
ACSE/Presentation and ROSE Interface
Programmer’s Guide

Edition 4

32070-90032

HP9000 Networking

05/97

Printed in: United States

© Copyright 1997 Hewlett-Packard Company. All rights reserved.



2

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and
(c) (2) of the Commercial Computer Software Restricted Rights clause at
FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY 3000 Hanover Street Palo Alto,
California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for
this pack is restricted to this product only. Additional copies of the
programs may be made for security and back-up purposes only. Resale of
the programs in their present form or with alterations, is expressly
prohibited.

Copyright Notices. ©copyright 1983-97 Hewlett-Packard Company, all
rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

©copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

This software is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of
California.



3

©copyright 1980, 1984, 1986 Novell, Inc.

©copyright 1986-1992 Sun Microsystems, Inc.

©copyright 1985-86, 1988 Massachusetts Institute of Technology.

©copyright 1989-93 The Open Software Foundation, Inc.

©copyright 1986 Digital Equipment Corporation.

©copyright 1990 Motorola, Inc.

©copyright 1990, 1991, 1992 Cornell University

©copyright 1989-1991 The University of Maryland

©copyright 1988 Carnegie Mellon University

Trademark Notices UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open
Company Limited.

X Window System is a trademark of the Massachusetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.



4



Contents

5

1. APRI Overview

Systems Supported  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
ASN.1 Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
File Naming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

What is the HP ACSE/Presentation and ROSE Interface  . . . . . . . . . . .15
ACSE/Presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
ROSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Support for Multi-Threaded Applications. . . . . . . . . . . . . . . . . . . . . . .15

Standards Supported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Who Should Use This Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

2. Supported ACSE/Presentation and ROSE Calls

ACSE/Presentation Calls and Primitives. . . . . . . . . . . . . . . . . . . . . . . . .22
A/P Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
ACSE/Presentation Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
ACSE/Presentation Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

ROSE Calls and Primitives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
ROSE Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
ROSE Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

3. Using ACSE/Presentation

Synchronous ACSE/Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Summary of Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Step 1: Create a Communication Endpoint . . . . . . . . . . . . . . . . . . . . . . .33

Step 2: Establish an Association. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Initialize the A/P Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Establish Initiator and Responder Roles  . . . . . . . . . . . . . . . . . . . . . . .35



6

Contents

Binding the Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Set up the Data Transfer Environment. . . . . . . . . . . . . . . . . . . . . . . . 36
Request the Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Confirm the Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Step 3. Exchanging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Step 4: Release the Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Requesting the Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Confirm the Release Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Step 5: Closing the Communication Endpoint . . . . . . . . . . . . . . . . . . . . 44

4. Programming Guide

Summary of Programming Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1. Prepare the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2. Manage the A/P Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Determine Initiator and Responder Roles . . . . . . . . . . . . . . . . . . . . . . 49
Determine Address Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Negotiating Application and Presentation Contexts  . . . . . . . . . . . . . 51
Portability, Migration Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. Managing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Control Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
User Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Multiple Sends and Receives of Data. . . . . . . . . . . . . . . . . . . . . . . . . . 54
User Data Encoding/Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Using Synchronous vs. Asynchronous Mode. . . . . . . . . . . . . . . . . . . . 56
Synchronous Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Asynchronous Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Changing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Managing Multiple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Contents

7

Execution Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Connection Retry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Resource Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
System Maximums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

6. Other Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
File Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Signal Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Error Checking Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Error-handling in Multi-Threaded Applications  . . . . . . . . . . . . . . . . .63

7. Before Running ACSE/Presentation Applications. . . . . . . . . . . . . . . .64
Multi-threaded ACSE/Presentation Example  . . . . . . . . . . . . . . . . . . .64

ACSE/Presentation Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Program using ROSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

5. Troubleshooting Your Application

Using A/P API Tracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
A/P API Tracing Using Environmental Variables  . . . . . . . . . . . . . . . .68
Tracing Using Global Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Selecting Types of Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Enable A/P API Tracing Using Global Variables . . . . . . . . . . . . . . . . .71
Trace Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Tracing in Multi-threaded Applications . . . . . . . . . . . . . . . . . . . . . . . .73

Using ROSE API Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Environment Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Tracing Using Global Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Selecting Types of Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Enable ROSE API Tracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Trace Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Tracing in Multi-threaded Applications . . . . . . . . . . . . . . . . . . . . . . . .79



8

Contents

A. ACSE/Presentation Reference Pages

ACSE/Presentation Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Glossary



9

Printing History
The manual printing date and part number indicate its current edition.
The printing date will change when a new edition is printed. Minor
changes may be made at reprint without changing the printing date. The
manual part number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive the updated or
new editions, you should subscribe to the appropriate product support
service. See your HP sales representative for details.

Edition 1 March 1992

Edition 2 January 1995

Edition 3 July 1996

Edition 4 May 1997



10



11

In This Book
This manual describes tools and procedures for using the
ACSE/Presentation and ROSE application programmatic interface for
OSI products. It is divided into three chapters, which provide the
following information:

Chapter 1 “APRI Overview” introduces the ACSE/Presentation
and ROSE Interface and the supported standards.

Chapter 2 “Supported ACSE/Presentation and ROSE Calls”
contains descriptions of the programmatic calls
supported by ACSE/Presentation and ROSE.

Chapter 3 “Using ACSE/Presentation” provides a sample session
using ACSE/Presentation between two processes in
synchronous mode.

Chapter 4 “Programming Guide” provides information to assist
you in writing and executing applications using the
ACSE/ Presentation (A/P) interface.

Chapter 5 “Troubleshooting Your Application” describes API
tracing for ACSE/Presentation followed by API tracing
for ROSE.

Appendix A “ACSE/Presentation Reference Pages” includes a list of
the supported ACSE/Presentation attributes and a
glossary of terms.



12



13

1 APRI Overview

This chapter provides an overview of what the HP ACSE/Presentation
and ROSE interface provides.



14 Chapter 1

APRI Overview
Systems Supported

Systems Supported
Access to the ACSE/Presentation and ROSE programmatic interface is
provided with the HP OTS/9000 product on HP 9000 systems.

