
C and C++ SoftBench User's Guide
Manufacturing Part Number: B6454-97413

June 2000

© Copyright 2000 Hewlett-Packard Company.

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright © 2000 Hewlett-Packard Company.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the
copyright laws.

Corporate Offices:

Hewlett-Packard Co.
3000 Hanover St.
Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s), compact disc(s), or tape
cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs may be made for security and back-up
purposes only. Resale of the programs in their present form or with
alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Copyright © 1980, 1984, 1986 AT&T Technologies, Inc. UNIX and
System V are registered trademarks of AT&T in the USA and other
countries.
2

Copyright © 1994 X/Open Company Limited.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

Copyright © 1980, 1984, 1986 Novell, Inc.

Copyright © 1979, 1980, 1983, 1985-1990 Regents of the University of
California. This software is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University
of California.

Copyright © 1990 Motorola, Inc. All Rights Reserved.

PostScript is a trademark of Adobe Systems, Inc.

Copyright © 1985-1986, 1988 Massachussetts Institute of Technology.

X Window System is a trademark of the Massachussetts Institute of
Technology.

Portions of this software and documentation are based in part on
software and documentation for the X Window System, Version 11,
developed and distributed by Massachusetts Institute of Technology.

Copyright © 1989, 1990, 1993 Open Software Foundation.

Portions of this software and documentation are based in part on Motif
software and documentation developed and distributed by the Open
Software Foundation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.

RCS, the Revision Control System, manages multiple revisions of files.
Copyright © 1982, 1988, 1989 Walter Tichy. Copyright 1990, 1991 by
Paul Eggert. Distributed under license by the Free Software Foundation,
Inc.

Copyright © 1986 Digital Equipment Corp.
3

4

Printing History
New editions of this manual incorporate all material updated since the
previous edition.

The manual printing date and part number indicate its current edition.
The printing date changes when a new edition is printed. Minor
corrections and updates incorporated at reprint do not cause this date to
change. The manual part number changes when extensive technical
changes are incorporated.

August 1992 Edition 1 (B2600-90010)

August 1994 Edition 1 (B2600-90031)

January 1996 Edition 1 (B5072-90002)

August 1996 Edition 1 (B5072-90017)

February 1998 Edition 1 (B6454-90002)

September 1999 Edition 1 (B6454-93003)

Typeface Conventions
Table 1

Convention Description

italic font Information you supply, either in syntax
examples or in text descriptions. For example, if
told to type: filename , you supply an actual file
name like sample . Italics are also used for
emphasis, and for Titles of Books.

typewriter font Computer commands or other information that
must be typed exactly as shown. For example, if
told to type: sample , you type exactly the word
in typewriter font, sample . Menu selections are
in typewriter font separated by colons. See
"Menu Conventions" in this chapter.

boldface font A term that may need further clarification or
definition, especially a familiar word (such as
menu) used with a computer-specific meaning.
These terms are clarified in the glossary.

[…] Optional parameters in syntax examples are
enclosed in brackets.

KeyCap Represents a key on your keyboard that you
must press, or an on-screen button that you
must select, as part of the operation. For
example, Return is the "Carriage Return" key,
which completes a command input. This key
may be labelled "RETURN", "Return ", or "Enter ".

Key1-Key2 A hyphen between keys indicates that two or
more keys must be pressed at the same time.
For example, "Control-C" means to press and
hold the Control key while pressing and
releasing the C key. The Control key may be
labelled "CTRL", "Ctrl ", or "Control ".
5

6

Contents
1. Maximizing Your Results with SoftBench
SoftBench Task Flow . 20
Understanding Projects . 21

Building Targets . 22
Understanding Build Configurations and Packages . 23
Choosing Between Project Build and External Build Models 25

Sharing Projects with a Team . 27
One Project, One Author . 27
One Project, Many Authors . 27
One Project with Subprojects, Many Authors . 29

Planning Your Project . 31
Using the SoftBench Integrated Environment . 32

Using SoftBench Tools Together . 34
Using SoftBench Tools on Multiple Projects . 35
Using SoftBench Tools as Standalone Tools . 36
Reusing Tool Windows . 37
Copying Data between SoftBench Tools . 37

An Example SoftBench Session . 38
Learning SoftBench . 40

2. Using SoftBench
Prerequisites to Using SoftBench . 42
Starting SoftBench . 43
Understanding SoftBench Window Areas . 44

Understanding the Builder Page . 47
Understanding the SoftBench CodeAdvisor Page . 48

Setting Up a Project . 50
Creating a Project Using Project Build . 50
Creating a Project Using External Build . 52
Cloning a Project from an Existing Project . 53
Repartitioning an Existing Project . 54
Creating a Subproject . 55

Modifying a Project Definition . 56
Creating Files within a Project . 57
Adding Existing Files to a Project . 58
Defining Targets for Project Build . 60

Creating a Target . 60
Specifying Dependency Relationships . 61
7

Contents
Customizing Build Configurations . 62
Using Build Packages . 63

Defining Targets for External Build . 64
Using the Target Graph . 66

Understanding the Graph . 67
Displaying Dependencies . 68
Controlling Graph Complexity . 69
Building a Selected Target . 69
Starting Your Configured Editor . 69

Building Projects and Targets . 70
Setting the Compile Mode . 70
Using the "External Build Command" Dialog Box . 72
Previewing the Build . 72
Compiling Instead of Building . 73
Building Subprojects . 73
Handling Errors . 73
Running the Build on a Remote System . 75

Checking Your Code Using SoftBench CodeAdvisor . 76
Running Other SoftBench Tools . 77
Managing Your SoftBench Environment . 78

Adding and Removing Tool Icons . 79
Choosing Tool Preferences . 80
Registering New Tools with SoftBench . 80
Customizing SoftBench by Setting Resources . 81
Accessing Distributed Data and Tools . 81
Running SoftBench on a Remote System . 82
Integrating with CDE . 82
Stopping SoftBench . 82
Restoring Your Previous SoftBench Session . 83

Getting Help . 84
Using the Help Menu . 85
Accessing On Item Help . 85

If Something Goes Wrong . 86
For More Information . 87

3. Using SoftBench Configuration Manager
8

Contents
Understanding SoftBench CM . 90
Getting Started - A Brief Overview . 92
Managing the Archive System . 95

Browsing Local Network Servers and Archives . 95
Creating an Archive Directory . 97
Creating a Mapping between an Archive Directory and Local Directory 98
Modifying Mappings between Local and Archive Directories 99

Managing Archive Files and Directories . 102
Creating Initial Archive Files . 102
Checking Out Archive Files . 102
Cancelling Archive File Check Out . 103
Updating a Local Directory . 103
Viewing Contents of Archive Files . 104
Deleting Archive Files and Directories . 106
Locking an Archive File . 106
Breaking a Lock on an Archive File . 107
Viewing the Revision History of Archive Files . 107
Setting Archive Display Filters . 109

Managing Local Files . 110
Modifying Local Source Files . 110
Checking In Modified Files . 110

Creating a Default Symbolic Name for Archive Files . 112
Understanding Symbolic Names . 112
Defining Symbolic Names . 113
Symbolic Name Example . 113

Using the SoftBench CM Command Line Interface . 115

4. Using SoftBench Editors
Using Editors with Projects . 118
Configuring an Editor . 119

Configuring SoftBench vi Editor . 119
Configuring SoftBench Program Editor . 119

Starting the Configured SoftBench Editor . 121
Editing with SoftBench XEmacs Editor . 122

Using SoftBench XEmacs . 123
Accessing Help . 124
Editing Multiple Files . 124

Editing with SoftBench vi Editor . 126
9

Contents
Using the Mouse Pointer Versus the Text Cursor . 127
Editing Multiple Files . 127
Reusing the Edit Window . 128
Selecting, Copying, and Pasting Text . 129

Calling Other SoftBench Tools from the Editors . 130
Compiling a Program File . 130
Building a Project . 130
Accessing SoftBench Static Analyzer from the Editor . 130
Setting Breakpoints in a Program File . 131
Using Configuration Management . 131

For More Information . 132

5. Using SoftBench Class Graph/Editor
Editing C++ Structures with SoftBench Class Graph/Editor 134

Understanding the SoftBench Class Graph/Editor Use Model 134
Using SoftBench Class Graph/Editor with Other SoftBench Editors 136
Synchronizing Editor Views and the Static Database . 136

Using SoftBench Class Graph/Editor in Your Work . 138
Viewing the Existing Class Hierarchy . 138
Creating New Components . 139
Modifying Existing Components . 139
Deleting Existing Components . 140

Sample Use Models . 141
Creating a New Program . 141
Modifying an Existing Program . 141
Working with Class Templates . 141
Using Configuration Management . 142

If Something Goes Wrong . 143

6. Using SoftBench CodeAdvisor
Comparing SoftBench CodeAdvisor to Debuggers or Dynamic Analyzers 148
Performing the "Check Code" Operation . 149

Preparing Your Program with Project Build . 149
Preparing Your Program with External Build . 149
Accessing SoftBench CodeAdvisor . 150
Selecting Rule Groups . 150
10

Contents
Checking Your Program . 150
Viewing Violations . 151
Terminating SoftBench CodeAdvisor . 152
Filtering Rule Violations . 152

For More Information . 154

7. Using SoftBench Debugger
Understanding SoftBench Debugger . 156
Preparing Your Program for Debugging . 159
Using SoftBench Debugger Window Areas . 160
Tearing Apart the Main Toolface . 163
Loading or Rerunning an Executable Program . 165

Specifying the Runtime Environment . 165
Specifying Source Locations . 168
Debugging Executables in a Project . 169

Stepping through Your Program . 171
Interrupting a Running Program . 172

Interrupting in System or Non-debuggable Routines . 172
Interacting with Your Program . 174

Interacting with a Standard I/O Program . 174
Interacting with a Terminal-Smart Program . 175
Interacting with a Window-Smart Program . 175

Specifying Identifier Locations . 177
Specifying Program Location . 177
Specifying Variables . 178

Examining and Changing Data in Your Program . 181
Examining Data in Your Program . 182
Printing Hex or String Values . 183
Changing Data in Your Program . 183
Using Debugger Variables . 183
Using Expressions . 184
Using Constants . 185
Calling Functions . 186
Viewing the Call Stack . 186
Viewing Thread Stacks . 187

Understanding the Operation of Your Program . 188
Setting and Using Breakpoints . 189

Debugging a Program Using Breakpoints . 189
11

Contents
Setting a Breakpoint . 190
Viewing and Modifying Breakpoints . 193
Clearing a Breakpoint . 194
Executing DDE Commands at a Breakpoint . 195

Setting C++ Breakpoints . 197
Setting Group Breakpoints . 197
Viewing and Modifying Group Breakpoints . 197

Setting and Using Watchpoints . 199
Creating Watchpoints . 200
Viewing and Modifying Watchpoints . 201
Clearing a Watchpoint . 202

Tracing Program Flow . 204
Creating Traces . 204
Viewing Traces . 205
Clearing Traces . 206

Correcting Errors in Your Program . 207
Editing Source Code . 207
Synchronizing Files . 208

Debugging Dynamic Libraries . 209
Viewing Assembly Language and CPU Registers . 211

Tracing Assembly Language . 211
Tracing Registers . 212

Handling Signals and Events . 214
Viewing and Editing Intercepts . 214
Handling Signals . 216

Debugging After a Program Fails (Core Dump) . 217
Debugging with a Core File . 217

Debugging Forked Processes . 219
Debugging Threaded Applications . 220

Viewing and Manipulating Threads . 220
Setting Breakpoints on Threads . 221

Attaching the Debugger to a Running Program . 222
Debugging C++ Programs . 223

Using Breakpoints for Exception Handling . 225
Accessing Inherited C++ Values . 225
Debugging Static Constructors . 225
12

Contents
Debugging Optimized Code . 227
Customizing SoftBench Debugger . 228

Specifying Debugger Options . 228
Customizing User Buttons . 228

If Something Goes Wrong . 231
For More Information . 234

8. Using SoftBench Debugger Data Graph Window
Starting and Stopping the Data Graph Window . 236

Beginning a Browsing Session . 236
Stopping a Browsing Session . 236

Understanding Data Graph Window Areas . 237
Understanding the Layout Control Area . 237
Understanding the Display Control Area . 238
Understanding the Graph Area . 238
Understanding the Window Control Area . 240

Using the Graph Area . 241
Displaying New Nodes . 241
Using the "Node Values" Dialog Box . 241
Suspending Graph Updates . 244
Deactivating the Graph . 244
Stopping a Graph Process . 244

Sample Use Models . 245
Verifying Correct Data Structures . 245
Viewing Values of Data Members . 247

For More Information . 250

9. Using SoftBench Static Analyzer
Starting SoftBench Static Analyzer . 252
Preparing to Make Queries . 254

Generating Static Data . 254
Updating Static Data without Building . 255
Specifying Static Data to Analyze . 255

Using SoftBench Static Analyzer Window Areas . 258
Making Textual Static Queries . 260

Making General Queries . 260
Making Queries Based on a Program Identifier . 260

Using Query Results . 264
13

Contents
Browsing the Query Result . 264
Editing the Source File . 264
Updating the Database . 264
Performing a Query . 265

Simplifying Query Results . 266
Filtering Results Using the File Set . 266
Filtering C++ Query Results . 268
Using Scoping . 268

Redisplaying Past Queries . 271
Redisplaying Query Results . 271
Deleting a Query Result . 271
Saving and Printing a Query Result . 271

Using SoftBench Static Analyzer in Standalone Mode . 273
Generating Static Data from the Command Line . 273
Searching Subdirectories . 273
Using the Staticfileset File . 274

Customizing SoftBench Static Analyzer . 275
If Something Goes Wrong . 276
For More Information . 281

10. Using Static Graphs
Starting SoftBench Static Analyzer Graphs . 285
Making Graphical Static Queries . 286

General Static Graph Features . 286
Finding Graph Nodes . 287
Operating on Static Graph Nodes . 287
Switching between Static Graphs . 288
Displaying Nodes on Another Graph . 288
Using Description Boxes . 289
Setting Breakpoints for SoftBench Debugger . 290
Saving Static Graph Images to Files . 290

Simplifying Graph Displays . 292
Reducing Graph Complexity . 292
Filtering Sourceless Nodes . 293

Customizing Static Graphs . 294
Removing the Graph Legend . 294
14

Contents
Viewing Multiple Graphs . 294

11. Using SoftBench File Compare
Understanding the SoftBench File Compare Window . 296

Understanding the Menu Bar . 296
Understanding the "Working Directory" Input Box . 296
Using the "Left File" and "Right File" Input Boxes . 297
Using the "Merge File" Input Box . 297
Understanding the Text Areas . 297
Reading the Gutter Column . 297
Selecting Lines for Merging . 298
Highlighting Differences . 299
Traversing by Single Line . 299

Comparing Two Files . 300
Merging Compared Files . 301
If Something Goes Wrong . 302
For More Information . 303

12. Using SoftBench Message Monitor
Starting SoftBench Message Monitor . 306
Understanding the SoftBench Message Monitor Window Area 307

Understanding the Menu Bar . 307
Understanding Broadcast Messages . 307
Clearing the Broadcast Message Area . 308

Composing and Sending a Message . 309
Logging Messages . 311

Specifying a Log File . 311
Starting and Stopping Message Logging . 311

13. Using SoftBench with SQL
Determining Supported Environments . 314
Configuring SoftBench with SQL . 315

Using Default SQL File Types . 315
Using SQL with Project Build . 315
Using SQL with External Build . 317
Updating RDBMS Versions . 317

Using SQL with SoftBench Tools . 319
Using SQL Preprocessor Wrappers . 319
15

Contents
Debugging with SQL . 319
Editing and Rebuilding with SQL for SoftBench Debugger 321
Using SoftBench CodeAdvisor and SoftBench Static Analyzer with SQL 321

For More Information . 322

A. Using SoftBench Graph Windows
Accessing SoftBench Graph Windows . 324
Using Graph Window Areas . 326

Using Popup Menus . 326
Using Save Options for the Graph Image . 326
Using Vertical and Horizontal Scrolling . 330
Zooming In or Zooming Out . 331
Clearing the Graph Area . 331

Understanding Nodes and Arcs . 332
Reading Graph Area Nodes . 332
Selecting Nodes and Arcs . 332
Moving Nodes . 334

Customizing SoftBench Graphs . 336
Controlling Graph Layout . 336
Controlling Graph Display . 336
Understanding Window Status Information . 337

For More Information . 338

B. Customizing SoftBench CM Configuration
Modifying the Configuration Files . 340

Configuring Where Archive Files are Stored . 341
Defining User Access to the Server . 342
Recommended Format for Permissions File . 345
Setting Logging and Debug Options . 346
Controlling Client Machine Access to the SoftBench CM Server on HP-UX 346

Performing SoftBench CM Administrator Tasks . 348
Migrating Archive Files From RCS . 348
Migrating Archive Files From SCCS . 348
Modifying the Lockinfo File . 349
Creating Archive Backups . 349
Moving Archive Storage Locations . 349
16

Contents
Troubleshooting . 351

C. Using Regular Expressions
Pattern Matching . 354

D. Customizing SoftBench for Native Language Support (NLS)
Preparing to Use NLS in SoftBench . 362
Setting the LANG Environment Variable . 364

Converting from One Encoding Method to Another . 365
Rebinding Alt . 366
SoftBench Mnemonics and Non-USASCII Character Inputs 367

Changing or Removing Menu Mnemonics . 367
SoftBench Keyboard Accelerators and Non-USASCII Character Inputs 369

Customizing Keyboard Accelerators . 369
Starting Your Localized SoftBench . 371
Remote Execution Hosts and NLS . 372
Editing in SoftBench . 373

Character Input Example . 373

Glossary
17

Contents
18

Maximizing Your Results with SoftBench
1 Maximizing Your Results with
SoftBench

SoftBench facilitates the development of reliable software, an especially
difficult and time-consuming process when you work on large and
complicated projects. SoftBench provides an integrated, consistent
windowed interface to the tools you need the most.
Chapter 1 19

Maximizing Your Results with SoftBench
SoftBench Task Flow
SoftBench Task Flow
The tools pass information and control from one tool to the next, helping
you move smoothly through the software development and maintenance
tasks shown in Figure 1-1.

Figure 1-1 Major Software Development Tasks Supported by SoftBench

SoftBench tools and the data on which they operate can be distributed
across a network and accessed transparently by individuals or teams.
SoftBench provides an open, customizable environment, allowing users
to add their own tools or purchase products integrated by third party
software vendors. Additionally, SoftBench provides online help and an
online tutorial to simplify learning.

SoftBench provides a dynamic build environment. As you develop your
project, SoftBench learns about your source files and how to transform
them into your build targets. Based on build information contained in
build configurations, SoftBench can maintain the Makefile
instructions for you. SoftBench automatically shares this knowledge
about files and targets in your project with other SoftBench tools.

SoftBench project management allows you:

• ease of navigation through project code and files that may be spread
across file system directories

• automatic maintenance of simple to complex target dependencies
• definition of the project once, so that all tools benefit from the

knowledge rather than maintaining multiple lists of files throughout
your toolset
Chapter 120

Maximizing Your Results with SoftBench
Understanding Projects
Understanding Projects
Projects are the fundamental work unit in SoftBench. Projects consist
of a named set of files that produce a set of related targets using one or
more sets of build instructions and dependencies.

Figure 1-2 SoftBench Tools Interacting with Project and Files

The critical parts of a project definition are:

Project Name The logical name for the project.

Local Workspace Root The root directory of the file system hierarchy
under which all your source files are found, and where
editing and building take place. The project does not
have to include all the files under the hierarchy, and
files in the hierarchy can be used in different projects if
desired.
Chapter 1 21

Maximizing Your Results with SoftBench
Understanding Projects
Project file set The source, documentation and test files you wish to
associate with the project.

Project targets The executables, libraries, message catalogs, and other
files that are the product of one or more builds.

Build Configurations Instructions for how to transform your source files
into your target files.

Project names contain regular characters. Control characters, spaces,
and punctuation characters special to the shell are not allowed in project
names. The files and targets that comprise your project are located under
your local workspace root. SoftBench's project description data contains
lists of these files and their relationships.

When you change file and target information in SoftBench, you change
only SoftBench internal descriptions of their relationships. For example,
deleting a file from a project only changes your project description data.
It has no impact on your files in the file system.

Subprojects are projects with a defined dependent relationship to a
parent project. A subproject relationship implies a build order
dependency. A project is always an entity to itself; that is, it does not
dynamically inherit options or build information from any other project.
Examples of subprojects include:

• a project to build a library that is linked into a parent project target

• a project to build an executable that is used to generate files or
targets in the parent project

Building Targets

Source files are files you create and edit directly. A target is a project file
that is the end product of a build. Examples of targets include linked
executables, shared libraries, archive libraries, and message catalogs.
Chapter 122

Maximizing Your Results with SoftBench
Understanding Projects
Figure 1-3 Building Sources into Targets Using Project's Build Instructions

Targets that SoftBench builds:

• are project-specific. They are not shared between projects, though
projects may have targets of the same name

• are user defined

• are created from a build within a project

• are built in no specified order unless a specific dependency has been
created between them

• each have a physical file system location specified when you define
the target

• are distinguished from intermediate files (.o's or .C's built from lex or
SQL files)

Not every target is an executable file and not every executable file in a
project is a target. Targets are created from a build within the project
and are only those things a user has defined as such.

Understanding Build Configurations and Packages

A build configuration provides the complete set of build instructions to
produce a target of a particular type, such as a C++ executable, a C
shared library, or an Oracle C executable. Build configurations specify
libraries, include directories, compiler options, defines, and other
information required to transform source files into a target. When you
use project build, you can use one of the many default build
Chapter 1 23

Maximizing Your Results with SoftBench
Understanding Projects
configurations provided by SoftBench.

Build configurations are independent of projects and targets. SoftBench
ships with a basic set of build configurations. You can create new user
build configurations based on the shipped build configurations, adding
build instructions that are unique to your environment. To have your
administrator save these as shared customizations available to other
users, see "Sharing Build Configurations with Your Team" in SoftBench
Online Help.

Once you decide on build configurations (system or customized) that
work for your environment, you can use the same build configuration for
many targets, and you can further customize a build configuration for a
specific target.

A build package is a collection of build instructions that makes it easy
to use third-party libraries, utilities, or compiler directives in many build
configurations. Packages also make it easy to specify the compiler to use
for the target. Packages are similar to build configurations because they
include library and include directories, compiler options, defines, and
other information needed for using the library or utility. First, choose a
system or customized package; then include the package in all
appropriate build configurations. If the package's build instructions need
to change, you modify the package, and all build configurations which
use the package update automatically.

For example, SoftBench provides packages for Motif, X11R6, SoftBench
Encapsulator, RogueWave, and Oracle. If the requirements for building
the library change, you can modify customized packages. All build
configurations that include the package automatically update to use the
modified package.

A transform is a set of operations that run a program or shell utility
that converts a file from one form to another. For example, the C compiler
transforms a source file into an object file. SQL preprocessors transform
a source file with embedded SQL into a generated source file with all the
SQL statements expanded. The gencat utility transforms a file of
message strings into a message catalog. For more information about
these concepts, refer to the "SoftBench Key Concepts" topics on "Build
Configurations", "Build Packages", and "Transforms" available through
"Help: O verview ".

Transforms are the building blocks of build packages and build
configurations. A build package contains zero or more transforms plus
modifiers that influence how transforms operate. An example of a
Chapter 124

Maximizing Your Results with SoftBench
Understanding Projects
package with no transform, just modifiers, would be the X11 library to be
linked into an executable. A build configuration contains one or more
transforms and zero or more packages (which may include transforms
and/or other packages). A very simplified version of the actual build
configuration to create an executable target from C source containing
embedded SQL is shown in Figure 1-4.

Figure 1-4 Simplified Build Configuration, Package, and Transform Series

Choosing Between Project Build and External Build
Models

SoftBench supports two build models, allowing you two ways to specify
your build instructions:

• With project build, you supply the necessary information to
SoftBench, and SoftBench converts the build configuration and
dependency information into build commands.
Chapter 1 25

Maximizing Your Results with SoftBench
Understanding Projects
Project build lets SoftBench manage your build instructions. You can
specify source-to-target dependencies and build order dependencies,
choose convenient system or customized build configurations and
build packages, and automatically generate Makefiles or do without
Makefiles altogether if you prefer.

• SoftBench provides an external build model as an alternative to
project build for people who already have a highly-tuned build
environment. With external build, you edit and maintain the
Makefile or build script. SoftBench provides an "External Build
Command" dialog box for you to initiate your builds.

External build lets you use your own make utilities, such as imake ,
make, or nmake files or scripts. External build is the opposite of project
build, where SoftBench handles building without the need for a
Makefile. SoftBench does not read or parse your Makefile. By using
external build you lose some of the conveniences that project build
provides, such as access to the target graph and automatic generation
of a Makefile. You can also add secondary source locations to
SoftBench's search lists through alternate source roots.

The "External Build Command " dialog box can be utilized during
project build to build software which is not in a project, or to execute a
shell command and view the output in the output browser.

Recommendation: Use project build for your projects whenever
possible. You may choose to use external build and maintain the make
process yourself when:

• You have one source that becomes many types of objects.

• Your process cannot use file suffixes to tell what file types are in use.

• Your build process uses the VPATH environment variable for make(1) .

• You have a working build process and are perfectly happy with it.
Chapter 126

Maximizing Your Results with SoftBench
Sharing Projects with a Team
Sharing Projects with a Team
SoftBench projects provide the flexibility to have your development
environment reflect your team interactions.

Sharing a project description has all the benefits and difficulties
associated with sharing any source file. A centralized project description
means that everyone is working from the same project files, but there
can be collisions when more than one person wants to make changes. You
may "break up" your file into several subprojects so that people can
work independently and let SoftBench handle the complexities and
relationships of the build.

There are several scenarios for partitioning a project:

• One Project, One Author

• One Project, Many Authors

• One Project with Subprojects, Many Authors

One Project, One Author

When your project has only one author, you may want to set up a single
project definition.

Alternatively, you can choose to use subprojects to organize your work
hierarchically, if that is more convenient. For example, if the subproject
is a library, you can modify the build configuration of targets in the
parent project to use the library. If you work on both the library and its
parent project, using the subproject relationship provides the flexibility
to either build the subproject or use it in its current state. If you never
want to build the subproject alone, setting up the subproject relationship
may not be the best way to structure the project. You can just leave all
your targets in one project and use build-order dependencies.

One Project, Many Authors

As your project grows past what one author can accomplish, you face the
issues of sharing the work across the team.

The preferred way to work at this level is to designate one person as the
owner of the project definition file and have the rest of the team clone
Chapter 1 27

Maximizing Your Results with SoftBench
Sharing Projects with a Team
from that definition for their local working copies. Anyone who discovers
the need for a change in the project definition communicates that to the
owner, who makes the update, and then all of the team members re-clone
their project definitions.

Figure 1-5 Team Members Cloning the Project Definition

The least usable method is to share the project definition files. Choose
"Options: Set Default Project Root… " to specify the location of the
shared project definition. Sharing a project definition has several
limitations, primarily that only one person can open the project at a
time.
Chapter 128

Maximizing Your Results with SoftBench
Sharing Projects with a Team
Figure 1-6 Team Members Sharing the Project Definition

One Project with Subprojects, Many Authors

Finally, your team can choose to divide up the project along the same
lines as they divide up the work, especially if the project is large enough
that multiple teams are cooperating on a single system release.

Figure 1-7 Team Members Using Subprojects

Each person's module of work may be designated as a subproject of the
team's project. Team members then open the parent project for short
periods of time, as necessary, but work primarily in the subprojects. Each
team member's project is a subproject of the larger project, then the
whole team's project is actually a subproject of the overall system
delivery. Using SoftBench to manage this level of hierarchical complexity
saves tremendous time and confusion when system builds are needed.
Chapter 1 29

Maximizing Your Results with SoftBench
Sharing Projects with a Team
Chapter 130

Maximizing Your Results with SoftBench
Planning Your Project
Planning Your Project
You can use SoftBench as your project planning environment by
specifying the files of the project and their relationships even before the
files exist. Unique icons in the Files view remind you which files have yet
to be created in the file system. You can always change file lists to add,
remove, or rename files as your project actually takes shape.

First determine how you will share pieces of your project among your
team members. From this you can lay out your parent project and
subproject definitions. See “Setting Up a Project” on page 50 for more
information.

Next populate your projects with your files. You can add existing files
into your project or create new files in your editor and have them
automatically become members of the project. See “Adding Existing Files
to a Project” on page 58 and “Using Editors with Projects” on page 118
for more information.

Define your targets and how to build them. Then set up dependencies
between your source files and your targets, or between two targets that
must be build in a specific order. Refer to “Specifying Dependency
Relationships” on page 61 for details.

Now continue your development process in your SoftBench environment
where all of your tools, from editor to debugger, understand your project
files and build dependencies.

For in-depth information about using the project model in your
development process, choose "Help: SoftBench How To ".
Chapter 1 31

Maximizing Your Results with SoftBench
Using the SoftBench Integrated Environment
Using the SoftBench Integrated Environment
The SoftBench project environment provides smooth transitions between
all of your SoftBench tools. See Figure 1-6 on page 29 and “An Example
SoftBench Session” on page 38 for how the tools flow together. The tools
shipped with SoftBench include:

Main SoftBench Window with Builder and SoftBench CodeAdvisor

Define your projects, customize the SoftBench
interface, and launch other SoftBench tools through
the main toolface. You use Builder to transform your
source files into your targets. CodeAdvisor inspects
your source files for coding problems beyond what your
compiler can detect.

Editors

Making changes in your project code is easy with
editors that understand your project structure.
Configure your choice of SoftBench XEmacs Editor or
SoftBench vi Editor. SoftBench Program Editor is also
provided as contributed software for your convenience,
but it neither understands projects nor automatically
adds files to projects. SoftBench Class Graph/Editor
allows you to see and modify your C++ program
visually.

Configuration Management

Keep your software changes under version control with
your integrated configuration management system.
SoftBench ships with SoftBench CM. Third party
vendors also offer integrated configuration
management systems integrated with SoftBench.

SoftBench Static Analyzer

Evaluate the structure of your code without executing
it using SoftBench Static Analyzer. For example, you
can determine where variables are modified, classes
are declared, and functions are called. Static Graphs
Chapter 132

Maximizing Your Results with SoftBench
Using the SoftBench Integrated Environment
show you pictures of your code structure.

SoftBench Debugger

Monitor your program's execution with SoftBench
Debugger. You can set breakpoints, trace function calls,
and watch variable values to isolate defects in your
code. Data Graph Window gives you a visual image of
your data structures as they change.

SoftBench File Compare

Compare two versions of a file and select lines from
each to create a merged file using SoftBench File
Compare.

SoftBench Message Monitor

Watch SoftBench internal messages between tools to
assist in isolating problems with SoftBench and to
debug the integration of new tools into the SoftBench
environment.

Figure 1-8 Using SoftBench Tools Throughout Your Development Cycle
Chapter 1 33

Maximizing Your Results with SoftBench
Using the SoftBench Integrated Environment
SoftBench supports three ways to use tools:

• using SoftBench tools together on one project

• using SoftBench tools together on more than one project

• using individual SoftBench tools in a standalone mode outside of
projects

Using SoftBench Tools Together

The recommended way to use SoftBench is as a set of tools that
communicate with each other. To accomplish this, start SoftBench and
launch other tools as you need them from the menus or toolbar in the
main SoftBench window.

From the SoftBench window, you can perform many actions on the
project data (source files, targets, and build information). Select the data
on which you want to work, then choose the task you need to accomplish.
Some tasks, such as building your application and checking your code for
SoftBench CodeAdvisor violations, take place within the main SoftBench
window. Other tasks automatically start other SoftBench tools, such as
your configured SoftBench editor or SoftBench Debugger.

SoftBench's integrated environment allows you to move easily from one
software development task to another. You can use the main SoftBench
window to initiate tasks, and you can move from one task to another
seamlessly using menu commands in other SoftBench tools.
Chapter 134

Maximizing Your Results with SoftBench
Using the SoftBench Integrated Environment
Figure 1-9 Tools That Can Directly Invoke Other Tools

Using SoftBench Tools on Multiple Projects

If you want to work on multiple projects at the same time, you can either
start multiple sessions of SoftBench or you can open multiple projects
within a single session of SoftBench. When you run a single session of
SoftBench, you can access only one project, the current project, at a time
in the main SoftBench window. With either alternative your assisting
tools, such as the editor, stay open and available for use.

To open multiple projects within a single SoftBench session, select the
project you want to open, then select Open. When you open a project,
SoftBench:

• locks the project for write access
Chapter 1 35

Maximizing Your Results with SoftBench
Using the SoftBench Integrated Environment
• makes the opened project the current project

• switches the project browser from the Projects view to the Files view,
displaying the project's files

Only the current project's files display in the Files view. If you had
another project open, SoftBench by default leaves it open and all its tools
running. To close the previous project and stop its associated tools
whenever a new project opens, set the "Options: ■ Close Tools when
Switching Projects " toggle button. When you set it, the previous
project closes, stopping associated tools. When you turn it off, the
previous project remains open and any associated SoftBench tools
remain running.

Each tool instance shows its associated project in its title bar. A build
initiated from one of the tools builds the project named in its title bar.
When you open a tool with one current project, then switch projects in
the main SoftBench window, the tool remains attached to the project for
which it was started. The editors save files in the project with which they
are associated.

To help simplify window management when working in multiple
projects, SoftBench provides "Iconize Project" and "Normalize Project"
buttons (see Figure 1-10). From the Projects view, select the project, then
select the button to either iconize or normalize the associated tool
windows. Alternatively, you can use CDE workspaces to simplify window
management for multiple projects.

Figure 1-10 Iconize and Normalize Project Buttons

Using SoftBench Tools as Standalone Tools

When you start SoftBench tools directly from the command line, the tools
have no knowledge of project data associated with the files, and you
cannot access build functionality. Other types of tool interactions, such as
accessing the editor from SoftBench Static Analyzer, still work. However,
Chapter 136

Maximizing Your Results with SoftBench
Using the SoftBench Integrated Environment
without access to project data, tool interactions may behave
unpredictably.

Recommendation: Even if you want to use only one or two SoftBench
tools, launch the tools from the SoftBench main window.

Reusing Tool Windows

Within a single project, you can start only one instance of some tools and
multiple instances of other tools. For example, within a project, you can
open only one instance of SoftBench Static Analyzer, but you can open a
different instance of SoftBench Debugger for each executable target in
the project.

If you prefer to see only one instance of a tool, change the data on which
the tool operates from within the tool itself. For example, in SoftBench
Debugger choose "File: Unload Executable " to unload the current
target, then choose "File: Load Executable… " to debug another
program.

Copying Data between SoftBench Tools

SoftBench shares internal project definition data across all the tools for
you. At times you may want to copy some information from one tool's
screen to another tool's input box. You can do this using the clipboard.

To copy information to the clipboard:

1. Select the text using the left mouse button and dragging across the
text.

2. Press Control-Insert to copy the text to the clipboard.

To paste information from the clipboard to an input field:

1. Position the mouse cursor within the input field and click the left
mouse button.

2. Press Shift-Insert to paste the text from the clipboard.
Chapter 1 37

Maximizing Your Results with SoftBench
An Example SoftBench Session
An Example SoftBench Session
The following example shows how you can use SoftBench as you develop
an application. To use the project build model where SoftBench takes
care of the build instructions and Makefile:

1. Create a project by choosing "Project: New → Create… ".

2. Set up a configuration management mapping between your local
workspace root and the CM archive.

3. Write the code for your project. If the files already exist, choose
"Project: Add File(s) to Project… " to make the files part of the
project. To edit the file, double-click on the file name. To create new
files, choose "File: New…".

4. Throughout the development cycle, remember to check files into your
configuration management system. Select the files, then choose the
desired command from the "File: Con f iguration Management "
submenu.

5. Define the targets in your project and their dependencies:

a. Choose "Target: New…" to specify the target name and its build
configuration. The build configuration provides instructions on
how to build the target.

b. Create a dependency relationship between the files and targets.
Select each source file that makes up the target, then choose
"File: Lin k Source to Target… ".

c. If the target needs special build instructions, select the target,
then choose "Target: Modify Properties… ". Within the "Modify
Target Properties " dialog box, select Customize Build
Configuration… . In the "Customize Build Configuration " dialog
box, make the changes that you need.

6. To build your project, select the project, then select the Build button.
SoftBench displays the build results in the Builder's output browser.
From the output browser, you can browse syntax errors in the editor
and correct them before rebuilding.

If your project has subprojects, setting the "■ Build Subprojects "
toggle button on the main toolface causes SoftBench to update all
subprojects before building the current project.
Chapter 138

Maximizing Your Results with SoftBench
An Example SoftBench Session
7. When all syntax errors are fixed, use SoftBench CodeAdvisor
(available with C++ SoftBench only, although rules exist for both C
and C++) to find hidden coding problems not found by the compiler.
Select the project or files of interest, then select the Check Code button.

8. To validate how well your application works, select the desired target,
then choose either "Target: D ebug…" or "Target: Run…". If you use
"Target: D ebug…" and find problems, you can start your editor from
SoftBench Debugger, edit the source code, then choose "File: Build "
to recompile the application and restart the debugging process.

9. To better understand your code, select the "Static Analyzer " icon in
the toolbar. Alternatively, you can access SoftBench Static Analyzer
from your configured SoftBench editor or SoftBench Debugger by
selecting a program identifier, then choosing a command from the
"Static " menu.

10.Cycle through editing, building, and debugging as many times as
necessary to develop a correct executable.

If you are using the external build model where you write and
maintain the build instructions, replace step 3 above with:

3. Define the targets in your project and their dependencies

a. Edit the Makefile or build script. With external build, you can save
the build instructions for your Makefile targets when your build
command supports entering a target name as part of the command:

b. Choose "Target: New…" to display the "External Build Command "
dialog box.

c. Specify the build instructions for the external build target. For
example, enter make in the “Command” input box, and enter the target
name in the “Target ” input box.

d. Select Save as Target to save the instructions as a target node that you
can select in the project browser and target graph.
Chapter 1 39

Maximizing Your Results with SoftBench
Learning SoftBench
Learning SoftBench
The SoftBench Online Tutorial teaches you the fundamentals of getting
started with SoftBench. You can learn SoftBench using either a C or C++
example. The tutorial walks you through code development and
maintenance tasks, introducing you to key SoftBench tools. Through this
hands-on experience, you can learn the basic functions of the SoftBench
tools and understand how to use these tools together to help you develop
software.

To access SoftBench Online Tutorial, choose "Help: Tuto r ial " from the
main SoftBench window. If you are interested in more in-depth training,
contact your Hewlett-Packard sales representative.
Chapter 140

Using SoftBench
2 Using SoftBench

This chapter provides the basic information that you need to start using
SoftBench. From setting up your project to making sure that your
software does what you intend, SoftBench provides an easy-to-use,
integrated environment to support your software development tasks.
Chapter 2 41

Using SoftBench
Prerequisites to Using SoftBench
Prerequisites to Using SoftBench
SoftBench requires that your PATHenvironment variable be set correctly.
Your system administrator may have done this for you when SoftBench
was installed. If you have a problem with your PATH, SoftBench notifies
you.

To see the current value of your PATH, type

echo $PATH

Verify that /opt/softbench/bin precedes /bin , /usr/bin ,
/usr/ccs/bin , and /opt/aCC/bin and that /usr/bin/X11 is included in
your PATH.

If your PATH is incorrect, then you need to modify the PATH environment
variable:

1. Edit the appropriate file for your environment.
For Bourne, Korn, or Posix shell, edit $HOME/.profile . For C shell,
edit $HOME/.cshrc or $HOME/.login .

2. Add the PATH statements shown below to the file. Use the format
already in your file to guide your use of these examples.

3. If you are running CDE, you may also need to modify your
$HOME/.dtprofile file.
Uncomment the line near the bottom of the file that instructs CDE to
read your $HOME/.profile or $HOME/.login file (depending on which
shell you are using). By uncommenting this line, the changes you
made in Step 2 are used by your windowing environment.

4. In order for these changes to take effect, log out and log in again.

Table 2-1

Shell Syntax

For
Bourne,
Korn, or
Posix
shell

PATH=/opt/softbench/bin:/usr/bin/X11:$PATH
export PATH

For C
shell

set path = (/opt/softbench/bin /usr/bin/X11 $path)
Chapter 242

Using SoftBench
Starting SoftBench
Starting SoftBench
You can start SoftBench in two ways:

• From the command line, type

softbench

• From CDE,

1. Select the CDE Application Manager icon on the CDE front panel.

2. In the CDE Application Manager, open the SoftBench folder and
double-click on the SoftBench icon.

Either action displays the main SoftBench window and opens a scratch
project named Untitled . If you have existing projects, SoftBench opens
the last project in which you worked.
Chapter 2 43

Using SoftBench
Understanding SoftBench Window Areas
Understanding SoftBench Window Areas
The main SoftBench window is shown in Figure 2-1. Table 2-2 contains
descriptions of each window area.

Figure 2-1 Unexpanded SoftBench Window
Chapter 244

Using SoftBench
Understanding SoftBench Window Areas
Table 2-2 Description of SoftBench Window Areas

Window Area Description

1 Menu Bar Provides access to many SoftBench functions.
When using most commands on the "Project ",
"File " and "Target " menus, select the project,
file, or target of interest in the project browser or
the target graph, then choose the menu command.
Refer to SoftBench Online Help for detailed
descriptions of any menu command.

2 Toolbar Starts associated SoftBench tools using the data
selected in the project browser or target graph.
SoftBench displays the name of the tool when you
place the mouse pointer over an icon.

3 Current
Project Area

Displays the name of the current project and local
workspace root, and provides buttons to iconize
and normalize tool windows.

4 Project
Browser

Presents project data in tree outline form. The
project browser offers two views of your project
data—the Projects view and the Files view,
accessible by selecting the appropriate tab:

• Use the Projects view to see available projects
and understand dependencies and
relationships between various levels of the
application being developed.

• Use the Files view to access and use specific
files and targets within the current project.
Chapter 2 45

Using SoftBench
Understanding SoftBench Window Areas
5 Button Area Provides quick access to important actions:

• Open to open a project or make an already open
project current

• Check Code (available with C++ SoftBench only)
to find coding violations beyond errors already
caught by the compiler

• Build to build the entire project or selected
target(s)

 Select one or more list items in the project
browser or target graph, then select the desired
button to initiate the action.

6 Build Control
Area

Contains controls for the build process:

• "Compile Mode " toggle buttons set the "■
Debug",
"■ Static ", and "■ Optimized " compiler
options

• " Build Subprojects " toggle button, controls
whether subprojects of the current project are
also built or used in their current state

7 Expand/Close
Button

The Expand >> button expands the SoftBench
window to display the Builder or CodeAdvisor
pages. When the window expands, the button
changes to Close << . The Close << button closes the
Builder and CodeAdvisor pages and returns the
SoftBench window to its compact state.

8 Status Line Displays messages about the status (startup,
completion, success, failure, problem encountered)
of actions that you take. The spinning clock icon
indicates when a "Build " or "Check Code "
operation is in progress.

Table 2-2 Description of SoftBench Window Areas

Window Area Description
Chapter 246

Using SoftBench
Understanding SoftBench Window Areas
Understanding the Builder Page

The Builder page, shown in Figure 2-2, consists of two main parts: the
target graph and the output browser. For information on using the
Builder page, see “Building Projects and Targets” on page 70.

Figure 2-2 Expanded SoftBench Window Displaying Builder Page

Target Graph Provides a graphical view of targets and dependencies
in a project using the project build model. For
external build projects, the target graph shows each
target as a separate, selectable node, but shows no
dependencies. The only operation available from target
graph for external build projects is Build . See “Using
the Target Graph” on page 66.

Output Browser Displays build output. When compile errors occur, the
error browsing buttons (First , Previous , Next, Last ,
Selected) provide easy access to the source code that
triggered the compile error. See “Browsing and
Correcting Build Errors” on page 74.
Chapter 2 47

Using SoftBench
Understanding SoftBench Window Areas
Understanding the SoftBench CodeAdvisor Page

The CodeAdvisor page, shown in Figure 2-3, consists of two main parts:
the rule group selection area and the output browser. This page is
available only when you have C++ SoftBench.

Figure 2-3 Expanded SoftBench Window Displaying SoftBench
CodeAdvisor Page

Rule Group Selection Area Provides toggle buttons to select the type of
violations you want to find. You can see the number of
active rules that CodeAdvisor checks, based on the rule
groups you select. The Rule Group Help… button provides
help on the rules in each rule group. See “Selecting
Rule Groups” on page 150 for more information.

Output Browser Displays SoftBench CodeAdvisor output. Controls
include:

• Error browsing buttons (First , Previous , Next, Last ,
Selected) which provide easy access to the source
code that triggered the rule violation.

• Filtering buttons (This , Rule, File, Dir, and Undo Last)
which allow you to suppress rule violations you do
not plan to fix. The Undo Last button allows you to
undo the last filter operation.

• Violation Help… button which provides help on the
Chapter 248

Using SoftBench
Understanding SoftBench Window Areas
specific rule violation selected in the output
browser. See “Viewing Violations” on page 151 for
more information.

• “■ Hide Filtered Items " toggle button which
allows you to control whether you view the filtered
violations, in the output browser.

For more information about SoftBench CodeAdvisor see “Checking Your
Code Using SoftBench CodeAdvisor” on page 76 and Chapter 6, “Using
SoftBench CodeAdvisor,” on page 145.
Chapter 2 49

Using SoftBench
Setting Up a Project
Setting Up a Project
You can create a project several ways:

• Create a project from scratch. (See “Creating a Project Using Project
Build” on page 50 and “Creating a Project Using External Build” on
page 52.)

• Create a project by cloning another project. (See “Cloning a Project
from an Existing Project” on page 53.)

• Repartition a project into two projects. (See “Repartitioning an
Existing Project” on page 54.)

When you create a project, you must specify:

• The project name. Project names contain regular characters. Control
characters, spaces, and punctuation characters special to the shell are
not allowed in project names.

• The local workspace root, the top-level directory of the local
workspace. For example, assume you have a project named MyBigApp
with executables in bin , source code in src , and libraries in lib .
These subdirectories are grouped under a directory named
$HOME/MyBigApp. In this example, the local workspace root would be
$HOME/MyBigApp. SoftBench resolves all relative file paths from the
local workspace root.

• The type of build model. You can choose either project build, where
SoftBench takes care of the build instructions and Makefile, or
external build, where you write and maintain the build instructions
(probably in your own Makefiles).

You can also share projects with other team members. (See “Sharing
Projects with a Team” on page 27.) In addition to creating projects, you
can set up subprojects, which create build order dependency
relationships between projects. (See “Creating a Subproject” on page 55.)

Creating a Project Using Project Build

With project build, SoftBench manages the build instructions for the
project. Project build frees you from writing and maintaining Makefiles,
while allowing you to create complex projects spanning multiple
directories and involving multiple targets.
Chapter 250

Using SoftBench
Setting Up a Project
To create a project build project:

1. Choose "Project: New → Create… " which displays the dialog box
shown in Figure 2-4.

Figure 2-4 Create Project" Dialog Box

2. In the "Create Project " dialog box, provide the project name, local
workspace root, and a descriptive comment.

3. Select the "❍ Project Build " radio button.

4. Optionally, select Add Existing Source Files… to specify the source files
during project creation. Alternatively, you can choose "Project: Add
File(s) to Project… " after you create the project. The button and
the menu command perform the same function. (For more
information, see “Adding Existing Files to a Project” on page 58.)

5. Optionally, select Define Targets… to specify the build commands for
targets in the project. Alternatively, you can add targets after the
project is created by choosing the command "Target: New…". The
button and the menu command perform the same function. (For more
information, see “Defining Targets for Project Build” on page 60.)

6. Select Create to close the "Create Project " dialog box and create the
project.

7. Once you have created the project, added source files, and defined
targets, specify source file dependencies by selecting the files for a
target, then choosing "File: Lin k Source to Target… ".

8. If necessary, modify the build configuration for the target by selecting
the target, then choosing "Target: Modify Properties… ". In the
"Modify Target Properties " dialog box, select Customize Build
Chapter 2 51

Using SoftBench
Setting Up a Project
Configuration… and make the needed changes. (For more information,
see “Customizing Build Configurations” on page 62.)

If you want to have SoftBench generate a Makefile for use external to
SoftBench, for example in a nightly build script, choose "Builder:
Generate Makefile… ".

Creating a Project Using External Build

External build provides build support when you write and maintain
your own Makefiles or build scripts. With external build, you also need to
specify the files that belong to the project, and you may also want to
specify the targets (see “Defining Targets for External Build” on page
64). Doing so enables SoftBench to show your targets on the target graph
for easy selection and building. SoftBench does not read or parse your
Makefile.

To create an external build project:

1. Choose "Project: New → Create… ".

Figure 2-5 "Create Project" Dialog Box for External Build

2. In the "Create Project " dialog box, provide the project name, local
workspace root, and descriptive comment.

3. Select the "❍ External Build " radio button.

4. Your build directory should be the same as your local workspace root.
If for some reason it is not, enter the build directory.

5. Enter the build command for building the project. For example, enter
make to build the default target in a make(1) Makefile. Your Makefile
Chapter 252

Using SoftBench
Setting Up a Project
must properly handle paths relative to your build directory.

6. Optionally, select Add Existing Source Files… to specify the source files
during project creation. Alternatively, you can choose "Project: Add
File(s) to Project… " after you create the project.

7. Optionally, select Define Targets… to specify the build commands for
targets in the project. Alternatively, you can choose "Target: New…"
after you create the project.

8. Select Create to close the "Create Project " dialog box and create the
project.

Cloning a Project from an Existing Project

SoftBench allows you to clone existing projects. Cloning uses an existing
project definition as the basis for a new project. The cloning process
copies only the SoftBench description of the file set, target list, and build
configurations. It does not copy the physical project source and target
files.

See “One Project, Many Authors” on page 27 for a diagram of using
cloning.

To clone a project:

1. Choose "Project: New → Cl one…".

2. In the "Clone Project " dialog box, provide the project name, your
local workspace root, and descriptive comment. choose a different
local workspace root for the cloned project; otherwise you might
overwrite files or targets unintentionally.

3. Select the project from the "Project to Clone " list.

If the project you are cloning is not in the list, then change the project
search path:

a. Enter the new "Project Search Path ".

b. Select Search for Projects to update the "Project to Clone " list.

c. Select the project to clone.

For example, if you are cloning a project created by a coworker, you
need to tell SoftBench where the coworker's project definitions are
located. By default, SoftBench stores project definitions under
$HOME/.softbench .
Chapter 2 53

Using SoftBench
Setting Up a Project
4. Select Create.

5. Once the project is cloned, make any needed changes to the project.
For example, you may need to change the build instructions, add or
remove files, or remove or define additional targets.

6. Then, make sure you have the project files under your local
workspace root. For example, you may need to copy the files or check
out the files from configuration management.

Repartitioning an Existing Project

SoftBench provides the ability to restructure a project, creating a second
project from parts of the original project. You may want to do this as your
project outgrows a simple model or as you add developers to your team.
During this process, you choose whether the new project is a subproject
of the current project. You also choose whether the selected targets and
files remain in the current project.

To restructure a project:

1. Select the files and/or targets to be restructured. Selecting targets
automatically includes the source files required in the project
description data.

2. Choose "File: Con vert to Project… ".

3. In the "Convert Files to Project " dialog box, provide the project
name, local workspace root, and descriptive comment.

When you change your local workspace root to point somewhere
further up or down its current hierarchy, SoftBench does not
recalculate the relative path names. You can select the files in the
project and choose "Modify Properties… " to change the relative path
names.

4. Decide whether to make the new project a subproject of the current
project.

5. Decide whether to remove the selected files and targets from the
current project or leave them shared by both projects.

6. Select Create.

7. Once the project has been restructured, make any needed changes to
both projects. You may need to change build instructions, add or
remove files, or remove or define additional targets in the new project.
Chapter 254

Using SoftBench
Setting Up a Project
For external build projects, you may need to change build instructions
in the current project if files have been removed.

8. Finally, make sure you copy the physical project files under your new
local workspace root.

Creating a Subproject

When you create a subproject relationship, you also need to create the
build instructions that implement the relationship. For example, if the
subproject is a library, you need to add the library to the target's build
configuration in the parent project. (For more information, see
“Customizing Build Configurations” on page 62.)

When you create a subproject, you can treat the subproject as code that
you do not control and do not want to build, or you can build the
subproject before building the project. The "■ Build Subprojects "
toggle button in the Build Control Area controls whether the subproject
is built prior to building the parent project.

You can create a subproject in two ways:

• When the project already exists, select the project in the Projects
view, then choose "Project: Ma ke Subproject Of… ". In the dialog
box, specify the parent project.

• When you are restructuring the current project and wish to convert
part of it into a subproject, select the targets and/or files that you
want in the subproject, then choose "File: Con vert to Project… ".
See “Repartitioning an Existing Project” on page 54 for more
information.
Chapter 2 55

Using SoftBench
Modifying a Project Definition
Modifying a Project Definition
Under certain circumstances you may wish to change information about
your project definition. SoftBench allows you to change the name,
location, and type of project by choosing "Project: Modify
Properties… ".

• To change the name of your project enter a new project name. Project
names contain regular characters. Control characters, spaces, and
punctuation characters special to the shell are not allowed in project
names.

• To change the location of your project enter a new local workspace
root. You can use the … button to select from a list.

When you change the local workspace root, SoftBench preserves the
exact relative path names for files. This allows you to maintain
identical subtrees under two different roots for building different
product releases. You can just change your local workspace root to
point to one, then the other. However, if you try to change your local
workspace root to point somewhere further up or down its current
hierarchy, SoftBench does not recalculate the relative path names.
You can select the files in the project and choose "Modify
Properties… " to change the relative path names.

• To change the build type of your project select the "❍ Project Build "
or the "❍ External Build " radio button. For external build, enter
the build directory and build command. See “Creating a Project Using
External Build” on page 52 for complete information.

Changing the build model for a project significantly affects
SoftBench's internal representations of your project. All targets are
deleted and must be redefined.

• To change the Static database location, enter a directory in the
"Static Database Location " input box. You can use the … button to
browse the directory you want.

• To return to the default Static database location, clear the "Static
Database Location " input box.
Chapter 256

Using SoftBench
Creating Files within a Project
Creating Files within a Project
New files that you create within SoftBench automatically become
members of your project. Choosing "File: New" starts your configured
editor with an untitled file. Alternatively, choose the "Editor " icon when
you have no files selected. SoftBench vi Editor and SoftBench XEmacs's
"File: Save " and "File: Save As…" menu commands automatically
add the file into your project.

SoftBench also allows you to pre-define files before you create them. You
can use this when you plan your project. Choose "Project: Add
File(s) to Project ". Select the "■ Choose Files Individually "
toggle button and enter the name of the file in the text field. The path to
the file must exist, but the file itself does not have to. You can later use
your editor to open and edit this file.
Chapter 2 57

Using SoftBench
Adding Existing Files to a Project
Adding Existing Files to a Project
Once a project is created, you can add files to the project in a number of
ways. SoftBench vi Editor and SoftBench XEmacs's "File: Save " and
"File: Save As…" menu commands automatically add a file into the
project listed in the editor's title bar.

