
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP Fortran 90 1.1 Release Notes

HP 9000 Computers

ABCDE

HP Part No. 5965-4445

Printed in USA 05/97

First Edition

E0597

FINAL TRIM SIZE : 7.5 in x 9.0 in

Legal Notices

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
�tness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the speci�c warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service O�ce.

Copyright c Hewlett-Packard Co. 1997

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Use of this manual and exible disc(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs can
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Copyright c Hewlett-Packard Co. 1983-1997
Copyright c Edinburgh Portable Compilers, Ltd. 1996-1997
Copyright c UNIX System Laboratories, Inc. 1980, 1984, 1986
Copyright c The Regents of the Univ. of California 1979, 1980,1983,
1985-1990

This software and documentation is based in part on materials licensed from
The Regents of the University of California. We acknowledge the role of
the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department of the University of California at Berkeley and
the other named Contributors in their development.

Trademarks. The trademarks used in this document are:

UNIX UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Preface

This document contains the following chapters:

New and Changed Features
Using HP Fortran 90
Installation
Relevant Documentation
Problem Descriptions and Fixes

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

1. New and Changed Features

New Features . 1-1
HP Fortran 90 Statements 1-2
BUFFER IN statement (Extension) 1-3
BUFFER OUT statement (Extension) 1-6
OPTIONS statement (Extension) 1-8

+Oparallel Option 1-10
Compiler Directives 1-10
Controlling Vectorization 1-11
Controlling Parallelization 1-12
Controlling Dependence Checks 1-12
Controlling Checks for Side E�ects 1-13

MP_NUMBER_OF_THREADS Environment Variable 1-13
Multi-Threaded Programming 1-14
Support for Large File Systems 1-14

Changes to HP Fortran 90 1-15
PA-RISC 1.0 Architecture Not Supported 1-15
Instruction Scheduling 1-15
+Olibcalls Option . 1-16
+Oregionsched Option 1-16
STAT= Speci�er for ALLOCATE Statement 1-16

2. Using HP Fortran 90

Compiling and Linking HP Fortran 90 Programs 2-1
f90 Command Line 2-2
Filenames Accepted by the f90 Command 2-2
Compiling HP Fortran 90 Modules 2-3
Compile-Line Options 2-4
Commonly Used Options 2-5
f77 Options Supported by f90 2-5

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compiler Directives 2-8
Environment Variables 2-9
HP F90OPTS . 2-9
TMPDIR . 2-10
TTYUNBUF . 2-10
NLSPATH . 2-10

Libraries Searched by f90 2-10
Diagnostic Messages 2-11
Optimization . 2-12

Parallelizing HP Fortran 90 Programs 2-12
Compiling for Parallel Execution 2-12
Performance from Parallelization 2-13
Pro�ling Parallelized Programs 2-13
Conditions Inhibiting Loop Parallelization 2-14
Calling Routines with Side E�ects 2-14
Indeterminate Iteration Counts 2-14
Data Dependencies 2-15
Nested Loops and Matrices 2-16
Assumed Dependences 2-16

Migrating to HP Fortran 90 2-17
Migration Issues . 2-17
Source Code Issues 2-17
Directives . 2-18
Intrinsic Functions 2-20

Compile-Line Option Issues 2-21
Object-Code Issues 2-21
Data-File Issues 2-22

Approaches to Migration 2-22
HP-Supplied Migration Tools 2-23
HP FORTRAN 77 Compiler 2-23
HP Fortran 90 Compiler 2-23
Lintfor . 2-24
Fortran Incompatibilities Detector 2-24

Third-Party Migration Tools and Information 2-26
Incompatibilities with HP FORTRAN 77 2-27
Command-Line Options Not Supported 2-27
Floating-Point Constants 2-27
Intrinsic Functions 2-28

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Procedure Calls and De�nitions 2-28
Data Types and Constants 2-29
Input/Output . 2-30
Directives . 2-30
Miscellaneous . 2-31

Calling C Routines from HP Fortran 90 2-32
Data Types . 2-32
Logicals . 2-33
Complex Numbers 2-34
Derived Types . 2-34

Arrays . 2-34
Argument-Passing Conventions 2-34
Strings . 2-35
Case Sensitivity . 2-36
File Handling . 2-36

Writing HP Fortran 90 Applications for HP-UX 2-39
Accessing Command-Line Arguments 2-39
HP-UX System Calls and Library Routines 2-41
Using HP-UX File I/O 2-41
Stream I/O Using FSTREAM 2-41
Performing I/O Using HP-UX System Calls 2-42
Establishing a Connection to the File 2-42
Obtaining an HP-UX File Descriptor in Fortran 2-42

3. Installation Information

4. Related Documentation

5. Restrictions, Problems, and Fixes

Locating Information on Problems and Fixes 5-1
Restrictions in Version 1.1 5-2
Known Problems . 5-3
Corrections to the Documentation 5-4
\OUT OF FREE SPACE" Error 5-4
+fp exception Option 5-4

Index

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. Compatibility Directives Recognized by HP Fortran 90 . . . 1-11
2-1. Extensions of Filenames Compiled by f90 2-2
2-2. Commonly Used Compile-Line Options 2-5
2-3. f77 Options Supported by f90 2-6
2-4. f77 Options Replaced by f90 Options 2-7
2-5. f77 Options Not Supported by f90 2-8
2-6. Libraries Shipped with HP Fortran 90 2-11
2-7. Libraries Shipped with HP-UX Operating System 2-11
2-8. HP FORTRAN 77 Directives Supported by f90 Options . . . 2-19
2-9. I/O Speci�ers Not Supported by f90 2-25
2-10. Data-Type Correspondence for Fortran 90 and C 2-33

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

New and Changed Features

The 1.1 release of the HP Fortran 90 compiler supports HP 9000 workstations
and servers running on 10.30 HP-UX systems.

This release document describes new and changed features of the 1.1 release
of the HP Fortran 90 compiler. The 1.0 release of HP Fortran 90 is fully
documented in the HP Fortran 90 Programmer's Reference (B3908-90001).

New Features

The new features for release 1.1 include:

New statements to provide compatibility with other vendors' Fortran
compilers

+Oparallel optimization option

Compatibility directives for parallelizing and vectorizing programs

MP_NUMBER_OF_THREADS environment variable

Support for multi-threaded programming

Support for large-�le systems

The following sections fully describe these features.

New and Changed Features 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP Fortran 90 Statements

The following statements are supported by this release of HP Fortran 90:

BUFFER IN statement
BUFFER OUT statement
OPTIONS statement

All of these statements are extensions to the Fortran 90 standard. They are
fully described in the following sections. For a full discussion of all other HP
Fortran 90 statements, refer to the HP Fortran 90 Programmer's Reference,
Chapter 10.

1-2 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

BUFFER IN statement (Extension)

Provides compatibility with the Cray BUFFER IN statement

Syntax

BUFFER IN (unit, mode) (begin-loc, end-loc)

unit is either a unit identi�er (integer expression) or a �le name
(character expression)

mode is a mode identi�er (integer expression) that controls the
record position. If mode is � 0, full-record processing occurs,
as in standard Fortran I/O. If mode is < 0, partial-record
processing occurs; that is, if n is the last word that was
transferred, then the record is positioned to transfer the n+1
word.

begin-loc,
end-loc

are symbolic names of the variables, arrays, or array elements
that mark the beginning and end locations of the BUFFER IN

operation. begin-loc and end-loc must be either elements of a
single array (or equivalenced to an array) or members of the
same common block.

Description

The BUFFER IN statement is an HP Fortran 90 extension that provides
compatibility with the Cray BUFFER IN feature. The statement causes data
to be transferred while allowing any subsequent statements to execute
concurrently. The BUFFER IN statement is provided as a porting aid for existing
Cray code; it is not likely to produce superior performance compared to
conventional Fortran 90 I/O methods.

The following restrictions apply to the BUFFER IN statement:

Any data format conversions speci�ed in the OPEN statement do not a�ect
data read or written with the BUFFER IN statement.

Using the BUFFER IN statement with data types less than eight bytes
produces a fatal compiler error. Use the +autodbl option to increase the size
of numeric and logical default data types, as described in the HP Fortran 90
Programmer's Reference, Chapter 13.

New and Changed Features 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Other Fortran I/O statements (for example, READ, WRITE, PRINT, ACCEPT,
and TYPE) cannot be used on the same unit as the BUFFER IN statement.

The BACKSPACE statement cannot be used with �les that are capable of
being transferred by the BUFFER IN statement. Such �les are referred to as
pure-data (unblocked) �les.

HP Fortran 90 also provides the following library routines for use with the
BUFFER IN statement:

stat = UNIT(unit) returns the status of a BUFFER IN operation. stat is of
type real, and unit is of type integer.

len = LENGTH(unit) returns the number of words successfully transferred.
len and unit are of type integer.

pos = GETPOS(unit) returns the current record number. pos and unit are of
type integer.

SETPOS(unit, pos) sets the record number, pos , for a �le. pos and unit
are of type integer. This routine cannot be used with
magnetic tape; doing so produces an error message.

These routines reside in libcl.[a|sl] and are implicitly loaded by the linker.
If you want to use them, make sure that your own routines don't have the same
names.

Example

The following program shows how to use the BUFFER IN and BUFFER OUT

statements. The program must be compiled with the +autodbl option; see HP
Fortran 90 Programmer's Reference, Chapter 13.

PROGRAM bufferedIoTest

! buffered i/o example: compile with +autodbl

INTEGER a(10)

OPEN (UNIT = 7, NAME = 'test.dat', FORM = 'UNFORMATTED')

a = (/ (i,i=1,10) /) ! initialize the array a

1-4 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

BUFFER OUT (7, 0) (a, a(10)) ! write out array a twice

CALL unit (7)

BUFFER OUT (7, 0) (a, a(10))

CALL unit (7)

! now position the file 40 bytes (5 integer values) into the file

CALL setpos (7, 5)

! read the remainder of the 1st record, and half of the second

BUFFER IN (7, 0) (a, a(10))

WRITE(6,*) a

CLOSE (7)

END PROGRAM bufferedIoTest

New and Changed Features 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

BUFFER OUT statement (Extension)

Provides compatibility with the Cray BUFFER OUT statement

Syntax

BUFFER OUT (unit, mode) (begin-loc, end-loc)

unit is either a unit identi�er (integer expression) or a �le name
(character expression).

mode is a mode identi�er (integer expression) that controls the
record position. If mode is � 0, full-record processing occurs,
as in standard Fortran I/O. If partial-record processing is in
progress, mode � 0 ends a series of partial-record transfers. If
mode is < 0, the record is left positioned to receive additional
words.

begin-loc,
end-loc

are symbolic names of the variables, arrays, or array elements
that mark the beginning and end locations of the BUFFER OUT

operation. begin-loc and end-loc must be either elements of a
single array (or equivalenced to an array) or members of the
same common block.

Description

The BUFFER OUT statement is an HP Fortran 90 extension that provides
compatibility with the Cray BUFFER OUT feature. The statement causes
data to be transferred while allowing any subsequent statements to execute
concurrently. The BUFFER OUT statement is provided as a porting aid for
existing Cray code; it is not likely to produce noticeably superior performance
compared to conventional Fortran 90 I/O methods. In fact, the BUFFER OUT

statement will always be slightly slower than unformatted �xed record length
I/O.

The following restrictions apply to the BUFFER OUT statement:

Any data format conversions speci�ed in the OPEN statement do not a�ect
data read or written with the BUFFER OUT statement.

Using the BUFFER OUT statement with data types less than eight bytes in size
produces a fatal compiler error. Use the +autodbl option to increase the size

1-6 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

of numeric and logical default data types, as described in the HP Fortran 90
Programmer's Reference, Chapter 13.

Other Fortran I/O statements (for example, READ, WRITE, PRINT, ACCEPT,
and TYPE) cannot be used on the same unit as the BUFFER OUT statement.

The BACKSPACE statement cannot be used with �les that are capable of
being transferred by the BUFFER OUT statement. Such �les are referred to as
pure-data (unblocked) �les.

HP Fortran 90 also provides the following library routines for use with the
BUFFER OUT statement:

stat = UNIT(unit) returns the status of a BUFFER IN operation. stat is of
type real, and unit is of type integer.

len = LENGTH(unit) returns the number of words successfully transferred.
len and unit are of type integer.

pos = GETPOS(unit) returns the current record number. pos and unit are of
type integer.

