
HP aC++ Version A.03.27 Release Notes

HP Series 9000
Manufacturing Part Number : 5969-7865

December 2000

© Copyright 2000 Hewlett-Packard Company.

Legal Notices
Copyright © Hewlett-Packard Company 2000. All rights are reserved. Reproduction,
adaptation, or translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Hewlett-Packard makes no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein nor direct,
indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material. Information in this publication is subject to change
without notice.

Corporate Offices: Hewlett-Packard Co., 3000 Hanover St., Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of Defense is subject
to restrictions as set forth in paragraph (b)(3)(ii) of the Rights in Technical Data and
Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Use of this document and flexible disc(s), compact disc(s), or tape cartridge(s) supplied
for this pack is restricted to this product only. Additional copies of the programs may be
made for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

© Copyright 1980, 1984, 1986 AT&T Technologies, Inc. UNIX and System V are
registered trademarks of AT&T in the USA and other countries.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

PostScript is a trademark of Adobe Systems, Inc.

© Copyright 1985-1986, 1988 Massachussetts Institute of Technology. X Window System
is a trademark of the Massachussetts Institute of Technology.
2

Preface
This document provides the following information:

• features

• installation information

• related documentation

• problem descriptions and fixes and known limitations

Note: The software code printed in the release notes title indicates the software product
version at the time of release. Some product and operating system changes do not
require changes to documentation; therefore, do not expect a one-to-one correspondence
between these changes and release notes updates.

Latest printing: December, 2000

This document resides online in the following locations:

• /opt/aCC/newconfig/RelNotes/ACXX.release.notes

To print this file, use an lp command like the following:

lp -d printer_name /opt/aCC/newconfig/RelNotes/ACXX.release.notes

• http://www.hp.com/go/c++

Use your browser to access the HP aC++ Home Page and look at the documentation.

Problem Reporting If you have any problems with the software or documentation, please contact your local
Hewlett-Packard Sales Office or Customer Service Center.
3

4

Features
1 Features

This chapter summarizes the features included in this version of the HP aC++ compiler.
Features introduced in prior release versions are also listed and grouped by the compiler
version number.

The compiler supports much of the ISO/IEC 14882 Standard for the C++ Programming
Language (the international standard for C++).
Chapter 1 5

Features
New and Changed Features
New and Changed Features
New features in HP aC++ version A.03.27 are listed below. They apply to the HP-UX
11.x and operating systems.

HP aC++ provides a variety of performance related options, in addition to the options
described in these release notes. See the HP aC++ Online Programmer's
Guide,Performance section for full documentation (unless otherwise noted below) .
Chapter 3 of these release notes provides access instructions to the guide.

Highlights

• Rogue Wave Standard C++ Library 2.2.1

• Common Migration Problem when using the -AA Option

• Transitioning from the Prior to the New Standard C++ Library

• Online Documentation for Standard C++ Library 2.2.1

• man Pages for Standard C++ Library 2.2.1

• Incremental Linking in 64-bit Mode

• Linker Patch Requirements for 11.x and 11i

More Details

• The Rogue Wave Standard C++ Library 2.2.1 (libstd_v2) is now bundled with HP
aC++. This library includes the standard iostream library and has namespace std
enabled.

To use the new library, you must specify the -AA command line option. Note, the
following:

— The +A option is not a supported with -AA and may give various link or run-time
errors.

— The Rogue Wave Tools.h++ Version 7.0.6 library cannot be used with -AA.

— The prior library (Rogue Wave Standard C++ Library 1.2.1) is the default.

— The The prior libraries (Rogue Wave Standard C++ Library 1.2.1 and Rogue
Wave Tools.h++ Version 7.0.6) are not compatible with the 2.2.1 library. Code
compiled without -AA is incompatible with code compiled with -AA.

• The following example shows a common problem when using the -AA option. The
result of using the new overloads of strchr (on a const char*) is now a const char*.
And Error 440 results if "p" is not declared as a const char*.

#include <string.h>
int main() {
 char *p = strchr("abc", 'c');
}
$ aCC -c strchr.c
$ aCC -c strchr.c -AA
Chapter 16

Features
New and Changed Features
Error 440: "strchr.c", line 3 # Cannot initialize 'char *' with
'const char *'. char *p = strchr("abc", 'c');
 ^^^^^^^^^^^^^^^^^^

• Transitioning from the Prior to the New Standard C++ Library

— Source Code Changes

Since the new Standard C++ Library (libstd_v2) includes the new iostream
library and has namespace std enabled, significant changes may be required in
your source code. For example, the following program will no longer compile:

#include <iostream> // ported from <iostream.h>
int main() {

cout << "Hello, World" << endl;
}

Because both cout and endl are now in namespace std, they must be referenced
as std::cout and std::endl. Alternatively, using declarations or using directives
can be added to your code to make them visible outside of the namespace std
scope. The following is correct:

#include <iostream>
int main() {

std::cout << "Hello, World" << std::endl;
}

— iostream_compat Directory

To help with code transition to the new C++ standard, an iostream_compat
directory is provided. It contains some header files that are just wrappers.You
can include files in the iostream_compat directory even when specifying the -AA
option, to make symbols like cout visible in global scope.

For example, <iostream.h> is in iostream_compat, and it includes the new
<iostream> header followed by a using directive (using namespace std). So the
following program will also compile, with warning 890:

#include <iostream>
int main() {

cout << "Hello, World" << endl;
}

To turn off the warning, specify the +W890 command line option.

NOTE In general, you are encouraged to use header names as specified in the C++
standard. We do not guarantee the inclusion of non-standard compliant headers
in our future releases.

See the C++ international standard for detailed language rules

— Threads

As with prior compiler releases, one version of libstd_v2 is provided for use with
both threaded and non-threaded code. To compile threaded applications, macro
-D_RWSTD_MULTI_THREAD must be used. -D_THREAD_SAFE is no longer
needed.

Refer to the HP aC++ Online Programmer's Guide section on Threads for more
information. (See Chapter 3 of these release notes for access instructions.)
Chapter 1 7

Features
New and Changed Features
— Limitations

USL's Standard Components Library (lib++.a) is not and will not be available
with -AA.

• Documentation for Rogue Wave Standard C++ Library 2.2.1 is provided online in
HTML format. Refer to Chapter 3 of these release notes.

• Manual pages are located at /opt/aCC/share/man/man3.Z. To insure that you invoke
a man page for the library in which you are interested, specify the appropriate
section 3 sub-section. For example, to find the man page for the copy command:

man 3n copy # finds the new Standard C++ Library (libstd_v2)
man 3f copy # finds the old Standard C++ Library (libstd)
man 3s copy # finds the Standard Components version

• In the edit-compile-link-debug development cycle, link time is a
significant component. With incremental linking, any unchanged
object files can be reused without being reprocessed. Incremental
linking allows you to insert object code into an output file (executable
or shared library) that you created earlier, without relinking any
unmodified object files. Time required to relink after the initial
incremental link depends on the number of modules you modify.

To use incremental linking, specify the +ild option on the aCC command line. If the
output file does not already exist or if it was created without the +ild option, the
linker performs an initial incremental link. The output file produced is suitable for
subsequent incremental links.

The +ild option is valid in 64-bit mode for both executable and shared library links.
The +ild option is not valid for relocatable links, options (or tools) that strip the
output module, and with some optimization options.

In certain situations (for example, when internal padding space is exhausted), the
incremental linker must perform an initial incremental link. You can avoid such
unexpected initial incremental links by periodically rebuilding the output file with
the +ildrelink option.

You can debug the resulting executable or shared library produced by the
incremental linker using the WDB debugger with incremental-linking support.

See the Online Linker and Libraries User's Guide (ld +help) and ld(1) for more
information.Also refer to the HP aC++ Online Programmer's Guide (aCC +help).

• For releases prior to HP-UX 11i, the latest linker patch is needed in order to use the
+objdebug option and to build shared libraries.Incremental linking is only available
on HP-UX 11i or a subsequent patch.See these release notes, Chapter 2, Current
Linker Required, for details.
Chapter 18

Features
Version A.03.25 Features
Version A.03.25 Features
Features introduced in the prior release, HP aC++ version A.03.25, are listed below.
They apply to HP-UX 11.x operating systems.