From the main SoftBench window, you can choose "Project: Add
File(s) to Project… " (see Figure 2-6). This command allows you to
add files individually, or you can add files in groups based on directory
and file type. As you select files, SoftBench displays the file names in the
"Files Selected " list.

You do not need to add intermediate files, such as .o files and generated
C files, explicitly. Add files that you want to build as target files using the
"Target: New" menu command.

Figure 2-6 "Add Files to Project" Dialog Box

To add files one at a time:

1. Select the "❍ Choose Files Individually " radio button.

2. Enter the file name, or select … to browse to the desired file.

3. Select Add to add the file to the "Files Selected " list.

To add files in groups:
Chapter 258

Using SoftBench
Adding Existing Files to a Project
1. Select the "❍ Choose Files By Directory " radio button.

2. Enter the directory name, or select … to browse to the desired
directory.

3. Optionally, select the "m This Directory Down Recursively " radio
button. Note: The recursive option on a deep hierarchy can take a
long time, because this process looks at every file in the hierarchy.
The recursive option works best on fairly shallow or restricted
hierarchies.

4. Select the desired file types. For example, to add C++ source files and
header files, select both "C++ Source " and "C++ Include " in the
"Select types of files to add " list. If the file types you need are
not in the list, select More File Types to edit the list.

5. Select Add to add the qualified files to the "Files Selected " list.
Qualified files are files in the specified directory (and possibly its
subdirectories) with the specified file types.

6. To selectively delete files from the "Files Selected " list, select the
files and select the Delete button. (This does not delete files from your
file system.)

7. Select OK.

After you close the dialog box, the Files view displays the files that you
added to the project. The Files view is a logical representation of a file
set. It shows you all the files in the project, regardless of whether the
files exist on the file system.

The icon beside each file in the Files view shows whether the file exists.
When you create a file in the file system, or check a file out of
configuration management, the file's icon appearance changes. A page
with lines indicates that the file exists in the local workspace and a blank
page indicates that it does not exist in the local workspace. A page with
an arrow indicates a target, and lines indicate whether it exists in the
local workspace or not. To update the Files view with the current file
status, choose "View: Refresh Files View ".
Chapter 2 59

Using SoftBench
Defining Targets for Project Build
Defining Targets for Project Build
SoftBench attaches build instructions to targets. Each target in your
project must be defined and have its build instructions described.

Creating a Target

To define a new target:

1. Choose "Target: New…", which displays the "Define New Targets "
dialog box shown in Figure 2-7.

Figure 2-7 "Define New Targets" Dialog Box

2. Enter a target name in the "Target Name " input box. Target names
must be unique within a project. Target names contain regular
characters. Control characters, spaces, and punctuation characters
special to the shell are not allowed in target names.

3. If desired, modify the directory name for storing the target in the
"Directory Path " input box. The … button lets you select a valid
directory name. Otherwise, the directory name defaults to the local
workspace root.

4. From the "Select Build Configuration " pulldown list, select the
build configuration that most closely matches the target you want to
create.
Chapter 260

Using SoftBench
Defining Targets for Project Build
5. Select Add to add the new target to the "Pending New Targets " list.

6. Define as many targets as you need while the dialog box is posted.
When you are done, select OK.

If the SoftBench-provided build configurations do not meet your needs,
you can either define your own new build configuration or add
target-specific customizations to an existing build configuration. See
“Customizing Build Configurations” on page 62 for more information.

Specifying Dependency Relationships

In the main SoftBench window, the Files view shows the newly created
targets. Targets can have two types of dependency relationships:

• source-to-target dependencies

• build order dependencies between two targets

Dependency relationships can only be created for project build targets.

To create a source-to-target dependency:

1. Select the files to link into the target, then choose "File: Lin k
Source to Target… ".

2. In the dialog box, select the target.

To see the dependency relationship:

1. Select Expand >> . This action expands the main SoftBench window to
display the Builder page.

2. If the CodeAdvisor page is displayed, select the Builder tab.

3. In the target graph, select the target.

4. Select "Source File Dependencies " from the Display Dependencies
menu button.

To create a build order dependency, you need at least two targets:

1. Select the target that must be built first, then choose "Target: Add
Build Order Dependency… ".

2. In the dialog box, select the target that must be built last.

You can also use subprojects to create build order dependencies. See
“Creating a Subproject” on page 55 for more information.
Chapter 2 61

Using SoftBench
Defining Targets for Project Build
Customizing Build Configurations

A build configuration specifies how to convert your source files into
your targets. Build configurations may include packages as a shorthand
notation for a common transform and its associated options or for
common libraries.

To create or modify build configurations:

1. Choose "Builder: Manage Build Configurations… " which displays
the dialog box shown in Figure 2-8.

Figure 2-8 "Manage Build Configuration" Dialog Box

2. Select the build configuration from the "Build Configuration "
drop-down list.

3. Modify the build configuration by expanding the sections of the dialog
box and making the changes.

For example, if you need to add the math library to the build
configuration:

a. Expand the "Specify Library and Linker Options " section.

b. Select the Add… button for adding libraries.

c. Enter "m" in the input box, and select OK to close the "Add -l
Libraries " dialog box.

In the "Manage Build Configuration " dialog box, the
"Libraries (-l) to Use " list now contains "-lm " for the math
library.
Chapter 262

Using SoftBench
Defining Targets for Project Build
Depending on the changes you need, you can add packages (see
“Using Build Packages” on page 63), libraries, library directories,
include directories, compiler options, and other build instructions. To
modify compile modes, defines, undefines, and compiler flags, you
must select your compiler first.

4. Select Save to save changes under the current name. Select Save As…
to save changes under a new name. If you selected a SoftBench build
configuration, you must use Save As… to provide a new build
configuration name. See “Understanding Build Configurations and
Packages” on page 23 for information about SoftBench build
configurations.

To customize a build configuration for a specific target:

1. Select the target in the project browser or target graph.
2. Choose "Target: Modify Properties… "
3. From the "Modify Target Properties " dialog box, select Customize

Build Configuration… .
4. Modify the build configuration by expanding the sections of the dialog

box and making the changes.
5. Select OK to save the changes as a build configuration customization

to the build configuration associated with the selected target. The
"Modify Target Properties " dialog box reflects the addition of the
customizations in the "Current Build Configuration " field.

Once you make a specific build configuration, SoftBench does not
maintain a connection with the base build configuration from which it
was derived. Changes you later make to the base build configuration are
not inherited by the customized build configuration. You must repeat the
changes for each customized build configuration individually.

For more information on customizing build configurations, refer to
SoftBench Online Help for the "Customize Build Configuration "
dialog box.

Using Build Packages

To create or modify build packages, choose "Builder: Manage
Packages…". Once a package is defined, you can include it in build
configurations as a quick and reliable way to specify all build
instructions for the compiler, library, or utility.

For more information on customizing build packages, refer to SoftBench
Online Help for the "Manage Package Information " dialog box.
Chapter 2 63

Using SoftBench
Defining Targets for External Build
Defining Targets for External Build
As part of SoftBench's support for the external build model, you can
create targets and save the command to initiate your build:

1. Choose "Target: New…" to display the "External Build Command "
dialog box shown in Figure 2-9.

Figure 2-9 "External Build Command" Dialog Box

2. Enter the build directory, build command, target name, and options
for a target.

3. Select Save as Target . This adds the target to the project file set, saves
its build instructions, and allows you to bypass this dialog box in the
future.

4. Repeat as necessary to define all of the project's targets, then select
Close to close the dialog box.

Now you can build this project or individual targets within it as
described in “Building Projects and Targets” on page 70.

When you use external build, your Makefile or build script contains the
knowledge of how to build your targets. You must manually edit the
appropriate file whenever the build instructions change.

To edit your Makefile or build script:

1. Add the Makefile to the project file set by choosing "Project: Add
File(s) to Project… ".

You can add Makefiles to projects using the file types mechanism if
Chapter 264

Using SoftBench
Defining Targets for External Build
the file is named "Makefile ", "makefile ", or ends in the ".mk " suffix.

a. In the "Add Files to Project " dialog box, select More File Types… .

b. Add the "Makefile " file type to the "File Types to Use " list.

c. Select the file type in the "Add Files to Project " dialog box.

d. Select Add .

Alternatively, you can add a Makefile to the project by selecting the
"❍ Choose Files Individually " radio button and entering the
Makefile name in the "Filename " input box.

2. Double-click on the Makefile in the Files view of the project browser,
or choose "File: Open…" to load the Makefile into the editor. Modify
the Makefile as necessary.
Chapter 2 65

Using SoftBench
Using the Target Graph
Using the Target Graph
To conserve screen real estate, the target graph is not always visible. To
display the target graph, select Expand >> , then select the Builder tab.
The target graph is in the top half of the Builder page (see Figure 2-10).
To hide the target graph entirely, turn off "View: Display Target
Graph ".

Figure 2-10 Target Graph in Builder Page

Alternatively, you can display the target graph by selecting a target in
the project browser, then choosing "Target: Display on Graph ". Use
the sash to expand or reduce size of the graph display area.

The target graph fully supports the project build model and partially
supports the external build model.

Table 2-3 Build Model Operations in the Target Graph

Operation Project Build External Build

Display Target
Nodes

Yes Yes
Chapter 266

Using SoftBench
Using the Target Graph
The target graph has selection-sensitive popup menus. Depending on
what is selected, an appropriate popup menu is available. You can edit
the dependencies shown on the graph by choosing the appropriate menu
commands from the "File ", "Target ", or "Graph " menu or from the
popup menu. Commands that interact with intermediate files are
available only from the popup menu.

Understanding the Graph

The target graph contains four types of nodes:

• targets—the end product of a build, such as a linked executable,
library, or message catalog

• intermediate files—a file derived from a source file, but not the end
product of the build, for example, an object file or a generated source
file. These files are not part of the project file set.

• source files—files in the project file set from which targets are
derived

• include files—files included in source files, and required, through
the include relationship, to successfully derive a target

SoftBench uses shape and color to show the type and state of the node.
Each node type has a different shape. Color describes the possible
possible possible statesfor target graph nodes. See Table on page 68.

Display
Dependencies

Yes No

Select Target Nodes Yes Yes

Operations
Available

All Build only

Graph Operations
(save, find, zoom,
hide, clear)

Yes Yes

Table 2-3 Build Model Operations in the Target Graph

Operation Project Build External Build
Chapter 2 67

Using SoftBench
Using the Target Graph
Within SoftBench, actions which change a node's status cause the graph
to update automatically. To update the display of graph nodes if you
make changes to the files in the project from outside of SoftBench, choose
"Graph: U pdate Status of Nodes ".

Displaying Dependencies

When you display targets on the target graph, choose one of the
commands on the Display Dependencies menu button. The Display
Dependencies menu commands include:

• Target Only (default value)

• Intermediate File Dependencies

• Source File Dependencies

• Include File Dependencies

To display dependencies:

1. Select the nodes for which you want to see dependencies.

2. Select the desired command on the Display Dependencies menu button.

Table 2-4 Graph Node States

Color Meaning

Blue Up-to-date—the target or intermediate file does not
need to be built.

Red Out-of-date—the files from which the target or
intermediate file is derived have changed and the
node needs to be rebuilt.

White Not buildable—the file is not an appropriate build
target; source files and include files are not
buildable.

Grey Non-existent—the file does not currently exist on
the file system.
Chapter 268

Using SoftBench
Using the Target Graph
Controlling Graph Complexity

Controlling how many dependencies the target graph displays with the
Display Dependencies menu button, discussed in the previous section, helps
control graph complexity. Other mechanisms for controlling the
complexity and appearance of the target graph include:

• Choose one of the "Hide " commands from the "Graph " menu. These
commands allow you to hide selected nodes, children of selected
nodes, or unselected nodes from the graph.

• Use the "Zoom" commands on the "Graph " menu to make the graph
nodes larger or smaller.

Building a Selected Target

To build a target from the target graph:

1. Select the target on the target graph.

2. Select the Build button, use the popup menu to access the "Build "
command or choose "Target: Build " from the menu.

Starting Your Configured Editor

When you have source or include file dependencies displayed on your
target graph, you can start your editor preloaded with a file by either

• double-clicking on the source or include file

• selecting the file and choosing "Open File " from the popup menu or
"File: Open" from the main menu

• selecting the file, then selecting the "Editor " icon from the toolbar
Chapter 2 69

Using SoftBench
Building Projects and Targets
Building Projects and Targets
Whether you use the project build model or the external build model,
SoftBench provides the flexibility to build either the entire project or
individual targets. When nothing is selected in the project browser,
SoftBench acts as if the current project is selected. Selecting the Build
button in this state builds the entire current project. Alternatively, you
can select targets from the Files view or the target graph and select Build
or choose "Target: Build ".

The build action completes all steps necessary to create the target. For
example, out-of-date files are compiled and object files are linked into an
executable file or a library. When a build is not successful, SoftBench
displays compile errors in the Builder output browser. (See “Handling
Errors” on page 73 for more information.)

After you request a build, the Build button changes to Terminate . If you do
not want the build to complete, select Terminate to end the build process.
In most cases, this stops the build process. Occasionally, the Terminate
button changes to TERMINATE!. If the build process does not stop, selecting
TERMINATE! sends a SIGKILL signal which cannot be ignored by the build
process. The build stops and displays an appropriate message in the
output browser.

Setting the Compile Mode

Setting the compile mode before you build is important, because using
the correct compile mode is a prerequisite to debugging and static
analysis. Regardless of the build model your project uses, you can set the
compile mode using the "Compile Mode " toggles below the project
browser. The compiler flags used for the compile modes are shown in
Table 2-5. Initially, the toggle buttons for "■ Debug" and "■ Static " are
set.
Chapter 270

Using SoftBench
Building Projects and Targets
For project build projects, you can override the default compiler flags
sent to the compiler for a compile mode by changing the build
configuration:

1. To change the compile mode settings for all targets using a build
configuration, choose "Builder: Manage Build Configurations… ".

To change the compile mode settings for a single target, select the
target, then choose "Target: Modify Properties… ". In the "Modify
Target Properties " dialog box, select Customize Build Configuration… .

2. Expand the "Specify Include and Compile Options " section of the
dialog box.

3. Select the compiler in the "Set Information for Compiler "
drop-down list. This setting controls what compiler is affected when
you enter information such as additional compiler flags, defines,
undefines, and compile modes.

4. Select Set Compile Modes… to display the "Set Compile Modes " dialog
box.

5. In the "Set Compile Modes " dialog box, enter the compiler flags. For
example, to override the "-g0 " compile mode setting for debugging
aC++ code, enter another value, such as "-g " in the "DEBUG Compiler
Flags " input box.

6. Save your changes and close the dialog boxes.

Table 2-5 Compile Mode Settings

Compile Mode Default Compiler Flag

■ Debug Select to prepare an object file for
debugging; "-g " is the default for all
compilers except aCC; "-g0 " is the default for
the aCC compiler.

■ Static Select to prepare for static analysis; "-y " is
the default.

■ Optimized Select to tell the compiler to optimize the
executable (to maximize the execution speed
and minimize space usage); "-O" is the
default.
Chapter 2 71

Using SoftBench
Building Projects and Targets
External build projects do not use the "Set Compile Modes " dialog box
to change the compiler flags sent via the "Compile Modes " toggle
buttons. To override the compiler flags for an external build:

1. Turn off the toggle buttons for the compile mode that you want to
override.

2. Choose "Builder: Use External Build Command… " to display the
"External Build Command " dialog box.

3. In the "Options " input box, specify the options you want make to send
to the compiler. Which macro you use depends on how your Makefile
is structured. The default rules for make accept CFLAGS for C and
CXXFLAGS for C++. For example, you might enter CFLAGS=-y into the
options field to have make pass the whole string to your compiler.

Using the "External Build Command" Dialog Box

External build projects can use the Build button to repeat a build or
"Builder: Use External Build Command… " to customize a build. This
allows you to control the target to be built, the build command used, and
the options you want make to send to the compiler. Once you enter this
information, you can save it by selecting Save as Target . Then when you
select the target in the browser, its information automatically appears in
the dialog box. The dialog box also remembers a history of entries made
in each field, accessible via the arrow button next to the field.

Previewing the Build

When you preview a build, SoftBench simulates the build without
performing the actions. SoftBench displays the commands that the build
would run in the output browser. This information helps you determine
which source code files create the targets, if any of your files are
out-of-date or missing, or if there are problems in the build instructions.

To preview a build, choose "Target: More Build Ac t ions → Preview
Build ".

As an alternative to previewing the build, you can choose "Graph:
Update Status of Nodes ". This command updates the target graph,
changing the status of the nodes when appropriate. SoftBench displays
out-of-date nodes in red and up-to-date nodes in blue.

The "Preview Build " command works only with project build. The
command is equivalent to the make -n command. To see the same result
Chapter 272

Using SoftBench
Building Projects and Targets
for external build projects using make(1) as the build command, enter
the -n option in the "Options " input box of the "External Build
Command" dialog box.

Compiling Instead of Building

SoftBench supports both compiling and building the elements of a
project. With a "Build " command, you select a target and SoftBench
transforms the dependencies to create the target. During a build,
SoftBench typically compiles files into object files, then links object files
into a target.

In contrast, the "Compile " command transforms the selected source file
into the next transformation state, for example, transforming the
selected source file into an object file, but not linking the object file into a
target.

To compile a file:

1. Select the file in either the project browser or target graph.

2. Choose "File: Compi l e".

The "Build " command is more reliable. SoftBench can predictably build
your projects and targets, using either project build or external build.
SoftBench can only make intelligent guesses about how to compile files
in an external build project, because the build instructions are
contained within the Makefile or build script and are not available to
SoftBench's internal "Compile " command.

Building Subprojects

When you specify a subproject relationship, SoftBench by default builds
the subproject before building the current project. As with any build,
SoftBench builds only out-of-date files (files that have changed since the
last build). If you do not want SoftBench to build the subprojects, turn off
the "■ Build Subprojects " toggle button in the Build Control Area.

Handling Errors

When a build detects errors in your source files, SoftBench displays error
messages in the output browser. You can go directly from the errors to
the supporting source code that caused the error by double-clicking on
the message.
Chapter 2 73

Using SoftBench
Building Projects and Targets
Interpreting Error Messages

The error messages displayed in the output browser depend on the
compiler you are using. The messages always contain a line number,
indicating the point in your source code where the compiler detected the
error. The file name may be on the same line or on a previous line in the
error output. An error message indicates the problem the compiler found.
For more information on compiler errors, refer to "Help: Language
Reference " and your appropriate language.

Error messages may not point to the actual error. For example, if you
forget to declare a variable in a C program, the C compiler indicates the
first use of the variable with the message:

cc: ' filename ', line number : error errnum : name undefined.

To fix this problem, you may need to declare the variable earlier in the
file, or perhaps in another file. You get the same message if name is
misspelled; in that case, the compiler finds the actual error location, and
the error is easy to fix.

After the first error in a location, the compiler sometimes produces
misleading errors. Subsequent errors may be a ripple effect from the first
error. You may want to fix the earlier errors, then build again.

Browsing and Correcting Build Errors

You can double-click on the errors in the output browser to view and edit
the related source code. The editor opens with the source file loaded and
the cursor at the beginning of the line where the error was detected.

Alternatively, you can browse the compile errors using the error
browsing buttons. Select First to select the first error in the output
browser and go to the related source file in the editor. If you have write
access to the file, you can edit the source, correcting problems as you
browse.

Select Next, Previous , or Last , or double-click on other errors in the output
browser, to display and correct other compile errors. If you have scrolled
the window to where the currently highlighted error is no longer visible,
select Selected to see it again. When all your errors have been corrected,
save your file from the editor, and rebuild your project to make sure it
builds successfully.

The output browser has a popup menu and pulldown menu available
from "Builder: Browser " submenu with additional features to help you
handle your errors:
Chapter 274

Using SoftBench
Building Projects and Targets
• Choose "Open Editor on Selected Item… " to edit your source file.

• Choose "Find String… " or type Control-S to find a specific string in
the text displayed in the output browser.

• Choose "Print/Save Browser Output… " to print or save the output
browser's display.

• Choose "Load Browser from File… " to reload a saved copy of the
browser output that allows you to address the compile errors later
without recreating the error list through another build.

Running the Build on a Remote System

You can specify a remote computer on which the "Build " command runs,
including both the compile and link processes. When you take this
action, the build process runs on another computer. Before you can run a
remote SoftBench build, you need to configure both systems. Refer to
Installing SoftBench for the configuration steps required.

To run the build on a remote computer:

1. Choose "Options: Build Settings… ".

2. In the "Build Settings " dialog box, select the "Build Behavior "
tab.

3. Enter the hostname in the "Compile Host " input box. When you want
the build to run on the same computer as SoftBench, clear the input
box or if the setting is "Local Host ", allow that value to remain.

4. Select OK to save the remote compile host and close the dialog box.
Chapter 2 75

Using SoftBench
Checking Your Code Using SoftBench CodeAdvisor
Checking Your Code Using SoftBench
CodeAdvisor
If you purchase C++ SoftBench, you can use SoftBench CodeAdvisor to
check your code for critical coding violations beyond compiler errors.
SoftBench CodeAdvisor allows you to check the entire project, selected
targets, or selected files.

To check your code:

1. Select Expand >> to expand the main SoftBench window.

2. Select the "CodeAdvisor " tab to display the CodeAdvisor page.

3. In the rule group selection area, select the rule groups that you want.
For information on rule groups, select Rule Group Help... .

4. Select the project, targets, or files that you want to check. When
nothing is selected in the project browser or on the target graph,
SoftBench assumes the entire current project.

5. Select Check Code to begin the code checking process.

You can see SoftBench CodeAdvisor results in CodeAdvisor's output
browser. The output browser for SoftBench CodeAdvisor works similarly
to the output browser for Builder errors (see “Handling Errors” on
page 73). You can browse the source of rule violations as described in
“Browsing and Correcting Build Errors” on page 74.

In addition, SoftBench CodeAdvisor offers several unique features as
well:

• The line format is different:

[filename line_number violation_description [rule_name]]

• SoftBench CodeAdvisor provides filtering mechanisms (see Chapter
6, “Using SoftBench CodeAdvisor,”) to suppress output that you do
not want to see.

• SoftBench CodeAdvisor provides help on rule violations. Select the
violation in the output browser, then select Violation Help… .

For more information on using SoftBench CodeAdvisor, see Chapter 6,
“Using SoftBench CodeAdvisor,” on page 145.
Chapter 276

Using SoftBench
Running Other SoftBench Tools
Running Other SoftBench Tools
SoftBench provides menu commands and a toolbar for starting other
tools in the SoftBench environment. When you position the mouse over a
tool icon, SoftBench tells you which tool the icon represents.

You can start tools in several ways:

• Select files or targets in the project browser or on the target graph,
then select the tool icon in the toolbar. When you start tools with data
selected, the tool loads that data.

• Use the tool icon on the toolbar when nothing is selected in the project
browser. This starts the tool without any associated project data.
Once the tool starts, you may need to specify a file. For example, if you
select the "Editor " icon, choose "File: Open…" in the editor to specify
the file to edit.

• Select files or targets in the project browser or on the target graph,
then choose a menu command. For example, select a target, then
choose "Target: Debug…" to start SoftBench Debugger with the
executable file loaded.

• Drag and drop files from the CDE File Manager onto the tool icon. For
example, drag an executable file onto the "Debug" icon to start
SoftBench Debugger with the executable file loaded. However,
dragging and dropping files does not make them project files. To do so,
you must add them to the project with the "Project: Add File(s)
to Project… " command or, for source files, save them in your project
through the editor.

If the tool you want to start is not present on the toolbar or menus,
SoftBench provides several options for accessing the tool:

• Choose "Options: Toolbar Setup… " and see if the tool you want is
available in SoftBench. (See “Adding and Removing Tool Icons” on
page 79.)

• Choose "Custom: Edit Menus… " to define a menu command that
starts the tool you need. (See SoftBench Online Help on the "Custom"
menu for information on adding custom menu commands.)

• Advanced users can integrate tools using SoftBench Encapsulator,
then register the tools with SoftBench, following the instructions in
“Registering New Tools with SoftBench” on page 80.
Chapter 2 77

Using SoftBench
Managing Your SoftBench Environment
Managing Your SoftBench Environment
SoftBench provides several ways to customize your environment. In
general, customizations are located on the "View " and "Options " menus.
The "Options " menu lets you tailor SoftBench's behavior to meet your
needs. For example, you can:

• change the tool icons displayed on the toolbar

• set tool preferences

• change where SoftBench looks for projects

• customize build behavior

• set behavior of current project when opening a new project

• set language preferences (requires restarting SoftBench to take
effect)

The "View " menu lets you tailor SoftBench's appearance. You can:

• refresh the Files view, which updates the status of the file icons

• show or hide the toolbar

• show or hide the target graph

• show or hide the local workspace root

The Custom menu allows you to create your own commands on the
SoftBench toolface. You can add entries under the Custom menu, and
have those entries available on all tool menu bars ("System" commands),
or on all instances of a specific tool class ("User" commands). Any
command that could be entered at a shell prompt can be launched from
the Custom menu. (See SoftBench Online Help on the "Custom" menu for
information on customizing SoftBench menus.)

This feature is especially useful if you need to run a command within the
SoftBench environment. Commands launched from the Custom menu
inherit the full SoftBench environment, including environment
variables. See "SoftBench Environment Variables " in SoftBench
Online Help for a listing of useful environment variables.

Choose "Custom: Edit Menus… " to add your commands. New commands
are added to the "Custom" menu under the "User Commands" label. These
commands are visible only to you.
Chapter 278

Using SoftBench
Managing Your SoftBench Environment
You can make your custom menu entries visible to all tool classes in your
SoftBench session. These entries appear under the "System Commands "
label. To create these menu entries:

1. Create the desired menu commands using "Custom: Edit Menus… ".
SoftBench saves the menu information in
$HOME/.softbench/menus/custom/ toolname.

2. Rename the toolname file to
$HOME/.softbench/menus/custom/shared .

Your SoftBench administrator can create system-wide commands that
are visible to all users. These commands appear under the "System
Commands" label as well. System commands may be scoped to apply to an
individual tool class, or may be made available to every instance of every
SoftBench tool. For information on creating "Custom" menus that are
available to all users on the system, refer to SoftBench Online Help.

You must use the "Custom: Edit Menus… " command to create the menu
files. Do not edit the menu files directly.

For more information on adding menu commands, see SoftBench Online
Help.

Adding and Removing Tool Icons

The toolbar contains a set of frequently used tools, but this set may not
be right for you. You can easily add new tool icons to the toolbar:

1. Choose "Options: Toolbar Setup… ".

2. From the "Available Tools " list, select the tool you want to add.

3. Select Add to Toolbar .

Alternatively, you can double-click on a tool in the "Available
Tools " list to select and add the tool in a single step.

4. Select OK.

If your preferred tool does not appear on the "Available Tools " list, see
“Registering New Tools with SoftBench” on page 80.

To remove tool icons using the "Toolbar Setup " dialog box, select the
tool in the "Tools on the Toolbar " list, then select Remove from Toolbar .

To reorder the tool icons, remove all the icons, then add them back in the
order you want.
Chapter 2 79

Using SoftBench
Managing Your SoftBench Environment
Choosing Tool Preferences

Some classes of SoftBench tools offer more than one choice of tool. For
example, SoftBench supports two editors, SoftBench XEmacs Editor and
SoftBench vi Editor. Other editors are available as SoftBench
contributed tools and as third-party encapsulations.

To see your tool choices, choose "Options:
Tool Preferences… ". If your preferred tool does not appear on the
"Available Tools " list, see “Registering New Tools with SoftBench” on
page 80 for information about making it available. To change which tools
are used:

1. From the "Select a Tool " list on the left, select the tool class.

2. From the "Available Tools " list on the right, select the specific tool
you want.

If you have created a $HOME/.softbench/bmsinit file, setting tool
preferences through SoftBench overrides your bmsinit entries. To
use an entry in your bmsinit file, set the tool preference to Default
for the tool class.

3. Select OK.

To make your change in tool preferences take effect, you need to stop all
processes related to the tool class you changed. For example, to start a
new editor, close all text editing windows and the editor index window (if
applicable).

Registering New Tools with SoftBench

SoftBench provides an open, extensible environment in which advanced
users can develop tool encapsulations and run those encapsulations as
SoftBench tools.

To use a third-party encapsulated tool or create a new encapsulation and
allow all users on the system to access it from the SoftBench toolbar:

1. Install the third-party encapsulated tool or write the encapsulation
using SoftBench Encapsulator. For more information, see the
Encapsulator SDK Integration documentation on the SoftBench
online support page found at:

http://devresource.hp.com/softbench

2. Register the tool with SoftBench Broadcast Message Server by adding
Chapter 280

Using SoftBench
Managing Your SoftBench Environment
a file to the /opt/softbench/config/bmsinit directory. See the
bmsinit(5) man page for more information.

3. Register the tool with SoftBench toolbar by editing the
/opt/softbench/config/toolbar/config file. Changing this file
requires superuser access. The file documents the format for new
entries.

4. Add the new tool to the toolbar. See “Adding and Removing Tool
Icons” on page 79. You may need to use the "Default " selection for
your tool preference for the tool class.

Customizing SoftBench by Setting Resources

You control most customizations through the SoftBench user interface.
However, a few customizations must be made by setting X resources in
the $HOME/.softbench/softbenchrc file or by using an X mechanism
such as xrdb .

Set X resources only when the customization is not available from the
user interface. Refer to the tool's man page for detailed information on X
resources. SoftBench Online Help provides a high-level summary of the
resources as well. For SoftBench resources, see the softbench(1) and
softbench(5) man pages and the "Customizing SoftBench " entry in
SoftBench Online Help (accessible by choosing "Help: Welcome "). Most
resource files under $HOME/.softbench should not be edited since they
are overwritten by the tools.

Accessing Distributed Data and Tools

Before you use SoftBench in a distributed environment, your network
must be properly configured. Work with your system administrator,
using the 'Setting Up Network-Distributed Operation' chapter in
Installing SoftBench.

SoftBench takes advantage of networking in several ways:

• You can direct SoftBench tools to access data anywhere on your
network that you can reach through NFS. Supply the path name to
the directory or file that you want.

• You can execute build and debug processes on any system where
SoftBench is installed. Remote execution allows you to use dedicated
servers for particular jobs, such as compilation.
Chapter 2 81

Using SoftBench
Managing Your SoftBench Environment
To specify remote execution for builds, choose "Options: Build
Settings… ", then select the "Build Behavior " tab. Enter the remote
system name in the "Compile Host " input box. See “Running the
Build on a Remote System” on page 75 for more information.

To specify remote execution for SoftBench Debugger, choose
"Options: Debug Host…" from the SoftBench Debugger menu bar
and enter the remote system name.

• You can execute SoftBench on one system and display it on another.
See “Running SoftBench on a Remote System” on page 82 for more
information.

Running SoftBench on a Remote System

To run SoftBench remotely on another computer that has SoftBench
C.06.0 or newer installed and display SoftBench on your local system, do
the following:

1. On your local system, start the X Window System and execute the
following command in a terminal window:

xhost remotehost

Where remotehost is the name of the system on which you want to
run SoftBench.

2. Log in to remotehost and set your DISPLAY environment variable to
the name of your local display.

3. Start SoftBench on remotehost from a command line:

softbench

Integrating with CDE

When you install SoftBench, you automatically get a CDE integration.
With the integration, you can start SoftBench from CDE Application
Manager, and you can drag and drop files from CDE File Manager onto
the SoftBench toolbar. However, dragging and dropping files does not
make them project files.

Stopping SoftBench

You can stop individual SoftBench tools, or you can stop SoftBench and
all tools associated with the SoftBench session:
Chapter 282

Using SoftBench
Managing Your SoftBench Environment
• To stop a SoftBench tool, choose "File: E xit " on the tool's menu bar.

• To stop all tools associated with a project, close the project. Select the
project in the project browser, then choose "Project: Close ".

• To stop SoftBench and all tools associated with a SoftBench session,
choose "Project: E xit SoftBench " in the main SoftBench window.
If you are working in an Untitled project, SoftBench asks you to
name your project or delete it before you exit.

Restoring Your Previous SoftBench Session

When you stop SoftBench, session information is saved. When you
restart SoftBench, SoftBench reopens the current project, but does not
restart any tools.

To start SoftBench with a different current project, type

softbench -project project_name
Chapter 2 83

Using SoftBench
Getting Help
Getting Help
SoftBench provides online help, accessible from the "Help " menu. You
can access general help on any SoftBench tool, task-oriented help, or
specific help on a selected window item. Figure 2-11 shows the Welcome
window from SoftBench Online Help.

Figure 2-11 SoftBench Online Help Window
Chapter 284

Using SoftBench
Getting Help
Using the Help Menu

All SoftBench tools display "Help " as the last item in the menu bar.
Common online help menu commands include:

Tool Overview Gives you an overview of the tool and a list of
subtopics. In the main SoftBench window, this menu
command is "Help: O verview ".

Show Man Page Displays the man page for the current tool.

On Item Displays a question mark cursor; move the cursor over
the portion of the screen for which you want help and
click the left mouse button.

Using Help… Provides assistance for using SoftBench Online Help.

Other help options are available on a tool by tool basis. For example, you
can access the SoftBench Welcome window, SoftBench Online Tutorial,
SoftBench copyright information, and language specific help from the
main SoftBench window. You can access help for the underlying DDE
debugger in SoftBench Debugger.

Accessing On Item Help

To view information about screen areas such as menu commands, input
boxes, or dialog boxes, move the mouse pointer over the item, then press
the Help key (F1).

If the system cannot find any help information for the screen area under
the pointer, a dialog box appears with the message:

A request to the help server failed.
The desired help is not available.

You can move the mouse pointer to a slightly different screen element
and press F1 again.
Chapter 2 85

Using SoftBench
If Something Goes Wrong
If Something Goes Wrong
Table 2-6

Condition or
Message

Explanation

Toolbar is missing Check the setting of the "View: ■ Display
Toolbar " toggle button. Alternatively, check
"Options: Toolbar Setup " to ensure that
you have tools selected or to configure your
tool preferences.

Target graph
missing from
Builder page

Check the setting of the "View: ■ Display
Target Graph " toggle button. Set the toggle
button to display the target graph.

You want to rebuild
a target or project,
but SoftBench
reports that the
target is up-to-date.

Choose "Target: More Build Ac t ions →
Force Build " to force SoftBench to rebuild a
project build project. Alternatively use
"Target: More Build Ac t ions → Remove
I ntermediate Files (clean) " or "Target:
More Build Ac t ions → Remove All
Derived Files (clobber) ". For an external
build project, touch or remove the "*.o " files.

You set a new tool
preference, but it
does not take effect.

Some tools have background processes that do
not shut down when you close the tool
window. For example, SoftBench CM has both
a user interface process and a message server
process. Only the user interface process stops
when you close SoftBench CM. You can stop
all running processes by stopping SoftBench.

You cannot open a
project because the
project is locked.

Close it in another SoftBench session you may
be running, or ask your teammate to do so.
Chapter 286

Using SoftBench
For More Information
For More Information

• On getting started with SoftBench, choose "Help: Tuto r ial ".

• On understanding particular features of a SoftBench tool, build
configurations, build packages, and transforms, see SoftBench Online
Help.

• On compiler-generated error messages, see the language reference
manual available under "Help: Language Reference ".

• On SoftBench CodeAdvisor, see Chapter 6, “Using SoftBench
CodeAdvisor,” on page 145 and the softcheck(1) man page, available
under "Help: Show Man Page ".

• On installing and configuring your SoftBench environment, see
Installing SoftBench.

• On customizing SoftBench, see the "Customizing SoftBench " entry
in SoftBench Online Help (accessible by choosing "Help: Welcome ").
Chapter 2 87

Using SoftBench
For More Information
Chapter 288

Using SoftBench Configuration Manager
3 Using SoftBench Configuration
Manager

SoftBench CM is a configuration management tool that helps manage
code between software team members, software teams, and even
corporate sites. SoftBench CM is fully integrated with the SoftBench
environment, allowing access to configuration management
functionality.

SoftBench CM provides many advantages:

• network access to archive files

• consistent access to local and remote archive files

• menu interface for common commands

• browsing of archive directories

• delete and rename archive file operations

• lock, unlock, and break-lock archive file operations

• recursive display of archive directories

• display, cut, and paste from archive files without the overhead of
check out

• tight integration with SoftBench
Chapter 3 89

Using SoftBench Configuration Manager
Understanding SoftBench CM
Understanding SoftBench CM
SoftBench CM helps you manage software development projects that
consist of many versions and configurations. Using SoftBench CM, you
can retrieve and build any version of an application in a consistent,
repeatable manner.

SoftBench CM is fully integrated with the SoftBench environment. You
can access the tool through the SoftBench main window or from the
SoftBench vi Editor, SoftBench XEmacs Editor, SoftBench Debugger, and
SoftBench Class Graph/Editor (see Figure 3-1). The SoftBench main
window and related tools include menu selections for checking files into
and out of an archive, creating initial file versions, cancelling file check
outs, showing the revision history of files, and comparing file revisions.

Figure 3-1 Integration of SoftBench CM with SoftBench

Each SoftBench CM server is configured to manage one or more
archives — a directory hierarchy consisting of versioned files. You can
access archives on multiple local or remote servers, support an unlimited
number of licensed users per server, and store as many files as archive
disk space allows. SoftBench CM uses GNU RCS ™ as its versioning
system, so each versioned file is an RCS file that contains file revision
information, multiple revisions of content, descriptive text, and control
attributes.

To access files contained within a given archive, you establish a
mapping between the archive file system and your local file system.
This lets you create local copies of the files you need to access or browse
Chapter 390

Using SoftBench Configuration Manager
Understanding SoftBench CM
within the archive. Using the SoftBench CM interface and the SoftBench
main window together provides a complete view of your configuration
management files. The SoftBench main window lets you browse the local
files associated with a project, and SoftBench CM lets you browse
archive files and directories.
Chapter 3 91

Using SoftBench Configuration Manager
Getting Started - A Brief Overview
Getting Started - A Brief Overview
SoftBench CM is an archive browser that lets you view, traverse, and
modify the SoftBench archive system. SoftBench CM and SoftBench are
integrated so that you use SoftBench CM to browse archive files and the
SoftBench main window to manage projects containing your local files.

To begin using SoftBench CM for your basic configuration management
needs, follow the steps in this section:

1. Verify that SoftBench CM is your preferred configuration
management tool.

a. Choose "Options: Tool Preferences… " in the SoftBench main
window to ensure your configuration management tool is set to
SoftCM. (See “Choosing Tool Preferences” on page 80 for more
information.)

a. Start SoftBench CM by clicking on the "Configuration Manager "
icon from SoftBench main window.

SoftBench CM starts and displays the setup instructions if this is
the first time you have started SoftBench CM. Once you close this
window, you can view the instructions again by selecting
"Actions: Show Set Up I nstructions… " or print the file located
in /opt/softbench/share/welcome.txt .

2. Select an archive.

Your system administrator should have configured one or more
servers for managing your archive(s).

a. Choose "Actions: Show Local Server Information… " to see a
list of local servers and archives.

Machine configuration automatically sets up a test archive
(/TestArchive) on each server. If the dialog box displays with no
server/archive names, ask your system administrator to recheck
the installation process.

b. Select the archive you want to view.

c. Select Browse Archive .

d. Select Done to close the dialog box.
Chapter 392

Using SoftBench Configuration Manager
Getting Started - A Brief Overview
The SoftBench CM window displays the files and directories
contained within the selected archive.

3. Create an archive directory.

a. Navigate through the current server to the area where you want
to create an archive directory.

b. Choose "Directory: Create… ".

c. Enter the name of the directory you want to create in the "Create
Directory " input box.

d. Select OK.

4. Create a mapping.

a. Choose "Actions: Create New Mapping… ".

b. In the "Mapped to Local Directory " input area, enter the path
and name of the local directory that corresponds to the selected
archive directory.

c. Select OK.

The SoftBench CM window displays the empty archive directory
that is mapped to your local directory.

5. Create an initial archive file.

a. Open the archive directory in which you want to create an initial
archive file.

b. Choose "File: Create… ".

c. Enter the name of your new file in the "Create File " input area.

d. Select OK.

The name of the file you created displays in the current archive
directory of SoftBench CM. If a mapped file of the same name
exists on your local system, the newly created archive file is
identical to the local file. Otherwise, the archive file contains no
data.

6. Check out archive files to a local directory.

Once you have created a mapping, you can check out files and
directories from the archive to your local system.

a. Select the archive file(s) you want to check out.
Chapter 3 93

Using SoftBench Configuration Manager
Getting Started - A Brief Overview
b. Choose "Actions: Check Out to Local Directory ".

c. Select the appropriate submenu:

If you want to edit an archive file, check it out as locked so that
you have read-write permissions and others know you are
modifying the file.

Checking a file out unlocked gives you a read-only copy of that file.
If a file with the same name exists in your local directory,
SoftBench CM overwrites it with the current archive version. If
this file does not yet exist in your local directory, SoftBench CM
creates a copy.

7. Check in files to an archive.

Once you finish modifying a file, check the file in so that the changes
are reflected in the archive.

a. Select the archive file(s) you want to check in.

b. Choose "Actions: Check I n from Local Directory… ".

You can include comments, revision number, and/or state.

c. Select OK.

8. Include new files or directories in the related project.

When you update your local directory from SoftBench CM, new files
or directories are not included in a SoftBench project. The files and
directories are updated only into the mapped local file system.

a. From the SoftBench main window, choose "Project: Add
File(s) to Project… " to include new files or directories in a
project.
Chapter 394

Using SoftBench Configuration Manager
Managing the Archive System
Managing the Archive System
An archive is a file system located on a separate archive server. You use
archives to store revisions of your local files and related information,
including file revision history, descriptive text, and control attributes.
You can establish a relationship between archive files and directories
and your local system by creating mappings. (See “Creating a Mapping
between an Archive Directory and Local Directory” on page 98 for more
information.)

Browsing Local Network Servers and Archives

SoftBench CM lets you access archives on multiple servers from your
local network.

To browse a server and its associated archive:

1. Choose "Actions: Show Local Server Information… ".

The "Local Server Information " dialog box displays the Host
Name for each archive directory that is set up on your local network
(see Figure 3-2).
Chapter 3 95

Using SoftBench Configuration Manager
Managing the Archive System
Figure 3-2 Viewing Local Servers and SoftBench CM Archives

2. Select the server and archive directory you want to open and the
archive you want to browse.

3. Select Browse Archive to view the contents of this archive.

The SoftBench CM main window displays the contents of the current
archive directory (see Figure 3-3). To traverse directories, double-click
on the desired directory. To move up a directory, double-click on the
"Parent " directory. If the archive is not mapped, SoftBench CM
displays a "Not mapped " message at the top of the directory display
area. (See “Creating a Mapping between an Archive Directory and
Local Directory” for more information.)

The default archive listing for the SoftBench CM main window includes:

• UNIX file permissions

• File type

• Lock status (If locked, SoftBench CM displays the name of the lock
holder)

• Archive file size

• Date of last archive modification
Chapter 396

Using SoftBench Configuration Manager
Managing the Archive System
• File or directory name

Figure 3-3 SoftBench CM Main Window

Creating an Archive Directory

You use an archive to store revisions of your local files and make them
available to other development team members. To help better organize
projects, structure files in directories.

To create an archive directory:

1. Navigate through the current server to the area where you want to
create an archive directory.

2. Choose "Directory: Create… ".

3. Enter the name of the directory you want to create in the "Create
Directory " input box.

4. Select OK.

SoftBench CM displays the name of the archive directory you created
in the main window.
Chapter 3 97

Using SoftBench Configuration Manager
Managing the Archive System
Creating a Mapping between an Archive Directory
and Local Directory

SoftBench CM uses mappings to establish relationships between your
local files and directories and the corresponding SoftBench CM server
archive files and directories (see Figure 3-4). Before you can modify files
in an archive directory, you need to create a mapping between that
directory and a directory on your local system. The directory display area
lists the mappings that exists between the current archive directory and
your local system.

Figure 3-4 SoftBench CM File Mapping

To create a mapping:

1. Choose "Actions: Create New Mapping… ".
SoftBench CM displays the "SoftCM Create Mapping " dialog box.
The current archive directory automatically appears in the "Archive
Directory " input area.

2. Enter the path of the local directory in the "Mapped to Local
Directory " input area.

3. Select OK.
The SoftBench CM window lists the local directory to which the
archive directory is mapped and displays the contents of the current
archive directory. Once a mapping exists, you can create copies of
archive files and directories on your local file system, modify the local
files, or create new files and directories.
Chapter 398

Using SoftBench Configuration Manager
Managing the Archive System
Modifying Mappings between Local and Archive
Directories

SoftBench CM lets you view and modify existing mappings between local
and archive files and directories.

To view existing mappings, choose "Actions: Show/Modify
Mappings…". SoftBench CM displays the "Show/Modify Mappings "
dialog box (see Figure 3-5).

The upper area displays the Host and Archive Directory information for
the archives that are currently defined in your local mapping file. The
lower area displays the current mappings between local and archive
directories and the associated symbolic names (see “Creating a Default
Symbolic Name for Archive Files” on page 112). You can add, modify,
and delete all entries to your local mapping file from this dialog box.

Changes are written to your local mapping file only if you select OK or
Apply . Selecting OK writes the changes and exits the dialog box. Selecting
Apply writes the changes, but leaves the dialog box open for further
modifications. Selecting Cancel discards any changes and exits the dialog
box.
Chapter 3 99

Using SoftBench Configuration Manager
Managing the Archive System
Figure 3-5 "Show / Modify Mappings" Dialog Box

To modify the server and archive locations:

1. Select an entry in the upper area of the "Show/Modify Mappings "
dialog box.

2. Select Modify... .

3. Enter the correct server and archive information in the "Modify
Mapping " dialog box.

4. Select OK.

To modify a mapping between an archive and local directory:

1. Select the entry from the bottom window of the "Show/Modify
Mappings " dialog box.

2. Select Modify... .

3. Enter the correct "Archive Directory ", "Local Directory ", and
Chapter 3100

Using SoftBench Configuration Manager
Managing the Archive System
optional "Symbolic Name List " entry (see “Creating a Default
Symbolic Name for Archive Files” on page 112 for more information).

4. Select OK.

To delete a server/archive directory location or a local mapping:

1. Select the entry.

2. Select the Delete associated with its window.
Chapter 3 101

Using SoftBench Configuration Manager
Managing Archive Files and Directories
Managing Archive Files and Directories
SoftBench CM offers complete configuration management functionality
that lets you manage your archive files and directories from menu
selections. For example, you can create initial files, check files out, delete
directories, cancel file check outs, show the revision history of files, and
compare file revisions.

Creating Initial Archive Files

To use SoftBench CM, you need to create an initial archive file before
checking a new file into an archive for the first time.

To create an initial archive file:

1. In the current archive list area, open the archive directory in which
you want to create an initial archive file.

2. Choose "File: Create… ".

3. Enter the name of your new file in the "Create file " input area. You
can choose from three file types (text, binary and RAW).

Text (the default): Stores the file using RCS(1) with default RCS
keywords.

Binary: Stores the file using RCS(1) without default RCS keywords.

RAW: Stores the file as a binary file with no revision history.

4. Select OK.

The name of the file you created displays in the current archive
directory of SoftBench CM. If a mapped file of the same name exists
on your local system, the newly created archive file is identical to the
local file. Otherwise, the archive file contains no data.

Checking Out Archive Files

When you check files out of the archive, SoftBench CM creates a copy of
the archive file on the local file system. You can check out multiple files
and directories or a specific file revision.

To check out a file from an archive:
Chapter 3102

Using SoftBench Configuration Manager
Managing Archive Files and Directories
1. Select the file(s) you want to check out.

2. Choose "Actions: Check Out to Local Directory ".

3. Choose the appropriate submenu:

Locked checks out the most current revision of the file, gives you
read-write permissions, and lets others know you are modifying the
file. This helps avoid the problem of two developers working on the
same file simultaneously.

Unlocked checks out a read-only copy of that file. If a file with the
same name exists in your local directory, it is overwritten with the
current archive version. If this file does not yet exist in your local
directory, SoftBench CM creates a copy.

Check Out… lets you specify the revision, date, and/or state of a file to
check out locked or unlocked.

Cancelling Archive File Check Out

If you check out a file locked and later want to discard changes to your
local copy, you can cancel the file check out. This reverts the local copy of
the file back to the latest archive file revision.

To cancel archive file check out:

1. Select the local file(s).

2. Choose "Actions: Cancel Check Out (Discard Changes) ".

SoftBench CM removes the lock and reverts the local file back to the
latest archive file revision.

Updating a Local Directory

SoftBench CM lets you copy archive files to your local system without
checking them out. Using this option, you can obtain the latest changes
from other developers before doing a local build. Updated files are
read-only on your local system.

To update your local file system:

1. Select the archive files or directories you want to update.

A mapping must already exist between the archive and your local
system to perform an update.
Chapter 3 103

Using SoftBench Configuration Manager
Managing Archive Files and Directories
2. Choose "Actions: Update to Local Directory ".

3. Choose the appropriate submenu:

Current Directory Only copies the latest file revisions in the selected
directory to the mapped local system. SoftBench CM also copies the
subdirectories, but not their content.

Recursive (Files and Directories) copies the latest file revisions in the
selected directories and the latest file revisions from any subdirectory
to the mapped local system.

Directories Only creates an empty directory structure on the local
system that reflects the structure of the selected archive directories.

Viewing Contents of Archive Files

SoftBench CM lets you view the contents of archive files without
checking them out to a local directory (see Figure 3-6). You may also
perform cut and paste operations from archive files to local files.
SoftBench CM displays archive files; use the SoftBench main window to
view local files.
Chapter 3104

Using SoftBench Configuration Manager
Managing Archive Files and Directories
Figure 3-6 Viewing an Archive File

To view a file, double-click on the desired file. SoftBench CM displays the
default revision of the file in the "View File " dialog box.

To save the contents of the display to a local file:

1. Select Save As... .

2. Enter the local file name and location where you want to save the file.

No link exists between the archive file displayed in the "View File "
dialog box and the new local file.

To view a particular file revision:

1. Double-click on the desired file.

2. Enter the revision number in the "View File " dialog box.

If you are not sure which revision number to use:

a. Select Done to close the "View File " dialog box.

b. Choose "File: S how Revision History… ".

c. Locate the file revision number that you want.
Chapter 3 105

Using SoftBench Configuration Manager
Managing Archive Files and Directories
d. Select Done to close the "Show Revision History " dialog box.

e. Double-click on the same file to display the "View File " dialog
box.

f. Enter the revision number you located previously in the
"Revision " input area.

3. Select Display .

SoftBench CM displays the specified file revision.

4. Select Done .

Deleting Archive Files and Directories

SoftBench CM lets you delete unlocked archive files and empty
directories. However, deletions are permanent. Check with your
SoftBench CM administrator to set permissions for deleting archive files
and directories. (For more information, see “Defining User Access to the
Server” on page 342).

To delete an archive file:

1. Select the file(s) you want to delete.
2. Choose "File: Delete… ".
3. Select OK from the "Delete " dialog box.

To delete an archive directory:

1. Select the directory or directories to delete.
2. Choose "Directory: Delete… ".
3. Select OK from the "Delete " dialog box.

Locking an Archive File

SoftBench CM lets you lock an archive file without checking out the file
to your local directory. This prevents others from making changes to an
archive file that you are editing. If the lock is broken, the system sends
you an e-mail message indicating who broke the lock.

To lock an archive file:

1. Select the file(s) you want to lock.
2. Choose "File: Lock File ".

The file status changes from unlocked to locked and shows your login
name.
Chapter 3106

Using SoftBench Configuration Manager
Managing Archive Files and Directories
Breaking a Lock on an Archive File

You may need to break the lock on an archive file under certain
circumstances, such as when a developer forgets to check in a source file
before leaving town. Using SoftBench CM, you can determine who holds
the lock and then break the lock so that another developer can work on
the source file.

To break the lock on an archive file:

1. Select the file.

2. Choose "File: Break File Lock… ".

3. Enter the reason for breaking the lock in the "Break File Lock "
input box (see Figure 3-7). SoftBench CM uses this as the contents for
the associated e-mail message.

4. Select OK.

SoftBench CM breaks the lock, makes the file available for check out,
and e-mails a message to the person who locked the file.

You may or may not have permission to break file locks in certain
archives. Check with your SoftBench CM administrator about
permission to break locks on archive files.

Figure 3-7 "Break File Lock" Dialog Box

Viewing the Revision History of Archive Files

SoftBench CM lets you view the revision history for each archive file.
This is useful when you want to determine when a particular change was
made to a file.
Chapter 3 107

Using SoftBench Configuration Manager
Managing Archive Files and Directories
To view the revision history of an archive file:

1. Select the file.

2. Choose "File: S how Revision History… ".

The "Show Revision History " dialog box displays the revision
history for the selected file (see Figure 3-8).

To view the revision history of a particular file revision:

1. Enter the revision number in the "Revision " input area.

2. Select Display .

Figure 3-8 "Show Revision History" Dialog Box for an Archive File
Chapter 3108

Using SoftBench Configuration Manager
Managing Archive Files and Directories
Setting Archive Display Filters

The archive display filter lets you view only those archive files and
directories in which you are interested. From the "Display Filter "
dialog box, you can customize the filter to include any combination of
options:

• Show a concise listing: Displays only the names of the files in the
current archive directory.

• Show only locked files: Displays only locked files in the current
archive directory.

• Files locked by an individual: Requires the user's login name in the
text entry field.

• Include subdirectories: Lists the files in the current archive directory
and the files in the associated subdirectories.

• Reverse the display order: Reverses the order in which the files and
directories are sorted and displayed.

• Sort by time: Displays files by the last date and time they where
modified instead of alphabetically (default).

• Show numeric mode and time: Displays the time and permissions
information in numeric format.

To set the display filter:

1. Choose "Options: Display Filter… ".

2. In the "Display Filter " dialog box, select the desired option(s).

3. Select OK.

When you change settings, the new settings are in effect for the current
session. To save settings for other sessions, select the menu item
"Options: Save All Settings ".
Chapter 3 109

Using SoftBench Configuration Manager
Managing Local Files
Managing Local Files
Your local file system contains one revision of each file. Changes to
archive files, such as editing, are done in the local file system through
the SoftBench main window. Working on your local system lets you make
and test changes to local files before introducing those changes back into
the archive file system.

Modifying Local Source Files

To modify a local file from the SoftBench main window:

1. Select the file you want to modify.

2. Choose "File: Co nfiguration Management: → Check Out
Locked ".

This lets others know that you are modifying the file and ensures you
have the most recent revision of a file with read-write permissions.

3. Choose "File: Open…" or click on the editor icon.

The configured SoftBench editor starts.