ASN.1 Support
If your application requires encoding/decoding abstract syntax notation
one (ASN.1) data structures, you may need to use an ASN.1 compiler.
Refer to your compiler's documentation for information about using
ASN.1 in your application programs.

File Naming
To use the MAN feature on systems that support a maximum file length
of 14 characters, the ACSE/Presentation and ROSE calls with longer
names have short alias names you can use. The short names are listed in
the tables in chapter 2.



Chapter 1 15

APRI Overview
What is the HP ACSE/Presentation and ROSE Interface

What is the HP ACSE/Presentation and
ROSE Interface
The ACSE/Presentation and ROSE interface (APRI) provides a
programmatic interface to the Association Control Service Element
(ACSE), Remote Operation Service Element (ROSE) and Presentation
layer protocols over an OSI network. See Figure 1-1.

ACSE/Presentation
Using the ACSE/Presentation (A/P) interface enables two or more
application processes on the same or different computers to:

• Establish an association (connection) with another application
process

• Exchange (send and receive) information and

• Shutdown the association (connection)

ROSE
Using ROSE with ACSE/Presentation provides the request/reply service
which is useful in building distributed applications. Note that ROSE
cannot be used independently of the ACSE/Presentation interface.

Support for Multi-Threaded Applications
This version of HP OTS/9000 supports multi-threaded applications to be
written using the same programmatic interface as before for APLI and
ROSE.  Applications can use either DCE User Threads or Kernel threads
interfaces. The following programming guidelines need to be followed to
be able to write multi-threaded applications:

• The application should be compiled with the -D_REENTRANT compiler
flag.  Also, it may use compiler flag -D_PTHREADS_DRAFT4 for linking
with DCE User Threads library or -D_KERNEL_THREADS for Kernel
threads library.

• Multi-threaded applications must define ap_errno as:

extern unsigned long _ap_errno();



16 Chapter 1

APRI Overview
What is the HP ACSE/Presentation and ROSE Interface

#define ap_errno _ap_errno()

• Any multi-threaded application program, which also includes
osi_lib.h, should include it after the threads-specific include files.

• See the appropriate man page regarding thread-safe information
about the various api’s.



Chapter 1 17

APRI Overview
Standards Supported

Standards Supported
The interface provided is based on the services defined in the ISO ACSE
and Presentation Service Definitions (ISO 8649 and ISO 8822) and
ROSE (ISO 9072).

The HP OTS/9000 subset implementation of the ACSE/Presentation
library interface is based on the UNIX International OSI
ACSE/Presentation Library Interface specification draft dated October
25, 1990.

HP OTS/9000 also supports a restricted mode of operation which allows
internetworking with a system that conforms to the ITU-T
Recommendation X.410 (1984).



18 Chapter 1

APRI Overview
Standards Supported

Figure 1-1 OSI MODEL - ACSE Presentation and ROSE

Limitations
A subset of the standard has been implemented with the following
limitations.

For limitations on particular parameters, please refer to the manpages
for the A/P and ROSE calls.

APPLICATION PROCESS

ACSE/Presentation
& ROSE Interface

ACSE ROSE

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

PHYSICAL COMMUNICATION MEDIUM

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1



Chapter 1 19

APRI Overview
Standards Supported

ACSE/Presentation:

• The ap_restore(), ap_save() and ap_osic() calls are not supported.

• The environment file (env_file) is not supported. The user's
application environment is initialized using ap_init_env(), after
which individual attributes can be set or changed using ap_set_env().

• Setting multiple environment variables with one call to ap_set_env()
is not supported.

• Retrieving (getting) multiple environment variables with one call to
ap_get_env() is not supported.

• The ap_env() attributes AP_DPCN, AP_DPCR, AP_QLEN and
AP_QOS are not supported. The AP_STREAMS_FLAGS options
AP_HUP_ONABORT and AP_PEEK are not supported.

• For ap_rcv(): The AP_ALLOC option is not supported. The buffer
pointed to by the ubuf argument must be allocated by the user. The
AP_VECT option is not supported. In struct osi_buf, the next field is
ignored. The ubuf argument points to a single buffer.

• For ap_snd(): The AP_VECT option is not supported. In struct
osi_buf, the next field is ignored. The ubuf argument points to a single
buffer. The AP_DELAY option is not supported. Extended
concatenation is not supported.

The A_ASSOC_REQ can fail with AP_AGAIN. A_ASSOC_REQ is not
subject to flow control.

• ACSE/presentation primitives used in ACSE/Presentation calls: A
subset of the defined primitives are supported. Chapter 2 provides a
list of the supported primitives.

ROSE:

• Reliable Transfer Service (RTS) including operation class is not
supported.

• Priority is not implemented for this release.



20 Chapter 1

APRI Overview
Who Should Use This Manual

Who Should Use This Manual
This manual is provided for application programmers who need to use
ACSE/Presentation and ROSE services.

It is expected that the user of this manual is an experienced applications
programmer with knowledge of the HP-UX operating system and
programming environment, the X.25 protocol, OSI transport, session,
and presentation layer functions, networking concepts and the following
list of documents:

• ISO 7498 - Information Processing Systems - Open Systems
Interconnection - Reference Model of Open System Interconnection

• ISO 8649 - Information Processing Systems - Open Systems
Interconnection - Service Definition for the Association Control
Service Element

• ISO 8650 - Information Processing Systems - Open Systems
Interconnection - Protocol Specification for the Association Control
Service Element

• ISO 8822 - Information Processing Systems - Open Systems
Interconnection - Connection Oriented Presentation Service
Definition

• ISO 8823 - Information Processing Systems - Open Systems
Interconnection - Connection Oriented Presentation Protocol
Specification

• ISO 8824 - Information Processing Systems - Open Systems
Interconnection - Specification of Abstract Syntax One (ASN.1)

• ISO 8825 - Information Processing Systems - Open Systems
Interconnection - Specification of Basic Encoding Rules for Abstract
Syntax One (ASN.1)

• NIST - Stable Implementation Agreements for Open Systems
Interconnection Protocols

• Overview of the Application Service Library Model

• ISO 9072/1 Remote Operations Service Definition

• ISO 9072/2 Remote Operations Protocol Specification



21

2 Supported ACSE/Presentation
and ROSE Calls

This chapter provides lists and brief descriptions of the supported ACSE/
Presentation and ROSE calls and primitives.