The HP aC++ Online Programmer's Guide contains full documentation. (See Chapter 3
of these release notes for access instructions.).

Highlights

• Linker Patch (PHSS_19866) required for +objdebug and shared libraries

• +ESplabel option (run-time performance)

• +inline_level [i]n option (run-time performance)

• -fast option (run-time performance and porting to HP-UX)

• Fix and continue debugging (build-time performance)

• HP Pac and Blink Link no longer bundled with HP aC++ on HP-UX 11.x.

• +Ofailsafe option new defaults (run-time performance)

• +DD[data_model] option (run-time performance)

• +ESlit option new default (run-time performance)

NOTE: MAY RESULT IN SIGNAL 10 RUN-TIME ABORTS IN ILL-FORMED
PROGRAMS.

• Function Try Blocks as defined in the C++ Standard

• #assert and #unassert preprocessor directives

• enum x { x1, }; trailing comma now generates Warning 921

• +m[d] and +M[d] options have changed behavior

• +uc option for porting to HP-UX

• Predefined string variable identifiers for function names (porting/debug)

• Macros having a variable number of arguments (porting)

• Alignment of long double data type in 64-bit mode changed to 16-bytes

• -D__HPACC_THREAD_SAFE_RB_TREE macro insures thread safety

• Preview online documentation to become familiar with the upcoming Standard C++
Library 2.x

• Preview man pages in preparation for upcoming Standard C++ Library 2.x

More Details

• The latest linker patch (PHSS_19866) is needed in order to use the +objdebug option
and to build shared libraries. See these release notes, Chapter 2, Current Linker
Required, for details.
Chapter 1 9

Features
Version A.03.25 Features
• The +ESplabel option affects how function pointers are dereferenced in generated
code. Using this option can improve run-time performance at the expensive of a
slight increase in code size for every call. The option can only be used:

— in an environment where there are shared libraries

— with +DA2.0 or +DA2.0W

• The +inline_level [i]n option does implicit inlining of small functions that are not
explicitly tagged with the inline keyword. Such inlining happens in addition to
explicitly inlined functions. As before, +d and +inline_level 0 turn off all inlining,
including implicit inlining.

• The -fast option selects a combination of compilation options for optimum execution
speed for reasonable build times. Currently chosen options are:

— +O2, +Olibcalls, and +FPD

— If +noeh occurs before -fast, then +Oentrysched is also added.

• Fix and continue debugging is now supported with HP aC++. Fix and continue
speeds up the edit-compile-debug cycle by allowing you to make changes to a
program from within the WDB debugger and continue debugging without having to
exit the debugger and rebuild. For details about how to use fix and continue from
either the WDB GUI interface or the WDB command line, see the WDB debugger
release notes at:

opt/langtools/wdb/doc/html/wdb/C/WDBrln.html

• HP Pac and Link are no longer bundled with HP aC++ on HP-UX 11.x.The HP
CXperf performance analysis tool is available for download. Refer to:

http://www.hp.com/esy/lang/tools/Performance/index.html

• There are new default settings for the +Ofailsafe option. Refer to the Options section
of the HP aC++ Online Programmer's Guide.

• The +DD[data_model] option specifies the compiler data model as either 32-bit
(ILP32) or 64-bit (LP64).

• The +FP[flags] option specifies how the run-time environment for floating-point
operations should be initialized at program start up. The default is that all behaviors
are disabled. See ld(1) for specific flag values. To dynamically change these settings
at run time, refer to fesetenv(3M).

• By default, string literal data now resides in read-only memory rather than
read-write memory. This new default may result in improved run-time performance,
because read-only memory is shared. The +ESlit command line option can be used to
explicitly specify this behavior. +ESnolit reverts to storing string literal data in
read-write memory.

NOTE NOTE: THIS NEW DEFAULT OPTION MAY CAUSE PROGRAMS TO ABORT
WITH SIGNAL 10 AT RUN-TIME.

String literals (quoted character strings) are typed as "const char[]" and programs
that attempt to modify string literal data are violating the semantics of this "const"
type.Modifying string literal data at the source level translates to writing data into
read-only memory at runtime and will result in the process receiving a signal 10 (bus
error). Below is an example of such a program:
Chapter 110

Features
Version A.03.25 Features
void f(char *s) { // Warning 829: const char* -> char*
 s[0] = 'S'; // abort: write into read-only memory
)
int main() {
 f("string literal");
 return 0;
}

Programs that attempt to write into a string literal's read-only memory will trigger
warnings and errors at compile-time. Fixing the program's compile-time errors and
warnings has the benefit of enabling the use of +ESlit, thus taking advantage of
improved run-time efficiency and improving the application's portability.

The following code generates the compile-time errors shown below:

int main() {
 const char *p = "quoted string";
 char* c=p; // Error 440

void main2() {
 const char *p = "quoted string";
 char* c;
 c=p; // Error 203

aCC -c foo.C
Error 440: "foo.C", line 3 # Cannot initialize 'char *' with
'const char *'. char* c=p;
 ^

Error 203: "foo.C", line 8 # Cannot assign 'char *' with '
const char *'. c=p;
 ^

If you see a compile-time warning like the following:

Warning 829: Implicit conversion of string literal to 'char*'
is deprecated.

These could be suppressed by a cast or const_cast like the above, then no further
messages will occur. Or they could be suppressed by using +W829. A compile-time
error is generated unless a cast is done, in which case there is no message, and a
SIGBUS signal 10 could be generated at runtime.

Note that if you used a cast at compile-time to suppress the error/warning you will
have no idea where to change the code to fix the runtime abort. If you want to find
the source of your problem, look for const_cast or warning 829, or any indication that
you put the cast in the source. When using the debugger, you can print out what
you're trying to modify and search for the string to find the source of the problem.

In A.03.15, A.01.23 and prior compiler versions, only floating-point constant values
were placed in read-only memory. Other constants and literals were placed in
read-write memory.

• HP aC++ continues to more strictly conform to the C++ Standard, enabling porting
to additional platforms. Due to closer conformance with the standard, you may see
more compile time warnings and errors.
Chapter 1 11

Features
Version A.03.25 Features
In prior compiler versions, Warning 829 was issued for assignments and
initializations. The compiler now also generates Warning 829 for return statements
and function calls where appropriate. This warning may help in finding problems
with the new +ESlit default (see prior bullet item). The following example generates
the messages below:

const foo=5;

char *f(char*p) {
 return "goodbye";
}
int main() {
 f("hello");
 return 0;
}

aCC -c foo.C
Error (future) 600: "foo.C", lin e 1 # Type specifier is omitted. "int" is
no longer assumed.
 const foo=5;
 ^^^^^

Warning 829: "foo.C", line 4 # Implicit conversion of string literal to
'char *' is depricated.
 return "goodbye";
 ^^^^^^^^^
Warning 829: "foo.C", line 8 # Implicit conversion of string literal to
'char *' is deprecated.
 f("hello");
 ^^^^^^^

Error (future) 600 is now generated (in conformance with the C++ standard) for
cases like the following:

Error (future (600):
Type specifier is omitted; "int" is no longer assumed.

 const foo=5; //error 600
 static bar() //error 600

The following code corrects the errors:

const int foo=5;
static int bar()

• HP aC++ now provides function try blocks, as defined in the C++ Standard.

Function try blocks are sometimes necessary with class constructor destruction. A
function try block is the only means of ensuring that all exceptions thrown during
the construction of an object are caught within the constructor.

• #assert and #unassert preprocessor directives allow you to set a predicate name or
predicate name and token to be tested with a #if directive. The -ext option must also
be specified at compile and link time.

• Most frequently reported migration issue: enum x { x1, };
The trailing comma is an error, and aC++ now generates Warning 921.
Chapter 112

Features
Version A.03.25 Features
• Behavior of the +m[d] and +M[d] options has changed. When used with the -E
option, only dependency file information is generated, and there is no preprocessing
output.

Behavior when combining the +m[d] or +M[d] option with the -P option is
unchanged. Both dependency information and preprocessing output are generated.

