
SoftBench SDK:

CodeAdvisor and Static

Programmer's Guide

ABCDE

HP Part No. B6454-90005

Printed in USA February 1998

E0298

Notices

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
�tness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the speci�c warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Hewlett-Packard Sales and Service O�ce.

Copyright c 1983-1998 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DOD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

Use of this manual and CD-ROM(s) or tape cartridge(s) supplied for this
package is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright c 1980, 1984, 1986 Novell, Inc.

Copyright c 1979, 1980, 1983, 1985-1993 The Regents of the University of
California.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

Copyright c 1994 X/Open Company Limited.

UNIX R is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Copyright c 1990 Motorola, Inc. All Rights Reserved.

\Sun" and the Sun logo are trademarks of Sun Microsystems, Inc.

Copyright c 1986-1992 Sun Microsystems, Inc.

Copyright c 1989, 1990, 1993 Open Software Foundation.

Portions of this software and documentation are based in part on Motif
software and documentation developed and distributed by the Open Software
Foundation.

OSF/Motif is a trademark of the Open Software Foundation in the U.S. and
other countries.

Copyright c 1985, 1986, 1988, 1989 Massachusetts Institute of Technology.

Copyright c 1986 Digital Equipment Corp.

Portions of this software and documentation are based in part on software
and documentation for the X Window System, Version 11, developed and
distributed by Massachusetts Institute of Technology.

Printing History

New editions of this manual incorporate all material updated since the previous
edition.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates incorporated at reprint do not cause this date to change.) The manual
part number changes when extensive technical changes are incorporated.

January 1996 Edition 1 (B5073-90004)

February 1998 Edition 1 (B6454-90005)

iv

Preface

This manual describes how to write new rules for the SoftBench CodeAdvisor
product. It also documents the Static Database Application Programmer's
Interace (API) for programmers who need to access the API for other purposes.

The following reference pages are available online via the man command:

softbench(5) A high-level general description of SoftBench with a listing
of generic command line options for all SoftBench tools,
including C and C++ encapsulations

softcheck(1) A detailed description of the softcheck command, which
implements the SoftBench CodeAdvisor rule engine

On-line help is also available by pressing the Help key (usually �F1� or �Help�) on
any SoftBench tool.

v

Typeface Conventions

Convention Description

italic font Information you supply, either in syntax examples or in
text descriptions. For example, if told to type: �lename,
you supply an actual �le name like sample. Italics are also
used for emphasis, and for Titles of Books.

typewriter font Computer commands or other information that must be
typed exactly as shown. For example, if told to type:
sample, you type exactly the word in typewriter font,
sample.

Menu selections are in typewriter font separated by colons.
See \Menu Conventions" in this chapter.

boldface font A term that may need further clari�cation or de�nition,
especially a familiar word (such as menu) used with a
computer-speci�c meaning. These terms are clari�ed in the
glossary.

[. . .] Optional parameters in syntax examples are enclosed in
brackets.

�KeyCap� Represents a key on your keyboard that you must press, or
an on-screen button that you must select, as part of the
operation. For example, �Return� is the \Carriage Return"
key, which completes a command input. This key may be
labelled \RETURN", \Return", or \Enter".

�Key1�-�Key2� A hyphen between keys indicates that two or more keys
must be pressed at the same time. For example,
\Control-�C�" means to press and hold the Control key
while pressing and releasing the �C� key. The Control key
may be labelled \CTRL", \Ctrl", or \Control".

vi

Contents

1. User De�ned CodeAdvisor Rules

2. Modifying Table-Driven Rules
Modi�cation Process 2-1
Table Formats . 2-1
Specifying Scope of Changes 2-2

The NameConventions Rule Family 2-3
Rule Format . 2-3
Examples of Use . 2-5
Extending NameConventions 2-5

The ProhibIdent Rule Family 2-6
Rule Format . 2-6
Examples of Use . 2-7
Extending ProhibIdent 2-7

The ProhibDefines Rule Family 2-8
Rule Format . 2-8
Examples of Use . 2-8
Extending ProhibIdent 2-9

The DtorMatchCtor Rule Family 2-10
Rule Format . 2-10
Examples of Use . 2-11

3. Understanding the Programming Model

The Rule Engine . 3-2
The Rule Base Class 3-3
Example Rule . 3-7
The RuleWithTable Base Class 3-10
Example Table-Driven Rule 3-14

Contents-1

4. Understanding the Static Database

Database Objects . 4-1
Capabilities of the Database 4-2
Learning the Database API 4-3
Database Objects . 4-3
Incomplete Objects 4-6
Database Types . 4-6
Type Quali�ers . 4-7

Accessing the Database 4-8
Opening and Closing the Database 4-8
Delimiting Transactions 4-9

Iterators . 4-10
Attribute Iterators 4-11

Object Interfaces . 4-12
Block Object . 4-13
Class Object . 4-14
Example . 4-17

ClassTemplate Object 4-18
DataMember Object 4-19
Enum Object . 4-20
EnumMember Object 4-21
File Object . 4-22
Function Object . 4-24
FunctionMember Object 4-26
FunctionTemplate Object 4-27
Label Object . 4-28
Macro Object . 4-29
Parameter Object . 4-30
The PerBase Base Class 4-31
RefList Object . 4-32
Example . 4-34

Scalar Object . 4-35
Struct Object . 4-36
The Symbol Base Class 4-38
The SymbolTable Class 4-41
Tag Object . 4-45
TemplateArgument Object 4-46
Typedef Object . 4-47

Contents-2

The TypedSymbol Base Class 4-48
Variable Object . 4-49

Using the Database API 4-50
The Example Rule 4-50
Understanding the Example Rule 4-50
The shadow Function 4-50
kindMask and langMask 4-51
The check Function 4-51
Final De�nitions 4-52

Example Files . 4-53
The UserRulesLocalHides Rule 4-55

5. Implementing Your Rule

Design Guidelines . 5-1
Implementing the Rule 5-3
Decide What to Implement 5-3
Designing the Rule 5-4
Compiling the Rule 5-5
Testing the Rule . 5-5

Adding Your Rule to a Rule Group 5-7
Classifying Your Rule 5-7
Rulegroup File Locations 5-7
Rulegroup File Format 5-8
Creating a New Rule Group 5-8

Updating the Group Index 5-9
Debugging Your Rule 5-10
Running softcheck Under SoftBench Debugger 5-10
Setting Breakpoints In Your Rule 5-12
Tracing Rule Execution 5-13

Documenting Your Rule 5-14
Writing the On-Line Help 5-14
Referring to Other Help Volumes 5-15
Associating Your Rule With the On-Line Help 5-15
Installing the On-Line Help Volume 5-15

Contents-3

A. Detailed Database Type Descriptions

Object Kind . A-2
Attributes . A-3
Scalar Types . A-5
Language Types . A-6
References . A-7
Error Codes . A-8

B. Iterators

Standard Iterators . B-2
Attribute Iterators . B-4

Index

Contents-4

Figures

4-1. Object Hierarchy . 4-5
4-2. RefList Organization 4-33

Contents-5

1

User Defined CodeAdvisor Rules

SoftBench CodeAdvisor o�ers you a powerful tool for improving the reliability
and maintainability of your C and C++ code. Many prede�ned rules come
with the SoftBench CodeAdvisor product, allowing you to bene�t from the
product \right out of the box."

You can also extend the SoftBench CodeAdvisor functionality to meet your
local needs.

The simplest way to customize the SoftBench CodeAdvisor product is to

modify the ASCII �les that are read by existing table-driven rules. See
Chapter 2 for information on this process.

You can also create your own rules using the rule library interface. SoftBench
CodeAdvisor uses the SoftBench Static Analyzer database as its \view" on
your program. You must understand the Static database before you can
begin to write rules.

Adding a rule to the SoftBench CodeAdvisor rule set requires several steps:

1. Understand the SoftBench CodeAdvisor programming model. Study the
sample classes and examples in this manual.

2. Understand the Static database. Learn its capabilities and limitations.
Learn the API (application programmer interface) used to interact with
the database.

3. Design your rule, using the features of the database.

4. Write the rule and link it into the rule-checking environment. Add the
rule to a rule group. Test and debug the rule.

5. Document the new rule.

These steps are documented starting in Chapter 3. That section assumes you
have some experience with C++ programming.

User Defined CodeAdvisor Rules 1-1

2

Modifying Table-Driven Rules

Several rules shipped with the SoftBench CodeAdvisor product read their
de�nitions from ASCII �les. By modifying the �les, you can modify the rules'
behavior. You can add new rule cases, delete current rules, or change a rule's
de�nition. You need not do any programming; you simply edit a text �le.

Modification Process

To modify table-driven rules, you edit or replace the table in the ASCII �le to
meet your needs. The exact changes you make will depend on the desired scope
of the changes (how many users are a�ected) and the rule being changed. (See
\Specifying Scope of Changes".)

Table Formats

Each rule table actually encompasses a family of related rules. Many rule ID's
can be de�ned in a single table. This allows you to specify di�erent �ltering
and di�erent online help for each rule ID in the table.

Each non-comment line de�nes a separate rule ID. The rule ID is the �rst �eld
in the line, and subsequent �elds specify the exact values used by the rule.
Each family of rules speci�es the format of its �le, and the meaning of the
�elds in the �le. Lines starting with # are interpreted as a comment.

See the sections later in this chapter for details on each rule family.

Modifying Table-Driven Rules 2-1

Specifying Scope of Changes

Your changes and additions can a�ect di�erent scopes, depending on where you
make the change or addition. SoftBench CodeAdvisor checks several locations
for rule table information:

/opt/softbench/config/ruletables/$LANG/rule-family

Standard pre-con�gured rule tables, as de�ned by
Hewlett-Packard. Ordinarily you should not change these �les,
but you may copy them to create your own rule �le.

/etc/opt/softbench/config/ruletables/$LANG/rule-family

Local changes and customizations. All users on the system are
a�ected by these changes. If any rule table is present under
the /etc/opt/softbench hierarchy, it totally replaces the
corresponding rule table under /opt/softbench.

$HOME/.softbench/ruletables/rule-family

Personal changes. Visible within all projects for that user.

$PROJECTROOT/Projects/project-name/ruletables/rule-family

Personal changes. Visible only within the speci�ed project.

The locations are checked in the order above. Later information overrides
previous information; for example, personal customizations under
$HOME/.softbench are merged in with the system-wide customization in
/etc/opt/softbench/config, and override it on a rule-by-rule basis.

rule-family is the name of the rule table to be modi�ed. In most cases it
actually contains a collection of rules, since each rule table can de�ne many
rule ID's.

$PROJECTROOT points to the user's speci�ed project information root. By
default, this root is $HOME/.softbench. project-name is the name of the
speci�c project to customize.

2-2 Modifying Table-Driven Rules

The NameConventions Rule Family

NameConventions allows you to specify almost any kind of required or
prohibited condition in an identi�er name. For example, you can create a rule
that requires all class names to be capitalized, or that ags the use of certain
prohibited characters.

Rule Format

Each line contains the following space-delimited �elds:

Rule ID Name of the rule. The same Rule ID cannot appear on
multiple lines.

Help Volume Name of the help volume that contains online help for the
rule. Within that help volume, the rule ID is used as the
help node name. To specify a di�erent node (for example, to
have several rules share the same help node), use the format
helpvolume_nodename.

Kinds to
Check

The \kind" of object that the rule applies to. (See \Object
Kind" in Appendix A for a list of all \kinds" understood
by SoftBench CodeAdvisor.) Within the NameConventions
rule �le, the \kind" must be one or more of: CLASS,
CLASSTEMPLATE, DATAMEMBER, ENUM, ENUMMEMBER, FUNCTION,
FUNCTIONMEMBER, FUNCTIONTEMPLATE, IDENTIFIER, LABEL,
MACRO, PARAMETER, SCALAR, SOURCEFILE, STRUCT, TAG,
TEMPLATEARGUMENT, TYPEDEF, UNION, VARIABLE.

Multiple \kinds" are separated by a vertical bar (|).

Regular
Expressions

An Extended Regular Expressions, as documented in regexp(5).
ERE's can contain multiple Regular Expressions separated by
a vertical bar (|).

Match Speci�es whether the rule �res on identi�ers that match or do
not match the Regular Expression. MATCH indicates that the
rule signals a violation on identi�ers that match the Regular
Expression; NOMATCH indicates that the rule signals a violation
on identi�ers that do not match the Regular Expression.

Modifying Table-Driven Rules 2-3

Required
Attributes

Speci�es all attributes that must be set on the identi�er.
(See \Attributes" in Appendix A for a list of all attributes
understood by SoftBench CodeAdvisor.) This �eld can contain
the keyword \ANY", meaning that there are no required
attributes, or one or more of the following attributes separated
by ampersands (&): ABSTRACT, ANONMEM, COMPILE_ERRORS,
CONST, DECLARED_STRUCT, DECLARED_UNION, GLOBAL, INLINED,
INSTANTIATED, MERGE_MEMBERS, PRIVATE, PROTECTED,
PROTECTED, PUBLIC, PURE, SPECIALIZATION, STATIC,
SYNTHETIC, VOLATILE.

Prohibited
Attributes

Speci�es all attributes that must not be set on the identi�er.
This �eld can contain the keyword \ANY", meaning that there
are no prohibited attributes, or one or more of the attributes
speci�ed above separated by vertical bars.

Error Message A message describing the condition that has been violated.
The printf(3) format speci�er %s should be included in the
message. It will be replaced by the erroneous identi�er name.

For example, the following line can be found in the NameConventions rule �le:

NoUnderscoreOnExtern CommonCxx VARIABLE|FUNCTION ^_

MATCH GLOBAL STATIC Identifier '%s' with external

linkage beginning with underscore is in C language

implementation reserved namespace

(This example has been broken into several lines for readability. It must appear
on one line in the rule table.)

This line de�nes the NoUnderscoreOnExtern rule, which speci�es that
no externally-linked (global) identi�ers may begin with an underscore.
The online help for this rule is found in help volume CommonCxx, node
NoUnderscoreOnExtern. The rule applies to VARIABLE and FUNCTION

identi�ers, and �res on identi�ers that match the regular expression \^_"
(underscore at the beginning of the identi�er). The rule applies only to GLOBAL

identi�ers that are not STATIC.

2-4 Modifying Table-Driven Rules

Examples of Use

The rules shipped with SoftBench CodeAdvisor use NameConventions to detect
problems such as:

Illegal identi�ers, such as global IDs beginning with underscore
Stylistic conventions, such as non-capitalized class names

You can create additional rules like these to support your local conventions.

Extending NameConventions

The source for the NameConventions rule family can be found in
/opt/softbench/examples/CodeAdvisor/Rules/ruleNameConventions.C.
You can use this source to extend NameConventions for your local needs. See
Chapter 3 and later chapters for information on writing rules.

Modifying Table-Driven Rules 2-5

The ProhibIdent Rule Family

ProhibIdent checks for prohibited identi�er names. This includes calls to
unsafe functions, uses of obsolete functions and variables, and other similar
situations.

Rule Format

Each line contains the following space-delimited �elds:

Rule ID Name of the rule. Usually the name of the prohibited identi�er
is also used as the name of the rule.

Help Volume Name of the help volume that contains online help for the
rule. Within that help volume, the rule ID is used as the
help node name. To specify a di�erent node (for example, to
have several rules share the same help node), use the format
helpvolume_nodename.

Identi�er The prohibited identi�er.

Kinds to
Check

Identi�er types to check. See the NameConventions rule for the
list of accepted \kinds." Multiple \kinds" are separated by a
vertical bar (|).

Error Message A message describing the condition that has been violated.
The message should identify the invalid identi�er name, and
explain why it is prohibited.

For example, the following line can be found in the ProhibIdent rule �le:

gets CommonCxx gets FUNCTION gets can overflow buffer if input exceeds buffer size

This line de�nes the gets rule, which prohibits the use of the gets function.
Note that the rule does not ag the use of local variables or parameters named
gets, since it only applies to FUNCTION identi�ers. The online help for this rule
is found in help volume CommonCxx, node gets. The error message is a simple
text string.

2-6 Modifying Table-Driven Rules

Examples of Use

The rules shipped with SoftBench CodeAdvisor use ProhibIdent to detect the
use of unsafe, obsolete, and non-portable identi�ers. You may add your own
rules to prohibit the use of other identi�ers.

Extending ProhibIdent

The source for the ProhibIdent rule family can be found in
/opt/softbench/examples/CodeAdvisor/Rules/ruleProhibIdent.C. You
can use this source to extend ProhibIdent for your local needs. See Chapter 3
and later chapters for information on writing rules.

Modifying Table-Driven Rules 2-7

The ProhibDefines Rule Family

ProhibDefines checks for prohibited identi�er names, but it uses a more
specialized algorithm than the ProhibIdent rule. ProhibDefines looks for
identi�ers that are not allowed in #define macros or in -D de�nitions on the
compiler command line.

Rule Format

Each line contains the following space-delimited �elds:

Rule ID Name of the rule. Usually the name of the prohibited identi�er
is also used as the name of the rule.

Help Volume Name of the help volume that contains online help for the
rule. Within that help volume, the rule ID is used as the
help node name. To specify a di�erent node (for example, to
have several rules share the same help node), use the format
helpvolume_nodename.

Identi�er The prohibited identi�er.

Error Message A message describing the condition that has been violated.
The message should identify the invalid identi�er name, and
explain why it is prohibited.

For example, the following line can be found in the ProhibDefines rule �le:

_FILE64 CommonCxx_Port419 _FILE64 _FILE64 - may not be portable

This line de�nes the _FILE64 rule, which prohibits the use of the _FILE64
de�ne. The online help for this rule is found in help volume CommonCxx, node
ProhibDefines. The error message is a simple text string.