22 Chapter 2

Supported ACSE/Presentation and ROSE Calls
ACSE/Presentation Calls and Primitives

ACSE/Presentation Calls and Primitives
The primitives are grouped in the sequence used in an application. For
example, the A_ASSOC_xxx  primitives are listed in the order:

A_ASSOC_REQ (request)

A_ASSOC_IND (indication)

A_ASSOC_RSP (response)

A_ASSOC_CNF (confirmation)

In the manpages entitled ap_intro and ap_env, you’ll find introductions
to the A/P environment and the A/P library environment attributes.
They also supply detailed descriptions or references made in this
manual. The manpages are accessible online with the manpage function
of HP-UX.

Included here are tables of attributes that provide:

• Name and purpose of each attribute

• Data types legal for the attribute

• Default values supplied with attribute (if any)

• Values legal for the attribute (if applicable)

• Readable states for the attribute (as values of the AP_STATE
attribute)

• Writable states for the attribute (as values of the AP_STATE
attribute)

The following lists A/P functions first by task, then by call in alphabetic
order in Table 2-1. The supported primitives are described in Table 2-2.

A/P Functions
The A/P calls can be separated into functions that perform the following
tasks:

• Establish/release the communication endpoint:

ap_open()
ap_close()

• Manage the ACSE/Presentation environment:



Chapter 2 23

Supported ACSE/Presentation and ROSE Calls
ACSE/Presentation Calls and Primitives

ap_init_env()
ap_set_env()
ap_get_env()

• Send and receive service primitives which includes sending/receiving
service requests and sending/receiving user data:

ap_snd()
ap_rcv()

• Manage your applications:

ap_error()
ap_free()
ap_poll()

ACSE/Presentation Calls
The following table lists the supported ACSE/Presentation function calls.

Table 2-1 ACSE/Presentation Calls

A/P Call Description

ap_close() Release a communication endpoint.

ap_error() Returns an error message.

ap_free() Free memory for the A/P data
structures.

ap_get_env() Retrieve the value of an A/P
environment attribute.

ap_init_env() Initialize the A/P environment.

ap_open() Establish a communication endpoint to
support an instance of the A/P
environment.

ap_poll() Provides an interface for detecting
events on communication endpoints.



24 Chapter 2

Supported ACSE/Presentation and ROSE Calls
ACSE/Presentation Calls and Primitives

ACSE/Presentation Primitives
The following table lists the supported ACSE/Presentation layer service
primitives. These primitives are used with the ap_rcv() and ap_snd()
calls as described below.

Some of the primitives contain a shorter name in BOLD under the
primitive's name. On systems that support a maximum length of 14
characters for file names, use the name listed in bold with the MAN
feature. Primitives with no short name can be used on all systems.

The primitives are grouped in the sequence used in an application. For
example, the A_ASSOC_xxx primitives are listed in the order:

A_ASSOC_REQ (request)

A_ASSOC_IND (indication)

A_ASSOC_RSP (response)

A_ASSOC_CNF (confirmation)

Table 2-2 ASCE/Presentation Primitives

ap_rcv() Receive an A/P primitive over an
association. User data may be
associated with the primitive.

ap_set_env() Set an attribute in the A/P
environment.

ap_snd() Send an A/P primitive over an
association. User data may be
associated with the primitive.

A/P Call Description

Primitives Description

A_ABORT_REQ Used with ap_snd() to request the abnormal release
of an association.

A_ABORT_IND Used with ap_rcv() to indicate the abnormal release
of an association.

A_ASSOC_REQ Used with ap_snd() to initiate establishing an
association.



Chapter 2 25

Supported ACSE/Presentation and ROSE Calls
ACSE/Presentation Calls and Primitives

A_ASSOC_IND Used with ap_rcv() to indicate a request for
association establishment.

A_ASSOC_RSP Used with ap_snd() to respond to an association
establishment request.

A_ASSOC_CNF Used with ap_rcv() to confirm the establishment of
an association.

A_PABORT_REQ Used with ap_snd() to initiate a presentation layer
provider abort. Provides the option of aborting when
an invalid PDU is received.

A_PABORT_IND Used with ap_rcv() to indicate an association has
been abnormally released because of problems below
the application layer.

A_RELEASE_REQ

A_RELEASEREQ

Used with ap_snd() to request the normal release of
an association.

A_RELEASE_IND

A_RELEASEIND

Used with ap_rcv() to indicate that the remote
service user wants to release the association.

A_RELEASE_RSP

A_RELEASERSP

Used with ap_snd() to respond to an association
release request.

A_RELEASE_CNF

A_RELEASECNF

Used with ap_rcv() to confirm the acceptance or
rejection of a previously sent release request.

P_DATA_REQ Used with ap_snd() to send normal user data.

P_DATA_IND Used with ap_rcv() to indicate the receipt of user
data.

P_RESYNC_REQ Used with ap_snd() to issue a resynchronized
request.

P_RESYNC_IND Used with ap_rcv() to indicate a resynchronized
request.

P_RESYNC_RSP Used with ap_snd() to respond to a resynchronized
request.

Primitives Description



26 Chapter 2

Supported ACSE/Presentation and ROSE Calls
ACSE/Presentation Calls and Primitives

P_RESYNC_CNF Used with ap_rcv() to confirm a resynchronized
request.

P_SYNCMINOR_REQ

P_SMINOR_REQ

Used with ap_snd to request the setting of a minor
sync point.

P_SYNCMINOR_IND

P_SMINOR_IND

Used with ap_rcv to indicate a request the to set a
minor sync point.

P_SYNCMINOR_RSP

P_SMINOR_RSP

Used with ap_snd to respond to a minor sync point

P_SYNCMINOR_CNF

P_SMINOR_CNF

Used with ap_rcv to confirm a sync minor request.