• The +uc option allows you to change the compiler default (signed char) and treat an
unqualified (plain) char data type as unsigned char. This may help in porting code
from other environments to HP-UX.

• As a debugging aid, HP aC++ predefines three string variables for each current
function. This functionality provides compatiblity with the C99 standard and with
GNU/gcc style coding.

For C99 style coding:

__func__ indicates the function name as it appears in the source.

For GNU/gcc style coding:

 __FUNCTION__ indicates the function name as it appears in the source.

__PRETTY_FUNCTION__ indicates the function name, its argument types, and
its return type.

You can use the predefined variables in your code, as in the following examples.

For C99 style coding:

void foo() {
 printf("The function name is %s.\n", __func__);
}
 Output from the example would be:

 The function name is foo.

For GNU/gcc style coding:

#include <stdio.h>

class a {
 public:
 sub (int i)

{
 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__); }
};

int main (void)
{
 a ax;
 ax.sub (0);
 return 0;
}

 Output from the example would be:

__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)
Chapter 1 13

Features
Version A.03.25 Features
Note, these names are not macros. They are predefined string variables. For
example, #ifdef __FUNCTION__ has no special meaning inside a function, since the
preprocessor does not recognize __FUNCTION__.

Also note, the names __FUNCTION__, __PRETTY_FUNCTION__, and __func__ are
reserved for use by the compiler. If any other identifier is explicitly declared using
any of these names, the behavior is undefined.

• A macro can be defined to accept a variable number of arguments, much as you
would define a function. This provides compatiblity with the C99 standard and
GNU/gcc style coding. If you have coded your macros in GNU/gcc style, you can
expect GNU/gcc style behavior. If you have coded your macros to C99 standards, you
can expect C99 style behavior.

For C99 style coding:

If there is an elipsis (...) in the identifier-list in the macro definition, then the trailing
arguments, including any separating comma preprocessing tokens, are merged to
form a single item: the variable arguments. The number of arguments so combined is
such that, following merger, the number of arguments is one more than the number
of parameters in the macro definition (excluding the ...).Any __VA_ARGS__ identifier
occuring in the replacement list is treated as if it were a parameter. The variable
arguments form the preprocessing tokens used to replace it.Following are examples:

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...)((test)?puts(#test):printf(VA_ARGS__))

 debug("Flag");
 debug("X = %d\n", x);
 showlist(The first, second, and third items.);
 report(x>y, "X is %d but y is %d", x, y);

Will be expanded to:

 fprintf(stderr,"Flag");
 fprintf(stderr,"X = %d\n", x);
 puts("The first, second, and third items.");
 ((x>y)?puts("x>y"):printf("x is %d but y is %d", x, y));

For GNU/gcc style coding:

Similar to the variable arguments function described above, a macro can accept a
variable number of arguments. Following is an example:

#define Myprintf(format, args...) \
fprintf (stderr, format, ## args)

 Myprintf ("%s:%d: ", input_file_name, line_number)

Will be expanded to:

 fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note the use of ## to handle the case when args matches no arguments. In this case,
args is empty, and if there is no ##, the macro expansion could be like the following
invalid syntax:

fprintf (stderr, "success!\n" ,)
Chapter 114

Features
Version A.03.25 Features
By using ##, the comma is concatenated with empty valued arguments, and is
discarded at macro expansion.

In the case mentioned above, gcc currently discards only the last preceding sequence
of non-whitespace characters, while HP aC++ discards the last preprocessor token.

• Alignment of the long double data type in 64-bit mode (+DA2.0W) is now 16-bytes.
This insures compatibility with the HP PA-RISC ABI and HP C. In particular, the
layout and alignment of a struct that contains jmp_buf are now identical for HP C
and HP aC++ (since jmp_buf is a typedef that is defined with a long double).

For code compiled with the prior 8-byte default, a problem occurs when a long double
is a field in a class, struct or union. When the structure in question is shared
between C and C++ there is a 50% chance that the fields are not on the same offsets
in both languages, and the wrong data will be accessed.

Symptoms of this problem might be:

— wrong runtime results and corruption

— various aborts if there are pointers that occur after the long double fields

Note, if you must use the prior 8-byte alignment for long double, use the
-Wc,-longdouble,old_alignment option.

• The Rogue Wave Standard C++ Library 1.2.1 (libstd) and Tools.h++ 7.0.6 (librwtool)
are not thread safe in all cases. The -D__HPACC_THREAD_SAFE_RB_TREE
preprocessor macro insures thread safety.

For more detail, refer to the HP aC++ Online Programmer's Guide and choose the
Threads and Parallel Processing section.

• Preview documentation and man pages are provided for a future release of the
Rogue Wave Standard C++ Library 2.x.These documents are online in HTML
format. Refer to Chapter 3 of these release notes.

• Manual pages are located at /opt/aCC/share/man/man3.Z. To insure that you invoke
a man page for the library in which you are interested, specify the appropriate
section 3 sub-section. For example, to find the man page for the copy command:

man 3s copy # finds the Standard Components version
man 3f copy # finds the old Standard C++ Library (libstd)
 version
man 3n copy # finds the future Standard C++ Library preview version
Chapter 1 15

Features
Version A.03.13 Features
Version A.03.13 Features
Features introduced in the prior release, HP aC++ version A.03.13, are listed below.
They apply to HP-UX 11.x operating systems.

The HP aC++ Online Programmer's Guide contains full documentation. (See Chapter 3
of these release notes for access instructions.).

• The latest linker patch (PHSS_19866) is needed in order to build shared libraries
and to use the +objdebug option. See these release notes, Chapter 2, Current Linker
Required, for details.

• Header File Caching is an additional, simplified method of precompiling header files.

• A new debugging option, +objdebug, enables faster links and smaller executable file
sizes for large applications.

The latest linker patch (PHSS_19866) is needed in order to use +objdebug. See these
release notes, "Chapter 2, Current Linker Required," for details.

• Additional Options for Standardizing Your Code:

— -Wc,-ansi_for_scope,[on] enables standard scoping rules for init-declarations in
"for" statements.

— -Aa sets all C++ standard options on (currently Koenig lookup and "for" scoping
rules).

• Additional Options for Code Optimization:

— +Ooptlevel#=name1[,name2,...,nameN]

— +O[no]promote_indirect_calls

— +Oreusedir=DirectoryPath

• A new template option, +inst_directed, to suppress assigner output in object files.
Use it instead of the +inst_none option with code that contains explicit
instantiations only and does not require automatic (assigner) instantiation.

• The #pragma pack directive allows you to specify the maximum alignment of class
fields having non-class types. This pragma may be useful when importing code from
other architectures where data type alignment may be different from default
HP-RISC alignment.

• A new Japanese language version of the HP aC++ Online Programmer's Guide is
located at: /opt/aCC/html/ja_JP.SJIS

• +M[d] and +m[d] options to output the header files upon which your source code
depends in a format accepted by the make(1) command.

• +We option to selectively interpret a warning or future error as an error.

• The __HP_aCC predefined macro to identify the HP aC++ compiler.

• At this release, the +inline-level option defaults to 1. In the prior versions, A.01.09,
A.01.12, A.03.05, A.03.10, the default was 0 and no inlining was done (the same
effect as the +d option).

This change was made based on customer feedback regarding object file size and
runtime performance.
Chapter 116

Features
Version A.03.10 Features
Version A.03.10 Features
Features introduced in the prior release, HP aC++ version A.03.10, are listed below.
They apply to HP-UX 11.x operating systems.

The HP aC++ Online Programmer's Guide contains full documentation. (See Chapter 3
of these release notes for access instructions.).

• The HP aC++ Online Programmer's Guide has been updated from HP CDE format to
HTML format viewable with your HTML browser. For details and access
instructions, see Chapter 3 of these release notes under Online Documentation.

• Standards based features include the following:.

— covariant return types (except for covariant return types with multiply
inheriting types)

— declarations in for and conditional statements

Note: In the case of for statements, you must specify the
-Wc, -ansi_for_scope,on option.

— Koenig lookup

Note: You must specify the -Wc, -koenig_lookup,on option.

• The -I header file option invokes view-pathing. This option overrides the default
-I<directory> header file search path.