4. Make your modifications and save the results to the local file system.

5. Check in the local file to update the archive version.

Checking In Modified Files

Checking a file in changes your permissions on the local file to read-only,
updates the archive file, and makes the file available to others to modify.
You can operate on multiple files and directories and add comments
during file check in. File comments are kept with the revision history
of a file. You can check a file in and retain the lock to allow others access
to your recent changes while you continue modifying the file.

To check in a file to the archive:

1. Select the file(s) you want to check in.

2. Choose "Actions: Check I n from Local Directory… ".

3. In the "Comment" section of the "Check In " dialog box, enter
comments.
Chapter 3110

Using SoftBench Configuration Manager
Managing Local Files
4. Include optional attributes:

Revision: Defines an instance of a file in a series of changes. You
can leave this field blank because SoftBench CM assigns the file a
default number that denotes the latest version of a file.

State: Gives a revision of a file a value such as "draft," "prototype,"
"final," or "release." You can leave this field blank because SoftBench
CM uses "Exp" (experimental) as the default value.

5. Select OK.
Chapter 3 111

Using SoftBench Configuration Manager
Creating a Default Symbolic Name for Archive Files
Creating a Default Symbolic Name for Archive
Files
The mapping between a local directory and an archive specifies which
revision of files you use. The default setting retrieves the latest revision
of each file from the archive during file check out. The default also sets
each file as the new, latest revision during check in. However, you can
edit these settings to work with other file revisions by specifying a
symbolic name list for a mapping.

A symbolic name is a special user-defined string (containing no white
space characters) assigned to a particular file revision. A symbolic
name list is a comma separated list of symbolic names with a special
default revision specifier at the end. The special default revision specifier
can be a symbolic name or it can be either a dash (-) or an asterisk (*),
optionally followed by a number. Below is an example of valid symbolic
name list:

Revision1_1,*DemoVersion,Revision1_1,-

Understanding Symbolic Names

After defining the symbolic name list, the active revision within the
archive files is determined by the revision associated with that symbolic
name. The symbolic name list also determines how files are created and
checked back into the archive.

During Check Out

• If the first entry in the symbolic name list exists for a file, SoftBench
CM returns that revision of the file.

• If the first entry does not exist, and the next entry exists for the file,
SoftBench CM returns that revision of the file.

• If SoftBench CM reaches the end of the symbolic name list before it
checks out the file and you did not include a special default entry
specifier, an error occurs. If you included an (*) as the special default
entry specifier, SoftBench CM checks out the latest file revision
(default). If you included a (-) as the special default entry specifier,
SoftBench CM does not check out the file, and no error occurs.
Chapter 3112

Using SoftBench Configuration Manager
Creating a Default Symbolic Name for Archive Files
During Check In

• SoftBench CM tags the checked in file with the first symbolic name on
the list. Two revisions of the same file cannot have the same symbolic
name. If the system already includes a revision tagged with the
specified symbolic name, the tag no longer applies to that revision.

• SoftBench CM creates a branch, if necessary, for the new tagged
revision.

During File Creation

• SoftBench CM creates the file and tags the initial version with the
first symbolic name on the list.

• If the special default entry contains a number, the initial version
includes that revision number.

Defining Symbolic Names

You can define a symbolic name list when creating a mapping or editing
an existing mapping.

To define a symbolic name list for an existing mapping:

1. Choose "Actions: Show/Modify Mappings… ".

2. In the"Currently Defined Mappings " section of the dialog box,
select the mapped archive for which you want to define a symbolic
name.

3. Select Modify... .

4. In the "Modify Mapping " dialog box, enter the a "Symbolic Name
List " entry.

5. Select OK.

Symbolic Name Example

The following example shows the revision history of two files (see Table
3-1) and the results of the configuration management actions after
setting the symbolic name list to "DemoVersion,Revision1_1,*3 " (see
Table 3-2).
Chapter 3 113

Using SoftBench Configuration Manager
Creating a Default Symbolic Name for Archive Files
Table 3-1 Symbolic Names and Revision Numbers

File X File Y

Revision
Number

Symbolic Name Revision
number

Symbolic Name

1.5 1.5 — Revision1_1

1.4 1.4

1.3 — Revision1_1 1.3

1.2 — Demo Version 1.2

1.1 1.1

Table 3-2 Actions and Results After Setting Symbolic Name List

Action — > Result

Check out
File X

— > Checks out revision 1.2.

Check out
File Y

— > Checks out revision 1.5.

Check in
File X

— > Creates a branch and a new revision
numbered 1.2.1.1 and DemoVersion now is
set to 1.2.1.1.

Check in
File Y

— > Creates revision 1.6 and assigns
DemoVersion to that revision.

Create File
Z

— > Creates a revision numbered 3.0 and
labeled with DemoVersion.
Chapter 3114

Using SoftBench Configuration Manager
Using the SoftBench CM Command Line Interface
Using the SoftBench CM Command Line
Interface
SoftBench CM lets you execute commands from the command line. For
more information about the command line, review the following man
pages located in /opt/softbench/man directory.

Table 3-3 SoftBench CM Command Line Man Pages

Man Page Task Description

cmdate(1) Sets dates across a network of machines using
SoftBench CM.

fci(1) Check in local files to archive, create new archive files.

fco(1) Check out archive files or directories.

fdiff(1) Print differences between two versions of archive
files.

fhist(1) Display the revision history of an archive file.

fls(1) List the contents of an archive directory.

fmerge(1) Merge revisions of an archive file into a local file.

fupdate(1) Update local files from SoftBench CM archives.

futil(1) Perform miscellaneous SoftBench CM tasks.

softCM(1) Describe the SoftBench CM GUI.
Chapter 3 115

Using SoftBench Configuration Manager
Using the SoftBench CM Command Line Interface
Chapter 3116

Using SoftBench Editors
4 Using SoftBench Editors

SoftBench provides SoftBench XEmacs and SoftBench vi Editor for text
editing. SoftBench comes preconfigured with SoftBench XEmacs as the
default editor, with SoftBench vi Editor as an alternative. SoftBench
Program Editor is now contributed software that you must custom
configure if you choose to use it. Once your editor preference is set,
actions which invoke an editor use the configured SoftBench editor.
SoftBench also provides SoftBench Class Graph/Editor for graphical
editing. See Chapter 5, “Using SoftBench Class Graph/Editor,” on
page 133 for information.
Chapter 4 117

Using SoftBench Editors
Using Editors with Projects
Using Editors with Projects
When the editor is started from SoftBench, it understands your project
information. SoftBench XEmacs and SoftBench vi Editor can save a file
into the current project. The editor displays the current project on the
title bar. You can also save a file outside of the current project.

• Save–Save the file as it currently appears in the window. If the file is
"Untitled", you are prompted for a file name. If the editor is project
aware (editor was opened from the SoftBench main window or from a
SoftBench tool), the editor saves the file into the current project.

• Save As…–Save the file as it currently appears in the window using a
name you provide. If the editor is project aware, the editor saves the
newly named file into the current project.

• Save Out Of Project –Save the file as it currently appears in the
window. If the file is named "Untitled", you are prompted for a file
name. SoftBench does not automatically add the file to the project.

• Save Out Of Project As… –Save the file as it currently appears in
the window under the name you provide. SoftBench does not
automatically add the file to the project.

Note that if your editor is project aware, any file you "Save" or "Save
As" will be added to your project file set, even if you just happen to make
a change to your personal files. Use "Save Out Of Project " for files you
do not want added to the project named in the editor's titlebar.

If you rename a file to a name that indicates a different file type,
SoftBench Program Editor and SoftBench XEmacs switch mode to the
new file type.
Chapter 4118

Using SoftBench Editors
Configuring an Editor
Configuring an Editor
Select your editor by choosing "Options:
Tool Preferences… ." Once your editor preference is set, actions which
invoke an editor use the configured SoftBench editor. Refer to SoftBench
Online Help for detailed information on each editor.

SoftBench XEmacs is the default editor. If you are a new SoftBench
XEmacs user, SoftBench automatically sets up a default XEmacs
configuration for you. If you are already using GNU XEmacs and you
want to maintain your user options, SoftBench automatically loads the
preferences specified in your $HOME/.xemacs file. You may discover some
preference differences you want to change by editing the
$HOME/.softxemacs-options file.

Configuring SoftBench vi Editor

To change your default editor to SoftBench vi :

1. From the SoftBench main window, choose "Options: Tool
Preferences…. "

2. From the "Tool Preferences " dialog, choose "Editor ". The available
editors are displayed.

3. Select "Softvi" from the scrollbar list, then select OK.

Configuring SoftBench Program Editor

SoftBench Program Editor is only available for backward compatibility
and will not be available in future releases. It has not been enhanced to
work with the SoftBench project model. Files that you save are not
automatically added to your project. SoftBench Program Editor is not
preconfigured and requires special steps to activate it:

1. With root permissions, edit the file
/opt/softbench/config/toolbar/prefsConfig .

2. Search the file for the line containing:

${SOFTBENCH:-/opt/softbench}/contrib/bin/softeditsrv -scope net

3. Remove the "#" symbol from the front of the line.
Chapter 4 119

Using SoftBench Editors
Configuring an Editor
4. Save the changes to the file.

5. From the SoftBench main window, choose "Options: Tool
Preferences ".

6. From the dialog box, choose "Editor ". The available editors are
displayed.

7. Choose "SoftEdit " from the "Available Tools " list, then select OK.

8. Select OK.

If you do not have root permissions, copy the line found in
/opt/softbench/config/toolbar/prefsConfig into
$HOME/.softbench/bmsinit . Be sure it is all on one line. For more
information, refer to the bmsinit(5) man page. When selecting your tool
preferences, use the "Default " selection to enable your local bmsinit file
to override the system settings.
Chapter 4120

Using SoftBench Editors
Starting the Configured SoftBench Editor
Starting the Configured SoftBench Editor
To edit a project file:

• Double-click on it in the Files view

• Select the file in the Files view and select the "Editor " icon.

• Select the file and choose "File: Open…".

• Alternatively, you can double click on the output browsers from other
SoftBench tools to start your editor preloaded with the relevant file.

To create a new file:

1. Choose "File: New…",

or

Make sure that nothing is selected in the project browser.

2. Select the "Editor " icon.
Chapter 4 121

Using SoftBench Editors
Editing with SoftBench XEmacs Editor
Editing with SoftBench XEmacs Editor
SoftBench XEmacs is an advanced GUI editor with features that go
beyond a typical text editor or vi . SoftBench XEmacs is built on GNU
XEmacs . In addition to having pulldown menus and a toolbar, SoftBench
XEmacs is self–documenting, customizable, and extensible.
Self–documenting means that any time you type Control–H to find out
what your options are, you can also type a special character string to find
out what a command does. In addition, you can find commands relevant
to a particular topic. Customizable means you can change the definitions
of SoftBench XEmacs commands to suit your individual needs.
Extensible means you can go beyond simple customization and write
entirely new commands using the Lisp programming language.

Before starting SoftBench XEmacs, you should be familiar with how
SoftBench XEmacs uses buffers, files, windows, and frames.

• Buffers–A buffer holds characters in a region of memory. As the basic
editing unit, one buffer corresponds to one piece of text being edited.
You can have multiple buffers but you can edit only one buffer at any
one time.

• Files–SoftBench XEmacs edits a file by reading it into a buffer,
editing that buffer, and writing the buffer contents back to the file. To
save your work permanently you must write it to a file.

• Windows–You can open multiple windows with multiple buffers and
edit them by selecting the corresponding buffer. When you start
SoftBench XEmacs, it automatically opens a window for you. From
there you can open multiple files in separate buffers. Each buffer can
be displayed in a separate window, or displayed on the main window
by using the buffer menu.

• Frames–A frame, in the terminology of GNU XEmacs is an X-window
complete with menus, toolbars, a message area, and one or more
windows.

SoftBench XEmacs documentation consists primarily of online help. You
can obtain additional GNU XEmacs user and reference material on the
Web at:

http://www.xemacs.org
Chapter 4122

Using SoftBench Editors
Editing with SoftBench XEmacs Editor
Using SoftBench XEmacs

SoftBench XEmacs offers several robust user interface features (See
Figure 4-1):

• A menu bar provides access to pulldown menu functions.

• A tool bar provides quick and easy access to selected pulldown menu
features.

• An edit area provides a multi-line editing area that responds to
keyboard commands, as well as the pulldown menu items.

• An input status area at the bottom of the window allows you to input
file and command information.

• The copy and paste feature allows you to copy and paste between
windows.

• You can access other SoftBench tools from SoftBench XEmacs, and
other tools can access SoftBench XEmacs. See “Calling Other
SoftBench Tools from the Editors” on page 130 for further
information.
Chapter 4 123

Using SoftBench Editors
Editing with SoftBench XEmacs Editor
Figure 4-1 SoftBench XEmacs Main Window

Accessing Help

Once you have started SoftBench XEmacs, you can access online help
from the "Help " menu. The "Help " menu also provides access to online
manuals via the "Help: XEmacs Help → UNIX Manual… " command.

Editing Multiple Files

SoftBench XEmacs allows you to sequentially edit multiple files in the
same window or in multiple windows. For example, suppose you are
Chapter 4124

Using SoftBench Editors
Editing with SoftBench XEmacs Editor
editing a file and wish to make a quick change to another file and then
return to editing the first file.

1. Within SoftBench XEmacs you can choose "File: Open… " and specify
another file. If you use "Save" or "Save As…" the file will be added to
the current project file set.

2. SoftBench XEmacs loads the new file, where you can edit the file's
contents as desired.

3. You can switch back to editing the previous file by choosing
"Windows: List All Windows ".

4. Double click on the name of the file you want to edit, and SoftBench
XEmacs reloads the file into the editing area.

5. To open a new window, select "Window: New Frame ".
Chapter 4 125

Using SoftBench Editors
Editing with SoftBench vi Editor
Editing with SoftBench vi Editor
SoftBench vi Editor is an easy-to-use encapsulation of the UNIX vi
editor. This tool gives you all of the features of vi plus the ability to
execute SoftBench commands and tools from the pulldown menus. See
“Calling Other SoftBench Tools from the Editors” on page 130 for
integration information.

Consult your system's vi documentation to learn about vi . For
additional information about SoftBench vi Editor, see "Help: Show Man
Page" from within the tool. There are also several user guides on the
Web. Simply search for "vi editor ".

Figure 4-2 displays the SoftBench vi Editor Window.

Figure 4-2 SoftBench vi Editor Window

The vi command syntax operates only while you are in SoftBench vi
Editor. Other SoftBench Edit Areas such as dialog boxes implement
SoftBench XEmacs behavior, even when you have configured your
system to use SoftBench vi Editor.

With SoftBench vi Editor, you have all of the standard vi capabilities of
Chapter 4126

Using SoftBench Editors
Editing with SoftBench vi Editor
using alphanumeric and cursor-control keys for input. In addition, you
can move the cursor using the mouse, and you have the ability to access
SoftBench operations defined in the window by using the mouse or the
Alt key in conjunction with other keys.

Using the Mouse Pointer Versus the Text Cursor

Note the differences between "mouse pointer" and "text cursor":

Mouse pointer moves as you move the mouse. SoftBench vi Editor
uses an arrow for the mouse pointer in the text area
(the same as when the pointer is over the menu bar).

Text cursor is a solid box that shows vi 's current location within a
text area. When you insert text, the new characters
appear at the cursor location and subsequent
characters are moved to the right. SoftBench vi Editor
positions the cursor in the upper left corner of a text
area when you first edit a file. You can move this text
cursor by moving the mouse pointer to the desired new
location and then clicking the left mouse button.

Editing Multiple Files

When using SoftBench vi Editor, you can sequentially edit several files in
one window. For example, suppose you are editing a file and you want to
edit another file.

1. Choose "File: Open…" or "File: New…", and then specify another file.
If you use "Save " or "Save As…" the file will be added to the current
project definition.

2. If the current file has not been saved (it has been modified since last
being saved), then there are two possible SoftBench vi Editor
Chapter 4 127

Using SoftBench Editors
Editing with SoftBench vi Editor
behaviors:

To set the autowrite option, type ":set autowrite " from within
SoftBench vi Editor or add it to your $HOME/.exrc file.

3. SoftBench vi Editor loads the new file and you can modify the file's
contents as desired.

4. If you want to "switch" back to the previous file, you can view the
Editor Index to see a list of files that you have edited. Choose "File:
Editor Index " to display this index. Double–click the mouse on the
name of the file which you want to edit, and SoftBench vi Editor loads
it into its editing area. (You can also use vi 's ":edit # " command to
edit the previously edited file.)

Reusing the Edit Window

SoftBench vi Editor's "■ Reuse Window " toggle button allows you to
control whether or not SoftBench vi Editor generates a new window for
an edit request:

Table 4-1

If the vi autowrite
option

SoftBench vi Editor's behavior

is set automatically saves the file before loading the
new file.

is not set you must manually save the file before loading
the new file.

Table 4-2

Status of "■ Reuse Window "
Toggle Button

SoftBench vi Editor Behavior

Set on at least one SoftBench vi
Editor window

SoftBench vi Editor reuses a
window whose toggle button is
selected for subsequent edit
requests

Not set on any window SoftBench vi Editor generates a
new window.
Chapter 4128

Using SoftBench Editors
Editing with SoftBench vi Editor
For example, suppose that you are editing a file called FirstFile in the
only existing SoftBench vi Editor window, and this window's "■ Reuse
Window" toggle button is not selected. Editing SecondFile by choosing
"File: Open" generates a new SoftBench vi Editor window with
SecondFile loaded into it (because the first window is not to be reused).

On the other hand, if you set the "■ Reuse Window" toggle button in the
SoftBench vi Editor window editing FirstFile , then SecondFile loads
into the same window.

If you have a mixture of SoftBench vi Editor windows with and without
the "■ Reuse Window " toggle button selected, then requesting that
another file be edited causes that file to be loaded into a window where
the "■ Reuse Window " toggle button is selected. If you select "■ Reuse
Window" toggle buttons in several windows, then SoftBench vi Editor
cycles through the windows as you make additional edit requests.

Selecting, Copying, and Pasting Text

You can take advantage of the copy and paste operations between
windows. For example:

1. In the SoftBench vi Editor window, select some text by dragging the
mouse pointer.

2. Press Control-Insert , which copies the selected text into the Clipboard.

3. Move the cursor to the point where you want to insert text. Enter
SoftBench vi Editor insert mode by typing "i ", then paste the text
from the Clipboard into the file by pressing Shift-Insert . If the
destination window is not in vi 's insert mode, SoftBench vi Editor
interprets the characters as commands until one of them puts vi into
insert mode.
Chapter 4 129

Using SoftBench Editors
Calling Other SoftBench Tools from the Editors
Calling Other SoftBench Tools from the
Editors
One of the most useful benefits of having the vi and XEmacs editors
encapsulated and integrated into SoftBench is that you can call other
tools from within the editors, and you can call the editors from other
tools.

The default editing mode is "C" code, and changes based on the
filename's suffix. The suffixes .C, .cxx, .cpp, .Cxx, .cc and .H
cause the editors to switch to C++ mode.

Compiling a Program File

Once you finish editing and saving the changes to a program file (save
the file by choosing "File: Save "), you can compile the file while in an
editor by choosing "File: Compi l e File ".

See “Compiling Instead of Building” on page 73 for information
comparing compiling to building.

Building a Project

Once you finish editing and saving the changes to your program file,
(save the file by choosing "File: Save "), you can build the current
project by choosing "File: Build Project ".

See “Compiling Instead of Building” on page 73 for information
comparing compiling to building.

Accessing SoftBench Static Analyzer from the Editor

You can initiate static analysis directly from the editor. For example, you
can generate a list of all calls to a particular variable by selecting a token
(dragging with the left mouse button or double–clicking) and choosing
"Static: References ". If no token is currently selected, then SoftBench
Static Analyzer uses the first token following the text cursor in the
"Static: References " operation.
Chapter 4130

Using SoftBench Editors
Calling Other SoftBench Tools from the Editors
Setting Breakpoints in a Program File

You can also set SoftBench Debugger breakpoints in a program by
choosing "File: Set Brea kpoint ". SoftBench Debugger sets the
breakpoint on the line where the cursor is located.

Using Configuration Management

SoftBench provides access to frequent Configuration Management
commands for operations such as checking in a file or checking out the
latest copy of a file. The "File: Con f iguration Management " submenu
contains the following commands:

• Check Out Locked…

• Check I n…

• Check Out Unlocked

• Create Initial Version

• Cancel Check Out

• Show Revision History…

• Compare Revisions…

• St art Configuration Management Tool…

The exact behavior of these commands depends on which configuration
management tool you use. SoftBench ships with SoftBench CM. Other
vendors also provide configuration management solutions that integrate
with SoftBench.
Chapter 4 131

Using SoftBench Editors
For More Information
For More Information

• On specifying an editor other than SoftBench XEmacs and SoftBench
vi Editor, see “Registering New Tools with SoftBench” on page 80 and
the bmsinit(5) man page.

• On SoftBench vi Editor and its resources, see the vi(1) manual page.

• On SoftBench XEmacs and its resources, see the xemacs(1) manual
page.
Chapter 4132

Using SoftBench Class Graph/Editor
5 Using SoftBench Class
Graph/Editor

SoftBench Class Graph/Editor allows you to edit the class constructs in
your C++ program using a visual, graphical interface. You can create and
modify class hierarchies and edit class components with a few clicks of
the mouse.

SoftBench Class Graph/Editor is incorporated into the SoftBench Static
Analyzer graphical interface. You need some familiarity with SoftBench
Static Analyzer to use the SoftBench Class Graph/Editor features. See
Chapter 10, “Using Static Graphs,” on page 283 for more information on
Static Graphs.
Chapter 5 133

Using SoftBench Class Graph/Editor
Editing C++ Structures with SoftBench Class Graph/Editor
Editing C++ Structures with SoftBench Class
Graph/Editor
The class hierarchies and other data structures in C++ can be
understood much more easily when they are presented in a graphical
format. Static Graphs provide an excellent tool for viewing these
structures.

The SoftBench Class Graph/Editor in SoftBench Static Analyzer also
allows you to edit C++ structures in the graphical display. While viewing
the graphical representation of C++ structures, you can add, modify, or
delete classes, class components, and component definitions.

SoftBench Class Graph/Editor helps you to become much more
productive in your C++ programming. You can understand, create, and
modify C++ programs much more quickly using the high-level conceptual
displays. You can concentrate on the semantics of your program, instead
of worrying about the syntax and details of C++ class definition.
SoftBench Class Graph/Editor handles the details for you.

SoftBench Class Graph/Editor requires the Static Analysis database
used by SoftBench Static Analyzer. If you try to use SoftBench Class
Graph/Editor with a directory or project that does not contain a Static
Analysis database, SoftBench Static Analyzer may create one for you
using your new and existing C++ code. Building your code with the
■ Static option produces a more reliable database.

Understanding the SoftBench Class Graph/Editor Use
Model

When you edit using SoftBench Class Graph/Editor, several different
files and programs are involved including your source files, the static
analysis database, the SoftBench Class Graph/Editor program, and your
compiler. See Figure 5-1. In this diagram, the rectangles represent items
on your system. The arcs represent actions by you or by various
programs that modify those files.

In order to use SoftBench Class Graph/Editor, the graph and the Static
Analysis database must accurately reflect the source files. However,
SoftBench Class Graph/Editor and other editors may change the source
files, and any changes to the sources must be reflected in the database.
Chapter 5134

Using SoftBench Class Graph/Editor
Editing C++ Structures with SoftBench Class Graph/Editor
Any change to the sources or database must be reflected in the graph.

Figure 5-1 SoftBench Class Graph/Editor Use Model

Each time you make an edit, SoftBench Class Graph/Editor updates the
graph, changes the source files, and invokes the source scanner to update
the database. The scanning process takes time, and it's possible for the
graph to become unsynchronized if you make edits before the scan
completes.

Because SoftBench Class Graph/Editor does not have access to all the
information that the compiler has, it's also possible for the graph to
become unsynchronized with the source files. Compiler errors and source
changes in other editors can cause the database and the graph to become
out-of-date.

If you notice that the graph appears to be unsynchronized with your
sources, you may need to re-analyze the database (choose "File:
Analyze File Set " in the main SoftBench Static Analyzer window) and
select the Update Graph button to display the current state of the
Chapter 5 135

Using SoftBench Class Graph/Editor
Editing C++ Structures with SoftBench Class Graph/Editor
database.

Using SoftBench Class Graph/Editor with Other
SoftBench Editors

As you interact with SoftBench Class Graph/Editor, it immediately
writes each change you make to the appropriate source files. SoftBench
Class Graph/Editor maintains an "undo" list so that you can reverse
changes even though they have been written to disk.

If you view the sources in any SoftBench tool, your source view is
updated each time you make a change in SoftBench Class Graph/Editor.
If you change the file in one of the SoftBench text editors, SoftBench
Class Graph/Editor detects the change and discards its "undo" list. This
prevents SoftBench Class Graph/Editor from damaging the source
changes you made in another editor. Select the Update Graph button to
display the new changes in SoftBench Class Graph/Editor.

Because of this close interaction with the SoftBench editors, it can be
very productive to use SoftBench Class Graph/Editor in conjunction with
an editor. You are not forced to use only SoftBench Class Graph/Editor to
make C++ class edits; you can use your editor to make arbitrary text
changes (such as adding comments or entering non-class code) in the
natural flow of your work.

Synchronizing Editor Views and the Static Database

SoftBench Class Graph/Editor uses the Static database for its view onto
your C++ source. If no Static database exists for the current project (or in
the current directory for standalone mode), SoftBench Class
Graph/Editor requests one to be generated after you make your first edit.

When you edit using SoftBench Class Graph/Editor, you make changes to
the C++ source files. SoftBench Class Graph/Editor then triggers an
update of the Static database to reflect the new source code.

If you make changes using other editors, you may want to force an
update of the Static database to ensure SoftBench Class Graph/Editor
displays the current state of your code. To do this, choose "File:
Analyze File Set " from the main SoftBench Static Analyzer window,
and select the Update Graph button in SoftBench Class Graph/Editor when
the file set is updated.

If you do not force an update, SoftBench Class Graph/Editor still checks
Chapter 5136

Using SoftBench Class Graph/Editor
Editing C++ Structures with SoftBench Class Graph/Editor
all files before making an edit. If any files have been changed since the
last database update, SoftBench Class Graph/Editor updates the
database before proceeding with the edit.
Chapter 5 137

Using SoftBench Class Graph/Editor
Using SoftBench Class Graph/Editor in Your Work
Using SoftBench Class Graph/Editor in Your
Work
SoftBench Class Graph/Editor has several basic operations that you can
apply to different use models. You can:

• View and modify your existing C++ class hierarchy. The SoftBench
Class Graph/Editor graph in SoftBench Static Analyzer gives you
many ways to examine the structure of your C++ program.

• Create new C++ components (classes, instances, member functions,
data members, and inheritance relationships).

• Delete existing C++ components. You can delete any C++ component
displayed in the SoftBench Class Graph/Editor, even if you did not
create it using SoftBench Class Graph/Editor.

• Modify existing C++ components. You can change the name, type,
parameters, accessibility (public, private, protected) and other
declarations (virtual, static, const) for any component. You can
change the definition of any component that supports definitions. If
you change a class or member name, SoftBench Class Graph/Editor
changes all references to that identifier.

Viewing the Existing Class Hierarchy

SoftBench Class Graph/Editor is implemented as one of the Static
Graphs. You can view your complete class hierarchy by entering
SoftBench Class Graph/Editor in SoftBench Static Analyzer and
choosing "Graph: C l ass Graph/Editor → All Classes ".

You can view any subset of your class hierarchy by entering a class of
interest in the "Symbol () " input box and selecting Display . SoftBench
Class Graph/Editor displays the requested class. By default, it also
displays the immediate base and derived classes of the class. (You can
change these defaults by choosing "Options: Queries On New
Nodes…".) You can add other classes as needed, or select classes and press
the right mouse button to display other information.

Select a class and hold down the right mouse button to display a popup
menu of choices. Choose "Show →" to display various information about
the class, including its data members and member functions.
Chapter 5138

Using SoftBench Class Graph/Editor
Using SoftBench Class Graph/Editor in Your Work
Creating New Components

You can create new classes and class members by choosing one of the
selections under the "Edit " menu. The actions you take depend on what
you have chosen. Any files created in the process of adding components
become part of your current project.

"Edit: Create Class… " prompts you for the name of the new class. By
default, SoftBench Class Graph/Editor places the new class declaration
in a new header file named classname.H . You may specify a different
header file. SoftBench Class Graph/Editor displays the new class near
the middle of the graph. You may move it to a more convenient location
by dragging it with the middle mouse button.

All other choices under "Edit " act on a specified class. You must select
the class you want to edit before choosing any of these choices. (The
popup menu also provides these choices when a class is selected.) "Edit:
Create Member Function… " and "Edit: Crea t e Data Member… " add
members to the class. SoftBench Class Graph/Editor prompts you for
information about the new member.

"Edit: Create Member Function… " allows you to specify all properties
of the new function. You can specify the signature (return type, name,
and parameter list) and other properties (public, private, virtual, static,
const). You can also specify a definition for the function, or only a
declaration. See SoftBench Online Help for a more complete explanation.

You can add an inheritance relationship to the selected class by choosing
"Edit: Add Base Class ". The mouse pointer changes to a small "class"
icon with an arrow pointing away from it. Select the desired base class.

SoftBench Class Graph/Editor also provides convenient shortcuts for
creating classes and inheritance relationships:

• To create a class, hold down the Ctrl key and click the middle mouse
button where you want the class created.

• To create an inheritance relationship, hold down the Ctrl key and the
middle mouse button, and drag the mouse pointer from the base class
to the derived class.

Modifying Existing Components

Select the component you want to modify. For member functions and
data members you must first display the contents of the desired class.
Select the class, press the right mouse button, and select "Show →
Chapter 5 139

Using SoftBench Class Graph/Editor
Using SoftBench Class Graph/Editor in Your Work
Member Fu nctions " or "Show → D ata Members " from the popup menu.

Once you have selected the desired component, choose "Edit: Modify… ",
or press the right mouse button and select "Modify… ". A dialog box
similar to the corresponding "create" dialog box appears. Modify the
desired information and select OK.

You can also edit the source for the object by double-clicking on the
object, or by pressing the right mouse button and selecting "Edit
Source ". Remember that you must save any changes you make in the
editor, and they clear the SoftBench Class Graph/Editor "undo" history.

You can modify the properties of an inheritance relationship (such as
public or private) by selecting the inheritance arc, but you cannot
change the base or derived class. To do this, you must delete the arc and
create a new inheritance relationship.

You can change the name of a class or member. SoftBench Class
Graph/Editor updates all references to the class or member to use the
new name, even if the name is referred to in many files. SoftBench Class
Graph/Editor changes only the proper references to the name, not
references to other variables with the same identifier.

"Edit: Undo", if active, "undoes" the most recent edit from the edit
history stack. You can use this repeatedly to "walk" back through your
history of editing changes.

Deleting Existing Components

Select the component you want to delete. For member functions and data
members you must first display the contents of the desired class. Select
the base class, press the right mouse button, and select "Show → Member
Functions " or "Show → D ata Members " from the popup menu.

Once you have selected the object to delete, press the right mouse button
and select "Del ete " from the popup menu. You can select and delete
multiple objects of the same type simultaneously.
Chapter 5140

Using SoftBench Class Graph/Editor
Sample Use Models
Sample Use Models
Using SoftBench Class Graph/Editor is a simple matter of applying the
basic operations as needed in your specific C++ programming situation.
Here are some examples of common scenarios.

Creating a New Program

SoftBench Class Graph/Editor is an excellent tool to help you "rough out"
the structure of your program. You can create classes to "sketch out" the
class hierarchy to implement your program, and return to fill in
implementation details when you are ready. You can move between
SoftBench Class Graph/Editor and the SoftBench editor of your choice to
fill in other (non-class) code as you go along.

In order to use this:

1. Create your project.

2. Define your source files, include files, and target files.

3. Link your source files to your target files and define your build model.

4. Create your C++ source file with the include statement.

5. Use SoftBench Class Graph/Editor to create your classes and save
them into your include file.

6. Use Builder to keep your Static database synchronized as you work.

Alternatively, if you started SoftBench Static Analyzer in standalone
mode, you can update the Static database immediately.

Modifying an Existing Program

You can use SoftBench Class Graph/Editor to add classes or class
members to an existing program, or to change or remove existing classes
or class members. You can also use SoftBench Class Graph/Editor to
restructure the class hierarchy of a program. For example, you could add
new functionality to an existing class by adding a new base class.

Working with Class Templates

You cannot use SoftBench Class Graph/Editor to create a class template
Chapter 5 141

Using SoftBench Class Graph/Editor
Sample Use Models
or function template member (parameterized function). (You may want
to use SoftBench Class Graph/Editor to create a class with the desired
components, and then convert that class to a template using another
editor.) However, you can perform any other operation with class
templates, such as adding or removing member functions and data
members, and deriving classes from the template.

When you derive a class from a class template, SoftBench Class
Graph/Editor prompts you for the template parameters. You cannot
derive a class directly from a template; you must derive from an instance
of the template. When you enter the parameters, SoftBench Class
Graph/Editor references a template instance of the appropriate type
(creating one if necessary), and derives the new class from the template
instance.

For example, suppose you have a template A that accepts one parameter.
If you specify an inheritance relationship between A and a class B,
SoftBench Class Graph/Editor prompts you to enter the template
parameter. If you enter "int ", SoftBench Class Graph/Editor creates a
class (template instance) A<int >, and derives B from A<int> . If you want
to derive other classes from an int instance of A, specify A<int> as the
base class.

Using Configuration Management

SoftBench Class Graph/Editor attempts to edit all files containing
updated class information. (A single change may affect many files. For
example, if you change the name of a class, every reference to that class
must be updated.) SoftBench Class Graph/Editor assumes any read-only
files are locked by your configuration management system. SoftBench
Class Graph/Editor displays a dialog box to give you the option of
checking out the files. The dialog box also allows you to simply chmod the
files to force them to be writeable. You should not do this if the files are
actually locked by the CM system, since the changes you make may be
lost when you check out the file. Only force the files to be writeable if no
CM system manages them.
Chapter 5142

Using SoftBench Class Graph/Editor
If Something Goes Wrong
If Something Goes Wrong
Table 5-1

Condition Explanation

Unable to update
the data base. No
files modified.

SoftBench Class Graph/Editor was unable to
update the Static database to reflect your
changes. Make sure the data base is
writeable. You may want to regenerate the
database by choosing "File: Analyze File
Set " or by rebuilding your program using
Project.

A recent
(external?) edit
is causing
compile errors.
Graphic editing
may be impaired
until this is
fixed.

A recent edit, either from SoftBench Class
Graph/Editor or from another editor,
generated a compile error. Fix the compile
errors and regenerate the Static data base.

Database
Synchronization
Error

This error can be caused by the database
being updated in the middle of an edit. It may
also be generated if the graph is out-of-date
with respect to the database, or by certain
unusual programming styles. Select the
Update Graph button and try the edit again.
Chapter 5 143

Using SoftBench Class Graph/Editor
If Something Goes Wrong
Chapter 5144

Using SoftBench CodeAdvisor
6 Using SoftBench CodeAdvisor

SoftBench CodeAdvisor provides advanced code checking for C and C++.
SoftBench CodeAdvisor (available in C++ SoftBench) can help you find
and fix a variety of subtle and dangerous errors that most C and C++
compilers can not detect. SoftBench CodeAdvisor does not duplicate the
error-checking functions of the compilers. The compilers check for many
syntactic and some logic problems, but are limited to checking for fairly
simple, localized problems.

SoftBench CodeAdvisor can check for much more complex and
far-reaching problems, including problems that cross compilation units
(two separately compiled programs linked together). Using SoftBench
CodeAdvisor you can find problems such as potential heap corruption,
dangling pointers, ambiguous initializations, and dependencies on
system-specific compiler/linker behavior.

SoftBench CodeAdvisor also helps you to make your programs faster,
more reliable, and more portable by alerting you to actual and potential
code problems. SoftBench CodeAdvisor uses specific rules to identify
potential problems. Each rule is a set of instructions that queries the
SoftBench Static database for the information of interest, and then
performs a test for the presence of an error condition. When SoftBench
CodeAdvisor detects an error (rule violation), it displays the violation's
location in an output browser. The browser helps you navigate to the
problem and use a preconfigured editor to correct the error.

SoftBench CodeAdvisor helps especially with C++ programs since C++
performs many activities "behind the scenes." For example, it
automatically and invisibly calls class constructors when you create a
new instance of a class. C++ calls destructors when an instance goes out
of scope and is no longer valid. This transparent functionality allows C++
to perform many of the operations that make it so useful.

However, because C++ does so much for you, you may not be completely
aware of some of the things the software does. As a result, you may
unintentionally write your program in a way that could cause problems.

For example, C++ allows you to define an assignment operator,
operator= , on your classes. Your operator= should free any memory
allocated by the class before copying the new class value into it. However,
if the assignment actually assigns the class to itself (classA = classA),
Chapter 6 145

Using SoftBench CodeAdvisor
freeing the memory would be an error.

SoftBench CodeAdvisor can detect this sort of logic error. It scans your
program, looking for operator= definitions, and makes sure you check
for the classA = classA case. If not, it warns you to fix your code.

SoftBench CodeAdvisor rules focus on finding actual or potential defects
in your code. Other rules check for maintenance, performance, and
future problems or porting issues. These example rules show how to
check for potential problems:

If any member of a class is virtual, the destructor should be virtual.

When a class contains a non-virtual destructor, there is
a danger that a class instance of a derived class may be
deleted by one of its base class destructors instead of by
its own destructor. This can cause a memory leak, or
worse problems. For example, some static or global
data should have been modified by the derived class
destructor.

The problem doesn't actually occur unless a derived
class instance with a non-empty destructor is deleted
through a pointer to one of its base classes. However,
non-virtual destructors can result in maintenance
problems, since new derived classes can be added at
any time. Nothing prevents the new derived object
from being deleted through a base class pointer.

Provide an operator= for classes that dynamically allocate memory or
declare a copy constructor.

The default operator= simply copies the fields of one
instance to another. If the instance contains pointers to
memory allocated by new, the default operator=
makes two copies of the pointers. When one of the
instances is deleted, it deallocates the memory using
delete , and the other instance contains a dangling
pointer.

Refer to SoftBench Online Help for a complete list of rules shipped with
SoftBench CodeAdvisor.
Chapter 6146

Using SoftBench CodeAdvisor
SoftBench CodeAdvisor continues to increase the number of rules that it
checks. Consequently, rules are grouped into categories which allows you
to choose which rule groups you want to check. The rules are divided into
the following groups:

• Definite Defects (default)

• Probable Defects (default)

• Possible Defects

• Maintenance/Confusing Code

• Critical Portability

• Non-critical Portability

• Style

• Future Defects/Land Mines

You or your local programming staff and site administrators can extend
SoftBench CodeAdvisor to add even more rules and rule groups.
User-defined rules allow you to check for specific problems that concern
your organization. You can also change the contents of rule groups,
including breaking out platform specific portability dependencies. Refer
to the SoftBench SDK: CodeAdvisor and Static Programmer's Guide for
details on creating rule groups.

SoftBench CodeAdvisor cannot detect every logic error in your code.
However, by running SoftBench CodeAdvisor on your code, you can be
confident that a variety of subtle problems have been detected.
Chapter 6 147

Using SoftBench CodeAdvisor
Comparing SoftBench CodeAdvisor to Debuggers or Dynamic Analyzers
Comparing SoftBench CodeAdvisor to
Debuggers or Dynamic Analyzers
SoftBench CodeAdvisor detects rule violations by performing static
analysis of the code using the Static database. Static analysis differs
from dynamic or run-time analysis, in that it examines all of the
available code. Dynamic or run-time analysis examines only code that
actually executes and does not find defects in branches that are not
executed. Also, dynamic analysis requires that the code is developed to
the point where it can be executed; whereas static analysis can run code
checking as soon as the code compiles, even if the code cannot
successfully execute.
Chapter 6148

Using SoftBench CodeAdvisor
Performing the "Check Code" Operation
Performing the "Check Code" Operation
Perform the following steps to use SoftBench CodeAdvisor:

1. Build your project with the static option on (default). This gives the
compiler the -y option and generates a Static database.

2. Run SoftBench CodeAdvisor on your compiled program.

3. View any rule violations in the SoftBench CodeAdvisor error browser.

4. Filter out any rule violations that you want to ignore (optional).

5. Change your program to correct the errors.

Preparing Your Program with Project Build

You must build your program at least once with Static database creation
enabled and add the set of files to the project that you want to run
SoftBench CodeAdvisor on. To make sure that your project build
creates a Static database, examine the Compile Mode area on the main
tool face and verify that the "■ Static " toggle button is selected.

By default the Builder remembers information about your program
needed for code checking, including the compile options it needs to
rebuild your program after you make changes to your code.

Preparing Your Program with External Build

If you already have an existing build script/makefile and do not want to
spend the time to teach SoftBench to build it, you can create an external
build. (See SoftBench Online Help for details on setting up an external
build project.)

To compile from the command line and enable code checking for your
program, use the -y compiler option.

Now bring up SoftBench, create an external build project, and perform a
complete rebuild as you normally do. Select the project, and run Check
Code from the SoftBench main window. Alternatively, you can check code
from the command line using "softcheck" (see softcheck(1)); however, you
can access filtering and rule specific help only via the SoftBench main
window.
Chapter 6 149

Using SoftBench CodeAdvisor
Performing the "Check Code" Operation
If some of your compiles take place in directories other than your build
directory you need to set the SB_DBNAME environment variable prior
to building. Set SB_DBNAME to the path of the static database file
expected by SoftBench CodeAdvisor (i.e.,
SB_DBNAME=builddir /Static.sadb;export SB_DBNAME where
"builddir " is the "Build Directory " specified in the "Create Project "
dialog box).

Refer to the SoftBench Online Help node for "SoftBench How To" for
details on preparing your programs for SoftBench CodeAdvisor.

Accessing SoftBench CodeAdvisor

1. From the main SoftBench window select the Expand >> button. The
Builder and SoftBench CodeAdvisor roll-out area appears.

2. Select the CodeAdvisor tab at the bottom of the roll-out area. See
Figure 6-1.

Selecting Rule Groups

You can either use the default rules "Definite Defects " and "Probable
Defects ", or you can choose the rules you want to check your code
against.

1. If not already selected, select the Expand >> button on the SoftBench
main window to open the roll-out area.

2. Select the CodeAdvisor tab. The configured rule groups appear at the
top of the SoftBench CodeAdvisor area.

3. Activate the desired rule groups by selecting the appropriate radio
buttons.

If necessary, use the Rule Group Help… button to access rule group
descriptions.

Checking Your Program

If you have successfully built your program, select the Check Code button
on the SoftBench main window to update the database and initiate rule
checking. SoftBench displays a spinning clock while SoftBench
CodeAdvisor completes your code check.

SoftBench CodeAdvisor only checks files and/or targets selected (or all
Chapter 6150

Using SoftBench CodeAdvisor
Performing the "Check Code" Operation
files if a project is selected). For example, if a violation depends on code in
two files and you have only selected one of them for checking, SoftBench
CodeAdvisor cannot detect the violation. Even if the file selected contains
the actual violation, the other file was not selected, so SoftBench
CodeAdvisor cannot detect the error. To safeguard against missing
violations, select all files and filter out those files whose violations you
don't want to see.

Viewing Violations

SoftBench CodeAdvisor scans your program and lists rule violations as it
encounters them. SoftBench CodeAdvisor displays violations in the
SoftBench CodeAdvisor Browser, where you can browse them just like
build errors.

1. Double-click violations with the mouse, or select the First , Next,
Previous , Last , or Selected buttons, to view or edit the source code that
triggered the violation. See Figure 6-1.

2. Using your pre-configured editor, fix the error and save the file. For
information on configuring editors, see “Configuring an Editor” on
page 119.

3. If you do not understand the violation, you can request help on the
violation by selecting it and then selecting Violation Help . The online
help explains the rule and describes the type of code that triggers the
violation.

Figure 6-1 Violations Display
Chapter 6 151

Using SoftBench CodeAdvisor
Performing the "Check Code" Operation
Terminating SoftBench CodeAdvisor

After Check Code has been pressed, the button changes to read Terminate .
At any point you can cancel the Check Code operation by selecting the
Terminate button, or you can allow the check to attempt to finish. If
SoftBench CodeAdvisor for some reason cannot parse a file, SoftBench
CodeAdvisor displays a message and SoftBench CodeAdvisor does not
check this file. If the error resulted from a missing include file and/or a
define, the check continues, even though some data is invalid. At any
time, you may terminate the check, fix the problem and re-initiate
another Check Code operation.

Filtering Rule Violations

Filtering gives you the ability to hide violations in the browser. Once you
have examined the violations, you may decide that you don't want to
display some of them. You may choose not to change the code that
triggers certain violations. The suggested fix may violate a local
programming convention, or it may not be possible to fix the problem at
this time. You can filter out any violations that you wish to ignore. Filters
allow you to ignore the same set of violations each time you code-check
your program. You can filter on a single violation, a Rule, a File and a
Directory basis.

To filter a specific instance of a rule violation:

1. Select a violation in the output browser.
2. Select the This button or choose "Filter Selected Item " from the

"Browser Actions " popup menu.

A single instance of a violation is filtered out. The filter is based on the
current file and line number. If you subsequently edit the file and change
the line number, this filter will no longer filter the unwanted violation.

To filter on a rule name so that no violations of this type are displayed:

1. Select a violation containing the type of rule you want to filter out.
2. Select the Rule button. SoftBench CodeAdvisor filters out all

instances of violations for that rule.

Sometimes you may not control the contents of every file in a project. In
these cases, you can filter all violations from a specific file:

1. Select a violation generated from the file that you want to filter.
2. Select the File button.
Chapter 6152

Using SoftBench CodeAdvisor
Performing the "Check Code" Operation
This action filters all violations from the file that generated the selected
violation.

To filter all violations from a specific directory and its subdirectories:

1. Select a violation generated from the directory that you want to filter.
2. Select the Dir button.

This action filters all violations from the directory that generated the
selected violation. It also filters violations from subdirectories below that
directory. For example, if you filter the directory /usr , you automatically
filter violations from /usr/include as well.

You can also write custom rules for your project or site. See SoftBench
Online Help for more details on filtering rule violations.
Chapter 6 153

Using SoftBench CodeAdvisor
For More Information
For More Information
For additional task information, refer to SoftBench Online Help by
choosing "Help: SoftBench How To " from the SoftBench main window.
Chapter 6154

Using SoftBench Debugger
7 Using SoftBench Debugger

SoftBench Debugger serves as a window interface to HP's debugger
DDE(1), enhancing and extending the DDE functionality. You can use it
to examine and control the execution of your programs. The following
chapters discuss the SoftBench interface to DDE and common tasks you
can perform with SoftBench Debugger.

For complete descriptions of the SoftBench Debugger menus, use
SoftBench Online Help. See “Getting Help” on page 84 for information
on accessing and using online help. For detailed information on DDE,
refer to the Distributed Debugging Environment Reference by choosing
"Help: DDE Reference ".
Chapter 7 155

Using SoftBench Debugger
Understanding SoftBench Debugger
Understanding SoftBench Debugger
SoftBench Debugger provides interactive source and assembly-level
debugging for software programs. It provides an area for viewing source
code, an area for entering debugger commands, and areas for debugger
output and program I/O. SoftBench Debugger also provides an interface
for editing and rebuilding programs. When you work with SoftBench
Debugger, you use the same language constructs as in the program you
are debugging.

SoftBench Debugger operates in two modes. When you start it from the
SoftBench window, it operates with the knowledge of your project data.
If you start SoftBench Debugger directly from the command line, it
operates with limited knowledge of your application and you may need to
provide information such as where the source directories are located.

SoftBench Debugger lets you:

Display and modify variables

You can view the value of any type of data item in the
program and display it in the most appropriate format.
When necessary, you can change the value of a data
item.

Trace program flow

You can execute one or more statements at a time,
allowing you close examination of program flow and
data areas. If you have a large program, you might
prefer to set breakpoints at certain statements in the
program. When the breakpoints occur, you can examine
data areas and alter them if necessary. If your program
contains several procedure calls, you might want to
display the program stack to trace those calls.
Chapter 7156

Using SoftBench Debugger
Understanding SoftBench Debugger
Monitor variable values

You can set a watchpoint on a variable, causing it to
be monitored after each instruction, statement, or
function entry point, or when the program returns
control to the debugger. SoftBench Debugger displays
the current variable values in the Data Watch Window.

View machine instructions

You can view disassembled machine code with symbolic
addresses at any address in your program. You can also
view and access register values. SoftBench Debugger
shows associated source line numbers where possible,
and displays source code.

Visually navigate complicated data structures

You can visualize what is happening to your data
structures by using the Data Graph Window to
de-reference pointers and look at data structure values.

Debug C++ programs

SoftBench Debugger fully supports C++ data and
control structures. You can set breakpoints on specific
classes, member functions, templates, instances, and
overloaded functions. You can specify how inherited
data and functions should be treated.

Edit source files

SoftBench Debugger has a "Source File Area " that
allows you to edit source files using a text editor that
supports emacs-style key bindings. You can also edit
programs with your configured editor from the File
menu.
Chapter 7 157

Using SoftBench Debugger
Understanding SoftBench Debugger
Build Your Code

SoftBench Debugger allows you to build without
returning to the main SoftBench window. This function
unloads, requests the builder to build, and reloads the
executable file automatically.

Customize the user interface

You can create buttons on the SoftBench Debugger
window to streamline frequently repeated operations.
Chapter 7158

Using SoftBench Debugger
Preparing Your Program for Debugging
Preparing Your Program for Debugging
Use Builder to compile (build) your projects for debugging. By default,
Builder automatically generates the debug information required by
SoftBench Debugger if you set the the "■ Debug " compile mode toggle
button on the SoftBench main tool face. It may be necessary to recompile
your application after enabling the "■ Debug " toggle.

SoftBench Debugger uses information placed in the executable file by the
"debug" option of your language compiler. Most compilers use the -g
option. The aCC compiler also accepts the -g0 flag, forcing the compiler
to generate full debug information. This flag is recommended for use
with SoftBench Debugger

You do not need to make changes to your source code to use SoftBench
Debugger. SoftBench Debugger works with both window-oriented and
standard I/O programs. (See “Interacting with Your Program” on page
174.)
Chapter 7 159

Using SoftBench Debugger
Using SoftBench Debugger Window Areas
Using SoftBench Debugger Window Areas
SoftBench Debugger provides an easy-to-use windowed interface to an
underlying debugger. (See Figure 7-1.) SoftBench Debugger allows you to
debug your programs without in-depth knowledge of the underlying
debugger. The window shows the current program being debugged, the
source code being debugged, debugger and program I/O, and other useful
information.

Figure 7-1 SoftBench Debugger Window
Chapter 7160

Using SoftBench Debugger
Using SoftBench Debugger Window Areas
Like SoftBench Static Analyzer, SoftBench Debugger provides a "() "
input box. This input box provides input to a number of command
buttons (such as Print ()) and many pull-down menu commands (such as
"Break: Set At Hex Address () " or "Visit: Procedure () "). You
can enter information into the "() " input box for use with these
commands, either by typing or by selecting text in the source or I/O
areas. Text can be selected either by dragging the mouse, or by
double-clicking. SoftBench Debugger supports a "language sensitive"
double-click selection mode to select multiple-symbol identifiers. See
SoftBench Online Help for details about "Options: T ext Selection
Behavior ".

If you pause the program, the current PC (Program Counter) Location is
displayed below the "() " input box. If the program is running or if other
actions (such as loading) are in progress, the PC Location is replaced
with a highlighted status indicator and an animated "clock" icon
appears. While the user interface still responds to commands (such as
changing options settings) while the "clock" is running, the underlying
DDE debugger is busy and does not accept commands. SoftBench
Debugger queues any operations that result in sending commands to
DDE while the "clock" is running.

When the program is "Running…", you can interrupt it by selecting the
Interrupt Program button. This button changes to Interrupt Debugger when the
program is not running. The Interrupt Debugger button allows you to stop
the background debugger process. Use this button if you want to stop the
debugger, to make changes to your program and restart the debugger.

SoftBench Debugger also shows the Current Location of the source
code being displayed in the Source File Area. The Current Location is the
environment in which variables are evaluated when you use Print() or
similar commands. The Current Location follows the PC Location as you
execute through your program. In this case, the Current Location
indicator is "Same As PC Location ". You can change the Current
Location to any function in the current call stack by using the ▲ and ▼
buttons next to the "Stack Frame " label. You can change the Current
Location to any function in your program (to print or change local static
variables, or just to view the source of a function not currently in the
stack) by entering the function name in the "() " input box and choosing
"Visit: Procedure () ". This sets the "Stack Frame " to "none ".

The Source File Area displays the source code for the program being
debugged. Clicking the right mouse button in this area displays a popup
menu with several useful operations. To the left of the Source File Area
Chapter 7 161

Using SoftBench Debugger
Using SoftBench Debugger Window Areas
SoftBench Debugger shows the Annotation Margin, which indicates the
Program Counter location with a PC Arrow. The Annotation Margin also
shows program breakpoint locations. See “Setting and Using
Breakpoints” on page 189. Breakpoints can be set and cleared by
clicking in the Annotation Margin at the desired breakpoint location.
SoftBench Debugger displays other symbols when debugging optimized
code. See “Debugging Optimized Code” on page 227.

The user customizable buttons provide easy access to common debugger
operations, such as Step and Print() . You can customize these buttons (and
the popup menu over the Source File Area) to provide the exact
environment desired for a particular application. See “Customizing User
Buttons” on page 228.

Below the user buttons are the DDE output area and the "Debugger
Input " input box. SoftBench Debugger uses these areas for
communicating directly with DDE, receiving output from DDE and
sending raw DDE commands to DDE.

At the bottom of the screen SoftBench Debugger displays the User
Program I/O area. Programs being debugged send their output to this
area and take their input from this area. You must move the mouse
pointer into this area to enter text into the stdio of your program.
Chapter 7162

Using SoftBench Debugger
Tearing Apart the Main Toolface
Tearing Apart the Main Toolface
The main SoftBench Debugger window can become quite large for some
screens. Consequently, you can separate the main window into as many
as four separate top level windows containing:

• the Menu Bar, Executable, "() " input box, PC Location, and Current
Location, and uses customizable buttons.

• the Source File Area

• the Debugger I/O Area, Debugger Input Area

• the User Program I/O Area

Figure 7-2 Tear Apart Main Toolface

Each of these windows has its own unique icon. Use "Options: Wi ndow
Configuration … " to choose which areas appear in the main toolface,
and which have their own top level window.
Chapter 7 163

Using SoftBench Debugger
Tearing Apart the Main Toolface
To iconify all of the windows at once choose "File: Iconif y Windows ".
To normalize all windows at once choose "File: Normalize Windows ".
These commands apply to all top level windows; those listed above as
well as these windows:

• stack trace

• disassembly

• register windows

• data graph

• watchpoint values.
Chapter 7164

Using SoftBench Debugger
Loading or Rerunning an Executable Program
Loading or Rerunning an Executable
Program
When you start SoftBench Debugger by selecting a target in the main
SoftBench window, then selecting the "Debug" icon, SoftBench Debugger
automatically loads the correct executable file.