Examples of Use

The rules shipped with SoftBench CodeAdvisor use ProhibDefines to detect
unsafe, obsolete, and non-portable de�ne identi�ers. You may add your own
rules to prohibit the use of other identi�ers.

2-8 Modifying Table-Driven Rules

Extending ProhibIdent

The source for the ProhibIdent rule family can be found in
/opt/softbench/examples/CodeAdvisor/Rules/ruleProhibIdent.C. You
can use this source to extend ProhibIdent for your local needs. See Chapter 3
and later chapters for information on writing rules.

Modifying Table-Driven Rules 2-9

The DtorMatchCtor Rule Family

DtorMatchCtor veri�es that resources allocated in a class's constructor are
deallocated in the destructor. Furthermore, the deallocator must match the
allocator. For example, you cannot allocate memory using new and deallocate
it using free.

Rule Format

Each line contains the following �elds. Fields in this rule table are separated by
vertical bars (|), since some of the �eld values (such as \operator new") have
embedded spaces.

Rule ID Name of the rule. The same Rule ID cannot appear on
multiple lines.

Help Volume Name of the help volume that contains online help for the
rule. Within that help volume, the rule ID is used as the
help node name. To specify a di�erent node (for example, to
have several rules share the same help node), use the format
helpvolume_nodename.

Deallocators One or more deallocator functions, separated by commas. Any
of the speci�ed Deallocators can be used to release resources
allocated by any of the Allocators.

Allocators One or more allocator functions, separated by commas. Any of
the speci�ed Allocators can be used to allocate resources that
are later released by any of the Deallocators.

Error Message A message describing the condition that has been violated.
The following printf(3) format speci�ers should be
included in the message, in order, and will be replaced by the
corresponding information:

%d Number of calls to the allocators
%s List of allocators
%s Name of the constructor
%s File name where the constructor is located
%d Line number in the �le where the constructor is located

2-10 Modifying Table-Driven Rules

For example, the following line can be found in the DtorMatchCtor rule �le:

DtorMCtorXDeviceList|CommonCxx_DtorMatchCtor|

XHPFreeDeviceList,XFreeDeviceMotionEvents|

XHPListInputDevices,XGetDeviceMotionEvents|

%d call(s) to (one of) %s in %s (file %s, line %d)

not deallocated

(This example has been broken into several lines for readability. It must appear
on one line in the rule table.)

This line de�nes the DtorMCtorXDeviceList rule, which speci�es
that X DeviceList objects allocated by XHPListInputDevices or
XGetDeviceMotionEvents must be deallocated by XHPFreeDeviceList or
XFreeDeviceMotionEvents. The online help for this rule is found in help
volume CommonCxx, node DtorMatchCtor.

Examples of Use

The rules shipped with SoftBench CodeAdvisor use DtorMatchCtor to check
most allocator/deallocator pairs in standard HP-UX libraries. You may add
your own allocator/deallocator pairs for locally-used resource managers.

Note, however, that this rule only checks allocators in constructors, and
deallocators in destructors. It does not check allocators or deallocators used in
the normal ow of other code. Some of the Flow Analysis rules attempt to
detect errors of this type.

Modifying Table-Driven Rules 2-11

3

Understanding the Programming Model

The SoftBench CodeAdvisor architecture implements rules in shared libraries.
When the rule engine initializes itself, it reads in all the rule libraries it can
�nd and invokes these rules as appropriate.

You can add your own rules by creating libraries for the rule engine to read.
Your libraries will contain C++ code that de�ne classes to implement the rules.
SoftBench CodeAdvisor de�nes the Rule and RuleWithTable base classes, and
the interface through which your rule is invoked.

Note that you do not need to write a main() procedure for your rules. Your
rules exist in a shared library, and are not intended to be run by themselves.
The library is loaded and called by the rule engine in the softcheck command.

Understanding the Programming Model 3-1

The Rule Engine

SoftBench CodeAdvisor loads in all the rule libraries it �nds in
/opt/softbench/lib/rulelibs, /etc/opt/softbench/lib/rulelibs, and
any directories speci�ed by the -l option to softcheck. For each Rule or
RuleWithTable in a rule library, exactly one instance of the rule must be
created. The C++ code that de�nes the rule instance should be of the form:

static NewRuleClass instance;

All global data members are initialized when the shared library is loaded. Since
the instance of NewRuleClass is global, this code forces a call to the Rule base
class constructor in the main rule engine. The constructor noti�es the rule
engine of the existence of the new rule. The rule engine then calls each rule for
all symbols that meet the rule's criteria (or only once, if that is what the rule
speci�es).

Once all rule libraries are loaded, and all rules are initialized, the rule engine
scans through the Static database. For each symbol found in the database, the
rule engine determines if any rules have expressed an interest in that symbol
type, using the kindMask() and langMask() member functions documented in
the next section.

If one or more rules are interested in that symbol, the rule engine calls the
check() or check_with_table() function for each appropriate rule. The rule
functions do whatever testing is required by the rule's de�nition. If the rule
detects a violation, it signals the violation by calling the violation() function.

3-2 Understanding the Programming Model

The Rule Base Class

Non-table-driven rules are written as a class derived from the Rule base class.
Rule de�nes the interface functions required of all rules.

A Rule can de�ne a single rule, or it can de�ne a \multi-rule" that can issue
violations on any of several closely related rules. This can provide signi�cant
performance bene�ts, since you can iterate through interesting objects (such as
the base classes of a class) only once and check for several conditions.

The public interface to Rule is de�ned as follows:

class Rule {

public:

Rule();

virtual ~Rule() {}; // to ensure derived class objects destructors are

// called even when it's deleted through a Rule ptr

// Returns a mask of the kind of symbols this rule checks.

virtual int kindMask() const = 0;

// Returns a mask of the language(s) this rule applies to.

virtual Language langMask() const = 0;

// The member function check() is called when the engine has found a

// symbol of interest to the rule and the rule should be checked.

virtual void check(SymbolTable *symtab, const Symbol &sym)=0;

// Returns a one-line summary of the violation with no

// instance-specific information.

virtual const char *errorMess() const = 0;

// Returns the name of this rule, if only one rule defined.

virtual const char *name() const;

// Returns a NULL-terminated list of rule names, if multiple rules defined.

// Should be persistent and should not require deallocation.

virtual const char *const *names();

/////// End of functions to be defined by each rule ///////

// When check() find a rule violation, it calls violation() with the

// violating symbol and possibly, reference site. Do not override these

// functions.

void violation(const Symbol &sym, const char *err,

const char *help_volume,

const char *rule_name = NULL);

void violation(const char *file, const int line, const char *err,

Understanding the Programming Model 3-3

const char *help_volume,

const char *rule_name = NULL);

// When defining a multi-rule, call report() to determine if

// a particular sub-rule should be checked.

DBboolean report(const char *name) const;

};

You should not access the other public members, the data members, or the
friend functions of the Rule class. They are used by the rule engine.

You must provide your own versions of all the pure virtual functions:
kindMask(), langMask(), check(), and errorMess(). You must also de�ne
name() (if de�ning a single rule) or names() (if de�ning a multi-rule).

The Rule public interface functions are:

Rule() Class constructor. As in any C++ class de�nition, you should
implement a constructor to do any initialization (allocating
memory, initializing data structures, and so on) required by
your rules. Normally, however, you do not need to de�ne your
own constructor.

~Rule() Rule objects are not currently deleted. The Rule class de�nes
a destructor as a placeholder. If your rule does some operation
that should be cleaned up (for example, if you allocate
memory), you should de�ne a destructor to do the appropriate
cleanup action.

kindMask() Returns a bitmask that tells what kinds of Symbols are
checked by the rule. Symbol kinds are de�ned by the
enumeration PerKind in the header �le DB_Common.h. (See
\Object Kind" in Appendix A for a listing.) The bitmask
values are created by using the PerKind enumeration values
to shift a bit into the appropriate �eld. A rule can handle
several kinds of Symbols by OR-ing the values together. For
example, a rule that checks macros and functions should return
a kindMask of \1 << KIND_MACRO | 1 << KIND_FUNCTION".

Note that you cannot specify KIND_CLASS,
KIND_CLASSTEMPLATE, KIND_STRUCT, or KIND_ENUM,
since these object types do not inherit from Symbol. Specify

3-4 Understanding the Programming Model

KIND_TAG to receive all objects of these types. See the next
section (\Example Rule") for an example.

As a special case, a value of 0 indicates the rule should be
called only once for all symbols. You are then responsi-
ble for handling any iteration required by your rule. See
/opt/softbench/examples/CodeAdvisor/Rules/ruleMixedIO.C

for an example.

langMask() Returns a bitmask that tells which languages the rule applies
to. Languages are de�ned in DB_Common.h. Language values
do not need to be shifted, but can be used as they are de�ned.
As an example, a rule that applies to C and C++ should
return a langMask of \LANGUAGE_C | LANGUAGE_CPP". Return
LANGUAGE_UNKNOWN if the rule applies to all languages.

check() The main rule-check function. check() is called for every
symbol in the database matching the types described by
kindMask(). The rule engine passes check() the SymbolTable
of the Static database and the Symbol that matches the
kindMask() and appears in a �le matching langMask().
check() accesses all elements of the program through the
database. See Chapter 4.

errorMess() Returns a string that gives a generic one-line summary of the
rule.

name(),
names()

Return the name or names of the rule(s). If the rule de�nes
only one rule, name() should return the ID of that rule. If
the rule de�nes multiple rules, names() should return a
NULL-terminated list of all rule ID's de�ned by the rule.

violation() If your rule's check() function �nds a violation, it should call
violation() to report the violation.

There are two variations of violation(). The �rst is used
when a problem is found in a symbol de�nition or declaration.
This form locates the de�nition of the symbol (or the
declaration if no de�nition is found) for browsing purposes.
The second form is used when a speci�c usage problem is
detected, and speci�es the location (�le and line) of the
violation.

Understanding the Programming Model 3-5

Both forms have three additional parameters: an err

parameter, which is a string describing the speci�c violation;
help_volume, the name of the help volume containing
the on-line help for this rule; and an optional rule_name
parameter. help_volume can specify a help node using the
format helpvolume_helpnode. rule_name is required only when
issuing a violation from a multi-rule, and indicates which rule
has �red.

You do not de�ne your own violation(), but merely call it
from check().

report() When implementing a multi-rule, some of the sub-rules in your
rule may not be active. (Some sub-rules may belong to inactive
rule groups.) You should call report(), passing it the name
of a sub-rule, to determine if you should execute the code that
tests for that sub-rule. You should not call violation() if
report() returns a FALSE value.

See Chapter 4 for explanations of the Symbol, TypedSymbol, and SymbolTable

classes.

3-6 Understanding the Programming Model

Example Rule

The following code de�nes a very simple rule that enforces a common coding
convention: every class name should be capitalized. (You could use the Class
Editor in Static Analyzer to �nd and �x every occurrence of noncapitalized
classes with one simple operation, by selecting the class and choosing \Edit:
Modify . . . ".)

This rule uses several data structures and functions from the Static API, which
you don't need to understand yet. You can use this example to understand
how rules are structured and linked into the rule engine. Since the rule uses the
general XPG4 regexp(5) expression-matching library, it can easily be extended
to implement other stylistic rules. (In fact, the NameConventions table rule is
an example of such an extended rule.)

Source for this rule can be found in
/opt/softbench/examples/CodeAdvisor/Rules/ruleCapClass.C.
To test the rule, make the example rule library, as explained in the Makefile,
and install the new library in /etc/opt/softbench/lib/rulelibs.

// This is an example of a hypothetical design rule that

// could be implemented in an organization whose coding

// standards require that all Class names begin with a

// capital letter.

#include <Rule/Rule.H>

#include <ctype.h>

#include <stdio.h>

#include <regex.h>

// Define the rule interface

class UserRulesCapClass : public Rule

{

public:

virtual int kindMask() const;

virtual Language langMask() const;

void check(SymbolTable *, const Symbol &);

virtual const char *errorMess() const;

virtual const char *name() const;

};

// This rule is invoked for all "Tag" objects. Tags include all

// compound objects, such as Classes, Templates, Structs, Unions, and Enums.

// Can't specify a kindMask() of KIND_CLASS, since check() is invoked

Understanding the Programming Model 3-7

// only on Symbol objects. Class is not a Symbol; Tag is.

int UserRulesCapClass::kindMask() const

{ return 1 << KIND_TAG; }

// This rule applies only to C++ code.

Language UserRulesCapClass::langMask() const

{ return LANGUAGE_CPP; }

// Find all non-capitalized class names

void UserRulesCapClass::check(SymbolTable *, const Symbol &sym)

{

Tag tag;

Class cl;

// Don't want to check instances; only the class name must be capitalized.

// This code is a common idiom to reject instances.

// The !tag.ClassType(cl) call also rejects enums.

if (!sym.SymbolToTag(tag) || !tag.ClassType(cl) || IS_INSTANTIATED(cl.Attrib()))

return;

// Reject structs and unions, which are also represented as Classes.

if (WAS_STRUCT(cl.Attrib()) || WAS_UNION(cl.Attrib()))

return;

// Pattern specifying that:

// First character is capital letter

// If second character exists, it is not uppercase

static char *capitalized_pattern = "^[[:upper:]]($|[^[:upper:]])";

static regex_t capitalized_compiled_reg;

static DBboolean initialized = false;

// only build regular expression once.

if (!initialized) {

// Note that if the regular expression is rebuilt for each rule run,

// then regfree(&capitalized_compiled_reg) should be called once

// regexec will no longer be called with the expression to avoid

// a memory leak.

if (regcomp(&capitalized_compiled_reg, capitalized_pattern,

REG_EXTENDED | REG_NOSUB)!=0)

return;

initialized = true;

}

3-8 Understanding the Programming Model

if (regexec(&capitalized_compiled_reg, tag.Name(), 0, NULL, 0)!=0) {

// doesn't match regular capitalized expression

char buf[1024];

sprintf(buf, "Class or class template name '%s' not capitalized", tag.Name());

violation(tag, buf, "UserRules");

}

}

// Generic one-line description of the rule

const char *UserRulesCapClass::errorMess() const

{

return("Class name not capitalized.");

}

// Rule name, should match name of C++ Class

const char *UserRulesCapClass::name() const

{

return("UserRulesCapClass");

}

// Force a call to base class constructor in the main program

static UserRulesCapClass instance;

Understanding the Programming Model 3-9

The RuleWithTable Base Class

Table-driven rules are written as a class derived from the RuleWithTable
base class. RuleWithTable inherits most of its interface from Rule, and adds
components to work with rule tables.

Each RuleWithTable rule de�nes the family of rules included in its rule table,
so every RuleWithTable rule is e�ectively a multi-rule. See the name() and
names() function descriptions for speci�c information on how RuleWithTable

uses them.

The public interface to RuleWithTable is de�ned as follows:

class RuleTableRecord {

public:

const char * const name;

const char * const help_location;

const char * const message; // printf format string

const char * const * const data; // array of table data fields

void *client_data; // available to cache anything associated with entry

RuleTableRecord() : name(NULL), help_location(NULL), message(NULL),

data(NULL) {};

RuleTableRecord(const char * const rule_name,

const char * const help,

const char * const msg,

const char * const * const fields) :

name(rule_name),

help_location(help),

message(msg),

data(fields),

client_data(NULL) {}

~RuleTableRecord();

// only test "key" for equality, so entry found

unsigned int operator==(const RuleTableRecord &rec) const

{ return strcmp(rec.name,name)==0; }

unsigned int operator<(const RuleTableRecord &rec) const;

};

class RuleWithTable : public Rule {

public:

RuleWithTable(unsigned int number_of_fields, // not including name or

// help location

const char *field_separator = " \t",

const char record_separator = '\n') :

num_data_fields(number_of_fields),

field_sep(field_separator),

record_sep(record_separator),

ruletable(NULL), ruletable_loaded(false) {}

3-10 Understanding the Programming Model

// User-Defined table-based rules should define check_table_entry

// instead of check().

virtual void check_table_entry(const SymbolTable &symtab,

const Symbol &sym,

RuleTableRecord &entry) = 0;

virtual void check(SymbolTable *symtab, const Symbol &sym);

};

You should not access the private members of the RuleWithTable class. They
are used by the rule engine.

The RuleWithTable interface is a combination of Rule and RuleWithTable.
See the Rule description (earlier in this chapter) for an explanation of
kindMask(), langMask(), errorMess(), and violation(). You will use them
in table-driven rules just as you use them in normal Rule-derived rules.

You must provide your own version of the check_table_entry() function,
as well as the functions required by Rule: kindMask(), langMask(),
errorMess(), and name().

RuleWithTable::check() invokes check_table_entry() for each entry in the
rule table. You should not provide a check() function for table-driven rules
unless you need di�erent behavior than that provided by the default de�nition
of RuleWithTable::check(). You should not provide a names() function,
since RuleWithTable overloads the Rule::names() de�nition.

In addition to the inherited Rule interface functions, the following member
functions are de�ned for RuleWithTable:

RuleWith

Table()

Class constructor. Accepts arguments to specify the format of
the table: number of data �elds in the table (not counting the
rule name and the help volume, which are always in �elds 1
and 2, and the violation error message, which follows the last
�eld), �eld separator characters (defaults to space and tab),
and record (line) separator character (defaults to newline).
Your table can use any �eld and record separator characters,
allowing you to use �elds with embedded spaces or newlines if
necessary. The default format uses one record per line, with
space/tab-separated �elds. This is usually the best and most
easily readable format.

