
HP C++ Version A.10.40 Release Notes

HP 9000 Computers

5966-9894

August 1998

Printed in: U.S.A.

© Copyright 1998

2

Notice
Copyright © Hewlett-Packard Company 1998. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.
Printed in USA.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED
TO BE ACCURATE, HEWLETT-PACKARD MAKES NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material. Information in this
publication is subject to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in sub-paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DoD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19 (c)(1,2).

Contents

3

1. New and Changed Features

Version A.10.40 Features .7

Version A.10.26 Features .7
New and Changed Features. .7

Version A.10.22 Features .9

2. Installation Information

Migrating to the UNIX System V Release 4 (V.4) File System12

3. Related Documentation

Online Documentation .13

Online Example Source Files .15

Printed Documentation .15

Hewlett-Packard Information on the Internet. .16
HP Web Site .16
HP C++ Mailing List Server .16

Other Printed Documentation .17

Information on Exception Handling Features .18
Detecting Link Incompatibilities when Using Exception Handling . .18
Detecting Link Incompatibilities in Shared Libraries19
Exception Handling Language Clarifications.19

4. Problem Descriptions and Fixes and Known Limitations

Known Problems .27

Binary Compatibility. .28

Known Limitations in Version A.10.40 - A.10.26.29
The setjmp/longjmp and +eh option .29

4

Contents

Thread-safe levels . 29

Known Problems and Limitations in Version A.10.22 31
Non-Derived Class Access to a Protected Constructor from Another
Class. 31
Known Limitations in Version A.10.22 . 31

5

Preface
This document provides the following information:

• new and changed features

• installation information

• related documentation

• problem descriptions and fixes

NOTE The software code printed in the release notes title indicates the software
product version at the time of release. Some product and operating
system changes do not require changes to documentation; therefore, do
not expect a one-to-one correspondence between these changes and
release notes updates.

Latest printing: August 1998

This document resides online in the file
/opt/CC/newconfig/RelNotes/CXX.release.notes . You can print
the online copy by using an lp command like the following:

lp −dprinter_name /opt/CC/newconfig/RelNotes/CXX.release.notes

6

7

1 New and Changed Features

This chapter summarizes the new and changed features included in the
A.10.40 HP C++ release. This chapter also lists features introduced in
prior release versions grouped by the compiler version number.

Version A.10.40 Features
New and changed features in this HP C++ version A.10.40 are listed
below. They apply to HP-UX 10.x operating systems.

• HP C++ version A.10.40 is a maintenance release and includes only
defect fixes.

• Updated the Online Programmer’s Guide and HP C++
Troubleshooting Notes to include new information on “Generating
Instantiation Files Without Compiling.”

Version A.10.26 Features
New and changed features in this HP C++ version A.10.26 are listed
below. They apply to HP-UX 10.x operating systems.

New and Changed Features
The new and changed features for A.10.26 are listed below.

• HP C++ (cfront) no longer includes libcodelibs.a. HP C++, however,
includes the source for the HP Codelibs Library. You must build the
library if you want to use it. The instructions for building the library
are in /usr/contrib/codelibs/README .

• New Compiler Options +ESli t and +ESsfc .

8 Chapter 1

New and Changed Features
Version A.10.26 Features

+ESlit Places string literals into the LIT subspace. The
LIT subspace is used for read-only data storage.
This option can reduce memory requirements and
improve run-time speed in multi-user applications.

Normally the compiler only places floating-point
constant values in the LIT subspace, and other
constants and literals in the $DATA$ subspace.

 +ESfic Replaces millicode calls with inline fast indirect
calls. The +ESfic compiler option affects how
function pointers are dereferenced in generated
code. The default is to generate low-level millicode
calls for function pointer calls.

The +ESfic option generates code that calls
function pointers directly, by branching through
them.

NOTE The +ESfic option should only be used in an environment where there
are no dependencies on shared libraries. The application must be linked
with archive libraries only. Using this option can improve run-time
performance.

• +p option identifies more source code constructs that may be issues
when migrating to HP aC++, which supports ANSI C++ syntax.

• The +DA option changed so that if you specify +DA and not +DS, the
default instruction scheduling is based the +DA option, not the type of
system on which you are compiling. Refer to the online help for
details about these two options.

• Any programs that use +eh and also use Setjmp/Longjmp must
change the #include from <setjmp.h> to <Setjmp.h> .

• For task library users, libV3 is no longer required, removing a
limitation that existed in A.10.22.

Chapter 1 9

New and Changed Features
Version A.10.22 Features

Version A.10.22 Features
New and changed features in this HP C++ version A.10.22 are listed
below. They apply to HP-UX 10.x operating systems.

