
HP Assembler Reference Manual

HP 9000 Computers

9th Edition

92432-90012

June 1998

Printed in: U.S.A.

© Copyright 1998 Hewlett-Packard Company. All rights reserved.

2

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains information which is protected by copyright.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304
U.S.A.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

Contents

3

Preface . 11

Printing History. .11

Audience. .12

Related Documentation. .12

Typographical Conventions. .13

In This Manual .13

Summary of Technical Changes for HP-UX 11.014

1. Introduction to PA-RISC Assembly Language

Assembler Features .15

Summary of Changes for PA-RISC 2.0 .17

Summary of Changes for PA-RISC 2.0W (Wide Mode, 64-bit)17

2. Program Structure

Symbols and Constants .21

Registers and Register Mnemonics .23

Expressions .29
Parenthesized Subexpressions. .34

Operands and Completers. .35

Macro Processing .37
Defining New Instructions With Macros. .37

3. HP-UX Architecture Conventions

Spaces. .39

Subspaces .42
Attributes .42

4

Contents

Directives. 43

Sections in 64-bit Mode . 44

Location Counters . 46

Compiler Conventions . 47

Shared Libraries. 51

Assembly Listing . 51

4. Assembler Directives and Pseudo-Operations

Introduction . 53

.ALIGN Directive . 57
Syntax . 57
Parameters . 57
Example. 57

.ALLOW Directive . 58
Syntax . 58
Parameters . 58
Discussion . 58
Example. 59

.BLOCK and .BLOCKZ Pseudo-Operations . 60
Syntax . 60
Parameters . 60
Discussion . 60
Example. 61

.BYTE Pseudo-Operation. 62
Syntax . 62
Parameters . 62
Discussion . 62
Example. 62

Contents

5

.CALL Directive .63
Syntax .63
Parameters .63
Example .64

.CALLINFO Directive .67
Syntax .67
Parameters .67
Discussion .71
Example .72

.COMM Directive. .74
Syntax .74
Parameters .74
Discussion .74
Example .74

.COPYRIGHT Directive .75
Syntax .75
Parameters .75
Discussion .75
Example .76

.DOUBLE Pseudo-Operation .77
Syntax .77
Parameters .77
Example .77

.DWORD Pseudo-Operation .78
Syntax .78
Parameters .78
Discussion .78
Example .78

.END Directive. .79

6

Contents

Syntax . 79
Discussion . 79
Example. 79

.ENDM Directive . 80
Syntax . 80
Example. 80

.ENTER and .LEAVE Pseudo-Operations . 81
Syntax . 81
Discussion . 81
Example. 82

.ENTRY and .EXIT Directives. 83
Syntax . 83
Discussion . 83
Example. 83

.EQU Directive . 84
Syntax . 84
Parameters . 84
Example. 84

.EXPORT Directive . 85
Syntax . 85
Parameters . 85
Discussion . 87
Example. 87

.FLOAT Pseudo-Operation . 88
Syntax . 88
Parameters . 88
Example. 88

.HALF Pseudo-Operation. 89
Syntax . 89

Contents

7

Parameters .89
Discussion .89
Example .89

.IMPORT Directive .90
Syntax .90
Parameters .90
Discussion .91
Example .91

.LABEL Directive .92
Syntax .92
Parameters .92
Example .92

.LEVEL Directive .93
Syntax .93
Parameters .93
Discussion .93

.LISTOFF and .LISTON Directives .95
Syntax .95
Example .95

.LOCCT Directive .97
Syntax .97
Parameters .97
Example .97

.MACRO Directive .98
Syntax .98
Parameters .98
Discussion .98
Examples. .99

.ORIGIN Directive .101

8

Contents

Syntax . 101
Parameters . 101
Discussion . 101
Example. 101

.PROC and .PROCEND Directives . 102
Syntax . 102
Discussion . 102
Example. 103

.REG Directive . 104
Syntax . 104
Parameters . 104
Example. 104

.SHLIB_VERSION Directive. 105
Syntax . 105
Parameters . 105
Example. 105

.SPACE Directive . 106
Syntax . 106
Parameters . 106
Discussion . 107
Example. 107

.SPNUM Pseudo-Operation . 108
Syntax . 108
Parameters . 108
Example. 108

.STRING and .STRINGZ Pseudo-Operations. 109
Syntax . 109
Parameters . 109
Discussion . 110

Contents

9

Examples. .110

.SUBSPA Directive .111
Syntax .111
Parameters .111
Discussion .113
Example .113

.VERSION Directive .114
Syntax .114
Parameters .114
Discussion .114
Example .114

.WORD Pseudo-Operation. .115
Syntax .115
Parameters .115
Discussion .115
Example .115

Programming Aids. .116

5. Pseudo-Instruction Set

6. Assembling Your Program

Invoking the Assembler. .123

Using the as Command .124
Syntax .124
Parameters .124

Using the cc Command .127
Passing Arguments to the Assembler .127
cpp Preprocessor. .128

10

Contents

7. Programming Examples

1. Binary Search for Highest Bit Position. 130

2. Copying a String. 132

3. Dividing a Double-Word Dividend. 134

4. Demonstrating the Procedure Calling Convention 136
C Program Listing. 136
Assembly Program Listing . 137

5. Output of the cc -S Command . 138
C Program Listing. 138
Assembly Program Listing From the C Compiler 138

8. Diagnostic Messages

Warning Messages . 142

Error Messages. 154

Panic Messages. 176

User Warning Messages. 178

Limit Error Messages . 183

Branching Error Messages . 187

Index . 195

11

Preface
This manual describes the use of the Precision Architecture RISC
(PA-RISC) Assembler on HP 9000 computers.

You need to be familiar with the machine instructions to use the
Assembler. For a complete description of the machine instruction set,
refer to PA-RISC 1.1 Architecture and Instruction Set Reference Manual
and PA-RISC 2.0 Architecture.

Note that, throughout this manual, there are references to PA-RISC 1.0,
1.1, and 2.0. Each version of the architecture is a superset of the
preceding version.

Any program written for PA-RISC 1.0 machines will execute on PA-RISC
1.1 and 2.0 machines, but programs using instructions unique to
PA-RISC 1.1 will not execute on PA-RISC 1.0 machines. Any program
written for PA-RISC 1.1 machines will execute on PA-RISC 2.0
machines, but programs using features unique to PA-RISC 2.0 will not
execute on PA-RISC 1.1 or 1.0 machines.

Printing History
New editions are complete revisions of the manual. Technical
addendums or release notes may be released as supplements.

The software version is the version level of the software product at the
time the manual was issued. Many product updates and fixes do not
require manual changes and, conversely, manual corrections may be
done without accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
updates.

Edition Date Software
Version

First Edition November 1986

Update 1 March 1987

Update 1 Incorporated May 1987

12

You may send any suggestions for improvements in this manual to:

Languages Information Engineering Manager
Hewlett-Packard Company
Mailstop 42UD
11000 Wolfe Road
Cupertino CA 95014-9804

Electronic Mail: editor@cup.hp.com

Audience
This manual assumes that you are an experienced assembly language
programmer. In addition, you should have detailed understanding of the
PA-RISC and hardware features, and a working knowledge of the HP-UX
operating system, program structures, procedure calling conventions,
and stack unwind procedures.

Related Documentation
For more information on HP-UX programming, refer to the following
documents:

• PA-RISC 2.0 Architecture by Gerry Kane (Prentice-Hall, ISBN
0-13-182734-0)

Second Edition January 1988 92432-03A.00.03

Third Edition November 1988 92432-03A.00.04

Fourth Edition January 1991 92432-03A.08.06

Fifth Edition January 1995 92432-03A.10.00

Sixth Edition June 1996 92432-03A.10.20

Seventh Edition May 1997 92432-03A.10.30

Eighth Edition November 1997 92453-03A.11.00

Ninth Edition June 1998 92453-03A.11.00

Edition Date Software
Version

13

• HP-UX Linker and Libraries Online User Guide, (ld +help)

• 64-bit Runtime Architecture for PA-RISC 2.0. URL:
http://www.software.hp.com/STK/

• ELF 64 Object File Format. URL: http://www.software.hp.com/STK/

Typographical Conventions
Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

computer font Computer font indicates commands, keywords, options,
literals, source code, system output, and path names.
In syntax formats, computer font indicates commands,
keywords, and punctuation that you must enter exactly
as shown.

bold face
text In examples, bold face text represents user input.

italic type In syntax formats, words or characters in italics
represent values that you must supply. Italics are also
used for book titles and for emphasis.

[] In syntax formats, square brackets enclose optional
items.

{ } In syntax formats, braces enclose a list from which you
must choose an item.

... In syntax formats, a horizontal ellipsis indicates that
you can repeat the preceding item one or more times.

name(N) An italicized word followed by a number in parentheses
indicates an entry in HP-UX Reference. For example,
cc(1) refers to the cc entry in Section 1 of HP-UX
Reference.

In This Manual
The manual is organized as follows:

Chapter 1 Introduces the Assembler for HP 9000 computers.

Chapter 2 Explains assembly language program structure.

14

Chapter 3 Explains programming in Assembler for HP-UX.

Chapter 4 Describes the PA-RISC Assembler directives and
pseudo-operations.

Chapter 5 Summarizes the pseudo-instructions for the PA-RISC
machine instructions.

Chapter 6 Describes the assembly (as) command and the ways to
invoke the PA-RISC Assembler under the HP-UX
operating system.

Chapter 7 Contains several sample assembly language programs.

Chapter 8 Lists the diagnostic messages that the PA-RISC
Assembler can generate.

Summary of Technical Changes for HP-UX
11.0
The following features have changed for HP-UX 11.00 to support
PA-RISC 2.0W (wide), 64-bit mode. These changes are explained in detail
in the appropriate locations in this manual.

• In 64-bit mode, the linkage pointer register is %r27. See Table 2-11,
“Available Field Selectors,” on page 31.

• In 64-bit mode, the Executable and Linking Format (ELF) uses
segments and sections rather than spaces and subspaces. See
“Sections in 64-bit Mode” on page 44.

• The Assembler ignores the .CALL directive. This means that your
program must ensure that the caller and called procedure agree on
argument locations. See “.CALL Directive” on page 63.

• The .CALLINFO directive parameters include updates to support
64-bit mode.

• You can specify 2.0W with the .LEVEL directive to tell the the
Assembler to generate 64-bit object code. For details, see “.LEVEL
Directive” on page 93.

• New and changed Assembler error messages. For details, see Chapter
8, “Diagnostic Messages,” on page 141.

15

1 Introduction to PA-RISC
Assembly Language

The HP 9000 Assembly Language represents machine language
instructions symbolically, and permits declaration of addresses
symbolically as well. The Assembler's function is to translate an
assembly language program, stored in a source file, into machine
language. The result of this translation resides in a relocatable object file.
The object file is relocatable because it can still be combined with other
relocatable object files and libraries. Therefore, it is necessary to relocate
any addresses that the Assembler chooses for the symbols in the source
program.

This process of combining object files and libraries is performed by the
linker, ld . The linker's task is to transform one or more relocatable
object files into an executable program file. Every program must be
linked before it can be executed, even if the source file is complete within
itself and does not need to be combined with other files.

Assembler Features
The Assembler provides a number of features to make assembly
language programming convenient. These features include:

• Mnemonic Instructions. Each machine instruction is represented
by a mnemonic operation code, which is easier to remember than the
binary machine language operation code. The operation code,
together with operands, directs the Assembler to output a binary
machine instruction to the object file.

• Symbolic Addresses. You can select a symbol to refer to the address
of a location in virtual memory. The address is often referred to as the
value of the symbol, which should not be confused with the value of
the memory locations at that address. These symbols are called
relocatable symbols because the actual addresses represented by such
symbols are subject to relocation by the linker.

• Symbolic Constants. A symbol can also be selected to stand for an
integer constant. These symbols are called absolute symbols because
the values of such symbols are not relocatable.

16 Chapter 1

Introduction to PA-RISC Assembly Language
Assembler Features

• Expressions. Arithmetic expressions can be formed from symbolic
addresses and constants, integer constants, and arithmetic operators.
Expressions involving only symbolic and integer constants, or the
difference between two relocatable symbols, defined in the current
module, are called absolute expressions. They can be used wherever
an integer constant can be used. Expressions involving the sum or
difference of a symbolic address and an absolute expression are called
relocatable expressions or address expressions. The constant part of
an expression, the part that does not refer to relocatable expressions,
can use parenthesized subexpressions to alter operator precedence.

• Storage Allocation. In addition to encoding machine language
instructions symbolically, storage may be initialized to constant
values or simply reserved. Symbolic addresses and labels can be
associated with these memory locations.

• Symbol Scope. When two or more object files are to be combined by
the linker, certain symbolic addresses can be defined in one module
and used in another. Such symbols must be exported from the defining
module and imported into the using module. In the defining module,
the symbol has universal scope, while in the using module, the symbol
is unsatisfied. Other symbols declared in the source program that are
not exported have local scope.

• Subspaces and Location Counters. You can organize code and
data into separate subspaces, and into separate location counters
within each subspace. The programmer can move among the
subspaces and location counters, while the Assembler changes the
code and data into the correct order. In 64-bit mode, however, the
Executable and Linking Format (ELF) uses segments and sections
rather than spaces and subspaces.

• Macro Processing. A macro is a user-defined word, which is
replaced by a sequence of instructions. Including a macro in a source
program causes the sequence of instructions to be inserted into the
program wherever the macro appears.

Chapter 1 17

Introduction to PA-RISC Assembly Language
Summary of Changes for PA-RISC 2.0

Summary of Changes for PA-RISC 2.0
The following features have changed in PA-RISC 2.0 architecture. These
changes are explained in more detail in the appropriate locations in this
manual.

• A new .DWORD directive reserves 64 bits (a double word) of storage
and initializes it to the given value.

• A .LEVEL 2.0 directive should be used as the first directive in the
source file to assemble it for a PA-RISC 2.0 system.

• New +DA2.0 option

• New and changed Assembler error messages

Summary of Changes for PA-RISC 2.0W
(Wide Mode, 64-bit)
The Assembler for PA-RISC 2.0W, the 64-bit version of PA-RISC 2.0,
maintains the same source syntax as that of PA1.x and PA2.0 32-bit
mode versions. However, PA2.0W features differ in the features listed
below.

• To assemble a source file for a PA-RISC 64-bit system, use a .LEVEL
2.0W directive as the first directive in the source file. See “.LEVEL
Directive” on page 93.

• The Assembler generates an Executable and Linking Format (ELF)
object file format with PA-RISC 2.0W. Refer to the ELF 64 Object File
Format, URL: http://www.software.hp.com/STK/ for details on ELF
format.

• PA-RISC 2.0W supports a flat virtual address space of 2**64 bytes,
and therefore does not support use of space registers. Use the
following syntax when memory operations are used:

ex: LDD disp(b), tgt

18 Chapter 1

Introduction to PA-RISC Assembly Language
Summary of Changes for PA-RISC 2.0W (Wide Mode, 64-bit)

You can explicitly use space registers, however, the Assembler issues
a warning if it is other than sr0 .

• Some of the completers on ADDB and ADDIB instructions are not valid
for PA2.0W. In addition, new completers are available.

For example: ZNV, SV, and OD are not valid whereas *=, *<, and *<=
are additional completers.

Please refer to the PA-RISC 2.0 Architecture guide for details.

• The displacement on both general load/store and floating load/store
instructions can be up to 16 bits. For example,

 ex: FLDD disp(b),tgt ; displacement can be up to 16 bits.

Please refer to PA-RISC 2.0 Architecture for details.

• You must change any .WORD directives that are initialized with a code
symbol or data symbol to .DWORD.

• You can not use space identification operations such as MTSP and
LDSID used for dealing with space registers in user level code.
Currently, the Assembler does not give any warning.

• The procedure calling conventions are different in the HP-UX
PA-RISC 2.0 64-bit architecture. In PA 2.0W, you can pass the first
eight parameters in registers (arg0-arg7). In earlier versions (PA1.0
and PA1.1) and on PA-RISC 2.0, you can only pass the first four
parameters in registers(arg0-arg3). For more information, please
refer to the 64-bit Runtime Architecture for PA-RISC 2.0, at URL:
http://www.software.hp.com/STK/.

19

2 Program Structure

An assembly language program is a sequence of statements. There are
three classes of statements:

• Instructions

• Pseudo-operations

• Directives

Instructions represent a single machine instruction in symbolic form.
Pseudo-operations cause the Assembler to initialize or reserve one or
more words of storage for data, rather than machine instructions.
Directives communicate information about the program to the
Assembler, but do not generally cause the Assembler to output any
machine instructions.

An assembly statement contains four fields:

• Label

• Opcode

• Operands

• Comments

Each of these fields is optional. However the operands field cannot
appear without an opcode field.The label field is used to associate a
symbolic address with an instruction or data location, or to define a
symbolic constant using the .EQU, .REG, or .MACRO directives. This field
is optional for all but a few statement types; if present, the label must
begin in column one of a source program line. If a label appears on a line
by itself, or with a comment only, the label is associated with the next
address within the same subspace and location counter.

When the label field begins with the pound sign (#) character, it is not
treated as a label. If # is followed by white space and an integer, the
Assembler's line number counter, used when reporting errors, is reset to
the value of the integer. Otherwise, the line beginning with # is ignored.
This feature is for the use of the C language preprocessor cpp .

The opcode field contains either a mnemonic machine instruction, a
pseudo-operation code, or the name of an Assembler directive. It must be
separated from the label field by a blank or tab. For certain machine
instructions, the opcode field can also contain completers, separated from
the instruction mnemonic by commas.

20 Chapter 2

Program Structure

The machine instruction mnemonics and completers are described in the
PA-RISC 1.1 Architecture and Instruction Set Reference Manual and
PA-RISC 2.0 Architecture.

The operands field follows the opcode field, separated by a blank or tab.
Operands are separated by commas. The meaning of the operands
depends on the specific statement type, determined by the opcode.

The number of operands permitted or required depends upon the specific
instruction.

The comments field is introduced with a semicolon, and causes the
Assembler to ignore the remainder of the source line. A comment can
appear on a line by itself.

The following listing contains several assembly language statements.
The headings identify the four fields.

Statements are normally written on separate lines. It is sometimes
useful, especially when using a macro preprocessor, to be able to write
several statements on one line. This can be done by separating the
statements with the “! ” character. When this feature is used, a label can
be placed only on the first statement of the line, and a comment can only
follow the last statement on the line. The .LABEL directive can override
this condition by providing a means for declaring a label within a
multi-statement line.

Label Opcode Operands Comments
JAN .EQU 1 ;declares a symbolic constant
SUM .WORD 0 ;reserve a word and set to zero
LOOP LDW 4(%r1),%r2

ADD %r2,%r3,%r4
STW %r4,SUM-$global$(%dp)
BL LOOP,%r0

Chapter 2 21

Program Structure
Symbols and Constants

Symbols and Constants
Both addresses and constants can be represented symbolically. Labels
represent a symbolic address except when the label is on an .EQU, .REG,
or .MACRO directive. If the label is on an .EQU or .REG directive, the
label represents a symbolic constant. If the label is the .MACRO directive,
the label represents a macro name.

Symbols are composed of uppercase and lowercase letters (A-Z and a-z),
decimal digits (0-9), dollar signs ($), periods (.), ampersands (&), pound
signs (#), and underscores (_). A symbol can begin with a letter, digit,
underscore, or dollar sign. If a symbol begins with a digit it must contain
a non-digit character. (The predefined register symbols begin with a
percent sign (%).)

The Assembler considers uppercase and lowercase letters in symbols to
be distinct. The mnemonics for operation codes, directives, and
pseudo-operations can be written in either case. There is no explicit limit
on the length of a symbol. The following are examples of legal symbols:

$START$ _start PROGRAM M$3 $global$
$$mulI main P_WRITE loop1 1st_time

The following are examples of illegal symbols:

LOOP|1 Contains an illegal character

&st_time Begins with &

123 Does not contain a nondigit

Integer constants can be written in decimal, octal, or hexadecimal
notation, as in the C language. “Integer Constants” on page 22 lists the
ranges of these integer constants.

22 Chapter 2

Program Structure
Symbols and Constants

Table 2-1 Integer Constants

The period (.) is a special symbol reserved to denote the current offset of
the location counter. It is useful in address expressions to refer to a
location relative to the current instruction or data word. This symbol is
considered relocatable, and can be used anywhere a relocatable symbol
can be used, with the exception of the label field.

The period cannot be used in an expression involving another label, such
as sym+. , sym-. , .+ sym, or .- sym. It can be used in an expression that
has only a constant, such as .+8 or .-8 .

Signed Unsigned

Decimal -2147483648
through
2147483647

0
through
4294967295

Octal 020000000000
through
017777777777

0
through
037777777777

Hexadecimal 0x80000000
through
0x7FFFFFFF

0
through
0xFFFFFFFF

Chapter 2 23

Program Structure
Registers and Register Mnemonics

Registers and Register Mnemonics
PA-RISC processors have four sets of registers:

• General

• Floating-point

• Space

• Control

Data is loaded from memory into general or floating-point registers and
stored into memory from general or floating-point registers. Arithmetic
and logical operations are performed on the contents of the general
registers. On PA-RISC 1.0 or 1.1 each general register is 32 bits wide. On
PA-RISC 2.0 each general register is 64 bits wide. On PA-RISC 2.0W
(true 64-bit environment) each general register is 64 bits wide.

There are 32 general registers, denoted as %r0 through %r31. General
register %r0 is special because “writes” into it are ignored, and it always
reads as zero. The remaining general registers can be used normally,
with the caution that %r1 is the implicit target register for the ADDIL
instruction, %r31 is the implicit link register for the BLE instruction, and
for PA-RISC 2.0 only, %r2 is the implicit link register for the BLVE
instruction. Certain general registers also have predefined conventional
uses. Refer to “Register Procedure Calling Conventions” on page 28. You
can find detailed information on both 32-bit and 64-bit runtime
architecture under the topic PA-RISC Architecture at
http://www.software.hp.com/STK/.

PA-RISC 1.0 machines have 16 floating-point registers; PA-RISC 1.1, 2.0,
and 2.0W (true 64-bit environment) machines have 32 floating-point
registers. Each register is capable of holding either a single- or
double-precision floating-point number in IEEE format. These registers
are denoted %fr0 through %fr15 for PA-RISC 1.0 and %fr0 through
%fr31 for PA-RISC 1.1, 2.0, and 2.0W.

Registers %fr1 , %fr2 , and %fr3 are exception registers and are not
available to the programmer. Floating-point register %fr0 contains a
permanent floating-point zero when used in an arithmetic operation;
when written or read with floating-point loads or stores, the
floating-point status register is actually accessed.

24 Chapter 2

Program Structure
Registers and Register Mnemonics

In addition, on PA-RISC 1.1, 2.0. and 2.0W the left and right halves of
the floating-point registers can be accessed as separate single-precision
registers by using an L or R suffix.

For example, %fr8R accesses the right-most 32 bits of %fr8 as a
single-precision number.

The L or R suffixes can only be used on the predefined floating-point
registers in the form %fr nn, where nn is the register number. It is not
legal to use L or R with an integer value. For example, %fr8R is legal; 8R
is not legal.

The space registers form the basis of the virtual memory system. Each of
the eight space registers can hold a 16- or 32-bit space identifier,
depending on the hardware model. The space registers are denoted as
%sr0 through %sr7 . Space register %sr0 is set implicitly by the BLE
instruction, and space registers %sr5 through %sr7 cannot be modified
except by code running at the most privileged level.

The control registers contain system-state information. There are 25
control registers, denoted as %cr0 and %cr8 through %cr31 . Of these
registers, only %cr11 (%sar), the shift amount register, and %cr16
(%itmt), the interval timer, are normally accessible to the user-level
programmer. The other registers are accessed only by code running at
the most privileged level.

Register operands are denoted by register-typed constants because the
Assembler needs to be able to differentiate between general registers,
space registers, floating point registers, and ordinary integer constants.

To make assembly code more readable, you can use the .REG directive to
declare a symbolic name as an alias for a predefined register. The
predefined registers have a register type associated with them. The
Assembler enforces register type checking and issues a warning message
if the wrong kind of register is used within an operand. A warning is also
issued when an integer constant or absolute expression is found where a
register is expected. You must use the .REG directive to define symbolic
register names. If a symbolic name defined in an .EQU directive is used
where a register symbol is expected, the Assembler issues a warning
message, because it considers an .EQU defined symbol to be a simple
integer constant.

NOTE If an absolute expression is used instead of a register or register-typed
symbol name, the Assembler issues warning message number 41.

Chapter 2 25

Program Structure
Registers and Register Mnemonics

This warning can be suppressed with the -w41 command-line option.
Future versions of the Assembler may not always allow an absolute
expression where a register is expected.

The following example demonstrates the correct usage of the .REG
directive:

tblptr .REG %r20
aka_tbl .REG tblptr

Predefined registers are shown in the following tables. All of the
mnemonics begin with the % character, so they do not conflict with any
programmer-defined symbols.

Table 2-2 General Registers

%r0 %r8 %r16 %r24

%r1 %r9 %r17 %r25

%r2 %r10 %r18 %r26

%r3 %r11 %r19 %r27

%r4 %r12 %r20 %r28

%r5 %r13 %r21 %r29

%r6 %r14 %r22 %r30

%r7 %r15 %r23 %r31

26 Chapter 2

Program Structure
Registers and Register Mnemonics

Table 2-3 Single-Precision Floating-Point Registers

%fr0L %fr8L %fr16L %fr24L

%fr1L %fr9L %fr17L %fr25L

%fr2L %fr10L %fr18L %fr26L

%fr3L %fr11L %fr19L %fr27L

%fr4L %fr12L %fr20L %fr28L

%fr5L %fr13L %fr21L %fr29L

%fr6L %fr14L %fr22L %fr30L

%fr7L %fr15L %fr23L %fr31L

%fr0R %fr8R %fr16R %fr24R

%fr1R %fr9R %fr17R %fr25R

%fr2R %fr10R %fr18R %fr26R

%fr3R %fr11R %fr19R %fr27R

%fr4R %fr12R %fr20R %fr28R

%fr5R %fr13R %fr21R %fr29R

%fr6R %fr14R %fr22R %fr30R

%fr7R %fr15R %fr23R %fr31R

Accessing the right half of floating-point registers
separately is possible only on PA-RISC 1.1 or later
architectures.
Registers %fr16L through %fr31L and %fr16R
through %fr31R are available only on PA-RISC 1.1 or
later architectures.

Chapter 2 27

Program Structure
Registers and Register Mnemonics

Table 2-4 Double-Precision Floating-Point Registers

Table 2-5 Space Registers

Table 2-6 Control Registers

%fr0 %fr8 %fr16 %fr24

%fr1 %fr9 %fr17 %fr25

%fr2 %fr10 %fr18 %fr26

%fr3 %fr11 %fr19 %fr27

%fr4 %fr12 %fr20 %fr28

%fr5 %fr13 %fr21 %fr29

%fr6 %fr14 %fr22 %fr30

%fr7 %fr15 %fr23 %fr31

Registers %fr16 through %fr31 are available
only on PA-RISC 1.1 or later architectures.

%sr0 %sr2 %sr4 %sr6

%sr1 %sr3 %sr5 %sr7

Registers Synonyms Registers Synonyms

%cr0 %rctr %cr20 %isr

%cr8 %pidr1 %cr21 %ior

%cr9 %pidr2 %cr22 %ipsw

%cr10 %ccr %cr23 %eirr

%cr11 %sar %cr24 %tr0 %ppda

%cr12 %pidr3 %cr25 %tr1 %hta

%cr13 %pidr4 %cr26 %tr2

%cr14 %iva %cr27 %tr3

%cr15 %eiem %cr28 %tr4

%cr16 %itmr %cr29 %tr5

%cr17 %pcsq %cr30 %tr6

%cr18 %pcoq %cr31 %tr7

%cr19 %iir

28 Chapter 2

Program Structure
Registers and Register Mnemonics

Some additional predefined register mnemonics are provided in
“Register Procedure Calling Conventions” on page 28 to match the
standard procedure-calling convention. This is discussed briefly in
“HP-UX Architecture Conventions” on page 39. You can find detailed
information on both 32-bit and 64-bit calling conventions under the topic
PA-RISC Architecture at URL: http://www.software.hp.com/STK/.