Understanding the Programming Model 3-11

Your rule constructor initializer list should invoke the
RuleWithTable() constructor, passing in the appropriate
arguments for your table format.

name(),
names()

The rule IDs in a table-driven rule are de�ned in the rule table,
not in the RuleWithTable de�nition. De�ne a name() function
that returns the name of your rule family . This must match
the basename of your rule table. The rule engine searches
the locations described in \Specifying Scope of Changes" in
Chapter 2 to �nd a rule table with that name.

Do not de�ne names(). RuleWithTable de�nes a names()

member function that returns the names of all rule IDs de�ned
in the rule table.

check_table_

entry()

The main rule-check function. Like the check() function
for Rule(), this function is called for every symbol in the
database that matches the kindMask(). Like check(),
check_table_entry() receives two arguments pointing to the
database SymbolTable and the Symbol to be checked.

In addition, check_table_entry() receives a
RuleTableRecord argument. The rule engine reads each entry
in your rule table, invokes the rule on the appropriate symbols,
and passes the appropriate data to your check_table_entry()
function in this argument.

For example, the NoUnderscoreOnExtern rule de�ned in the
NameConventions rule table (see Chapter 2) speci�es that
the rule applies only to FUNCTION and VARIABLE symbols.
The rule engine scans through all symbols, and invokes
the NameConventions::check_table_entry() function
on all FUNCTION and VARIABLE symbols with information
from the NoUnderscoreOnExtern entry from the rule table.
NameConventions::check_table_entry() then checks the
symbol to see if it violates the conditions speci�ed in the
NoUnderscoreOnExtern table entry.

Note that you do not need to create any code speci�cally
for the NoUnderscoreOnExtern rule. All rule ID's in the

3-12 Understanding the Programming Model

NameConventions family are handled by the NameConventions
rule code.

Understanding the Programming Model 3-13

Example Table-Driven Rule

The following code de�nes ProhibDefines, a simple rule that
is identical (except for its name) to the ProhibDefines
rule that is shipped with SoftBench CodeAdvisor. See
/opt/softbench/config/ruletables/$LANG/ProhibDefines

for the table format used by this rule. (Since this rule is named
UserRulesProhibDefines, it would normally search for a rule table
with that same name. However, for demonstration purposes, this rule
uses the ProhibDefines table.) The source for this rule can be found in
/opt/softbench/examples/CodeAdvisor/Rules/ruleProhibDefines.C.

#include <Rule/RuleWithTable.H>

#include <iostream.h>

#include <stdio.h>

#include <regex.h>

class UserRulesProhibDefines : public RuleWithTable

{

public:

UserRulesProhibDefines() : RuleWithTable(1) {} // 1 data field,

// default separators

virtual int kindMask() const;

virtual Language langMask() const;

void check_table_entry(const SymbolTable &symtab, const Symbol &sym,

RuleTableRecord &entry);

virtual const char *errorMess() const;

virtual const char *name() const;

};

int UserRulesProhibDefines::kindMask() const

{ return (1<<KIND_SOURCEFILE | 1<<KIND_MACRO); }

Language UserRulesProhibDefines::langMask() const

{ return LANGUAGE_C | LANGUAGE_CPP; }

struct UserRulesProhibDefinesClientDataRecord {

regex_t compiled_regex;

};

// Table Driven Rule: Detect prohibited defines in #define and -D

void UserRulesProhibDefines::check_table_entry(const SymbolTable &,

const Symbol &sym,

RuleTableRecord &entry)

{

char buf[1024];

3-14 Understanding the Programming Model

File file;

UserRulesProhibDefinesClientDataRecord *cache;

if (entry.client_data)

cache = (UserRulesProhibDefinesClientDataRecord *) entry.client_data;

else {

cache = new UserRulesProhibDefinesClientDataRecord;

entry.client_data = cache;

const char *regexp = "([[:space:]]|^)-D";

char *pattern = new char[strlen(regexp) + strlen(entry.data[0]) + 2];

if (pattern)

{

sprintf(pattern, "%s%s", regexp, entry.data[0]);

if (regcomp(&cache->compiled_regex,

pattern,

REG_EXTENDED | REG_NOSUB)) {

delete cache;

delete pattern;

entry.client_data = NULL;

cache = NULL;

return;

}

delete pattern;

}

}

if (sym.SymbolToFile(file)) {

if (cache && file.CompileOptions())

{

if (regexec(&cache->compiled_regex,

file.CompileOptions(),

0,

NULL,

0)==0) {

char buf2[1024];

sprintf(buf, entry.message, entry.data[0]);

sprintf(buf2, "File compiled with -D%s : %s", entry.data[0], buf);

violation(file.Name(), 0, buf2,

entry.help_location, entry.name);

}

}

}

else { // not a file, must be a macro

if (strcmp(sym.Name(), entry.data[0])!=0)

return;

SourcePosition defn;

if (sym.DefinitionSite(defn)) {

sprintf(buf, entry.message, entry.data[0]);

Understanding the Programming Model 3-15

violation(defn.file, defn.position.line, buf,

entry.help_location, entry.name);

}

}

}

const char *UserRulesProhibDefines::errorMess() const

{

return("Identifier prohibited for specified reason.");

}

// Rule name -- also used as name of rule table. By default, this rule

// uses the ProhibDefines rule shipped with CodeAdvisor.

const char *UserRulesProhibDefines::name() const

{

return("ProhibDefines");

// return("UserRulesProhibDefines"); // Use this line to use your own table

}

// forces a call to base class constructor in the main program

static UserRulesProhibDefines instance;

3-16 Understanding the Programming Model

4

Understanding the Static Database

Rules use the Static database as their view on the program being checked.

The Static database is represented as a set of persistent objects. That is, the
objects are stored in the �le system of your computer so they are remembered
from one session to another. Each time you build your program and regenerate
the Static database, a new set of objects is created in the database for future
use.

Database Objects

The objects in the database represent programming constructs such as
functions and variables. Each object contains attributes that de�ne the object,
and associations with other objects to reect semantics such as references,
scope, and binding. For example, a variable object has an attribute of being
either global or local to some scope, and a function object is associated with its
parameter list.

The API (application programmer interface) for the database allows you
to open the database, examine the contents of the database, and close the
database. The database API noti�es you of any changes made to the database
(by another process rebuilding the database) while you are accessing it.

See the �les under /opt/softbench/examples/DbApi/Query for some simple
example database queries.

Understanding the Static Database 4-1

Capabilities of the Database

Since the Static database contains attributes and associations for each object,
it is best matched to certain kinds of rule algorithms.

For example, the database is an ideal match for a rule that examines the
member functions de�ned in a class. The class object lists its member
functions on its association list, and each member function object gives full
details on its type and declaration information. You can determine inheritance
information on the class, allowing you to see if any member function shadows a
function inherited from a parent class.

On the other hand, the database does not contain complete information on
the structure of your code. For example, the database might indicate that
your code references the variable Count in the function Compute_it. Using
the information in the database, you could determine if Count is modi�ed or
merely used. The database would not, however, indicate exactly what kind of
statement the reference was in; you could not tell from the database whether
the variable was referenced in an if test, or as a parameter in a function call.

If you consider the information provided by SoftBench Static Analyzer
(function and variable references, pointers to locations in the code, and so on),
you will have a good idea of the information available to you in the Static
database.

If your rule requires more understanding of the program than the database can
provide, you may be able to get it by directly examining the source of your
program. The Static database indicates on what line of what �le the variable
reference occurs; from this you can open the source �le and examine the code
as carefully as necessary for your rule.

Even in cases that aren't a perfect match for the database's capabilities, the
information in the database is a tremendous aid in �nding the information you
need.

4-2 Understanding the Static Database

Learning the Database API

You access the Static database through an Application Programmer Interface
(API). The API gives you an object-oriented view onto the contents of the
database, through which you can access information on your program �les.

Database Objects

The database is implemented as a collection of objects. The interface to the
database consists of functions to open the database and examine those objects.

In order to understand the functions in the API, you must �rst understand the
objects manipulated by the API.

This is a brief overview of the important objects in the database. Each object
type has attributes to describe its name, its type, the other objects associated
with it, and other important information. See \Object Interfaces" for detailed
de�nitions.

SymbolTable Contains object references that lead to all other objects
in the database, much like the root directory of a �le
system \contains" all �les below it. All navigation
through the database begins at the Symbol Table.
There is only one Symbol Table in the database.

PerBase Represents the concept of persistent database object.
All objects inherit from PerBase.

Symbol Contains information required by named objects.
Examples of named objects include �les, #define
macros, and built-in types (Scalar). All named objects
inherit from Symbol. Note: aggregate objects (classes,
class templates, structs, and enums) do not contain
name information, and do not inherit from Symbol.
Instead, the Tag object inherits name information from
Symbol, and points to the Class, ClassTemplate,
Struct, or Enum.

TypedSymbol Contains information required by typed objects.
Examples of typed objects include variables,

Understanding the Static Database 4-3

parameters, and functions. All typed objects inherit
from TypedSymbol.

Block Represents blocks within functions.

Class Represents C++ classes, and structs and unions in
C++ code.

ClassTemplate,
FunctionTemplate

Represent class templates and function templates
(both global template functions and member function
templates).

Enum, EnumMember Represent enumerations and enumeration constants.

RefList Contains all references to a speci�c named object in
the database. Each RefList contains references to an
object in a speci�c �le. For example, each variable
object has RefLists associated with it to describe every
reference (de�nition, declaration, use, modi�cation) to
the variable, one RefList per �le.

Struct Represents structs and unions in C code. Note that
structs that are included in both C and C++ code
appear as Class objects.

File Contains all objects de�ned in a speci�c source �le.
Also contains attributes that indicate \includes" and
\included by" relationships.

Label Represents switch and goto labels.

Macro Represents a #define macro.

Scalar Represents built-in types, such as int and char.

Tag Represents aggregate types: enum, struct, class, and
class templates. Each aggregate types is represented by
a Tag (to hold the Symbol information) and an Enum,
Struct, Class, or ClassTemplate object.

DataMember,
FunctionMember

Represent C++ class data members and member
functions.

Function, Parameter Represent program functions and their arguments.

4-4 Understanding the Static Database

TemplateArgument Represents class template and function template
arguments.

nTypedefn Represents named user-de�ned types.

nVariablen Represents program variables.

See Figure 4-1 for a graphical representation of the database objects. Notice
that Class, Enum, and Struct do not inherit from Symbol. The Tag object
inherits from Symbol, holds the name information, and refers to the aggregate
type.

Figure 4-1. Object Hierarchy

Understanding the Static Database 4-5

Incomplete Objects

Some object types can be \complete" or \incomplete." An incomplete object is
one for which complete information is not available; in particular, no de�nition
is available for the symbol. This is most often encountered with externally
de�ned objects. For example, a program might include the declaration \class
Myclass;", but no de�nition of the class. The database knows Myclass is a
class, but knows no more about it. Myclass will be incomplete in the database.

Incomplete objects behave di�erently than complete objects. For example,
Function::Parameters() returns FALSE for an incomplete function. (See each
object description for details.) In general, many methods return FALSE for
incomplete objects. You must test the return value of appropriate methods to
ensure an object is complete before using the values returned by the object's
methods. Use Symbol::DefinitionSite() to test for completeness. If no
de�nition is available, the object is incomplete.

Note that aggregate objects, such as Class and Enum, do not inherit from
Symbol. You must retrieve the Tag associated with the aggregate to test
DefinitionSite().

Database Types

A number of utility types are used by the database to describe objects. The
most important types include:

PerHandle A \handle" referring to a persistent object in the
database. Handles are managed by the PerBase base
class.

PerKind The type of a persistent object, as described in the
previous section (KIND_SOURCEFILE, KIND_VARIABLE).

Attribute Attributes of an object, such as ATTR_GLOBAL,
ATTR_STATIC, ATTR_PRIVATE, or ATTR_VIRTUAL. Inline
functions, such as IS_GLOBAL() and IS_STATIC(), are
de�ned to simplify testing attribute values.

ScalarType The basic type of a variable, such as SCALAR_CHAR or
SCALAR_FLOAT.

4-6 Understanding the Static Database

Language The language (such as LANGUAGE_C or LANGUAGE_CPP)
associated with a �le or symbol.

Usage The type of reference to a symbol, such as
REF_DEFINITION, REF_MODIFICATION, or REF_CALL.

Reference A reference to a symbol, including the Usage type and
the line and column where the reference occurs.

SourcePosition A Reference within a speci�c �le.

These types are de�ned in the header �le DB_Common.h. See Appendix A for a
complete listing.

Type Qualifiers

Typed objects, such as Variables and Parameters, inherit \type" and \type
quali�er" information from the TypedSymbol base class. The Type() member
returns a Symbol object referencing the derived object that describes the type.
The TypeQualifier() member returns all modifying information on the base
type, such as *, &, [], or const.

For example, a Variable de�ned by \int count" has a Type() of \int".
That is, the Symbol returned by Type() represents a Scalar object with a
ScalarType() of SCALAR_INT. The TypeQualifier() string is null.

A Variable de�ned by \class C &Cref const" has a Type() that returns the
Tag for \class C". The TypeQualifier() member returns \& const".

The possible values that may be found in a TypeQualifier() string are:

* Quali�es the type as an indirection (pointer).

[number] Quali�es the type as an array of dimension number .

& Quali�es the type as a reference.

const Quali�es the type as a constant.

volatile Quali�es the type as volatile.

Use the type-safe conversion routines Symbol::SymbolTotype() to test the
value returned by Type() and to convert it to the appropriate type for use.

Understanding the Static Database 4-7

Accessing the Database

The basic interface to the database is quite simple. You open the database,
specifying what language(s) you are interested in, and the open call returns the
database's global symbol table.

You then bracket each request to the database in a \transaction," so that no
other process can change the database while you are reading it.

Remember to close the database when you are �nished.

Note: rule writers do not need to open or close the database or manage
transactions. The rule engine handles all transaction processing.

Opening and Closing the Database

The SymbolTable class (described later) de�nes two friend functions,
OpenDatabase and CloseDatabase. As their names imply, these functions
are used to open and close a speci�ed database. The database manages the
accesses to it, and can safely handle a writer (such as a compiler updating the
database) at the same time a reader (such as your rule) has the database open.

DBboolean OpenDatabase(const char *filename,

SymbolTable &globalsymboltable,

Language language,

DBModifiedCallback callback);

void CloseDatabase(SymbolTable &globalsymboltable);

Given a filename, OpenDatabase opens the database in that �le and returns a
pointer to the SymbolTable in the database. Language is used to specify the
language(s) you are interested in; normally you will pass in LANGUAGE_CPP or
LANGUAGE_CPP | LANGUAGE_C. Use LANGUAGE_UNKNOWN if you are interested in
all languages. The function callback is called if the database is modi�ed by a
writer while you have it open. You can use this to indicate that the database
is now out of date, just like SoftBench Static Analyzer does. The callback
function must be de�ned as \void callback(void) { body }".

4-8 Understanding the Static Database

It is possible to open and manipulate multiple databases at once. This is useful
if there are multiple databases representing your program. For example, if you
compiled a library separately from the main program, in another directory, the
library would have its own Static database.

CloseDatabase simply closes the database and clears the globalsymboltable
pointer.

Delimiting Transactions

The database can be accessed by a writer while readers have the database
open, but not while readers are actively accessing the database. You must
enclose each request to the database in a \transaction." This prevents a writer
from changing the database in the middle of your access.

Call the method GST.StartTransaction() immediately before your database
access, and call GST.EndTransaction() as soon as you have �nished. (GST
is the Global Symbol Table object returned by your call to OpenDatabase.)

Understanding the Static Database 4-9

Iterators

Since an object may have an arbitrary number of items associated with it
(for example, a variable may be accessed in arbitrarily many locations), the
database provides a mechanism to successively select and operate on each item
in a list.

The Iterators mechanism manages the iteration through a collection of items.
Using Iterators, it is easy to iterate through all objects in a list, without
needing to understand the underlying iteration mechanism.

Iterators are accessed by calling an \iterator de�nition function" de�ned
in certain database objects. As an example, the SymbolTable class de�nes
\ITERATOR(File) Files() const;". This function returns a C++ object
of type ITERATOR(File). You use this iterator by saving the value returned
by Files() and looping using the macros ITERATE_BEGIN and ITERATE_END.
Within the body of the iteration loop, the current value of the iterator variable
points to the current object to be operated upon.

ITERATOR(File) filei; // Declare the iterator pointer

filei = GST.Files(); // Get the File iterator

ITERATE_BEGIN(filei) // Iterate on all Files

{

// Access information in each file, using filei as File pointer.

// For example, to list all source files found in the database:

cout << "File name is " << filei.Name() << endl;

}

ITERATE_END(filei);

See Appendix B for a more complete explanation of iterators.

4-10 Understanding the Static Database

Attribute Iterators

The Static API also de�nes a subset of iterators, called Attribute Iterators,
that de�ne a set of attributes along with each object in the iteration list.
Attributes, as de�ned in the Static database, specify characteristics of a symbol
such as Global, Static, Public, Private, and Virtual. See \Database Types".
Attribute Iterators are identical to normal iterators, with the addition of two
member functions (GetIteratorAttribute() and SetIteratorAttribute())
to access the attributes.

Attribute Iterators are primarily used for class inheritance links. Since a
base class may be referenced by many derived classes, and each derived class
may de�ne a di�erent inheritance characteristic (public, private, virtual), the
inheritance information cannot be stored in either base or inherited class. The
Attribute Iterator associates the inheritance information with each inheritance
link.

See Appendix B for more information.

Understanding the Static Database 4-11

Object Interfaces

The class interfaces for the database objects de�ne the bulk of the Static API.
Each object de�nes the methods (functions) that are used to access the object.
In addition, many objects also inherit from other, more generic objects (usually
Symbol), which in turn de�ne additional function interfaces.