P_TOKENGIVE_REQ

P_TOKENGIREQ

Used with ap_snd() to give tokens to another session
user.

P_TOKENGIVE_IND

P_TOKENGIIND

Used with ap_rcv() to indicate the receipt of newly
acquired session tokens.

P_TOKENPLEASE_REQ

P_TOKENPLREQ

Used with ap_snd() to request session tokens.

P_TOKENPLEASE_IND

P_TOKENPLIND

Used with ap_rcv() to indicate a request for tokens.

Primitives Description



Chapter 2 27

Supported ACSE/Presentation and ROSE Calls
ROSE Calls and Primitives

ROSE Calls and Primitives
The supported ROSE function calls and primitives are listed in Table 2-3
and in Table 2-4. Also refer to the man page RO_INTRO(5) for general
information about ROSE.

ROSE Calls
ROSE only supports two calls as listed below. ROSE is used to provide
ROSE provider services to an application using the ACSE/Presentation
interface.

Table 2-3 Rose Calls

ROSE Primitives
ROSE primitives are listed in the following table. Note that the
primitives are grouped in the sequence used in an application. For
example, the RO_RESULT_xxx primitives are listed RO_RESULT_REQ
(request) followed by RO_RESULT_IND (indication).

Table 2-4 ROSE Primitives

ROSE Calls Description

ro_bind() Enable ROSE provider.

ro_unbind() Disable ROSE provider.

Primitives Description

RO_ERROR_REQ Negative remote operation results
request.

RO_ERROR_IND Negative remote operation result
indication.

RO_INVOKE_REQ

RO_INVOKEREQ

Remote operation request.

RO_INVOKE_IND

RO_INVOKEIND

Remote operation indication.



28 Chapter 2

Supported ACSE/Presentation and ROSE Calls
ROSE Calls and Primitives

RO_REJECTP_IND

RO_REJ_P_IND

ROSE provider rejection indication.

RO_REJECTU_REQ

RO_REJ_U_REQ

ROSE user invocation rejection request.

RO_REJECTU_IND

RO_REJ_U_IND

ROSE user invocation rejection
indication.

RO_RESULT_REQ

RO_RESULTREQ

Positive remote operation results
request.

RO_RESULT_IND

RO_RESULTIND

Positive remote operation results
indication.

Primitives Description



29

3 Using ACSE/Presentation

This chapter provides a sample session using ACSE/Presentation
between two processes in synchronous mode.



30 Chapter 3

Using ACSE/Presentation
Synchronous ACSE/Presentation

Synchronous ACSE/Presentation
ACSE/Presentation calls block until the call is complete in synchronous
mode. See the section, “Using Synchronous vs. Asynchronous Mode” in
chapter 4 for more information. In order to use the ACSE/Presentation
service, the processes do the following:

1. Create a communication endpoint.

2. Establish an association that requires:

a. Initializing the ACSE/Presentation environment.

b. Establishing the roles of each process for the connection, one as
initiator, the other as responder.

c. Binding the communication endpoint to a presentation address
(p-selector, s- selector, t-selector, and NSAP).

d. Setting up the data transfer environment.

e. Requesting an association

f. Confirming the association.

3. Exchange data in the agreed upon context and transfer syntax

4. Release the association:

a. Request an association release.

b. Confirm a release request.

5. Close down the communication endpoint.

The following pages describe these steps in more detail.



Chapter 3 31

Using ACSE/Presentation
Summary of Calls

Summary of Calls
A summary of the ACSE/Presentation calls are described in the following
sections.

Table 3-1 ACSE/Presentation Call Summary

Process A Process B

ap_open() ap_open()

ap_init_env() ap_init_env()

ap_set_env() (* initiator *) ap_set_env() (* responder *)

ap_set_env() (* p-address *) ap_set_env() (* p-address *)

ap_set_env() (* B's p-address *)

ap_set_env() (* appl. context *)

ap_set_env() (* PCDL*)

ap_snd() (* assoc. req .*) =====> ap_poll()

ap_rcv() (* assoc. ind .*)

ap_get_env() (* appl. cnxt .*)

ap_set_env() (* PCDRL*)

ap_poll() <====== ap_snd() (* assoc. rsp .*)

ap_rcv() (* assoc. cnf .*)

ap_snd() (* data *) ======> ap_poll()

ap_rcv() (* data  *)

ap_snd() (* rel. req .*) ======> a p _poll()



32 Chapter 3

Using ACSE/Presentation
Summary of Calls

ap_rcv() (* rel. ind .*)

ap_poll() <====== ap_snd() (* rel. rsp *)

ap_rcv() (* rel. cnf .*)

ap_close() ap_close()

Process A Process B



Chapter 3 33

Using ACSE/Presentation
Step 1: Create a Communication Endpoint

Step 1: Create a Communication
Endpoint
Process A and Process B must both create communication endpoints as
shown in Figure 3-1, using the call ap_open(). A communication endpoint
is a file descriptor (fd) which is returned on successful completion of the
ap_open() call. The process uses the file descriptor in all subsequent A/P
calls.

Each process must create a communication endpoint, and only one
association can be associated with each endpoint. To create multiple
associations, you must create additional communication endpoints for
each one.

Figure 3-1 Create a Communication Endpoint

Communication Communication

Endpoint A Endpoint B

ap_open() ap_open()

Process A Process B



34 Chapter 3

Using ACSE/Presentation
Step 2: Establish an Association

Step 2: Establish an Association
The steps to establish an association are described below.

Initialize the A/P Environment
To use the A/P services, each process must initialize the
ACSE/Presentation environment by calling ap_init_env(). (See Figure
3-2.)

The ap_init_env() call allocates memory for the environment attributes,
and sets the attributes to default values. (See the AP_ENV Table of
Attributes in Appendix A for more information.)

Since this implementation does not support the environment file, the
env_file parameter is ignored.

To modify defaulted attribute values, the ap_set_env() call is used as
shown in the following steps.