SETPOS(unit, pos) sets the record number, pos , for a �le. pos and unit
are of type integer. This routine cannot be used with
magnetic tape; doing so produces an error message.

These routines reside in libcl.[a|sl] and are implicitly loaded by the linker.
If you want to use them, make sure that your own routines don't have the same
names.

Example

For an example of the BUFFER OUT statement, see the description of the BUFFER
IN statement.

New and Changed Features 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

OPTIONS statement (Extension)

Changes the optimization level.

Syntax

OPTIONS +On

where +On (or -On) speci�es a level of optimization that is equal to or less
than the level speci�ed on the command line. The +On and -On options are
described in the HP Fortran 90 Programmer's Reference, Chapter 13.

Description

The OPTIONS statement is an extension of HP Fortran 90 and is used to specify
a level of optimization that is equal to or less than the level speci�ed on the
command line; if the level speci�ed by the OPTIONS statement is higher than
that speci�ed on the command line, the statement is ignored. The OPTIONS
statement must be placed outside all program units. The changed level of
optimization applies to the beginning of the next program unit and remains in
e�ect for all succeeding program units or until superseded by another OPTIONS
statement or by the HP OPTIMIZE directive.

The HP OPTIMIZE directive takes precedence over the OPTIONS statement.
That is, if the directive is used to disable optimization, any subsequent
OPTIONS statement has no e�ect until a later directive enables optimization.

Note The OPTIONS statement di�ers from the HP OPTIMIZE

directive, which enables or disables optimization but does not
change the optimization level. For more information about
the HP OPTIMIZE directive, refer to the HP Fortran 90
Programmer's Reference, Chapter 14.

Example

In the following example, the �rst OPTIONS statement optimizes the subroutine
go_fast at optimization level 3. The second OPTIONS statement lowers the
optimization level to 2. It is assumed that the �le that contains this code was
compiled with the +O3 or -O3 option.

OPTIONS +O3

SUBROUTINE go_fast

1-8 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

...
END SUBROUTINE go_fast

OPTIONS +O2

SUBROUTINE not_so_fast...
END SUBROUTINE not_so_fast

New and Changed Features 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

+Oparallel Option

The HP Fortran 90 compiler supports the +O[no]parallel optimization
option. This option optimizes a program for parallel execution.

Syntax

+O[no]parallel

Description

The +Oparallel option causes the compiler to transform eligible loops for
parallel execution on multiprocessor machines. This option requires the +O3
option.

The +Onoparallel option disables parallelization for the target program. It is
the default at all levels of optimization.

If you link separately from the compile line and compile the program with the
+Oparallel option, you must link with the f90 command and specify the
+Oparallel option to link in the correct runtime support.

Note The +Oparallel option should not be used for programs that
make explicit calls to the kernel threads library (see Table 2-7).

For information about using the +Oparallel option to parallelize your
Fortran programs, see \Parallelizing HP Fortran 90 Programs" in Chapter 2.
To set the number of processors that will execute your program, use the
MP_NUMBER_OF_THREADS environment variable; see \MP_NUMBER_OF_THREADS
Environment Variable".

Compiler Directives

HP Fortran 90 supports the compiler directives listed in Table 1-1. These
directives are provided for compatibility with programs developed on the
platforms also listed in the table.

1-10 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-1. Compatibility Directives Recognized by HP Fortran 90

Vendor Directive

Cray DIR$ NO SIDE EFFECTS

DIR$ [NO]CONCUR

DIR$ IVDEP

FPP$ NODEPCHK

KAP *$* [NO]CONCURRENTIZE

$ [NO]VECTORIZE

VAST VD$ NODEPCHK

In �xed format, each directive must be immediately preceded by the comment
character C, !, or * and must begin in column 1 of the source �le. In free
format, the directive must be preceded by the Fortran 90 comment character
(!). If an option or argument is included with the directive name, the compiler
will ignore the directive.

The following sections describe the directives in detail.

Controlling Vectorization

HP Fortran 90 can vectorize eligible program loops that operate on vectors.
This optimization causes the compiler to replace the loops with calls to selected
routines in the Basic Linear Algebra Subroutine (BLAS) library. You can
use the *$* [NO]VECTORIZE directive to enable or disable vectorization. The
compiler considers the *$* VECTORIZE directive as a request to vectorize a loop.
If the compiler determines that it cannot pro�tably or safely vectorize the loop,
it ignores the directive.

To use the vectorization directive, you must compile and link with the
+Ovectorize option. The directive applies to the beginning of the next
loop and remains in e�ect for the rest of the �le or until superseded by a
later directive. For more information about this option, see HP Fortran 90
Programmer's Reference, Chapter 13; for information about the BLAS library,
see Chapter 12.

New and Changed Features 1-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

Controlling Parallelization

HP FORTRAN can parallelize eligible program loops by distributing di�erent
iterations of the loop to di�erent processors for parallel execution on a
multiprocessor machine. The following directives provide local control over
parallelization:

$ [NO]CONCURRENTIZE

DIR$ [NO]CONCUR

These directives have both enable and disable versions: *$* CONCURRENTIZE

and DIR$ CONCUR enable parallelization; *$* NOCONCURRENTIZE and DIR$

NOCONCUR disable parallelization.

The parallelization directives are e�ective only if you have compiled and linked
the program with the +Oparallel and the +O3 option. Each directive applies
to the beginning of the next loop and remains in e�ect for the rest of the �le or
until superseded by a later directive.

The compiler considers the *$* CONCURRENTIZE and DIR$ CONCUR directives
as requests to parallelize a loop. If the compiler cannot pro�tably or
safely parallelize the loop, it ignores the directive. For information about
conditions that can inhibit parallelization, see \Conditions Inhibiting Loop
Parallelization" in Chapter 2. For more information about parallelizing your
Fortran programs, see \Parallelizing HP Fortran 90 Programs" in Chapter 2.

Controlling Dependence Checks

The compiler will not parallelize a loop where it detects a possible data
dependence, even if you use an option or directive that speci�cally requests
parallelization. (For a discussion of why loops with a data dependence cannot
be parallelized, see \Data Dependencies" in Chapter 2.) However, if you know
that there is no actual data dependence in the loop in question, you can insert
one of the following directives just before the loop:

DIR$ IVDEP

FPP$ NODEPCHK

VD$ NODEPCHK

The e�ect of these directives is to cause the compiler to ignore data
dependences within the next loop when determining whether to parallelize.
The DIR$ IVDEP directive di�ers from the other two in that it causes the

1-12 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

compiler to ignore only array-based dependences, but not scalar-based. All
three directives apply to the next loop only.

Note Using these directives to incorrectly assert that a loop has
no data dependences can result in the loop producing wrong
answers.

Other conditions may limit the compiler's e�orts to parallelize, such as
the presence of the VD$ NOCONCUR directive. Such conditions may prevent
parallelization even if you use a directive to disable dependence checking.

Controlling Checks for Side Effects

The compiler will not parallelize a loop with an embedded call to a routine if
the compiler �nds that the routine has side e�ects. (For a discussion of side
e�ects and why they can prevent parallelization, see \Calling Routines with
Side E�ects" in Chapter 2.) However, if you know that a routine that is called
inside of a loop does not have side e�ects, you can insert the DIR$ NO SIDE

EFFECTS directive in front of the loop to force the compiler to ignore any side
e�ects in the referenced routine when it determines whether to parallelize the
loop.

This directive a�ects only the immediately following loop.

Note Using this directive to incorrectly assert that a routine has
no side e�ects can result in wrong answers when a call to the
routine is embedded in a loop.

Cray's implementation of this directive requires that it precede any executable
statement or statement function. HP Fortran 90 does not enforce this
requirement.

MP_NUMBER_OF_THREADS Environment Variable

The MP_NUMBER_OF_THREADS environment variable enables you to set the
number of processors that are to execute your program in parallel. If you do
not set this variable, it defaults to the number of processors on the executing
machine.

New and Changed Features 1-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

On the C shell, the following command sets MP_NUMBER_OF_THREADS to indicate
that programs compiled for parallel execution can execute on two processors:

setenv MP_NUMBER_OF_THREADS 2

If you use the Korn shell, the command is:

export MP_NUMBER_OF_THREADS=2

To optimize your program for parallel execution, you must use the
+O[no]parallel option; see \+Oparallel Option". For information about other
environment variables that are available with HP Fortran 90, see \Environment
Variables" in Chapter 2.

Multi-Threaded Programming

HP Fortran 90 programs can execute in a multi-threaded environment; see
\+Oparallel Option". The HP Fortran 90 I/O library has been thread-safed for
correct execution within this environment.

Support for Large File Systems

Programs compiled with this release of HP Fortran 90 can create �les greater
than 2 gigabytes. The program must be running on HP-UX 10.30, and you
must have an HP-UX Hierarchical File System (HFS) that is con�gured for
large �les. By default, the HP-UX HFS �le system does not allow �les greater
than 2 gigabytes. To allow large �les, use the fsadm command; for more
information, see the fsadm(1m) and fsadm hfs(1m) man pages.

The maximum size of a record and the maximum number of records in a
direct-access �le continue to have the same limit, 2 gigabytes|that is, MAXINT,
or 2147483647.

1-14 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Changes to HP Fortran 90

The following sections document changes to HP Fortran 90 for this release.

PA-RISC 1.0 Architecture Not Supported

Starting with this release, the HP Fortran 90 compiler no longer supports the
PA-RISC 1.0 architecture. This means that the +DA and +DS compile-line
options will not accept the 1.0 argument. Refer to the f90 (1) man page or
to the HP Fortran 90 Programmer's Reference, Chapter 13, for acceptable
arguments to these options.

Instruction Scheduling

Instruction scheduling is determined (as currently documented) by the
argument you specify with the +DS option. However, if you do not use this
option, the compiler will use the argument you specify with the +DA option. If
you specify neither +DA nor +DS, the default instruction scheduling is based on
that of the system on which you are compiling.

The following command lines summarize the change:

code generation and instruction scheduling based on the

model of the machine on which f90 is executing:

f90 prog.f90

code generation based on 1.1, instruction scheduling on 2.0

f90 +DS1.1 +DA2.0

code generation and instruction scheduling based on 2.0

f90 +DA2.0

code generation and instruction scheduling based on 1.1

f90 +DAportable

New and Changed Features 1-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

+Olibcalls Option

Compiling at optimization level 2 or higher enables the optimization performed
by the +Olibcalls option. If a program uses an intrinsic routine for which a
millicode version exists and the program is compiled with -O, +O2, or +O3, the
optimizer will substitute the millicode version.

The default at optimization levels 0 and 1 is still +Onolibcalls.

+Oregionsched Option

Starting with this release, f90 ignores the +O[no]regionsched option.
Changes to the optimizer have reduced the performance bene�t of the
optimization enabled by this option. The compiler will recognize this option
if speci�ed on the command line, but the option has no e�ect and will be
removed from the compiler at a future release.

STAT= Specifier for ALLOCATE Statement

The values returned by the STAT= specifer for the ALLOCATE statement have
been changed to provide more precise error control. A return vaue of zero has
the same meaning: the operation was successful. But the meaning of a nonzero
return value (an error status) has been changed according to the kind of error,
as follows:

1 Error occurred after array was allocated; for example, array
was previously allocated.

2 Error occurred before array was allocated; for example,
dynamic memory allocation failure.

3 Errors occurred both before and after allocation. This kind
of an error can only occur if the same ALLOCATE statement is
used to allocate more than one array, and both kinds of errors
occur.

1-16 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Using HP Fortran 90

This chapter provides usage information on the following topics:

Compiling and linking HP Fortran 90 programs
Parallelizing HP Fortran 90 Programs
Migrating applications from HP FORTRAN 77 to HP Fortran 90
Incompatibilities between HP FORTRAN 77 and HP Fortran 90
Calling C routines from HP Fortran 90 programs
Writing HP Fortran 90 applications for HP-UX

Compiling and Linking HP Fortran 90 Programs

This section discusses the following topics:

The f90 command line
Filename extensions
Compiling HP Fortran 90 programs with modules
Compile-line options
Compiler directives
Environment variables
Libraries used by the compiler
Diagnostic messages issued by the compiler
Optimization

Using HP Fortran 90 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

f90 Command Line

The command-line syntax for invoking the HP Fortran 90 command (f90) for
compiling and linking is:

f90 [options] [�les]

where options is a space-delimited list of compile-line options and �les is a
space-delimited list of �les containing source or object code. options and �les
can be interspersed on the command line.