The following sections describe the class de�nition interface to each object
type.

Note that many object methods accept complex objects as parameters and,
using C++ references, modify the parameters. These routines return the
DBBoolean value FALSE if any error occurs.

Each object de�nes constructors and destructors. You should not use these
functions, since objects are created and destroyed automatically as needed by
your code. You are only interested in the additional public methods de�ned
by each object type.

These object classes are de�ned in the header �le DB_Read.h.

The descriptions in this chapter are arranged alphabetically for ease of
reference. In addition to the actual objects you will encounter in the database,
this chapter also includes descriptions for the SymbolTable class and the
three object \base" classes: the PerBase class, which all database objects
inherit from, the Symbol class, which all named objects inherit from, and the
TypedSymbol class, which all typed Symbol objects inherit from.

The SymbolTable object is returned when you open a database, and is the
source of navigation for all further database operations. You do not normally
need to use the SymbolTable object when writing rules, since the rule engine
handles the database manipulations for you. The exception occurs when you
specify a kindMask() of 0. In that case you must handle all iteration through
the SymbolTable.

4-12 Understanding the Static Database

Block Object

Block represents the entire code block within a function.

Block inherits from PerBase, and has no type or name properties.

class Block : public PerBase {

public:

Block();

~Block();

unsigned int BeginLine() const;

unsigned int EndLine() const;

Attributes Attrib() const;

File BlockFile() const;

ITERATOR(Variable) BlockVariables() const;

ITERATOR(Tag) BlockTags() const;

ITERATOR(Typedef) BlockTypedefs() const;

ITERATOR(Function) BlockFunctions() const;

ITERATOR(Label) BlockLabels() const;

};

Method Definitions

BeginLine(),
EndLine(),
BlockFile()

Indicate the block's location.

BlockVariables(),
BlockTags(),
BlockTypedefs(),
BlockFunctions(),
BlockLabels()

Return iterators over the variables, tags (classes,
structs, enums, and templates), typedefs, functions,
and labels de�ned in the block.

Understanding the Static Database 4-13

Class Object

Class objects represent C++ classes. Structs and unions in C++ code are
also represented by Class, since C++ makes little distinction between classes
and the other aggregate types. (You can determine if the Class was declared
as a struct or union by testing the Attrib() value using the attribute-testing
functions WAS_STRUCT() and WAS_UNION().) Structs parsed only by a C
compiler are represented as Structs.

Each Class has a corresponding Tag.

Class objects contain DataMember and FunctionMember objects to represent
the data �elds and methods de�ned by the class. Class objects also contain
iterators to list the parent (base) classes and children (derived) classes of the
class.

Class objects contain only the members that are de�ned by that class . You
must seek back through parent classes to �nd all members inherited from base
classes. See below for an example.

For an incomplete struct, only ClassTag() and Attrib() return meaningful
results. All other methods return FALSE or null values.

Note that class instances are represented as incomplete Classes. In this
speci�c case, when the attribute IS_INSTANTIATED is set, ExpandedFrom()
returns the template from which the class is instantiated. To derive
information about instances, you must access the instantiating template.

Class inherits from PerBase, and has no type or name properties. The
corresponding Tag contains the name information.

class Class : public PerBase {

public:

Class();

~Class();

DBboolean ClassTag(Tag &tag) const;

Attributes Attrib() const;

int MemberCount() const;

DBboolean FindDataMember(const char *name, DataMember &member) const;

DBboolean FindFunctionMember(const char *name, FunctionMember &member) const;

ITERATOR(DataMember) DataMembers() const;

ITERATOR(FunctionMember) FunctionMembers() const;

ITERATOR(Function) AllFunctions() const;

4-14 Understanding the Static Database

ATTRIBUTE_ITERATOR(Tag) BaseClasses() const;

ATTRIBUTE_ITERATOR(Tag) DerivedClasses() const;

ITERATOR(Tag) NestedClasses() const;

ITERATOR(Tag) NestedEnums() const;

ITERATOR(Typedef) NestedTypedefs() const;

ITERATOR(Symbol) Friends() const;

// Class Template this class is an instance of.

DBboolean ExpandedFrom(Tag &tag) const;

friend class Tag;

};

Method Definitions

ClassTag() Returns the Tag object associated with the Class.

Attrib() Returns the attributes (such as ATTR_GLOBAL) of the
class.

MemberCount() Returns a count of the data and function members in
the class.

FindDataMember(),
FindFunctionMember()

Returns the DataMember or FunctionMember in this
Class with the speci�ed name.

DataMembers(),
FunctionMembers()

Return iterators over all data members or function
members in the class.

AllFunctions() Like FunctionMembers(), but also returns
FunctionTemplates in a ClassTemplate.
AllFunctions() should be used if you want your rule
to apply to both classes and class templates.

BaseClasses(),
DerivedClasses()

Return attribute iterators over the immediate parent
or immediate derived classes of this class. (Notice
that these iterators return Tags, not Classes.) For
example, suppose class Z inherits from classes Y1
and Y2, and Y1 inherits from X. The BaseClasses()
iterator on class Z returns only Y1 and Y2. To
�nd the deeper ancestors of Z, you must use the
BaseClasses() iterators on Y1 and Y2. Similarly,
DerivedClasses() on X returns only Y1 and any

Understanding the Static Database 4-15

other classes that inherit directly from X. See below
for an example.

Note that BaseClasses() is guaranteed to return
all base classes of a class, but DerivedClasses()
cannot be guaranteed to return all derived classes. It
is possible that code not included in the database
derives from this class.

GetIteratorAttribute() returns the attributes of
the inheritance relationship: virtual, public, private,
or protected.

NestedClasses(),
NestedEnums(),
NestedTypedefs()

Return iterators over the classes and enums nested
within the class.

Friends() Returns an iterator over the friend functions of the
class.

ExpandedFrom() If the class is an instance of a class template,
ExpandedFrom() returns the tag of the class template
of which it is an instance.

4-16 Understanding the Static Database

Example

This function prints all function members in the class referred to by a speci�ed
Class, including all inherited function members.

void function_members(Class cls) {

Tag tag;

cls.ClassTag(tag);

printf("Function Members defined in class %s:\n", tag.Name());

ITERATOR(FunctionMember) fmi = cls.FunctionMembers();

ITERATE_BEGIN(fmi)

{

printf(" %s:\n", fmi.Name());

}

ITERATE_END(fmi)

// Iterate over immediate parent classes of this class

// and recursively print their function members

ATTRIBUTE_ITERATOR(Tag) bci = cls.BaseClasses();

ITERATE_BEGIN(bci)

{

Class cls2;
bci.ClassType(cls2); // BaseClasses returns Tags;

function_members(cls2); // convert to Class & recurse

}

ITERATE_END(bci)

}

Understanding the Static Database 4-17

ClassTemplate Object

ClassTemplate objects represent C++ parametric classes. Each
ClassTemplate has a corresponding Tag.

Like Class objects, ClassTemplate objects contain the data members and
member functions de�ned by that class template.

For an incomplete object, only ClassTag() and Attrib() return meaningful
results. All other methods return FALSE or null values.

ClassTemplate inherits from PerBase, and has no type or name properties.
The corresponding Tag contains the name information.

class ClassTemplate : public Class {

public:

ClassTemplate();

~ClassTemplate();

int ArgumentCount() const;

ITERATOR(TemplateArgument) TemplateArguments() const;

DBboolean FindFunctionTemplate(const char *name,

FunctionTemplate &ftemplate) const;

ITERATOR(FunctionTemplate) FunctionTemplateMembers() const;

ITERATOR(Tag) Instantiations() const;

};

Method Definitions

ArgumentCount(),
TemplateArguments()

Return a count of, and an iterator over, the
template's arguments.

FindFunction-

Template()

Returns the function template member with the
speci�ed name.

FunctionTemplate-

Members()

Returns an iterator over all function templates in
the template.

Instantiations() Returns an iterator over all classes instantiated from
this template.

4-18 Understanding the Static Database

DataMember Object

DataMember objects represent the data members of structures, classes, and
class templates.

DataMember inherits type and name information from TypedSymbol.

class DataMember : public TypedSymbol {

public:

DataMember();

~DataMember();

DBboolean MemberOf(Struct &parentstruct) const;

DBboolean MemberOf(Class &parentclass) const;

};

Method Definitions

MemberOf() The overloaded functions MemberOf return the
aggregate structure (struct, class, or class template)
of which this object is a member. If you do not know
what type of object contains the DataMember, you can
call each of the overloaded MemberOf functions until
one returns TRUE.

Understanding the Static Database 4-19

Enum Object

Enum objects represent enumerated types. Each Enum has a corresponding Tag.
Enums objects contain EnumMember objects representing each value de�ned by
the enum.

For an incomplete enum, only EnumTag() and Attributes() return meaningful
results. All other methods return FALSE or null values.

Enum inherits from PerBase, and has no type or name properties. The
corresponding Tag contains the name information.

class Enum : public PerBase {

public:

Enum();

~Enum();

DBboolean EnumTag(Tag &tag) const;

Attributes Attrib() const;

int MemberCount() const;

DBboolean FindEnumMember(const char *name, EnumMember &member) const;

ITERATOR(EnumMember) EnumMembers() const;

friend class Tag;

};

Method Definitions

EnumTag() Returns the Tag object associated with the Enum.

Attrib() Returns the attributes (such as ATTR_GLOBAL) of the
enum.

MemberCount() Returns the number of members (constants) in the
enum.

FindEnumMember() Returns the EnumMember with the speci�ed name.

EnumMembers() Returns an iterator over all members in the enum.

4-20 Understanding the Static Database

EnumMember Object

EnumMember objects represent the constant values of an Enum.

EnumMember inherits name information from Symbol.

class EnumMember : public Symbol {

public:

EnumMember();

~EnumMember();

Enum MemberOf() const;

int Value() const;

};

Method Definitions

MemberOf() Returns the enum of which this object is a member.

Value() Returns the ordinal (numeric) value of this member.

Understanding the Static Database 4-21

File Object

File objects contain all the Symbols and RefLists de�ned within a �le.

File inherits name information from Symbol.

class File : public Symbol {

public:

File();

~File();

Language FileType() const;

const char *CompileName() const;

const char *CompileOptions() const;

const char *CompileHost() const;

const char *CompileDir() const;

time_t ModifiedTime() const;

ITERATOR(RefList) RefLists() const;

ITERATOR(File) Includes() const;

ITERATOR(File) IncludedBy() const;

ITERATOR(Module) Modules() const;

ITERATOR(Macro) Macros() const;

ITERATOR(Variable) Variables() const;

ITERATOR(Function) Functions() const;

ITERATOR(Tag) Tags() const;

ITERATOR(Typedef) Typedefs() const;

ITERATOR(FunctionTemplate) FunctionTemplates() const;

DBboolean EnclosingFunction(Symbol &symbol, int line) const;

};

Method Definitions

FileType() Returns the Language type of the �le.

CompileName(),
CompileOptions(),
CompileHost(),
CompileDir()

If the File is a source �le, these function return the
name of the compiler used to compile the �le, the
compile options used to compile the �le, and the host
(system) and working directory on which the �le was
compiled.

ModifiedTime() Returns time of last �le modi�cation.

RefLists() Returns an iterator over all RefLists contained in the
�le.

4-22 Understanding the Static Database

Includes(),
IncludedBy()

Return iterators over all �les that this �le includes,
and all �les that include this �le.

Modules(), Macros(),
Variables(),
Functions(), Tags(),
Typedefs(),
FunctionTemplates()

Return iterators for all types of symbols de�ned
within the �le.

EnclosingFunction() Returns the function that encloses the line line in
the �le. Notice that EnclosingFunction returns a
Symbol, not a Function. The enclosing function may
be a FunctionMember or a FunctionTemplate.

Understanding the Static Database 4-23

Function Object

Function represents complete and incomplete functions. An \incomplete"
function is a function that is known only by its signature. It may be de�ned by
an extern reference, or by a forward reference that is never completed.

Many incomplete function references are created by #include �les, since they
declare a function without de�ning it.

For incomplete functions, only the base Symbol methods are valid. All other
methods return FALSE and/or null results.

Function inherits type and name information from TypedSymbol.

class Function : public TypedSymbol {

public:

Function();

~Function();

DBboolean ParameterCount(int &count) const;

ITERATOR(Parameter) Parameters() const;

DBboolean ParameterTypeInfo(int N, Symbol &type, char *&qual) const;

DBboolean DefinitionSite(SourcePosition &position) const;

DBboolean FunctionBlock(Block &funblock) const;

DBboolean MemberFunction(FunctionMember &funmem) const;

DBboolean ExpandedFrom(FunctionTemplate &funtempl) const;

};

Method Definitions

ParameterCount(),
Parameters()

Return the count of parameters, and an iterator over
all parameters.

ParameterTypeInfo() Return the type symbol and quali�er string (such
as *" or \&") of the Nth parameter. See \Type
Quali�ers" earlier in this chapter for a more complete
explanation.

ParameterTypeInfo() accepts a \char *" argument
for the type quali�er string. On return the \char *"
contains a pointer to the quali�er information. The
memory allocated for the quali�er string is managed
by the database. You should not release it.

4-24 Understanding the Static Database

ParameterTypeInfo() works on incomplete
functions that have full function signatures. Note
that K&R C code has no signatures, and thus
ParameterTypeInfo() does not work on this code.

DefinitionSite() This function shadows the DefinitionSite() method
in Symbol. It is specialized to handle multiple
functions of the same name, such as if your database
includes multiple main() functions.

FunctionBlock() Returns the block containing the function's code.

MemberFunction() Converts a Function object to a FunctionMember

object.

ExpandedFrom() If the function is a function instance, ExpandedFrom()
returns the function template from which it was
derived.

Understanding the Static Database 4-25

FunctionMember Object

FunctionMember objects represent function members of C++ classes.
FunctionMember inherits from the Function class.

FunctionMember inherits type and name information from TypedSymbol.

class FunctionMember : public Function {

public:

FunctionMember();

~FunctionMember();

Class MemberOf() const;

};

Method Definitions

MemberOf() Returns the class of which this function is a member.

4-26 Understanding the Static Database

FunctionTemplate Object

FunctionTemplate objects represent C++ parametric functions.
FunctionTemplate inherits from the Function class.

class FunctionTemplate : public Function {

public:

FunctionTemplate();

~FunctionTemplate();

int ArgumentCount() const;

ITERATOR(TemplateArgument) TemplateArguments() const;

DBboolean MemberOf(ClassTemplate &parenttemplate) const;

ITERATOR(Function) FunctionInstantiations() const;

ITERATOR(FunctionMember) FunctionMemberInstantiations() const;

};

Method Definitions

ArgumentCount(),
TemplateArguments()

Return a count of, and an iterator over, the function
template's arguments.

MemberOf() If the FunctionTemplate is a member of a
ClassTemplate, returns the class template of which
this function template is a member.

Function-

Instantiations()

If the FunctionTemplate is a pure function template,
FunctionInstantiations() returns a Function

iterator over all instances of the template.

FunctionMember-

Instantiations()

If the FunctionTemplate is a member function of a
class template, FunctionMemberInstantiations()
returns a FunctionMember iterator over the member
function in all instances of the class template.

Understanding the Static Database 4-27

Label Object

Label represents the target of switch or goto commands. The RefLists()
de�ned for a Label refer to the statements that branch to the Label.

Label inherits name information from Symbol.

class Label : public Symbol {

public:

Label();

~Label();

// Label container; Block, Module or File.

DBboolean Scope(Block &block) const;

DBboolean Scope(Module &module) const;

DBboolean Scope(File &file) const;

};

Method Definitions

Scope() These overloaded functions return the Block, Module,
or File that contains the Label.

4-28 Understanding the Static Database

Macro Object

The Macro object represents C preprocessor macros (#define). It is not used
for C++ inline functions.

Macro inherits name information from Symbol.

class Macro : public Symbol {

public:

Macro();

~Macro();

};

Macro de�nes no interface methods of its own. All Symbol methods are
available; in particular, EnclosingFile() and EnclosingBlock() can be used
to �nd the de�nition scope for global and local macros, respectively.

Understanding the Static Database 4-29

Parameter Object

Parameter represents function parameters.

Parameter inherits type and name information from TypedSymbol.

class Parameter : public TypedSymbol {

public:

Parameter();

~Parameter();

};

Method Definitions

Parameter de�nes no interface methods of its own. All TypedSymbol methods
are available.

Parameter objects are empty for incomplete functions. Use
ParameterTypeInfo() for information on incomplete functions.

4-30 Understanding the Static Database

The PerBase Base Class

PerBase is the foundation class that de�nes the concepts of persistent database
objects. In particular, PerBase de�nes object \handles" and conversion to
higher-level objects. All database objects inherit directly or indirectly from
PerBase. All PerBase methods are available to all database objects.

You will not encounter PerBase objects in the database. It is used only as a
parent class for constructing objects.

class PerBase {

public:

PerBase();

~PerBase();

// Handle, null test, and kind of this object.

PerHandle Handle() const;

DBboolean IsHandleNull() const;

PerKind Kind() const;

// Type-safe conversions to derived classes.

DBboolean BaseToSymbol(Symbol &symbol) const;

DBboolean BaseToBlock(Block &block) const;

DBboolean BaseToEnum(Enum &enumeration) const;

DBboolean BaseToStruct(Struct &structure) const;

DBboolean BaseToClass(Class &cppclass) const;

DBboolean BaseToRefList(RefList &reflist) const;

};

Handle(), Is-
HandleNull()

Handle() returns the \handle" of the object. The handle is
the object's identi�er in the database. IsHandleNull() tests
to see if the symbol's Handle is null. Certain access methods,
such as Find in the SymbolTable object, can return a null
object handle. Normally, however, you will not encounter null
handles.

