
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP's Implementation of OpenGL

HP 9000 Workstations

ABCDE

HP Part No. B6196-90001

Printed in USA E0797

Edition 1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard provides the following material \as is" and makes no warranty
of any kind with regard to this manual, including, but not limited to, the implied
warranties of merchantability and �tness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages (including lost pro�ts) in connection with
the furnishing, performance, or use of this material whether based on warranty,
contract, or other legal theory.

Some states do not allow the exclusion of implied warranties or the limitation
or exclusion of liability for incidental or consequential damages, so the above
limitation and exclusions may not apply to you. This warranty gives you speci�c
legal rights, and you may also have other rights which vary from state to state.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

Copyright c 1997 Hewlett-Packard Company This document contains informa-
tion which is protected by copyright. All rights are reserved. Reproduction,
adaptation, or translation without prior written permission is prohibited, except
as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DoD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

Use of this manual and exible disc(s), or tape cartridge(s), or CD-ROM supplied
for this pack is restricted to this product only. Additional copies of the programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

can be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

PEX and PEXlib are trademarks of Massachusetts Institute of Technology.

OpenGL is a registered trademark of Silicon Graphics, Inc. in the United States
and other countries.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

July 1997 . . . Edition 1. This manual is valid for the July 1997 Workstation ACE
for HP-UX 10.20 on all HP 9000 workstations.

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

0

Chapter 0: Preface

Document Conventions

Below is a list of the typographical conventions used in this document:

mknod /usr/include Verbatim computer literals are in computer font.
Text in this style is letter-for-letter verbatim and,
depending on the context, should be typed in exactly
as speci�ed, or is named exactly as speci�ed.

In every case . . . Emphasized words are in italic type.

. . . device is a freen . . . New terms being introduced are in bold-faced type.

. . . the hdevice idi . . . Conceptual values are in italic type, enclosed in angle
brackets. These items are not verbatim values, but are
descriptors of the type of item it is, and the user should
replace the conceptual item with whatever value is
appropriate for the context.

Chapter 0: Preface 0-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

0. Chapter 0: Preface

Document Conventions 0-1

1. Overview of OpenGL

Introduction . 1-1
The OpenGL Product 1-2
HP's Implementation of OpenGL 1-2
HP's Implementation of the OpenGL Libraries 1-2
Supported Graphics Devices 1-2
Supported Visuals 1-3
Stereo Visual Support for Visualize-FX4 and

Visualize-FX6 1-5
Visual Support for Other Graphics Devices 1-6
Bu�er Sharing between Multiple Processes 1-7
SIGCHLD and the GRM Daemon 1-7

The Standard OpenGL Product 1-7
The OpenGL Utilities Library (GLU) 1-8
Input and Output Routines 1-8
The OpenGL Extensions for the X Window System (GLX) . 1-8

Mixing of OpenGL and Xlib 1-9
Gamma Correction . 1-9
OpenGL Extensions . 1-10
Clamp Border and Clamp Edge Extensions 1-10
3D Texture Extension 1-15
Steps for 3D Texturing Programming 1-17
3D Texture Program Fragments 1-18

Shadow and Depth Extensions 1-22
Steps for Shadow Texturing 1-23
Shadow Texturing Program 1-24

Texture Lighting Extension 1-26

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Procedure for preLight Texturing 1-27
Occlusion Extension 1-28
Occlusion Culling Code Fragments 1-28

Texture Autogen Mipmap Extension 1-30
X Window Extensions for HP's Implementation of OpenGL . 1-30
GLX Visual Information Extension 1-31
GLX EXT visual info Program Fragments 1-32
GLX Visual Rating Extension 1-33

Rendering Details . 1-34
Default Visuals . 1-34
EXP and EXP2 Fogging 1-34
Bow-Tie Quadrilaterals 1-34
Decomposition of Concave Quadrilaterals 1-34
Vertices Outside of a Begin/End Pair 1-35
Index Mode Dithering 1-35

Environment Variables 1-36

2. Installation and Setup

Introduction . 2-1
Veri�cation Instructions 2-2
Is Your System Software Preloaded with Instant Ignition? . . 2-2
Verify that OpenGL is on Your Workstation 2-2

Installing OpenGL . 2-3
1. Read this entire procedure 2-3
2. Install HP-UX 10.20 and the Workstation ACE for HP-UX

10.20 (July 1997) patch bundle 2-3
3. Install OpenGL 2-3
4. Check log �le . 2-4
5. Verify the product 2-4

The OpenGL File Structure 2-5

3. Running OpenGL Programs

Introduction . 3-1
Virtual GLX (VGL) Mode 3-1
Visual Support for the VGL Mode 3-1
Special Considerations 3-2

The Virtual Memory Driver (VMD) 3-3
Running HP's Implementation of the OpenGL Stereo Application 3-5

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

4. Compiling and Linking Programs

Introduction . 4-1
Including Header Files 4-2
Linking Shared Libraries 4-3
OpenGL Procedure Calls 4-4

5. Programming Hints

Introduction . 5-1
OpenGL Correctness Hints 5-2
4D Values . 5-2
Texture Coordinates 5-2

OpenGL Performance Hints 5-3
Display List Performance 5-3
Geometric Primitives 5-3
GL COMPILE AND EXECUTE Mode 5-3
Textures . 5-4
State Changes and Their E�ects on Display Lists 5-4
Regular Primitive Data 5-5

Texture Downloading Performance 5-6
Selection Performance 5-6
State Change . 5-6
Lighting Space . 5-8
Optimization of Lighting 5-10
Occlusion Culling . 5-10

A. Function Reference

glCopyTexSubImage3DEXT A-2
glTexImage3DEXT . A-5
glTexSubImage3DEXT A-11

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

1-1. Repeat Wrap Mode 1-11
1-2. Clamp Wrap Mode 1-12
1-3. Clamp to Edge Wrap Mode 1-13
1-4. Clamp to Border Wrap Mode 1-14
1-5. Right Handed Coordinate System for 3D Texturing 1-15
1-6. Each Mipmap is a Block in 3D Texturing 1-16
1-7. GL LINEAR MIPMAP LINEAR Filtering May Use Two

Blocks . 1-16
1-8. Results from the 3D Texture Program Fragments 1-21
1-9. Results from Shadow Texturing 1-26
1-10. Results from Prelight Texturing 1-27

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. Visual Table for HP Visualize-FX2 1-3
1-2. Visual Table for HP Visualize-FX4 1-3
1-3. Visual Table for HP Visualize-FX6 1-4
1-4. Stereo Visual Support for HP Visualize-FX 4 and HP

Visualize-FX 6 1-5
1-5. Visuals Table for VMD 1-6
1-6. Clamp Border and Clamp Edge Extensions 1-10
1-7. Enumerated Types for 3D Texturing 1-17
1-8. Enumerated Types for Shadow and Depth Texture Extension . 1-22
1-9. Enumerated Types for Pre-Light Texturing 1-26
1-10. Enumerated Types for Occlusion 1-29
1-11. Enumerated Types for Occlusion 1-30
1-12. Enumerated Types for GLX Visual Information 1-31
1-13. Enumerated Types for GLX Visual Transparency 1-32
1-14. Enumerated Types for GLX Visual Rating 1-33
2-1. OpenGL Development Environment Filesets 2-4
4-1. OpenGL Directories and their Content 4-1
4-2. Shared Libraries . 4-3

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

Overview of OpenGL

Introduction

OpenGL is a hardware-independent Application Programming Interface (API)
that provides an interface to graphics operations. It is HP's implementation of
OpenGL that converts API commands to graphical images via hardware and/or
software functionality. The interface consists of a set of commands that allow
applications to de�ne and manipulate three-dimensional objects. The commands
include:

Geometric primitive de�nitions
Viewing operations
Lighting speci�cations
Primitive attributes
Pipeline control
Rasterization control

OpenGL has been implemented on a large number of vendor platforms where
the graphics hardware supports a wide range of capabilities (for example, frame
bu�er only devices, fully accelerated devices, devices without frame bu�er, etc.).

For more information on OpenGL, here is a list of manuals that are published by
Addison-Wesley and shipped with HP's implementation of OpenGL.

OpenGL Programming Guide teaches you how to program in OpenGL.
OpenGL Reference Manual is a reference that describes OpenGL functions.
OpenGL Programming for the X Window System teaches you how to use
OpenGL with the X Window system.

Overview of OpenGL 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

The OpenGL Product

This section provides information about HP's implementation of the OpenGL
product as well as information about the standard OpenGL product.

HP's Implementation of OpenGL

Topics covered in this section are:

HP's implementation of the OpenGL libraries
Supported graphics devices
Supported visuals
Visual support for other graphics devices
Bu�er sharing between multiple processes

HP's Implementation of the OpenGL Libraries

HP's implementation of OpenGL provides the following libraries:

libGL.sl: OpenGL shared library
libGLU.sl: OpenGL utilities library

The OpenGL product does not support archived libraries.

Supported Graphics Devices

This section covers the graphics devices and visuals that are supported by the
OpenGL product. Here is a list to the graphics devices that are supported:

HP Visualize-FX2

HP Visualize-FX4

HP Visualize-FX6

1-2 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Supported Visuals

In this section, each visual table will have a graphics device associated with it.
For information on visual support for graphics devices not in the above list, read
the subsequent section \Visual Support for Other Graphics Devices."

Table 1-1. Visual Table for HP Visualize-FX2

X Visual Information OpenGL GLX Information

Class Depth Color

Map

Size

Bfr

Size

Ovrly=1

or

Img=0

RGBA=1

or

Idx=0

Dbl

Bfr

#

Aux

Bfrs

Color

Bu�er

Z St

en

cil

Accum.

Bu�er

R G B A R G B A

PseudoColor 8 255 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0

PseudoColor 8 256 8 0 0 0 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 8 256 8 0 0 1 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12[1] 4096 12 0 0 0 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12[1] 4096 12 0 0 1 0 0 0 0 0 24 4 0 0 0 0

TrueColor 12 16 12 0 1 1 0 4 4 4 0 24 4 16 16 16 0

TrueColor 24 256 24 0 1 0 0 8 8 8 0 24 4 16 16 16 0

1. The 12-bit PseudoColor visuals are not present by default. They can be enabled

by invoking the \X Server Con�guration" component under SAM, or by manually

adding the enable 12-bit PseudoColor visual option to your /etc/X11/X*Screens �le

as documented in the Graphics Administration Guide.

Table 1-2. Visual Table for HP Visualize-FX4

X Visual Information OpenGL GLX Information

Class Depth Color

Map

Size

Bfr

Size

Ovrly=1

or

Img=0

RGBA=1

or

Idx=0

Dbl

Bfr

#

Aux

Bfrs

Color

Bu�er

Z St

en

cil

Accum.

Bu�er

R G B A R G B A

PseudoColor 8 255 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0

PseudoColor 8 256 8 0 0 0 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 8 256 8 0 0 1 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12[1] 4096 12 0 0 0 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12[1] 4096 12 0 0 1 0 0 0 0 0 24 4 0 0 0 0

TrueColor 24 256 24 0 1 0 0 8 8 8 0 24 4 16 16 16 0

TrueColor 24 256 24 0 1 1 0 8 8 8 0 24 4 16 16 16 0

1. The 12-bit PseudoColor visuals are not present by default. They can be enabled

by invoking the \X Server Con�guration" component under SAM, or by manually

adding the enable 12-bit PseudoColor visual option to your /etc/X11/X*Screens �le

as documented in the Graphics Administration Guide.