Filenames Accepted by the f90 Command

Files that end in the extensions listed in Table 2-1 are compiled as Fortran 90
source �les. For each source �le that compiles successfully, the corresponding
object code is placed in the current directory in a �le whose name is that of the
source, with the .o extension.

Table 2-1. Extensions of Filenames Compiled by f90

Extension Meaning

.f90 Free-format source �le, processed by the compiler

.F Fixed-format source �le, processed �rst by the C preprocessor cpp,
then by the compiler

.f Fixed-format source �le, processed by the compiler

.i90 Free-format output from C preprocessor, if source ends in .f90

.i Fixed format output from C preprocessor, if source ends in .F or .f

Only �les ending in .F are preprocessed by the C preprocessor by default. Use
the +cpp=yes option to preprocess �les that end in .f90 and .f.

The f90 command accepts but does not compile �les with other extensions,
passing them to another process. For example, �lenames with the .o extension
are assumed to be object �les and are passed to the linker (ld); and �lenames
with the .s extension are assumed to be assembly-language source �les and are
passed to the assembler (as). Except for �lenames ending in .s or any of the
extensions listed in Table 2-1, all others are passed to the linker.

2-2 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compiling HP Fortran 90 Modules

Files that end in .mod are HP Fortran 90 modules that are created and read by
the compiler. However, the compiler does not process any .mod �les that may
be speci�ed on the command line.

Note Do not specify .mod �les on the command line. If you do, the
compiler will pass them to the linker, which will try (and fail)
to link them into the executable.

When compiling a program that de�nes and uses modules in di�erent source
�les, f90 creates a .mod �le for each module in the source �les, in addition to
the .o �les. The compiler must have created any .mod �les before compiling
the �les that use the modules. Consider, for example, a program that consists
of two �les: the �rst (file1.f90) de�nes the module module1 and the second
(file2.f90) uses it. The following command lines compile and link the
program correctly:

f90 -c file1.f90

f90 -c file2.f90

f90 -o my_program file1.o file2.o

The crucial lines are the �rst two, which must be speci�ed in order. The
�rst one creates two �les: file1.o and MODULE1.mod. The second needs
MODULE1.mod to compile file2.f90.

The same e�ect can be produced with one command line, so long as the
de�ning �le is speci�ed before the using �le, as in the following:

f90 -o my_program file1.f90 file2.f90

All .mod �les are written to and read from the current directory by default.
Use the +moddir=directory and -Idirectory options to specify di�erent
directories:

The +moddir=directory option causes the compiler to write .mod �les to
directory.

The -Idirectory option causes the compiler to search directory for .mod �les
to read.

Using HP Fortran 90 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compile-Line Options

Almost all of the f90 compile-line options have their counterparts among
the f77 options. A few of the UNIX-type options (for example, -g and -o)
have the same name they had under f77. However, most of the f90 options
have been renamed for readability. For the sake of compatibility with HP
FORTRAN 77, many of the renamed options also have their f77 names; for
example, to prepare a program for pro�ling by gprof, you can specify either
-G or +gprof. A later section, \f77 Options Supported by f90", discusses the
relationship between f77 options and f90 options.

For an online list of the f90 compile-line options, use the +usage option, as
follows:

f90 +usage

If you misspell an option name on the f90 command line, the compiler looks
for options that are similar to the one you entered and lists them as possible
alternatives on stderr. It meanwhile compiles the program without the option
in question.

For options of the form +option=arg , you can cause f90 to list the values for
arg on stderr by specifying just the option name without an argument. For
example, given the command line:

f90 +langlvl=

f90 will issue the following message:

f90: The '+langlvl=' option requires

one of the following sub-options:

90 generate messages about non-FORTRAN 90 features

default no messages about nonstandard FORTRAN features

For detailed information about the options, see the HP Fortran 90
Programmer's Reference, Chapter 13. The options are summarized in the
f90 (1) man page.

2-4 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Commonly Used Options

Table 2-2 lists commonly used HP Fortran 90 options. All but the -L and
+save options have the same name and function as in f77. The -L option
di�ers in that it uses fort77 semantics, and the +save option is a di�erent
name for the -K option in f77.

Table 2-2. Commonly Used Compile-Line Options

Option E�ect

-c Compile without linking; produce an object (.o) �le from each source
�le.

-g Prepare program for debugging (with HP DDE) or line-level
performance analysis (with Puma).

-Ldirectory Use directory as the search path for libraries speci�ed in succeeding -l

options. This option is also supported by fort77, but not f77.

-lx Link with libx.a or libx.sl.

-O Optimize at level 2.

-o out�le Name the output �le (executable or object �le) out�le.

+save Save all local variables upon exit from a program unit. This option is
useful for porting older programs that may contain uninitialized
variables or that require static storage for all variables. f90 also accepts
the f77 form of this option, -K.

-v Compile in verbose mode, reporting progress to stderr.

f77 Options Supported by f90

The f90 command recognizes many of the f77 options by their old names
as well as by their f90 names; these are listed in Table 2-3. When speci�ed
on an f90 command line, these f77 options have the same e�ect as their f90
replacements. For example, f90 recognizes either -G or +gprof; both prepare
the program for pro�ling by gprof.

Using HP Fortran 90 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-3. f77 Options Supported by f90

f77

Option

f90

Option

Function

-C +check=all Perform runtime subscript checking

-G +gprof Prepare for pro�ling with gprof

-K +save Use static storage for locals instead of stack

-N +noshared Mark linker output unshared

-n +shared Mark linker output shared

-p +prof Prepare for pro�ling with prof

-Q +nodemand_load Do not mark linker output demand load

-q +demand_load Mark linker output demand load

-R4 +real_constant=single Make single precision the default for all
single-precision constants

-R8 +real_constant=double Make double precision the default for all
single-precision constants

-S +asm Generate assembly listing

-s +strip Strip symbol table information from linker
output

-Y +nls Enable Native Language Support

+Z +pic=long Generate position-independent code (large
model)

+z +pic=short Generate position-independent code (small
model)

Table 2-4 lists f77 options that have been fully or partially replaced by a
renamed f90 option. Table 2-5 lists f77 options that are not recognized by the
f90 command and that have no f90 replacement.

2-6 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-4. f77 Options Replaced by f90 Options

f77 Option f90 Replacement

-A +langlvl1

-a +langlvl1

+autodblpad +autodbl1

+B +escape

-D +dlines

+es +extend_source

-F +cpp_keep

+I[2|4] +autodbl1

-L +list

-onetrip +onetrip

+Q +pre_include

+s +langlvl1

+T +fp_exception1

+ttyunbuf +nottybuf

-U +uppercase

-u +implicit_none

-V +list1

1 Does not fully replace; see HP Fortran 90

Programmer's Reference, Chapter 13.

Using HP Fortran 90 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-5. f77 Options Not Supported by f90

+800 +N

+A +O41

+A3 -O41

+A8 +Ofailsafe1

+apollo +Oloop_transform1

+df1 +Osideeffects1

+E +Owhole_program_mode1

+e +P1

+I1 +pgm1

+L8 +R

+LA +U

-lisam -y1

+mr -w66

1 Will be supported at a later release.

Compiler Directives

HP Fortran 90 supports the following compiler directives:

ALIAS

CHECK_OVERFLOW

LIST

OPTIMIZE

The new syntax for specifying directives in free source form is:

!HP directive

In �xed source form, the syntax is the same except that the comment character
can be *, !, or C, and the comment character must be in the �rst position.

The use of the comment character in the directive syntax promotes program
portability by allowing the directive to be treated as a comment except when
the compiler is speci�cally looking for it.

2-8 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compiler directives are fully described in the HP Fortran 90 Programmer's
Reference, Chapter 14. HP Fortran 90 also supports a number of compatibility
directives for controlling optimization; see \Compiler Directives" in Chapter 1.

Environment Variables

This section describes the following HP Fortran 90 environment variables:

HP_F90OPTS

TMPDIR

TTYUNBUF

NLSPATH

In addition, the MP_NUMBER_OF_THREADS envionment variable is now available
for use with parallel executing programs; see \MP_NUMBER_OF_THREADS
Environment Variable" in Chapter 1.

HP F90OPTS

The HP_F90OPTS environment variable contains options and arguments for
the compiler. The compiler picks up the value of HP_F90OPTS and places
its contents before any arguments on the command line. For example, if
HP_F90OPTS has the value -v, the following command line:

f90 +list prog.f90

is equivalent to

f90 -v +list prog.f90

The bar (j) character can be used to specify that options appearing before j
are to be recognized before any options on the command line and that options
appearing after j are to be recognized after any options on the command line.
For example, to set HP_F90OPTS so that -O and -lmylib would always be
invoked whenever you compiled and that -O would be recognized �rst and
-lmylib last, you would use the following sh commands:

HP_F90OPTS="-O | -lmylib"

export HP_F90OPTS

or the csh command:

setenv HP_F90OPTS="-O | -lmylib"

Using HP Fortran 90 2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

In either case, compiling prog.f90 with the command line:

f90 -v prog.f90

is equivalent to:

f90 -O -v prog.f90 -lmylib

TMPDIR

The TMPDIR environment variable speci�es a directory for temporary �les to be
used instead of the default directory /var/tmp.

TTYUNBUF

The TTYUNBUF environment variable controls tty bu�ering. To enable tty
bu�ering, set TTYUNBUF to zero. To disable tty bu�ering, set TTYUNBUF to a
nonzero value.

NLSPATH

The NLSPATH environment variable speci�es the message catalog to be used for
the internationalization of compiler messages. For information about diagnostic
messages issued by the compiler, see below, \Diagnostic Messages".

Libraries Searched by f90

The compiler searches the libraries listed in Table 2-6 and Table 2-7 during
the link phase to create executable programs; some are searched by default
(so indicated in the tables), others by specifying the +U77, -lblas, and -lm

options. You can specify other libraries by using the -L or -l options.

2-10 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-6. Libraries Shipped with HP Fortran 90

Library Contents

/opt/fortran90/lib/libU77.a libU77 routines

/opt/fortran90/lib/libblas.a BLAS library

/opt/fortran90/lib/libF90.a1 Fortran 90 intrinsics

/opt/fortran90/lib/libisamstub.a1 Stub library to satisfy ISAM references

/opt/fortran90/lib/libisamstubs.a Stub library to satisfy ISAM references

1 Searched by default.

Table 2-7. Libraries Shipped with HP-UX Operating System

Library Contents

/usr/lib/libc.a1 C runtime library

/usr/lib/libm.a Math routines

/usr/lib/libcl.a1 Fortran runtime library

/usr/lib/lib*.sl2 Shareable versions of libraries

/usr/lib/libcps.sl3 Runtime support for parallel execution

/usr/lib/libpthread.sl3 Kernel threads library for parallel
execution

1 Searched by default.

2 By default, the linker searches for shared versions before archived versions; see HP Fortran 90

Programmer's Reference, Chapter 12.

3 Searched by default when +Oparallel is speci�ed.

Diagnostic Messages

Errors and warnings are written to standard error. If you use the +list option
to request a listing, errors and warnings are also written to standard output.

The compiler also lists on stderr the names of each source �le, procedure, and
module as they are encountered.

Using HP Fortran 90 2-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

Optimization

As recommended in the HP Fortran 90 Programmer's Reference, Chapter 13,
the +Oall option generally gives maximum performance. However, some HP
Fortran 90 programs may execute faster if they are compiled with the +O2 and
+Oaggressive options.

See \Parallelizing HP Fortran 90 Programs" for information about parallel
optimization.

Parallelizing HP Fortran 90 Programs

The following sections discuss how to use the +Oparallel option and the
parallel directives when preparing and compiling HP Fortran 90 programs for
parallel execution. Later sections also discuss reasons why the compiler may
not have performed parallelization. The last section describes runtime warning
and error messages unique to parallel-executing programs.

For a description of the +Oparallel option, see \+Oparallel Option" in
Chapter 1. For information about directives that you can use to control
parallelization, see \Controlling Parallelization" in Chapter 1.

Compiling for Parallel Execution

The following command lines compile (without linking) three source �les:
x.f90, y.f90, and z.f90. The �les x.f90 and y.f90 are compiled for parallel
execution. The �le z.f90 is compiled for serial execution, even though its
object �le will be linked with x.o and y.o.

f90 +O3 +Oparallel -c x.f90 y.f90

f90 +O3 -c z.f90

The following command line links the three object �les, producing the
executable �le para_prog:

f90 +O3 +Oparallel -o para_prog x.o y.o z.o

2-12 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

As this command line implies, if you link and compile separately, you must use
f90, not ld. The command line to link must also include the +Oparallel and
+O3 options in order to link in parallel runtime support.