Kind() Returns an enumerated type that tells what kind of object
(such as KIND_VARIABLE or KIND_FUNCTION) the PerBase
represents. See \Database Types".

BaseTotype() These functions provide a type-safe conversion from a base
object to the appropriate higher-level object class. Use Kind()
to determine which converter to use.

Understanding the Static Database 4-31

RefList Object

RefList represents an array of references. Each RefList lists all references to
a symbol within one �le. The Symbol object contains an iterator of Reflists,
one for each �le containing a reference to the Symbol.

RefList inherits from PerBase, and has no type or name properties.

class RefList : public PerBase {

public:

RefList();

~RefList();

Symbol SymbolFor() const;

File FileIn() const;

int ReferenceCount() const;

Reference operator[] (int index) const;

};

Method Definitions

SymbolFor() Returns the Symbol referenced in the RefList.

FileIn() Returns the File in which the RefList references
occur.

ReferenceCount() Returns the number of references in the array.

operator[] The [] operator is overloaded to give access to the
array of references. The RefLists() iterator de�ned
by Symbol inherits from the RefList object, and
hence inherits the [] operator. See below for an
example.

4-32 Understanding the Static Database

Notice that there are RefLists() iterators de�ned on Symbol and File

objects. The two-dimensional organization of RefLists (below) allows you to
access references by symbol (stepping through the accesses in each �le) or by
�le (stepping through accesses to all the symbols de�ned in that �le).

Figure 4-2. RefList Organization

In this illustration, the boxes containing \References" are RefLists. In this
example, Symbol1 is a local symbol referenced only in File1. Symbol2 is
global, and is referenced in all three �les. File1 contains references to Symbol1

and Symbol2.

The RefLists() iterator on Symbol1 returns one element: a RefList

containing three references in File1. The RefLists() iterator on File1

returns two elements: a RefList containing three references (the same RefList
that was returned for Symbol1, since the references are references for Symbol1)
and a RefList containing one reference to Symbol2.

See below for example code that illustrates the two-dimensional organization.

Understanding the Static Database 4-33

Example

These code fragments illustrate the use of RefLists. Notice the use of the
overloaded [] operator.

This code is equivalent to choosing a \Symbol" in Figure 4-2 and following the
arrows to the right:

// Print location of all references for the variable "var".

ITERATOR(RefList) rli = var.RefLists();

ITERATE_BEGIN(rli)

{

printf("References in file %s:\n", rli.FileIn().Name());

int i;

for (i=0; i<rli.ReferenceCount(); i++) {

printf("Line = %d, column = %d\n",

rli[i].line, rli[i].column);

}

}

ITERATE_END(rli)

This code is equivalent to choosing a \File" in Figure 4-2 and following the
arrows downward:

// Print location of references to all symbols in the file "file".

ITERATOR(RefList) rli = file.RefLists();

ITERATE_BEGIN(rli)

{

printf("References to symbol %s:\n", rli.SymbolFor().Name());

int i;

for (i=0; i<rli.ReferenceCount(); i++) {

printf("Line = %d, column = %d\n",

rli[i].line, rli[i].column);

}

}

ITERATE_END(rli)

4-34 Understanding the Static Database

Scalar Object

Scalar objects represent built-in intrinsic types, such as int or char.

Notice that Scalar does not inherit from TypedSymbol, since a type has no
TypeQualifier information. Instead, Scalar inherits name information from
Symbol, and provides a ScalarType function to describe the type of the scalar.

class Scalar : public Symbol {

public:

Scalar();

~Scalar();

ScalarType Type() const;

};

Method Definitions

Type() Returns the type of the Scalar. ScalarType is
de�ned in DB_Common.h. See Appendix A for a listing.

Understanding the Static Database 4-35

Struct Object

Struct objects represent structures and unions in C code. Structures and
unions are represented as Class objects in C++ code, since C++ makes no
real distinction between structs, unions, and classes.

Note: if a header �le is included by both C and C++ �les, any structs de�ned
in the header �le are promoted to Class objects even when they are used in C
code.

Each Struct has a corresponding Tag.

Struct objects contain DataMember objects to represent the data �elds in the
struct.

For an incomplete struct, only StructTag() and Attributes() return
meaningful results. All other methods return FALSE or null values.

Struct inherits from PerBase, and has no type or name properties. The
corresponding Tag contains the name information.

class Struct : public PerBase {

public:

Struct();

~Struct();

DBboolean StructTag(Tag &tag) const;

Attributes Attrib() const;

int MemberCount() const;

DBboolean FindDataMember(const char *name,

DataMember &datamember) const;

ITERATOR(DataMember) DataMembers() const;

friend class Tag;

};

Method Definitions

StructTag() Returns the Tag object associated with the Struct.

Attrib() Returns the attributes (such as ATTR_GLOBAL) of the
struct.

MemberCount() Returns a count of data members in the struct.

4-36 Understanding the Static Database

FindDataMember() Returns the DataMember in this Struct with the
speci�ed name.

DataMembers() Returns an iterator over all data members in the
struct.

Understanding the Static Database 4-37

The Symbol Base Class

Symbol is the base class through which all named objects (Macro, Variable,
Parameter, Function, File, Scalar, Tag, Typedef, EnumMember, DataMember,
and TemplateArgument) are derived (directly, or indirectly through
TypedSymbol) from the Symbol class.

You will not encounter Symbol objects in the database; the class is used only
as a parent class for other objects. All properties that make sense for named
objects, such as the object's name, de�nition location, and so on, are de�ned in
Symbol and are available to all derived types. Notice that Symbol inherits its
concept of persistent database objects from PerBase.

Typed objects inherit from TypedSymbol.

class Symbol : public PerBase {

public:

Symbol();

~Symbol();

char *Name() const;

Attributes Attrib() const;

// Enclosures of the symbol.

DBboolean EnclosingBlock(Block &eblock) const;

DBboolean EnclosingClass(Class &eclass) const;

DBboolean EnclosingFile(File &efile) const;

DBboolean DefinitionSite(SourcePosition &position) const;

DBboolean DeclarationSite(SourcePosition &position) const;

DBboolean ReferenceSite(SourcePosition &position,

int mask = REF_MODIFICATION | REF_USE | REF_CALL | REF_DEREF |

REF_ADDROF | REF_VIRTUALCALL) const;

ITERATOR(RefList) RefLists() const;

// Conversion of this symbol to the derived kind.

DBboolean SymbolToTypedSymbol(TypedSymbol &typedsymbol) const;

DBboolean SymbolToVariable(Variable &variable) const;

DBboolean SymbolToParameter(Parameter ¶meter) const;

DBboolean SymbolToFunction(Function &function) const;

DBboolean SymbolToDataMember(DataMember &datamember) const;

DBboolean SymbolToEnumMember(EnumMember &enummember) const;

DBboolean SymbolToFunctionMember(FunctionMember &functionmember) const;

DBboolean SymbolToScalar(Scalar &scalar) const;

DBboolean SymbolToTag(Tag &tag) const;

DBboolean SymbolToTypedef(Typedef &tdef) const;

4-38 Understanding the Static Database

DBboolean SymbolToTemplateArgument(TemplateArgument &templatearg) const;

DBboolean SymbolToFunctionTemplate(FunctionTemplate &functiontempl) const;

DBboolean SymbolToModule(Module &module) const;

DBboolean SymbolToFile(File &file) const;

};

Method Definitions

Name() Returns the name of the object.

Attrib() Lists attributes of the symbol, such as ATTR_GLOBAL
or ATTR_STATIC. See \Database Types".

EnclosingFile(),
EnclosingBlock(),
EnclosingClass()

These functions return the handle of the �le and
block that contain the de�nition of the symbol. If
the symbol is not enclosed by any block (as is the
case with global variables), EnclosingBlock returns
FALSE.

EnclosingClass returns the parent class of the
symbol, or FALSE if the symbol is not contained by a
class.

RefLists() Returns an iterator to all RefLists for the symbol.
Each RefList contains all references to the symbol in
a particular �le.

DefinitionSite(),
DeclarationSite(),
ReferenceSite()

DefinitionSite() returns the location of the
de�nition of the symbol (such as the code body for
a function), if any. If more than one de�nite site
exists, DefinitionSite() returns the �rst one it
�nds. DeclarationSite() and ReferenceSite()

return the �rst declaration or reference found in
the database. This can be useful as a simple test to
determine if the symbol is ever declared or referenced.
ReferenceSite() accepts a mask to specify the types
of reference you want. If you need all occurrences of a
declaration or reference, you must iterate through the
RefLists() for the symbol.

SymbolTotype() These functions convert a Symbol to its derived type.
For example, if you had a Symbol that you determined
(by checking its Kind()) was actually a Variable, you

Understanding the Static Database 4-39

could use SymbolToVariable to create a Variable

object. For example, \sym.SymbolToVariable(var)"
converts the Symbol sym into the Variable var. If
the Symbol is not actually of (or derived from) type
type, the function returns FALSE.

4-40 Understanding the Static Database

The SymbolTable Class

The SymbolTable class de�nes the global symbol table for a database. A
database contains exactly one SymbolTable, which acts as the \root" of the
database just as \/" acts as the \root" of a �lesystem. The SymbolTable
contains all Files and all globally-scoped objects in the database.

class SymbolTable {

public:

SymbolTable();

~SymbolTable();

PerHandle Handle() const;

// Time stamp of database and transaction management.

const char *FileName() const;

time_t ModifiedTime() const;

DBboolean StartTransaction() const;

DBboolean EndTransaction() const;

DBboolean Contains(Symbol) const;

ITERATOR(Macro) Macros() const;

DBboolean Find(const char *name, Macro ¯o) const;

ITERATOR(Variable) GlobalVariables() const;

DBboolean Find(const char *name, Variable &variable) const;

ITERATOR(Function) GlobalFunctions() const;

DBboolean Find(const char *name, Function &function) const;

ITERATOR(Tag) GlobalTags() const;

ITERATOR(Tag) LocalTags() const;

DBboolean Find(const char *name, Tag &tag) const;

ITERATOR(Typedef) GlobalTypedefs() const;

DBboolean Find(const char *name, Typedef &tdef) const;

ITERATOR(Module) GlobalModules() const;

DBboolean Find(const char *name, Module &module) const;

ITERATOR(File) Files() const;

DBboolean Find(const char *name, File &file) const;

void ActivateFiles(int count, char **filename) const;

void ActivateFiles(int count, char **filename, Language lang) const;

ITERATOR(FunctionTemplate) FunctionTemplates() const;

DBboolean Find(const char *name, FunctionTemplate &funtempl) const;

Understanding the Static Database 4-41

ITERATOR(Symbol) GlobalSymbols() const;

ATTRIBUTE_ITERATOR(Symbol)

GlobalSymbols(const char *name, PerKind kind) const;

DBboolean Find(const char *name, FunctionMember &funmember) const;

DBboolean Find(const char *name, DataMember &datamember) const;

ATTRIBUTE_ITERATOR(Symbol) SymbolsAtLocation(

const char *name,

const char *filename,

long line,

long column,

DBboolean ignorecase,

DBboolean useregexp,

SymbolsAtLocationScoping& scoping,

DBboolean allowFuzzyMatch = true) const;

DBboolean EnclosingFunction(Symbol& fun,

const char *fileName,

int line);

private:

PerHandle SymbolTableHandle;

friend DBboolean OpenDatabase(const char *filename,

SymbolTable &globalsymboltable,

Language language,

DBModifiedCallback callback);

friend void CloseDatabase(SymbolTable &globalsymboltable);

};

Method Definitions

Handle() Returns the \handle" (internal identi�er) for the
database. This is not usually useful for rule writers.

FileName() Returns the �le containing the database.

ModifiedTime() Returns the last time of modi�cation.

StartTransaction(),
EndTransaction()

Delimit a \transaction." Call these routines around
each series of database queries to prevent a writer
from changing the database. StartTransaction()
triggers a call of the callback routine provided in the
OpenDatabase call if the database has been modi�ed
since the last transaction.

4-42 Understanding the Static Database

Transaction management is handled by the rule
engine, so rule writers need not be concerned about it.

Contains() Tests whether a Symbol is found in the database.
This can be useful if you have multiple databases
open.

Macros(),
GlobalVariables(),
GlobalFunctions(),
GlobalTags(),
LocalTags(),
GlobalTypedefs(),
GlobalModules(),
Files(),
FunctionTemplates()

Return iterators to scan through all objects of the
speci�ed type. Both global and local iterators are
provided for Tags. The combination of the two
iterators returns all Tags in the database.

GlobalSymbols() Two overloaded iterators return either all global
symbols, or all global symbols of a speci�ed name and
PerKind.

Find() A Find() method, for �nding a global object by
name, is de�ned for each object type. The desired
object is returned in the second parameter. If your
database contains more than one instance of the
object, only the �rst instance is returned. Use the
corresponding iterator to �nd all instances.

ActivateFiles() Limits searches to the �les speci�ed in the
filename array, and optionally limited to the
languages speci�ed by the lang mask. Each
filename must be a full canonical �lename of
the form host:fullpath. Run the command
/opt/softbench/bin/path_to_canon �lename to see
a sample canonical name.

By default, all �les are active. Pass a count value of 0
to resume searching all �les.

SymbolsAtLocation() Returns an attribute iterator listing all symbols
at a speci�ed location. Null values of filename,
line, or column mean to return symbols with the

Understanding the Static Database 4-43

speci�ed name in any File, or line or column in
a File. ignorecase speci�es a case-insensitive
search, and useregexp speci�es that name is a
regexp(5)-style regular expression. If useregexp
is true, name can contain any normal non-extended
regular expression. The RE can also use
+ (preceding RE must appear 1 or more times) and
? (preceding RE must appear 0 or 1 times). scoping
speci�es the type of \scoping" to use when searching
for the symbols. See the Static Analyzer chapter of
the C and C++ User's Guide for an explanation of
scoping.

EnclosingFunction() The function whose scope includes the speci�ed �le
and line. Returns FALSE if no function includes the
location.

4-44 Understanding the Static Database

Tag Object

Tag objects represent all aggregate types, such as classes and enums. The
two-part representation of aggregates (the Tag and the Enum, Struct, Class, or
ClassTemplate) allows the database to handle self-referential objects.

Each tag can be mapped onto its corresponding aggregate, and vice versa.

The Tag inherits from Symbol, and therefore contains all information about the
aggregate's name.

class Tag : public Symbol {

public:

Tag();

~Tag();

PerKind TypeKind() const;

DBboolean EnumType(Enum &enumeration) const;

DBboolean StructType(Struct &structure) const;

DBboolean ClassType(Class &cppclass) const;

DBboolean ClassTemplateType(ClassTemplate &classtempl) const;

};

Method Definitions

TypeKind() Returns the type (class, enum, struct, or template) of
the tag.

EnumType(),
StructType(),
ClassType(),
ClassTemplateType()

These functions convert a Tag into the corresponding
object.

Understanding the Static Database 4-45

TemplateArgument Object

TemplateArgument objects represent C++ parametric type arguments. They
are used for class template and template function arguments.

TemplateArgument inherits type and name information from TypedSymbol.

class TemplateArgument : public TypedSymbol {

public:

TemplateArgument();

~TemplateArgument();

DBboolean ArgumentOf(ClassTemplate &classtempl) const;

DBboolean ArgumentOf(FunctionTemplate &funtempl) const;

};

Method Definitions

ArgumentOf() Returns the class or function template of which this is
an argument. If you do not know what type of object
contains the TemplateArgument, you can call each
of the overloaded ArgumentOf() functions until one
returns TRUE.

4-46 Understanding the Static Database

Typedef Object

Typedef objects represent named types.

Typedef inherits type and name information from TypedSymbol.

class Typedef : public TypedSymbol {

public:

Typedef();

~Typedef();

};

Method Definitions

Typedef de�nes no methods of its own, but inherits all typing and symbol
information from TypedSymbol.

Understanding the Static Database 4-47

The TypedSymbol Base Class

TypedSymbol is the base class through which all typed objects (Variable,
Parameter, Function, Typedef, DataMember, and TemplateArgument) inherit
their type and name information. TypedSymbol inherits its name information
from Symbol.

As with Symbol, you will not encounter TypedSymbol objects in the database.
The class is used only as a parent class for other objects. The attributes that
describe an object's type (Type and TypeQualifiers) are inherited from
TypedSymbol. All attributes that make sense for named objects, such as the
object's name, de�nition location, and so on, are de�ned in Symbol and are
available to all derived types.

Notice that Symbol and TypedSymbol inherit their concept of persistent
database objects from PerBase.

class TypedSymbol : public Symbol {

public:

TypedSymbol();

~TypedSymbol();

// Type and type qualifiers of this symbol.

Symbol Type() const;

const char *TypeQualifiers() const;

};

Type(), Type-
Qualifiers()

Return the type symbol and quali�er string (such as *" for
a pointer) of the variable. See \Type Quali�ers" for a more
complete explanation.

4-48 Understanding the Static Database

Variable Object

Variable represents complete and incomplete program variables.

For incomplete variables, only the base Symbol methods are valid. All other
methods return FALSE and/or null results.

Variable inherits type and name information from TypedSymbol.

class Variable : public TypedSymbol {

public:

Variable();

~Variable();

DBboolean Scope(Block &block) const;

};

Method Definitions

Scope() Returns the enclosing block within which the variable
is de�ned, or FALSE if the variable is global.

Understanding the Static Database 4-49

Using the Database API

The following example is one of the actual rules delivered with the SoftBench
CodeAdvisor product. This real-life example will help you to understand how
the database API is used in rules.