Overview of OpenGL 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-3. Visual Table for HP Visualize-FX6

X Visual Information OpenGL GLX Information

Class Depth Color

Map

Size

Bfr

Size

Ovrly=1

or

Img=0

RGBA=1

or

Idx=0

Dbl

Bfr

#

Aux

Bfrs

Color

Bu�er

Z St

en

cil

Accum.

Bu�er

R G B A R G B A

PseudoColor 8 255 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0

PseudoColor 8 256 8 0 0 0 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 8 256 8 0 0 1 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12[1] 4096 12 0 0 0 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12[1] 4096 12 0 0 1 0 0 0 0 0 24 4 0 0 0 0

TrueColor 24 256 24 0 1 0 0 8 8 8 8 24 4 16 16 16 16

TrueColor 24 256 24 0 1 1 0 8 8 8 8 24 4 16 16 16 16

TrueColor 24 256 24 0 1 0 0 8 8 8 8 24 4 16 16 16 0

TrueColor 24 256 24 0 1 1 0 8 8 8 8 24 4 16 16 16 0

1. The 12-bit PseudoColor visuals are not present by default. They can be enabled

by invoking the \X Server Con�guration" component under SAM, or by manually

adding the enable 12-bit PseudoColor visual option to your /etc/X11/X*Screens �le

as documented in the Graphics Administration Guide.

1-4 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Stereo Visual Support for Visualize-FX4 and Visualize-FX6

When a monitor is con�gured in a stereo capable mode, HP Visualize-FX4 and
HP Visualize-FX6 will have the following additional stereo visuals available.
For more information on OpenGL stereo, read the section \Running HP's
Implementation of the OpenGL Stereo Application" found in Chapter 3 of this
document.

Table 1-4.

Stereo Visual Support for HP Visualize-FX 4 and

HP Visualize-FX 6

X Visual Information OpenGL GLX Information

Class Depth Color

Map

Size

Bfr

Size

Ovrly=1

or

Img=0

RGBA=1

or

Idx=0

Dbl

Bfr

St

er

eo

#

Aux

Bfrs

Color

Bu�er

Z St

en

cil

Accum.

Bu�er

R G B A R G B A

PseudoColor 8 256 8 0 0 0 1 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 8 256 8 0 0 1 1 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12 4096 12 0 0 0 1 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 12 4096 12 0 0 1 1 0 0 0 0 0 24 7 0 0 0 0

TrueColor 12 16 12 0 1 1 1 0 4 4 4 0 24 4 16 16 16 0

TrueColor 12 16 12 0 1 0 1 0 4 4 4 [1] 24 4 16 16 16 [1]

1. Alpha planes are only available on the HP Visualize-FX 6.

Overview of OpenGL 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Visual Support for Other Graphics Devices

The OpenGL product can be used with the Visualize-FX family of devices
as well as the Visualize-EG device using the Virtual Memory Driver (VMD)
in Virtual GLX mode (VGL). In addition, VMD allows you to use many X11
drawables (local or remote) as \virtual devices" for three-dimensional graphics
with OpenGL. This includes rendering to X terminals and other non-GLX
extended X servers.

Table 1-5. Visuals Table for VMD

X Visual Information OpenGL GLX Information

Class Depth Color

Map

Size

Bfr

Size

Ovrly=1

or

Img=0

RGBA=1

or

Idx=0

Dbl

Bfr

#

Aux

Bfrs

Color

Bu�er

Z3 St

enc

il3

Accum.

Bu�er

R G B A R G B A

PseudoColor 4 16 4 0 0 [1] 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 8 256 8 0 0 [1] 0 0 0 0 0 24 4 0 0 0 0

PseudoColor 8 255 8 1 0 [1] 0 0 0 0 0 0 0 0 0 0 0

TrueColor 8 256 8 0 1 [1] 0 3 3 2 0 24 4 16 16 16 0

PseudoColor 12 4096 12 0 0 [1] 0 0 0 0 0 24 4 0 0 0 0

TrueColor 12 16 12 0 1 [1] 0 4 4 4 [2] 24 4 16 16 16 16

DirectColor 12 16 12 0 1 [1] 0 4 4 4 [2] 24 4 16 16 16 16

TrueColor 24 256 24 0 1 [1] 0 8 8 8 [2] 24 4 16 16 16 16

DirectColor 24 256 24 0 1 [1] 0 8 8 8 [2] 24 4 16 16 16 16

1. Double bu�ering is set to True (1) if the X visual supports the X Double Bu�ering

Extension (DBE).

2. Alpha will only work correctly on 12- and 24-bit TrueColor and DirectColor

visuals when the X server does not use the high order nybble/byte in the X visual.

Also, note that when alpha is present, Bu�er Size will be 16 for the 12-bit visuals

and 32 for the 24-bit visuals.

3. Depth and stencil bu�ers are only allocated for image plane visuals.

1-6 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Buffer Sharing between Multiple Processes

In the OpenGL implementation, all drawable bu�ers that are allocated in virtual
memory are not sharable among multiple processes. As an example, on a HP
Visualize-FX4 con�guration, the accumulation bu�er for a drawable resides in
virtual memory (VM) and therefore, each OpenGL process rendering to the same
drawable through a direct rendering context, will have its own separate copy of
the accumulation bu�er. For more information on hardware and software bu�er
con�gurations for OpenGL devices, see Tables 1-1 through 1-5 in this chapter.

True bu�er sharing between multiple processes can be accomplished by utilizing
indirect rendering contexts. In this case, rendering on behalf of all GLX clients
is performed by the X server OpenGL daemon process, and there is only one set
of virtual memory bu�ers per drawable.

SIGCHLD and the GRM Daemon

The Graphics Resource Manager daemon (grmd) is started when the X11 server is
started. In normal operation, an OpenGL application will not start the daemon,
and as a result grmd will not be a�ected by the SIGCHLDmanipulation that occurs
as part of that start-up. However, if grmd dies for some reason, the graphics
libraries will restart grmd whenever they need shared memory. An example of
where this can occur is during calls to glXCreateContext or glXMakeCurrent.

The Standard OpenGL Product

This section covers the following topics:

The OpenGL Utilities Library (GLU)
Input and Output Routines
The OpenGL Extensions for the X Window System (GLX)

Overview of OpenGL 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
The OpenGL Utilities Library (GLU)

The OpenGL Utilities Library (GLU) provides a useful set of drawing routines
that perform such tasks as:

Generating texture coordinates
Transforming coordinates
Tessellating polygons
Rendering surfaces
Providing descriptions of curves and surfaces (NURBS)
Handling errors

For a detailed description of these routines, read the OpenGL Reference Manual .

Input and Output Routines

OpenGL was designed to be independent of operating systems and window
systems, therefore, it does not have commands that perform such tasks as
reading events from a keyboard or mouse, or opening windows. To obtain these
capabilities, you will need to use X Windows routines.

The OpenGL Extensions for the X Window System (GLX)

The OpenGL Extensions to the X Window System (GLX) provide routines for:

Choosing a visual
Managing the OpenGL rendering context
O�-screen rendering
Double-bu�ering
Using X fonts

For a detailed description of these routines, read the OpenGL Reference Manual .

1-8 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Mixing of OpenGL and Xlib

The OpenGL implementation conforms to the speci�cation de�nition for mixing
of Xlib and OpenGL rendering to the same drawable. The following points should
be considered when mixing Xlib and OpenGL:

OpenGL and Xlib renderers are implemented through separate pipelines
and control streams, thus, rendering synchronization must be performed as
necessary by the user's application via the GLX glXWaitX() and glXWaitGL()

function calls.
Xlib rendering does not a�ect the Z-bu�er, so rendering in X and then OpenGL
would result in the OpenGL rendering replacing the Xlib rendering. This is
true if the last OpenGL rendering to the Z-bu�er at that location resulted in
the depth test passing.

Note that mixing Xlib rendering with OpenGL rendering as well as with VMD,
when using alpha bu�ers, can produce unexpected side e�ects and should be
avoided.

Gamma Correction

Gamma correction is used to alter hardware colormaps to compensate for the
non-linearities in the phosphor brightness of monitors. Gamma correction can
be used to improve the \ropy" or modulated appearance of antialiased lines.
Gamma correction is also used to improve the appearance of shaded graphics
images as well as scanned photographic images that have not already been gamma
corrected.

For details on this feature, read the section \Gamma Correction" found in
Chapter 7 of the Graphics Administration Guide.

Overview of OpenGL 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

OpenGL Extensions

The extensions listed in this section are in addition to those described in
the OpenGL Programming Guide, OpenGL Reference Manual , and OpenGL
Programming for the X Window System.

Clamp Border and Clamp Edge Extensions

Texture clamp extensions provide techniques to either clamp to the edge texels or
border texels even when using a �lter that uses linear �ltering. Nearest �ltering
always just selects one of the texels from the texture map. But when using linear
�ltering, whether from the mini�cation or magni�cation �lters, the �ltered texels
can be an average of texels from both the texture map and the texture border. To
only use the texture map texels when clamping, use the clamp edge extension.
To allow the selection of border texels when clamping, use the clamp border
extension.

Table 1-6. Clamp Border and Clamp Edge Extensions

Extended

Area

Enumerated Types Description

Wrap
Modes

GL_CLAMP_TO_BORDER_EXT

default: GL_REPEAT

When this enumerated type is passed into
glTexParameter, it will clamp to the
border of the mip level.

Wrap
Modes

GL_CLAMP_TO_EDGE_EXT

default: GL_REPEAT

When this enumerated type is passed into
glTexParameter, it will clamp to the
edge of the mip level.

To use clamp border extension, substitute GL_CLAMP_TO_BORDER_EXT for the
param in glTexParameter. To use clamp edge extension, substitute
GL_CLAMP_TO_EDGE_EXT for the param in glTexParameter.

1-10 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Code fragments and results:

float BorderColor[4];

BorderColor[0] = 0.0; /* Red */

BorderColor[1] = 0.0; /* Green */

BorderColor[2] = 1.0; /* Blue */

BorderColor[3] = 1.0; /* Alpha */

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, BorderColor);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

Figure 1-1. Repeat Wrap Mode

Overview of OpenGL 1-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

Figure 1-2. Clamp Wrap Mode

1-12 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE_EXT);

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE_EXT);

Figure 1-3. Clamp to Edge Wrap Mode

Overview of OpenGL 1-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER_EXT);

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER_EXT);

Figure 1-4. Clamp to Border Wrap Mode

For related information, see the function glTexParameter.

1-14 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

3D Texture Extension

The 3D texture extension is useful for volumetric rendering of solid surfaces such
as a marble vase or for rendering images where geometric alignment is important,
such as an MRI medical image. For this extension, the texture maps have width
and height as they did for 2D and also an additional depth dimension not included
in 2D. The third coordinate forms a right handed coordinate system which is
illustrated in Figure 1-5.

Figure 1-5. Right Handed Coordinate System for 3D Texturing

Each mipmap level consists of a block of data, see Figure 1-6. Each mipmap
level of the texture map is treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a 2-dimensional image. So each mip level is a
(2m+2b)� (2n+2b)� (2l+2b) block where b is a border width of either 0 or 1,
and m, n and l are non-negative integers.

