of a series of tasks, 
allowing you to parallelize consecutive blocks of 
code. Accepts attribute combinations for 
thread-parallelism, ordered execution, maximum 
number of threads, and others.

Task

next_task Starts a block of code following a begin_tasks 
block that will be executed as a parallel task.

Task

end_tasks Terminates parallel tasks started by 
begin_tasks and next_task. 

Task

ordered_section 
(gate)

Allows you to isolate dependences within a loop 
so that code contained within the ordered section 
executes in iteration order. Only useful when 
used with loop_parallel(ordered).

Loop

critical_section
[(gate)]

Allows you to isolate nonordered manipulations 
of a shared variable within a loop. Only one 
parallel thread can execute the code contained in 
the critical section at a time, eliminating possible 
contention.

Loop

end_critical 
section

Identifies the end of a critical section (see 
critical_section).

Loop

reduction Forces reduction analysis on a loop being 
manipulated by the loop_parallel directive. 
See “Reductions” on page 108.

Loop

sync_routine Must be used to identify synchronization 
functions that you call indirectly call in your own 
routines. See “sync_routine” on page 250.

Loop or Task

Pragma / Directive Description Level of 
parallelism



178 Chapter 9 

Parallel programming techniques
Parallelizing loops

Parallelizing loops
The HP compilers automatically exploit loop parallelism in dependence-
free loops. The prefer_parallel, loop_parallel, and parallel 
directives and pragmas allow you to increase parallelization 
opportunities and to manually control many aspects of parallelization 
using simple manual loop parallelization.

The prefer_parallel and loop_parallel directives and pragmas, 
apply to the immediately following loop. Data privatization is necessary 
when using loop_parallel; this is achieved by using the 
loop_private directive, discussed in  “Data privatization,” on page 217. 
Manual data privatization using memory classes is discussed in  
“Memory classes,” on page 233 and  “Parallel synchronization,” on 
page 243. 

The parallel directives and pragmas should only be used on Fortran DO 
and C for loops that have iteration counts that are determined prior to 
loop invocation at runtime.

prefer_parallel

The prefer_parallel directive and pragma causes the compiler to 
automatically parallelize the immediately following loop if it is free of 
dependences and other parallelization inhibitors. The compiler 
automatically privatizes any loop variables that must be privatized. 
prefer_parallel requires less manual intervention. However, it is 
less powerful than the loop_parallel directive and pragma.

See “prefer_parallel, loop_parallel attributes” on page 181 
for a description of attributes for this directive.

prefer_parallel can also be used to indicate the preferred loop in a 
nest to parallelize, as shown in the following Fortran code:

      DO J = 1, 100
C$DIR   PREFER_PARALLEL
        DO I = 1, 100
          . 
          . 
          . 
        ENDDO
      ENDDO



Chapter 9 179

Parallel programming techniques
Parallelizing loops

This code indicates that PREFER_PARALLEL causes the compiler to 
choose the innermost loop for parallelization, provided it is free of 
dependences. PREFER_PARALLEL does not inhibit loop interchange.

The ordered attribute in a prefer_parallel directive is only useful if 
the loop contains synchronized dependences. The ordered attribute is 
most useful in the loop_parallel directive, described in the next 
section.

loop_parallel

The loop_parallel directive forces parallelization of the immediately 
following loop. The compiler does not check for data dependences, 
perform variable privatization, or perform parallelization analysis. You 
must synchronize any dependences manually and manually privatize 
loop data as necessary. loop_parallel defaults to thread 
parallelization.

See “prefer_parallel, loop_parallel attributes” on page 181 
for a description of attributes for this directive.

loop_parallel(ordered) is useful for manually parallelizing loops 
that contain ordered dependences. This is described in  “Parallel 
synchronization,” on page 243.

Parallelizing loops with calls
loop_parallel is useful for manually parallelizing loops containing 
procedure calls. 

This is shown in the following Fortran code:

C$DIR LOOP_PARALLEL
      DO I = 1, N
        X(I) = FUNC(I)
      ENDDO

The call to FUNC in this loop would normally prevent it from 
parallelizing. To verify that the FUNC has no side effects, review the 
following conditions. A function does not have side effects if:

• It does not modify its arguments.

• It does not modify the same memory location from one call to the 
next.

• It performs no I/O.



180 Chapter 9 

Parallel programming techniques
Parallelizing loops

• It does not call any procedures that have side effects. If FUNC does 
have side effects or is not reentrant, this loop may yield wrong 
answers.

If you are sure that 

FUNC

has no side effects and is compiled for reentrancy (the default), this loop 
can be safely parallelized.

NOTE In some cases, global register allocation can interfere with the routine being 
called. Refer to the “Global register allocation (GRA)” on page 43 for more 
information.

Unparallelizable loops
The compiler does not parallelize any loop that does not have a number 
of iterations that can be determined prior to loop invocation at execution 
time, even when loop_parallel is specified. 

This is shown in the following Fortran code:

C$DIR LOOP_PARALLEL
      DO WHILE(A(I) .GT. 0)!WILL NOT PARALLELIZE
        . 
        . 
        A(I) = ...
        . 
        . 
      ENDDO

In general, there is no way the compiler can determine the loop’s 
iteration count prior to loop invocation here, so the loop cannot be 
parallelized.



Chapter 9 181

Parallel programming techniques
Parallelizing loops

prefer_parallel, loop_parallel attributes
The prefer_parallel and loop_parallel directives and pragmas 
maintain the same attributes. The forms of these directives and pragmas 
are shown in Table 29.

Table 29 Forms of prefer_parallel and loop_parallel directives and 
pragmas

where

ivar = indvar
specifies that the primary loop induction variable is 
indvar. ivar = indvar is optional in Fortran, but 
required in C. Use only with loop_parallel.

attribute-list 
can contain one of the case-insensitive attributes noted 
in Table 30. 

NOTE The values of n and m must be compile-time constants for the loop 
parallelization attributes in which they appear.

Language Form

Fortran C$DIR PREFER_PARALLEL[(attribute-list) ]

C$DIR LOOP_PARALLEL[(attribute-list)]

C #pragma _CNX prefer_parallel[(attribute-list)]

#pragma _CNX loop_parallel(ivar = indvar[, attribute-list])



182 Chapter 9 

Parallel programming techniques
Parallelizing loops

Table 30 Attributes for loop_parallel, prefer_parallel 

Attribute Description

dist Causes the compiler to distribute the iterations of a 
loop across active threads instead of spawning new 
threads. This significantly reduces parallelization 
overhead. 

Must be used with prefer_parallel or 
loop_parallel inside a parallel/end_parallel 
region.

Can be used with any prefer_parallel or 
loop_parallel attribute, except threads.

ordered Causes the iterations of the loop to be initiated in 
iteration order across the processors. This is useful 
only in loops with manually-synchronized dependences, 
constructed using loop_parallel.

To achieve ordered parallelism, dependences must be 
synchronized within ordered sections, constructed 
using the ordered_section and 
end_ordered_section directives.

max_threads = m Restricts execution of the specified loop to no more than 
m threads if specified alone. m must be an integer 
constant.

max_threads = m is useful when you know the 
maximum number of threads your loop runs on 
efficiently.

If specified with the chunk_size = n attribute, the 
chunks are parallelized across no more than m threads. 



Chapter 9 183

Parallel programming techniques
Parallelizing loops

Any loop under the influence of loop_parallel(dist) or 
prefer_parallel(dist) appears in the Optimization Report as serial. 
This is because it is already inside a parallel region. You can generate an 
Optimization Report by specifying the +Oreport option. For more 
information, see  “Optimization Report,” on page 151.

chunk_size = n Divides the loop into chunks of n or fewer iterations by 
which to strip mine the loop for parallelization. n must 
be an integer constant.

If chunk_size = n is present alone, n or fewer loop 
iterations are distributed round-robin to each available 
thread until there are no remaining iterations. This is 
shown in Table 32 and Table 33 on page 186.

If the number of threads does not evenly divide the 
number of iterations, some threads perform one less 
chunk than others.

dist, ordered Causes ordered invocation of each iteration across 
existing threads.

dist, max_threads = m Causes thread-parallelism on no more than m existing 
threads.

ordered, max_threads = m Causes ordered parallelism on no more than m threads.

dist, chunk_size = n Causes thread-parallelism by chunks.

dist, ordered, max_threads 
= m

Causes ordered thread-parallelism on no more than m 
existing threads.

chunk_size = n, 
max_threads = m

Causes chunk parallelism on no more than m threads.

dist, chunk_size = n, 
max_threads = m

Causes thread-parallelism by chunks on no more than 
m existing threads.

Attribute Description



184 Chapter 9 

Parallel programming techniques
Parallelizing loops

Combining the attributes
Table 30 shown above describes the acceptable combinations of 
loop_parallel and prefer_parallel attributes. In such 
combinations, the attributes are listed in any order.

The loop_parallel C pragma requires the ivar = indvar attribute, 
which specifies the primary loop induction variable. If this is not present, 
the compiler issues a warning and ignores the pragma. ivar should 
specify only the primary induction variable. Any other loop induction 
variables should be a function of this variable and should be declared 
loop_private. 

In Fortran, ivar is optional for DO loops. If it is not provided, the 
compiler picks the primary induction variable for the loop. ivar is 
required for DO, WHILE and customized loops in Fortran. 

NOTE prefer_parallel does not require ivar. The compiler issues an error if 
it encounters this combination.

Comparing prefer_parallel, loop_parallel
The prefer_parallel and loop_parallel directives and pragmas 
are used to parallelize loops. Table 31 provides an overview of the 
differences between the two pragmas/directives. See the sections 
“prefer_parallel” on page 178 and “loop_parallel” on page 179 for 
more information.



Chapter 9 185

Parallel programming techniques
Parallelizing loops

Table 31 Comparison of loop_parallel and prefer_parallel

prefer_parallel loop_parallel

Description Requests compiler to perform 
parallelization analysis on the 
following loop then parallelize the 
loop if it is safe to do so.
When used with the +Oautopar 
option (the default), it overrides 
the compiler heuristic for picking 
which loop in a loop nest to 
parallelize.
When used with +Onoautopar, 
the compiler only performs 
directive-specified parallelization. 
No heuristic is used to pick the 
loop in a nest to parallelize. In 
such cases, prefer_parallel 
requests loop parallelization. 

Forces the compiler to parallelize 
the following loop—assuming the 
iteration count can be determined 
prior to loop invocation.

Advantages Compiler automatically performs 
parallelization analysis and 
variable privatization.

Allows you to parallelize loops 
that the compiler is not able to 
automatically parallelize because 
it cannot determine dependences 
or side effects.

Disadvantages Loop may or may not execute in 
parallel.

Requires you to:
—Check for and synchronize any 
data dependences
—Perform variable privatization



186 Chapter 9 

Parallel programming techniques
Parallelizing loops

Stride-based parallelism
Stride-based parallelism differs from the default strip-based parallelism 
described in that:

• Strip-based parallelism divides the loop’s iterations into a number of 
contiguous chunks equal to the number of available threads, and each 
thread computes one chunk.

• Stride-based parallelism, set by the chunk_size=n attribute, allows 
each thread to do several noncontiguous chunks.

Specifying chunk_size =  ((number of iterations - 1) / number of 
threads) + 1 is similar to default strip mining for parallelization.

Using chunk_size = 1 distributes individual iterations cyclically 
across the processors. For example, if a loop has 1000 iterations to be 
distributed among 4 processors, specifying chunk_size=1 causes the 
distribution shown in Table 32.

Table 32 Iteration distribution using chunk_size = 1

For chunk_size=n, with n > 1, the distribution is round-robin. However, 
it is not the same as specifying the ordered attribute. For example, 
using the same loop as above, specifying chunk_size=5 produces the 
distribution shown in Table 33. 

Table 33 Iteration distribution using chunk_size = 5

For more information and examples on using the chunk_size = n 
attribute, see  “Troubleshooting,” on page 273.

CPU0 CPU1 CPU2 CPU3

Iterations 1 2 3 4

5 6 7 ...

CPU0 CPU1 CPU2 CPU3

Iterations 1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15 16, 17, 18, 19, 20

21, 22, 23, 24, 25 26, 27, 28, 29, 30 31, 32, 33, 34, 35, ...



Chapter 9 187

Parallel programming techniques
Parallelizing loops

 Example prefer_parallel, loop_parallel

The following Fortran example uses the PREFER_PARALLEL directive, 
but applies to LOOP_PARALLEL as well:

C$DIR PREFER_PARALLEL(CHUNK_SIZE = 4)
      DO I = 1, 100
        A(I) = B(I) + C(I)
      ENDDO

In this example, the loop is parallelized by parcelling out chunks of four 
iterations to each available thread. Figure 16 uses Fortran array syntax 
to illustrate the iterations performed by each thread, assuming eight 
available threads.

Figure 16 shows that the 100 iterations of I are parcelled out in chunks 
of four iterations to each of the eight available threads. After the chunks 
are distributed evenly to all threads, there is one chunk left over 
(iterations 97:100), which executes on thread 0.

 Figure 16 Stride-parallelized loop

A(1:4)=B(1:4)+C(1:4)

...

A(65:68)=B(65:68)+C(65:68)

A(97:100)=B(97:100)+C(97:100)

A(5:8)=B(5:8)+C(5:8)

...

A(69:72)=B(69:72)+C(69:72)

A(13:16)=B(13:16)+C(13:16)

...

A(77:80)=B(77:80)+C(77:80)

A(9:12)=B(9:12)+C(9:12)

...

A(73:76)=B(73:76)+C(73:76)

THREAD 0

THREAD 1

THREAD 2 THREAD 3

A(17:20)=B(17:20)+C(17:20)

...

A(81:84)=B(81:84)+C(81:84)

A(21:24)=B(21:24)+C(21:24)

...

A(85:88)=B(85:88)+C(85:88)

A(29:32)=B(29:32)+C(29:32)

...

A(93:96)=B(93:96)+C(93:96)

A(25:28)=B(25:28)+C(25:28)

...

A(89:92)=B(89:92)+C(89:92)

THREAD 4 THREAD 5

THREAD 6 THREAD 7



188 Chapter 9 

Parallel programming techniques
Parallelizing loops

 Example prefer_parallel, loop_parallel

The chunk_size = n attribute is most useful on loops in which the 
amount of work increases or decreases as a function of the iteration 
count. These loops are also known as triangular loops. The following 
Fortran example shows such a loop. As with the previous example, 
PREFER_PARALLEL is used here, but the concept also applies to 
LOOP_PARALLEL.

C$DIR PREFER_PARALLEL(CHUNK_SIZE = 4)
      DO J = 1,N
        DO I = J, N
          A(I,J) = ...
          . 
          . 
          . 
        ENDDO
      ENDDO

Here, the work of the I loop decreases as J increases. By specifying a 
chunk_size for the J loop, the load is more evenly balanced across the 
threads executing the loop. 

If this loop was strip-mined in the traditional manner, the amount of 
work contained in the strips would decrease with each successive strip. 
The threads performing early iterations of J would do substantially more 
work than those performing later iterations.



Chapter 9 189

Parallel programming techniques
Parallelizing loops

critical_section, end_critical_section
The critical_section and end_critical_section directives and 
pragmas allow you to specify sections of code in parallel loops or tasks 
that must be executed by only one thread at a time. These directives 
cannot be used for ordered synchronization within a 
loop_parallel(ordered) loop, but are suitable for simple 
synchronization in any other loop_parallel loops. Use the 
ordered_section and end_ordered_section directives or pragmas 
for ordered synchronization within a loop_parallel(ordered) loop.

A critical_section directive or pragma and its associated 
end_critical_section must appear in the same procedure and under 
the same control flow. They do not have to appear in the same procedure 
as the parallel construct in which they are used. For instance, the pair 
can appear in a procedure called from a parallel loop.

The forms of these directives and pragmas are shown in 9.

Table 34 Forms of critical_section/end_critical_section directives and 
pragmas

The critical_section directive/pragma can take an optional gate 
attribute that allows the declaration of multiple critical sections. This is 
described in “Using gates and barriers” on page 245. Only simple critical 
sections are discussed in this section.

Language Form

Fortran C$DIR CRITICAL_SECTION [ (gate) ]

C$DIR END_CRITICAL_SECTION

C #pragma _CNX critical_section [ (gate) ]

#pragma _CNX end_critical_section



190 Chapter 9 

Parallel programming techniques
Parallelizing loops

 Example critical_section

Consider the following Fortran example:

C$DIR LOOP_PARALLEL, LOOP_PRIVATE(FUNCTEMP)
      DO I = 1, N  ! LOOP IS PARALLELIZABLE
        . 
        . 
        . 
        FUNCTEMP = FUNC(X(I))
C$DIR   CRITICAL_SECTION
        SUM = SUM + FUNCTEMP
C$DIR   END_CRITICAL_SECTION
        . 
        . 
        . 
      ENDDO

Because FUNC has no side effects and is called in parallel, the I loop is 
parallelized as long as the SUM variable is only updated by one thread at 
a time. The critical section created around SUM ensures this behavior. 

The LOOP_PARALLEL directive and the critical section directive are 
required to parallelize this loop because the call to FUNC would normally 
inhibit parallelization. If this call were not present, and if the loop did 
not contain other parallelization inhibitors, the compiler would 
automatically parallelize the reduction of SUM as described in the section 
“Reductions” on page 108. However, the presence of the call necessitates 
the LOOP_PARALLEL directive, which prevents the compiler from 
automatically handling the reduction. 

This, in turn, requires using either a critical section directive or the 
reduction directive. Placing the call to FUNC outside of the critical 
section allows FUNC to be called in parallel, decreasing the amount of 
serial work within the critical section.

In order to justify the cost of the compiler-generated synchronization 
code associated with the use of critical sections, loops that contain them 
must also contain a large amount of parallelizable (non-critical section) 
code. If you are unsure of the profitability of using a critical section to 
help parallelize a certain loop, time the loop with and without the critical 
section. This helps to determine if parallelization justifies the overhead 
of the critical section.

For this particular example, the reduction directive or pragma could 
have been used in place of the critical_section, 
end_critical_section combination. For more information, see the 
section “Reductions” on page 108.



Chapter 9 191

Parallel programming techniques
Parallelizing loops

Disabling automatic loop thread-
parallelization
You can disable automatic loop thread-parallelization by specifying the 
+Onoautopar option on the compiler command line. +Onoautopar is 
only meaningful when specified with the +Oparallel option at +O3 
or +O4.

This option causes the compiler to parallelize only those loops that are 
immediately preceded by prefer_parallel or loop_parallel. 
Because the compiler does not automatically find parallel tasks or 
regions, user-specified task and region parallelization is not affected by 
this option.



192 Chapter 9 

Parallel programming techniques
Parallelizing tasks

Parallelizing tasks
The compiler does not automatically parallelize code outside a loop. 
However, you can use tasking directives and pragmas to instruct the 
compiler to parallelize this type of code. 

• The begin_tasks directive and pragma tells the compiler to begin 
parallelizing a series of tasks. 

• The next_task directive and pragma marks the end of a task and 
the start of the next task. 

• The end_tasks directive and pragma marks the end of a series of 
tasks to be parallelized and prevents execution from continuing until 
all tasks have completed. 

The sections of code delimited by these directives are referred to as a 
task list. Within a task list, the compiler does not check for data 
dependences, perform variable privatization, or perform parallelization 
analysis. You must manually synchronize any dependences between 
tasks and manually privatize data as necessary. 

The forms of these directives and pragmas are shown in Table 35.

Table 35 Forms of task parallelization directives and pragmas

Language Form

Fortran C$DIR BEGIN_TASKS[(attribute-list)]

C$DIR NEXT_TASK

C$DIR END_TASKS

C #pragma _CNX begin_tasks[(attribute-list)]

#pragma _CNX next_task

#pragma _CNX end_tasks



Chapter 9 193

Parallel programming techniques
Parallelizing tasks

where

attribute-list 
can contain one of the case-insensitive attributes noted 
in Table 36. 

The optional attribute-list can contain one of the following attribute 
combinations, with m being an integer constant.

Table 36 Attributes for task parallelization

Attribute Description

dist Instructs the compiler to distribute the tasks across the currently 
threads, instead of spawning new threads. 

Use with other valid attributes to begin_tasks inside a 
parallel/end_parallel region. begin_tasks and parallel/
end_parallel must appear inside the same function. 

ordered Causes the tasks to be initiated in their lexical order. That is, the 
first task in the sequence begins to run on its respective thread 
before the second and so on. 

In the absence of the ordered argument, the starting order is 
indeterminate. While this argument ensures an ordered starting 
sequence, it does not provide any synchronization between tasks, 
and does not guarantee any particular ending order. 

You can manually synchronize the tasks, if necessary, as described 
in  “Parallel synchronization,” on page 243.

max_threads = m Restricts execution of the specified loop to no more than m threads 
if specified alone or with the threads attribute. m must be an 
integer constant.

max_threads = m is useful when you know the maximum 
number of threads on which your task runs efficiently.

Can include any combination of thread-parallel, ordered or 
unordered execution.

dist, ordered Causes ordered invocation of each task across threads, as specified 
in the attribute list to the parallel directive.



194 Chapter 9 

Parallel programming techniques
Parallelizing tasks

NOTE Do not use tasking directives or pragmas unless you have verified that 
dependences do not exist. You may insert your own synchronization code in 
the code delimited by the tasking directives or pragmas. The compiler will 
not performs dependence checking or synchronization on the code in these 
regions. Synchronization is discussed in  “Parallel synchronization,” on 
page 243.

dist, max_threads 
= m

Causes thread-parallelism on no more than m existing threads.

ordered, 
max_threads = m

Causes ordered parallelism on no more than m threads.

dist, ordered, 
max_threads = m

Causes ordered thread-parallelism on no more than m existing 
threads.

Attribute Description



Chapter 9 195

Parallel programming techniques
Parallelizing tasks

 Example Parallelizing tasks

The following Fortran example shows how to insert tasking directives 
into a section of code containing three tasks that can be run in parallel:

C$DIR BEGIN_TASKS

 parallel task 1

C$DIR NEXT_TASK

 parallel task 2

C$DIR NEXT_TASK

 parallel task 3

C$DIR END_TASKS

The example above specifies thread-parallelism by default. The compiler 
transforms the code into a parallel loop and creates machine code 
equivalent to the following Fortran code:

C$DIR LOOP_PARALLEL

      DO 40 I = 1,3

        GOTO (10,20,30)I

10      parallel task 1

        GOTO 40

20      parallel task 2

        GOTO 40

30      parallel task 3

        GOTO 40

40    CONTINUE

If there are more tasks than available threads, some threads execute 
multiple tasks. If there are more threads than tasks, some threads do not 
execute tasks.

In this example, the END_TASKS directive and pragma acts as a barrier. 
All parallel tasks must complete before the code following END_TASKS 
can execute.



196 Chapter 9 

Parallel programming techniques
Parallelizing tasks

 Example Parallelizing tasks

The following C example illustrates how to use these directives to specify 
simple task-parallelization:

#pragma _CNX begin_tasks, task_private(i)
for(i=0;i<n-1;i++)
  a[i] = a[i+1] + b[i];
#pragma _CNX next_task
tsub(x,y);
#pragma _CNX next_task
for(i=0;i<500;i++)
  c[i*2] = d[i];
#pragma _CNX end_tasks

In this example, one thread executes the for loop, another thread 
executes the tsub(x,y) function call, and a third thread assigns the 
elements of the array d to every other element of c. These threads 
execute in parallel, but their starting and ending orders are 
indeterminate.

The tasks are thread-parallelized. This means that there is no room for 
nested parallelization within the individual parallel tasks of this 
example, so the forward LCD on the for I loop is inconsequential. There 
is no way for the loop to run but serially. 

The loop induction variable i must be manually privatized here because 
it is used to control loops in two different tasks. If i were not private, 
both tasks would modify it, causing wrong answers. The task_private 
directive and pragma is described in detail in the section 
“task_private” on page 227.

Task parallelism can become even more involved, as described in  
“Parallel synchronization,” on page 243.



Chapter 9 197

Parallel programming techniques
Parallelizing regions

Parallelizing regions
A parallel region is a single block of code that is written to run replicated 
on several threads. Certain scalar code within the parallel region is run 
by each thread in preparation for work-sharing parallel constructs such 
as prefer_parallel(dist), loop_parallel(dist), or 
begin_tasks(dist). The scalar code typically assigns data into 
parallel_private variables so that subsequent references to the data 
have a high cache hit rate. Within a parallel region, code execution can 
be restricted to subsets of threads by using conditional blocks that test 
the thread ID.

Region parallelization differs from task parallelization in that parallel 
tasks are separate, contiguous blocks of code. When parallelized using 
the tasking directives and pragmas, each block generally runs on a 
separate thread. This is in comparison to a single parallel region, which 
runs on several threads. 

Specifying parallel tasks is also typically less time consuming because 
each thread’s work is implicitly defined by the task boundaries. In region 
parallelization, you must manually modify the region to identify 
thread-specific code. However, region parallelism can reduce 
parallelization overhead as discussed in the section explaining the dist 
attribute.

The beginning of a parallel region is denoted by the parallel directive 
or pragma. The end is denoted by the end_parallel directive or 
pragma. end_parallel also prevents execution from continuing until 
all copies of the parallel region have completed.

Within a parallel region, the compiler does not check for data 
dependences, perform variable privatization, or perform parallelization 
analysis. You must manually synchronize any dependences between 
copies of the region and manually privatize data as necessary. In the 
absence of a threads attribute, parallel defaults to thread 
parallelization.



198 Chapter 9 

Parallel programming techniques
Parallelizing regions

The forms of the regional parallelization directives and pragmas are 
shown in Table 37.

Table 37 Forms of region parallelization directives and pragmas

The optional attribute-list can contain one of the following attributes (m 
is an integer constant).

Table 38 Attributes for region parallelization

WARNING Do not use the parallel region directives or pragmas unless you ensure that 
dependences do not exist or you insert your own synchronization code, if 
necessary, in the region. The compiler performs no dependence checking or 
synchronization on the code delimited by the parallel region directives and 
pragmas. Synchronization is discussed in  “Parallel synchronization,” on 
page 243.

Language Form

Fortran C$DIR PARALLEL[(attribute-list)]

C$DIR END_PARALLEL

C #pragma _CNX parallel(attribute-list)

#pragma _CNX end_parallel

Attribute Description

max_threads = m Restricts execution of the specified region to no more than m 
threads if specified alone or with the threads attribute. m must be 
an integer constant.

Can include any combination of ordered, or unordered execution.



Chapter 9 199

Parallel programming techniques
Parallelizing regions

 Example Region parallelization

The following Fortran example provides an implementation of region 
parallelization using the PARALLEL directive:

      REAL A(1000,8), B(1000,8), C(1000,8), RDONLY(1000), SUM(8)
      INTEGER MYTID
      . 
      . 
      . 
C     FIRST INITIALIZATION OF RDONLY IN SERIAL CODE:
      CALL INIT1(RDONLY)
      IF(NUM_THREADS() .LT. 8) STOP "NOT ENOUGH THREADS; EXITING"
C$DIR PARALLEL(MAX_THREADS = 8), PARALLEL_PRIVATE(I, J, K, MYTID)
      MYTID = MY_THREAD() + 1 !ADD 1 FOR PROPER SUBSCRIPTING
      DO I = 1, 1000
        A(I, MYTID) = B(I, MYTID) * RDONLY(I)
      ENDDO
      IF(MYTID .EQ. 1) THEN ! ONLY THREAD 0 EXECUTES SECOND 
        CALL INIT2(RDONLY)  ! INITIALIZATION
      ENDIF
      DO J = 1, 1000
        B(J, MYTID) = B(J, MYTID) * RDONLY(J)
        C(J, MYTID) = A(J, MYTID) * B(J, MYTID)
      ENDDO
      DO K = 1, 1000
        SUM(MYTID) = SUM(MYTID) + A(K,MYTID) + B(K,MYTID) + 
C(K,MYTID)
      ENDDO
C$DIR END_PARALLEL

In this example, all arrays written to in the parallel code have one 
dimension for each of the anticipated number of parallel threads. Each 
thread can work on disjoint data, there is no chance of two threads 
attempting to update the same element, and, therefore, there is no need 
for explicit synchronization. The RDONLY array is one-dimensional, but it 
is never written to by parallel threads. Before the parallel region, 
RDONLY is initialized in serial code. 

The PARALLEL_PRIVATE directive is used to privatize the induction 
variables used in the parallel region. This must be done so that the 
various threads processing the region do not attempt to write to the same 
shared induction variables. PARALLEL_PRIVATE is covered in more 
detail in the section “parallel_private” on page 229.

At the beginning of the parallel region, the NUM_THREADS() intrinsic is 
called to ensure that the expected number of threads are available. Then 
the MY_THREAD() intrinsic, is called by each thread to determine its 
thread ID. All subsequent code in the region is executed based on this ID. 
In the I loop, each thread computes one row of A using RDONLY and the 
corresponding row of B. 



200 Chapter 9 

Parallel programming techniques
Parallelizing regions

RDONLY is reinitialized in a subroutine call that is only executed by 
thread 0 before it is used again in the computation of B in the J loop. In 
J, each thread computes a row again. The J loop similarly computes C.

Finally, the K loop sums each dimension of A, B, and C into the SUM array. 
No synchronization is necessary here because each thread is running the 
entire loop serially and assigning into a discrete element of SUM.



Chapter 9 201

Parallel programming techniques
Reentrant compilation

Reentrant compilation
By default, HP-UX parallel compilers compile for reentrancy in that the 
compiler itself does not introduce static or global references beyond what 
exist in the original code. Reentrant compilation causes procedures to 
store uninitialized local variables on the stack. No locals can carry values 
from one invocation of the procedure to the next, unless the variables 
appear in Fortran COMMON blocks or DATA or SAVE statements or in C/
C++ static statements. This allows loops containing procedure calls to 
be manually parallelized, assuming no other inhibitors of parallelization 
exist. 

When procedures are called in parallel, each thread receives a private 
stack on which to allocate local variables. This allows each parallel copy 
of the procedure to manipulate its local variables without interfering 
with any other copy’s locals of the same name. When the procedure 
returns and the parallel threads join, all values on the stack are lost.



202 Chapter 9 

Parallel programming techniques
Setting thread default stack size

Setting thread default stack size
Thread 0’s stack can grow to the size specified in the maxssiz 
configurable kernel parameter. Refer to the Managing Systems and 
Workgroups manual for more information on configurable kernel 
parameters. 

Any threads your program spawns (as the result of loop_parallel or 
tasking directives or pragmas) receive a default stack size of 80 Mbytes. 
This means that if the following conditions exist, then you must modify 
the stack size of the spawned threads using the CPS_STACK_SIZE 
environment variable:

• A parallel construct declares more than 80 Mbytes of loop_private, 
task_private, or parallel_private data, or 

• A subprogram with more than 80 Mbytes of local data is called in 
parallel, or

• The cumulative size of all local variables in a chain of subprograms 
called in parallel exceeds 80 Mbytes, 

Modifying thread stack size
Under csh, you can modify the stack size of the spawned threads using 
the CPS_STACK_SIZE environment variable. 

The form of the CPS_STACK_SIZE environment variable is shown in 
Table 39.

Table 39 Forms of CPS_STACK_SIZE environment variable

where

size_in_kbytes
is the desired stack size in kbytes. This value is read at 
program start-up, and it cannot be changed during 
execution.

Language Form

Fortran, C setenv CPS_STACK_SIZE size_in_kbytes



Chapter 9 203

Parallel programming techniques
Collecting parallel information

For example, the following command sets the thread stack size 
to 100 Mbytes:

setenv CPS_STACK_SIZE 102400

Collecting parallel information
Several intrinsics are available to provide information regarding the 
parallelism or potential parallelism of your program. These are all 
integer functions, available in both 4- and 8-byte variants. They can 
appear in executable statements anywhere an integer expression is 
allowed. 

The 8-byte functions, which are suffixed with _8, are typically only used 
in Fortran programs in which the default data lengths have been 
changed using the -I8 or similar compiler options. When default integer 
lengths are modified via compiler options in Fortran, the correct intrinsic 
is automatically chosen regardless of which is specified. These versions 
expect 8-byte input arguments and return 8-byte values.

NOTE All C/C++ code examples presented in this chapter assume that the line 
below appears above the C code presented. This header file contains the 
necessary type and function definitions.

 #include <spp_prog_model.h>

Number of processors
Certain functions return the total number of processors on which the 
process has initiated threads. These threads are not necessarily active at 
the time of the call. The forms of these functions are shown in Table 40.



204 Chapter 9 

Parallel programming techniques
Collecting parallel information

Table 40 Number of processors functions

num_procs is used to dimension automatic and adjustable arrays in 
Fortran. It may be used in Fortran, C, and C++ to dynamically specify 
array dimensions and allocate storage.

Number of threads
Certain functions return the total number of threads the process creates 
at initiation, regardless of how many are idle or active. The forms of 
these functions is shown in Table 41.

Table 41 Number of threads functions

The return value differs from num_procs only if threads are 
oversubscribed.

Language Form

Fortran INTEGER NUM_PROCS()

INTEGER*8 NUM_PROCS_8()

C/C++ int num_procs(void);

long long num_procs_8(void);

Language Form

Fortran INTEGER NUM_THREADS()

INTEGER*8 NUM_THREADS_8()

C/C++ int num_threads(void);

long long num_threads_8(void);



Chapter 9 205

Parallel programming techniques
Collecting parallel information

Thread ID
When called from parallel code these functions return the spawn thread 
ID of the calling thread, in the range 0..N-1, where nst is the number of 
threads in the current spawn context (the number of threads spawned by 
the last parallel construct). Use them when you wish to direct specific 
tasks to specific threads inside parallel constructs. The forms of these 
functions is shown in Table 42.

Table 42 Thread ID functions

When called from serial code, these functions return 0.

Stack memory type
These functions return a value representing the memory class that the 
current thread stack is allocated from. The thread stack holds all the 
procedure-local arrays and variables not manually assigned a class. On a 
single-node system, the thread stack is created in node_private 
memory by default. The forms of these functions is shown in Table 43.