• The +inline_level<num> option now defaults to 0, no inlining is done (the same effect
as the +d option).

• Additional options for verbose compile and link information:

— +dryrun - Requests compiler subprocess information without running the
subprocesses.

— +time - Requests subprocess execution times.

— -V - Requests the current compiler and linker version numbers.

• Huge data - Support for uninitialized, non-automatic data objects to a maximum size
of 2^61 bytes for arrays and C style structs and unions.

• Advanced options to support optimization of parallel code on HP9000 K-class and
V-class servers:

— +O[no]autopar - Parallelize loops that are safe to parallelize.

— +O[no]dynsel - Enable workload-based dynamic selection of parallelizable loops.

— +O[no]loop_block - Enable [disable] blocking of eligible loops for improved cache
performance.

— +O[no]loop_unroll_jam - Enable [disable] loop unrolling and jamming.

— +O[no]parallel - Transform [do not transform] eligible loops for parallel
execution on a multiprocessor system.

— .+O[no]report[=<report_type>] - Produce a Loop Report

— +O[no]sharedgra - Enable [disable] global register allocation.
Chapter 1 17

Features
Version A.03.10 Features
— +tm<target> - Compile code for optimization with a specific machine
architecture.

Note: The Parallel Programming Guide for HP-UX Systems provides in depth
information about code parallelization. Refer to Chapter 3 of these release notes.

• Option +DO<osname> allows you to set the target operating system for the compiler.

• The +Oinlinebudget=<n> option now works correctly.
Chapter 118

Features
Version A.03.04 Features
Version A.03.04 Features
Features introduced in the prior release, HP aC++ version A.03.04, are listed below.
They apply to HP-UX 11.x operating systems.

The HP aC++ Online Programmer's Guide contains full documentation. (See Chapter 3
of these release notes for access instructions.).

• The aC++ default template instantiation mechanism has changed to compile-time
instantiation (CTTI). For source code containing templates, the new default may
result in faster compile-time processing.

The previous default behavior remains available by specifying the +inst_auto
command-line option when compiling and linking. If you provide archive or shared
libraries for distribution, you may want to use +inst_auto to insure consistent
behavior between each distribution of your libraries.

Also, if you provide either archive or shared library products, and your customers
need to use the prior template instantiation default in their builds, you must compile
your libraries by using the +inst_auto option.

Refer to the HP aC++ Online Programmer's Guide and to the online technical paper,
Using Templates in HP aC++, for details about template instantiation and
migration. For access instructions, see Chapter 3 of these release notes under Online
Documentation..

• Member templates are supported, including those in pre-compiled headers.

• Updated versions of the Rogue Wave Standard C++ Library (version 1.2.1) and the
Tools.h++ Foundation Class Library (version 7.0.6) are provided. HTML
documentation for these libraries is also updated; see Chapter 3 of these release
notes under Online Documentation.

• The HP aC++ Online Programmer's Guide has been updated, including additional
migration and template information. For access instructions, see Chapter 3 of these
release notes under Online Documentation.

• The technical document, Using Templates in HP aC++, has been updated to describe
the new default, compile-time template mechanism and additional information
about template libraries. For access instructions, see Chapter 3 of these release notes
under Online Documentation.

• The aC++ compiler on HP-UX 11.x includes support for both the 32-bit data model
(ILP32) and the 64-bit data model (LP64). For ILP32, integer, long, and pointer data
is 32 bits in size. For LP64, long and pointer data is 64 bits in size, an integer is 32
bits. The default target architecture continues to be determined by the host system
and the /usr/lib/sched.models file. The default compilation mode remains unchanged
(32-bit).

The new HP-UX 64-bit Porting and Transition Guide includes extensive 32-bit/64-bit
information. 64-bit information is also found in the HP Linker and Libraries User
Guide and in the HP aC++ Online Programmer's Guide. For access instructions, see
Chapter 3 of these release notes under Online Documentation.

• New parameters to the +DA[architecture] option allow you to compile in either
32-bit mode or 64-bit mode.
Chapter 1 19

Features
Version A.03.04 Features
+DA2.0N (the new name for +DA2.0) specifies 32-bit (narrow) mode for the PA-RISC
2.0 architecture. This is the default on 64-bit systems.

+DA2.0W specifies 64-bit (wide) mode for the PA-RISC 2.0 architecture. Specifying
+DA2.0W generates 64-bit SVR4 Executable and Linking Format (ELF) object files
for PA-RISC 2.0. This option is specific to the PA-RISC 2.0 architecture.

• By default, the new __LP64__ preprocessing macro is defined by the compiler when
processing in 64-bit mode. The compiler defines the __PA_RISC2_0 macro for PA2.0
in both 32-bit and 64-bit modes.

You can use these macros within conditional directives to isolate 64-bit code..

• New 64-bit system libraries are located in /usr/lib/pa20_64. 32-bit libraries remain in
/usr/lib.

• The +Z compiler option is the default in 64-bit mode (PIC on). The default in 32-bit
mode remains non-PIC.

• Advanced optimization options, +Omultiprocessor and +Oextern, are provided to
optimize code for processor configuration and external symbol usage, respectively.
Chapter 120

Features
Migrating from HP C++ (cfront) to HP aC++
Migrating from HP C++ (cfront) to HP aC++
The compiler lists Errors, Future Errors and Warnings. Expect to see more warnings,
errors and future errors reported in your code, many related to standards based syntax.
For more complete information, refer to:

1. HP aC++ Transition Guide at the following world wide web URL:

 http://www.hp.com/go/c++

2. For general background information and experience, subscribe to the cxx-dev list
server (like a notes group). Send a message to majordomo@cxx.cup.hp.com with the
following command in the body of the message: subscribe list-name

Available list-names are as follows:

cxx-dev HP C++ Development Discussion List
cxx-dev-announce HP C++ Development Announcements
cxx-dev-digest HP C++ Development Discussion List Digest

cxx-dev-announce is also broadcast to cxx-dev, so there is only a need to subscribe to
one of the lists. The digest also includes both cxx-dev and cxx-dev-announce.

For additional help or information about the list server, send a message to
majordomo@cxx.cup.hp.com with the following command in the body of the message:
help

Also, search the cxx-dev archives at the following URL:

http://www.devresource.hp.com/devresource/Forums/Forums.html

3. For specific support questions, contact your HP support representative.

4. For generic C++ questions, see documents and URL's listed in the HP aC++ Online
Programmer's Guide, Information Map.

Some migration issues are listed below:

• The overload resolution for operators has been updated to reflect the C++ standard.
You may see some additional "ambiguous" function error messages displayed.

• Most frequently reported migration issue: enum x { x1, }; The trailing comma is an
error, and aC++ generates Warning 921.

• Changes to temporary creation for rvalues used to initialize return values which are
const references now causes:

Error 652: Exact position unknown; near file, line#.
Initialization of the result <some const &> requires creating a
temporary, yet the temporary's lifetime ends with the return from the
function.

• You can bracket your HP aC++ changes with the macro defined by the draft
standard. For example:

#if __cplusplus >= 199707L
// HP aC++ Code
#endif // __cplusplus >= 199707L
Chapter 1 21

Features
Migrating from HP C++ (cfront) to HP aC++
• If you are using directed mode instantiation with the cfront based compiler, an awk
script can be used to convert your file to an instantiation file that uses the explicit
instantiation syntax. Note that explicit instantiation syntax can be used to
instantiate a template and all of its member functions, an individual template
function, or a template class's member function. The HP aC++ Online Programmer's
Guide contains an example script.

• In a template, a name with a parameter-dependent qualifier is not taken to be a type
unless it is explicitly declared as one with the typename keyword.

You need to explicitly declare a type or a member function type using the typename
keyword when all of the following are true:

— The code is inside a template.

— The name is qualified (i.e., it has a "::" token in it).

— The qualifier (to the left of the "::" token) depends on a template parameter.

For example, the following code includes the typename keyword to declare iterator as
a type:

#include <list>
template <class Element>
class Foo {
public:
 list<Element> e;
 typedef typename list<Element>::iterator MyIterator;
};

For more information, refer to the HP aC++ Transition Guide at the following World
Wide Web URL:

http://www.hp.com/esy/lang/cpp/tguide
Chapter 122

Installation Information
Migrating from HP C++ (cfront) to HP aC++
2 Installation Information

Read this entire document and any other release notes or readme files you may have
before you begin an installation.