Figure 3-2 Initialize Environment

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

ap_init_env() ap_init_env()



Chapter 3 35

Using ACSE/Presentation
Step 2: Establish an Association

Establish Initiator and Responder Roles
Process A and Process B establish initiator and responder roles using the
attribute, AP_ROLE_ALLOWED in a call to ap_set_env(). In this
example, Process A is the initiator, and Process B is the responder. (See
Figure 3-3.)

Figure 3-3 Establish Roles

NOTE The initiator and responder roles must be established before binding the
communication endpoint to the local presentation address while in the
AP_UNBOUND state. Any change in AP_ROLE_ALLOWED after
binding is ignored.

Binding the Endpoints
Process A and Process B must each bind a valid presentation address (p-
selector, s-selector, t-selector, and NSAP) to its endpoint by using the
attribute AP_BIND_PADDR in the ap_set_env() call. (See Figure 3-4.)
For more information on presentation addresses, refer to Chapter 4.

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

ap_set_env() ap_set_env()

ResponderInitiator

AP_ROLE_ALLOWED,initiator AP_ROLE_ALLOWED,responder



36 Chapter 3

Using ACSE/Presentation
Step 2: Establish an Association

APRI also supports the binding of the local presentation address without
specifying a network address. This allows a single responder to receive
association indications for any of the subnetworks configured on an OTS/
9000 system. To use this feature, when setting the local address through
the AP_BIND_PADDR environment attribute, set the n_nsaps field of
the ap_paddr_t structure to zero. When this feature is used, no local
NSAP information need be provided in the ap_paddr_t structure.

NOTE Rebinding the presentation address to a communication endpoint is not
supported in this release. Binding to the presentation address can only
be done in the AP_UNBOUND state.

Figure 3-4 Bind Endpoint to Presentation Address

Set up the Data Transfer Environment
In order for Process A to communicate with Process B, Process A calls
ap_set_env() using the AP_REM_PADDR attribute which contains the
presentation address of Process B. (See Figure 3-5.)

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

ap_set_env() ap_set_env()

AP_BIND_PADDR, AP_BIND_PADDR,

a_p_set,

a_s_set,
a_t_set,

a_nsap

b_p_set,
b_s_set,

b_t_set,
b_nsap



Chapter 3 37

Using ACSE/Presentation
Step 2: Establish an Association

Process A calls ap_set_env() using the AP_CNTX_NAME attribute to
identify the application context name. Process A then calls ap_set_env()
using the AP_PCDL attribute to propose transfer syntaxes for each
proposed abstract syntax that will be used for data transfer between
Process A and B.

Figure 3-5 Establish Data Transfer Environment

Request the Association
Process ap_snd() uses the A_ASSOC_REQ primitive and includes the
application context name, presentation context definition list (PCDL),
and Process B's presentation address. Process B uses ap_poll() to listen
for the association request. (See Figure 3-6.)

This can be used to limit the time Process B can wait for an association
request.

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A
AP Environment B

ap_set_env()

ap_set_env()

ap_set_env()

AP_REM_PADDR,

b_p_sel,
b_s_sel,
b_t_sel,
b_nsap

AP_CNTX_NAME,a_cntx

AP_PCDL,a_pcdl

Initiator Responder



38 Chapter 3

Using ACSE/Presentation
Step 2: Establish an Association

Figure 3-6 Request Association

Confirm the Association
When a request has been received by checking the ap_poll() events
parameter, Process B calls ap_rcv() and receives A_ASSOC_IND. Process
B must find out what the proposed transfer syntaxes are by calling
ap_get_env() using the AP_PCDL attribute.

It checks the transfer syntax to Process A's proposed syntax. If Process B
determines that the syntax is valid, Process B calls ap_set_env() using
the AP_PCDRL attribute to set its transfer syntax. Process B sets the res
field in the structure ap_cdrl_t to ACCPT and the transfer syntax pointer
to the supported transfer syntax object id. Process B then calls ap_snd()
using the A_ASSOC_RSP primitive to accept the association request.
(See Figure 3-7.)

Process A must wait for Process B to respond with the connection
response by using ap_poll() or by making a synchronous ap_rcv() call.

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A
AP Environment B

Initiator Responder

remote p-address,

appl. context name
pres. context def. list

ap_snd()

request assoc.

ap_poll()

(listening)



Chapter 3 39

Using ACSE/Presentation
Step 2: Establish an Association

Process B can reject the connection if the proposed transfer syntax is not
supported by setting the res field in structure ap_cdrl_t to USER_REJ or
PROV_REJ and prov_rsn is the reason for the reject. If the process
cannot accept the association request for other reasons, the process sets
the reason using the A_ASSOC_RSP primitive.

Figure 3-7 Confirm Association

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

Initiator Responder
ap_snd()

request assoc.

ap_poll()

(listening)

ap_rcv()

ap_get_env()

ap_set_env()

AP_PCDL,pcdl

AP_PCDRL.pcdrl



40 Chapter 3

Using ACSE/Presentation
Step 3. Exchanging Data

Step 3. Exchanging Data
Once an association is established, processes can send and receive
control data (primitives) and user data.

It is the responsibility of the process to encode and decode data with the
selected transfer syntax. For complex data types, you can choose to use
an ASN.1 compiler to assist in the creation of these routines.

Process A retrieves its supported and negotiated transfer syntaxes by
calling ap_get_env() using the AP_DCS attribute, and to find out the
result of each proposed presentation context by calling ap_get_env()
using AP_PCDRL to look at the res and prov_rsn fields. (See Figure 3-8.)

Process A is now ready to send data using the P_DATA_REQ primitive in
the ap_snd() call in the agreed upon presentation context.

Process B uses ap_poll() to monitor events. The data received by ap_rcv()
is indicated by the P_DATA_IND primitive.

Note that the AP_ALLOC option is not supported. The buffer pointed to
by ubuf must be allocated by the user.

If the data received is more than the allocated buffer, the flags parameter
AP_MORE bit is set. If set, continue to invoke ap_rcv() until the
AP_MORE bit is off.