Overview of OpenGL 1-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Figure 1-6. Each Mipmap is a Block in 3D Texturing

Figure 1-7. GL LINEAR MIPMAP LINEAR Filtering May Use Two Blocks

1-16 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Table 1-7. Enumerated Types for 3D Texturing

Extended

Area

Enumerated Types Description

Pixel
Storage

GL_[UN]PACK_IMAGE_HEIGHT_EXT

default: 0 for each
The height of the image from which
the texture is created; it supercedes
the value of the height passed into
glTexImage3DEXT.

Pixel
Storage

GL_[UN]PACK_SKIP_IMAGES_EXT

default: 0 for each
The initial skip of contiguous
rectangles of the texture.

Texture
Wrap
Modes

GL_TEXTURE_WRAP_R_EXT

default: GL_REPEAT
The wrap mode applied to the r
texture coordinate

Enable/
Disable

GL_TEXTURE_3D_EXT

default: Disabled
The method to enable/disable 3D
texturing.

Get
Formats

GL_MAX_3D_TEXTURE_SIZE_EXT,
GL_TEXTURE_BINDING_3D_EXT

default: N/A

The maximum size of the 3D texture
allowed; bind query.

Proxy GL_PROXY_TEXTURE_3D_EXT

default: N/A
The proxy texture that can be used
to query the con�gurations.

Steps for 3D Texturing Programming

To use the 3D texture extension (see sample program below), do the following
steps.

1. Enable the 3D texture extension using glEnable(GL_TEXTURE_3D_EXT),
2. Create a 3D texture using glTexImage3DEXT

3. Specify or generate the s, t and r texture coordinates using glTexGen or
glTexCoord3*

4. Specify other parameters such as �lters just as you would for 2D texturing,
but use GL_TEXTURE_3D_EXT for the target.

Overview of OpenGL 1-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
3D Texture Program Fragments

This program draws four layers in the base mipmap level, and a diagonal slice
through the base mipmap level.

/* Allocate texture levels separately, then concat to get a 3D texture. */

GLubyte texture1[TEXTURE_WIDTH][TEXTURE_HEIGHT][4];

GLubyte texture2[TEXTURE_WIDTH][TEXTURE_HEIGHT][4];

GLubyte texture3[TEXTURE_WIDTH][TEXTURE_HEIGHT][4];

GLubyte texture4[TEXTURE_WIDTH][TEXTURE_HEIGHT][4];

GLubyte textureConcat[TEXTURE_DEPTH][TEXTURE_WIDTH][TEXTURE_HEIGHT][4];

/* The checkerPattern procedure fills a texture with width, height with

a period of Checker_period alternating between firstColor and

secondColor, Texture should be declared prior to calling checkerPattern. */

static void checkerPattern(int width, int height, GLubyte *firstColor,

GLubyte *secondColor, GLubyte *texture,

int Checker_period) {

int texelX, texelY;

int index, fromIndex;

GLubyte *p = texture;

index = 0;

for (texelY = 0; texelY < height; texelY++) {

for (texelX = 0; texelX < width; texelX++) {

if (((texelX/Checker_period) % 2) ^ ((texelY/Checker_period) % 2)) {

p++ = firstColor[0]; / red */

p++ = firstColor[1]; / green */

p++ = firstColor[2]; / blue */

p++ = firstColor[3]; / alpha */

} else {

p++ = secondColor[0]; / red */

p++ = secondColor[1]; / green */

p++ = secondColor[2]; / blue */

p++ = secondColor[3]; / alpha */

}

}

}

1-18 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
GLubyte blackRGBA[] = {0.0, 0.0, 0.0, 255.0};

GLubyte whiteRGBA[] = {255.0, 255.0, 255.0, 255.0};

GLubyte redRGBA[] = {255.0, 0.0, 0.0, 255.0};

GLubyte greenRGBA[] = {0.0, 255.0, 0.0, 255.0};

GLubyte blueRGBA[] = {0.0, 0.0, 255.0, 255.0};

GLubyte yellowRGBA[]= {255.0, 255.0, 0.0, 255.0};

GLubyte purpleRGBA[]= {255.0, 0.0, 255.0, 255.0};

GLubyte cyanRGBA[]= {0.0, 255.0, 255.0, 255.0};

GLubyte greyRGBA[] = {125.0, 125.0, 125.0, 255.0};

main (int argc, char *argv[]) {

/* Open window for displaying */

Put your favorite code here to open an window and perform perspective setup

glEnable(GL_TEXTURE_3D_EXT);

checkerPattern(TEXTURE_WIDTH, TEXTURE_HEIGHT, blueRGBA, whiteRGBA,

&texture1[0][0][0], 4);

checkerPattern(TEXTURE_WIDTH, TEXTURE_HEIGHT, redRGBA, yellowRGBA,

&texture2[0][0][0], 4);

checkerPattern(TEXTURE_WIDTH, TEXTURE_HEIGHT, greenRGBA, blackRGBA,

&texture3[0][0][0], 4);

checkerPattern(TEXTURE_WIDTH, TEXTURE_HEIGHT, purpleRGBA, cyanRGBA,

&texture4[0][0][0], 4);

/* create a 3D texture, textureConcat, which has a different checker

pattern at each depth */

memcpy(&textureConcat[0][0][0], texture1, sizeof(texture1));

memcpy(&textureConcat[1][0][0], texture2, sizeof(texture2));

memcpy(&textureConcat[2][0][0], texture3, sizeof(texture3));

memcpy(&textureConcat[3][0][0], texture4, sizeof(texture4));

glTexParameterf(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP);

glTexParameterf(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP);

glTexParameterf(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_R_EXT, GL_CLAMP);

glTexParameterf(GL_TEXTURE_3D_EXT, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_3D_EXT, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexImage3DEXT(GL_TEXTURE_3D_EXT, 0, GL_RGBA, TEXTURE_WIDTH, TEXTURE_HEIGHT,

TEXTURE_DEPTH, 0, GL_RGBA, GL_UNSIGNED_BYTE, &textureConcat);

Overview of OpenGL 1-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
/* Fill a quad with depth of r = 0.125, passed into glTexCoord for every

vertex. */

Add your quad code here

/* Fill a quad with depth of r = 0.375, passed into glTexCoord for

every vertex. */ Add your quad code here

/* Fill a quad with depth of r = 0.625, passed into glTexCoord for

every vertex. */ Add your quad code here

/* Fill a quad with depth of r = 0.875, passed into glTexCoord for

every vertex. */ Add your quad code here

/* Now get a slice across the quad. Heres some quad code for a

sample. Make sure you have appropriate viewing perspectives. */

glBegin(GL_QUADS);

glNormal3f(0., 0., 1.);

glTexCoord3f(0.0, 0.0, 0.0);

glVertex3f(0.5, 0.5, 0.);

glNormal3f(0., 0., 1.);

glTexCoord3f(0.0, 1.0, 0.0);

glVertex3f(0.5, 62.5, 0.);

glNormal3f(0., 0., 1.);

glTexCoord3f(1.0, 1.0, 1.0);

glVertex3f(62.5, 62.5, 0.);

glNormal3f(0., 0., 1.);

glTexCoord3f(1.0, 0.0, 1.0);

glVertex3f(62.5, 0.5, 0.);

glEnd();

}

1-20 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
The results of code fragments are shown in Figure 1-8. This �gure shows four
layers in the base mipmap level, and a diagonal slice through the base mipmap
level.

Figure 1-8. Results from the 3D Texture Program Fragments

For more information on 3D texture, see the functions: glTexImage3DEXT,
glTexSubImage3DEXT, glCopyTexSubImage3DEXT, glEnable, glDisable.

Overview of OpenGL 1-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Shadow and Depth Extensions

The texture depth extension provides a depth texture format. This is needed
to use the shadow texture extension. The shadow texture extension is used
to compare the texture's r components against the corresponding texel value.
Each texel is compared using user speci�ed comparison rules. If the comparison
rule passes, the fragments alpha value will be set to one by the shadow texture
extension. If the comparison rule fails, the fragment's alpha value will be set to
zero. The alpha test can then mask out shadowed areas using the alpha values.

When using this extension, set mini�cation and magni�cation �lter to either
GL_NEAREST or GL_LINEAR. Mipmap mini�cation �lters of
GL_NEAREST_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, and GL_LINEAR_MIPMAP_LINEAR will give indeter-
minate results.

Table 1-8.

Enumerated Types for Shadow and Depth Texture Extension

Extended

Area

Enumerated Types Description

Texture
Formats

GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16_EXT,
GL_DEPTH_COMPONENT24_EXT,
GL_DEPTH_COMPONENT32_EXT

default: N/A

Texel formats which are useful
when using shadow texturing.

Texture
Parameter

GL_TEXTURE_COMPARE_EXT,
default: GL_FALSE

Enables comparison to the r
coordinate when set to true.

Texture
Parameter

GL_TEXTURE_DEPTH_EXT

default: GL_FALSE
Used to query if you have depth
extension available.

Texture
Parameter

GL_TEXTURE_COMPARE_OPERATOR_EXT,
GL_LEQUAL_R_EXT,
GL_GEQUAL_R_EXT

default: GL_TEXTURE_LEQUAL_R_EXT

Sets the particular type of
comparison with the r texture
coordinate.

1-22 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Steps for Shadow Texturing

1. Set the GL_TEXTURE_COMPARE_EXT to GL_TRUE in glTexParameter

2. Set the GL_TEXTURE_COMPARE_OPERATOR_EXT to either
GL_TEXTURE_LEQUAL_R_EXT or GL_TEXTURE_GEQUAL_R_EXT using glTexPa-

rameter.
3. Use glTexImage with GL_DEPTH_COMPONENT to �ll the texture with the image

which will be compared with the r coordinate.
4. Use glTexCoord3* to set the s, t, and r texture coordinates at the vertices

of the object to be rendered.

Overview of OpenGL 1-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Shadow Texturing Program

This program renders a simple quadrilateral using the shadow texture extension
and the alpha test.

/* Put unusual includes */

#define TEXTURE_WIDTH 256

#define TEXTURE_HEIGHT 256

GLubyte texture[TEXTURE_WIDTH][TEXTURE_HEIGHT][1];

static void checkerPattern(int width,

int height,

int Checker_period)

{

int texelX, texelY;

int index ;

index = 0;

for (texelY = 0; texelY < height; texelY++) {

for (texelX = 0; texelX < width; texelX++) {

if (((texelX/Checker_period) % 2)^((texelY/Checker_period) % 2)) {

texture[texelX][texelY][0] = (GLubyte) 0; /* depth */

} else {

texture[texelX][texelY][0] = (GLubyte) 255; /* depth */

}

}

}

}

main code fragment

/* INSERT your favorite window create and map code here */

/* Set up transforms */

glMatrixMode(GL_PROJECTION);

glLoadIdentity ();

glOrtho (-10, 130., -10., 130., 1., -1.);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity ();

glEnable(GL_DEPTH_TEST);

glEnable(GL_ALPHA_TEST);

glEnable(GL_TEXTURE_2D);

glDepthFunc(GL_LEQUAL);

glAlphaFunc(GL_GREATER, 0.5);

1-24 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
glClearDepth(1.0);

width = TEXTURE_WIDTH;

height = TEXTURE_HEIGHT;

checkerPattern(width,height, 64);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_EXT, GL_TRUE);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_OPERATOR_EXT,

GL_TEXTURE_LEQUAL_R_EXT);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16_EXT, width,

height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE,

&texture);

/* Render a red (background) and blue (primitive) checker pattern */

glClearColor(1.0, 0.0, 0.0, 1.0);

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glColor3f(0.0, 0.0, 1.0);

glBegin(GL_QUADS);

glTexCoord3d(0.0, 0.0, 0.0);

glVertex3f(0.5, 0.5, 0.);

glTexCoord3d(0.0, 1.0, 1.0);

glVertex3f(0.5, 106.5, 0.);

glTexCoord3d(1.0, 1.0, 1.0);

glVertex3f(106.5, 106.5, 0.);

glTexCoord3d(1.0, 0.0, 0.0);

glVertex3f(106.5, 0.5, 0.);

glEnd();

Overview of OpenGL 1-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Figure 1-9 shows the results from executing the program.