To install your software, run the SD-UX swinstall command. It will invoke a user
interface that will lead you through the installation. For more information about
installation procedures and related issues, refer to Managing HP-UX Software with
SD-UX and other README, installation, and upgrade documentation provided or
described in your HP-UX 11.x operating system package.

Depending on your environment, you may also need documentation for other parts of
your system, such as networking, system security, and windowing.

HP aC++ requires approximately 100 MB of disk space: approximately 50 MB for the
files in /opt/aCC, 10 MB for WDB, and 30MB for DDE. For more precise sizes, use the
command:

/usr/sbin/swlist -a size YourProductNumber
Chapter 2 23

Installation Information
Patch Installation Requirements
Patch Installation Requirements
For HP-UX 11.x operating systems, the HP aC++ run-time library Patch, PHSS_20055,
(or its successor) must be installed prior to running HP aC++. The patch is not required
for the HP-UX 11i operating system.

In addition, it is recommended that you install the core patches distributed on the
Support Plus media.
Chapter 224

Installation Information
Current Linker Required
Current Linker Required
HP aC++ A.03.27 requires the linker patch PHSS_21947, or its successor.

The patch is needed for creation of shared libraries with the -b option. (The
+nosmartbind option is passed to the linker.)

CAUTION No errors occur if you have the wrong linker. However, static constructors in the shared
library will not be executed.

The patch is also required in order to use the +objdebug option to write debug
information in object files. If the patch is not present, the +objdebug option is ignored.

Incremental linking is only available on HP-UX 11i or a subsequent patch or release.
Chapter 2 25

Installation Information
Current Run-time Support Library Required
Current Run-time Support Library Required
To work correctly, an application must be linked to or run with an HP aC++ run-time
support library (libCsup.a or libCsup.sl) that comes with this version of HP aC++ or a
subsequent version. Linking with an older version of libCsup.a or running your
application with an older version of libCsup.sl (the default) may cause spurious failures.
Chapter 226

Installation Information
Attention Softbench Users
Attention Softbench Users
You should install Softbench (DDE) before installing HP aC++. This is because HP aC++
is packaged with DDE and a DDE specific patch. Not installing in this order results in
an unsupported configuration.
Chapter 2 27

Installation Information
Attention Softbench Users
Chapter 228

Related Documentation
Attention Softbench Users
3 Related Documentation

Documentation for HP aC++ is described in the following sections.
Chapter 3 29

Related Documentation
Online Documentation
Online Documentation
The following online documentation is included with the HP aC++ product.

HP aC++ Online Programmer's Guide

Access the guide in any of the following ways:

• Use the +help command-line option:

/opt/aCC/bin/aCC +help

• From your web browser, enter the appropriate URL:

file:/opt/aCC/html/C/guide/index.htm (English)

file:/opt/aCC/html/ja_JP.SJIS/guide/index.htm (Japanese)

To see Japanese characters when using the Netscape browser, choose:

1. Options

2. Document Encoding

3. Japanese (Auto-Detect)

NOTE All of the files composing the English version of the guide are installed in the
/opt/aCC/html/C directory. If you choose to move the entire guide to a different
location without having to edit any links, you will need to move all of the
subdirectories in /opt/aCC/html/C. All of the files composing the Japanese guide are
installed in /opt/aCC/html/ja_JP.SJIS/.

• The English guide (excluding Rogue Wave documentation) is also available on the
World Wide Web at the following URL:

http://docs.hp.com/hpux/development/

Using Templates in HP aC++

This technical document summarizes template features defined in the C++ standard and
describes template instantiation as implemented in HP aC++. It is provided with HP
aC++ in both postscript and HTML format in the following locations:

/opt/aCC/newconfig/TecDocs/templates.ps
/opt/aCC/html/C/templates/templates.htm

Note that you can select the HTML version from the initial window of the HP aC++
Online Programmer's Guide.

HP-UX 64-bit Porting and Transition Guide

Helps developers transition applications from an HP-UX 32-bit platform to the HP-UX
64-bit platform.

This document is available on the HP-UX 11.x CD-ROM and on the World Wide Web at
the following URL:

http://docs.hp.com/hpux/development/
Chapter 330

Related Documentation
Online Documentation
HP-UX Linker and Libraries Online User Guide

To access, use the command:

/usr/ccs/bin/ld +help

HP Wildebeest Debugger (HP WDB)

All of the HP WDB documentation is available online in the following directory:

/opt/langtools/wdb/doc

The most current HP WDB and its related documentation is
available online at the following World Wide Web directory:

http://www.hp.com/go/wdb

Rogue Wave Software Standard C++ Library 2.2.1 Class Reference

This reference contains an alphabetical listing of all of the classes, algorithms, and
function objects in the updated Rogue Wave Standard C++ Library. The library includes
the standard iostream library and has namespace std enabled.

The reference is provided as HTML formatted files. View these files with an HTML
browser by opening /opt/aCC/html/libstd_v2/stdref/index.htm or by selecting from the
initial window of the HP aC++ Online Programmer's Guide.

Rogue Wave Software Standard C++ Library 2.2.1 User's Guide

This guide gives information about library usage and includes an extensive discussion of
locales and iostreams.

The guide is provided as HTML formatted files. View these files with an HTML
browserby opening /opt/aCC/html/libstd_v2/stdug/index.htm or by selecting from the
initial window of the HP aC++ Online Programmer's Guide.

Rogue Wave Software Standard C++ Library 1.2.1 Class Reference

This reference provides an alphabetical listing of all of the classes, algorithms, and
function objects in a prior Rogue Wave implementation of the Standard C++ Library.

The reference is provided as HTML formatted files. View these files with an HTML
browser by opening /opt/aCC/html/libstd/ref.htm or by selecting from the initial window
of the HP aC++ Online Programmer's Guide.

Rogue Wave Software Tools.h++ 7.0.6 Class Reference

This reference describes all of the classes and functions in the Tools.h++ Library. It is
intended for use with Rogue Wave Standard C++ Library 1.2.1.

The reference is provided as HTML formatted files. View these files with an HTML
browser by opening /opt/aCC/html/librwtool/ref.htm or by selecting from the initial
window of the HP aC++ Online Programmer's Guide.
Chapter 3 31

Related Documentation
Online Documentation
NOTE Although the documentation for Appendix A is supplied with aC++, this is an obsolete
interface to Tools.h++ that predates the version that is integrated with the STL. (If
building from the Rogue Wave source, you must compile with -DRW_NO_STL.)

There are 8 templates documented in the main part of the manual as "still supported".
This is incorrect. The interfaces for the following 8 templates must be translated to the
new interface with two extra template arguments:

RWTPtrHashDictionary ==> RWTPtrHashMap
RWTPtrHashDictionaryIterator ==> RWTPtrHashMapIterator
RWTPtrHashTable ==> RWTPtrHashMultiSet
RWTPtrHashTableIterator ==> RWTPtrHashMultiSetIterator
RWTValHashDictionary ==> RWTValHashMap
RWTValHashDictionaryIterator ==> RWTValHashMapIterator
RWTValHashTable ==> RWTValHashMultiSet
RWTValHashTableIterator ==> RWTValHashMultiSetIterator

Refer to defect JAGaa90638.

NOTE Refer to the Information Map in the HP aC++ Online Programmer's Guide for how to
obtain additional Rogue Wave documentation.

HP aC++ Release Notes

This is the document you are reading. The online ASCII file can be found in
/opt/aCC/newconfig/RelNotes/ACXX.release.notes.

HP PA-RISC Compiler Optimization Technology White Paper

This paper describes the benefits of using optimization. It is available in the postscript
file /opt/langtools/newconfig/white_papers/optimize.ps

Online Manual Pages

Online manual pages for aCC and c++filt are at /opt/aCC/share/man/man1.Z.