To load an executable program into SoftBench Debugger when you are
already in SoftBench Debugger, choose "File: Load Executable… ". (If
SoftBench Debugger already has an executable loaded, you must first
unload it by choosing "File: Unload Executable ".) A dialog box lets
you specify the executable to load and the environment in which you
want to run the program. See “Specifying the Runtime Environment” on
page 165.

To restart an already-loaded executable program using the same
runtime environment, choose "File: Rerun ". To restart the program and
specify a new runtime environment, choose "File: R erun…".

See “Debugging After a Program Fails (Core Dump)” on page 217 for
information on loading and debugging a core file.

Specifying the Runtime Environment

Ordinarily, the program runs using the default runtime environment.
You can specify the runtime environment in the main SoftBench window
by choosing "Target: Modify Properties… ". The "Execution/Debug
Properties " tab of the resulting dialog box lets you set program
arguments, I/O redirection, and the working directory. The "Runtime
Variables " tab lets you set the program's environment variables. In
SoftBench Debugger, choose "Options: Default Load/Rerun
Settings… ". Both the SoftBench main window and SoftBench Debugger
store the runtime environment information for your project targets in
the same place.

When you load or rerun an executable, SoftBench Debugger starts the
program and pauses at the automatically-created breakpoint on the first
line of your main() procedure. It's important to realize that your
program is already running at this point, so it's too late to specify
program arguments, I/O redirection, and environment variables.
SoftBench Debugger provides several ways to run your program that let
you control settings before SoftBench Debugger starts your program.
Chapter 7 165

Using SoftBench Debugger
Loading or Rerunning an Executable Program
Choosing the menu option Allows you to

"File: Load Executable… " or "File: R erun…" set the arguments,
I/O redirection, and environment
variables for your program. You can
specify the default values of these
settings by choosing "Options:
Default Load/Rerun Settings… ".

"File: Load Executable… " initialize all values to the defaults
specified in "Options: Default
Load/Rerun Settings… ".

"File: Rerun " initialize the dialog box with the
settings specified for the previous
run. If you change some values and
want to revert to the default values,
select Load Defaults .

All three of these commands display almost identical dialog boxes.
Figure Figure 7-5 shows the "File: Load Executable… " dialog box.

Figure 7-3 "Load Executable" Dialog Box

Select Save As Defaults to save the current values as the new default
values. This is equivalent to specifying the current values in "Options:
Default Load/Rerun Settings… ", or in the "Target: Modify
Properties… " dialog box in the main SoftBench window.

Select OK to start the program with the current settings.
Chapter 7166

Using SoftBench Debugger
Loading or Rerunning an Executable Program
"Execution: Get Current Program Info… " displays a dialog box
containing useful information about the current program, including the
values set in the above dialog boxes.

Specifying the Working Directory and Program Arguments

By default, the loaded executable runs in the project's local workspace
root. When you start SoftBench Debugger from the command line, the
executable runs in the current working directory.

If you want the program to run in another directory, choose "File:
Change Working Directory… " and specify the desired directory in the
"Working Directory " input box. Setting the working directory does not
affect SoftBench Debugger's or DDE's working directory.

To send program arguments, choose "Options: Default Load/Rerun
Settings… ". Enter your desired arguments in the "Program Arguments "
input box. You can also specify these arguments from the SoftBench
main window using "Target: Modify Properties… " and selecting the
"Execution/Debug Properties " tab.

Specifying Standard I/O

By default, your program's stdin , stdout , and stderr are intercepted
by the User Program I/O area on the SoftBench Debugger window. To
attach the standard I/O to a different file:

1. Choose "Options: Default Load/Rerun Settings… ".

2. Enter the desired files in the "Redirect " input boxes. Select the …
button to display a file selection dialog box.

3. Select the appropriate "❍ Replace " or "❍ Append" radio button.

Selecting the "■ Replace " button on the stdout line is equivalent to
"program > filename ". Selecting the "■ Append" button is equivalent to
"program >> filename ".

When you redirect stdin , stdout , and stderr , you have no access to
your program's I/O from SoftBench Debugger. The User Program I/O
area is removed to indicate this. You can also specify this information
from the SoftBench main window using "Target: Modify Properties… "
and selecting the "Execution/Debug Properties " tab.

Setting Environment Variables

The "Program Environment Variables " list on the "Set Default
Chapter 7 167

Using SoftBench Debugger
Loading or Rerunning an Executable Program
Program Load Values " dialog box shows the environment variables
SoftBench Debugger passes to your program.

To add new environment variables:

1. Choose "Options: Default Load/Rerun Settings… ".

2. Enter the variable name and desired value in the "Name" and "Value "
input boxes.

3. Select Add .

To remove an environment variable:

1. Choose "Options: Default Load/Rerun Settings… ".

2. Highlight a listed name=value pair.

3. Select Delete.

To edit an existing environment variable:

1. Choose "Options: Default Load/Rerun Settings… ".

2. Select it to copy its values into the edit fields.

3. Make any desired changes to the name or value.

4. Select Replace to replace the old values with the new values.

You can also specify this information from the SoftBench main window
using "Target: Modify Properties… " and selecting the "Runtime
Variables " tab.

Specifying Source Locations

SoftBench Debugger uses three sources of information for locating source
code for the loaded executable:

• The compiler stores the location of files in the executable using the
same string, either absolute or relative path, used to specify the file
during compilation. As long as you don't move the source files and run
SoftBench Debugger from the same directory as you ran the build
process, SoftBench Debugger can find the source files.

• SoftBench stores information about your projects, including source
code locations. If for some reason, the compiler's knowledge of source
code locations is insufficient, then SoftBench Debugger uses the local
and alternate source roots of the source code files in your project.
Chapter 7168

Using SoftBench Debugger
Loading or Rerunning an Executable Program
• If you start SoftBench Debugger from the command line (which
means it has no access to the project data), or if you load an
executable that is not part of the current project, you may need to list
the source directories explicitly by choosing "File: Add Source
Directories… ".

Debugging Executables in a Project

When you start SoftBench Debugger from the main SoftBench window,
the debugger benefits from the knowledge SoftBench has about the
executable. SoftBench may provide information like the local workspace
root, the source directories of the files in the project, and the execution
properties for the target. The type of information SoftBench provides to
SoftBench Debugger depends on how the executable was built. When you
use project build, SoftBench knows where to find the source code.
When you use external build, you can successfully build your project
using your Makefile or build script, without telling SoftBench where to
find all the source files.

Adding Source Directories for External Builds

If you run into source location problems with a target from a project
using external build, you can choose: "File: Add Source
Directories… " in SoftBench Debugger. When you need to add source
directories you can specify the source directories in two ways:

• Explicitly list the directories where source can be found.

• List mappings that map the old file location into a new location. For
example, assume the executable file was created under the home
directory of another user, fred . All source and include files existed in
a directory tree under /users/fred . Now you have copied fred 's
directory tree under your home directory, /users/myname . You could
specify each directory in the directory tree where files can be found,
but it is simpler to define a mapping: /users/fred=/users/myname .
Now each reference to /users/fred/ dir maps to
/users/myname/ dir .

To specify alternate directories:

1. Choose "File: Add Source Directories… ".

2. Type the directory names or mappings in the input box of the "Add
Source Directory " dialog box. See Figure 7-4. Or use the … button
to browse the directories.
Chapter 7 169

Using SoftBench Debugger
Loading or Rerunning an Executable Program
3. Select Add After , Add Before , or Replace to add a directory to the list of
directories.

4. Select OK .

SoftBench Debugger uses the new directory settings for the current
debugging session.

Figure 7-4 "Add Source Directories" Dialog Box
Chapter 7170

Using SoftBench Debugger
Stepping through Your Program
Stepping through Your Program
When SoftBench Debugger loads a program, it begins executing the
program and pauses at the first line with a breakpoint. You can then use
SoftBench Debugger to execute your program one or more statements at
a time.

In the default configuration, SoftBench Debugger displays the following
buttons above the Debugger Output Area:

Step Execute one statement, then stop. This is called single
step execution.

Step Over Execute a statement, treating any procedure call as a
single statement. SoftBench Debugger calls the
procedure, but control does not return to the debugger
until the procedure returns. When the PC is just before
a procedure call, this has the effect of "stepping over"
the call.

Continue Out Finish executing the current procedure. Run without
stopping until the current procedure completes and
returns to its caller (or until SoftBench Debugger
encounters another breakpoint or similar event), then
stop. Use this when you accidentally step into a
procedure that you do not want to step through, or
when you interrupt your program in the middle of
non-debuggable code. Each Continue Out causes your
program to "pop out" one procedure level.

When you select one of these buttons, the PC arrow moves to the next
statement to be executed.

SoftBench Debugger steps over undebuggable routines, such as system
library routines and routines that were not compiled with the debug
option, even when using Step.

To pause at a specific point in your program, see “Setting and Using
Breakpoints” on page 189.
Chapter 7 171

Using SoftBench Debugger
Interrupting a Running Program
Interrupting a Running Program
When the PC Location is "Running…", your program has control, and you
cannot interact with the debugger. You may want to interrupt your
program so you can regain control of the debugger.

Instances when you might want to interrupt a running program include:

• Your program hangs in some internal loop.

• Your program did not arrive at breakpoints as planned.

• Your program is waiting in an input statement (such as scanf), and
you want to set a breakpoint, or Continue Out after you enter the data.

• It appears that something is going very wrong with some internal
state.

In these cases and many more, the PC Location shows "Running…" and
displays a small "clock" animation. You can interact with the program
only under the program's control. SoftBench Debugger queues any
commands (except commands that restart, kill, or unload your program)
until your program returns control to the debugger. Selecting Interrupt
Program discards any queued commands and returns control to SoftBench
Debugger.

If you interrupt your program while it executes code that was compiled
with the debug options on, you can continue working just as if you had
encountered a breakpoint at that location. A PC arrow appears in the
Annotation Margin and the source for the code is displayed. At this point
the PC Location shows a valid location and you can enter debugger
commands.

Interrupting in System or Non-debuggable Routines

If you interrupt the program while it executes some system-supplied
routine (kernel code), or any other routine that was compiled without
debug options on, the PC Location may consist of a "virtual" address.
SoftBench Debugger clears the Editable Source Area to indicate that no
source is available. You cannot examine local variables or step through
statements. You can only step by assembly instructions, and examine
other procedures on the call stack.

You can run the nondebuggable routine until it reaches the point where
Chapter 7172

Using SoftBench Debugger
Interrupting a Running Program
it returns to its calling procedure by selecting Continue Out . You can
continue doing this until your program returns to debuggable code. You
could also set a breakpoint at some later point in debuggable code.

If the nondebuggable code is in an infinite loop, or does not return for
some other reason, you must kill or rerun the program. There is no way
to return the program to debuggable code.
Chapter 7 173

Using SoftBench Debugger
Interacting with Your Program
Interacting with Your Program
Many UNIX programs function quite well when their standard input and
output are redirected. These programs are easy to debug using
SoftBench Debugger, since SoftBench Debugger redirecting their I/O to
the User Program I/O area does not affect them.

Some programs are designed to be invoked from a terminal environment.
They may use the terminal for program input and output, perhaps even
using cursor-movement commands. (The screen editor vi is an example
of this.) When you run a program in the SoftBench Debugger
environment, it does not have access to a terminal environment.
SoftBench Debugger intercepts the I/O streams to the program. You
must interact with your program differently when it is running under
SoftBench Debugger.

Finally, X-based programs may or may not use standard I/O, but may
conflict with SoftBench Debugger's use of the display.

All these types of programs can be debugged using SoftBench Debugger.

Interacting with a Standard I/O Program

The User Program I/O Area provides access to the UNIX stdin , stdout ,
and stderr file descriptors. If the program uses standard UNIX I/O, you
can see your program's output and provide input in this area. If the
program performs input or output using other file descriptors, or if you
redirect input or output, it happens at the specified place.

The PC Location shows "Running…" while your program is in control,
whether executing or waiting for input. The PC Location stays
"Running…" after you have started execution of your program until
control passes back to SoftBench Debugger.

If the program requires input, enter it in the User Program I/O Area,
just as you would in a terminal window. (Remember, however, that it is
not a full terminal emulator.) SoftBench Debugger sends the input line to
your program when you press Return . Your program has control while it
executes under SoftBench Debugger. When your program encounters a
breakpoint, control passes back to SoftBench Debugger, and your
program no longer accepts keyboard events. SoftBench Debugger buffers
any program input entered when the program is not "Running…" until
SoftBench Debugger passes control back to the program.
Chapter 7174

Using SoftBench Debugger
Interacting with Your Program
Use the scroll bar at the right of the User Program I/O Area to see
previous output or input. You can edit lines in this area (see Chapter 4,
“Using SoftBench Editors,” on page 117). When you press Return ,
SoftBench Debugger sends the line where the text cursor is located as
input to the program. For example, to repeat a previous input, move the
cursor to that line and press Return .

To redirect standard input, output, or error (for example to read stdin
from a file), choose "Options: Default Load/Rerun Settings… ". See
“Specifying the Runtime Environment” on page 165.

Interacting with a Terminal-Smart Program

The User Program I/O Area is not a full-function terminal emulator.
Some programs use ioctl(2) or curses(3x) to manage a terminal screen.
These programs do not run as expected in the User Program I/O Area.

As one way to debug such a program, you can run it in a terminal
window and then adopt it. See “Attaching the Debugger to a Running
Program” on page 222 for more information. You can also debug
programs that use lower-level I/O with I/O redirection. For example,
follow these steps:

1. Create a terminal emulator window (hpterm& or xterm&) with a
running shell.

2. Run the tty(1) command in the terminal window to get the device
name of the terminal (for example, "/dev/pty/ttyp5 ").

3. Run the sleep(1) command in the terminal window to keep the shell
from intercepting any input (for example, "sleep 100000 ").

4. Redirect standard I/O to the terminal window. Choose "File:
Rerun…", and specify the device name of the terminal window (which
is /dev/pty/ttyp5 in this example) as the stdin , stdout , and
stderr .

5. Select OK. Your program runs with the new I/O redirections.
SoftBench Debugger removes the User I/O area, since all standard
I/O has been redirected.

Interacting with a Window-Smart Program

Your program should operate in synchronous mode so that window
events (for example, mouse operations) are not queued. This ensures
Chapter 7 175

Using SoftBench Debugger
Interacting with Your Program
that interactions between SoftBench Debugger and your program do not
lead to a deadlock. Events are processed when they happen, and are
directed to the appropriate window. Debugging X programs not running
in synchronous mode can lead to deadlock situations in which the
keyboard focus is on an unresponsive window.

The XtAppInitialize function called to initialize the X Toolkit can set
your application to synchronous mode. Do one of the following:

• Pass the -synchronize argument to your program on the command
line. To always pass this argument to your X program, add
-synchronize to the default argument list using "Options: Default
Load/Rerun Settings… ".

• Use the synchronize resource. You can specify it using xrdb , or in
your $HOME/.Xdefaults file:

 [Application *synchronize: on]

where Application is the class name of your program.

Your program has full control while it executes under SoftBench
Debugger. Mouse functions and keyboard events pass to your program as
usual, with the keyboard focus controlled by the X Window System
and your window manager. When your program reaches a breakpoint,
SoftBench Debugger regains control.

Your program's input and output work as they normally do. If you have
not redirected stdin , stdout , or stderr , they refer to the User Program
I/O Area.

In some situations it may be necessary to display the program being
debugged on a different display terminal. You can do this by specifying
the DISPLAY environment variable in the "File: Load Executable "
dialog before you execute the program.
Chapter 7176

Using SoftBench Debugger
Specifying Identifier Locations
Specifying Identifier Locations
When you enter an expression into the "() " input box or in the
"Debugger Input " input box, you must enter the data in a way that can
be understood by DDE. See "Help: DDE Reference " for detailed
information on the syntax required.

Specifying Program Location

Although SoftBench Debugger is designed as a "point and click"
environment, in some cases you might want to specify a location that
cannot conveniently be selected with the mouse. A location is a line in a
file and the corresponding address in your program (if there exists
executable code for that line). You can specify a location when you set a
breakpoint or when you choose "Visit: Procedure () ".

The syntax for locations is:

line
\ proc [\ line]
\\ module [\ proc] [\ line]

line The line number of the statement you want to locate,
counting from the start of the file. If you do not specify
a line number, SoftBench Debugger assumes the first
line in a file or the first executable line in a procedure.
SoftBench Debugger displays the line number in the
Annotation Margin.

module The module containing the statement you want to
locate. For most languages, module is the basename of
the source file name. For example, you would use
process to refer to locations in a file named
process.c . If you have several files with the same
basename, such as prog.c and prog.C , you can use the
full quoted filename for module (\\"prog.C"\20).

If you do not specify module , SoftBench Debugger uses
the file being displayed in the Editable Source Area.

proc The procedure containing the instruction you want to
Chapter 7 177

Using SoftBench Debugger
Specifying Identifier Locations
locate. If you do not specify proc , SoftBench Debugger
uses the Current Location procedure.

For example, "23" would correspond to line 23 of the file displayed in the
Editable Source Area. "\\xmotion\14 " would correspond to line 14 of file
xmotion.c .

DDE prints locations in the Debugger Output Area using this format.
You can highlight these locations using the mouse to copy them to the
"() " input box for use in "Visit: Procedure () " and similar
commands.

Specifying Variables

You specify a variable using the same general syntax you use to specify it
in the current procedure of your program. If you do not specify a
complete location for a variable, SoftBench Debugger evaluates it in the
scope of the Current Location.

SoftBench Debugger provides other forms for you to choose variables
outside the current procedure:

Form Description

var To search the stack for the most
recent instance of var in the current
procedure. If var is not a parameter
or local variable in the current
procedure, SoftBench Debugger
searches for a global variable named
var .

\ proc \ var

To search for var in the most recent
instance of procedure proc .

\\ var To search for the global variable var .

`run(depth)\ var

To search for var at relative stack
depth depth , instead of the more
recent instances. A depth of 2 is one
below the currently executing
Chapter 7178

Using SoftBench Debugger
Specifying Identifier Locations
procedure (that is, the procedure that
called the currently executing
procedure), a depth of 3 is two below,
and so on. You can use this for
debugging recursive procedures
where the stack contains multiple
instances.

When you enable stack frame
numbering in the "Options: S t ack
Settings… " dialog box, and select "■
Stack Top is 1 ", SoftBench
Debugger uses the leftmost numbers
in the list of stack frames to show the
stack depth relative to the currently
executing procedure. This number
can be used for depth in `run() .

`main(depth)\ var

To search for var at a fixed stack
depth depth , counting from the
bottom of the stack. `main(1) (or
`main) corresponds to the first
procedure on the stack, `main(2) is
the first routine called from the first
procedure, and so on.

When you enable stack frame
numbering in the "Options: S t ack
Settings… " dialog box, and do not
select "■ Stack Top is 1 ",
SoftBench Debugger uses the
leftmost numbers in the list of stack
frames to show the stack depth
relative to the bottom of the stack.
You can use this number as the depth
in `main() .

`env(offset)\ var

To search for var at a relative offset
from the current environment.
offset must include a + or - to
indicate the direction of the offset.
Chapter 7 179

Using SoftBench Debugger
Specifying Identifier Locations
+offset indicates an offset toward
the top of the stack (towards `run),
and - offset indicates an offset
toward the base of the stack (towards
`main).

You can also create DDE variables using the DDE declare command.
These are useful if you need temporary variables to store intermediate
results, pointers, or other values you will need later. See “Using
Debugger Variables” on page 183.
Chapter 7180

Using SoftBench Debugger
Examining and Changing Data in Your Program
Examining and Changing Data in Your
Program
You can use SoftBench Debugger to view or change the values of
variables in your program. This feature directly accesses the underlying
debugger, and as such is very dependent on DDE features.

DDE accepts commands only when SoftBench Debugger has control (the
"Debugger Input " prompt is not greyed out) and your program is not
running. If you enter DDE commands when DDE is not accepting them,
DDE buffers the commands until it is ready to accept them. You can stop
your program with a breakpoint (see “Setting and Using Breakpoints” on
page 189) or by selecting Interrupt Program . You can examine variables
between steps if you single-step, or dynamically by setting a watchpoint
on the variables.

DDE evaluates variables in the scope of the Current Location, as
indicated in the "Current Location " line above the Editable Source
Area. Usually the Current Location follows the PC Location, so DDE
evaluates variables in the environment where your program executes.
For example, when you single-step through your source, the Current
Location is in the procedure you are stepping through.

If you want to evaluate a variable in the scope of another function on the
current call stack, use the ▲ and ▼ buttons next to the "Stack Frame "
label in the Current Location line (or choose "Show: S t ack…" and choose
a stack frame in the "Stack View " window). This sets the Current
Location to the specified function in the call stack.

To evaluate in the scope of a function outside the current call stack (for
example, to evaluate a static variable local to a function), enter the
function name in the "() " input box and choose "Visit:
Procedure () " to set the Current Location to that function.

Finally, you can always specify the variable fully with the appropriate
DDE syntax (see “Specifying Variables” on page 178). This syntax
overrides the Current Location.

The PC arrow points to the line that will be executed next. If the PC
points to an assignment statement, the assignment has not yet been
executed. To see the result of an assignment statement, Step past it (or
Step Over it if it calls a function).
Chapter 7 181

Using SoftBench Debugger
Examining and Changing Data in Your Program
For example, suppose you debug the following code fragment:

x=0; y=9;
while (y<1000) {

x=sqrt(y);
x++;
y=x*x;

}

Set a breakpoint on the "x=sqrt(y) " line, and run the program. When
the program stops at the breakpoint, the PC arrow is at that line. Enter
"x" in the "() " input box (or simply double-click on "x", and SoftBench
Debugger automatically enters it into the "() " input box) and select Print
(). SoftBench Debugger displays the value "0", because the assignment
has not been executed. Select Step Over , and the PC arrow moves to the
next line. Select Print () to display the result of the assignment ("3").

Examining Data in Your Program

To print the value of a simple variable or expression:

1. Enter a variable name in the "() " input box. You can double-click or
highlight the variable name in the program source to copy it to the
"() " input box. If the Current Location points to the procedure
containing the variable, you can use the name of the variable without
any qualifiers. If not, specify it according to the rules defined in
“Specifying Variables” on page 178.

2. Select Print () . SoftBench Debugger displays the value of the variable
in the Debugger Output Area.

You can also evaluate expressions. For example, if n is a numeric variable
in the current querying scope, n/12.0 prints one-twelfth of n.

If you print an expression that contains a function call, the function
executes. Be aware that this invokes any side effects in the function.

To print the value of a variable referenced by a pointer:

1. Enter the pointer name in the "() " input box. If the pointer is defined
in the procedure referred to by the Current Location, you can use the
name of the pointer directly. If not, specify it according to the rules
defined in “Specifying Variables” on page 178.

2. Select Print* () . SoftBench Debugger displays the value of the variable
in the Debugger Output Area.
Chapter 7182

Using SoftBench Debugger
Examining and Changing Data in Your Program
For example, if you declare a pointer as int *numptr , then selecting
Print* () with numptr in the "() " input box prints the integer pointed to by
numptr . You can also Print () the expression *numptr .

Printing Hex or String Values

SoftBench Debugger knows the type of the variables you print, and
usually prints them in a usable form. However, it cannot tell if an integer
should be printed in decimal or hexadecimal, nor can it tell if you want a
"char * " value to be printed as a character or a string.

You can specify the print format by choosing one of the selections under
"Show: Data Value → Print Format ". Refer to online help for
information on printing strings and character arrays.

If you frequently need to print hex or string values, you can define a
button to do it on the front panel. See “Customizing User Buttons” on
page 228.

You can also use C-style "casting" to view variables in a different format.
If you wanted to examine the bottom byte of mask as a character, you
could enter "(char) mask " in the "() " input box and select Print () .

Changing Data in Your Program

1. Type an assignment statement in the "() " input box.

2. Select Print () .

For example, the assignment "n = 12 " sets the value of n to 12. The
assignment statement must be legal in the current scope. That is, n must
be a declared numeric data type.

You can also call functions that modify their arguments.

For more information on the syntax of variables and expressions, see
“Using Debugger Variables” on page 183 or “Specifying Variables” on
page 178.

Using Debugger Variables

DDE supports user-created special variables for use as global
temporaries during debugging. For example, to create a pointer to an
integer, enter

declare int *tptr
Chapter 7 183

Using SoftBench Debugger
Examining and Changing Data in Your Program
in the "Debugger Input " input box. The tptr variable can then be used
in any expressions in the "() " input box. For example, if counter is an
integer in your program, you could store a pointer to it by entering

tptr = &counter

in the "() " input box, and selecting Print () . If you then enter "tptr " in the
"() " input box, you can print its value by selecting Print () , or print the
value of counter by selecting Print* () .

See "Help: DDE Reference " for detailed information on the declare
statement.

You can use these special variables as local memory. For example,
suppose your program defines a tree structure. To examine several nodes
under a node of the tree:

1. Create two DDE variables by entering "declare node-type *top,
*here " in the "Debugger Input " input box, using whatever node type
is appropriate for your tree.

2. Set top to the root of your tree, or wherever you want to start.

3. Traverse down to the node of interest by setting here to top->left or
whatever is appropriate for your example.

4. View or modify the here node of the tree, using Print () , Print* () , and
any other appropriate commands.

5. When you finish accessing the current node, set here to the next node
you want to work with (such as top->right or here->left).

Enter "list declarations " into the "Debugger Input " input box to list
all DDE variables you have defined in the Debugger Output Area. You
can scroll this area to examine them if you have more than fit in the
screen area.

Using Expressions

Expressions are composed of any combination of variables, constants,
and operators. SoftBench Debugger keeps track of the language the
program was written in, and recognizes language-specific operators used
by that language.

You can change the language used by DDE to evaluate expressions using
the DDE "prop lang " command. "list prop lang " shows the current
language. See "Help: DDE Reference " for detailed information.
Chapter 7184

Using SoftBench Debugger
Examining and Changing Data in Your Program
If your program uses several different source languages, you can use
"prop lang " to re-evaluate a complicated expression without re-entering
it in the new language. For example, suppose you have a main program
written in C that calls FORTRAN subprograms for some of its functions.
Suppose you evaluate a complex C expression to check the value of a
certain variable. After you Step into one of the FORTRAN subprograms,
you can evaluate the expression from the main program, still using C
syntax, even though you are now in a FORTRAN subprogram.

1. Enter "prop lang C " in the "Debugger Input " input box and press
Enter.

2. If the "() " input box does not still show the desired expression, enter
the expression you want to evaluate into the "() " input box.

3. Select Print () to evaluate the expression.

4. Enter "prop lang -default " into the "Debugger Input " input box
and press Enter. This returns DDE to the default language, which in
this case is FORTRAN.

You can also use the -lang option on the DDE print command:

print -lang C chapter="string"

Using Constants

Expressions can contain constants as well as variables. When DDE is in
C mode, integer constants can begin with "0" for octal, or "0x" or "0X" for
hexadecimal. Floating point constants are of the same form as those in
the source language, except that, unlike FORTRAN, no spaces are
allowed within a floating point constant. For example, 1.0 , 3.14e8 , and
26.62D-31 are valid FORTRAN floating point constants. See the
Language Manager appendices in HP/DDE Debugger User's Guide for
other restrictions on floating point constants.

Character and string constants must be entered in the syntax
appropriate for the current language. In C mode, character constants
must be entered in single quotes ('char ') and are treated as integers. C
string constants must be entered in double quotes ('string ') and are
treated like "char * " (pointer to char). FORTRAN strings can be
enclosed in either single or double quotes.

Some operators are not supported or have different semantics from the
standard language definition. See "Help: DDE Reference " for other
specifics.
Chapter 7 185

Using SoftBench Debugger
Examining and Changing Data in Your Program
Calling Functions

You can call a procedure by putting the procedure call expression in the
"() " input box and selecting Print () .

For example, printing:

myproc(1, 2, "string")

calls the function "myproc() ". Any side-effects of the function occur
normally.

Viewing the Call Stack

When enabled, the "Stack View " window presents you with a listing of
the current execution call stack. (See Figure 7-5.) The call stack and the
source code associated with each entry may be browsed by selecting a
stack entry or using the ▲ and ▼ buttons.

To view the call stack:

1. Choose "Show: S t ack…".

2. Select an entry in "Current Stack ," or use the buttons on the left
side of the dialog box to move to the top of the stack, up a level, down
a level, or to the bottom of the stack. The associated source code
appears in the Editable Source Area.

3. Leave the "Stack View " window visible while selecting Step or
Continue and watch the Current Stack change.

Select "■ Show Parameters " to display the parameters passed to each
procedure on the stack.

Clear "■ Auto Update " if you do not want the stack display to update
each time the debugger gains control. This can speed up your debugging
if you Step or Continue frequently. Select Update to force an update while
you have "■ Auto Update " cleared.

By default, the stack display numbers the stack levels, with the top of
the stack being level 1. Stack numbering can be turned off, or can be
reversed so that the bottom of the stack is 1, using the "Options: S t ack
Settings… " dialog box. Select the Options… button to display this dialog
box directly from the Stack View.
Chapter 7186

Using SoftBench Debugger
Examining and Changing Data in Your Program
Figure 7-5 "Stack View" Window

Viewing Thread Stacks

In threaded programs, SoftBench Debugger can display multiple stacks
at once. Choose "Execution: Threads…" and select Stack… for the
desired thread.

Each "Stack View " window indicates its thread identity. An additional
"Stack View " window, labeled "Current Thread ", displays the stack for
the currently executing thread.
Chapter 7 187

Using SoftBench Debugger
Understanding the Operation of Your Program
Understanding the Operation of Your
Program
SoftBench Debugger supports four different monitors to help you
understand the operation of your program.

Breakpoints Cause your program to stop executing at a specified
location, and return control to SoftBench Debugger.
Breakpoints can be used to examine the status of the
program when a certain line executes one or more
times. See “Setting and Using Breakpoints” on page
189.

Watchpoints Monitor and display the values of specified variables as
the program executes. Use watchpoints when you need
to determine when a variable changes value. See
“Setting and Using Watchpoints” on page 199.

Traces Display notices when the program reaches certain
locations, such as procedure entry and exit. See
“Tracing Program Flow” on page 204.

Signals/ Intercepts Detect events such as UNIX signals. See “Handling
Signals and Events” on page 214.

Each form of monitor is useful in different situations, and monitors are
often useful when used together. The following sections describe the use
of each monitor.
Chapter 7188

Using SoftBench Debugger
Setting and Using Breakpoints
Setting and Using Breakpoints
A breakpoint is a "hook" placed in your executable program by
SoftBench Debugger to halt execution at a specific line. SoftBench
Debugger indicates a breakpoint by a breakpoint annotation in the
Annotation Margin, to the left of the Editable Source Area. The
breakpoint annotation appears on the same line as the source statement.
See Figure 7-6.

When your program runs or continues, and the condition specified in a
breakpoint occurs, control returns to the debugger and any DDE
command attached to the breakpoint executes. If the attached command
does not execute a "go", then the program pauses and you can query
variables and perform other SoftBench Debugger operations. For
information on attaching commands to breakpoints, see “Executing DDE
Commands at a Breakpoint” on page 195.

Your program pauses before executing the source statement associated
with the breakpoint. For example, suppose you set a breakpoint on an
assignment statement. When your program pauses at the breakpoint,
the assignment has not been executed. If you Print () the value of the
variable, you see its previous value. If you Step, the assignment takes
place and you can Print () the result of the assignment.

While the program stops, you can examine the values of variables and
look at anything else that might help you find defects in your program.
You can even change the PC location within the current function, to
repeat a section of code or to skip over unwanted code.

You can have any number of active breakpoints in your program.
Execution stops when SoftBench Debugger encounters any breakpoint.

SoftBench Debugger automatically creates breakpoints on the first and
last lines of your main() procedure.

To get a complete list of breakpoints, use the "Break: Sho w…" menu
selection.

Debugging a Program Using Breakpoints

“Setting a Breakpoint” on page 190 describes how to pause your program
during execution. This can be useful any time you want to execute part of
your program before pausing to debug a section of code. For example,
Chapter 7 189

Using SoftBench Debugger
Setting and Using Breakpoints
when you are responsible for only a part of a large program, you need
only debug your particular module. Set breakpoints at the entry points of
your module, and run the program to execute the code down to your
module. When you have reached your module, you can Step through it to
see it in more detail.

1. Set a breakpoint where you want to pause the program. See “Setting
a Breakpoint” on page 190.

2. Continue your program from its current location, or choose "File:
Rerun " to restart your program. See “Loading or Rerunning an
Executable Program” on page 165.

While the program being debugged runs to the next breakpoint, the
PC Location indicator displays a highlighted "Running…" and a "clock"
animation. SoftBench Debugger buffers further commands until
SoftBench Debugger becomes ready to execute them.

3. When SoftBench Debugger reaches the breakpoint, the PC Location
changes to the current program location. (Notice that the PC arrow
displays on the same line as the breakpoint annotation.) You are now
ready to continue the debugging process.

If the PC Location remains "Running…", the program being debugged
could be waiting for input. See “Interacting with Your Program” on
page 174.

To run from the current PC to the next breakpoint, select Continue . You
can use this to execute sections of the program that do not need to be
debugged.

Setting a Breakpoint

SoftBench Debugger provides many ways to set breakpoints, depending
on your needs. See “Setting Breakpoints in a Program File” on page 131
for information on setting breakpoints from within your editor.

Using the Editable Source Area

You may find this method convenient if you can see or easily retrieve the
desired source line.

1. Locate the source statement in the Source File Area:

• If the currently viewed source file contains the statement, scroll
until you can see the line.
Chapter 7190

Using SoftBench Debugger
Setting and Using Breakpoints
• If another source file contains the statement , put the name of its
file or procedure in the "() " input box and choose "Visit:
Procedure () " or "Visit: File () ".

2. Click in the Annotation Margin next to the line on which you want a
breakpoint. A breakpoint annotation appears in the Annotation
Margin, indicating the location of the new breakpoint.

If your source code has several executable statements on the line you
select, SoftBench Debugger sets the breakpoint before the first
statement on the line. You can set a breakpoint on later statements by
entering the statement location (as specified in “Specifying Program
Location” on page 177) in the "() " input box, and adding "+1" to specify
the second statement, "+2" to specify the third, and so on. Choose
"Break: Set at () " to set the breakpoint.

If you attempt to set a breakpoint on a specific line and the breakpoint
annotation appears several statements further down in your program,
this indicates that you selected a non-executable statement. SoftBench
Debugger sets the breakpoint on the first executable statement following
the one you selected.

Figure 7-6 "Break" Menu
Chapter 7 191

Using SoftBench Debugger
Setting and Using Breakpoints
Using the Break Menu

The "Break " menu contains several entries that allow you to set a
breakpoint at the current PC location, or associated with an identifier
entered in the "() " input box.

For example, if you want to set a breakpoint on the entry of a procedure
named compute , you could enter compute in the "() " input box and
choose "Break: Set at Procedure Entry () ".

Refer to Figure 7-6 to see the available choices. See SoftBench Online
Help for details on each choice.

Using the Breakpoint Set/Change Dialog Box

This method is very general, and can be used to set breakpoints in any
location with any allowable attributes. See Figure 7-7.

1. Choose "Break: Set…".

2. Choose the type of breakpoint you want, such as Proc , Location ,
Class , and so on.

3. The area under the "Select Breakpoint Type " radio buttons
changes to reflect the information needed by that breakpoint type.
Enter the appropriate information.

4. Modify any other information as required. For example, you may
want to specify a DDE command to be executed when the breakpoint
occurs, or you may want the breakpoint to occur only after the
specified event happens a certain number of times.

5. When you have specified the information you want, select OK to create
the breakpoint.
Chapter 7192

Using SoftBench Debugger
Setting and Using Breakpoints
Figure 7-7 "Breakpoint Set/Change" Dialog Box

If the program is multi-threaded, the "Breakpoint Set/Change " dialog
box also includes a scrolled list of thread ID's. You can specify that a
breakpoint is to affect any specific thread or set of threads.

Viewing and Modifying Breakpoints

To see a list of breakpoints, from the SoftBench Debugger menu bar,
choose "Break: Sho w…".

The "Breakpoint Listing " dialog box appears, showing all existing
breakpoint groups and their status information. Double-click on a single
break point to see its associated source code, if available.

Select a breakpoint entry to modify it. Once selected, you can change the
Active /Suspend status or Delete the breakpoint. To modify the breakpoint,
select Change… . SoftBench Debugger displays the "Breakpoint
Set/Change " dialog box, allowing you to modify all editable attributes of
the breakpoint.

Breakpoints can also be modified by holding down the Shift button while
clicking on the breakpoint symbol in the Annotation Area of the Source
File Area. This displays the "Breakpoint Set/Change " dialog box for the
Chapter 7 193

Using SoftBench Debugger
Setting and Using Breakpoints
specified breakpoint.

Changing Active / Suspend Status

By default, a new breakpoint is Active . If you want to deactivate a
breakpoint without deleting it, you can Suspend the breakpoint. This
may be useful if, for example, you want a breakpoint to occur only in
certain circumstances. You could Suspend the breakpoint, proceed with
debugging your program, and then re-Activate the breakpoint as
desired.

SoftBench Debugger provides several ways to change the status of a
breakpoint:

• Click the middle mouse button on the Breakpoint Annotation in the
Annotation Margin. This toggles the breakpoint status. The
Breakpoint Annotation changes to reflect the new status. A
suspended breakpoint has a slash through its Breakpoint Annotation.

• Modify a breakpoint (by Shift-clicking on its breakpoint symbol in the
Annotation Margin, or by selecting the breakpoint in the
"Breakpoint Listing " dialog box and selecting Change…), select the
"❍ Active " or "❍ Suspended " radio button, and select OK.

• Select a breakpoint in the "Break: Sho w…" dialog box and select the
Active or Suspend button.

• Choose "Break: S uspend All " or "Break: Acti vate All " to
activate or suspend ALL breakpoints in your program.

Changing Verbose / Silent Status

By default, SoftBench Debugger reports the address of a breakpoint in
the Debugger Output Area when it occurs. You control this reporting
ability by the Verbose status. If you do not want the breakpoint address
reported, modify a breakpoint (by Shift-clicking on its breakpoint symbol
in the Annotation Margin, or by selecting the breakpoint in the
"Breakpoint Listing " dialog box and selecting Change…), select the
"❍ Silent " radio button, and select OK. Select the "❍ Verbose " radio
button and select OK to enable address reporting.

Clearing a Breakpoint

When you no longer want your program to stop at a breakpoint, you can
clear the breakpoint. If you can see the breakpoint you want to clear in
Chapter 7194

Using SoftBench Debugger
Setting and Using Breakpoints
the Source File Area, you can simply click on the breakpoint symbol to
clear it. If the breakpoint is not currently visible:

1. Choose "Break: Sho w…" to display all current breakpoints.

2. Click on the breakpoint you want to clear. You can double-click on a
breakpoint to display its source in the Source File Area, so you can be
sure you delete the correct breakpoint.

3. Select Delete to remove the breakpoint.

The breakpoint description disappears, indicating that the breakpoint
has been cleared.

You can clear all breakpoints by choosing "Break: C l ear → All ".

You can also "deactivate" (Suspend) breakpoints without permanently
deleting them. See “Viewing and Modifying Breakpoints” on page 193.

Executing DDE Commands at a Breakpoint

You can have SoftBench Debugger execute a debugger command
whenever it stops at a breakpoint. When you create or modify a
breakpoint using the "Breakpoint Set/Change " dialog box:

1. Enter the desired debugger command in the "Commands" input box.
See "Help: DDE Reference " for more information on these
commands.

2. Enter a number in the "Stop After Count " input box to specify the
number of times you want your program to ignore the breakpoint
before it stops and executes the commands. The "Hits " field tells how
many times the breakpoint has already been encountered. "Count "
defaults to 0, meaning SoftBench Debugger stops on the first
encounter.

3. Select OK. If you select Cancel , SoftBench Debugger discards the
command entered in the input box, and does not modify the
breakpoint.

For example, if you are sure an error happens on the 53rd time through a
loop, you could set a breakpoint in the loop and enter 52 in the "Stop
After Count " input box.

If the error happens only when the variable x is 14, you could enter
"print x; if x != 14 -then [go] " in the "Commands" input box. This
prints the value of x each time SoftBench Debugger encounters the
Chapter 7 195

Using SoftBench Debugger
Setting and Using Breakpoints
breakpoint, but does not stop until x reaches the critical value. You may
also want to make the breakpoint Silent so the breakpoint notification
message does not print each time the breakpoint is encountered.
Chapter 7196

Using SoftBench Debugger
Setting C++ Breakpoints
Setting C++ Breakpoints
When you debug a C++ program, SoftBench Debugger provides some
additional breakpoint settings.

• "Break: Set at Class () " SoftBench Debugger sets breakpoints
on all member functions of all instances of the specified class.

• "Break: Set at Overloaded () " SoftBench Debugger sets
breakpoints on all functions with the specified name. Use this when
your program defines multiple functions with the same name.

• "Break: Set at Template () " SoftBench Debugger sets
breakpoints on all member functions created by the specified
template.

• "Break: Set at I nstance () " SoftBench Debugger sets
breakpoints on all member functions of the specified instance.

When you set a breakpoint on a function which has been declared inline,
it may or may not be accepted, depending on whether the compiler has
made all calls to that function inline. If any calls to this function were
inlined, the breakpoint does not occur at that particular call. All calls
which were not inlined break as expected. To avoid this problem,
recompile your code with the +d option which prevents the expansion of
all inline functions.

Setting Group Breakpoints

Setting breakpoints on C++ components from SoftBench Debugger either
from the "Break: Set at…" menu, or using the "Breakpoint Set "
dialog, may result in the creation of several DDE breakpoints. These
breakpoints comprise a "group" and may be manipulated individually or
as a group.

Viewing and Modifying Group Breakpoints

Groups may be "expanded" and "collapsed" by double-clicking on them. A
"+" in the first column indicates that SoftBench Debugger has currently
expanded the group, and a "-" indicates that it has expanded the group.
When SoftBench Debugger has expanded a group, individual
breakpoints within the group can be selected then deleted, activated, or
Chapter 7 197

Using SoftBench Debugger
Setting C++ Breakpoints
suspended. You can change all breakpoints in the group at the same time
by selecting the group title line. Double-click on a group to display all
breakpoints in the group.
Chapter 7198

Using SoftBench Debugger
Setting and Using Watchpoints
Setting and Using Watchpoints
Watchpoints allow you to monitor the value of an expression, or the
contents of a range of memory, while your program executes. SoftBench
Debugger checks the value (as often as specified in the watchpoint
definition), notifies you when it changes, and pauses your program.

This can be extremely useful when searching for "mystery" errors. For
example, suppose at some unknown time your program corrupts an
important area in memory. Without watchpoints, it would be very
difficult to determine exactly when the corruption occurred. Using
watchpoints, you can quickly find when the corruption happens, which
gives you a good idea of what caused it.

When you create a watchpoint, you specify the expression or address
range to monitor, and an option to specify "granularity". Granularity
specifies how often the value of interest should be monitored:

• At every procedure entry

• At every procedure exit

• At the entry and exit of every procedure

• Every statement

• Every assembly instruction

• whenever the program stops and returns control to the debugger

The Watchpoint dialog setting defaults to "Stop". This default allows you
to monitor the current values of some data items when debugging a
program.

Be certain you specify an appropriate granularity. If you want SoftBench
Debugger to watch a variable while your program runs, you should not
have the "❍ Stop " radio button active in the "Set At " area. This setting
only checks your watchpoints when your program reaches a breakpoint
or is interrupted for another reason. You should specify a procedure- or
statement-level granularity so SoftBench Debugger checks the variable
while your program runs. You can also use the "❍ Modification " radio
button to identify when an address or variable is unexpectedly being
changed. This button issues a default DDE watchpoint command on the
contents of the "() " input box. This same feature can also be accessed
from the menu under "Watch: Set at M odification ".
Chapter 7 199

Using SoftBench Debugger
Setting and Using Watchpoints
For performance purposes, you should set the granularity as coarsely as
possible. For example, if you only need to know the value of the
monitored expression each time you enter a procedure, there is no sense
in monitoring it after every assembly instruction. Typically you would
locate a problem by using a granularity of "Proc Entry+Exit" to narrow
the source of the problem down to one procedure. Once the problem is
localized, use a finer granularity (such as "Statement" or "Instruction")
but limit it to the offending procedure by entering the procedure name in
the "When In " input box on the "Data Watchpoint Set/Change " dialog
box.

In many other ways, watchpoints are similar to breakpoints. In addition
to stopping the program, as a breakpoint does, a watchpoint also displays
the new value of a changed variable. Nearly all other breakpoint
concepts apply: watchpoints can be Active or Suspended , Verbose or
Silent , and can have debugger commands associated with them. If you
want the watchpoint to display changed values without stopping, you can
enter the DDE command go in the "Commands" input box of the "Data
Watchpoints " dialog box. Unlike breakpoints, watchpoints have no
"Stop after Count " associated with them. See “Setting and Using
Breakpoints” on page 189 for a description of these concepts.

Creating Watchpoints

As with breakpoints, SoftBench Debugger provides multiple ways to
create watchpoints.

Using the Watch Menu

The "Watch " menu contains several entries that allow you to set a
watchpoint associated with a token entered in the "() " input box.

For example, if you want to create a watchpoint associated with the
variable counter , to be checked each time a procedure was entered, you
could enter counter in the "() " input box and choose "Watch: Set at
Entry () ". See SoftBench Online Help for a description of these choices.

Using the "Data Watchpoint Set/Change" Dialog Box

This method is very general, and can be used to set watchpoints on any
expression or any memory location with any allowable attributes. This
method is the only way to set a watchpoint on a range of memory.

1. Choose "Watch: Set…".
Chapter 7200

Using SoftBench Debugger
Setting and Using Watchpoints
2. Select the type of watchpoint you want: "❍ Expression " or
"❍ Address ".

3. The area under the "Select Watchpoint Type " radio buttons
changes to reflect the information needed by that watchpoint type.
Enter the expression or address range desired. You can Print () the
expression "&var" to find the address of the variable var.

4. Select the granularity (how often SoftBench Debugger checks the
value).

5. Modify any other information as required. For example, you may
want to specify a debugger command to be executed when the
watchpoint occurs.

6. When you have specified the information you want, select OK to create
the watchpoint.

Viewing and Modifying Watchpoints

Choose "Watch: Sho w…" to list all current watchpoints. SoftBench
Debugger displays the "Watchpoint Listing " dialog box, showing all
existing watchpoints and their status information. You have the same
abilities to activate, deactivate, create, delete, or edit as in the
"Breakpoint Listing " dialog box. See “Viewing and Modifying
Breakpoints” on page 193 for a description of these operations.

Choose "Watch: Values Display… " to display the "Data Watchpoints "
window if it is not already displayed. See Figure 7-8.

Figure 7-8 "Data Watchpoint" Window

Each watchpoint displays the variables or memory area to which it is
attached. The data display highlights when your program modifies the
Chapter 7 201

Using SoftBench Debugger
Setting and Using Watchpoints
data being watched. Complete watchpoints can be hidden by selecting
the ▼ button next to the watchpoint. Select the button again (which is
now >) to redisplay the watchpoint.

Individual elements in a watchpoint (such as some elements in an array)
can be hidden by selecting them and selecting "Selected -> Hide ". Select
"Watchpoint -> Show All Hidden Values " to redisplay them.

Compound objects (such as arrays or structures) can be "collapsed" to
simplify the display, either by double-clicking the beginning of the
compound object, or by selecting it and choosing "Selected -> Collapse ".
Double-click the collapsed object, or choose "Selected -> Expand ", to
display the entire object.

Changing Active / Suspend Status

To modify the watchpoint, choose "Watchpoint -> Change…". SoftBench
Debugger displays the "Data Watchpoints Set/Change " window,
allowing you to modify all editable attributes of the watchpoint.

To change the Active / Suspend status of a watchpoint, use the "Data
Watchpoints Set/Change " window. You can also activate or suspend all
watchpoints by selecting the Activate All or Suspend All buttons in the "Data
Watchpoints Set/Change " window, or by choosing the "Watch: S uspend
All " or "Watch: Acti vate All " menu selections.

Changing Verbose / Silent Status

By default, SoftBench Debugger reports the information about a
watchpoint in the Debugger Output Area when it occurs. You control this
reporting ability by the Verbose status. If you do not want the
watchpoint information reported, in the "Data Watchpoints
Set/Change " window, select the "❍ Silent " radio button, and select OK.
Select the "❍ Verbose " radio button and select OK to re-enable the
reporting.

Clearing a Watchpoint

When you no longer want SoftBench Debugger to monitor your variables,
you can clear the watchpoint. Select "Watchpoint -> Delete " on the
"Watchpoints Value Display " window. You can also use the
"Watchpoint Listing " dialog box:

1. Choose "Watch: Sho w…" to display all current watchpoints.
Chapter 7202

Using SoftBench Debugger
Setting and Using Watchpoints
2. Highlight the watchpoint(s) you want to delete in the "Watchpoint
Listing " dialog box.

3. Select Delete.

You can clear all watchpoints by choosing "Watch: Clear All ".

You can also "deactivate" (Suspend) watchpoints without permanently
deleting them. See “Viewing and Modifying Watchpoints” on page 201.
Chapter 7 203

Using SoftBench Debugger
Tracing Program Flow
Tracing Program Flow
SoftBench Debugger's trace functions help you monitor the flow of your
program. This can be useful in many situations: perhaps you want to see
when your program calls a particular function, or executes certain
statements, but you don't want the debugger to stop your program.
Tracing simply displays the current location when a trace is hit, and
keeps executing your program. Creating a basic trace is similar to adding
a printf statement to your program. Traces can also stop your program
or can execute DDE commands when they are encountered, similar to
breakpoints.

Creating Traces

SoftBench Debugger provides several levels of trace granularity:

• At every procedure entry

• At every procedure exit

• At the entry and exit of every procedure

• Every statement

• Every assembly instruction

Creating a new trace on procedure entry or exit can take a significant
amount of time as DDE finds all the appropriate procedures. The label on
the "Debugger Input " input box is not sensitive while DDE is working.

Using the Trace Menu

SoftBench Debugger has several menu selections to simplify trace
creation. Choose the appropriate option under "Trace: Trace Every "
submenu to enable tracing.

Traces can also be enabled only in certain "blocks". DDE allows you to
narrow traces to a particular file, C function, or C++ object. See "Help:
DDE Reference " for a full explanation of blocks.

Enter the desired block in the "() " input box, and choose the appropriate
option under "Trace: Trace Only " submenu to enable tracing.
Chapter 7204

Using SoftBench Debugger
Tracing Program Flow
Using the Trace Set/Change Dialog Box

Choosing "Trace: Set…" allows you to specify all aspects of a trace. The
"Trace Set/Change " dialog box is nearly identical to the "Data
Watchpoint Set/Change " dialog box. See Figure 7-9.

Figure 7-9 "Trace Set/Change" Dialog Box

1. Choose "Trace: Set…".

2. Select the granularity (how often SoftBench Debugger triggers the
trace). Specify any "block," if desired, in the "When In " input box.

3. Modify any other information as required. For example, you may
want to specify a DDE command to be executed when the watchpoint
occurs.

4. Select the "■ Stop Execution When Hit " toggle button if you want
your program to pause when it reaches the trace.

5. When you have specified the information you want, select OK to create
the trace.

Viewing Traces

Choose "Trace: Sho w" to display the current list of active traces. The
"Trace Listing " dialog box is nearly identical to the "Breakpoint
Listing " dialog box. You have the same abilities to activate, deactivate,
create, delete, or edit as in the "Breakpoint Listing " dialog box. See
“Viewing and Modifying Breakpoints” on page 193 for a description of
Chapter 7 205

Using SoftBench Debugger
Tracing Program Flow
these operations.

Clearing Traces

Choose "Trace: Clear All " to remove all traces from DDE's memory.
Chapter 7206

Using SoftBench Debugger
Correcting Errors in Your Program
Correcting Errors in Your Program
Developers frequently spend a lot of time in the debugger, finding and
fixing defects. SoftBench Debugger provides several commands to help
you when you find an error:

• You can alter variable values (see “Specifying Variables” on page 178)

• You can change the location of the PC within the current procedure
(see SoftBench Online Help for details), skipping the problem code
and continuing debugging.

• You can edit the source code, fixing the problem, then rebuild and
restart the debugging process.

Editing Source Code

SoftBench Debugger provides an editable source code area. Without ever
leaving SoftBench Debugger you can fix the error and rebuild.

• Edit the source file by selecting the Edit button to make the source
code area editable. If you need to check the file out of Configuration
Management, do so before making changes. Choose the "File:
Configuration Management " submenu.

• Save the changes and use the "Build" facility to rebuild the target by
choosing "File: Build " from the SoftBench Debugger menu bar. If
the file is not writable, you may need to check it out using the "File:
Configuration Management " submenu.

SoftBench rebuilds the current debugged program. If SoftBench
encounters any compile errors, it displays the offending source in the
Debugger's Source File Area or your configured editor, depending on
the setting of the "Options: ■ Use External Editor for Compile
Errors " toggle button. Any errors after the first error are displayed in
your configured editor.

If your edits introduce compile errors, browse and fix the compile
errors from the main SoftBench Builder output browser, then rebuild
again from SoftBench Debugger.

• When your build is successful, the new executable loads
automatically in SoftBench Debugger, and you can continue to debug
the program.
Chapter 7 207

Using SoftBench Debugger
Correcting Errors in Your Program
Alternatively, edit your source code in your configured editor by choosing
"File: Edi t …" to specify the file you want to edit. Make your changes,
then start the build from the editor, main SoftBench window, or
SoftBench Debugger, whichever is easiest for you. The editable source
code area in SoftBench Debugger displays the "Out of Date" message to
inform you that the source has been changed. Choose "Edit: Update
Buffer " or "Edit: Up date All Buffers " to synchronize your view of
the source.

Synchronizing Files

When you debug a program, you debug the object code generated from
the compilation of one or more source files. When the source is
out-of-date, the PC Location indicated in the Source File Area may not
accurately reflect the location of the program counter.

This unsynchronized behavior occurs any time the source has been
modified without recompiling the program and reloading it into
SoftBench Debugger.
Chapter 7208

Using SoftBench Debugger
Debugging Dynamic Libraries
Debugging Dynamic Libraries
Dynamically-loaded libraries present special challenges to a debugger,
due to the way the operating system implements them. SoftBench
Debugger handles most of these issues for you. You can specify which
libraries you want to debug.

Programs can contain several kinds of library images:

• Static: the library code is physically linked in with your program.

• Shared: the linker knows about the library, but it is not linked in with
your program. All programs that use the library share a common copy
of the library.