Performance from Parallelization

To ensure the best runtime performance from programs compiled for
parallel execution on a multiprocessor machine, do not run more than one
parallel program on a multiprocessor machine at the same time. Running
two or more parallel programs simultaneously may result in their sharing
the same processors, which will degrade performance. You should run a
parallel-executing program at a higher priority than any other user program;
see rtprio(1) for information about setting real-time priorities.

Running a parallel program on a heavily loaded system may also slow
performance.

Profiling Parallelized Programs

You can pro�le a program that has been compiled for parallel execution in
much the same way as for non-parallel programs:

1. Compile the program with the +gprof option.

2. Run the program to produce pro�ling data.

3. Run gprof against the program.

4. View the output from gprof.

The di�erences are:

Step 2 produces a gmon.out �le with the CPU times for all executing
threads.

In Step 4, the at pro�le that you view uses the following notation to denote
DO loops that were parallelized:

routine name##pr_line_nnnn

where routine name is the name of the routine containing the loop, pr
(parallel region) indicates that the loop was parallelized, and nnnn is the line
number of the start of the loop.

Using HP Fortran 90 2-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

Conditions Inhibiting Loop Parallelization

The following sections describe conditions that can cause the compiler not to
parallelize.

Calling Routines with Side Effects

The compiler will not parallelize any loop containing a call to a routine that
has side e�ects. A routine has side e�ects if it does any of the following:

Modi�es its arguments

Modi�es a global, common block, or save variable

Rede�nes variables that are local to the calling routine

Performs I/O

Calls another subroutine or function that does any of the above

You can use the DIR$ NO SIDE EFFECTS directive to force the compiler to ignore
side e�ects in a called routine when determining whether to parallelize the
loop. For information about this directive, see \Controlling Checks for Side
E�ects" in Chapter 1.

Note A subroutine (but not a function) is always expected to have
side e�ects. If you apply this directive to a subroutine call, the
optimizer can assume that the call has no e�ect on program
results and can eliminate the call to improve performance.

Indeterminate Iteration Counts

If the compiler �nds that a runtime determination of a loop's iteration count
cannot be made before the loop starts to execute, the compiler will not
parallelize the loop. The reason for this precaution is that the runtime code
must know the iteration count in order to determine how many iterations to
distribute to the executing processors.

The following conditions can prevent a runtime count:

The loop is a DO-forever construct.

An EXIT statement appears in the loop.

2-14 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

The loop contains a conditional GO TO statement that exits from the loop.

The loop modi�es either the loop-control or loop-limit variable.

The loop is a DO WHILE construct and the condition being tested is de�ned
within the loop.

Data Dependencies

When a loop is parallelized, the iterations are executed independently on
di�erent processors, and the order of execution will di�er from the serial order
when executing on a single processor. This di�erence is not a problem if the
iterations can occur in any order with no e�ect on the results. Consider the
following loop:

DO I = 1, 5

A(I) = A(I) * B(I)

END DO

In this example, the array A will always end up with the same data regardless
of whether the order of execution is 1-2-3-4-5, 5-4-3-2-1, 3-1-4-5-2, or any other
order. The independence of each iteration from the others makes the loop an
eligible candidate for parallel execution.

Such is not the case in the following:

DO I = 2, 5

A(I) = A(I-1) * B(I)

END DO

In this loop, the order of execution does matter. The data used in iteration I

is dependent upon the data that was produced in the previous iteration (I-1).
The array A would end up with very di�erent data if the order of execution
were any other than 2-3-4-5. The data dependence in this loop thus makes it
ineligible for parallelization.

Not all data dependences inhibit parallelization. The following paragraphs
discuss some of the exceptions.

Using HP Fortran 90 2-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

Nested Loops and Matrices. Some nested loops that operate on matrices may
have a data dependence in the inner loop only, allowing the outer loop to be
parallelized. Consider the following:

DO I = 1, 10

DO J = 2, 100

A(J,I) = A(J-1,I) + 1

END DO

END DO

The data dependence in this nested loop occurs in the inner (J) loop: each row
access of A(J,I) depends upon the preceding row (J-1) having been assigned
in the previous iteration. If the iterations of the J loop were to execute in any
other order than the one in which they would execute on a single processor, the
matrix would be assigned di�erent values. The inner loop, therefore, must not
be parallelized.

But no such data dependence appears in the outer loop: each column access
is independent of every other column access. Consequently, the compiler can
safely distribute entire columns of the matrix to execute on di�erent processors;
the data assignments will be the same regardless of the order in which the
columns are executed, so long as the rows execute in serial order.

Assumed Dependences. When analyzing a loop, the compiler may err on the
safe side and assume that what looks like a data dependence really is one and
so not parallelize the loop. Consider the following:

DO I = 101, 200

A(I) = A(I-K)

END DO

The compiler will assume that a data dependence exists in this loop because it
appears that data that has been de�ned in a previous iteration is being used in
a later iteration. On this assumption, the compiler will not parallelize the loop.

However, if the value of K is 100, the dependence is assumed rather than real
because A(I-K) is de�ned outside the loop. If in fact this is the case, the
programmer can insert one of the following directives immediately before the
loop, forcing the compiler to ignore any assumed dependences when analyzing
the loop for parallelization:

DIR$ IVDEP

2-16 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

FPP$ NODEPCHK

VD$ NODEPCHK

For more information about these directives, see \Controlling Dependence
Checks" in Chapter 1.

Migrating to HP Fortran 90

A major feature of HP Fortran 90 is its compatibility with standard-conforming
HP FORTRAN 77. Both source �les and object �les from existing HP
FORTRAN 77 applications can be compiled by HP Fortran 90 with
comparatively little e�ort. However, some compile-line options and
nonstandard extensions in HP FORTRAN 77 programs may require
modi�cation.

To smooth the migration path, HP Fortran 90 includes a number of extensions
that are compatible with HP FORTRAN 77. HP Fortran 90 also includes
extensions that are designed to ease the job of porting applications from other
vendors' Fortran dialects. For a summary list of all HP Fortran 90 extensions,
see the HP Fortran 90 Programmer's Reference, Appendix A.

This section discusses issues and approaches to migrating applications from HP
FORTRAN 77 to HP Fortran 90.

Migration Issues

Migration issues fall into four general categories:

Source code
Compile-line options
Object code
Data �les

Source Code Issues

For standard-conforming HP FORTRAN 77 code, migration to HP Fortran 90
can be as simple as recompiling with the f90 command. The f90 command
accepts source �les with the extensions .f and .F (among others).

Using HP Fortran 90 2-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

However, source code is likely to be the main obstacle on the migration path
to HP Fortran 90. The reason is that HP FORTRAN 77 supports a number of
compiler directives and intrinsic functions, some of which are supported by
HP Fortran 90, but others of which are either unsupported or have changed.
The following paragraphs discuss how to change directives and intrinsics when
migrating HP FORTRAN 77 source code to HP Fortran 90.

Note HP FORTRAN 77 accepts (or forgives) a number of common
but nonstandard programming practices that HP Fortran 90
does not. These nonstandard practices as well as all known
incompatibilities between HP FORTRAN 77 and HP Fortran
90 are listed below, in \Incompatibilities with HP FORTRAN
77".

Directives. HP FORTRAN 77 supports more than seventy directives; of
these, only a handful are supported by HP Fortran 90; see above, \Compiler
Directives", for the directives that are supported and for the new directive
syntax. Note that, except for the LIST directive, the HP Fortran 90 directives
have more limited functionality than their HP FORTRAN 77 counterparts; see
the HP Fortran 90 Programmer's Reference, Chapter 14.

Although most of the HP FORTRAN 77 directives are not supported by HP
Fortran 90, some of their functionality is available through compile-line options;
see Table 2-8.

2-18 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-8. HP FORTRAN 77 Directives Supported by f90 Options

HP FORTRAN 77

Directive

HP Fortran 90

Option

Remarks

ANSI +langlvl=f90 Applies to Fortran 90 instead of
FORTRAN 77.

ASSEMBLY +asm

AUTODBL DBL +autodbl[4]

AUTODBL OFF +noautodbl

CONTINUATIONS Obsolete; the functionality enabled by
the directive is now the default.

DEBUG -g

IF/ELSE/ENDIF Use C preprocessor (cpp) directives.

GPROF (ON) +gprof

GPROF OFF +nogprof

HP_DESTINATION +DA or +DS

INCLUDE Use the Fortran 90 INCLUDE line.

INIT +Oinitcheck Option also saves all symbols.

LIST_CODE +asm

LONG +autodbl[4] Option also a�ects reals.

LOWERCASE +[no]uppercase Lowercase is default.

NLS +nls

ONETRIP +[no]onetrip

POSTPEND +[no]ppu

RANGE (ON) +check=all or -C

Using HP Fortran 90 2-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-8.

HP FORTRAN 77 Directives Supported by f90 Options (continued)

HP FORTRAN 77

Directive

HP Fortran 90

Option

Remarks

RANGE OFF +check=none

SAVE_LOCALS (ON) +save

SAVE_LOCALS OFF +nosave

SET -D or -U Use the C preprocessor #define
directive.

STANDARD_LEVEL ANSI +langlvl=f90 Applies to Fortran 90 instead of
FORTRAN 77.

SYMDEBUG -g

UPPERCASE +[no]uppercase Lowercase is default.

WARNINGS -w

Intrinsic Functions. HP Fortran 90 supports most of the intrinsics that are
available in HP FORTRAN 77, and more. In addition, most of these intrinsics
are available in HP Fortran 90 without having to activate them with compiler
directives or compile-line options (as with HP FORTRAN 77).

With the larger number of available intrinsics in HP Fortran 90, there
is the risk of name collisions with user-de�ned functions in existing HP
FORTRAN 77 source code. Use of the EXTERNAL statement can prevent such
collisions. Also, you should be aware that many HP FORTRAN 77 intrinsics
accept additional (nonstandard) argument types; HP Fortran 90 is more
standard-conforming in this regard.

For information about all of the HP Fortran 90 intrinsics, see the HP Fortran
90 Programmer's Reference, Chapter 11.

2-20 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compile-Line Option Issues

Compile-line options can become a migration issue in two ways:

If you compile a program with the HP Fortran 90 compiler and the command
line contains an unsupported f77 option, f90 will ag the option with an
error message.

Refer to Table 2-3 for a list of the options that are supported under their f77
names as well as their f90 names. Table 2-4 lists the f77 options that have
been replaced by f90 options, and Table 2-5 lists the f77 options that are
not supported by f90.

When you execute a program that consists of a mix of object �les that have
been created by f77 and f90. The problem here is that, although the object
�les may have been successfully linked, they may not be compatible. If they
were incompatible, the resulting executable could behave unexpectedly or
produce wrong results. Migration problems caused by incompatible object
�les are unusual but more di�cult to detect and are discussed below, in
\Object-Code Issues".

Object-Code Issues

Some migration problems do not manifest themselves until runtime, when the
program behaves unexpectedly or produces incorrect results. Such problems
can occur when incompatible HP FORTRAN 77 object �les are linked to HP
Fortran 90 object �les.

Although the format of object �les generated by f77 is compatible with
the format of object �les generated by f90, individual data items within
the f77-generated �le may not be. Migration problems can occur if the
HP FORTRAN 77 object �les represent data in a nonstandard form. For
example, HP Fortran 90 does not allow misaligned data or nonstandard logical
representations, whereas HP FORTRAN 77 does.

Procedure interfaces, on the other hand, usually do not present problems, so
long as the procedures are properly de�ned and called in the HP FORTRAN
77 source code. That is, as long as the de�nition and call match in argument
types, return types, and alternate return capability, the HP Fortran 90
compiler can do the appropriate conversions, copying, etc., to make the calls
work.

Using HP Fortran 90 2-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

To resolve object-code incompatibilities, you will need access both to the source
�le and to the f77 command line that was used to generate the HP FORTRAN
77 object �le. Examine the source �le for directives that are not supported by
HP Fortran 90, such as the $LOGICAL directive. (See \Compiler Directives" for
a list of the directives that are supported.) Also, look over the f77 command
line for any of the unsupported options that are listed in Table 2-5.

If you �nd object-code incompatibilities, you should clean up the source code
and recompile with the f90 command.