• New +DA designations for PA-RISC 2.0 model and processor
numbers--to generate code for the PA-RISC 2.0 systems. The
+DAportable option generates code compatible across PA-RISC 1.1
and 2.0 workstations and servers.

Default architecture object code generation is now determined
automatically for all systems as that of the machine on which you
compile.

• New +DS designations for PA-RISC 2.0 model and processor
numbers--to perform instruction scheduling tuned for PA-RISC 2.0
systems.

Default instruction scheduling is now determined automatically for
all systems as that of the machine on which you compile.

• New or changed optimization options to enhance performance:

• +Odataprefetch -- to generate data prefetch instructions for
data structures referenced within innermost loops.

• +Oentrysched -- changing to make save and restore operations
more efficient.

• +Ofailsafe -- to enable fail-safe optimization by default.

When a compilation fails at the current optimization level,
+Ofailsafe will automatically restart the compilation at a lower
level of optimization.

• +Ofltacc -- changing to provide better performance for PA-RISC
2.0 targets.

• +Oinlinebudget --to perform aggressive inlining.

• +Oloopunroll -- to enable loop unrolling.

• +Ostaticprediction -- to enable static branch prediction.

• New option -l: library -- to support the ld feature.

10 Chapter 1

New and Changed Features
Version A.10.22 Features

• New option -ptR -- to prevent re-instantiation of templates when
compiling and linking from multiple directories and using the same
repository, and to prevent out-of-date errors on secondary
repositories.

• New +ESfic option -- to replace millicode calls with inline code for
fast indirect calls.

• New +help option -- to invoke online help for the HP C+ compiler and
linker and libraries.

• New -ext option -- to enable extensions to HP C++ functionality. At
this time the extension included is 64-bit integer data type
(long long) support for HP C++ applications that need to use large
integers, such as large file systems databases.

• New option +dup_static_removal -- to reduce the size of
executables and to enhance performance by removing duplicate inline
member functions that were dropped out of line because they were too
complex or too large.

The default, +nodup_static_removal , does not remove duplicate
static member functions. Look up this option in the C++ Online
Programmers Guide for an example of when to use the default.

• New default elimination of duplicate symbolic debug information -- to
reduce the size of object files and executables and to enhance
performance. To prevent the elimination of duplicate symbolic debug
information, use the option +Xd. This option may be needed if you
have pxdb or xdb problems.

• New Explicit Template Instantiation feature -- to substantially
reduce the amount of time required to compile libraries for which
large numbers of templates are instantiated.

• Updated HP C++ Troubleshooting Notes -- to include new information
in sections on “Explicit Template Instantiation,” “Directed and
Automatic Instantiation to Generate Needed Templates,” and
“Directed Template Instantiation.”

• To reduce code size, inline functions are no longer included in debug
information. If you want to debug inline functions, use the +d
compiler option.

11

2 Installation Information

Read this entire document and any other release notes or readme files
you may have before you begin an installation.

To install your software, run the SD-UX swinstall command. It will
invoke a user interface that will lead you through the installation. For
more information about installation procedures and related issues, refer
to “Managing HP-UX Software with SD-UX” and other README,
installation, and upgrade documentation provided or described in your
HP-UX 10.x operating system package.

HP C++ requires approximately 46 MB of disk space: 16 MB for the files
in /opt/CC and 30 MB for DDE, Blink Link, and HP/PAK. Depending
on your environment, you may also need documentation for other parts
of your system, such as networking, system security, and windowing.

12 Chapter 2

Installation Information
Migrating to the UNIX System V Release 4 (V.4) File System

Migrating to the UNIX System V Release
4 (V.4) File System
Two migration tools are provided for users. Either the system Upgrade
Tools or the tlink_install script can be used to migrate from an HP-UX
9.x system to an HP-UX 10.x system.

If your system has Upgrade Tools installed (/usr/sbin/upgrade
exists), transition links are created automatically upon product
installation. A method of removing these links is also provided. For more
information on automatic transition links refer to your operating system
upgrade documentation.

If there are no Upgrade Tools on your system, you can use the C++
tlink_install script as a migration aid to create symbolic links for HP
C++ product executables and include files when migrating from HP-UX
9.x locations to HP-UX 10.x locations. The script is located in
/opt/CC/newconfig/tlink_install . Should you want to remove
these links, use the script located in
/opt/CC/newconfig/unlink_install . These scripts must be
executed by a super user.

Note that to reverse your migration process, you must use the
appropriate uninstall tool. That is, if links were installed using the
system Upgrade Tools, they must be uninstalled using the system
Upgrade Tools. If links were installed using the tlink_install script,
they must be uninstalled with the unlink_install script.

13

3 Related Documentation

Documentation for HP C++ is described in the following sections.