Check the sptype parameter each time ap_rcv() is called. Some
primitives such as A_ABORT_IND are not flow-controlled and may
interrupt the receipt of a partially received primitive (for example,
AP_MORE bit is set). If this occurs, any remaining data from the
previous primitive is lost.

NOTE Note that handling expedited data is not supported in this release.



Chapter 3 41

Using ACSE/Presentation
Step 3. Exchanging Data

Figure 3-8 Send Data

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

Initiator Responder
ap_snd()

ap_poll()

ap_get_env()

ap_set_env()

data ap_rcv()

AP_DCS,dcs

AP_PCDRL,pcdrl



42 Chapter 3

Using ACSE/Presentation
Step 4: Release the Association

Step 4: Release the Association
Processes must cooperate to ensure that no data is lost when the
association is released. This can be accomplished by requesting a release,
accepting the release, then terminating the association.

Requesting the Release
After Process A has completed sending user data, it sends a release
request to Process B using ap_snd() with the A_RELEASE_REQ
primitive (Figure 9).

Process B uses ap_poll() to monitor events, and calls ap_rcv() to receive
the release request.

Figure 3-9 Release Request

Confirm the Release Request
Process B accepts the request and sends a positive response using the
ap_snd() call with the A_RELEASE_RSP primitive (Figure 3-10).

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

Initiator Responder
ap_snd()

ap_poll()

ap_rcv()
release request



Chapter 3 43

Using ACSE/Presentation
Step 4: Release the Association

The process closes the association until it receives the positive release
response from Process B.

Process A monitors events with ap_poll() and receives the response by
calling ap_rcv().

If an association is released abnormally, for example, if a lower layer
problem occurs, a provider abort (A_PABORT_IND primitive) may be
received.

Figure 3-10 Response to Release

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

Initiator Responder
ap_snd()

ap_poll()

ap_rcv()

release response



44 Chapter 3

Using ACSE/Presentation
Step 5: Closing the Communication Endpoint

Step 5: Closing the Communication
Endpoint
Finally, both processes use ap_close() to close down the communication
endpoint (file descriptor) and A/P environment resources (see Figure
3-11). If the association is still alive when ap_close() is invoked, the
association will be aborted by the provider before the communication
endpoint is released.

When an association is terminated, you can re-use the communication
endpoint for a new association. ap_close() is used when there is no
further use for the communication endpoint.

CAUTION Resources allocated upon the initial ap_open() will not be released unless
an explicit ap_close() call is made for each endpoint or the process is
terminated.

Figure 3-11 Close the Association

Communication Communication

Endpoint A Endpoint B

Process A Process B

AP Environment A AP Environment B

Initiator Responder

ap_close() ap_close()



45

4 Programming Guide

This chapter provides information to assist you in writing and executing
applications using the ACSE/Presentation (A/P) interface.



46 Chapter 4

Programming Guide
Summary of Programming Tasks

Summary of Programming Tasks
The following list summarizes the tasks you need to perform in order to
successfully create and execute your programs. These tasks are
discussed in more detail in the following sections.

1. Prepare system. Make sure HP OTS/9000 h as been installed,
configured, and started successfully. (See the Installing and
Administering OSI Transport Services manual for information.)

2. Manage the A/P environment. To establish and maintain connections,
attributes must be set correctly:

a. Determine which process will be the initiator and which will be
the responder. For example, one process will initiate the
association, the other will accept the association. By default,
either process can be initiator or responder.

b. Determine how addressing will be handled. Valid presentation
addresses must be configured for ACSE/Presentation applications.

c. Determine the presentation context and application context that
will be used. Processes must agree on both the context and
transfer syntax they will use.

d. Determine portability and future expansion requirements. Review
considerations that will assist in migrating as the standards for
ACSE/ Presentation evolve and are accepted.

3. Manage data. Understand how data handling is done by the A/P
interface.

• How control data is used for conveying additional information to
the receiving process as part of the A/P primitive.

• Handle data in multiple sends and receives.

• Determine user data encryption requirements for the application.
Must be handled by the application. You may need to use an
ASN.1 compiler to assist you.

4. Decide if you will use synchronous and/or asynchronous mode
processing.



Chapter 4 47

Programming Guide
Summary of Programming Tasks

5. Decide if multiple associations need to be supported. The process
accepting multiple connections needs to create additional
communication endpoints and instances of the A/P environment.
Review the paragraphs describing: execution mode, connection retry,
and maximum number of connections supported (system, processes,
and other applications).

6. Other tasks:

• Understand how file descriptors, common parameters, data, and
structures are used in ACSE/Presentation applications.

• Handle signals. You need to create signal handler routines to
capture unexpected program interrupts.

• Handle errors. ACSE/Presentation calls return values indicating
success or failure, and also return specific error conditions that the
processes must handle.

7. Prepare to start your applications. Before running:

• Determine how the remote processes will be started.

• Check the system before executing applications.

• Start OTS before executing ACSE/Presentation applications.

• If you install a new version of HP OTS/9000, you must re-link your
programs with the new library.

8. Troubleshoot your application. If you have problems, you can use API
tracing described in chapter 5, “Troubleshooting your Application.”



48 Chapter 4

Programming Guide
1. Prepare the System

1. Prepare the System
Before you use the ACSE/Presentation interfaces, make sure that the
following has been done:

• Verify HP OTS/9000 h as been installed correctly.

• Check that the presentation addresses, in particular, the local
NSAP(s) used by the ACSE/Presentation applications that have been
configured in the OTS configuration file.

• Verify that HP OTS/9000 h as been started either manually using
osiadmin or at start-up time.



Chapter 4 49

Programming Guide
2. Manage the A/P Environment

2. Manage the A/P Environment
The ACSE/Presentation environment contains the necessary information
to establish and maintain an association. The primitives used to identify
this information are called attributes. See Appendix A, “AP_ENV Table
of Attributes” which describes the states and whether or not particular
attributes can be written to or read from.

Three A/P calls are used to manage information in the A/P environment:

• ap_init_env() establishes the environment and sets up default values
for many of the attributes. Note that the env_file variable in
ap_init_env() is ignored. Refer to the manpage for ap_env() for the
attribute default values.