Table 43 Stack memory type functions

Language Form

Fortran INTEGER MY_THREAD()

INTEGER*8 MY_THREADS_8()

C/C++ int my_thread(void);

long long my_thread_8(void);

Language Form

Fortran INTEGER MEMORY_TYPE_OF_STACK()

INTEGER*8 MEMORY_TYPE_OF_STACK_8()

C/C++ int memory_type_of_stack(void);

long long memory_type_of_stack_8(void);



206 Chapter 9 

Parallel programming techniques
Collecting parallel information



Chapter 10 207

10 OpenMP Parallel Programming 
Model

This chapter discusses HP’s native subset implementation of the 
OpenMP parallel programming model, including OpenMP directives and 
command line options in the f90 front end and bridge. Topics covered 
include:

• What is OpenMP?

• HP’s implementation of OpenMP

• From HP Programming Model (HPPM) to OpenMP



208 Chapter 10 

OpenMP Parallel Programming Model
What is OpenMP?

What is OpenMP?
OpenMP is a portable, scalable model that gives shared-memory parallel 
programmers a simple and flexible interface for developing parallel 
applications on platforms ranging from the desktop to the 
supercomputer. The OpenMP Application Program Interface (API) 
supports multi-platform shared-memory parallel programming in 
Fortran on all architectures, including UNIX and Windows NT. 



Chapter 10 209

OpenMP Parallel Programming Model
HP’s implementation of OpenMP

HP’s implementation of OpenMP
HP’s native subset implementation of OpenMP includes nine supported 
directives and four supported data scope clauses, as well as an additional 
supported clause. This implementation is discussed below. 

OpenMP command-line options
The OpenMP directives implemented by HP (and discussed later in this 
chapter) are only accepted if the new command-line option—+Oopenmp—
is given. +Oopenmp is accepted at all opt levels.

Default
The default command line option is +Onoopenmp. If +Oopenmp is not 
given, all OpenMP directives (c$omp) are ignored.

OpenMP directives
This section discusses the implementation of each of the OpenMP 
directives. In general, work-sharing directives are only accepted at opt 
level +03 and above; synchronization directives are accepted at all opt 
levels. Following is each OpenMP directive and its required opt level:

Table 44 OpenMP Directives and Required Opt Levels

Directive Opt Level

PARALLEL +03

PARALLEL DO +03

PARALLEL SECTIONS +03

DO +03

SECTIONS +03

SECTION +03



210 Chapter 10 

OpenMP Parallel Programming Model
HP’s implementation of OpenMP

OpenMP data scope clauses
Following are HP’s OpenMP supported data scope clauses:

• PRIVATE

• SHARED

• DEFAULT

• LASTPRIVATE

Other supported OpenMP clauses
ORDERED

CRITICAL +00

ORDERED +00

BARRIER +00

Directive Opt Level



Chapter 10 211

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

From HP Programming Model to 
OpenMP
This section discusses migration from the HP Programming Model 
(HPPM) to the OpenMP parallel programming model.

Syntax
The OpenMP parallel programming model is very similar to the current 
HP Programming Model (HPPM). The general thread model is the same, 
the spawn (fork) mechanisms behave in a similar fashion, etc. However, 
the specific syntax to specify the underlying semantics has been changed 
significantly.

The following table shows the OpenMP directive or clause (relative to the 
directive) and the equivalent HPPM directive or clause that implements 
the same functionality. Certain clauses are valid on multiple directives, 
but are typically listed only once unless there is a distinction warranting 
further explanation.

Exceptions are defined immediately following the table.

Table 45 OpenMP and HPPM Directives/Clauses

OpenMP HPPM

!$OMP parallel
private (list)
shared (list)
default (private|shared|none)

!$dir parallel
task_private(list)
<‘shared’ is default>
<None, see below>

!$OMP do
schedule(static[,chunkconstant])
ordered

!$dir loop_parallel(dist) 
blocked(chunkconstant)
ordered

!$OMP sections !$dir begin_tasks(dist)

!$OMP section !$dir next_task

!$OMP parallel do
<see parallel and do clauses>

!$dir loop_parallel
<see parallel and 

loop_parallel(dist) clauses>

!$OMP parallel sections
<see parallel and sections clauses>

!$dir begin_tasks
<see parallel and 

begin_tasks(dist) clauses>

!$OMP critical[(name)] !$dir critical_section[(name)]



212 Chapter 10 

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

Exceptions

• private(list) / loop_private(list)

OpenMP allows the induction variable to be a member of the variable 
list. HPPM does not.

• default(private|shared|none)

The HPPM defaults to “shared” and allows the user to specify which 
variables should be private. The HP model does not provide “none”; 
therefore, undeclared variables will be treated as shared.

• schedule(static[,chunkconstant])/ blocked([constant])

Only manifest constants are supported today.

HP Programming Model directives
This section describes how the HP Programming Model (HPPM) 
directives are affected by the implementation of OpenMP.

Not Accepted with +Oopenmp
These HPPM directives will not be accepted when +Oopenmp is given.

• parallel

• end_parallel

• loop_parallel

!$OMP barrier !$dir wait_barrier

!$OMP ordered !$dir ordered_section

!$OMP end parallel <none>

!$OMP end sections !$dir end_tasks

!$OMP end parallel sections !$dir end_tasks

!$OMP end parallel do <none>

!$OMP end critical !$dir end_critical_section

!$OMP end ordered !$dir end_ordered_section

!$OMP end do <none>

OpenMP HPPM



Chapter 10 213

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

• prefer_parallel

• begin_tasks

• next_task

• end_tasks

• critical_section

• end_critical_section

• ordered_section

• end_ordered_section

• loop_private

• parallel_private

• task_private

• save_last

• reduction

• dynsel

• barrier

• gate

• sync_routine

• thread_private

• node_private

• thread_private_pointer

• node_private_pointer

• near_shared

• far_shared

• block_shared

• near_shared_pointer

• far_shared_pointer

NOTE If +Oopenmp is given, the directives above are ignored.



214 Chapter 10 

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

Accepted with +Oopenmp
These HPPM directives will continue to be accepted when +Oopenmp is 
given.

• options

• no_dynsel

• no_unroll_and_jam

• no_parallel

• no_block_loop

• no_loop_transform

• no_distribute

• no_loop_dependence

• scalar

• unroll_and_jam

• block_loop



Chapter 10 215

OpenMP Parallel Programming Model
More Information on OpenMP

More Information on OpenMP
For more information on OpenMP, see www.openmp.org.



216 Chapter 10 

OpenMP Parallel Programming Model
More Information on OpenMP



Chapter 11 217

11 Data privatization

Once HP shared memory classes are assigned, they are implemented 
throughout your entire program. Very efficient programs are written 
using these memory classes, as described in  “Memory classes,” on 
page 233. However, these programs also require some manual 
intervention. Any loops that manipulate variables that are explicitly 
assigned to a memory class must be manually parallelized. Once a 
variable is assigned a class, its class cannot change. 

This chapter describes the workarounds provided by the HP Fortran and 
C compilers to support:

• Privatizing loop variables

• Privatizing task variables

• Privatizing region variables



218 Chapter 11 

Data privatization
Directives and pragmas for data privatization

Directives and pragmas for data 
privatization
This section describes the various directives and pragmas that are 
implemented to achieve data privatization. These directives and 
pragmas are discussed in Table 46.

Table 46 Data Privatization Directives and Pragmas

These directives and pragmas allow you to easily and temporarily 
privatize parallel loop, task, or region data. When used with 
prefer_parallel, these directives and pragmas do not inhibit 
automatic compiler optimizations. This facilitates increased performance 
of your shared-memory program. It occurs with less work than is 
required when using the standard memory classes for manual 
parallelization and synchronization.

The data privatization directives and pragmas are used on local 
variables and arrays of any type, but they should not be used on data 
assigned to thread_private.

Directive / Pragma Description Level of 
parallelism

loop_private 
(namelist)

Declares a list of variables and/or arrays 
private to the following loop.

Loop

parallel_private
(namelist)

Declares a list of variables and/or arrays 
private to the following parallel region.

Region

save_last[(list)] Specifies that the variables in the comma-
delimited list (also named in an associated 
loop_private(namelist) directive or 
pragma) must have their values saved into 
the shared variable of the same name at loop 
termination.

Loop

task_private
(namelist)

Privatizes the variables and arrays specified 
in namelist for each task specified in the 
following begin_tasks/end_tasks block.

Task



Chapter 11 219

Data privatization
Directives and pragmas for data privatization

In some cases, data declared loop_private, task_private, or 
parallel_private is stored on the stacks of the spawned threads. 
Spawned thread stacks default to 80 Mbytes in size.



220 Chapter 11 

Data privatization
Privatizing loop variables

Privatizing loop variables
This section describes the following directives and pragmas associated 
with privatizing loop variables:

• loop_private

• save_last

loop_private

The loop_private directive and pragma declares a list of variables 
and/or arrays private to the immediately following Fortran DO or C for 
loop. loop_private array dimensions must be identifiable at compile-
time.

The compiler assumes that data objects declared to be loop_private 
have no loop-carried dependences with respect to the parallel loops in 
which they are used. If dependences exist, they must be handled 
manually using the synchronization directives and techniques described 
in  “Parallel synchronization,” on page 243. 

Each parallel thread of execution receives a private copy of the 
loop_private data object for the duration of the loop. No starting 
values are assumed for the data. Unless a save_last directive or 
pragma is specified, no ending value is assumed. If a loop_private 
data object is referenced within an iteration of the loop, it must be 
assigned a value previously on that same iteration.

The form of this directive and pragma is shown in Table 47.

Table 47 Form of loop_private directive and pragma

where

Language Form

Fortran C$DIR LOOP_PRIVATE(namelist)

C #pragma _CNX loop_private(namelist)



Chapter 11 221

Data privatization
Privatizing loop variables

namelist is a comma-separated list of variables and/or arrays 
that are to be private to the immediately following loop. 
namelist cannot contain structures, dynamic arrays, 
allocatable arrays, or automatic arrays.

loop_private

The following is a Fortran example of loop_private:

C$DIR LOOP_PRIVATE(S)
      DO I = 1, N
C       S IS ONLY CORRECTLY PRIVATE IF AT LEAST
C       ONE IF TEST PASSES ON EACH ITERATION:
        IF(A(I) .GT. 0) S = A(I)
        IF(U(I) .LT. V(I)) S = V(I)
        IF(X(I) .LE. Y(I)) S = Z(I)
        B(I) = S * C(I) + D(I)
      ENDDO 

A potential loop-carried dependence on S exists in this example. If none 
of the IF tests are true on a given iteration, the value of S must wrap 
around from the previous iteration. The LOOP_PRIVATE(S) directive 
indicates to the compiler that S does, in fact, get assigned on every 
iteration, and therefore it is safe to parallelize this loop.

If on any iteration none of the IF tests pass, an actual LCD exists and 
privatizing S results in wrong answers.

Using loop_private with loop_parallel

Because the compiler does not automatically perform variable 
privatization in loop_parallel loops, you must manually privatize 
loop data requiring privatization. This is easily done using the 
loop_private directive or pragma.

The following Fortran example shows how loop_private manually 
privatizes loop data:

      SUBROUTINE PRIV(X,Y,Z)
      REAL X(1000), Y(4,1000), Z(1000)
      REAL XMFIED(1000)
C$DIR LOOP_PARALLEL, LOOP_PRIVATE(XMFIED, J)
      DO I = 1, 4
C   INITIALIZE XMFIED; MFY MUST NOT WRITE TO X:
        CALL MFY(X, XMFIED)
        DO J = 1, 999 
          IF (XMFIED(J) .GE. Y(I,J)) THEN
            Y(I,J) = XMFIED(J) * Z(J)
          ELSE
            XMFIED(J+1) = XMFIED(J)
          ENDIF



222 Chapter 11 

Data privatization
Privatizing loop variables

        ENDDO
      ENDDO
      END

Here, the LOOP_PARALLEL directive is required to parallelize the I loop 
because of the call to MFY. The X and Y arrays are in shared memory by 
default. X and Z are not written to, and the portions of Y written to in the 
J loop’s IF statement are disjoint, so these shared arrays require no 
special attention. The local array XMFIED, however, is written to. But 
because XMFIED carries no values into or out of the I loop, it is privatized 
using LOOP_PRIVATE. This gives each thread running the I loop its own 
private copy of XMFIED, eliminating the expensive necessity of 
synchronized access to XMFIED. 

Note that an LCD exists for XMFIED in the J loop, but because this loop 
runs serially on each processor, the dependence is safe.

Denoting induction variables in parallel loops
To safely parallelize a loop with the loop_parallel directive or 
pragma, the compiler must be able to correctly determine the loop’s 
primary induction variable. 

The compiler can find primary Fortran DO loop induction variables. It 
may, however, have trouble with DO WHILE or customized Fortran loops, 
and with all loop_parallel loops in C. Therefore, when you use the 
loop_parallel directive or pragma to manually parallelize a loop 
other than an explicit Fortran DO loop, you should indicate the loop’s 
primary induction variable using the IVAR=indvar attribute to 
loop_parallel. 

Denoting induction variables in parallel loops

Consider the following Fortran example:

      I = 1
C$DIR LOOP_PARALLEL(IVAR = I)
10    A(I) = ...
      . 
      .          ! ASSUME NO DEPENDENCES
      . 
      I = I + 1
      IF(I .LE. N) GOTO 10

The above is a customized loop that uses I as its primary induction 
variable. To ensure parallelization, the LOOP_PARALLEL directive is 
placed immediately before the start of the loop, and the induction 
variable, I, is specified.



Chapter 11 223

Data privatization
Privatizing loop variables

Denoting induction variables in parallel loops

Primary induction variables in C loops are difficult for the compiler to 
find, so ivar is required in all loop_parallel C loops. Its use is shown 
in the following example:

#pragma _CNX loop_parallel(ivar=i)
  for(i=0; i<n; i++) {
    a[i] = ...;
    . 
    . /* assume no dependences */
    . 
  }
}

Secondary induction variables
Secondary induction variables are variables used to track loop iterations, 
even though they do not appear in the Fortran DO statement. They 
cannot appear in addition to the primary induction variable in the C for 
statement. 

Such variables must be a function of the primary loop induction variable, 
and they cannot be independent. Secondary induction variables must be 
assigned loop_private.

Secondary induction variables

The following Fortran example contains an incorrectly incremented 
secondary induction variable:

C WARNING: INCORRECT EXAMPLE!!!!
      J = 1
C$DIR LOOP_PARALLEL
      DO I = 1, N
        J = J + 2 ! WRONG!!!

In this example, J does not produce expected values in each iteration 
because multiple threads are overwriting its value with no 
synchronization. The compiler cannot privatize J because it is a loop-
carried dependence (LCD). This example is corrected by privatizing J 
and making it a function of I, as shown below.

C CORRECT EXAMPLE:
      J = 1
C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(J) ! J IS PRIVATE
      DO I = 1, N
        J = (2*I)+1 ! J IS PRIVATE

As shown in the preceding example, J is assigned correct values on each 
iteration because it is a function of I and is safely privatized.



224 Chapter 11 

Data privatization
Privatizing loop variables

Secondary induction variables

In C, secondary induction variables are sometimes included in for 
statements, as shown in the following example:

/* warning: unparallelizable code follows */
#pragma _CNX loop_parallel(ivar=i)
  for(i=j=0; i<n;i++,j+=2) {
    a[i] = ...;
    . 
    . 
    . 
  }
}

Because secondary induction variables must be private to the loop and 
must be a function of the primary induction variable, this example 
cannot be safely parallelized using loop_parallel(ivar=i). In the 
presence of this directive, the secondary induction variable is not 
recognized.

To manually parallelize this loop, you must remove j from the for 
statement, privatize it, and make it a function of i.

The following example demonstrates how to restructure the loop so that 
j is a valid secondary induction variable:

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(j)
  for(i=0; i<n; i++) {
    j = 2*i;
    a[i] = ...;
    . 
    . 
    . 
  }
}

This method runs faster than placing j in a critical section because it 
requires no synchronization overhead, and the private copy of j used 
here can typically be more quickly accessed than a shared variable.

save_last[(list)]
A save_last directive or pragma causes the thread that executes the 
last iteration of the loop to write back the private (or local) copy of the 
variable into the global reference.

The save_last directive and pragma allows you to save the final value 
of loop_private data objects assigned in the last iteration of the 
immediately following loop. 



Chapter 11 225

Data privatization
Privatizing loop variables

• If list (the optional, comma-separated list of loop_private data 
objects) is specified, only the final values of those data objects in list 
are saved. 

• If list is not specified, the final values of all loop_private data 
objects assigned in the last loop iteration are saved.

The values for this directive and pragma must be assigned in the last 
iteration. If the assignment is executed conditionally, it is your 
responsibility to ensure that the condition is met and the assignment 
executes. Inaccurate results may occur if the assignment does not 
execute on the last iteration. For loop_private arrays, only those 
elements of the array assigned on the last iteration are saved.

The form of this directive and pragma is shown in Table 48.

Table 48 Form of save_last directive and pragma

save_last must appear immediately before or after the associated 
loop_private directive or pragma, or on the same line.

save_last

The following is a C example of save_last:

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(atemp, x, y)
#pragma _CNX save_last(atemp, x)
for(i=0;i<n;i++) {
  if(i==d[i]) atemp = a[i];
  if(i==e[i]) atemp = b[i];
  if(i==f[i]) atemp = c[i];
  a[i] = b[i] + c[i];
  b[i] = atemp;
  x = atemp * a[i];
  y = atemp * c[i];
}
. 
. 
. 
if(atemp > amax) {
. 
. 
. 

Language Form

Fortran C$DIR SAVE_LAST[(list)]

C #pragma _CNX save_last[(list)]



226 Chapter 11 

Data privatization
Privatizing loop variables

In this example, the loop_private  variable atemp is conditionally 
assigned in the loop. In order for atemp to be truly private, you must be 
sure that at least one of the conditions is met so that atemp is assigned 
on every iteration. 

When the loop terminates, the save_last pragma ensures that atemp 
and X contain the values they are assigned on the last iteration. These 
values can then be used later in the program. The value of y, however, is 
not available once the loop finishes because y is not specified as an 
argument to save_last.

save_last

There are some loop contexts in which the save_last directive and 
pragma is misleading. 

The following Fortran code provides an example of this:

C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(S)
C$DIR SAVE_LAST
      DO I = 1, N
        IF(G(I) .GT. 0) THEN
          S = G(I) * G(I)
        ENDIF
      ENDDO

While it may appear that the last value of S assigned is saved in this 
example, you must remember that the SAVE_LAST directive applies only 
to the last (Nth) iteration, with no regard for any conditionals contained 
in the loop. For SAVE_LAST to be valid here, G(N) must be greater than 0 
so that the assignment to S takes place on the final iteration.

Obviously, if this condition is predicted, the loop is more efficiently 
written to exclude the IF test, so the presence of a SAVE_LAST in such a 
loop is suspect.



Chapter 11 227

Data privatization
Privatizing task variables

Privatizing task variables
Task privatization is manually specified using the task_private 
directive and pragma. task_private declares a list of variables and/or 
arrays private to the immediately following tasks. It serves the same 
purpose for parallel tasks that loop_private serves for loops and 
parallel_private serves for regions.

task_private

The task_private directive must immediately precede, or appear on 
the same line as, its corresponding begin_tasks directive. The compiler 
assumes that data objects declared to be task_private have no 
dependences between the tasks in which they are used. If dependences 
exist, you must handle them manually using the synchronization 
directives and techniques described in  “Parallel synchronization,” on 
page 243.

Each parallel thread of execution receives a private copy of the 
task_private data object for the duration of the tasks. No starting or 
ending values are assumed for the data. If a task_private data object 
is referenced within a task, it must have been previously assigned a 
value in that task.

The form of this directive and pragma is shown in Table 49.

Table 49 Form of task_private directive and pragma

where

namelist is a comma-separated list of variables and/or arrays 
that are to be private to the immediately following 
tasks. namelist cannot contain dynamic, allocatable, or 
automatic arrays.

task_private

Language Form

Fortran C$DIR TASK_PRIVATE(namelist)

C #pragma _CNX task_private(namelist)



228 Chapter 11 

Data privatization
Privatizing task variables

The following Fortran code provides an example of task privatization:

      REAL*8 A(1000), B(1000), WRK(1000)
      . 
      . 
      . 
C$DIR BEGIN_TASKS, TASK_PRIVATE(WRK)
      DO I = 1, N
        WRK(I) = A(I)
      ENDDO
      DO I = 1, N
        A(I) = WRK(N+1-I)
        . 
        . 
        . 
      ENDDO
C$DIR NEXT_TASK
      DO J = 1, M
        WRK(J) = B(J)
      ENDDO
      DO J = 1, M
        B(J) = WRK(M+1-J)
        . 
        . 
        . 
      ENDDO
C$DIR END_TASKS

In this example, the WRK array is used in the first task to temporarily 
hold the A array so that its order is reversed. It serves the same purpose 
for the B array in the second task. WRK is assigned before it is used in 
each task. 



Chapter 11 229

Data privatization
Privatizing region variables

Privatizing region variables
Regional privatization is manually specified using the 
parallel_private directive or pragma. parallel_private is 
provided to declare a list of variables and/or arrays private to the 
immediately following parallel region. It serves the same purpose for 
parallel regions as task_private does for tasks, and loop_private 
does for loops.

parallel_private

The parallel_private directive must immediately precede, or appear 
on the same line as, its corresponding parallel directive. Using 
parallel_private asserts that there are no dependences in the 
parallel region. 

Do not use parallel_private if there are dependences.

Each parallel thread of execution receives a private copy of the 
parallel_private data object for the duration of the region. No 
starting or ending values are assumed for the data. If a 
parallel_private data object is referenced within a region, it must 
have been previously assigned a value in the region.

The form of this directive and pragma is shown in Table 50.

Table 50 Form of parallel_private directive and pragma

where

namelist is a comma-separated list of variables and/or arrays 
that are to be private to the immediately following 
parallel region. namelist cannot contain dynamic, 
allocatable, or automatic arrays.

parallel_private

Language Form

Fortran C$DIR PARALLEL_PRIVATE(namelist)

C #pragma _CNX parallel_private(namelist)



230 Chapter 11 

Data privatization
Privatizing region variables

The following Fortran code shows how parallel_private privatizes 
regions:

      REAL A(1000,8), B(1000,8), C(1000,8), AWORK(1000), SUM(8)
      INTEGER MYTID
      . 
      . 
      . 
C$DIR PARALLEL(MAX_THREADS = 8) 
C$DIR PARALLEL_PRIVATE(I,J,K,L,M,AWORK,MYTID)
      IF(NUM_THREADS() .LT. 8) STOP "NOT ENOUGH THREADS; EXITING"
      MYTID = MY_THREAD() + 1 !ADD 1 FOR PROPER SUBSCRIPTING
      DO I = 1, 1000
        AWORK(I) = A(I, MYTID)
      ENDDO
      DO J = 1, 1000
        A(J, MYTID) = AWORK(J) + B(J, MYTID)
      ENDDO
      DO K = 1, 1000
        B(K, MYTID) = B(K, MYTID) * AWORK(K)
        C(K, MYTID) = A(K, MYTID) * B(K, MYTID)
      ENDDO
      DO L = 1, 1000
        SUM(MYTID) = SUM(MYTID) + A(L,MYTID) + B(L,MYTID) + 
C(L,MYTID)
      ENDDO
      DO M = 1, 1000
        A(M, MYTID) = AWORK(M)
      ENDDO
C$DIR END_PARALLEL

This example is similar to the example on page 197 in the way it checks 
for a certain number of threads and divides up the work among those 
threads. The example additionally introduces the parallel_private 
variable AWORK.

Each thread initializes its private copy of AWORK to the values contained 
in a dimension of the array A at the beginning of the parallel region. This 
allows the threads to reference AWORK without regard to thread ID. This 
is because no thread can access any other thread’s copy of AWORK. 
Because AWORK cannot carry values into or out of the region, it must be 
initialized within the region. 

Induction variables in region privatization
All induction variables contained in a parallel region must be privatized. 
Code contained in the region runs on all available threads. Failing to 
privatize an induction variable would allow each thread to update the 
same shared variable, creating indeterminate loop counts on every 
thread. 



Chapter 11 231

Data privatization
Privatizing region variables

In the previous example, in the J loop, after AWORK is initialized, AWORK 
is effectively used in a reduction on A; at this point its contents are 
identical to the MYTID dimension of A. After A is modified and used in the 
K and L loops, each thread restores a dimension of A’s original values 
from its private copy of AWORK. This carries the appropriate dimension 
through the region unaltered.



232 Chapter 11 

Data privatization
Privatizing region variables



Chapter 12 233

12 Memory classes

The V-Class server implements only one partition of hypernode-local 
memory. This is accessed using the thread_private and 
node_private virtual memory classes. This chapter includes discussion 
of the following topics:

• Private versus shared memory

• Memory class assignments

The information in this chapter is provided for programmers who want 
to manually optimize their shared-memory programs on a single-node 
server. This is ultimately achieved by using compiler directives or 
pragmas to partition memory and otherwise control compiler 
optimizations. It can also be achieved using storage class specifiers in C 
and C++. 



234 Chapter 12 

Memory classes
Porting multinode applications to single-node servers

Porting multinode applications to 
single-node servers
Programs developed to run on multinode servers, such as the legacy 
X-Class server, can be run on K-Class or V-Class servers. The program 
runs as it would on one node of a multinode machine.

When a multinode application is executed on a single-node server:

• All PARALLEL, LOOP_PARALLEL, PREFER_PARALLEL, and 
BEGIN_TASKS directives containing node attributes are ignored. 

• All variables, arrays and pointers that are declared to be 
NEAR_SHARED, FAR_SHARED, or BLOCK_SHARED are assigned to the 
NODE_PRIVATE class. 

• The THREAD_PRIVATE and NODE_PRIVATE classes remain 
unchanged and function as usual.

See the Exemplar Programming Guide for HP-UX Systems for a 
complete description of how to program multinode applications using HP 
parallel directives.



Chapter 12 235

Memory classes
Private versus shared memory

Private versus shared memory
Private and shared data are differentiated by their accessibility and by 
the physical memory classes in which they are stored.

thread_private data is stored in node-local memory. Access to 
thread_private is restricted to the declaring thread. 

When porting multinode applications to the HP single-node machine, all 
legacy shared memory classes (such as near_shared, far_shared, 
and block_shared) are automatically mapped to the node_private 
memory class. This is the default memory class on the K-Class and V-
Class servers.

thread_private

thread_private data is private to each thread of a process. Each 
thread_private data object has its own unique virtual address within 
a hypernode. This virtual address maps to unique physical addresses in 
hypernode-local physical memory. 

Any sharing of thread_private data items between threads 
(regardless of whether they are running on the same node) must be done 
by synchronized copying of the item into a shared variable, or by 
message passing.

NOTE thread_private data cannot be initialized in C, C++, or in Fortran DATA 
statements.

node_private

node_private data is shared among the threads of a process running 
on a given node. It is the default memory class on the V-Class single-node 
server, and does not need to be explicitly specified. node_private data 
items have one virtual address, and any thread on a node can access that 
node’s node_private data using the same virtual address. This virtual 
address maps to a unique physical address in node-local memory. 



236 Chapter 12 

Memory classes
Memory class assignments

Memory class assignments
In Fortran, compiler directives are used to assign memory classes to data 
items. In C and C++, memory classes are assigned through the use of 
syntax extensions, which are defined in the header file 
/usr/include/spp_prog_model.h. This file must be included in any 
C or C++ program that uses memory classes. In C++, you can also use 
operator new to assign memory classes.

• The Fortran memory class declarations must appear with other 
specification statements; they cannot appear within executable 
statements.

• In C and C++, parallel storage class extensions are used, so memory 
classes are assigned in variable declarations.

On a single-node system, HP compilers provide mechanisms for 
statically assigning memory classes. This chapter discusses these 
memory class assignments.

The form of the directives and pragmas associated with is shown in
Table 51.

Table 51 Form of memory class directives and variable declarations

where (for Fortran)

memory_class_name
can be THREAD_PRIVATE, or NODE_PRIVATE

Language Form

Fortran C$DIR memory_class_name(namelist)

C/C++ #include <spp_prog_model.h>
.
.
.
[storage_class_specifier] memory_class_name type_specifier namelist



Chapter 12 237

Memory classes
Memory class assignments

namelist
is a comma-separated list of variables, arrays, and/or 
COMMON block names to be assigned the class 
memory_class_name. COMMON block names must be 
enclosed in slashes (/), and only entire COMMON blocks 
can be assigned a class. This means arrays and 
variables in namelist must not also appear in a COMMON 
block and must not be equivalenced to data objects in 
COMMON blocks.

where (for C)

storage_class_specifier
specifies a nonautomatic storage class

memory_class_name
is the desired memory class (thread_private, 
node_private)

type_specifier
is a C or C++ data type (int, float, etc.)

namelist
is a comma-separated list of variables and/or arrays of 
type type_specifier

C and C++ data objects
In C and C++, data objects that are assigned a memory class must have 
static storage duration. This means that if the object is declared within a 
function, it must have the storage class extern or static. If such an 
object is not given one of these storage classes, its storage class defaults 
to automatic and it is allocated on the stack. Stack-based objects cannot 
be assigned a memory class; attempting to do so results in a compile-
time error.

Data objects declared at file scope and assigned a memory class need not 
specify a storage class.

All C and C++ code examples presented in this chapter assume that the 
following line appears above the code presented:

 #include <spp_prog_model.h>

This header file maps user symbols to the implementation reserved 
space.



238 Chapter 12 

Memory classes
Memory class assignments

If operator new is used, it is also assumed that the line below appears 
above the code:

 #include <new.h>

If you assign a memory class to a C or C++ structure, all structure 
members must be of the same class.

Once a data item is assigned a memory class, the class cannot be 
changed.

Static assignments
Static memory class assignments are physically located with variable 
type declarations in the source. Static memory classes are typically used 
with data objects that are accessed with equal frequency by all threads. 
These include objects of the thread_private and node_private 
classes. Static assignments for all classes are explained in the 
subsections that follow.

thread_private

Because thread_private variables are replicated for every thread, 
static declarations make the most sense for them. 

 Example thread_private

In Fortran, the thread_private memory class is assigned using the 
THREAD_PRIVATE compiler directive, as shown in the following example:

      REAL*8 TPX(1000)
      REAL*8 TPY(1000)
      REAL*8 TPZ(1000), X, Y
      COMMON /BLK1/ TPZ, X, Y
C$DIR THREAD_PRIVATE(TPX, TPY, /BLK1/)

Each array declared here is 8000 bytes in size, and each scalar variable 
is 8 bytes, for a total of 24,016 bytes of data. The entire COMMON block 
BLK1 is placed in thread_private memory along with TPX and TPY. All 
memory space is replicated for each thread in hypernode-local physical 
memory.



Chapter 12 239

Memory classes
Memory class assignments

 Example thread_private

The following C/C++ example demonstrates several ways to declare 
thread_private storage. The data objects declared here are not scoped 
analogously to those declared in the Fortran example:

/* tpa is global: */
thread_private double tpa[1000];
func() {
  /* tpb is local to func: */
  static thread_private double tpb[1000];
  /* tpc, a and b are declared elsewhere: */
  extern thread_private double tpc[1000],a,b;
  . 
  . 
  . 

The C/C++ double data type provides the same precision as Fortran’s 
REAL*8. The thread_private data declared here occupies the same 
amount of memory as that declared in the Fortran example. tpa is 
available to all functions lexically following it in the file. tpb is local to 
func and inaccessible to other functions. tpc, a, and b are declared at 
filescope in another file that is linked with this one.

 Example thread_private COMMON blocks in parallel subroutines

Data local to a procedure that is called in parallel is effectively private 
because storage for it is allocated on the thread’s private stack. However, 
if the data is in a Fortran COMMON block (or if it appears in a DATA or 
SAVE statement), it is not stored on the stack. Parallel accesses to such 
nonprivate data must be synchronized if it is assigned a shared class. 
Additionally, if the parallel copies of the procedure do not need to share 
the data, it can be assigned a private class.



240 Chapter 12 

Memory classes
Memory class assignments

Consider the following Fortran example:

      INTEGER A(1000,1000)
      . 
      . 
      . 
C$DIR LOOP_PARALLEL(THREADS)
      DO I = 1, N
        CALL PARCOM(A(1,I))
        . 
        . 
        . 
      ENDDO
      SUBROUTINE PARCOM(A)
      INTEGER A(*)
      INTEGER C(1000), D(1000)
      COMMON /BLK1/ C, D
C$DIR THREAD_PRIVATE(/BLK1/)
      INTEGER TEMP1, TEMP2
      D(1:1000) = ...
      . 
      . 
      . 
      CALL PARCOM2(A, JTA)
      .
      .
      .
      END

      SUBROUTINE PARCOM2(B,JTA)
      INTEGER B(*), JTA
      INTEGER C(1000), D(1000)
      COMMON /BLK1/ C, D
C$DIR THREAD_PRIVATE(/BLK1/)
      DO J = 1, 1000
        C(J) = D(J) * B(J)
      ENDDO
      END
      .
      .
      .

In this example, COMMON block BLK1 is declared THREAD_PRIVATE, so 
every parallel instance of PARCOM gets its own copy of the arrays C and D. 

Because this code is already thread-parallel when the COMMON block is 
defined, no further parallelism is possible, and BLK1 is therefore suitable 
for use anywhere in PARCOM. The local variables TEMP1 and TEMP2 are 
allocated on the stack, so each thread effectively has private copies of 
them.



Chapter 12 241

Memory classes
Memory class assignments

node_private

Because the space for node_private variables is physically replicated, 
static declarations make the most sense for them. 

In Fortran, the node_private memory class is assigned using the 
NODE_PRIVATE compiler directive, as shown in the following example:

      REAL*8 XNP(1000)
      REAL*8 YNP(1000)
      REAL*8 ZNP(1000), X, Y
      COMMON /BLK1/ ZNP, X, Y
C$DIR NODE_PRIVATE(XNP, YNP, /BLK1/)

Again, the data requires 24,016 bytes. The contents of BLK1 are placed in 
node_private memory along with XNP and YNP. Space for each data 
item is replicated once per hypernode in hypernode-local physical 
memory. The same virtual address is used by each thread to access its 
hypernode’s copy of a data item. 

node_private variables and arrays can be initialized in Fortran DATA 
statements.

 Example node_private

The following example shows several ways to declare node_private 
data objects in C and C++:

/* npa is global: */
node_private double npa[1000];
func() {
  /* npb is local to func: */
  static node_private double npb[1000];
  /* npc, a and b are declared elsewhere: */
  extern node_private double npc[1000],a,b;
  . 
  . 
  . 