The Example Rule

This rule, UserRulesLocalHides, detects local identi�ers with the
same name as a local or inherited data member or member function.
You can read a description of the rule in the SoftBench CodeAdvisor
online help for the UserRulesLocalHides rule. The source of
the rule is included in the next section, and can also be found in
/opt/softbench/examples/CodeAdvisor/Rules/ruleLocalHides.C. To test
the rule, make the example rule library, as explained in the Makefile, and
install the new library in /opt/softbench/lib/rulelibs.

The algorithm used is straightforward: for each class, scan through all member
functions. In each function, check all parameters and all local variables to see if
there is a conict.

The majority of this processing happens in two functions:
UserRulesLocalHides::check() and shadow(). shadow() is a
utility routine that does the actual checking for conicts.

Understanding the Example Rule

As with the simple UserRulesCapClass rule in Chapter 3,
UserRulesLocalHides starts out by de�ning the UserRulesLocalHides class
interface. Every rule you write should de�ne the class interface like this. The
only di�erence will be the actual name of the rule class.

The shadow Function

After de�ning a short utility function to extract the simple name of a class
member (the part after the \::"), the code de�nes the shadow utility function.
This function returns TRUE if it �nds any visible symbol in the class cl or any
base (inherited) classes with the same name as sym. If so, the hidden symbol is
returned in hidden_sym.

4-50 Understanding the Static Database

After getting the name of the symbol, shadow() begins by iterating through all
local functions in cl. (AllFunctions() returns all member functions in a class,
and all function templates in a template.) Next it iterates through all local
data members. The test is the same for both types of symbols: if the symbol is
visible (if it is in this class, or is a non-private member of a base class), and
has the same name as sym, return the hidden_sym.

If there are no collisions in the current class, shadow iterates through all base
classes of the current class and calls itself recursively to check the base classes.
Note that BaseClasses() returns only the immediate parent or parents of a
class, not all ancestor classes. The recursive call takes care of moving up the
inheritance chain.

If the current class has no base classes, BaseClasses() returns no items,
so the iterator loop is never entered. Execution continues after the
ITERATE_END(tagi) and the function returns FALSE, indicating it has not yet
found any collisions.

kindMask and langMask

kindMask() returns the bitmask 1 << KIND_TAG, indicating that check()
should be called on all Tag objects. As with UserRulesCapClass, this rule
applies only to Class objects, but check() is invoked only on Symbol objects.
Class does not inherit from Symbol, so check() cannot be invoked on Class.
The rule must accept all Tags and �lter out the non-Class objects.

langMask() indicates that the rule applies only to C++ code.

The check Function

Other than shadow(), the check() function handles the majority of the rule
processing. check() is called for each Tag object. The �rst test in check(), as
with UserRulesCapClass, screens out all class or template instances. (Since
the instances have the same member names as the classes and class templates,
there is no need to check them.) Note that UserRulesLocalHides does not
�lter out structs and unions like UserRulesCapClass did. Since structs and
classes are essentially identical in C++, it is possible to have name conicts in
structs just as in classes.

Understanding the Static Database 4-51

check() then iterates through all functions in the class. Remember that
AllFunctions() returns all member functions of a class, as well as all function
templates in a template, so the same code can handle both cases.

The loop �rst rejects \synthetic" compiler-generated functions and
\incomplete" functions. (Incomplete functions have a declaration but no
de�nition, and therefore no FunctionBlock. Ordinarily you should check for
incompleteness by testing the DefinitionSite(), as explained in \Incomplete
Objects". However, since check() needs the FunctionBlock later, testing for
FunctionBlock is a handy alternate way to check for incompleteness.) Since
\incomplete" functions have no code de�nition and therefore no parameter
de�nitions, they should not be checked.

Finally, check() iterates through all the member function parameters and
all variables de�ned within the function, calling shadow() on each one. If
shadow() detects any conicts, check() calls violation() to signal a problem.

Notice that violation() passes UserRules as the \help location." Since no
help node is speci�ed (using the helpvolume helpnode convention), the help
system uses the rule name (UserRulesLocalHides) as the name of the help
node.

Final Definitions

errorMess() de�nes a generic one-line description of the rule.

name() returns the name of the rule. For simplicity, name() should be the
same as the rule class name.

Once the rule class is completely de�ned, a static de�nition forces a call to
the Rule constructor. This links the rule into the rule engine and enables it for
use.

4-52 Understanding the Static Database

Example Files

Source �les for the example rules are available on-line in
/opt/softbench/examples/CodeAdvisor/Rules. The �les in this
directory include:

Makefile A make control �le to build all the example �les.

ruleCapClass.C,
ruleLocalHides.C,
ruleNameConventions.C,
ruleProhibDefines.C,
ruleProhibIdent.C

Sources for the example rules. Notice that
the ProhibDefines and ProhibIdent rules
are identical to the corresponding rules
that are shipped with CodeAdvisor, except
they are named UserRulesProhibrule
instead of Prohibrule. However, for
demonstration purposes they use the
standard CodeAdvisor rule tables under
/opt/softbench/config/ruletables/$LANG.

UserRules.htg On-line help �le for the example rules.

Testcase A directory containing a simple test case for
UserRulesCapClass.

ruleTemplate.C A \template" �le to use as a starting point
when writing rules.

debugPoints.C Source for the debuggable main() in
softcheck|used only by SoftBench Debugger.

RuleIndex.htg The main index into the on-line rule help. This
�le is organized according to the de�nitions in
the rule group con�guration �le. If you change
that �le, you may want to change the index �le
accordingly.

You can examine the sources for any of the rules and support �les. You can
also build and test the rules using the Makefile. \make" builds the rule
library. \make all" builds the rule library, test case, and help volume. See the
comments in the Makefile for more information.

You can test the rule library using SoftBench CodeAdvisor, or using
softcheck. Install the library in /opt/softbench/lib/rulelibs to test using

Understanding the Static Database 4-53

SoftBench CodeAdvisor, or specify the library location using the -l ag to
softcheck.

\make install" installs the rule library and help volume in the standard
locations. Note that you must do the install as \root" in order to install, since
the required directories under /opt/softbench are not typically writeable by
ordinary users.

4-54 Understanding the Static Database

The UserRulesLocalHides Rule

#include <Rule/Rule.H>

#include <string.h>

#include <assert.h>

#include <stdio.h> // Note, only sprintf is used; no stdio/iostream mix

class UserRulesLocalHides : public Rule

{

public:

virtual int kindMask() const;

virtual Language langMask() const;

void check(SymbolTable *, const Symbol &);

virtual const char *errorMess() const;

virtual const char *name() const;

};

// Return a pointer to the simple name of member or namespace qualified obj.

// Note that member names can be as complicated as

// Outer::Inner::Inner(const Outer::Inner &)

// so between last '::' (before '(') and first '(' is what is needed

//

void simpleName(char const *x, char *buf)

{

char const *currcolon, *nextcolon, *start, *end = strchr(x, '(');

if (!end)

end = x + strlen(x);

currcolon = strstr(x, "::");

while (currcolon &&

((nextcolon = strstr(currcolon+1, "::")) < end) &&

nextcolon)

currcolon = nextcolon;

if (currcolon)

start = currcolon + 2;

else

start = x;

strncpy(buf, start, end-start);

buf[end-start] = '\0';

}

Understanding the Static Database 4-55

// Test to see if a symbol hides (or has the same name but doesn't hide)

// some member of a class, or some inherited member.

static DBboolean shadow(const Symbol &sym, // symbol that may be shadowed

const Class &cl, // class to check members of

Symbol &hidden_sym, // symbol that sym collides with

DBboolean baseclassp = false // is this a baseclass

// of one where sym defined?

)

{

char name[1024];

simpleName(sym.Name(), name);

// test sym name against local member functions

ITERATOR(Function) fmi=cl.AllFunctions();

ITERATE_BEGIN(fmi)

{

char buf[1024];

simpleName(fmi.Name(), buf);

if ((!(baseclassp && IS_PRIVATE(fmi.Attrib()))) && // visible

strcmp(name, buf)==0) { // name matches

hidden_sym = fmi;

return true;

}

}

ITERATE_END(fmi)

// test sym name against local member data

ITERATOR(DataMember) dmi=cl.DataMembers();

ITERATE_BEGIN(dmi)

{

char buf[1024];

simpleName(dmi.Name(), buf);

if ((!(baseclassp && IS_PRIVATE(dmi.Attrib()))) && // visible

strcmp(name, buf)==0) { // name matches

hidden_sym = dmi;

return true;

}

}

ITERATE_END(dmi)

// test base classes of this class

ATTRIBUTE_ITERATOR(Tag) tagi=cl.BaseClasses();

ITERATE_BEGIN(tagi)

{

Class baseclass;

if (!tagi.ClassType(baseclass)) {

// Can't put ClassType call in assert, since assert does not

// invoke its argument in non-debugging environments.

// We always need the side-effect of setting "baseclass".

4-56 Understanding the Static Database

assert(tagi.ClassType(baseclass));

}

if (shadow(sym, baseclass, hidden_sym, true))

return true; // as soon as you find one, it's safe to return

}

ITERATE_END(tagi)

return false;

}

int UserRulesLocalHides::kindMask() const

{ return 1<<KIND_TAG; }

Language UserRulesLocalHides::langMask() const

{ return LANGUAGE_CPP; }

// For all member functions of all classes,

// Find all local variables defined in all blocks within function

// Also find all parameters of the member function

// See if any local variable/parameter duplicates the name of any local or

// inherited *visible* member.

// If so, report a violation.

//

void UserRulesLocalHides::check(SymbolTable *, const Symbol &sym)

{ Tag tag, templ;

Class cl;

Symbol hidden_sym;

if (!sym.SymbolToTag(tag) || !tag.ClassType(cl) || IS_INSTANTIATED(cl.Attrib()))

return; // look at classes and templates, skip instances

// Find all member functions

ITERATOR(Function) fmi=cl.AllFunctions();

ITERATE_BEGIN(fmi)

{

if (IS_SYNTHETIC(fmi.Attrib()))

continue; // skip compiler generated functions

// locate function's main block

Block fblock;

if (!fmi.FunctionBlock(fblock)) // Incomplete function?

continue;

char buf[1024];

// check member function's parameters

ITERATOR(Parameter) parami=fmi.Parameters();

ITERATE_BEGIN(parami)

{

Understanding the Static Database 4-57

if (shadow(parami, cl, hidden_sym)) {

sprintf(buf,

"Parameter '%s' of '%s' hiding member '%s' with same name",

parami.Name(), fmi.Name(), hidden_sym.Name());

violation(parami, buf, "UserRules");

}

}

ITERATE_END(parami)

// check variables defined in any block within function

ITERATOR(Variable) vari=fblock.BlockVariables();

ITERATE_BEGIN(vari)

{

if (shadow(vari, cl, hidden_sym)) {

sprintf(buf,

"Local variable '%s' in '%s' hiding member '%s' with same name",

vari.Name(), fmi.Name(), hidden_sym.Name());

violation(vari, buf, "UserRules");

}

}

ITERATE_END(vari)

}

ITERATE_END(fmi)

}

const char *UserRulesLocalHides::errorMess() const

{

return("Local variable or parameter hiding member (function or data) with same name");

}

const char *UserRulesLocalHides::name() const

{

return("UserRulesLocalHides");

}

// Force a call to base class constructor in the main program

static UserRulesLocalHides instance;

4-58 Understanding the Static Database

5

Implementing Your Rule

Now that you understand the building blocks you can work with, you can
decide how to implement your rule. You must decide what approach will work
best within the SoftBench CodeAdvisor framework.

Design Guidelines

The following are suggested guidelines for your rule designs.

Do not generate excessive violations.
It's usually better to miss agging a few errors than to ag incorrect
violations. If you generate incorrect violations, or too many violations, the
user will tend to discount the warnings.

Rules that ag \possible" errors should be placed in a \possible error" rule
group, so the user can enable them only if desired.

Note that \noisy" rules may be useful to ag possible problems for
code-reading sessions.

Choose breadth over depth.
Do not try to cover every possible case when writing a rule. There is often a
nearly-in�nite supply of odd corner cases. Your time is better spent covering
the major cases, and then moving on to cover the major cases of another
rule.

Check templates and classes, not instances.
Almost all rules that test classes check the class structure. For example, a
rule might check the safety of the constructor, or the member functions and
data members in the class. Since class instances have the same structure as
their parent template, you should not test instances. If you did, it would
result in duplicate error messages for the template and for all its instances.

Implementing Your Rule 5-1

Write your code to work for both classes and templates.
Most class rules apply equally well to classes and templates, so it
makes sense to check both. Convert Symbol objects to Tags using
Symbol::SymbolToTag(), then verify the Tag refers to a Class using
Tag::ClassType(). This test succeeds for both classes and class templates.
Be aware that the test also succeeds for structs and unions in C++ code,
since C++ treats them almost identically. Use the functions WAS_STRUCT
and WAS_UNION to test the object's Attrib() value in the rare case (such as
UserRulesCapClass) when it's important to distinguish between classes,
structs, and unions. See the UserRulesCapClass rule in Chapter 3 for an
example.

Use AllFunctions() to iterate through member functions, since this iterator
also returns function templates.

Test for incomplete objects.
Design your rules so they properly handle incomplete objects. Certain
objects (Variables, Functions, Enums, Structs, Classes, and
ClassTemplates) can exist in an \incomplete" state. This happens when
only a forward or external reference is found, so no de�nitional information
is available. (Class template instances are also represented as incomplete
classes.) See \Incomplete Objects" in Chapter 4 for more information on
detecting incomplete objects.

Implement a test case before implementing a rule.
It's possible that the C++ compiler already detects the rule you are
considering. Make sure the job hasn't already been done for you. Try higher
\verbosity" levels on your compiler, such as \+w" on HP-UX.

For table-driven rules, implement a general solution.
When writing a table-driven rule, consider similar problems that could be
solved by your rule. Would the addition of another �eld make the rule more
generally useful, without making the table unwieldy?

5-2 Implementing Your Rule

Implementing the Rule

Once you understand the rule model, the Static API, and the design guidelines,
you can begin implementing your rules.

The example �les provided with the system can be very helpful when learning
the rule programming environment. If you have not studied the examples
described in \Example Files" in Chapter 4, please do so before proceeding.

The following sections outline a recommended procedure for developing rules.

Decide What to Implement

First, you should consider what kind of rules you want to implement. There
are several possible classes of rules:

Rules that detect subtle C++ usage errors, such as the rules shipped with
SoftBench CodeAdvisor. You may be aware of other C++ areas that can
cause problems. If so, you may want to implement your own rules to check
for them. Be aware that Hewlett Packard intends to continue to expand the
set of rules shipped with SoftBench CodeAdvisor, and it is possible that your
rule may be superseded by a new rule in a future release. However, in the
meantime you will bene�t from the rule.

Rules that detect common coding errors, such as the SoftBench CodeAdvisor
rule that detects accidental use of \/n" instead of \\n".

Rules that enforce adherence to a standard such as XPG4.

Stylistic rules that help to enforce local coding conventions. This can be
done most e�ciently with table-driven rules.

Develop a list of rule candidates. You may want to examine the current
literature to get ideas for good rules. Your local coding conventions may
provide a good source of ideas.

When you have drawn up a list of potential rules, you should prioritize them.
Which rules are the most practical to implement? You don't want to spend
time on a rule that turns out to be nearly impossible to implement. Your time
might be better spent writing several less-challenging rules.

Implementing Your Rule 5-3

Keep the Static API capabilities in mind when assigning di�culty scores. An
apparently simple rule may be di�cult to implement if it requires program
knowledge that the database does not provide.

Next, which rules would provide the most bene�t? Which rules detect
severe errors, and which detect minor problems? A rule might be simple to
implement, but will it actually help to prevent coding problems? Will it catch
only minor problems that could be ignored without penalty?

Once you understand these properties, you can use a simple \biggest bang for
the buck" measure to decide which rules to implement.

Designing the Rule

Write a clear description of the rule. Write example code that illustrates the
problem. This example will provide useful test cases.

Examine the logic of the rule. Can it be implemented as a table-driven rule?
How can you implement it using the database? For example, does the rule
apply to all functions? If so, you should use the API's built-in iteration to
select all functions for you. De�ne a kindMask() that causes the rule engine to
invoke your rule on every Function object.

Does the rule apply to all classes? If so, you must implement a \two-step"
approach. Your rule's check() function can only be called on objects derived
from Symbol, but Class does not inherit from Symbol. You must instead
specify a kindMask() of \1 << KIND_TAG", and �lter out the non-Class objects.
See the UserRulesLocalHides rule in \Using the Database API" in Chapter 4
for an example.

It's a good idea to add a pre�x to the beginning of your rule to avoid possible
name collisions with future HP-supplied rules. For example, you could name
your rule MyruleTestThis instead of just TestThis. Because your rule name is
often used as the name of the corresponding online help node, you should only
use alphanumeric characters in your rule name.

Once you have decided how the API should call your check() function, you
can determine what check() should do when it is called. What does the rule
test for? If it checks the parameters of a function, you would want to iterate
using Function::Parameters(). If the rule checks for inheritance problems in
classes, you would iterate over Class::BaseClasses() and recursively test

5-4 Implementing Your Rule

each of the base classes. The exact procedure you use will depend on your
rule's semantics.

Compiling the Rule

The Makefile in /opt/softbench/examples/CodeAdvisor/Rules correctly
compiles and links rule libraries, and can be invoked from the SoftBench
Project builder. If you create your own Makefile or compile from the
command line, you must remember the following points:

Rule code must be compiled with the aCC compiler, using the following options:

aCC -I/opt/softbench/include +z -c rule�le.C

The Rule class and other important types are de�ned in �les under
/opt/softbench/include. The +z option instructs the compiler to generate
relocatable (position-independent) code.