• ap_set_env() is used to change a value of the specified attribute. To
change a list of attributes, you must use multiple ap_set_env() calls
(one for each attribute changed)

• ap_get_env() is used to read a value of a specified attribute.

When you use ap_get_env() for attributes which are stored as data
structures, memory is allocated for you. When you have finished using
the information from the data structure, must use ap_free() to free the
memory.

For memory allocated by your application, do not use ap_free().
Implement your own routines to free application-created memory
allocations.

A partial list of A/P attributes used that require allocating and
deallocating memory are: AP_PCDL, AP_PCDRL, and AP_LCL_PADDR.

Determine Initiator and Responder Roles
When you create your programs, decide which process will be initiating
and which one will be accepting associations.

By default, both processes may initiate and respond to a request. The
roles are set using the AP_ROLE_ALLOWED environment attribute.

However, when one process issues a connection request, it is established
as the initiator and may no longer receive connection indications. The
AP_ROLE_CURRENT is set to AP_INITIATOR.



50 Chapter 4

Programming Guide
2. Manage the A/P Environment

On the other hand, when the connection indication is received by the
other process, it is established as the responder, and can no longer issue
a connection request. The AP_ROLE_CURRENT is automatically set to
AP_RESPONDER.

If you decide to have a process act as a responder or initiator, you can set
the AP_ROLE_ALLOWED attribute using the A/P environment call:

ap_set_env(fd,AP_ROLE_ALLOWED,val)

Programs can be managed by designating the paired programs as
Initiator and Responder. See manpages for example programs.

Setting AP_ROLE_ALLOWED only affects the ability to send and
receive a connection request. Other primitives, such as P_DATA_IND,
are not controlled by the AP_ROLE_ALLOWED attribute.

CAUTION The initiator and responder roles must be established before binding the
communication endpoint to the local presentation address (in the
AP_UNBOUND state). Any change in AP_ROLE_ALLOWED after
binding is ignored.

Determine Address Handling
Before a communication endpoint can be used in an ACSE/Presentation
application, a unique presentation address must be assigned (or bound)
to it.

The presentation address consists of a presentation selector, session
selector, transport selector, and a n optional network service access point
(NSAP).

APRI also supports the binding of the local presentation address without
specifying a network address. This allows a single responder to receive
association indications for any of the subnetworks configured on an HP
OTS/9000 system. To use this feature, when setting the local address
through the AP_BIND_PADDR environment attribute, set the n_nsaps
field of the ap_paddr_t structure to zero. When this feature is used, no
local NSAP information need be provided in the ap_paddr_t structure.

Once a communication endpoint has been created by calling ap_open(),
and the initiator and responder roles have been established or explicitly
assigned using ap_set_env() with the AP_ROLE_ALLOWED primitive,
the endpoint is bound to the presentation address using the A/P
environment call



Chapter 4 51

Programming Guide
2. Manage the A/P Environment

ap_set_env(fd,AP_BIND_PADDR,paddress)

Note that rebinding the presentation address is not supported in this
release. Binding can only be done in the AP_UNBOUND state.

A/P supports extended addressing which provides for the maximum
address lengths for each selector in the presentation address as shown in
the following table:

Table 4-1 Selector Maximum Lengths

NOTE Other OSI services implementations (non-HP) may not support the same
maximum length for the presentation selector. If your system needs to
communicate with other OSI services, make sure to check the maximum
size supported for the presentation selector.

The NSAP cannot be NULL. NSAPs used for ACSE/Presentation
applications must be configured by the network administrator. T he
NSAP must be unique for the system. The presentation address used by
your ACSE/Presentation application must be different than any other
presentation addresses used by other application services on your system
if you plan to operate these applications at the same time.

For example, if the HP 9000 FTAM service is being used, the address you
create for A/P applications must be different than the FTAM addresses.
See the Installing, and Administering the OSI Transport Services/9000
manual for more information o n presentation addresses.

Negotiating Application and Presentation
Contexts
Both application contexts (specified using the AP_CNTX_NAME
attribute) and presentation contexts (AP_PCDL attribute) must be
negotiated by A/P associations.

Selector Bytes

Presentation 16

Session 16

Transport 32

NSAP 20



52 Chapter 4

Programming Guide
2. Manage the A/P Environment

Application Contexts (AP_CNTX_NAME)
Associations must negotiate the application contexts used. The initiator
proposes a service or services to run, and the responder must reply to
accept or reject the context. This is a mandatory parameter in the OSI
ACSE layer. For more information, refer to the OSI ACSE standard (ISO
8649, 8650).

Presentation Contexts (AP_PCDL)
The presentation context definition list (PCDL) is a list of presentation
contexts. Each presentation context consists of a unique presentation
context id, an abstract syntax and one or more transfer syntaxes.

Processes must negotiate the PCDLs used. The initiator proposes
contexts using the AP_PCDL attribute. The responder returns the result
for each proposed item with the status of ACCPT, USER_REJ or
PROV_REJ in the AP_PCDRL attribute before sending the
A_ASSOC_RSP primitive. An application can use ap_get_env() on
AP_PCDRL to find out the status and reason for each proposed item.

After a connection has been established, AP_DCS contains all acceptable
presentation contexts by both the initiator and responder sides.

Portability, Migration Considerations
To ease the migration of your applications as the standards evolve, the
following items should be considered:

• Set the AP_LIB_SEL attribute before any other attributes. This
attribute indicates which version of the A/P library will be used for
the process. This implementation currently only supports one.
However, as the A/P specification evolves, others may be supported.

• In future releases, the A/P interface will be modified to reflect the
X/OPEN ACSE/Presentation API Interface (XAP) once the standard
is approved and finalized. If you expect to migrate to XAP, the
following coding guidelines can help you:

• Always include the A/P library: ap_lib.h in your code that uses
ap_xxx() calls and A/P data structures.

• Isolate and minimize the code using ap_xxx() calls and A/P data
structures.