Online Documentation
Xwindow users can invoke the HP C++ Online Programmer's Guide in
any of the following ways:

• Use the +help option on the CC command line.

The following online documentation is included with the HP C++
product:

• To access the HP C++ Online Programmer's Guide, use the command:

CC +help
If the +help option does not work, ensure the environment variable
DTHELPSEARCHPATH is set. (It may not be set if you rlogin to a
system, for example.) If it is not set, use the following command to set
it:

eval $(dtsearchpath)

Ensure the LANG environment variable is set, typically LANG=C.

As a workaround, you can view the online help using the ? icon on the
HP CDE front panel or by using one of the following commands:

/usr/dt/bin/dthelpview -helpVolume CXX

or

/usr/dt/bin/dthelpview -h /opt/CC/help/C/CXX.hv

NOTE Users with character-based terminals or terminal emulators can use the
charhelp program to view or print the online help provided for C++ and
the linker.

To start charhelp enter the full pathname (or just charhelp if
/opt/langtools/bin is in your $PATH environment variable), and
you will get a usage statement:

$ /opt/langtools/bin/charhelp
charhelp: Usage: charhelp {cc | CC | f77 | ld | -helpVolume file}

14 Chapter 3

Related Documentation
Online Documentation

For help with C++, for example, enter charhelp CC and follow the
menus for further direction. For more information, see the man page for
charhelp(1) (/opt/langtools/share/man/ must be in your MANPATH
environment variable).

• HP-DDE Debugger Online Help

Refer to the discussion on basic-style (not advanced-style) debugging
of optimized code in the HP/DDE debugger online help.

• To access the HP Linker and Libraries Online User Guide use the
command:

ld +help

The HP Linker and Libraries Online User Guide online guide replaces
the manual Programming on HP-UX.

• HP C++ Templates Technical Addendum describes template
implementation in HP C++. You can access the addendum from
within the HP C++ Online Programmer's Guide. It is also available in
the postscript file, /opt/CC/newconfig/TecDocs/templates.ps
and in the ASCII file,
/opt/CC/newconfig/TecDocs/templates.ascii .

• HP C++ Troubleshooting Notes focuses on methods of diagnosing and
solving problems you may encounter. It contains a “troubleshooting
matrix” and a list of tools available online in the
/opt/CC/contrib/Tools directory.

The document is available online in the postscript file,
/opt/CC/newconfig/TecDocs/tools.ps , and in the ASCII file,
/opt/CC/newconfig/TecDocs/tools.ascii . You can access the
ASCII file from within the HP C++ Online Programmer's Guide.

• HP C++ Release Notes is this document. The online ASCII file can be
found in /opt/CC/newconfig/RelNotes/CXX.release.notes .

• The HP PA-RISC Compiler Optimization Technology White Paper
describes the benefits of using optimization. It is available in the
postscript file,
/opt/langtools/newconfig/white_papers/optimize.ps .

• Online manual pages for CC, c++filt , nm++, gprof++ , and the
standard libraries (stream, task, complex, codelibs, and standard
components) are provided under /opt/CC/share/man .

Chapter 3 15

Related Documentation
Online Example Source Files

Online Example Source Files
The HP C++product comes with the source files of examples from the HP
C++ Programmer's Guide. The example source files reside in the
/opt/CC/contrib/Examples directory.

Printed Documentation
• HP C++ Release Notes is this document. Release notes are also

provided online, as noted above.

• HP C++ Programmer's Guide (92501-90005) contains similar, but in
some cases less current, information to that of the HP C++ Online
Programmer's Guide.

• Quick Reference Card (B1637-90001)

• HP/DDE Debugger User's Guide contains information on debugging
programs with the HP Distributed Debugging Environment on the
HP 9000. (B3476-90015)

To order printed versions of Hewlett-Packard documents, refer to
manuals(5).

16 Chapter 3

Related Documentation
Hewlett-Packard Information on the Internet

Hewlett-Packard Information on the
Internet
Hewlett-Packard provides several sources of product documentation on
the internet.

HP Web Site
The Hewlett-Packard web site, URL: http://www.hp.com, contains
several areas with useful information about HP C++.

• URL: http://www.hp.com/go/hpc++

General product information, news, and ordering information.

• URL: http://docs.hp.com/hpux/development/

This area contains links to most of Hewlett-Packard's HP-UX
documentation, including compilers and development tools. You can
view and search for information online.

HP C++ Mailing List Server
For general background information and experience, subscribe to the
cxx-dev list server. Send a message to majordomo@cxx.cup.hp.com
with the following command in the body of the message: subscribe
list-name .

Available list-names are as follows:

cxx-dev HP C++ Development Discussion List

cxx-dev-announce HP C++ Development
Announcements

cxx-dev-digest HP C++ Development Discussion List
Digest

cxx-dev-announce is also broadcast to cxx-dev , so you only need to
subscribe to one of the lists. The digest also includes both cxx-dev and
cxx-dev-announce .