The node_private data declared here occupies the same amount of 
memory as that declared in the Fortran example. Scoping rules for this 
data are similar to those given for the thread_private C/C++ example.



242 Chapter 12 

Memory classes
Memory class assignments



Chapter 13 243

13 Parallel synchronization

Most of the manual parallelization techniques discussed in  “Parallel 
programming techniques,” on page 175, allow you to take advantage of 
the compilers’ automatic dependence checking and data privatization. 
The examples that used the LOOP_PRIVATE and TASK_PRIVATE 
directives and pragmas in  “Data privatization,” on page 217, are 
exceptions to this. In these cases, manual privatization is required, but is 
performed on a loop-by-loop basis. Only the simplest data dependences 
are handled.

This chapter discusses manual parallelizations and that handle multiple 
and ordered data dependences. This includes a discussion of the 
following topics:

• Thread-parallelism

• Synchronization tools

• Synchronizing code



244 Chapter 13 

Parallel synchronization
Thread-parallelism

Thread-parallelism
Only one level of parallelism is supported: thread-parallelism. If you 
attempt to spawn thread-parallelism from within a thread-parallel, your 
directives on the inner thread-parallel construct are ignored. 

Thread ID assignments
Programs are initiated as a collection of threads, one per available 
processor. All but thread 0 are idle until parallelism is encountered. 

When a process begins, the threads created to run it have unique kernel 
thread IDs. Thread 0, which runs all the serial code in the program, has 
kernel thread ID 0. The rest of the threads have unique but unspecified 
kernel thread IDs at this point. The num_threads() intrinsic returns 
the number of threads created, regardless of how many are active when 
it is called.

When thread 0 encounters parallelism, it spawns some or all of the 
threads created at program start. This means it causes these threads to 
go from idle to active, at which point they begin working on their share of 
the parallel code. All available threads are spawned by default, but this 
is changed using various compiler directives.

If the parallel structure is thread-parallel, then num_threads() threads 
are spawned, subject to user-specified limits. At this point, kernel thread 
0 becomes spawn thread 0, and the spawned threads are assigned spawn 
thread IDs ranging from 0..num_threads()-1. This range begins at 
what used to be kernel thread 0. 

If you manually limit the number of spawned threads, these IDs range 
from 0 to one less than your limit.



Chapter 13 245

Parallel synchronization
Synchronization tools

Synchronization tools
The compiler cannot automatically parallelize loops containing complex 
dependences. However, a rich set of directives, pragmas, and data types 
is available to help you manually parallelize such loops by synchronizing 
and ordering access to the code containing the dependence. 

These directives can also be used to synchronize dependences in parallel 
tasks. They allow you to efficiently exploit parallelism in structures that 
would otherwise be unparallelizable.

Using gates and barriers
Gates allow you to restrict execution of a block of code to a single thread. 
They are allocated, locked, unlocked, and deallocated using the functions 
described in “Synchronization functions” on page 246. They can also be 
used with the ordered or critical section directives, which automate the 
locking and unlocking functions. 

Barriers block further execution until all executing threads reach the 
barrier and then thread 0 can proceed past the barrier.

Gates and barriers use dynamically allocatable variables, declared using 
compiler directives in Fortran and using data declarations in C and C++. 
They may be initialized and referenced only by passing them as 
arguments to the functions discussed in the following sections. 

The forms of these variable declarations are shown in Table 52.

Table 52 Forms of gate and barriers variable declarations

where 

Language Form

Fortran C$DIR GATE(namelist)

C$DIR BARRIER(namelist)

C/C++ gate_t namelist;

barrier_t namelist;



246 Chapter 13 

Parallel synchronization
Synchronization tools

namelist is a comma-separated list of one or more gate or barrier 
names, as appropriate. 

In C and C++
In C and C++, gates and barriers should appear only in definition and 
declaration statements, and as formal, and actual arguments. They 
declare default-size variables.

In Fortran
The Fortran gate and barrier variable declarations can only appear:

• In COMMON statements (statement must precede GATE directive/
BARRIER directive)

• In DIMENSION statements (statement must precede GATE directive/
BARRIER directive)

• In preceding type statements

• As dummy arguments

• As actual arguments

Gate and barrier types override other same-named types declared prior 
to the gate/barrier pragmas. Once a variable is defined as a gate or 
barrier, it cannot be redeclared as another type. Gates and barriers 
cannot be equivalenced. 

If you place gates or barriers in COMMON, the COMMON block declaration 
must precede the GATE directive/BARRIER directive. The COMMON block 
should contain only gates or only barriers. Arrays of gates or barriers 
must be dimensioned using DIMENSION statements. The DIMENSION 
statement must precede the GATE directive/BARRIER directive.

Synchronization functions
The Fortran, C, and C++ allocation, deallocation, lock and unlock 
functions for use with gates and barriers are described in this section. 
The 4- and 8-byte versions are provided. The 8-byte Fortran functions 
are primarily for use with compiler options that change the default data 
size to 8 bytes (for example, -I8 ). You must be consistent in your choice 
of versions—memory allocated using an 8-byte function must be 
deallocated using an 8-byte function. 



Chapter 13 247

Parallel synchronization
Synchronization tools

Examples of using these functions are presented and explained 
throughout this section.

Allocation functions
Allocation functions allocate memory for a gate or barrier. When first 
allocated, gate variables are unlocked. The forms of these allocation 
functions are shown in Table 53.

Table 53 Forms of allocation functions

where (in Fortran)

gate and barrier are gate or barrier variables.

where (in C/C++)

gate_p and 
barrier_p are pointers of the indicated type.

Deallocation functions
The deallocation functions free the memory assigned to the specified gate 
or barrier variable. The forms of these deallocation functions are shown 
in Table 54.

Language Form

Fortran INTEGER FUNCTION ALLOC_GATE(gate)

INTEGER FUNCTION ALLOC_BARRIER(barrier)

C/C++ int alloc_gate(gate_t *gate_p);

int alloc_barrier(barrier_t *barrier_p);



248 Chapter 13 

Parallel synchronization
Synchronization tools

Table 54 Forms of deallocation functions

where (in Fortran)

gate and barrier are gate or barrier variables previously declared in the 
gate and barrier allocation functions.

where (in C/C++)

gate_p and 
barrier_p are pointers of the indicated type.

NOTE Always free gates and barriers after using them.

Locking functions
The locking functions acquire a gate for exclusive access. If the gate 
cannot be immediately acquired, the calling thread waits for it. The 
conditional locking functions, which are prefixed with COND_ or cond_, 
acquire a gate only if a wait is not required. If the gate is acquired, the 
functions return 0; if not, they return -1.

The forms of these locking functions are shown in Table 55.

Table 55 Forms of locking functions

Language Form

Fortran INTEGER FUNCTION FREE_GATE(gate)

INTEGER FUNCTION FREE_BARRIER(barrier)

C/C++ int free_gate(gate_t *gate_p);

int free_barrier(barrier_t *barrier_p);

Language Form

Fortran INTEGER FUNCTION LOCK_GATE(gate)

INTEGER FUNCTION COND_LOCK_GATE(gate)

C/C++ int lock_gate(gate_t *gate_p);

int cond_lock_gate(gate_t *gate_p);



Chapter 13 249

Parallel synchronization
Synchronization tools

where (in Fortran)

gate is a gate variable.

where (in C/C++)

gate_p is a pointer of the indicated type.

Unlocking functions
The unlocking functions release a gate from exclusive access. Gates are 
typically released by the thread that locks them, unless a gate was 
locked by thread 0 in serial code. In that case it might be unlocked by a 
single different thread in a parallel construct.

The form of these unlocking functions is shown in Table 56.

Table 56 Form of unlocking functions

where (in Fortran)

gate is a gate variable.

where (in C/C++)

gate_p is a pointer of the indicated type.

Wait functions
The wait functions use a barrier to cause the calling thread to wait until 
the specified number of threads call the function. At this point all 
threads are released from the function simultaneously.

The form of the wait functions is shown in Table 57.

Language Form

Fortran INTEGER FUNCTION UNLOCK_GATE(gate)

C/C++ int unlock_gate(gate_t *gate_p);



250 Chapter 13 

Parallel synchronization
Synchronization tools

Table 57 Form of wait functions

where (in Fortran)

barrier is a barrier variable of the indicated type and nthr is 
the number of threads calling the routine.

where (in C/C++)

barrier_p is a pointer of the indicated type and nthr is a pointer 
referencing the number of threads calling the routine.

You can use a barrier variable in multiple calls to the 
wait function, if you ensure that two such barriers are 
not simultaneously active. You must also verify that 
nthr reflects the correct number of threads.

sync_routine

Among the most basic optimizations performed by the HP compilers is 
code motion, which is described in  “Standard optimization features,” on 
page 35. This optimization moves code across routine calls. If the routine 
call is to a synchronization function that the compiler cannot identify as 
such, and the code moved must execute on a certain side of it, this 
movement may result in wrong answers. 

The compiler is aware of all synchronization functions and does not move 
code across them when they appear directly in code. However, if the 
synchronization function is hidden in a user-defined routine, the 
compiler has no way of knowing about it and may move code across it. 

Any time you call synchronization functions indirectly using your own 
routines, you must identify your routines with a sync_routine 
directive or pragma. 

The form of sync_routine is shown in Table 58.

Language Form

Fortran INTEGER FUNCTION WAIT_BARRIER(barrier,nthr)

C/C++ int wait_barrier(barrier_t *barrier_p,const int *nthr);



Chapter 13 251

Parallel synchronization
Synchronization tools

Table 58 Form of sync_routine directive and pragma

where 

routinelist  is a comma-separated list of synchronization routines. 

sync_routine

sync_routine is effective only for the listed routines that lexically 
follow it in the same file where it appears. The following Fortran code 
example features the sync_routine directive:

      INTEGER MY_LOCK, MY_UNLOCK
C$DIR GATE(LOCK)
C$DIR SYNC_ROUTINE(MY_LOCK, MY_UNLOCK)
      . 
      . 
      . 
      LCK = ALLOC_GATE(LOCK)
C$DIR LOOP_PARALLEL
      DO I = 1, N
        LCK = MY_LOCK(LOCK) 
        . 
        . 
        . 
        SUM = SUM + A(I)
        LCK = MY_UNLOCK(LOCK)
      ENDDO
      .
      .
      .
      INTEGER FUNCTION MY_LOCK(LOCK)
C$DIR GATE(LOCK)
      LCK = LOCK_GATE(LOCK)
      MY_LOCK = LCK
      RETURN
      END

      INTEGER FUNCTION MY_UNLOCK(LOCK)
C$DIR GATE(LOCK)
      LCK = UNLOCK_GATE(LOCK)
      MY_UNLOCK = LCK
      RETURN
      END

Language Form

Fortran C$DIR SYNC_ROUTINE (routinelist)

C #pragma CNX sync_routine (routinelist)



252 Chapter 13 

Parallel synchronization
Synchronization tools

In this example, MY_LOCK and MY_UNLOCK are user functions that call 
the LOCK_GATE and UNLOCK_GATE intrinsics. The SYNC_ROUTINE 
directive prevents the compiler from moving code across the calls to 
MY_LOCK and MY_UNLOCK.

Programming techniques such as this are used to implement portable 
code across several parallel architectures that support critical sections. 
This would be done using different syntax. For example, MY_LOCK and 
MY_UNLOCK could simply be modified to call the correct locking and 
unlocking functions.

sync_routine

The following C example achieves the same task as shown in the 
previous Fortran example:

#include <spp_prog_model.h>
main() {
  int i, n, lck, sum, a[1000];
  gate_t lock;
#pragma _CNX sync_routine(mylock, myunlock)
  .
  .
  .
  lck = alloc_gate(&lock);
#pragma _CNX loop_parallel(ivar=i)
  for(i=0; i<n; i++) {
    lck = mylock(&lock);
    . 
    . 
    . 
    sum = sum+a[i];
    lck = myunlock(&lock);
  }
}

int mylock(gate_t *lock) {
  int lck;
  lck = lock_gate(lock);  return lck;
}
int myunlock(gate_t *lock) {
  int lck;
  lck = unlock_gate(lock);
  return lck;
}



Chapter 13 253

Parallel synchronization
Synchronization tools

loop_parallel(ordered)

The loop_parallel(ordered)directive and pragma is designed to be 
used with ordered sections to execute loops with ordered dependences in 
loop order. It accomplishes this by parallelizing the loop so that 
consecutive iterations are initiated on separate processors, in loop order. 

While loop_parallel(ordered) guarantees starting order, it does not 
guarantee ending order, and it provides no automatic synchronization. 
To avoid wrong answers, you must manually synchronize dependences 
using the ordered section directives, pragmas, or the synchronization 
intrinsics (see “Critical sections” on page 254 of this chapter for more 
information).

loop_parallel, ordered

The following Fortran code shows how loop_parallel(ordered) is 
structured:

C$DIR LOOP_PARALLEL(ORDERED)
      DO I = 1, 100
        . 
        . !CODE CONTAINING ORDERED SECTION
        . 
      ENDDO

Assume that the body of this loop contains code that is parallelizable 
except for an ordered data dependence (otherwise there is no need to 
order the parallelization). Also assume that 8 threads, numbered 0..7, 
are available to run the loop in parallel. Each thread would then execute 
code equivalent to the following:

DO I = (my_thread()+1), 100, num_threads()
  ...
ENDDO

Figure 17 illustrates this assumption.



254 Chapter 13 

Parallel synchronization
Synchronization tools

 Figure 17 Ordered parallelization

Here, thread 0 executes first, followed by thread 1, and so on. Each 
thread starts its iteration after the preceding iteration has started. A 
manually defined ordered section prevents one thread from executing the 
code in the ordered section until the previous thread exits the section. 
This means that thread 0 cannot enter the section for iteration 9 until 
thread 7 exits it for iteration 8. 

This is efficient only if the loop body contains enough code to keep a 
thread busy until all other threads start their consecutive iterations, 
thus taking advantage of parallelism.

You may find the max_threads attribute helpful when fine-tuning 
loop_parallel(ordered) loops to fully exploit their parallel code. 

Examples of synchronizing loop_parallel(ordered) loops are shown 
in “Synchronizing code” on page 257.

Critical sections
Critical sections allow you to synchronize simple, nonordered 
dependences. You must use the critical_section directive or pragma 
to enter a critical section, and the end_critical_section directive or 
pragma to exit one. 

Critical sections must not contain branches to outside the section. The 
two directives must appear in the same procedure, but they do not have 
to be in the same procedure as the parallel construct in which they are 
used. This means that the directives can exist in a procedure that is 
called in parallel.

The forms of these directives and pragmas are shown in Table 59.

DO I = 1,100,8
  ...
ENDDO

DO I = 3,100,8
  ...
ENDDO

DO I = 2,100,8
  ...
ENDDO

DO I = 4,100,8
  ...
ENDDO

DO I = 5,100,8
  ...
ENDDO

DO I = 6,100,8
  ...
ENDDO

DO I = 7,100,8
  ...
ENDDO

DO I = 8,100,8
  ...
ENDDO

THREAD 0 THREAD 1 THREAD 2 THREAD 3

THREAD 4 THREAD 5 THREAD 6 THREAD 7



Chapter 13 255

Parallel synchronization
Synchronization tools

Table 59 Forms of critical_section, end_critical_section directives 
and pragmas

where

gate is an optional gate variable used for access to the 
critical section. gate must be appropriately declared as 
described in the “Using gates and barriers” on 
page 245. 

The gate variable is required when synchronizing access to a shared 
variable from multiple parallel tasks. 

• When a gate variable is specified, it must be allocated (using the 
alloc_gate intrinsic) outside of parallel code prior to use

• If no gate is specified, the compiler creates a unique gate for the 
critical section

• When a gate is no longer needed, it should be deallocated using the 
free_gate function.

NOTE Critical sections add synchronization overhead to your program. They 
should only be used when the amount of parallel code is significantly larger 
than the amount of code containing the dependence.

Ordered sections
Ordered sections allow you to synchronize dependences that must 
execute in iteration order. The ordered_section and 
end_ordered_section directives and pragmas are used to specify 
critical sections within manually defined, ordered loop_parallel loops 
only. 

The forms of these directives and pragmas are shown in Table 60.

Language Form

Fortran C$DIR CRITICAL_SECTION[(gate)]
...

C$DIR END_CRITICAL_SECTION

C #pragma _CNX critical_section[(gate)]
...

#pragma _CNX end_critical_section



256 Chapter 13 

Parallel synchronization
Synchronization tools

Table 60 Forms of ordered_section, end_ordered_section directives and 
pragmas

where 

gate is a required gate variable that must be allocated and, 
if necessary, unlocked prior to invocation of the parallel 
loop containing the ordered section. gate must be 
appropriately declared as described in the “Using gates 
and barriers” section of this chapter. 

Ordered sections must be entered through ordered_section and 
exited through end_ordered_section. They cannot contain branches 
to outside the section. Ordered sections are subject to the same control 
flow rules as critical sections.

NOTE As with critical sections, ordered sections should be used with care, as they 
add synchronization overhead to your program. They should only be used 
when the amount of parallel code is significantly larger than the amount of 
code containing the dependence.

Language Form

Fortran C$DIR ORDERED_SECTION(gate)
...

C$DIR END_ORDERED_SECTION

C #pragma _CNX ordered_section(gate)
...

#pragma _CNX end_ordered_section



Chapter 13 257

Parallel synchronization
Synchronizing code

Synchronizing code
Code containing dependences are parallelized by synchronizing the way 
the parallel tasks access the dependence. This is done manually using 
the gates, barriers and synchronization functions discussed earlier in 
this chapter, or semiautomatically using critical and ordered sections, 
described in the following sections.

Using critical sections
The critical_section example on page 190 isolates a single critical 
section in a loop, so that the critical_section directive does not 
require a gate. In this case, the critical section directives automate 
allocation, locking, unlocking and deallocation of the needed gate. 
Multiple dependences and dependences in manually-defined parallel 
tasks are handled when user-defined gates are used with the directives.

critical sections

The following Fortran example, however, uses the manual methods of 
code synchronization:

      REAL GLOBAL_SUM
C$DIR FAR_SHARED(GLOBAL_SUM)
C$DIR GATE(SUM_GATE)
      . 
      . 
      . 
      LOCK = ALLOC_GATE(SUM_GATE)
C$DIR BEGIN_TASKS
      CONTRIB1 = 0.0
      DO J = 1, M
        CONTRIB1 = CONTRIB1 + FUNC1(J)
      ENDDO
      . 
      . 
      . 
C$DIR CRITICAL_SECTION (SUM_GATE)
      GLOBAL_SUM = GLOBAL_SUM + CONTRIB1
C$DIR END_CRITICAL_SECTION
      . 
      . 
      .

C$DIR NEXT_TASK



258 Chapter 13 

Parallel synchronization
Synchronizing code

      CONTRIB2 = 0.0
      DO I = 1, N
        CONTRIB2 = CONTRIB2 + FUNC2(J)
      ENDDO
      . 
      . 
      . 
C$DIR CRITICAL_SECTION (SUM_GATE)
      GLOBAL_SUM = GLOBAL_SUM + CONTRIB2
C$DIR END_CRITICAL_SECTION
      . 
      . 
      . 
C$DIR END_TASKS
      LOCK = FREE_GATE(SUM_GATE)

Here, both parallel tasks must access the shared GLOBAL_SUM variable. 
To ensure that GLOBAL_SUM is updated by only one task at a time, it is 
placed in a critical section. The critical sections both reference the 
SUM_GATE variable. This variable is unlocked on entry into the parallel 
code (gates are always unlocked when they are allocated). 

When one task reaches the critical section, the CRITICAL_SECTION 
directive automatically locks SUM_GATE. The END_CRITICAL_SECTION 
directive unlocks SUM_GATE on exit from the section. Because access to 
both critical sections is controlled by a single gate, the sections must 
execute one at a time.

Gated critical sections

Gated critical sections are also useful in loops containing multiple 
critical sections when there are dependences between the critical 
sections. If no dependences exist between the sections, gates are not 
needed. The compiler automatically supplies a unique gate for every 
critical section lacking a gate.

The C example below uses gates so that threads do not update at the 
same time, within a critical section:

static far_shared float absum;
static gate_t gate1;
int adjb[...];
. 
. 
. 
lock = alloc_gate(&gate1);
#pragma _CNX loop_parallel(ivar=i)
for(i=0;i<n;i++) {
  a[i] = b[i] + c[i];
#pragma _CNX critical_section(gate1)
  absum = absum + a[i];
#pragma _CNX end_critical_section



Chapter 13 259

Parallel synchronization
Synchronizing code

  if(adjb[i]) {
    b[i] = c[i] + d[i];
#pragma _CNX critical_section(gate1)
    absum = absum + b[i];
#pragma _CNX end_critical_section
  }
  . 
  . 
  . 
}
lock = free_gate(&gate1);

The shared variable absum must be updated after a(I) is assigned and 
again if b(i) is assigned. Access to absum must be guarded by the same 
gate to ensure that two threads do not attempt to update it at once. The 
critical sections protecting the assignment to ABSUM must explicitly 
name this gate, or the compiler chooses unique gates for each section, 
potentially resulting in incorrect answers.There must be a substantial 
amount of parallelizable code outside of these critical sections to make 
parallelizing this loop cost-effective.

Using ordered sections
Like critical sections, ordered sections lock and unlock a specified gate to 
isolate a section of code in a loop. However, they also ensure that the 
enclosed section of code executes in the same order as the iterations of 
the ordered parallel loop that contains it. 

Once a given thread passes through an ordered section, it cannot enter 
again until all other threads have passed through in order. This ordering 
is difficult to implement without using the ordered section directives or 
pragmas.

You must use a loop_parallel(ordered) directive or pragma to 
parallelize any loop containing an ordered section. See 
“loop_parallel(ordered)” on page 253 for a description of this.

Ordered sections

The following Fortran example contains a backward loop-carried 
dependence on the array A that would normally inhibit parallelization.

DO I = 2, N
  . ! PARALLELIZABLE CODE...
  . 
  . 
  A(I) = A(I-1) + B(I)
  . ! MORE PARALLELIZABLE CODE...



260 Chapter 13 

Parallel synchronization
Synchronizing code

  .
  .
ENDDO

Assuming that the dependence shown is the only one in the loop, and 
that a significant amount of parallel code exists elsewhere in the loop, 
the dependence is isolated. The loop is parallelized as shown below:

C$DIR GATE(LCD)
      LOCK = ALLOC_GATE(LCD)
      . 
      . 
      . 
      LOCK = UNLOCK_GATE(LCD)
C$DIR LOOP_PARALLEL(ORDERED)
      DO I = 2, N
        . ! PARALLELIZABLE CODE...
        . 
        . 
C$DIR   ORDERED_SECTION(LCD)
        A(I) = A(I-1) + B(I)

C$DIR   END_ORDERED_SECTION
        . ! MORE PARALLELIZABLE CODE...
        . 
        . 
      ENDDO
      LOCK = FREE_GATE(LCD)

The ordered section containing the A(I) assignment executes in 
iteration order. This ensures that the value of A(I-1) used in the 
assignment is always valid. Assuming this loop runs on four threads, the 
synchronization of statement execution between threads is illustrated in 
Figure 18.



Chapter 13 261

Parallel synchronization
Synchronizing code

 Figure 18 LOOP_PARALLEL(ORDERED) synchronization

As shown by the dashed lines between initial iterations for each thread, 
one ordered section must be completed before the next is allowed to begin 
execution. Once a thread exits an ordered section, it cannot reenter until 
all other threads have passed through in sequence. 

Overlap of nonordered statements, represented as lightly shaded boxes, 
allows all threads to proceed fully loaded. Only brief idle periods occur on 
1, 2, and 3 at the beginning of the loop, and on 0, 1, and 2 at the end.

Ordered section limitations

Each thread in a parallel loop containing an ordered section must pass 
through the ordered section exactly once on every iteration of the loop. If 
you execute an ordered section conditionally, you must execute it in all 
possible branches of the condition. If the code contained in the section is 
not valid for some branches, you can insert a blank ordered section, as 
shown in the following Fortran example:

C$DIR GATE (LCD)
      . 
      . 
      . 
      LOCK = ALLOC_GATE(LCD)
C$DIR LOOP_PARALLEL(ORDERED)
      DO I = 1, N
        . 
        . 

T
H

R
E

A
D

S

0

1

2

3

I=1 I=5 I=9 I=13 I=17

I=2 I=6 I=10 I=14 I=18

I=3 I=7 I=11 I=15 I=19

I=4 I=8 I=12 I=16 I=20

Order of statement execution

Statements contained within ordered sections

Nonordered section statements



262 Chapter 13 

Parallel synchronization
Synchronizing code

        . 
        IF (Z(I) .GT. 0.0) THEN
C$DIR     ORDERED_SECTION(LCD)
C         HERE’S THE BACKWARD LCD:
          A(I) = A(I-1) + B(I)
C$DIR     END_ORDERED_SECTION
        ELSE
C         HERE IS THE BLANK ORDERED SECTION:
C$DIR     ORDERED_SECTION(LCD)
C$DIR     END_ORDERED_SECTION
        ENDIF
        . 
        . 
        . 
      ENDDO
      LOCK = FREE_GATE(LCD)

No matter which path through the IF statement the loop takes, and 
though the ELSE section is empty, it must pass through the ordered 
section. This allows the compiler to properly synchronize the ordered 
loop. It is assumed that a substantial amount of parallel code exists 
outside the ordered sections, to offset the synchronization overhead.

Ordered section limitations

Ordered sections within nested loops can create similar, but more 
difficult to recognize, problems. Consider the following Fortran example 
(gate manipulation is omitted for brevity):

C$DIR LOOP_PARALLEL(ORDERED)
      DO I = 1, 99
        DO J = 1,M
          . 
          . 
          . 
C$DIR     ORDERED_SECTION(ORDGATE)
          A(I,J) = A(I+1,J)
C$DIR     END_ORDERED_SECTION
          . 
          . 
          . 
        ENDDO
      ENDDO

Recall that once a given thread has passed through an ordered section, it 
cannot reenter it until all other threads have passed through in order. 
This is only possible in the given example if the number of available 
threads integrally divides 99 (the I loop limit). If not, deadlock results.

To better understand this:

• Assume 6 threads, numbered 0 through 5, are running the parallel I 
loop. 



Chapter 13 263

Parallel synchronization
Synchronizing code

• For I = 1, J = 1, thread 0 passes through the ordered section and loops 
back through J, stopping when it reaches the ordered section again 
for I = 1, J = 2. It cannot enter until threads 1 through 5 (which are 
executing I = 2 through 6, J = 1 respectively) pass through in 
sequence. This is not a problem, and the loop proceeds through I = 96 
in this fashion in parallel.

• For I > 96, all 6 threads are no longer needed. In a single loop nest 
this would not pose a problem as the leftover 3 iterations would be 
handled by threads 0 through 2. When thread 2 exited the ordered 
section it would hit the ENDDO and the I loop would terminate 
normally. 

• But in this example, the J loop isolates the ordered section from the I 
loop, so thread 0 executes J = 1 for I = 97, loops through J and waits 
during J = 2 at the ordered section for thread 5, which has gone idle, 
to complete. Threads 1 and 2 similarly execute J = 1 for I = 98 and 
I = 99, and similarly wait after incrementing J to 2. The entire J loop 
must terminate before the I loop can terminate, but the J loop can 
never terminate because the idle threads 3, 4, and 5 never pass 
through the ordered section. As a result, deadlock occurs.

To handle this problem, you can expand the ordered section to include 
the entire j loop, as shown in the following C example:

#pragma _CNX loop_parallel(ordered,ivar=i)
for(i=0;i<99;i++) {
#pragma _CNX ordered_section(ordgate)
  for(j=0;j<m;j++) {
    . 
    . 
    . 
    a[i][j] = a[i+1][j];
    . 
    . 
    . 
  }
#pragma _CNX end_ordered_section
}

In this approach, each thread executes the entire j loop each time it 
enters the ordered section, allowing the i loop to terminate normally 
regardless of the number of threads available.

Another approach is to manually interchange the i and j loops, as 
shown in the following Fortran example:



264 Chapter 13 

Parallel synchronization
Synchronizing code

      DO J = 1, M
        LOCK = UNLOCK_GATE(ORDGATE)
C$DIR   LOOP_PARALLEL(ORDERED)
        DO I = 1, 99
          . 
          . 
          . 
C$DIR     ORDERED_SECTION(ORDGATE)
          A(I,J) = A(I+1,J)
C$DIR     END_ORDERED_SECTION
          . 
          . 
          . 
        ENDDO
      ENDDO

Here, the I loop is parallelized on every iteration of the J loop. The 
ordered section is not isolated from its parent loop, so the loop can 
terminate normally. This example has added benefit; elements of A are 
accessed more efficiently.

Manual synchronization
Ordered and critical sections allow you to isolate dependences in a 
structured, semiautomatic manner. The same isolation is accomplished 
manually using the functions discussed in “Synchronization functions” 
on page 246.

Critical sections and gates

Below is a simple critical section Fortran example using 
loop_parallel:

C$DIR LOOP_PARALLEL
      DO I = 1, N  ! LOOP IS PARALLELIZABLE
        . 
        . 
        . 
C$DIR   CRITICAL_SECTION
        SUM = SUM + X(I)
C$DIR   END_CRITICAL_SECTION
        . 
        . 
        . 
      ENDDO

As shown, this example is easily implemented using critical sections. It 
is manually implemented in Fortran, using gate functions, as shown 
below:



Chapter 13 265

Parallel synchronization
Synchronizing code

C$DIR GATE(CRITSEC)
      . 
      . 
      . 
      LOCK = ALLOC_GATE(CRITSEC)
C$DIR LOOP_PARALLEL
      DO I = 1, N
        . 
        . 
        . 
        LOCK = LOCK_GATE(CRITSEC)
        SUM = SUM + X(I)
        LOCK = UNLOCK_GATE(CRITSEC)
        . 
        . 
        . 
      ENDDO
      LOCK = FREE_GATE(CRITSEC)

As shown, the manual implementation requires declaring, allocating, 
and deallocating a gate, which must be locked on entry into the critical 
section using the LOCK_GATE function and unlocked on exit using 
UNLOCK_GATE.

Conditionally lock critical sections

Another advantage of manually defined critical sections is the ability to 
conditionally lock them. This allows the task that wishes to execute the 
section to proceed with other work if the lock cannot be acquired. This 
construct is useful, for example, in situations where one thread is 
performing I/O for several other parallel threads. 

While a processing thread is reading from the input queue, the queue is 
locked, and the I/O thread can move on to do output. While a processing 
thread is writing to the output queue, the I/O thread can do input. This 
allows the I/O thread to keep as busy as possible while the parallel 
computational threads execute their (presumably large) computational 
code. 

This situation is illustrated in the following Fortran example. Task 1 
performs I/O for the 7 other tasks, which perform parallel computations 
by calling the THREAD_WRK subroutine:

      COMMON INGATE,OUTGATE,COMPBAR
C$DIR GATE (INGATE, OUTGATE)
C$DIR BARRIER (COMPBAR)
      REAL DIN(:), DOUT(:)      ! I/O BUFFERS FOR TASK 1
      ALLOCATABLE DIN, DOUT     ! THREAD 0 WILL ALLOCATE
      REAL QIN(1000,1000), QOUT(1000,1000) ! SHARED I/O QUEUES
      INTEGER NIN/0/,NOUT/0/ ! QUEUE ENTRY COUNTERS
C     CIRCULAR BUFFER POINTERS:
      INTEGER IN_QIN/1/,OUT_QIN/1/,IN_QOUT/1/,OUT_QOUT/1/



266 Chapter 13 

Parallel synchronization
Synchronizing code

        COMMON /DONE/ DONEIN, DONECOMP
      LOGICAL DONECOMP, DONEIN
C                           SIGNALS FOR COMPUTATION DONE AND 
INPUT DONE
      LOGICAL COMPDONE, INDONE
C                           FUNCTIONS TO RETURN DONECOMP AND 
DONEIN
      LOGICAL INFLAG, OUTFLAG  ! INPUT READ AND OUTPUT WRITE 
FLAGS
C$DIR THREAD_PRIVATE (INFLAG,OUTFLAG) ! ONLY NEEDED BY TASK 1
C                                        (WHICH RUNS ON THREAD 0)
        IF (NUM_THREADS() .LT. 8) STOP 1
        IN = 10
        OUT = 11
      LOCK = ALLOC_GATE(INGATE)
      LOCK = ALLOC_GATE(OUTGATE)
      IBAR = ALLOC_BARRIER(COMPBAR)
      DONECOMP = .FALSE.
C$DIR BEGIN_TASKS             ! TASK 1 STARTS HERE
      INFLAG = .TRUE.
      DONEIN = .FALSE.
      ALLOCATE(DIN(1000),DOUT(1000)) ! ALLOCATE LOCAL BUFFERS
      DO WHILE(.NOT. INDONE() .OR. .NOT. COMPDONE() .OR. NOUT 
.GT. 0) 
C                       DO TILL EOF AND COMPUTATION DONE AND 
OUTPUT DONE
        IF(NIN.LT.1000.AND.(.NOT.COMPDONE()) .AND.(.NOT. 
INDONE())) THEN 

C                       FILL QUEUE
          IF (INFLAG) THEN  ! FILL BUFFER FIRST:
            READ(IN, IOSTAT = IOS) DIN  ! READ A RECORD; QUIT ON 
EOF
            IF(IOS .EQ. -1) THEN
              DONEIN = .TRUE. ! SIGNAL THAT INPUT IS DONE
              INFLAG = .TRUE.
            ELSE
              INFLAG = .FALSE.
            ENDIF
          ENDIF
C SYNCHRONOUSLY ENTER INTO INPUT QUEUE:
C         BLOCK QUEUE ACCESS WITH INGATE:
          IF (COND_LOCK_GATE(INGATE) .EQ. 0 .AND. .NOT. INDONE()) 
THEN
            QIN(:,IN_QIN) = DIN(:)  ! COPY INPUT BUFFER INTO QIN
            IN_QIN=1+MOD(IN_QIN,1000)  ! INCREMENT INPUT BUFFER 
PTR
            NIN = NIN + 1  ! INCREMENT INPUT QUEUE ENTRY COUNTER
            INFLAG = .TRUE.
            LOCK = UNLOCK_GATE(INGATE)  ! ALLOW INPUT QUEUE 
ACCESS
          ENDIF
        ENDIF
C SYNCHRONOUSLY REMOVE FROM OUTPUT QUEUE:



Chapter 13 267

Parallel synchronization
Synchronizing code

C         BLOCK QUEUE ACCESS WITH OUTGATE:
          IF (COND_LOCK_GATE(OUTGATE) .EQ. 0) THEN
           IF (NOUT .GT. 0) THEN
            DOUT(:)=QOUT(:,OUT_QOUT)  ! COPY OUTPUT QUE INTO 
BUFFR
            OUT_QOUT=1+MOD(OUT_QOUT,1000) 
C INCREMENT OUTPUT BUFR PTR
            NOUT = NOUT - 1  ! DECREMENT OUTPUT QUEUE ENTRY 
COUNTR
            OUTFLAG = .TRUE.
           ELSE
            OUTFLAG = .FALSE.
           ENDIF
            LOCK = UNLOCK_GATE(OUTGATE)  
C  ALLOW OUTPUT QUEUE ACCESS
            IF (OUTFLAG) WRITE(OUT) DOUT  ! WRITE A RECORD
          ENDIF
      ENDDO
C                               TASK 1 ENDS HERE
C$DIR NEXT_TASK               ! TASK 2:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK               ! TASK 3:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK               ! TASK 4:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK               ! TASK 5:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK               ! TASK 6:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK               ! TASK 7:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK               ! TASK 8:
      CALL 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      IBAR = WAIT_BARRIER(COMPBAR,7)
      DONECOMP = .TRUE.
C$DIR END_TASKS
      END

Before looking at the THREAD_WRK subroutine it is necessary to examine 
these parallel tasks, particularly task 1, the I/O server. Task 1 performs 
all the I/O required by all the tasks:



268 Chapter 13 

Parallel synchronization
Synchronizing code

• Conditionally locked gates control task 1’s access to one section of 
code that fills the input queue and one that empties the output queue. 