Data-File Issues

In general, data �les are the easiest �les to migrate because the data �les
produced by the two Fortrans are compatible. However, problems can occur
because of misaligned data and data types that are not supported under
HP Fortran 90. For example, HP FORTRAN 77 permits misaligned data,
especially when working with the structure extension. Also, HP FORTRAN 77
accepts nonstandard representations of logicals. Both examples can result in
data �les that are incompatible with HP Fortran 90.

To resolve problems with incompatible data �les, examine the source �le of
the program that generated the data �le as well as the command line that
was used to compile the source �le, following the suggestions made above, in
\Object-Code Issues".

Approaches to Migration

The most direct (and painstaking) approach to migrating an HP FORTRAN
77 program so that it will compile and execute correctly under HP Fortran
90 is to make a clean sweep through the original source code, removing all
extensions and rewriting all nonstandard programming practices to conform to
the Fortran 90 standard. The result will be a highly portable program.

The disadvantage of the \clean-sweep" approach is that it may require a
considerable expense of time and work that may not even be necessary. Many
HP FORTRAN 77 extensions are also supported under HP Fortran 90; see, for
example, Table 2-3 and Table 2-8. The only changes that you must make to
the source are to remove or recode incompatible extensions.

Although the task of migrating an HP FORTRAN 77 program to HP
Fortran 90 can be done manually, there are several utilities that can help to

2-22 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

automate the search for incompatibilities. These utilities (including sources
of information about migrating to Fortran 90) are described in the following
sections.

HP-Supplied Migration Tools

The HP migration tools include the HP FORTRAN 77 and HP Fortran 90
compilers, lintfor, and fid.

HP FORTRAN 77 Compiler

You can use the f77 command to test source code for conformance to the
FORTRAN 77 standard. The -A option causes the compiler to issue warnings
when it encounters non-ANSI code.

If you use f77 for this purpose, the source code must conform to the
FORTRAN 77 grammar. In other words, f77 will ag both HP-speci�c
extensions as well as language features that are unique to Fortran 90. If the
source code contains any Fortran 90 features (some of which are allowed in
HP FORTRAN 77 but not in standard FORTRAN 77) or if you introduce
any Fortran 90 features during the migration process, the f77 command is no
longer useful.

HP Fortran 90 Compiler

The f90 command can be used similarly to the f77 command to detect
incompatibilities in HP FORTRAN 77 source �les. The advantage of f90 over
f77 is that you can use it on code that already contains Fortran 90 features or
to which you are incrementally adding such features as part of the migration
process.

The main drawback of f90 as a migration tool is that a clean compilation
under f90 does not guarantee that all incompatibilities have been found;
some do not manifest themselves until runtime. Also, linking under f90 with
f77-generated object �les may yield unexpected behavior or incorrect results;
see above, \Object-Code Issues" and \Data-File Issues".

In addition, the f90 command sometimes reports incompatibilities|especially
in syntax|one at a time. Needless to say, �xing incompatibilities one at a time
and recompiling after each �x may not be the most cost-e�ective approach to
migrating a large FORTRAN 77 program to HP Fortran 90.

Using HP Fortran 90 2-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

Lintfor

The lintfor tool can be used on HP FORTRAN 77 code to detect semantic
assumptions that may not be valid for HP Fortran 90 code. However, lintfor
does not accept the Fortran 90 grammar and therefore has the same drawbacks
as the f77 command.

Fortran Incompatibilities Detector

The Fortran Incompatibilities Detector (fid) is an HP-supplied tool that was
developed speci�cally to help in migrating HP FORTRAN 77 code to HP
Fortran 90. It is located in:

/opt/fortran90/contrib/bin/fid

fid searches the target source-code �le for various HP FORTRAN 77
extensions that are known to be incompatible with HP Fortran 90. It also
detects incompatible compile-line options when given an f77 command line.
fid reports both source-code and object-code incompatibilities between
HP FORTRAN 77 and HP Fortran 90. Furthermore, if fid detects an
incompatible extension whose functionality is enabled by some other means in
HP Fortran 90, it will suggest a �x.

fid works by searching the entire program and reporting all its �ndings at
once. Like the f77 command, it expects the target program to conform to HP
FORTRAN 77 syntax and will report syntax errors along with incompatibilities
it detects. Unlike f77, however, if fid encounters a syntax error, it attempts to
recover and continue parsing the rest of the program. This recovery mechanism
allows fid to accept programs that contain HP Fortran 90 language features.

Not all incompatibilities are on fid's detection list. Some cannot be found by
any automated means, and others require too much time to compute for even
medium-sized programs.

To invoke fid, supply the fid command with one or more FORTRAN 77
source �les and any desired f77 options. If a �le has been partially migrated
to HP Fortran 90, change its extension to .f for use with fid. Following are
example command lines:

fid +800 file.f

fid +es program.f

2-24 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Following are examples of the warning messages fid issues when it detects an
incompatibility:

fid Warning: The command-line option, +800,

is both source incompatible

and .o incompatible with F90

fid Warning on line 8 of file.f: ON EXTERNAL

not supported by F90

fid Warning on line 9 of file.f: Detected IOSTAT

specifier in OPEN statement: Minor

differences exist between F90 and F77

IOSTAT error numbers

The incompatibilities currently detected by fid are:

The I/O speci�ers to the OPEN statement listed in Table 2-9.

Table 2-9. I/O Specifiers Not Supported by f90

ACCESS=expr1 1 READONLY=

IOSTAT= STATUS=expr2 2

KEY= TYPE=

NAME=

1 where expr1 is a constant expression other than

DIRECT or SEQUENTIAL.

2 where expr2 is a constant expression other than

OLD, NEW, UNKNOWN, REPLACE, or SCRATCH.

The HP FORTRAN 77 forms of ON EXTERNAL and ON INTERNAL.

LOGICAL types used as operands to the .EQ. and .NE. operators.

All HP FORTRAN 77 compiler directives except those listed above, in
\Compiler Directives".

Compile-line options that are not supported (see Table 2-5) or that have
been replaced by f90 options (see Table 2-4).

Using HP Fortran 90 2-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

fid's list of incompatibilities will be periodically updated. For more
information about the fid command, see the �d(1) man page.

Third-Party Migration Tools and Information

Following is a list of third-party tools and sources of information relevant to
migrating programs to Fortran 90. All items except the �rst are available
online.

Cooper Redwine's Upgrading to Fortran 90 (Springer, 1996).

The Fortran FAQ contains some migration-related information, including
pointers to tools, books, and Internet resources. Some of the third-party
tools in this list are also mentioned or reviewed in the FAQ. FAQ is available
on either of the following:

URL: ftp://rtfm.mit.edu/pub/usenet/Fortran_FAQ

news:comp.lang.fortran

The USENET group, news:comp.lang.fortran, includes discussions
relevant to both FORTRAN 77 and Fortran 90.

World Wide Web Pages: The following sites are of particular interest to
programmer's migrating applications to Fortran 90. Following each listing is
its URL.

The HP Fortran Web Page contains up-to-date information on HP's
Fortran products; see:

http://www.hp.com/go/hpfortran

Metcalf's Fortran Information contains a long list of implementations,
books, course material, and other resources; see:

http://www.fortran.com/fortran/metcalf.html

The Fortran 90 resource list contains a list of Fortran Web resources,
including FAQs, code repositories, and USENET groups; see:

http://www.hpctec.mcc.ac.uk/hpctec/courses/Fortran90/resource.html

Michael Metcalf's convert.f90 program converts standard FORTRAN
77 code into Fortran 90. According to the Fortran FAQ, this program
also performs updates such as indenting DO loops and IF blocks, inserting

2-26 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

interface blocks drawn from procedure source code, and changing
nonstandard length-speci�cation syntax. See:

ftp://jkr.cc.rl.ac.uk/pub/MandR/convert.f90

Robert Moniot's ftnchek performs a variety of semantic checks on
FORTRAN 77 programs. It is not designed as a FORTRAN 77 syntax
checker. It can accept some nonstandard language extensions and provides
an extensive set of options for customizing the checks performed. The
output is detailed and informative. See:

ftp://netlib.org/fortran/ftnchek.tar.gz

Incompatibilities with HP FORTRAN 77

This list of known incompatibilities includes both source-level and object-code
incompatibilities. A subset of these are detected by the HP fid tool, as
described above, in \Fortran Incompatibilities Detector".

Command-Line Options Not Supported

The HP Fortran 90 compiler does not accept the f77 compile-line options listed
in Table 2-5. In addition, HP Fortran 90 code may not link correctly with HP
FORTRAN 77 object �les that were compiled with these options; see above,
\Object-Code Issues".

Floating-Point Constants

The HP Fortran 90 compiler di�ers from HP FORTRAN 77 in its handling
of oating-point constants. The HP Fortran 90 compiler conforms to the
standard: a single-precision constant is treated as a single-precision data item
in all situations, regardless of how many digits were supplied when specifying
it. HP FORTRAN 77 actually scans and saves constants internally in double
precision. This behavior can produce slightly di�erent results.

In HP Fortran 90, the statement

DOUBLE PRECISION x = 3.1415926535

Using HP Fortran 90 2-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

will initialize x to only 32 bits worth of the constant because it interprets the
constant as single precision. Under HP Fortran 90, a constant must have a D

exponent or a KIND su�x to be interpreted as double precision.

In programs that use double precision exclusively, you should consider using
the +real_constant=double option, which causes real constants to default to
double precision.

Intrinsic Functions

The Fortran 90 standard has introduced new intrinsics that may collide with
function names in FORTRAN 77 code. You can resolve such collisions by using
the EXTERNAL statement.

Also, HP FORTRAN 77 allows intrinsics to accept a wider variety of argument
types than HP Fortran 90 does. For example, in HP FORTRAN 77 the MAX
and MIN intrinsics can take arguments of di�erent types, while HP Fortran 90
follows the standard and requires all arguments to be of the same type. The
HP Fortran 90 version of the TIME intrinsic takes a CHARACTER* argument; it
will not accept an integer. Other intrinsics are similarly a�ected.

Procedure Calls and Definitions

When de�ning a procedure or making a procedure call, HP Fortran 90 makes
the following requirements, which HP FORTRAN 77 overlooks:

Function references must include the parentheses for the argument list,
even when no arguments are supplied. For example, if foo is a user-de�ned
function returning CHARACTER*10, HP FORTRAN 77 permits LEN(foo) and
returns 10. HP Fortran 90 requires LEN(foo()).

Extraneous commas, such as may be used in HP FORTRAN 77 as
\placeholder" arguments, are not accepted. The following is acceptable to
f77 but not f90:

call a (a,)

To specify optional arguments in HP Fortran 90, use the OPTIONAL
statement.

The SYSTEM INTRINSIC directive, by which HP FORTRAN 77 determines
interfaces, is not supported by HP Fortran 90.

2-28 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Recursive procedures must be so declared with the RECURSIVE keyword; HP
FORTRAN 77 allows recursive procedures by default.

Data Types and Constants

The following HP FORTRAN 77 extensions for data types and constants are
not supported by HP Fortran 90:

Double precision as the default storage for oating-point constants; see
above, \Floating-Point Constants".

I and J integer su�xes. To express the HP FORTRAN 77 constant 10I (or
I*2) in HP Fortran 90, use 10_2; for 10J (or J*4), use 10_4.

Use of the 8#n and 16#n for octal and hex constants, respectively. In HP
Fortran 90, use O"n" for octal constants and Z"n" for hexadecimal constants.

BOZ constants (that is, constants in binary, octal, or hexadecimal format) in
COMPLEX expressions.

Non-integer array bounds and character length speci�ers.

Constant expressions that contain the ** (exponentiation) operator, as in
PARAMETER (RV=1**1.2).

Use of the PARAMETER statement without parentheses, as in

PARAMETER i = 1

In free format, f90 treats this statement as an error. In �xed format, f90
treats it as an assignment, identical to:

PARAMETERi = 1

Use PARAMETER (i=1) instead.

Use of the DATA statement to initialize integers with strings, as in:

DATA i /"abcd"/

Use of COMPLEX(16) temporaries. For example, given the declarations:

COMPLEX(KIND=8) :: foo

REAL(KIND=16) :: bar

Using HP Fortran 90 2-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

the expression foo**bar is legal in HP FORTRAN 77 but not in HP Fortran
90. (HP FORTRAN 77 coerces COMPLEX(16) entities to COMPLEX(8) in order
to continue a computation.)

Given the previous declarations, the following is acceptable in HP Fortran 90:

foo**REAL(bar, 8) ! foo**bar

See the HP Fortran 90 Programmer's Reference, Chapter 11, for information
about the REAL intrinsic.