Library manual pages are located at /opt/aCC/share/man/man3.Z. To insure that you
invoke a man page for the library in which you are interested, specify the appropriate
section 3 sub-section. For example, to find the man page for the copy command:

man 3s copy #finds the Standard Components version
man 3f copy #finds the old Standard C++ Library (libstd) version
man 3n copy #finds the new Standard C++ Library version

Japanese man pages are located at:

/opt/aCC/share/man/ja_JP.eucJP/man1.z and
/opt/aCC/share/man/ja_JP.eucJP/man3.z (euc character set)

/opt/aCC/share/man/ja_JP.SJIS/man1.z and
/opt/aCC/share/man/ja_JP.SJIS/man3.z (SJIS character set)

HP DDE Debugger Online Help

Select help from the DDE Menu Bar.
Chapter 332

Related Documentation
Online Documentation
Online C++ Example Source Files

Online C++ example source files are located in the directory,
/opt/aCC/contrib/Examples/RogueWave. These include examples for the Standard C++
Library and for the Tools.h++ Library.
Chapter 3 33

Related Documentation
Printed Documentation
Printed Documentation

• HP aC++ Release Notes is this document. A printed copy of the release notes is
provided with the HP aC++ product.

Release notes are also provided online, as noted above.
Chapter 334

Related Documentation
Other Documentation
Other Documentation
Refer to the HP aC++ Online Programmer's Guide Information Map for documentation
listings, URL's, and course information related to the C++ language. Also, see below.

The following documentation is available for use with HP aC++. To order printed
versions of Hewlett-Packard documents, refer to manuals(5).

• Parallel Programming Guide for HP-UX Systems (B6056-90006) describes efficient
parallel programming techniques available for the
HP Fortran 90, HP C, and HP aC++ compilers on HP-UX.

This document is available on the HP-UX 11.0 CD-ROM and on the World Wide Web
at the following URL:

http://docs.hp.com/hpux/development/

To order a paper copy, contact Hewlett-Packard's Support Materials Organization
(SMO) at 1-800-227-8164 and provide the above part number.

HP aC++ World Wide Web Homepage

The HP aC++ World Wide Web Homepage provides the latest information regarding:

• Frequently Asked Questions

• Release Version and Patch Table

• Purchase and Support Information

• Documentation Links (including Release Notes and Programming Guides)

• Compatibility between Releases

• WDB Debugger

Access the Homepage at the following URL:

http://www.hp.com/go/c++

Compatibility between HP aC++ Releases

Maintaining binary compatibility is a key release requirement for new versions of HP
aC++. The compiler has maintained the same object model and calling convention and
remains compatible with the HP-UX runtime in the code that it generates as well as its
intrinsic runtime library (libCsup) across the various releases of HP aC++ and its
run-time patch stream.

For the Standard Template Library (libstd) and a generic component/tool library
(librwtool), HP aC++ (as well as some other C++ compilers) relies on Rogue Wave's
Standard Library and Tools.h++ libraries. From the initial release of HP aC++ through
the patch release of version A.01.06, Rogue Wave's Standard Library version 1.2 and
Tools.h++ version 7.0.3 compatible libraries were bundled with the compiler.
Chapter 3 35

Related Documentation
Other Documentation
At the release of HP aC++ A.01.07, the runtime libraries were updated to Rogue Wave's
Standard Library version 1.2.1 and Tools.h++ version 7.0.6. These new libraries
introduced additional data members in some base classes resulting in incompatibility
with the previous versions. For more details, refer to the HP aC++ World Wide Web
Homepage at the following URL and choose Compatibility between Releases:

http://www.hp.com/go/c++

Floating-Point Exceptions Must be Raised Prior to Entering
Library Routines

Programmers who use floating-point arithmetic are reminded to insure that
floating-point exceptions are raised before entering a library routine. For example a
floating-point divide should be followed by a floating-point store. If you fail to do so, code
within the library may raise the floating-point exception, interrupting the library code
rather than the user code.

This reminder is included since the unwind component of libcl.a and libcl.sl uses
floating-point operations in more places than earlier versions of the library. HP aC++
uses unwind functionality to support throw/catch exception handling. Programs which
don't raise floating-point exceptions before entering unwind library routines may have
the exception raised from within the unwind routine.

Difference in Class Size when Compiling in 32-bit versus 64-bit
Mode

The size of a class containing any virtual function varies when compiled in 32-bit mode
versus 64-bit mode. The difference in size is caused by the virtual table pointer (a pointer
to an internal compiler table) in the class object. The pointer is created for any class
containing one or more virtual functions.

When compiling the following example in 32-bit mode, the output is 8. In 64-bit mode,
the output is 16.

extern "C" int printf(const char *,...);

class A {
int a;
public:
 virtual void foo(); //virtual function foo, part of class A
};

void A::foo() {
 return;
}

int main() {
printf("%d\n",sizeof(A));
}

Content of .o Files may Change

The following applies when you use an aCC command-line option that invokes the
assigner.
Chapter 336

Related Documentation
Other Documentation
The content of a given .o file can potentially change when it is used in a closure (with the
+inst_close option) or link operation. The change may occur in either of the following
cases:

• You change the order of .o file's on the link line. For example, if you compile and link
A.c and B.c multiple times as follows, the contents of A.o and B.o may not be the
same following the second link as they were following the first link:

aCC -c A.c B.c
aCC A.o B.o

aCC -c A.c B.c
aCC B.o A.o

o You link a .o file with different objects. In the following example, the content of A.o
may not be the same following the second link as it was following the first link:

aCC A.o B.o

aCC A.o C.o

The Named Return Value (NRV) Optimization

Syntax: -Wc,-nrv_optimization,[off|on]

The above syntax disables (default) or enables the named return value (NRV)
optimization. For this optimization to work correctly in conjunction with exception
handling, the application must be linked to an aC++ run-time support library that comes
with HP aC++ A.01.04 or a subsequent version. Linking with a prior library may cause
spurious failures. If the shared version of this library is selected (default), the platform
on which the application is run must also have that release of the HP aC++ run-time
support library (libCsup.sl).

The NRV optimization eliminates a copy-constructor call by allocating a local object of a
function directly in the caller's context if that object is always returned by the function.
For example:

struct A {
A(A const&); // copy-constructor

};

A f(A const& x) {
 A a(x);
 return a; // Will not call the copy constructor if the

} // optimization is enabled.

This optimization will not be performed if the copy-constructor was not declared by the
programmer. Note that although this optimization is allowed by the ISO/ANSI C++
working paper, it may have noticeable side-effects.

Example: aCC -Wc,-nrv_optimization,on app.C
Chapter 3 37

Related Documentation
Other Documentation
Linker Compatibility Warnings

Beginning with the HP-UX 10.20 release, the linker generates compatibility warnings.
These warnings include HP 9000 architecture issues, as well as linker features that may
change over time. Compatibility warnings can be turned off with the
+v[no]compatwarnings linker option. Also, detailed warnings can be turned on with the
+vallcompatwarnings linker option.

Link time compatibility warnings include the following:

• Linking PA-RISC 2.0 object files on any system — PA-RISC 1.0 programs will run on
1.1 and 2.0 systems. PA-RISC 2.0 programs will not run on 1.1 or 1.0 systems.

• Dynamic linking with -A — If you do dynamic linking with -A, you should migrate to
using the Shared Library Management Routines. These routines are also described
in the sh_load(3X) man page.

• Procedure call parameter and return type checking (which can be specified with -C)
— The current linker checks the number of symbols, parameters, and procedure calls
across object files. In a future release, you should expect HP compilers to perform
cross-module type checking, instead of the linker. This impacts HP Pascal and HP
Fortran programs.

• Duplicate names found for code and data symbols — The current linker can create a
program that has a code and data symbol with the same name. In a future HP-UX
release, the linker will adopt a single name space for all symbols. This means that
code and data symbols cannot share the same name. Renaming the conflicting
symbols solves this problem.

• Unsatisfied symbols found when linking to archive libraries — If you specify the -v
option with the +vallcompatwarnings option and link to archive libraries, you may
see new warnings.

• Versioning within a shared library — If you do versioning within a shared library
with the HP_SHLIB_VERSION (C and C++) or the SHLIB_VERSION (Fortran and
Pascal) compiler directive, you should migrate to the industry standard and faster
performing library-level versioning.
Chapter 338

Problem Descriptions and Fixes and Known Limitations
Other Documentation
4 Problem Descriptions and Fixes and
Known Limitations

This chapter summarizes the known problems and limitations of the current version of
HP aC++ except as otherwise noted.