• Task 1 works by first filling an input buffer. The code that does this 
does not require gate protection because no other tasks attempt to 
access the input buffer array. 

• The section of code where the input buffer is copied into the input 
queue, however, must be protected by gates to prevent any threads 
from trying to read the input queue while it is being filled.

The other seven tasks perform computational work, receiving their input 
from and sending their output to task 1’s queues. If a task acquires a lock 
on the input queue, task 1 cannot fill it until the task is done reading 
from it. 

• When task 1 cannot get a lock to access the input queue code, it tries 
to lock the output queue code. 

• If it gets a lock here, it can copy the output queue into the output 
buffer array and relinquish the lock. It can then proceed to empty the 
output buffer.

• If another task is writing to the output queue, task 1 loops back and 
begins the entire process over again. 

• When the end of the input file is reached, all computation is complete, 
and the output queue is empty: task 1 is finished.

NOTE The task loops on DONEIN (using INDONE()), which is initially false. When 
input is exhausted, DONEIN is set to true, signalling all tasks that there is no 
more input.

The INDONE() function references DONEIN, forcing a memory reference. 
If DONEIN were referenced directly, the compiler might optimize it into a 
register and consequently not detect a change in its value.

This means that task 1 has four main jobs to do:

1 Read input into input buffer—no other tasks access the input buffer. 
This is done in parallel regardless of what other tasks are doing, as 
long as the buffer needs filling.

2 Copy input buffer into input queue—the other tasks read their input 
from the input queue, therefore it can only be filled when no 
computational task is reading it. This section of code is protected by 



Chapter 13 269

Parallel synchronization
Synchronizing code

the INGATE gate. It can run in parallel with the computational 
portions of other tasks, but only one task can access the input queue 
at a time.

3 Copy output queue into output buffer—the output queue is where 
other tasks write their output. It can only be emptied when no 
computational task is writing to it. This section of code is protected by 
the OUTGATE gate. It can run in parallel with the computational 
portions of other tasks, but only one task can access the output queue 
at a time.

4 Write out output buffer—no other tasks access the output buffer. This 
is done in parallel regardless of what the other tasks are doing.

Next, it is important to look at the subroutine THREAD_WRK, which tasks 
2-7 call to perform computations.

      SUBROUTINE
     > 
THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
      INTEGER NIN,NOUT
      REAL QIN(1000,1000), QOUT(1000,1000) ! SHARED I/O QUEUES
      INTEGER OUT_QIN, OUT_QOUT
      COMMON INGATE,OUTGATE,COMPBAR
C$DIR GATE(INGATE, OUTGATE)
      REAL WORK(1000)     ! LOCAL THREAD PRIVATE WORK ARRAY
      LOGICAL OUTFLAG, INDONE
      OUTFLAG = .FALSE.
C$DIR THREAD_PRIVATE (WORK) ! EVERY THREAD WILL CREATE A COPY

      DO WHILE(.NOT. INDONE() .OR. NIN.GT.0 .OR. OUTFLAG)
C                                WORK/QOUT EMPTYING LOOP
        IF (.NOT. OUTFLAG) THEN  ! IF NO PENDING OUTPUT
C$DIR CRITICAL_SECTION (INGATE)  ! BLOCK ACCESS TO INPUT QUE
          IF (NIN .GT. 0) THEN  ! MORE WORK TO DO
            WORK(:) = QIN(:,OUT_QIN)
            OUT_QIN = 1 + MOD(OUT_QIN, 1000)
            NIN = NIN - 1
            OUTFLAG = .TRUE.
C                         INDICATE THAT INPUT DATA HAS BEEN 
RECEIVED
          ENDIF
C$DIR END_CRITICAL_SECTION
         .
         .  ! SIGNIFICANT PARALLEL CODE HERE USING WORK ARRAY
         .
        ENDIF
        IF (OUTFLAG) THEN  ! IF PENDING OUTPUT, MOVE TO OUTPUT 
QUEUE
C AFTER INPUT QUEUE IS USED IN COMPUTATION, FILL OUTPUT QUEUE:
C$DIR CRITICAL_SECTION (OUTGATE) ! BLOCK ACCESS TO OUTPUT QUEUE
          IF(NOUT.LT.1000) THEN  
C  IF THERE IS ROOM IN THE OUTPUT QUEUE



270 Chapter 13 

Parallel synchronization
Synchronizing code

            QOUT(:,IN_QOUT) = WORK(:) ! COPY WORK INTO OUTPUT 
QUEUE
            IN_QOUT =1+MOD(IN_QOUT,1000) ! INCREMENT BUFFER PTR
            NOUT = NOUT + 1 ! INCREMENT OUTPUT QUEUE ENTRY 
COUNTER
            OUTFLAG = .FALSE.  ! INDICATE NO OUTPUT PENDING
          ENDIF
C$DIR END_CRITICAL_SECTION
        ENDIF
      ENDDO ! END WORK/QOUT EMPTYING LOOP
      END   ! END THREAD_WRK 

      LOGICAL FUNCTION INDONE()
C THIS FUNCTION FORCES A MEMORY REFERENCE TO GET THE DONEIN VALUE
      LOGICAL DONEIN
      COMMON /DONE/ DONEIN, DONECOMP
      INDONE = DONEIN
      END

      LOGICAL FUNCTION COMPDONE()

C THIS FUNCTION FORCES A MEMORY REFERENCE TO GET THE DONECOMP 
VALUE
      LOGICAL DONECOMP
      COMMON /DONE/ DONEIN, DONECOMP
      COMPDONE= DONECOMP
      END

Notice that the gates are accessed through COMMON blocks. Each thread 
that calls this subroutine allocates a thread_private WORK array.

This subroutine contains a loop that tests INDONE(). 

• The loop copies the input queue into the local WORK array, then does a 
significant amount of computational work that has been omitted for 
simplicity.

NOTE The computational work is the main code that executes in parallel, if there is 
not a large amount of it, the overhead of setting up these parallel tasks and 
critical sections cannot be justified. 

• The loop encompasses this computation, and also the section of code 
that copies the WORK array to the output queue. 

• This construct allows final output to be written after all input has 
been used in computation.

• To avoid accessing the input queue while it is being filled or accessed 
by another thread, the section of code that copies it into the local 
WORK array is protected by a critical section.

NOTE This section must be unconditionally locked as the computational threads 
cannot do something else until they receive their input. 



Chapter 13 271

Parallel synchronization
Synchronizing code

Once the input queue has been copied, THREAD_WRK can perform its 
large section of computational code in parallel with whatever the other 
tasks are doing. After the computational section is finished, another 
unconditional critical section must be entered so that the results are 
written to the output queue. This prevents two threads from accessing 
the output queue at once.

Problems like this require performance testing and tuning to achieve 
optimal parallel efficiency. Variables such as the number of 
computational threads and the size of the I/O queues are adjusted to 
yield the best processor utilization.



272 Chapter 13 

Parallel synchronization
Synchronizing code



Chapter 13 273

13 Troubleshooting

This chapter discusses common optimization problems that occasionally 
occur when developing programs for SMP servers. Possible solutions to 
these problems are offered where applicable.

Optimization can remove instructions, replace them, and change the 
order in which they execute. In some cases, improper optimizations can 
cause unexpected or incorrect results or code that slows down at higher 
optimization levels. In other cases, user error can cause similar problems 
in code that contains improperly used syntactically correct constructs or 
directives. If you encounter any of these problems, look for the following 
possible causes: 

• Aliasing

• False cache line sharing

• Floating-point imprecision

• Invalid subscripts

• Misused directives and pragmas

• Triangular loops

• Compiler assumptions

NOTE Compilers perform optimizations assuming that the source code being 
compiled is valid. Optimizations done on source that violates certain ANSI 
standard rules can cause the compilers to generate incorrect code.



274 Chapter 13 

Troubleshooting
Aliasing

Aliasing
As described in the section “Inhibiting parallelization” on page 105, an 
alias is an alternate name for an object. Fortran EQUIVALENCE 
statements, C pointers, and procedure calls in both languages can 
potentially cause aliasing problems. Problems can and do occur at 
optimization levels +O3 and above. However, code motion can also cause 
aliasing problems at optimization levels +O1 and above.

Because they frequently use pointers, C programs are especially 
susceptible to aliasing problems. By default, the optimizer assumes that 
a pointer can point to any object in the entire application. Thus, any two 
pointers are potential aliases. The C compiler has two algorithms you 
can specify in place of the default: an ANSI-C aliasing algorithm and a 
type-safe algorithm. 

The ANSI-C algorithm is enabled [disabled] through the 
+O[no]ptrs_ansi option. 

The type-safe algorithm is enabled [disabled] by specifying the 
command-line option +O[no]ptrs_strongly_typed. 

The defaults for these options are +Onoptrs_ansi and 
+Onoptrs_strongly_typed.

ANSI algorithm
ANSI C provides strict type-checking. Pointers and variables cannot 
alias with pointers or variables of a different base type. The ANSI C 
aliasing algorithm may not be safe if your program is not ANSI 
compliant. 

Type-safe algorithm
The type-safe algorithm provides stricter type-checking. This allows the 
C compiler to use a stricter algorithm that eliminates many potential 
aliases found by the ANSI algorithm. 



Chapter 13 275

Troubleshooting
Aliasing

Specifying aliasing modes
To specify an aliasing mode, use one of the following options on the C 
compiler command line:

• +Optrs_ansi 

• +Optrs_strongly_typed

Additional C aliasing options are discussed in “Controlling optimization” 
on page 113.

Iteration and stop values
Aliasing a variable in an array subscript can make it unsafe for the 
compiler to parallelize a loop. Below are several situations that can 
prevent parallelization.

Using potential aliases as addresses of variables
In the following example, the code passes &j to getval; getval can use 
that address in any number of ways, including possibly assigning it to 
iptr. Even though iptr is not passed to getval, getval might still 
access it as a global variable or through another alias. This situation 
makes j a potential alias for *iptr.

void subex(iptr, n, j)
int *iptr, n, j;
{
   n = getval(&j,n);
   
   for (j--; j<n; j++)
      iptr[j] += 1;
}

This potential alias means that j and iptr[j] might occupy the same 
memory space for some value of j. The assignment to iptr[j] on that 
iteration would also change the value of j itself. The possible alteration 
of j prevents the compiler from safely parallelizing the loop. In this case, 
the Optimization Report says that no induction variable could be found 
for the loop, and the compiler does not parallelize the loop. (For 
information on Optimization Reports, see “Optimization Report” on 
page 151).



276 Chapter 13 

Troubleshooting
Aliasing

Avoid taking the address of any variable that is used as the iteration 
variable for a loop. To parallelize the loop in subex, use a temporary 
variable i as shown in the following code:

void subex(iptr, n, j)
int *iptr, n, j;
{
   int i;
   n = getval(&j,n);
   i=j;   
   for (i--; i<n; i++)
      iptr[i] += 1;
}

Using hidden aliases as pointers
In the next example, ialex takes the address of j and assigns it to *ip. 
Thus, j becomes an alias for *ip and, potentially, for *iptr. Assigned 
values to iptr[j] within the loop could alter the value of j. As a result, 
the compiler cannot use j as an induction variable and, without an 
induction variable, it cannot count the iterations of the loop. When the 
compiler cannot find the loop’s iteration count the compiler cannot 
parallelize the loop.

int *ip;
void ialex(iptr)
int *iptr;{
  int j;
  *ip = &j;{
  for (j=0; j<2048; j++)
     iptr[j] = 107;
} 

To parallelize this loop, remove the line of code that takes the address of 
j or introduce a temporary variable.

Using a pointer as a loop counter
Compiling the following function, the compiler finds that *j is not an 
induction variable. This is because an assignment to iptr[*j] could 
alter the value of *j within the loop. The compiler does not parallelize 
the loop.

void ialex2(iptr, j, n)
int *iptr;
int *j, n;
{
   for (*j=0; *j<n; (*j)++)
      iptr[*j] = 107;
}



Chapter 13 277

Troubleshooting
Aliasing

Again, this problem is solved by introducing a temporary iteration 
variable.

Aliasing stop variables
In the following code, the stop variable n becomes a possible alias for 
*iptr when &n is passed to foo. This means that n is altered during the 
execution of the loop. As a result, the compiler cannot count the number 
of iterations and cannot parallelize the loop.

void salex(int *iptr, int n)
{
   int i;
   foo(&n);
   for (i=0; i < n; i++)
      iptr[i] += iptr[i];
   return;
} 

To parallelize the affected loop, eliminate the call to foo, move the call 
below the loop. In this case, flow-sensitive analysis takes care of the 
aliasing. You can also create a temporary variable as shown below:

void salex(int *iptr, int n)
{
   int i, tmp;
   foo(&n);
   tmp = n;
   for (i=0; i < tmp; i++)
      iptr[i] += iptr[i];
   return;
}

Because tmp is not aliased to iptr, the loop has a fixed stop value and 
the compiler parallelizes it.

Global variables
Potential aliases involving global variables cause optimization problems 
in many programs. The compiler cannot tell whether another function 
causes a global variable to become aliased. 

The following code uses a global variable, n, as a stop value. Because n 
may have its address taken and assigned to ik outside the scope of the 
function, n must be considered a potential alias for *ik. The value of n, 
therefore, is altered on any iteration of the loop. The compiler cannot 
determine the stop value and cannot parallelize the loop.



278 Chapter 13 

Troubleshooting
Aliasing

int n, *ik;
void foo(int *ik)
{
   int i;

   for (i=0; i<n; i++)
      ik[i]=i;
}

Using a temporary local variable solves the problem.

int n;
void foo(int *ik)
{
   int i,stop = n;

   for (i=0; i<stop; ++i)
      ik[i]=i;
}

If ik is a global variable instead of a pointer, the problem does not occur. 
Global variables do not cause aliasing problems except when pointers are 
involved. The following code is parallelized:

int n, ik[1000];
void foo()
{
   int i;

   for (i=0; i<n; i++)
      ik[i] = i;
}



Chapter 13 279

Troubleshooting
False cache line sharing

False cache line sharing
False cache line sharing is a form of cache thrashing. It occurs whenever 
two or more threads in a parallel program are assigning different data 
items in the same cache line. This section discusses how to avoid false 
cache line sharing by restructuring the data layout and controlling the 
distribution of loop iterations among threads. 

Consider the following Fortran code:

REAL*4 A(8)
DO I = 1, 8
  A(I) = ...
  .
  .
  .
ENDDO

Assume there are eight threads, each executing one of the above 
iterations. A(1) is on a processor cache line boundary (32-byte boundary 
for V2250 servers) so that all eight elements are in the same cache line. 
Only one thread at a time can “own” the cache line, so not only is the 
above loop, in effect, run serially, but every assignment by a thread 
requires an invalidation of the line in the cache of its previous “owner.” 
These problems would likely eliminate any benefit of parallelization.

Taking all of the above into consideration, review the code:

REAL*4 B(100,100)
DO I = 1, 100 
  DO J = 1, 100 
    B(I,J) = ...B(I,J-1)... 
  ENDDO 
ENDDO

Assume there are eight threads working on the I loop in parallel. 
The J loop cannot be parallelized because of the dependence. Table 62 on 
page 281 shows how the array maps to cache lines, assuming that 
B(1,1) is on a cache line boundary. Array entries that fall on cache line 
boundaries are in shaded cells. Array entries that fall on cache line 
boundaries are noted by hashmarks(#).



280 Chapter 13 

Troubleshooting
False cache line sharing

Table 61 Initial mapping of array to cache lines

Array entries surrounded by hashmarks(#) are on cache line boundaries.

HP compilers, by default, give each thread about the same number of 
iterations, assigning (if necessary) one extra iteration to some threads. 
This happens until all iterations are assigned to a thread. Table 62 
shows the default distribution of the I loop across 8 threads.

1, 1   1, 2  1, 3  1, 4 . . . 1, 99   1,100

2, 1   2, 2   2, 3   2, 4 . . .   2, 99   2,100

3, 1   3, 2   3, 3   3, 4 . . .   3, 99   3,100

4, 1   4, 2   4, 3   4, 4 . . .   4, 99   4,100

5, 1 5, 2   5, 3 5, 4 . . .   5, 99 5,100

6, 1   6, 2   6, 3   6, 4 . . .   6, 99   6,100

7, 1   7, 2   7, 3   7, 4 . . .   7, 99   7,100

8, 1   8, 2   8, 3   8, 4 . . .   8, 99   8,100

9, 1   9, 2 9, 3   9, 4 . . . 9, 99   9,100

10, 1  10, 2  10, 3  10, 4 . . .  10, 99  10,100

11, 1  11, 2  11, 3  11, 4 . . .  11, 99  11,100

12, 1  12, 2  12, 3  12, 4 . . .  12, 99  12,100

13, 1 13, 2 13, 3 13, 4 . . . 13, 99 13, 100

. . . . . . . . . . . . . . . . . . . . .

97, 1  97, 2 97, 3  97, 4  . . . 97, 99  97,100

98, 1  98, 2  98, 3  98, 4 . . .  98, 99  98,100

99, 1  99, 2  99, 3  99, 4 . . .  99, 99  99,100

100, 1 100, 2 100, 3 100, 4 . . . 100, 99 100,100



Chapter 13 281

Troubleshooting
False cache line sharing

Table 62 Default distribution of the I loop

This distribution of iterations causes threads to share cache lines. For 
example, thread 0 assigns the elements B(9:12,1), and thread 1 
assigns elements B(13:16,1) in the same cache line. In fact, every 
thread shares cache lines with at least one other thread. Most share 
cache lines with two other threads. This type of sharing is called false 
because it is a result of the data layout and the compiler’s distribution of 
iterations. It is not inherent in the algorithm itself. Therefore, it is 
reduced or even removed by:

1 Restructuring the data layout by aligning data on cache line 
boundaries

2 Controlling the iteration distribution.

Thread ID Iteration range Number
of iterations

0 1-12 12

1 13-25 13

2 26-37 12

3 38-50 13

4 51-62 12

5 63-75 13

6 76-87 12

7 88-100 13



282 Chapter 13 

Troubleshooting
False cache line sharing

Aligning data to avoid false sharing
Because false cache line sharing is partially due to the layout of the data, 
one step in avoiding it is to adjust the layout. Adjustments are typically 
made by aligning data on cache line boundaries. Aligning arrays 
generally improves performance. However, it can occasionally decrease 
performance. 

The second step in avoiding false cache line sharing is to adjust the 
distribution of loop iterations. This is covered in “Distributing iterations 
on cache line boundaries” on page 283. 

Aligning arrays on cache line boundaries 
Note the assumption that in the previous example, array B starts on a 
cache line boundary. The methods below force arrays in Fortran to start 
on cache line boundaries:

• Using uninitialized COMMON blocks (blocks with no DATA statements). 
These blocks start on 64-byte boundaries.

• Using ALLOCATE statements. These statements return addresses on 
64-byte boundaries. This only applies to parallel executables. 

The methods below force arrays in C to start on cache line boundaries:

• Using the functions malloc or memory_class_malloc. These 
functions return pointers on 64-byte boundaries. 

• Using uninitialized global arrays or structs that are at least 32 bytes. 
Such arrays and structs are aligned on 64-byte boundaries.

• Using uninitialized data of the external storage class in C that is at 
least 32 bytes. Data is aligned on 64-byte boundaries.



Chapter 13 283

Troubleshooting
False cache line sharing

Distributing iterations on cache line 
boundaries
Recall that the default iteration distribution causes thread 0 to work on 
iterations 1-12 and thread 1 to work on iterations 13-25, and so on. Even 
though the cache lines are aligned across the columns of the array (see 
Table 62 on page 281), the iteration distribution still needs to be 
changed. Use the CHUNK_SIZE attribute to change the distribution:

      REAL*4 B(112,100) 
      COMMON /ALIGNED/ B
C$DIR PREFER_PARALLEL (CHUNK_SIZE=16) 
      DO I = 1, 100 
        DO J = 1, 100 
          B(I,J) = ...B(I,J-1)... 
        ENDDO 
      ENDDO

You must specify a constant CHUNK_SIZE attribute. However, the ideal is 
to distribute work so that all but one thread works on the same number 
of whole cache lines, and the remaining thread works on any partial 
cache line. For example, given the following:

NITS  = number of iterations

NTHDS = number of threads

LSIZE = line size in words (8 for 4-byte data, 4 for 8-byte data, 2 
for 16-byte data) size in words (8 for 4-byte data

the ideal CHUNK_SIZE would be:

CHUNK_SIZE = LSIZE * (1 + ( (1 + (NITS - 1) / LSIZE ) - 1 )/NTHDS)

For the code above, these numbers are:

NITS  = 100

LSIZE = 8 (aligns on V2250 boundaries for 4-byte data) 

NTHDS =8 

CHUNK_SIZE = 8 * (1 + ( (1 + (100 - 1) / 8 ) - 1) / 8) 
           = 8 * (1 + ( (1 +  12           ) - 1) / 8) 
           = 8 * (1 + ( 12                      ) / 8)
           = 8 * (1 + 1                              ) 
           = 16

CHUNK_SIZE = 16 causes threads 0, 1, ..., 6 to execute iterations 1-16, 
17-32, ..., 81-96, respectively. Thread 7 executes iterations 97-100. As a 
result there is no false cache line sharing, and parallel performance is 
greatly improved. 



284 Chapter 13 

Troubleshooting
False cache line sharing

You cannot specify the ideal CHUNK_SIZE for every loop. However, using

CHUNK_SIZE = x

where x times the data size (in bytes) is an integral multiple of 32, 
eliminates false cache line sharing. This is only if the following two 
conditions below are met:

• The arrays are already properly aligned (as discussed earlier in this 
section).

• The first iteration accesses the first element of each array being 
assigned. For example, in a loop DO I = 2, N, because the loop 
starts at I = 2, the first iteration does not access the first element of 
the array. Consequently, the iteration distribution does not match the 
cache line alignment.

The number 32 is used because the cache line size is 32 bytes for V2250 
servers. 

Thread-specific array elements
Sometimes a parallel loop has each thread update a unique element of a 
shared array, which is further processed by thread 0 outside the loop.

Consider the following Fortran code in which false sharing occurs:

      REAL*4 S(8) 
C$DIR LOOP_PARALLEL
      DO I = 1, N 
        .
        .
        .
        S(MY_THREAD()+1) = ... ! EACH THREAD ASSIGNS ONE ELEMENT OF S
        .
        .
        .
      ENDDO 
C$DIR NO_PARALLEL 
      DO J = 1, NUM_THREADS()
        = ...S(J)              ! THREAD 0 POST-PROCESSES S
      ENDDO

The problem here is that potentially all the elements of S are in a single 
cache line, so the assignments cause false sharing. One approach is to 
change the code to force the unique elements into different cache lines, as 
indicated in the following code:



Chapter 13 285

Troubleshooting
False cache line sharing

      REAL*4 S(8,8)
C$DIR LOOP_PARALLEL 
      DO I = 1, N 
        .
        .
        .
        S(1,MY_THREAD()+1) = ... ! EACH THREAD ASSIGNS ONE ELEMENT OF S 
        .
        .
        .
      ENDDO 
C$DIR NO_PARALLEL 
      DO J = 1, NUM_THREADS()
        = ...S(1,J)             ! THREAD 0 POST-PROCESSES S 
      ENDDO

Scalars sharing a cache line
Sometimes parallel tasks assign unique scalar variables that are in the 
same cache line, as in the following code:

      COMMON /RESULTS/ SUM, PRODUCT 
C$DIR BEGIN_TASKS 
      DO I = 1, N 
        .
        .
        .
        SUM = SUM + ... 
        .
        .
        .
      ENDDO
C$DIR NEXT_TASK 
      DO J = 1, M 
        .
        .
        .
        PRODUCT = PRODUCT * ... 
        .
        .
        .
      ENDDO 
C$DIR END_TASKS



286 Chapter 13 

Troubleshooting
False cache line sharing

Working with unaligned arrays
The most common cache-thrashing complication using arrays and loops 
occurs when arrays assigned within a loop are unaligned with each other. 
There are several possible causes for this:

• Arrays that are local to a routine are allocated on the stack.

• Array dummy arguments might be passed an element other than the 
first in the actual argument.

• Array elements might be assigned with different offset indexes.

Consider the following Fortran code:

COMMON /OKAY/ X(112,100) 
        ... 
CALL UNALIGNED (X(I,J)) 
        ... 
SUBROUTINE UNALIGNED (Y) 
REAL*4 Y(*)
    ! Y(1) PROBABLY NOT ON A CACHE LINE BOUNDARY

The address of Y(1) is unknown. However, if elements of Y are heavily 
assigned in this routine, it may be worthwhile to compute an alignment, 
given by the following formula:

LREM = LSIZE - ( ( 
( LOC(Y(1))-4, LSIZE*x) + 4) /x)

where

LSIZE is the appropriate cache line size in words

x is the data size for elements of Y

For this case, LSIZE on V2250 servers is 32 bytes in single precision 
words (8 words). Note that:

( ( MOD ( LOC(Y(1))-4, LSIZE*4) + 4) /4)

returns a value in the set 1, 2, 3, ..., LSIZE, so LREM is in the range 0 to 7.

Then a loop such as:

DO I = 1, N 
  Y(I) = ... 
ENDDO



Chapter 13 287

Troubleshooting
False cache line sharing

is transformed to:

C$DIR NO_PARALLEL 
      DO I = 1, MIN (LREM, N) ! 0 <= LREM < 8
        Y(I) = ... 
      ENDDO
C$DIR PREFER_PARALLEL (CHUNK_SIZE = 16) 
      DO I = LREM+1, N
         ! Y(LREM+1) IS ON A CACHE LINE BOUNDARY 
        Y(I) = ... 
      ENDDO

The first loop takes care of elements from the first (if any) partial cache 
line of data. The second loop begins on a cache line boundary, and is 
controlled with CHUNK_SIZE to avoid false sharing among the threads.

Working with dependences
Data dependences in loops may prevent parallelization and prevent the 
elimination of false cache line sharing. If certain conditions are met, 
some performance gains are achieved. 

For example, consider the following code:

COMMON /ALIGNED / P(128,128), Q(128,128), R(128,128)
REAL*4 P, Q, R
DO J =  2, 128 
  DO I = 2, 127 
    P(I-1,J) = SQRT (P(I-1,J-1) + 1./3.) 
    Q(I  ,J) = SQRT (Q(I  ,J-1) + 1./3.) 
    R(I+1,J) = SQRT (R(I+1,J-1) + 1./3.) 
  ENDDO
ENDDO

Only the I loop is parallelized, due to the loop-carried dependences in the 
J loop. It is impossible to distribute the iterations so that there is no false 
cache line sharing in the above loop. If all loops that refer to these arrays 
always use the same offsets (which is unlikely) then you could make 
dimension adjustments that would allow a better iteration distribution.

For example, the following would work well for 8 threads:

      COMMON /ADJUSTED/ P(128,128), PAD1(15), Q(128,128),
     > PAD2(15), R(128,128)

      DO J =  2, 128
C$DIR   PREFER_PARALLEL (CHUNK_SIZE=16) 
        DO I = 2, 127 
          P(I-1,J) = SQRT (P(I-1,J-1) + 1./3.) 
          Q(I  ,J) = SQRT (Q(I  ,J-1) + 1./3.) 
          R(I+1,J) = SQRT (R(I+1,J-1) + 1./3.) 
        ENDDO 
      ENDDO



288 Chapter 13 

Troubleshooting
False cache line sharing

Padding 60 bytes before the declarations of both Q and R causes the 
P(1,J), Q(2,J), and R(3,J) to be aligned on 64-byte boundaries for all 
J. Combined with a CHUNK_SIZE of 16, this causes threads to assign 
data to unique whole cache lines.

You can usually find a mix of all the above problems in some CPU-
intensive loops. You cannot avoid all false cache line sharing, but by 
careful inspection of the problems and careful application of some of the 
workarounds shown here, you can significantly enhance the performance 
of your parallel loops. 



Chapter 13 289

Troubleshooting
Floating-point imprecision

Floating-point imprecision
The compiler applies normal arithmetic rules to real numbers. It 
assumes that two arithmetically equivalent expressions produce the 
same numerical result. 

Most real numbers cannot be represented exactly in digital computers. 
Instead, these numbers are rounded to a floating-point value that is 
represented. When optimization changes the evaluation order of a 
floating-point expression, the results can change. Possible consequences 
of floating-point roundoff include program aborts, division by zero, 
address errors, and incorrect results.

In any parallel program, the execution order of the instructions differs 
from the serial version of the same program. This can cause noticeable 
roundoff differences between the two versions. Running a parallel code 
under different machine configurations or conditions can also yield 
roundoff differences, because the execution order can differ under 
differing machine conditions, causing roundoff errors to propagate in 
different orders between executions. Accumulator variables (reductions) 
are especially susceptible to these problems. 

Consider the following Fortran example:

C$DIR GATE(ACCUM_LOCK)
      LK = ALLOC_GATE(ACCUM_LOCK)
      . 
      . 
      . 
      LK = UNLOCK_GATE(ACCUM_LOCK)
C$DIR BEGIN_TASKS, TASK_PRIVATE(I)
      CALL COMPUTE(A)
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
      ACCUM = ACCUM + A
C$DIR END_CRITICAL_SECTION
C$DIR NEXT_TASK

      DO I = 1, 10000
        B(I) = FUNC(I)
C$DIR   CRITICAL_SECTION(ACCUM_LOCK)
        ACCUM = ACCUM + B(I)
C$DIR   END_CRITICAL_SECTION
        . 
        . 
        . 
      ENDDO



290 Chapter 13 

Troubleshooting
Floating-point imprecision

C$DIR NEXT_TASK
      DO I = 1, 10000
        X = X + C(I) + D(I)
      ENDDO
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
      ACCUM = ACCUM/X
C$DIR END_CRITICAL_SECTION
C$DIR END_TASKS

Here, three parallel tasks are all manipulating the real variable ACCUM, 
using real variables which have themselves been manipulated. Each 
manipulation is subject to roundoff error, so the total roundoff error here 
might be substantial. 

When the program runs in serial, the tasks execute in their written 
order, and the roundoff errors accumulate in that order. However, if the 
tasks run in parallel, there is no guarantee as to what order the tasks 
run in. This means that the roundoff error accumulates in a different 
order than it does during the serial run. 

Depending on machine conditions, the tasks may run in different orders 
during different parallel runs also, potentially accumulating roundoff 
errors differently and yielding different answers.

Problems with floating-point precision can also occur when a program 
tests the value of a variable without allowing enough tolerance for 
roundoff errors. To solve the problem, adjust the tolerances to allow for 
greater roundoff errors or declare the variables to be of a higher 
precision (use the double type instead of float in C and C++, or 
REAL*8 rather than REAL*4 in Fortran). Testing floating-point numbers 
for exact equality is strongly discouraged.

Enabling sudden underflow
By default, PA-RISC processor hardware represents a floating point 
number in denormalized format when the number is tiny. A floating 
point number is considered tiny if its exponent field is zero but its 
mantissa is nonzero. This practice is extremely costly in terms of 
execution time and seldom provides any benefit. 

You can enable sudden underflow (flush to zero) of denormalized values 
by passing the +FPD flag to the linker. This is done using the -W compiler 
option. 

For more information, refer to the HP-UX Floating-Point Guide. 



Chapter 13 291

Troubleshooting
Invalid subscripts

The following example shows an f90 command line issuing this 
command:

%f90 -Wl,+FPD prog.f

This command line compiles the program prog.f and instructs the 
linker to enable sudden underflow. 

Invalid subscripts
An array reference in which any subscript falls outside declared bounds 
for that dimension is called an invalid subscript. Invalid subscripts are a 
common cause of answers that vary between optimization levels and 
programs that abort and result in a core dump. 

Use the command-line option -C (check subscripts) with f90 to check 
that each subscript is within its array bounds. See the f90(1) man page 
for more information. The C and aC++ compilers do not have an option 
corresponding to the Fortran compiler’s -C option.



292 Chapter 13 

Troubleshooting
Misused directives and pragmas

Misused directives and pragmas
Misused directives and pragmas are a common cause of wrong answers. 
Some of the more common misuses of directives and pragmas involve the 
following:

• Loop-carried dependences

• Reductions

• Nondeterminism of parallel execution

Descriptions of and methods for avoiding the items listed above are 
described in the sections below.

Loop-carried dependences
Forcing parallelization of a loop containing a call is safe only if the called 
routine contains no dependences.