Chapter 3 17

Related Documentation
Other Printed Documentation

For additional help or information about the list server, send a message
to majordomo@cxx.cup.hp.com with the following command in the
body of the message: help

Other Printed Documentation
Some of the many available C++ publications are listed here:

• Codelibs Library Reference(B2617-90600) complete information on
the HP Codelibs class library. This book can be ordered by contacting
your local HP sales office or Hewlett-Packard's Support Materials
Organization (SMO) at 1-800-227-8164 and providing the above part
number. Also see the codelibs(3X) man page. (If you see the message
Man page could not be formatted or No manual entry for
codelibs ensure that the man page is installed and your MANPATH
variable includes /opt/contrib/man .)

• The C++ Programming Language, second edition, by Bjarne
Stroustrup (ISBN 0-201-53992-6) is a tutorial on C++ including a
complete language reference manual and information about
object-oriented design and software development. This book is
available at technical bookstores.

• C++ Primer, second edition, by Stanley Lippman (ISBN
0-201-54848-8) provides a complete tutorial introduction to C++. This
book is available at technical bookstores.

• The Annotated C++ Reference Manual, by Margaret Ellis and Bjarne
Stroustrup (ISBN 0-201-51459-1) is a complete C++ language
reference manual plus annotations and commentary that describe in
detail why features are defined as they are. This book is available at
technical bookstores.

• The HP PA-RISC Compiler Optimization Technology White Paper
(5963-7250E) describes the benefits of using optimization. To order a
printed copy, contact your local HP sales office or HP DIRECT at
1-800-637-7740. The white paper is also provided online as noted
above.

• USL/Novell/SCO manuals contain valuable information about C++,

18 Chapter 3

Related Documentation
Information on Exception Handling Features

some of which is specific to the cfront compiler upon which HP C++ is
based.

To inquire about the latest versions of these manuals, you can contact
the following:

• U.S. customers--phone 1-800-336-5989

• International customers--FAX 1-(801) 431-4060

• You can send e-mail requests to: sco_unix@stream.com

• You can also use URL: http://www.modusmedia.com/sco_doc/ to get
more information about available documentation.

Information on Exception Handling
Features
Below is some valuable information on exception handling features
published in previous release notes.

Exception handling is supported in both compiler mode and translator
mode, and such object files can be intermixed. Use the +eh option to
enable exception handling for both compiling and linking. There is some
performance degradation when using the +eh option in translator mode.

Detecting Link Incompatibilities when Using
Exception Handling
This release of HP C++ supports exception handling when the +eh option
is specified. Note that code compiled with +eh is not link compatible with
code that has not been compiled with +eh. There are three reasons for
this:

1. When +eh is enabled, constructors no longer allocate memory for
heap objects; such memory is allocated before the constructor is
called. For example, if non +eh code calls a +eh constructor to
construct a heap object, memory for the heap object is not allocated.

2. When +eh is enabled, all constructors perform a certain amount of
bookkeeping to indicate how far object construction has progressed;

Chapter 3 19

Related Documentation
Information on Exception Handling Features

this is needed because in the event of an exception, partially
constructed objects need to be cleaned up. If +eh code calls a non +eh
constructor, this bookkeeping does not take place; thus, in the event of
an exception, there is incorrect information about the state of objects
in procedures which called non +eh constructors.

3. All +eh procedures perform a certain amount of bookkeeping to save
information about the list of objects constructed within each
procedure. Since non +eh procedures do not perform this
bookkeeping, such procedures do not undergo any object cleanups in
the event of an exception.

Detecting Link Incompatibilities in Shared
Libraries
When the CC driver is used to produce a shared library (using −b), link
incompatibilities are detected by c++patch using the same rules
described above. When performing a link which involves shared
libraries, HP C++ waits until run time to establish that each shared
library linked in or explicitly loaded is compatible with the main
executable. If any incompatibilities are detected, the default behavior is
to print a warning message to stderr. If this default behavior is
unacceptable, you can override it by linking in your own version of the
routine __link_incompatibility .

For example, if you do not wish to have any warning of this kind at all,
the following routine can be linked in:

extern "C" void __link_incompatibility
 (const char* libname, int lib_mode) {
 //libname is the name of the library
 //lib_mode == 0 for a non +eh library
 //lib_mode == 1 for a +eh library

 //You can provide your own version to override the
 //default behavior
 //This is an empty body which does nothing
}

Exception Handling Language Clarifications
This section lists various exception handling language issues which
should be considered clarifications of The Annotated C++ Reference
Manual. These clarifications represent the behavior of HP's
implementation of exception handling.