NOTE HP-UX 10.10 is the last supported OS for PA-RISC 1.0 architecture machines. HP-UX
11.x and 11i no longer support execution of PA-RISC 1.0 code, and 11.x and 11i compilers
no longer support the compilation of PA-RISC 1.0 code.

See the latest HP-UX Software Status Bulletin support document for other known
problems.
Chapter 4 39

Problem Descriptions and Fixes and Known Limitations
Known Problems
Known Problems
Customers on support can use the product number to assist them in finding SSB and
SRB reports for HP aC++. The product number you can search for is B3910BA.

To verify the product number and version for your HP aC++ compiler, execute the
following HP-UX commands:

what /opt/aCC/lbin/ctcom*

what /opt/aCC/bin/aCC

Following are known problems and workarounds.

Incompatibilities Between the Standard C++ Library Version
1.2.1 and the Draft Standard

As the ANSI C++ standard has evolved over time, the Standard C++ Library has not
always kept up.Such is the case for the times function object in the functional header file.
In the standard, times has been renamed to multiplies.

If you want to use multiplies in your code, to be compatible with the ISO/ANSI C++
standard, use a conditional compilation flag on the aCC command line. For example, for
the following program, compile with the command line:

aCC -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL test.c// test.c
int times; //user defined variable
#include <functional>
// multiplies can be used inint main() {}
// end of test.c

Depending on the existence of the conditional compilation flag, functional defines either
times or multiplies, not both. So, if you have old source that uses times in header
functional and also new source that uses multiplies, the sources cannot be mixed. Mixing
the two sources would constitute a non-conforming program, and the old and new
sources may or may not link.

If your code uses the old name times , and you want to continue to use the now
non-standard times function object, you do not need to do anything to compile the old
source.

Changes to the math.h System Header File

At the HP-UX 11.00 release, the math.h header file has changed in the following ways:

• fmax and fmin are new functions. If you used these function names in your code in a
prior release and want to continue using them, you must rename your functions. If
this is a problem in your code, you will see an error like the following:

the overloading mechanism cannot tell a double (double, double)
from a ... (1103)

• The _ABS function has been renamed. To continue using this function, replace any
call to _ABS() with abs().
Chapter 440

Problem Descriptions and Fixes and Known Limitations
Known Problems
Conflict between macros.h and numeric_limits Class (min and
max)

If your code includes /usr/include/macros.h, note that the min and max macros defined in
macros.h conflict with the min and max functions defined in the numeric_limits class of
the Standard C++ Library. The following code, for example, would generate a compiler
Error 134:

numeric_limits<unsigned int>::max();

If you must use the macros.h header, try undefining the macros that conflict:

...
#include <macros.h>
#undef max
#undef min
...

Unsatisfied Symbols if Using Non-current Run-time Support
Library

If you see a message like the following, you may be using a non-current version of the HP
aC++ run-time support library.

/opt/aCC/lbin/ld: Unsatisfied symbols:
 Class tables [Vtable] dependent on key function:
 "__versioned_type_info::~__versioned_type_info()" (data)

For example, if you are a library distributor, you must ensure that your customers use
the same or a newer version of the libCsup run-time library as you. If necessary, you
should install the most current HP aC++ library support patch and distribute this patch
to your customers.

Unsatisfied Symbols for Inline Template Functions

If you use explicit instantiation instead of closing a library, and you compile with the
+inst_auto option, then unless you compile with the +inst_none option, unsatisfied
symbols will be generated for inline template functions that are too large to inline.

Potential Binary Incompatibility of Objects Built with HP-UX
10.10, 10.20 HP aC++

The underlying type corresponding to the "size_t" typedef has changed from unsigned int
to unsigned long. Similarly, "ptrdiff_t " has changed from int to long. These changes
make the 10.10, 10.20 HP aC++ runtime libraries incompatible with subsequent
compiler releases. The changes will cause compatibility problems when size_t is used in
a non-extern "C" interface. (The mangled signature would be different.)

Due to these changes, if any object files are recompiled or linked, then all HP aC++ files
must be recompiled. This implies that third party libraries in archive form also need to
be recompiled or resupplied.
Chapter 4 41

Problem Descriptions and Fixes and Known Limitations
Known Problems
Potential Source Incompatibility of Objects built with HP-UX
10.10, 10.20 HP aC++

When your code overloads system header file functions, it is possible that C++ source
files that compile without error using HP aC++ for HP-UX 10.10 or 10.20 might not
compile with a subsequent compiler release. The example below shows why this
potential problem exists.

1: #include <time.h>
2: time_t ff (time_t t) { return t; }
3: time_t ff (long t) { return t; } // This causes a duplicate.
4: time_t ff (char t) { return t; } // This causes an ambiguity.
5: int main () { long tt = ff (1L); return 0; }

ff is overloaded to take either a time_t, long, or char parameter. On a 10.10 or 10.20
system where time_t is a long, the call to ff in main resolves to ff(time_t). On a 10.30
system, however, where time_t is an int, the code fails to compile:

Error 225: "t1.C", line 4 # Ambiguous overloaded function call; more than
one acceptable function found. Two such functions that matched were "int
ff(char)" ["t1.C", line 5] and "int ff(int)" ["t1.C", line 3]. int main () {
long tt = ff (1L); }
 ^^

Binary Compatibility Between HP-UX 11.00 Bundle from the
Support Plus Media and HP-UX 11.00

An application that ran on the HP-UX 11.00 release will generally continue to run with
the same behavior on 32-bit and 64-bit HP-UX 11.00 bundle from the Support Plus
Media provided that any dependent shared libraries are also present. An executable is a
binary file that has been processed by the HP linker with ld or indirectly with the
compiler, and can be run by the HP-UX loader(exec).

The following items describe exceptions to binary compatibility between 11.00 and the
Support Plus Media. These conditions can occur during your development process, but
rarely affect deployed applications.

Binary Incompatibilities without Changes

Under the following conditions, when you compile your source code without any changes
(to source code, options, or makefiles), you create relocatable object files or executables
that cannot be moved back to an 11.00 system.

• Instrumented code with PBO or +O4 optimization

If you use PBO (+I compiler option) or the +O4 option during development and
recompile with your bundle from the Support Plus Media compiler, you create
instrumented objects (ISOM) that an 11.00 system does not recognize.

You receive one of the following types of error messages if you attempt to link the
objects created using your bundle from the Support Plus Media compiler on an 11.00
system.Example 1: If you compile with +O3or +O4, you receive the following message
and a stack trace:

report error(13-12299-434) to your nearest HP service representative
(8911)
Chapter 442

Problem Descriptions and Fixes and Known Limitations
Known Problems
Example 2: If you compile with "+O2 +I ", you receive the following message and a
stack trace:

Backend Assert ** Ucode versions earlier then v.4 no longer supported.
(5172)

NOTE This code is not backward-compatible with the 11.00 release. Instrumented object
files cannot be moved backward.

Binary Incompatibilies with Changes

When you make changes to your source code, options, or makefiles to use new features of
the bundle from the Support Plus Media release, you may introduce the following areas
of binary incompatibility. You can apply patches to the 11.00 release to accommodate the
relocatable object file or executable on an 11.00 release for backward compatibility.

• Huge Data Features

If you make changes to your source code or use the +hugesize=n option and
recompile with your bundle from the Support Plus Media compiler to use huge data
features (for example, declaring a very large array), you must install the
PHKL_14088 kernel patch (or superseding patch) to use your executable with these
features on an 11.00 system. You must also apply the PHSS_16587 aC++ runtime
and PHSS_16841 linker-tools patches (or superseding patches) for huge data
support.

• 64-bit Open Graphics Library Support

The bundle from the Support Plus Media extension provides 64-bit OGL support to
improve performance. If you make changes to your source code to recompile using
these OGL headers, you receive the message "unresolved symbols" when you link
your executable on an 11.00 system.