Do not assume that it is always safe to parallelize a loop whose data is 
safe to localize. You can safely localize loop data in loops that do not 
contain a loop-carried dependence (LCD) of the form shown in the 
following Fortran loop:

DO I = 2, M
  DO J = 1, N
    A(I,J) = A(I+IADD,J+JADD) + B(I,J)
  ENDDO
ENDDO

where one of IADD and JADD is negative and the other is positive. This is 
explained in detail in the section “Conditions that inhibit data 
localization” on page 59.

You cannot safely parallelize a loop that contains any kind of LCD, 
except by using ordered sections around the LCDs as described in the 
section “Ordered sections” on page 255. Also see the section “Inhibiting 
parallelization” on page 105.



Chapter 13 293

Troubleshooting
Misused directives and pragmas

The MAIN section of the Fortran program below initializes A, calls CALC, 
and outputs the new array values. In subroutine CALC, the indirect index 
used in A(IN(I)) introduces a potential dependence that prevents the 
compiler from parallelizing CALC’s I loop.

PROGRAM MAIN 
REAL A(1025)
INTEGER IN(1025)
COMMON /DATA/ A
DO I = 1, 1025  
  IN(I) = I
ENDDO
CALL CALC(IN) 
CALL OUTPUT(A)
END 

SUBROUTINE CALC(IN) 
INTEGER IN(1025)
REAL A(1025) 
COMMON /DATA/ A
DO I = 1, 1025   
  A(I) = A(IN(I))
ENDDO 
RETURN 
END

Because you know that IN(I) = I, you can use the 
NO_LOOP_DEPENDENCE directive, as shown below. This directive allows 
the compiler to ignore the apparent dependence and parallelize the loop, 
when compiling with +O3 +Oparallel.

      SUBROUTINE CALC(IN)
      INTEGER IN(1025)
      REAL A(1025) 
      COMMON /DATA/ A
C$DIR NO_LOOP_DEPENDENCE(A)
      DO I = 1, 1025
         A(I) = A(IN(I))
      ENDDO
      RETURN
      END



294 Chapter 13 

Troubleshooting
Misused directives and pragmas

Reductions
Reductions are a special class of dependence that the compiler can 
parallelize. An apparent LCD can prevent the compiler from 
parallelizing a loop containing a reduction. 

The loop in the following Fortran example is not parallelized because of 
an apparent dependence between the references to A(I) on line 6 and 
the assignment to A(JA(J)) on line 7. The compiler does not realize that 
the values of the elements of JA never coincide with the values of I. 
Assuming that they might collide, the compiler conservatively avoids 
parallelizing the loop.

DO I = 1,100
  JA(I) = I + 10
ENDDO
DO I = 1, 100
  DO J = I, 100
      A(I) = A(I) + B(J) * C(J)   !LINE 6 
      A(JA(J)) = B(J) + C(J)      !LINE 7 
  ENDDO
ENDDO

NOTE In this example, as well as the examples that follow, the apparent 
dependence becomes real if any of the values of the elements of JA are 
equal to the values iterated over by I. 

A no_loop_dependence directive or pragma placed before the J loop 
tells the compiler that the indirect subscript does not cause a true 
dependence. Because reductions are a form of dependence, this directive 
also tells the compiler to ignore the reduction on A(I), which it would 
normally handle. Ignoring this reduction causes the compiler to generate 
incorrect code for the assignment on line 6. The apparent dependence on 
line 7 is properly handled because of the directive. The resulting code 
runs fast but produces incorrect answers. 



Chapter 13 295

Troubleshooting
Misused directives and pragmas

To solve this problem, distribute the J loop, isolating the reduction from 
the other statements, as shown in the following Fortran example:

      DO I = 1, 100
        DO J = I, 100
          A(I) = A(I) + B(J) * C(J)
        ENDDO
      ENDDO
C$DIR NO_LOOP_DEPENDENCE(A)
      DO I = 1, 100
        DO J = I, 100
          A(JA(J)) = B(J) + C(J)
        ENDDO
      ENDDO

The apparent dependence is removed, and both loops are optimized. 

Nondeterminism of parallel execution 
In a parallel program, threads do not execute in a predictable or 
determined order. If you force the compiler to parallelize a loop when a 
dependence exists, the results are unpredictable and can vary from one 
execution to the next. 

Consider the following Fortran code:

DO I = 1, N-1
  A(I) = A(I+1) * B(I)
  . 
  . 
  . 
ENDDO

The compiler does not parallelize this code as written because of the 
dependence on A(I). This dependence requires that the original value of 
A(I+1) be available for the computation of A(I). 

If this code was parallelized, some values of A would be assigned by some 
processors before they were used by others, resulting in incorrect 
assignments. 

Because the results depend on the order in which statements execute, 
the errors are nondeterministic. The loop must therefore execute in 
iteration order to ensure that all values of A are computed correctly.

Loops containing dependences can sometimes be manually parallelized 
using the LOOP_PARALLEL(ORDERED) directive as described in “Parallel 
synchronization” on page 243. Unless you are sure that no loop-carried 
dependence exists, it is safest to let the compiler choose which loops to 
parallelize.



296 Chapter 13 

Troubleshooting
Triangular loops

Triangular loops
A triangular loop is a loop nest with an inner loop whose upper or lower 
bound (but not both) is a function of the outer loop’s index. Examples of a 
lower triangular loop and an upper triangular loop are given below. To 
simplify explanations, only Fortran examples are provided in this 
section.

Lower triangular loop

DO J = 1, N 
  DO I = J+1, N
    F(I) = F(I) + ... + X(I,J) + ...

.
.
.

Elements
referenced
in array X
(shaded cells)

J

3

...

I

1

2

321



Chapter 13 297

Troubleshooting
Triangular loops

While the compiler can usually auto-parallelize one of the outer or inner 
loops, there are typically performance problems in either case:

• If the outer loop is parallelized by assigning contiguous chunks of 
iterations to each of the threads, the load is severely unbalanced. For 
example, in the lower triangular example above, the thread doing the 
last chunk of iterations does far less work than the thread doing the 
first chunk.

• If the inner loop is auto-parallelized, then on each outer iteration in 
the J loop, the threads are assigned to work on a different set of 
iterations in the I loop, thus losing access to some of their previously 
encached elements of F and thrashing each other’s caches in the 
process.

By manually controlling the parallelization, you can greatly improve the 
performance of a triangular loop. Parallelizing the outer loop is generally 
more beneficial than parallelizing the inner loop. The next two sections 
explain how to achieve the enhanced performance. 

Upper triangular loop

DO J = 1, N
  DO I = 1, J-1
    F(I) = F(I) + ... + X(I,J) + ...

Elements
referenced
in array X
(shaded cells)

.
.
.

J

3

...

I

1

2

321



298 Chapter 13 

Troubleshooting
Triangular loops

Parallelizing the outer loop
Certain directives allow you to control the parallelization of the outer 
loop in a triangular loop to optimize the performance of the loop nest.

For the outer loop, assign iterations to threads in a balanced manner. 
The simplest method is to assign the threads one at a time using the 
CHUNK_SIZE attribute:

C$DIR PREFER_PARALLEL (CHUNK_SIZE = 1)
      DO J = 1, N 
        DO I = J+1, N 
          Y(I,J) = Y(I,J) + ...X(I,J)...

This causes each thread to execute in the following manner:

      DO J = MY_THREAD() + 1, N, NUM_THREADS()
        DO I = J+1, N 
          Y(I,J) = Y(I,J) + ...X(I,J)...

where 0 <= MY_THREAD() < NUM_THREADS()

In this case, the first thread still does more work than the last, but the 
imbalance is greatly reduced. For example, assume N = 128 and there 
are 8 threads. Then the default parallel compilation would cause thread 
0 to do J = 1 to 16, resulting in 1912 inner iterations, whereas thread 7 
does J = 113 to 128, resulting in 120 inner iterations. With 
chunk_size = 1, thread 0 does 1072 inner iterations, and thread 7 does 
1023. 

Parallelizing the inner loop
If the outer loop cannot be parallelized, it is recommended that you 
parallelize the inner loop if possible. There are two issues to be aware of 
when parallelizing the inner loop:

• Cache thrashing

Consider the parallelization of the following inner loop:

 DO J = I+1, N
F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)

where I varies in the outer loop iteration. 



Chapter 13 299

Troubleshooting
Triangular loops

The default iteration distribution has each thread processing a 
contiguous chunk of iterations of approximately the same number as 
every other thread. The amount of work per thread is about the same; 
however, from one outer iteration to the next, threads work on 
different elements in F, resulting in cache thrashing. 

• The overhead of parallelization

If the loop cannot be interchanged to be outermost (or at least 
outermore), then the overhead of parallelization is compounded by 
the number of outer loop iterations. 

The scheme below assigns “ownership” of elements to threads on a cache 
line basis so that threads always work on the same cache lines and 
retain data locality from one iteration to the next. In addition, the 
parallel directive is used to spawn threads just once. The outer, 
nonparallel loop is replicated on all processors, and the inner loop 
iterations are manually distributed to the threads.

C F IS KNOWN TO BEGIN ON A CACHE LINE BOUNDARY
      NTHD = NUM_THREADS()
      CHUNK = 8               ! CHUNK * DATA SIZE (4 BYTES)
                              !    EQUALS PROCESSOR CACHE LINE SIZE;
                              !    A SINGLE THREAD WORKS ON CHUNK = 8
                              !    ITERATIONS AT A TIME
      NTCHUNK = NTHD * CHUNK  ! A CHUNK TO BE SPLIT AMONG THE THREADS
       ...
C$DIR PARALLEL,PARALLEL_PRIVATE(ID,JS,JJ,J,I)
      ID = MY_THREAD() + 1   ! UNIQUE THREAD ID
      DO I = 1, N 
        JS = ((I+1 + NTCHUNK-1 - ID*CHUNK ) / NTCHUNK) * NTCHUNK 
     >        + (ID-1) * CHUNK + 1
        DO JJ = JS, N, NTCHUNK
          DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)
            F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)
          ENDDO 
        ENDDO
      ENDDO
C$DIR END_PARALLEL

The idea is to assign a fixed ownership of cache lines of F and to assign a 
distribution of those cache lines to threads that keeps as many threads 
busy computing whole cache lines for as long as possible. Using 
CHUNK = 8 for 4-byte data makes each thread work on 8 iterations 
covering a total of 32 bytes—the processor cache line size for V2250 
servers. 



300 Chapter 13 

Troubleshooting
Triangular loops

In general, set CHUNK equal to the smallest value that multiplies by the 
data size to give a multiple of 32 (the processor cache line size on V2250 
servers). Smaller values of CHUNK keep most threads busy most of the 
time. 

Because of the ever-decreasing work in the triangular loop, there are 
fewer cache lines left to compute than there are threads. Consequently, 
threads drop out until there is only one thread left to compute those 
iterations associated with the last cache line. Compare this distribution 
to the default distribution that causes false cache line sharing and 
consequent thrashing when all threads attempt to compute data into a 
few cache lines. See “False cache line sharing” on page 279 in this 
chapter.

The scheme above maps a sequence of NTCHUNK-sized blocks over the F 
array. Within each block, each thread owns a specific cache line of data. 
The relationship between data, threads, and blocks of size NTCHUNK is 
shown in Figure 19 on page 301.



Chapter 13 301

Troubleshooting
Triangular loops

 Figure 19 Data ownership by CHUNK and NTCHUNK blocks

CHUNK is the number of iterations a thread works on at one time. The 
idea is to make a thread work on the same elements of F from one 
iteration of I to the next (except for those that are already complete). 

The scheme above causes thread 0 to do all work associated with the 
cache lines starting at F(1), F(1+NTCHUNK), F(1+2*NTCHUNK), and so 
on. Likewise, thread 1 does the work associated with the cache lines 
starting at F(9), F(9+NTCHUNK), F(9+2*NTCHUNK), and so on. 

NTCHUNK 1

NTCHUNK 2

thread 0

thread 1

thread 2

thread 7

thread 0

thread 1

F(17) ... F(24)

F(25) ... F(32)

F(1) ... F(8)

F(9) ... F(16)

F(33) ... F(40)

...

CHUNKs of F Associated

F(41) ... F(48)

F(49) ... F(56)

F(57) ... F(64)

F(65) ... F(72)

F(73) ... F(80)

F(81) ...

thread 5

thread 3

thread 4

thread 6

thread

CHUNKs of F Associated
thread



302 Chapter 13 

Troubleshooting
Triangular loops

If a thread assigns certain elements of F for I = 2, then it is certain that 
the same thread encached those elements of F in iteration I = 1. This 
eliminates cache thrashing among the threads.

Examining the code
Having established the idea of assigning cache line ownership, consider 
the following Fortran code in more detail:

C$DIR PARALLEL,PARALLEL_PRIVATE(ID,JS,JJ,J,I)
        ID = MY_THREAD() + 1   ! UNIQUE THREAD ID
        DO I = 1, N 
          JS = ((I+1 + NTCHUNK-1 - ID*CHUNK ) / NTCHUNK) * NTCHUNK 
     >          + (ID-1) * CHUNK + 1
          DO JJ = JS, N, NTCHUNK
            DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)
              F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)
            ENDDO 
          ENDDO
        ENDDO
C$DIR END_PARALLEL

C$DIR PARALLEL, PARALLEL_PRIVATE(ID,JS,JJ,J,I)

Spawns threads, each of which begins executing the 
statements in the parallel region. Each thread has a 
private version of the variables ID, JS, JJ, J, and I.

ID = MY_THREAD() + 1    ! UNIQUE THREAD ID

Establishes a unique ID for each thread, in the 
range 1 to num_threads().

DO I = 1, N

Executes all threads of the I loop redundantly (instead 
of thread 0 executing it alone).

JS = ((I+1 + NTCHUNK-1 - ID*CHUNK ) / NTCHUNK) * NTCHUNK 
+ (ID-1) * CHUNK + 1

Determines, for a given value of I+1, which NTCHUNK 
the value I+1 falls then. Then it assigns a unique 
CHUNK of it to each thread ID. Suppose that there are 
ntc NTCHUNKs, where ntc is approximately N/NTCHUNK. 
Then the expression:



Chapter 13 303

Troubleshooting
Triangular loops

(I+1 + NTCHUNK-1 - ID*CHUNK ) / NTCHUNK)

returns a value in the range 1 to ntc for a given value of 
I+1. Then the expression:

((I+1 + NTCHUNK-1 - ID*CHUNK ) / NTCHUNK) * NTCHUNK

identifies the start of an NTCHUNK that contains I+1 or 
is immediately above I+1 for a given value of ID. 

For the NTCHUNK that contains I+1, if the cache lines 
owned by a thread either contain I+1 or are above I+1 
in memory, this expression returns this NTCHUNK. If the 
cache lines owned by a thread are below I+1 in this 
NTCHUNK, this expression returns the next highest 
NTCHUNK. In other words, if there is no work for a 
particular thread to do in this NTCHUNK, then start 
working in the next one.

(ID-1) * CHUNK + 1

identifies the start of the particular cache line for the 
thread to compute within this NTCHUNK.

DO JJ = JS, N, NTCHUNK

runs a unique set of cache lines starting at its specific 
JS and continuing into succeeding NTCHUNKs until all 
the work is done.

DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)

performs the work within a single cache line. If the 
starting index (I+1) is greater than the first element in 
the cache line (JS) then start with I+1. If the ending 
index (N) is less than the last element in the cache line, 
then finish with N.

The following are observations of the preceding loops:

• Most of the “complicated” arithmetic is an outer loop iterations.

• You can replace divides with shift instructions because they involve 
powers of two.

• If this application were to be run on an V2250 single-node machine, it 
would be appropriate to choose a chunk size of 8 for 4-byte data.



304 Chapter 13 

Troubleshooting
Compiler assumptions

Compiler assumptions
Compiler assumptions can produce faulty optimized code when the 
source code contains:

• Iterations by zero

• Trip counts that may overflow at optimization levels +O2 and above

Descriptions of, and methods for, avoiding the items listed above are in 
the following sections.

Incrementing by zero
The compiler assumes that whenever a variable is being incremented on 
each iteration of a loop, the variable is being incremented by a loop-
invariant amount other than zero. If the compiler parallelizes a loop that 
increments a variable by zero on each trip, the loop can produce incorrect 
answers or cause the program to abort. This error can occur when a 
variable used as an incrementation value is accidentally set to zero. If 
the compiler detects that the variable has been set to zero, the compiler 
does not parallelize the loop. If the compiler cannot detect the 
assignment, however, the symptoms described below occur. 

The following Fortran code shows two loops that increment by zero:

CALL SUB1(0)
.
.
.
SUBROUTINE SUB1(IZR)
DIMENSION A(100), B(100), C(100)
J = 1
DO I = 1, 100, IZR ! INCREMENT VALUE OF 0 IS
                   ! NON-STANDARD
   A(I) = B(I)
ENDDO
PRINT *, A(11)
DO I = 1, 100
   J = J + IZR
   B(I) = A(J)
   A(J) = C(I)
ENDDO
PRINT *, A(1)
PRINT *, B(11)
END



Chapter 13 305

Troubleshooting
Compiler assumptions

Because IZR is an argument passed to SUB1, the compiler does not detect 
that IZR has been set to zero. Both loops parallelize at 
+O3 +Oparallel +Onodynsel. 

The loops compile at +O3, but the first loop, which specifies the step as 
part of the DO statement (or as part of the for statement in C), attempts 
to parcel out loop iterations by a step of IZR. At runtime, this loop is 
infinite.

Due to dependences, the second loop would not behave predictably when 
parallelized—if it were ever reached at runtime. The compiler does not 
detect the dependences because it assumes J is an induction variable.

Trip counts that may overflow
Some loop optimizations at +O2 and above may cause the variable on 
which the trip count is based to overflow. A loop’s trip count is the 
number of times the loop executes. The compiler assumes that each 
induction variable is increasing (or decreasing) without overflow during 
the loop. Any overflowing induction variable may be used by the compiler 
as a basis for the trip count. The following sections discuss when this 
overflow may occur and how to avoid it.

Linear test replacement
When optimizing loops, the compiler often disregards the original 
induction variable, using instead a variable or value that better indicates 
the actual stride of the loop. A loop’s stride is the value by which the 
iteration variable increases on each iteration. By picking the largest 
possible stride, the compiler reduces the execution time of the loop by 
reducing the number of arithmetic operations within each iteration.

The Fortran code below contains an example of a loop in which the 
induction variable may be replaced by the compiler:

      ICONST = 64
      ITOT = 0
      DO IND = 1,N
        IPACK = (IND*1024)*ICONST**2
        IF(IPACK .LE. (N/2)*1024*ICONST**2) 
     >    ITOT = ITOT + IPACK
        . 
        . 
        . 
      ENDDO
      END



306 Chapter 13 

Troubleshooting
Compiler assumptions

Executing this loop using IND as the induction variable with a stride of 1 
would be extremely inefficient. Therefore, the compiler picks IPACK as 
the induction variable and uses the amount by which it increases on each 
iteration, 1024*642 or 222, as the stride. 

The trip count (N in the example), or just trip, is the number of times the 
loop executes, and the start value is the initial value of the induction 
variable.

Linear test replacement, a standard optimization at levels +O2 and 
above, normally does not cause problems. However, when the loop stride 
is very large a large trip count can cause the loop limit value 
(start+((trip-1)*stride)) to overflow.

In the code above, the induction variable is a 4-byte integer, which 
occupies 32 bits in memory. That means if start+((trip-1)*stride) (1+((N-
1)*222)) is greater than 231-1, the value overflows into the sign bit and is 
treated as a negative number. If the stride value is negative, the absolute 
value of start+((trip-1)*stride) must be not exceed 231. When a loop has a 
positive stride and the trip count overflows, the loop stops executing 
when the overflow occurs because the limit becomes negative—assuming 
a positive stride—and the termination test fails.

Because the largest allowable value for start+((trip-1)*stride) is 231-1, 
the start value is 1, and the stride is 222, the maximum trip count for the 
loop is found.



Chapter 13 307

Troubleshooting
Compiler assumptions

The stride, trip, and start values for a loop must satisfy the following 
inequality:

start + ((trip - 1) * stride) ≤ 231

The start value is 1, so trip is solved as follows:

start + ((trip - 1) * stride) ≤  231

1 + (trip - 1) * 222  ≤ 231

(trip - 1) * 222 ≤ 231 - 1

trip - 1 ≤ 29 - 2-22

trip ≤ 29 - 2-22 + 1

trip ≤ 512

The maximum value for n in the given loop, then, is 512.

NOTE If you find that certain loops give wrong answers at optimization levels +O2 
or higher, the problem may be test replacement. If you still want to optimize 
these loops at +O2 or above, restructure them to force the compiler to 
choose a different induction variable.

Large trip counts at +O2 and above
When a loop is optimized at level +O2 or above, its trip count must 
occupy no more than a signed 32-bit storage location. The largest 
positive value that can fit in this space is 231 - 1 (2,147,483,647). Loops 
with trip counts that cannot be determined at compile time but that 
exceed 231 - 1 at runtime yield wrong answers.

This limitation only applies at optimization levels +O2 and above.

A loop with a trip count that overflows 32 bits is optimized by manually 
strip mining the loop.



308 Chapter 13 

Troubleshooting
Compiler assumptions



Appendix A 309

A Porting CPSlib functions to 
pthreads

Introduction
The Compiler Parallel Support Library (CPSlib) is a library of thread 
management and synchronization routines that was initially developed 
to control parallelism on HP’s legacy multinode systems.  Most programs 
fully exploited their parallelism using higher-level devices such as 
automatic parallelization, compiler directives, and message-passing. 
CPSlib, however, provides a lower-level interface for the few cases that 
required it.

With the introduction of the V2250 series server, HP recommends the 
use of POSIX threads (pthreads) for purposes of thread management and 
parallelism. Pthreads provide portability for programmers who want to 
use their applications on multiple platforms.

This appendix describes how CPSlib functions map to pthread functions, 
and how to write a pthread program to perform the same tasks as CPSlib 
functions.  Topics included in this chapter include:

• Accessing pthreads

• Symmetric parallelism

• Asymmetric parallelism

• Synchronization using high-level functions

• Synchronization using low-level functions



310 Appendix A 

Porting CPSlib functions to pthreads
Introduction

Accessing pthreads
When you use pthreads routines, your program must include the 
<pthread.h> header file and the pthreads library must be explicitly 
linked to your program.

For example, assume the program prog.c contains calls to pthreads 
routines.  To compile the program so that it links in the pthreads library, 
issue the following command:

% cc -D_POSIX_C_SOURCE=199506L prog.c -lpthread

The -D_POSIX_C_SOURCE=199506L string indicates the appropriate 
POSIX revision level.  In the example above, the level is indicated as 
199506L.



Appendix A 311

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

Mapping CPSlib functions to pthreads
Table 63 shows the mapping of the CPSlib functions to pthread 
functions. Where applicable, a pthread function is listed as 
corresponding to the appropriate CPSlib function.  For instances where 
there is no corresponding pthread function, pthread examples that 
mimic CPSlib functionality are provided.

The CPSlib functions are grouped by type: barriers, informational, low-
level locks, low-level counter semaphores, symmetrics and asymmetrics, 
and mutexes.

Table 63 CPSlib library functions to pthreads mapping

CPSlib 
function

Maps to pthread 
function

Symmetric parallel functions

cps_nsthreads N/A

See “Symmetric parallelism” on page 318 for more 
information.

cps_ppcall N/A

See “Symmetric parallelism” on page 318 for more 
information.   Nesting is not supported in this example.

cps_ppcalln N/A

See “Symmetric parallelism” on page 318 for more 
information.

cps_ppcallv N/A

No example provided.

cps_stid N/A

See “Symmetric parallelism” on page 318 for more 
information.



312 Appendix A 

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_wait_attr N/A

See “Symmetric parallelism” on page 318 for more 
information.

Asymmetric parallel functions

cps_thread_create pthread_create

See “Asymmetric parallelism” on page 329 for more 
information.

cps_thread_createn pthread_create

Only supports passing of one argument.

See “Asymmetric parallelism” on page 329 for more 
information.

cps_thread_exit pthread_exit

See “Asymmetric parallelism” on page 329 for more 
information.

cps_thread_register_lock This function was formerly used in conjunction with 
m_lock. It is now obsolete, and is replaced with one call 
to pthread_join.

See “Asymmetric parallelism” on page 329  for more 
information.

cps_thread_wait N/A

No example available.

Informational

cps_complex_cpus pthread_num_processors_np

The HP pthread_num_processors_np function returns 
the number of processors on the machine.

CPSlib 
function

Maps to pthread 
function



Appendix A 313

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_complex_nodes N/A

This functionality can be added using the appropriate 
calls in your ppcall code.

cps_complex_nthreads N/A

This functionality can be added using the appropriate 
calls in your ppcall code.

cps_is_parallel N/A

See the ppcall.c example on page 318 for more 
information.

cps_plevel Because pthreads have no concept of levels, this function 
is obsolete. 

cps_set_threads N/A

See the ppcall.c example on page 318 for more 
information.

cps_topology Use pthread_num_processors_np() to set up your 
configuration as a single-node machine.

Synchronization using high-level barriers

cps_barrier N/A

See the my_barrier.c example in on page 332 for more 
information.

cps_barrier_alloc N/A

See the my_barrier.c example in on page 332 for more 
information.

CPSlib 
function

Maps to pthread 
function



314 Appendix A 

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_barrier_free N/A

See the my_barrier.c example in on page 332 for more 
information.

Synchronization using high-level mutexes

cps_limited_spin_mutex_
alloc

 pthread_mutex_init

The CPS mutex allocate functions allocated memory and 
initialized the mutex. When you use pthread mutexes, 
you must use pthread_mutex_init to allocate the 
memory and initialize it.

See pth_mutex.c on page 332 for a description of using 
pthreads.

cps_mutex_alloc pthread_mutex_init

The CPS mutex allocate functions allocated memory and 
initialized the mutex. When you use pthread mutexes, 
you must use pthread_mutex_init to allocate the 
memory and initialize it.

See pth_mutex.c on page 332 for a description of using 
pthreads.

cps_mutex_free pthread_mutex_destroy

cps_mutex_free formerly uninitalized the mutex, and 
called free to release memory. When using pthread 
mutexes, you must first call pthread_mutex_destroy.

See pth_mutex.c on page 332 for a description of using 
pthreads.

cps_mutex_lock pthread_mutex_lock

See pth_mutex.c on page 332 for a description of using 
pthreads.

CPSlib 
function

Maps to pthread 
function



Appendix A 315

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_mutex_trylock pthread_mutex_trylock

See pth_mutex.c on page 332 for a description of using 
pthreads.

cps_mutex_unlock pthread_mutex_unlock

See pth_mutex.c on page 332 for a description of using 
pthreads.

Synchronization using low-level locks

[mc]_cond_lock pthread_mutex_trylock

[mc]_free32 pthread_mutex_destroy

cps_mutex_free formerly uninitalized the mutex, and 
called free to release memory. When using pthread 
mutexes, you must call pthread_mutex_destroy.

[mc]_init32 pthread_mutex_init

[mc]_lock pthread_mutex_lock

[mc]_unlock pthread_mutex_unlock

Synchronization using low-level counter semaphores

[mc]_fetch32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

[mc]_fetch_and_add32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

[mc]_fetch_and_clear32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

CPSlib 
function

Maps to pthread 
function



316 Appendix A 

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

[mc]_fetch_and_dec32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

[mc]_fetch_and_inc32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

[mc]_fetch_and_set32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

[mc]_init32 N/A

See fetch_and_inc.c example on page 337 for a 
description of using pthreads.

CPSlib 
function

Maps to pthread 
function



Appendix A 317

Porting CPSlib functions to pthreads
Environment variables

Environment variables
Unlike CPSlib, pthreads does not use environment variables to establish 
thread attributes.  pthreads implements function calls to achieve the 
same results.  However, when using the HP compiler set, the 
environment variables below must be set to define attributes.

The table below describes the environment variables and how pthreads 
handles the same or similar tasks. 

The environment variables below must be set for use with the HP 
compilers if you are not explicitly using pthreads.

Table 64 CPSlib environment variables

Environment variable  Description How handled by pthreads

MP_NUMBER_OF_THREADS Sets the number of 
threads that the 
compiler allocates at 
startup time.

By default, under HP-UX you can 
create more threads than you 
have processors for.

MP_IDLE_THREADS_WAIT Indicates how idle 
compiler threads 
should wait.

The values can be:
-1 - spin wait;
 0 - suspend wait;
N - spin suspend where N > 0.

CPS_STACK_SIZE Tells the compiler 
what size stack to 
allocate for all it’s 
child threads. The 
default stacksize is 80 
Mbyte.

Pthreads allow you to set the 
stack size using attributes. The 
attribute call is 
pthread_attr_setstacksize.
The value of CPS_STACK_SIZE is 
specified in Kbytes.



318 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

Using pthreads
Some CPSlib functions map directly to existing pthread functions, as 
shown in Table 63 on page 311. However, certain CPSlib functions, such 
as cps_plevel, are obsolete in the scope of pthreads. While about half 
of the CPSlib functions do not map to pthreads, their tasks can be 
simulated by the programmer. 

The examples presented in the following sections demonstrate various 
constructs that can be programmed to mimic unmappable CPSlib 
functions in pthreads. The examples shown here are provided as a first 
step in replacing previous functionality provided by CPSlib with POSIX 
thread standard calls. 

This is not a tutorial in pthreads, nor do these examples describe 
complex pthreads operations, such as nesting. For a definitive 
description of how to use pthreads functions, see the book Threadtime by 
Scott Norton and Mark D. Dipasquale. 

Symmetric parallelism
Symmetric parallel threads are spawned in CPSlib using cps_ppcall() 
or cps_ppcalln().  There is no logical mapping of these CPSlib 
functions to pthread functions. However you can create a program, 
similar to the one shown in the ppcall.c example below, to achieve the 
same results.

This example also includes the following CPSlib thread information 
functions:

• my_nsthreads (a map created for cps_nthreads) returns the 
number of threads in the current spawn context.

• my_stid (a map created for cps_stid) returns the spawn thread ID 
of the calling thread.

The ppcall.c example performs other tasks associated with 
symmetrical thread processing, including the following:

• Allocates a cell barrier data structure based upon the number of 
threads in the current process by calling my_barrier_alloc



Appendix A 319

Porting CPSlib functions to pthreads
Using pthreads

• Provides a barrier for threads to “join” or synchronize after parallel 
work is completed by calling my_join_barrier

• Creates data structures for threads created using pthread_create

• Uses the CPS_STACK_SIZE environment variable to determine the 
stacksize

• Determines the number of threads to create by calling 
pthread_num_processors_np()

• Returns the number of threads  by calling my_nsthreads()

• Returns the is_parallel flag by calling my_is_parallel()

ppcall.c

/*
 * ppcall.c
 * function
 * Symmetric parallel interface to using pthreads 
 * called my_thread package.
 *
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <spp_prog_model.h>
#include <pthread.h>
#include <stdlib.h>
#include <errno.h>
#include "my_ppcall.h"

#define K 1024
#define MB K*K

struct thread_data {
int     stid;

        int     nsthreads;
        int      release_flag; r};
};

typedef struct thread_data thread_t;
typedef struct thread_data *thread_p;

#define WAIT_UNKNOWN0
#define WAIT_SPIN1
#define WAIT_SUSPEND2

#define MAX_THREADS64

#define W_CACHE_SIZE    8



320 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

#define B_CACHE_SIZE    32

typedef struct {
        int volatile    c_cell;
     int             c_pad[W_CACHE_SIZE-1];
} cell_t;

#define ICELL_SZ        (sizeof(int)*3+sizeof(char *))

struct cell_barrier {
     int               br_c_magic;             
     int volatile      br_c_release;
     char *            br_c_free_ptr;
     int               br_c_cell_cnt;
     char              br_c_pad[B_CACHE_SIZE-ICELL_SZ];
     cell_t            br_c_cells[1];
};

#define BR_CELL_T_SIZE(x) (sizeof(struct cell_barrier) +
 (sizeof(cell_t)*x))

/*
 * ALIGN - to align objects on specific alignments (usually on 
 * cache line boundaries.
 *
 * arguments
 *       obj- pointer object to align
 *       alignment- alignment to align obj on
 *
 * Notes:
 *      We cast obj to a long, so that this code will work in 
 *      either narrow or wide modes of the compilers.
 */
#define ALIGN(obj, alignment)\
   ((((long) obj) + alignment - 1) & ~(alignment - 1))

typedef struct cell_barrier * cell_barrier_t;

/*
 * File Variable Dictionary:
 *
 * my_thread_mutex- mutex to control access to the following:
 *   my_func, idle_release_flag, my_arg,
 *   my_call_thread_max, my_threads_are_init,
 *     my_threads_are_parallel.
 *
 *     idle_release_flag        - flag to release spinning
 *                                idle threads
 *     my_func                  - user specified function to call
 *     my_arg                   - argument to pass to my_func
 *     my_call_thread_max       - maximum number of threads
 *                                 needed on this ppcall
 *     my_threads_are_init      - my thread package init flag
 *     my_threads_are_parallel  - we are executing parallel
 *                                code flag
 *     my_thread_ids            - list of child thread ids



Appendix A 321

Porting CPSlib functions to pthreads
Using pthreads

 *     my_barrier            - barrier used by the join
 *     my_thread_ptr         - the current thread thread
                             - pointer in thread-private
 *                             memory.
 */

static pthread_mutex_tmy_thread_mutex = 
PTHREAD_MUTEX_INITIALIZER;
static int volatile         idle_release_flag = 0;
static void                 (*my_func)(void *);
static void                 *my_arg;
static int                  my_call_thread_max;
static int                  my_stacksize = 8*MB;
static int                  thread_count = 1;
static int                  my_threads_are_init = 0;
static int volatile         my_threads_are_parallel = 0;
static pthread_t            my_thread_ids[MAX_THREADS];
static cell_barrier_t       my_barrier;

static thread_p thread_private my_thread_ptr;

/*
 * my_barrier_alloc
 *   Allocate cell barrier data structure based upon the 
 *   number of threads that are in the current process.
 *
 * arguments
 *   brc  - pointer pointer to the user cell barrier
 *   n    - number of threads that will use this barrier
 *
 * return
 *   0- success
 *   -1- failed to allocate cell barrier
 */

static int
my_barrier_alloc(cell_barrier_t *brc, int n)
{
   cell_barrier_t b;
   char *p;
   int i;

/*
 * Allocate cell barrier for 'n' threads
 */
if ( (p = (char *) malloc(BR_CELL_T_SIZE(n))) == 0 )
return -1;

/*
 * Align the barrier on a cache line for maximum 
   performance.
*/
   



322 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

   b = (cell_barrier_t) ALIGN(p, B_CACHE_SIZE);
   b->br_c_magic = 0x4200beef;
   b->br_c_cell_cnt = n;   /* keep track of the # of threads */
   b->br_c_release = 0;    /* initialize release flag */
   b->br_c_free_ptr = p;   /* keep track of orginal malloc ptr */

   for(i = 0; i < n; i++ )
      b->br_c_cells[i].c_cell = 0;/* zero the cell flags */

   *brc = b;

    return 0;
}
/*
 * my_join_barrier
 *   Provide a barrier for all threads to sync up at, after 
 *   they have finished performing parallel work.
 *
 * arguments
 *    b       - pointer to cell barrier
 *    id      - id of the thread (need to be in the 
 *  range of 0 - (N-1), where N is the 
 *number of threads).