Figure 1-9. Results from Shadow Texturing

For related information, see the function glTexParameter.

Texture Lighting Extension

The texture lighting extension de�nes a mechanism for applications to request
that color originating from specular lighting be added to the fragment color after
texture application. This is referred to as preLight texturing.

Table 1-9. Enumerated Types for Pre-Light Texturing

Extended

area

Enumerated Types Description

Texture
Environ-
ment

GL_TEXTURE_LIGHTING_MODE_HP,
GL_TEXTURE_PRE_SPECULAR_HP,
GL_TEXTURE_POST_SPECULAR_HP

default: N/A

pname and param parameters for
glTexEnv.

1-26 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Procedure for preLight Texturing

You need to add the following preLight texturing code fragments to the normal
texturing program that also has lighting.

glTexEnv[if](GL_TEXTURE_ENV, GL_TEXTURE_LIGHTING_MODE_HP,

GL_TEXTURE_PRE_SPECULAR_HP);

or

GLfloat appMode=GL_TEXTURE_PRE_SPECULAR_HP; glTexEnvf(GL_TEXTURE_ENV,

GL_TEXTURE_LIGHTING_MODE_HP, &appMode);

The results from using preLight texturing are given in Figure 1-10. Note that
the top image is without prelight texturing, and the bottom is with preLight

texturing. The left half of each image is the untextured specular-lighted image,
and the right half of each image uses GL_REPLACE texturing.

Figure 1-10. Results from Prelight Texturing

For related information, see the function glTexEnv.

Overview of OpenGL 1-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Occlusion Extension

This occlusion culling extension de�nes a mechanism whereby an application
can determine the non-visibility of some set of geometry based on whether an
encompassing set of geometry is non-visible. In general, this feature does not
guarantee that the target geometry is visible when the test fails, but is accurate
with regard to non-visibility.

Typical usage of this feature would include testing the bounding boxes of complex
objects for visibility. If the bounding box is not visible, then it is known that the
object is not visible and need not be rendered.

Occlusion Culling Code Fragments

The following is a sample code segment that shows a simple usage of occlusion
culling.

/* Turn off writes to depth and color buffers */

glDepthMask(GL_FALSE);

glColorMask (GL_FALSE, GL_FALSE, GL_FALSE);

/* Enable Occlusion Culling test */

glEnable(GL_OCCLUSION_TEST_HP);

for (i=0; i < numParts; i++) {

/* Render your favorite bounding box */

renderBoundingBox(i);

/* If bounding box is visible, render part */

glGetBooleanv(GL_OCCLUSION_RESULT_HP, &result);

if (result) {

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE);

glDepthMask(GL_TRUE);

renderPart(i);

glDepthMask(GL_FALSE);

glColorMask (GL_FALSE, GL_FALSE, GL_FALSE);

}

}

/* Disable Occlusion Culling test */

glDisable(GL_OCCLUSION_TEST_HP);

/* Turn on writes to depth and color buffers */

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE);

glDepthMask(GL_TRUE);

The key idea behind occlusion culling is that the bounding box is much simpler
(i.e., fewer vertices) than the part itself. Occlusion culling provides a quick means
to test non-visibility of a part by testing its bounding box.

1-28 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
It should also be noted that this occlusion culling functionality is also very useful
for viewing frustum culling. If a part's bounding box is not visible for any reason
(not just occluded in the Z-bu�er), this test will give correct results.

To maximize the probability that an object is occluded by other objects in a
scene, the database should be sorted and rendered from front to back. Also, the
database may be sorted hierarchically such that the outer objects are rendered
�rst and the inner are rendered last. An example would be rendering the body of
an automobile �rst and the engine and transmission last. In this way the engine
would not be rendered due to the bounding box test indicating that the engine
is not visible.

Table 1-10. Enumerated Types for Occlusion

Extended Area Enumerated Types Description

Enable/Disable/IsEnabled GL_OCCLUSION_TEST_HP

default: Disabled
pname variable

Get* GL_OCCLUSION_TEST_RESULT_HP

default: Zero (0)
pname variable

For related information, see the functions: glGet, glEnable, glDisable, and
glIsEnabled.

Overview of OpenGL 1-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Texture Autogen Mipmap Extension

The autogen mipmap extension introduces a side e�ect to the modi�cation of
the base level texture map. When enabled, any change to the base-level texture
map will cause the computation of a complete mipmap for that base level. The
internal formats and border widths of the derived mipmap will match those of the
base map, and the dimensions of the derived mipmap follow the requirements set
forth in OpenGL for a valid mipmap. A simple 2�2 box �lter is used to generate
the mipmap levels.

Table 1-11. Enumerated Types for Occlusion

Extended Area Enumerated Types Description

Texture Parameter GL_GENERATE_MIPMAP_EXT

default: GL_FALSE
Enables autogen mipmap.

To use the autogen mipmap extension, set GL_GENERATE_MIPMAP_EXT to GL_TRUE
in glTexParameter. For example, here is a code fragment that uses this
extension:

glTexParameter[if](GL_TEXTURE_2D, GL_GENERATE_MIPMAP_EXT, GL_TRUE);

For related information on this extension, see the function glTexParameter.

X Window Extensions for HP's Implementation of OpenGL

HP's implementation of OpenGL includes two GLX extensions that deal with
extended GLX visual information that is not included in the OpenGL 1.1
Standard. These extensions are both supported by HP's implementation of the
OpenGL API library, but prior to using them,

glXQueryExtensionsString should be called to verify that the extensions are
supported on the target display.

1-30 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
GLX Visual Information Extension

The GLX_EXT_visual_info extension provides additional GLX visual informa-
tion and enhanced control of GLX visual selection. The enumerated types listed
below can be passed to either glXChooseVisual, or glXGetConfig to specify or
inquire the visual type or transparency capabilities.

Table 1-12. Enumerated Types for GLX Visual Information

Extended

Area

Enumerated Types Description

Visual
Type

GLX_TRUE_COLOR_EXT,
GLX_DIRECT_COLOR_EXT,
GLX_PSEUDO_COLOR_EXT,
GLX_STATIC_COLOR_EXT[1],
GLX_GRAY_SCALE_EXT[1],
GLX_STATIC_GRAY_EXT[1]
default: N/A

Values associated with the
GLX_X_VISUAL_TYPE_EXT enumerated
type.

Visual
Trans-
parency
Capabilities

GLX_NONE_EXT,
GLX_TRANSPARENT_RGB_EXT[1],
GLX_TRANSPARENT_INDEX_EXT

default: GLX_NONE_EXT

Values associated with the
GLX_TRANSPARENT_TYPE_EXT

enumerated type.

1. These enumerated types are supported through the GLX client-side API library,
but there are currently no HP X Server GLX VIsuals with these capabilities.
They can still be used to query any Server and will operate properly if
connected to a non-HP server with GLX support for these visual capabilities.

The enumerated types listed below can be used only through glXGetConfig when
it is known that the GLX visual being queried supports transparency or in other
words, has a GLX_TRANSPARENT_TYPE_EXT property other than GLX_NONE_EXT.

Overview of OpenGL 1-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Table 1-13. Enumerated Types for GLX Visual Transparency

Extended Area Enumerated Types Description

Transparency
Index for
PseudoColor
Visuals

GLX_TRANSPARENT_INDEX_VALUE_EXT

default: N/A
Returns the Pixel Index for
the transparent color in a
GLX_TRANSPARENT_INDEX_EXT

visual.

Transparency
Values for
RGBA
Visuals

GLX_TRANSPARENT_RED_VALUE_EXT,
GLX_TRANSPARENT_GREEN_VALUE_EXT,
GLX_TRANSPARENT_BLUE_VALUE_EXT,
GLX_TRANSPARENT_ALPHA_VALUE_EXT

default: N/A

Returns the RGBA data
values for the transparent
color in a
GLX_TRANSPARENT_RGB_EXT

type GLX visual (Not
supported on HP Servers).

GLX EXT visual info Program Fragments

Note that both of the following segments assume that the GLX_EXT_visual_info
extension exists for dpy, which is a pre-existing display connection to an X Server.

Here is a sample code segment that forces selection only of a TrueColor visual.

Display *dpy;

XVisualInfo *vInfo;

int attrList[] = {GL_USE_GL,

GLX_X_VISUAL_TYPE_EXT,

GLX_TRUE_COLOR_EXT,

None};

vinfo = glXChooseVisual(dpy, XDefaultScreen(dpy), &attrList);

1-32 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
The following sample is a code segment that selects an overlay visual with index
transparency, and then obtains the Pixel index for the transparent color.

Display *dpy;

XVisualInfo *visInfo;

int transparentPixel;

int attrList[] = {GL_USE_GL,

GLX_LEVEL, 1,

GLX_TRANSPARENT_TYPE_EXT,

GLX_TRANSPARENT_INDEX_EXT,

None};

visInfo = glXChooseVisual(dpy, XDefaultScreen(dpy), &attrList);

if (visInfo != NULL) {

glXGetConfig(dpy, visInfo, GLX_TRANSPARENT_INDEX_VALUE_EXT,

&transparentPixel);

}

GLX Visual Rating Extension

The GLX_EXT_visual_rating extension provides additional GLX visual informa-
tion which applies rating properties to GLX visuals. The enumerated types listed
below can be passed to either glXChooseVisual, or glXGetConfig to specify or
inquire visual rating information.

Table 1-14. Enumerated Types for GLX Visual Rating

Extended

Area

Enumerated Types Description

Visual
Rating

GLX_NONE_EXT,
GLX_SLOW_VISUAL_EXT,
GLX_NON_CONFORMANT_VISUAL_EXT

default: N/A

Values associated with the
GLX_VISUAL_CAVEAT_EXT

enumerated type.

Note that all current HP GLX visuals are rated as GLX_NONE_EXT. This extension
is implemented for possible future visual support and for use with non-HP servers.
Coding to use the GLX_EXT_visual_rating extension is similar to the segments
listed above for the GLX_EXT_visual_info extension.

Overview of OpenGL 1-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Rendering Details

This section provides the details for several of HP's rendering capabilities. These
rendering capabilities range from the way HP implements its default visuals to
the way HP deals with the decomposition of concave quadrilaterals.

Default Visuals

Instead of placing the default visual in the deepest image bu�er, HP puts the
default visual in the overlay planes.

EXP and EXP2 Fogging

The Virtual Memory Driver's implementation of fog applies fog per fragment.
Hardware devices implement EXP and EXP2 fog per fragment and linear fog per
vertex.

Bow-Tie Quadrilaterals

A quadrilateral has four vertices that are coplanar. When this quadrilateral is
twisted and you look at a front view of it on the display, there appears to be a
�fth vertex. This �fth vertex which is not a true vertex will have no attributes,
therefore, the color at what appears to be the intersection of two lines will in
most cases be di�erent from what is expected. HP treats the two parts of the
bow tie as two separate triangles that have attributes assigned to their vertices.
This special rendering process takes care of the color problem at the non-existent
�fth vertex.