20 Chapter 3

Related Documentation
Information on Exception Handling Features

Issues in this section are organized as follows:

• Throwing an Exception

• Handling an Exception

• Throw Specifications

• terminate() and unexpected()

• Other Issues

Throwing an Exception

1. Can a class with an ambiguous base class be thrown? That is,
should the following be legal?

struct A { ... };
struct B1 : A { ... };
struct B2 : A { ... };
struct C : B1, B2 { ... };
void f()
{
C c;
throw c; // legal?
}

No, throwing a class with an ambiguous base class is not legal.

2. Can a class with multiple instances of the same base class be
thrown if only one of the base class instances is accessible?

No, a class with multiple instances of the same base class cannot be
thrown even if only one of the base class instances is accessible.

3. What happens when a reference is thrown?

A temporary is allocated, the object referenced by the throw
argument is copied into the temp, and the search for the appropriate
handler is begun.

When the handler is found, if its argument is not a reference type, the
local is initialized from the temp. If the handler's local variable is of a
reference type, the reference is made to refer to the temp.

The possibly surprising effect of this is that if a reference to a global is
thrown, and the handler’s local is a reference type, the handler gets a
reference to the temporary, not a reference to the global.

4. Can the name of an overloaded function be thrown?

Chapter 3 21

Related Documentation
Information on Exception Handling Features

No, the name of an overloaded function (really, its address) cannot be
thrown.

5. What is the precedence of throw?

A throw-expression is an assignment-expression.

6. Can a throw appear in a conditional expression? For example,
is the following legal?

void f()
{
int x;
x ? throw : 12;
}

void g()
{
int x;
x ? 12 : throw;
}

Yes, a throw can appear in a conditional expression.

7. Are nested throws allowed?

Yes. When a nested throw occurs, processing of the previous exception
is abandoned and the new exception is processed.

8. What happens if a rethrow occurs outside the dynamic
context of a handler?

The behavior of a rethrow outside the dynamic context of a handler is
undefined.

9. What happens if an exception is thrown in a signal handler?

Throwing an exception in a signal handler is not supported. There is
no way to predict when a signal handler will execute, consequently
the signal handler could be called when the exception handling
structures are in an inconsistent state.

10.What happens if a longjmp is issued in a signal handler?

This is not recommended for the same reason that throwing an
exception in a signal handler is not supported. The signal handler
interrupts processing of the code resulting in undefined data
structures with unpredictable results.

22 Chapter 3

Related Documentation
Information on Exception Handling Features

Handling an Exception

1. Should the implementation warn or generate a hard error for
the appearance of a masked catch clause?

The appearance of a masked catch clause is an error.

2. Does the presence of a linkage specification affect the
handlers that can catch (the address of) a function?

No, the type of a function is not affected by a linkage specification.

For example, this throw:

extern "C" {
void f(int);
};

void g()
{
throw f;
}

is catchable by:

catch (void (*)())
3. Can an incomplete type appear in a catch clause?

No, an incomplete type cannot appear in a catch clause.

4. When is an exception considered handled?

An exception is considered handled when one of the following occurs:

• a handler for the exception is invoked

• terminate is invoked

• unexpected is invoked

Throw Specifications

1. Must all throw specifications on the definition and
declarations for a given function agree?

Yes, all throw specifications on the definition and declarations for a
given function must agree.

2. Can a class with ambiguous base classes be on a specification
list? That is, is the following throw specification on bar legal?

Chapter 3 23

Related Documentation
Information on Exception Handling Features

struct A { ... };
struct B1 : A { ... };
struct B2 : A { ... };
struct C : B1, B2 { ... };

void foo (C* cp)
{
w *cp; //error according to ANSI
}

void bar () throw(C); // legal?

No, a class with an ambiguous base class cannot appear in a throw
specification.

3. Can a derived class of a class on a throw specification list also
appear in that same throw specification list?

Yes, a derived class of a class on a throw specification list can also
appear in that same throw specification list.

4. Can a function that lists a pointer to a base class in its throw
specification list also throw a pointer to a derived class of that
class?

Yes, a function that lists a pointer to a base class in its throw
specification list can throw a pointer to a derived class of that class.

5. Can a reference appear in a throw specification list?

Yes, a reference can appear in a throw specification list.

6. Can a type appear more than once in a throw specification
list?

That is, is the following declaration legal?

void baz() throw(A,A,A); // legal?

Yes, duplicate types are allowed in throw specification type lists.

7. Can an incomplete type appear in a throw specification list?
For example, should the following be legal?

struct A;
void f() throw(A) { }

Yes, an incomplete type can appear in a throw specification list.

8. Where can a throw specification appear?

A throw specification can appear only in a function declaration or a
function definition and only for the function being declared or defined.