Input/Output

Some of the I/O speci�ers that you can give to OPEN and other I/O statements
in HP FORTRAN 77 are not supported in HP Fortran 90; these are listed
in Table 2-9. (Also, compare the description of OPEN in the HP Fortran 90
Programmer's Reference, Chapter 10, with the description of HP FORTRAN
77's OPEN statement in the HP FORTRAN/9000 Programmer's Reference,
Chapter 10.) In general, HP FORTRAN 77 allows more speci�ers (and more
options to speci�ers) than does HP Fortran 90.

In HP FORTRAN 77, namelist-directed output character strings are always
quote-delimited; how and whether such strings are delimited in HP Fortran 90
depends on the DELIM= speci�er. Also, HP FORTRAN 77 allows the NAMELIST
statement to appear after executable statements; HP Fortran 90 does not.

Directives

Only a small number of the compiler directives from HP FORTRAN 77 are
supported under HP Fortran 90; see above, \Compiler Directives", which also
gives the new directive syntax. The syntax and functionality of individual
directives has also changed; for detailed information, see the HP Fortran 90
Programmer's Reference, Chapter 14. All unsupported directives should
be deleted or replaced by HP Fortran 90 code that results in the same
functionality (see Table 2-8).

2-30 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Miscellaneous

Following are miscellaneous incompatibilities between HP Fortran 90 and HP
FORTRAN 77:

The syntax and functionality of the HP Fortran 90 version of the ON
statement is di�erent from the HP FORTRAN 77 version. For example, ON
EXTERNAL and ON INTERNAL are not supported in HP Fortran 90. For a full
description of the ON statement with example programs showing how to use
it, refer to the HP Fortran 90 Programmer's Reference, Appendix D.

HP FORTRAN 77 accepts the { character as comment syntax; HP Fortran
90 does not.

HP FORTRAN 77 accepts a PROGRAM statement with no name; HP Fortran
90 requires the name.

HP FORTRAN 77 extends the PROGRAM statement to enable access to
command-line arguments; HP Fortran 90 does not. For information
about how to use intrinsics to access command-line arguments, see below,
\Accessing Command-Line Arguments".

HP FORTRAN 77 supports arrays up to rank 20; HP Fortran 90 supports
arrays up to rank 7.

HP FORTRAN 77 accepts an expression like + -A, but HP Fortran 90
generates a syntax error. Use +(-A) instead.

HP FORTRAN 77 does not print leading zeroes in oating-point numbers;
HP Fortran 90 does. This behavior is equivalent to compiling an HP
FORTRAN 77 program with the +E4 option (note that this option is not
supported by f90).

HP FORTRAN 77 accepts statement functions that convert arguments; HP
Fortran 90 does not.

In HP FORTRAN 77, integers that overow (through initialization or
constant folding) are replaced with the maximum value for that type. If HP
Fortran 90 detects integer overow, it treats it as an error; if it does not
detect it, the overow value is truncated at runtime.

Using HP Fortran 90 2-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

Calling C Routines from HP Fortran 90

This section describes the following language di�erences between C and HP
Fortran 90 that are relevant to calling C routines from an HP Fortran 90
program unit:

Data types
Arrays
Argument-passing Conventions
Strings
Case sensitivity
File handling

Data Types

Table 2-10 lists the corresponding data types for HP Fortran 90 and C.

2-32 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 2-10. Data-Type Correspondence for Fortran 90 and C

HP Fortran 90 C

CHARACTER char (array of)

Hollerith (synonymous with CHARACTER) char (array of)

BYTE, LOGICAL(1), INTEGER(1) char

LOGICAL(2) short

INTEGER(2) short

LOGICAL, LOGICAL(4) long or int

INTEGER, INTEGER(4) long or int

INTEGER(8) long long

REAL, REAL(4) float

DOUBLE PRECISION, REAL(8) double

REAL(16) long double

COMPLEX(4) struct

DOUBLE COMPLEX, COMPLEX(8) struct

derived type struct

The following sections provide more detailed information about language
di�erences for the following data types:

Logicals
Complex numbers
Derived types

Logicals

C uses integers for logical types. In HP Fortran 90, a 2-byte LOGICAL is
equivalent to a C short, and a 4-byte LOGICAL is equivalent to a long or int.
In C and Fortran, zero is false and any nonzero value is true. HP Fortran 90
sets the value 1 for true.

Using HP Fortran 90 2-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

Complex Numbers

C has no complex numbers, but they are easy to simulate. Create a struct

type containing two oating-point members of the correct size|two floats for
the complex type, and two doubles for the double complex type. The following
creates the typedef COMPLEX:

typedef struct

{

float real;

float imag;

} COMPLEX;

Derived Types

Although the syntax of Fortran's derived types di�ers from that of C's
structures, both languages have similar default packing and alignment rules.

Arrays

The important di�erence between arrays in HP Fortran 90 and arrays
in C is that Fortran uses a column-major storage representation for its
multi-dimensional arrays, whereas C uses row-major ordering. For proper
accessing, the order of the subscripts must be reversed.

For example, an array that is declared in C as

int my_array[2][3];

must be declared in HP Fortran 90 as

INTEGER, DIMENSION (3,2) :: my_array

Argument-Passing Conventions

The important di�erence between the argument-passing conventions of C and
HP Fortran 90 is that Fortran 90 passes arguments by reference|that is, it
passes the address of the argument|whereas C usually passes arguments by
value|that is, it passes a copy of the argument. This di�erence a�ects calls
not only to user-written routines in C but also to all HP-UX system calls and
subroutines that are accessed as C functions.

2-34 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP Fortran 90 provides two built-in functions, %VAL and %REF, for use when
passing arguments from Fortran to C. These functions override Fortran's
argument-passing conventions so that Fortran passes each argument as C
expects to receive them, by value (%VAL) or by reference (%REF).

The %VAL and %REF built-in functions can also be used with the HP ALIAS

directive. For detailed information, see the HP Fortran 90 Programmer's
Reference, Chapter 14. See also the example program in \File Handling".

Strings

Unlike HP Fortran 90, programs written in C expect strings to be
null-terminated; that is, the last character of a string must be the null
character ('\0'). To pass a string from Fortran to C, you must therefore
explicitly assign the null character to the �nal element of the character array,
as in the following:

CALL csub ('a string'//CHAR(0))

For each CHARACTER*n argument passed to a Fortran subprogram, two items
are actually passed as arguments:

1. The address of the argument in memory (that is, a pointer to the
argument).

2. The argument's length in bytes. This is a \hidden" argument that is
available to the subprogram from the stack.

To pass a string argument from Fortran to C, you must explicitly prepare the
C function to receive the string address argument and the hidden argument.
The order of the address arguments in the argument list will be the same in C
as in Fortran. The hidden length arguments, however, will come at the end of
the list. If more than one string argument is passed, the length arguments will
follow the same order as the address arguments|at the end of the list.

Using HP Fortran 90 2-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

Here is the HP Fortran 90 code to pass two strings and an integer to a C
function:

INTEGER :: int1

CHARACTER(LEN=7) :: str1

CHARACTER(LEN=15) :: str2

LOGICAL :: result...
result = func(str1, int1, str2)

To receive these arguments, the C function must have the following prototype
declaration:

int func (char *s1, int *i, char *s2, int len1, int len2);

Case Sensitivity

Unlike HP Fortran 90, C is case-sensitive. HP Fortran 90 converts all external
names to lowercase, and it disregards the case of internal names. For example,
the names foo and FOO are the same in Fortran, but di�erent in C.

If case sensitivity is an issue when calling a C function from an HP Fortran 90
program, you can either compile the Fortran program with the +uppercase
option, which forces Fortran to use uppercase for external names; or you can
use the HP ALIAS directive specify the case that Fortran should use when
calling an external name.

See HP Fortran 90 Programmer's Reference for information about the
+uppercase option (Chapter 13) and the HP ALIAS directive (Chapter 14).
See also the next section, \File Handling", for an example of the HP ALIAS

directive.

File Handling

A Fortran unit number cannot be passed to a C routine to perform I/O on
the associated �le; nor can a C �le pointer be used by a Fortran routine.
However, a �le created by a program written in either language can be used by
a program in the other language if the �le is declared and opened within the
program that uses it.

2-36 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

C accesses �les using HP-UX I/O subroutines and intrinsics. This method of
�le access can also be used by Fortran programs instead of Fortran I/O.

You can pass �le units and �le pointers from Fortran to C with the FNUM and
FSTREAM intrinsics. FNUM returns the HP-UX �le descriptor corresponding to a
Fortran unit, which must be supplied as an argument; see below, \Establishing
a Connection to the File", for more information about �le descriptors. FSTREAM
returns a C �le pointer for a Fortran unit number. The unit number must be
supplied as an argument.

The following Fortran program calls the write system routine to perform I/O
on a �le, passing in a �le descriptor returned by FNUM.

Because of the name conict between the write system routine and the
Fortran WRITE statement, the program uses the ALIAS directive to avoid the
conict by referring to write as IWRITE. The program also uses the %VAL and
%REF built-in functions to force Fortran to pass the arguments as the write
routine expects to receive them: the �rst by value, the second by reference, and
the third by value.

PROGRAM fnum_test

! Use the ALIAS directive to rename the "write" routine.

! The built-in functions %VAL and %REF indicate how the

! arguments are to be passed.

!HP ALIAS IWRITE = 'write' (%VAL, %REF, %VAL)

CHARACTER*1 :: a(10)

INTEGER :: i, fd, status

! fill the array with x's

DO i = 1, 10

a(i) = 'x'

END DO

! open the file for writing

OPEN(1, FILE='file1', STATUS='UNKNOWN')

! pass in the unit number and get back a file descriptor

Using HP Fortran 90 2-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

fd = FNUM(1)

! call IWRITE (the alias for "write"), passing in three

! arguments:

! fd = the file descriptor returned by FNUM

! a = the character array to write

! 10 = the number of elements (bytes) to write

! the return value, status, is the number of bytes actually

! written; if the write was successful, it should be 10

status=IWRITE(fd, a, 10)

CLOSE (1, STATUS='KEEP')

! open the file for reading; we want to see if the write was

! successful

OPEN (1, FILE='file1', STATUS='UNKNOWN')

READ (1, 4) (a(i), i = 1, 10)

4 FORMAT (10A1)

CLOSE (1, STATUS='DELETE')

DO i = 1, 10

! if we find anything other than x`s, the write failed
IF (a(i) .NE. 'x') STOP 'FNUM_TEST failed'

END DO

! check write's return value; it should be 10

IF (status .EQ. 10) PRINT *, 'FNUM_TEST passed'

END

See the HP Fortran 90 Programmer's Reference for detailed information about
the FNUM and FSTREAM intrinsics (Chapter 11) and the ALIAS directive and
%VAL and %REF built-in functions (Chapter 14). For information about the
write system routine, see the write(2) man page.

2-38 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

Writing HP Fortran 90 Applications for HP-UX

This section discusses how to use system resources in an HP Fortran 90
application designed to execute on the HP-UX operating system. These
resources include:

Access to command-line arguments from HP Fortran 90 programs
HP-UX system calls and standard library routines
HP-UX �le I/O

Accessing Command-Line Arguments

HP FORTRAN 77 extends the PROGRAM statement to enable access to
command-line arguments. This extension is not available in HP Fortran 90.
However, an HP Fortran 90 program can nevertheless access command-line
arguments by calling the IGETARG and IARGC intrinsics.

For example, the following command line invokes the program fprog with
arguments:

fprog arg1 "another arg" 222

HP-UX captures the entire command line and makes the following strings
available to your program:

arg1

another arg

222

To access these arguments, your program must call the IGETARG and IARGC

intrinsics. IGETARG (available either as a function or as a subroutine) gets a
speci�c command-line argument. IARGC returns the number of arguments on
the command line.

The following program illustrates how to use both intrinsics:

PROGRAM test_igetarg

PARAMETER (arg_num = 1)

! arg_str is the character array to be written to

! by IGETARG

Using HP Fortran 90 2-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

CHARACTER(LEN=30) :: arg_str

! IGETARG returns number of characters read within

! the specified parameter

! arg_num is the position of the desired argument in the

! the command line (the name by which the program

! was invoked is 0)

! arg_str is the character array in which the argument

! will be written

! 30 is the number of characters to write to arg_str

PRINT *, IGETARG(arg_num, arg_str, 30)

PRINT *, arg_str

! IARGC returns the total number of arguments on the

! command line

PRINT *, IARGC()

END

If this program is compiled and invoked by the name a.out in the following
command line:

a.out perambulation of a different sort

it produces the output:

13

perambulation

5

For more information about the IGETARG and IARGC intrinsics, see the HP
Fortran 90 Programmer's Reference, Chapter 11. You can also use the GETARG
intrinsic to return command-line arguments. GETARG is also available as a
libU77 routine; see the HP Fortran 90 Programmer's Reference, Chapter 12.