 * return
 *none
 */

static void
my_join_barrier(cell_barrier_t b, int id)
{
int i, key;

/*
 * Get the release flag value, before we signal that we 
 * are at the barrier.
 */
key = b->br_c_release;

if ( id == 0 ) {
/*
 * make thread 0 (i.e. parent thread) wait for the child
 * threads to show up.
 */
for( i = 1; i < thread_count; i++ ) {
/*
 * wait on the Nth cell
 */
while ( b->br_c_cells[i].c_cell == 0 )
/* spin */;

/*
 * We can reset the Nth cell now, 
 * because it is not being used anymore 
 * until the next barrier.
/*



Appendix A 323

Porting CPSlib functions to pthreads
Using pthreads

b->br_c_cells[i].c_cell = 0;
}

/*
 * signal all of the child threads to leave the barrier.
 */
++b->br_c_release;
} else {
/*
 * signal that the Nth thread has arrived at the barrier.
 */
b->br_c_cells[id].c_cell = -1;

while ( key == b->br_c_release )
/* spin */;
}
}

/*
 * idle_threads
 *   All of the process child threads will execute this 
 *   code. It is the idle loop where the child threads wait 
 *   for parallel work.
 * arguments
 *   thr- thread pointer
 *
 * algorithm:
 *   Initialize some thread specific data structures.
 *   Loop forever on the following:
 *      Wait until we have work.
 *      Get global values on what work needs to be done.
 *      Call user specified function with argument.
 *      Call barrier code to sync up all threads.
 */static void
idle_threads(thread_p thr)
{
/*
 * initialized the thread thread-private memory pointer.
 */
my_thread_ptr = thr;

   for(;;) {
      /*
       * threads spin here waiting for work to be assign
       * to them.
       */
       while( thr->release_flag == idle_release_flag )
         /* spin until idle_release_flag changes */;

       thr->release_flag = idle_release_flag;
       thr->nsthreads = my_call_thread_max;

      /*
       * call user function with their specified argument.
       */
      if ( thr->stid < my_call_thread_max )



324 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

         (*my_func)(my_arg);
      /*
       * make all threads join before they were to the idle

        loop.
 */
my_join_barrier(my_barrier, thr->stid);
   }
}
/** create_threads
 *   This routine creates all of the MY THREADS package data 
 *   structures and child threads.
 *
 *   arguments:
 *     none
 *
 *   return:
 *     none
 *
 * algorithm:
 *   Allocate data structures for a thread
 *   Create the thread via the pthread_create call.
 *   If the create call is successful, repeat until the 
 *   number of threads equal the number of processors.
 *
 */

static void
create_threads()
{
   pthread_attr_t attr;
   char *env_val;
   int i, rv, cpus, processors;
   thread_p thr;

   /*
    * allocate and initialize the thread structure for the 
    * parent thread.
    */
   if ( (thr = (thread_p) malloc(sizeof(thread_t))) == NULL ) {
      fprintf(stderr,"my_threads: Fatal error: can not 
      allocate memory for main thread\n");
      abort();
   }
   my_thread_ptr = thr;

   thr->stid = 0;
   thr->release_flag = 0;

  /*
   * initialize attribute structure
   */
   (void) pthread_attr_init(&attr);

  /*
   * Check to see if the CPS_STACK_SIZE env variable is defined.



Appendix A 325

Porting CPSlib functions to pthreads
Using pthreads

   * If it is, then use that as the stacksize.
   */
  if ( (env_val = getenv("CPS_STACK_SIZE")) != NULL ) {
     int val;
      val = atoi(env_val);
      if ( val > 128 )
         my_stacksize = val * K;
}

(void) pthread_attr_setstacksize(&attr,my_stacksize);

/*
 * determine how many threads we will create.
 */
processors = cpus = pthread_num_processors_np();
if ( (env_val = getenv("MP_NUMBER_OF_THREADS")) != NULL ) {
   int val;

   val = atoi(env_val);
   if ( val >= 1 )
      cpus = val;
}

for(i = 1; i < cpus && i < MAX_THREADS; i++ ) {
    /*
     * allocate and initialize thread data structure.
     */
    if ( (thr = (thread_p) malloc(sizeof(thread_t))) == NULL )
       break;

    thr->stid = i;
    thr->release_flag = 0;

    rv = pthread_create(&my_thread_ids[i-1], &attr, 
         (void *(*)(void *))idle_threads, (void *) thr);
    if ( rv != 0 ) {
       free(thr);
       break;
    }
    thread_count++;
    }

    my_threads_are_init = 1;

    my_barrier_alloc(&my_barrier, thread_count);

    /*
     * since we are done with this attribute, get rid of it.
     */
    (void) pthread_attr_destroy(&attr);
}

/*
 * my_ppcall
 *   Call user specified routine in parallel.
 *



326 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

 * arguments:
 *   max- maximum number of threads that are needed.
 *   func- user specified function to call
 *   arg- user specified argument to pass to func
 *
 * return:
 *   0- success
 *   -1- error
 *
 * algorithm:
 *   If we are already parallel, then return with an error 
 *   code. Allocate threads and internal data structures, 
 *   if this is the first call.
 *   Determine how many threads we need.
 *   Set global variables.
 *   Signal the child threads that they have parallel work. 
 *   At this point we signal all of the child threads and 
 *   let them determine if they need to take part in the 
 *   parallel call. Call the user specified function.
 *   Barrier call will sync up all threads.
 */

int
my_ppcall(int max, void (*func)(void *), void *arg)
{
    thread_p thr;
    int i, suspend;

    /*
     * check for error conditions
      */
    if ( max <= 0 || func == NULL )
       return EINVAL;

    if ( my_threads_are_parallel )
       return EAGAIN;

    (void) pthread_mutex_lock(&my_thread_mutex);
     if ( my_threads_are_parallel ) {
        (void) pthread_mutex_unlock(&my_thread_mutex);
        return EAGAIN;
    }

    /*
     * create the child threads, if they are not already created.
     */
    if ( !my_threads_are_init )
       create_threads();

    /*
     * set global variables to communicate to child threads.
     */
    if ( max > thread_count )
       my_call_thread_max = thread_count;
    else
       my_call_thread_max = max;



Appendix A 327

Porting CPSlib functions to pthreads
Using pthreads

    my_func = func;
    my_arg = arg;

     my_thread_ptr->nsthreads = my_call_thread_max;

     ++my_threads_are_parallel;

     /*
      * signal all of the child threads to exit the spin loop
      */
     ++idle_release_flag;

     (void) pthread_mutex_unlock(&my_thread_mutex);

     /*
      * call user func with user specified argument
      */
     (*my_func)(my_arg);

     /*
      * call join to make sure all of the threads are done doing
      * there work.
      */
     my_join_barrier(my_barrier, my_thread_ptr->stid);

     (void) pthread_mutex_lock(&my_thread_mutex);

     /*
      * reset the parallel flag
      */
     my_threads_are_parallel = 0;

     (void) pthread_mutex_unlock(&my_thread_mutex);

     return 0;
}

/*

* my_stid
 *   Return thread spawn thread id. This will be in the range 
 *   of 0 to N-1, where N is the number of threads in the 
 *   process.
 * arguments:
 *   none
 *
 * return
 *   spawn thread id
 */

int
my_stid(void)
{
return my_thread_ptr->stid;
}



328 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

/*
 * my_nsthreads
 *   Return the number of threads in the current spawn.
 *
 * arguments:
 *   none
 *
 * return
 *   number of threads in the current spawn
 */

int
my_nsthreads(void)
{
   return my_thread_ptr->nsthreads;
}

/*
 * my_is_parallel
 *   Return the is parallel flag
 *
 * arguments:
 *   none
 *
 * return
 *   1- if we are parallel
 *   0- otherwise
 */

int
my_is_parallel(void)
{
   int rv;

   /*
    * if my_threads_are_init is set, then we are parallel,
    * otherwise we not.
    */
   (void) pthread_mutex_lock(&my_thread_mutex);
    rv = my_threads_are_init;
   (void) pthread_mutex_unlock(&my_thread_mutex);

    return rv;
}

/*
 * my_complex_cpus
 *   Return the number of threads in the current process.
 *
 * arguments:
 *   none
 *
 * return
 *   number of threads created by this process
 */



Appendix A 329

Porting CPSlib functions to pthreads
Using pthreads

int
my_complex_cpus(void)
{
   int rv;

   /*
    * Return the number of threads that we current have.
    */
  (void) pthread_mutex_lock(&my_thread_mutex);
   rv = thread_count;
  (void) pthread_mutex_unlock(&my_thread_mutex);

   return rv;
}

Asymmetric parallelism
Asymmetric parallelism is used when each thread executes a different, 
independent instruction stream. Asymmetric threads are analogous to 
the Unix fork system call construct in that the threads are disjoined.

Some of the asymmetric CPSlib functions map to pthread functions, 
while others are no longer used, as noted below:

• cps_thread_create() spawned asymmetric threads and now maps 
to the pthread function pthread_create(). 

• cps_thread_createn(), which spawned asymmetric threads with 
multiple arguments, also maps to pthread_create(). However, 
pthread_create() only supports the passing of one argument.

• CPSlib terminated asymmetric threads using cps_thread_exit(), 
which now maps to the pthread function pthread_exit().

• cps_thread_register_lock has no corresponding pthread 
function. It was formerly used in conjunction with m_lock, both of 
which have been replaced with one call to pthread_join.

• cps_plevel(), the CPSlib function which determined the current 
level of parallelism, does not have a corresponding pthread function, 
because levels do not mean anything to pthreads. 

The first example in this section cps_create.c, provides an example of 
the above CPSlib functions being used to create asymmetric parallelism.



330 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

create.c

/*
 * create.c
 *        Show how to use all of the cps asymmetric functions.
 *
 */

#include <cps.h>

mem_sema_t wait_lock;

void
tfunc(void *arg)
{
           int i;

           /*
            * Register the wait_lock, so that the parent thread
            * can wait on us to exit.
            */
            (void) cps_thread_register_lock(&wait_lock);

            for( i = 0; i < 100000; i++ )
                 /* spin for a spell */;

            printf("tfunc: ktid = %d\n", cps_ktid());
            cps_thread_exit();
}

main()
{
            int node = 0;
            ktid_t ktid;

            /*
             * Initialize and lock the wait_lock.
             */
            m_init32(&wait_lock, &node);
            m_cond_lock(&wait_lock);

            ktid = cps_thread_create(&node, tfunc, NULL);

            /*
             * We wait for the wait_lock to be release. That is
             * how we know that the child thread
             * has terminated.
             */
            m_lock(&wait_lock);

            exit(0);
}



Appendix A 331

Porting CPSlib functions to pthreads
Using pthreads

pth_create.c

The example below shows how to use the pth_create.c function to 
map to asymmetric functions provided by the CPSlib example. 

/*
 * pth_create.c
 *          Show how to use all of the pthread functions that
            map to cps asymmetric functions.
 *
 *
 */
#include <pthread.h>

void
tfunc(void *arg)
{
            int i;

            for( i = 0; i < 100000; i++ )
                         /* spin for a spell */;

            printf("tfunc: ktid = %d\n", pthread_self());
            pthread_exit(0);
}

main()
{
            pthread_t ktid;
            int status;

            (void) pthread_create(&ktid, NULL, (void *(*)(void *)
               tfunc, NULL);

            /*
             * Wait for the child to terminate.
             */
           (void) pthread_join(ktid, NULL);

           exit(0);
}



332 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

Synchronization using high-level functions
This section demonstrates how to use barriers and mutexes to 
synchronize symmetrically parallel code.

Barriers
Implicit barriers are operations in a program where threads are 
restricted from completion based upon the status of the other threads. 
For example, in the ppcall.c example (on page 319), a join operation 
occurs after all spawned threads terminate and before the function 
returns. This type of implicit barrier is often the only type of barrier 
required.

The my_barrier.c example shown below provides a pthreads 
implementation of CPSlib barrier routines. This includes the following 
example functions:

• my_init_barrier is similar to the cps_barrier_alloc function 
in that it allocates the barrier (br) and sets its associated memory 
counter to zero.

• my_barrier, like the CPSlib function cps_barrier, operates as 
barrier wait routine. When the value of the shared counter is equal to 
the argument n (number of threads), the counter is set to zero.

• my_barrier-destroy, like cps_barrier_free, releases the 
barrier.

my_barrier.c
/*
 * my_barrier.c
 *Code to support a fetch and increment type barrier.
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <pthread.h>
#include <errno.h>

/*
 * barrier
 *    magic          barrier valid flag
 *    counter        shared counter between threads
 *    release        shared release flag, used to signal waiting 
 *                   threads to stop waiting.
 *    lock           binary semaphore use to control read/write 



Appendix A 333

Porting CPSlib functions to pthreads
Using pthreads

 *                   access to counter and write access to
 *                   release.
 */

struct barrier {
   int               magic;
   int volatile      counter;
   int volatile      release;
   pthread_mutex_t   lock;
};

#define VALID_BARRIER        0x4242beef
#define INVALID_BARRIER      0xdeadbeef

typedef struct barrier barrier_t;
typedef struct barrier *barrier_p;

/*
 * my_barrier_init
 *    Initialized a barrier for use.
 *
 * arguments
 *    br- pointer to the barrier to be initialize.
 *
 * return
 *    0- success
 *    >0- error code of failure.
 */

int
my_barrier_init(barrier_p *br)
{
   barrier_p b, n;
   int rv;

   b = (barrier_p) *br;

   if ( b != NULL ) 
      return EINVAL;

   if ( (n = (barrier_p) malloc(sizeof(*n))) == NULL )
      return ENOMEM;

   if ( (rv = pthread_mutex_init(&n->lock, NULL)) != 0 )
      return rv;

   n->magic = VALID_BARRIER;
   n->counter = 0;
   n->release = 0;

   *br = n;

   return 0;
}

/*



334 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

 * my_barrier
 *    barrier wait routine.
 *
 * arguments
 *   br         - barrier to wait on
 *   n          - number of threads to wait on
 *
 * return
 *   0          - success
 *   EINVAL     - invalid arguments
 */
int
my_barrier(barrier_p br, int n)
{
     int rv;
     int key;

     if ( br == NULL || br->magic != VALID_BARRIER )
     return EINVAL;

     pthread_mutex_lock(&br->lock);

     key = br->release;/* get release flag */
     rv = br->counter++;/* fetch and inc shared counter */

     /*
      * See if we are the last thread into the barrier
      */
if ( rv == n-1 ) {
/*
 * We are the last thread, so clear the counter
 
 * and signal the other threads by changing the
 * release flag.
 */
br->counter = 0;
++br->release;
pthread_mutex_unlock(&br->lock);
} else {
pthread_mutex_unlock(&br->lock);

/*
 * We are not the last thread, so wait 
 * until the release flag changes.
 */
while( key == br->release )
/* spin */;
}

return 0;
}

/*
 * my_barrier_destroy
 *destroy a barrier
 *



Appendix A 335

Porting CPSlib functions to pthreads
Using pthreads

 * arguments
 *b- barrier to destory
 *
 * return
 *0- success
 *> 0 - error code for why can not destroy barrier
 */

int
my_barrier_destroy(barrier_p *b)
{
barrier_p br = (barrier_p) *b;
int rv;

if ( br == NULL || br->magic != VALID_BARRIER )
return EINVAL;

if ( (rv = pthread_mutex_destroy(&br->lock)) != 0 )
return rv;

br->magic = INVALID_BARRIER;
br->counter = 0;
br->release = 0;

*b = NULL;

return 0;
}

Mutexes
Mutexes (binary semaphores) allow threads to control access to shared 
data and resources. The CPSlib mutex functions map directly to existing 
pthread mutex functions as shown in Table 63 on page 311. The example 
below, pth_mutex.c, shows a basic pthread mutex program using the 
pthread_mutex_init, pthread_mutex_lock, 
pthread_mutex_trylock, and pthread_mutex_unlock.

There are some differences between the behavior of CPSlib mutex 
functions and low-level locks (cache semaphores and memory 
semaphores) and the behavior of pthread mutex functions, as described 
below:

• CPS cache and memory semaphores do not perform deadlock 
detection.

• The default pthread mutex does not perform deadlock detection 
under HP-UX. This may be different from other operating systems. 
pthread_mutex_lock will only detect deadlock if the mutex is of the 
type PTHREAD_MUTEX_ERRORCHECK.



336 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

• All of the CPSlib unlock routines allow other threads to release a lock 
that they do not own. This is not true with pthread_mutex_unlock. 
If you do this with pthread_mutex_unlock, it will result in 
undesirable behavior.

pth_mutex.c
/*
 * pth_mutex.c
 * Demostrate pthread mutex calls.
 *
 * Notes when switching from cps mutex, cache semaphore or 
 * memory semaphores to pthread mutex:
 *
 *1) Cps cache and memory semaphores did no checking.
 *2) All of the cps semaphore unlock routines allow 
 *   other threads to release a lock that they do not 
 *   own. This is not the case with 
 *   pthread_mutex_unlock. It is either a error or a
 *   undefinedbehavior.
 *3) The default pthread mutex does not do deadlock 
 *   detection under HP-UX (this can be different on
     other operation systems).
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <pthread.h>
#include <errno.h>

pthread_mutex_t counter_lock;
int volatile counter = 0;

void
tfunc()
{
   (void) pthread_mutex_lock(&counter_lock);
   ++counter;
   (void) pthread_mutex_unlock(&counter_lock);
}

main()
{
   pthread_t tid;

   if ( (errno = pthread_mutex_init(&counter_lock, NULL)) != 0 ) 
{
     perror("pth_mutex: pthread_mutex_init failed");
     abort();
}

   if ( (errno = pthread_create(&tid, NULL, (void *(*)(void *))
     tfunc, NULL)) != 0 ) {



Appendix A 337

Porting CPSlib functions to pthreads
Using pthreads

        perror("pth_mutex: pthread_create failed");
        abort();
}

tfunc();

(void) pthread_join(tid, NULL);

   if ( (errno = pthread_mutex_destroy(&counter_lock)) != 0 ) {
      perror("pth_mutex: pthread_mutex_destroy failed");
      abort();
}

   if ( counter != 2 ) {
      errno = EINVAL;
      perror("pth_mutex: counter value is wrong");
      abort();
}
   printf("PASSED\n");
   exit(0);
}

Synchronization using low-level functions
This section demonstrates how to use semaphores to synchronize 
symmetrically parallel code. This includes functions, such as low-level 
locks, for which there are pthread mappings, and low-level counter 
semaphores for which there are no pthread mappings. In this instance, 
an example is provided so that you can create a program to emulate 
CPSlib functions, using pthreads.

Low-level locks
The disposition of CPSlib’s low-level locking functions is handled by the 
pthread mutex functions (as described in Table 63 on page 311). See 
“Mutexes” on page 335 for an example of how to use pthread mutexes.

Low-level counter semaphores
The CPSlib [mc]_init32 routines allocate and set the low-level CPSlib 
semaphores to be used as counters. There are no pthread mappings for 
these functions. However, a pthread example is provided below.

This example, fetch_and_inc.c, documents the following tasks:

• my_init allocates a counter semaphore and initializes the counter 
associated with it (p) to a value.



338 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

• my_fetch_and_clear returns the current value of the counter 
associated with the semaphore and clears the counter.

• my_fetch_and_inc increments the value of the counter associated 
with the semaphore and returns the old value.

• my_fetch_and_dec decrements the value of the counter associated 
with the semaphore and returns the old value.

• my_fetch_and_add adds a value (int val) to the counter associated 
with the semaphore and returns the old value of the integer.

• my_fetch_and_set returns the current value of the counter 
associated with the semaphore, and sets the semaphore to the new 
value contained in int val.

The [mc]_init32 routines allocate and set the low-level cps 
semaphores to be used as either counters or locks.  An example for 
counters provides pthread implementation in the place of the following 
CPSlib functions: 

• [mc]fetch32

• [mc]_fetch_and_clear32

• [mc]_fetch_and_inc32

• [mc]_fetch_and_dec32

• [mc]_fetch_and_add32

• [mc]_fetch_and_set32

fetch_and_inc.c
/*
 * fetch_and_inc
 *    How to support fetch_and_inc type semaphores using pthreads
 *
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <pthread.h>
#include <errno.h>

struct fetch_and_inc {
   int volatilevalue;
   pthread_mutex_tlock;



Appendix A 339

Porting CPSlib functions to pthreads
Using pthreads

};

typedef struct fetch_and_inc fetch_and_inc_t;
typedef struct fetch_and_inc *fetch_and_inc_p;

int
my_init(fetch_and_inc_p *counter, int val)
{
   fetch_and_inc_p p;
   int rv;

   if ( (p = (fetch_and_inc_p) malloc(sizeof(*p))) == NULL )
       return ENOMEM;

   if ( (rv = pthread_mutex_init(&p->lock, NULL)) != 0 )
       return rv;

   p->value = val;

   *counter = p;

   return 0;
}

int
my_fetch(fetch_and_inc_p counter)
{
   int rv;

   pthread_mutex_lock(&counter->lock);

   rv = counter->value;

   pthread_mutex_unlock(&counter->lock);

   return rv;
}

int
my_fetch_and_clear(fetch_and_inc_p counter)
{
   int rv;

   pthread_mutex_lock(&counter->lock);

   rv = counter->value;
   counter->value = 0;

   pthread_mutex_unlock(&counter->lock);

   return rv;
}

int
my_fetch_and_inc(fetch_and_inc_p counter)
{



340 Appendix A 

Porting CPSlib functions to pthreads
Using pthreads

   int rv;

   pthread_mutex_lock(&counter->lock);

   rv = counter->value++;

   pthread_mutex_unlock(&counter->lock);

   return rv;
}

int
my_fetch_and_dec(fetch_and_inc_p counter)
{
   int rv;

   pthread_mutex_lock(&counter->lock);

   rv = counter->value--;

   pthread_mutex_unlock(&counter->lock);

   return rv;
}

int
my_fetch_and_add(fetch_and_inc_p counter, int val)
{
   int rv;

   pthread_mutex_lock(&counter->lock);

   rv = counter->value;
   counter->value += val;

   pthread_mutex_unlock(&counter->lock);

   return rv;
}

int
my_fetch_and_set(fetch_and_inc_p counter, int val)
{
   int rv;

   pthread_mutex_lock(&counter->lock);

   rv = counter->value;
   counter->value = val;

   pthread_mutex_unlock(&counter->lock);

   return rv;
}



Glossary 341

Glossary

absolute address An address 
that does not undergo virtual-to-
physical address translation when 
used to reference memory or the
I/O register area.

accumulator A variable used to 
accumulate value. Accumulators 
are typically assigned a function of 
themselves, which can create 
dependences when done in loops.

actual argument In Fortran, a 
value that is passed by a call to a 
procedure (function or subroutine). 
The actual argument appears in 
the source of the calling procedure; 
the argument that appears in the 
source of the called procedure is a 
dummy argument. C and C++ 
conventions refer to actual 
arguments as actual parameters.

actual parameter In C and 
C++, a value that is passed by a 
call to a procedure (function). The 
actual parameter appears in the 
source of the calling procedure; the 
parameter that appears in the 
source of the called procedure is a 
formal parameter. Fortran 
conventions refer to actual 
parameters as actual arguments.

address A number used by the 
operating system to identify a 
storage location. 

address space Memory space, 
either physical or virtual, available 
to a process.

alias An alternative name for 
some object, especially an 
alternative variable name that 
refers to a memory location. 
Aliases can cause data 
dependences, which prevent the 
compiler from parallelizing parts 
of a program. 

alignment A condition in which 
the address, in memory, of a given 
data item is integrally divisible by 
a particular integer value, often 
the size of the data item itself. 
Alignment simplifies the 
addressing of such data items.

allocatable array In Fortran 
90, a named array whose rank is 
specified at compile time, but 
whose bounds are determined at 
run time.

allocate An action performed by 
a program at runtime in which 
memory is reserved to hold data of 
a given type. In Fortran 90, this is 
done through the creation of 
allocatable arrays. In C, it is done 
through the dynamic creation of 
memory blocks using malloc. In 
C++, it is done through the 
dynamic creation of memory blocks 
using malloc or new.



342 Glossary 

ALU Arithmetic logic unit. A 
basic element of the central 
processing unit (CPU) where 
arithmetic and logical operations 
are performed.

Amdahl’s law A statement that 
the ultimate performance of a 
computer system is limited by the 
slowest component. In the context 
of HP servers this is interpreted to 
mean that the serial component of 
the application code will restrict 
the maximum speed-up that is 
achievable.

American National Standards 
Institute (ANSI) A repository 
and coordinating agency for 
standards implemented in the U.S. 
Its activities include the 
production of Federal Information 
Processing (FIPS) standards for 
the Department of Defense (DoD).

ANSI See American National 
Standards Institute. 

apparent recurrence A 
condition or construct that fails to 
provide the compiler with 
sufficient information to determine 
whether or not a recurrence exists. 
Also called a potential recurrence.

argument In Fortran, either a 
variable declared in the argument 
list of a procedure (function or 
subroutine) that receives a value 
when the procedure is called 
(dummy argument) or the variable 
or constant that is passed by a call 
to a procedure (actual argument). 
C and C++ conventions refer to 
arguments as parameters.

arithmetic logic unit (ALU) A 
basic element of the central 
processing unit (CPU) where 
arithmetic and logical operations 
are performed.

array An ordered structure of 
operands of the same data type. 
The structure of an array is 
defined by its rank, shape, and 
data type.

array section A Fortran 90 
construct that defines a subset of 
an array by providing starting and 
ending elements and strides for 
each dimension. For an array 
A(4,4), A(2:4:2,2:4:2) is an 
array section containing only the 
evenly indexed elements A(2,2), 
A(4,2), A(2,4), and A(4,4).

array-valued argument In 
Fortran 90, an array section that is 
an actual argument to a 
subprogram.

ASCII American Standard Code 
for Information Interchange. This 
encodes printable and non-
printable characters into a range 
of integers.

assembler A program that 
converts assembly language 
programs into executable machine 
code.

assembly language A 
programming language whose 
executable statements can each be 
translated directly into a 
corresponding machine instruction 
of a particular computer system.



Glossary 343

automatic array In Fortran, an 
array of explicit rank that is not a 
dummy argument and is declared 
in a subprogram.

bandwidth A measure of the 
rate at which data can be moved 
through a device or circuit. 
Bandwidth is usually measured in 
millions of bytes per second 
(Mbytes/sec) or millions of bits per 
second (Mbits/sec).

bank conflict An attempt to 
access a particular memory bank 
before a previous access to the 
bank is complete, or when the 
bank is not yet finished recycling 
(i.e., refreshing).

barrier A structure used by the 
compiler in barrier 
synchronization. Also sometimes 
used to refer to the construct used 
to implement barrier 
synchronization. See also barrier 
synchronization.

barrier synchronization A 
control mechanism used in parallel 
programming that ensures all 
threads have completed an 
operation before continuing 
execution past the barrier in 
sequential mode. On HP servers, 
barrier synchronization can be 
automated by certain CPSlib 
routines and compiler directives. 
See also barrier.

basic block A linear sequence of 
machine instructions with a single 
entry and a single exit.

bit A binary digit.

blocking factor Integer 
representing the stride of the outer 
strip of a pair of loops created by 
blocking.

branch A class of instructions 
which change the value of the 
program counter to a value other 
than that of the next sequential 
instruction.

byte A group of contiguous bits 
starting on an addressable 
boundary. A byte is 8 bits in 
length.

cache A small, high-speed buffer 
memory used in modern computer 
systems to hold temporarily those 
portions of the contents of the 
memory that are, or are believed to 
be, currently in use. Cache 
memory is physically separate 
from main memory and can be 
accessed with substantially less 
latency. HP servers employ 
separate data and instruction 
cache memories.

cache, direct mapped A form 
of cache memory that addresses 
encached data by a function of the 
data’s virtual address. On V2250 
servers, the processor cache 
address is identical to the least-
significant 21 bits of the data’s 
virtual address. This means cache 
thrashing can occur when the 
virtual addresses of two data items 
are an exact multiple of 2 Mbyte 
(21 bits) apart. 

cache hit A cache hit occurs if 
data to be loaded is residing in the 
cache.



344 Glossary 

cache line A chunk of 
contiguous data that is copied into 
a cache in one operation. On V2250 
servers, processor cache lines are 
32 bytes 

cache memory A small, high-
speed buffer memory used in 
modern computer systems to hold 
temporarily those portions of the 
contents of the memory that are, or 
are believed to be, currently in use. 
Cache memory is physically 
separate from main memory and 
can be accessed with substantially 
less latency. V2250 servers employ 
separate data and instruction 
caches.

cache miss A cache miss occurs 
if data to be loaded is not residing 
in the cache.

cache purge The act of 
invalidating or removing entries in 
a cache memory.

cache thrashing Cache 
thrashing occurs when two or more 
data items that are frequently 
needed by the program map to the 
same cache address. In this case, 
each time one of the items is 
encached it overwrites another 
needed item, causing constant 
cache misses and impairing data 
reuse. Cache thrashing also occurs 
when two or more threads are 
simultaneously writing to the 
same cache line.

central processing unit 
(CPU) The central processing 
unit (CPU) is that portion of a 
computer that recognizes and 
executes the instruction set.

clock cycle The duration of the 
square wave pulse sent throughout 
a computer system to synchronize 
operations. 

clone A compiler-generated copy 
of a loop or procedure. When the 
HP compilers generate code for a 
parallelizable loop, they generate 
two versions: a serial clone and a 
parallel clone. See also dynamic 
selection.

code A computer program, 
either in source form or in the form 
of an executable image on a 
machine.

coherency A term frequently 
applied to caches. If a data item is 
referenced by a particular 
processor on a multiprocessor 
system, the data is copied into that 
processor’s cache and is updated 
there if the processor modifies the 
data. If another processor 
references the data while a copy is 
still in the first processor’s cache, a 
mechanism is needed to ensure 
that the second processor does not 
use an outdated copy of the data 
from memory. The state that is 
achieved when both processors’ 
caches always have the latest 
value for the data is called cache 
coherency. On multiprocessor 
servers an item of data may reside 
concurrently in several processors’ 
caches.

column-major order Memory 
representation of an array such 
that the columns are stored 
contiguously. For example, given a 
two-dimensional array A(3,4), 
the array element A(3,1) 
immediately precedes element 



Glossary 345

A(1,2) in memory. This is the 
default storage method for arrays 
in Fortran.

compiler A computer program 
that translates computer code 
written in a high-level 
programming language, such as 
Fortran, into equivalent machine 
language.

concurrent In parallel 
processing, threads that can 
execute at the same time are called 
concurrent threads.

conditional induction 
variable A loop induction 
variable that is not necessarily 
incremented on every iteration.

constant folding Replacement 
of an operation on constant 
operands with the result of the 
operation.

constant propagation The 
automatic compile-time 
replacement of variable references 
with a constant value previously 
assigned to that variable. Constant 
propagation is performed within a 
single procedure by conventional 
compilers.

conventional compiler A 
compiler that cannot perform 
interprocedural optimization. 

counter A variable that is used 
to count the number of times an 
operation occurs.

CPA CPU Agent. The gate array 
on V2250 servers that provides a 
high-speed interface between pairs 
of PA-RISC processors and the 
crossbar. Also called the CPU 
Agent and the agent.

CPU Central processing unit. 
The central processing unit (CPU) 
is that portion of a computer that 
recognizes and executes the 
instruction set.

CPU Agent The gate array on 
V2250 servers that provides a 
high-speed interface between pairs 
of PA-RISC processors and the 
crossbar.

CPU-private memory Data 
that is accessible by a single 
thread only (not shared among the 
threads constituting a process). A 
thread-private data object has a 
unique virtual address which maps 
to a unique physical address. 
Threads access the physical copies 
of thread-private data residing on 
their own hypernode when they 
access thread-private virtual 
addresses. 

CPU time The amount of time 
the CPU requires to execute a 
program. Because programs share 
access to a CPU, the wall-clock 
time of a program may not be the 
same as its CPU time. If a program 
can use multiple processors, the 
CPU time may be greater than the 
wall-clock time. (See wall-clock 
time.)

critical section A portion of a 
parallel program that can be 
executed by only one thread at a 
time. 

crossbar A switching device 
that connects the CPUs, banks of 
memory, and I/O controller on a 
single hypernode of a V2250 
server. Because the crossbar is 
nonblocking, all ports can run at 



346 Glossary 

full bandwidth simultaneously, 
provided there is not contention for 
a particular port.

CSR Control/Status Register. A 
CSR is a software-addressable 
hardware register used to hold 
control information or state.

data cache (Dcache) A small 
cache memory with a fast access 
time. This cache holds prefetched 
and current data. On V2250 
servers, processors have 2-Mbyte 
off-chip caches. See also cache, 
direct mapped.

data dependence A 
relationship between two 
statements in a program, such that 
one statement must precede the 
other to produce the intended 
result. (See also loop-carried 
dependence (LCD) and loop-
independent dependence (LID).)

data localization
Optimizations designed to keep 
frequently used data in the 
processor data cache, thus 
eliminating the need for more 
costly memory accesses.

data type A property of a data 
item that determines how its bits 
are grouped and interpreted. For 
processor instructions, the data 
type identifies the size of the 
operand and the significance of the 
bits in the operand. Some example 
data types include INTEGER, int, 
REAL, and float.