• Dynamically loaded: the library is not known to the linker, and is
loaded when your program requests it by calling a system routine.

When you choose "Execution: Enable Images/ Libraries… ", the
"Images/Libraries " dialog box presents you with a list of all currently
known shared or dynamically loaded libraries used by the program being
debugged. (See Figure 7-10.) Because maintaining debug information for
each library increases the overhead on your debugging session,
SoftBench Debugger allows you to enable only the libraries of interest.

To enable libraries for debugging:

1. Choose "Execution: Enable Images/ Libraries… " to display the
known libraries.

2. Select one or more libraries from the "Images/Libraries " dialog box
and select Enable . You may also double-click on a single item to enable
it.

Selecting the Enable All button enables all libraries. Once you enable a
library for debugging, it cannot be disabled without exiting SoftBench
Debugger.
Chapter 7 209

Using SoftBench Debugger
Debugging Dynamic Libraries
Figure 7-10 "Dynamic Images/Libraries" Dialog Box
Chapter 7210

Using SoftBench Debugger
Viewing Assembly Language and CPU Registers
Viewing Assembly Language and CPU
Registers
SoftBench Debugger is intended as a high-level (source language)
debugging aid. However, sometimes it is useful to examine your
program's behavior at the assembly language level. This can help you
determine when you have misunderstood something about the way the
compiler works.

You can examine the machine code produced by the compiler for your
program and step your program at the assembly code level. You can
examine processor and floating point registers and see how these change.

Tracing Assembly Language

The "Show: Assembly Instructions… " menu choice brings up the
"Assembly Instructions " window. (See Figure 7-11.) This dialog box
contains a scrollable view of the assembly language code for the current
procedure of your program. The format of the code depends on your
system. The window normally shows the following:

• Source line number

• Memory address

• Disassembly listing of the actual machine code

To set a breakpoint at the assembly level:

1. Select the address (in the "Assembly Instructions " window). This
copies the address into the "() " input box.

2. Choose "Break: Set At Hex Address () ".

You can also click the left mouse button in the Annotation Margin of the
"Assembly Instructions " window, or press the right mouse button on
the desired assembly line, to set or clear breakpoints.
Chapter 7 211

Using SoftBench Debugger
Viewing Assembly Language and CPU Registers
Figure 7-11 "Assembly Instructions" Window

Select the Step Instruction button to step through your program one
assembly instruction at a time. Select the Step Over Instruction button to
step over a procedure call instruction.

The Assembly Tracing Active button enables updating of the Assembly
Instructions window. Leaving assembly tracing disabled until you need it
allows your program to run faster.

Tracing Registers

Selecting one of the "Show: Registers " submenu items brings up a
window that shows the contents of a group of hardware registers.
SoftBench Debugger highlights register values that change when you
Step or Continue your program.
Chapter 7212

Using SoftBench Debugger
Viewing Assembly Language and CPU Registers
Choose the format used to display the register values with the "Display
Format " button. The "() Single " and "() Double " buttons on the HP-PA
Floating Point Registers display allow you to specify whether SoftBench
Debugger displays the registers as two 4-byte values or one 8-byte value.

The "Register Tracing " option menu in the registers window specifies
how often SoftBench Debugger updates the register values, just like a
watchpoint's granularity. You can turn register updating off, or enable it
as often as you need it (such as whenever the program stops or after
every source statement). Leaving register updating disabled until you
need it allows your program to run faster.

When you activate register tracing, SoftBench Debugger creates an
implicit watchpoint to check the register values at the appropriate
procedure entry, statement, and so on.

Figure 7-12 shows one of the "Show: Registers " windows.

Figure 7-12 "Show Registers" Window (PA-RISC)
Chapter 7 213

Using SoftBench Debugger
Handling Signals and Events
Handling Signals and Events
The UNIX operating system notifies a program of asynchronous events
via signals. HP-UX also supports other "events" such as exec (program
load) and throw (used in C++ exception handling). SoftBench Debugger
handles these events using intercepts.

Intercepts are distinct from any signal handlers in your program. They
intercept signals before they are sent to your program, and may either
pass signals through to your program (to be handled by your signal
handlers) or discard them.

Viewing and Editing Intercepts

"Execution: Signals/ I ntercepts… " brings up a dialog box with the
current state of debugger signal and event handling, and allows you to
control what SoftBench Debugger does with any intercept.

You can modify intercept handling only when SoftBench Debugger is in
control. When your program runs, you must interrupt it (using Interrupt
Program) or wait for it to hit a breakpoint before you can specify intercept
handlers.

The scrollable list at the top of the "Intercepts " dialog box (see Figure
7-13) shows the current status of all available intercepts. This list shows
all the attributes of each intercept, and also shows the "monitor number"
(useful if you want to issue certain commands to DDE) and the number
of times the intercept has been received. Note that the "monitor number"
does not correspond to the UNIX signal number.
Chapter 7214

Using SoftBench Debugger
Handling Signals and Events
Figure 7-13 "Intercepts" Dialog Box

SoftBench Debugger automatically creates intercepts for all signals and
events. Signal intercepts are all active, and other intercepts are
suspended. Highlight an intercept and select "Activate " to use it.

The buttons below the list allow you to modify the intercepts' attributes.
You can control four attributes for each intercept:

Status Controls whether the intercept is currently Active .
Select Suspend to deactivate an active intercept.

Report Type Controls whether SoftBench Debugger reports the
intercept in the Debugger I/O Area (Verbose) or
handles it Silent ly.

Count Specifies how many times the intercept should be
ignored before SoftBench Debugger handles it.

Commands Specifies the DDE command string (if any) to execute
when the intercept occurs. See "Help: DDE
Reference " for a description of these commands.

When you highlight an intercept, you can change any of the above
attributes and select OK or Apply to save the changes.

You can also Activate or Suspend all intercepts by choosing the buttons
Chapter 7 215

Using SoftBench Debugger
Handling Signals and Events
on the right side of the dialog box.

SoftBench Debugger retains information (such as Count and Commands)
for suspended intercepts. Selecting Activate reactivates the intercept
with the same information it had before.

Handling Signals

When your program receives a signal, you have the option of ignoring it
or accepting it. If you ignore the signal, you can continue debugging your
program as if no signal was received. If you accept the signal, the signal
triggers the appropriate signal handler, if you have one defined. If you
have no signal handler defined, the signal may cause your program to
abort.

When the signal arrives, your program pauses. A message appears in the
Debugger Output Area to tell you what signal has been received. If you
Step or Continue , SoftBench Debugger delivers the signal to your program.

To ignore the signal, choose either "Execution: Step Operations →
Step and I gnore Signal " or "Execution: Continue
Operations → Continue and I gnore Signal ".

If your program does its own signal handling for a specific signal (using
signal(2)), you can set the status of that signal to:

• Status: Suspend

• Report type: Silent

This causes the signal to be passed through to your program.
Chapter 7216

Using SoftBench Debugger
Debugging After a Program Fails (Core Dump)
Debugging After a Program Fails (Core Dump)
SoftBench Debugger can diagnose some run-time errors in a program
after the program has failed.

Some signals, if not caught by the program, cause programs to write a
core file and to terminate. These signals are:

When HP-UX detects one of these errors, it writes a core file in the
directory where the process was executing (if it has write permission).
This directory does not necessarily contain the executable file; it is the
current working directory of the executing process. This core file
contains information about the state of the process when it terminated.

Debugging with a Core File

Choose "File: Load Corefile… " to debug a core file. Enter the core file
name (usually core) and the name of the executable file that generated
the core file.

When SoftBench Debugger first loads your program, SoftBench

Table 7-1 SoftBench CM Command Line Man Pages

Signal
Name

Error Message Text

SIGQUIT quit

SIGILL illegal instruction

SIGTRAP trace trap

SIGIOT abort

SIGEMT emulation trap

SIGFPE floating point exception

SIGBUS bus error

SIGSEGV segmentation violation

SIGSYS bad argument to system call
Chapter 7 217

Using SoftBench Debugger
Debugging After a Program Fails (Core Dump)
Debugger sets the PC to the line that caused the core dump. The stack
and all variables appear as they were when the program was about to
execute that line. Here are some useful SoftBench Debugger actions that
help find problems:

• Examine the line in the Source File Area that was responsible for the
core dump to look for an obvious problem.

• Enter a local or global variable in the "() " input box, then select Print (
) to examine its value. Check for a value out of range.

• Choose "Show: S t ack…" to look at the procedure call stack. Check
values of passed parameters to see if the problem originated earlier in
your program.

• Choose "Show: Assembly Instructions… ", and examine CPU
registers or assembly instructions to get a low-level view of your
program (see “Viewing Assembly Language and CPU Registers” on
page 211).

You can often determine your program's problem using this information
without actually executing the program again. If that's not possible, you
can use these hints to set up breakpoints and tracing, and execute your
program under SoftBench Debugger control.
Chapter 7218

Using SoftBench Debugger
Debugging Forked Processes
Debugging Forked Processes
Some applications use the fork(2) command to create a child process.
When a program calls fork , a second process is created that is an exact
"clone" of the first process. The only difference between the two processes
is the return value of the fork call; this tells each process whether it is
the "parent" or "child" process.

Since the fork call results in two processes, you must decide which
process or processes you want to debug:

Debug Parent Your existing debugger session stays attached to the
parent process. The child process continues from the
fork call.

Debug Child Your existing debugger session attaches to the child
process. The parent process continues from the fork
call.

Debug Both Both processes are debugged. SoftBench spawns a
second debugger to debug the new process.

Choose one of the above options under "Options: Fork Behavior … ".
This selection affects all future fork calls. See “Attaching the Debugger
to a Running Program” on page 222 if your program has already forked
and the process you want to debug is not loaded in the debugger.

vfork(2) operates slightly differently. vfork is a "light-weight" fork.
Most programs exec a new executable in the child process immediately
after returning from the fork . When fork "clones" the parent process, it
copies the parent's data space, and the exec immediately discards it.
This can be very inefficient if the parent has a large data space.

Instead of creating an exact copy of the parent process, vfork creates a
child process that shares the parent's data space. The parent is
effectively suspended, and the child is treated as a thread of the parent,
until the child exec s another program or exit s. If the child calls exec , it
is then treated as a new process, and the debug behavior above takes
effect.
Chapter 7 219

Using SoftBench Debugger
Debugging Threaded Applications
Debugging Threaded Applications
Threads are "mini-processes"—multiple "threads" of execution within a
single process. Each thread has its own execution stack, but shares
global variables with other threads in the process. There may be an
arbitrary number of threads in a process, numbered 1 through N. (DDE
assigns this thread number arbitrarily.)

Viewing and Manipulating Threads

Choose "Execution: Threads…" to display a list of the threads in your
program. The "Threads " dialog box displays status information about
each thread and allows you to perform certain actions on a thread.

Highlight one or more threads and select a button to request the
following actions:

Disable Remove the selected thread(s) from the list of threads
that can run when the program resumes.

Enable Add the selected thread(s) to the list of threads that
can run when the program resumes.

Kill Kill the selected thread(s).

Stack… Display the selected thread's execution stack in a new
window.

->Next To Run Make the selected thread the current execution thread.
This thread runs first when the program resumes.

Examine Change environment to the selected thread. This
allows you to examine the status of a thread without
changing the current execution thread.

You can use the "Threads " dialog box and the "Stack View " window to
monitor the execution of threaded programs. SoftBench Debugger
indicates the currently executing thread, which is analogous to the "PC
Location," by a "-> " arrow in the "Threads " dialog box. The "Stack View "
window indicates the thread being examined, which is analogous to the
"Current Location".

You can examine other threads by selecting them in the "Threads " dialog
Chapter 7220

Using SoftBench Debugger
Debugging Threaded Applications
box. You can also display a new "Stack View " window for a specific
thread by selecting it in the "Threads " dialog box and selecting Stack… .

Setting Breakpoints on Threads

You can activate breakpoints on all threads, or on any selected set of
threads.

Choose "Break: Sho w…" to display the "Breakpoints Listing " dialog
box. If your program has multiple threads, the dialog box contains a
thread area.

Select "■ Break on All Threads " if you want the breakpoint to apply to
all threads. Select one or more thread numbers if you want the
breakpoint to apply to specific threads.
Chapter 7 221

Using SoftBench Debugger
Attaching the Debugger to a Running Program
Attaching the Debugger to a Running
Program
SoftBench Debugger allows you to debug a process that is already
running. For example, suppose you have a program that runs
continuously in the background. Occasionally it does something wrong.
Stopping the process and re-starting it in SoftBench Debugger can lose
valuable state information. You can instead attach SoftBench Debugger
to the process after it has encountered its error, and examine the data
structures to learn the cause of the behavior.

To debug the running program:

1. Start your program. Do whatever you normally do to get it to the
desired state.

2. Choose "File: Debug Running Process… ".
3. Enter the full path name to your executable file in the "Executable"

input box.
4. Enter the process ID in the "Process ID (pid) " input box, or select

Find Matching Processes to have the debugger find the process for you. If
SoftBench Debugger finds only one matching process, it automatically
places the Process ID (pid) in the Process ID field. If SoftBench
Debugger finds more than one matching process, the debugger
displays all matching processes. Select the desired process from the
list.

5. Select OK.
6. Your program stops, and the PC Location display indicates the value

of the Program Counter (PC). The PC arrow might not be visible in
the Annotation Margin, depending on whether or not the PC is in a
debuggable procedure.

7. Use SoftBench Debugger to examine the program. All SoftBench
Debugger facilities are available for adopted processes. For example,
if the process pauses in a system library, you could move down in the
stack until you encounter a function in your code. You could then
examine the local variables in that function to determine how the
library function was called.
When you have finished debugging the process, you can release it so it
continues running normally by choosing "File: Free Running
Process ".
Chapter 7222

Using SoftBench Debugger
Debugging C++ Programs
Debugging C++ Programs
If you have installed C++ SoftBench, the following features support
debugging of C++ programs (see also “Setting C++ Breakpoints” on page
197):

C++ name handling: SoftBench Debugger lets you debug using your
actual C++ variable and function names, without
worrying about the underlying naming system. This
means that you can highlight C++ text in the source
view window and act upon it using SoftBench
Debugger commands. The highlighted text becomes the
"() " entry for use in your debugging sessions.

Overloaded functions and operators: SoftBench Debugger displays
ambiguous overloaded functions or operators along
with their arguments. You resolve the ambiguity by
selecting the appropriate function. You can also set
breakpoints at all overloaded functions or operators
specified with a given name using a single command.

C++ scope rules: SoftBench Debugger conforms to C++ scope rules by
allowing access to identifiers either directly from
within its scope or by means of the C++ scoping
operator (":: ") from outside its scope.

C++ data types: SoftBench Debugger provides full support for C++
constant types, enumeration types, anonymous unions,
and type conversions.

Classes and objects: You can view simple or extended versions of class
information. That is, you have the choice of whether to
display inheritance members with the extended
version. The function and data members of a class can
be accessed with dot (". "), arrow ("-> "), and scope (":: ")
operators.

Class commands: SoftBench Debugger provides powerful commands
which allow you to access all members of a class. You
can choose to list or set breakpoints at all member
functions of a class with a single command.
Chapter 7 223

Using SoftBench Debugger
Debugging C++ Programs
Member functions: Breakpoints can be set on specific member functions.
You can also call a member function directly from the
"() " input box.

Object identification: SoftBench Debugger recognizes whether a
specified object pointer is a pointer to a declared class
or a specific derived class.

Instance breakpoints: You can set a breakpoint at a member function for
a particular instance of a class. This reduces the
number of member function breakpoints SoftBench
Debugger encounters and reduces the time it takes to
debug.

Nested classes: Provide the ability for command-line references to
static members and functions of a nested class to
resolve properly.

Print: Prints current data member values for C++ classes and
class inheritance hierarchies.

Exception handling Provides these features:

• Ability to set breakpoints immediately prior to any
exception throw.

• Notification of pending throw.
• Ability to set breakpoints in catch clauses.
• Notification of catch.
• Single step from throw into catch clause.

Parameterized types (Templates): Provides these features:

• Allow references to a class-template or
class-template expansion.

• Set breakpoints in any or all class-template member
functions.

• Allow references to a function-template or
function-template expansion.

• Set breakpoints at any location in a
function-template.

• Set breakpoints at any location in an expansion of a
function-template.

• Print the definition of any class template or
expansion.
Chapter 7224

Using SoftBench Debugger
Debugging C++ Programs
Using Breakpoints for Exception Handling

HP-UX provides support for debugging C++ exceptions. You can enable
intercepts on the "throw" and "catch" events. "Throw" intercepts occur at
the time a C++ exception is detected, and "catch" intercepts occur where
the exception is handled.

See “Handling Signals and Events” on page 214 for a description of
intercepts.

Accessing Inherited C++ Values

C++ objects can inherit variables and member functions from other
classes. SoftBench Debugger allows you to specify whether inherited
member functions and variables should be included in certain
operations.

Choosing "Options: C++ Settings… " displays the C++ "Options " dialog
box. The settings in this dialog box specify how many "levels" of
inheritance should be affected by the respective operations.

The breakpoint, trace, and watchpoint settings affect inherited members
in classes, instances, and templates. If you select "■ All ", the monitor
affects all members in an object regardless of the source of inheritance. If
you select "■ Count ", only the specified number of "levels" are affected.

For example, if you set the count to 0, the monitor affects only the first
"level" of inheritance. This means SoftBench Debugger sets the monitor
only on local (non-inherited) member functions or variables. Setting the
count to 1 means the monitor affects the object's local functions or
variables and functions or variables inherited from one level of
"ancestor" objects are affected.

You can use the "Print " setting when printing an object. If you select
"■ All ", SoftBench Debugger prints all component variables, regardless
of the source of inheritance. If you set the count to 1, SoftBench
Debugger prints the object's local variables and any variables inherited
from one level of "ancestor".

Debugging Static Constructors

When you load a program for debugging, SoftBench Debugger begins
executing it and pauses at the first line of main() . This is ideal for most
debugging situations.
Chapter 7 225

Using SoftBench Debugger
Debugging C++ Programs
However, if your program contains static objects, the constructors for
those objects must be invoked before main() . By the time the debugger
pauses in main() , the constructors have already completed.

If you need to debug these constructors, you must tell DDE to pause
before calling them. This can be accomplished by executing the DDE
command "property system -on ". When you set prop sys , DDE
pauses at the very first assembly instruction of the program. You can
then step into the constructors. You should either place the prop sys
-on command in a .dderc file, or issue the command through the
"Debugger Input " input box and rerun your program.

When you pause at the first instruction, DDE does not yet realize you are
executing a C++ program. This can result in any C++ breakpoints being
lost. If you want to retain your C++ breakpoints across executions,
execute the DDE command "prop lang c++ " before rerunning your
program. This gives DDE the information it needs to retain your
breakpoints.

When you finish debugging your static constructors, issue "prop sys
-off " and "prop lang default " commands. This returns DDE to
normal debugging mode and uses less CPU resources.
Chapter 7226

Using SoftBench Debugger
Debugging Optimized Code
Debugging Optimized Code
Source-level debugging of unoptimized code is relatively easy because
you have a simple correspondence between source code statements and
the assembly code instructions into which they are translated. Also,
program variables are stored in memory and are therefore easy to access.

Optimization performs a series of transformations on the object code in
order to make the program run faster. In effect, optimization
transforms a program into a different program. The executable
program you debug is actually not the same program as the source
program. In addition, program variables may be stored in registers
instead of memory and are therefore more difficult to access.

Ordinarily, you first compile and debug your program without
optimization. All or nearly all of the bugs in your program show up in the
unoptimized version. After eliminating all the bugs that you can find,
turn on optimization (compile with -O). If the program behaves
incorrectly, scan the source code for the most common kinds of bugs that
appear for the first time in optimized code:

• Uninitialized variables

• Out-of-bounds array references

• Variable references based on the assumption that two variables are
adjacent in memory

SoftBench CodeAdvisor may assist you with some of these categories of
problems. Others require more extensive code examination.

These kinds of problems, however, are often very difficult to find by
examining the source code. If you cannot determine the reason for the
program's misbehavior, you need to debug the optimized code. For
tutorial and task-oriented information on how to debug optimized code
using the debugger, see SoftBench Online Help.
Chapter 7 227

Using SoftBench Debugger
Customizing SoftBench Debugger
Customizing SoftBench Debugger
SoftBench Debugger is very flexible, and you can customize it to meet
your needs. You can make most user interface customizations in
SoftBench Debugger by choosing the menu selections under "Options ".
Other, less common customizations can be made in the
"$HOME/.softbench/softbenchrc " file. See the softdebug(1) reference
page for a description of all SoftBench Debugger resources.

Specifying Debugger Options

The "Options " menu offers a variety of ways to customize SoftBench
Debugger behavior. SoftBench Debugger saves customizations made on
the "Options " menu and in "File: Add Source
Directories… " automatically. See SoftBench Online Help for details
about customizing SoftBench Debugger.

Customizations available under the "Options " menu include:

• Causing the underlying debugger to run on another system
• Specifying default program environment (arguments, I/O redirection,

and environment variables) used for program loads and reruns
• Modifying breakpoint, watchpoint, and trace behavior for C++ (see

also “Debugging C++ Programs” on page 223)
• Changing the behavior of the Stack and Watchpoints displays
• Specifying the debugger's behavior when fork() calls are

encountered
• Selecting the edit mode used in the "Debugger Input " input box
• Selecting the language-sensitive text selection behavior
• Specifying the node width in Data Graph Window
• Specifying whether the Current Environment follows the edit cursor,

or associates with the source location currently displayed
• Changing the buttons displayed on the front panel.

This option also allows you to change the the popup menus displayed
when you click the right mouse button on the Source File Area or the
"Assembly Instructions " source area. See “Customizing User
Buttons” on page 228.

Customizing User Buttons

Several command areas can be changed to fit your specific needs. These
Chapter 7228

Using SoftBench Debugger
Customizing SoftBench Debugger
areas are:

• The buttons displayed on the SoftBench Debugger front panel.
• The popup menus displayed when you click the right mouse button on

the Source File Area and the "Assembly Instructions " source area.

To modify these buttons:

1. Choose "Options: User Configurable Buttons… ". SoftBench
Debugger displays the "User Configurable Buttons " dialog box,
showing the buttons configured for one of the areas.

2. Select the radio button corresponding to the button set you want to
change.

3. To delete a button, highlight its line and select Delete.
4. To change a button, highlight its line, make the desired changes, and

select Replace .
5. To add a button, enter its label and definition in the appropriate input

boxes, select the button you want it added before or after, and select
Add Before or Add After .

6. Select OK when you finish. SoftBench Debugger displays the new
buttons the next time it displays the corresponding area. SoftBench
Debugger automatically saves the button definitions.

Buttons issue one of three different kinds of commands:

Op An internal SoftBench Debugger operation. The
Operation Information… descriptions cover these.

Raw Command A command to be sent directly to the underlying
debugger. See "Help: DDE Reference " for a
description of DDE commands.

Message A SoftBench Request message. Any legal SoftBench
Request message can be sent. For example, you could
define a button to send an EDIT message to SoftBench
Program Editor.

The Operation Information… , Raw Information… , and Message Information
buttons display a description of the different button types. Macro
Information explains the various macros (such as "`() " for the contents of
the "() " input box) that can be used in button definitions.

When SoftBench Debugger changes to a new context, it looks for the
button configuration file in two locations, in this order:
Chapter 7 229

Using SoftBench Debugger
Customizing SoftBench Debugger
1. $HOME/.softbench/debugui.buttons

2. install_root /config/softdebug/$LANG/debugui.buttons
Chapter 7230

Using SoftBench Debugger
If Something Goes Wrong
If Something Goes Wrong
Table 7-2

Condition Explanation

A request to the
debugger failed. The
request message was:

DDE could not process a request from
SoftBench Debugger. If the solution is
not obvious, see "Help: DDE
Reference " to determine what went
wrong.

The following
operations were
flushed:

Operations that had been queued up
needed to be flushed for some reason.
The error message shows which
operations were discarded.

The asterisk ("*") is
invalid as a filename.
You MUST provide a
filename to softdebug
in order to run it.

Some SoftBench tools allow a "* " as the
context file, but SoftBench Debugger
does not. You must provide a valid
filename.

No processes were
found.

A "File: Debug Running Process … "
operation failed because no process was
found with the name given.

No such user operation
op defined.

A user-defined button was created with
an invalid operation. Find and repair
the faulty button definition using
"Options: User Configurable
Buttons… ".

The button label from
filename at line
linenum is empty.

The button definition at line linenum of
file filename has no label. Add a label
in the "Button Label " field.

The button kind (or
location) " string " is
invalid from filename
at line linenum .

These messages appear if an invalid
button kind (MSG, RAW, OP) or location
(Undefined , Frontpanel , Source ,
Assembly) was found in the button
definition file filename .
Chapter 7 231

Using SoftBench Debugger
If Something Goes Wrong
operation : invalid
relative index: index .
Must be a valid
positive (or negative)
integer.

This operation requires a valid integer
offset argument. The
UserOpEnvGotoBosRelative and
UserOpEnvGotoTosRelative
operations only accept positive
integers. Check the button definition.

Unable to open the
button save file.

SoftBench Debugger cannot create the
button definition file. Check to make
sure you have write permission in the
$HOME/.softbench directory.

Warning: operation
performed in most
recent stack activation
of procedure .

In certain unusual situations involving
recursively-called procedures,
SoftBench Debugger may switch from a
deeper invocation of a recursive
procedure to the most recent
invocation. This may result in a print
operation, for example, printing values
from a different invocation than you
expected. This message warns you that
this has happened so that you can
switch back to the earlier invocation if
desired.

Unable to open log
file:

SoftBench Debugger cannot open the
log file you specified. Check that the
filename is a valid location, and that
you have write permission on the
directory or file.

The item name is not the
first line of an
aggregate
(struct/array).
Select a line that
indicates the start of
an aggregate and try
again.

The "collapse" operation in the Show
Watchpoints dialog box must be applied
to the first element of a collapsible
aggregate structure.

Table 7-2

Condition Explanation
Chapter 7232

Using SoftBench Debugger
If Something Goes Wrong
A token must be
provided in the `()'
area for the type
request.

An operation from the "Static " menu
was chosen without providing an
argument in the "() " input box.

.__vptr cannot be
followed.

The Follow and Follow Recursively
operations in the Data Graph Window
cannot follow the special variable
.__vptr used by the C front CC
compiler. This is an internal variable
and cannot be examined.

.__vfp cannot be
followed.

The Follow and Follow Recursively
operations in the Data Graph Window
cannot follow the special variable
.__vfp used by the aCC C++ compiler.
This is an internal C++ variable and
cannot be examined.

variable cannot be
followed. It is not a
pointer, or it is
a pointer to a string or
a function.

The Follow operations in the Data
Graph Window cannot expand pointers
to strings or functions.

Can't perform operation
while one is in
progress.

You requested a "Show: Data Graph
I ndirect() " or "Show: Data Graph() "
while another such operation was
pending. Wait for the first operation to
complete and try again.

Table 7-2

Condition Explanation
Chapter 7 233

Using SoftBench Debugger
For More Information
For More Information

• On DDE commands, command syntax, and advanced DDE features,
see HP/DDE Debugger Online User's Guide . (choose "Help: DDE
Reference ").

• On any button, screen area, or menu item, use SoftBench Online
Help. Move the mouse pointer to any menu selection and press F1.

• On starting SoftBench creating projects and compiling and building
projects and targets, see Chapter 2, “Using SoftBench,” on page 41.

• On SoftBench editing, see Chapter 4, “Using SoftBench Editors,” on
page 117.

• On make and Makefiles, see make(1) in the manual pages.

• On compiler options, see cc(1), CC(1), aCC(1), or f77(1), as
appropriate for your language. Also see the HP-UX Language
Reference for your compiler.

• On C, C++, or FORTRAN expression syntax, see the appropriate
language reference.

• On standard I/O, see stdio(3S) and related UNIX manual pages.

• On writing an X11-compatible program with a window interface, see
Programming With the Xt Intrinsics, and other X11 documentation.

• On core files, see the reference page for core(4).

• On signals, see the manual pages for signal(2), sigvector(2),
bsdproc(2), sigset(2v), and signal(5).

• On register usage and Program Status Word letter codes, see a book
on Assembly Language Programming for your computer, and the
compiler manual for the language you are using (for example, HP-UX
C Language Reference).

• On the hardware configuration of your computer, see the list on your
screen at boot time.
Chapter 7234

Using SoftBench Debugger Data Graph Window
8 Using SoftBench Debugger Data
Graph Window

SoftBench Debugger Data Graph Window helps you visually navigate
your complicated data structures. For basic graph operations such as
saving the graph or selecting and moving graph objects, see Appendix A,
“Using SoftBench Graph Windows,” on page 323.
Chapter 8 235

Using SoftBench Debugger Data Graph Window
Starting and Stopping the Data Graph Window
Starting and Stopping the Data Graph
Window

Beginning a Browsing Session

You can begin a browsing session with the Data Graph Window from
SoftBench Debugger as follows:

1. Enter a variable or an expression in the "() " input box.

2. Choose "Show: Data Graph () " or
"Show: Data Graph I ndirect () ".

You can iconify SoftBench Debugger after the Data Graph Window
appears.

Stopping a Browsing Session

To end the browsing session, select the Close button. The Close button
deletes all information gathered during the session. To print the graph
see “Using Save Options for the Graph Image” on page 326.
Chapter 8236

Using SoftBench Debugger Data Graph Window
Understanding Data Graph Window Areas
Understanding Data Graph Window Areas
The Data Graph Window is a top-level window that you can iconify when
not in use.

The Data Graph Window is divided into four main areas:

• the Layout Control Area

• the Display Control Area

• the Graph Area, which includes:

— Nodes corresponding to data in memory

— Arcs corresponding to pointer references from one structure to
another

• the Window Control Area

Figure 8-1 shows an example of Graph Window Areas in the Data Graph
Window.

Figure 8-1 Data Graph Window Areas

Understanding the Layout Control Area

The Layout Control Area at the top of the browser window includes radio
buttons, which control the layout of the graph. For more information on
the layout conventions, see Appendix A, “Using SoftBench Graph
Windows,” on page 323.
Chapter 8 237

Using SoftBench Debugger Data Graph Window
Understanding Data Graph Window Areas
Understanding the Display Control Area

The Display Control Area includes toggle buttons and push buttons
which control the display of information on the Graph Area.

Button Displayed Information

■ Show Arc Labels When selected, the arc labels indicate
the pointer names.

■ Show Non-Followed Arcs When selected, SoftBench Debugger
displays all arcs. When deselected,
SoftBench Debugger only displays
arcs generated by Follow commands.

■ Suspend When selected, the Data Graph
Window does not update its display.
This reduces overhead on the
debugging session when graph
operations are not needed. When
deselected, the Data Graph Window
updates its display whenever the
user program returns control to
SoftBench Debugger.

Selected -> Pops up the "Node Actions " menu
for the selected node or nodes.
SoftBench Debugger greys out the
button if you have no nodes selected.
This menu can also be popped up by
clicking the right mouse button on
the Graph Area when you have
selected one or more nodes.

Graph -> Pops up the "Graph Actions " menu.
This menu can also be popped up by
clicking the right mouse button on
the Graph Area when you have no
nodes selected.

Understanding the Graph Area

The Graph Area displays nodes and arcs. You can also display the "Node
Values " dialog box using the "Node Actions " menu. Select a node, then
select Selected -> or click the right mouse button on the Graph Area, to
Chapter 8238

Using SoftBench Debugger Data Graph Window
Understanding Data Graph Window Areas
display the popup menu. Select "Show Node Values ".

The Graph Area can be manipulated using operations in popup menus.
Different popup menus appear depending on whether you have selected
a node or not. Table 8-1 shows the popup menus used in the Data Graph
Window.

For more information on basic operations common to all graph windows,
see “Using Graph Window Areas” on page 326.

Reading Nodes

Nodes represent data in memory. The node label indicates the particular
data type. Nodes displayed on the graph as the result of "Show: Data
Graph () " or "Show: Data Graph I ndirect () " have two extra lines
at the top of the label. one shows the memory address of the expression
or variable, and one shows the expression or variable that was in the "() "
input box.

Table 8-1 Data Graph Window Action Menus

Object Selected Actions Allowed

Any Node "Node Actions " Menu

• Follow All

• Follow All Recursively

• Show Node Values…

• Watch Node…

• Cast Node Type…

• Hide Selection

Nothing "Graph Actions " Menu

• Zoom In

• Zoom Out

• Node Width…

• Save Image…

• Clear Graph
Chapter 8 239

Using SoftBench Debugger Data Graph Window
Understanding Data Graph Window Areas
Reading Arcs

Arcs represent pointers from one structure to another. The arc label is
the name of the pointer, if named. You can toggle "■ Show Arc Labels "
to display or hide the arc labels.

Using Dialog Boxes

The popup menu selection "Show Node Values " enables the "Node
Values " dialog box, which displays the data members (including arrays)
within a particular structure and their values.

Understanding the Window Control Area

The Window Control Area at the bottom of the Data Graph Window
includes "Queue Length " information and push buttons:

Queue Length The Queue Length status indicates how many internal
graph operations are pending. This gives you feedback
about how your request is proceeding. Be aware that
this number can increase and decrease as new
operations are added to and removed from the queue.

Stop Stop is active when the number of operations in the
queue is greater than one (otherwise greyed out). As
SoftBench Debugger processes each operation, it
checks to see if this button has been pressed. When
selected, SoftBench Debugger deletes the pending
operations, halts the operation in progress, and
displays partial results in the Graph Area.

Close When selected, the Data Graph Window closes. The
Escape key is bound to this button. The Close button on
the window manager frame also closes the window.

When you close the Data Graph Window, SoftBench
Debugger discards all the graphed data.
Chapter 8240

Using SoftBench Debugger Data Graph Window
Using the Graph Area
Using the Graph Area
The Graph Area helps you understand your program by creating a visual
image of the data structures in memory and controlling the information
displayed.

Displaying New Nodes

You add new nodes in the Graph Area by either of the following methods:

• Entering an expression or variable in the "() " input box and choosing
"Show: Data Graph () " or "Show: Data Graph
I ndirect () ".

• Selecting a node in the Graph Area and selecting "Follow All " or
"Follow All Recursively ". SoftBench Debugger displays the
dereferenced pointers as new nodes, and connects them by arcs. You
can select these new nodes and follow them.

"Follow All Recursively " recursively follows pointers in each new
node. In order to avoid uncontrolled growth of the graph, this
operation follows only pointers with the same name as the pointers in
the node you originally specified. For example, if you "Follow All
Recursively " on a structure that contains pointers to several large
data structures, the Data Graph Window does not trace down every
location pointed to by all pointers within the structure. It displays the
immediate children and stops. However, suppose one of the child
structures is the root of a binary tree, each node of which contains
left and right pointers. Choosing "Follow All Recursively " on
any tree node displays the entire tree below that node, since all nodes
contain the same pointer names (left and right) as the original
node.

You can access these operations by selecting the Selected -> menu
button, or by clicking the right mouse button on the Graph Area to
bring up a popup menu.

Using the "Node Values" Dialog Box

You can view the values of the members within a particular structure by
double clicking on the node or by selecting the node and selecting "Show
Node
Chapter 8 241

Using SoftBench Debugger Data Graph Window
Using the Graph Area
Values ". The "Node Values " dialog box displays a list of all data
members and their values. (See Figure 8-2.) The list can be scrolled and
the text selected and copied as with any other Edit Area list.

Figure 8-2 "Node Values" Dialog Box

This dialog box includes two toggle buttons and one push button:

Button Action

■ Show Embedded Arrays When selected, displays all the array
element values for embedded arrays. Selecting this in
one "Node Values " dialog box globally selects it in all
other boxes.

■ Reuse Window When selected, the next "Show Node Values "
selection displays the new node values in the existing
"Node Values " dialog box, overwriting the previous
node values.

Selected -> Displays the "Values Actions " menu.

Selecting the Selected -> menu button, or clicking the right mouse button
on the "Show Node Values " display area, brings up the "Values
Actions " menu. This menu allows you to operate on selected values.
Chapter 8242

Using SoftBench Debugger Data Graph Window
Using the Graph Area
Table on page 243 shows the popup menu available in this dialog box.

Displaying Data Members

You can display a particular member value or values on the labels of
nodes in the Graph Area by selecting the member in the "Node Values "
dialog box and selecting "Show On Graph". "Hide On Graph " removes the
selected value or values.

Setting Data Member Values

Selecting "Set Values… " invokes the "Set Values " dialog box, which
enables you to set a data member value. A one-line editable area
contains the selected member's address as "expression= ". Enter the
desired value to the right of the = and select OK to complete the
assignment.

Following Selected Pointers

"Follow " and "Follow Recursively " perform the same operation as on
the Graph Area. It is useful to follow the pointers selecting the "Show
Node Values " dialog box if the object contains many pointers and you
want to follow only a few of them.

SoftBench Debugger displays the special C++ variable .__vptr (used
with aCC) or .__vfp (used with CC) in the "Node Values " dialog box if the
object has virtual functions. However, this virtual pointer cannot be
followed.

Table 8-2 Node Values Dialog Box Action Menu

Object Selected Actions Allowed

Data Member Values Actions Menu

• Follow

• Follow Recursively

• Set Value…

• Show On Graph

• Hide On Graph
Chapter 8 243

Using SoftBench Debugger Data Graph Window
Using the Graph Area
Suspending Graph Updates

Selecting the "■ Suspend " toggle button suspends updating of the Graph
Area as you step through your program, which can improve debugging
performance. As soon as you select "■ Suspend ", popup menu actions
become limited to those which manipulate the existing graph, such as
"Save Image… " and "Hide Selection ". Deselecting
"■ Suspend " brings the Graph Area and dialog boxes up-to-date, and
activates all menu items.

Deactivating the Graph

SoftBench Debugger deactivates the Graph Area whenever you unload
the debugged program from SoftBench Debugger or the debugged
process executes an exit statement. Again, popup menu actions become
limited to those which manipulate the existing graph.

Stopping a Graph Process

To stop an undesired or lengthy graph action, select the Stop button. The
nodes processed prior to the stop remain displayed.
Chapter 8244

Using SoftBench Debugger Data Graph Window
Sample Use Models
Sample Use Models
This section introduces you to several Data Graph Window concepts
useful in verifying the correct or expected operation of your program's
data structures. By setting strategic breakpoints and selecting the
pointer dereferencing commands, you can quickly visualize what
happens to your data structures during program execution. Using the
Data Graph Window increases your program understanding and
decrease your defect isolation time.

The following scenario assumes you have a defect in your program,
which contains binary trees implemented with pointers. These use
models provide scenarios for:

• Visually picturing the data structures, by graphing the overall
connections within a large interconnected data structure.

• Displaying values of data members within the structures represented
by nodes on the Data Graph Window.

The source for the example used in this section is found in
/opt/softbench/examples/bintree/bintree.C .

Verifying Correct Data Structures

Suppose that your program has a binary tree defined by the variable
btree . At some breakpoint during execution of the program, assume you
want to see the state of the binary tree.

Viewing btree

To see the binary tree in the Data Graph Window, you would enter btree
in the "() " input box and choose "Show: Data Graph () ". The Data
Graph Window opens, displaying a single node representing the btree
variable. The node is labeled (btree) with the type class
\\BinaryTree .

To follow all the pointers in btree , you would select the node and select
"Follow All " from the "Selected " menu. SoftBench Debugger
dereferences all non-NULL pointers in btree and adds new nodes to the
Data Graph Window for each pointer. In this model, one node is added of
type class TreeNode .
Chapter 8 245

Using SoftBench Debugger Data Graph Window
Sample Use Models
If you enabled "Show Arc Label ", you could see the name of the data
member pointer, root . Figure 8-3 shows what the graph would look like
at this point in the execution of this program.

Figure 8-3 Binary Tree Node

Continuing Program Execution

Now select the \\TreeNode node. Select the Selected -> menu button, or
click the right mouse button, to display the "Node Actions " menu. Select
"Follow All ". This causes all pointers in this node to be displayed.

Continue execution from the main SoftBench Debugger toolface until the
next breakpoint, which is set after the insertion of another tree node.
After another Continue a third tree node is added. You might see
something like Figure 8-4.

Figure 8-4 Binary Tree Node with Children
Chapter 8246

Using SoftBench Debugger Data Graph Window
Sample Use Models
Showing Nodes

Assume that at this point in your program you expect yet another
pointer to be added. But your next Continue does not add another node.
The reason is because "Follow All " dereferences pointers only one level
deep. To follow all pointers to the end of the list, you could select the
previous tree node and select "Follow All Recursively " from the
"Selected " menu. This displays all nodes from that node forward.

Some structures may have many pointers that you do not want to follow.
You could instead choose to dereference only particular pointers. You
would first select the node of interest and select "Show Node Values "
from the "Selected " menu. The "Node Values " dialog box appears,
listing each data member and value. You would then select the pointer
data member of interest from the list, click the right mouse button on the
"Node Values " dialog box to display the "Values Actions " popup, and
select "Follow Recursively ". Only pointers with that name would be
recursively followed. Figure 8-5 shows a recursive dereferencing of all
data member pointers named left .

Figure 8-5 Dereferencing Particular Data Members

Viewing Values of Data Members

Sometimes you might need to compare the data member values
associated with different nodes. You can display multiple "Node Values "
dialog boxes by turning off "Reuse Window ". The next time you select
"Show Node Values " from the "Selected " menu, SoftBench Debugger
displays a new dialog box (see Figure 8-6).
Chapter 8 247

Using SoftBench Debugger Data Graph Window
Sample Use Models
Figure 8-6 Viewing Values from Multiple Nodes

Viewing Embedded Arrays

Selecting "■ Show Embedded Arrays " on the "Node Values " dialog box
displays the values of elements of arrays embedded in class or struct
types. If you are tracking down a problem which might relate to an
embedded array, you must turn on "■ Show Embedded Arrays " to view
the element values. Figure 8-7 shows two "Node Values " dialog boxes
with "■ Show Embedded Arrays " selected.

Figure 8-7 Viewing Values from Embedded Arrays

Showing Values On the Graph

When you want to view the values of many nodes, select the values of
Chapter 8248

Using SoftBench Debugger Data Graph Window
Sample Use Models
interest and select "Show On Graph " from the Selected-> menu button on
the "Data Graph - Node Values " dialog box. This command labels each
selected node with specific data member names and values.

You could transform the prior graph by selecting data members left ,
right , and key , and selecting "Show On Graph ". Any node with a data
member matching one of these names adds the matching data member
and value to the label, as shown in Figure 8-8.

Figure 8-8 Viewing Data Members on The Graph Nodes
Chapter 8 249

Using SoftBench Debugger Data Graph Window
For More Information
For More Information

• On any button, screen area, or menu item, use SoftBench Online
Help. Move the mouse pointer to any menu selection and press F1.

• On basic operations like clearing, saving, and viewing the Graph
Area, see Appendix A, “Using SoftBench Graph Windows,” on
page 323.
Chapter 8250

Using SoftBench Static Analyzer
9 Using SoftBench Static
Analyzer

SoftBench Static Analyzer aids in the understanding of moderate to
large-sized programs during the implementation, test, and maintenance
phases of the software lifecycle.

New members of a software team can use SoftBench Static Analyzer to
understand the code quickly. Programmers can become more confident
about the impact of their software changes using the added information
it provides.

SoftBench Static Analyzer helps you better understand your programs
by answering questions like:

• What code will be affected if I change this parameter list?

• What functions and classes call this function?

• Where is this identifier's value modified?

• What code accesses any element of this class?

• Where are all the calls to a specific overloaded definition of this C++
member function?

SoftBench Static Analyzer helps you analyze program information such
as call trees, class hierarchy, file include relationships, and variable
definition and use. SoftBench Static Analyzer presents the information
in a text list (on the main window) or with a graphical display of
relationships (accessed from the "Graph " menu). You can immediately
edit the referenced source file by double-clicking on a text list item or
graphical node.

SoftBench Static Analyzer works with code for HP C, C++ and
FORTRAN77 language compilers.
Chapter 9 251

Using SoftBench Static Analyzer
Starting SoftBench Static Analyzer
Starting SoftBench Static Analyzer
You can start SoftBench Static Analyzer from the main SoftBench
window, from your configured editor, or from SoftBench Debugger. In the
main SoftBench window, select the "Static Analyzer " icon in the
toolbar, or choose "File: Static Analysis… ". SoftBench Static
Analyzer starts, displaying all your project's functions. SoftBench Static
Analyzer focuses its queries on the current project.

Once you start SoftBench Static Analyzer, you can explore the project's
source code with queries on the "Show" menu, or with specific "Identifier"
queries on the "Symbol " menu. Commands on the "Show" menu display
all symbols in the project for a given category. For example, you can show
all functions, all classes, and all global variables.

Commands on the "Symbol " menu require an identifier in the "Symbol
() " input box. You can type a symbol name directly in the "Symbol () "
input box, or you can select a list item from a previous query which
automatically copies the relevant symbol into the input box. For
example, you select a specific global variable, then choose "Symbol:
References () " to display all references to the selected global variable.
When you execute a Static query from the configured editor or SoftBench
Debugger, select the symbol of interest, then choose a command from the
"Static " menu. The "Static " menu in the editor and SoftBench
Debugger equates to the "Symbol " menu in SoftBench Static Analyzer.

Within SoftBench Static Analyzer you can choose between textual and
graphical queries.

Textual Queries The main SoftBench Static Analyzer
window provides facilities for making
textual query requests, displaying
the results in a list, and browsing the
results in the editor.

Graphical Queries The Static Graphs provide facilities
for making query requests, displaying
the results graphically, and browsing
the results in the editor.

Textual queries via the "Show" and "Symbol " menus are effective while
you are learning about the identifiers, such as functions and global
variables, used in your code. Graphical queries are effective when you
Chapter 9252

Using SoftBench Static Analyzer
Starting SoftBench Static Analyzer
are learning about relationships between elements in your code. See
Chapter 10, “Using Static Graphs,” on page 283 for more information on
the Static Graph.

SoftBench Class Graph/Editor provides a graphical way to edit your C++
programs. You can create, delete, and modify C++ classes, inheritance
relationships, member functions, and data members. See Chapter 5,
“Using SoftBench Class Graph/Editor,” on page 133 for information on
SoftBench Class Graph/Editor.

SoftBench Static Analyzer brings up your configured editor to display the
queried source code. Using either the textual or graphical view, you can
access the associated source file by double-clicking on a list item or
graphical node.
Chapter 9 253

Using SoftBench Static Analyzer
Preparing to Make Queries
Preparing to Make Queries
To use SoftBench Static Analyzer effectively you must first understand
some simple preparation concepts:

• Generating Static Data

• Specifying What Data to Analyze

Generating Static Data

Before you can use SoftBench Static Analyzer for program
understanding, you must first generate Static information about your
application by parsing code and creating a Static database. The best
way to generate the Static information is from the SoftBench main
window:

1. Set the "■ Static " compile mode toggle button. This action adds the
"-y " compile flag to the build options.

2. Select the project or target of interest in the project browser or target
graph.

3. Select Build .

4. When the build completes successfully, select the "Static Analyzer "
icon from the toolbar. SoftBench Static Analyzer appears with all
your program's functions displayed in the query results area.

If your program contains compile errors, the compiler may not be able to
generate complete Static information. The compiler analyzes your
program as well as it can and generates Static information based on that
analysis. This may result in incomplete or missing information. For
example, a serious compile error may result in all Static information for
a function being discarded. In a less serious case, the compiler may
discard the Static information for a specific identifier. You can still use
SoftBench Static Analyzer with this incomplete information, but
SoftBench Static Analyzer cannot display complete information in these
situations. Correct the compile errors and recompile your program to
ensure SoftBench Static Analyzer has complete information.

Static databases from previous releases of SoftBench are not compatible
with the current Static database format. You must remove and
regenerate your static database.
Chapter 9254

Using SoftBench Static Analyzer
Preparing to Make Queries
Updating Static Data without Building

Once the Static database is created, SoftBench has the knowledge to
update Static data, whether you build the project from SoftBench or
analyze the files from SoftBench Static Analyzer.

To successfully generate Static data without rebuilding the project,
choose "File: Analyze File Set ".

Specifying Static Data to Analyze

SoftBench Static Analyzer performs queries on source files in your
program. It gathers this information from a Static database (the
Static.sadb file), which your compiler created when you set the
"■ Static " compile mode toggle button before a build.

SoftBench Static Analyzer allows you to expand the set of files on which
queries are based by choosing "File: Customize File Set ". When you
work with SoftBench projects, you can expand the focus of your queries
to include subprojects and parent projects of the current project. When
you run SoftBench Static Analyzer directly from the command line, you
can expand the focus of your queries by manually adding directories and
files to the analysis file set.

Using the Default Analysis File Set

In most cases, SoftBench Static Analyzer properly determines what files
to analyze. You do not need to take any special actions. Simply build your
project with the "■ Static " compile mode toggle button set, and the
build process creates the Static database. SoftBench Static Analyzer
then reads the database and allows you to make queries on your
program.

By default, SoftBench Static Analyzer uses the current project's Static
database. The database contains the information on all source files used
to create the targets in the project.

This simple model of building a project and analyzing the code in the
project is the recommended way to use SoftBench Static Analyzer

Including Subprojects and Parent Projects

If you need to make queries focused on more than just the current
project, you can expand the Static file set to include subprojects and
parent projects:
Chapter 9 255

Using SoftBench Static Analyzer
Preparing to Make Queries
1. Choose "File: Customize File Set… " to display the "Customize
File Set " dialog box.

2. Set the appropriate toggle buttons to include the current project, its
subprojects, and its parent projects in the analysis file set. When you
set the toggle buttons, the associated projects are added to the
"Projects in File Set " list. When you deselect toggle buttons,
associated projects are removed from the "Projects in File Set "
list. You can also remove projects from the list by selecting specific
projects and pressing the Delete button.

Using these toggle buttons, you can even eliminate the current
project from the analysis file set, focusing your queries entirely on
parent projects and/or subprojects.

3. Select OK to confirm your changes and close the dialog box.

Once you make these changes, SoftBench Static Analyzer opens the
appropriate Static databases and future queries use the new set of
analysis information. SoftBench Static Analyzer saves the toggle button
settings for parent projects and subprojects automatically when you exit
SoftBench Static Analyzer.

Customizing the File Set in Non-Project Mode

When you start SoftBench Static Analyzer directly from the command
line, SoftBench Static Analyzer does not have access to project
information. Therefore, you must customize the analysis file set
manually. In this mode, when you choose "File: Customize File
Set…", SoftBench Static Analyzer posts a different dialog box in which
you can add directories and files. SoftBench Static Analyzer then
analyzes those files and includes that information in the analysis file set.

Keeping Analysis Files Current

The files used by SoftBench Static Analyzer must be kept current to
provide accurate results. When you modify your source files, rebuild the
project. A successful build automatically updates the static information.
Subsequent queries use the information in the updated Static
database.

You can also make sure all static information is current by choosing
"File: Analyze File Set ". This command scans all source files in the
current project and updates any out-of-date static information.
Chapter 9256

Using SoftBench Static Analyzer
Preparing to Make Queries
Filtering Queries by File Set

Your programs often include files, such as system header files, that you
may not want to include in your queries. By default, SoftBench Static
Analyzer includes these files in any queries. You can restrict your queries
to check only those files in your analysis file set by setting the
"■ Filter Results Using Fileset " toggle button, located on the
dialog box posted by "Options: Behavior Settings… ".

Determining the File Set Status

SoftBench Static Analyzer shows the state of the analysis file set in the
"File Set Status " field. Possible values are:

None No analysis file set has been
specified, or the default file set is
empty. This status usually indicates
that static data has not been
generated.

Closed The analysis file set is available but
the associated database files could
not be found or opened.

Open The analysis file set is available and
the associated database files are
current with respect to the source
files used to create them.

Open/Out-of-Date The analysis file set is available but
one or more source files are newer
than the information in their
associated database files. Choose
Build in the main SoftBench window
to rebuild the current project.
Alternatively, choose "File:
Analyze File Set " to update the
database files without rebuilding.

Updating An update is in progress because you
chose "File: Analyze File Set " and
the process has not yet completed.
Chapter 9 257

Using SoftBench Static Analyzer
Using SoftBench Static Analyzer Window Areas
Using SoftBench Static Analyzer Window
Areas
Figure 9-1 shows the SoftBench Static Analyzer window. The primary
window areas include:

Menu Bar Provides access to most SoftBench Static Analyzer
functions. Refer to SoftBench Online Help for detailed
descriptions of any menu command.

File Set Information Area Displays the current file set and its status.

The "File Set " field can contain any combination of
the following values:

• Project
• Subprojects
• Parent Projects
• Current working directory (in non-project,

standalone mode)

The "File Set Status " field shows the current state of
the analysis file set. Possible values include:

• None
• Closed
• Open
• Open/Out-of-Date
• Updating

See “Specifying Static Data to Analyze” on page 255 for
more information.

"Symbol () " Input Box Provides a text area to enter the identifier for
"Symbol " menu commands. You must enter an
identifier before choosing menu items on the "Symbol "
menu.

"■ Scoping " Toggle Button Enables you to select whether scoping is
used in a "Symbol " menu command. When SoftBench
Static Analyzer uses scoping, it uses the scope of the
identifier for the next query. Otherwise, SoftBench
Static Analyzer displays all symbols that match the
identifier.
Chapter 9258

Using SoftBench Static Analyzer
Using SoftBench Static Analyzer Window Areas
For more information on scoping, see “Using Scoping”
on page 268.

Query Information Area Displays what query was run last (the "Query "
field), how many results are currently displayed (the
"Results " field), and what level of scoping was used
(the "Scoping Used " field).

Possible values for "Scoping Used " include:

• None
• File &Line
• File Only
• empty (the area is blank)

Query Results Area Lists the results of the latest query executed from
the "Show" or "Symbol " menus or the last query chosen
from the "History " menu. Query results include file
names, line numbers, function names, and associated
program text for each query result. Double-clicking on
a result causes SoftBench to load the file in your
configured editor with the cursor positioned at the
location of the query result.

Figure 9-1 SoftBench Static Analyzer Window and Areas
Chapter 9 259

Using SoftBench Static Analyzer
Making Textual Static Queries
Making Textual Static Queries
After you have generated Static information, you can make queries on
your application. SoftBench Static Analyzer supports both textual and
graphic queries on your application. You can execute Static queries in
three ways:

• Choose a command from the "Show" menu.

• Enter a program identifier in the "Symbol () " input box, then choose
a related command from the "Symbol " menu.

• Select a line in the Query Results Area, then choose a related
command from the "Symbol " menu.

See Chapter 10, “Using Static Graphs,” on page 283 for a description of
graphical queries.

Making General Queries

The "Show" menu commands allow you to perform general queries on
your entire application. For example, you can find all the source files,
global variables, or classes in your application.

• To display all source files in the current analysis file set, choose
"Show: Source Files ".

• To display the global variables in your application, choose "Show:
Global Variables ".

• To display all C++ classes, choose "Show: Classes ".