24 Chapter 3

Related Documentation
Information on Exception Handling Features

In particular, it can not appear within an argument list nor in a
typedef.

terminate() and unexpected()

1. What should be done when a thrown exception is not
handled?

No cleanups should take place; terminate should be called.

If an unhandled exception occurs while constructing static objects,
call terminate. If terminate then calls exit, any fully constructed or
partially constructed statics should be destroyed.

If an unhandled exception occurs while destroying static objects, call
terminate. If terminate then calls exit, try to destroy any remaining
static objects. Do not try again to destroy the object that caused the
exception.

2. Can terminate() call exit()?

Yes, terminate() can call exit().

3. Can unexpected() return?

No, unexpected() cannot return.

4. Can unexpected() throw or rethrow?

Yes, unexpected() can throw or rethrow.

5. What does unexpected() rethrow?

A rethrow in unexpected() rethrows the exception that caused
unexpected() to be called.

Other Issues

1. Are transfers of control into try blocks and handlers legal?

No, transfers of control into try blocks and handlers are not legal.

2. Is it correct to consider an object constructed when its last
statement is reached, while a destructor is considered
complete just before its first statement is reached?

An object is not considered fully constructed until everything in the
constructor is finished. An object is considered partially destroyed
before anything happens in the destructor.

Chapter 3 25

Related Documentation
Information on Exception Handling Features

3. Should the EH run-time delete memory allocated by a
new-with-placement?

No, the EH run-time should not delete memory allocated by a
new-with-placement.

4. Should locals and globals be cleaned up when an
unhandleable exception is thrown?

No, locals and globals are not to be cleaned up when an unhandleable
exception is thrown.

5. Should an object for which a destructor has been called still
be cleaned up by the EH run-time?

A destructor should not be called explicitly on an object for which a
destructor is called implicitly. Thus the EH run-time should not have
to worry about whether an explicit destructor call has been issued for
an object.

6. Should exit() throw a standard exception to ensure that
automatics are cleaned up?

No, exit() should not throw an exception.

7. What should happen when an exception is thrown from a
function registered with atexit()?

When an exception is thrown from a function registered with atexit(),
terminate() should be called.

8. What should happen if the user program calls alloca()?

You can only use alloca() in translator mode. However, it is
recommended that you avoid this function.

26 Chapter 3

Related Documentation
Information on Exception Handling Features

27

4 Problem Descriptions and Fixes
and Known Limitations

This chapter summarizes the known problems and limitations of the
current version of HP C++, except as otherwise noted.

Note: Since HP-UX 10.10 is the last supported OS for PA-RISC 1.0
architecture machines, the 10.20 compilers no longer support the
compiling of code for PA-RISC 1.0.

Known Problems
For a list of HP C++ problems and their fixes, see the Technical
Knowledge Database on the HP Electronic Support Center web site at:

http://us-support.external.hp.com/

http://europe-support.external.hp.com/

The Technical Knowledge Database is available to customers with
support contracts.

Step 1. Once at the web site, enter your User ID and Password, then click Okay .

Step 2. On the next page, click Technical Knowledge Database.

Step 3. Verify that your Search Options include HPUX under System Type
and Service Request under Document Type.

Step 4. Enter HPCPLUSPLUSA in the Search String field, then click Search to
show a list of problems and any fixes.

To verify the product number and version for your HP C++ compiler,
execute the following HP-UX commands:

what /opt/CC/lbin/cfront

what /opt/CC/bin/CC

28 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Binary Compatibility

Binary Compatibility
An application that ran on previous HP-UX 10.x releases (10.01, 10.10,
or 10.20) generally will continue to run with the same behavior with this
10.20-based HP C++ release provided that any dependent shared
libraries are also present.

An executable is a binary file that has been processed by the HP linker
with ld or indirectly with the compiler, and can be run by the HP-UX
loader(exec).

When you compile your source code without any changes (to source code,
options, or make files), and you use PBO (+I compiler or linker option) or
the +O4 option during development, you may create instrumented objects
(ISOM) that a previous system does not recognize.

NOTE This code may not be backward-compatible with previous 10.x releases.
In general, you cannot move instrumented object files backward.

If you move an ISOM across operating system versions, for example,
from an 11.x system to a 10.x system, you may receive the following
error:

Error at line 0: Backend Assert ** Ucode versions earlier then v.4
no longer supported. (5172)

Chapter 4 29

Problem Descriptions and Fixes and Known Limitations
Known Limitations in Version A.10.40 - A.10.26

Known Limitations in Version A.10.40 -
A.10.26
Some of these limitations with possible workarounds are discussed in
detail elsewhere in this document. Please be aware that some of these
limitations are platform-specific.