2-40 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP-UX System Calls and Library Routines

System calls provide low-level access to kernel-level resources, such as the
write system routine. For an example of a program that calls the write
routine, see above, \File Handling". For information about system calls, refer
to HP-UX Reference, Section 2.

HP-UX library routines provide many capabilities, such as getting system
information and �le stream processing. Library routines are discussed in the
HP-UX Reference, Section 3.

You can access many HP-UX system calls and library routines from Fortran
programs using the BSD 3F library, libU77.a. For details on accessing
routines in this library, see the HP Fortran 90 Programmer's Reference,
Chapter 12.

Another library provided with Fortran 90 is the Basic Linear Algebra
Subroutine (BLAS) library, libblas.a. These subroutines perform low-level
vector and matrix operations, tuned for maximum performance. For
information, see the HP Fortran 90 Programmer's Reference, Chapter 12.

Using HP-UX File I/O

HP-UX �le-processing routines can be used as an alternative to Fortran �le
I/O routines. This section discusses HP-UX stream I/O routines and I/O
system calls.

Stream I/O Using FSTREAM

The HP-UX operating system uses the term \stream" to refer to a �le as
a contiguous set of bytes. There are a number of HP-UX subroutines for
performing stream I/O; see the stdio(3S) man page.

Unlike Fortran I/O, which requires a logical unit number to access a �le,
stream I/O routines require a stream pointer|an integer variable that
contains the address of a C-language structure of type FILE (as de�ned in the
C-language header �le /usr/include/stdio.h.)

The following Fortran 90 statement declares a variable for use as a stream
pointer in HP Fortran 90:

INTEGER(4) :: stream_ptr

Using HP Fortran 90 2-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

To obtain a stream pointer, use the Fortran intrinsic FSTREAM, which returns a
stream pointer for an open �le, given the �le's Fortran logical unit number:

stream-ptr = FSTREAM(logical-unit)

The logical-unit parameter must be the logical unit number obtained from
opening a Fortran �le, and stream-ptr must be of type integer. If stream-ptr is
not of type integer, type conversion takes place with unpredictable results. The
stream-ptr should never be manipulated as an integer.

Once you obtain stream-ptr , use the ALIAS directive to pass it by value to
stream I/O routines. (See above, \File Handling", for an example program that
uses the ALIAS directive. All HP Fortran 90 directives are described in the HP
Fortran 90 Programmer's Reference, Chapter 14.)

Performing I/O Using HP-UX System Calls

File I/O can also be performed with HP-UX system calls (for example, open,
read, write, and close), which provide low-level access to the HP-UX kernel.
These routines are discussed in the HP-UX Reference, Section 2; see also the
online man pages for these routines. For an example that shows how to call the
write routine, see above, \File Handling".

Establishing a Connection to the File

HP-UX I/O system calls require an HP-UX �le descriptor, which establishes
a connection to the �le being accessed. A �le descriptor is an integer and is
similar to a Fortran logical unit number. For example, the following open

system call (called from a C-language program) opens a �le named DATA.DAT

for reading and writing and returns the value of an HP-UX �le descriptor:

#include <fcntl.h> /* definition of O_RDWR contained here */...
fildes = open("DATA.DAT", O_RDWR)

Obtaining an HP-UX File Descriptor in Fortran

The Fortran intrinsic FNUM returns the HP-UX �le descriptor for a given logical
unit. The example program listed in the section \File Handling" calls the FNUM
intrinsic. For information about FNUM, see the HP Fortran 90 Programmer's
Reference, Chapter 11.

2-42 Using HP Fortran 90

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Installation Information

You can install HP Fortran 90 after loading the HP-UX operating system 10.3
or later. HP Fortran 90 requires approximately 46 MB of disk space: 18 MB
for the compiler and 28 MB for HP DDE, Blink Link and HP PAK.

To install your software, run the SD-UX swinstall command. It will invoke
a user interface that leads you through the installation process and gives you
information about product size, version numbers, and dependencies.

For more information about installation procedures and related issues, refer to
Managing HP-UX Software with SD-UX and other README, installation, and
upgrade documentation included or described in your HP-UX operating system
package.

Note During the installation, the following WARNING and ERROR

messages may appear in the �les /var/adm/sw/swmodify.log
and /var/adm/sw/swagent.log:

WARNING: Cannot delete the definition for

"//opt/langtools/lbin/ucomp.tmp" from

the fileset "Auxiliary-Opt.LANG-AUX".

The file does not exist in this fileset.

ERROR: The selected software was not modified.

All of the specified file modifications

are invalid. See the ERROR and/or WARNING

messages above.

These messages are not valid and should be ignored.

Installation Information 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Related Documentation

Refer to the following documents for information about the HP Fortran 90
compiler:

HP Fortran 90 Programmer's Reference (B3908-90001).

f90 (1) man page, which provides a summary reference to the f90
compile-line options.

�d(1) man page, which describes the Fortran Incompatibilities Detector
(fid).

http://www.hp.com/go/hpfortran, which provides current information
about the HP Fortran 90 compiler.

For corrections to the documentation, see Chapter 5.

For information about HP's optimizing compilers, see the HP PA-RISC
Compiler Optimization Technology White Paper (5964-9846E). A PostScript �le
of this document is available online in:

/opt/langtools/newconfig/white_papers/optimize.ps

Related Documentation 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Restrictions, Problems, and Fixes

This chapter tells you where to look for information about compiler problems
and �xes, and describes important restrictions, known problems (along with
their workarounds), and corrections to the documentation.

Locating Information on Problems and Fixes

HP customers on support can �nd a list of HP Fortran 90 compiler problems
and their �xes in the current \Software Status Bulletin" (SSB), referencing the
release number (1.1) and one of the following product numbers:

B3906BB|HP Fortran 90 Series 700
B3908BB|HP Fortran 90 Series 800

To display the product number and the release version of your HP Fortran 90
compiler, execute this HP-UX command:

what /opt/fortran/bin/f90

Any user can access the HP SupportLine database on the World Wide Web,
which permits searching for bug descripions and available patches. The URL is:

http://us.external.hp.com:80/

Restrictions, Problems, and Fixes 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Restrictions in Version 1.1

Softbench support is not available.

PBO and +O4

Pro�le Based Optimization (PBO) and level 4 optimizations (+O4) are
not available in this release of HP Fortran 90; see Table 2-5 for other
optimization options that are not currently available.

Debugging Cray-style pointers

Cray-style pointers establish an implicit connection between the pointer and
the pointee, which DDE does not recognize. Therefore, you cannot perform
debugger operations on the pointee. For example, given the statement

POINTER(P, iarr(nelem))

you can successfully print the pointer P and dereference it, but not the
pointee iarr.

dde> print iarr

Variable does not exist in this scope.

The ON statement

When compiling at optimization level 2 or 3, the user should be aware that
the optimizer makes assumptions about the program that do not take into
account the behavior of user-de�ned procedures called by the ON . . . CALL
statement. Such procedures must therefore be well-behaved in optimized
programs. The following restrictions apply when using the ON statement in
an optimized program:

The ON procedure must not assume that any variable in the interrupted
procedure or in its caller has its current value. (The optimizer may have
placed the variable in a register until after the call to the interrupted
procedure is complete.)

The ON procedure must not change the value of any variable in the
interrupted procedure or in its caller if the e�ect of the ON procedure is to
return program control to the point of interrupt.

These restrictions do not apply if you compile at optimization level 0 or 1.

5-2 Restrictions, Problems, and Fixes

FINAL TRIM SIZE : 7.5 in x 9.0 in

Cray-Style pointers and double-precision values

When the +autodbl option is used with a Cray-style pointer, HP Fortran
90 can have di�erent semantics from those in e�ect on Cray machines.
Cray-style pointers are not expanded to eight-byte entities. The HP Fortran
90 compiler generates a warning when a program using Cray-style pointers is
compiled with +autodbl.

Known Problems

The BTEST and RNUM intrinsics fail when compiled with the +autodbl[4]
option on the PA8000 architecture at optimization levels 2 and 3.

Workaround: Recompile at a lower optimization level.

The compiler incorrectly allows the +Oaggressive option to be speci�ed at
optimization levels 0 and 1. As documented, +Oaggressive is only to be
used at optimization levels 2 or higher. You must include +Ooptlevel on the
same command line with the +Oaggressive option, and optlevel must be set
to 2 or higher.

Also, if you specify +Oaggressive at level 2 (that is, if you also specify +O2),
you must include the +Onovectorize option on the same command line.

The following command lines summarize the correct and incorrect ways to
use +Oaggressive:

f90 +Oaggressive # Wrong, do not use +Oaggressive at level 0.

f90 +O0 +Oaggressive # Wrong, same reason.

f90 +O1 +Oaggressive # Wrong, do not use +Oaggressive at level 1.

f90 +O2 +Oaggressive # Wrong, add +Onovectorize
f90 +O2 +Oaggressive +Onovectorize # OK

f90 +O3 +Oaggressive # OK

The ON statement may cause your program to go into an in�nite loop when it
traps an interrupt. There is no workaround for this problem.

Restrictions, Problems, and Fixes 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Corrections to the Documentation

The following sections describe documentation errors.

\OUT OF FREE SPACE" Error

The HP Fortran 90 Programmer's Reference, Appendix C, states that the
IOSTAT= and ERR= speci�ers return error 913 (OUT OF FREE SPACE) when the
I/O library attempts to use more memory than is available. However, these
speci�ers do not catch all instances of error 913, especially those caused by
memory allocation failures in the I/O library.

+fp exception Option

The name of the +fp_exception option is misspelled as \+fp exceptions" in
the current version of the HP Fortran 90 Programmer's Reference, Chapter
13, and in the f90 (1) man page. The man page has been corrected for this
release. The HP Fortran 90 Programmer's Reference will be corrected at the
next revision.

5-4 Restrictions, Problems, and Fixes

FINAL TRIM SIZE : 7.5 in x 9.0 in

Index

1

1.0 argument, 1-15

A

ACCEPT statement, 1-3, 1-6
accessing command-line arguments,

2-31, 2-39
ACCESS= speci�er, 2-25
ALIAS directive, 2-8, 2-34, 2-36, 2-37,

2-42
ALLOCATE statement, 1-16
architecture, PA-RISC 1.0, 1-15
argument passing conventions, 2-34
arrays and C, 2-34
+autodbl[4] option, 5-3

B

BACKSPACE statement, 1-4, 1-7
BLAS library, 2-10
Blink Link, 3-1
BOZ constants, 2-29
BTEST intrinsic, 5-3
BUFFER IN statement, 1-3
BUFFER OUT statement, 1-6
built-in functions
%REF, 2-34, 2-37
%VAL, 2-34, 2-37

C

calling system and library routines,
2-41, 2-42

C and Fortran

argument passing conventions, 2-34
case sensitivity, 2-36
data types, 2-32

case sensitivity and C, 2-34, 2-36
CHECK_OVERFLOW directive, 2-8
command-line arguments, 2-31, 2-39
compatibility
Cray, 1-3, 1-10
KAP, 1-10
VAST, 1-10

compile-line options, 2-4
+autodbl[4], 5-3
commonly used, 2-5
+cpp, 2-2
+DA, 1-15
+DS, 1-15
+E4, 2-31
f77 incompatibilities, 2-21
f77 options supported, 2-5
+fp_exception, 5-4
getting help, 2-4
HP_F90OPTS environment variable,

2-9
-K, 2-5
-l, 2-10
-L, 2-5, 2-10
-lblas, 2-10
+list, 2-11
-lm, 2-10
+O2, 2-12
+O4, 5-2
+Oaggressive, 2-12