• To display all functions, choose "Show: Functions ".

Making Queries Based on a Program Identifier

The "Symbol " menu allows textual queries about specific symbols such as
a specific class, function, or variable. "Symbol " queries end with " () "
and return information about an identifier. The identifier must be
entered in the "Symbol () " input box. You can either type directly into
the input box or select text from the Query Results Area.

You can access the "Symbol " menu commands from your configured
editor or SoftBench Debugger as well. In these other tools, select the
Chapter 9260

Using SoftBench Static Analyzer
Making Textual Static Queries
symbol of interest in the source code, then choose a command from that
tool's "Static " menu.

Selecting Text

Selecting text from the Query Results Area records not only the text, but
the filename, line number, and column number that locates the text.
SoftBench Static Analyzer uses this location information in queries when
" Scoping " is selected. (See “Using Scoping” on page 268 later in this
chapter.) If you type an identifier into the "Symbol () " input box,
SoftBench Static Analyzer has no location information available. The
scoping toggle button is turned off and cannot be set.

Select text from the Query Results Area in one of the following ways:

• Select a line in the Query Results Area by single clicking the left
mouse button. SoftBench Static Analyzer copies the identifier
associated with that query result to the "Symbol () " input box.

• Drag from the beginning of an identifier to the end. Use the right
mouse button in the Query Results Area (since the left mouse button
selects the entire line). The identifier highlights as you drag. Press
Control-Insert to copy the text to the clipboard. Move focus to the
"Symbol () " input box and press Shift-Insert to paste the text into the
input box.

This method of selection does not work for fully qualified C++
identifier names. The double-click action does not extend past a
hyphen or double colon. For example, the C++ name Picture::
Picture cannot be selected using this method.

The contents of the "Symbol () " input box must be an identifier name,
except when executing "Symbol (): Pattern Match () ". SoftBench
Static Analyzer ignores leading and trailing blanks and tabs.

Understanding the Types of References

The "Symbol " menu provides several queries about where identifiers
occur in your program. The "References " command provides the most
complete list. The indentation on the "Symbol " menu indicates the
related subsets of queries:

References Lists all occurrences of the identifier. Encompasses all
instances found in any of the remaining categories.
Chapter 9 261

Using SoftBench Static Analyzer
Making Textual Static Queries
Declarations Lists all occurrences of an identifier that announce
properties about it.

Definition Lists the single declaration of an identifier that causes
storage to be allocated.

Uses Lists occurrences where the program uses, modifies,
initializes, or calls an identifier's value.

Modifications Lists occurrences where the program modifies or
initializes an identifier's value.

Figure 9-2 shows examples of the kinds of occurrences that are returned
by the respective queries. Notice that several types of occurrences are
actually subsets of other types. For example, "Symbol: Uses () "
includes modifications.

Figure 9-2 Relationships among Reference Queries

Determining Identifier Classification

To display the classification (such as variable or function) of an identifier:

1. Enter the identifier into the "Symbol () " input box.
Chapter 9262

Using SoftBench Static Analyzer
Making Textual Static Queries
2. Choose "Symbol: C l assification () ".

Troubleshooting Invalid Identifiers for Queries

SoftBench Static Analyzer returns an "Identifier not found " error for
queries on identifiers that are not present in its database.

Possible causes for this error include:

1. A source file has been edited to add new identifiers and has not been
re-analyzed. Save the changes and either rebuild the project or choose
"File: Analyze File Set ".

2. A source file contained compile errors, and the compiler was not able
to deduce information about the identifier. Correct the compile errors
and rebuild or re-analyze the application.

In both cases you could also choose "Symbol: Pattern Match () " to do a
regular expression search for the identifier.

Using Pattern Matching

You can use pattern matching when you don't know the exact name of
the identifier for which you are looking. You can search for a pattern and
examine the list of results for an item that meets your needs. You can
also search for literal strings or identifiers within comments.

To match a pattern in the source files:

1. Enter the desired pattern in the "Symbol () " input box. The pattern
entered can contain any regular expression or shell expression,
depending on which option is set. To set the pattern matching options,
choose "Options: I dentifier Matching Rules… ".

2. Choose "Symbol: Pattern Match () ".

All occurrences of the expression are displayed in the Query Result Area.
Scoping has no effect.
Chapter 9 263

Using SoftBench Static Analyzer
Using Query Results
Using Query Results
SoftBench Static Analyzer query results are displayed in a textual list
using the main Static window. There are many ways to use these query
results. One common use scenario includes:

1. Browse the SoftBench Static Analyzer query results.

2. Edit the source file at the query result location.

3. Update the Static database by rebuilding your application.

4. Perform a SoftBench Static Analyzer query with new Static data.

Browsing the Query Result

The SoftBench Static Analyzer query result can be browsed by double
clicking on a line in the Query Results Area. This action invokes the
configured SoftBench editor and positions the cursor at the line where
the query result appears in the source file.

Editing the Source File

After you browse the query result and display the source, you are ready
to modify your source file. Make the changes to the source file and save
the changes. Notice that the "File Set Status " changes to
"Open/Out-of-Date " in SoftBench Static Analyzer.

Updating the Database

Once you have made the changes to your source files, you are ready to
generate updated Static information. The recommended way to update
Static information is by building the project:

• From the editor, choose "File: Build Project ".

• Alternatively, from the main SoftBench window, select the project,
then select Build .

If you do not want to rebuild, choose "File: Analyze File Set " in
SoftBench Static Analyzer. (See “Updating Static Data without Building”
on page 255.)
Chapter 9264

Using SoftBench Static Analyzer
Using Query Results
After a successful build or analysis of the file set, the "File Set Status "
changes to "Open".

Performing a Query

After rebuilding your application you are ready to analyze the changed
program with SoftBench Static Analyzer. You can perform the same
Static query or initiate new queries. From the main Static window use
the "Show" and "Symbol " menus to execute queries.
Chapter 9 265

Using SoftBench Static Analyzer
Simplifying Query Results
Simplifying Query Results
SoftBench Static Analyzer provides filtering mechanisms that allow you
to focus only on the query results in which you are interested. These
filters reduce the chance of information overload. SoftBench Static
Analyzer also provides specific filters for graphical queries, which are
described in “Simplifying Graph Displays” on page 292.

Filtering Results Using the File Set

SoftBench Static Analyzer provides a filter to focus queries only on the
code in your project. For example, there are many instances when you
are not interested in code libraries developed by other teams, or the
identifiers declared in the /usr/include directory. Choose "Show:
Source Files " to display the source files SoftBench Static Analyzer uses
for query results. Without a filter, this query produces a list similar to
the one displayed in Figure 9-3. By default, SoftBench Static Analyzer
reports results from all files that were compiled, including header files.

Table 9-1 SoftBench Static Analyzer Display Options

Command Description

"View: Display Results "
submenu

Controls what data attributes are
displayed in the Query Results
Area.

"View: Sort Results "
submenu

Allows you to sort results by file,
result, or attribute.

"View: Filter Results… " Provides numerous toggle button
settings for filtering C++ data. (See
“Filtering C++ Query Results” on
page 268.)

"Options: Behavior
Settings… "

Provides access to the filter that
limits queries to the analysis file set.
Chapter 9266

Using SoftBench Static Analyzer
Simplifying Query Results
Figure 9-3 Unfiltered Source File List

To limit queries to only the files in your analysis file set, choose
"Options: Behavior Settings… ". In the resulting dialog box, set the "■
Filter Results Using Fileset " toggle button.

To display the filtered list of source files, choose "Show: Source Files "
again. Figure 9-4 displays the result of this filter.

Figure 9-4 Filtered Source File List

Once you enable this filter, SoftBench Static Analyzer reports results
based only on the projects specified in the analysis file set. For more
information on analysis file sets, see “Specifying Static Data to Analyze”
on page 255. The filter applies to all future queries.
Chapter 9 267

Using SoftBench Static Analyzer
Simplifying Query Results
Filtering C++ Query Results

In many cases, the query results of interest are a subset of the default
query results that SoftBench Static Analyzer provides. The "View:
Filter Results… " command provides a way to generate this subset of
query results. These filters are available in C++ SoftBench only.

For example, if you are investigating the interface of a class, you are
interested only in public member functions of that class. At this point
you would not be interested in viewing the private and protected member
functions.

To filter the private and protected member functions:

1. Choose "View: Filter Results… ", which displays the "Query
Filters " dialog box.

2. Turn off the "■ Protected Class Members " and "■ Private Class
Members" toggle buttons. Be sure that "■ Public Class Members " is
set.

3. Select OK.

All query results are immediately updated so that private and protected
members are not displayed. SoftBench Static Analyzer retains filtered
results, but does not display them.

Using Scoping

When you select a program identifier from the Query Results Area,
SoftBench Static Analyzer automatically puts it into the "Symbol () "
input box and sets the "■ Scoping " toggle button. After you select a
query and get results, the "Scoping Used " field indicates that the
identifier's location (filename, column, and line number) within the
source file was used to display results only on that exact identifier in the
program. The label also indicates what type of scoping was used. For
example, if you select an identifier count defined in function A, only
references to count in function A are displayed. Variables named count
in other functions, or in the global scope, are not displayed.

If the location information should not be used, then deselect the
"■ Scoping " toggle button. SoftBench Static Analyzer then uses only the
name in the "Symbol () " input box and returns the results for all
identifiers with that name.

Scoping is also used with queries made from Static Graphs. Scoping
Chapter 9268

Using SoftBench Static Analyzer
Simplifying Query Results
information is used for queries made on selected nodes or arcs. Queries
resulting from the Display operation are not scoped. See Chapter 10,
“Using Static Graphs,” on page 283 for information on Static Graphs.

Scoping Prerequisites and Constraints

In order to use scoping, you must select the entry in the "Symbol () "
input box from the Query Results Area, your configured SoftBench
editor, or SoftBench Debugger. Entering an identifier from the keyboard
precludes the use of scoping information, since SoftBench Static
Analyzer has no location information available.

Troubleshooting Scoping Information

When you select an identifier from a file that has been modified, the
location (scoping) information might be incorrect. When the "Symbol "
menu queries are executed, SoftBench Static Analyzer automatically
ignores first the column and line number and then the filename from the
scoping information until it locates a matching identifier. The result may
be a partially scoped or non-scoped query.

Scoping Example

Consider the following example:

1 int theta;
2
3
4 main ()
5 {
6 int x;
7 char *theta;
8
9 theta = "Hello World%d\n";
10 printf(theta,2);
11 }
12
13 foo(int theta)
15 {
16 return(theta*2);
17 }

If you select the theta identifier on line 9 (not typed into the "Symbol
Chapter 9 269

Using SoftBench Static Analyzer
Simplifying Query Results
() " input box) and execute a "Symbol: References () " command with
scoping, SoftBench Static Analyzer displays the following:

file.c (7), main: char *theta
file.c (9), main: theta = "Hello World%d\n";
file.c (10), main: printf(theta,2);

The "Scoping Used " value is "File & Line ".

If you turn off scoping and perform the same query again, SoftBench
Static Analyzer displays the following:

file.c (1), Global: int theta;
file.c (7), main: char *theta
file.c (9), main: theta = "Hello World%d\n";
file.c (10), main: printf(theta,2);
file.c (13), foo: foo(int theta);
file.c (16), foo: return(theta*2);

SoftBench Static Analyzer displays all occurrences of theta , in all
scopes. The "Scoping Used " value is None.
Chapter 9270

Using SoftBench Static Analyzer
Redisplaying Past Queries
Redisplaying Past Queries
Each time SoftBench Static Analyzer executes a successful "Show" or
"Symbol " menu command, SoftBench Static Analyzer places the query
name in the "History " menu. From the "History " menu, the query
result can be reviewed later, printed, saved to disk, or deleted.

Note that SoftBench Static Analyzer saves the query result, not the
query itself. Any changes that have happened since the original query
(such as filters being added or removed, or new source being analyzed)
are not reflected in the saved query result.

The "History " menu does not contain the results of unsuccessful queries.
For example, if you enter an identifier in the "Symbol () " input box that
is not a function name and choose "Symbol: Function →: Parameters
() ", an error message appears and the "Parameters identifier " query
does not appear in the "History " list.

By default, the "History " menu contains the 10 most recent, successful
queries. To change the number of queries saved, use the "Options:
History Menu Si ze…" menu command. Valid values range from 1 to
1000.

If the number of entries in the "History " menu equals the maximum
History Menu Size , and you perform a query, SoftBench Static
Analyzer automatically deletes the oldest query in the "History " list.

Redisplaying Query Results

To redisplay the results of a "Show" or "Symbol " command, choose
"Hi story: query name →: Query ". This causes the results to be
redisplayed in the Query Results Area. SoftBench Static Analyzer does
not re-execute the query.

Deleting a Query Result

To delete a query result, choose "Hi story: query name →: Delete ".
SoftBench Static Analyzer removes the query from the "History " menu.

Saving and Printing a Query Result

Choosing "Hi story: query name →: Print… " enables you to save a
Chapter 9 271

Using SoftBench Static Analyzer
Redisplaying Past Queries
description of the query and the query result in a file, or print to a
printer. If you print the results, SoftBench Static Analyzer prompts you
for the print command. If you save the results to a file, SoftBench Static
Analyzer prompts you for a file name. This action does not remove the
command from the "History " menu.
Chapter 9272

Using SoftBench Static Analyzer
Using SoftBench Static Analyzer in Standalone Mode
Using SoftBench Static Analyzer in
Standalone Mode
This section describes using SoftBench Static Analyzer from the
command line. When you start SoftBench Static Analyzer from the
command line, it has no knowledge of your project data. To access project
data, start SoftBench Static Analyzer from the main SoftBench window
or from the editor or SoftBench Debugger when they are started from the
main SoftBench window.

Generating Static Data from the Command Line

If you build your application outside of SoftBench, you need to use the
"-y " compile option. This flag causes your compiler to generate a Static
database, even when you build outside of SoftBench. To generate Static
information without rebuilding the application, use "-y -nocode ".

SoftBench Static Analyzer provides the ability to generate Static data
by parsing your code without first compiling it. To generate Static data
without compiling, choose "File: Analyze File Set " in SoftBench
Static Analyzer. This data is not as reliable as compiled data, nor is
SoftBench Static Analyzer as reliable in knowing how to generate this
data.

Searching Subdirectories

When you use SoftBench Static Analyzer in project-aware mode,
SoftBench knows where to find the source files in the project. In contrast,
in standalone mode, SoftBench Static Analyzer looks in the current
working directory and in any other files and directories specified in the
analysis file set.

Additionally, in standalone mode, SoftBench Static Analyzer provides a
short cut for analyzing a multi-directory application. To recursively
search all subdirectories below a specified directory, choose "Options:
Behavior Settings… " and select "■ Recursively Search
Subdirectories ". This setting causes SoftBench Static Analyzer to
recursively search all directories listed in the analysis file set.
Chapter 9 273

Using SoftBench Static Analyzer
Using SoftBench Static Analyzer in Standalone Mode
Using the Staticfileset File

The Staticfileset file, if it exists in the current directory, specifies the
initial file set when SoftBench Static Analyzer starts in standalone
mode. All files in Staticfileset , and all source files in the directories
listed in Staticfileset , are loaded as the analysis file set.

A different Staticfileset file can be used if you choose "File:
Restore File Set… ".

The format for each entry in the Staticfileset file is the data
hostname (optional) followed by the path name of the directory or file.

For example, a Staticfileset could contain these directories where
your application files and Static.sadb files reside:

/users/static-A
host2:/users/static-B

Including a directory automatically includes all files in the directory. To
exclude some files in a directory, you must explicitly list each file to
include, and you must not include an entry for the directory.
Chapter 9274

Using SoftBench Static Analyzer
Customizing SoftBench Static Analyzer
Customizing SoftBench Static Analyzer
SoftBench Static Analyzer has many options that allow you to configure
the tool for your unique environment and working style:

• Use the "View " menu to make changes to the display of data.

• Use the "Options " menu to change the behavior of SoftBench Static
Analyzer.

• Choose "Project: Modify Properties… " in the main SoftBench
window to change the location of the Static database.

All SoftBench Static Analyzer queries rely on the information stored
in the Static.sadb file. If your project encompasses source code from
several directories, SoftBench stores all Static information in the
project's Static.sadb file.

By default, SoftBench stores the Static database in the project data
for a project that uses project build. It stores the Static database in
the build directory for a project that uses external build.

You should not move the Static database file unless you have
unsupported customization needs. To return to the default location
for the Static database, clear the "Static database " text field.

• Use the "View " and "Options " menus on the Static Graph to
customize the graphs. See Chapter 10, “Using Static Graphs,” on
page 283.

See SoftBench Online Help for explanations of each menu command.
When you customize the appearance and behavior, SoftBench Static
Analyzer automatically saves the changes.

When you make changes to the the display of data ("View " menu), and
behavior of SoftBench Static Analyzer ("Options " menu), SoftBench
Static Analyzer automatically saves the changes.
Chapter 9 275

Using SoftBench Static Analyzer
If Something Goes Wrong
If Something Goes Wrong
Table 9-2

Condition or Message Explanation

No static analysis
information after
compilation.

You did not specify the "■ Static "
compile mode during the build. See
“Generating Static Data” on page 254
in this chapter. Alternatively, your
PATH is incorrect. See “Prerequisites
to Using SoftBench” on page 42.

The currently defined
file set is empty
(contains no source
files or database
files)… .

Either you have specified the wrong
Analysis file set (choose "File:
Customize File Set… " or "File:
Display Files in File Set… ") or
you did not compile for static analysis.
Change compiler settings and
recompile.

No analysis database
files were found for
the current file
set…

Either you have specified the wrong
file set (choose "File: Customize
File Set… " or "File: Display
Files in File Set… ") or you did not
compile for static analysis. Change
compiler settings and re-compile.

Analysis file set is
not Open .

A query was attempted when no
Static Analysis database files were
open. Choose "File: Customize
File Set… " and select the current
project, or for non-project mode,
specify a file set.
Chapter 9276

Using SoftBench Static Analyzer
If Something Goes Wrong
You have more queries
in the "History" menu
than fit on your
screen.

• The "History " menu size is too
large. Remove unneeded "History "
entries by choosing "Hi story:
query name →: Delete " to
reduce the size of the list.

• Choose "Options: History Menu
Si ze…" and specify a smaller size.
Only the last n entries are kept
(where n is the new "History Menu
Size ").

Some of the files were
not found (see Output
window for list) .

A file in the file set could not be
accessed. Check the files specified (do
they exist, are the permissions set
correctly?), and try again.

Out of Memory . You ran out of swap space or your
process size wasn't allowed to grow
any larger. Your system administrator
may have to:

• Add swap space

• Reconfigure your kernel

The identifier that you
selected does not
appear in the
"Symbol ()" input box.

If you were selecting an identifier
from the Query Result Area, you may
not have used the right mouse button
to click or select the identifier.

The identifier that you
typed does not appear
in the "Symbol ()"
input box.

The mouse cursor must be in the
"Symbol () " input box for it to accept
keyboard input. Position the cursor,
and try again.

Table 9-2

Condition or Message Explanation
Chapter 9 277

Using SoftBench Static Analyzer
If Something Goes Wrong
source line xxx
unavailable .

The results of this command include
source file text, but the specified line
in the source file is not available,
probably due to recent editing. From
the SoftBench Static Analyzer
window, choose "File: Analyze File
Set " or rebuild the program from the
Project Window to update the Static
database. Then repeat the "Show"
command.

Node does not appear on
graph or in query
results.

The identifier in the "Symbol () "
input box is not a variable, function,
class, template type, or file. Compile
errors in your source may have
prevented the compiler from
generating Static information about
the identifier. Correct the errors and
rebuild.

The "Symbol" command is
listing results from
the entire
file set.

Turn scoping on or, if out-of-date,
recompile.

The "Symbol" commands
are not listing results
from the entire
file set.

Turn scoping off.

Table 9-2

Condition or Message Explanation
Chapter 9278

Using SoftBench Static Analyzer
If Something Goes Wrong
Source file filename not
found .

The source file you requested cannot
be found. Choose "File: Customize
File Set… " to add the project (Parent
or Subproject) containing the source
file which couldn't be found.
Alternatively, add the file to the
project by choosing "Project: Add
File(s) to Project… " and rebuild
the project. This may also be an NFS
access problem. Your system
administrator may need to add access
to the remote system that contains the
file.

Unable to open
Static.sadb.

SoftBench Static Analyzer cannot
open the Static database. It may be an
incompatible version from a previous
release of SoftBench. Delete
Static.sadb , rebuild the code and try
again.

Update of Static
Analysis Database
failed: Scanner exited
(result==1).

Either your Static Analysis Database
is from an earlier SoftBench release,
in which case you must remove the
database and regenerate the analysis
database files by rebuilding your
project (In standalone mode, choose
"File: Analyze File Set ".); or, you
requested "File: Analyze File
Set " when running from SoftBench
before creating your Static database
through a build process. You must
first create the database by building
your project.

Table 9-2

Condition or Message Explanation
Chapter 9 279

Using SoftBench Static Analyzer
If Something Goes Wrong
Duplicate instances of
identifier appear in query
results.

Your Static database may contain
data from source files that have been
removed. Remove the database and
rebuild the code and repeat the query.
Alternatively, use staticrmfile to
remove data on specific files. See
staticrmfile(1).

Symbols that you have
removed from your code
appear in query results.

Your Static database may contain
data from source files that have been
removed. Remove the database and
rebuild the code and repeat the query.
Alternatively, use staticrmfile to
remove data on specific files. See
staticrmfile(1).

Table 9-2

Condition or Message Explanation
Chapter 9280

Using SoftBench Static Analyzer
For More Information
For More Information

• On Static Graphs, see Chapter 10, “Using Static Graphs,” on
page 283.

• On Graph Window features for Static Graph and all SoftBench tools,
see Appendix A, “Using SoftBench Graph Windows,” on page 323.

• On softstatic command line options and X resources such as
autoload, see the softstatic(1) manual page, available by choosing
"Help: Show Man Page ".

• On customizing the SoftBench Static Analyzer user interface, choose
SoftBench's "Help: O verview " and select "Customizing
SoftBench ".
Chapter 9 281

Using SoftBench Static Analyzer
For More Information
Chapter 9282

Using Static Graphs
10 Using Static Graphs

SoftBench Static Analyzer includes four Static graphs to help you
visualize your program structure.

Call Graph Displays call relationships between
functions.

SoftBench Class Graph/Editor Displays inheritance, friendship,
containment, template
instantiations, base class, and
derived class relationships between
classes. You can edit the C++ classes
in your program using the SoftBench
Class Graph/Editor. This graph is
part of C++ SoftBench only. See
Chapter 5, “Using SoftBench Class
Graph/Editor,” on page 133 for more
information.

File Graph Displays #include relationships
between source files.

Query Graph Provides a general purpose graph
that can be used to keep a history of
queries used to solve a particular
problem. The Query Graph provides
the graphical equivalent of the
textual queries on the main
SoftBench Static Analyzer window.
The Query Graph is free format and
the results of each query appear to
the right of the previous results.
SoftBench Static Analyzer implies no
relationship between one query's
results and the next.

The Call Graph, Class Graph/Editor, and File Graph are specialized
graphs associated with functions, classes, and files. These graphs provide
visual detail of program structure at different levels and help you
perform the following tasks:
Chapter 10 283

Using Static Graphs
Static Graph Tasks Description

Analyzing Impact of Change Determining how classes, functions,
or files are impacted by a specific
change. For example, "What code is
affected if I change this parameter
list?"

Understanding Legacy Code Quickly understanding code you did
not develop. The graphs provide
different perspectives that can
accelerate this learning process.

Re-architecting Code Understanding the current structure
and dependencies between files,
functions, or classes to determine
what re-architecting is needed.

Query Graph Showing the sequence of queries you
used to solve a particular problem.

All Static graphs are invoked from the "Graph " menu. Each graph has its
own menu bar providing start-up, query, and customization functionality.
Chapter 10284

Using Static Graphs
Starting SoftBench Static Analyzer Graphs
Starting SoftBench Static Analyzer Graphs
The Static Graphs are invoked from the "Graph " menu of SoftBench
Static Analyzer:

Function Description

"Start " Invokes the graph without displaying
any nodes. If the graph is already
running it moves to the foreground.

"Display Symbol() " Displays the identifier provided in
the "Symbol () " input box on the
graph.

"All Items " Displays all items of a specific symbol
type on the graph. For example, you
might want to display all files on the
file graph. These menu items are also
available from the root popup menu
of each graph.

For complete descriptions of the menus, use SoftBench Online Help.
Chapter 10 285

Using Static Graphs
Making Graphical Static Queries
Making Graphical Static Queries
This section covers the common features of these graphs. For more
information on using generic SoftBench Graph Window features, see
Appendix A, “Using SoftBench Graph Windows,” on page 323.

General Static Graph Features

The Static Graphs have a consistent user interface, with several common
features:

Feature Description

Displaying Nodes Display nodes (files, functions,
variables, classes) on each of the
graphs. This can be done by entering
an identifier in the "Symbol () " input
box and selecting Display , or by
choosing the "All item" option under
the "Graph " menu or on the root
popup menu.

When you enter an identifier into the
"Symbol () " input box, Static Graph
cannot determine any scoping
information. If you want to refer to a
specific instance of the identifier,
select it in a textual Static query
result. Choose "Graph: graph type →
Display Symbol () " from the main
SoftBench Static Analyzer window.

Context-Sensitive Queries Different queries are available for
each node type on each graph. For
example, a file node has file-related
queries on the File Graph and
function-related queries on the Call
Graph.

Popup Menus The graph popup menus provide
query actions that are specific to the
node or arc type selected. Select a
node or arc with the left mouse
Chapter 10286

Using Static Graphs
Making Graphical Static Queries
button, then activate the popup menu
with the right mouse button. If no
node or arc is selected, a menu of
general graph operations appears.
The "Selected " menu contains the
same commands as the
context-sensitive popup menu.

Switching between Graphs Use "Graph: Switch To name
Graph " to move between the Static
Graphs.

Display Legend All graphs use a combination of
shapes and colors to distinguish
different types of nodes. Graph arcs
are distinguished by color and line
type. Each graph has a Legend
explaining these shapes and colors.
The Legend can be toggled on or off
from the respective graph's "View "
menu.

Finding Graph Nodes

To find a particular node on a graph, choose "Graph: Find Node…" and
enter the node name, or a portion of the name, in the dialog box input
area. This feature makes it easy to find nodes on large complex graphs.

Operating on Static Graph Nodes

Double-click on a node to edit the code represented by the node. A single
arc may represent several locations in the code, such as several calls to a
function. Double-clicking an arc displays a description dialog that lists
all locations represented by the arc. You can select a specific location in
the description dialog to edit the indicated source location.

Several other operations are available on graph nodes. Select the node
and activate a popup menu with the right mouse button, or use the
"Selected " pulldown menu on each Graph Window. Each type of node
has its own specialized popup menu for each graph, containing
operations such as:
Chapter 10 287

Using Static Graphs
Making Graphical Static Queries
Operation Description

Describe This choice brings up a dialog box that provides
auxiliary information on the node. For example, a
function node's "Describe " dialog box provides a list of
function parameters, local variables, the location of the
definition, and a list of attributes of the function.

Node Queries By selecting the node you can perform queries that are
specific to that node type and that graph.

Hide Nodes The node can be hidden from the graph by choosing
"Hide Selected ". You can also remove everything
except your selection by choosing "Hide Unselected ".

Copy Nodes You can copy nodes to other graphs using the
"Redisplay Selection " submenu. This feature allows
you to view nodes from several different perspectives.
As an example, you could copy a class to the Call
Graph, and find out all the functions that call any
member of the class.

Switching between Static Graphs

SoftBench Static Analyzer provides the flexibility to switch between
graphs quickly, allowing you to view your application from several
viewpoints. For example, you can switch from the Static Call Graph to
the Static File Graph to see which source files would be affected by a
change to that function. Each graph provides menu actions that are
unique to either files, functions, variables, or classes. You can also enter
identifiers in the "Symbol () " input box on any graph. You could, for
example, enter main in the "Symbol () " input box on the File Graph and
select Display .

Displaying Nodes on Another Graph

The popup menus on each graph provide operations that are specific to
that graph. You can copy nodes from one graph to another to access the
features of the new graph. Select a node, display the popup menu, and
choose one of the selections on the "Redisplay Selection " submenu.

For example, if you select a function in the Call Graph, you can find what
functions call or are called by the function. If you copy the function to the
SoftBench Class Graph/Editor, you can find what classes access or are
Chapter 10288

Using Static Graphs
Making Graphical Static Queries
accessed by the function.

Using Description Boxes

The Static Graphs provide the ability to display additional detail about
identifiers and relationships through description dialog boxes for both
nodes and arcs. One of the main advantages of using these dialog boxes
in conjunction with the graphical display of your program, is the ability
to see more detail without moving back and forth between the main
SoftBench Static Analyzer window and the Static Graphs. You can access
these dialog boxes with the graph popup menus by selecting a node or arc
and choosing "Describe " from the popup menu.

For example, assume you have just generated a call graph and you want
to find out more about a particular function. Select the function node and
choose "Describe " from the popup menu. See Figure 10-1 for an example
of the description dialog box for function PayOffOdds . The dialog box
displays the parameters and local variables of the function.

Figure 10-1 "Function Description" Dialog Box

You can perform several actions on any item in the "Describe " dialog box
by selecting the item and then selecting Actions . This menu allows you to:

• Edit or browse the corresponding line of source code with the editor.
Double-click on a line, or select the line and choose "Edit " from the
Actions menu.

• Copy an item from the list to another Static Graph. Choose the
"Redisplay Selection " submenu to copy the item to one of the other
Static Graphs.

You can also use the graph description dialog box to determine the
functions and global variables defined in a source file:

1. Select a source file node.
Chapter 10 289

Using Static Graphs
Making Graphical Static Queries
2. Choose "Describe " from the popup menu.

The "Describe " dialog box shows all functions and any global variables
defined in that source file.

Arc description boxes show additional detail on the relationships
between nodes. For example, you might be interested in determining all
places where a particular function calls another function. Select the arc
and choose "Describe " from the popup menu to see occurrences of calls.

Setting Breakpoints for SoftBench Debugger

From any Static Graph you can set breakpoints on functions, member
functions, and call sites. To set a breakpoint from the Static Call Graph:

1. Start SoftBench Debugger from the main SoftBench window.

2. Display the desired identifier on the Call Graph.

3. To set a breakpoint on a function:

a. Select the function node with the left mouse button.

b. With the right mouse button, choose "Set Brea kpoint " from the
"Function Actions " popup menu.

4. To set a breakpoint on a particular function call:

a. Select the arc representing the call in which you are interested.
For example, if you want a breakpoint on a particular call of
printf within main , select the arc between main and printf .

b. With the right mouse button, choose "Describe " from the "Arc
Actions " popup menu.

c. Select the particular call you want in the "Describe " dialog box.
You may double-click on the individual calls to examine the code in
your configured editor.

d. Select Actions , and choose "Set Breakpoint ".

Saving Static Graph Images to Files

SoftBench Static Analyzer allows you to save your graph images in
several file formats, scales, and page sizes. From any graph window
choose "Graph: Save
I mage…". You cannot reload saved images into SoftBench Static Analyzer.
Chapter 10290

Using Static Graphs
Making Graphical Static Queries
However, you can print a saved image or incorporate it into other
documentation.

For complete descriptions of the options, see Appendix A, “Using
SoftBench Graph Windows,” on page 323.
Chapter 10 291

Using Static Graphs
Simplifying Graph Displays
Simplifying Graph Displays
The Static Graphs can display many relationships between items in your
program simultaneously. To use the graphs effectively, you may want to
display only a subset of these relationships. You can filter nodes out
based on topics such as inheritance, containment, type of function call,
declarations, and many others, depending on the graph. To apply filters
to new nodes and arcs that are added to the graph, choose "View:
Filters… ". The filters take effect immediately. When you make changes,
such as settings filters, SoftBench Static Analyzer saves the changes
automatically.

The main SoftBench Static Analyzer window also offers filtering
mechanisms. See “Simplifying Query Results” on page 266.

Reducing Graph Complexity

For large software applications, you can control graph complexity by
reducing the number of relationships displayed on the graph or by hiding
relationships of lesser interest after they are displayed.

For example, when you display all functions on the Call Graph, the
resulting graph contains all functions and all "Calls " and "Calls
Within " relationships. Once you see the entire graph, you may decide to
concentrate on a small subsection of the call hierarchy and hide the rest
of the graph:

1. Choose "Graph: All Functions " to display the initial call graph of
all functions.

2. Press Shift, then select the node at the top of the subsection of nodes
that you want to retain. The Shift key causes SoftBench Static
Analyzer to select all nodes in the hierarchy below the selected node.

Alternatively, you can select multiple nodes by pressing the Control
key as you individually select nodes, or you can drag the mouse and
draw a box around the nodes you want to select.

3. Choose "Hide Unselected " from the popup menu.

In this example, you selected the nodes to retain. You can also hide
nodes using reverse logic and select the nodes you want to hide, then
choose "Hide Selected ".
Chapter 10292

Using Static Graphs
Simplifying Graph Displays
You can further reduce complexity by displaying fewer relationships
initially. For example, you can turn off all initial queries and
subsequently display only the relationships of interest to you:

1. From the Call Graph, choose "Options: Queries On New Nodes… "
and disable all queries. The default queries are "■ Calls " and "
■Calls Within ". Without any default queries, no arcs are drawn.

2. Save these changes by selecting OK.

3. Choose "Graph: All Functions ".

4. Select the functions you want to query on by dragging the left mouse
button and drawing a box around those functions. Alternatively,
select multiple functions by pressing the Control key while you select
function nodes.

5. Post the "Function Actions " popup menu.

6. Choose the desired query.

Filtering Sourceless Nodes

A sourceless node is a node for which there is no source code available,
for example, header files. There may be times when you want to see calls
to functions you have written and exclude calls to library functions you
did not write. For example, you might want to exclude calls to functions
defined in X11/Motif libraries. You can apply this filter to the Static Call
Graph, Class Graph/Editor, or Query Graph.

In the same way, on the SoftBench Class Graph/Editor you can display
classes that are declared but not defined.

To exclude these calls from the Call Graph, Class Graph/Editor, or Query
Graph:

1. Choose "View ".

2. Deselect the "■ Display Sourceless Nodes " toggle button.

3. Select OK.
Chapter 10 293

Using Static Graphs
Customizing Static Graphs
Customizing Static Graphs
The Static Graphs have many options that you can configure. Each graph
has an "Options " and a "View " menu that help you customize the graph
for your needs. For example, you can turn off the graph legend, or specify
default queries to be applied to any new node that is added to the graph.
Filters and other customizations are also available. See SoftBench
Online Help for full descriptions.

Removing the Graph Legend

The legend provides useful information about the types of nodes and arcs
displayed on the graph. To remove the legend and see more of the graph
area, turn off the "View: ■ Display Legend " toggle button. The legend
disappears from the graph immediately.

Viewing Multiple Graphs

You can view more than one Static Graph simultaneously. For example,
you can view the Call Graph and File Graph to see the relationships
between functions and files as they are presented in those graphs.

To view multiple Static Graphs:

1. From the main SoftBench Static Analyzer window, choose "Options:
Behavior Settings… " which displays the "Behavior Settings "
dialog box.

2. Deselect the " Collect Graphs Into A Stack " toggle button. To set
this option select OK. A dialog box appears, indicating the change
takes effect when the tool restarts. Select OK.

3. To make this option active you need to restart SoftBench Static
Analyzer. Choose "File: E xit ".

4. Restart SoftBench Static Analyzer.
Chapter 10294

Using SoftBench File Compare
11 Using SoftBench File Compare

With SoftBench File Compare you can compare two text files by putting
them next to each other in text windows and scrolling through them in a
matching manner. You can then merge selected contents into a single
new file. If you wish to change a file, you must modify the file using your
pre-configured editor.
Chapter 11 295

Using SoftBench File Compare
Understanding the SoftBench File Compare Window
Understanding the SoftBench File Compare
Window
You can access the SoftBench File Compare window from the SoftBench
main window using: "File: Compar e…", or by selecting the file Compare
icon from the tool bar. If files are selected, they are provided as
arguments to File Compare, allowing you to specify files to compare
before the tool starts. Otherwise you may enter the file names directly
into the tool. The SoftBench File Compare window looks like this:

Figure 11-1 SoftBench File Compare Window

Understanding the Menu Bar

The menu bar at the top of the application window consists of the menu
items "File ", "Options ", "Custom", and "Help ". Refer to SoftBench
Online Help for detailed descriptions of these menu items.

Understanding the "Working Directory" Input Box

The "Path " input box displays the current working directory.
Chapter 11296

Using SoftBench File Compare
Understanding the SoftBench File Compare Window
Using the "Left File" and "Right File" Input Boxes

These two input boxes are for the names of the files to be compared. As
with other SoftBench tools, you can use … to help you find the files you
want.

Compare starts a comparison between the two files. The comparison may
take a few seconds or more, depending on the size of the files being
compared.

Using the "Merge File" Input Box

This input box is for the name you give to the new, merged file. SoftBench
File Compare creates the file if you select the Write button. If the file
already exists, selecting Write causes the contents to be overwritten.

Write writes out a merged version of the two files to the file specified,
using the lines you have selected from each file.

Understanding the Text Areas

The two text areas display the two files being compared. Scroll bars allow
top-to-bottom scrolling of both files, and left-to-right scrolling in each file.

Reading the Gutter Column

The gutter column between the two file view windows displays up to
three characters. The middle character indicates whether the
corresponding lines in the file view windows are the same, different, or
appear in only one of the files. The left and right characters indicate
which version of a difference has been selected for inclusion into a
merged file.

SoftBench File Compare uses these symbols for the middle character:

| (vertical bar) indicates lines that differ from each other.

> indicates a line that exists only in Right File.

< indicates a line that exists only in Left File.

(blank gutter) indicates identical lines.

The left and right columns of the gutter use a plus sign (+) or minus sign
(−) in the appropriate column to indicate which version you want
Chapter 11 297

Using SoftBench File Compare
Understanding the SoftBench File Compare Window
included in the new file:

SoftBench File Compare initially leaves the left and right columns blank,
indicating that you have not made a decision as to which side to save. If
you just want to compare and not merge files, you can ignore the left and
right columns.

Selecting Lines for Merging

These buttons enable you to choose which version of the currently
highlighted difference you want to put into a merged file. You may want
to choose "Options: Move Forward after Selection " to automatically
go to the next difference after making a selection.

Left Marks the Left File version of the highlighted
difference as the version you want included in the
merged file.

Both Marks both sides of the currently highlighted
difference to be included in the merged file. The text
from the left side is written to the output file before the
text from the right side.

Right Marks the Right File version of the highlighted
difference as the version you want included in the
merged file.

None Marks neither side of the highlighted difference as the
version you want included in the merged file.

Table 11-1 SoftBench Static Analyzer Display Options

Left
Column

Right
Column

Selection

Blank Blank No Decision

+ − Left File

− + Right File

+ + Both Files

− − Neither File
Chapter 11298

Using SoftBench File Compare
Understanding the SoftBench File Compare Window
SoftBench File Compare automatically copies contents that are identical
in both files into the new file.

Highlighting Differences

These buttons enable you to change which difference between the left
and right files SoftBench File Compare displays and highlights.

First Moves the current selection to the first difference
between the two files and highlights it.

Previous Moves the current selection to the previous difference
between the two files and highlights it.

Next Moves the current selection to the next difference
between the two files and highlights it.

Last Moves the current selection to the last difference
between the two files and highlights it.

If you select "Options: View Unresolved Differences Only ", these
buttons move the current selection highlight to the next difference where
you have not made a choice regarding which version to put into the
merged file.

Traversing by Single Line

The "■ Traverse by Single Line " button enables you to move
line-by-line when merging one line at a time.
Chapter 11 299

Using SoftBench File Compare
Comparing Two Files
Comparing Two Files
To compare two files:

1. Enter the name of the first file for comparison into the "Left File "
box, and the name of the second file into the "Right File " box. You
can begin the file name with "/" to override the current working
directory, or enter just the name of the directory path and file relative
to the current working directory.

You can also use the … buttons to open a navigation dialog box to find
the files you wish to compare. The filter option allows you to specify
the types of files you wish to see in the "Files " list box. For example,
if you enter "*.txt " in the "Filter " box, and select Filter (refreshes
the "Files " list box), only files ending with ".txt " appear in the
"Files " list box.

2. Select Compare after choosing your left and right files.

Copies of the two files appear, one in each file view window, with the first
set of differences highlighted. SoftBench File Compare adds blank lines
as placeholders to allow the files to be vertically aligned. The center of
the gutter displays the appropriate symbol:

| (vertical bar) indicates lines that differ from each other.

> indicates a line that exists only in Right File.

< indicates a line that exists only in Left File.

A blank gutter indicates identical lines.

If you want to visually compare the two files without making a new file,
use the scroll bars and the First , Previous , Next, and Last buttons.

You may find viewing the differences easier if you choose "Options:
View Common Lines on Left Only ". When you select Compare again,
SoftBench File Compare displays any identical lines in both files being
compared only in the left file view window.
Chapter 11300

Using SoftBench File Compare
Merging Compared Files
Merging Compared Files
Merging files is similar to comparing files except that you decide what to
put in a new file, what to name the new file, then you write your
selections to the new file. Follow these steps to create a merged file:

1. Enter the names of the files you wish to merge in the "Left File "
and "Right File " input boxes, or use the … buttons to open a
navigation dialog to find the files you wish to compare.

2. Enter a name for the new file in the "Merge File " input box.
Alternatively, select the … button to open the navigation dialog to find
the directory where you want to write the merge file. The new file
name can be entered at any time.

3. Set any options from the "Options " menu.

4. Select Compare .

5. SoftBench File Compare highlights the first set of differences
between the files. Use the "Select For Merge " and the "Highlight
Differences " buttons to work through your two files. You may want
to choose "Options: Move Forward after Selection " to
automatically go to the next difference after making a selection.

SoftBench File Compare automatically copies identical contents in
both files into the new file.

You can select "■ Traverse by Single Line " to move line-by-line
when merging one line at a time.

6. Continue making selections as SoftBench File Compare highlights
each set of differences. When you reach the end of the files, select Write
to send the merged version of the two files to the file name you
indicated.
Chapter 11 301

Using SoftBench File Compare
If Something Goes Wrong
If Something Goes Wrong
Table 11-2

Condition Explanation

No file specified message
appears when you select Compare .

You must enter a file name in
the "Left File " or "Right
File " input box.

Could not open file:
(filename) message appears
when you select Compare .

The file name in the "Left
File " or "Right File " input box
does not exist or is not readable.

sdiff command failed to
execute message appears when
you select Compare .

Make sure your system has the
sdiff command and that your
path includes the directory in
which sdiff resides.

Could not write to file:
(filename) message appears
when you select Write .

A merged file cannot be created,
probably because the directory
that you specified has no write
permission.

No file specified message
appears when you select Write .

You must enter an output file
name in the "Merge File " input
box before choosing Write .

No choice was selected for
one or more differences
message appears when you select
Write .

Select Left , Both , Right , or None for
all remaining differences found
by SoftBench File Compare.
Choosing "Options: View
Unresolved Differences
Only " may facilitate this
process.
Chapter 11302

Using SoftBench File Compare
For More Information
For More Information

• On editing files, refer to Chapter 4, “Using SoftBench Editors,” on
page 117.

• On SoftBench File Compare, see the softcom(1) reference page,
available by selecting "Help: Show Man Page ".
Chapter 11 303

Using SoftBench File Compare
For More Information
Chapter 11304

Using SoftBench Message Monitor
12 Using SoftBench Message
Monitor

SoftBench Message Monitor provides a window to SoftBench tool
communication. It displays all messages sent through a particular
Broadcast Message Server. It can also create and send messages to other
tools. SoftBench Message Monitor is the companion tool to SoftBench
Encapsulator, which provides the SoftBench integration library
(libsoftbench). Use SoftBench Message Monitor to help debug of the
message interface provided by this library.
Chapter 12 305

Using SoftBench Message Monitor
Starting SoftBench Message Monitor
Starting SoftBench Message Monitor
You can start SoftBench Message Monitor from the main SoftBench
window. First you need to add the tool to the toolbar, then start the tool:

1. In the main SoftBench window, choose "Options: Toolbar Setup… ".

2. From the "Available Tools " list in the "Toolbar Setup " dialog box,
select MessageMonitor . Notice the "Message Monitor " icon in the
middle of the dialog box.

3. Select Add to Toolbar . This action adds MessageMonitor to the "Tools
on the Toolbar " list on the right.

4. Select OK to confirm the addition and close the dialog box.

5. Select the "Message Monitor " icon in the SoftBench toolbar. This
action starts SoftBench Message Monitor.
Chapter 12306

Using SoftBench Message Monitor
Understanding the SoftBench Message Monitor Window Area
Understanding the SoftBench Message
Monitor Window Area
SoftBench Message Monitor has a menu bar and a message display.

Figure 12-1 SoftBench Message Monitor

Understanding the Menu Bar

The menu bar at the top of the application window contains pulldown
menus to initiate commands. SoftBench Message Monitor contains four
menus: "File ", "Messages ", "Custom", and "Help " menus.

Understanding Broadcast Messages

The "Broadcast Messages " area displays messages in a scrollable list.
SoftBench messages have the following components:

Tool_name Identifies the particular tool instance (the tool name
followed by a dot and a unique number) that sent the
message. Broadcast Message Server assigns this field
when you start the tool.
Chapter 12 307

Using SoftBench Message Monitor
Understanding the SoftBench Message Monitor Window Area
Message-id A unique string identifying a particular message and
any responses from the tool handling the request.

Message-type Indicates whether this particular message is a
"Request" (R), or a "Notify" (P for pass and F for fail).

Tool_class Identifies the class of tool that sent, or is to handle, the
message. Two examples are EDIT and DEBUG.

Command Identifies the actual task requested or performed.

Project Defines the location of a project (defaults to $SB_HOST
and $SB_DIR).

Operand Defines the operand identification for the message.

Data Contains any data or arguments that provide
additional information.

For messages in this output area, a "*" in a field indicates that the field
is not applicable for this message. A "-" in a field indicates that a value
for this field is relevant to the message, but that only the receiver knows
what the value should be.

Clearing the Broadcast Message Area

Clear clears the "Broadcast Messages " area of all accumulated
messages.
Chapter 12308

Using SoftBench Message Monitor
Composing and Sending a Message
Composing and Sending a Message
You can compose and send messages from SoftBench Message Monitor
using "Messages: Send Message…". Here is a sample session:……

1. Choose "Messages: Send Message…".

2. Select "■ Tool Request ".

3. Enter EDIT in the "Tool Class " input box to request an edit.

4. Enter WINDOWin the "Command" input box to bring up the file in an edit
window.

5. "Host " and "Dir " identify the group of tools that communicate. You
should not change these two fields. "Oper " identifies the file to be
edited.

Be sure that the "Host ", "Dir " and "Oper " fields have the appropriate
format. By default, the "Host " and "Dir " fields are filled in based on
the tool's current project. If this tool is not associated with a project, it
defaults to the current working directory. To create a proper "Oper ",
type in the path of the file you want to edit and select the Expand
button to put the file in the proper message format.

6. Select Send.

7. Select Close to remove the "Send Message " dialog box.

Figure 12-2 "Send Message" Dialog Box
Chapter 12 309

Using SoftBench Message Monitor
Composing and Sending a Message
A message resembling the following appears in the SoftBench Message
Monitor Broadcast Messages area:

Softmsg.nn 29-25966-tycho R EDIT WINDOW <host> <dir> <oper>

Assuming the appropriate editor successfully edits the file, it sends the
following message in response to the request: For SoftBench vi Editor:

softvi.2 29-25966-tycho P EDIT WINDOW <host> <dir> <oper>

For SoftBench XEmacs:

softemacs.3 29-25966-tycho P EDIT WINDOW <host> <dir> <file>

Notice that the above examples contain no real data. The data is in the
form:

<executable>.<nn> <msgId> <type> <tool> <command> <host> <dir> <file> <data>

where nn is a unique number assigned by the Broadcast Message Server
(BMS) to identify this invocation of this tool.
Chapter 12310

Using SoftBench Message Monitor
Logging Messages
Logging Messages
If you are integrating with SoftBench and want to see actual message
formats, you can exercise SoftBench tools with SoftBench Message
Monitor running. Tools may send several messages for a single action,
filling the "Broadcast Message " area quickly. These messages can be
saved by logging them to a file.

Specifying a Log File

The log file can be specified by choosing "File: Set Logfile Name… ",
and specifying a filename in the resulting dialog box.

Starting and Stopping Message Logging

To start message logging

1. Choose "File: Set Logfile Name… ", and specify a filename in the
resulting dialog box. The default is
"$HOME/.softbench/ projectname.msglog ".

2. Set the "File: ■ Enable Logging " toggle button.

SoftBench Message Monitor logs all messages to the logfile.

To disable message logging, clear the "File: ■ Enable Logging " toggle
button. Once disabled, SoftBench Message Monitor closes the logfile. If
you enable logging again, SoftBench Message Monitor logs to a new copy
of the named file.
Chapter 12 311

Using SoftBench Message Monitor
Logging Messages
Chapter 12312

Using SoftBench with SQL
13 Using SoftBench with SQL

Relational Database Management System (RDBMS) products support
embedded SQL statements in source code by using a preprocessor to
translate the SQL into the source language. SoftBench assists developers
using relational database embedded SQL in their software applications.
Chapter 13 313

Using SoftBench with SQL
Determining Supported Environments
Determining Supported Environments
SoftBench SQL Supports the system platforms, RDBMS products, and
language environments found in the list below.

• System Platforms:

— HP-UX

• RDBMS Products:

— Informix

— Oracle

• Languages:

— C

— C++
Chapter 13314

Using SoftBench with SQL
Configuring SoftBench with SQL
Configuring SoftBench with SQL
SoftBench fully supports embedded SQL source files in both project and
external build models. For project build, SoftBench provides packages to
include in your build configuration instructions.

Using Default SQL File Types

SoftBench recognizes an embedded SQL source file type by the file
extension. Each file extension results in unique language-specific
operations. Table 13-1 shows the default file extensions used for a
particular RDBMS. See SoftBench Online Help for additional
information regarding file types.

Using SQL with Project Build

The basic steps in defining targets that use SQL are:

1. Create the embedded SQL source files and add them to the project:

• If you create the files from scratch in a SoftBench editor started
from the main SoftBench window, then new files automatically
become members of the project when you save them.

• If you have existing files, you can add them to the project by
choosing "Project: Add File(s) to Project… ".

2. Set up a build configuration that works for the targets in this
application:

a. Choose "Builder: Manage Build Configurations… ".

Table 13-1 SQL File Extensions for C Language

RDBMS Embedded
SQL File
Extensions

Informix .ec

Oracle .pc

C++ Oracle .pC
Chapter 13 315

Using SoftBench with SQL
Configuring SoftBench with SQL
b. Select the build configuration that most closely describes the type
of target that you need to create. For example, to create a C
executable that uses the Oracle database, select the
"OracleCExecutable " build configuration.

c. Expand each section of the dialog box to check the appropriateness
of the build instructions. Add libraries, include files, compiler
flags, etc. as needed for your application.

d. Select Save As… and provide a new build configuration name.

e. Select Close when you have customized the build configurations
that you need.

3. Define the targets that you need:

a. Choose "Target: New…" to open the "Define New Target " dialog
box.

b. Enter the target name.

c. Optionally, select a directory other than the local workspace
root for the target's location.

d. Select the build configuration for building the target.

e. Select Add to add the target to the "Pending Targets " list.

f. Repeat steps a through e for any other targets in the project.

g. Select OK when you have added the targets that you need.

h. If you need to add any special build instructions for specific
targets, select the target name, then Choose "Target: Modify
Properties… ". Select Customize Build Configuration… . Make any
changes to the build configuration that you need, then select OK.

4. Associate embedded SQL files with the targets by selecting the
embedded SQL files, then choosing "File: Link Source to
Target… ".

When you build the targets, SoftBench generates and manages the
necessary build instructions automatically. You can preview the build by
choosing "Target: More Build Ac t ions → Preview Build ". Or you
can run the build and see whether your build completes successfully. If
you encounter build problems, either fix the embedded SQL source code
errors or the build configuration, whichever is appropriate.
Chapter 13316

Using SoftBench with SQL
Configuring SoftBench with SQL
Using SQL with External Build

If your Makefile was created with SoftBench version C.05.xx or earlier,
you need to migrate your application to project build or use external
build to build your application. With external build, you must maintain
your Makefile manually.

To use your Makefile or build script, choose "Builder: Use External
Build Command…". Complete the dialog box and select Build . All necessary
commands for using SQL should be contained within the Makefile.

Updating RDBMS Versions

When you update your RDBMS version, the names and locations of the
SQL libraries that need to be linked to your SQL application may
change. Since SoftBench supports two build models, project build and
external build, your RDBMS version update process depends on the
build model you use.

Project Build SoftBench provides packages for managing libraries
and include files logically as a group. SoftBench ships
with default packages for embedded SQL. If you update
to a new version, you need to update the definition of
the SQL package.

Build configurations use packages to produce targets. If
you use the default SQL packages initially in your
build configurations, then the update process requires
you to save the revised package under a new name.
(You cannot modify the packages shipped with
SoftBench.) Consequently, you need to update the build
configurations that include SQL packages as well.

External Build Manually update each Makefile or build script that
uses SQL to point to the new SQL library names and
locations.

To update the version of SQL libraries linked to your application:

1. Install the new RDBMS version.
2. Set all normally required RDBMS environment variables. See your

RDBMS documentation for specific details about environment
variables used by your RDBMS.

Once you install the RDBMS and the runtime environment is ready, the
Chapter 13 317

Using SoftBench with SQL
Configuring SoftBench with SQL
update process varies based on how you build your project. For project
build:

1. If preprocessor flags change, you need to manually edit the transform
file for the preprocessor. See SoftBench Online Help for details.

2. Start SoftBench.
3. From the menu bar, choose "Builder: Manage Packages…".
4. From the drop-down list, select the desired SQL package.
5. Expand the sections of the dialog box to check the current package

definition. Make any necessary changes for use with the new RDBMS
version. The most likely changes involve libraries. If you changed
preprocessor flags, you may need to change transform flags as well.

6. When you complete your changes, select Save if the package is a
"User" package and you want to maintain the same package name.
Select Save As… if the package is a "System" package or you want a
different package name.

7. Select Close to close the dialog box.
8. If you changed the name of the SQL package, choose "Builder:

Manage Build Configurations… " to change the build configurations
that use the SQL package. Select each relevant build configuration,
switch to the new package, and save the changes.

To continue using SoftBench version C.05.xx or earlier Makefiles with
external build, you need to edit a macros file in
/opt/softbench/config/buildt/include . You can determine the
RDBMS version for which the macros file is currently configured by
examining the comment line in the file.

You must have root privilege to edit the macros file. Select the file to edit
based on your specific RDBMS:

• Choose c.informix.macros for Informix applications.
• Choose c.oracle.macros for Oracle applications.