To learn how other implementations of OpenGL deal with bow-tie quadrilaterals,
read the section \Describing Points, Lines, and Polygons" in Chapter 2 of the
OpenGL Programming Guide.

Decomposition of Concave Quadrilaterals

HP determines whether the concave quadrilateral will become front facing or
back-facing prior to dividing the quadrilateral into triangles. HP then divides
the surface into two triangles between vertices zero and two or one and three
depending on the vertex causing concavity.

1-34 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Vertices Outside of a Begin/End Pair

HP's implementation of this speci�cation is indeterminate as de�ned by the
OpenGL standard.

Index Mode Dithering

If dithering is enabled in indexed visuals, 2D functions such as glDrawPixels

and glBitmap will not be dithered.

Overview of OpenGL 1-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Environment Variables

Here is a list of environment variables used by HP's implementation of OpenGL.

HPOGL_ENABLE_MIT_SHMEM

When rendering locally using the VM Driver, this variable allows the server
and client to look at the rendering bu�er at the same time. This variable has
no e�ect through DHA. It merely eliminates the data transfer for XPutImage()
that is done by VMD. This only o�ers a performance improvement on simple
wireframes. Under most circumstances, it does not provide any performance
improvements.

HPOGL_FORCE_VMD

This variable forces clients to render through the VMD. This variable can be
used as a temporary �x and/or a diagnostic. You should set this variable
when a rendering defect in the hardware device driver is suspected. When this
variable is set, rendering speed will slow down. If rendering is identical in both
hardware and software, then this may indicate a problem in the application
code.

HPOGL_LIB_PATH

This variable can be used to load OpenGL driver libraries from a directory
outside the standard LIB_PATH. This variable should be set to the actual
directory the libraries are in, with or without a trailing '/'.

HPOGL_LIGHTING_SPACE

This variable allows the user to specify the coordinate space to be used for
lighting. By default, HP's implementation of the OpenGL will select the
lighting space. Possible values are:

HPOGL_LIGHTING_SPACE=OC

HPOGL_LIGHTING_SPACE=EC

where OC equals Object Coordinates and EC equals Eye Coordinates. For details
on the lighting space, see the sections \Lighting Space" and \Optimization of
Lighting" found in Chapter 5.

HPOGL_TXTR_SHMEM_THRESHOLD

This variable sets a fence for the use of process memory vs. shared memory.
Any 2D or 3D texture that has a size greater than or equal to the threshold set
is stored in shared memory. The initial value is set ot 1024�1024 bytes. This
variable should be set to the byte size desired for shared memory usage.

1-36 Overview of OpenGL

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HPOGL_ALLOW_LOCAL_INDIRECT_CONTEXTS

By default, if an indirect context is requested for a local HP display connection,
a direct context will be created instead because the performance will be much
better. This variable may be set if a need arises to really create a local indirect
context.

HPOGL_FORCE_VGL

This variable can be set to force HP's Virtual GL (VGL) rendering mode
using VMD. This di�ers from HPOGL_FORCE_VMD in that the GLX Visual list
and other GLX extension information is not retrieved from the GLX Server
extension, but is rather synthesized from standard X Visual information and
the capabilities known to exist in VMD.

Overview of OpenGL 1-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2

Installation and Setup

Introduction

If you are setting up a new workstation, all software is preloaded for you if you
purchased the Instant Ignition option. A subsequent section will explain how to
determine if OpenGL has been installed. If you did not order Instant Ignition,
then you will need to install the OpenGL �lesets from the C/ANSI C Developer's
Toolkit.

Installation and Setup 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Verification Instructions

This section provides you with the necessary information for determining if your
OpenGL product has been installed.

Is Your System Software Preloaded with Instant Ignition?

Your workstation is preloaded with software, which may include OpenGL, if it
was ordered with the Instant Ignition option. A yellow label attached to the
workstation in its shipping carton con�rms the workstation is preloaded:

Verify that OpenGL is on Your Workstation

To verify that OpenGL is installed correctly on your system, execute:

/usr/sbin/swlist -l product

This will give you a list of all of the products on the system, and in that product
list you will see lines similar to the following if HP OpenGL has been installed
on your system.

OpenGLDevKit B.10.20 HP-UX OpenGL Developer's Kit

B6196AA B.10.20 HP-UX 700 OpenGL Run Time Environment

If OpenGL is not preloaded, you will need to install it by following the steps in
the subsequent sections.

2-2 Installation and Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Installing OpenGL

Installing the software involves the following steps:

1. Read this entire procedure
2. Install Workstation ACE for HP-UX 10.20 (July 1997) patch bundle
3. Install OpenGL
4. Check log �le
5. Verify the product.

Each step is described on the subsequent sections.

1. Read this entire procedure

Read all of this procedure to ensure the proper installation of your OpenGL
product.

2. Install HP-UX 10.20 and the Workstation ACE for HP-UX 10.20
(July 1997) patch bundle

Before installing OpenGL, install HP-UX 10.20 and the Workstation ACE for
HP-UX 10.20 (July 1997) patch bundle shipped with your developer's toolkit.

3. Install OpenGL

Once you have installed HP-UX 10.20, you can install the OpenGL programming
environment. This programming environment is bundled with the C/ANSI C
Developer's product. If your system is Instantly Ignited, your OpenGL product
is already installed. To verify that the OpenGL developer's programming
environment has been installed on your system, read the section \Verify that
OpenGL is on Your Workstation" above.

If OpenGL is installed, you are done with the section. If OpenGL is not installed,
execute this command (as root):

/usr/sbin/swinstall

. . . and follow the installation instructions provided in the document Managing
HP-UX Software with SD-UX . OpenGLDevKit is the product to install.

Installation and Setup 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The OpenGL development environment product includes the �lesets shown in
Table 2-1. To list these �lesets, execute this command:

/usr/sbin/swlist -l fileset OpenGLDevKit

Table 2-1. OpenGL Development Environment Filesets

OpenGL Fileset Contains

OPENGL-CONTRIB Contributed or unsupported program �les

OPENGL-EXAMPLE Example program source code

OPENGL-PRG Files necessary for the OpenGL programming environment

OPENGL-WEBDOC Online documentation �les

4. Check log file

Once you have completed the installation process, look at the contents of the �le
/var/adm/sw/swinstall.log. This �le lists the �lesets loaded, the customize
scripts that ran during the installation process, and informative messages. Error
messages that resulted from attempts to write across an NFS mount point may
appear in this �le and, if present, may be ignored.

5. Verify the product

Here are three methods for determining if you have correctly installed OpenGL
on your system.

Run the program /opt/graphics/OpenGL/demos/verify_install. If OpenGL
has been correctly installed on your system, running verify_install will cause
a window containing a 3D rendering of the text \OpenGL" to open on your
monitor.
Run any of the demos located in /opt/graphics/OpenGL/examples. This
directory is installed with the OPENGL-EXAMPLE �leset.
Compile, link and run one of your existing OpenGL programs.

The README �le in the examples directory contains instructions on how to set up
and run the examples.

Example programs from the OpenGL Programming Guide are installed in
/opt/graphics/OpenGL/contrib/glut_samples directory, which also contains
a README �le.

2-4 Installation and Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The OpenGL File Structure

The OpenGL �le structure is compliant with the �le structure of the HP-UX 10.x
�le system. Here is a list of �les and directories that are a part of the OpenGL
�le structure.

/opt/graphics/OpenGL/contrib/libwidget

This directory contains a Motif widget library and source code.

/opt/graphics/OpenGL/include/GL

This directory contains header �les needed for OpenGL development.

/opt/graphics/OpenGL/contrib/glut_samples

This directory contains example OpenGL programs that are referenced in the
OpenGL Programming Guide, Second Edition published by Addison-Wesley.

/opt/graphics/OpenGL/contrib/libglut

This directory contains Mark Kilgard's OpenGL Utility ToolKit (GLUT),
which is a window system independent toolkit for writing simple OpenGL
programs.

/opt/graphics/OpenGL/lib

This directory contains the following run-time shared libraries:

libGLU.sl

libGL.sl

libddvisxgl.sl

/usr/lib/X11/Xserver/brokers/extensions/Glx.1

/usr/lib/X11/Xserver/modules/extensions/hp/glx.1

These are libraries for the GLX extension to X windows.

Installation and Setup 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3

Running OpenGL Programs

Introduction

This chapter gives a description of the Virtual GLX mode, Virtual Memory Driver
(VMD), and support of threaded applications.

Virtual GLX (VGL) Mode

Virtual GLX (VGL) de�nes a special transparent mode within HP's implementa-
tion of OpenGL that allows an HP client to render through OpenGL to X servers
and/or X terminals that do not support OpenGL or the X server extension for
GLX.

This mode is implemented by emulating the X server extension within the
OpenGL API client-side library and using the HP Virtual Memory Driver (VMD)
to perform Xlib rendering.

VGL provides exibility for OpenGL users, but does not provide the same level
of performance as is available to servers supporting GLX.

Visual Support for the VGL Mode

In VGL mode, the visual capabilities incorporated in glXChooseVisual() and
glXGetConfig() are synthesized from the list of X Visuals supported on the
target X Server and the capabilities of the Virtual Memory Driver (VMD). Table
1-5 in Chapter 1 lists the X Visuals that are supported through the OpenGL
Extension to the X Window System (GLX) in the Virtual GLX (VGL) mode.

Running OpenGL Programs 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Special Considerations

When you are in the VGL mode, you will notice the following di�erences between
it and the GLX mode.

VGL deals with X servers that do not support replicated X visuals that provide
extended GLX capabilities. This results in a GLX visual list that is synthesized
from available X visuals. This list is assigned the maximum set of capabilities
supported by the Virtual Memory Driver (VMD) for each particular visual.
For example, if a visual is found to be supported by the Double-Bu�ered
Extension (DBE), then it will be reported as having the capability of doing
double-bu�ering. Note that there will not be a counterpart for the GLX visual
with the same type and depth that is single bu�ered. If a request is made for a
single bu�ered visual, a double-bu�ered visual will match the request, but that
visual will only be available for single-bu�ered rendering unless a new display
connection is opened to the VGL display.
OpenGL and Xlib rendering when mixed and sent to the same drawable in
VGL mode may behave di�erently than if a GLX capable X server were used.
This is because in VGL mode OpenGL rendering is not strictly bounded by the
limits of primitives rendered as is the case when a GLX server is used. In fact,
rendering a single GLX primitive can result in repainting the entire drawable.
This means that in the VGL mode it may not be safe to rely upon the fact that
Xlib and OpenGL render to di�erent regions of the drawable. The best way to
avoid this issue is to always perform Xlib rendering after OpenGL rendering.
The glReadPixels routine when used in the VGL mode will return only pixel
data rendered via OpenGL. Xlib rendering will not be included.
A call to glXSwapBuffers is the only approved way to achieve double bu�ering
for VGL visuals. Note that calls made to XdbeSwapBuffers will not work
correctly.
A call can be made to:

Bool hpglXDisplayIsVGL(Display *dpy)

to determine if a particular display connection is operating in VGL mode.
The return value is \True" if dpy is VGL; otherwise, the value returned is
\False." This is an HP function that is not available on other implementations
of OpenGL.

3-2 Running OpenGL Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Virtual Memory Driver (VMD)

Instead of rendering OpenGL graphics to a dedicated graphics display subsystem,
VMD is designed to render these images to a virtual-memory frame bu�er and
send these images to an X11 drawable using standard X11 protocol.