Table 2-7 Register Procedure Calling Conventions

In addition, there is a special register mnemonic defined as
%previous_sp , that allows access to the previous value of the stack
pointer.

%previous_sp must be used in the position of a base register; it can be
used only between .ENTER and .LEAVE pseudo-operations.
%previous_sp is the same as %sp unless the current .PROC has a large

Register Synonyms Description

%fr4 %farg0 %fret Floating argument, return value
%fr5 %farg1 Second floating argument
%fr6 %farg2 Third floating argument
%fr7 %farg3 Fourth floating argument
%r2 %rp Return link
%r19 %t4 Fourth temporary register
%r20 %t3 Third temporary register
%r21 %t2 Second temporary register
%r22 %t1 First temporary register
%r23 %arg3 Argument word 3
%r24 %arg2 Argument word 2
%r25 %arg1 Argument word 1
%r26 %arg0 Argument word 0
%r27 %dp Data pointer
%r28 %ret0 Return value
%r29 %ret1 %sl Return value, static link
%r30 %sp Stack pointer
%r31 %mrp Millicode return link
%sr1 %sret %sarg Return value, argument

Chapter 2 29

Program Structure
Expressions

frame (that is, .CALLINFO specified FRAME > 8191) or .CALLINFO
specified .ALLOCA_FRAME. In those two cases, %previous_sp is the
same as %r3, and %r3 is set up by the .ENTER pseudo-operation.

Expressions
Arithmetic expressions are often valuable in writing assembly code. The
Assembler allows expressions involving integer constants, symbolic
constants, and symbolic addresses. These terms can be combined with
the standard arithmetic operators shown in “Standard Arithmetic
Operators” on page 29 or with bit-wise operators shown in “Bit-Wise
Operators” on page 29.

Table 2-8 Standard Arithmetic Operators

The multiplication and division operators have precedence over addition
and subtraction. That is, multiplications and divisions are performed
first from left to right, then additions and subtractions are performed
from left to right. Therefore, the expression 2+3*4 evaluates to 14 .

Table 2-9 Bit-Wise Operators

Operator Operation

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division (result is truncated)

Operator Operation

| Logical OR

& Logical AND

~ Unary logical complement (tilde)

30 Chapter 2

Program Structure
Expressions

Expressions produce either an absolute or a relocatable result. Any
operation involving only absolute terms yields an absolute result.
Relocatable terms are allowed only for the + and - operators. The legal
combinations involving relocatable terms are shown in “Legal
Combinations For Relocatable Terms” on page 30.

Table 2-10 Legal Combinations For Relocatable Terms

For more information on the term relocatable, refer to “Assembler
Features” on page 15.

NOTE The combination “relocatable- relocatable+relocatable” is not permitted.

For example, assume the symbols MONTH and YEAR are relocatable, and
JANUARY and FEBRUARY are absolute. The expressions MONTH+JANUARY
and MONTH+FEBRUARY-4 are relocatable, while the expressions
YEAR-MONTH and FEBRUARY-4 are absolute. The expression
MONTH+JANUARY*4 is also legal and produces a relocatable result,
because JANUARY*4 is evaluated first, producing an absolute
intermediate result that is added to MONTH. The expression MONTH+YEAR
is illegal, because the sum of two relocatable terms is not permitted.

Because all instructions are a single word in length, it is not possible to
form a complete 32-bit address in a single instruction. Therefore, it is
likely that the Assembler (or linker) may not be able to insert the final
address of a symbol into the instruction as desired. For example, to load
the contents of a word into a register, the following instruction could be
used:

LDW START,%r2

Because LDW provides only 14 bits for the address of START, the
Assembler or linker prints an error message if the address of START
requires more than 14 bits. There are two instructions, LDIL and ADDIL,
whose function is to form the left-most 21 bits of a 32-bit address. The
succeeding instruction, by using the target of the LDIL or ADDIL as a

Operation Result

Absolute + Relocatable Relocatable

Relocatable + Absolute Relocatable

Relocatable - Absolute Relocatable

Relocatable - Relocatable (defined locally) Absolute

Chapter 2 31

Program Structure
Expressions

base register, needs only 11 bits for the remainder of the address. The
Assembler provides special operators, called field selectors, that extract
the appropriate bits from the result of an expression. With the field
selectors L' and R' , the previous example can be recoded as follows:

LDIL L'START,%r1 ;put left part into r1
LDW R'START(%r1),%r2 ;add r1 and right part

The field selectors are always applied to the final result of the
expression. They cannot be used in the interior of an expression.
“Available Field Selectors” on page 31 shows all the available field
selectors and their meanings.

Table 2-11 Available Field Selectors

Field
Selector Meaning

F' or F% Full 32 bits (default).

L' or L% Right-justified, high-order 21 bits.

R' or R% Low-order 11 bits.

LS' or
LS%

High-order 21 bits after rounding to nearest multiple of
2048.

RS' or
RS%

Low-order 11 bits, sign extended.

LD' or
LD%

Right-justified, high-order 21 bits after rounding to next
multiple of 2048.

RD' or
RD%

Low-order 11 bits, with negative sign.

LR' or
LR%

L% value with constant rounded to nearest multiple of
8192.

RR' or
RR%

R% value with constant rounded to nearest multiple of
8192, plus the difference of the constant and the rounded
constant.

T' or T% F% value offset of data linkage table slots from linkage
table pointer. In 32-bit mode, the linkage table pointer is
%r19. In 64-bit mode, the linkage table pointer is %r27.

32 Chapter 2

Program Structure
Expressions

LT' or
LT%

LR% value offset of data linkage table slots from linkage
table pointer. In 32-bit mode, the linkage table pointer is
%r19. In 64-bit mode, the linkage table pointer is %r27.

RT' or
RT%

RR% value offset of data linkage table slots from linkage
table pointer. In 32-bit mode, the linkage table pointer is
%r19. In 64-bit mode, the linkage table pointer is %r27.

Q' or Q% F% value offset of procedure linkage table slots from
linkage table pointer. In 32-bit mode, the linkage table
pointer is %r19. In 64-bit mode, the linkage table pointer
is %r27.

LRQ' or
LRQ%

LR% value offset of procedure linkage table slots from
linkage table pointer. In 32-bit mode, the linkage table
pointer is %r19. In 64-bit mode, the linkage table pointer
is %r27.

RRQ' or
RRQ%

RR% value offset of procedure linkage table slots from
linkage table pointer. In 32-bit mode, the linkage table
pointer is %r19. In 64-bit mode, the linkage table pointer
is %r27.

P' or P% Data procedure label (plabel) constructor.

LP' or
LP%

Code procedure label (plabel) constructor used in LDIL
instruction.

RP' or
RP%

Code procedure label (plabel) constructor used in LD0
instruction.

N' or N% A null field selector, which is applied to an LDO instruction
to allow a three-instruction sequence.

NL' or
NL%

Right-justified, high-order 21 bits; allows a
three-instruction sequence.

Field
Selector Meaning

Chapter 2 33

Program Structure
Expressions

On PA-RISC 1.0, the page size is 2048 bytes long; on PA-RISC 1.1, 2.0,
and 2.0W the page size is 4096. The selectors L' , LS' , and LD' modulate
by 2048, and the corresponding selectors R' , RS' , and RD' extract the
offset relative to that address.

The distinction is whether the offset is always positive and between 0
and 0x7ff (L'-R') , always negative and between -0x800 and -1
(LD'-RD') , or between -0x400 and 0x3ff (LS'-RS') . This
distinction is only important when using short addressing near a
quadrant boundary, because only the left part is used to select a space
register. Each pair is designed to work together just as L' and R' do in
the previous example. See “Spaces” on page 39. The LR' and RR'
prefixes are used for accessing different fields of a structure, allowing the
sharing of the LR' computation.

For shared libraries, the field selectors T' , LT' , RT' , Q' , LRQ' , and RRQ'
are used in conjunction with the position-independent code options +z or
+Z.

The field selectors P' , LP' , and RP' are used to form plabels
(procedure labels) for use in dynamic calls. With position-independent
code, the use of plabel values, rather than simple code addresses, is
required. Refer to the HP-UX Linker and Libraries Online User Guide
and ELF 64 Object File Format, http://www.software.hp.com/STK/ for
more information.

For example, to get a procedure label for foo , use the following code:

ADDIL LTP'foo,%r27,%r1 ;get left portion of plabel pointer.
LDO RTP'foo(%r1),%r4 ;add right portion to form a complete

; plabel pointer.

The field selectors in the above example can also be written LP% and RP%.

NLD' or
NLD%

Right-justified, high-order 21 bits after rounding to next
multiple of 2048; allows a three-instruction sequence.

NLR' or
NLR%

L% value with constant rounded to nearest multiple of
8192; allows a three-instruction sequence.

NLS' or
NLS%

High-order 21 bits after rounding to nearest multiple of
2048; allows a three-instruction sequence.

Field
Selector Meaning

34 Chapter 2

Program Structure
Expressions

Parenthesized Subexpressions
The constant term of an expression may contain parenthesized
subexpressions that alter the order of evaluation from the precedence
normally associated with arithmetic operators. For example:

LABEL1-LABEL2+((6765+(2048-1))/2048)*2048

contains a parenthesized subexpression that rounds a value up to a
multiple of 2048.

Absolute symbols may be equated to constant terms containing
parenthesized subexpressions as in the following sequence:

BASE .EQU 0x200
N_EL .EQU 24
SIZE .EQU (BASE+4)*N_EL

NOTE The use of parentheses to group subexpressions may cause ambiguities
in statements where parenthesized register designators are also
expected.

Chapter 2 35

Program Structure
Operands and Completers

Operands and Completers
Machine instructions usually require one or more operands.

These operands tell the processor what data to use and where to store
the result. Operands can identify a register, a location in memory, or an
immediate constant (that is, data that is coded into the instruction
itself). The operation code determines how many and what kinds of
operands are required.

Registers used in operands should be either predefined register symbols
(with the % prefix) or user-defined register symbols defined with the .REG
directive. They can also be absolute expressions. See “Registers and
Register Mnemonics” on page 23 in this chapter.

The following example shows a few machine instructions with register
operands:

SCRATCH .REG %r18 ;define register SCRATCH
ADD %r3,%r7,%r4 ;r3 + r7 -> r4
OR %r7,%r3,%r8 ;inclusive or of r7,r3 -> r8
COPY SCRATCH,%r7 ;copy r18 to r7
MTCTL %r2,%sar ;set shift amount register (cr11)
MFSP %sr4,%r10 ;fetch contents of sr4

Operands designating memory locations usually consist of an expression
and a general register used as a base register. Some instructions also
require a space register designation. In general, such operands are
written in the form expr(sr, gr) or expr(gr) , as in the following
examples:

local_off .EQU -64
LDW 4(%dp),%r2
STW %r0,local_off-4(%sp)
LDW 0(%sr3,%r2),%r9

Notice that the space register can be omitted on instructions that allow
short addressing, as in the STW instruction shown above.

If only one register is given, it is assumed to be the general register, and
the space register field in the machine instruction is set to zero, which
indicates short addressing.

The expression in a memory operand is either absolute or relocatable.
Absolute expressions are meaningful when the base register contains the
address of an array, record, or the stack pointer to which a constant offset

36 Chapter 2

Program Structure
Operands and Completers

is required. Relocatable expressions are meaningful when the base
register is %r0, or when the base register contains the left part of a 32-bit
address as illustrated in the following example:

LDIL L%glob,%r1 ;set up %r1 for STW
STW %r9,R%glob(%r1)

Immediate operands provide data for the machine language instruction
directly from the bits of the instruction word itself. A few instructions
that use immediate operands are shown below:

ADDIL L%var,%dp
LDIL L%print,%r1
ADDI 4,%r3,%r5
SUBI 0x1C0,%r14,%ret0

Completers are special flags that modify an instruction's behavior. They
are written in the opcode field, separated from the instruction mnemonic
by a comma. The most common type of completer is a condition test.
Many instructions can conditionally trap or nullify the following
instruction, depending on the result of their normal operation. For
example, notice the completers in the sequence below:

ADD,NSV %r1,%r2,%r3
BL,N handle_oflo,%r0
OR %r3,%r4,%r5

The ,NSV in the ADD instruction nullifies the BL instruction if no
overflow occurs in the addition operation, and execution proceeds with
the OR instruction. If overflow does occur, the BL instruction is executed,
but the ,N completer on the BL specifies that the OR instruction in its
delay slot should not be executed.

Each class of machine instructions defines the set of completers that can
be used.

These are described in the PA-RISC 1.1 Architecture and Instruction Set
Reference Manual and in PA-RISC 2.0 Architecture.

Chapter 2 37

Program Structure
Macro Processing

Macro Processing
A macro is a user-defined word that is replaced by a sequence of
instructions. Including a macro in a source program causes the sequence
of instructions to be inserted into the program wherever the macro
appears.

A user may define a word as a macro by using the .MACRO directive.

Detailed information about macro arguments, placement and
redefinition of macros, nested macro definitions, and nested macro calls
is in “Assembler Directives and Pseudo-Operations” on page 53.

Defining New Instructions With Macros
If you are testing new CPUs or coprocessors, you may need to use
opcodes that are unknown to the Assembler. A variant of a macro
definition may be used to create a mnemonic for the instruction. After
being defined, the new mnemonic instruction can be invoked as easily as
a standard instruction.

Opcodes, subopcodes, completers, and operands are encoded into the
instruction word in a bit-intensive manner because all PA-RISC
instructions are one word, or 32-bits, in length.

To write a macro, you must specify explicitly which bit fields are to
contain constants and which are to contain macro arguments. The macro
processor has no built-in knowledge of instruction formats. Defining new
instructions through macros is only possible because a convenient way to
delimit bit fields has been provided. It is up to the programmer to choose
the correct bit field.

Bit positions within the 32-bit word are numbered from zero to 31, from
left to right. A bit range is indicated by the starting bit position followed
by the ending bit position. The two bit positions are separated by two
periods and enclosed in braces. The bit field beginning at bit position 6
and ending at bit position 10 is represented as:

{6..10}

If the bit field being assigned from is bigger than the bit field being
assigned to, then a warning is issued and the assigned-from bit field is
truncated on the left. When no bit field is specified for the assigned-from

38 Chapter 2

Program Structure
Macro Processing

value, low-order bits are used until the value of the assigned-from bit
field becomes the same as the width of the assigned-to bit field. The
assigned-to bit field must always be specified.

No sign extension is provided by the macro assembler when bit fields are
generated.

The following macro definition defines the macro PACK with four formal
parameters.

PACK .MACRO BASE,GREG,SREG,OFFSET
{0..5}=0x3E{26..31}
{6..10}=BASE{27..31}
{11..15}=GREG{27..31}
{16..17}=SREG{30..31}
{18..31}=OFFSET{18..31}
.ENDM

The following explanation assumes that PACK is invoked with the
statement:

PACK %sp,%r19,%sr0,-52

Bit Field Description

{0..5} Contains the six low-order bits of the new opcode 0x3E ,
or binary 111110, entered as a constant in the macro
definition.

{6..10} Contains general register 30, or binary 11110. These
are the five low-order bits of the argument BASE in the
macro definition.

{11..15} Contains general register 19, or binary 10011. These
are the five low-order bits of the argument GREG in the
macro definition.

{16..17} Contains space register 0 and represents the five
low-order bits of the argument SREG in the macro
definition.

{18..31} Contains binary 11111111001100, the OFFSET value
−52, which was entered as an argument to the macro
definition.

39

3 HP-UX Architecture
Conventions

The Assembler is a flexible tool for writing programs, but every operating
system imposes certain conventions and restrictions on the programs
that are intended to run on that system. This chapter discusses the
conventions that must be understood in order to write assembly
language programs and procedures for the PA-RISC instruction set on
the HP 9000 Series 700 and 800 HP-UX operating system. Several
Assembler directives are mentioned in this chapter to place them in a
meaningful context. A full discussion of these directives is in Chapter 4,
“Assembler Directives and Pseudo-Operations,” on page 53.

Spaces
Virtual addressing on PA-RISC is based on spaces. A virtual address is
composed of a space identifier, which is either 16 or 32 bits long
(depending on the hardware model), and a 32-bit offset within the space.
Therefore, each space can contain up to 4 gigabytes, and there is a large
supply of spaces.

NOTE In the 64-bit mode architecture each application is provided a flat virtual
address space of 2** 64 bytes, which is divided into four quadrants. Each
quadrant is mapped into this global virtual address space by means of
four space registers, which are under the control of the operating
system.

Every program on an HP-UX system is assigned two spaces when it is
loaded for execution by the operating system: one for code, and one for
data. The HP-UX operating system makes the code space read only, so
that it can be shared whenever several processes are executing the same
program. The data space is writable by the new process, and is private to
that process; that is, every process has a unique data space.The actual
space identifiers assigned to these two spaces can vary from one
execution of the program to the next; these numbers cannot be
determined at compile time or link time. Generally, programmers do not
need to be concerned with the space identifiers, since the operating
system places them in two reserved space registers, where they remain

40 Chapter 3

HP-UX Architecture Conventions
Spaces

for the duration of program execution. The identifier of the code space is
placed in space register 4 (%sr4) and the identifier of the data space is
placed in space register 5 (%sr5).

When writing an assembly language program, declare a space named
$TEXT$ for executable code, and a space named $PRIVATE$ for
modifiable data. Constant data or literals that you do not plan to modify
during program execution, can be placed in either space. Placing
constant data in the $TEXT$ space decreases the size of the nonsharable
part of your program and improves the overall efficiency of the operating
system.

The particular space registers mentioned above play an important role in
virtual addressing. While many of the branching instructions, such as
BL, BLR, and BV, are capable of branching only within the currently
executing code space (called PC-space), two of the branching instructions,
BE and BLE, require that you specify a space register as well as an offset.
These instructions allow you to branch to code executing in a different
space. On HP-UX systems, normally all code for a program is contained
in one space, so all BE and BLE instructions should be coded to use %sr4 .

In contrast, the memory reference instructions, such as LDW and STW,
allow a choice between two forms of addressing: long and short. With
long addressing, you can choose any of the space registers 1 through 3 for
the space identifier part of the virtual address. The space offset is formed
as the sum of an immediate displacement and the contents of a general
register. With short addressing, one of the space registers between 4
through 7 is chosen automatically, based on the high-order two bits of the
base register. Each space addressed by these four space registers is
effectively divided into four quadrants, with a different quadrant of each
space accessible via short addressing.

On HP-UX systems, all of a program's code is placed in quadrant zero of
the $TEXT$ space, or %sr4 , (space offsets from 0 through 0x3FFFFFFF).
The data is placed in quadrant one of the $PRIVATE$ space, or %sr5
(space offsets from 0x40000000 through 0x7FFFFFFF). Therefore,
literal data in the code space and modifiable data in the data space can
be addressed using the short addressing technique, without any concern
for the space registers.

The identifier for shared memory segments, including shared library
text, is placed into space register 6 (%sr6). Shared memory and shared
library text are placed into quadrant two of the shared memory space
(offsets 0x80000000 through 0xBFFFFFFF). The identifier for system

Chapter 3 41

HP-UX Architecture Conventions
Spaces

code is placed into space register 7 (%sr7). System code is placed into
quadrant three of the system space (offsets 0xC0000000 through
0xFFFFFFFF). Table 3-1 on page 41 shows the memory layout on HP-UX.

Table 3-1 Memory Layout on HP-UX

You can define spaces other than $TEXT$ and $PRIVATE$ in a program
file by declaring a special kind of space called an unloadable space.
Unloadable spaces are treated as normal spaces by the linker, but as the
name implies, are not actually loaded when a program is executed.
Unloadable spaces are typically used by compilers to store extra
information within a program file. The most common example of an
unloadable space is $DEBUG$, which is used to hold symbolic debugging
information.

The sort key attribute allows the programmer to control the placement of
a space relative to the other spaces. The linker places spaces with lower
sort keys in front of spaces with higher sort keys.

The .SPACE directive is used to declare spaces. The assembly language
programmer is not required to fill one space before beginning another.
When a space is first declared, the Assembler begins filling that space.
The .SPACE directive can also be used to return to a previously declared
space, and the Assembler continues to fill it as if there had been no
intervening spaces.

%sr4 %sr5 %sr6 %sr7

0x00000000 Program
code

0x40000000 Program
data stack
Shared
library data

0x80000000 Shared
memory
Shared
library text

0xC0000000 System code

42 Chapter 3

HP-UX Architecture Conventions
Subspaces

Subspaces
While a space is a fundamental concept of the architecture, a subspace is
just a logical subdivision of a space. The Assembler places the program's
code and data into subspaces within spaces. Each subspace belongs to
the space that was current when the subspace was first declared. The
linker groups subspaces into spaces as it builds an executable program
file. For more details see the ld(1) entry in the HP-UX Reference. When
the linker combines several relocatable files, it groups the subspaces
from each file by name, so that all subspaces with the same name are
placed contiguously in the program.

Attributes
Subspaces have several attributes. The alignment attribute specifies
what memory alignment (in bytes) is required in the virtual address
space. The alignment can be any power of two, from 1 through 4096,
inclusive. Typically, the alignment is 4 or 8 to specify that the beginning
of the subspace must be word or double-word aligned. Normally, the
alignment attribute is computed automatically by the Assembler from
the largest .ALIGN directive used within the subspace.

The quadrant attribute assigns the subspace to one of the four quadrants
of its space. On HP-UX systems, all subspaces in the code space must be
in quadrant 0, and all subspaces in the data space must be in quadrant
1.

The access rights attribute specifies the access rights that should be
given to each physical page in the subspace. On HP-UX systems, all
subspaces in the code space must have access rights of 0x2C (code page
executable at any privilege level). All subspaces in the data space must
have access rights of 0x1F (data page readable and writable at all
privilege levels).

The sort key attribute allows the programmer to control the placement of
a subspace relative to the other subspaces in its space. The linker places
subspaces with lower sort keys in front of subspaces with higher sort
keys.

Chapter 3 43

HP-UX Architecture Conventions
Subspaces

Directives
The .SUBSPA directive is used to declare a subspace and its attributes.
As with spaces, the assembly language programmer can switch from one
subspace to another, and the Assembler will fill each subspace
independently as if the source code had been presented one complete
subspace at a time. When the .SPACE directive is used to switch spaces,
the Assembler remembers the current subspace in each space.

Several additional Assembler directives are provided as shorthand to
declare and switch to some standard spaces and subspaces. For example,
the .CODE directive switches to the $TEXT$ space and the $CODE$
subspace, and the .DATA directive switches to the $PRIVATE$ space and
the $DATA$ subspace.

You can declare as many subspaces as you can use, but the sort key
attribute should be used carefully, because the stack unwind mechanism
reserves a range of sort keys 56 through 255 for the $TEXT$ space. Refer
to “Compiler Conventions” on page 47 in this chapter. Some of the
standard subspaces and sort keys used by the compilers are shown in
Table 3-2 on page 43. Directives that generate commonly used spaces
and subspaces are found in Table 4-3 on page 116.

Table 3-2 Standard Subspaces and Sort Keys

Space Subspace Sort Key Use

$TEXT$ 8

$CODE$ 24 Normal code.

LIT 16 Literals.

$MILLICODE$ 8 Millicode library routines.

$SHLIB_INFO$ 0 Shared library information.

$UNWIND$ 64 Unwind information.

$PRIVATE$ 16

BSS 82 Uninitialized data and common.

$DATA$ 16 Global arrays and structures.

DLT 39 Data linkage table.

44 Chapter 3

HP-UX Architecture Conventions
Sections in 64-bit Mode

Sections in 64-bit Mode
In 64-bit mode, the Executable and Linking Format (ELF) uses segments
and sections rather than spaces and subspaces.

The concept of spaces maps to the ELF concept of segments, but
segments do not apply to relocatable object files. Hence, the Assembler
ignores the .SPACE directive for 64-bit assembly programs. Subspaces
map directly to the ELF concept of sections, so the .SUBSPA directive
switches to or creates a new section. The attributes of a subspace
correspond to section attributes as follows:

• Subspace names listed in the table are mapped to their corresponding
section name. Names not in this table are unchanged.

$GLOBAL$ 40 Global variable base address.

$PLT 6 Procedure linkage table.

$SHLIB_DATA$ 12 Shared library data.

$SHORTBSS$ 80 Uninitialized data and common.

$SHORTDATA$ 24 Global scalar variables.

$THREAD_SPECIFIC$ 16

$TBSS$ 40 Thread local storage

Space Subspace Sort Key Use

SUBSPACE NAME SECTION NAME

BSS .bss

$CODE$.text

$DATA$.data

$FINI$.fini

Chapter 3 45

HP-UX Architecture Conventions
Sections in 64-bit Mode

• The assembler translates access rights into a set of read, write or
execute permissions for the section.

• The assembler ignores the sort key and quadrant attributes.

• The alignment attribute maps directly to the section alignment.

• The COMMON and DUP_COMM attributes map to a COMDAT section.

• The CODE_ONLY, FIRST , and FROZEN attributes are ignored.

• The UNLOADABLE attribute maps to a non-allocated section.

For more information about ELF, see ELF 64 Object File Format, at URL:
http://www.software.hp.com/STK/.

$INIT$.init

LIT .rodata

$MILLICODE$.text

$PREINIT$.preinit

$SHORTBSS$.sbss

$SHORTDATA$.sdata

$TBSS$.tbss

SUBSPACE NAME SECTION NAME

46 Chapter 3

HP-UX Architecture Conventions
Location Counters

Location Counters
Just as spaces can be divided into subspaces, subspaces can be further
divided by using location counters. You can use up to four location
counters in each subspace, and the Assembler fills a separate area for
each location counter. When the assembly is complete, the subspace is
formed by concatenating each of these areas. All references relative to a
location counter are relocated so that they are relative to the complete
subspace.

Unlike subspaces, however, the use of location counters is completely
local to the Assembler. Once the subspace is formed at the end of the
assembly, the distinction among the individual areas built by location
counters disappears. No further reordering or grouping related to
location counters is performed by the linker.

This facility allows you to assemble related data into disjoint pieces of a
subspace, while keeping the source code in a convenient order.

The .LOCCT directive is used to switch from one location counter to
another. The Assembler automatically remembers the previous value of
each location counter within each subspace. When the .SUBSPA directive
is used to switch subspaces, the Assembler automatically begins using
the location counter that was last in effect in the new subspace.

Chapter 3 47

HP-UX Architecture Conventions
Compiler Conventions

Compiler Conventions
In order to write assembly language procedures that can both call to and
be called from high-level language procedures, it is necessary to
understand the standard procedure-calling convention and other
compiler conventions.

On many computer systems, each high-level language has its own calling
convention. Consequently, calls from one language to another are
sometimes difficult to arrange, except through assembly code. The
architecture generally prescribes very few operations that must be done
to effect a procedure call, and there is often a pair of machine-language
instructions to call a procedure and return from one. PA-RISC
architecture provides no special procedure call or return instructions.

There is, however, a standard procedure-calling convention for all
high-level languages as well as the Assembler. It is tuned for the
architecture, and is designed to make a procedure call with as few
instructions as possible.

Besides defining a uniform call and return sequence for all languages,
the calling convention is important for other reasons. In order to
streamline the calling sequence, the return link is not saved on the stack
unless necessary and the previous stack pointer is rarely saved on the
stack. Therefore, it is not usually possible to obtain a stack trace at an
arbitrary point in the program without some additional static
information about each procedure's stack frame size and usage.