Index-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

+Oall, 2-12
+O[no]aggressive, 5-3
+O[no]libcalls, 1-16
+O[no]parallel, 1-10
+O[no]regionsched, 1-16
+Oparallel, 5-2
+save, 2-5
support for f77 directives, 2-18
+U77, 2-10
+uppercase, 2-36
+usage, 2-4

compiler directives, 1-10, 2-18, 2-25,
2-30

ALIAS, 2-8, 2-34, 2-36, 2-37, 2-42
CHECK_OVERFLOW, 2-8
DIR$ IVDEP, 1-12
DIR$ [NO]CONCUR, 1-12
DIR$ NO SIDE EFFECTS, 1-13
FPP$ NODEPCHK, 1-12
LIST, 2-8
$ [NO]CONCURRENTIZE, 1-12
$ [NO]VECTORIZE, 1-11
OPTIMIZE, 2-8
VD$ NODEPCHK, 1-12

compiler messages, internationalizing,
2-10

COMPLEX data type
BOZ constants, 2-29
simulating in C, 2-34
temporaries, 2-29

constants, 2-29
convert.f90, 2-26
Cooper, Redwine, 2-26
+cpp option, 2-2
Cray compatibility
BUFFER IN statement, 1-3
BUFFER OUT statement, 1-6

Cray-style pointers, 5-2, 5-3
C runtime library, 2-10

D

+DA compile-line option, 1-15
+DA option, 1-15
data �les, migrating, 2-22
DATA statement, 2-29
data types, 2-29
C and Fortran, 2-32
COMPLEX, 2-29, 2-34
derived types, 2-34
LOGICAL, 2-25, 2-33

DDE. See HP DDE
debugger, installing, 3-1
debugging
restrictions, 5-2

derived types and C, 2-34
diagnostic messages, 2-11
directives. See compiler directives
DIR$ IVDEP compiler directive, 1-12
DIR$ [NO]CONCUR compiler directive,

1-12
DIR$ NO SIDE EFFECTS compiler

directive, 1-13
disk space, 3-1
documentation, 4-1
+DS compile-line option, 1-15
+DS option, 1-15

E

+E4 option, 2-31
environment variables, 2-9
HP_F90OPTS, 2-9
MP_NUMBER_OF_THREADS, 1-13
NLSPATH, 2-10
TMPDIR, 2-10
TTYUNBUF, 2-10

error messages, 2-11
during installation, 3-1

errors, I/O, 5-4
extensions
BUFFER IN statement, 1-3
BUFFER OUT statement, 1-6

Index-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

GETPOS function, 1-4, 1-7
LENGTH function, 1-4, 1-7
OPTIONS statement, 1-8
SETPOS routine, 1-4, 1-7
UNIT function, 1-4, 1-7

extensions, �lename, 2-2, 2-17
EXTERNAL statement, 2-20

F

f90 command line
compiling modules, 2-3
HP_F90OPTS environment variable,

2-9
syntax, 2-2

.f90 extension, 2-2
f90 man page, 4-1
FAQ, Fortran, 2-26
.f extension, 2-2, 2-17
.F extension, 2-2, 2-17
fid command, 2-24
fid man page, 4-1
�le descriptor, 2-42
�lename extensions, 2-2, 2-17
�le pointers, 2-36
�les and C, 2-36
�les, large, 1-14
oating-point constants, 2-27, 2-29
FNUM intrinsic, 2-37, 2-42
Fortran FAQ, 2-26
Fortran Incompatibilities Detector, 2-24
Fortran runtime library, 2-10
+fp_exception compile-line option, 5-4
FPP$ NODEPCHK compiler directive, 1-12
FREE SPACE error, 5-4
FSTREAM intrinsic, 2-37, 2-41
ftnchk, 2-27
functions, built-in
%REF, 2-34, 2-37
%VAL, 2-34, 2-37

G

GETARG intrinsic, 2-39
GETPOS function, 1-4, 1-7

H

hidden length argument, 2-35
HP DDE, 3-1. See also debugging
HP_F90OPTS environment variable, 2-9
HP PAK, 3-1
HP-UX libraries, 2-10
HP-UX system calls, 2-41
HP web page, 2-26

I

.i90 extension, 2-2
I and J su�xes, 2-29
IARGC intrinsic, 2-39
.i extension, 2-2
IGETARG intrinsic, 2-39
incompatibilities, 2-27
array bounds, 2-29
arrays, 2-31
COMPLEX(16), 2-29
constants, 2-29
data �les, 2-22
DATA statement, 2-29
data types, 2-29
detected by fid, 2-25
directives, 2-18, 2-25, 2-30
exponentiation operator, 2-29
expression syntax, 2-31
oating point, 2-31
oating-point constants, 2-27, 2-29
function references, 2-28
I and J su�xes, 2-29
integer overow, 2-31
intrinsics, 2-20, 2-28
I/O, 2-25, 2-30
KIND parameter, 2-29
logical operands, 2-25
namelist I/O, 2-30

Index-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

object �les, 2-21
ON EXTERNAL, 2-25
ON INTERNAL, 2-25
ON statement, 2-31
OPEN statement, 2-25
optional arguments, 2-28
options, 2-21, 2-27
PARAMETER statement, 2-29
procedure calls, 2-28
procedure interface, 2-21
PROGRAM statement, 2-31
recursive procedures, 2-28
speci�ers (I/O), 2-25
statement functions, 2-31

indeterminate loop counts and
parallelization, 2-14

installing HP Fortran 90, 3-1
instruction scheduling, 1-15
internationalizing messages, 2-10
intrinsics, 2-28
BTEST, 5-3
compatibility, 2-20
FNUM, 2-37, 2-42
FSTREAM, 2-37, 2-41
GETARG, 2-39
IARGC, 2-39
IGETARG, 2-39
library, 2-10
MAX, 2-28
MIN, 2-28
REAL, 2-30
RNUM, 5-3
TIME, 2-28

I/O errors, 5-4
I/O incompatibilities, 2-30
speci�ers, 2-25

I/O speci�ers
ACCESS=, 2-25
IOSTAT=, 2-25
KEY=, 2-25
NAME=, 2-25

READONLY=, 2-25
STAT=, 1-16
STATUS=, 2-25
TYPE=, 2-25

IOSTAT= speci�er, 2-25
ISAM stubs library, 2-10

J

J and I su�xes, 2-29

K

KEY= speci�er, 2-25
known problems
BTEST intrinsic, 5-3
ON statement, 5-3
optimization, 5-3
RNUM intrinsic, 5-3

-K option, 2-5

L

large �les, support for, 1-14
-lblas option, 2-10
LENGTH function, 1-4, 1-7
libraries, 2-10
library routines, 2-41
libU77 library, 2-10
lintfor, 2-24
LIST directive, 2-8
+list option, 2-11
-lm option, 2-10
LOGICAL data type, 2-25, 2-33
LOGICAL directive, 2-21
logical operands not supported, 2-25
logicals and C, 2-33
-l option, 2-10
-L option, 2-5, 2-10

M

man pages
f90, 4-1
fid, 4-1

Index-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

math routines library, 2-10
MAX intrinsic, 2-28
memory errors, 5-4
messages
diagnostic, 2-11
internationalizing, 2-10
issued by fid, 2-24

Metcalf, Michael, 2-26
migrating to Fortran 90, 2-17
data �les, 2-22
object code, 2-21
source code, 2-17

migration tools
convert.f90, 2-26
f77, 2-23
f90, 2-23
fid, 2-24
ftnchk, 2-27
lintfor, 2-24
third-party tools, 2-26

MIN intrinsic, 2-28
.mod extension, 2-3
modules, 2-3
Moniot, Robert, 2-27
MP_NUMBER_OF_THREADS, 1-13
multiprocessor machine, 1-10, 1-13
multi-threaded programming, 1-14

N

NAMELIST statement, 2-30
NAME= speci�er, 2-25
NLSPATH environment variable, 2-10
$ [NO]CONCURRENTIZE compiler

directive, 1-12
$ [NO]VECTORIZE compiler directive,

1-11
null-terminated strings, 2-35

O

+O2 option, 2-12
+O4 option not supported, 5-2

+Oaggressive option, 2-12
+Oall option, 2-12
object code, migrating, 2-21
.o extension, 2-2
+O[no]aggressive compile-line option,

5-3
+O[no]libcalls compile-line option,

1-16
+O[no]parallel compile-line option,

1-10
+O[no]regionsched compile-line option,

1-16
ON statement, 2-31, 5-2, 5-3
+Oparallel option, 5-2
OPEN statement, 2-25
optimization, 2-12, 4-1
OPTIONS statement, 1-8
parallelization, 1-10, 1-12, 1-13, 2-12
restrictions and problems, 5-2, 5-3
vectorization, 1-11

OPTIMIZE directive, 2-8
OPTIONAL statement, 2-28
options. See compile-line options
OPTIONS statement, 1-8
OUT OF FREE SPACE error, 5-4

P

parallelization, 1-10, 1-12, 1-13, 2-12,
5-2

compiling, 2-12
conditions inhibiting, 2-14
data dependence, 2-15
indeterminate loop counts, 2-14
pro�ling, 2-13
side e�ects, 2-14

PARAMETER statement, 2-29
PA-RISC 1.0 architecture, 1-15
passing arguments in C and Fortran,

2-34
passing strings to C, 2-35
pathnames of libraries, 2-10

Index-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

PBO not supported, 5-2
POINTER (Cray) statement, 5-2
porting
Cray, 1-3, 1-6, 1-10
KAP, 1-10
VAST, 1-10

PRINT statement, 1-3, 1-6
procedures
called by ON, 5-2
calls and de�nitions, 2-28
incompatibilities, 2-28
interface, 2-21
recursive, 2-28

product numbers, 5-1
Pro�le Based Optimization not

supported, 5-2
pro�ling parallel-executing programs,

2-13
PROGRAM statement, 2-31
pure-data �les, 1-3, 1-6

R

READONLY= speci�er, 2-25
READ statement, 1-3, 1-6
+real_constant=double option, 2-28
REAL intrinsic, 2-30
RECURSIVE keyword, 2-28
%REF built-in function, 2-34, 2-37
restrictions
+autodbl[4] option, 5-3
Cray-style pointers, 5-3
debugging, 5-2
+O4 option, 5-2
ON statement, 5-2
optimization, 5-2
parallelization, 5-2
Pro�le Based Optimization, 5-2
Softbench support, 5-2

RNUM intrinsic, 5-3

S

+save option, 2-5
SETPOS routine, 1-4, 1-7
.s extension, 2-2
shareable libraries, 2-10
side e�ects, 1-13
side e�ects and data dependence, 2-15
side e�ects and parallelization, 2-14
size information, 3-1
Softbench support, 5-2
Software Status Bulletin information,

5-1
source code, migrating, 2-17
speci�ers. See I/O, speci�ers
SSB information, 5-1
statement functions, 2-31
statements
ACCEPT, 1-3, 1-6
ALLOCATE, 1-16
BUFFER IN, 1-3
BUFFER OUT, 1-6
DATA, 2-29
EXTERNAL, 2-20
NAMELIST, 2-30
ON, 2-31, 5-2, 5-3
OPEN, 2-25
OPTIONAL, 2-28
OPTIONS, 1-8
PARAMETER, 2-29
POINTER (Cray), 5-2
PRINT, 1-3, 1-6
PROGRAM, 2-31
READ, 1-3, 1-6
TYPE, 1-3, 1-6
WRITE, 1-3, 1-6, 2-37

STAT= speci�er, 1-16
STATUS= speci�er, 2-25
stream I/O, 2-41
stream pointers, 2-41
strings and C, 2-35
support information, 5-1

Index-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

swinstall command, 3-1
system calls, 2-41
SYSTEM INTRINSIC directive, 2-28

T

temporary �les, 2-10
threads, 1-14
thread-safed libraries, 1-14
TIME intrinsic, 2-28
TMPDIR environment variable, 2-10
tools for migrating
HP-supplied, 2-23
third-party, 2-26

tty bu�ering, 2-10
TTYUNBUF environment variable, 2-10
TYPE= speci�er, 2-25
TYPE statement, 1-3, 1-6

U

+U77 option, 2-10
uninitialized variables, 2-24

UNIT function, 1-4, 1-7
unit numbers, 2-41
C's �le pointer, 2-36

Upgrading to Fortran 90 , 2-26
+uppercase option, 2-36
+usage option, 2-4
USENET group on Fortran, 2-26

V

%VAL built-in function, 2-34, 2-37
VD$ NODEPCHK compiler directive, 1-12
vectorization, 1-11

W

warning messages, 2-11
during installation, 3-1

websites, 4-1
support, 5-1

what command, 5-1
WRITE statement, 1-3, 1-6, 2-37

write system routine, 2-37

Index-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