Because HP VMD uses the X11 protocol to display the images, this targeted
drawable may be local or remote. This may include rendering to X terminals,
older HP devices, or a personal computer. The only requirement is that the
output is directed to an X11 drawable. (See Chapter 1 for a list of supported
VMD con�gurations) VMD is also the driver used to render to GLX pixmaps.

When a GLX context is created for rendering three-dimensional graphics using
OpenGL, GLX �rst checks to see if the X server supports the GLX extension.
If it does not, the Virtual Memory Driver will be used. GLX examines the
available list of X visuals and decides which ones can be software extended to
be GLX visuals (see the supported visuals list). Bu�ers are allocated in virtual
memory for the OpenGL color and ancillary bu�ers. When the application issues
a glFlush(), glFinish(), or a glXSwapBuffers() call, the contents of the
corresponding virtual-memory color bu�ers are sent to the X11 window using
X protocol.

Double bu�ering for VMD is implemented using the X11 Double-Bu�ering
Extension (DBE). Double-bu�ered visuals are not available for HP OpenGL
rendering with VMD on X servers that do not support DBE.

Because of the way VMD works (rendering to a VM bu�er and then displaying
the images through X11 protocol), it will behave a bit di�erently than hardware
devices. In particular, since VMD renders to VM bu�ers, changes to the X11
window will not appear until a bu�er swap or a glFlush/glFinish.

Resource usage needs to be taken into consideration as well. VM bu�ers are
allocated for all of the OpenGL color and ancillary bu�ers. Color bu�ers
are allocated when the context is created. Other bu�ers (depth, stencil,
accumulation) are allocated at �rst use. These bu�ers can be quite large.

For example, consider an X11 window 750 pixels wide and 600 pixels high. The
size of each VM color bu�er for an 8-bit visual is:

750 pixels � 600 pixels � 1 byte/pixel = 450,000 bytes

Running OpenGL Programs 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Consider that an OpenGL application may use two color bu�ers (for double
bu�ering), a 32-bit depth/stencil bu�er, and a 48-bit accumulation bu�er. The
size of the virtual memory required then becomes 5,400,000 bytes. In addition,
the amount of virtual memory required is correspondingly larger for 12-bit and
24-bit color bu�ers.

3-4 Running OpenGL Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Running HP's Implementation of the OpenGL Stereo
Application

With HP's implementation of OpenGL and the Visualize-FX family of graphics
devices, it is now possible to run HP's implementation of OpenGL \stereo in a
window" mode. Unlike previous HP stereo implementations, \stereo in a window"
a�ects only OpenGL windows that have been created with \stereo capable" GLX

visuals. The remainder of the X11 screen is rendered in non-stereo mode without
any ickering or color artifacts.

Following are the steps required to run HP's implementation of OpenGL \stereo
in a window" mode:

1. Find out if your monitor is currently con�gured in a mode that supports stereo.
This can be done by running the command:

export DISPLAY=myhost:x.y

/opt/graphics/OpenGL/contrib/xglinfo/xglinfo

The output from xglinfo lists the OpenGL capabilities of the speci�ed X
Display, and includes all GLX visuals that are supported. If one or more of the
listed GLX visuals are marked as stereo capable, then you can proceed to step
three.

2. If none of the GLX visuals support stereo, you will need to re-con�gure your
monitor to a con�guration that supports stereo. Note that you can use the
\Monitor Con�guration" component of SAM to re-con�gure you monitor, or
you can execute the following command:

/opt/graphics/common/bin/setmon graphics device

Note that graphics device is a name such as \/dev/crt" that is included on the
Screen line in the /etc/X11/X*screens �le for the X Server that you want
to con�gure for stereo. The setmon command is interactive and will present
you with the possible monitor con�gurations allowable for the speci�ed device.
You should select one of the con�gurations that is listed by setmon as stereo
capable. If none of the con�gurations indicate stereo capability, then your
graphics device cannot be used for OpenGL stereo rendering.

After successfully re-con�guring your monitor, the X Server will be restarted,
and you can verify the availability of GLX stereo visuals by running the
xglinfo command again.

Running OpenGL Programs 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3. To select one of the stereo capable GLX visuals through OpenGL, the
GLX_STEREO enumerated value should be passed to either glXChooseVisual()
or glXGetConfig(). Once a stereo visual has been selected, it can be used
to create a stereo window, and glDrawBuffer() can then be called to utilize
both the right and left bu�ers for rendering stereo images.

3-6 Running OpenGL Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4

Compiling and Linking Programs

Introduction

Table 4-1 contains a list of the subdirectories in the /opt/graphics/OpenGL

directory. These subdirectories contain header �les and libraries which may be
used when compiling and linking your programs. They also include helpful sample
source code.

Table 4-1. OpenGL Directories and their Content

Subdirectory This Directory Contains . . .

include/GL Header �les needed for OpenGL development.

lib Several run-time shared libraries.

lbin Run-time executables.

doc OpenGL documentation including reference pages.

contrib/libwidget A Motif widget library and source code.

contrib/glut_samples Example OpenGL programs that are referenced in the
OpenGL Programming Guide.

contrib/libglut Utilities found in the OpenGL Utility Toolkit as
mentioned in the OpenGL Programming for the X

Window System manual.

contrib/xglinfo Utility to print display and visual information for
OpenGL with the X Window system.

contrib/glw_samples Source code for Motif widget sample programs.

Compiling and Linking Programs 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Including Header Files

Most OpenGL programs and applications that only use the standard OpenGL
data types, de�nitions, and function declarations, need only include the header �le
gl.h under the /opt/graphics/OpenGL/include/GL directory. Use the following
syntax:

#include <GL/gl.h>

Still other header �les may be needed by your program, depending on your
application. For example, in order to use the OpenGL extension to X Windows
(GLX) you must include glx.h, as shown below.

#include <GL/glx.h>

Instructions for including various additional header �les are usually provided with
the README �le that accompanies the utility or function. The README also includes
instructions for using or operating the utilities.

Your header �le declarations at the beginning of your program should look similar
to this:

#include <sys/types.h>

#include <stdio.h>

#include <string.h>

#include <X11/X.h>

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <GL/gl.h>

#include <GL/glx.h>

4-2 Compiling and Linking Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Linking Shared Libraries

OpenGL is supported on workstations using shared libraries that must be linked
with the application program.

When you compile your OpenGL programs, you must link the application with
the OpenGL library libGL. Notice that the OpenGL library is dependent on the
HP X extensions library (libXext).

An ANSI C compile line will typically look similar to this:

c89 program.c \

-I/opt/graphics/OpenGL/include \
-L/opt/graphics/OpenGL/lib \

-lXext -lGL -lX11

Note that to compile your application using ANSI C, you can also use the cc

command with either of these command line options: +Aa or +Ae.

If you are going to compile your application using HP's ANSI C++ compiler or
cfront C++ compiler, use one of the following commands:

aCC |used to compile an ANSI C++ application.

CC +a1 |used to compile a cfront C++ application.

See the Graphics Administration Guide for more information on compiling.

This table summarizes the shared libraries and X11 directories that are linked on
the command line example above.

Table 4-2. Shared Libraries

Library Description

libGL OpenGL routines

libX11 X11 routines

libXext HP X11 extensions

Compiling and Linking Programs 4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

OpenGL Procedure Calls

In order to facilitate maximum performance, the OpenGL library uses a unique
procedure calling convention. This convention is currently supported only by
the HP C and C++ compilers which are available in conjunction with the
Workstation ACE for HP-UX 10.20 (July 1997) OpenGL developers package.

If you get a large number of \Undefined pragma" messages (for example, Unde-
fined pragma "HP_PLT_CALL" ignored) when compiling an OpenGL applica-
tion, you are most likely using a compiler that does not support this new calling
convention. To get an appropriate HP C or C++ compiler, you will need to
contact your local HP Sales Representative.

You must also include the gl.h header �le supplied with HP's implementation
of OpenGL in any source code that makes OpenGL calls. If you have
unresolved OpenGL symbols (for example, \Unsatisfied symbol glVertex3f")
when linking your application, make sure that the correct gl.h �le is being
included in all your source �les. Any gl.h �les from other vendors or other
sources will not work with HP's implementation of OpenGL.

4-4 Compiling and Linking Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5

Programming Hints

Introduction

The topics covered in this chapter are intended to give you some helpful
programming hints as you begin to develop your OpenGL applications. Note
that these hints are speci�c to HP's implementation of OpenGL. For further
information on OpenGL programming hints that are not HP speci�c, see
Appendix G in the OpenGL Programming Guide.

The programming hints in this chapter are covered in these sections:

OpenGL Correctness Hints
OpenGL Performance Hints

Programming Hints 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

OpenGL Correctness Hints

Hints provided in this section are intended to help you correctly use HP's
implementation of OpenGL.

4D Values

When specifying 4D values, such as vertices, light positions, etc, if possible supply
a w value that is not near the oating point limits of MINFLOAT or MAXFLOAT. Using
w values near the oating point limits increases the likelihood of oating point
precision errors in calculations such as lighting, transformations, and perspective
division.

Also, performance will be best when 4D positions are normalized such that w is
1.0.

For best accuracy and performance, if you want to specify some 4D position like
(0.0, 0.0, 5e10, 1.5e38), instead use the equivalent normalized position (0.0, 0.0,
3.33e-28, 1.0).

If a light position must be speci�ed with a w value that is near the oating point
limits, consider setting

HPOGL_LIGHTING_SPACE=EC

to ensure that lighting occurs in Eye space. This will eliminate an extra
transformation of the light position, giving the best possible solution.

Texture Coordinates

When using non-orthographic projection, keep in mind the texture coordinates
will be divided by w as an intermediate calculation. HP's implementation of
OpenGL estimates that for VMD, the texture coordinates used in perspective
projections will have only �ve signi�cant digits of precision. Therefore, when
you have texturing close to a window edge and the decomposition of the
primitive causes the vertices to have very closely-spaced texture coordinates after
perspective projection, you may see loss of texturing precision. This loss of
precision may make the texture primitive seem locally smeared.

5-2 Programming Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

OpenGL Performance Hints

Hints provided in this section are intended to help improve your applications
performance when using HP's implementation of OpenGL.

Display List Performance

The topics covered here are areas where you can gain substantial improvements
in program performance when using OpenGL display lists. Here is a list of the
topics that are covered:

Geometric Primitives
GL_COMPILE_AND_EXECUTE Mode
Textures
State Changes and their E�ects on Display Lists
Regular Primitive Data

Geometric Primitives

Geometric primitives will typically be faster if put in a display list. As a general
rule, larger primitives will be faster than smaller ones. Performance gains here
can be dramatic. For example, it is possible that a single GL_TRIANGLES primitive
with 20 or so triangles will render 3-times faster than 20 GL_TRIANGLES primitives
with a single triangle in each one.

GL COMPILE AND EXECUTE Mode

Due to the pre-processing of the display list, and execution performance
enhancements, creating a display list using the GL_COMPILE_AND_EXECUTE mode
will reduce program performance. If you need to improve your programs
performance, do not create a display list using the GL_COMPILE_AND_EXECUTE

mode. You will �nd that it is easier and faster to create the display list using the
GL_COMPILE mode, and then execute the list after it is created.

Programming Hints 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Textures

If calls to glTexImage are put into a display list, they may be cached. Note that
if you are going to use the same texture multiple times, you may gain better
performance if you put the texture in a display list. Another solution would be
to use texture objects. Since 3D textures can potentially become very large, they
are not cached.