For example, you could not obtain a stack trace while debugging or
analyzing a core dump, or using the TRY/RECOVER feature in HP
Pascal/HP-UX. Obtaining a stack trace is made possible by the stack
unwind mechanism. It uses special unwind descriptors that contain the
exact static information needed for each procedure. These descriptors are
generated automatically by the linker based on information provided by
all high-level compilers as well as the Assembler.

Each descriptor contains the starting and ending address of a
procedure's object code, plus that procedure's stack frame size, and a few
flags indicating, among other things, whether the return link is saved on
the stack. Given the current program counter and stack pointer, the
stack unwind mechanism can determine the calling procedure by finding

48 Chapter 3

HP-UX Architecture Conventions
Compiler Conventions

the return link either in a register or on the stack. Also, it can determine
the previous stack pointer by subtracting the current procedure's stack
frame size.

The Assembler requires that you follow programming conventions to
generate unwind descriptors. The beginning and end of each procedure
must be noted with the .PROC and .PROCEND directives. The .CALLINFO
directive supplies additional information about the procedure, including
the stack frame size. The Assembler passes this information to the
linker, which creates the unwind descriptor. It can also generate the
standard entry and exit code to create and destroy the stack frame, save
and restore the return link (if necessary), and save and restore any
necessary registers. These code sequences are generated at the points
indicated by the .ENTER and .LEAVE pseudo-operations. For a more
thorough discussion of programming conventions, refer to the 64-bit
Runtime Architecture for PA-RISC 2.0, at URL:
http://www.software.hp.com/STK/.

Arguments to procedures are loaded into general registers 26, 25, 24,
and 23; these registers are named, respectively, %arg0 , %arg1 , %arg2 ,
and %arg3 . If more than four words of arguments are required, the
remaining arguments are stored in the caller's stack frame in the
variable argument list. The return value should be returned in general
register 28, called %ret0 . General register 29, called %ret1 , is used for
the low-order bits of a double-word return value, while %ret0 contains
the high order bits. In addition to the argument and return registers, the
procedure can use registers 19 through 22 and registers 1 and 31 as
scratch registers. Any other general registers must be saved before use
at entry and restored before exit.

Chapter 4, “Assembler Directives and Pseudo-Operations,” on page 53
contains detailed descriptions of the Assembler directives described
above. For a more thorough discussion of the procedure calling
conventions, refer to the topic PA-RISC Architecture at URL:
http://www.software.hp.com/STK/.

In order for an assembly language procedure to be callable from another
language or another assembly language module, the name of the
procedure must be exported. The .EXPORT directive does this. It also
allows you to declare the symbol type. For procedure entry points, the
symbol type should be ENTRY.

The Assembler and linker treat all symbols as case-sensitive, while some
compilers do not. By convention, compilers that are case-insensitive
uniformly convert all exported names to lower case. For example, it is

Chapter 3 49

HP-UX Architecture Conventions
Compiler Conventions

possible to declare a procedure that cannot conflict with HP
Pascal/HP-UX procedure names by using uppercase letters. However,
there is an aliasing mechanism in some compilers that allows you to
declare a case-sensitive name for external use. See the appropriate
language reference manual for more information.

Conversely, the .IMPORT directive allows you to reference a procedure
name that is exported from another module, either from the Assembler
or the compiler. Once a procedure name has been imported, it can be
referenced exactly as if it were declared in the same module.

Data symbols can be exported and imported just like procedure names.
However, not all compilers export the names of global variables, or
provide a mechanism to reference data symbols exported from an
assembly language module. For example, the HP Pascal/HP-UX compiler
does not normally do this, while the HP C/HP-UX compiler does. HP
FORTRAN 77/HP-UX named common blocks are exported, but the
names of the variables within the common blocks are not.

It was mentioned before that data is allocated beginning from a virtual
space offset 0x40000000 . For convenience as well as compatibility with
future releases of HP-UX systems, all data in the $PRIVATE$ space must
be accessed relative to general register 27, called %dp. EStandard
run-time start-up code, from the file /usr/ccs/lib/crt0.o , must be
linked with every program. This start-up code declares a global symbol
called $global$ in the $GLOBAL$ subspace. This code also loads the
address of this symbol into the %dp register before beginning program
execution. This register must not be changed during the execution of a
program. Since the %dp register is known to contain the address of
$global$, the following single instruction does the load as long as the
displacement from $global$ to the desired location is less than 8
kilobytes:

LDW var-$global$(%dp),%r3

If the desired location is not known to be close enough to $global$, use
the following sequence:

Global Symbol Usage

ADDIL L'var-$global$,%dp ;result in r1
LDW R'var-$global$(%r1),%r3

50 Chapter 3

HP-UX Architecture Conventions
Compiler Conventions

For convenience, the $SHORTDATA$ and $SHORTBSS$ subspaces can
be used for small scalar variables. Most scalar variables are close enough
to $GLOBAL$ so that the shorter form can be used. Arrays and large
structures should be defined in $DATA$ and the long form used.

To access items in the $PRIVATE$ space (global data), the following does
not work:

LDIL L'var,%r1 ;wrong
LDW R'var(%r1),%r3 ;wrong

This example assumes that the operating system always allocates data
at the same virtual space offset 0x40000000 .

Thread local storage (TLS) data is accessed relative to control register 27
(%cr27). The contents of %cr27 must first be moved to a general register
by using the MFCTL instruction. A symbol, __tp , is defined, similar to
$global$. The following code shows the loading of the TLS variable.
Note the similarities between this example and the example “Global
Symbol Usage” on page 49.

MFCTL %cr27, &r x
ADDIL L'var-__tp,%r x ;result in r1
LDW R'var-__tp(%r1),%r3

Uninitialized areas in the data space can be requested with the .COMM
(common) request. These requests are always made in the BSS
subspace in the $PRIVATE$ space. The BSS subspace should not be
used for any initialized data. Common requests are passed on to the
linker, which matches up all requests with the same name and allocates
a block of storage equal in size to the largest request. If, however, an
exported data symbol is found with the same name, the linker treats the
common requests as if they were imports.

HP FORTRAN 77/HP-UX common blocks are naturally allocated in this
way: if a BLOCK DATA subprogram initializes the common block, all
common requests are linked to that initialized block. Otherwise, the
linker allocates enough storage in BSS for the common block. The HP
C/HP-UX compiler also allocates uninitialized global variables this way.
In C, however, each uninitialized global is a separate common request.

Chapter 3 51

HP-UX Architecture Conventions
Shared Libraries

Shared Libraries
The field selectors T' , LT' , and RT' are used to write
position-independent code in assembly language. When you use these
selectors and invoke the Assembler with the as command, you must use
the +z or +Z compiler option on the command line.

Any assembly code that is to be used with shared libraries must follow
the standard procedure call mechanism as defined in the runtime
architecture documents under the topic PA-RISC Architecture at URL:
http://www.software.hp.com/STK/. Any external procedures must be
exported as type ENTRY for the shared library interface to work correctly.

For more information on position-independent code and shared libraries,
refer to the HP-UX Linker and Libraries Online User Guide and the ELF
64 Object File Format, URL: http://www.software.hp.com/STK/.

Assembly Listing
The Assembler command-line option, -l , causes an assembly listing to
standard output. For each line of source code, the listing provides:

• line number

• the subspace offset

• the hexadecimal representation of the assembled code (possibly
flagged with an asterisk (*) to indicate address relocation)

• the source text

• any comments.

The following is a line of assembly language as it appears in the source
file:

SAVE LDO VAL(%r0),%r20 ;retain value

The above line would appear in the assembly listing as follows:

line no. offset hex representation label opcode operands comment
16 0000004c (341400A) SAVE LDO VAL(%r0),%r20 ;retain value

52 Chapter 3

HP-UX Architecture Conventions
Assembly Listing

The choice of line number 16 is arbitrary here. At the end of the
assembly listing, a symbol table is printed showing the name and value
of each symbol in the file. A type field for each symbol, indicating either
absolute or relocatable, is included.

Certain types of source lines generate multiple instructions. Macro calls
often expand to several instructions. The .ENTER and .LEAVE
pseudo-operations can each generate more than one instruction. The
predefined subspace directives, such as .CODE and .DATA, result in a
space and a subspace declaration.

You have the choice of listing a section of assembled code in either the
compressed or expanded form. The placement of the .LISTON and
.LISTOFF directives determines which code will be expanded during
listing. The directive .LISTON tells the Assembler to expand the listing
of all subsequent source lines until a .LISTOFF directive is encountered.
.LISTOFF stays in effect until the occurrence of a .LISTON directive.

The default is .LISTON .

The directives .LISTON and .LISTOFF may be placed anywhere in the
source text and always go into effect immediately. The .LISTON and
.LISTOFF directives can be used as often as desired.

53

4 Assembler Directives and
Pseudo-Operations

Assembler directives and pseudo-operations allow you to take special
programming actions during the assembly process. The directive and
pseudo-operation names begin with a period (.) to distinguish them from
machine instruction opcodes or extended opcodes.

Introduction
Table 4-1 lists the Assembler directives. Table 4-2 on page 55 lists the
pseudo-operations. The directives include those that establish the
procedure-calling convention, declare common, and define spaces and
subspaces. The pseudo-operations reserve and initialize data areas.

The remainder of this chapter lists the Assembler directives and
pseudo-operations in alphabetic order. Several of the descriptions include
sample assembly code sequences. You can enter these short code
sequences, assemble them using the -l option of the as command, then
inspect the offsets and field values to see how that particular directive
controls the assembly environment.

This chapter also includes Table 4-3 on page 116 under “Programming
Aids” on page 116, which lists the predefined directives that establish
standard spaces and subspaces.

Table 4-1 Assembler Directives

Directive Function

.ALIGN Forces location counter to the next largest
multiple of the supplied alignment value.

.ALLOW Used with a .LEVEL directive, it temporarily
allows the use of features in the architecture
specified in the .LEVEL directive.

.CALL Specifies that the next statement is a procedure
call.

54 Chapter 4

Assembler Directives and Pseudo-Operations

.CALLINFO Provides information for generating Entry/Exit
code sequences and for creating stack unwind
descriptors.

.COMM Requests common storage for a specified number
of bytes.

.COPYRIGHT Inserts a string into the object module as a
copyright notice.

.END Terminates an assembly language program.

.ENDM Marks the end of a macro definition.

.ENTRY Marks the entry point of the current procedure.

.EQU Assigns an expression to an identifier.

.EXIT Marks the return point of the current procedure.

.EXPORT Makes a specified symbol available to other
modules.

.IMPORT Specifies that the definition of the given symbol
occurs in another module.

.LABEL Permits a label definition to appear within a
sequence of directives that occur on a single line.

.LEVEL Makes the object file a PA-RISC 1.1, 2.0, or 2.0W
file.

.LISTOFF Controls listing of expanded Assembler
instructions.

.LISTON Controls listing of expanded Assembler
instructions.

.LOCCT Selects a location counter.

.MACRO Marks the beginning of macro definitions.

.ORIGIN Advances the location counter to a relative
location from the beginning of the current
subspace.

Directive Function

Chapter 4 55

Assembler Directives and Pseudo-Operations

Table 4-2 Pseudo-Operations

.PROC Marks the first statement in a procedure.

.PROCEND Marks the last statement in a procedure.

.REG Attaches a type and number to a user-defined
register name.

.SHLIB_VERSION Inserts a date string into the object module as a
shared-library version identifier.

.SPACE Declares a new space or switches back to a
previous space.

.SUBSPA Declares a new subspace or switches back to a
previous subspace.

.VERSION Inserts the specified string into the current
object module as a user-defined version
identification string.

Directive Function

.BLOCK Reserves a block of data storage.

.BLOCKZ Reserves a block of data storage.

.BYTE Reserves 8 bits (a byte) of storage and
initializes it to the given value.

.DOUBLE Initializes 64 bits (a double-word) of storage to
a floating-point value.

.DWORD Reserves 64 bits (a double word) of storage and
initializes it to the given value.

.ENTER Marks a procedure's entry point and generates
standard entry code.

.FLOAT Initializes a single-word of storage to a
floating-point value.

Directive Function

56 Chapter 4

Assembler Directives and Pseudo-Operations

.HALF Reserves 16 bits (a half word) of storage and
initializes it to the given value.

.LEAVE Marks a procedure's exit point and generates
standard exit code.

.SPNUM Reserves and initializes a word of storage.

.STRING Reserves the appropriate amount of storage
and initializes it to the given string.

.STRINGZ Reserves the appropriate amount of storage
and initializes it to the given string.

.WORD Reserves 32 bits (a word) of storage and
initializes it to the given value.

Directive Function

Chapter 4 57

Assembler Directives and Pseudo-Operations
.ALIGN Directive

.ALIGN Directive
The .ALIGN directive advances the current location counter to the next
specified “boundary.”

Syntax
.ALIGN [boundary]

Parameters
boundary An integer value for the byte boundary to which you

want to advance the location counter. The Assembler
advances the location counter to that boundary.
Permissible values must be a power of 2 and can range
from one to 4096. The default value is 8 (double word
aligned).

Example
This sample program adds a 21 bit field to the data pointer. Then a
branch is taken to the label “page” that has been page-aligned.

 .CODE
 ADDIL L’$WORDMARK$-$global$,%dp
 B page
 NOP
 .ALIGN 4096
page
 ADDI 1,%r1,%r1
 .DATA
$WORDMARK$
 .WORD 0x0FFF
 .IMPORT $global$,DATA

58 Chapter 4

Assembler Directives and Pseudo-Operations
.ALLOW Directive

.ALLOW Directive
The .ALLOW directive tells the Assembler to temporarily allow PA-RISC
features from a higher version level of the PA-RISC architecture. The
.ALLOW directive also tells the Assembler to temporarily allow
implementation-specific features in the assembly source file.

Syntax
.ALLOW 1.1

Lines of source code

.ALLOW

Parameters

1.1 Allows PA-RISC 1.1 features.

2.0 Allows PA-RISC 2.0 features.

Discussion
Use the .ALLOW directive with the .LEVEL directive. The Assembler uses
the .LEVEL directive to mark the relocatable object file with the proper
PA-RISC architecture version level. In the source file, the Assembler
emits warning messages whenever a feature is used that is not
appropriate for the specified .LEVEL directive.

Use the .ALLOW directive when it is necessary to include features or
instructions from a later version of PA-RISC while leaving the
relocatable object file marked as an earlier PA-RISC architecture
version. For example, use the .ALLOW directive when you need to
include PA-RISC 2.0 features or instructions while leaving the
relocatable object file marked as a PA-RISC 1.1 architecture version.

NOTE A 2.0W parameter is not permitted with .ALLOW, because the code
generated for 2.0W(64-bit mode) is incompatible with other levels.

Chapter 4 59

Assembler Directives and Pseudo-Operations
.ALLOW Directive

When using the .ALLOW directive, a run-time check must be inserted
into the assembly source code. This run-time check should insure that
the code is executing on a PA-RISC processor that supports the feature
or features being used after the .ALLOW directive. See the example below.

An .ALLOW directive without a parameter signals the end of the region
that the previous .ALLOW directive was controlling. Control is returned
to the .LEVEL specified for the file.

NOTE The .ALLOW and .LEVEL directives replace the +DA and +DS
command-line compiler options.

Example
The following example shows how to set a range of memory to 0. In
PA-RISC 1.1 architecture, use the stw instruction. In PA-RISC 2.0
architecture, use the more efficient std instruction.

 .LEVEL 1.1
; This object file will be marked as a PA 1.1 object file

; Check what version of PA Architecture we are linked for
 addil LR'_SYSTEM_ID-$global$,%dp
 ldw RR'_SYSTEM_ID-$global$(%r1),%r5
 ldi CPU_PA_RISC1_1,%r4
 combt,<,n %r4,%r5,$00000002
; 1.1 specific code
$00000001
 addib,< 1,%r23,$00000001
 stw,ma %r0,4(%r31)
 b,n $00000003
; 2.0 specific code
$00000002
 .ALLOW 2.0
 addib,< 2,%r23,$00000002
 std,ma %r0,8(%r31)
 .ALLOW
$00000003
; General code

60 Chapter 4

Assembler Directives and Pseudo-Operations
.BLOCK and .BLOCKZ Pseudo-Operations

.BLOCK and .BLOCKZ
Pseudo-Operations
The .BLOCK and .BLOCKZ pseudo-operations reserve a block of storage.

Syntax
.BLOCK [num_bytes]

.BLOCKZ [num_bytes]

Parameters

num_bytes An integer value for the number of bytes you want to
reserve. Permissible values range from zero to
0x3FFFFFFF . The default value is zero.

Discussion
The .BLOCK pseudo-operation reserves a data storage area but does not
perform any initialization. The .BLOCKZ pseudo-operation reserves a
block of storage and initializes it to zero.

When you label a.BLOCK pseudo-operation, the label refers to the first
byte of the storage area.

For large blocks, it is usually better to use the .COMM directive to allocate
uninitialized space. Since .COMM storage is allocated at run time, it
doesn't increase the size of the object file.

NOTE Under the present implementation of the Assembler, the .BLOCK
pseudo-operation also initializes the reserved area to zero.

Chapter 4 61

Assembler Directives and Pseudo-Operations
.BLOCK and .BLOCKZ Pseudo-Operations

Example
The first example requests the Assembler to reserve 64 bytes of memory
in the $CODE$ subspace. This area is then followed by a “Load Word” and
“Store Word” instruction.

.SPACE $TEXT$

.SUBSPA $CODE$

.BLOCK 64
swap LDW 0(%r2)%r1

STW %r1,4(%r2)
.END

The second example reserves 32 bytes of memory in the $DATA$
subspace followed by one word intended as an end marker.

.DATA
word0 .BLOCK 0X20
word8 .WORD 0XFFFF

62 Chapter 4

Assembler Directives and Pseudo-Operations
.BYTE Pseudo-Operation

.BYTE Pseudo-Operation
The .BYTE pseudo-operation reserves storage and initializes it to the
given value.

Syntax
.BYTE [init_value[, init_value] ...]

Parameters

init_value Either a decimal, octal, or hexadecimal number or a
sequence of ASCII characters, surrounded by quotation
marks. If you omit the initializing value, the Assembler
initializes the area to zero.

Discussion
The .BYTE pseudo-operation requests 8 bits of storage. If the location
counter is not properly aligned on a boundary for a data item of that size,
the Assembler advances the location counter to the next multiple of that
item's size before reserving the area.

When you label the pseudo-operation, the label refers to the first byte of
the storage area. Operands separated by commas initialize successive
units of storage.

Example
The first pseudo-operation allocates a byte labeled E and initializes it to
the character [.

E .BYTE "["

Chapter 4 63

Assembler Directives and Pseudo-Operations
.CALL Directive

.CALL Directive
The .CALL directive marks the next branch statement as a procedure
call, and permits you to describe the location of arguments and the
function return result.

Syntax
.CALL [argument_description[argument_description] ...]

Parameters
argument_
description Allows you to communicate to the linker the types of

registers used to pass floating point arguments and
receive floating point return results in the succeeding
procedure call. Similarly, this information can be
communicated in the .EXPORT directive.

The linker requires this information because the
runtime architecture allows floating point arguments
and return values to reside in either general registers
or floating point registers, depending on source
language convention. At link time, the linker ensures
that both the caller and called procedure agree on
argument location. If not, the linker may insert code to
relocate the arguments (or return result) before control
is transferred to the called procedure or a procedure
return is completed.

You can use up to 5 argument-descriptions in the
.CALL directive; one for each of the four arguments
that may be passed in registers (arg0 –arg3), and one
for a return value (ret0).

NOTE In PA-RISC 2.0W, (64-bit mode) the Assembler ignores the .CALL
directive. This means that the linker does not ensure that the caller and
called procedure agree on argument locations. If you do not know the
prototype of the called procedure, you must pass floating point

64 Chapter 4

Assembler Directives and Pseudo-Operations
.CALL Directive

parameters in both the corresponding general registers and
corresponding floating-point registers. See the documents under the
topic PA-RISC Architecture at URL: http://www.software.hp.com/STK/.

The form of argument-description is:

arg=location

where arg can
be:

ARGWO The first word in the argument list.

ARGW1 The second word in the argument list.

ARGW2 The third word in the argument list.

ARGW3 The fourth word in the argument list.

RTNVAL The return value for a procedure.

and location can
be:

NO The argument word cannot be
relocated. This should be used for all
nonfloating-point arguments; it is the
default when an
argument-description is omitted.

GR The argument word occurs in a
general register.

FR The argument word occurs in a
floating point register.

FU The argument word occurs in the
upper half of a floating-point register.

Example
This example shows the use of the .CALL directive in 32-bit mode.

Chapter 4 65

Assembler Directives and Pseudo-Operations
.CALL Directive

; This program calls printf() with four arguments
; whose register locations are described in the .CALL directive.
; The format string goes into arg0, not to be relocated.
; The string “message” goes into arg1, specified as a general register.
; The floating-point value 57005.57005 goes into farg2,
; specified as a floating-point register.
; The hexadecimal number 0xf00d goes into arg3,
; specified as a general register.
; The return value from printf() is not to be relocated.

 .LIT
 .ALIGN 8
 .WORD 1197387154 ; floating-point literal
 .BLOCKZ 12
fp2 .WORD 0
 .CODE
main
 .PROC
 .CALLINFO CALLER,FRAME=24,SAVE_RP
 .ENTER
 LDIL L’fp2,%r1
 LDO R’fp2(1),%r31 ; r31 < - floating-point literal address
 FLDWS -16(%r31),%fr4
 LDO -64(%sp),%r19
 FSTWS %fr4,0(%r19)
 ADDIL L’61453,0
 LDO R’61453(%r1),%r20
 STW %r20,-68(%sp) ; end of stacking floating-point address
 ADDIL L’string_area-$global$,%dp
 LDO R’string_area-$global$(%r1),%r21 ; point to “message”
 STW %r21,-60(%sp) ; stack “message” address
 LDO -64(%sp),%r22
 FLDWS 0(%r22),%fr5
 FCNVFF,SGL,DBL %fr5,%fr6 ; convert floating-point value
 ADDIL L’string_area-$global$+8,%dp
 LDO R’string_area-$global$+8(%r1),%arg0
 ;point to format string
 LDW -60(%sp),%arg1 ; load “message” argument
 FSTDS 38,-16(%sp)
 FLDWS -12(%sp),%fr6 ; load floating-point argument
 LDWS -16(%sp),%arg3 ; load hexadecimal argument
 LDW -68(%sp),%r1
 STW %r1,-52(%sp)
 .CALL argw0=no,argw1=gr,argw2=fr,argw3=gr,rtnval=no
 BL printf,2
 NOP
 .LEAVE

66 Chapter 4

Assembler Directives and Pseudo-Operations
.CALL Directive

 .PROCEND
 .EXPORT main,ENTRY
 .IMPORT printf,CODE

 .DATA
string_area
 .ALIGN 8
 .STRINGZ “message”
 .STRINGZ “ARGS = %s,%f,%x\n”
 .IMPORT $global$,DATA

Chapter 4 67

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

.CALLINFO Directive

.CALLINFO is a required directive that describes the environment of the
current procedure. The information it provides is available to the
.ENTER and .LEAVE pseudo-operations to control the entry and exit code
sequences that they generate. Additional information is used by the
Assembler to direct the creation of stack unwind descriptors.

Syntax
.CALLINFO [parameter[, parameter] ...]

where parameter is one of:

ALLOCA_FRAME
ARGS_SAVED
CALLER
CALLS
NO_CALLS
CLEANUP
ENTRY_FR=number
ENTRY_GR=number
ENTRY_SR=number
FRAME=number
HPUX_INT
MILLICODE
NO_UNWIND
SAVE_MRP
SAVE_RP
SAVE_SP
SAVE_SR0

Parameters
ALLOCA_FRAMEIndicates that this procedure allocates temporary

storage by modifying the stack pointer (%r30). A copy
of the frame pointer is normally placed in %r3.
However, if this procedure also has a large frame
(FRAME > 8191), then the copy of the frame pointer is
placed in %r4 instead.

ARGS_SAVED Indicates that this procedure stores the arguments into
the stack frame.

68 Chapter 4

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

CALLER or
CALLS Indicates that this procedure calls other routines, so it

requires space in the stack for a frame marker and a
fixed argument list. (When a program is assembled
using the -f option, this becomes the default case.)

The Assembler allocates stack space when it
encounters an .ENTER pseudo-operation and
deallocates this space when it encounters a .LEAVE
pseudo-operation. The Assembler allocates 48 bytes for
the PA-RISC 32-bit mode and 80 bytes for the PA-RISC
64-bit (2.0W) mode.

The frame marker and fixed argument list area occur
at the top of the stack so you must take this space into
account when locating local variables on the stack. You
must allocate an area (using FRAME=) for a variable
argument list when this area is needed.

CALLER does not imply the existence of the parameter
SAVE_RP.

The CALLER and CALLS parameters are equivalent.

NO_CALLS Indicates that the procedure does not call other
procedures and, therefore, does not require a frame
marker on the stack. This is the default case unless the
program is assembled using the -f option.

CLEANUP Indicates that this procedure requires cleanup during
unwind.

ENTRY_FR=
register Specifies the high end boundary of the Entry/Save

floating-point register partition. The partition includes
%fr12 through %fr15 for PA-RISC 1.0 and %fr12
through %fr21 for PA-RISC 1.1. The Assembler
automatically saves these registers when it encounters
an .ENTER pseudo-operation and restores them when it
encounters a .LEAVE pseudo-operation.

ENTRY_GR=
register Specifies the high end boundary of the Entry/Save

register partition. The partition may extend over
registers %r3 through %r18. If you omit this
parameter, no registers are saved.

Chapter 4 69

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

When a procedure uses these registers, the Assembler
saves their values when it encounters an .ENTER
pseudo-operation and restores these values when it
encounters a .LEAVE pseudo-operation. The called
routine saves these registers upon entry and restores
them upon exit, so values in Entry/Save registers are
preserved across a procedure call.

Note: See the description of the FRAME parameter
regarding the use of %r3.

ENTRY_SR=
register Specifies the high end boundary of the space register

partition. The partition currently contains only %sr3 .
When the .CALLINFO directive includes this
parameter, the Assembler automatically saves the
Space Register when it encounters an .ENTER
pseudo-operation and restores this register when it
encounters a .LEAVE pseudo-operation.

FRAME=number Defines the combined size (in bytes) of the local
variable area and variable argument area needed by
the procedure. The .ENTER pseudo-operation allocates
the desired space for local variables below the frame
marker and the .LEAVE pseudo-operation deallocates
that space.

The number parameter must be a multiple of eight
bytes. If a .CALLINFO directive lacks this parameter,
the Assembler assumes a default frame size of zero.

The stack frame includes space for local variables and
the variable argument area. The size specified for the
frame should not include space for the stack frame
marker or the fixed argument area. Allocation of these
areas is controlled by the CALLER and NO_CALLS
parameters. The inclusion of the CALLER parameter
always allocates space for the stack frame marker and
the fixed argument area. (See Table 4-1 on page 53)

A frame marker is required if the assembly routine
calls another routine.

70 Chapter 4

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

For PA-RISC 32-bit mode, the frame area is offset from
the Stack Pointer by 48 bytes because the frame
marker contains 32 bytes and the fixed argument list
contains 16 bytes, when both of these areas are
present.

For PA-RISC 2.0W (64-bit mode), the frame area is
offset from the Stack Pointer by 80 bytes because the
frame marker contains 16 bytes and the fixed
argument list contains 64 bytes.

However, the Assembler does not allocate space for the
frame marker and fixed argument list if the procedure
does not call any other routines (see the NO_CALLS
parameter).

If the total frame size for a procedure exceeds 8191
bytes, the Assembler uses %r3 to locate the previous
frame marker when it encounters an .ENTER or
.LEAVE pseudo-operation. Under these circumstances,
changing the value of %r3 can cause serious
consequences.

HPUX_INT Specifies that this procedure is an interrupt procedure.
This is necessary for the stack unwind mechanism.

MILLICODE Indicates to the unwind mechanism that this is a
millicode routine and it should follow the millicode
calling conventions.