Rules should be linked using a command like this:

aCC -L /opt/softbench/lib/SB6.0 -b rule�le.o -o libRules.sl

Notice that the rule library name must start with lib and end with .sl.

The rule libraries are de�ned in /opt/softbench/lib/SB6.0. -b instructs the
linker to create a shared library.

Testing the Rule

After you write the initial code for your rule, you will enter an iterative
development process. Run the rule on your example code. Does it catch all the
cases it should?

You should also run the rule on some large code samples. Verify that any
violations are valid. Does the rule detect the appropriate error cases? Does it
ag code that should not be agged? Does it trigger so many violations that
users will get overwhelmed and tend to ignore the rule's warnings?

Modify your implementation to re�ne the error cases detected by the rule, and
test again. Continue in this process until your rule meets your requirements.

Implementing Your Rule 5-5

You may �nd softcheck very useful in testing your rules. You can easily
invoke SoftBench CodeAdvisor on your rule with the command

softcheck -l YourRuleLibDir -r RuleToCheck

See softcheck(1) for more information on softcheck. See \Debugging Your
Rule" for a full explanation of running and debugging rules.

5-6 Implementing Your Rule

Adding Your Rule to a Rule Group

The SoftBench CodeAdvisor product includes over 1000 rules. Many of them
ag potential problems, so they can generate violations in cases where there is
currently no error. Since it would be di�cult to use the output of all rules at
once, rules are organized into rule groups.

Each rule group contains rules that are related in some way. You can select any
set of rule groups, and run the analysis using only those rules.

For example, one of the most useful rule groups is the DefiniteDefects group.
Any violations generated by these rules almost certainly indicate a serious
problem in your program.

You must add your rule to a rule group in order to use it from the
CodeAdvisor user interface.

Classifying Your Rule

You should examine the set of rule groups and determine which group is the
best match for your rule.

Rulegroup File Locations

To add your rule to an existing rule group, copy the �le
/opt/softbench/config/rulegroups/$LANG (where $LANG is C for
English installations) into one of the following locations, depending on how
widely the group should be made visible. You can copy only the groups that
you want to change, rather than copying the entire rulegroups �le.

/etc/opt/softbench/config/rulegroups/$LANG

Local changes and customizations. All users on the system
are a�ected by these changes. A rulegroups �le in the
/etc/opt/softbench hierarchy totally replaces the rulegroups
�le under /opt/softbench on the same machine.

Implementing Your Rule 5-7

$HOME/.softbench/rulegroups

Personal changes. Visible within all projects for that user.

$PROJECTROOT/Projects/project-name/rulegroups

Personal changes. Visible only within the speci�ed project.

The locations are checked in the order above. Later information overrides
previous information; for example, personal customizations under
$HOME/.softbench are merged in with the system-wide customizations in
/etc/opt/softbench/config, and override it on a group-by-group basis.

$PROJECTROOT points to the user's speci�ed project information root. By
default, this root is $HOME/.softbench. project-name is the name of the
speci�c project to customize.

Rulegroup File Format

Each non-comment line in the rulegroups �le contains three �elds, separated by
commas:

The rulegroup name. Note that some groups are sub-groups that are
included in other groups. These group names start with a period (\.").

A comment �eld.

A list of rule names, separated by colons (\:").

Edit your copy of the �le and add the name of your rule to the appropriate
rule group. (Note that you cannot edit this �le using the standard vi or Softvi
editors, since those editors can't handle the extremely long lines in the �le.
SoftXEmacs, the default editor, can edit the �le.)

Creating a New Rule Group

If your rule does not �t into any of the existing rule groups, or if you want to
create a group that contains only your locally-written rules, you can add a new
group to the rulegroup �le. Simply add a new line, using the format described
above. If you add your rule to one of the local customization locations, you can
create a �le containing only your new group. The new �le will be merged into
the existing rulegroup �le.

5-8 Implementing Your Rule

The name of your group can contain only alphanumeric characters. The �rst
character must be alphabetic.

After adding your new group to the rulegroup �le, start SoftBench and display
the CodeAdvisor page. You should see your group in the \Rule Groups" area.

Updating the Group Index

Under the rule group selection area on the CodeAdvisor page, the
�Rule Group Help...� button displays an index of all rules sorted by rule group.

After adding a new rule or rulegroup, or after moving a rule from one group to
another, you should update the rule group index.

The source for the group index help volume is located in
/opt/softbench/examples/CodeAdvisor/Rules/RuleIndex.htg.
Edit this �le to reect your changes, compile the help volume using
\$PATH=/usr/dt/bin:$PATH dthelptag RuleIndex.htg", and install the
RuleIndex.sdl �le in /etc/opt/softbench/dt/appconfig/help/$LANG.

Implementing Your Rule 5-9

Debugging Your Rule

After you have implemented your rule, you can test it by running it under
SoftBench CodeAdvisor or by using the softcheck command.

SoftBench CodeAdvisor provides the complete user interface that your users
will see, and also allows you to test the linkage to your on-line help. Install the
new library in /opt/softbench/lib/rulelibs.

softcheck provides a very simple and \light-weight" interface to the rule
engine. You must use softcheck if you need to use SoftBench Debugger to
�nd subtle problems. See the softcheck(1) reference page for an explanation of
softcheck.

Be aware that the rule engine holds open a transaction during the time that
you debug your rule. Other processes will be unable to update the database
(the Static.sadb �le) while you are debugging.

Running softcheck Under SoftBench Debugger

The example Makefile handles debug and static ags (-g and -y) from
Builder. If you invoke make directly from the command line, you must specify
the debug ags using \make CXXOPTS="-g -y"".

The softcheck executable shipped with SoftBench CodeAdvisor is not
debuggable. User de�ned rules can be debugged by building the rules into
a debuggable shared library and then running the debuggable SDK version
of softcheck, /opt/softbench/examples/CodeAdvisor/softcheck, under
SoftBench Debugger.

1. Run Debugger and load the debuggable softcheck program (above).

2. If the debugger is running in \stand-alone mode," so that SoftBench has
not conveyed project information to it, you may need to choose \File: Add

Source Directories . . . " to tell the debugger where your source �les are
located.

3. Once Debugger has started, choose \File: Rerun . . . ".

4. In the \Program Arguments" Input Box, enter \-p project" to specify
the project you are working on. If you do not specify a project, enter
\-d dir/Static.sadb" to tell softcheck where to �nd your program's

5-10 Implementing Your Rule

Static database. Enter \-l library-dir", where library-dir is the directory
containing your debuggable rule library. (This is not necessary if your
library is in the standard location, /opt/softbench/lib/rulelibs.)

5. If you want to run only a few rules in your test library, specify them by
entering \-r rule-name" or \-r rule-group''" in the \Program Arguments"
Input Box. Multiple rules or rule groups can be speci�ed by separating
them by colons. Individual rules can be excluded using the syntax
\-r ~rule-name".

6. If desired, you can set the environment variable RULE_DEBUG by entering
the appropriate values in the \Program Environment Variables" section
of the dialog box. See \Tracing Rule Execution".

7. You may want to select �Save As Defaults� so the preceding setup information
is stored for future debugging sessions. If you save your settings, you can
retrieve them in future sessions by selecting �Load Defaults�.

8. Select �OK� to run softcheck.

9. SoftBench Debugger now starts softcheck, and pauses in main() in the
�le debugPoints.C. Set a breakpoint at the procedure libsLoaded() and
select �Continue�. See the next section for detailed instructions on setting
breakpoints at libsLoaded() and in your rule library.

10. Your program pauses at libsLoaded(). Your rule library is now loaded
into the program. Choose \File: Enable Images/Libraries . . . " and
load debug information about your rule library, as described in the next
section.

11. You can now display your rule's source or set breakpoints in your
rule by referring to the fully-quali�ed procedure names (such as
UserRulesCapClass::check).

Implementing Your Rule 5-11

Setting Breakpoints In Your Rule

Since rules are stored in dynamically-loaded shared libraries, you must know
how to debug these libraries within SoftBench Debugger. You cannot set
breakpoints in your rule library immediately after running your program, since
the library has not been loaded. You must load your rule libraries �rst.

1. Enter \libsLoaded" in the SoftBench Debugger \():" Input Box and
choose \Break: Set At ()". (Or, since libsLoaded() is directly after
main() in debugPoints.C, you can simply scroll the window down to
libsLoaded and set the breakpoint by clicking in the Annotation Margin to
the left of the Source File Edit Area.) This sets a breakpoint on an empty
function that is called after the rule libraries are loaded, but before any rules
are checked.

2. Select �Continue� as needed until you reach the breakpoint at libsLoaded.
Depending on how the libraries were built and a few timing issues, you may
encounter SIGCHLD and/or SIGALRM signals, or you may stop as your shared
library is loaded.

3. Choose \Execution: Images . . . ".

Your rules library will be one of the last libraries listed in the \Dynamic
Images" dialog box. Select the toggle button next to your library to load its
debug information.

The debug information can also be loaded by entering \property
libraries -add" (or \pro lib -add") followed by the basename of your
rule library in the \Debugger Input" Input Box.

4. Set any break points needed in your rules.

5. Select �Continue�. When you encounter the breakpoints in your rule, you can
debug as you normally would.

5-12 Implementing Your Rule

Tracing Rule Execution

You can cause softcheck to generate some extra output that may be useful in
your debugging. The environment variable RULE_DEBUG accepts several values:

RULE_DEBUG=1 Displays a message just before calling each rule. The message
indicates the object on which the rule is being invoked. This
can be very useful if, for example, you encounter a core dump
in your rules. By turning on this message, you can immediately
see what rule caused the core dump, and what object triggered
the problem.

RULE_DEBUG=4 Displays a message when the Static.sadb �le is loaded into
the database.

These values are elements in a bitmask, and can be combined. For example,
\RULE_DEBUG=5" displays messages when rules are called and when
Static.sadb �les are loaded.

You can also set the SA_SHLIB_TEST variable (to any value) to display a
message when a rule library is loaded. This allows you to ensure that your
library is being loaded properly. If not, you may need to change the -l
arguments to softcheck, or ensure your library is installed in the standard
location searched by softcheck. Note that this diagnostic message can
sometimes appear after violations have been displayed.

You can set RULE_DEBUG and SA_SHLIB_TEST at a shell prompt before calling
the softcheck command, or in the \Program Environment Variables"
Input Box in the \File: Load New Executable . . . " dialog box in SoftBench
Debugger.

Implementing Your Rule 5-13

Documenting Your Rule

In addition to the normal documentation that is recommended for any
program, you should provide on-line help for your rule.

When your rule detects and reports a violation, the user has the option of
displaying an on-line summary and explanation of the rule. In SoftBench
Program Builder, this is done by selecting the �Help� button after selecting the
violation display.

When the user selects �Help�, a message is sent to the SoftBench On-Line Help
server to display the help text. The help server searches for and displays the
help associated with your rule.

Writing the On-Line Help

SoftBench uses the CDE-standard dthelptag on-line help tool. Use
dthelptag to compile your help volume, and dthelpview to view it. See
Common Desktop Environment: Help System Author's and Programmer's
Guide for a description of the HelpTag language and compilation
tools. A compressed PostScript copy of this manual is available in
/opt/softbench/dt/doc/Help_Pgrmer_Guide.ps.Z.

Your help text should conform to the format used by the standard SoftBench
CodeAdvisor help. Each node should include the following:

A node title, named after the rule

An italicized one-line summary of the rule

A more in-depth explanation of the rule and its rationale

\What Triggers Rule": A clear description of the conditions that cause the
rule to �re

\Corrective Action": Recommended steps to resolve the problem

\Exceptions": Cases in which a rule violation may be ignored

If desired, you may also mention the rule's origin.

See /opt/softbench/examples/CodeAdvisor/Rules/UserRules.htg for a
sample help volume. Notice the two entity declarations at the start of the
example �le. These entities de�ne the character set to be used, and are required

5-14 Implementing Your Rule

in all help volumes. If you are writing help for languages other than English,
refer to the CDE Help System Author's Guide for additional instructions.

Referring to Other Help Volumes

The basic HelpTag tools allow you to refer to other nodes within your help
volume. The SoftBench help server has been extended to allow you to refer to
a node in another volume, using the EXTERNREF hyperlink keyword:

<link hyperlink="EXTERNREF helpvolume helpnode" type="AppDefined">

Hyperlink text

<\link>

Associating Your Rule With the On-Line Help

Your rule speci�es a help volume name (and, optionally, a help node) in the
help_volume argument to violation(). The help volume (the helpvol.sdl
�le generated by the dthelptag command) must use the same name as the
help_volume argument.

Each rule help node within the help volume must have an id= entry that
speci�es the node name. This may be the same as the name of the rule
it describes, or it may be any arbitrary name if the name is speci�ed in
help_volume.

For example, the help node for the UserRulesCapClass rule is in the
UserRules.htg help volume, and is named UserRulesCapClass. The
help_volume parameter speci�es UserRules as the name of the help volume.
By default, the name of the rule (UserRulesCapClass) is used as the name of
the associated help node. To specify a di�erent help node name, pass a value
like \UserRules_AnotherNode" in help_volume.

Help node names can contain only alphanumeric characters, and must begin
with a letter. For this reason, it is best if you use only alphanumeric characters
in your rule name.

Installing the On-Line Help Volume

As root, install the rulelib.sdl �le in the
/etc/opt/softbench/dt/appconfig/help/$LANG directory. For
non-localized installations, $LANG has a value of C.

Implementing Your Rule 5-15

A

Detailed Database Type Descriptions

The Static database interface provides two header �les to declare the constants,
types, and functions used to access the database. These �les are:

DB_Common.h Common types and constants used by the database. The
contents of this �le are described in this Appendix.

DB_Read.h The \read" interface to the database. The contents of this �le
are described in \Object Interfaces" in Chapter 4.

The database header �les are found under install dir/include/DB_Access.

Detailed Database Type Descriptions A-1

Object Kind

Database objects are represented by a \handle" of type PerHandle. They are
typed by the enum PerKind.

The �rst four PerKind values (KIND_BADSYMBOL, KIND_SYMBOLENTRY,
KIND_FILEENTRY, KIND_RELATION) are only used internally. You will not
encounter them.

The remaining PerKind values correspond to the di�erent object types de�ned
in the database:

KIND_REFLIST, KIND_ENUM, KIND_STRUCT, KIND_CLASS,
KIND_CLASSTEMPLATE, KIND_SOURCEFILE, KIND_SCALAR,
KIND_MODULE, KIND_MACRO, KIND_IDENTIFIER, KIND_LABEL,
KIND_TAG, KIND_TYPEDEF, KIND_VARIABLE, KIND_PARAMETER,
KIND_BLOCK, KIND_FUNCTION, KIND_ENUMMEMBER, KIND_DATAMEMBER,
KIND_FUNCTIONMEMBER, KIND_FUNCTIONTEMPLATE, and
KIND_TEMPLATEARGUMENT.

See \Object Interfaces" in Chapter 4 for a description of each object type.

Each database object is tagged with a PerKind, allowing you to determine
what type of object it represents. Various functions (such as the
SymbolTable::GlobalSymbols iterator) allow you to \�lter" their results by
specifying the PerKind you are interested in.

Rules specify a kindMask that limits the PerKinds for which they are designed.

A-2 Detailed Database Type Descriptions

Attributes

Each object has an attribute �eld that describes the attributes pertinent to
that object. The Attribute type is de�ned as a bit vector:

typedef unsigned long Attribute;

Attributes are combined as necessary for a given object.

The interface also de�nes inline functions in DB_Common.h to test the associated
Attribute values. These predicate functions generally start with IS_, WAS_,
or HAS_, such as IS_GLOBAL(), WAS_STRUCT(), and HAS_DEFAULT(). The
predicate associated with each Attribute value is listed below.

The attributes are:

ATTR_GLOBAL Must be set on all symbols in the global
SymbolTable. (IS_GLOBAL())

ATTR_CONST Applies to constant class members and constant
Variables. (IS_CONST())

Note that ATTR_CONST applies only to the
element that is actually constant. For example,
i in \const int i;" has its ATTR_CONST bit
set. However, p in \char * const p;" is not
constant! p can be changed, but what p points
to is constant. Therefore p does not have its
ATTR_CONST bit set. p2 in \const char *p2;" is
constant, and ATTR_CONST is set.

ATTR_STATIC Applies to static class members and static
Variables. (IS_STATIC())

ATTR_VOLATILE Applies to local Variables. (IS_VOLATILE())

ATTR_PUBLIC Applies to class members and inheritance
relationships. (IS_PUBLIC())

ATTR_PRIVATE Applies to class members and inheritance
relationships. (IS_PRIVATE())

ATTR_PROTECTED Applies to class members and inheritance
relationships. (IS_PROTECTED())

Detailed Database Type Descriptions A-3

ATTR_VIRTUAL Applies to class members and inheritance
relationships. (IS_VIRTUAL())

ATTR_PURE Applies only to virtual class member functions.
(IS_PURE())

ATTR_ABSTRACT Applies to classes that contain a pure virtual
function. (IS_ABSTRACT())

ATTR_DECLARED_STRUCT Applies to C++ classes that were declared as a
C struct. (WAS_STRUCT())

ATTR_DECLARED_UNION Applies to C++ classes that were declared as a
C union. (WAS_UNION())

ATTR_DEFAULT Applies to function parameters that have a
default initializer. (HAS_DEFAULT())

ATTR_SPECIALIZATION Applies to specialized class and function
template instances. (IS_SPECIALIZATION())

ATTR_INLINED Applies to functions and member functions that
are declared inline. (IS_INLINED())

ATTR_COMPILE_ERRORS Applies to Files that compiled with errors.
(HAS_COMPILE_ERRORS())

ATTR_INSTANTIATED Applies to functions and classes that are
instances of a template. (IS_INSTANTIATED())

ATTR_SYNTHETIC Applies to compiler generated functions, class
members (such as automatically created class
constructors or destructors), and variables.
(IS_SYNTHETIC())

A-4 Detailed Database Type Descriptions

Scalar Types

Scalar types are described by members of the ScalarType enum. Legal
ScalarType values are:

SCALAR_CHAR Signed character type.