For other external builds, manually edit your Makefiles or build scripts.
Chapter 13318

Using SoftBench with SQL
Using SQL with SoftBench Tools
Using SQL with SoftBench Tools
You can use embedded SQL source files with Builder, the SoftBench
editors, SoftBench Debugger, SoftBench Static Analyzer and SoftBench
CodeAdvisor.

Using SQL Preprocessor Wrappers

Working with your original SQL source code is often simpler than
working with the expanded SQL statements that the RDBMS sends to
the compiler. To provide line numbers that reflect your original source
files, SoftBench provides a preprocessor wrapper which the compiler uses
to insert line number directive information into the object file. SoftBench
automatically invokes these preprocessor wrappers when a file with an
SQL type extension appears in a project build. Builder, SoftBench
CodeAdvisor, SoftBench Static Analyzer, and SoftBench Debugger use
the line number information to point back to the original SQL embedded
source code.

For external build projects, SoftBench tools refer back to the line
numbers in the file specified within your object file. Refer to your
RDBMS preprocessor documentation for information on generating line
numbers through your Makefile.

Debugging with SQL

SoftBench Debugger performs debugging of applications using the
original source code (with embedded SQL statements). SoftBench
Debugger treats embedded SQL statements as one single statement in
the source language for breakpoints and stepping operations. SoftBench
Debugger sets breakpoints at the beginning of an SQL statement.
Chapter 13 319

Using SoftBench with SQL
Using SQL with SoftBench Tools
Debugging Expanded SQL Statements

With SoftBench Debugger you typically debug your program using the
original source code with the SQL statements. However, you may want to
debug your source code after the SQL statements have been expanded by
the SQL preprocessor. To debug the generated source file instead of the
embedded SQL file:

Project build 1. Select the target and choose "Target: Display on
Graph ".

2. On the target graph's Display Dependencies option
menu button, select "Source File Dependencies ".

3. Select the generated source code node you want,
then choose "Modify Properties… " on the popup
menu.

4. In the "Modify Intermediate File Properties "
dialog box, remove the debug compile mode option,
then select OK.

By overriding the normal compile mode for debugging,
the compiler does not create line number directive
information for the embedded source code file, but it
does generate debug information in the object file for
the generated source code file.

To debug expanded SQL statements for all files, create
a "NoDebug" version of the SQL package when you set
up your targets' build configurations. Using a text
editor, comment out the APPEND DEBUGMODE -g line in
the Proc package. See SoftBench Online Help topic
"Sharing Packages with Team Members" for more
information.

Old SoftBench Makefile Edit the Makefile and remove the compile mode
for the SQLDEBUG macro.

Other Makefiles and build scripts Edit the Makefile using whatever
control mechanisms the RDBMS vendor provides.
Chapter 13320

Using SoftBench with SQL
Using SQL with SoftBench Tools
Editing and Rebuilding with SQL for SoftBench
Debugger

The make program does not follow dependencies beyond the source code
(that is, the .c) level. So when using external build, you may need to
remove the generated source code file after an edit to correctly rebuild.

Project build 1. Select Edit in the SoftBench
Debugger Edit Area or choose
"File: Edi t " to start your
configured editor.

2. Make the source code change in
the embedded SQL file.

3. Save the changes.

4. Choose "File: Build ".

Old SoftBench Makefile Follow the steps for project build. If
you have changed your Makefile or
your original source code (for
example, the .ec or .pc file), you may
need to delete the generated source
code file (for example, the .c file). If
the generated source code file exists,
SoftBench does not recompile the
original source code file.

Other Makefiles and build scripts This situation may require the same
actions as an old SoftBench Makefile.
What you need to do depends on how
your build process handles
dependencies.

In all cases, SoftBench takes care of unloading and reloading the
executable when SoftBench Debugger is running.

Using SoftBench CodeAdvisor and SoftBench Static
Analyzer with SQL

Both SoftBench CodeAdvisor and SoftBench Static Analyzer rely on
analysis data generated during the build process. SoftBench uses the
preprocessor wrapper to provide line number information based on the
embedded SQL files rather than the generated source files.
Chapter 13 321

Using SoftBench with SQL
For More Information
For More Information

• On packages, build configurations, project build, and external build,
see the SoftBench Online Help.
Chapter 13322

Using SoftBench Graph Windows
A Using SoftBench Graph
Windows

The various SoftBench graph tools visually help you with programming
tasks. This appendix describes basic graph operations in the Graph
Windows. For tool-specific information, refer to:

• “Using the Target Graph” on page 66

• Chapter 10, “Using Static Graphs,” on page 283

• Chapter 8, “Using SoftBench Debugger Data Graph Window,” on
page 235
Appendix A 323

Using SoftBench Graph Windows
Accessing SoftBench Graph Windows
Accessing SoftBench Graph Windows
SoftBench Graph Windows offer graphical views useful with several of
the SoftBench tools. A Graph Window may be opened from:

• the main SoftBench window, Builder page

• SoftBench Static Analyzer

• SoftBench Debugger

Table A-1 shows how to access the various SoftBench graphs.

Table A-1 Accessing SoftBench Graphs

Starting From Procedure

Main SoftBench
window

1. Select Expand >> to expand the main
window and display the target graph.

2. Select a target, then use the Display
Dependencies menu button to select the
level of dependencies that you want to
see.

Note: You can display dependencies only in
a project that uses project build.

SoftBench Static
Analyzer

• Choose "Graph: Static Graph → Start "
to display an empty graph. You can add
information to the graph using the
"Symbol() " input box together with the
Display button.

• Enter data in the "Symbol() " input box
of the main SoftBench Static Analyzer
window and choose "Graph: Static
Graph → Display Symbol ".

• Choose one of the "Graph: Static
Graph " submenu commands such as "All
Functions " or "All Classes " to graph
all entities of a certain type.
Appendix A324

Using SoftBench Graph Windows
Accessing SoftBench Graph Windows
To end the browsing session for SoftBench Debugger Data Graph
Window, select the Close button. To end a browsing session for the Static
Graphs, select "Graph: E xit " from any Static Graph window. The tool
discards all information gathered during the session.

SoftBench Debugger 1. Enter an expression or a variable in the
"() " input box.

2. Choose "Show: Data Graph() " or
"Show: Data Graph I ndirect() ".

Table A-1 Accessing SoftBench Graphs

Starting From Procedure
Appendix A 325

Using SoftBench Graph Windows
Using Graph Window Areas
Using Graph Window Areas
You use the Graph Area to create a visual image. From most tool graph
windows you can:

• Use popup action menus.

• Control the arrangement of nodes (not available on the target graph).

• Save an image to a file for printing.

• Scroll and zoom the graph area to manipulate your view.

• Clear the Graph Area and hide selected or unselected nodes.

Using Popup Menus

Pressing the right mouse button within the Graph Area brings up a
popup menu. The specific popup menu depends on the types of nodes or
arcs currently selected. For more information on individual popup menu
items see the respective SoftBench Online Help.

Using Save Options for the Graph Image

SoftBench allows you to save your graph images in several file formats,
scales, and page sizes. The saved file is only a graphic image of the
graph. You cannot restore or reload a graph from a saved file, but you can
print using your usual printer commands. For more information about
printing these files, refer to your printer or plotter manual.

Saving the image created in the graph in a printable format is useful
when creating pictures used in documenting your software program.
Many word processing programs allow you to load saved graphs directly
into your document.
Appendix A326

Using SoftBench Graph Windows
Using Graph Window Areas
Table A-2 describes the formats in which you can save a graph image.

Access the "Save Image " dialog box (See Figure A-1) by choosing "Graph:
Save Image… ".

Figure A-1 "Save Image" Dialog Box

Table A-2 Graph Image File Formats

Option Used for

xwd Importing graph images into a word processing or
graphics application for further editing and reporting.
This file format cannot be sent to a printer or plotter
directly.

HP-GL Sending graph images to a plotter or printer that
handles HP-GL emulation.

PostScript Sending graph images to a PostScript-capable printer
or to import images into a word processing or graphics
application.
Appendix A 327

Using SoftBench Graph Windows
Using Graph Window Areas
Using Graph File Image Save Options

The tools provide the following options in the "Save Image " dialog box
(see Figure A-1):

• Save a graph image in "xwd", "HP-GL", or "PostScript" format.
• Save an image of the entire graph area or just the visible portion of

the graph.
• Scale the graph image to fit on a single page or allow it to be printed

actual size on multiple pages. The multiple page option prints the
graph from left to right then top to bottom.

• Choose between "Landscape" and "Portrait" mode.
• Choose from several page sizes.
• Choose to print the graph in grayscale or color.
• If you select "HP-GL" format, choose whether to save the image in a

format suitable for "Plotter" type devices like a pen plotter or "Raster"
type devices like a laser printer.

SoftBench Static Analyzer saves the arc labels from a Static Graph only
if you set the "View: ■ Display Arc Labels " toggle button. SoftBench
saves the graph legend from a Static Graph or Target Graph only if the
legend is displayed. Control the display of the legend with "View: ■
Display Legend " in SoftBench Static Analyzer, or "Graph: ■ Display
Graph Legend " in the main SoftBench window.

Saving HP-GL and PostScript Images

To save your HP-GL or PostScript file:

1. Select HP-GL or PostScript from the "File Format " option menu.
This sensitizes the option menus used for other options. When neither
of these options is selected, the related options are not sensitive and
may not be modified.

2. Select "Entire Graph " or "Visible Portion Only " from the "Print
Area " option menu.

3. Select "Single Page " or "Multiple Pages " from the "Scaling "
option menu.

4. Select "Portrait " or "Landscape " from the "Orientation " option
menu.

5. Select a page size appropriate for your printer from the "Page Size "
option menu.

6. Set the "■ Enable Color Output " toggle button to print in color.
Appendix A328

Using SoftBench Graph Windows
Using Graph Window Areas
7. If you selected HP-GL, make sure the "HP-GL Device Type " option
menu reflects the hardware on which you intend to print the image.

8. Enter your filename, which can also include the path name. For
example, use savegraph.hpgl or savegraph.ps . Optionally, select
the … button to access a file selection dialog box for specifying the file
name.

9. Save the image. Selecting Apply saves the file and leaves the dialog
box up for further actions. Selecting OK saves the file and closes the
dialog box. Selecting Cancel closes the dialog box without performing
any actions. If you select Cancel , the dialog retains its current settings
until changed during the same session. Settings in this dialog are not
saved between sessions.

Many programs that convert the HP-GL or PostScript files to other
formats convert only the graphical objects and do not convert text. If
processed in this manner, the arc and node labels may be lost when you
print the file.

Saving xwd Images

The xwd option saves only the image on your screen. If necessary, adjust
your image size or location in the Graph Area or resize the window. Make
sure the graph window is fully exposed and displaying the information
you wish to save. Portions of windows obscuring the graph will appear in
the image. Black and white color schemes print best. When using
SoftBench color schemes, it may be necessary to convert to black and
white before printing. Check with your local system administrator for
conversion utilities.

To save your xwd file:

1. Select xwd from the "File Format " option menu. When you select this
option, the "Print Area ", "Scaling ", "Orientation ", and "Page
Size " option menus are not sensitive and may not be modified.

2. Enter your filename in the "File Name " input box. The filename can
include the path name. For example, use savegraph.xwd . Optionally,
select the … button to access a file selection dialog box for specifying
the file name.

3. Save the image. Selecting Apply saves the file and leaves the dialog
box up for further actions. Selecting OK saves the file and closes the
dialog box. Selecting Cancel closes the dialog box without performing
any actions. If you select Cancel , the dialog retains its current settings
Appendix A 329

Using SoftBench Graph Windows
Using Graph Window Areas
until changed during the same session. Settings in this dialog are not
saved between sessions.

You can use the xpr utility to convert an xwd file to a printable format.

Using Vertical and Horizontal Scrolling

If the scroll bar fills the entire scroll area, there is no more graph to be
displayed. If the scroll bar appears smaller than the scroll bar area, it
means the tool has more graph than could fit in the area. The size of the
bar is proportional to the visible part of the file. Dragging on the scroll
bar moves the view in the direction of the drag (see Figure A-2).

You can change the displayed area of the graph in the following ways:

• Move the pointer to the arrows (▲ ▼ < >) in the scroll bar and keep
the left mouse button held down to continuously scroll the graph.

• If you click in the empty area between the arrows and the scroll bar,
the Graph Area scrolls up or down, left or right one window length.
Clicking and holding down the left mouse button continuously scrolls
the graph one screen at a time.

• Pressing the middle mouse button in the empty area between the
arrows and the scroll bar moves the view to the location in the graph
proportional to the location along the scroll bar area at which the
button was pressed.

Figure A-2 Using Scroll Bars
Appendix A330

Using SoftBench Graph Windows
Using Graph Window Areas
Zooming In or Zooming Out

Graph Windows provide several zoom settings. You might zoom out for a
high level view of the general structure of your graph. Zooming out
decreases the size of the objects so you can see more of the graph. When
zooming out, the labels become illegible.

You can zoom in to look at the details in the nodes. Zooming in increases
the size of the objects and allows you to read a smaller section of the
graph.

You can change the size of your graph by selecting "Zoom I n" or "Zoom
Out " from the "Graph " menu in the Target Graph and Debug Data
Graph Window or the "View " menu in the Static Graphs. You can also
use the graph popup menu when no graph objects are selected.

You can change the initial zoom setting by changing the
.initialZoomlevel resource. The softbench(1), softstatic(1), or
softdebug(1) manual pages document this resource. Use SoftBench
Online Help to read or print the manual pages by selecting "Help: Show
Man Page…" from the appropriate tool.

Clearing the Graph Area

You can hide selected or unselected objects or completely clear the Graph
Area. You only remove the node or arc from your screen when you hide or
clear. The tool does not change the object represented by the node or arc.

You can hide selected or unselected objects using the "Hide " menu
commands found on the popup menus.

When you hide an arc, the tool does not automatically remove the nodes
even though the tool hides the relationship. In contrast, when you hide a
node, the tool automatically hides all arcs to or from the node.

You can clear the Graph Area by choosing "Graph: Clear Graph " in the
Target Graph and Data Graph, or "View: Clear Graph " in the Static
Graphs.
Appendix A 331

Using SoftBench Graph Windows
Understanding Nodes and Arcs
Understanding Nodes and Arcs
All graphs display nodes and arcs within the Graph Area. Nodes
represent entities within your code, and arcs represent the relationships
between the entities. The following pages describe how you can select,
move, or hide nodes and arcs.

Reading Graph Area Nodes

The Graph Area includes nodes corresponding to entities, and arcs
corresponding to the relationship between two entities. Table A-3 shows
what entities the nodes represent in each graph window. For more
detailed discussions about nodes and arcs, refer to the applicable graph
chapters.

Selecting Nodes and Arcs

You can select any subset of nodes and/or arcs found within the Graph
Area. Refer to Table A-4 for a list of selection methods. When selected,
the object's outline changes.

You select a single node or arc by placing the pointer over the object and
clicking the left mouse button. This clears any other selections.

Table A-3 Graph Area Nodes

Target Graph Static Graph Data Graph
Window

• Include files

• Source files

• Intermediate files

• Build target

• Functions

• Function
templates

• Structures

• Classes

• Class templates

• Variables

• Files

• Data in memory
Appendix A332

Using SoftBench Graph Windows
Understanding Nodes and Arcs
When you select multiple objects, the tool applies the chosen popup menu
action to all of them. The tools provide several ways to select more than
one object. The reasons for selection determine the method you choose to
use. For example, you may want to remove all nodes in a certain area of
the graph. Figure A-3 shows the selection of two nodes within a Static
Graph.

Figure A-3 Selecting Objects by Dragging the Pointer

Table A-4 Methods for Selecting Multiple Objects

Objects Procedure

Random or
Unconnected

1. Select the first object with the left mouse button.

2. Hold down the Control key on your keyboard.

3. Move the pointer over the next object and click the
left mouse button.

4. Repeat steps 2 and 3 as desired.

Whole or
Partial
Trees

1. Place the pointer over the parent node.

2. While holding down the Shift key, press the left
mouse button. This selects the parent node and all
descendent nodes and arcs.
Appendix A 333

Using SoftBench Graph Windows
Understanding Nodes and Arcs
When you select more than one object, you can clear a single object by
holding down the Control key and clicking on the object. Clicking the left
mouse button on an empty point on the graph clears all objects.

Moving Nodes

On the Static Graphs and Data Graph you can reposition nodes. The
Target Graph does not support this action. Choosing
"Options: ■ Full Relayout " from the SoftBench Static Analyzer
graph's main menu causes all nodes to be repositioned whenever nodes
or arcs are displayed on or removed from the graph. If you add nodes to
the graph while the "■ Full Relayout " toggle button is off, the tool
inserts the new nodes into the existing graph or tree. For the Data Graph
Window, you must select "❍ Manual Layout " mode to be able to move
nodes and "❍ Auto Layout " to have them repositioned automatically.

You can move a node by selecting the node with the middle mouse button
and dragging the pointer to the desired new location in the graph. Copies
of the affected node and arcs indicate the new locations prior to releasing
the mouse button. Upon release, these copies disappear and the actual
node and arcs move to the new location.

You can move a group of nodes by following these steps:

1. Select the nodes with a multiple node selection method.

2. With the pointer over one of the selected nodes, hold down the middle
mouse button and drag the pointer to the desired new location in the

Regions 1. Depress the left mouse button in a background area
of the graph.

2. Drag the pointer while pressing the left mouse
button. A dashed rectangle appears with the point
where the left mouse button was pressed as one
corner, and the current pointer position as the
diagonal corner.

3. Release the mouse button. All nodes and arcs
completely enclosed in the rectangle become
selected.

Table A-4 Methods for Selecting Multiple Objects

Objects Procedure
Appendix A334

Using SoftBench Graph Windows
Understanding Nodes and Arcs
graph. Copies of the selected nodes and attached arcs indicate the
new locations prior to releasing the mouse button. Upon release,
these copies disappear and the tool moves the actual node and arcs to
the new location.

The auto-scroll feature of the graphs allow you to select and move
regions of nodes and arcs which may not be completely visible in the
current graph window. As you select regions with the mouse and move
toward the edge of the graph, the graph scrolls in the opposite direction.
See Figure A-4 for an example of moving nodes "Player::Bet() " and
"Deck::Shuffle() ".

Figure A-4 Moving Multiple Nodes
Appendix A 335

Using SoftBench Graph Windows
Customizing SoftBench Graphs
Customizing SoftBench Graphs
The Graph Windows layout and display can be controlled so you can
easily reposition nodes and arcs.

Controlling Graph Layout

You can control the layout of the Data Graph Window from SoftBench
Debugger by using the radio buttons at the top of the graph window. You
control the layout of the SoftBench Static Analyzer Graphs by setting the
"Options: ■ Full Relayout " toggle button. If you add nodes to the
graph while you have the "■ Full Relayout " toggle button turned off,
the tool inserts the new nodes into the existing graph or tree.

Controlling Graph Display

You can control the display of nodes and arcs in the Data Graph Window
by using toggle buttons and push buttons, which control what and when
information is displayed. You control display of the Target Graph
through the Display Dependencies menu button. You control display of the
SoftBench Static Graphs through the "View " and "Options " menu.
Table A-5 shows the buttons and menu items specific to each graph
window. For more information on a specific option, see SoftBench Online
Help.

Table A-5 Controlling the Graph Display

Target Graph
Area

Static Graph Data Graph
Window

Display Dependencies
menu settings:
Appendix A336

Using SoftBench Graph Windows
Customizing SoftBench Graphs
Understanding Window Status Information

The Static Graph and Data Graph Windows display status information
on the length of the current query. Use the Stop button to terminate a
query. The Target Graph does not display query status information or
provide a Stop button.

• Target Only
(default)

• Intermediate
File
Dependencies

• Source File
Dependencies

• Include File
Dependencies

• all "View " menu
commands in a Static
Graph window

• all "Options " menu
commands in a Static
Graph window

• "Options: Behavior
Settings… " in the
main SoftBench
Static Analyzer
window

• ■ Show Arc
Labels

• ■ Show
Non-Followed
Arcs

• ■ Suspend

Table A-5 Controlling the Graph Display

Target Graph
Area

Static Graph Data Graph
Window
Appendix A 337

Using SoftBench Graph Windows
For More Information
For More Information

• About a menu item or window area, use SoftBench Online Help. Move
the mouse pointer over the item and press F1.

• About the Target Graph, see “Using the Target Graph” on page 66.

• About the Static Graphs, see “Making Graphical Static Queries” on
page 286.

• About using the SoftBench Debugger Data Graph Window, see
Chapter 8, “Using SoftBench Debugger Data Graph Window,” on
page 235.
Appendix A338

Customizing SoftBench CM Configuration
B Customizing SoftBench CM
Configuration

SoftBench CM lets you customize your configuration management
environment at the user, system, or global level.
Appendix B 339

Customizing SoftBench CM Configuration
Modifying the Configuration Files
Modifying the Configuration Files
The following configuration files come with SoftBench CM and are
usually maintained by the SoftBench CM administrator. However, each
SoftBench CM user can configure the default .fmrc file. The server reads
and acknowledges modifications to these files every 30 seconds. The
system writes a record to the /var/opt/softbench/cm/msglog file
every time it reads a configuration file.

The server configuration files can exist in two different directories on
your server:

• /opt/softbench/config

When SoftBench CM is installed on your server, SoftBench CM places
the configuration files in this directory. The contents of the files in
this directory provide global configuration of your SoftBench CM
environment. All machines are configured according to the settings in
these files.

• /etc/opt/softbench/config

To configure a specific system differently from the global
configuration, you can copy the configuration files into this directory
and make the changes you want. The contents of the files in this
directory only affect the system on which they reside.

SoftBench CM looks in both directories for the configuration files, but
only uses one. The contents of the files found in the

Table B-1 Server Configuration Files

File Name Description

cm.mapping Determines where archive files are stored on
the server(s).

cm.permission Determines user access rights to the archive
files.

cm.option Determines logging and debug levels.

cm.nameperm Determines user modification rights on
symbolic names.
Appendix B340

Customizing SoftBench CM Configuration
Modifying the Configuration Files
/etc/opt/softbench/config directory override the contents of the files
found in /opt/softbench/config directory. Comment lines in these files
begin with a "#" character.

Configuring Where Archive Files are Stored

The cm.mapping file determines where archive files are physically stored
on the server. This file is created during installation and contains default
entries that MUST be modified to map to your archive file structure.
Together this file and the mapping file determine the relationship
between local files and directories and the logical and physical location of
archive files and directories (see Figure B-1).

Each line in this file contains two fields separated by tabs or spaces. The
first field is the logical archive directory prefix. The second field is the
corresponding physical directory prefix.

Figure B-1 File Mapping Between Local and Archive Files
Appendix B 341

Customizing SoftBench CM Configuration
Modifying the Configuration Files
The cm.mapping file initially contains the following entry for the
/TestArchive directory:

TestArchive entry
/TestArchive /var/tmp

In this entry, /TestArchive is the logical archive path by which the
SoftBench CM client and server communicate, and /var/tmp is the
physical path where the example files are stored on the SoftBench CM
server.

Every file managed by SoftBench CM should have exactly one logical
path name. You should not map multiple, logical archive path names to
the same physical file or directory. When creating or updating the
cm.mapping file, create the physical directories and set their ownership
to softcm . Otherwise, the SoftBench CM server may not be able to access
these directories. For example, if you add the following entry to the
cm.mapping file:

#logical path physical path
/project_95 /data/project_srcs

you would also need to do the following from the command line:

mkdir /data/project_srcs
chown softcm /data/project_srcs
chgrp 10000 /data/project_srcs
chmod 700 /data/project_srcs

Change the group id number for the "chgrp" entry above if you used a
GroupID number other than "10000" for the softcm entry in the
/etc/passwd file.

You can edit the cm.mapping file while the SoftBench CM server is
running. The server notices the changes and updates its internal data
structures automatically.

Defining User Access to the Server

The cm.permissions file determines users' access rights to the
SoftBench CM archive files. When you make changes to this file, they
take effect within 30 seconds of saving the file.

The cm.permission file consists of a series of entries. Each entry
contains three types of fields terminated by a semicolon, as follows:

f1 f2 f3 ... [f2 f3 ...] ... ;
Appendix B342

Customizing SoftBench CM Configuration
Modifying the Configuration Files
where f1, f2 and f3 are three distinct types.

• User@System

— User is either * (indicating any user) or a user name.

— System is a sh(1) wild card pattern for a [full domain] machine
name, or a machine address or address range in dot notation (see
inetd.sec(4)).

• Permission symbols (see Table B-2).

Each option is specified by a lower case letter and each grouping by
an upper case letter.

• /path .

Table B-2 Options Used in the cm.permission and cm.option Files

Option Description

a List the contents of a directory.

b Show the history of a file.

c Create a new file.

d Create a new directory.

e Rename a directory.

f Check out a revision.

i Check in a new revision.

l Create a lock for later check in.

m Modify a comment on an existing revision.

n Create a new symbolic revision name.

o Obsolete a revision.

p Modify the mode of a file.

q Delete a file and all of its revisions.

s Change the state of a revision.

t Change the descriptive text for a file.
Appendix B 343

Customizing SoftBench CM Configuration
Modifying the Configuration Files
The permission symbols come in three groups:

• lower case letters control access to individual operations

• upper case letters control access to groups of operations

• numbers set relative priorities for the associated entry

These priorities, coupled with the best match criteria, apply a single
set of permissions to a given access.

SoftBench CM normally uses the best matching entry (longest /path

u Delete a lock on a revision.

v Rename a file.

w Break a lock which is owned by another.

x Delete a directory.

y Move a symbolic revision name.

z Delete a symbolic revision name.

S Superaccess: allows all access rights.

R Read access to archive files Equivalent to "abf".

M Modify archive files Equivalent to "cdilmnptuwx".

D Delete archive files, revisions and symbolic revision
names. Equivalent to "oqz".

A Administration: Rename files and directories.
Modify symbolic revision name values and state
values. Equivalent to "ensvy".

0 Set low priority for this entry.

2 Set high priority for this entry.

3 Set highest priority for this entry.

- Ignored placeholder.

Table B-2 Options Used in the cm.permission and cm.option Files

Option Description
Appendix B344

Customizing SoftBench CM Configuration
Modifying the Configuration Files
prefix match, then most specific user/host match) to determine access
rights. However, by specifying priorities, you can use a shorter path for a
specific user. For example, in the following entries:

*@host R /earth ;
john@host S / ;
jane@host 2S / ;

the user "john" has "R" access to /earth because /earth is more specific
than "/" and "S" access to the rest of the archive. The user "jane" has "S"
access to the whole archive, including /earth because the "2" specifies an
increased priority.

The /opt/softbench/sbin/checkperm -d command displays the
permissions file entries in sorted order. For any given access, the first
entry that matches the requesting user@host and /path determines the
access.

Recommended Format for Permissions File

You can order fields within an entry in two formats:

Format 1. Place user field first and permissions field second.

user1@host.domain.hp.com
RM /project1 /project2
S /project3 # system admin
R / # read-only default
;

user2@hp* S /project1
RM /project2 /project3
;

Format 2. Place path field first and permissions field second.

/ R *@*
;

/project1 RM user1@host* user2@15.1.1-40.* user3@*
S user4@host1.domain.hp.com
;

/project2 RM user1@host*
RMD user2@host1*
;

Use the pattern RMDA or -abf-cdilmnptuwx-oqz-esvy for permissions
and replace the disallowed permission bits or groupings with "- "
characters. This makes it easier to understand which permissions are
deleted and given. The permission letters can be in any order.
Appendix B 345

Customizing SoftBench CM Configuration
Modifying the Configuration Files
If the cm.permission file is missing, or no match is found, no access is
allowed. You should specify a default entry such as:

@15. -abf-cdilmnptuwx-oqz-esvy /
 ;

Setting Logging and Debug Options

The cm.option file specifies two archive options:

LogOptions The recommended (default) setting for logging is to log
every modification operation into the
/var/opt/softbench/cm/activityLog file. The
option letters are position independent (see Table B-2).

LogOptions: abf-cdilmnptuwx-oqz-esvy # Logging options (full list)
LogOptions: cdilmnptuwx-oqz-esvy # Logging options (recommended)

Debug Enables writing of debugging information into the file
/var/opt/softbench/cm/msglog . Debug levels range
from 1 to 5. Higher numbers result in more output.

Debug: 1

Use the cron utility to trim the log files periodically because the log files
have no maximum file length.

Controlling Client Machine Access to the SoftBench
CM Server on HP-UX

The inetd.sec file determines the list of client machines that have
access to the archive server machine.

• If inetd.sec is missing or does not contain an entry for softcm , all
users have access to the archive files, subject to the cm.permission.
For more information, see “Defining User Access to the Server” on
page 342.

• If inetd.sec exists, but is inaccessible to the softcm user, SoftBench
CM denies all access.

• Otherwise, the softcm service entry determines access according to
the standard inetd.sec constructs. (See the inetd.sec(4) reference
page for more information.)
Appendix B346

Customizing SoftBench CM Configuration
Modifying the Configuration Files
You can edit the inetd.sec file while running the archive server. The
server notices the change and updates its internal data structures
immediately.
Appendix B 347

Customizing SoftBench CM Configuration
Performing SoftBench CM Administrator Tasks
Performing SoftBench CM Administrator
Tasks
SoftBench CM requires a few maintenance tasks to ensure a
smooth-running configuration management environment.

Migrating Archive Files From RCS

You can import individual RCS files into SoftBench CM using the -ARCS
option of fci . SoftBench CM can also assume management of an existing
hierarchy of RCS files.

To migrate archive files from RCS:

1. Edit the /opt/softbench/config/cm.mapping or
/etc/softbench/config/cm.mapping file so that the desired logical
path is mapped to the existing directory hierarchy of RCS files.

2. Make certain that all RCS locks in the hierarchy are removed.

3. Change the owner (and group) of all files and directories in the
hierarchy to "softcm".

Migrating Archive Files From SCCS

To migrate files from existing SCCS archives to SoftBench CM archives:

1. Create the new SoftBench CM archive hierarchy using the "futil
-M" command.

2. Use the utility "sccstorcs " to convert the SCCS files to GNU RCS
format.

Run sccstorcs without any arguments to create the KeyWordEdit
script. This script lets you decide which SCCS keywords convert to
RCS keyword equivalents. Most users use the default keywords in
this script.

3. Run "sccstorcs s.file " to convert files in the current directory.

4. Run "find directory -type f -name 's.*' -print | xargs
sccstorcs " to convert files in a directory hierarchy. (See the
sccstorcs(1) man page for more information on sccstorcs)
Appendix B348

Customizing SoftBench CM Configuration
Performing SoftBench CM Administrator Tasks
5. Run "fci -ARCS file,v " to create the initial SoftBench CM archive
files.

6. Begin using SoftBench CM for file versioning.

This conversion process preserves the history and contents from the
SCCS files.

Modifying the Lockinfo File

The file /var/opt/softbench/cm/lockinfo holds all archive file lock
information and is created and maintained automatically. The SoftBench
CM server accesses this file for all lock or unlock information requests. It
is recommend that you DO NOT modify this file. If you must modify it,
follow these steps:

1. Shut down the SoftBench CM server.

Failing to shutdown the server could cause data corruption and loss of
information.

2. Modify the lockinfo file.

3. Run the fixinfo program on the lockinfo file:

cd /var/opt/softbench/cm
/opt/softbench/sbin/fixinfo lockinfo outOK outBAD

4. If "bad = 0 " prints, copy the outOK file onto lockinfo :

cp outOK lockinfo

5. If there are bad records, edit the outBAD file to try to fix the problems.

6. Run fixinfo on the fixed file.

7. Concatenate all the "OK" files together and recheck before restarting
the SoftBench CM server process.

Creating Archive Backups

SoftBench CM requires no special setup or precautions to backup the
SoftBench CM archive files, configuration files, or log files. Follow the
normal backup procedures for your SoftBench CM server.

Moving Archive Storage Locations

As a project grows and you add more files to an archive, the archive may
Appendix B 349

Customizing SoftBench CM Configuration
Performing SoftBench CM Administrator Tasks
exceed the size of the disk. Several options exist for moving archive
locations:

To move an entire archive hierarchy to another disk:

1. Stop the cmserver process.

2. Copy or move the hierarchy.

3. Modify the cm.mapping file to reflect the new physical location.

To move a portion of an archive hierarchy (subhierarchy) to another disk:

1. Stop the cmserver process.

2. Copy or move the hierarchy.

3. Modify the cm.mapping file to reflect the new physical location.

4. Add a symbolic link or leave an empty directory in the location from
which you moved each subhierarchy.

This lets you browse the parent directory to view the moved
subhierarchy.

To move an archive hierarchy to another machine:

1. Stop the cmserver process.

2. Copy or move the hierarchy.

3. Modify the cm.mapping file to reflect the new physical location.

4. Copy lock information for the portion of the archive hierarchy that
you are moving (see “Modifying the Lockinfo File” on page 349).

5. Add a symbolic link or leave an empty directory in the location from
which you moved each subhierarchy.

6. Have each user replace or update the usehost line in their mapping
file to reflect the move.

If the global fmrc file /opt/softbench/config/fmrc is used, then
the system administrator can edit its usehost entries for all users.
This is usually most practical for sites mounting SoftBench CM from
a central server.

All changes should be made such that the logical paths to files are not
modified. This way, users are less affected by the move and locks are
preserved. Changing the logical hierarchy during a move can cause loss
of lock information.
Appendix B350

Customizing SoftBench CM Configuration
Performing SoftBench CM Administrator Tasks
Troubleshooting

SoftBench CM uses archive log files for quick resolution of problems you
may encounter.

Using the Archive Status and Error Log

The SoftBench CM server daemon keeps the file
/var/opt/softbench/cm/msglog open in append mode for writing
various status and error messages. Look at this file when unexpected
events occur.

Log files can grow without bounds if left unchecked. Use an automated
process, such as a cron job, to truncate the log files.

Each message in the log files begins with a date stamp. The most
common messages include the "Started" and "Terminated" status
messages, the configuration file reading messages, and the "Access
denied" messages. Some RCS error messages might also show up in the
file. These messages are more detailed than the command error
messages, so consult the server's msglog file if the command error
message is not clear.

Using the Archive Activity Log

The /var/opt/softbench/cm/activityLog file tracks modifications
made to archive files. The SoftBench CM server writes a line for every
activity that has been selected for logging in the cm.option file. The
activityLog file can be moved, truncated, or deleted without affecting
SoftBench CM. If deleted, the system recreates the file automatically at
runtime.
Appendix B 351

Customizing SoftBench CM Configuration
Performing SoftBench CM Administrator Tasks
Appendix B352

Using Regular Expressions
C Using Regular Expressions

This appendix describes some of the more common types of pattern
matching you can perform using Basic Regular Expressions in
SoftBench. For the complete list and description of all of the basic
regular expressions available, see regexp(5).

Unless you specify otherwise, SoftBench searches for matches anywhere
within a line.
Appendix C 353

Using Regular Expressions
Pattern Matching
Pattern Matching
Table C-1 describes the following types of pattern matching:

• Match any character.

• Treat a special character as a literal.

• Specify a list of matching values.

• Match the beginning of a line.

• Match the end of a line.

• Match entire lines.

• Exclude specified values.

• Match a range of values.

• Repeat a single character any number of times.

• Repeat an expression any number of times.

• Treat a composite expression within parentheses as a single
expression to be repeated any number of times.

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example

Match a particular
string

match_string To match the string st ,
enter:

st

In response, SoftBench
matches any string
containing the string st
(for example, stock and
lists).
Appendix C354

Using Regular Expressions
Pattern Matching
Match any
character

. To match a string
beginning with the
characters st , followed
by any character,
followed by ck , enter:

st.ck

In response, SoftBench
matches such strings as
stack or stocks . To
match a string that
includes a period, refer
to the description of the
backslash character (\).

Treat a special
character as a
literal.

\ Treats any special
character following it as
a literal character. For
example, to match a
string that includes a
period, such as st. ,
enter:

st\.

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example
Appendix C 355

Using Regular Expressions
Pattern Matching
Specify a list of
valid matching
values.

[valid_values] To match either stack
or stock , enter:

st[ao]ck

To specify the string ab,
followed by any digit
except 5, enter:

ab[012346789]

Note that to treat an
opening or closing
bracket as a literal
string, it must be the
first character after the
opening bracket. For
example, to match all
the occurrences of ab]
and ab6 , enter:

ab[]6]

To match all
occurrences of ab[and
ab6 , enter:

ab[[6]

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example
Appendix C356

Using Regular Expressions
Pattern Matching
Exclude specified
values.

[^] When the caret (^)
appears first within the
list of bracketed valid
values, it is used to
exclude all of the
characters that follow
it. For example, to
match ab or any
character other than 5,
enter:

ab[^5]

Otherwise, ^ represents
a literal character. For
example, to match ab^
or ab5 , enter:

ab[5^]

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example
Appendix C 357

Using Regular Expressions
Pattern Matching
Match a range of
values

[-] To match ab followed by
any digit, enter:

ab[0-9]

To match any digit
except 5, enter:

[1-46-9]

Note that if you need to
match the dash (-), do
not place it between
any two characters that
could be interpreted as
a range of values. For
example, a-z could be
interpreted as a range
of values, while z-a
would not. To avoid
confusion, place it as
the first or last
character in your
string. For example, to
search for a dash (-),
followed by any digit,
enter:

[-0-9]

Match the
beginning of a line

^match_expression To match all
occurrences of stack
that occur at the
beginning of a line,
enter:

^stack

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example
Appendix C358

Using Regular Expressions
Pattern Matching
Match the end of a
line

match_expression $ To match all
occurrences of stack
that occur at the end of
a line, enter:

stack$

Match entire lines ^match_expression
$

The following regular
expression would match
all occurrences of
stack_push as long as
it appeared on a line by
itself:

^stack_push$

Repeat a single
character

single_character * To match ab, followed
by any number of c's,
followed by a d (for
example, abcd , abccd ,
and abcccd), enter:

abc*d

Also note that "any
number of" includes
zero occurrences of a
character. Therefore,
the string "abd" would
also match.

Repeat a
[match_string]

[match_string]* To match ab, followed
by any sequence of
digits, followed by c,
enter:

ab[0-9]*c

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example
Appendix C 359

Using Regular Expressions
Pattern Matching
Treat a composite
expression within
parenthesis as a
single expression
to be repeated

(composite_expres
sion)*

To match ab followed by
a string repeated any
number of times (for
example, ab1 , ab2ab3 ,
ab2ab3,ab4), enter:

(ab[0-9])*

Table C-1 Description of Special Characters in Regular Expressions

To… Use… Example
Appendix C360

Customizing SoftBench for Native Language Support (NLS)
D Customizing SoftBench for
Native Language Support (NLS)

This appendix describes how to configure your system so that SoftBench
correctly handles non-USASCII data. It also tells you how to access
human interface localizations if you have purchased a localized version
of SoftBench. If you use USASCII data exclusively, you can skip this
appendix.
Appendix D 361

Customizing SoftBench for Native Language Support (NLS)
Preparing to Use NLS in SoftBench
Preparing to Use NLS in SoftBench
SoftBench was developed to take full advantage of the flexibility of the
X11 Window System in supporting non-USASCII text handling and
localized human interface preferences. Strings for menu alternatives,
button labels, and user messages have been placed in resource
(app-defaults) files and message catalogs to provide dynamic access
and localizability.

You must complete the following steps to use NLS in SoftBench. If you
have purchased a localized version of SoftBench, additional installation
and customization directions may have been shipped with it. Follow
those directions, too. If there are any discrepancies, follow the directions
that came with your localized version.

1. Make sure that SoftBench is properly installed.

2. Determine whether or not you need the NLS-related environment
variable called LANG, and then determine where to set it. “Setting the
LANG Environment Variable” on page 364 describes how to do this.

3. Execute the following command:

ls -l /opt/softbench/config/types/ lang

where lang is the value you use for the LANG environment variable.

If the directory is not found, you will still be able to run SoftBench,
but SoftBench will issue a warning message each time it is started. To
avoid this warning, you can link in a nonlocalized file.

Execute the following command (as superuser) to link in a
nonlocalized directory:

ln /opt/softbench/config/types/C /opt/softbench/config/types/ lang

4. Verify that your X server font search path is set to load the fonts for
the character set representation that you will use. SoftBench
supports both:

• the Roman8 and ISO 8859.1 encodings for eight-bit languages

• two-byte EUC and Shift-JIS for multi-byte languages

Use the xset(1) command to determine and change the font search
Appendix D362

Customizing SoftBench for Native Language Support (NLS)
Preparing to Use NLS in SoftBench
path. Be sure that your value of LANG and your X server font search
path are consistent. See “Setting the LANG Environment Variable”
on page 364 for more information on LANG and character-set
representation.

5. Set the *Scheme resource using xrdb or specify it in your
$HOME/.Xresources file to indicate the color and font scheme file you
wish to use. See the documentation shipped with your localized
version of SoftBench to determine the correct value for the *Scheme
resource.

Note that the default font specifications used by SoftBench support
all of the USASCII, Roman8, and ISO 8859.1 characters.

6. Decide whether to remove the conflict between Extend char used to
enter non-USASCII data and Extend char used as "Alt" in SoftBench
edit commands. See the "Edit Area Keybindings " topic in
SoftBench Online Help to determine which edit commands use "Alt,"
and see “Rebinding Alt” on page 366 below for instructions on
removing the conflict.

7. If you prefer to minimize your use of the mouse, you probably like to
use menu mnemonics and keyboard accelerators whenever possible.
SoftBench menu mnemonics and keyboard accelerators may prevent
the input of non-USASCII characters used in your native language
environment. You can customize your SoftBench environment to
remove these conflicts. See the “SoftBench Mnemonics and
Non-USASCII Character Inputs” on page 367 and “SoftBench
Keyboard Accelerators and Non-USASCII Character Inputs” on page
369 sections later in this chapter for details.

8. If you plan to use SoftXEmacs with non-USASCII data, see "Setting
Your Meta Key Binding " in SoftBench Online Help for a discussion
of your options.

9. Follow any other directions that come with your localized version.
Appendix D 363

Customizing SoftBench for Native Language Support (NLS)
Setting the LANG Environment Variable
Setting the LANG Environment Variable
You must set the LANG environment variable to make use of native
language support. Setting the LANG environment variable directs
SoftBench to use the language-sensitive routines for character handling,
and will control where X11 applications look for resource
(app-defaults) files.

You can set LANG to most of the values supported by HP-UX. The file
/usr/lib/nls/config contains a list of the supported values. SoftBench
supports the ISO 8859.1 character encoding, as well as the Roman8
character encoding. It also supports the EUC (Extended UNIX Code)
representation for Japanese, in addition to Shift-JIS for Asian
languages. (SoftBench does not support middle-Eastern languages.)

The LANG environment variable determines which encoding your
invocation of SoftBench will use. For example:

LANG=german
Specifies the HP Roman8 encoding

LANG=german.iso88591
Specifies ISO 8859.1

Use the following values for LANG in Japanese environments:

ja_JP.SJIS
SJIS encoding

ja_JP.eucJP
EUC encoding

LANGcan be set to provide for either global (system-wide) or local scope of
effect. You should choose the arrangement that is best for your work. The
following table describes the possible means of setting the environment
variable.

Table D-1

To have LANG apply to: Set LANG in:

All the software you run
on your system

$HOME/.profile if you use sh or ksh
$HOME/.login if you use csh
$HOME/.dtprofile if you use CDE
$HOME/.vueprofile if you use VUE
Appendix D364

Customizing SoftBench for Native Language Support (NLS)
Setting the LANG Environment Variable
Converting from One Encoding Method to Another

Files saved using one encoding method will not be interpreted properly if
LANG specifies another encoding when reading the files. This may be a
problem particularly if you display SoftBench remotely. The ISO 8859.1
and EUC encodings are common on non-HP platforms. Use the iconv(1)
routines to convert files from one encoding method to another.

Only the X11 applications
that you run

$HOME/.x11start

Only the current
SoftBench session

The command line from which you start
SoftBench.

Table D-1

To have LANG apply to: Set LANG in:
Appendix D 365

Customizing SoftBench for Native Language Support (NLS)
Rebinding Alt
Rebinding Alt
To replace the Alt keybindings used by the editor with alternate bindings
using ESC, include the following lines in your $HOME/.Xresources file or
use xrdb to set them:

*CodeEdit*extendKey: esckey
*Edit*extendKey: esckey
*ListMgr*extendKey: esckey

Note that ESC works differently from Extend char :

To enter Alt-A using Extend char : Press Extend char and hold it down
while pressing A.

To enter Alt-A using ESC: Press ESC, release it, and then press A.

Note also that setting the three *extendKey resources shown above
replaces only the Alt command bindings used in edit commands. All
other uses of Alt, such as mnemonics used for menu operations, continue
to require Extend char . See the “SoftBench Mnemonics and Non-USASCII
Character Inputs” on page 367 section for further instructions.

If you remap the Alt key, you introduce a conflict between ESC used as
the Alt key and ESC used to close a dialog box. To resolve this conflict,
change the osfCancel virtual keybinding from ESC to CTRL-ESC by
adding the following line:

*osfCancel: Ctrl <Key> Escape

to your $HOME/.Xresources or $HOME/.motifbind file.

If your .motifbind file (or your .Xresources file) does not contain a
Motif virtual-keybindings table, add the contents of the file

/opt/softbench/newconfig/opt/softbench/config/examples/C1405A_RX.motifbind

For more information on osfCancel and Motif virtual keys, see the
VirtualBindings(3X) and mwm(1X) reference pages. For more
information on SoftBench edit area keybindings, see "Edit Area
Keybindings " in SoftBench Online Help.
Appendix D366

Customizing SoftBench for Native Language Support (NLS)
SoftBench Mnemonics and Non-USASCII Character Inputs
SoftBench Mnemonics and Non-USASCII
Character Inputs
All SoftBench tools' menus have mnemonics. A mnemonic is a single
character used to identify each menu name (the menus are displayed at
the top of the tool's main window). The mnemonic is indicated visually by
the underlined letter in the menu button. For example, F in the "File "
menu is the mnemonic.

For USASCII keyboard users, a menu with a mnemonic can be posted
(displayed) by holding down the Alt key and then pressing the mnemonic
key simultaneously. For example, Alt-F will post the "File " menu.
However, if you use Asian language input, and therefore have
customized your environment using the steps outlined in the previous
sections, you will need to press and release the Alt key once, and then
press the Alt key plus the mnemonic character simultaneously to post
the menu.

If you use non-Asian, non-USASCII character inputs, then you can post
the menu using the mnemonics in the same manner as the USASCII
keyboard users. However, the mnemonic character may conflict with
your non-USASCII character inputs and prevent you from entering
certain characters. If a conflict occurs, you need to further customize
your SoftBench environment by changing or removing the problem
mnemonics. Follow the instructions given below.

Changing or Removing Menu Mnemonics

1. Bring up all SoftBench tools. Identify all SoftBench menus that have
mnemonics that conflict with your non-USASCII character inputs.
(You need to check only the menus that appear at the top of the tool
and not the menu commands that exist within each menu pane.)

2. For each of the menus you identified in step 1, find the corresponding
menu label and menu mnemonic resource definitions. They will either
be in a file in

/opt/softbench/app-defaults

or in the file

/opt/softbench/menus/…/C
Appendix D 367

Customizing SoftBench for Native Language Support (NLS)
SoftBench Mnemonics and Non-USASCII Character Inputs
3. To change the value of the mnemonic, pick a letter in the menu label
that is neither a mnemonic for another top-level menu in the same
tool nor used with Alt to input a non-USASCII character. To remove
the mnemonic, pick a letter that does not occur in the menu label. Use
the letter you have selected as the new value of the menu mnemonic
resource.

4. Modify the mnemonic definition using your selected new value. Be
sure to begin the definition with the tool class name (for example,
Softcm) even if the tool class was not specified in the original
mnemonic definition. Merge the new mnemonic definition into your X
resource database through xrdb to test the change.

5. Restart the SoftBench tools that contained the conflicting
mnemonic(s).

6. Verify that the mnemonic is changed or removed and that your
change allows you to input the character that the old mnemonic had
blocked.

7. To make the change permanent, append the new resource definition
to your .Xresources or .Xdefaults file.

Removing the mnemonic from a particular menu will disable the use of
the Alt-key key combination to post that menu, hence enabling you to
input your non-USASCII character. However, you will still be able to post
that menu using the F10 key in combination with the keyboard traversal
(arrow) keys, then select the menu commands within that posted menu
using the mnemonics for those commands. And, of course, you can
always choose your menu selections using the mouse.
Appendix D368

Customizing SoftBench for Native Language Support (NLS)
SoftBench Keyboard Accelerators and Non-USASCII Character Inputs
SoftBench Keyboard Accelerators and
Non-USASCII Character Inputs
Some of the SoftBench tools' menu commands have keyboard
accelerators. Accelerators are keystrokes (such as Alt-Shift -E for "File:
Edit… ") that can be used to invoke the menu command without having to
pull down the menu itself. These SoftBench keyboard accelerators may
conflict with the key(s) used for entering multibyte characters using
Input Method Servers. For example, you will not be able to invoke "File:
Edit… " using Alt-Shift -E if the Alt key is used for accessing the Input
Method Server for entering a multibyte character. If such a conflict
exists, and you wish to eliminate that conflict, you can do so by
customizing the keyboard accelerators directly.

Customizing Keyboard Accelerators

Keyboard accelerators are defined in the files:

/opt/softbench/app-defaults/ toolclass
/opt/softbench/menus/.../C

Select the keyboard accelerator resources that are in conflict for each of
the tools and modify them to your liking.

For example, suppose you wish to customize all of the SoftBench File
Compare tool's keyboard accelerators so that it uses the Function keys,
such as F2, instead of Alt-Shift -SomeKey keystrokes.

1. Copy the appropriate SoftBench File Compare tool's resource
specifications into your $HOME/.Xresources file:

Softcom*fileedit.accelerator: Shift Meta<Key>E
Softcom*fileedit.acceleratorText: Shift+Alt+E
Softcom*filecontext.accelerator: Shift Meta<Key>D
Softcom*filecontext.acceleratorText: Shift+Alt+D

2. Replace the accelerator resource with the keystroke you desire, and
the acceleratorText resource with the actual label you expect to see
in the menu pick. For instance:

Softcom*fileedit.accelerator: <Key>F2
Softcom*fileedit.acceleratorText: F2
Softcom*filecontext.accelerator: <Key>F3
Softcom*filecontext.acceleratorText: F3
Appendix D 369

Customizing SoftBench for Native Language Support (NLS)
SoftBench Keyboard Accelerators and Non-USASCII Character Inputs
Choose your accelerator resource values carefully. Be careful not to
select a value for an accelerator resource that conflicts with edit
keybindings. For information on SoftBench edit area keybindings, see
"Edit Area Keybindings " in SoftBench Online Help. Also be careful not
to select a value that conflicts with Motif Text and TextField widgets, nor
with the Motif style guide keybindings (such as F1 for help).
Appendix D370

Customizing SoftBench for Native Language Support (NLS)
Starting Your Localized SoftBench
Starting Your Localized SoftBench
Once all of the customizations explained above have been performed, you
are ready to run your localized SoftBench system. You can start
SoftBench by typing "softbench " in a shell window.

If your SoftBench system does not operate as you expect, try logging out
and logging back in. If SoftBench still fails, check for and correct any
configuration errors. If SoftBench still does not operate as you expect,
contact your Hewlett-Packard systems engineer for assistance. If you
have purchased a fully localized system and have followed the
installation and customization instructions for NLS and see
non-localized messages as you run SoftBench, report what you were
doing and what the messages say (to help determine the cause of the
error).
Appendix D 371

Customizing SoftBench for Native Language Support (NLS)
Remote Execution Hosts and NLS
Remote Execution Hosts and NLS
You can invoke localized SoftBench applications on any remote execution
host that has a similarly configured localized SoftBench installation. The
value of LANG on the invocation host is passed to the remote host when
the application is started. The environment variables do not contain any
host information, however. Thus, the message catalogs, application
resource files, etc., must be in the same locations on both systems unless
the $HOME/.softenv file is used on the remote execution host to specify a
different location.
Appendix D372

Customizing SoftBench for Native Language Support (NLS)
Editing in SoftBench
Editing in SoftBench
All characters that can normally be entered from an HP keyboard into an
HPterm window can also be entered into SoftBench Edit Areas. However,
you may need to modify your input method or customize your SoftBench
environment.

If you have difficulty entering non-USASCII characters into SoftBench
XEmacs, see "Setting Your Meta Key Binding " in SoftBench Online
Help.

If you have difficulty entering non-USASCII characters into the
remainder of SoftBench, you have two choices. You can either enable the
character input each time you need to enter it, or you can enable it
permanently by performing the customizations described in “Preparing
to Use NLS in SoftBench” on page 362. In making your choice, you
should consider the location of ESC, and how often and where the
key-conflicts occur for your language.

Character Input Example

On the French keyboard, Alt-W (Alt is the Extend char to the left of the
space bar) enters the ~ character. This conflicts with the editing
command "copy-selection". However, pressing CTRL-Q before typing the
character overrides the command binding and allows the input of the
character into the SoftBench edit area. That is, to enter ~ into an edit
area on a French keyboard, you would type:

CTRL- Q Alt- W
Appendix D 373

Customizing SoftBench for Native Language Support (NLS)
Editing in SoftBench
Appendix D374

Glossary
Accelerator A key or key combination that performs the same function
as a menu choice, but without the need to drop down the menu. It is
accessible anywhere within the window. For example, Shift -Alt-E is
identical to choosing "File: Edit… ".

Alternate Source Root One or more directories which are the top of a
tree for additional source locations. You can use alternate source roots to
provide additional directory trees which SoftBench searches to find
project files when doing an external build. If your environment
maintains identical file structures for different versions of the project,
then alternate source roots allow you to put only the files you need in
your local workspace and find the remaining files in alternate
locations. This works like the VPATH environment variable for make(1).

Analysis File Set Used by SoftBench Static Analyzer, the analysis
fileset identifies the set of projects (files and directories when in
standalone mode) which identify the Static database files and source files
to open.

Archive The location in SoftBench CM where file revisions are stored.
The archive contains historical information about files, including file
revisions, when revisions were made, what changes were made, and who
made them.

Arcs The lines that connect two nodes in a graph. Normally includes an
"arrowhead" to indicate the direction of flow, inheritance, and so on.

Arrows Graphical arrows usually seen in scroll areas. Clicking on these
arrows scrolls the text. Arrow keys on the keyboard move the cursor in
an edit area.

Breakpoint A "hook" placed in your executable program by SoftBench
Debugger to halt execution at a specific line. Indicated by a breakpoint
annotation (B in an octagon) in the Annotation Margin. When your
program is paused at a breakpoint, control returns to the debugger, so
you can examine variables, modify program status, or perform other
operations.

Buffer An area in memory used for temporary storage. The edit areas in
your configured SoftBench editor and SoftBench Debugger are buffers.
375

You edit a copy of the original file in this temporary storage area, and the
original file is not changed unless you save the edits.