NO_UNWIND This is to be used only in the context of stand-alone
code or any procedure that does not need to be reliably
unwound.

RP_IN_R31 Indicates that the return pointer has been moved to
register %r31 in order to make local millicode calls.
This parameter is only valid for the PA-RISC 2.0W
(64-bit mode).

SAVE_MRP Indicates that this millicode procedure saves the
Millicode Return Pointer (MRP) in its frame marker at
(SP-20) .

SAVE_RP Specifies that the frame marker of the previous routine
stores the value of the Return Pointer (RP). The
Assembler automatically saves the Return Pointer
when it encounters an .ENTER pseudo-operation, and

Chapter 4 71

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

it restores the RP value when it encounters a .LEAVE
pseudo-operation. Generally, any procedure that calls
other routines should save the RP value.

SAVE_SP Specifies that the current routine saves the value of
Previous_SP in its frame marker at SP-4 . Because
the Assembler does not automatically save the Stack
Pointer when it generates Entry/Exit code sequences,
you must explicitly save this value in your program
when using this key word. You can obtain the
Previous_SP value from the special register
%previous_sp .

Programming languages, such as HP Pascal/HP-UX,
typically use this value for up-level display pointers to
reference local variables.

SAVE_SR0 Indicates that this millicode procedure saves %sr0 in
its frame marker at (SP-16) . This parameter is not
valid for PA-RISC 2.0W (64-bit mode).

Discussion
When a program uses the .CALLINFO directive, all entry and exit code
must follow the procedure calling convention described in the documents
under the topic PA-RISC Architecture at URL:
http://www.software.hp.com/STK/. If you use the .ENTER and .LEAVE
directives, the Assembler will automatically generate the necessary code.
The parameters in the .CALLINFO directive govern the generation of the
Entry/Exit code sequence (except for SAVE_SP). However, if you use the
.ENTRY and .EXIT directives, your code must provide the necessary
Entry/Exit code sequences.

A stack frame consists of a pointer to the top of the frame, a frame
marker, a fixed argument list, and a variable argument list. The
following example, Stack Frames, illustrates these areas as an inverted
stack for PA-RISC 1.x and 2.0.

NOTE For PA-RISC 2.0W, 64-bit mode, the stack frame is different. Refer to the
documents under the topic PA-RISC Architecture at URL:
http://www.software.hp.com/STK/.

72 Chapter 4

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

Stack Frames

Variable Arguments
. . .
SP-64: arg word 7
SP-60: arg word 6
SP-56: arg word 5
SP-52: arg word 4

Fixed Arguments

SP-48: arg wor d 3 / ARG3
SP-44: arg wor d 2 / ARG2
SP-40: arg wor d 1 / ARG1
SP-36: arg wor d 0 / ARG0

Frame Marker

SP-32: Saved %r19 for shared library calls.
SP-28: Reserved
SP-24: Saved RP for shared library calls.

SP-20: Saved RP (or SAVED_MRP).

SP-16: Static Link (or SAVED %sr0).
SP-12: Clean Up.
SP-8: Extension Pointer. Calling stub RP (RP").
SP-4: Previous SP.

Top of Frame

SP: Stack Pointer.

Example
This example uses the C printf() routine (see printf(3S) in HP-UX
Reference). It illustrates most of the directives to be used when assembly
language programmers follow the standard procedure calling
conventions described in the documents under the topic PA-RISC
Architecture at URL: http://www.software.hp.com/STK/.

 .CODE ; declare space and subspace
main
 .PROC ; delimit procedure entry
 .CALLINFO CALLER,FRAME=0,SAVE_RP ; no local variables, need return
 .ENTER ; insert entry code sequence
 ADDIL L’stringinit-$global$,%r27 ; point to data to be printed
 LDO R’stringinit-$global$(%r1),%r26 ; place argument to printf
 .CALL ; set up for procedure call
 BL printf,%r2 ; call printf, remembering from where
 NOP
 .LEAVE ; insert exit code sequence
 .PROCEND ; delimit procedure end

 .DATA ; declare space and subspace
stringinit ; mark use of global data subspace
 .IMPORT $global$,DATA ; get data reference point

Chapter 4 73

Assembler Directives and Pseudo-Operations
.CALLINFO Directive

 .CODE ; re-enter code subspace
 .EXPORT main,ENTRY ; make routine known to linker
 .IMPORT printf,CODE ; external procedure declaration
 .END

74 Chapter 4

Assembler Directives and Pseudo-Operations
.COMM Directive

.COMM Directive
The .COMM directive makes a storage request for a specified number of
bytes.

Syntax
label .COMM [num_bytes]

Parameters
label Labels the location of the reserved storage.

num_bytes An integer value for the number of bytes you want to
reserve. The Assembler uses a default value of 4 if the
.COMM directive lacks a num_bytes parameter.
Permissible values range from one to 0x3FFFFFFF .

Discussion
The .COMM directive declares a block of storage that can be thought of as
a common block. You must label every .COMM directive. The linker
associates the label with the subspace in which the .COMM directive is
declared and allocates the necessary storage within that subspace.
.COMM always allocates its space in the BSS subspace of the
$PRIVATE$ space. If the label of a .COMM directive appears in several
object modules, the linker uses the maximum size specified in any
module when it allocates the necessary storage in the current subspace.

Example
This example reserves 16 bytes of storage for mydata .

.BSS
mydata .COMM 16

Chapter 4 75

Assembler Directives and Pseudo-Operations
.COPYRIGHT Directive

.COPYRIGHT Directive
The .COPYRIGHT directive inserts a company name and date into the
object module as a copyright notice.

Syntax
.COPYRIGHT "company-name [, date] "

Parameters
company-name,
date A sequence of ASCII characters, surrounded by

quotation marks. The string can contain up to 256
characters. When a comma follows the company name,
the next text is expected to be the date.

Discussion
The following is the standard copyright message placed in the copyright
header of the object file:

Copyright company-name, date. All rights reserved. No
part of this program may be photocopied, reproduced, or
transmitted without prior written consent of
company-name.

NOTE This directive can appear anywhere in the source file, but may appear
only once.

76 Chapter 4

Assembler Directives and Pseudo-Operations
.COPYRIGHT Directive

Example
This program places a copyright notice in the object file. Once the
copyright notice is in the object file, the HP-UX utility strings can be
used to access it. See strings(1) in HP-UX Reference.

.COPYRIGHT "My Company Name, 8 Nov 1994"

.CODE

.EXPORT main,ENTRY
main

.PROC

.CALLINFO

.ENTER
LDI 2,%r5
ADDI 2,%r5,%r6
.LEAVE
.PROCEND

Chapter 4 77

Assembler Directives and Pseudo-Operations
.DOUBLE Pseudo-Operation

.DOUBLE Pseudo-Operation
The .DOUBLE pseudo-operation initializes a double-word to a
floating-point value, calculated from the parameters provided. If the
location counter, is not aligned on a double-word boundary, it is forced to
the next multiple of eight. If the statement is labeled, the label refers to
the first byte of the storage area.

Syntax
.DOUBLE integer [.fraction] [E [-] power]

.DOUBLE .fraction [E[-] power]

Parameters
integer Specifies the whole number part of a decimal number.

fraction Specifies the fractional part of a decimal number.

power Specifies the power of ten to raise a decimal number. To
raise the decimal number to a negative power of ten,
place a minus sign (-) directly in front of the power
specified.

Example
Each of the following examples initializes two words of memory to
floating-point quantities: 0.00106 and 400000.0 respectively.

dec_val1 .DOUBLE 10.6E-4

dec_val2 .DOUBLE 0.4E6

78 Chapter 4

Assembler Directives and Pseudo-Operations
.DWORD Pseudo-Operation

.DWORD Pseudo-Operation
The .DWORD pseudo-operation reserves storage and initializes it to the
given value.

Syntax
.DWORD [init_value[, init_value] ...]

Parameters
init_value An absolute expression, a decimal, octal, or

hexadecimal number, or a sequence of ASCII
characters surrounded by quotation marks. If you omit
the initializing value, the Assembler initializes the
area to zero.

Discussion
The .DWORD pseudo-operation requests 64 bits of storage. If the location
counter is not properly aligned on a boundary for a data item of that size,
the Assembler advances the location counter to the next multiple of that
item's size before reserving the area.

When you label the pseudo-operation, the label refers to the first byte of
the storage area. Operands separated by commas initialize successive
units of storage.

Example
The first pseudo-operation advances the current subspace's location
counter to a double word boundary, allocates a double word of storage
labeled F and initializes that double word to minus 64 (2s complement).
The second pseudo-operation initializes a double word of storage to the
hexadecimal number 6effffff12345678.

F .DWORD 64
.DWORD 0X6effffff12345678

Chapter 4 79

Assembler Directives and Pseudo-Operations
.END Directive

.END Directive
The .END directive terminates an assembly language program.

Syntax
.END

Discussion
This directive is the last statement in an assembly language program. If
a source file lacks an .END directive, the Assembler terminates the
program when it encounters the end of the file.

Example
A file that omitted the last line of this sample program would produce
identical results.

.CODE

.EXPORT double,ENTRY

.PROC
double

.CALLINFO

.ENTER
ADD %arg0,%arg0,%ret0
.LEAVE
.PROCEND
.END

80 Chapter 4

Assembler Directives and Pseudo-Operations
.ENDM Directive

.ENDM Directive
The .ENDM directive marks the end of a macro definition. The macro
definition is entered into the macro table and the remaining source lines
are read in and assembled. An .ENDM directive must always accompany
a .MACRO directive.

Syntax
.ENDM

Example
This example defines the macro QUADL; it aligns the data specified in the
macro parameters on quad word boundaries. The .ENDM directive
delimits the end of the definition of QUADL.

QUADL .MACRO WD1,WD2,WD3,WD4
.ALIGN 16
.WORD WD1
.ALIGN 16
.WORD WD2
.ALIGN 16
.WORD WD3
.ALIGN 16
.WORD WD4
.ENDM

Chapter 4 81

Assembler Directives and Pseudo-Operations
.ENTER and .LEAVE Pseudo-Operations

.ENTER and .LEAVE Pseudo-Operations
The .ENTER and .LEAVE pseudo-operations mark a procedure's entry
and exit points. They instruct the Assembler to generate procedure entry
and exit code sequences based on the information provided in the
.CALLINFO directive.

Syntax
.ENTER

Lines of code

.LEAVE

Discussion
The .ENTER pseudo-operation marks an entry point for the current
procedure. Every procedure that follows the standard procedure-calling
convention must contain one .ENTER pseudo-operation. The calling
conventions are described in the documents under the topic PA-RISC
Architecture at URL: http://www.software.hp.com/STK/. The .LEAVE
pseudo-operation marks a procedure's exit point. Every procedure that
follows the procedure-calling convention must contain one .LEAVE
pseudo-operation. See “.ENTRY and .EXIT Directives” on page 83 for
exceptions.

When the Assembler encounters an .ENTER pseudo-operation, it
generates an entry code sequence according to the parameters in the
.CALLINFO directive for that procedure. Similarly, when the Assembler
encounters a .LEAVE pseudo-operation, it generates an exit code
sequence according to the parameters in the .CALLINFO directive for
that procedure.

82 Chapter 4

Assembler Directives and Pseudo-Operations
.ENTER and .LEAVE Pseudo-Operations

Example
This example shows the placement of the .ENTER and .LEAVE
pseudo-operations.

.SPACE $TEXT$

.SUBSPA $CODE$
entrypt

.PROC

.CALLINFO

.ENTER
SH1ADD %arg0,%arg1,%ret0
.LEAVE
.PROCEND
.EXPORT entrypt,ENTRY
.END

Chapter 4 83

Assembler Directives and Pseudo-Operations
.ENTRY and .EXIT Directives

.ENTRY and .EXIT Directives

.ENTRY and .EXIT are compiler generated directives that mark the
entry point and return point of the current procedure.

Syntax
.ENTRY

Lines of Code

.EXIT

Discussion
The .ENTRY directive signifies that the next instruction is the beginning
of an entry point for the current procedure. The .EXIT directive signifies
that the next instruction initiates a return from the current procedure.
These directives must be used when .ENTER and .LEAVE are not
present. .ENTRY and .EXIT are optional if the unwind region does not
have a corresponding entry or exit. See the documents under the topic
PA-RISC Architecture at URL: http://www.software.hp.com/STK/.

Example
This example shows a sequence of compiler-generated assembly code.

 .PROC
 .CALLINFO CALLER
 .ENTRY ; proc entry code follows
 STW %r2,-20(%sp) ; stack the return pointer
 LDO 48(%sp),%sp ; set up user stack pointer
 ADDIL L’$THISMODULE$-$global$,%r27 ; point to printf data
 .CALL ; set up for printf call
 BL printf,2 ; call printf thru RP
 LDO R’$THISMODULE$-$global$(%r1),%r26 ; insert argument to
printf L$exit1 ; hide from linker
 LDW -68(%sp),%r2 ; get callee RP
 BV 0(%r2) ; exit thru RP
 .EXIT ; end of exit sequence
 LDO -48(%sp),%sp ; delete stack frame
 .PROCEND

84 Chapter 4

Assembler Directives and Pseudo-Operations
.EQU Directive

.EQU Directive
The .EQU directive assigns an expression value to an identifier.

Syntax
symbolic_name . EQU value

Parameters
symbolic_name The name of the identifier to which the Assembler

assigns the expression.

value An integer expression. The Assembler evaluates the
expression, which must be absolute, and assigns this
value to symbolic_name. If the expression references
other identifiers, each identifier must be defined before
the .EQU directive attempts to evaluate the expression.

NOTE The Assembler prohibits the use of relocatable symbols (instruction
labels) and imported symbols as components of an .EQU expression.

Example
This is a valid assembly program because the definition of val1 comes
before the definition of val2 . Reversing the first two statements,
however, produces an error condition.

val1 .EQU 0
val2 .EQU val1+4

.SPACE $TEXT$

.SUBSPA $CODE$
LDW val1,%r1
STW %r1,val2
.END

Chapter 4 85

Assembler Directives and Pseudo-Operations
.EXPORT Directive

.EXPORT Directive
The .EXPORT directive allows symbols to be defined in one program and
used in other programs.

Syntax
.EXPORT symbol [, type] [, argument-description] ...

Parameters
symbol The name of an identifier whose definition is being

exported or imported.

type A linker symbol type that can take one of the following
values:

ABSOLUTE Designates an absolute symbol.

In PA-RISC 2.0W (64-bit mode)
ABSOLUTE symbols map to
STT_NOTYPE with a section index of
SHN_ABS.

DATA Designates a data symbol.

In PA-RISC 2.0W (64-bit mode) DATA
symbols map to STT_OBJECT.

CODE Designates a code location. The
location can not be a procedure entry.

In PA-RISC 2.0W (64-bit mode) CODE
symbols map to STT_OBJECT.

ENTRY Designates the entry point of a
procedure.

In PA-RISC 2.0W (64-bit mode)
ENTRY symbols map to STT_FUNC.

MILLICODE Locates code for the entry point of a
millicode routine.

86 Chapter 4

Assembler Directives and Pseudo-Operations
.EXPORT Directive

MILLI_EXT Locates code for the entry point of an
external millicode routine.

PLABEL Locates a pointer to a procedure.

PRI_PROG Designates the primary program
entry point. The outer block of HP
Pascal/HP-UX and the main
program in HP FORTRAN 77/HP-UX
are type PRI_PROG.

In PA-RISC 2.0W (64-bit mode)
PRI_PROG symbols map to
STT_FUNC.

SEC_PROG Designates a secondary program
entry point.

In PA-RISC 2.0W (64-bit mode)
SEC_PROG symbols map to
STT_FUNC.

argument-
description Allows you to communicate to the linker the types of

registers used to receive floating point arguments and
return floating point return results. Similarly, this
information can be communicated in the .CALL
directive.

The linker requires this information, since the
Procedure Calling Convention described in the
documents under the topic PA-RISC Architecture at
http://www.software.hp.com/STK/ allows floating point
arguments and return values to reside in either
general registers or floating point registers, depending
on source language convention. At link time, the linker
ensures that both the caller and called procedure agree
on argument location. If not, the linker may insert code
to relocate the arguments (or return result) before
control is transferred to the called procedure or a
procedure return is completed.

The form of argument-description is described in See
“.CALL Directive” on page 63 in this chapter.

Chapter 4 87

Assembler Directives and Pseudo-Operations
.EXPORT Directive

Discussion
The .EXPORT directive uses a series of keywords to define a symbol to
the linker. These keywords declare the symbol's type, and its argument
relocation information if the symbol is the name of a procedure.

Example
This example makes the symbol proc available to the linker as an entry
point. It also specifies that the first argument is expected in a general
register.

.EXPORT proc,ENTRY,ARGW0=GR

88 Chapter 4

Assembler Directives and Pseudo-Operations
.FLOAT Pseudo-Operation

.FLOAT Pseudo-Operation
The .FLOAT pseudo-operation initializes a single-word of storage to a
floating-point value calculated from the parameters provided. If the
location counter is not aligned on a word boundary, it is forced to the next
multiple of four. If the statement is labeled, the label refers to the first
byte of the storage area.

Syntax
.FLOAT integer [.fraction] [E [-] power]

.FLOAT .fraction [E [-] power]

Parameters
integer Specifies the whole number part of a decimal number.

fraction Specifies the fractional part of a decimal number.

power Specifies the power of ten to raise a decimal number. To
raise the decimal number to a negative power of ten,
place a minus sign (-) directly in front of the power
specified.

Example
Each of the following examples initializes one word of memory to
floating-point quantities: 0.00096 and 3400000.0, respectively.

factor1 .FLOAT 9.6E-4

factor2 .FLOAT 3.4E6

Chapter 4 89

Assembler Directives and Pseudo-Operations
.HALF Pseudo-Operation

.HALF Pseudo-Operation
The .HALF pseudo-operation reserves storage and initializes it to the
given value.

Syntax
.HALF [init_value [, init_value] ...]

Parameters
init_value Either a decimal, octal, or hexadecimal number or a

sequence of ASCII characters, surrounded by quotation
marks. If you omit the initializing value, the Assembler
initializes the area to zero.

Discussion
The .HALF pseudo-operation requests 16 bits of storage. If the location
counter is not properly aligned on a boundary for a data item of that size,
the Assembler advances the location counter to the next multiple of that
item's size before reserving the area.

When you label the pseudo-operation, the label refers to the first byte of
the storage area. Operands separated by commas initialize successive
units of storage.

Example
This example allocates two half-words, initializing them to 50 and 100.
The label B refers to the first half-word allocated.

B .HALF 50,100

90 Chapter 4

Assembler Directives and Pseudo-Operations
.IMPORT Directive

.IMPORT Directive
The .IMPORT directive allows symbols to be defined in one program but
used in other programs.

Syntax
.IMPORT symbol [, type] [, TSPECIFIC]

Parameters
symbol The name of an identifier whose definition is being

imported.

type A linker symbol type that can take one of the following
values:

ABSOLUTE Designates an absolute symbol.

DATA Designates a data symbol.

CODE Designates a code location. The
location can not be a procedure entry.

ENTRY Designates the entry point of a
procedure.

MILLICODE Locates code for the entry point of a
millicode routine.

MILLI_EXT Locates code for the entry point of an
external millicode routine.

PLABEL Locates a pointer to a procedure.

PRI_PROG Designates the primary program
entry point. The outer block of HP
Pascal/HP-UX and the main
program in HP FORTRAN 77/HP-UX
are type PRI_PROG.

SEC_PROG Designates a secondary program
entry point.

Chapter 4 91

Assembler Directives and Pseudo-Operations
.IMPORT Directive

TSPECIFIC The TSPECIFIC keyword indicates that this is a thread
local storage symbol.

Discussion
The .IMPORT directive uses a series of keywords to define a symbol to
the linker. These keywords declare the symbol's type. Because the
.IMPORT directive specifies that another object module contains this
symbol's formal definition, the Assembler does not associate an imported
symbol with any particular subspace. When an .IMPORT directive lacks
a type parameter, the Assembler assigns the type of the current subspace
(either $CODE$ or $DATA$) to the symbol.

Example
The .IMPORT directive lets the Assembler access symname as a
recognized symbol, even though it is actually defined elsewhere. The
linker resolves the difference.

.IMPORT symname,CODE ;import symname as a CODE symbol.

.CODE ;begin CODE subspace
LDIL L’symname,%r1
BLE,n R’symname(%sr4,%r1) ;call the procedure symname in %sr4
space.
NOP
.END

92 Chapter 4

Assembler Directives and Pseudo-Operations
.LABEL Directive

.LABEL Directive
The .LABEL directive permits a label definition to appear within a
sequence of instructions that occur on a single line.

Syntax
.LABEL label_id

Parameters
label_id Names the label identifier.

NOTE The .LABEL directive is especially useful when using the M4 macro
processor or the C preprocessor (cpp). You would normally use this
directive in a DEFINE macro that includes multiple instructions.

Example
This example defines a cpp macro named Loop .

#define Loop(xx) LDO xx(%r0),%r1 ! .LABEL Loop ! ADDI,=-1,%r1,%r1 \
! BL Loop,%r0 ! NOP ! LDI 1,%ret0 ; macro
 .CODE
step_ten
 .PROC
 .CALLINFO
 .ENTER
 Loop(10)
 .LEAVE
 .PROCEND
 .EXPORT step_ten,ENTRY

Chapter 4 93

Assembler Directives and Pseudo-Operations
.LEVEL Directive

.LEVEL Directive
The .LEVEL directive tells the Assembler which version level of the
PA-RISC architecture to accept while assembling the source file. The
.LEVEL directive also tells the Assembler which implementations-
specific features are used in the assembly source file.

Syntax

Parameters
1.0 Enables PA-RISC 1.0 features. This is the default.

1.1 Enables PA-RISC 1.1 features.

2.0 Enables PA-RISC 2.0 features.

2.0W Enables PA-RISC 2.0W features and assembles the
source for a 64-bit machine.

Discussion
The Assembler marks the relocatable object file to indicate the minimum
PA-RISC architecture version level required when executing the object
code corresponding to the source file. The linker marks the program file
with the highest version level required by any of the object files linked
into the program.

The Assembler uses the .LEVEL directive to mark the relocatable object
file with the proper PA-RISC architecture version level. For example, if
the code is expected to run only on PA-RISC 1.1 architectures, a .LEVEL
1.1 should be inserted at the beginning of the source file.

To assemble a source file for a PA-RISC 64-bit system, use a .LEVEL
2.0W directive as the first directive in the source file.

.LEVEL

1.0

1.1

2.0

2.0W

94 Chapter 4

Assembler Directives and Pseudo-Operations
.LEVEL Directive

In the source file, the Assembler emits warning messages whenever a
feature is used that is not appropriate for the specified .LEVEL directive.
The default is to produce a PA-RISC 1.0 relocatable object file. If the
default is used, any use of PA-RISC 1.1 or 2.0 features in the assembly
source file generates a warning messages.

If the code is expected to run on more than one level of PA-RISC
architecture, a run-time check should be used with a .ALLOW directive.
See “.ALLOW Directive” on page 58 in this chapter for an example of a
run-time check.

The .LEVEL directive is also used to indicate any
implementation-specific extensions that the source file depends on. The
Assembler marks the relocatable object file with information that
indicates any implementation-specific extensions that were specified in
the .LEVEL directive. The default for an assembly source file is no
implementation-specific extensions; the Assembler generates warning
messages if an implementation-specific extension is used.

Chapter 4 95

Assembler Directives and Pseudo-Operations
.LISTOFF and .LISTON Directives

.LISTOFF and .LISTON Directives
The .LISTOFF and .LISTON directives control the expansion of
instructions for all macro invocations, all predefined subspace
declarations, and the .ENTER and .LEAVE pseudo-operations. .LISTOFF
causes the Assembler to cease listing expanded instructions until a
.LISTON directive is encountered. .LISTON causes the Assembler to list
expanded instructions until a .LISTOFF directive is encountered.

The default is .LISTON .

Syntax
.LISTOFF

.LISTON

Example
The following is the definition of the macro DECR. It is referred to in the
assembly listing generated when .LISTON was used with a procedure
containing the macro invocation.

DECR .MACRO LAB,VAL
SKF ADDIL L’VAL-$global$,%dp
 LDW R’VAL-$global$(%r1),%r20
LAB ADDIBF,=,N -1,%r20,LAB
 .ENDM

 .CODE
 .IMPORT $global$
 .IMPORT mark
 .IMPORT count
 .PROC
call_DECR
 .CALLINFO FRAME=0, SAVE_RP
 .ENTER
 DECR mark,count
 .LEAVE
 .PROCEND

96 Chapter 4

Assembler Directives and Pseudo-Operations
.LISTOFF and .LISTON Directives

If .LISTOFF had been used in the above example, the macro invocation
DECR, and the directives .CODE, .DATA, .ENTER, and .LEAVE , would not
have been expanded in the assembly listing.

line offset hexcode label opcode operands (comment)
1 .LISTON
2 .CODE
 .SPACE $TEXT$, SPNUM=0,SORT=0
 .SUBSPA $CODE$, QUAD=0,ALIGN=8,ACCESS=0x2c
3 .PROC
4 call_DECR ;proc label
5 .CALLINFO FRAME=0,SAVE_RP
6 .ENTER
 00000000 (6BC23FD9) STW 2,-0x14(0,0x1E)
 00000004 (37DE0060) LDO 0x30(0x1E),0x1E
7 00000008 (2B600000) ADDIL L’count-$global$,%dp
8 0000000C (683A0000) STW %arg0,R’count-$global$(%r1)
9 DECR mark,count;
 macro invocation
 00000010 (2B600000) ADDIL L’VAL-$global$,%dp
 00000014 (48340000) LDW R’VAL-$global$(%r1),%r20
 LAB
 00000018 (AE9F3FF5) ADDIBF,= -1,%r20,LAB
 0000001C (08000240) NOP
10 .LEAVE
 00000020 (4BC23F79) LDW -0x44(0,0x1E),2
 00000024 (E840C000) BV 0(2)
 00000028 (37C03FA1) LDO -0x30(0x1E),0
11 .PROCEND
12 .EXPORT call_DECR,ENTRY

13 DATA
 .SPACE $PRIVATE$, SPNUM=1,SORT=16
 .SUBSPA $DATA$, QUAD=1,ALIGN=8
 ACCESS=0x1f
14 .IMPORT $global$
15 40000000 (00000000) count .WORD 0
16 .LISTOFF

Chapter 4 97

Assembler Directives and Pseudo-Operations
.LOCCT Directive

.LOCCT Directive
The .LOCCT directive specifies where subsequent code should occur in
one of the four location counters of the current subspace.

Syntax
.LOCCT [loc_number]

Parameters
loc_number A location-counter number of the current subspace.

The permissible values are 0, 1, 2, and 3. The default is
zero.

NOTE The .LOCCT directive is not permitted within a procedure and cannot be
used to produce unwindable code.

Example
This example uses two location counters to separate code from data. In
the assembled code, everything under location counter 0 comes first,
followed by everything under location counter 1, and so on.

.CODE

.LOCCT 0
ldval1

LDIL L'val1,%r19
LDO R'val1(%r19),%r19
.LOCCT 1

val1 .WORD 57005
.LOCCT 0

ldval2
LDIL L'val2,%r20
LDO R'val2(%r20),%r20
.LOCCT 1

val2 .WORD 61453

98 Chapter 4

Assembler Directives and Pseudo-Operations
.MACRO Directive

.MACRO Directive
The .MACRO directive marks the beginning of a macro definition. An
.ENDM directive must be used to end the macro definition.

Syntax
label .MACRO [formal_parameter[,formal_parameter]...]

Parameters
label The name of the macro.

formal_parameter Specifies a string of characters
treated as a positional parameter.
The ith actual parameter in a macro
invocation is substituted for the ith
formal parameter in the macro
declaration wherever the formal
parameter appears in the body of the
macro definition.