State Changes and Their Effects on Display Lists

If there are several state changes in a row, it is possible, in some circumstances,
for the display list to optimize them.

It is more e�cient to put a state change before a glBegin, than after it. For
example, this is always more e�cient:

glColor3f(1,2,3);

glBegin(GL_TRIANGLES);

glVertex3f(...);

...many more vertices...

glEnd();

than this:

glBegin(GL_TRIANGLES);

glColor3f(1,2,3);

glVertex3f(...);

...many more vertices...

glEnd();

5-4 Programming Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Regular Primitive Data

If the vertex data that you give to a display list is regular (i.e. every vertex has
the same data associated with it), it is possible for the display list to optimize
the primitive much more e�ectively than if the data is not regular.

For example if you wanted to give only a single normal for each face in a
GL_TRIANGLES primitive, the most intuitive way to get the best performance
would look like this:

glBegin(GL_TRIANGLES);

glNormal3fv(&v);

glVertex3fv(&p1); glVertex3fv(&p2); glVertex3fv(&p3);

glNormal3fv(&v);

glVertex3fv(&p1); glVertex3fv(&p2); glVertex3fv(&p3);

...

glEnd();

In immediate mode, this would give you the best performance. However, if you
are putting these calls into a display list, you will get much better performance
by duplicating the normal for each vertex, thereby giving regular data to the
display list:

glBegin(GL_TRIANGLES);

glNormal3fv(&v); glVertex3fv(&p1);

glNormal3fv(&v); glVertex3fv(&p2);
glNormal3fv(&v); glVertex3fv(&p3);

...

glEnd();

The reason this is faster is the display list can optimize this type of primitive into
a single, very e�cient structure. The small cost of adding extra data is o�set by
this optimization.

Programming Hints 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Texture Downloading Performance

This section includes some helpful hints for improving the performance of your
program when downloading textures.

If you are downloading MIP maps, always begin with the base level (level 0)
�rst.
If it is possible, you should use texture objects to store and bind textures.
If you are doing dynamic downloading of texture maps, you will get better
performance by replacing the current texture with a texture of the same width,
height, border size, and format. This should be done instead of deleting the
old texture and creating a new one.

Selection Performance

To increase the performance of selection (glRenderMode GL_SELECTION) it is
recommended that the following capabilities be disabled before entering the
selection mode.

GL_TEXTURE_*

GL_TEXTURE_GEN_*

GL_FOG

GL_LIGHTING

State Change

OpenGL state setting commands can be classi�ed into to two di�erent categories.
The �rst category is vertex-data commands. These are the calls that can occur
between a glBegin/glEnd pair:

glVertex

glColor

glIndex

glNormal

glEdgeFlag

glMaterial

glTexCoord

The processing of these calls is very fast. Restructuring a program to eliminate
some vertex data commands will not signi�cantly improve performance.

5-6 Programming Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The second category is modal state-setting commands, or sometimes referred to
as \mode changes." These are the commands that:

Turn on/o� capabilities,
Change attribute settings for capabilities,
De�ne lights,
Change matrices, etc.

These calls cannot occur between a glBegin/glEnd pair. Examples of such
commands are:

glEnable(GL_LIGHTING);

glFogf(GL_FOG_MODE, GL_LINEAR);

glLightf(..);

glLoadMatrixf(..);

Changes to the modal state are signi�cantly more expensive to process than
simple vertex-data commands. Also, application performance can be optimized
by grouping modal state changes, and by minimizing the number of modal state
changes:

Grouping your state changes together (that is, several modal state changes
at one time), and then rendering primitives, will provide better performance
than doing the modal state changes one by one and intermixing them with
primitives.
Grouping primitives that require the same modal state together to minimize
modal state changes. For example, if only part of a scene's primitives are
lighted, draw all the lighted primitives, then turn o� lighting and draw all the
unlighted primitives, rather than enabling/disabling lighting many times.

Programming Hints 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Lighting Space

OpenGL speci�es that lighting operations should be done in Eye Coordinte space.
However, if the model-view matrix is isotropic, equivalent lighting calculations
can be performed in Object Coordinate space, by transforming stored light
positions to Object Coordinates. If there are many vertices between model-view
matrix changes, Object-Coordinate space lighting is faster than Eye Coordinate
space lighting since the transformation of vertices and normals from Object- to
Eye Coordinates can be skipped.

Whether or not Object Coordinate lighting is faster than Eye Coordinate lighting
depends on the command mode (immediate mode vs. execution of a display list
or vertex array) as well as the number of vertices between model-view matrix
changes.

The selection of a lighting space occurs at the start of the next primitive (glBegin
or vertex array) after any GL calls that could a�ect the choice of lighting space.
The choice of lighting space can be a�ected by those GL calls that:

Change Object Coordinates to Eye Coordinates (model-view matrix)
Turn on/o� fog
Turn on/o� generation of spherical texture coordinates.

If the model-view matrix is anisotropic, lighting must be done in Eye Coordinates.
Lighting will also be done in Eye Coordinates when fogging and spherical-texture-
coordinate generation are done in Eye Coordinates.

If none of the above conditions which force Eye Coordinate lighting are true, then
HP's implementation of OpenGL chooses the lighting space depending on how
OpenGL commands are being executed at the time a choice must be made. If
commands are being executed in immediate mode, eye space lighting is chosen.
If commands are being executed from a display list or if a vertex array is being
executed, object space lighting is chosen.

Eye-space lighting works well when commands are executed in immediate mode,
and object-space lighting works well when:

There are many (8 or more) vertices between changes to light de�nitions or to
the model-view matrix.
A display list or vertex array is used.

5-8 Programming Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

You can override the above lighting space selection rules by setting the
environment variable HPOGL_LIGHTING_SPACE. To set this environment variable,
execute the following command:

export HPOGL_LIGHTING_SPACE=EC

when any of the following are true:

The application uses display lists or vertex arrays, but makes frequent changes
to the model-view matrix or to light de�nitions (using glLight).
The application uses display lists or vertex arrays, but frequently turns fogging
or spherical-texture-coordinate generation on/o�.
The application uses 4D data (for example, vertices, light positions) and the w
values are near the oating point limits. See the section below on 4D values
for more information.

It is appropriate to use

export HPOGL_LIGHTING_SPACE=OC

when:

There are many (eight or more) vertices between light changes or model-view
matrix changes.
Display lists or vertex arrays are used extensively.

and any of the following are true:

There is a lot of switching between immediate mode and display-list execution
(or vertex arrays) while lighting is on, and intermixed with state changes that
a�ect choice of lighting space (these were listed above).
Display lists are used predominantly, but the �rst glBegin after commands
that a�ect choice of lighting space (which were listed above) is an immediate
mode command.

Programming Hints 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

For example, in a scenario like the following:

(Load a model View Matrix)

(De�ne lights)

(Enable lights and lighting)

glBegin(..); /* Some simple immediate-mode rendering.

Lighting space gets chosen at this point. */

...

glEnd();

(Execution of many display lists or vertex arrays, with no

changes to the model-view matrix or light de�nitions)

Here the default lighting space chosen at the time of the �rst glBegin

is eye-space lighting. The display lists could have bene�ted from setting
HPOGL_LIGHTING_SPACE=OC.

When tuning an application, �rst use just the default lighting-space selection (do
not set HPOGL_LIGHTING_SPACE). If the application matches the conditions listed
above that indicate the need for setting HPOGL_LIGHTING_SPACE, then experiment
with setting the environment variable.

Optimization of Lighting

HP's implementation of OpenGL optimizes the lighting case such that the
performance degradation from one light to two or more lights is linear. Lighting
performance does not degrade noticeably when you enable a second light. In
addition, the GL_SHININESS material parameter is not particularly expensive to
change.

Occlusion Culling

The proper use of HP's occlusion culling extension can dramatically improve
rendering performance. This extension de�nes a mechanism for determining the
non-visibility of complex geometry based on the non-visibility of a bounding
geometry. This feature can greatly reduce the amount of geometry processing
and rendering required by an application, thereby, increasing the applications
performance. For more information on occlusion culling, see the section
\Occlusion Extension" found in Chapter 1.

5-10 Programming Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

A

Function Reference

This appendix contains the reference pages for the three extension functions that
Hewlett-Packard de�ned for its implementation of OpenGL. The three functions
are:

glCopyTexSubImage3DEXT

glTexImage3DEXT

glTexSubImage3DEXT

For a paper copy of the standard OpenGL functions supported in HP's
implementation of OpenGL, see the OpenGL Reference Manual (the \Blue
Book"). For an on-line version of all of the reference pages|the standard ones
included in the Blue Book plus HP's extensions|see the browsable OpenGL
documentation under /opt/graphics/OpenGL/doc/Web/.

Function Reference A-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glCopyTexSubImage3DEXT

glCopyTexSubImage3DEXT: copy pixels into a 3D texture subimage.

C Specification

void glCopyTexSubImage3DEXT(

GLenum target,

GLint level,

GLint xo�set,

GLint yo�set,

GLint zo�set,

GLint x,

GLint y,

GLsizei width,

GLsizei height)

Parameters

target The target texture. Must be GL_TEXTURE_3D_EXT.

level The level-of-detail number. Level 0 is the base image level, and level n
is the nth mipmap reduction image.

xo�set Texel o�set in the X direction within the texture array.

yo�set Texel o�set in the Y direction within the texture array.

zo�set Texel o�set in the Z direction within the texture array.

x The X coordinate of the lower-left corner of the pixel rectangle to be
transferred to the texture array.

y The Y coordinate of the lower-left corner of the pixel rectangle to be
transferred to the texture array.

width The width of the texture subimage.

height The height of the texture subimage.

A-2 Function Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glCopyTexSubImage3DEXT

Description

glCopyTexSubImage3DEXT replaces a rectangular portion of a three-dimensional
texture image with pixels from the current GL_READ_BUFFER (rather than from
main memory, as is the case for glTexSubImage3DEXT).

The screen-aligned pixel rectangle with lower-left corner at (x , y) having width
width and height height replaces the rectangular area of the S-T slice located at
zo�set with X indices xo�set through xo�set+width�1, inclusive, and Y indices
yo�set through yo�set+height�1, inclusive.

The destination rectangle in the texture array may not include any texels outside
the texture array as it was originally speci�ed. It is not an error to specify a
subtexture with zero width or height, but such a speci�cation has no e�ect.

The pixels in the rectangle are processed exactly as if glCopyPixels had been
called, but the process stops just before �nal conversion. At this point all pixel
component values are clamped to the range [0, 1] and then converted to the
texture's internal format for storage in the texel array.

If any of the pixels within the speci�ed rectangle of the current GL_READ_BUFFER
are outside the read window associated with the current rendering context, then
the values obtained for those pixels are unde�ned.

Notes

glCopyTexSubImage3DEXT is part of the EXT_copy_texture extension.

Errors

GL_INVALID_ENUM is generated when target is not one of the allowable values.
GL_INVALID_VALUE is generated if level is less than zero or greater than
log2max , where max is the returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if xo�set < �TEXTURE_BORDER,
(xo�set+width) > (TEXTURE_WIDTH�TEXTURE_BORDER),
yo�set < �TEXTURE_BORDER, or if
zo�set < �TEXTURE_BORDER, where TEXTURE_WIDTH, TEXTURE_HEIGHT, and
TEXTURE_BORDER are the state values of the texture image being modi�ed, and
interlace is 1 if GL_INTERLACE_SGIX is disabled, and 2 otherwise. Note that
TEXTURE_WIDTH and TEXTURE_HEIGHT include twice the border width.