Build An action appropriate for projects and targets. When you choose
"Build " with a target file selected, SoftBench begins with the source files
and transforms them as necessary to create the end result, the target.

With project build, SoftBench uses build dependency information and
build configuration information to build the target. With external
build, SoftBench uses the build command that you supply to build the
target.

See also Compile.

Build Configuration A build configuration is a complete set of build
instructions to produce a target of a particular type, such as a C++C++
executable, a C shared library, or an Oracle C executable. A build
configuration includes libraries, include directories, compiler and
compiler options, defines, etc.

SoftBench ships with a basic set of build configurations. Additionally,
users can create their own build configurations to support third party or
in-house libraries. Each target of a project is associated with a build
configuration, but build configurations can be used by many targets,
across many projects. You can create and change build configurations in
two ways:

• To create new build configurations or make changes that can affect
many targets, choose "Builder: Manage Build Configurations… ",
select the build configuration that you want, and make the changes.

• To make changes that affect only one target, select the target, then
choose "Target: Modify Properties… ". In the "Modify Target
Properties " dialog box, select Customize Build Configuration… .
Changes made through the "Customize Build Configuration "
dialog box are unnamed and can be used only by the target associated
with the customization.

For example, if most of your C executables are built in a certain way, but
one needs a special library, customizing the build configuration may be
more efficient than creating another named build configuration for just
one C executable. However, once you customize a build configuration,
changes to the underlying build configuration have no impact on the
376

customized build configuration.

To see the complete list of available build configurations, choose
"Builder: Manage Build Configurations… " on the SoftBench main
window, then explore the drop-down list of build configuration names.

Check In The process of moving file changes from the local file system
into the archive file system. When you check a file in as unlocked, the
local copy of the file is read-only.

Check Out The process of retrieving a copy of an archive file into a
mapped, local file system. When you check out a file, you can edit the file
without affecting any other files. You can check a file out with read-only
("Check Out Unlocked ") or read-write ("Check Out Locked ")
permissions.

Child Process A program called from another program. Every HP-UX
process except the root process is a child of some other process. When two
programs interact, one is usually the parent and one is the child.

Click Consecutively pressing a mouse button and releasing it. The click
action is used to move the edit cursor (move the pointer to the desired
cursor position, and click), and to select a button (move the pointer to the
button and click).

Clipboard An area in memory used for cutting and pasting text. When
you select a cut or copy function in an Edit Area, the text is placed in a
Clipboard. When you paste text, the text in the Clipboard is placed into
the Edit Area.

Compile An action appropriate for source files and object files. When
you choose "Compile " with either source or object files selected,
SoftBench transforms the source file into the object file.

See also Build.

Configuration Management A process that lets development teams
identify and control changes to the components of their projects. This
method of control allows teams to build any saved version of their
product in a consistent, repeatable manner.

Dependency The relationship between files and targets when the
377

creation of a target is dependent upon the existence of another file or
target.

SoftBench supports three types of dependency relationships: a subproject
relationship, a build order dependency between two targets in the same
project, and a source-to-target relationship between source files and the
target derived from them.

The first two types of dependency relationships both provide a build
order dependency. When the dependency crosses projects (through the
subproject relationship), you can control whether the subproject is
automatically rebuilt with the "■ Build Subprojects " toggle button.

Double-click Press and release a mouse button twice in rapid
succession.

Drag and drop You complete a drag action by pressing and holding
down a mouse button while moving the mouse on your desktop (and the
pointer on the screen). You complete a drop action by releasing the
mouse button after the object has been "dragged" to a new position.

Edit Area An editable area used for displaying or entering text data in
your configured SoftBench editor and SoftBench Debugger.

Embedded SQL Source Code Structured Query Language source code
that exists within your source language environment. Preprocessors
translate the embedded SQL to source code statements proior to
compilation.

Environment Variable Also called "Shell Variable", an environment
variable is a named variable that is passed to all processes created by the
current shell. Your shell stores information about who you are and what
you are doing, and some of your preferences.

Some examples of environment variables are:

PATH Typically set in your .login or .profile file, this
variable is used to locate executable programs.

DISPLAY Tells X11 where to locate the X server process for I/O.

See your shell reference page (csh(1), sh(1), or ksh(1)) for information on
378

setting and reading environment variables.

Execution Host The computer on which a process executes. For
example, you can specify a remote compile host for building projects or a
remote debug host for debugging executables. The remote execution host
can be different from the computer that runs the main SoftBench
window or SoftBench Debugger. SoftBench must be installed on the
remote execution host.

See Installing SoftBench for more information on how to configure your
system to run your tools over distributed systems.

External Build SoftBench's external build model means that users
have their own make utilities, such as their own imake , make, or nmake
files or scripts. To use external build:

1. Select the "() External Build " radio button in the "Create
Project " dialog box or the "Modify Project
 Properties " dialog box. (Choose "Project: New -> Create… " or
"Project: Modify Properties " respectively.)

2. In the same dialog box, specify the build directory and default build
command for building the entire project.

3. Choose "Builder: Use External Build Command… " in the
SoftBench main window to post the "External Build Command "
dialog box and provide build instructions for the various targets in
the project.

4. Select Save as Target… in the "External Build Command " dialog box
to save the build instructions for later reuse from the project browser.

Projects that use external build model do not take advantage of
SoftBench's project build and the supporting build configurations and
packages. With project build, SoftBench handles the build process
without a need for the user to create and edit a Makefile, and SoftBench
provides automatic generation of a Makefile when it is needed.

Both external build projects and project build projects can use the
"External Build Command " dialog box to execute shell commands or
build software which is not in a project.

File Revision A particular instance of a file in a series of changes to
379

that file. The file and its series of changes are stored in an archive.

File Server A computer system that maintains source, version control,
or other sets of files. The system can be centralized so that project team
members have access to the same versions of common files.

File Set SoftBench supports two types of file sets:

• project file set — the set of files included in the project

• analysis file set — the set of files used by SoftBench Static Analyzer

Files View The view of your project provided in the main SoftBench
window when you select the "Files " tab on the project browser.

Filter A mechanism to determine which rule violations are displayed.
Available only in SoftBench CodeAdvisor, part of C++C++ SoftBench.

Greyed-Out A greyed-out menu choice or button is one that is inactive
and cannot be selected. It appears in a lighter (half-tone) color.

Help Get help by choosing items from the "Help " menu, or by pointing to
a screen item of interest with the mouse and selecting the Help key (F1).

If a dialog box containing "There is no help for this item. "
appears, move the pointer to a nearby area and try again.

Input Box A text area which can accept typed keystrokes. Also refers
specifically to an area in a dialog box in which you enter text.

For example, when you choose "File: Edit… ", the file selection dialog
box has two input boxes, one for a file filter and one for a file name. You
can type the directory path in the "Filter " input box, then select Filter .
You can type the file name in the "Edit File " input box, then select OK.

Intercept A SoftBench Debugger feature that monitors certain events,
such as signals, and notifies the user when they occur. Events that can be
intercepted include operating-system signals, the loading or removing of
images from a program's address space, and the termination of the
program. By default, all operating-system signals are intercepted.
"Execution: Signals/ I ntercepts… " allows you to review and modify
these settings.
380

Intermediate File A file that is derived from a source file and serves as
an intermediate step between the source file and the target. For example,
object files (*.o files) are intermediate files between source files and
executable files (targets). Generated source files, such as source files
resulting from transforming embedded SQL source, are also
intermediate files.

SoftBench determines what intermediate files you need based on the
build configuration associated with the target.

Recommendation: Do not add intermediate files as project files in the
project. Let the build process handle the creation and modification of
these files.

Keyboard Focus The window or window area receiving keyboard
events, which is controlled by the window manager. See Installing
SoftBench for information on setting resources for controlling the
keyboard focus policy.

Local Workspace Root The local workspace root is the top-level
directory of the local workspace, the file system hierarchy where the user
places working versions of files for editing and building. Project
descriptions include only the relative paths of project files, so that project
descriptions can be shared with team members or across the network.
Typically, the value of local workspace root changes from one user to the
next.

Local workspace root is defined during project creation. Its initial value
is the directory in which SoftBench is started. You can change a project's
local workspace root by choosing "Project: Modify Properties… " in
the SoftBench main window.

Location The currently viewed line, procedure, and file for SoftBench
Debugger.

Lock A mechanism used by configuration management systems to
prevent other users from making changes to a file. When you check out a
file from configuration management, you can lock it so only you can
modify and save the file.

Also a mechanism used to prevent simultaneous access to a project.
SoftBench locks projects when they are open and unlocks themwhen they
381

are closed.

Makefile A control file that specifies rules for building targets.
Makefiles can contain the following types of information:

• macro definitions
• file dependency information
• executable commands

Makefiles help you maintain up-to-date versions of projects that result
from many operations on a number of files. In SoftBench, you can use
project build, which frees you from maintaining your own Makefiles, or
you can use external build, which allows you to use and maintain your
existing Makefiles.

Mapping The relationship between your local files and directories and
the corresponding configuration management archive files and
directories. When files are checked out of the archive, writable copies are
places in the local directory that is mapped to that archive directory.

Menu A pull-down, graphical selection device consisting of a list of
actions or options to select. In SoftBench, there is a menu under each
entry in the menu bar. These may contain cascading submenus
(denoted by "->" in the menu item label).

Menu Bar The horizontal line of menus at the top of a SoftBench tool.
These are referred to by the word at the head of the menu, such as the
"File " menu, the "Edit " menu, or the "Help " menu.

Mnemonic A single letter character that provides a shortcut for
selecting a menu command from the keyboard. Mnemonics are indicated
by underlined characters in the menus. For example "File: E xit… " can
be invoked by pressing and holding down the Alt key while pressing the
F key, and then pressing the x key.

Monitor One of several SoftBench Debugger functions (breakpoints,
watchpoints, tracepoints, and intercepts) that monitor the progress
of a debugged program and notify the user when a predetermined event
occurs.

Nodes The items of interest in a graph. In the target graph, nodes
represent targets, intermediate files, source files, and include files. In
Static Graph nodes represent identifiers (variable, procedure, or class
382

names) and files, and are represented by various shapes in the graphic
display. In SoftBench Debugger's Data Graph Window, nodes represent
variables.

Package A package is a compiler, third-party or in-house library, or
utility that is used to build a target. Packages can include library and
include directory information, defines and compiler flags, and
precompiler or code generator specifications.

Packages provide a short-cut way to use third-party or in-house libraries
in many build configurations. First, define the package; then include the
package in all appropriate build configurations. If the package's build
instructions need to change, you modify the package, and all build
configurations which use the package update automatically.

SoftBench ships with a basic set of packages, or users can create their
own packages. Examples of shipped packages include Motif, X11R5,
Encapsulator, RogueWave, and Oracle. To see the complete set of shipped
packages choose "Builder: Modify Packages…" in the SoftBench main
window, then explore the drop-down list of package names.

PC Program location where execution stopped in SoftBench Debugger.
The statement at this location will, by default, be the next statement to
be executed when execution resumes.

PC stands for Program Counter.

Popup Menus Menus which are displayed by selecting mouse button 3
(usually the right mouse button) over a designated area of the screen. All
graphs and the Builder and CodeAdvisor output browser contain popup
menus.

Primary Selection Several lines of text highlighted by using the left
mouse button and dragging it over the desired text. This works in any X
application. You can then paste this text in an Editor window using the
Shift-Middle mouse button combination.

Project A project is a named set of files and one or more sets of build
instructions and dependencies that produce a set of related targets. A
project is always an entity to itself, that is, it does not dynamically
inherit options or build information from any other project. Projects are
related by the parent/subproject build dependency relationship. Project
383

names contain regular characters. Control characters, spaces, and
punctuation characters special to the shell are not allowed in project
names.

Project Browser The area in the main SoftBench window that displays
project data. In the Projects view, the project browser displays projects
and subprojects. In the Files view, the project browser displays files and
targets in the current project.

Project Build A project build means that users let SoftBench manage
their build instructions. Users specify source-to-target dependencies,
target build order dependencies, and build configurations for building
the targets. SoftBench manages this information, builds the targets in
the project, and generates the supporting Makefile, if the user requests
it.

Some users have a highly-tuned build process and may not want to
transition to the project build model. For that reason, SoftBench also
supports an external build model, allowing you to use your existing
build process within SoftBench.

Project Description Data Project description data is
SoftBench-created information that describes a project, its file set, its
build configurations, options, and settings. Description files in a project
root should not be edited by the user, except in rare instances such as
creating a new transform.

See also Project Root.

Project Root The project root is the file system location where
SoftBench saves and retrieves project description data. The default
project root is the place where all new project descriptions are written.
(User source and target files are found in the local workspace root, not
the project root.

The default value for project root is $HOME/.softbench . You can change
the default value by choosing "Options: Set Default Project Root… "
in the SoftBench main window.

Projects View The view of your project provided in the main SoftBench
window when you select the "Projects " tab on the project browser.
384

Push Buttons Independent buttons found in top-level tool windows and
in dialog boxes, which when pushed initiate frequently used system
actions.

Query A request for cross-reference information about some part of your
project in SoftBench Static Analyzer.

Radio Buttons A graphical user interface construct consisting of
several buttons representing several choices. Only one button may be
selected at any time. When a button is selected, all other buttons are
automatically deselected.

Revision history A file kept by SoftBench CM that contains
information about the content of each file revision, as well as the author,
check-in date, check-in time, and a log message for each change.

Scope The region of source code over which a name's declaration is
active. Scoping is the ability to uniquely identify a program identifier in
SoftBench Static Analyzer based on its source code position.

Signal A software interrupt sent from the operating system to a
program. This can inform the program of any asynchronous event.
Signals are used for segment violation, divide by zero, or other hardware
problems, and they can be sent as a job control mechanism (stop,
continue, kill).

Single Step To execute a program one statement or instruction at a
time, to allow you to look at the values of variables and other information
between steps in SoftBench Debugger.

SQL Structured Query Language, the defacto standard database query
language used to perform operations on a Relational Database
Management System.

SQL Preprocessor A script or utility that converts Structured Query
Language source lines in your code to the native language you are using
in your application. This script or utility usually is provided by the
database vendor.

Static Database A file that contains cross-reference information that
SoftBench Static Analyzer requires to answer queries. The Static.sadb
file is generated by a parser when the Static compile mode is set during
385

a build, or during an "Analyze File Set " operation.

Subproject A subproject is a project with a defined build dependency
relationship to a parent project. Examples of subprojects include:

• a project to build a library that will be linked into a parent project
executable

• a project to build an executable used to generate files or targets in the
parent project

Subprojects are projects in their own right, and do not inherit options or
build instructions from the parent project (except at creation time if they
are created through the "File: Con vert to Project… " process). A
subproject relationship does not imply "inclusion"; that is, the file set of
the subproject is not a subset of the parent project file set.

Symbolic Name A special name or code for a file that associates it with
a certain release. If subsequent revisions of this file form a branch, the
symbolic name applies to the entire branch. Also known as usename or
tag.

Synchronous Mode The program interacts with the X Window System
in such a way that events are not buffered, but are written/read as they
happen.

Target A project file that is the end product of a build; for example, a
linked executable, shared library, archive library, or message catalog.

Targets share the following characteristics:

• A target belongs to only one project. You can, however, use the same
target name in more than one project.

• SoftBench builds targets in no specific order unless you create a build
order dependency between targets.

• You can (and usually do) define targets before they exist on the file
system.

• Targets have a physical file system location, usually the local
workspace root, which can be changed by modifying the target's
properties.

• Project build targets have an associated build configuration which
provides build rules and tool interactions.

• Project build targets have source-to-target dependencies that you
create by choosing "File: Lin k Source to Target… ". The target is
386

derived from its associated source files.
• External build targets have an associated build command which can

produce the target.
• Targets are the end product of a build, as distinguished from

intermediate files (.o files or generated .C files) which are produced
as an intermediate step in the build.

Not every target is an executable file, and not every executable file in a
project is a target. SoftBench treats files that are added via the
"Project: Add File(s) to Project… " operation as files. It treats files
that are added via the "Target: New…" operation as targets.

Toggle Buttons Independent buttons which set the (off|on) state of
selected options. If selected, the button remains selected until you press
the button again.

Token A unit of text, delimited by spaces or punctuation. Within text, a
token is a "word". Within source code, a token is an "identifier" or a
"constant".

Tracepoint A SoftBench Debugger feature that "traces" the execution of
a program, notifying the user when certain points in the program are
executed.

Transform A transform takes a specific type of file, processes it, and
produces a new type of file. A transform is the basic building block that
allows SoftBench to build a target. Transforms are used by packages
which are in turn used by build configurations.

Unlock You can unlock files when you check them into the archive.
Unlocked archive files are available for check out by any user with the
appropriate permissions. If you remove the lock on a locked file and do
not check in the file, you will cancel any changes you made to that file.

Update The process of retrieving the most current set of archive files
onto your local system. This process updates your mapped, local file
system so that it matches the most current version files.

Version One isntance of a file in a seris of changes A particular instance
of a file in a series of changes to that file that are stored in the SoftBench
CM archive.

Watchpoint A debugger monitor that "watches" the value of a variable
387

or memory range, and notifies the user if the value changes. This is
especially useful if variables in your program change value unexpectedly.

Working Directory The directory in which your SoftBench processes
run. In most cases, SoftBench uses the local workspace root as the
working directory. You can override this location for a target by changing
the target's properties. You can change the target's physical file system
location, or you can set a "Working Directory " value in a target's
execution and debug properties.

To change either of these values, select the target, then choose "Target:
Modify Properties… " in the main SoftBench window.

X Resources File entries that allows you to customize an X application
environment. Each resource usually consists of the application name, the
resource name, and the value to be assigned to the specific resource.
388

Index
Symbols
$HOME/.softbench/bmsinit, 80
$HOME/.softbench/projectname.msglog, 311
() input box, 160, 182
() Silent, 194, 202
() Verbose, 194, 202
), debugging, 175
.softdebugrc file, 228
.underscorevfp, 243
.underscorevptr, 243
.Xdefaults file, 176
`Messages menu

Send Message, 309

A
Actions menu

Cancel Check Out (Discard Changes), 103
Check In from Local Directory, 94, 110
Check Out to Local Directory, 93
Check Out to Local Directory Check Out,

103
Check Out to Local Directory Locked, 103
Check Out to Local Directory Unlocked, 103
Create New Mapping, 93, 98
Show Local Server Information, 92, 95
Show Set Up Instructions, 92
Show/Modify Mappings, 99, 113
Update to Local Directory Current

Directory Only, 104
Update to Local Directory Recursive

(Directories Only), 104
Update to Local Directory Recursive (Files

and Directories), 104
Activate All (Break menu), 194
Add Base Class(Edit menu), 139
Add Build Order Dependency (Target menu),

61
Add Existing Source Files, 53
Add File(s) to Project (Project menu), 38, 51,

53, 58, 64
Add File(s) to Project(Project menu), 94
Add Source Directories (File menu), 168, 169
Adding

mappings, 100
source directories in Debugger, 169
targets to a project, 51, 53
tools to toolbar, 79, 80

Administering SoftCM, 339
Adopting

a process for debugging, 222

Analysis file set, 255, 257
customizing, 255, 256
including parents and subprojects, 255
multiple projects, 255
status, 257
synchronizing, 256

Analyze File Set (File menu), 255
Annotation Margin, 161, 189, 190, 194, 211
app-defaults, 364
Archive, 90

backup, 349
breaking file locks, 107
browsing, 95
browsing archive files, 95, 102
cancelling file check out, 103
checking in files, 110
checking out archive files, 102
creating archive directories, 97
creating initial files, 102
customizing the display filter, 109
deleting archive files or directories, 106
description, 90
directory, 97
filtering display, 109
location, 100, 341, 349
locking archive files, 106
mapping, 90, 93, 98
moving, 349
permissions, 342
sorting display, 109
specifying file revisions, 113
unlocking archive files, 107
updating local directories, 103
viewing archive file content, 104
viewing locked files, 109
viewing revision history, 107

Archive server, 90, 95
accessing, 346
deleting, 101
modifying, 100

Arcs
Data Graph Window, 240
selecting, 332

Arguments, in Debugger, 167
Assembly

instructions window, 212
language, 211, 218
level breakpoints, 211
registers, 213

Assembly Instructions (Show menu), 211, 218
389

Index
B
B (Breakpoint) annotation, 161, 189, 190, 193
Backup

archives, 349
Behavior Settings (Options menu), 257, 266,

267
Block

specifying, 177
traces, 204

bmsinit, 80, 120
Boldface font, 5
Break File Lock(File menu), 107
Break menu, 191, 192, 197

Activate All, 194
Clear All, 195
Set, 192
Set at (), 191
Set at Class (), 197
Set At Hex Address (), 211
Set at Instance (), 197
Set at Overloaded (), 197
Set at Procedure Entry (), 192
Set at Template (), 197
Show, 189, 193
Suspend All, 194

Breaking archive locks, 107
Breakpoints, 188, 189

assembly level, 211
changing, 193
clearing, 194
commands at, 192, 195
Cplusplus, 197
debugging with, 189
exception handling, 225
listing, 189
on threads, 193
setting, 190
setting from Static Analyzer, 290
setting from your editor, 131
setting group, 197
setting in annotation margin, 162
SQL, 319
threads, 221
viewing, 193
viewing and modifying, 197

Broadcast Message Server, 305
Broadcast Messages area, 307
Browser submenu

Find String, 75
Load Browser from File, 75

Print/Save Output, 75
Browsing and fixing errors, 74
Browsing archive servers, 95
Browsing archives, 95
Buffer

in XEmacs Editor, 122
Build

changing type, 56
dependencies, 38, 51, 55, 61
error browsing, 74
handling errors, 73
options, 70
order, 55
package, 63
preview, 72
project, 38, 70
remote, 75
selected target, 69
server, 75
starting, 44
subproject, 44, 55, 73
targets and projects, 70, 75
troubleshooting, 86
vs. compile, 73

Build (File menu in Debugger), 39
Build (Target menu), 69, 70
Build configuration, 22, 23, 38

customizing, 61, 62, 63
modifying, 52
selecting, 60
SQL, 315

Build control area, 44
Build model

changing, 56
external build, 39, 50, 52, 64
project build, 38, 50, 60

Build package, 24, 62
Build Project (File menu), 130
Build Settings (Options menu), 75
Builder, 32
Builder menu

Browser, 74
Manage Build Configuration, 62, 71
Manage Package Information, 63
Use External Build Command, 72

Builder page, 46, 47
Building

for debugging, 159
from your editor, 130
with Static data, 254
390

Index
Button area, 44
Buttons, 162

customizing, 228

C
Call graph, 284
Call stack, 186
Calling functions, 186
Cancel Check Out (Discard Changes)

(Actions menu), 103
Case sensitivity, 178
CDE

dragging files, 77
integrating with SoftBench, 82
starting SoftBench from, 43
workspaces, 36

Change Working Directory (File menu), 167
Changing

build type, 56
data, 181
source code, 207
variables, 181, 183

Character constants, 185
Characters, non-USASCII, 367
Check In from Local Directory(Actions

menu), 94, 110
Check Out to Local Directory (Actions menu),

93
Checking code, 39, 44, 76, 150
Checking in

files to archive, 110
symbolic names, 112

Checking out
archive files, 102
symbolic names, 113

Child process, 222
Class

break, 197
commands, 224
creating, 139
deleting, 140
editing, 134, 140
hierarchy, 138

Class Graph/Editor, 32, 133, 284
analysis data, 134, 135, 136
calling your editor, 140
configuration management, 142
creating classes, 139
data unsynchronized, 135
deleting components, 140

editing classes, 139
editing components, 140
starting, 138
synchronizing, 136
templates, 141
troubleshooting, 143
undo list, 136
use model, 134
with other editors, 136

Classes (Show menu), 260
Classification () (Symbol menu), 263
Clear All (Break menu), 195
Clear All (Trace menu), 206
Clear All (Watch menu), 203
Clearing Graph Area, 331
Client-server architecture, 90
Clock icon, 46, 190
Cloning projects, 27, 53
Close, 46
Close (Project menu), 83
Code understanding, 39
CodeAdvisor, 32, 39, 145

accessing, 150
checking programs, 150
file set, 151
from command line, 149
page, 46, 48, 76
preparation, 149
rule groups, 150
rules, 147
SQL, 321
starting, 76
terminating, 152
use model, 149
violations, 151
with external build, 149

Collapsing group breakpoints, 197
Colors

on target graph, 68
Command line, 36, 115

starting SoftBench from, 43
Compare (File menu), 296
Comparing files, 295, 300
Compatibility

regenerating Static data, 254
Compile

errors, 73
files, 73
mode options, 44, 70
server, 75
vs. build, 73
391

Index
Compile (File menu), 73, 130
Compile mode

external build, 72
override, 71

Compile options, 159
changing, 71

Compiler flags
defining, 71
external build, 72

Compiling
for debugging, 159
from your editor, 130

Computer font, 5
Configuration files, 340
Configuration management, 27

choosing tool, 80
Class Graph/Editor, 142
from Debugger, 207
from your editor, 131

Configuration Management submenu (File
menu), 38, 131

Configuring
an editor, 119
Program Editor, 119
SoftCM, 92
toolbar, 79
vi Editor, 119

Constants, 185
Controlling Graph Layout, 336
Convert to Project (File menu), 54
Converting files to a project, 54
Copy

block of text in vi Editor, 129
data between tools, 37
in vi Editor, 129
multiple files in vi Editor, 129

core file, 217
Correcting errors, 207
Cplusplus Class Graph/Editor, 133
Cplusplus debugging, 223
Cplusplus Settings (Options menu), 225
CPU Registers, 213
Create Class(Edit menu), 139
Create Data Member(Edit menu), 139
Create Member Function(Edit menu), 139
Create New Mapping(Actions menu), 93, 98
Create(Directory menu), 93, 97
Create(File menu), 93, 102
Creating

a mapping, 98
an archive directory, 97

archive files, 102
files with your editor, 121
files within a project, 57
projects, 38, 50, 55
subprojects, 55

Current Location, 161, 178
Current project, 35

area, 44
in title bar, 36

Custom menu
Edit Menus, 77, 78

Customizable buttons in Debugger, 162
Customize Build Configuration, 52
Customize Build Configuration dialog box, 38
Customize File Set (File menu), 255, 256
Customizing, 339

build configuration, 52
buttons, 228
Debugger, 228
environment, 78, 83
popup menus, 228
SoftBench, 81
SoftBench Graphs, 336
Static Analyzer, 275
Static Graph, 294
tool preferences, 80

Cut
multiple files in vi Editor, 129

D
-d compiler option, 197
Data

changing, 181, 183
examining, 181, 182

Data Graph () (Show menu), 236
Data Graph Indirect () (Show menu), 236
Data Graph Window, 235

arcs, 240
Display Control Area, 238
embedded arrays, 248
exiting, 236
general graph operations, 323
Graph Area, 238, 241
Layout Control Area, 237
node values, 247
nodes, 239
popup menus, 239
starting, 236
suspending, 244
use models, 245
392

Index
Window Control Area, 240
Data members

displaying, 243
setting values, 243
viewing values, 247

Data Value Show'' menu), 183
DDE

Busy, 161
communication, 162
Reference, 155
variables, 183

DDE commands, 181
declare, 180
list decl, 184
on breakpoints, 192, 195
on buttons, 229
on intercepts, 215
on traces, 204, 205
on watchpoints, 200
print, 184
prop lang, 184

Deadlock, 175
Debug (Target menu), 39, 77
debug compiler option, 197
Debug Running Process (File menu), 222
Debugger, 155

adding source directories, 169
breakpoints, 189, 193
calling functions, 186
class commands, 224
configuration management, 207
core file, 217
Cplusplus, 223
Current Location, 161
customizing, 228
debugger variables, 183
dynamic libraries, 209
edit area, 207
exception handling, 224
forked processes, 219
inline functions, 197
interrupting a program, 172
loading executable, 165
main toolface tear apart, 163
nested classes, 224
no source available, 172
object identification, 224
optimized code, 227
parameterized types (templates), 224
preparing a program, 159

program interaction, 174
redirecting I/O, 175
running, 39
running a program, 165, 190
runtime environment, 165
setting breakpoints, 193
setting breakpoints from Static Analyzer,

290
signals and events, 214
source languages, 184
specifying location, 177
SQL, 319
starting editor, 207
stepping through a program, 171
stop after count, 195
synchronizing source files, 208
terminal I/O, 175
threads, 220
undebuggable code, 171, 172
variable specification, 178
watchpoints, 199
window areas, 160
with external build, 169
with project build, 169
X windows, 175

Debugging
expanded SQL source, 320
from your editor, 131
running programs, 222
SQL, 319

debugui.buttons file, 229
Declaration of an identifier, 262
Default Load/Rerun Settings (Options

menu), 165, 167, 168, 175
Define Targets, 51, 53
Definition of an identifier, 262
Delete(Directory menu), 106
Delete(File menu), 106
Deleting

a mapping, 101
a query's history, 271
archive files and directories, 106
archive servers, 101
breakpoints, 194
Class Graph/Editor components, 140
traces, 206
watchpoints, 202

Dependencies
defining, 68
showing, 61, 68
393

Index
source-to-target, 51, 61
target-to-target, 61

Description Boxes, 289
Directory

archive, 97
working, 167

Directory menu
Create, 93, 97
Delete, 106

Display Filter(Options menu), 109
Display legend

Static Graph, 287
target graph, 328

Display on Graph (Target menu), 66
Display Results (View menu), 266
Distributed data, 81
Dynamic libraries, debugging, 209

E
Edit Area syntax, 126
Edit menu

Add Base Class, 139
Create Class, 139
Create Data Member, 139
Create Member Function, 139
Modify, 140
Undo, 140
Update Buffer, 208

Edit Menus (Custom menu), 77, 78
Editing

Cplusplus classes, 134, 139
Cplusplus components, 140
Cplusplus structures, 134
fixing build errors, 74
graphical, 134

Editor
accessing Static Analyzer from, 130
alternate, 119
building from, 130
calling from Class Graph/Editor, 140
calling other tools, 130
checking files in and out, 131
choosing tool, 80
Class Graph/Editor, 133
compiling from, 130
configuration management from, 131
configuring, 119
debugging from, 131
multiple files in vi Editor, 127
multiple files in XEmacs Editor, 124

starting, 121
starting from build error, 74
starting from Debugger, 207
starting from Static Analyzer, 253, 264
starting from Static Graph, 287
starting from target graph, 69
synchronizing multiple, 136
within Debugger, 207
XEmacs Editor, 122, 126

Ellipses, 5
Embedded arrays, 248
Enable Images/Libraries (Execution menu),

209
Encapsulation, 80
Entering identifiers, 260
Environment

customizing, 78, 83
Environment variables, 167

LANG, 362, 364
PATH, 42

Error
browsing, 47, 48, 74
correcting, 207
handling, 73
interpretation, 74
invoking editor, 74
source of, 48

Error messages
build, 86
File Compare, 302
in Class Graph/Editor, 143
in Debugger, 231

Events, debugging, 214
Examining

data, 181, 182
variables, 181, 182

Exception handling, 224, 225
Executable

loading, 165
Execution

breakpoints, 189, 193
host, 81
traces, 204
watchpoints, 199

Execution menu
Enable Images/Libraries, 209
Get Current Program Info, 167
Signals/Intercepts, 214
Threads, 187, 220

Exit (File menu), 83
394

Index
Exit SoftBench (Project menu), 83
Expanding group breakpoints, 197
Expressions

printing, 182
using, 184

External build, 26, 39, 50, 52
changing to project build, 56
CodeAdvisor, 149
Debugger, 169
defining targets, 64
makefile, 64
SQL, 317

F
File

adding existing to project, 51, 53, 58
adding groups to project, 58
check in, 110
check out, 102
comparing, 295, 300
creating in project, 57
creation with editor, 121
dependencies, 51
icons, 59
in XEmacs Editor, 122
linking sources to targets, 61
mapping, 168
merging, 295, 301
open with editor, 121
specifying, 177
synchronization, 208
version contents, 90
versioned, 90

File () (Visit menu), 191
File Compare, 295

difference indicators, 297
gutter, 297
menu bar, 296
merge indicators, 298
merge selections, 298
specifying files, 296, 297
troubleshooting, 302
window, 296

File graph, 284
File menu

Add Source Directories, 168, 169
Analyze File Set, 255, 257
Break File Lock, 107
Build Project, 130

Change Working Directory, 167
Compare, 296
Compile, 73, 130
Configuration Management Check Out

Locked, 110
Configuration Management submenu, 38,

131
Convert to Project, 54
Create, 93, 102
Customize File Set, 255, 256
Debug Running Process, 222
Delete, 106
Exit, 83
Free Running Process, 222
Iconify Windows, 164
Link Source to Target, 38, 51, 61
Load Corefile, 217
Load Executable, 165, 176
Lock File, 106
New, 38
Normalize Windows, 164
Open, 38, 64, 110
Rerun, 165, 175
Save, 57, 58, 118
Save As, 118
Save Out Of Project, 118
Save Out Of Project As, 118
Set Break Point, 131
Set Logfile Name, 311
Show Revision History, 105, 107
Static Analysis, 252
Unload Executable, 37

File menu in Debugger
Build, 39

File Set
status, 257

File set
customizing for non-project, 256
default, 255
filtering, 257, 266
information area, 258
non-project mode, 256
searching subdirectories, 273
status, 258
updating, 256, 264
updating data without building, 255

File types
add files by type, 59
SQL, 315
395

Index
use new types, 64
File'' menu

Load New Executable, 37
Files view, 44, 59
fileSetFile resource, 274
Filter Results (View menu), 266, 268
Filtering

archive display, 109
buttons, 48
Cplusplus queries, 268
queries by file set, 257, 266
query results, 266
sourceless nodes, 293
Static Graphs, 292
violations, 152

Filters (View menu), 292
Find Node (Graph menu), 287
Find String (Output browser menu), 75
Follow All Recursively, 241
Follow Recursively, 243
Font

boldface, 5
computer, 5
italic, 5
typewriter, 5

fork, 219
Fork Behavior (Options menu), 219
Forked processes, debugging, 219
Frame

in XEmacs Editor, 122
Free Running Process (File menu), 222
Function

calling, 186
Functions (Show menu), 260

G
Get Current Program Info (Execution menu),

167
Global Variables (Show menu), 260
GNU RCS versioning system, 90
Granularity

traces, 204
watchpoints, 199

Graph menu
Class EditorAll Classes, 138
Find Node, 287
Hide commands, 69
Save Image, 291
Update Status of Nodes, 68, 72

Graph Windows, 323
clearing, 331

customizing, 336
display control, 336
display dependencies, 336
layout, 336
moving nodes and arcs, 334
nodes, 332
popup menus, 326
printing the image, 326
saving the image, 326
scrolling, 330
selecting nodes and arcs, 332
starting, 324
targets and dependencies, 66, 69
zooming, 331

Graphical queries, 252
Group breakpoints

setting, 197
viewing and modifying, 197

H
Handling events, 214
Handling signals, 214
Help, 84, 85, 124, 126
Help menu

On Item, 85
Show Man Page, 85
Tool Overview, 85
Using Help, 85

Hex, printing, 183
Hide

node, 288
violations, 152

Hide commands (Graph menu), 69
History menu, 271
HP-GL

saving images, 328
HP-GL file format, 326

I
Iconify Windows (File menu), 164
Iconize Project button, 36, 44
Icons

changing on toolbar, 79
for file existence, 59

Identifier
classification, 262
entering, 258, 260
invalid, 263
relationships, 261
396

Index
Identifier Matching Rules (Options menu),
263

Images
saving PostScript and HP-GL, 328

Index
vi Editor, 128

Informix, 314
Inherited values, 225
Input, 174
Instance break, 197
Integration, 32

calling other tools from editor, 130
with CDE, 82

Intercepts, 214
Intermediate file, 58

access to commands, 67
Interpreting error messages, 74
ISO 8859.1 characters, 363
Italic font, 5

J
Japanese, customizing SoftBench for, 362

K
Kernel code

debugging in, 172, 222
Keycaps, 5

L
LANG variable, 362, 364
Language, source

in Debugger, 184
Learning SoftBench, 40
Library, system, 172
libsoftbench, 305
Line number

specifying, 177
Link Source to Target (File menu), 38, 51, 61
Linking files, 61
Load Browser from File (Output browser

menu), 75
Load Corefile (File menu), 217
Load Executable (File menu), 165, 176
Load New Executable (File menu), 37
Local workspace root, 22, 50

changing, 56
Location

specifying, 177
Lock File (File menu), 106
Lock project, 35
Locking archive files, 106

Locks
breaking, 107
viewing locked files, 109

Log file, 351
changes to archive files, 107
configuring, 346

Logging messages, 311

M
Machine

instructions, 211
registers, 213

main(), 179
Make Subproject Of (Project menu), 55
Makefile, 64
Man page

vi Editor, 126
Manage Build Configuration (Builder menu),

62, 71
Manage Package Information (Builder

menu), 63
Managing environment, 78, 83
Mapping

adding, 100
creating, 98
deleting, 101
file, 99
local and archive directories, 98
modifying, 100
symbolic name list, 113
view list, 99

Mappings, 168
Menu

bar, 44, 296
Merging files, 295, 301
Message format, 310
Message Monitor, 305

configuring on toolbar, 306
logging messages, 311
message format, 310
sending messages, 309
starting, 306
window, 307

Migration
RCS, 348
SCCS, 348

Mnemonic, 367
Modify Properties (Target menu), 38, 52, 63,

71, 165
Modify(Edit menu), 140
Modifying
397

Index
an identifier, 262
archive server, 100
breakpoints, 193
mappings, 100
projects, 56
watchpoints, 201

Module
specifying, 177

More Build Actions submenu (Target menu),
72

More File Types button, 64
Moving archives, 349
Multiple files

vi Editor, 127
XEmacs Editor, 124

N
Native Language Support, 362
Nested classes, 224
Networked environment, 81
New (File menu), 38
New (Target menu), 39, 51, 53, 60, 64
New Clone (Project menu), 53
New Create (Project menu), 38, 51
NLS, 362
Node Values dialog box, 241
Nodes, 239

Data Graph Window, 239
displaying more information, 289
displaying new, 241
hiding, 69, 288, 292
moving, 334
on Graph Windows, 332
selecting, 332
sourceless, 293
types, 67

Nondebuggable code, 172
Non-project

customizing Static Analyzer file set, 256
files in editors, 118

Non-USASCII characters, 367
Normalize Project button, 36, 44
Normalize Windows (Filemenu), 164

O
Object identification, 224
On Item (Help menu), 85
Online Help, 84, 85
Online Tutorial, 40
Open (File menu), 38, 64

Open(File menu), 110
Open/Out-of-Date, 257
Opening files with your editor, 121
Optimized code

debugging, 227
Options

compiler, 159
Options menu, 78, 225, 228, 266

Behavior Settings, 257, 266, 267
Build Settings, 75
Default Load/Rerun Settings, 165, 167, 168,

175
Display Filter, 109
Fork Behavior, 219
History Menu Size, 280
Identifier Matching Rules, 263
Queries On New Nodes, 138
Save All Settings, 109, 228, 229
Set Default Project Root, 28
Stack Settings, 179, 186
Tool Preferences, 80, 92, 119
Toolbar Setup, 77, 79
User Configurable Buttons, 228
View Unresolved Differences Only, 299
Window Configuration, 163

Oracle, 314
Output, 174
Output browser, 47, 48, 74
Output browser menu

Find String, 75
Load Browser from File, 75
Print/Save Output, 75

Overloaded break, 197

P
Package, 24, 62, 63

SQL, 317
Parameterized types, 224
Parameters, 167, 217
Parent process, 222
Pasting

data between tools, 37
multiple files in vi Editor, 129
text in vi Editor, 129

PATH variable, 42
Pattern Match () (Symbol () menu), 261, 263
Pattern Match () (Symbol menu), 263
PC

(Program Counter) arrow, 161, 171, 172,
181, 192
398

Index
location, 161, 172, 220
Permissions, 342
Planning your project, 31
Popup menu, 239, 287, 326

customizing, 228
Show Data Members, 140
Show Member Functions, 140

PostScript
file format, 326
saving images, 328

Preferences, setting, 80
Preprocessor

wrapper, 319
Prerequisites to using SoftBench, 42
Preview Build (More Build Actions

submenu), 72
Previewing a build, 72
Print/Save Output (Output browser menu),

75
Printing

data, 181, 182
dialog box, 326
expressions, 182
graph images, 290, 326
hex or string values, 183
output browser, 75
query results, 271

Procedure
calling, 186

Procedure () (Visit menu), 178, 181, 191
Program

checking using CodeAdvisor, 150
preparation for CodeAdvisor, 149

Program Editor
configuring, 119

Project, 21
accessing multiple, 35
adding files, 38, 51, 53, 58
building, 38, 70, 75
changing build type, 56
changing Local Workspace Root, 56
changing name, 56
checking code, 76
cloning, 27, 53
converting, 55
creating, 38, 50, 55
creating files, 57
creating subprojects, 54, 55
current, 35, 44
defining targets, 38, 39

external build model, 39, 50, 52, 64
file set, 22
files in editors, 118
Iconize Project button, 36, 44
locking, 35
modify definition, 56
name, 22, 50
Normalize Project button, 36, 44
planning, 31
project build model, 38, 50, 60
restructuring, 54
search path, 53
sharing, 27
specifying on startup, 83
static queries, 255
version control, 27

Project browser, 44
Project build, 25

changing to external build, 56
Debugger, 169
SQL, 315

Project menu
Add File(s) to Project, 38, 51, 53, 58, 64, 94
Close, 83
Exit SoftBench, 83
Make Subproject Of, 55
New Clone, 53
New Create, 38, 52

Project Search Path, 53
projectrc file, 228
Projects view, 36, 44

Q
Queries

browsing to source code, 264
deleting history, 271
displaying results, 258
filtering, 292
filtering for Cplusplus, 268
filtering results, 266
graphical, 286
information about, 259
initial, 293
pattern matching, 263
printing results, 271
redisplaying results, 271
reference relationships, 261
saving results, 271
scoping, 268, 270
399

Index
selecting text, 261
simplifying results, 266, 269
textual, 260
textual and graphical, 252
valid identifiers, 263

Queries On New Nodes(Options menu, 138
Query graph, 284
Query Result Area, 259
Querying scope, 181, 182, 183
Queue Length, 240

R
RCS

migration, 348
RDBMS, 313

supported, 314
versions, 317

Redirecting I/O, 167
Redisplaying query results, 271
Reference relationships, 261
References (Static menu), 130
Refresh Files View (View menu), 59
Registering

Program Editor, 119
tools, 80

Registers, 213, 217
Show Registers Dialog, 213
Tracing, 213

Registers (Show menu), 212
Remote

compilation server, 75
data access, 81
display, 82
execution, 75, 81, 82, 372

Removing tools from toolbar, 79
Reordering tools on toolbar, 79
Rerun (File menu), 165, 175
Resources, 81

buttonConfigFile, 229
fileSetFile, 274
synchronize, 176

Restoring session, 83
Reusing tool windows, 37
Revision

naming, 113
setting, 111

Revision history
viewing, 107

Rule Group Help, 48, 76, 150
Rule group selection, 48, 150
Rules, 147

violations, 151
run(), 178
Running program, debugging, 222
Runtime environment, 165

S
Save (File menu), 57, 58, 118
Save All Settings (Options menu), 109, 228,

229
Save As (File menu), 118
Save Image (Graph menu), 291
Save Image dialog box, 327
Save Out Of Project (File menu), 118
Save Out Of Project As (File menu), 118
Saving

graph images, 290, 326
non-project files in editors, 118
output browser, 75
project files in editors, 118
query results, 272

SCCS
migration, 348

Scope
querying, 181, 182, 183
troubleshooting, 269

Scoping Used, 259
Screen areas, 44
Scrolling

Graph Windows, 330
Security, 342, 346
Selecting

rule groups, 150
text, 129, 261, 269

Send Message (Messages) menu, 309
Session

restoring, 83
stopping, 82

Set (Break menu), 192
Set (Trace menu), 205
Set (Watch menu), 200
Set at () (Break menu), 191
Set at Class () (Break menu), 197
Set at Entry () (Watch menu), 200
Set At Hex Address () (Break menu), 211
Set at Instance () (Break menu), 197
Set at Overloaded () (Break menu), 197
Set at Procedure Entry () (Break menu), 192
Set at Template () (Break menu), 197
Set Breakpoint (File menu), 131
Set Default Project Root (Options menu), 28
Set Logfile Name (File menu), 311
Setting
400

Index
breakpoints, 190
data member values, 243
PATH, 42
revision, 111
revision state, 111
watchpoints, 200

Sharing
projects, 27
subprojects, 29

Show (Break menu), 189, 193
Show (Trace menu), 206
Show (Watch menu), 201
Show Data Members(Popup menu), 140
Show Local Server Information(Actions

menu), 92, 95
Show Man Page (Help menu), 85
Show Member Functions(Popup menu), 140
Show menu, 252, 260, 265

Assembly Instructions, 211, 218
Classes, 260
Data Graph (), 236
Data Graph Indirect (), 236
Data Value Print Format'', 183
Functions, 260
Global Variables, 260
Registers, 212
Source Files, 260
Stack, 181, 186, 218

Show On Graph
(Values popup menu), 248

Show Registers Dialog, 213
Show Revision History(File menu), 107
Show Set Up Instructions(Actions menu), 92
Show/Modify Mappings(Actions menu), 99,

113
Signals, 217

debugging, 214
ignoring, 216

Signals/Intercepts, 188, 214
Signals/Intercepts (Execution menu), 214
Single step, 171
SoftBench

accessing tools from editor, 130
Customizing, 78
main window, 44
multiple sessions, 35
resources, 81
starting, 43
starting on a remote system, 82
using, 41

SoftBench vi Editor

accessing Static Analyzer from, 130
building from, 130
calling other tools, 130
checking files in and out, 131
compiling from, 130
configuration management from, 131
copying text, 129
debugging from, 131
pasting text, 129
selecting text, 129
starting from Static Analyzer, 253

SoftBench XEmacs
starting from Static Analyzer, 253

softbenchrc file, 81
SoftCM

accessing, 342, 346
administration, 339, 349
browsing archive files and directories, 95
cancelling file check out, 103
capacity, 90
checking in files to archive, 110
checking out archive files, 102
command line, 115
configuring in SoftBench, 92
creating archive directories, 97
creating archive files, 102
creating initial archive files, 102
customizing, 339
deleting archive files or directories, 106
licenses, 90
lockinfo file, 349
logging, 346, 351
mapping local and archive directories, 98
permissions, 342
starting SoftBench CM, 92
troubleshooting, 351
updating local directories, 103
use model, 90
viewing archive file content, 104

softstatic command, 281
Software lifecycle, 251
Sort Results (View menu), 266
Source

breakpoints, 189
Source File Area, 161
Source Files (Show menu), 260
Source locations

Debugger, 168
Specifying files

File Compare, 296, 297
401

Index
SQL, 313
build configuration, 315
debugging, 319
file types, 315
in project build model, 315
packages, 317
packages,nodebug, 320
preprocessor wrapper, 319
SoftBench CodeAdvisor, 321
Static Analyzer, 321
updating versions, 317
with external build, 317

SQLDEBUG Makefile macro, 320
Stack, 217

viewing, 186
Stack (Show menu), 181, 186, 218
Stack Frame, 161
Stack Settings (Options menu), 179, 186
Standalone

customizing Static Analyzer file set, 256
Static Analyzer, 273
tools, 36

Standard I/O, 174
Starting

Class Graph/Editor, 138
CodeAdvisor, 150
Data Graph Window, 236
editor, 121
editor from target graph, 69
Graph Windows, 324
Message Monitor, 306
SoftBench, from CDE, 43
SoftBench, from command line, 43
SoftBench, on a remote system, 82
SoftBench, with a project, 83
SoftCM, 92
Static Analyzer, 252
Static Graph, 285
tools, 77

Starting tools
in multiple projects, 35
starting one tool from another, 34

State
setting, 111

Statement breakpoints, 189
Static Analysis (File menu), 252
Static Analyzer, 32, 251

access from other tools, 39
accessing from your editor, 130
accurate results, 256, 273

backward compatibility, 254
Cplusplus filters, 268
customizing, 275
customizing analysis file set, 255, 256
default file set, 255
generating static code, 254
generating static data, 273
incomplete data, 254
Menu bar, 258
query information area, 259
Query Results Area, 259
running, 39
scoping queries, 268, 270
searching subdirectories, 273
SQL, 321
standalone mode, 273
starting, 252
starting editors, 264
Static.sadb file, 275
subprojects, 255
textual queries, 260
troubleshooting, 276
window, 258
with compile errors, 254

Static compile mode, 254
Static constructors, 225
Static database, 148, 254, 255, 273

location, 56, 275
used from Class Graph/Editor, 134

Static Graph, 283
customizing, 294
displaying nodes on another graph, 288
finding nodes, 287
general graph operations, 323
graphical queries, 286
graphs in separate windows, 294
hiding nodes, 292
printing, 290
removing graph legend, 294
saving images, 290
simplifying display, 292
starting, 285
starting editors, 287
switching between graphs, 288

Static menu
References, 130

Static.sadb file, 275
Staticfileset file, 274
Status line, 46
402

Index
stderr, 167, 174
stdin, 167, 174
stdout, 167, 174
Stopping

Data Graph Window, 236
SoftBench, 82
tools, 82

String constants, 185
Strings, printing, 183
Subproject, 22

build order, 73
building, 55, 73
converting, 55
creating, 55
sharing, 29

Suspend All (Break menu), 194
Suspending Data Graph Window, 244
Switching Static graphs, 287
Sybase, 314
Symbol

menu
Pattern Match (), 263

Symbol () input box, 258, 260, 261
Symbol () menu

Pattern Match (), 261
Symbol menu, 252, 260, 261, 265

Classification (), 263
Pattern Match (), 263
pattern matching, 263

Symbolic name list, 113
Symbolic names, 112

default specifier, 112, 113
defining, 113
on check in, 113
on check out, 112

synchronize resource, 176
Synchronizing

analysis file set, 256, 264
files, 208

Synchronous mode, 175
Syntax

Debugger, 177
System library, 172

T
Target, 22, 23

add, 51, 53
building, 69, 70, 75
defining, 51, 53, 60
defining for external build, 64

graph, 47, 66, 69
selecting build configuration, 60
showing dependencies, 61
specifying dependencies, 61, 68

Target graph, 66
colors, 68
hiding nodes, 69
node types, 67
starting editor, 69
with external build, 47, 67
zooming, 69

Target menu
Add Build Order Dependency, 61
Build, 69, 70
Debug, 39, 77
Display on Graph, 66
Modify Properties, 38, 52, 63, 71, 165
More Build Actions submenu, 72
New, 38, 39, 51, 53, 60, 64

Tearing apart main Debugger toolface, 163
Template break, 197
Templates, 224
Terminal Emulator window, 175
Textual queries, 252
Threads

breakpoints on, 193
debugging, 220, 221
stack, 187

Threads (Execution menu), 187, 220
Tool Overview (Help menu), 85
Tool Preferences (Options menu), 80, 119
Tool Preferences(Options menu), 92
Toolbar, 44, 77

changing tools, 79
troubleshooting, 86

Toolbar Setup (Options menu), 77, 79
Tools

access from editor, 130
adding new, 80
copy and paste across tools, 37
displaying current project, 36
encapsulating, 80
instances, 36, 37
list, 32
multiple instances, 35
preferences, 80
registering, 80
starting, 77
starting one from another, 34

Trace menu, 204
403

Index
Clear All, 206
Set, 205
Show, 206

Traces, 188, 204
clearing, 206
commands at, 204
creating, 204
DDE commands, 205
granularity, 204
Registers, 213
viewing, 205

Transform, 24
Troubleshooting, 351

build, 86
File Compare, 302
in Class Graph/Editor, 143
in Debugger, 231
Static Analyzer, 276
toolbar, 86

types file
using nonlocalized, 362

Typewriter font, 5

U
Undebuggable code, 172
Understanding code, 39
Undo(Edit menu), 140
Unload Executable(File menu), 37
Unlocking archive files, 107
Untitled project, 43
Update Buffer (Edit menu), 208
Update Status of Nodes (Graph menu), 68, 72
Use External Build Command (Builder

menu), 72
Use models, 32, 39

Class Graph/Editor, 134, 141
Debugger Data Graph Window, 245
multiple projects, 35
reusing tool windows, 37
single set of cooperating tools, 34
SoftCM, 90
standalone tools, 36
starting one tool from another, 34
starting tools from SoftBench, 77

User Configurable Buttons (Options menu),
228

User Program I/O Area, 162, 167, 174, 175,
176

Uses of an identifier, 262
Using Help (Help menu), 85

Using SoftBench, 41

V
Values

showing on Data Graph Window, 248
Values Display (Watch menu), 201
Variables

changing, 181, 183
DDE, 183
examining, 181, 182
specifying, 178
tracing, 199

Verifying fixes, 207
Version control, 27

choosing tool, 80
Class Graph/Editor, 142
from your editor, 131

Versioned files, 90
vi Editor, 126

clipboard, 129
configuring, 119
Cursor, 127
editing multiple files, 127
Editor Index, 128
Mouse pointer, 127
non-project files, 118
Pointer, 127
project files, 118
save non-project files, 118
save project files, 118
Text cursor, 127

View menu, 78, 266
Display Results, 266
Filter Results, 266, 268
Filters, 292
Refresh Files View, 59
Sort Results, 266

View Unresolved Differences Only (Options
menu), 299

Viewing
archive file contents, 102
breakpoints, 193
data, 181, 182
mappings, 99
multiple Static Graphs, 294
revision history, 107
traces, 205
watchpoints, 201

Violation, 151
browsing, 48
404

Index
filtering, 48, 152
Violation Help, 49, 76, 151
Visit menu

File (), 191
Procedure (), 178, 181, 191

W
Watch menu, 200

Clear All, 203
Set, 200
Set at Entry (), 200
Show, 201
Values Display, 201

Watchpoints, 188, 199
changing, 201
clearing, 202
collapsing, 202
creating, 200
DDE commands, 200
expanding, 202
granularity, 199
hiding, 202
setting, 199, 200
viewing, 201

Window
area, 44
in XEmacs Editor, 122
reusing, 37
SoftBench File Compare, 296
status information, 337

Window Configuration (Options menu), 163
Windowed applications, debugging, 175
Working directory

from Debugger, 167
program, 167

X
X applications, debugging, 175
XEmacs Editor, 122

accessing Static Analyzer from, 130
buffers, 122
building from, 130
calling other tools, 130
checking files in and out, 131
compiling from, 130
configuration management from, 131
debugging from, 131
editing multiple files, 124
files, 122

frames, 122
help, 124, 126
non-project files, 118
preferences, 119
project files, 118
reference information, 122
resource file, 119
save non-project files, 118
save project files, 118
web site, 122
windows, 122, 125

xrdb, 81, 176
XtAppInitialize function, 176
xwd

file format, 326
saving images, 329

Z
Zooming, 69

Graph Windows, 331
405

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Index