Discussion
Normal Assembler syntax is observed within macro definitions, except
that text substitution is assumed for formal parameters. The following
line is an example of a macro declaration:

DECR .MACRO LAB,VAL

LAB and VAL are formal parameters. Their actual values are determined
by the first and second parameters on any invocation of the macro DECR.
On the macro invocation, the parameters are delimited by commas.
Successive commas indicate a null parameter, causing the expanded
macro to substitute null for one of its formal parameters. When the
number of formal parameters exceeds the number of actual parameters,
null parameters are inserted for the excess parameter positions. When
the number of actual parameters exceeds the number of formal
parameters, a warning is issued and the excess parameters are ignored.

Chapter 4 99

Assembler Directives and Pseudo-Operations
.MACRO Directive

NOTE Although there is no upper limit on the number of parameters or
arguments in a macro definition, no single macro parameter may exceed
200 characters.

Macro definitions may appear wherever and as often as necessary within
source code. Macro definitions may occur inside or outside of spaces,
subspaces, and procedures.

Because the Assembler always uses the most recently encountered
definition, macros may be redefined as often as desired.

NOTE A macro cannot be defined within the body of another macro definition.

Although nested macro definitions are not allowed, nested macro calls
are. A nested macro call occurs when one macro is invoked within the
definition of another macro. A macro may not be invoked within its own
definition. Macros can only be invoked after being defined.

Examples
The macro definition defines a simple counter or timer called DECR.

DECR .MACRO LAB,VAL
SETP ADDIL L'VAL-$global$,%dp

LDW R'VAL-$global$(%r1),%r20
LAB

ADDIBF,= -1,%r20,LAB
NOP
.ENDM

The following is an invocation of DECR:

DECR LOOP,COUNT

LOOP and COUNT are the actual parameters that are specific to this
particular invocation of the macro DECR.

During macro expansion, textual substitution for positional parameters
is performed in the body of the macro definition. Substitution is
performed on strings of characters that are delimited by blanks, tabs,
commas, or semicolons. If the string matches one of the formal
parameters, it is replaced with the corresponding actual parameter.

When a macro definition contains a label, the expanded form of the
macro adds a unique suffix to the label for each instance the macro is
invoked. This unique suffix prevents duplicate symbols from occurring

100 Chapter 4

Assembler Directives and Pseudo-Operations
.MACRO Directive

and prevents the label from being referenced from outside the body of the
macro definition. This suffix also contains a number that is used as a
counter by the Assembler.

The following example defines the macro PRINT, which calls the
printf() function (see printf(3S) in HP-UX Reference). The macro
parameter DATA_ADDR is used to set up the argument to be passed to
printf() .

PRINT .MACRO DATA_ADDR
ADDIL L'DATA_ADDR,%dp
.CALL
BL printf,%rp
LDO R'DATA_ADDR(%r1),%arg0
.ENDM

The next example defines the macro STORE. STORE places the contents of
the register REG, the first macro parameter, into the memory address
LOC, the second parameter.

STORE .MACRO REG,LOC
LDIL L'LOC-$global$,%r1
STW REG,R'LOC-$global$(%r1)
.ENDM

Chapter 4 101

Assembler Directives and Pseudo-Operations
.ORIGIN Directive

.ORIGIN Directive
The .ORIGIN directive advances the location counter to the specified
location.

Syntax
.ORIGIN [location]

Parameters
location The integer value used to advance the location counter

to that absolute location. The location counter value
may not decrease during this process; that is, the value
specified cannot be less than the value of the current
location counter.

The default value is zero.

Discussion
When the Assembler encounters an .ORIGIN directive, it issues a
.BLOCK pseudo-operation of a size calculated to advance the location
counter to the requested origin. See “.BLOCK and .BLOCKZ
Pseudo-Operations” on page 60 in this chapter.

Example
This sample program performs an exclusive OR, advances the location
counter to 64 bytes, and branches to the label idx .

.CODE
XOR %r21,%r22,%r23
B idx
NOP
.ORIGIN 64

idx LDWX %r23(%sr0,%sr0),%r3
.END

102 Chapter 4

Assembler Directives and Pseudo-Operations
.PROC and .PROCEND Directives

.PROC and .PROCEND Directives
The .PROC and .PROCEND directives bracket the instructions within a
procedure.

Syntax
.PROC

Lines of Code

.PROCEND

Discussion
The .PROC directive signifies that the next instruction is the first
instruction of a procedure. The .PROCEND directive signifies that the
previous instruction was the last instruction of the procedure. Switching
spaces or subspaces within a procedure is not permitted.

Every procedure must contain a .CALLINFO directive and normally
contains an .ENTER and .LEAVE pseudo-operation. The only exception to
the latter rule occurs in procedures that are either compiler-generated or
created by programmers who are writing their own entry and exit code
sequences. In this case, you must use the .ENTRY and .EXIT compiler
directives.

NOTE Because the .ENTER and .LEAVE pseudo-operations guarantee that the
stack unwind process works correctly, you should consistently use these
directives rather than writing your own entry and exit code sequences.

Chapter 4 103

Assembler Directives and Pseudo-Operations
.PROC and .PROCEND Directives

Example
This template shows a procedure that follows the procedure-calling
convention.

.CODE
test

.PROC

.CALLINFO

.ENTER
COMCLR,= %arg0,%arg1,%ret0
LDI 1,%ret0
.LEAVE
.PROCEND
.EXPORT test

104 Chapter 4

Assembler Directives and Pseudo-Operations
.REG Directive

.REG Directive
The .REG directive assigns a predefined or user-defined typed-register to
a symbol, which becomes a synonym for the typed-register.

Syntax
label .REG [typed_register]

Parameters
label A user-defined register name.

typed_register Must be one of the predefined Assembler registers or a
previously defined user-defined register name All
predefined Assembler registers begin with %.

Example
This example defines the register shift as a synonym for control
register eleven. %sar is a predefined synonym for control register eleven,
the shift-amount register.

shift .REG %sar

Chapter 4 105

Assembler Directives and Pseudo-Operations
.SHLIB_VERSION Directive

.SHLIB_VERSION Directive
The .SHLIB_VERSION directive marks the object file with a version
string that the shared library understands.

Syntax
.SHLIB_VERSION " mm/yyyy"

Parameters
mm The one- or two-digit number of the month.

yyyy The four-digit number of the year.

Example
The following pseudo-operation places the date September 1994 in the
object file.

.SHLIB_VERSION "9/1994"

106 Chapter 4

Assembler Directives and Pseudo-Operations
.SPACE Directive

.SPACE Directive
The .SPACE directive starts a new space or switches back to an old
space. The Assembler ignores the .SPACE directive for 64-bit assembly
programs. For more information, see “Sections in 64-bit Mode” on page
44.

Syntax

Parameters
name An identifier that names the new space.

NOTDEFINED Specifies that the definition for this space occurs in
another object module.

PRIVATE Specifies that other programs cannot share the data in
this space. The enforcement of this directive depends
on the operating system.

SORT=value Provides an integer value for the sort key. The linker
orders the spaces in the output object module according
to this key. It is suggested that the number “8” be used
for space $TEXT$ and the number “16” be used for
$PRIVATE$.

SPNUM=value A space number constant that provides a specific
number for the current space. Its use is currently
optional and is ignored by the linker. If the first
parameter of the .SPACE directive is an integer, it will
be interpreted as the space number and any remaining
parameters will be ignored.

.SPACE name

,NOTDEFINED
,PRIVATE
,SORT=value
,SPNUM=value
,TSPECIFIC
,UNLOADABLE

...

Chapter 4 107

Assembler Directives and Pseudo-Operations
.SPACE Directive

TSPECIFIC Indicates that this space contains thread local storage
data.

UNLOADABLE Specifies that the space resides on disk and is not
loadable into main memory. Debugger data is a typical
example of an unloadable space.

Discussion
The first time the Assembler encounters a .SPACE directive with a new
name, it uses that name to declare a new space. As this is the defining
occurrence of that space, additional keywords can describe attributes for
that space.

If the Assembler encounters subsequent .SPACE directives with that
name, it continues that space. In this case, where the program is
re-entering a previously defined space, the .SPACE directive can only
contain the space name; other keywords to describe the space are illegal.

A space can contain from one to four discrete quadrants (See the QUAD
parameter of the .SUBSPA directive.) When you divide a space into
multiple quadrants, you must define all the subspaces within each
quadrant as a group. If subspaces for a quadrant are defined
individually, program operation is unpredictable. The Assembler,
however, does not check for this condition.

Example
This example shows some of the standard “space” definitions in a typical
assembly language program.

.SPACE $TEXT$, SPNUM=0,SORT=8

.SPACE $PRIVATE$, SPNUM=1,PRIVATE,SORT=16

.SPACE $myspace$, SPNUM=7,UNLOADABLE

.SPACE $THREAD_SPECIFIC$, PRIVATE, TSPECIFIC, SORT=32

108 Chapter 4

Assembler Directives and Pseudo-Operations
.SPNUM Pseudo-Operation

.SPNUM Pseudo-Operation
The .SPNUM pseudo-operation reserves a word of storage and initializes
it with the space number of the space named by the operand. Only one
operand is allowed and any label present is offset at the first byte of the
storage just initialized.

Syntax
.SPNUM name

Parameters
name Specifies the name of a space whose space number is

used to initialize a word of storage.

NOTE Space numbers are ignored by the linker.

Example
In this example, the space number of $PRIVATE$, 1 , is stored as the
address of the symbol LOG by the .SPNUM pseudo-operation.

 .SPACE $PRIVATE$,SPNUM=1 SORT=16
 .SUBSPA $DATA$,QUAD=1, ALIGN=8,ACCESS=0x1f SORT=24
data_ref
 .WORD 0xFFFF
LOG .SPNUM $PRIVATE$

Chapter 4 109

Assembler Directives and Pseudo-Operations
.STRING and .STRINGZ Pseudo-Operations

.STRING and .STRINGZ
Pseudo-Operations
The .STRING pseudo-operation reserves storage for a data area and
initializes it to ASCII values. The .STRINGZ pseudo-operation reserves
storage the same as .STRING , but appends a zero byte to the data. This
creates a C-language-type string. If the statement is labeled, the label
refers to the first byte of the storage area.

Syntax
.STRING "init_value"

.STRINGZ "init_value"

Parameters
init_value A sequence of ASCII characters, surrounded by

quotation marks. A string can contain up to 256
characters. The enclosing quotation marks are not
stored.

The following escape sequences can be used to
represent characters:

\" Quotation mark

\0 Null (=\x00 ; ASCII NUL)

\\ Backslash

\b Backspace (=\x08 ; ASCII BS)

\f Form feed (=\x0C ; ASCII FF)

\n Newline (=\x0A ; ASCII LF)

\r Carriage return (=\x0D ; ASCII CR)

\t Tab (=\x09 ; ASCII HT)

\x hh or \X hh Any 8-bit character; hh is two
hexadecimal digits.

110 Chapter 4

Assembler Directives and Pseudo-Operations
.STRING and .STRINGZ Pseudo-Operations

Discussion
The .STRING pseudo-operation requests the required number of bytes to
store the string (where each character is stored in a byte). The .STRINGZ
pseudo-operation also requests the required storage for the quoted string
but then appends a zero byte for compatibility with C language strings.

When you label one of these pseudo-operations, the label refers to the
first byte of the storage area.

Examples
This pseudo-operation allocates eight bytes, the first of which is labeled
G. Then it initializes this area with the characters: A, space, S, T, R, I , N,
and G.

G .STRING "A STRING"

This pseudo-operation allocates eight bytes to hold A STRING, allocates
an additional byte for the appended zero, and associates the label G with
the first byte of the storage area.

G .STRINGZ "A STRING"

Chapter 4 111

Assembler Directives and Pseudo-Operations
.SUBSPA Directive

.SUBSPA Directive
The .SUBSPA directive declares a new subspace or switches back to an
old subspace. In 64-bit assembly programs subspaces map directly to the
ELF concept of sections, so the .SUBSPA directive switches to or creates
a new section. For more information, see “Sections in 64-bit Mode” on
page 44.

Syntax

Parameters
name An identifier that names the current subspace.

ACCESS=value Specifies the 7-bit value for the access rights field in
the PDIR (Physical Page Directory for virtual address
mapping). Must be 0X2C for code, and 0X1F for data
subspaces.

ALIGN=value Specifies a value (which must be a power of 2) on which
the Assembler should align the beginning of the
subspace. The default value is the largest alignment
requested within that subspace, or one if no alignment
requests exist.

.SUBSPA name

,ACCESS=value
,ALIGN=value
,CODE_ONLY
,COMMON
,DUP_COMM
,FIRST
,FROZEN
,LOCK
,QUAD=value
,SORT=value
,TSPECIFIC
,UNLOADABLE
,ZERO

...

112 Chapter 4

Assembler Directives and Pseudo-Operations
.SUBSPA Directive

CODE_ONLY Specifies that this subspace contains only code.

COMMON Specifies that this subspace is a common block.

DUP_COMM Specifies that the initialized data symbols within this
subspace can have duplicate names. When you include
this parameter, multiple occurrences of a universal
data symbol can exist and the linker does not report a
“Duplicate Definition” error.

FIRST Specifies that the subspace must be allocated exactly at
the beginning of the specified space.

FROZEN If set, the subspace is locked into physical memory
when the subspace goes into execution.

LOCK If set, the subspace is locked into physical memory
when the operating system is booted.

QUAD=value Specifies the quadrant (0 through 3) in which the
Assembler should place this subspace. The default
value is zero.

SORT=value Provides an integer value for the primary sort key. The
linker orders the subspaces in the output object module
according to this primary key. If several subspaces
share the same primary key value, the linker lists
these subspaces in the order in which it processes
them. It is suggested that 24 be used for both code and
data subspaces.

TSPECIFIC Indicates that this space contains thread local storage
data.

UNLOADABLE Specifies that this subspace is not loadable into
memory. Loadable subspaces must reside in loadable
spaces, and unloadable subspaces must reside in
unloadable spaces.

ZERO Specifies that this subspace contains all zeros and no
data appears in the output file.

Chapter 4 113

Assembler Directives and Pseudo-Operations
.SUBSPA Directive

Discussion
The first time the Assembler encounters a .SUBSPA directive with a new
name, it uses that name to declare a new subspace. As this is the
defining occurrence of that subspace, optional keywords describe
attributes of that subspace.

When the Assembler encounters additional .SUBSPA directives with that
name, it continues that subspace. In this case, the .SUBSPA directive can
only contain the subspace name; other keywords to describe the subspace
are illegal.

Example
This example shows some of the standard “subspace” definitions in a
typical assembly language program.

.SUBSPA $CODE$, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=24,CODE_ONLY

.SUBSPA $DATA$, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=16

.SUBSPA $TBSS$, QUAD=1,ALIGN=8,ACCESS=0x1f,ZERO, TSPECIFIC, SORT=40

114 Chapter 4

Assembler Directives and Pseudo-Operations
.VERSION Directive

.VERSION Directive
The .VERSION directive places the designated string in the current
object module for version identification.

Syntax
.VERSION "info_string"

Parameters
info_string A sequence of ASCII characters, surrounded by

quotation marks. The string can contain up to 256
characters.

Discussion
The Assembler places this string in the current object module. A
program can contain multiple .VERSION directives.

Once the version information is in the object file, the HP-UX utility
strings can be used to access it. See strings(1) in HP-UX Reference.

NOTE This directive can appear anywhere in the source file, and multiple
occurrences are permitted.

Example
This program inserts version information into the object module, and
performs subtract and deposit operations.

.CODE

.VERSION "Version 1 of This Simple Sample Program"
SUB %r19,%r20,%r19
DEP %r19,14,5,%r22
.END

Chapter 4 115

Assembler Directives and Pseudo-Operations
.WORD Pseudo-Operation

.WORD Pseudo-Operation
The .WORD pseudo-operation reserves storage and initializes it to the
given value.

Syntax
.WORD [init_value[, init_value] ...]

Parameters
init_value A relocatable or absolute expression, a decimal, octal,

or hexadecimal number, or a sequence of ASCII
characters surrounded by quotation marks. If you omit
the initializing value, the Assembler initializes the
area to zero.

Discussion
The .WORD pseudo-operation requests 32 bits of storage. If the location
counter is not properly aligned on a boundary for a data item of that size,
the Assembler advances the location counter to the next multiple of that
item's size before reserving the area.

When you label the pseudo-operation, the label refers to the first byte of
the storage area. Operands separated by commas initialize successive
units of storage.

Example
The first pseudo-operation advances the current subspace's location
counter to a word boundary, allocates a word of storage labeled F and
initializes that word to minus 32 (2's complement). The second
pseudo-operation initializes a word of storage to the hexadecimal
number 6EFF1234.

F .WORD -32
.WORD 0X6eff1234

116 Chapter 4

Assembler Directives and Pseudo-Operations
Programming Aids

Programming Aids
The Assembler provides a series of standard space and subspace
definitions that you can use to simplify the writing of an assembly
program. These definitions are duplicated in the system file
/usr/lib/pcc_prefix.s . Because this file is relatively large and may
change with new releases of the Assembler, you can view the most recent
version of the file on your terminal screen by typing the command:

more /usr/lib/pcc_prefix.s

Table 4-3 on page 116 lists the predefined directives for establishing
standard spaces and subspaces.

Table 4-3 Predefined Subspace Directives

Directive Space Name Default Parameters

.BSS .space $PRIVATE$,''
.subspa BSS,

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x1f, SORT=82,ZERO

.CODE .space $TEXT$,''
.subspa $CODE$,

SPNUM=0,SORT=8
QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=24

.DATA .space $PRIVATE$,''
.subspa $DATA$,

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=24

.FIRST .space $TEXT$,''
.subspa $FIRST$,

SPNUM=0,SORT=8
QUAD=0,ALIGN=2048,ACCESS=0x2c, SORT=4,FIRST

.GATE .space $TEXT$,''
.subspa $GATE$,

SPNUM=0,SORT=8
 QUAD=0,ALIGN=8,ACCESS=0x4c,
SORT=84,CODE_ONLY

.GLOBAL .space $PRIVATE$,''
.subspa $GLOBAL$,
.IMPORT $global$

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=40

.GNTT .space $DEBUG$,''
.subspa $GNTT$,

SPNUM=2,PRIVATE,UNLOADABLE,SORT=80
ALIGN=4,ACCESS=0,UNLOADABLE

.HEADER .space $DEBUG$,''
.subspa $HEADER$,

SPNUM=2,PRIVATE,UNLOADABLE,SORT=80
ALIGN=4,ACCESS=0,UNLOADABLE,FIRST

.HEAP .space $PRIVATE$,''
.subspa $HEAP$,

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=82

.LIT .space $TEXT$,''
.subspa LIT,

SPNUM=0,SORT=8
QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=16

Chapter 4 117

Assembler Directives and Pseudo-Operations
Programming Aids

.LNTT .space $DEBUG$,''
.subspa $LNTT$,

SPNUM=2,PRIVATE,UNLOADABLE,SORT=80
ALIGN=4,ACCESS=0,UNLOADABLE

.MILLICODE .space $TEXT$,''
.subspa $MILLICODE$,

SPNUM=0,SORT=8
QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=8

.PCB .space $PRIVATE$,''
.subspa PCB,

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x10,SORT=82

.REAL .space $TEXT$,''
.subspa $REAL$,

SPNUM=0,SORT=8
 QUAD=0,ALIGN=8,ACCESS=0x2c,
SORT=4,FIRST,LOCK

.RECOVER .space $TEXT$,''
.subspa $RECOVER$,

SPNUM=0,SORT=8
QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=80

.RESERVED .space $TEXT$,''
.subspa $RESERVED$,

SPNUM=0,SORT=8
QUAD=0,ALIGN=8,ACCESS=0x73,SORT=82

.SHORTDATA .space $PRIVATE$,''
.subspa $SHORTDATA$,

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=16

.SLT .space $DEBUG$,''
.subspa SLT,

SPNUM=2,PRIVATE,UNLOADABLE,SORT=80
ALIGN=4,ACCESS=0,UNLOADABLE

.STACK .space $PRIVATE$,''
.subspa $STACK$,

PRIVATE,SPNUM=1,SORT=16
QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=82

.UNWIND .space $TEXT$,''
.subspa $UNWIND$,

SPNUM=0,SORT=8
QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=64

.VT .space $DEBUG$,''
.subspa VT,

SPNUM=2,PRIVATE,UNLOADABLE,SORT=80
ALIGN=4,ACCESS=0,UNLOADABLE

Directive Space Name Default Parameters

118 Chapter 4

Assembler Directives and Pseudo-Operations
Programming Aids

119

5 Pseudo-Instruction Set

In addition to the PA-RISC instruction set, which is described in
PA-RISC 1.1 Architecture and Instruction Set Reference Manual and
PA-RISC 2.0 Architecture, the Assembler provides a number of
pseudo-instructions that perform commonly used forms of the basic
instructions. These pseudo-instructions are listed with their
standard-instruction format in Table 5-1 on page 120.

NOTE When coding branch instructions, including those with nullification
specified, pay attention to the instruction that follows the branch in the
source code. All branch instructions consider this following instruction to
be in their delay slot. You can use a NOP pseudo-instruction to fill the
delay slot when there is no other useful work to be performed. This delay
slot is usually executed.

120 Chapter 5

Pseudo-Instruction Set

Table 5-1 Pseudo-Instructions

1. The cond completer determines the actual instruction that the Assembler uses
in the conditional branch. The T form is used with nonnegated completers. The
F form is used with negated completers. See Table 5-2 on page 121 and
Table 5-3 on page 122 for details.

2. n indicates an optional nullification completer.

Pseudo-Instruction Format Standard Instruction Format

ADDB,cond,n 1, 2 r1,r2,target ADDBT,cond,n
ADDBF,cond,n

r1,r2,target
r1,r2,target

ADDIB,cond,n 1, 2 r1,r2,target ADDIBT,cond,n
ADDIBF,cond,n

r1,r2,target
r1,r2,target

B w BL w, %r0

COMB,cond,n 1, 2 r1,r2,target COMBF,cond,n
COMBT,cond,n

r1,r2,target
r1,r2,target

COMIB,cond,n 1, 2 r1,r2,target COMIBF,cond,n
COMIBT,cond,n

r1,r2,target
r1,r2,target

COPY r,t LDO 0(r),t

LDI i,t LDO i(%r0),t

MTSAR r MTCTL r,%cr11

NOP OR %r0,%r0,%r0

Chapter 5 121

Pseudo-Instruction Set

Table 5-2 Compare and Branch Conditions (COMB and COMIB)

cond Description

never

= opd1 is equal to opd2

< opd1 is less than opd2 (signed)

<= opd1 is less than or equal to opd2 (signed) Nonnegated

<< opd1 is less than opd2 (unsigned)

<<= opd1 is less than or equal to opd2 (unsigned)

SV opd1 minus opd2 results in overflow (signed)

OD result of opd1 minus opd2 is odd

TR always

<> opd1 is less than or greater than opd2

>= opd1 is greater than or equal to opd2 (signed)

> opd1 is greater than opd2 (signed) Negated

>>= opd1 is greater than or equal to opd2 (unsigned)

>> opd1 is greater than opd2 (unsigned)

NSV opd1 minus opd2 results in no overflow (signed)

EV result of opd1 minus opd2 is even

122 Chapter 5

Pseudo-Instruction Set

Table 5-3 Add and Branch Conditions (ADDB and ADDIB)

cond Description

never

= opd1 is equal to -opd2

< opd1 is less than -opd2 (signed)

<= opd1 is less than or equal to -opd2 (signed) Nonnegated

NUV opd1 + opd2 < 232 (no unsigned overflow)

ZNV opd1 + opd2 < 232 or opd1 + opd2 = 0

SV opd1 plus opd2 results in overflow (signed)

OD result of opd1 plus opd2 is odd

TR always

<> opd1 is not equal to -opd2

>= opd1 is greater than or equal to -opd2 (signed)

> opd1 is greater than -opd2 (signed) Negated

UV opd1 + opd2 > = 232 (unsigned overflow)

VNZ opd1 + opd2 > 232 and opd1 + opd2 not = 0

NSV opd1 plus opd2 results in no overflow (signed)

EV result of opd1 plus opd2 is even

123

6 Assembling Your Program

This chapter describes two different ways you can invoke the Assembler
and the various command line options controlling its behavior. It also
contains a brief description of the interface between the Assembler and
linker, and things you should remember to facilitate the running of an
assembly program.

Invoking the Assembler
You can invoke the Assembler directly by using the as command. Or, you
can invoke the Assembler through the cc command, which processes the
assembly source using the C preprocessor. The next two sections describe
these pathways.

124 Chapter 6

Assembling Your Program
Using the as Command

Using the as Command
The as command is the standard command for invoking the Assembler
on PA-RISC systems running on HP-UX. See as(1) in HP-UX Reference
for complete details.

If no files are specified, the Assembler reads source text from standard
input, which must be a command-line pipe or a FIFO. It cannot be a
device file, such as a terminal.

The Assembler produces a single output file (see the -o option). If the
source text is read from standard input, the object file is written to
standard output and the -o option is ignored.

The as command resides in the /usr/ccs/bin directory.

If your programming environment does not establish a path to this
directory, you must include the path name as the first part of the as
command. For example:

/usr/ccs/bin/as -l line.s box.s draw.s

Syntax
as [[option] ...[file] ...] ...

Parameters
file The name of an input file. The name must include the

suffix .s . If you specify multiple input files, they are
concatenated in order.

option A flag telling the Assembler to take some special
action. All options affect all input files. The as
command supports the following options.

+DAarch. Assemble code for the architecture

Chapter 6 125

Assembling Your Program
Using the as Command

specified. The use of this option is
discouraged. The preferred method for
selecting the architecture is to use a
.LEVEL directive in the assembly
source file.

The target architecture specified with
the .LEVEL directive takes precedence
over the architecture specified with the
+DA option.

-e Specify that the Assembler should
tolerate one million errors before
terminating the assembly process.
Without this option, the Assembler
terminates a program after 100 errors.

-f Specify that procedures call other
procedures as the default condition.
Normally, the Assembler assumes that
procedures do not call other procedures.
(See the CALLS and NO_CALLS
parameters for .CALLINFO directive.).

-l List the assembled program on
standard output. This listing shows
instruction offsets and the values
stored in each field.

-o filename Assign the specified name to the output
file. The default name for the output
file is the name of the last input file
with the suffix changed to .o .

-p level Specify the privilege level of running
capability. level must be in the range
zero to three, with three being the least
privileged (normal user).

-s Set the output file suffix to .ss
instead of .o . The file will have a
format suitable for conversion to the
ROM burning programs.

126 Chapter 6

Assembling Your Program
Using the as Command

-u Prevent the Assembler from creating
stack unwind descriptors. This option
precludes the use of the .ENTER and
.LEAVE directives within a program.

-v filename Name a file to which the Assembler
writes cross-reference information;
this includes the source file and the line
number for each appearance of all
symbols.

-V Print the version number of the
Assembler program to standard error
before assembling the source text.

-w [number] Either suppress all warning messages
if no number is supplied or suppress
just the warning number provided. You
can use multiple -w number options

to suppress additional warning
messages.

+z Create position-independent code
suitable for inclusion in a shared
library. Use this option for small
linkage tables.

+Z Create position-independent code
suitable for inclusion in a shared
library. Use this option for large
linkage tables.

For more information about linkage
tables, see HP-UX Linker and Libraries
Online User Guide.

Chapter 6 127

Assembling Your Program
Using the cc Command

Using the cc Command
You can also use the cc command to run the Assembler on files that have
a .s suffix. See cc(1) man page for the HP C/HP-UX ANSI C compiler, if
installed. The cc command inserts the system file

/usr/lib/pcc_prefix.s

in front of the .s file and pipes the file through the C preprocessor (see
cpp(1) in HP-UX Reference) before passing the file to the Assembler.
pcc_prefix.s is a concatenation of the following header files in the
directory /usr/include :

hard_reg.h Set of .REGs for hardware registers.

soft_reg.h Set of register definitions that follows the Procedure
Calling Convention.

std_space.h Set of space and subspace definitions that most
Assembler programs use.