SCALAR_UNSIGNED_CHAR Unsigned character type.

SCALAR_WIDE_CHAR The NLS wide character type.

SCALAR_SHORT Signed short integer type.

SCALAR_UNSIGNED_SHORT Unsigned short integer type.

SCALAR_INT Signed integer type.

SCALAR_UNSIGNED_INT Unsigned integer type.

SCALAR_FLOAT Floating point type.

SCALAR_DOUBLE Double precision oating point type.

SCALAR_LONGDOUBLE Long double precision oating point type.

SCALAR_TEMPLARG Class type variable of a template.

SCALAR_FUNCTYPE Type is a function.

SCALAR_LOGICAL Fortran logical type.

SCALAR_STRING Pascal string type.

SCALAR_TEXT Pascal �le type.

SCALAR_LABEL Type code label.

SCALAR_POINTER Fortran pointer type.

SCALAR_VOID C and C++ void type.

SCALAR_LONG Signed long integer type.

SCALAR_UNSIGNED_LONG Unsigned long integer type.

Detailed Database Type Descriptions A-5

Language Types

The Language type is used to determine the programming language contained
in a File. Language is a bit vector de�ned as:

typedef unsigned long Language;

The legal Language values are:

LANGUAGE_C C source �le.

LANGUAGE_F77 FORTRAN 77 source �le.

LANGUAGE_PASCAL HP Pascal source �le.

LANGUAGE_COBOL HP COBOL source �le.

LANGUAGE_BASIC BASIC source �le.

LANGUAGE_ADA Ada source �le.

LANGUAGE_CPP C++ source �le.

LANGUAGE_UNKNOWN Any source �le kind.

A-6 Detailed Database Type Descriptions

References

A reference is a tuple of line, column, length, and usage information. The line,
column and length describe the token position in the �le; the Usage describes
the context in which the reference occurs. Reference is de�ned as follows:

typedef struct { unsigned long length : 8;

unsigned long line : 24;

unsigned short column;

Usage use; } Reference;

Note that the line �eld causes a type mismatch if you attempt to print it
using cout. Cast it to an integer (cout << (int) ref.line) to avoid this
problem.

Usage is de�ned as a bit vector containing any combination of the following
values:

REF_DEFINITION Site at which the object is de�ned and the
storage of the construct is determined. An
object usually has only one REF_DEFINITION
site.

REF_DECLARATION Site at which an object is introduced into scope.
A REF_DEFINITION is also a REF_DECLARATION

site.

REF_MODIFICATION Site at which the memory associated with the
object is written.

REF_CALL Site at which a function or procedure is called.

REF_DEREF Site at which a pointer value is used to read or
write memory.

REF_ADDROF Site at which the address of the object is
determined.

REF_USE Site at which the object is read or used.

REF_VIRTUALCALL Site at which a virtual function is being called
via the dynamic binding mechanism.

Detailed Database Type Descriptions A-7

Error Codes

The database interface routines de�ne a global variable DBError to allow the
application to diagnose any problems. This variable is primarily set during
database open/close operations and during write operations; therefore, it is not
generally used in rules.

DBError has two �elds: one to record any system error (errno) and the other
to record any error condition detected by the database.

The de�nition of DBError is:

typedef struct { unsigned short database;
unsigned short system; } DBErrorCode;

extern DBErrorCode DBError;

The database error codes are:

DBERR_INCORRECT_DB_VERSION The �le being opened as a database �le is
not a database �le or is an obsolete version.

DBERR_DATABASE_NOT_OPEN A database operation was attempted
without a database �le open.

DBERR_DATABASE_ALREADY_OPEN The process attempted to open a database
that it already had open.

DBERR_MAPPING There was an error in mapping the database
�le.

DBERR_FILETABLE_EXCEEDED There was an attempt to open more than
the maximum number of databases (512)
that may be simultaneously opened.

DBERR_DBSIZE_EXCEEDED There was an attempt to create a database
larger than the con�gured maximum size.

DBERR_DBFILE_OPEN There was a problem in opening the
database �le.

DBERR_DBFILE_RESIZE There was a system failure in an attempt to
resize the database �le.

DBERR_DBFILE_STAT There was a system failure in an attempt to
stat the database �le.

A-8 Detailed Database Type Descriptions

DBERR_DBFILE_READ There was a system failure in an attempt to
read from the database �le.

DBERR_LOCKFILE_OPEN There was a system failure in an attempt to
open the lock �le.

DBERR_LOCK There was a system failure in an attempt to
lock the lock �le.

DBERR_BAD_NAME A bad (non string) name value was passed
to a routine in the write interface.

DBERR_BAD_ATTRIBUTES A bad attribute value was passed to a
routine in the write interface.

DBERR_BAD_SCALAR A bad ScalarType was passed to a routine
in the write interface.

DBERR_BAD_HANDLE A bad handle was passed to a routine in the
write interface.

Detailed Database Type Descriptions A-9

B

Iterators

Iterators are the mechanism used to loop through an arbitrary number of
objects in the Static database. Because of some limitations in the C++
template mechanism, it's not possible to de�ne general iterators using
templates. Instead, the Static database interface simulates the template
functionality using #defines.

\Iterators" in Chapter 4 gives a simple explanation of the use of iterators.
That explanation is su�cient for most users. This section explains the
mechanism behind iterators.

Iterators B-1

Standard Iterators

Iterators are de�ned as follows:

class Iterator {

public:

Iterator(long count, PerHandle *handles);

Iterator();

Iterator(const Iterator &iterator);

~Iterator();

Iterator &operator=(Iterator &iterator);

void add(long count, PerHandle *handles) const;
DBboolean Open(PerHandle &handle) const;

DBboolean Next(PerHandle &handle) const;

DBboolean Done() const;

protected:

PerHandle IteratorHandle;

};

#define ITERATOR(Base) Base##Iterator

#define ITERATOR_IMPLEMENT(Base, Handle) \

class ITERATOR(Base) : public Base, public Iterator { \

public: \

ITERATOR(Base)(long count, PerHandle *PH) : \

Base(), Iterator(count, PH) { } \

ITERATOR(Base)():Base(),Iterator() { } \

~ITERATOR(Base)() { } \

DBboolean Open() {return Iterator::Open(Handle);} \

DBboolean Next() {return Iterator::Next(Handle);} \

}

Iterator de�nes a base class upon which all iterators are implemented. The
iterator for each object type in the database is de�ned by invocations of
ITERATOR_IMPLEMENT in DB_Read.h.

ITERATOR_IMPLEMENT(object) de�nes the class ITERATOR(object) (which
expands to objectIterator). This new class inherits from both Iterator and
the object base class.

B-2 Iterators

Static database code can then declare functions of type ITERATOR(object).
These functions return an iterator on objects of type object . Since the iterator
class inherits both from Iterator and from object , the new iterator can be
used to access both Iterator operations (to step through objects in the
iteration list) and object operations and data (to manipulate objects in the
list).

The methods Open() and Next() allow navigation through the array of
iterators. For readability, the following macros are de�ned:

// Macros for constructing iterator loops.

#define ITERATE_BEGIN(sym) if ((sym).Open()) do

#define ITERATE_END(sym) while ((sym).Next());

Thus, to access all RefLists on symbol sym, you could write:

ITERATOR(RefList) rli = sym.RefLists();

ITERATE_BEGIN(rli)

{

// manipulate Symbol rli:

printf("Referenced in file %s\n",

rli.FileIn().Name());

}

ITERATE_END(rli)

Iterators B-3

Attribute Iterators

A few objects use a specialized form of Iterator called AttributeIterator.
AttributeIterators are identical to Iterators in every way, except that each
object in the iteration list includes an Attribute �eld.

Attribute, as de�ned in DB_Common.h, speci�es what kind of symbol is de�ned
by the current object. As an example, a symbol may be ATTR_PUBLIC or
ATTR_PRIVATE.

Attribute iterators are de�ned in only two situations: in the Global Symbol
Table and in Class objects. The attribute iterators in the Global Symbol
Table give access to the Attribute value of all global symbols and on all
symbols matching a set of criteria. The attributes returned by these iterators
can include any attribute that can apply to a symbol. The attribute iterators
in classes describe the nature of the inheritance relationship with base and
inherited classes: public, private, protected, or virtual.

AttributeIterators de�ne two additional member functions,
GetIteratorAttribute() and SetIteratorAttribute(), to access the
Attribute �eld of the symbol or inheritance. Ordinarily you should use only
the GetIteratorAttribute() member.

Other than the occasional use of the GetIteratorAttribute() and
SetIteratorAttribute() accessor functions, you use AttributeIterators
exactly the same as ordinary Iterators.

B-4 Iterators

Attributes are de�ned as follows:

class AttributeIterator : public Iterator {

public:

AttributeIterator(long count, PerHandle *handles, Attributes *attr);

AttributeIterator();

~AttributeIterator();

void add(long count, PerHandle *handles, Attributes *attr) const;

DBboolean SetIteratorAttribute(Attributes) const;

DBboolean GetIteratorAttribute(Attributes &attr) const;

};

#define ATTRIBUTE_ITERATOR(Base) Base##AttributeIterator

#define ATTRIBUTE_ITERATOR_IMPLEMENT(Base, Handle) \

class ATTRIBUTE_ITERATOR(Base) : public Base, public AttributeIterator { \

public: \

ATTRIBUTE_ITERATOR(Base)(long count, PerHandle *PH, Attributes *ATT) \

: Base(), AttributeIterator(count,PH,ATT) { } \

ATTRIBUTE_ITERATOR(Base)() : Base(), AttributeIterator() { } \

~ATTRIBUTE_ITERATOR(Base)() { } \

DBboolean Open() {return Iterator::Open(Handle);} \

DBboolean Next() {return Iterator::Next(Handle);} \

}

Iterators B-5

Index

A

Aggregate objects, 4-6
AllFunctions(), 4-15
API, 4-1
ArgumentCount(), 4-18, 4-27
ArgumentOf(), 4-46
ATTR_attrtype, A-3
Attrib(), 4-15, 4-20, 4-36, 4-39
Attribute, 4-6, A-3
Attribute iterators, 4-11, B-4

B

BaseClasses(), 4-15
BaseTotype(), 4-31
BeginLine(), 4-13
Block, 4-4, 4-13
BlockFile(), 4-13
BlockFunctions(), 4-13
BlockLabels(), 4-13
BlockTags(), 4-13
BlockTypedefs(), 4-13
BlockVariables(), 4-13
Boldface font, vi
Breakpoints, 5-12

C

check(), 3-4, 3-11
check_table_entry(), 3-11
Class, 4-4, 4-14
Class inheritance, B-4
ClassTag(), 4-15
ClassTemplate, 4-4, 4-18

ClassTemplateType(), 4-45
ClassType(), 4-45
CompileDir(), 4-22
CompileHost(), 4-22
CompileName(), 4-22
CompileOptions(), 4-22
Compiling rules, 5-5
Computer font, vi
Contains(), 4-42

D

Database, 4-1
opening and closing, 4-8
transactions, 4-9

DataMember, 4-4, 4-19
DataMembers(), 4-15, 4-36
DBERR_errtype, A-8
DBError, A-8
Debugging rules, 5-10, 5-13
DeclarationSite(), 4-39
DefinitionSite(), 4-24, 4-39
DerivedClasses(), 4-15
Design guidelines, 5-1
Designing rules, 5-4
Documenting, 5-14
dthelptag, 5-14
DtorMatchCtor rule, 2-10

E

Ellipses, vi
EnclosingBlock(), 4-39
EnclosingClass(), 4-39

Index-1

EnclosingFile(), 4-39
EnclosingFunction(), 4-22, 4-42
EndLine(), 4-13
EndTransaction(), 4-42
Enum, 4-4, 4-20
EnumMember, 4-4, 4-21
EnumMembers(), 4-20
EnumTag(), 4-20
EnumType(), 4-45
errorMess(), 3-4, 3-11
Example rules, 3-7, 4-50{58
ExpandedFrom(), 4-15, 4-24
EXTERNREF, 5-15

F

File, 4-4, 4-22
FileIn(), 4-32
FileName(), 4-42
Files(), 4-42
FileType(), 4-22
Find(), 4-42
FindDataMember(), 4-15, 4-36
FindEnumMember(), 4-20
FindFunctionMember(), 4-15
FindFunctionTemplate(), 4-18
Font usage, vi
Friends(), 4-15
Function, 4-4, 4-24
FunctionBlock(), 4-24
FunctionInstantiations(), 4-27
FunctionMember, 4-4, 4-26
FunctionMemberInstantiations(),

4-27
FunctionMembers(), 4-15
Functions(), 4-22
FunctionTemplate, 4-4, 4-27
FunctionTemplateMembers(), 4-18
FunctionTemplates(), 4-22, 4-42

G

GetIteratorAttribute(), B-4
GlobalFunctions(), 4-42
GlobalModules(), 4-42
GlobalSymbols(), 4-42
GlobalTags(), 4-42
GlobalTypedefs(), 4-42
GlobalVariables(), 4-42
Groups, 3-6, 4-53, 5-1, 5-7, 5-11
index, 5-9

Guidelines, 5-1

H

Handle(), 4-31, 4-42
HAS_attrtype, A-3

I

Implementing rules, 5-3
IncludedBy(), 4-22
Includes(), 4-22
Incomplete objects, 4-6
Index of rules, 5-9
Instantiations(), 4-18
IS_attrtype, A-3
IsHandleNull(), 4-31
Italic font, vi
ITERATE_BEGIN, 4-10
ITERATE_END, 4-10
Iterators, 4-10, B-1

K

Keycaps, vi
Kind(), 4-31
KIND_kind , A-2
kindMask(), 3-4, 3-11

L

Label, 4-4, 4-28
LANG_langtype, A-6
langMask(), 3-4, 3-11
Language, 4-6, A-6

Index-2

LocalTags(), 4-42

M

Macro, 4-4, 4-29
Macros(), 4-22, 4-42
Makefile, 4-53
MemberCount(), 4-15, 4-20, 4-36
MemberFunction(), 4-24
MemberOf(), 4-19, 4-21, 4-26, 4-27
ModifiedTime(), 4-22, 4-42
Modules(), 4-22

N

name(), 3-4, 3-11
Name(), 4-39
NameConventions rule, 2-3
names(), 3-4, 3-11
NestedClasses(), 4-15
NestedEnums(), 4-15
NestedTypedefs(), 4-15

O

Object types, 4-3
Online examples, 4-53
On-line help, 5-14
external links, 5-15

operator[], 4-32

P

Parameter, 4-4, 4-30
ParameterCount(), 4-24
Parameters(), 4-24
ParameterTypeInfo(), 4-24, 4-30
PerBase, 4-3, 4-6, 4-31
PerHandle, 4-6
PerKind, 4-6, A-2
Personal rule tables, 2-2
ProhibDefines rule, 2-8
ProhibIdent rule, 2-6

Q

Quali�ers, 4-7

R

Reference, 4-7, A-7
ReferenceCount(), 4-32
ReferenceSite(), 4-39
RefList, 4-4, 4-32
RefLists(), 4-22, 4-39
REF_reftype, A-7
Regular expression, 4-44
report(), 3-4
Rule(), 3-4
Rule class, 3-3
RULE_DEBUG, 5-13
Rule engine, 3-2
Rule groups, 3-6, 4-53, 5-1, 5-7, 5-11
index, 5-9

Rules
compiling, 5-5
debugging, 5-10, 5-13
designing, 5-4
implementing, 5-3
index, 5-9
testing, 5-5

Rule tables, 2-1
DtorMatchCtor, 2-10
NameConventions, 2-3
ProhibDefines, 2-8
ProhibIdent, 2-6
scope, 2-2

RuleWithTable(), 3-11
RuleWithTable class, 3-10

S

SA_SHLIB_TEST, 5-13
Scalar, 4-4, 4-35, A-5
SCALAR_scalartype, A-5
ScalarType, 4-6
Scope, 2-2
Scope(), 4-28, 4-49

Index-3

SetIteratorAttribute(), B-4
Setting breakpoints, 5-12
softcheck, 5-10
SourcePosition, 4-7
StartTransaction(), 4-42
Static API, 4-1
Static database, 4-1
Struct, 4-4, 4-36
StructTag(), 4-36
StructType(), 4-45
Symbol, 4-3, 4-38
SymbolFor(), 4-32
SymbolsAtLocation(), 4-42
SymbolTable, 4-3, 4-41
SymbolTotype(), 4-39

T

Table rules, 2-1
DtorMatchCtor, 2-10
NameConventions, 2-3
ProhibDefines, 2-8
ProhibIdent, 2-6

Tag, 4-4, 4-45
Tags(), 4-22

TemplateArgument, 4-4, 4-46
TemplateArguments(), 4-18, 4-27
Testing rules, 5-5
Tracing rules, 5-13
Transactions, 4-9
Type(), 4-35
Typedef, 4-5, 4-47
Typedefs(), 4-22
TypedSymbol, 4-3, 4-48
TypeKind(), 4-45
Type quali�ers, 4-7
Typewriter font, vi

U

Usage, 4-7

V

Value(), 4-21
Variable, 4-5, 4-49
Variables(), 4-22
violation(), 3-4, 3-11, 5-15

W

WAS_attrtype, A-3

Index-4