Function Reference A-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glCopyTexSubImage3DEXT

GL_INVALID_VALUE is generated if width or height is negative.
GL_INVALID_OPERATION is generated when the texture array has not been
de�ned by a previous glTexImage3D (or equivalent) operation.
GL_INVALID_OPERATION is generated if glCopyTexSubImage3DEXT is executed
between the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

See Also

glTexImage3D,
glTexSubImage3DEXT,
glCopyPixels.

A-4 Function Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexImage3DEXT

glTexImage3DEXT

glTexImage3DEXT: Specify a three-dimensional texture image.

C Specification

void glTexImage3DEXT(

GLenum target,

GLint level,

GLenum internalformat,

GLsizei width,

GLsizei height,

GLsizei depth,

GLint border,

GLenum format,

GLenum type,

const GLvoid *pixels)

Parameters

target Speci�es the target texture. Must be GL_TEXTURE_3D_EXT or
GL_PROXY_TEXTURE_3D_EXT.

level Speci�es the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

Speci�es the number of color components in the texture. Must be 1, 2,
3, or 4, or one of the following symbolic constants:

GL_ALPHA, GL_ALPHA4,
GL_ALPHA8, GL_ALPHA12,
GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8,
GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8,
GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8,

Function Reference A-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexImage3DEXT

GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB,
GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2,
GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16.

Additionally, if the extension GL_EXT_shadow is supported, may be one
of the symbolic constants GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16_EXT, GL_DEPTH_COMPONENT24_EXT, or
GL_DEPTH_COMPONENT32_EXT.

width Speci�es the width of the texture image. Must be 2n+2�border for
some integer n.

height Speci�es the height of the texture image. Must be 2m+2�border for
some integer m.

depth Speci�es the depth of the texture image. Must be 2l+2�border for some
integer l .

border Speci�es the width of the border. Must be either 0 or 1.

format Speci�es the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA. If the
extension GL_EXT_shadow is supported, the symbolic value
GL_DEPTH_COMPONENT is also accepted.

type Speci�es the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels Speci�es a pointer to the image data in memory.

A-6 Function Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexImage3DEXT

Description

Texturing maps a portion of a speci�ed texture image onto each graphical
primitive for which texturing is enabled. Three-dimensional texturing is enabled
and disabled using glEnable and glDisable with argument GL_TEXTURE_3D_EXT.

Texture images are de�ned with glTexImage3DEXT. The arguments describe the
parameters of the texture image, such as height, width, depth, width of the
border, level-of-detail number (see glTexParameter), and the internal resolution
and format used to store the image. The last three arguments describe the way
the image is represented in memory, and they are identical to the pixel formats
used for glDrawPixels.

If target is GL_PROXY_TEXTURE_3D_EXT no data is read from pixels, but all of
the texture image state is recalculated, checked for consistency, and checked
against the implementation's capabilities. If the implementation cannot han-
dle a texture of the requested texture size, it will set all of the texture im-
age states to 0 (GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_COMPONENTS), but no error will be generated.

If target is GL_TEXTURE_3D_EXT, data is read from pixels as a sequence of signed
or unsigned bytes, shorts, or longs, or single-precision oating-point values,
depending on type. These values are grouped into sets of one, two, three, or
four values, depending on format, to form elements.

The �rst element corresponds to the lower-left-rear corner of the texture volume.
Subsequent elements progress left-to-right through the remaining texels in the
lowest-rear row of the texture volume, then in successively higher rows of the
rear 2D slice of the texture volume, then in successively closer 2D slices of the
texture volume. The �nal element corresponds to the upper-right-front corner of
the texture volume.

Each element of pixels is converted to an RGBA element according to

GL_COLOR_INDEX Each element is a single value, a color index. It
is converted to �xed point (with an unspeci�ed num-
ber of zero bits to the right of the binary point),
shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see
glPixelTransfer). The resulting index is converted to a
set of color components using the GL_PIXEL_MAP_I_TO_R,

Function Reference A-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexImage3DEXT

GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A ta-
bles, and clamped to the range [0, 1].

GL_RED Each element is a single red component. It is converted
to oating-point and assembled into an RGBA element
by attaching 0.0 for green and blue, and 1.0 for alpha.

GL_GREEN Each element is a single green component. It is converted
to oating-point and assembled into an RGBA element
by attaching 0.0 for red and blue, and 1.0 for alpha.

GL_BLUE Each element is a single blue component. It is converted
to oating-point and assembled into an RGBA element
by attaching 0.0 for red and green, and 1.0 for alpha.

GL_ALPHA Each element is a single alpha component. It is converted
to oating-point and assembled into an RGBA element
by attaching 0.0 for red, green, and blue.

GL_RGB Each element is an RGB triple. It is converted to oating-
point and assembled into an RGBA element by attaching
1.0 for alpha (see glPixelTransfer).

GL_RGBA,
GL_ABGR_EXT

Each element contains all four components; for GL_RGBA,
the red component is �rst, followed by green, then blue,
and then alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red.

GL_LUMINANCE Each element is a single luminance value. It is converted
to oating-point, then assembled into an RGBA element
by replicating the luminance value three times for red,
green, and blue and attaching 1.0 for alpha.

GL_LUMINANCE_ALPHA Each element is a luminance/alpha pair. It is converted
to oating-point, then assembled into an RGBA element
by replicating the luminance value three times for red,
green, and blue.

Please refer to the glDrawPixels reference page for a description of the acceptable
values for the type parameter.

A-8 Function Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexImage3DEXT

An application may desire that the texture be stored at a certain resolution,
or that it be stored in a certain format. This resolution and format can be
requested by internalformat , but the implementation may not support that
resolution (the formats of GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and
GL_RGBA must be supported). When a resolution and storage format is speci�ed,
the implementation will update the texture state to provide the best match to
the requested resolution. The GL_PROXY_TEXTURE_3D_EXT target can be used to
try a resolution and format. The implementation will compute its best match for
the requested storage resolution and format; this state can then be queried using
glGetTexLevelParameter.

A one-component texture image uses only the red component of the RGBA color
extracted from pixels. A two-component texture image uses the R and A values.
A three-component texture image uses the R, G, and B values. A four-component
texture image uses all of the RGBA components.

Notes

Texturing has no e�ect in color index mode.

The texture image can be represented by the same data formats and types as
the pixels in a glDrawPixels command, except that formats GL_STENCIL_INDEX
and GL_DEPTH_COMPONENT cannot be used, and type GL_BITMAP cannot be used.
glPixelStore and glPixelTransfer modes a�ect texture images in exactly the
way they a�ect glDrawPixels.

A texture image with zero height, width, or depth indicates the null texture. If
the null texture is speci�ed for level-of-detail 0, it is as if texturing were disabled.

glTexImage3DEXT is part of the EXT_texture3d extension.

Errors

GL_INVALID_ENUM is generated when target is not an accepted value.
GL_INVALID_ENUM is generated when format is not an accepted value.
GL_INVALID_ENUM is generated when type is not an accepted value.
GL_INVALID_VALUE is generated if level is less than zero or greater than
log2max , where max is the returned value of GL_MAX_3D_TEXTURE_SIZE_EXT.
GL_INVALID_VALUE is generated if internalformat is not an accepted value.

Function Reference A-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexImage3DEXT

GL_INVALID_VALUE is generated if width , height, or depth is less than zero
or greater than GL_MAX_3D_TEXTURE_SIZE_EXT, when width , height, or depth

cannot be represented as 2k+2�border for some integer k .
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if glTexImage3DEXT is executed between
the execution of glBegin and the corresponding execution of glEnd.
GL_TEXTURE_TOO_LARGE_EXT is generated if the implementation cannot acco-
modate a texture of the size requested.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D_EXT

See Also

glDrawPixels,
glFog,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage1D,
glTexImage2D,
glTexParameter.

A-10 Function Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexSubImage3DEXT

glTexSubImage3DEXT

glTexSubImage3DEXT: specify a three-dimensional texture subimage.

C Specification

void glTexSubImage3DEXT(

GLenum target,

GLint level,

GLint xo�set,

GLint yo�set,

GLint zo�set,

GLsizei width,

GLsizei height,

GLsizei depth,

GLenum format,

GLenum type,

const GLvoid *pixels)

Parameters

target Speci�es the target texture. Must be GL_TEXTURE_3D_EXT.

level Speci�es the level-of-detail number. Level 0 is the base image level.
Level n is the nth mipmap reduction image.

xo�set Speci�es a texel o�set in the X direction within the texture array.

yo�set Speci�es a texel o�set in the Y direction within the texture array.

zo�set Speci�es a texel o�set in the Z direction within the texture array.

width Speci�es the width of the texture subimage.

height Speci�es the height of the texture subimage.

depth Speci�es the depth of the texture subimage.

format Speci�es the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA. If the

Function Reference A-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexSubImage3DEXT

extension GL_EXT_shadow is supported, the symbolic value
GL_DEPTH_COMPONENT is also accepted.

type Speci�es the data type of the pixel data. The following symbolic values
are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels Speci�es a pointer to the image data in memory.

Description

Texturing maps a portion of a speci�ed texture image onto each graphical
primitive for which texturing is enabled. Three-dimensional texturing is enabled
and disabled using glEnable and glDisable with argument GL_TEXTURE_3D_EXT.

glTexSubImage3DEXT rede�nes a contiguous subregion of an existing three-
dimensional texture image. The texels referenced by pixels replace the portion of
the existing texture array with X indices xo�set and xo�set+width�1, inclusive,
Y indices yo�set and yo�set+height�1, inclusive, and Z indices zo�set and
zo�set+depth�1, inclusive. This region may not include any texels outside the
range of the texture array as it was originally speci�ed. It is not an error to
specify a subtexture with zero width, height or depth, but such a speci�cation
has no e�ect.

Notes

Texturing has no e�ect in color index mode.

glPixelStore and glPixelTransfer modes a�ect texture images in exactly the
way they a�ect glDrawPixels.

Errors

GL_INVALID_ENUM is generated when target is not GL_TEXTURE_3D_EXT.
GL_INVALID_OPERATION is generated when the texture array has not been
de�ned by a previous glTexImage3D operation.
GL_INVALID_VALUE is generated if level is less than zero or greater than
log2max , where max is the returned value of GL_MAX_3D_TEXTURE_SIZE_EXT.
GL_INVALID_VALUE is generated if xo�set < �TEXTURE_BORDER,
(xo�set+width) > (TEXTURE_WIDTH�TEXTURE_BORDER),

A-12 Function Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glTexSubImage3DEXT

yo�set < �TEXTURE_BORDER, zo�set < �TEXTURE_BORDER, or
(zo�set+depth) > (TEXTURE_DEPTH_EXT�TEXTURE_BORDER), where
TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH_EXT and TEXTURE_BORDER

are the state values of the texture image being modi�ed. Note that
TEXTURE_WIDTH, TEXTURE_HEIGHT and TEXTURE_DEPTH_EXT include twice the
border width.
GL_INVALID_ENUM is generated when format is not an accepted format constant.
GL_INVALID_ENUM is generated when type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR_INDEX.
GL_INVALID_OPERATION is generated if glTexSubImage3DEXT is executed
between the execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D_EXT

See Also

glDrawPixels,
glFog,
glPixelStore,
glPixelTransfer,
glTexEnv,
glTexGen,
glTexImage3D,
glTexParameter.

Function Reference A-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