NOTE If you are using the HP C/HP-UX ANSI C compiler, you can suppress the
pcc_prefix.s file with the cc option +a.

Passing Arguments to the Assembler
The cc command normally strips all as command options from the
command line, writing a warning to standard error. Therefore, when you
want to retain one of these options, you must include the -Wa
command-line option

-Wa, ,as-argument [as-argument] ...

as-argument names an Assembler argument you want to preserve. For
example, to specify a cross-reference file, you could use:

-Wa,-v,myxreffile

Similarly, you can pass options to the C preprocessor (cpp) or the linker
(ld) with -Wp and -Wl , respectively.

128 Chapter 6

Assembling Your Program
Using the cc Command

cpp Preprocessor
You can use the C preprocessor (cpp) with assembly language programs
to include C-type macros, including directives. You can use an
exclamation point (!) as a statement terminator to include multiple
statements in the body of one macro definition. Furthermore, you can use
the .LABEL directive to declare labels within a macro definition.

NOTE If you use cpp , C-style comments should only be used on separate lines.

129

7 Programming Examples

This chapter consists of five programming examples in assembly
language. The first three examples show typical assembly language code
sequences; the last two examples show the correspondence between C, a
higher-level programming language, and assembly language.

Example 1 Calculates the highest bit position set in a passed
parameter. A binary search is used to enhance
performance.

Example 2 Copies bytes from a source location to a destination
location. Both locations and the number of bytes to
copy are passed in as parameters.

Example 3 Uses Divide Step to divide a 64-bit signed dividend by a
32-bit signed divisor.

Example 4 Uses a procedure call from a C program to the
Assembler to verify that the program is passing the
correct argument.

Example 5 Shows a C program that generates assembly code to
call printf() .

130 Chapter 7

Programming Examples
1. Binary Search for Highest Bit Position

1. Binary Search for Highest Bit Position
The Shift Double and Extract Unsigned instructions are used to
implement a binary search. Bits shifted into general register 0 are
effectively discarded.

 .CODE
 .EXPORT post
;
; This procedure calculates the highest bit position
; set in the word passed in as the first argument.
; If passed parameter is non-zero, the algorithm
; starts by assuming it is one.
; A binary search for a set bit is then used
; to enhance performance.
;
; The calculated bit position is returned to the caller.
;
 .PROC
post
 .CALLINFO SAVE_RP
 .ENTER
 COMB,=,N %r0,%arg0,all_zeros ; No bits set
 LDI 31,%ret0 ; assume 2 to the 0 power
;
; if extracted bits non-zero, fall thru to change assumption
; else set up 16 low order bits and keep assumption
;
 EXTRU,<> %arg0,15,16,%r0 ; check 16 high order bits
 SHD,TR %arg0,%r0,16,%arg0 ; left shift arg0 16 bits
 ADDI -16,%ret0,%ret0 ; assume 2 to the 16 power
;
; if extracted bits non-zero, fall thru to change assumption
; else set up 8 low order bits and keep assumption
;
 EXTRU,<> %arg0,7,8,%r0 ; check next 8 high order bits
 SHD,TR %arg0,%r0,24,%arg0 ; left shift arg0 8 bits
 ADDI -8,%ret0,%ret0 ; assume 8 higher power of 2
;
; if extracted bits non-zero, fall thru to change assumption
; else set up 4 low order bits and keep assumption
;
 EXTRU,<> %arg0,3,4,%r0 ; check next 4 high order bits
 SHD,TR %arg0,%r0,28,%arg0 ; left shift arg0 4 bits
 ADDI -4,%ret0,%ret0 ; assume 4 higher power of 2
;
; if extracted bits non-zero, fall thru to change assumption
; else set up 2 low order bits and keep assumption
;
 EXTRU,<> %arg0,1,2,%r0 ; check next 2 high order bits
 SHD,TR %arg0,%r0,30,%arg0 ; left shift arg0 2 bits
 ADDI -2,%ret0,%ret0 ; assume 2 higher power of 2

Chapter 7 131

Programming Examples
1. Binary Search for Highest Bit Position

;
; if extracted bit is zero, fall thru and keep assumption
; else make conclusion
;
 EXTRU,= %arg0,0,1,%r0 ; check next bit
 ADDI -1,%ret0,%ret0 ; next higher power of 2
 B,N tally

all_zeros
 LDI -1,%ret0

tally
 .LEAVE
 .PROCEND

132 Chapter 7

Programming Examples
2. Copying a String

2. Copying a String
This example contains a section of assembly code that moves a byte
string of arbitrary length to an arbitrary byte address.

; The routine reflect copies bytes from the source location
; to the destination location.
;
; The first parameter is the source address and the second
; parameter is the destination address.
;
; The third parameter is the number of bytes to copy.
;
; For performance, larger chunks of bytes are handled differently.
;
 .CODE
 .EXPORT reflect,ENTRY

reflect
 .PROC
 .CALLINFO ENTRY_GR=6,SAVE_RP
 .ENTER
 COMB,=,N %arg2,%r0,fallout ; done, count is zero
 COMB,<,N %arg2,%r0,choke ; caller error, neg count
 OR %arg0,%arg1,%r6 ; source and dest
 OR %r6,%arg2,%r6 ; count
 EXTRU,= %r6,31,2,%r0 ; 2 low order bits = 0?
 B,N onebyte ; yes, skip this branch
 ADDIBT,<,N -16,%arg2,chekchunk ; no, skip chunkify if count<0

chunkify
 LDWM 16(%arg0),%r6 ; word 1- > temp1
 ; point ahead 4 words in source
 LDW -12(%arg0),%r5 ; place mark 3 wds back- >temp2
 LDW -8(%arg0),%r4 ; place mark 2 wds back- >temp3
 LDW -4(%arg0),%r3 ; place mark 1 wds back- >temp4
 STW %r5,4(%arg1) ; dest wd 2 <-temp2
 STWM %r6,16(%arg1) ; dest wd 1 <-temp1
 ; point ahead 4 words in dest
 STW %r4,-8(%arg1) ; dest wd 3 <-temp3
 ADDIBF,< -16,%arg2,chunkify ; loop if count > 0
 STW %r3,-4(%arg1) ; dest wd 2 <-temp1

chekchunk
 ADDIBT,< 12,%arg2,exeunt ; go if count < -12
 COPY %r0,%ret0 ; clear rtnval

subchunk
 LDWS,MA 4(%arg0),%r6 ; word- >temp1
 ; point ahead 4 bytes in source
 ADDIBF,< -4,%arg2,subchunk ; go if count<4
 STWS,MA %r6,4(%arg1) ; dest< -temp1
 ; point ahead 4 bytes in dest

Chapter 7 133

Programming Examples
2. Copying a String

 B exeunt ; all done
 COPY %r0,%ret0 ; clear rtnval

onebyte
 LDBS,MA 1(%arg0),%r6 ; temp1 < -byte,bump src pointer

onemore
 STBS,MA %r6,1(%arg1) ; dest<-temp1,bump dest pointer
 ADDIBF,=,N -1,%arg2,onemore ; decrement count
 ; compare for 0.
 LDBS,MA 1(%arg0),%r6 ; delay slot
 ; temp1 <-byte,bump src pointer
fallout
 B exeunt
 COPY %r0,%ret0

choke
 LDI 14,%ret0

exeunt
 .LEAVE
 .PROCEND

134 Chapter 7

Programming Examples
3. Dividing a Double-Word Dividend

3. Dividing a Double-Word Dividend
This example contains the code sequence to divide a 64-bit signed
dividend by a 32-bit signed divisor using the DS (Divide Step)
instruction. Table 7-1 on page 135 lists the registers that this program
uses.

start
 MOVB,>= dvdu,rem,check_mag ; Move upper dividend
 ; check for &< 0
 ADD 0,dvdl,quo ; Move lower dividend always
 SUB 0,quo,quo ; Get absolute value of
 SUBB 0,rem,rem ; the dividend in rem,quo
check_mag
 SUBT,= 0,dvr,tp ; Check 0, clear carry,
 ; negate the divisor
 ; and trap if dvr = 0
 DS 0,tp,0; ; Set V-bit to the complement
 ; of the divisor sign
 ADD quo,quo,quo ; Shift msb bit into carry
 DS,&<< rem,dvr,rem ; 1st divide step, if carry
 ; out msb of quotient = 0
 B,n min_ovfl ; Abs(quotient) > 2**31
 ; deal with elsewhere
 ADDC quo,quo,quo ; Shift quo with/into carry
 DS rem,dvr,rem ; 2nd divide step
 ; ...
 ;repeat divide step sequence
 ; ...
 ADDC quo,quo,quo ; Shift quo with/into carry
 DS rem,dvr,rem ; 31st divide step
 ADDC quo,quo,quo ; Shift quo with/into carry
 DS rem,dvr,rem ; 32nd divide step,
 ADDC quo,quo,quo ; Shift last quo bit into quo
 ADDB,>=,n rem,0,finish ; Branch if pos. rem
 ADD,&< dvr,0,0 ; If dvr > 0, add dvr
 ADD,tr rem,dvr,rem ; for correcting rem.
 ADDL rem,tp,rem ; Else add absolute value dvr
finish
 ADD,>= dvdu,0,0 ; Set sign of rem
 SUB 0,rem,rem ; to sign of dividend
 XOR,>= dvdu,dvr,0 ; Get correct sign of quo
 SUB 0,quo,quo ; based on operand signs

Chapter 7 135

Programming Examples
3. Dividing a Double-Word Dividend

Table 7-1 Register Designations

Register
Designations Purpose

dvr Register holding divisor.

dvdu dvd1 Pair of registers holding dividend.

tp Temporary register.

quo Register holding quotient.

rem Register holding remainder.

136 Chapter 7

Programming Examples
4. Demonstrating the Procedure Calling Convention

4. Demonstrating the Procedure Calling
Convention
A C program calls an assembly language program to test if .ENTER and
.LEAVE are working correctly. The assembly language program checks to
see if the C program has passed the value zero in arg0 . The assembly
language program then returns the value -9 in ret0 to the calling
program.

You need to compile this assembly listing using cc . The registers ret0
and arg0 are declared within /usr/lib/pcc_prefix.s , which is
automatically included when you give the C compiler an assembly file.

To remove the dependency on pcc_prefix.s , replace all occurrences of
ret0 with %r28 and arg0 with %r26.

C Program Listing
#include <stdio.h>
int errorcount = 0;
main ()
{
 int toterr = 0;
 printf("TESTING FEATURE 000");
 fflush(stdout);
 if(feat000(000) != -9) ++errorcount;
 printf(" %d errors\\n",errorcount);
 toterr += errorcount;
 errorcount = 0;
}

Chapter 7 137

Programming Examples
4. Demonstrating the Procedure Calling Convention

Assembly Program Listing
; Assembler Module that passes results back to C driver module
myfeat .EQU 000
success .EQU -9

.CODE

.IMPORT errorcount,DATA

.SUBSPA $CODE$

.EXPORT feat000,ENTRY

.PROC

.CALLINFO
feat000 .ENTER

LDI 0,ret0
COMIB,<> myfeat,arg0,exit

NOP
LDI success,ret0

exit .LEAVE
.PROCEND
.END

138 Chapter 7

Programming Examples
5. Output of the cc -S Command

5. Output of the cc -S Command
This example shows how a simple C program generates assembly
language code. The program calls the printf() routine. To run the
assembled code, you need to link the file /usr/ccs/lib/crt0.o and
the C library file. Remember that the ld command requires that you link
the crt0.o file first in 32-bit mode only. You do not need to link
/usr/ccs/lib/crt0.o in 64-bit mode..

C Program Listing
main ()
{

printf ("Hello World\n");
}

Assembly Program Listing From the C
Compiler
.LEVEL 1.0
 .SPACE $TEXT$,SORT=8
 .SUBSPA $CODE$,QUAD=0,ALIGN=4,ACCESS=44,CODE_ONLY,SORT=24
main
 .PROC
 .CALLINFO CALLER,FRAME=0,SAVE_RP
 .ENTRY
 STW %r2,-20(0,%r30) ;offset 0x0
 LDO 48(%r30),%r30 ;offset 0x4
 ADDIL LR’$THIS_DATA$-$global$,%r27 ;offset 0x8
 .CALL ARGW0=GR ;in=26;
 BL printf,%r2 ;offset 0xc
 LDO RR’$THIS_DATA$-$global$(%r1),%r26 ;offset 0x10
L$exit1
 LDW -68(0,%r30),%r2 ;offset 0x14
 BV %r0(%r2) ;offset 0x18
 .EXIT
 LDO -48(%r30),%r30 ;offset 0x1c
 .PROCEND ;

 .SPACE $TEXT$
 .SUBSPA LIT,QUAD=0,ALIGN=8,ACCESS=44,SORT=16
 .SUBSPA $CODE$
 .SPACE $PRIVATE$,SORT=16
 .SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=16
$THIS_DATA$
 .ALIGN 4
 .STRINGZ “Hello World\n”

 .SUBSPA $SHORTDATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=24

Chapter 7 139

Programming Examples
5. Output of the cc -S Command

$THIS_SHORTDATA$

 .SUBSPA BSS,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82
$THIS_BSS$

 .SUBSPA $SHORTBSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=80
$THIS_SHORTBSS$

 .SUBSPA $STATICDATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=16
$STATIC_DATA$

 .SUBSPA $SHORTSTATICDATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=24
$SHORT_STATIC_DATA$

 .IMPORT $global$,DATA
 .SPACE $TEXT$
 .SUBSPA $CODE$
 .EXPORT main,ENTRY,PRIV_LEV=3,RTNVAL=GR
 .IMPORT printf,CODE
 .END

140 Chapter 7

Programming Examples
5. Output of the cc -S Command

141

8 Diagnostic Messages

This appendix lists all error messages that originate from the PA-RISC
Assembler.

The Assembler error messages are divided into the following categories:

Warning Messages Conditions that cause errors in
program execution.

Error Messages Conditions that cause the Assembler
to terminate abnormally.

Panic Messages Conditions that cause the Assembler
to abort immediately.

User Warnings Conditions that cause the Assembler
to produce an object file and possibly
to take a specified corrective action.

Limit Errors Conditions caused by running into
Assembler limits or running out of
memory.

Branching Errors Conditions that prevent the
Assembler from creating an object
file.

Message descriptions use symbols in the form &<operand> to designate
Assembler source elements that are the subject of the error. When a
message is printed during the assembly operation, the &<operand>
symbol is replaced by the appropriate source element.

The text for the Assembler messages is stored in a file with the path
name:

/usr/lib/nls/msg/$LANG/as.cat

The default value for the localization environment variable LANG is C.

142 Chapter 8

Diagnostic Messages
Warning Messages

Warning Messages
The following messages describe compiler warnings that prevent the
Assembler from creating an object file. You must correct these errors to
assemble your program.

1 MESSAGE Use of old style opcode, “%s”

CAUSE Attempt to use an opcode that has
been renamed for PA2.0.

ACTION Consult the PA-RISC Architecture
manual for the new form of the
opcode.

2 MESSAGE Unknown option “%s” ignored.

CAUSE An unknown or invalid command-line
option was passed to the assembler.

ACTION Remove the invalid option from the
command-line.

3 MESSAGE Argument is missing for "%s"

CAUSE Missing argument for command-line
option <operand>.

ACTION Add an argument to the
command-line option.

4 MESSAGE Illegal argument for option
“%s”

CAUSE Invalid value for command-line
option <operand>

ACTION Supply a valid value for the
command-line option.

5 MESSAGE Usage of field selector "%s"
with instruction "%s" may be
incorrect

CAUSE Using an improper field selector for
the instruction.

ACTION Change the field selector.

Chapter 8 143

Diagnostic Messages
Warning Messages

7 MESSAGE Space characteristics may not
be changed after first
declaration

CAUSE Attempt to change the values
assigned to keywords for a space
previously declared with a .SPACE
directive. The first declaration of the
space may be in the file
pcc_prefix.s .

ACTION Use desired values for keywords on
first declaration of space. Specify
keyword values on first declaration of
space only.

8 MESSAGE Subspace characteristics may
not be changed after first
definition

CAUSE Attempt to change the values
assigned to keywords for a subspace
previously declared with a
.SUBSPACE directive. The first
declaration of the subspace may be in
the file pcc_prefix.s .

ACTION Use desired values for keywords on
first declaration of subspace. Specify
keyword values on first declaration of
subspace only.

10 MESSAGE Alignment omitted - 8 assumed

CAUSE Missing argument for .ALIGN
directive.

ACTION Use a valid power of two integer
argument with .ALIGN

11 MESSAGE Missing value - zero assumed

CAUSE Missing argument for .ORIGIN or
.EQU directive

ACTION Use a valid integer argument.

12 MESSAGE Size omitted - 4 assumed

144 Chapter 8

Diagnostic Messages
Warning Messages

CAUSE Missing argument for .COMM
directive.

ACTION Specify the actual number of bytes to
reserve.

13 MESSAGE Modification of %r3 with a
frame size
 larger than 8191 bytes
violates .ENTER/.LEAVE
convention

CAUSE General register 3 used as a
temporary register within a
procedure where the frame size was
set by the FRAME keyword to a size
larger than 8191 bytes.

Note: %r3 is predefined as a frame
pointer for procedures with large
frames.

ACTION Don't use %r3 as a temporary register
in a procedure that has a large frame.

14 MESSAGE KEEP should not be in force
for this statement

CAUSE .KEEP directive used outside of a
procedure

ACTION Remove the .KEEP directive.

15 MESSAGE Procedure makes calls but is
not flagged as CALLER in
CALLINFO

CAUSE Missing CALLER keyword in
.CALLINFO directive for this
procedure.

ACTION Add CALLER keyword to .CALLINFO
for this procedure.

16 MESSAGE Redefinition of symbol

CAUSE Symbol used in label definition is
already defined.

Chapter 8 145

Diagnostic Messages
Warning Messages

ACTION Use a different name in the label part
to avoid overwriting the previous
definition.

17 MESSAGE Existing register name,
number, and type are being
overwritten

CAUSE Name (label) used with .REG was
previously defined.

ACTION Use a different name in the label part
to avoid overwriting previous
definition.

18 MESSAGE The "%s" error message
catalog cannot be located

CAUSE Error message catalog for LANG
<operand> cannot be accessed.

ACTION Insure that your NLSPATH variable is
set correctly. Also insure that the
default error message catalog for the
assembler is accessible in
/usr/lib/nls/msg/C/as.cat

19 MESSAGE Defining register missing or
defining register has no type

CAUSE Parameter to .REG is not one of the
predefined assembler registers, nor is
it a previously defined (by another
.REG directive) register.

ACTION Either use one of the predefined
assembler register names or a
register name previously defined by a
.REG directive.

20 MESSAGE General register expected in
this field - %s

CAUSE Wrong register type used.

ACTION Use a general register.

21 MESSAGE Space register expected in
this field - %s

146 Chapter 8

Diagnostic Messages
Warning Messages

CAUSE Wrong register type used.

ACTION Use a space register.

22 MESSAGE Control register expected in
this field - %s

CAUSE Wrong register type used.

ACTION Use a control register.

23 MESSAGE Floating point register
expected in this field - %s

CAUSE Wrong register type used.

ACTION Use a floating-point register.

25 MESSAGE This subspace should have no
initialized data in it

CAUSE Use of a directive, such as .WORD that
allocates and initializes data, when
the currently active subspace has the
ZERO keyword associated with it,
which disallows initialized data.

ACTION Either use the .BLOCK directive to
allocate storage in this subspace or
remove the ZERO keyword from the
.SUBSPACE definition.

26 MESSAGE Output file name missing

CAUSE Filename needed for -o
command-line option.

ACTION Supply a valid filename for the -o
command-line option.

27 MESSAGE XREF file name missing after
-v

CAUSE Filename needed for -v
command-line option.

ACTION Supply a valid filename for the -v
command-line option.

28 MESSAGE Only one copyright message
permitted

Chapter 8 147

Diagnostic Messages
Warning Messages

CAUSE More than one .COPYRIGHT directive
encountered.

ACTION Remove the extra .COPYRIGHT
directive(s).

29 MESSAGE A procedure may not be empty

CAUSE Procedure with no code encountered.

ACTION Add at least one instruction to
procedure or delete the procedure
from the source file.

30 MESSAGE Procedure does not have
.CALLINFO

CAUSE Procedure requires a .CALLINFO
due to use of .ENTER/.LEAVE or if
there are no unwind space
requirements.

ACTION Insert a correct .CALLINFO directive
at the start of the procedure.

31 MESSAGE Empty source file(s)

CAUSE Input source file was empty.

ACTION An empty source file usually
indicates an error of some kind.

32 MESSAGE Missing .PROCEND

CAUSE A .PROC was not terminated by a
corresponding .PROCEND

ACTION Insert a .PROCEND

33 MESSAGE Cache hint may not work on
some hardware

CAUSE An instruction was encountered that
was performing a load to %r0. This
type of instruction is reserved as a
hint to the cache system. However
some of the early hardware didn't
properly perform this cache hint
feature.

148 Chapter 8

Diagnostic Messages
Warning Messages

ACTION Avoid using loads to %r0 if you want
your code to execute correctly on all
PA-RISC machines.

34 MESSAGE Missing .LEVEL directive; A .LEVEL
1.0 was inserted before .ALLOW

CAUSE A .ALLOW directive was encountered
without first seeing a .LEVEL
directive.

ACTION Insert a .LEVEL directive at the start
of the source file.

35 MESSAGE Use of .ALLOW %s not
meaningful for file assembled
at .LEVEL %s

CAUSE The .ALLOW directive supplied has no
meaning for a file assembled at given
.LEVEL . For example if your source
file specifies .LEVEL 1.1 then a
.ALLOW 1.0 or .ALLOW 1.1 would
not be meaningful for this source file.

ACTION Removed .ALLOW directive or change
.LEVEL .

36 MESSAGE Use of %s is incorrect for
the current %s of %s

CAUSE Use of a feature that is not supported
on the hardware that the assembler
is targeting. The assembler is told
what hardware it is targeting
through the use of the .LEVEL and
.ALLOW directives. Using PA1.1
features while at .LEVEL 1.0 will
generate this message.

ACTION Insert a .LEVEL or .ALLOW directive
as appropriate, or remove the
offending instruction from the source
file.

Chapter 8 149

Diagnostic Messages
Warning Messages

37 MESSAGE Use of %s requires key bit %s
to be enabled with a .LEVEL
or .ALLOW

CAUSE Use of a feature that requires a key
bit to be set.

ACTION Add key bit to the .LEVEL or .ALLOW
directive.

38 MESSAGE Encoding for %s requires a
format that is incorrect for
the current %s of %s

CAUSE The instruction requires an encoding
format that is not available on the
hardware that the assembler is
targeting. The assembler is told what
hardware it is targeting through the
use of the .LEVEL and .ALLOW
directives. Using a PA-RISC 2.0
instruction encoding format while at
.LEVEL 1.1 will generate this
message.

ACTION Change the instruction such that it
can be properly encoded on the
hardware that the assembler is
targeting or change the .LEVEL to
2.0.

39 MESSAGE The completer specified ,%s
is obsolete but will be
accepted as ,%s

CAUSE The use of the ,SH completer is
incorrect.

ACTION Replace the ,SH completer by the ,BC
completer is the source.

40 MESSAGE Poorly formed operand,
accepted as %s(%r0)

CAUSE The previous assembler would
silently accept poorly formed
operands and add a trailing (%r0) to

150 Chapter 8

Diagnostic Messages
Warning Messages

the operand. The new assembler will
also accept these poorly formed
operands and also add the trailing
(%r0) to the operand, but it
additionally flags this as a potential
problem by issuing this warning.

ACTION Add a trailing (%r0) to the operand or
otherwise correct the poorly formed
operand.

41 MESSAGE A register typed operand is
expected here - %s

CAUSE The old assembler would accept
integers between 0 and 31 as valid
registers, or alternatively accept
names that were defined using a
.EQU to an integer. The new
assembler performs additional type
checks on the operands and wants to
see either a predefined register
(starting with a %) or a register name
that was previously defined by the
.REG directive. The file
/usr/lib/pcc_prefix.s is
typically included when the
assembler is invoked through cc(1)
and this file defines many register
names that are typically used in
assembly programs.

ACTION Inspect the source file and replace the
integer with the appropriate
predefined register, or for a name,
find and replace the .EQU directive
with a correct .REG directive.

Alternatively the w41 command-line
option may be used to suppress all
occurrences of this warning message.

Note that future versions of the
assembler may require proper
register typing of operands in order

Chapter 8 151

Diagnostic Messages
Warning Messages

for it to be able to disambiguate
between immediates and registers for
certain opcodes. Thus in future
versions of the assembler this
message may be a non-suppressible
error instead of a warning.

42 MESSAGE Use of %s is incorrect for
the current %s of %s

CAUSE Use of a cbit in a FTEST or FCMP
instruction, with a .LEVEL of 1.1 or
1.0. The cbit feature of FCMP and
FTEST is only available for .LEVEL
2.0 .

ACTION Insert a .LEVEL or .ALLOW directive
as appropriate, or remove the
offending instruction from the source
file.

44 MESSAGE Value for ACCESS was not
specified for this new
.SUBSPA directive.

CAUSE A new subspace is being defined by
the this .SUBSPA directive and a
value of the ACCESS keyword is not
supplied. You must always give a
value for ACCESS when defining a
new subspace.

ACTION If the subspace that you are
referencing is a predefined subspace
then make sure that the header file
/usr/lib/pcc_prefix.s is being
included. You must add the header
file to the command-line if you are
invoking as(1) directly. The header
file will typically be included for you
if you invoke the assembler using
cc(1)

If you are declaring a new subspace
then add the proper ACCESS
definition to the .SUBSPA directive.

152 Chapter 8

Diagnostic Messages
Warning Messages

The value ACCESS=0x2c should be
used for all code or read-only
subspaces and the value
ACCESS=0x1f should be used for all
data or read-write subspaces.

45 MESSAGE Previous value for .SHLIB is
being changed to this value

CAUSE More than one .SHLIB directive was
encountered.

ACTION Remove the extra .SHLIB
directive(s).

46 MESSAGE The +DA option conflicts with
the .LEVEL directive, using
.LEVEL %s.

CAUSE The assembly source file contained a
.LEVEL directive which conflicted
with the command-line +DA option.
The assembler always honors the
.LEVEL directive found in the source
file. The command-line +DA was
ignored.

ACTION Remove +DA from the command-line
used to invoke the assembler.

47 MESSAGE The behavior of instruction
%s is undefined with the
operands and completers
supplied.

CAUSE The behavior of the instruction used
is undefined with the operands
supplied.

ACTION Read the PA-RISC Architecture
manual entry for the instruction
being used, paying attention to the
cases in which the behavior of the
instruction is undefined. Recode the
operands for the instruction so that
the operands don't cause the
instruction to be undefined.

Chapter 8 153

Diagnostic Messages
Warning Messages

48 MESSAGE Expression encountered while
expecting a register;
Register %s substituted for
expression.

CAUSE An expression was encountered in a
location where a predefined register
(starting with a % or a register name
that was previously defined by the
.REG directive was expected. (Also
see warning 41).

ACTION Replace expression with a predefined
register or a register name that was
previously defined by the .REG
directive.

49 MESSAGE Number is too large. The
value -1 will be used
instead.

CAUSE A number was encountered that was
too large to fit in a 64-bit integer.

ACTION Replace the number with a smaller
value.

154 Chapter 8

Diagnostic Messages
Error Messages

Error Messages
The following messages describe compilation errors that prevent the
Assembler from creating an object file. You must correct these errors to
assemble your program.

1000 MESSAGE Unterminated quoted string

CAUSE String specified was missing the
trailing double quote. Strings literals
can not span multiple lines.