The setjmp/longjmp and +eh option
Code compiled in compiler mode with the +eh option should not use
setjmp/longjmp. To use setjump/longjmp with +eh in translator mode,
replace all setjmp/longjmp calls with Setjmp/Longjmp. You must also
must change the #include from <setjmp.h> to <Setjmp.h> .

Thread-safe levels
The thread-safe level of the code generated by HP C++ depends on which
libC routines are called with the possible exception of static constructors
for function scope statics or +eh code.

Thread-safe levels depends on the type of interface.

Table 4-1 Thread-safe Levels

User Threads

Generated Code:

Function-scope
statics

Thread-Restricted C. User owns the local
variable.

File-scope static
and globals

Thread-Restricted C for dynamic loading of
shared libraries. Ordering of initialization may
be more of a problem.

+eh code Thread-Safe Performance Constrained.

libC interfaces:

+eh ([re]throw) Thread-Safe Performance Constrained.

30 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Limitations in Version A.10.40 - A.10.26

I/O (iostreams ,
strstream , etc.)

Thread-Safe Performance Constrained. Tuned if
using predefined streams: cin , cout , cerr ,
clog . Otherwise Thread-Restricted C. You must
compile your program with -D _THREAD_SAFE.

vec new/delete Thread-Safe Performance Constrained.

cxxshl_load
and
cxxshl_unload

Thread-Restricted C.

Others Probably references no statics/globals so
completely safe. libC is not fork-safe. It
assumes no cancellations are possible.

User Threads

Chapter 4 31

Problem Descriptions and Fixes and Known Limitations
Known Problems and Limitations in Version A.10.22

Known Problems and Limitations in
Version A.10.22
Some of these limitations with possible workarounds are discussed in
detail elsewhere in this document. Please be aware that some of these
limitations are platform-specific.

Non-Derived Class Access to a Protected
Constructor from Another Class
The HP C++ A.10.22 compiler incorrectly allows non-derived classes to
access a protected constructor from another class. For example, the
following code should generate a compiler error, but it does not.

class A
 {
 protected:
 A() {}
 };
class B
 {
 public:
 B()
 {
 A a; // This line should generate the error:
 // B::B() cannot access A::A(): protected member (1299)
 // but it does not.
 };

 };

Known Limitations in Version A.10.22
• HP C++ does not support large files (i.e., greater than 2 GB) with

<iostream.h>.

• For task library users, both libtask and libV3 are required. When
linking, use -ltask -lV3 on the CC command line. This limitation is
removed in later versions of HP C++

• Known limitations of profile-based optimization:

• +P is incompatible with debug (-g , -g1), static analysis (-y),
exception handling (+eh), assembly only mode (-S), and +I .

32 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Problems and Limitations in Version A.10.22

• +I is incompatible with debug (-g , -g1), static analysis (-y),
exception handling (+eh), assembly only mode (-S), profiling (-G),
stripping (-s), and +P.

• Known limitations of exception handling features:

• Code compiled in compiler mode with the +eh option should not
use setjmp/longjmp. To use setjump/longjmp with +eh in
translator mode, replace all setjmp/longjmp calls with
Setjmp/Longjmp. For example:

#include <stdio.h>
#include <setjmp.h>

Jmp_buf jb;

struct A {
 int x;
 A(int i) {x = i;}
 ~A() {printf(“A::~A[%d]\n”, x);}
};

void g()
{
 A a(1);
 Longjmp(jb, 1); // longjmp replaced by Longjmp
}

void f() {
 int x;
 if (Setjmp(jb) == 0) // setjmp replaced by Setjmp
 g();
 x = 37;
}

void main() {
 try {
 f();
 printf(“about to throw 97\n”);
 throw 97;
 }
 catch (int i) {
 printf(“caught int\n”);
 }
}

The restrictions are:

• A setjmp site can be returned to only through a longjmp ; a
Setjmp site can be returned to only through a Longjmp .
Results are otherwise undefined.

• Behavior is undefined for a longjmp from a destructor called
during object cleanup.

Chapter 4 33

Problem Descriptions and Fixes and Known Limitations
Known Problems and Limitations in Version A.10.22

• C modules that used setjmp/longjmp can be linked with C++
code that uses Setjmp/Longjmp with +eh provided that no C++
code compiled with +eh is invoked between a call to setjmp
and the last longjmp executed to that setjmp location.

• If an unhandled exception is thrown during program initialization
phase (that is, before the main program begins execution)
destructors for some constructed objects may not be run.

• Inhibiting of auto-destructors on the throw and catch statements in
the symbolic debugger is not supported.