• Compiling with +DO and +Olibcalls for Improved Math Performance

If you recompile your code with your bundle from the Support Plus Media compiler
using +Olibcalls and +DO11.0EP9812 options for improved performance, you may
receive the message "unresolved symbols" if you link or run your new executable on
an 11.00 system. (Possible symbols include: $$vsin2_20, $$vcos2_20, $$vsinf2_20,
$$vcosf2_20, $$vcossinf_20, $$vcossin_20, $$expf_20, $$expf, $$vexpf2_20,
$$vexp2_20.) Install the PHSS_14582 milli (or superseding) patch if you must link
your executable on an 11.00 system.

• Parallel Programming Enhancements

If you change your source code and recompile it with your bundle from the Support
Plus Media compiler to take advantage of parallel programming features, you
receive the error "unresolved symbols" if you link your executable on an 11.00
system. Install the PHSS-16587 aC++ runtime patch and PHSS-16841 linker-tools
patch (or superceding patches) and Support Plus Media driver to provide the correct
driver and support library for an 11.00 system.

• CXperf Profiling Tools
Chapter 4 43

Problem Descriptions and Fixes and Known Limitations
Known Problems
If you change options and recompile your source code with your bundle from the
Support Plus Media compiler using the CXperf product, you do not produce profiling
information if you run your executable on an 11.00 system. Install the PHSS_16841
linker-tools patch (or superceding patch) and the CXperf product if you must use the
CXperf product on an 11.0 system.
Chapter 444

Problem Descriptions and Fixes and Known Limitations
Known Limitations
Known Limitations
Some of these limitations will be removed in future releases of HP aC++. Please be
aware that some of these limitations are platform-specific.

• HP aC++ does not support the xdb debugger. Instead, use the HP WDB debugger or
the HP DDE debugger.

• 64-bit Limitations:

— Use of optimization levels greater than 0 with debugging options is not
supported.

— Limitation when Unloading Shared Libraries in a 64-bit Application

Normally, at program termination (exit) or at a call to shl_unload() or dlclose(),
all explicitly loaded libraries are closed automatically and static destructors are
executed at that time.

When a 64-bit application calls shl_unload() or dlclose() and that causes libCsup
to be unloaded, it fails when it executes static destructors at program
termination. This causes a program abort, since related code and data are no
longer present. See defect JAGaa86491.

• HP aC++ does not and will not in the future support installation and/or execution on
HP-UX 9.x, 10.00, or 10.01 systems.

• HP aC++ does not support large files (i.e., greater than 2 GB) with <iostream.h> and
<iostream>.

• Known limitations of exception handling features:

— Interoperability with setjmp/longjmp (undefined by the C++ draft proposed
international standard) is unimplemented. Executing longjmp does not cause
any destructors to be run.

— If an unhandled exception is thrown during program initialization phase (that is,
before the main program begins execution) destructors for some constructed
objects may not be run.

— Symbolic debugging information is not always emitted for objects which are not
directly referenced. For instance, if a pointer to an object is used but no fields are
ever referenced, then HP aC++ only emits symbolic debug information for the
pointer type and not for the type of object that the pointer points to. For instance,
use of Widget * only emits debug information for the pointer type
Widget * and not for Widget. If you wish such information, you can create an
extra source file which defines a dummy function that has a parameter of that
type (Widget) and link it into the executable program.

• Known limitations of signal handling features:

— Throwing an exception in a signal handler is not supported, since a signal can
occur anyplace, including optimized regions of code
 in which the values of destructable objects are temporarily held in registers.
Exception handling depends on destructable objects being up-to-date in memory,
but this condition is only guaranteed at call sites.
Chapter 4 45

Problem Descriptions and Fixes and Known Limitations
Known Limitations
— Issuing a longjmp in a signal handler is not recommended for
the same reason that throwing an exception is not supported.
The signal handler interrupts processing of the code resulting
in undefined data structures with unpredictable results.

• Source-level debugging of C++ shared libraries is supported. However, there are
limitations related to debugging C++ shared libraries, generally associated with
classes whose member functions are declared in a shared library, and that have
objects declared outside the shared library where the class is defined. Refer to the
appropriate release notes and manuals for the operating system and debugger you
are using.

Refer also to the Software Status Bulletin for additional details.

• Instantiation of shared objects with virtual functions in shared memory is not
supported.

• When you call the <shl_load>(3X) routines in libdld.sl either directly or indirectly (as
when your application calls use the +A option, you will see an "unresolved externals"
error.

If you want to link archive libraries and libdld.sl, use the -Wl,-a, archive option. The
following example directs the linker to use the archive version of standard libraries
and (by default) libdld.sl.

aCC prog.o -Wl,-a,archive

• Using shl_load(3X) with Library-Level Versioning

Once library-level versioning is used, calls to shl_load() (see shl_load(3X)) should
specify the actual version of the library that is to be loaded. For example, if libA.sl is
now a symbolic link to libA.1, then calls to dynamically load this library should
specify the latest version available when the application is compiled, such as:

shl_load("libA.1", BIND_DEFERRED, 0);

This will insure that, when the application is migrated to a system that has a later
version of libA available, the actual version desired is the one that is dynamically
loaded.

• Memory Allocation Routine alloca()

The compiler supports the built in function, alloca, defined in the
/usr/include/alloca.h header file. The implementation of the alloca() routine is system
dependent, and its use is not encouraged.

alloca() is a memory allocation routine similar to malloc() (see malloc(3C)). The
syntax is:

void *alloca(size_t <size>);

alloca() allocates space from the stack of the caller for a block of at least <size> bytes,
but does not initialize the space. The space is automatically freed when the calling
routine exits.

NOTE Memory returned by alloca() is not related to memory allocated by other memory
allocation functions. Behavior of addresses returned by alloca() as parameters to
other memory functions is undefined.

To use this function, you must use the <alloca.h> header file.
Chapter 446

	1 Features
	New and Changed Features
	Highlights
	More Details

	Version A.03.25 Features
	Highlights
	More Details

	Version A.03.13 Features
	Version A.03.10 Features
	Version A.03.04 Features
	Migrating from HP C++ (cfront) to HP aC++

	2 Installation Information
	Patch Installation Requirements
	Current Linker Required
	Current Run-time Support Library Required
	Attention Softbench Users

	3 Related Documentation
	Online Documentation
	HP aC++ Online Programmer's Guide
	Using Templates in HP aC++
	HP-UX 64-bit Porting and Transition Guide
	HP-UX Linker and Libraries Online User Guide
	HP Wildebeest Debugger (HP WDB)
	Rogue Wave Software Standard C++ Library 2.2.1 Class Reference
	Rogue Wave Software Standard C++ Library 2.2.1 User's Guide
	Rogue Wave Software Standard C++ Library 1.2.1 Class Reference
	Rogue Wave Software Tools.h++ 7.0.6 Class Reference
	HP aC++ Release Notes
	HP PA-RISC Compiler Optimization Technology White Paper
	Online Manual Pages
	HP DDE Debugger Online Help
	Online C++ Example Source Files

	Printed Documentation
	Other Documentation
	HP aC++ World Wide Web Homepage
	Compatibility between HP aC++ Releases
	Floating-Point Exceptions Must be Raised Prior to Entering Library Routines
	Difference in Class Size when Compiling in 32-bit versus 64-bit Mode
	Content of .o Files may Change
	The Named Return Value (NRV) Optimization
	Linker Compatibility Warnings

	4 Problem Descriptions and Fixes and Known Limitations
	Known Problems
	Incompatibilities Between the Standard C++ Library Version 1.2.1 and the Draft Standard
	Changes to the math.h System Header File
	Conflict between macros.h and numeric_limits Class (min and max)
	Unsatisfied Symbols if Using Non-current Run-time Support Library
	Unsatisfied Symbols for Inline Template Functions
	Potential Binary Incompatibility of Objects Built with HP-UX 10.10, 10.20 HP aC++
	Potential Source Incompatibility of Objects built with HP-UX 10.10, 10.20 HP aC++
	Binary Compatibility Between HP-UX 11.00 Bundle from the Support Plus Media and HP-UX 11.00
	Binary Incompatibilities without Changes
	Binary Incompatibilies with Changes

	Known Limitations