ACTION Add trailing double quote to string.

1001 MESSAGE Undefined register symbol

CAUSE Name specified is not a predefined or
.REG defined register symbol

ACTION Correct spelling of name or add .REG
directive to define name.

1002 MESSAGE Undefined completer

CAUSE Invalid value used in completer field.

ACTION Use a proper completer as specified in
PA-RISC Architecture and
Instruction Set Reference Manual.

1003 MESSAGE Improper completer ,%s
specified for opcode %s

CAUSE The completer used is not a valid
completer for the instruction.

ACTION Consult the PA-RISC Architecture
and Instruction Set Reference Manual
for the list of valid completers for this
instruction.

1004 MESSAGE Illegal completer combination
specified for opcode %s

CAUSE The combination of completers used
is not valid for the instruction.

Chapter 8 155

Diagnostic Messages
Error Messages

ACTION Consult the PA-RISC Architecture
and Instruction Set Reference
Manual, for the list of valid completer
combinations for this instruction.

1005 MESSAGE Unable to open xref file: %s

CAUSE Assembler could not create or access
the file specified with the -v
command-line option.

ACTION Insure that the directory is writable.

1007 MESSAGE Label not allowed here in
this expr

CAUSE Assembler will not allow a label here.

ACTION Expressions must be in the form
label1[[-label2]+constant_exp]
Reorder expression to be in the
proper form.

1008 MESSAGE Illegal symbol in expression

CAUSE An expression contains a sequence
other than label operator term or term
operator term

ACTION Place operators +, - , between a label
and a term, or place operators +, - , * ,
/ between a term and term. Note that
a term means a constant expression.

1009 MESSAGE Field selector not allowed in
pc-relative expression

CAUSE Field selector, such as L' or R' used on
a expression that is a branch target.

ACTION Omit field selectors from branch
target expression.

1010 MESSAGE String not allowed in
pc_relative expression

CAUSE String used for branch target
expression.

156 Chapter 8

Diagnostic Messages
Error Messages

ACTION Replace with an expression beginning
with a label or “.”

1011 MESSAGE "." allowed in pc_rel
expression only

CAUSE A period (.) used as an operand in a
non-branch context, or used as a
target in external branch or vectored
branch.

ACTION Use “.” only for pc-relative branches,
not in branch external or branch
vectored.

1012 MESSAGE PC-relative expression must
begin with . or label

CAUSE Branch target is poorly formed.

ACTION Use a label or “.” as the first term of a
branch expression

1013 MESSAGE Second label not allowed in
pc_relative expression

CAUSE Branch target is poorly formed: label
operator label

ACTION Use an offset in place of the second
label.

1014 MESSAGE Labels may not be added, they
may only be subtracted

CAUSE Attempt to form the sum of two
labels.

ACTION Use an offset in place of the second
label.

1015 MESSAGE Unexpected end of expression

CAUSE Nothing follows a +, - , / , or * in an
expression.

ACTION Place meaningful terms, integers or
labels after operator.

Chapter 8 157

Diagnostic Messages
Error Messages

1016 MESSAGE General register %s is out of
range

CAUSE Register number specified greater
than 31 or less than 0.

ACTION Use a valid general register number
between 0 and 31.

1017 MESSAGE Value of %s for space
register not in %sr0..%sr3

CAUSE Space register specified was not in
the legal range.

ACTION Use a space register in the valid
range 0 to 3.

1018 MESSAGE Value of %s for space
register not in %sr0..%sr7

CAUSE Space register number specified
greater than 7 or less than 0

ACTION Use a valid space register number
between 0 and 7.

1019 MESSAGE Opcode %s not defined

CAUSE Characters in the opcode field do not
comprise a legal machine instruction
or directive.

ACTION Starting in column 2, use only valid
opcodes and directives as specified in
PA-RISC Architecture and
Instruction Set Reference Manual.

1020 MESSAGE Number required for keyword
value

CAUSE A .CALLINFO keyword was assigned
a non-numeric argument.

ACTION Ensure that .CALLINFO keywords
are assigned numeric or register
values.

1021 MESSAGE Unrecognized value for
keyword

158 Chapter 8

Diagnostic Messages
Error Messages

CAUSE Illegal assignment for ARGW or
RTNVAL keyword in .CALL or
.EXPORT directive

ACTION Use NO, GR, FR, or FU as appropriate.

1022 MESSAGE This directive must occur
within a declared
subspace: .%s

CAUSE The directive used must appear
inside of a .SUBSPA. The directive
was place outside of a subspace.

ACTION Insert a .SUBSPA before issuing this
directive.

1023 MESSAGE Directive .%s not allowed
inside a procedure

CAUSE Use of this directive must occur
outside of a .PROC The .LOCCT,
.SPACE or .SUBSPA directives must
occur outside of a .PROC

ACTION Do not attempt to change the location
counter, space or subspace within a
procedure.

1024 MESSAGE Space name required

CAUSE .SPACE directive is not followed by a
valid name.

ACTION Follow .SPACE directive with a valid
name.

1025 MESSAGE Unrecognized keyword

CAUSE Directive, such as .SPACE, .SUBSPA,
or .CALLINFO followed by a keyword
not specified in the Assembler
manual.

ACTION Follow directives with legal keywords
separated by commas.

1026 MESSAGE Identifier %s previously
defined

Chapter 8 159

Diagnostic Messages
Error Messages

CAUSE The name being defined already has a
definition. Each identifier can only
have one legal meaning. You can't
define both a space and a subspace
with the same name.

ACTION Change the name used by one of the
definitions to a unique name.

1027 MESSAGE This item must be declared
within a space

CAUSE A directive such as .SUBSPA, is used
before the first .SPACE directive.

ACTION Insert a valid .SPACE directive prior
to the offending directive.

1028 MESSAGE Subspace name required

CAUSE .SUBSPA directive is not followed by
a valid name.

ACTION Follow .SUBSP directive with a valid
name.

1029 MESSAGE Directive .%s must occur
within a procedure

CAUSE Directive such as .CALLINFO ,
.ENTER or .LEAVE is used outside of
a procedure. A procedure is defined
by a matching pair of .PROC,
.PROCEND directives.

ACTION Move the offending directive inside a
procedure or correct the location of
the .PROC and .PROCEND directives
for this procedure.

1030 MESSAGE Only one .CALLINFO per
procedure

CAUSE Multiple .CALLINFO directives were
found within a procedure. A
procedure is defined by a matching
pair of .PROC, .PROCEND directives.

160 Chapter 8

Diagnostic Messages
Error Messages

ACTION Remove the duplicate .CALLINFO
directive or correct the location of the
.PROC and .PROCEND directives for
this procedure.

1031 MESSAGE Value for %s must be >=0

CAUSE 1. In a .CALLINFO directive the
parameter FRAME is assigned a
negative value. 2. In .BLOCK or
.BLOCKZ directive the parameter is a
negative value.

ACTION Supply a non-negative value.

1032 MESSAGE Value for %s must be in range
%r3..%r18

CAUSE In a .CALLINFO directive the
parameter ENTRY_GR is assigned an
invalid general register.

ACTION Use a general register in the range
%r3 to %r18 when assigning to the
parameter ENTRY_GR.

1033 MESSAGE Value for %s must be in range
%fr12..%fr21

CAUSE In a .CALLINFO directive the
parameter ENTRY_FR is assigned an
invalid floating-point register.

ACTION Use a floating-point register in the
range %fr12 to %fr21 when
assigning to the parameter
ENTRY_FR.

1034 MESSAGE ENTRY_SR must be %sr3 or not
specified

CAUSE In a .CALLINFO directive the
parameter ENTRY_SR specifies an
invalid space register.

Chapter 8 161

Diagnostic Messages
Error Messages

ACTION Only %sr3 is saved using the
PA-RISC calling convention. Either
specify %sr3 or omit the ENTRY_SR
keyword.

1035 MESSAGE Instructions must occur
within a declared subspace:
%s

CAUSE Instructions present before .SUBSPA
directive

ACTION Use .SUBSPA directive before issuing
instructions

1036 MESSAGE Illegal use of %previous_sp,
must be used as a base
register

CAUSE The pseudo register %previous_sp
is being used in an instruction as a
source or destination register. This
special register can only be used as a
base register.

ACTION Use %previous_sp as the base
register in a Load or Store
instruction.

1037 MESSAGE nested .PROC

CAUSE A second .PROC directive was
encountered before a .PROCEND
directive

ACTION Insert .PROCEND directive before the
second .PROC directive, or remove
unnecessary .PROC directive.

1038 MESSAGE Label name required for %s

CAUSE Directive, such as .COMM, .REG, .EQU
or .MACRO requires that a label be
present.

ACTION Add a label starting in column 1 to
use as the name being defined by this
directive.

162 Chapter 8

Diagnostic Messages
Error Messages

1039 MESSAGE Missing string constant

CAUSE Directive, such as .STRING ,
.STRINGZ , .VERSION, or
.COPYRIGHT is present without a
string operand.

ACTION Add missing quoted string after
directive.

1041 MESSAGE Name required for %s

CAUSE Directive, such as .IMPORT,
.EXPORT, .SPACE or .SUBSPA is not
followed by an valid identifier.

ACTION Follow directive with a legal
identifier.

1044 MESSAGE Name required for label
definition

CAUSE .LABEL directive is not followed by a
legal identifier

ACTION Add missing identifier after .LABEL
directive.

1045 MESSAGE Name to be defined by .LABEL
must appear as operand.

CAUSE The .LABEL directive cannot have an
identifier in column one.

ACTION Place identifier after .LABEL
directive, not before it.

1046 MESSAGE Duplicate definition of
symbol

CAUSE The same identifier appeared more
than once in column one, or was
defined more than one time with a
.LABEL directive.

ACTION Rename one of the labels.

1047 MESSAGE Unmatched .PROCEND

Chapter 8 163

Diagnostic Messages
Error Messages

CAUSE Two .PROCEND directives were
encountered without a .PROC
directive in between.

ACTION Each procedure should begin with a
single .PROC and end with a single
.PROCEND.

1048 MESSAGE Comma expected

CAUSE A directive which expects two or more
operands was missing a comma
between it's operands.

ACTION Insert comma between operands.

1050 MESSAGE Illegal symbol in label
position

CAUSE Illegal character present in identifier
which begins in column one.

ACTION Use only legal identifiers in label
field.

1051 MESSAGE Illegal symbol in opcode
position

CAUSE A sequence of characters starting in
column two or beyond does not begin
with a alphabetic character or period.

ACTION Use only valid opcodes and directives
starting in column two or beyond.

1052 MESSAGE Directive name not recognized

CAUSE A sequence of characters starting in
column two or beyond, beginning
with a period, does not correspond to
a legal directive.

ACTION Check spelling of directive. Use only
legal directive names starting in
column two or beyond.

1053 MESSAGE Displacement must be a
constant expression

164 Chapter 8

Diagnostic Messages
Error Messages

CAUSE The displacement for this instruction
must be a constant expression.

ACTION Rewrite the instruction so that it uses
a constant expression.

1054 MESSAGE Unexpected items at end of
line

CAUSE Legal operands are followed by
trailing characters or operators.

ACTION Examine entire sequence of
operations for syntactic integrity.
Possibly insert a “;” to denote a
comment after legal operands.

1055 MESSAGE Label must be defined within
a declared subspace

CAUSE Label is present before a .SUBSPA
directive.

ACTION Place label after issuing .SUBSPA
directive.

1056 MESSAGE Poorly formed .DWORD argument

CAUSE The syntax for this .DWORD
argument is invalid.

ACTION Consult the Assembler manual for
the valid syntax.

1057 MESSAGE Unexpected register symbol %s
found in a constant
expression

CAUSE A predefined register or a name
defined by a .REG directive was
encountered in a location where only
an integer constant, a name defined
by a .EQU directive, may occur.

ACTION Replace the predefined register or a
name defined by a .REG directive by a
constant, or change the .REG
directive into a .EQU directive.

Chapter 8 165

Diagnostic Messages
Error Messages

1059 MESSAGE Divide by zero

CAUSE Attempt to perform division with a
zero divisor.

ACTION Examine definition of divisor, ensure
that it is not zero.

1060 MESSAGE Argument 0 or 2 in FARG upper

CAUSE Using the FU value with ARGW0 or
ARGW2 keywords.

ACTION Only use the FU value with ARGW0 or
ARGW2 keywords.

1061 MESSAGE Closing parenthesis is
missing in expression

CAUSE Mismatched parenthesis.

ACTION Insert closing parenthesis in the
expression.

1062 MESSAGE Macro parameters must be
separated by commas

CAUSE Formal parameters to .MACRO or
actual parameters to a macro
invocation are not separated by
commas.

ACTION Insert commas between parameters.

1063 MESSAGE Unterminated macro definition

CAUSE A .MACRO directive is not matched
with a .ENDM directive.

ACTION Terminate macro definition with
.ENDM.

1064 MESSAGE Poorly formed macro parameter

CAUSE Formal parameter to the macro
definition is not in the format
accepted by the Assembler.

ACTION Change the form of the formal
parameter to an acceptable form.

166 Chapter 8

Diagnostic Messages
Error Messages

1065 MESSAGE Poorly formed .FLOAT or
.DOUBLE argument

CAUSE The floating-point number that was
used as the argument to .FLOAT or
.DOUBLE is not in the right format.

ACTION Use a properly formatted
floating-point constant for the
argument.

1066 MESSAGE Poorly formed bit field
specifier

CAUSE Bit field is not specified in the form
{x..y} where x and y are non-negative
integers.

ACTION Specify bit fields in the correct
format.

1067 MESSAGE Bit field too wide for
instruction field

CAUSE Mismatched bit field declaration and
usage.

ACTION Use the same length bit field for the
bit field being assigned to and the bit
field being assigned from.

1068 MESSAGE Brace outside of macro
definition

CAUSE Opening brace ({) or closing brace (})
used outside a macro definition.
These symbols can only be used with
a macro definition. They are used to
form a bit field within a macro
definition.

ACTION Remove opening or closing brace and
ensure that they are only used within
a macro definition.

1069 MESSAGE Equal sign required in bit
field assignment

Chapter 8 167

Diagnostic Messages
Error Messages

CAUSE Missing assignment operator = for
assigning one bit field to another.

ACTION Insert assignment operator = for bit
field assignment.

1070 MESSAGE Bit range must be within
{0..31}

CAUSE Range specified in bit field is not in
the legal range.

ACTION Ensure bit field range is within the
range 0 to 31.

1071 MESSAGE Opening brace expected in bit
range designator

CAUSE Missing opening brace to specify bit
field

ACTION Use correct format for bit field
specification.

1072 MESSAGE Ending brace expected in bit
range designator

CAUSE Missing closing brace to specify bit
field

ACTION Use correct format for bit field
specification.

1073 MESSAGE Unmatched .ENDM

CAUSE No .MACRO directive was recognized
as corresponding to the .ENDM
directive.

ACTION Either remove the unmatched .ENDM
directive or insert a .MACRO directive
in an appropriate position preceding
the .ENDM directive.

1074 MESSAGE Illegal expression type for
plabel

CAUSE More than one label was found in a
plabel expression.

168 Chapter 8

Diagnostic Messages
Error Messages

ACTION Use only one label in a plabel
expression.

1075 MESSAGE Undefined field selector

CAUSE Illegal field selector is being used.

ACTION Use correct field selector.

1076 MESSAGE Recursive macro expansion for
%s

CAUSE Recursive macro expansion not
permitted.

ACTION Change macro definition to not be
recursive.

1077 MESSAGE A .CALLINFO may specify
either CALLS or NO_CALLS but
not both

CAUSE A .CALLINFO directive contained
both the CALLS and NO_CALLS
operands.

ACTION Remove either CALLS or NO_CALLS
from the .CALLINFO directive.

1078 MESSAGE Only one architecture
revision level can be
specified with .LEVEL

CAUSE More than one .LEVEL directive was
encountered and they specified
different architecture levels.

ACTION Remove the inappropriate .LEVEL
directive.

1079 MESSAGE Missing "=" for parameter %s

CAUSE An operand to a directive is expecting
a value to be supplied. For example,
the FRAME keyword to the
.CALLINFO directive expects an
argument to be associated like this:
FRAME=32

Chapter 8 169

Diagnostic Messages
Error Messages

ACTION Supply the missing value to be
associated with the keyword using
the format keyword=value.

1080 MESSAGE Missing integer for parameter
%s

CAUSE An operand to a directive is expecting
a value to be supplied. For example,
the FRAME keyword to the
.CALLINFO directive expects an
argument to be associated like this:
FRAME=32

ACTION Supply the missing value to be
associated with the keyword using
the format keyword=integer .

1081 MESSAGE Missing register for
parameter %s

CAUSE An operand to a directive is expecting
a value to be supplied. For example
the ENTRY_GR keyword to the
.CALLINFO directive expects an
argument to be associated like this:
ENTRY_GR=%r6

ACTION Supply the missing value to be
associated with the keyword using
the format keyword=register .

1082 MESSAGE Wrong kind of register for
parameter %s

CAUSE An operand to a directive is expecting
a different register class to be
supplied. For example the ENTRY_GR
keyword to the .CALLINFO directive
expects a general purpose register to
be associated; supplying a
floating-point register to ENTRY_GR
would produce this error message.

ACTION Use a register of the expected class
for the keyword.

170 Chapter 8

Diagnostic Messages
Error Messages

1083 MESSAGE Floating point register %s is
out of range

CAUSE The value supplied does not
correspond to a legal floating-point
register number.

ACTION Supply a valid floating-point register
number.

1084 MESSAGE Control register %s is out of
range

CAUSE The value supplied does not
correspond to a legal control register
number.

ACTION Supply a valid control register
number.

1085 MESSAGE Illegal value for alignment

CAUSE The value supplied for alignment is
not a valid alignment value. Valid
values are powers of 2 that are
greater than zero and less than or
equal to 4096.

ACTION Change alignment value to a legal
value.

1086 MESSAGE Only one type can be
specified for a symbol with
.EXPORT

CAUSE More than one symbol type was given
for the .EXPORT directive.

ACTION Remove the extra type from the
.EXPORT directive.

1087 MESSAGE Bad value for .SHLIB
parameter, format is
"mm/yyyy"

CAUSE The parameter to the .SHLIB
directive was not in the proper
format. The format must be
mm/yyyy, when mm is the integer

Chapter 8 171

Diagnostic Messages
Error Messages

value for the month,
(Jan=1,…Dec=12) and yyyy is the
year.

ACTION Change the parameter to .SHLIB to a
valid value.

1088 MESSAGE Floating point register %s is
out of range for %s,SGL

CAUSE The floating-point register used is not
valid for this opcode. The multiops
FMPYADD,SGL and FMPYSUB,SGL
require that the operands be single
precision floating-point registers in
the range %fr16L,%fr16R ..
%fr31L,%fr31R . Specifying a
register below %fr16 will result in
this error message.

ACTION You must use single precision
floating-point registers in the range
%fr16L,%fr16R ..
 %fr31L,%fr31R when using single
precision FMPYADD or FMPYSUB.

1089 MESSAGE Revision level must be
specified for .LEVEL
directive

CAUSE A .LEVEL directive was missing an
architecture level value.

ACTION You must specify a valid architecture
level of 1.0, 1.1, or 2.0.

1090 MESSAGE Value of %1s must be in the
range
[%2s..%3s]

CAUSE The immediate value %1s is
constrained to be in the range
%2s..%3s for the current instruction.

ACTION Use a different instruction that
allows for a larger range, or use a
register to hold the value %1s.

172 Chapter 8

Diagnostic Messages
Error Messages

1091 MESSAGE Incorrect register %s used
with %s optional target
register must be %s.

CAUSE This opcode takes an optional
register operand as specified. The
register you used for this operand
was incorrect.

ACTION Use either the correct operand or no
operand.

1094 MESSAGE Value for %s must be in range
0..3

CAUSE The value supplied for the privilege
level was outside the legal range of 0
to 3.

ACTION Supply a valid value in the range 0 to
3 for the privilege level.

1095 MESSAGE Not enough operands for
instruction %s

CAUSE While parsing the operands for the
current instruction <inst>, the
assembler encountered the end of the
line while it was still expecting one or
more operands for the instruction.

ACTION Supply the missing operand(s).

1096 MESSAGE Missing completer for opcode
%s

CAUSE The instruction <inst> requires a
completer. For example the
instruction BB always requires a
completer (either < or >=); omitting
this completer will cause the
assembler to generate this error
message.

ACTION Inspect the current instruction for
missing completers and add the
appropriate completer.

Chapter 8 173

Diagnostic Messages
Error Messages

1097 MESSAGE A "(" was expected while
parsing the operands
of instruction %s

CAUSE The operands for the current
instruction do not have a “(“ in the
correct location.

ACTION Inspect the current instruction and
change the operands to the
instruction so that the are valid.

1098 MESSAGE A ")" was expected while
parsing the operands
of instruction %s

CAUSE The operands for the current
instruction do not have a “)” in the
correct location.

ACTION Inspect the current instruction and
change the operands to the
instruction so that the are valid.

1099 MESSAGE A register was expected while
parsing the operands of
instruction %s

CAUSE The operands for the current
instruction do not have a register in
the correct location.

ACTION Inspect the current instruction and
change the operands to the
instruction so that the are valid.

1100 MESSAGE A "," was expected while
parsing the operands
of instruction %s

CAUSE The operands for the current
instruction do not have a comma (,) in
the correct location.

ACTION Inspect the current instruction and
change the operands to the
instruction so that the are valid.

174 Chapter 8

Diagnostic Messages
Error Messages

1101 MESSAGE Standard input must be a pipe
or FIFO, not a TTY or device
file.

CAUSE The assembler was invoked without
any input files on the command-line.
For this situation the assembler will
then attempt to use the standard
input of a UNIX pipe command. The
object file will be written to standard
output for this case. However, before
assembling the standard input, the
assembler will attempt to discover if
the standard input file is associated
with a TTY or terminal. If the
assembler determines that standard
input is associated with a TTY or
terminal then it prints this error
message and exits.

ACTION Supply a filename when invoking the
assembler, or use a UNIX pipe to
provide an input file for the
assembler.

1102 MESSAGE Displacement of %s must be
multiple of four

CAUSE The displacement in this instruction
must be a multiple of four.

ACTION Use a displacement that is a multiple
of four.

1103 MESSAGE Displacement of %s must be
zero with ,O

CAUSE The displacement must be zero when
using the ,O completer.

ACTION Use a displacement of zero.

1104 MESSAGE Displacement can't be zero
with ,MA

CAUSE The displacement cannot be zero
when using the ,MA completer.

Chapter 8 175

Diagnostic Messages
Error Messages

ACTION Use a non-zero displacement.

1105 MESSAGE Displacement of %s must be
multiple of eight

CAUSE The displacement in this instruction
must be a multiple of eight.

ACTION Use a displacement that is a multiple
of eight.

176 Chapter 8

Diagnostic Messages
Panic Messages

Panic Messages
The following messages describe panic errors that cause the Assembler
to terminate immediately and prevent it from creating an object file. You
must correct these errors to assemble your program.

2000 MESSAGE Exceeded maximum error count

CAUSE More than 100 errors were detected
and the -e option was not used.

ACTION Use the -e option to permit up to a
million errors.

2002 MESSAGE Unable to open input file: %s

CAUSE The input file is either nonexistent or
unreadable.

ACTION Check for presence of requested input
file and examine the read permission
for the file.

2003 MESSAGE Unable to open output file:
%s

CAUSE One of the following: 1. Output file
exists and is not writable. 2.
Directory is not writable 3. File
system is not writable. 4. File system
full 5. File system error.

ACTION Perform the corresponding action: 1.
Delete output file or make output file
writable. 2. Make directory writable.
3. Use a read/write file system for the
output file. 4. Contact your HP-UX
system administrator 5. Contact your
HP-UX system administrator

2004 MESSAGE Free storage exhausted

CAUSE Assembler cannot allocate memory
for it's internal structures.

Chapter 8 177

Diagnostic Messages
Panic Messages

ACTION Break up the program into smaller
modules. If this does not work contact
your HP-UX system administrator.

2005 MESSAGE Internal instruction parsing
error on %s

CAUSE Assembler has an internal defect.

ACTION Have your HP-UX system
administrator contact HP Technical
Support.

2006 MESSAGE Unable to regain access to
source file for listing

CAUSE Not able to access source file for
reading, while formatting the
assembly listing file.

ACTION Check for existence of source file and
permission to read it.

2007 MESSAGE Unable to access temporary
file to build listing

CAUSE Not able to write to the temporary
listing file. Could be a file system
error.

ACTION Contact your HP-UX system
administrator.

2008 MESSAGE Unterminated macro definition

CAUSE Macro definition is not complete until
a .ENDM is encountered.

ACTION Insert a .ENDM at the end of the
macro definition.

178 Chapter 8

Diagnostic Messages
User Warning Messages

User Warning Messages
The following messages are user warnings. The Assembler will proceed,
and produce an object file, in some cases taking the corrective action
described.

7000 MESSAGE Model number is unknown; will
default to arch-rev code
generation.

CAUSE The model number given on a +DA
option is not known to the compiler.

ACTION The default code generation is as
specified in the warning. If this is not
the desired target architecture
revision, specify the version using an
architecture revision (e.g., 1.1)
instead of a model number on the
+DA option.

7001 MESSAGE Architecture version is
unknown; will default to
arch-rev code generation.

CAUSE The architecture revision given on a
+DA option is not known to the
compiler.

ACTION The default code generation is as
specified in the warning. If this is not
what is desired, an alternate
architecture revision may be
specified.

7002 MESSAGE Cannot open sched.models.
(7002)

CAUSE The file sched.model s does not exist
or cannot be opened for reading.

Chapter 8 179

Diagnostic Messages
User Warning Messages

ACTION Check protections on
/opt/langtools/lib/sched.models

and /usr/lib/sched.models . If
neither file exists, contact your HP
Service Representative.

7003 MESSAGE Improper argument to +DA
option. (7003)

CAUSE An improper argument was given to
the +DA or +DS option.

ACTION The +DAmodel is either a model
number (such as 877 or I50, or one of
the PA-RISC architecture
designations 1.0 or 1.1. The
+DSmodel is either a model number
(such as 877 or I50), or one of the
PA-RISC processor names (such as
PA7100). See the
/opt/langtools/lib/sched.models

file for model numbers,
architectures, and processor names.

7004 MESSAGE Debug information may be
corrupt: %1s unresolvable
reference %2s (7004)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7005 MESSAGE Unrecognized opcode %1s
(7005)

CAUSE The opcode specified in an inline
assembly call was invalid.

ACTION Check the architecture instruction
set specification to determine valid
opcode names.

7006 MESSAGE Improper completer ,%1s given
for opcode %2s (7006)

180 Chapter 8

Diagnostic Messages
User Warning Messages

CAUSE The completer specified in an inline
assembly call was invalid for the
opcode given.

ACTION Check the architecture instruction
set specification to determine valid
completers.

7100 MESSAGE code subspace has no unwind
subspace (7100)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7101 MESSAGE Improper completer ,completer
given for opcode opcode

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7102 MESSAGE Immediate value of value for
5-bit-field in opcode not in
[0..31]

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7103 MESSAGE Extract/deposit of value for field size
in opcode not in [1..32]

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7104 MESSAGE Immediate value of value for
opcode is less than -16 (set
to -16)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

Chapter 8 181

Diagnostic Messages
User Warning Messages

7105 MESSAGE Immediate value of value for
opcode is greater than 15 (set
to 15)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7106 MESSAGE DSR value of %1s for %2s not
in [0..3] - truncated (7106)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7107 MESSAGE CSR value of value for opcode
not in [0..7] - truncated

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7108 MESSAGE The value hex-value did not fit into a
signed number bit field at offset
0xinstruction-offset (op code -
op-number)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7109 MESSAGE Tried to define value of
non-absolute symbol %1s
(7109)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7110 MESSAGE Instruction bypassed
low-level manip (7110)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

182 Chapter 8

Diagnostic Messages
User Warning Messages

7111 MESSAGE Bad annotation (7111)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7112 MESSAGE Mandatory completer missing
for opcode %1s (7112)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

Chapter 8 183

Diagnostic Messages
Limit Error Messages

Limit Error Messages
The following messages describe limit errors that cause the Assembler to
terminate immediately and prevent it from creating an object file. you
may be able to work around these errors. They involve running into
Assembler limits or running out of memory.