• If you compile template files across nfs mounts and you see that
c++ptcomp or c++ptlink is idling while waiting to lock the
repository, you must verify that /usr/sbin/rpc.lockd and
/usr/sbin/rpc.statd are running on both systems. The locking
scheme used by c++ptlink and c++ptcomp depends on the rpc(3C)
mechanism.

• When using the task library, you must not compile your application
sources with the -O flag. Instead, use the +O1 flag to get a smaller
subset of optimizations. It is necessary to disable some optimizations
for the task library to work properly.

• Symbolic debugging information is not always emitted for objects that
are not directly referenced. For instance, if a pointer to an object is
used but no fields are ever referenced, then HP C++ only emits
symbolic debug information for the pointer type and not for the type
of object to which the pointer points.

For instance, use of Widget * only emits debug information for the
pointer type Widget * and not for Widget . If you wish such
information, you can create an extra source file which defines a
dummy function that has a parameter of that type (Widget) and link
it into the executable program.

• Source-level debugging of C++ shared libraries is supported on
HP-UX 9.0 and 10.x. However, there are limitations related to
debugging C++ shared libraries, generally associated with classes
whose member functions are declared in a shared library, and that
have objects declared outside the shared library where the class is
defined. Refer to the appropriate release notes and manuals for the
operating system and debugger you are using.

• Instantiation of shared objects in shared memory is not supported.

34 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Problems and Limitations in Version A.10.22

• Linking with the -r option is not supported for applications that use
templates. See “Renaming Object Files” in chapter 5 of HP C++
Templates Technical Addendum.

• When you call the shl_load(3) routines in libdld.sl either
directly or indirectly (as when your application calls setlocale(3)
or iconv(3)), and you use the +A option, you will get an “unresolved
externals” error.

If you want to link archive libraries and libdld.sl , use the -Wl ,-a ,
archive option. The following example directs the linker to use the
archive version of standard libraries and (by default) libdld.sl .

 CC prog.o -Wl,-a,archive

• When using templates, if the declaration of a template class function
is not inlined and the definition is inlined and the function is used
before it is defined, HP C++ no longer generates a compiler error. In
this case, HP C++ ignores the inline keyword in the definition.

template <int i> class A {
public:

//declaration of foo function
 void foo();
};

main()
{
 A<1> a;

//use of foo function before definition
 a.foo();
}

//definition of foo function
template <int i> inline void A<i>::foo() { }

In HP C++ releases prior to A.10.0, the above example generated the
following compiler messages:

CC -c p.c

CC: “p.c”, line 21: warning: a used but not set (116)

CC: “p.c”, line 26: error: A <1 > ::foo() declared with
external linkage and called before defined as inline (1144)
“p.c”, line 26: error detected during the instantiation ofA <1
>

“p.c”, line 29: is the site of the instantiation

HP C++ version A.10.22 generates only the following warning:

CC -c p.c

Chapter 4 35

Problem Descriptions and Fixes and Known Limitations
Known Problems and Limitations in Version A.10.22

CC: “p.c”, line 21: warning: a used but not set (116)

Although currently no syntax error is generated, an error may be
generated in future releases of HP C++. This may be a consideration
when porting from the current HP C++ to a future version.

Note that in the normal case, function foo would be declared and
defined before it is used.

• The vfork(2) system call is a “fast” version of fork(2) , in which
the parent process is suspended until the child does an exec . During
this time, the child uses the parent’s memory segment, thus avoiding
the overhead of creating its own. See man page for fork(2) and
vfork(2) .

In an eh program, when the child defines an automatic destructable
object and does an exec before that object goes out of scope, the global
variable __eh_dt_count , used in managing eh at runtime, becomes
corrupted. This may lead to runtime eh errors during a throw.

• Using shl_load(3X) with Library-Level Versioning

Once library-level versioning is used, calls to shl_load() (see
shl_load(3X)) should specify the actual version of the library that
is to be loaded.

For example, if libA.sl is now a symbolic link to libA.1 , then calls
to dynamically load this library should specify the latest version
available when the application is compiled, such as:

shl_load(“libA.1”, BIND_DEFERRED, 0);

This will insure that, when the application is migrated to a system
that has a later version of libA available, the actual version desired
is the one that is dynamically loaded.

NOTE For C++ shared libraries, cxxshl_load should be used instead of
shl_load(3X).

• Use of the option +dup_static_removal may give you the linker
error: Common block requests for functionname have
different lengths . Update the linker by applying the most recent
patches to fix this problem.

36 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Problems and Limitations in Version A.10.22

If you do not have the latest linker patches, you will get this error in
one of two cases. One, your code violates the C++ requirement that
“all inline member functions with the same name must also have the
same body.” Two, you use different compiler options to compile the
duplicate inline member functions of different compilation units.

Library providers who ship header files may not want to use
+dup_static_removal because they do not know if their users
compile with the same options as they do.