Dcache Data cache. A small 
cache memory with a one clock 
cycle access time under pipelined 
conditions. This cache holds 

prefetched and current data.On 
V2250 servers, this cache is 2 
Mbytes.

deadlock A condition in which a 
thread waits indefinitely for some 
condition or action that cannot, or 
will not, occur.

direct memory access (DMA)
A method for gaining direct access 
to memory and achieving data 
transfers without involving the 
CPU.

distributed memory A memory 
architecture used in multi-CPU 
systems, in which the system’s 
memory is physically divided 
among the processors. In most 
distributed-memory architectures, 
memory is accessible from the 
single processor that owns it. 
Sharing of data requires explicit 
message passing. 

distributed part A loop 
generated by the compiler in the 
process of loop distribution.

DMA Direct memory access. A 
method for gaining direct access to 
memory and achieving data 
transfers without involving the 
CPU.

double A double-precision 
floating-point number that is 
stored in 64 bits in C and C++.

doubleword A primitive data 
operand which is 8 bytes (64 bits) 
in length. Also called a longword. 
See also word.

dummy argument In Fortran, a 
variable declared in the argument 
list of a procedure (function or 
subroutine) that receives a value 



Glossary 347

when the procedure is called. The 
dummy argument appears in the 
source of the called procedure; the 
parameter that appears in the 
source of the calling procedure is 
an actual argument. C and C++ 
conventions refer to dummy 
arguments as formal parameters.

dynamic selection The process 
by which the compiler chooses the 
appropriate runtime clone of a 
loop. See also clone.

encache To copy data or 
instructions into a cache.

exception A hardware-detected 
event that interrupts the running 
of a program, process, or system. 
See also fault.

execution stream A series of 
instructions executed by a CPU.

fault A type of interruption 
caused by an instruction 
requesting a legitimate action that 
cannot be carried out immediately 
due to a system problem.

floating-point A numerical 
representation of a real number. 
On V2250 servers, a floating point 
operand has a sign (positive or 
negative) part, an exponent part, 
and a fraction part. The fraction is 
a fractional representation. The 
exponent is the value used to 
produce a power of two scale factor 
(or portion) that is subsequently 
used to multiply the fraction to 
produce an unsigned value.

FLOPS Floating-point 
operations per second. A standard 
measure of computer processing 
power in the scientific community. 

formal parameter In C and 
C++, a variable declared in the 
parameter list of a procedure 
(function) that receives a value 
when the procedure is called. The 
formal parameter appears in the 
source of the called procedure; the 
parameter that appears in the 
source of the calling procedure is 
an actual parameter. Fortran 
conventions refer to formal 
parameters as dummy arguments. 

Fortran A high-level software 
language used mainly for scientific 
applications.

Fortran 90 The international 
standard for Fortran adopted in 
1991.

function A procedure whose call 
can be imbedded within another 
statement, such as an assignment 
or test. Any procedure in C or C++ 
or a procedure defined as a 
FUNCTION in Fortran. 

functional unit (FU) A part of 
a CPU that performs a set of 
operations on quantities stored in 
registers.

gate A construct that restricts 
execution of a block of code to a 
single thread. A thread locks a 
gate on entering the gated block of 
code and unlocks the gate on 
exiting the block. When the gate is 
locked, no other threads can enter. 
Compiler directives can be used to 
automate gate constructs; gates 
can also be implemented using 
semaphores.

Gbyte See gigabyte.



348 Glossary 

gigabyte 1073741824 (230) 
bytes.

global optimization A 
restructuring of program 
statements that is not confined to a 
single basic block. Global 
optimization, unlike 
interprocedural optimization, is 
confined to a single procedure. 
Global optimization is done by HP 
compilers at optimization level +O2 
and above.

global register allocation 
(GRA) A method by which the 
compiler attempts to store 
commonly-referenced scalar 
variables in registers throughout 
the code in which they are most 
frequently accessed.

global variable A variable 
whose scope is greater than a 
single procedure. In C and C++ 
programs, a global variable is a 
variable that is defined outside of 
any one procedure. Fortran has no 
global variables per se, but COMMON 
blocks can be used to make certain 
memory locations globally 
accessible.

granularity In the context of 
parallelism, a measure of the 
relative size of the computation 
done by a thread or parallel 
construct. Performance is 
generally an increasing function of 
the granularity. In higher-level 
language programs, possible sizes 
are routine, loop, block, statement, 
and expression. Fine granularity 
can be exhibited by parallel loops, 
tasks and expressions, Coarse 
granularity can be exhibited by 
parallel processes.

hand-rolled loop A loop, more 
common in Fortran than C or C++, 
that is constructed using IF tests 
and GOTO statements rather than 
a language-provided loop structure 
such as DO.

hidden alias An alias that, 
because of the structure of a 
program or the standards of the 
language, goes undetected by the 
compiler. Hidden aliases can result 
in undetected data dependences, 
which may result in wrong 
answers.

High Performance Fortran 
(HPF) An ad-hoc language 
extension of Fortran 90 that 
provides user-directed data 
distribution and alignment. HPF is 
not a standard, but rather a set of 
features desirable for parallel 
programming.

hoist An optimization process 
that moves a memory load 
operation from within a loop to the 
basic block preceding the loop.

HP Hewlett-Packard, the 
manufacturer of the PA-RISC 
chips used as processors in V2250 
servers.

HP-UX Hewlett-Packard’s Unix-
based operating system for its 
PA-RISC workstations and 
servers.

hypercube A topology used in 
some massively parallel processing 
systems. Each processor is 
connected to its binary neighbors. 
The number of processors in the 
system is always a power of two; 
that power is referred to as the 
dimension of the hypercube. For 



Glossary 349

example, a 10-dimensional 
hypercube has 210, or 1,024 
processors.

hypernode A set of processors 
and physical memory organized as 
a symmetric multiprocessor (SMP) 
running a single image of the 
operating system. Nonscalable 
servers and V2250 servers consist 
of one hypernode. When discussing 
multidimensional parallelism or 
memory classes, hypernodes are 
generally called nodes.

Icache Instruction cache. This 
cache holds prefetched instructions 
and permits the simultaneous 
decoding of one instruction with 
the execution of a previous 
instruction. On V2250 servers, this 
cache is 2 Mbytes.

IEEE Institute for Electrical and 
Electronic Engineers. An 
international professional 
organization and a member of 
ANSI and ISO.

induction variable A variable 
that changes linearly within the 
loop, that is, whose value is 
incremented by a constant amount 
on every iteration. For example, in 
the following Fortran loop, I, J and 
K are induction variables, but L is 
not.

DO I = 1, N
   J = J + 2
   K = K + N
   L = L + I
ENDDO

inlining The replacement of a 
procedure (function or subroutine) 
call, within the source of a calling 
procedure, by a copy of the called 
procedure’s code.

Institute for Electrical and 
Electronic Engineers (IEEE)
An international professional 
organization and a member of 
ANSI and ISO.

instruction One of the basic 
operations performed by a CPU.

instruction cache (Icache)  
This cache holds prefetched 
instructions and permits the 
simultaneous decoding of one 
instruction with the execution of a 
previous instruction. On V2250 
servers, this cache is 2 Mbytes.

instruction mnemonic A 
symbolic name for a machine 
instruction.

integral division Division that 
results in a whole number solution 
with no remainder. For example, 
10 is integrally divisible by 2, but 
not by 3.

interface A logical path 
between any two modules or 
systems. 

interleaved memory Memory 
that is divided into multiple banks 
to permit concurrent memory 
accesses. The number of separate 
memory banks is referred to as the 
memory stride. 

interprocedural 
optimization Automatic 
analysis of relationships and 
interfaces between all subroutines 
and data structures within a 



350 Glossary 

program. Traditional compilers 
analyze only the relationships 
within the procedure being 
compiled. 

interprocessor 
communication The process of 
moving or sharing data, and 
synchronizing operations between 
processors on a multiprocessor 
system. 

intrinsic A function or 
subroutine that is an inherent part 
of a computer language. For 
example, SIN is a Fortran 
intrinsic.

job scheduler That portion of 
the operating system that 
schedules and manages the 
execution of all processes.

join The synchronized 
termination of parallel execution 
by spawned tasks or threads.

jump Departure from normal 
one-step incrementing of the 
program counter.

kbyte See kilobyte.

kernel The core of the operating 
system where basic system 
facilities, such as file access and 
memory management functions, 
are performed.

kernel thread identifier 
(ktid) A unique integer identifier 
(not necessarily sequential) 
assigned when a thread is created.

kilobyte 1024 (210) bytes.

latency The time delay between 
the issuing of an instruction and 
the completion of the operation. A 
common benchmark used for 

comparing systems is the latency 
of coherent memory access 
instructions. This particular 
latency measurement is believed to 
be a good indication of the 
scalability of a system; low latency 
equates to low system overhead as 
system size increases.

linker A software tool that 
combines separate object code 
modules into a single object code 
module or executable program.

load An instruction used to move 
the contents of a memory location 
into a register.

locality of reference An 
attribute of a memory reference 
pattern that refers to the 
likelihood of an address of a 
memory reference being physically 
close to the CPU making the 
reference.

local optimization
Restructuring of program 
statements within the scope of a 
basic block. Local optimization is 
done by HP compilers at 
optimization level +O1 and above.

localization Data localization. 
Optimizations designed to keep 
frequently used data in the 
processor data cache, thus 
eliminating the need for more 
costly memory accesses.

logical address Logical address 
space is that address as seen by 
the application program.

logical memory Virtual 
memory. The memory space as 
seen by the program, which may be 
larger than the available physical 



Glossary 351

memory. The virtual memory of a 
V2250 server can be up to 16 
Tbytes. HP-UX can map this 
virtual memory to a smaller set of 
physical memory, using disk space 
to make up the difference if 
necessary. Also called 
virtual memory.

longword (l) Doubleword. A 
primitive data operand which is 8 
bytes (64 bits) in length. See also 
word.

loop blocking A loop 
transformation that strip mines 
and interchanges a loop to provide 
optimal reuse of the encachable 
loop data.

loop-carried dependence 
(LCD) A dependence between 
two operations executed on 
different iterations of a given loop 
and on the same iteration of all 
enclosing loops. A loop carries a 
dependence from an indexed 
assignment to an indexed use if, 
for some iteration of the loop, the 
assignment stores into an address 
that is referred to on a different 
iteration of the loop.

loop constant A constant or 
expression whose value does not 
change within a loop.

loop distribution The 
restructuring of a loop nest to 
create simple loop nests. Loop 
distribution creates two or more 
loops, called distributed parts, 
which can serve to make 
parallelization more efficient by 
increasing the opportunities for 
loop interchange and isolating code 
that must run serially from 

parallelizable code. It can also 
improve data localization and 
other optimizations.

loop-independent dependence 
(LID) A dependence between two 
operations executed on the same 
iteration of all enclosing loops such 
that one operation must precede 
the other to produce correct 
results. 

loop induction variable See 
induction variable.

loop interchange The 
reordering of nested loops. Loop 
interchange is generally done to 
increase the granularity of the 
parallelizable loop(s) present or to 
allow more efficient access to loop 
data.

loop invariant Loop constant. A 
constant or expression whose value 
does not change within a loop.

loop invariant computation
An operation that yields the same 
result on every iteration of a loop.

loop replication The process of 
transforming one loop into more 
than one loop to facilitate an 
optimization. The optimizations 
that replicate loops are IF-DO and 
if-for optimizations, dynamic 
selection, loop unrolling, and loop 
blocking.

machine exception A fatal 
error in the system that cannot be 
handled by the operating system. 
See also exception.

main memory Physical memory 
other than what the processor 
caches.



352 Glossary 

main procedure A procedure 
invoked by the operating system 
when an application program 
starts up. The main procedure is 
the main program in Fortran; in C 
and C++, it is the function main().

main program In a Fortran 
program, the program section 
invoked by the operating system 
when the program starts up.

Mbyte See megabyte (Mbyte).

megabyte (Mbyte) 1048576 
(220) bytes.

megaflops (MFLOPS) One 
million floating-point operations 
per second.

memory bank conflict An 
attempt to access a particular 
memory bank before a previous 
access to the bank is complete, or 
when the bank is not yet finished 
recycling (i.e., refreshing).

memory management The 
hardware and software that 
control memory page mapping and 
memory protection.

message Data copied from one 
process to another (or the same) 
process. The copy is initiated by 
the sending process, which 
specifies the receiving process. The 
sending and receiving processes 
need not share a common address 
space. (Note: depending on the 
context, a process may be a 
thread.)

Message-Passing Interface 
(MPI) A message-passing and 
process control library. For 
information on the Hewlett-

Packard implementation of MPI, 
refer to the HP MPI User’s Guide 
(B6011-90001).

message passing A type of 
programming in which program 
modules (often running on 
different processors or different 
hosts) communicate with each 
other by means of system library 
calls that package, transmit, and 
receive data. All message-passing 
library calls must be explicitly 
coded by the programmer.

MIMD (multiple instruction 
stream multiple data stream)
A computer architecture that uses 
multiple processors, each 
processing its own set of 
instructions simultaneously and 
independently of others. MIMD 
also describes when processes are 
performing different operations on 
different data. Compare 
with SIMD.

multiprocessing The creation 
and scheduling of processes on any 
subset of CPUs in a system 
configuration.

mutex A variable used to 
construct an area (region of code) 
of mutual exclusion. When a mutex 
is locked, entry to the area is 
prohibited; when the mutex is free, 
entry is allowed.

mutual exclusion A protocol 
that prevents access to a given 
resource by more than one thread 
at a time. 

negate An instruction that 
changes the sign of a number.



Glossary 353

network A system of 
interconnected computers that 
enables machines and their users 
to exchange information and share 
resources.

node On HP scalable and 
nonscalable servers, a node is 
equivalent to a hypernode. The 
term “node” is generally used in 
place of hypernode.

non-uniform memory access 
(NUMA) This term describes 
memory access times in systems in 
which accessing different types of 
memory (for example, memory 
local to the current hypernode or 
memory remote to the current 
hypernode) results in non-uniform 
access times.

nonblocking crossbar A 
switching device that connects the 
CPUs, banks of memory, and I/O 
controller on a single hypernode. 
Because the crossbar is 
nonblocking, all ports can run at 
full bandwidth simultaneously 
provided there is not contention for 
a particular port.

NUMA Non-uniform memory 
access. This term describes 
memory access times in systems in 
which accessing different types of 
memory (for example, memory 
local to the current hypernode or 
memory remote to the current 
hypernode) results in non-uniform 
access times.

offset In the context of a process 
address space, an integer value 
that is added to a base address to 
calculate a memory address. 
Offsets in V2250 servers are 64-bit 

values, and must keep address 
values within a single 16-Tbyte 
memory space.

opcode A predefined sequence of 
bits in an instruction that specifies 
the operation to be performed.

operating system The program 
that manages the resources of a 
computer system. V2250 servers 
use the HP-UX operating system. 

optimization The refining of 
application software programs to 
minimize processing time. 
Optimization takes maximum 
advantage of a computer’s 
hardware features and minimizes 
idle processor time.

optimization level The degree 
to which source code is optimized 
by the compiler. The HP compilers 
offer five levels of optimization: 
level +O0, +O1, +O2, +O3, and +O4. 
The +O4 option is not available in 
Fortran 90.

oversubscript An array 
reference that falls outside 
declared bounds.

oversubscription In the 
context of parallel threads, a 
process attribute that permits the 
creation of more threads within a 
process than the number of 
processors available to the process.

PA-RISC The Hewlett-Packard 
Precision Architecture reduced 
instruction set.

packet A group of related items. 
A packet may refer to the 
arguments of a subroutine or to a 
group of bytes that is transmitted 
over a network.



354 Glossary 

page A page is the unit of virtual 
or physical memory controlled by 
the memory management 
hardware and software. On HP-UX 
servers, the default page size is 4 K 
(4,096) contiguous bytes. Valid 
page sizes are: 4 K, 16 K, 64 K, 256 
K, 1 Mbyte, 4 Mbytes, 16 Mbytes, 
64 Mbytes, and 256 Mbytes. 
See also virtual memory.

page fault A page fault occurs 
when a process requests data that 
is not currently in memory. This 
requires the operating system to 
retrieve the page containing the 
requested data from disk.

page frame A page frame is the 
unit of physical memory in which 
pages are placed. Referenced and 
modified bits associated with each 
page frame aid in memory 
management.

parallel optimization The 
transformation of source code into 
parallel code (parallelization) and 
restructuring of code to enhance 
parallel performance.

parallelization The process of 
transforming serial code to a form 
of code that can run 
simultaneously on multiple CPUs 
while preserving semantics. When 
+O3 +Oparallel is specified, the 
HP compilers automatically 
parallelize loops in your program 
and recognize compiler directives 
and pragmas with which you can 
manually specify parallelization of 
loops, tasks, and regions.

parallelization, loop The 
process of splitting a loop into 
several smaller loops, each of 

which operates on a subset of the 
data of the original loop, and 
generating code to run these loops 
on separate processors in parallel.

parallelization, ordered The 
process of splitting a loop into 
several smaller loops, each of 
which iterates over a subset of the 
original data with a stride equal to 
the number of loops created, and 
generating code to run these loops 
on separate processors. Each 
iteration in an ordered parallel 
loop begins execution in the 
original iteration order, allowing 
dependences within the loop to be 
synchronized to yield correct 
results via gate constructs.

parallelization, stride-based
The process of splitting up a loop 
into several smaller loops, each of 
which iterates over several 
discontiguous chunks of data, and 
generating code to run these loops 
on separate processors in parallel. 
Stride-based parallelism can only 
be achieved manually by using 
compiler directives.

parallelization, strip-based
The process of splitting up a loop 
into several smaller loops, each of 
which iterates over a single 
contiguous subset of the data of 
the original loop, and generating 
code to run these loops on separate 
processors in parallel. Strip-based 
parallelism is the default for 
automatic parallelism and for 
directive-initiated loop parallelism 
in absence of the chunk_size = n 
or ordered attributes.



Glossary 355

parallelization, task The 
process of splitting up source code 
into independent sections which 
can safely be run in parallel on 
available processors. HP 
programming languages provide 
compiler directives and pragmas 
that allow you to identify parallel 
tasks in source code.

parameter In C and C++, either 
a variable declared in the 
parameter list of a procedure 
(function) that receives a value 
when the procedure is called 
(formal parameter) or the variable 
or constant that is passed by a call 
to a procedure (actual parameter). 
In Fortran, a symbolic name for a 
constant.

path An environment variable 
that you set within your shell that 
allows you to access commands in 
various directories without having 
to specify a complete path name.

physical address A unique 
identifier that selects a particular 
location in the computer’s memory. 
Because HP-UX supports virtual 
memory, programs address data by 
its virtual address; HP-UX then 
maps this address to the 
appropriate physical address. See 
also virtual address.

physical address space The 
set of possible addresses for a 
particular physical memory.

physical memory Computer 
hardware that stores data. V2250 
servers can contain up to 16 
Gbytes of physical memory on a 
16-processor hypernode.

pipeline An overlapping 
operating cycle function that is 
used to increase the speed of 
computers. Pipelining provides a 
means by which multiple 
operations occur concurrently by 
beginning one instruction 
sequence before another has 
completed. Maximum efficiency is 
achieved when the pipeline is 
“full,” that is, when all stages are 
operating on separate instructions.

pipelining Issuing instructions 
in an order that best uses the 
pipeline.

procedure A unit of program 
code. In Fortran, a function, 
subroutine, or main program; in C 
and C++, a function.

process A collection of one or 
more execution streams within a 
single logical address space; an 
executable program. A process is 
made up of one or more threads.

process memory The portion of 
system memory that is used by an 
executing process.

programming model A 
description of the features 
available to efficiently program a 
certain computer architecture.

program unit A procedure or 
main section of a program.

queue A data structure in which 
entries are made at one end and 
deletions at the other. Often 
referred to as first-in, first-out 
(FIFO).

rank The number of dimensions 
of an array.



356 Glossary 

read A memory operation in 
which the contents of a memory 
location are copied and passed to 
another part of the system.

recurrence A cycle of 
dependences among the operations 
within a loop in which an operation 
in one iteration depends on the 
result of a following operation that 
executes in a previous iteration.

recursion An operation that is 
defined, at least in part, by a 
repeated application of itself.

recursive call A condition in 
which the sequence of instructions 
in a procedure causes the 
procedure itself to be invoked 
again. Such a procedure must be 
compiled for reentrancy.

reduced instruction set 
computer (RISC) An 
architectural concept that applies 
to the definition of the instruction 
set of a processor. A RISC 
instruction set is an orthogonal 
instruction set that is easy to 
decode in hardware and for which 
a compiler can generate highly 
optimized code. The PA-RISC 
processor used in V2250 servers 
employ a RISC architecture.

reduction An arithmetic 
operation that performs a 
transformation on an array to 
produce a scalar result.

reentrancy The ability of a 
program unit to be executed by 
multiple threads at the same time. 
Each invocation maintains a 
private copy of its local data and a 
private stack to store compiler-
generated temporary variables. 

Procedures must be compiled for 
reentrancy in order to be invoked 
in parallel or to be used for 
recursive calls. HP compilers 
compile for reentrancy by default. 

reference Any operation that 
requires a cache line to be 
encached; this includes load as 
well as store operations, because 
writing to any element in a cache 
line requires the entire cache line 
to be encached.

register A hardware entity that 
contains an address, operand, or 
instruction status information.

reuse, data In the context of a 
loop, the ability to use data fetched 
for one loop operation in another 
operation. In the context of a 
cache, reusing data that was 
encached for a previous operation; 
because data is fetched as part of a 
cache line, if any of the other items 
in the cache line are used before 
the line is flushed to memory, 
reuse has occurred.

reuse, spatial Reusing data 
that resides in the cache as a 
result of the fetching of another 
piece of data from memory. 
Typically, this involves using array 
elements that are contiguous to 
(and therefore part of the cache 
line of) an element that has 
already been used, and therefore is 
already encached.

reuse, temporal Reusing a data 
item that has been used previously.

RISC Reduced instruction set 
computer. An architectural concept 
that applies to the definition of the 
instruction set of a processor. A 



Glossary 357

RISC instruction set is an 
orthogonal instruction set that is 
easy to decode in hardware and for 
which a compiler can generate 
highly optimized code. The 
PA-RISC processor used in V2250 
servers employs a RISC 
architecture.

rounding A method of obtaining 
a representation of a number that 
has less precision than the original 
in which the closest number 
representable under the lower 
precision system is used.

row-major order Memory 
representation of an array such 
that the rows of an array are 
stored contiguously. For example, 
given a two-dimensional array 
A[3][4], array element A[0][3] 
immediately precedes A[1][0] in 
memory. This is the default storage 
method for arrays in C. 

scope The domain in which a 
variable is visible in source code. 
The rules that determine scope are 
different for Fortran and C/C++. 

semaphore An integer variable 
assigned one of two values: one 
value to indicate that it is “locked,” 
and another to indicate that it is 
“free.” Semaphores can be used to 
synchronize parallel threads. 
Pthreads provides a set of 
manipulation functions to 
facilitate this.

shape The number of elements 
in each dimension of an array.

shared virtual memory  A 
memory architecture in which 
memory can be accessed by all 

processors in the system. This 
architecture can also support 
virtual memory. 

shell An interactive command 
interpreter that is the interface 
between the user and the Unix 
operating system.

SIMD (single instruction 
stream multiple data stream)
A computer architecture that 
performs one operation on multiple 
sets of data. A processor (separate 
from the SMP array) is used for 
the control logic, and the 
processors in the SMP array 
perform the instruction on the 
data. Compare with MIMD 
(multiple instruction stream 
multiple data stream).

single A single-precision 
floating-point number stored in 32 
bits. See also double.

SMP Symmetric multiprocessor. 
A multiprocessor computer in 
which all the processors have 
equal access to all machine 
resources. Symmetric 
multiprocessors have no manager 
or worker processors; the 
operating system runs on any or 
all of the processors.

socket An endpoint used for 
interprocess communication.

socket pair Bidirectional pipes 
that enable application programs 
to set up two-way communication 
between processes that share a 
common ancestor.



358 Glossary 

source code The uncompiled 
version of a program, written in a 
high-level language such as 
Fortran or C.

source file A file that contains 
program source code.

space A contiguous range of 
virtual addresses within the 
system-wide virtual address space. 
Spaces are 16 Tbytes in the V2250 
servers.

spatial reference An attribute 
of a memory reference pattern that 
pertains to the likelihood of a 
subsequent memory reference 
address being numerically close to 
a previously referenced address.

spawn To activate existing 
threads.

spawn context A parallel loop, 
task list, or region that initiates 
the spawning of threads and 
defines the structure within which 
the threads’ spawn thread IDs are 
valid.

spawn thread identifier 
(stid) A sequential integer 
identifier associated with a 
particular thread that has been 
spawned. stids are only assigned to 
spawned threads, and they are 
assigned within a spawn context; 
therefore, duplicate stids may be 
present amongst the threads of a 
program, but stids are always 
unique within the scope of their 
spawn context. stids are assigned 
sequentially and run from 0 to one 
less than the number of threads 
spawned in a particular spawn 
context.

SPMD Single program multiple 
data. A single program executing 
simultaneously on several 
processors. This is usually taken to 
mean that there is redundant 
execution of sequential scalar code 
on all processors.

stack A data structure in which 
the last item entered is the first to 
be removed. Also referred to as 
last-in, first-out (LIFO). HP-UX 
provides every thread with a stack 
which is used to pass arguments to 
functions and subroutines and for 
local variable storage.

store An instruction used to 
move the contents of a register to 
memory.

strip length, parallel In strip-
based parallelism, the amount by 
which the induction variable of a 
parallel inner loop is advanced on 
each iteration of the (conceptual) 
controlling outer loop.

strip mining The 
transformation of a single loop into 
two nested loops. Conceptually, 
this is how parallel loops are 
created by default. A conceptual 
outer loop advances the initial 
value of the inner loop’s induction 
variable by the parallel strip 
length. The parallel strip length is 
based on the trip count of the loop 
and the amount of code in the loop 
body. Strip mining is also used by 
the data localization optimization.

subroutine A software module 
that can be invoked from anywhere 
in a program. 



Glossary 359

superscalar A class of RISC 
processors that allow multiple 
instructions to be issued in each 
clock period.

Symmetric Multiprocessor 
(SMP) A multiprocessor 
computer in which all the 
processors have equal access to all 
machine resources. Symmetric 
multiprocessors have no manager 
or worker processors; the 
operating system runs on any or 
all of the processors.

synchronization A method of 
coordinating the actions of 
multiple threads so that 
operations occur in the right 
sequence. When manually 
optimizing code, you can 
synchronize programs using 
compiler directives, calls to library 
routines, or assembly-language 
instructions. You do so, however, at 
the cost of additional overhead; 
synchronization may cause at least 
one CPU to wait for another.

system administrator 
(sysadmin) The person 
responsible for managing the 
administration of a system.

system manager The person 
responsible for the management 
and operation of a computer 
system. Also called the system 
administrator and the sysadmin.

Tbyte See terabyte (Tbyte).

terabyte (Tbyte)
1099511627776 (240) bytes.

term A constant or symbolic 
name that is part of an expression.

thread An independent 
execution stream that is executed 
by a CPU. One or more threads, 
each of which can execute on a 
different CPU, make up each 
process. Memory, files, signals, and 
other process attributes are 
generally shared among threads in 
a given process, enabling the 
threads to cooperate in solving the 
common problem. Threads are 
created and terminated by 
instructions that can be 
automatically generated by HP 
compilers, inserted by adding 
compiler directives to source code, 
or coded explicitly using library 
calls or assembly-language.

thread create To activate 
existing threads.

thread identifier An integer 
identifier associated with a 
particular thread. See thread 
identifier, kernel (ktid) and thread 
identifier, spawn (stid).

thread identifier, kernel 
(ktid) A unique integer identifier 
(not necessarily sequential) 
assigned when a thread is created.

thread identifier, spawn 
(stid) A sequential integer 
identifier associated with a 
particular thread that has been 
spawned. stids are only assigned to 
spawned threads, and they are 
assigned within a spawn context; 
therefore, duplicate stids may be 
present amongst the threads of a 
program, but stids are always 
unique within the scope of their 
spawn context. stids are assigned 
sequentially and run from 0 to one 



360 Glossary 

less than the number of threads 
spawned in a particular spawn 
context.

thread-private memory Data 
that is accessible by a single 
thread only (not shared among the 
threads constituting a process).

translation lookaside buffer
A hardware entity that contains 
information necessary to translate 
a virtual memory reference to the 
corresponding physical page and to 
validate memory accesses.

TLB See translation lookaside 
buffer.

trip count The number of 
iterations a loop executes.

unsigned A value that is always 
positive.

user interface The portion of a 
computer program that processes 
input entered by a human and 
provides output for human users.

utility A software tool designed 
to perform a frequently used 
support function.

vector An ordered list of items 
in a computer’s memory, contained 
within an array. A simple vector is 
defined as having a starting 
address, a length, and a stride. An 
indirect address vector is defined 
as having a relative base address 
and a vector of values to be applied 
as offsets to the base. 

vector processor A processor 
whose instruction set includes 
instructions that perform 

operations on a vector of data (such 
as a row or column of an array) in 
an optimized fashion.

virtual address The address by 
which programs access their data. 
HP-UX maps this address to the 
appropriate physical memory 
address. See also space.

virtual aliases Two different 
virtual addresses that map to the 
same physical memory address.

virtual machine A collection of 
computing resources configured so 
that a user or process can access 
any of the resources, regardless of 
their physical location or operating 
system, from a single interface.

virtual memory The memory 
space as seen by the program, 
which is typically larger than the 
available physical memory. The 
virtual memory of a V2250 server 
can be up to 16 Tbytes. The 
operating system maps this virtual 
memory to a smaller set of physical 
memory, using disk space to make 
up the difference if necessary. Also 
called logical memory.

wall-clock time The 
chronological time an application 
requires to complete its processing. 
If an application starts running at 
1:00 p.m. and finishes at 5:00 a.m. 
the following morning, its wall-
clock time is sixteen hours. 
Compare with CPU time.

word A contiguous group of 
bytes that make up a primitive 
data operand and start on an 
addressable boundary. In V2250 



Glossary 361

servers a word is four 
bytes (32 bits) in length. See also 
doubleword.

workstation A stand-alone 
computer that has its own 
processor, memory, and possibly a 
disk drive and can typically sit on 
a user’s desk.

write A memory operation in 
which a memory location is 
updated with new data.

zero In floating-point number 
representations, zero is 
represented by the sign bit with a 
value of zero and the exponent 
with a value of zero.