7200 MESSAGE start/new_pool: out of
memory. (7200)

CAUSE The compiler attempted to allocate
some dynamic memory, and the
system was unable to provide the
memory.

ACTION The easiest workaround is to break
your compilation unit into two or
more pieces and compile them
separately.

On HP-UX, this error may also be
produced if the system runs out of
swap space. You can increase the
amount of swap space available to the
system (see your HP-UX system
administrator). However, this should
only be a last-resort.

7201 MESSAGE new_slc_block: out of memory.
(7201)

CAUSE The compiler attempted to allocate
some dynamic memory, and the
system was unable to provide the
memory.

ACTION See message 7200. Check the system
limits because other processes might
be running that also allocate dynamic
memory.

Break up your compilation module
into smaller pieces, and compile them
separately.

184 Chapter 8

Diagnostic Messages
Limit Error Messages

Increase the system swap area.

7202 MESSAGE init_link: out of memory.
(7202)

CAUSE Compiler ran out of virtual memory.
The compiler attempted to allocate
some dynamic memory, and the
system was unable to provide the
memory.

ACTION See message 7200. Check the system
limits because other processes might
be running that also allocate dynamic
memory.

Break up your compilation module
into smaller pieces, and compile them
separately.

Increase the system swap area.

7203 MESSAGE allocate_bytes: out of
memory. (7203)

CAUSE Compiler ran out of virtual memory.
The compiler attempted to allocate
some dynamic memory, and the
system was unable to provide the
memory.

ACTION See message 7200. Check the system
limits because other processes might
be running that also allocate dynamic
memory.

Break up your compilation module
into smaller pieces, and compile them
separately.

Increase the system swap area.

7204 MESSAGE error in writing to output
file. (7204)

CAUSE I/O error writing to object file.

Chapter 8 185

Diagnostic Messages
Limit Error Messages

ACTION Check for full file system
(HPUX-MPE/iX) or too small object
file (MPE/iX).

7205 MESSAGE unable to allocate space for
object in RL. (7205)

CAUSE I/O error writing to RL.

ACTION Check for too small RL file (MPE/iX).

7206 MESSAGE unable to add object to RL.
(7206)

CAUSE I/O error writing to RL.

ACTION Check for too small RL file or write
permission (MPE/iX).

7207 MESSAGE object is too big to fit into
RL. (7207)

CAUSE Object size is too large for the RL
requested.

ACTION Check for too small RL file or split
object up (MPE/iX).

7208 MESSAGE Internal error while reading
%1s (7208)

CAUSE An error condition was returned
while attempting to open or read data
from an object file.

ACTION Check status of the object files used
to build this program. You might also
try recompiling the source file.

7209 MESSAGE Out of memory while reading
%1s (7209)

CAUSE Compiler ran out of virtual memory
while reading ISOM file.

ACTION See message 7200.

7210 MESSAGE Internal error while writing
%1s (7210)

186 Chapter 8

Diagnostic Messages
Limit Error Messages

CAUSE An error condition was returned
while attempting to open or write
data from an object file.

ACTION Check file permissions and the status
of object files being written by the
compiler.

7211 MESSAGE Out of memory while writing
%1s (7211)

CAUSE Compiler ran out of virtual memory
while writing ISOM file.

ACTION See message 7200.

7212 MESSAGE get_m_heap: out of memory.
(7212)

CAUSE Compiler ran out of virtual memory.

ACTION See message 7200.

7213 MESSAGE OUTPUT_byte: out of memory.
(7213)

CAUSE Compiler ran out of virtual memory.

ACTION See message 7200.

7214 MESSAGE Out of memory while writing
ELF file. (7214)

CAUSE Compiler ran out of virtual memory.

ACTION See message 7200.

Chapter 8 187

Diagnostic Messages
Branching Error Messages

Branching Error Messages
The following messages describe branching errors that prevent the
Assembler from creating an object file. You must correct these errors to
assemble your program.

7400 MESSAGE Procedure number %1s has no
label known to linker (7400)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7401 MESSAGE Attempt to set location
counter backward with .ORIGIN
value \ of %1s (7401)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7402 MESSAGE Procedure call to non entry
point: %1s (7402)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7403 MESSAGE undefined label - %1s (7403)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7404 MESSAGE branch target %1s
unresolvable, instruction
number %2s
(7404)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

188 Chapter 8

Diagnostic Messages
Branching Error Messages

7405 MESSAGE branch target %1s
unresolvable, instruction
number %2s
(7405)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative

7406 MESSAGE label known to linker deleted
(7406)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7407 MESSAGE Corrupt or unrecognized
intermediate code in %1s
(7407)

CAUSE The ucode in the ISOM file is not
recognizable.

ACTION Report error to your HP Service
Representative.

7408 MESSAGE File I/O error while reading
%1s (7408)

CAUSE A file operation on the ISOM file
failed.

ACTION Check the reasons for why the file
was not readable by user.

7800 MESSAGE deletion of instruction has
removed a target at %1s
(7800)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7801 MESSAGE attempt to delete
non-existent instruction
(7801)

Chapter 8 189

Diagnostic Messages
Branching Error Messages

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7802 MESSAGE attempt to insert
non-existent inst. (7802)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7203 MESSAGE attempt to insert labeled
instruction (7803)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7804 MESSAGE set_inst : attempt to set
preg field of an instruction
(7804)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7805 MESSAGE internal instruction parsing
error (7805)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7806 MESSAGE re_init_sllic : output file
not open (7806)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7807 MESSAGE re_init_sllic : i/o error
(7807)

CAUSE Internal compiler error.

190 Chapter 8

Diagnostic Messages
Branching Error Messages

ACTION Report error to your HP Service
Representative.

7808 MESSAGE re_init_sllic : file position
out of alignment (7808)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7809 MESSAGE Data size not equal to
subspace length. (7809)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7810 MESSAGE push_mappings: Stack
overflow. (7810)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7811 MESSAGE pop_mappings: Stack
underflow. (7811)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7812 MESSAGE enter_VT: String too long (>
8K-12 bytes). (7812)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7813 MESSAGE fixup_DNTT_entry: no graph
entry for symbol %1s.
(7813)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

Chapter 8 191

Diagnostic Messages
Branching Error Messages

7814 MESSAGE fixup_DNTT_entry: can’t find
procedure end for symbol
%1s. (7814)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7815 MESSAGE Malloc: underflow detected in
free(). (7815)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7816 MESSAGE Malloc: overflow detected in
free(). (7816)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7817 MESSAGE Malloc: Item being freed is not in use.
(7817)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7818 MESSAGE Malloc: Item being freed is
of wrong size. (7818)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7819 MESSAGE Disasm: Attempt to print NIL
expression. (7819)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7820 MESSAGE Disasm: Bad format in format
string: %s (7820)

192 Chapter 8

Diagnostic Messages
Branching Error Messages

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7821 MESSAGE after: only one graph entry
allowed for repeated inits.
(7821)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7822 MESSAGE newfixup: invalid fixup.
(7822)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7823 MESSAGE xdb_sup: XT entry out of
order. (7823)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7824 MESSAGE inst: Illegal use of pseudo
AP register. (7824)

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative.

7825 MESSAGE inst: Illegal use of floating
point register. (7825)

CAUSE Internal compiler error (unless using
the Assembler).

ACTION Report error to your HP Service
Representative.

7826 MESSAGE Improper format for
sched.models. (7826)

Chapter 8 193

Diagnostic Messages
Branching Error Messages

CAUSE Contents of the file sched.models
were unexpected. This file should
contain current mappings between
machine model numbers and
architecture revisions.

ACTION Check that
/opt/langtools/lib/sched.models
 or /usr/lib/sched.models were
installed or updated along with your
current version of the operating
system.

7827 MESSAGE Invalid architecture version.
(7827)

CAUSE The architecture revision provided in
the file sched.models is not known
to the compiler.

ACTION Check the format of any +DA option
specified to the compiler. If none
specified or format is correct, check
that the file sched.models (in either
/opt/langtools/lib or /usr/lib)
was installed or updated along with
your current version of the operating
system.

7828 MESSAGE inst: Illegal displacement,
low order bits must be zero.

CAUSE Internal compiler error (unless using
the Assembler).

ACTION Report error to your nearest HP
Service Representative.

7834 MESSAGE Procedure limit reached.
(7834)

CAUSE Too many procedures.

ACTION Reduce the number of procedures.

7835 MESSAGE Internal error encountered
while generating ELF file.
(7835)

194 Chapter 8

Diagnostic Messages
Branching Error Messages

CAUSE Internal compiler error.

ACTION Report error to your HP Service
Representative

7836 MESSAGE Files with executable code
must have at least one
exported code

symbol. (7836)

CAUSE Your assembly file contains
executable code but does not have
any exported entry points.

ACTION Use the .EXPORT directive for one of
your entry points or code symbols.

7837 MESSAGE .WORD pseudo-op cannot hold a
64-bit address. Use .DWORD
instead. (7837)

CAUSE Your PA2.0W assembly file contains a
.WORD expr pseudo-operation, where
expr is an address expression.

ACTION Change the pseudo-op to .DWORD
expr

Index

Index 195

Symbols
#

label field, 19
BSS

64-bit mode, 44
BSS subspace, 43, 74
$CODE$

64-bit mode, 44
$CODE$ subspace, 43, 61, 91
$DATA$ subspace, 43, 61, 91
$DEBUG$ space, 41
DLT subspace, 43
$GLOBAL$ subspace, 43, 49
LIT subspace, 43
$MILLICODE$ subspace, 43
PLT subspace, 43
$PRIVATE$ space, 40, 41, 43,

49, 74
$SHLIB_DATA$ subspace, 43
$SHLIB_INFO$ subspace, 43
$SHORTBSS$ subspace, 43, 50
$SHORTDATA$ subspace, 43,

50
$TBSS$ subspace, 50
$TEXT$ space, 40, 41, 43
$UNWIND$ subspace, 43
(MRP) Millicode Return Pointer,

70
.(period)

special symbol, 21
.ALIGN directive, 42, 57
.ALLOW directive, 58, 93
.BLOCK pseudo-operation, 60,

101
.BLOCKZ pseudo-operation, 60
.bss

64-bit mode, 44
.BSS predefined subspace

directive, 116
.BYTE pseudo-operation, 62
.CALL directive, 63, 86
.CALLINFO directive, 48, 67,

81, 102

.CODE directive, 43, 52

.CODE predefined subspace
directive, 116

.COMM directive, 74

.COPYRIGHT directive, 75

.DATA directive, 43, 52

.DATA predefined subspace
directive, 116

.DOUBLE pseudo-operation, 77

.DWORD pseudo-operation, 78

.END directive, 79

.ENDM directive, 80, 98

.ENTER pseudo-operation, 28,
48, 52, 67, 81, 83, 95, 102

.ENTRY directive, 83

.EQU directive, 19, 21, 25, 84

.EXIT directive, 83, 102

.EXPORT directive, 48, 85

.FIRST predefined subspace
directive, 116

.FLOAT pseudo-operation, 88

.GATE predefined subspace
directive, 116

.GLOBAL predefined subspace
directive, 116

.GNTT predefined subspace
directive, 116

.HALF pseudo-operation, 89

.HEADER predefined subspace
directive, 116

.HEAP predefined subspace
directive, 116

.IMPORT directive, 49, 90

.LABEL directive, 20, 92

.LEAVE pseudo-operation, 28,
48, 52, 67, 81, 83, 95, 102

.LEVEL directive, 58, 93

.LISTOFF directive, 52, 95

.LISTON directive, 52, 95

.LIT predefined subspace
directive, 116

.LNTT predefined subspace
directive, 117

.LOCCT directive, 46, 97

.MACRO directive, 19, 21, 37,
80, 98

.MILLICODE predefined
subspace directive, 117

.ORIGIN directive, 101

.PCB predefined subspace
directive, 117

.PROC directive, 48, 102

.PROCEND directive, 48, 102

.REAL predefined subspace
directive, 117

.RECOVER predefined subspace
directive, 117

.REG directive, 19, 21, 25, 35,
104

.RESERVED predefined
subspace directive, 117

.SHLIB_VERSION directive,
105

.SHORTDATA predefined
subspace directive, 117

.SLT predefined subspace
directive, 117

.SPACE directive, 41, 43, 106

.SPNUM pseudo-operation, 108

.STACK predefined subspace
directive, 117

.STRING pseudo-operation, 109

.STRINGZ pseudo-operation,
109

.SUBSPA directive, 43, 46, 107,
111

.text
64-bit mode, 44

.UNWIND predefined subspace
directive, 117

.VERSION directive, 114

.VT predefined subspace
directive, 117

.WORD pseudo-operation, 115

196 Index

Index

Numerics
64-bit environment, 16, 17, 23,

24, 33, 39, 44
 See Also PA-RISC 2.0W
.ALLOW directive, 58
.CALL directive, 63
.CALLINFO directive, 71
.EXPORT Directive, 85
.EXPORT directive, 85, 86
.LEVEL directive, 93
.SUBSPA directive, 111
Executable and Linking

Format, 16, 17, 111
memory, 44

A
ABSOLUTE

symbols, 85
absolute

expressions, 16
result, 29
symbols, 15

absolute symbols
parenthesized subexpressions,

34
access rights attribute and

subspaces, 42
add and branch conditions, 122
ADDB pseudo-instruction, 120
ADDIB pseudo-instruction, 120
address expressions, 16
addressing

long, 40
short, 40

advancing location counter, 101
next alignment boundary, 57

alignment attribute and
subspaces, 42

allowing a label definition, 92
arg0

registers, 136
arithmetic

expressions, 29
operators, 29

as
using instead of cc command,

136
as command, 124

options, 124
ASCII value

initializing reserved storage to,
109

Assembler, 15
expressions, 16
features, 15
invoking, 123
list of directives, 53
list of pseudo-operations, 55
location counters, 16
machine language, 15
macro processing, 16
mnemonic instructions, 15
pseudo-operations, 53
relocatable object file, 15
source file, 15
storage allocation, 16
subspaces, 16
symbol scope, 16
symbolic addresses, 15
symbolic constants, 15

assembling your program, 123,
136

assembly language
listing, 51
procedures, 39
programming example

binary search for highest bit
position, 130

C program calling assembly,
136

C program generating assem-
bly code, 138

copying a string, 132
dividing a double-word divi-

dend, 134

programming examples, 129
programming for HP-UX, 39
programs, 15, 39

assembly statement
comments, 19, 20
directives, 19
instructions, 19
label, 19
opcode, 19
operands, 19, 20
pseudo-operations, 19

assigning an expression value to
an identifier, 84

B
B pseudo-instruction, 120
bit-wise operators, 29
blocks of storage, reserving, 60
branch statement

marking, 63
procedure call, 63

branching messages, 187

C
C compiler

dependencies, 136
passing arguments to

Assembler, 127
passing arguments to C

preprocessor, 127
passing arguments to linker,

127
C language

preprocessor (cpp), 128
type string, 109

calling conventions, 47
catalog

message, 141
cc command

dependencies, 136
using, 127

CODE

Index

Index 197

symbols, 85
COMB pseudo-instruction, 120
COMIB pseudo-instruction, 120
command

as, 124
cc, 127

comments field, 19, 20
compare and branch conditions,

121
compiler conventions, 47
completers, 35

macros, 37
condition

add and branch, 122
compare and branch, 121

constants, 21
integer, 21
parenthesized subexpressions,

34
register-type, 25

control registers, 24
COPY pseudo-instruction, 120
counter, location, 97, 101
cpp (C preprocessor), 128
creating

entry/exit code sequences, 67
stack unwind descriptors, 67

current procedure
describing environment of, 67

D
DATA

symbols, 85
declaring

a new space, 106
a new subspace, 111
beginning of macro definition,

98
beginning of procedure, 102
end of a procedure, 102
predefined subspace, 95

defining

new instructions, with macros,
37

delay slot, 119
instructions, 119

demonstrating the procedure
calling convention, 136

dependencies, 136
cc command, 136
pcc_prefix.s, 136

describing environment of
current procedure, 67

diagnostic messages, 141
directives, 53

.ALIGN, 42, 57

.ALLOW, 58, 93

.CALL, 63, 86

.CALLINFO, 48, 67, 81, 102

.CODE, 43, 52

.COMM, 74

.COPYRIGHT, 75

.DATA, 43, 52

.END, 79

.ENDM, 80, 98

.ENTRY, 83

.EQU, 19, 21, 25, 84

.EXIT, 83, 102

.EXPORT, 48, 85

.IMPORT, 49, 90

.LABEL, 20, 92

.LEVEL, 58, 93

.LISTOFF, 52, 95

.LISTON, 52, 95

.LOCCT, 46, 97

.MACRO, 19, 21, 37, 80, 98

.ORIGIN, 101

.PROC, 48, 102

.PROCEND, 48, 102

.REG, 19, 21, 25, 35, 104

.SHLIB_VERSION, 105

.SPACE, 41, 43, 106

.SUBSPA, 43, 46, 107, 111

.VERSION, 114
list of, 53

predefined subspace, 116
dp register, 49
DS

divide step example, 134

E
ending the program, 79
ENTRY

symbols, 85
entry points

marking procedure, 81, 83
error messages, 141, 154
errors

out of memory, 183
examples, 129

binary search for highest bit
position, 130

C program calling assembly,
136

C program generating
assembly code, 138

copying a string, 132
dividing a double-word

dividend, 134
Executable and Linking Format

64-bit environment, 16, 17,
111

executable program file, 15
exit points

marking procedure, 81, 83
expansion of macros, 95
expressions, 16

absolute, 16
absolute result, 29
address, 16
assigning value to an

identifier, 84
integer constants, 29
relocatable, 16
relocatable result, 29
symbolic addresses, 29
symbolic constants, 29

198 Index

Index

F
feature

implementation-specific, 58,
93

field selectors, 30, 51
shared libraries, 33

fields
comments, 19, 20
label, 19
opcode, 19
operands, 19, 20

fixed argument list, 68
floating-point

registers, 23
floating-point value

initializing a double-word to,
77

initializing a single-word to, 88
following instruction

delay slot, 119
frame marker, 68

G
general registers, 23, 35, 48
generating

entry/exit code sequences, 67
stack unwind descriptors, 67

global symbol, 49

H
hard_reg.h header file, 127
high-level language procedure,

47
HP C/HP-UX, 49
HP FORTRAN 77/HP-UX, 49
HP Pascal/HP-UX, 49

procedures, 48

I
identifier, assigning an

expression value to, 84

illegal symbols, 21
implementation-specific

features, 58, 93
initializing

block of storage, 60, 62, 89
double-word to floating-point

value, 77
reserved storage, 78, 115
reserved storage to ASCII

values, 109
single-word to floating-point

value, 88
inserting

copyright notice, 75
version string, 114

instruction set, 119
instructions

creating with macros, 37
delay slot, 119
pseudo-instruction, 120

integer constants, 21
invoking the Assembler, 123

L
label definition, permitting, 92
label field, 19

.EQU, 19

.MACRO, 19

.REG, 19
pound sign (#), 19

ld(1), 42
LDI pseudo-instruction, 120
legal combination

relocatable terms, 30
legal symbols, 21
levels, versions of PA-RISC, 58,

93
limit messages, 183
limits

memory, 183
linker, 15

executable program file, 15

ld(1), 42
program file, 15
relocatable object file, 15
See also Executable and

Linking Format
subspaces, 42

listing
assembly, 51

location counters, 46, 62, 97
advanced, 101
local to Assembler, 46
next alignment boundary, 57

long addressing, 40

M
macros, 37

.ENDM directive, 80

.MACRO directive, 98
completers, 37
creating instructions, 37
declaring, 98
defining new instructions, 37
expansion, 95
opcodes, 37
operands, 37
processing, 16, 37
subopcodes, 37

making
a new space, 106
entry/exit code sequences, 67
stack unwind descriptors, 67

making symbols available to
other modules, 85, 90

marking
beginning of macro, 98
beginning of procedure, 102
end of macro, 80
end of procedure, 102
next branch statement, 63
procedure entry points, 81, 83
procedure exit points, 81, 83

memory

Index

Index 199

64-bit environment, 44
See also storage
unable to allocate, 183

message catalog, 141
messages

branching, 187
limit, 183
out of memory, 183
user warnings, 178
warning warnings, 187

MFCTL
thread local storage, 50

millicode, 70
Millicode Return Pointer (MRP),

70
mnemonic

instructions, 15
register, 23

moving location counter
to next alignment boundary,

57
MTSAR pseudo-instruction, 120

N
new

instructions
creating with macros, 37

subspaces, 106, 111
NOP pseudo-instruction, 120

O
object file

specifying version, 105
opcode

field, 19
macros, 37

operands, 35
field, 19, 20
macros, 37

operators, 29
arithmetic, 29
bit-wise, 29

field selectors, 30
options

as command, 124

P
page size, 33
panic messages, 176
parameters

as command, 124
parenthesized subexpressions,

16, 34
absolute symbols, 34
constants, 34

PA-RISC
 See Also 64-bit environment
instruction set, 119
version levels, 58, 93

PA-RISC 2.0W, 16, 17, 23, 24,
33, 39, 44

 See Also 64-bit environment
passing Assembler arguments

from C compiler, 127
pcc_prefix.s, 136
pcc_prefix.s configuration file,

127
hard_reg.h, 127
soft_reg.h, 127
std_space.h, 127

period (.), 21
permitting a label definition, 92
PIC (position-independent code),

33, 51
placing copyright notice, 75
position-independent code, 33,

51
pound sign (#), 19
predefined subspace

declarations, 95
predefined subspace directive,

116
.BSS, 116
.CODE, 116

.DATA, 116

.FIRST, 116

.GATE, 116

.GLOBAL, 116

.GNTT, 116

.HEADER, 116

.HEAP, 116

.LIT, 116

.LNTT, 117

.MILLICODE, 117

.PCB, 117

.REAL, 117

.RECOVER, 117

.RESERVED, 117

.SHORTDATA, 117

.SLT, 117

.STACK, 117

.UNWIND, 117

.VT, 117
previous_sp special register

mnemonic, 28
PRI_PROG

symbols, 86
procedure calling conventions,

47
demonstrating, 136
registers, 28

procedures
declaring, 102
ending, 102
marking entry points, 81, 83
marking exit points, 81, 83

processing
macros, 16, 37

programming
aids, 116
for HP-UX, 39

programming examples, 129
binary search for highest bit

position, 130
C program calling assembly,

136

200 Index

Index

C program generating
assembly code, 138

copying a string, 132
dividing a double-word

dividend, 134
programs

file, 15
structure, 19

pseudo-instruction, 120
ADDB, 120
ADDIB, 120
B, 120
COMB, 120
COMIB, 120
COPY, 120
LDI, 120
MTSAR, 120
NOP, 120

pseudo-instruction set, 119
pseudo-operation, 53

.BLOCK, 60, 101

.BLOCKZ, 60

.BYTE, 62

.DOUBLE, 77

.DWORD, 78

.ENTER, 28, 48, 52, 67, 81,
83, 95, 102

.FLOAT, 88

.HALF, 89

.LEAVE, 28, 48, 52, 67, 81, 83,
95, 102

.SPNUM, 108

.STRING, 109

.STRINGZ, 109

.WORD, 115
list of, 55

Q
quadrant attribute and

subspaces, 42

R
register

control, 24
floating-point, 23
general, 23, 35, 48
mnemonics, 23
name user-defined, 104
procedure calling convention,

28
space, 24, 27
typing, 25, 35

register mnemonic
previous_sp, 28

registers
arg0, 136
r%26, 136
r%28, 136
ret0, 136

relocatable
expressions, 16
legal combinations, 30
result, 29
symbols, 15

relocatable object file, 15
requesting storage, 74
reserving a single-word, 108
reserving storage, 60, 78, 115

and initializing to specified
value, 62

initializing to ASCII values,
109

initializing to specified value,
89

result
absolute, 29
relocatable, 29

ret0
registers, 136

returning
to old space, 106
to old subspace, 111

S
SEC_PROG

symbols, 86
sections

64-bit mode, 44
segments

64-bit environment, 44
shared libraries

creating, 51
field selectors, 33
spaces, 40
specifying object file version,

105
shared memory

spaces, 40
SHN_ABS

., 85
short addressing, 40
single-word to floating-point

value, 88
soft_reg.h header file, 127
sort keys

and standard subspaces, 43
attribute and subspaces, 42, 43
spaces, 41

source file, 15
space number, initialized with,

108
spaces

$DEBUG$, 41
$PRIVATE$, 40, 41, 43, 49, 74
$TEXT$, 40, 41, 43
.SPACE directive, 41, 106
64-bit environment, 44
code, 39
data, 39
declaring, 106
declaring new, 106
description, 39
identifiers, 39
memory layout on HP-UX, 41
offsets, 40
quadrant, 40

Index

Index 201

registers, 24, 27, 39
returning to, 106
shared libraries, 40
shared memory, 40
sort key, 41
unloadable, 41

special symbol
period (.), 21

specifying
end of a macro definition, 80
end of a procedure, 102
end of a program, 79
macro definition, 98
new space, 106
new subspace, 111
next branch statement, 63
object file version, 105
procedure, 102
procedure entry points, 81, 83
procedure exit points, 81, 83

stack
fixed argument list, 68
frame, 69
frame marker, 68
unwind, 47

standard arithmetic operators,
29

standard procedure calling
conventions, 47

standard subspaces and sort
keys, 43

start/new_pool
out of memory, 183

statement
directives, 19
instructions, 19
pseudo-operations, 19

std_space.h header file, 127
storage

allocation, 16
initializing, 78, 115
request, 74
reserving blocks, 60

See also memory
thread local, 50, 90, 91, 107,

112
subexpression

parenthesized, 16, 34
subopcode

macros, 37
subspace, 42

BSS, 43, 74
$CODE$, 43, 61, 91
$DATA$, 43, 61, 91
DLT, 43
$GLOBAL$, 43, 49
LIT, 43
$MILLICODE$, 43
PLT, 43
$SHLIB_DATA$, 43
$SHLIB_INFO$, 43
$SHORTBSS$, 43, 50
$SHORTDATA$, 43, 50
$TBSS$, 50
$UNWIND$, 43
64-bit environment, 44
access rights attribute, 42
alignment attribute, 42
and location counters, 16
attributes, 42
declaring, 111
linker, 42
location counters, 46
predefined declarations, 95
quadrant attribute, 42
returning to, 111
sort key attribute, 42, 43

subspace attribute
access rights, 42
alignment, 42
quadrant, 42
sort key, 42, 43

subspaces
declaring new, 111

swap space
errors, 183

switching
to old space, 106
to old subspace, 111

symbolic
addresses, 15
constants, 15

symbols, 21
ABSOLUTE, 85
absolute, 15
case sensitive, 48
CODE, 85
DATA, 85
ENTRY, 85
exported, 16
illegal, 21
imported, 16
legal, 21
period (.), 21
PRI_PROG, 86
relocatable, 15
scope, 16
SEC_PROG, 86
type, 48
valid, 21

symbols available to other
modules, 85, 90

T
terminating the program, 79
thread local storage, 50, 90, 91,

107, 112
MFCTL, 50

TSPECIFIC, 90, 91, 107, 112
typing

register, 35

U
unloadable space, 41
unwind descriptors, 47
user warning messages, 178
user-defined register name, 104
using as command, 124

202 Index

Index

options, 124

V
valid symbols, 21
version

.SHLIB_VERSION directive,
105

in object file, 105
inserting string, 114

version levels of PA-RISC, 58, 93
virtual address, 39

W
warnings

messages, 142, 178