362 Glossary 



  363

Index

Symbols
&operator 31
+DA 142
+DAarchitecture 141
+DS 142
+DSmodel 141
+O[no]aggressive 114
+O[no]all 114, 118
+O[no]autopar 114, 118
+O[no]conservative 114, 119
+O[no]dataprefetch 114, 119
+O[no]dynsel 114, 120, 149
+O[no]entrysched 117, 120
+O[no]fail_safe 114, 121
+O[no]fastaccess 114, 121
+O[no]fltacc 114, 117, 121
+O[no]global_ptrs_unique 114, 122, 143
+O[no]info 114, 123, 151
+O[no]initcheck 115, 117, 123
+O[no]inline 55, 57, 91, 92, 112, 115, 124
+O[no]libcalls 115, 117, 125
+O[no]limit 59, 115, 118, 126
+O[no]loop_block 58, 70, 115, 127, 148
+O[no]loop_transform 58, 70, 79, 82, 84, 89, 115, 

127, 148
+O[no]loop_unroll 58, 127
+O[no]loop_unroll_jam 84, 115, 128, 150
+O[no]moveflops 115, 128
+O[no]multiprocessor 115, 129
+O[no]parallel 94, 115, 149, 160
+O[no]parmsoverlap 115, 130
+O[no]pipeline 49, 115, 130
+O[no]procelim 115, 131
+O[no]ptrs_ansi 115, 131, 143, 275
+O[no]ptrs_strongly_typed 115, 132, 275
+O[no]ptrs_to_globals 115, 135, 143
+O[no]regreassoc 115, 136
+O[no]report 115, 137, 152, 160
+O[no]sharedgra 115, 138
+O[no]signedpointers 116, 117, 138
+O[no]size 59, 116, 138
+O[no]static_prediction 116, 139
+O[no]vectorize 116, 117, 139

+O[no]volatile 116, 140
+O[no]whole_program_mode 116, 140
+O0 optimization 26
+O1 optimization 26
+O2 optimization 27, 40, 58
+O3 111
+O3 optimization 27, 55, 57, 58, 70, 77, 79, 82, 84, 

89
+O4 111
+O4 optimization 55, 57
+Oinline_budget 55, 92, 115, 125
+Onoinitcheck 30
+Oparallel 111
+pd 23
+pi 23
+tmtarget 141
[mc]_fetch_and_add32() 338
[mc]_fetch_and_clear32() 338
[mc]_fetch_and_dec32() 338
[mc]_fetch_and_inc32() 338
[mc]_fetch_and_set3() 338
[mc]_fetch32() 338
[mc]_init32() 337

A
aC++ compiler

location of 25
register allocation 44

aC++, parallelism in 111
accessing pthreads 309, 310
accumulator variables 289
actual registers 40
address space, virtual 17
address-exposed array variables 144
addressing 41
advanced scalar optimizations 7
aggressive optimizations 118
algorithm, type-safe 274
aliases 12

hidden 276
potential 275

aliasing 59, 64, 69, 274



364   

algorithm 274
examples 64, 65
mode 275
rules 132
stop variables 277

aliasing rules, type-inferred 143
alignment

data 26, 37
of arrays 282
simple 26

alloc_barrier functions 247
alloc_gate functions 247
alloca() 125
ALLOCATE statement 12, 282
allocating

barriers 245
gates 245
shared memory 138
storage 204

allocation functions 247
alternate name for object 64
Analysis Table 154, 158
analysis, flow-sensitive 277
ANSI C 274

aliasing algorithm 274
ANSI standard rules 273
architecture

SMP 1, 2
architecture optimizations 141
arguments

block_factor 71
dummy 246

arithmetic expressions 30, 43, 49, 51, 136
array 32

address computations 136
address-exposed 144
bounds of 30
data, fetch 71
dimensions 204
indexes 59
references 31
subscript 106

arrays

access order 82
alignment of 282
dummy arguments 286
equivalencing 12
global 282
LOOP_PRIVATE 225
of type specifier 237
store 64
strips of 70
unaligned 286

asin math function 126
assertion, linker disables 141
asymmetric parallelism 329
asynchronous interrupts 120
atan math function 126
atan2 math function 126
attributes

LOOP_PARALLEL 181
PREFER_PARALLEL 181
volatile 32

automatic parallelism 94
avoid loop interchange 63

B
barrier variable declaration 245
barriers 245, 332

allocating 245
deallocating 247
equivalencing 246
high-level 313
wait 249

basic blocks 6
BEGIN_TASKS directive and pragma 94, 177, 192
block factor 76
BLOCK_LOOP directive and pragma 70, 76, 146, 

148
blocking, loop 70
bold monospace xvii
brackets xvii

curly xvii
branch

destination 67, 68



  365

dynamic prediction 139
optimization 26
static prediction 139

branches
conditional 39, 139
instruction 41
transforming 39
unconditional 39

C
C aliasing options 113
C compiler

location of 25
register allocation 44

-C compiler option 291
cache

contiguous 18
data 12
line 12
line boundaries 283
line size 71
lines, fetch 73
lines, fixed ownership 299
padding 15
semaphores 335
thrashing 13, 78, 279, 298

cache line boundaries
force arrays on (C) 282
force arrays on (Fortran) 282

cache-coherency 12
cache-line 18
calls

cloned 154, 155
inlined 154, 155

char 31
chatr utility 23
check subscripts 291
child threads 317
CHUNK_SIZE 283
class 237

memory 233, 235, 236, 237, 238
clauses, other supported

OpenMP 210
cloned

calls 154, 155
procedures, delete 140

cloning 57, 102, 112
across files 57
across multiple files 112
at +O4 91
within files 57
within one source file 57

Code 257
code

contiguous 197
dead 26
entry 40
examining 302
exit 40
isolate in loop 259
loop-invariant 45
motion 136, 250, 274
parallelizing outside loop 192
scalar 197
size 124
synchronizing 257
transformation 33

coding
guidelines 30, 31
standards 91

command syntax xviii
command-line options 55, 115

+O[no]_block_loop 70
+O[no]_loop_transform 89
+O[no]aggressive 114, 117
+O[no]all 114, 118
+O[no]autopar 114, 118
+O[no]conservative 114, 119
+O[no]dataprefetch 114, 119
+O[no]dynsel 114, 120
+O[no]entrysched 114, 120
+O[no]fail_safe 114, 121
+O[no]fastaccess 114, 121
+O[no]fltacc 114, 121
+O[no]global_ptrs 143



366   

+O[no]global_ptrs_unique 114, 122
+O[no]info 114, 123
+O[no]initcheck 123
+O[no]inline 55, 91, 92, 115, 124
+O[no]libcalls 115, 125
+O[no]limit 45, 115, 126
+O[no]loop_block 115, 127
+O[no]loop_transform 58, 70, 79, 89, 115, 127
+O[no]loop_unroll 58, 127

+O[no]loop_unroll 115
+O[no]loop_unroll_jam 58, 115, 128
+O[no]moveflops 115, 128
+O[no]multiprocessor 115, 129
+O[no]parallel 94, 115, 129
+O[no]parmsoverlap 115, 130
+O[no]pipeline 49, 115, 130
+O[no]procelim 115, 131
+O[no]ptrs_ansi 115, 131, 143, 275
+O[no]ptrs_strongly_typed 115, 132, 275
+O[no]ptrs_to_globals 115, 135, 143
+O[no]regreassoc 115, 136
+O[no]report 115, 137
+O[no]sharedgra 115, 138
+O[no]signedpointers 116, 138
+O[no]size 45, 116, 138
+O[no]static_prediction 116, 139
+O[no]vectorize 116, 139
+O[no]volatile 116, 140
+O[no]whole_program_mode 116, 140
+Oinline_budget 55, 92, 115, 125
+tmtarget 141

COMMON 33
blocks 18, 147, 237, 282
statement 246
variable 91, 150

common subexpression elimination 42, 43, 135
compilation, abort 121
compile

reentrant 201
time 44, 126

compile time, increase 49
compiler assumptions 304
compiler options

-C 291
-W 290

Compiler Parallel Support Library 309
compilers

location of 25
location of aC++ 25
location of C 25
location of Fortran 90 25

cond_lock_gate functions 248
conditional

blocks 197
branches 139

constant
folding 26
induction 27

contiguous
cache lines 18
code 197

control variable 30
copy propagation 135
core dump 291
CPS cache 335
cps_barrier_free() 332
cps_nsthreads() 311
cps_nthreads() 318
cps_plevel() 329
cps_ppcall() 318
cps_ppcalln() 318
cps_ppcallv() 311
CPS_STACK_SIZE 202, 317
cps_stid() 311, 318
cps_thread_create() 329
cps_thread_createn() 329
cps_thread_exit() 329
cps_thread_register_lock() 329
CPSlib 309

low-level counter semaphores 337
low-level locking functions 337
unlock routines 336
unmappable functions in pthreads 318

CPSlib asymmetric functions 312
cps_thread_create() 312
cps_thread_createn() 312



  367

cps_thread_exit() 312
cps_thread_register_lock() 312
cps_thread_wait() 312

CPSlib informational functions 312
cps_complex_cpus() 312
cps_complex_nodes() 313
cps_complex_nthreads() 313
cps_is_parallel() 313
cps_plevel() 313
cps_set_threads() 313
cps_topology() 313

CPSlib symmetric functions 311
cps_nsthreads() 311
cps_ppcall() 311
cps_ppcalln() 311
cps_ppcallv() 311
cps_stid() 311
cps_wait_attr() 312

CPSlib synchronization functions 314, 315
[mc]_cond_lock() 315
[mc]_fetch_and_add32() 315
[mc]_fetch_and_clear32() 315
[mc]_fetch_and_dec32() 316
[mc]_fetch_and_inc32() 316
[mc]_fetch_and_set32() 316
[mc]_fetch32() 315
[mc]_free32() 315
[mc]_init32() 315, 316
cps_barrier() 313
cps_barrier_alloc() 313
cps_barrier_free() 314
cps_limited_spin_mutex_alloc() 314
cps_mutex_alloc() 314
cps_mutex_free() 314
cps_mutex_lock() 314
cps_mutex_trylock() 315
cps_mutex_unlock() 315

CPU agent 10
create

temporary variable 277
threads 317

critical sections 254
conditionally lock 265

using 257
CRITICAL_SECTION directive and pragma 177, 

189, 255
example 190, 257, 258

cross-module optimization 53
cumlative optimizations 58
cumulative options 29
curly brackets xvii

D
data

alignment 12, 26, 37, 71, 91
cache 7, 12, 58, 69, 119
dependences 179, 185, 192, 287
encached 13
exploit cache 102
item 238, 241
items, different 279
layout 279
local to procedure 239
localization 27, 58, 59, 64, 69
multiple dependences 243
object 220
objects (C/C++) 237
prefetch 119
private 235
privatizing 218
reuse 12, 13, 71
segment 23
shared 239
type statements (C/C++) 245
types, double 239

data scope clauses
OpenMP 210

DATA statement 235, 282
data-localized loops 7
dead code elimination 26, 40
deadlock, detect with pthreads 335
deallocating

barriers 247
gates 245, 257

deallocation functions 247



368   

default stack size 175, 202
delete

cloned procedures 140
inlined procedures 140

dependences 229
data 179, 185, 192, 287
element-to-element 62
ignore 149
loop-carried 287, 292
multiple 243
nonordered 254
ordered data 243
other loop fusion 64
synchronize 197
synchronized 182
synchronizing 255

dereferences of pointers 143
DIMENSION statement 246
Dipasquale, Mark D. 318
directives

BEGIN_TASKS 94, 177, 192
BLOCK_LOOP 70, 76, 146, 148
CRITICAL_SECTION 177, 189, 254, 257
DYNSEL 146, 148
END_CRITICAL_SECTION 177, 189, 254
END_ORDERED_SECTION 255
END_PARALLEL 28, 94, 176
END_TASKS 94, 177, 192
LOOP_PARALLEL 28, 94, 118, 176, 179, 181, 

185
LOOP_PARALLEL(ORDERED) 253
LOOP_PRIVATE 218, 220
misused 292
NEXT_TASK 94, 177, 192
NO_BLOCK_LOOP 70, 146, 148
NO_DISTRIBUTE 77, 146, 148
NO_DYNSEL 146, 149
NO_LOOP_DEPENDENCE 60, 63, 149
NO_LOOP_TRANSFORM 89, 146, 149
NO_PARALLEL 110, 146, 149
NO_SIDE_EFFECTS 146, 150
NO_UNROLL_AND_JAM 85, 146
OpenMP 209

ORDERED_SECTION 177, 255
PARALLEL 94, 176
parallel 28
PARALLEL_PRIVATE 218, 229
PREFER_PARALLEL 28, 94, 176, 178, 181, 185
privatizing 218
REDUCTION 146, 177
SAVE_LAST 218, 224
SCALAR 146
SYNC_ROUTINE 146, 177, 250
TASK_PRIVATE 196, 218, 227
UNROLL_AND_JAM 85, 146, 150

disable
automatic parallelism 110
global register allocation 138
LCDs 60
loop thread parallelization 191

division 40
DO loops 178, 220
DO WHILE loops 184
double 49

data types 239
variable 130, 290

dummy
argument 246
arguments 286
registers 40

dynamic selection 120, 154, 155
workload-based 102, 149

DYNSEL directive and pragma 146, 148

E
element-to-element dependences 62
ellipses, vertical xviii
encache memory 20
END_CRITICAL_SECTION directive and 

pragma 177, 189, 255
end_parallel 28
END_PARALLEL directive and pragma 28, 94, 

176
END_TASKS directive and pragma 94, 177, 192
enhance performance 12



  369

entry code 40
environment variables

and pthreads 317
CPS_STACK_SIZE 202, 317
MP_IDLE_THREADS_WAIT 100, 317
MP_NUMBER_OF_THREADS 94, 130, 317

EQUIVALENCE statement 64, 274
equivalencing

barriers 246
gates 246

equivalent groups, constructing 144
ERRNO 126
examining code 302
examples

aliasing 64
apparent LCDs 106
avoid loop interchange 63
branches 40
cache padding 15
cache thrashing 13
common subexpression elimination 43
conditionally lock critical sections 265
critical sections and gates 264
CRITICAL_SECTION 190, 257
data alignment 37
denoting induction variables in parallel loops 

222
gated critical sections 258
I/O statements 67
inlining with one file 55
inlining within one source file 55
interleaving 20
loop blocking 76
loop distribution 77
loop fusion 80
loop interchange 82
loop peeling 80
loop transformations 97
loop unrolling 45, 46
LOOP_PARALLEL 187, 188
LOOP_PARALLEL(ORDERED) 253
LOOP_PRIVATE 221
loop-invariant code motion 45

loop-level parallelism 94
matrix multiply blocking 74
multiple loop entries/exits 68
NO_PARALLEL 110
node_private 241
Optimization Report 160
ordered section limitations 261, 262
output LCDs 106
PARALLEL_PRIVATE 229
parallelizing regions 199
parallelizing tasks 195, 196
PREFER_PARALLEL 187, 188
reduction 109
SAVE_LAST 225
secondary induction variables 223, 224
software pipelining 49
strength reduction 52
strip mining 54
SYNC_ROUTINE 251, 252
TASK_PRIVATE 227
test promotion 90
thread_private 238, 239
thread_private COMMON blocks in parallel 

subroutines 239
type aliasing 134
unroll and jam 85
unsafe type cast 133
unused definition elimination 52
using LOOP_PRIVATE w/LOOP_PARALLEL 

221
executable files, large 55, 92
execution speed 130
exit

code 40
statement 68

explicit pointer typecast 144
exploit data cache 102
extern variable 91
external 282

F
fabs() 125



370   

fall-through instruction 39
false cache line sharing 13, 279
faster register allocation 40
file

level 89
scope 31, 237

file-level optimization 27
fixed ownership of cache lines 299
float 49
float variable 130
floating-point

calculation 126
expression 289
imprecision 289
instructions 128
traps 128

floating-point instructions 41
flow-sensitive analysis 277
flush to zero 290
FMA 121
folding 43, 136
for loop 178, 220
force

arrays to start on cache line boundaries (C) 282
arrays to start on cache line boundaries 

(Fortran) 282
parallelization 176, 179
reduction 177

form of
alloc_barrier 247
alloc_gate 247
barrier 245
block_loop 70
cond_lock_gate 248
CRITICAL_SECTION 254
directive names 147
END_CRITICAL_SECTION 254
END_ORDERED_SECTION 255
free_barrier 247
free_gate 247
gate 245
lock_gate 248
LOOP_PRIVATE 220

memory class assignments 236
no_block_loop 70
no_distribute 77
no_loop_dependence 60
no_loop_transform 89
no_unroll_and_jam 85
ORDERED_SECTION 255
PARALLEL_PRIVATE 229
pragma names 147
reduction 108
SAVE_LAST 225
SYNC_ROUTINE directive and pragma 250
TASK_PRIVATE 227
unlock_gate 249
unroll_and_jam 85

Fortran 90 compiler
guidelines 33
location of 25

free_barrier functions 247
free_gate functions 247
functions

alloc_barrier 247
alloc_gate 247
allocation 247
cond_lock_gate 248
deallocation 247
free_barrier 247
free_gate 247
lock_gate 248
locking 248
malloc (C) 13, 282
memory_class_malloc (C) 13, 282
number of processors 203
number of threads 204
stack memory type 205
synchronization 246
thread ID 205
unlock_gate 249
unlocking 249
wait_barrier 249

functions, CPSlib
[mc]_cond_lock() 315
[mc]_fetch_and_add32() 315, 338



  371

[mc]_fetch_and_clear32() 315, 338
[mc]_fetch_and_dec32() 316, 338
[mc]_fetch_and_inc32() 316, 338
[mc]_fetch_and_set3() 338
[mc]_fetch_and_set32() 316
[mc]_fetch32() 315, 338
[mc]_free32() 315
[mc]_init32() 315, 316, 337
asymmetric 312
cps_barrier() 313
cps_barrier_alloc() 313
cps_barrier_free() 314, 332
cps_complex_cpus() 312
cps_complex_nodes() 313
cps_complex_nthreads() 313
cps_is_parallel() 313
cps_limited_spin_mutex_alloc() 314
cps_mutex_alloc() 314
cps_mutex_free() 314
cps_mutex_lock() 314
cps_mutex_trylock() 315
cps_mutex_unlock() 315
cps_nthreads() 318
cps_plevel() 313, 329
cps_ppcall() 311, 318
cps_ppcalln() 311, 318
cps_ppcallv() 311
cps_set_threads() 313
cps_stid() 311, 318
cps_thread_create() 312, 329
cps_thread_createn() 312, 329
cps_thread_exit() 312, 329
cps_thread_register_lock() 312, 329
cps_thread_wait() 312
cps_topology() 313
cps_wait_attr() 312
high-level mutexes 314
high-level-barriers 313
informational 312
low-level counter semaphores 315
low-level locks 315
symmetric 311

functions, math

acos 126
asin 126
atan 126
atan2 126
cos 126
exp 126
log 126
log10 126
pow 126
sin 126
tan 126

functions, pthread
[mc]_unlock() 315
pthread_create() 312
pthread_exit() 312
pthread_join() 312
pthread_mutex_destroy() 314
pthread_mutex_init() 314, 315, 335
pthread_mutex_lock() 314, 315, 335
pthread_mutex_trylock() 315, 335
pthread_mutex_unlock() 315, 335, 336
pthread_num_processors_np() 312, 313, 319

G
gate variable declaration 245
gates 147, 189, 245

allocating 245
deallocating 245, 257
equivalencing 246
locking 245
unlocking 245
user-defined 257

global
arrays 282
optimization 91
pointers 122
register allocation 37, 42, 43, 138
variables 31, 135, 140, 277

GOTO statement 39, 67, 68
GRA 37, 42, 43, 138
guidelines

aC++ 30, 31



372   

C 30, 31
coding 31
Fortran 90 30, 33

H
hardware history mechanism 139
header file 124, 236
hidden

aliases 276
ordered sections 292

horizontal ellipses xviii
HP MPI 4
HP MPI User’s Guide 5, 111
HP-UX Floating-Point Guide 126, 139, 290
hypernode, V2250 11

I
I/O statement 67
idle

CPS threads 317
threads 100

increase replication limit 87
incrementing by zero 304
induction

constants 27
variables 27, 196

induction variables 51, 222, 276
in region privatization 230

information, parallel 203
inhibit

data localization 59
fusion 79
localization 68, 69
loop blocking 76
loop interchange 60, 179
parallelization 274

inlined calls 154, 155
inlined procedures

delete 140
inlining 124

across multiple files 92
aggressive 125

at +O3 92
at +O4 92
default level 125
within one source file 55

inner-loop memory accesses 82
instruction

fall-through 39
scheduler 26, 41
scheduling 39, 120

integer arithmetic operations 136
interchange, loop 63, 68, 77, 82, 90
interleaving 17, 18, 19, 20
interprocedural optimization 57
invalid subscripts 273, 291
italic xvii
iteration

distribution, controlling 281
distribution, default 283
stop values 275

iterations, consecutive 253

K
K-Class servers 9, 235
kernel parameter 202
kernel parameters 23

L
large trip counts 307
LCDs 59, 287, 292

disable 60
output 106

levels
block 26
optimization 307

library calls
alloca() 125
fabs() 125
sqrt() 125
strcpy() 125

library routines 126
limitations, ordered sections 261, 262
linear



  373

functions 51
test replacement 305

lint 31
local variables 31, 218
localization, data 27, 58
location of compilers 25
lock_gate functions 248
locking

functions 248
gates 245

locks, low-level 315
log math function 126
logical expression 36
loop 225

arrays 69
blocked 70
blocking 27, 54, 58, 70, 76, 79, 82, 85, 89, 127, 

154, 155
blocking, inhibit 76
branch destination 67
counter 276
customized 222
dependence 149
disjoint 99
distribution 27, 58, 70, 79, 82, 85, 89, 127, 154, 

155
distribution, disable 148
entries, extra 68
entries, multiple 59
fused 157, 162
fusion 27, 58, 70, 79, 80, 82, 89, 127, 155
fusion dependences 59, 64
induction 181
induction variable 196
interchange 27, 58, 67, 68, 69, 70, 76, 77, 79, 82, 

85, 89, 90, 154, 155
interchange, avoid 63
interchange, inhibit 60, 179
interchanges 150
invocation 185
iterations 279
jamming 128
multiple entries in 68

nest 45, 76
nested 20, 84, 85
nests 153
number of 104
optimization 53
optimize 149
overhead, eliminating 128
parallelizing 222
peeled iteration of 80
peeling 80, 155
preventing 28
promotion 155
reduction 157
relocate 82
removing 157
reordering 28, 89
replication 45, 58
restrict execution 182
serial 20, 183
source line of 159
strip length 54
table 159
thread parallelization 191
transformations 7, 58, 82, 97
unroll 45, 79, 82, 84, 89, 127
unroll and jam 28, 54, 58, 79, 82, 84, 89, 127, 154, 

155
unroll factors 87
unroll_and_jam 70
unrolling 42, 45, 46, 58, 128

Loop Report 137, 151, 153, 159
loop unrolling example 45
loop, strip 72
LOOP_PARALLEL 181
loop_parallel 28
LOOP_PARALLEL directive and pragma 28, 94, 

118, 129, 176, 179, 185
example 187, 188, 222

LOOP_PARALLEL(ORDERED) directive and 
pragma 253, 295

example 253
LOOP_PRIVATE directive and pragma 218, 220

arrays 225



374   

example 221
loop-carried dependences 59, 60, 287, 292
loop-invariant 46

code 42, 45
code motion 136

loop-iteration count 102
loops

adjacent 80
constructing 30
data-localized 7
DO (Fortran) 178, 220
DO WHILE (Fortran) 184
exploit parallel code 254
for (C) 178, 220
fusable 79
fusing 150
induction variables in parallel 222
multiple entries 68
neighboring 79
number of parallelizable 79
parallelizing 175
parallelizing inner 298
parallelizing outer 298
privatization for 159
privatizing 217
reducing 79
replicated 90
safely parallelizing 275
simple 102
that manipulate variables 217
triangular 188, 296
unparallelizable 180

loop-variant 46
low-level

counter semaphores 315, 337
LSIZE 286

M
machine

instruction optimization 26
instructions 84
loading 96

MACs 10
malloc 12, 282
man pages xviii
Managing Systems and Workgroups 202
manual

parallelization 179, 218
synchronization 218, 264

map-coloring 44
Mark D. Dipasquale 318
math functions 126
matrix multiply blocking 74
memory

banks 10
encached 20
hypernode local 233
inner-loop access 82
layout scheme 32
mapping 33
overlap 130
physical 17
references 140
semaphores 335
space, occupying same 275
usage 126
virtual 18, 46

Memory Access Controllers 10
memory class 218, 238

assignments 236
declarations (C/C++) 236
declarations (Fortran) 236
misused 273
node_private 233, 235, 241
thread_private 233, 235

memory_class_malloc 12, 13, 282
message-passing 4
minimum page size 23
misused

directives and pragmas 292
memory classes 273

monospace xvii
MP_IDLE_THREADS_WAIT 100, 317
MP_NUMBER_OF_THREADS 94, 130, 317
MPI 4



  375

multinode servers 309
multiple

data dependences 243
entries in loop 68
exits 69

multiplication 40
mutexes 332, 335

high-level 314

N
natural boundaries 37
nested

loop 20
parallelism 244

NEXT_TASK directive and pragma 94, 177, 192
NO_BLOCK_LOOP directive and pragma 70, 146, 

148
NO_DISTRIBUTE directive and pragma 77, 146, 

148
NO_DYNSEL directive and pragma 146, 149
NO_LOOP_DEPENDENCE directive and pragma 

60, 63, 149, 294
directives

NO_LOOP_DEPENDENCE 146
NO_LOOP_TRANSFORM directive and pragma 

89, 146, 149
NO_PARALLEL directive and pragma 110, 146, 

149
NO_SIDE_EFFECTS directive and pragma 146, 

150
NO_UNROLL_AND_JAM directive and pragma 

85, 146
NO_UNROLL_JAM directive and pragma 84
node_private 111

example 241
static assignment of 238, 241
virtual memory class 233, 235

nondeterminism of parallel execution 292, 295
nonordered

dependences 254
manipulations 177

nonstatic variables 33, 123

Norton, Scott 318
notational conventions xvii
number of

processors 129, 203
threads 204

O
O 143
objects, stack-based 237
offset indexes 286
OpenMP 208

clauses, other supported 210
Command-line Options 209

default 209
data scope clauses 210
defined 208
directives 209
Directives and Required Opt Levels 209
effect on HPPM directives 212
HP’s implementation of 209
More information 215
syntax 211
www.openmp.org 215

operands 36
optimization 26

+O0 26
+O1 26
+O2 27, 40, 58
+O3 27, 55, 57, 58, 70, 77, 79, 82, 84, 89
+O4 55, 57
aliasing 64
block-level 26, 39
branch 26, 39
cloning within one file 57
command-line options 26, 93
cross-module 53, 91
cumulative 58
data localization 58, 69
dead code 39
directives 113
faster register allocation 39
features 26, 35, 53



376   

file-level 27
FMA 122
global 91
I/O statements 67
inlining across multiple files 92
inlining within one file 55
interprocedural 57, 112
levels 25, 274, 307
loop 53
loop blocking 70
loop distribution 77
loop fusion 79
loop interchange 82
loop unroll and jam 84
multiple loop entries 68
multiple loop exits 68
options 113
peephole 26, 39, 41
pragmas 113
routine-level 27, 42
static variable 91
store/copy 27
strip mining 54
test promotion 90
unit-level 6
using 30
valid options 114

Optimization Report 85, 90, 151, 158, 183
contents 137

Optimization Reports 275
optimizations

advanced 7
advanced scalar 7
aggressive 118
architecture-specific 141
floating-point 121
increase code size 138
loop reordering 89
scalar 6, 7
suppress 138
that replicate code 87

optimize
instruction scheduling 120

large programs 139
loop 149

ordered
data dependences 243
parallelism 194, 253
sections 255

ordered sections
hidden 292
limitations of 261, 262
using 259

ORDERED_SECTION directive and pragma 177, 
255

output LCDs 106
overflowing trip counts 305
overlap, memory 130

P
PA-8200 23
page size, minimum 23
parallel

assignments 44
command-line options 93
construct 254
executables 12
execution 295
information functions 175, 203
programming 9
programming techniques 175
regions 176
structure 244
synchronization 243
tasks 177
threads 138

PARALLEL directive and pragma 94, 176
PARALLEL_PRIVATE directive and pragma 218, 

229
example 229

parallelism 29, 110
asymmetric 329
automatic 94
in aC++ 111
inhibit 28



  377

levels of 94
loop level 94
nested 244
ordered 194, 253
region level 94
stride-based 186
strip-based 99, 186
task level 94
thread 244
unordered 193

parallelization 28, 54
force 176, 179
in aC++ 28
increase 178
inhibit 274
manual 179, 218
overhead 299
prevent 28
preventing 110

parallelizing
code outside a loop 192
consecutive code blocks 177
inner loops 298
loop 222
loops, safely 275
next loops 178
outer loops 298
regions 197
tasks 192
threads 183, 191

parameters, kernel 23
partial evaluation 36
PCI bus controller 10
peephole optimization 26, 41
performance

enhance 12
shared-memory programs 218

physical memory 17
pipelining 41

prerequisites 49
software 49

pointers 31
C 274

dereferences 143
strongly-typed 132
type-safe 132
using as loop counter 276

poor locality 139
porting

CPSlib functions to pthreads 309
multinode applications 235
X-Class to K-Class 234
X-Class to V-Class 234

POSIX threads 111, 309
potential alias 275
pow math function 126
pragmas

begin_tasks 94, 177, 192
block_loop 70, 76, 146, 148
critical_section 177, 189, 254
crtitical_section 257
dynsel 146, 148
end_critical_section 177, 189, 254
end_ordered_section 255
end_parallel 28, 94, 176
end_tasks 94, 177, 192
loop_parallel 28, 94, 118, 176, 179, 181, 185
loop_parallel(ordered) 253
loop_private 218, 220
misused 292
next_task 94, 177, 192
no_block_loop 70, 146, 148
no_distribute 146, 148
no_dynsel 146, 149
no_loop_dependence 60, 146, 149
no_loop_transform 89, 146, 149
no_parallel 110, 146, 149
no_side_effects 146, 150
no_unroll_and_jam 85, 146
ordered_section 177, 255
parallel 28, 94, 176
parallel_private 218, 229
prefer_parallel 28, 94, 176, 178, 181, 185
privatizing 218
reduction 146, 177
save_last 218, 224



378   

scalar 146
sync_routine 44, 146, 177, 250
task_private 196, 218, 227
unroll_and_jam 85, 146, 150

prefer_parallel 182
PREFER_PARALLEL directive and pragma 28, 

94, 129, 176, 178, 181, 185
example 187, 188

prevent
loop interchange 67
parallel code 149
parallelism 110

primary induction variable 184
private data 235
privatization

data 185
variable 159

Privatization Table 137, 152, 159
privatizing

directives 218
loop data 220
loops 159
parallel loops 218
pragmas 218
regions 218, 229
tasks 218, 227
variables 218

procedure calls 59, 274
procedures 6
processors

number of 203
specify number of 129

program
behavior 120
overhead 255, 256, 299
units 6

programming models
message-passing 4
shared-memory 3

programming parallel 9
propagation 43
prototype definition 125
pthread

mutex functions 335
mutexes 337

pthread asymmetric functions
pthread_create() 312
pthread_exit() 312
pthread_join() 312

pthread informational functions
pthread_num_processors_np() 312, 313

pthread synchronization functions
[mc]_unlock() 315
pthread_mutex_destroy() 314
pthread_mutex_init() 314, 315
pthread_mutex_lock() 314, 315
pthread_mutex_trylock() 315
pthread_mutex_unlock() 315

pthread.h 310
pthread_mutex_init() 335
pthread_mutex_lock() 335
pthread_mutex_trylock() 335
pthread_mutex_unlock() 335, 336
pthreads 111, 309

accessing 309, 310
and environment variables 317

R
REAL variable 130
REAL*8 variable 130, 290
reduction

examples 109
force 177
form of 108
loop 157

REDUCTION directive and pragma 146, 177
reductions 28, 289, 292, 294
reentrant compilation 175, 201
region privatization, induction variables in 230
regions

parallelizing 175, 197
parallelizing, example 199
privatizing 217, 229

register
allocation 44



  379

allocation, disable 138
exploitation 128
increase exploitation of 84
reassociation 46
usage 79
use, improved 128

registers 26, 51
global allocation 37, 42, 43
simple alignment 37

reordering 154
replicate code 87
replication limit, increase 87
report_type 137, 152
report_type values

all 152
loop 152
none 152
private 152

RETURN statement 59, 68
return statement 59, 68
reuse

spatial 71, 74
temporal 71, 74, 84

routine-level optimization 27, 42
routines

user-defined 250
vector 139

rules
ANSI standard 273
scoping 241

S
SAVE variable 91
SAVE_LAST directive and pragma 218, 224

example 225
scalar

code 197
optimizations 6, 7
variables 43, 285

SCALAR directive and pragma 146
scheduler, instruction 41
scope of this manual xvi

scoping rules 241
Scott Norton 318
secondary induction variables 223

example 223, 224
semaphores

binary 335
low-level 315
low-level counter 337

serial
function 20
loop 183

servers
K-Class 9, 141
V2250 9, 141
V-Class 9, 141

shared
data 4
variable 177

shared-memory 3
shared-memory programs, optimize 233
short 31
short-circuiting 36
signed/unsigned type distinctions 144
simple loops 102
sin math function 126
single-node servers

porting multinode apps to 235
SMP

architecture 1, 2
software pipelining 27, 42, 49, 130, 136
space, virtual address 17
spatial reuse 71, 74
spawn

parallel processes 4
thread ID 96
threads 218

speed, execution 130
spin

suspend 317
wait 317

spp_prog_model.h 203, 236
sqrt() 125
stack



380   

memory type 205
size, default 202

stack-based objects 237
statements

ALLOCATE (Fortran) 13, 282
COMMON (Fortran) 246
DATA (Fortran) 235, 282
DIMENSION (Fortran) 246
EQUIVALENCE (Fortran) 64, 274
exit (C/C++) 68
GOTO (Fortran) 67, 68
I/O (Fortran) 67
return (C/C++) 59, 68
RETURN (Fortran) 59, 68
stop (C/C++) 59
STOP (Fortran) 59, 68
throw (C++) 69
type 246

static
variables 33, 91

static assignments
node_private 238, 241
thread_private 238

STOP statement 59, 68
stop statement 59
stop variables 277
storage class 237

external 282
storage location

of global data 91
of static data 91

strcpy() 125
strength reduction 27, 51, 136
stride-based parallelism 186
strip mining 54, 97

example 54
length 72

strip-based parallelism 99, 186
strip-mining 7
strlen() 126
strongly-typed pointers 132
structs 31, 282
structure type 144

subroutine call 155
sudden underflow, enabling 290
sum operations 109
suppress optimizations 138
suspend wait 317
sync_routine 44, 250
SYNC_ROUTINE directive and pragma 146, 177

example 251, 252
synchronization

functions 246
intrinsics 253
manual 218, 264
parallel 243
using high-level barriers 313
using high-level mutexes 314
using low-level counter semaphores 315

synchronize
code 257
dependences 197
symmetrically parallel code 332

syntax
OpenMP 211

syntax extensions 236
syntax, command xviii

T
tan math function 126
TASK_PRIVATE directive and pragma 196, 218, 

227
example 227

tasks
parallelizing 175, 177, 192
parallelizing, example 195, 196
privatizing 217, 227

Tbyte 4
temporal reuse 71, 74, 84
terabyte 4
test

conditions 26
promotion 28, 90, 154

text segment 23
THEN clause 39



  381

thrashing, cache 298
thread 148

affinity 100
ID 205, 244
ID assignments 244
idle 96
noidle 96
spawn ID 96
stack 205
suspended 100
waking a 100

thread_private 111
example 238, 239
static assignment of 238
virtual memory class 233, 235

thread_trip_count 104
thread-parallel construct 244
threads 96

child 317
create 317
idle 100, 317
number of 204
parallelizing 183, 191
spawn parallel 102
spawned 218

thread-specific array elements 284
Threadtime 318
threshold iteration counts 104
throw statement 59, 69
time 118
transformations 39

loop 97
reordering 149

triangular loops 188, 296
trip counts

large 307
overflowing 305

type
aliasing 134, 136
casting 132
names, synonymous 144
specifier 237
statements 246

union 144
type-checking 274
type-incompatible assignments 145
type-inferred aliasing rules 143
type-safe

algorithm 274
pointers 132

U
unaligned arrays 286
uninitialized variables 123
union type 144
unlock_gate function 249
unlocking

functions 249
gates 245

unordered parallelism 193
unparallelizable loops 180
Unroll and Jam 156
unroll and jam 28

automatic 128
directive-specified 128

unroll factors 46, 87
UNROLL_AND_JAM directive and pragma 85, 

146, 150
unrolling, excessive 87
unsafe type cast 133
unused definition elimination 52
using

a pointer as a loop counter 276
critical sections 257
hidden aliases as pointers 276
ordered sections 259

V
V2250 servers 9, 71, 141, 233

chunk size 303
hypernode overview 11

valid page sizes 23
variables

accumulator 289
char 31



382   

COMMON (Fortran) 33, 91, 150
create temporary 277
double (C/C++) 130, 290
extern (C/C++) 91
float (C/C++) 130
global 31, 135, 140, 277
induction 27, 45, 222, 230, 276
iteration 45
local 30, 31, 33, 218
loop induction 181
nonstatic 33, 123
primary induction 184
privatizing 159, 185, 218
REAL (Fortran) 130
REAL*8 (Fortran) 130, 290
register 31
SAVE (Fortran) 91
scalar 37, 43, 285
secondary induction 223
secondary induction, example 223, 224
shared 177, 235
shared-memory 138
short 31
static 33, 123
static (C/C++) 91
stop 277
uninitialized 123
values of 36

V-Class Architecture manual 9
V-Class servers 9, 235

hypernode overview 11
vector routines 139, 140
vertical ellipses xviii
virtual

address space 17
memory 18
memory address 46

volatile attribute 32
vps_ceiling 23
vps_chatr_ceiling 23
vps_pagesize 23

W
-W compiler option 290
wait_barrier functions 249
workload-based dynamic selection 102, 149

X
X-class 234