Chapter 4 53

Programming Guide
2. Manage the A/P Environment

• Isolate the allocations and freeing of memory passed to the A/P
library to a single function. For example:

void *ubuf_ptr;
user_get_osi_buf (&ubuf_ptr, len,”data to put in ubuf”);
ap_snd (.., ubuf_ptr);

• Do not statically initialize a cdata structure. For example, do not
use the statement:

a_assoc_req_env_t peer_application = {...};

• Do not use the udata_length part of the cdata parameter for
inbound indications. Instead, calculate the length from the osi_buf
that is returned. Isolate this calculation to one routine.



54 Chapter 4

Programming Guide
3. Managing Data

3. Managing Data
ACSE/Presentation (A/P) defines two types of data: control data and user
data. Control data (cdata) is associated with the primitives and its
content is specific to each primitive. User data (ubuf) is managed by the
application and is defined by the context and transfer syntax selected.

Control Data
Control data is associated with the supported ACSE/Presentation
primitives and is managed by the A/P library. Control data is stored in
the cdata structure and consists of additional protocol information that
must be conveyed to the receiving process using the ap_snd() and
ap_rcv() calls. An example of a primitive that contains the cdata
structure is A_ASSOC_REQ which passes the proposed initial token
assignment to the responder.

For each A/P primitive, the specific information required for the
primitive is saved in its own cdata structure.

User Data
User data is managed by the application. User data must be encoded and
decoded by the application. The two applications or processes in an
association must agree to the presentation context used as previously
discussed. Refer to the ACSE/Presentation interface manpages for
information on encoding each primitive.

Multiple Sends and Receives of Data
If you decide to send a single primitive using multiple ap_snd() calls, or
the user data is too large to send in one buffer, you can set the AP_MORE
bit in the flags parameter to help assure complete receipt of the data by
the other process. Each additional ap_snd() call must use the same
sptype. The last ap_snd() call must reset the AP_MORE bit to indicate
the end of the data. For example:



Chapter 4 55

Programming Guide
3. Managing Data

When receiving data, the AP_MORE bit is set by the A/P library if the
receiving ubuf is not large enough, or if a partial primitive was received.
In either case, the application must continue to invoke ap_rcv() to receive
the remainder of the data.

It is recommended that after each ap_rcv() call, the sptype is checked.
Some primitives such as A_ABORT_IND are not flow-controlled and may
interrupt the receipt of a partially received primitive. In this case, the
remaining data from the previous primitive is lost.

User Data Encoding/Decoding
The ACSE/Presentation library is not responsible for user data encoding/
decoding. The application programmer must choose an ASN.1 compiler
and run-time library. Refer to the ASN.1 compiler documentation for the
product you purchased. The sample programs in the manpages use the
Marben ASN.1 compiler product and run-time library.

1) First ap_snd() set AP_MORE, and send data

2) Additional ap_snd()'s set AP_MORE, and send data

3) Last ap_snd() re-set AP_MORE, and send last data



56 Chapter 4

Programming Guide
4. Using Synchronous vs. Asynchronous Mode

4. Using Synchronous vs. Asynchronous
Mode
ACSE/Presentation supports both synchronous and asynchronous mode
execution of calls. In synchronous mode, an ACSE/Presentation call
blocks until the call can be completed. While blocked, no other tasks can
be performed. Synchronous mode is the default.

In asynchronous mode, an ACSE/Presentation call is not blocked (except
under kernel resource shortages). The function completes as much of its
task as it can, then returns to the user.

Synchronous Mode
Synchronous mode is useful for processes maintaining a single
connection, and for processes that can wait for events to occur.

When synchronous mode is used, ap_snd() blocks until resources are
available to send the entire primitive. Similarly, ap_rcv() blocks until
either an entire primitive is received, or the user buffer is filled by the
library. In the latter case, ap_rcv() returns with the AP_MORE bit set in
the flags argument. To receive the remaining data, the application must
continue to call ap_rcv() until it returns with the AP_MORE bit reset.

Asynchronous Mode
Asynchronous mode is used for applications in which long delays are
expected between events, and for processes that can perform other tasks
while waiting for events to happen. Asynchronous mode is also useful for
managing multiple connections concurrently.

Asynchronous mode is specified in ap_open() by setting the O_NDELAY
bit in the oflags parameter. When used asynchronously, ap_snd() and
ap_rcv() do not block in most cases.

If there are insufficient resources from OTS to send the entire primitive
for an ap_snd(), a partial send can occur. A return code of -1 is received
and ap_errno is set to AP_AGAIN. To complete sending the primitive,
ap_snd() must be invoked again with the same set of buffers and
arguments until the call returns successfully.



Chapter 4 57

Programming Guide
4. Using Synchronous vs. Asynchronous Mode

If ap_rcv() is called in asynchronous mode, data is read from the
communication endpoint until either:

• the entire primitive is received

• the ubuf argument buffer is full

• no more user data is available.

In the second case, the AP_MORE bit is set in the flags parameter of
ap_rcv(). If the AP_MORE bit is set, a primitive was partially received.
To receive the rest of the primitive, the ap_rcv() must be re-invoked until
the call returns successfully.

In the third case:

• Either ap_rcv() returns successfully with the AP_MORE bit set and
ubuf is partially filled. In this case, to use the remaining ubuf space
for the next ap_rcv() you must re-adjust ubuf->len.

• Or, ap_rcv() returns unsuccessfully with ap_errno set to AP_AGAIN.
In this case, you must not alter any parameters for the next ap_rcv().
Refer to the discussion in the ap_rcv() manpage for more information.

Check the sptype after each ap_rcv() call. Some primitives such as
A_ABORT_IND are not flow-controlled and may interrupt the receipt of
a partially received primitive. In this case, the remaining data of the
original primitive is lost.

Note that ap_rcv() may still be blocked by running in asynchronous mode
in memory shortage situations such as when using large numbers of
connections.

Changing Modes
Once a communication endpoint has been opened using synchronous
mode, it can be changed to asynchronous mode in the application by
setting the AP_STREAM_FLAGS attribute with AP_NDELEY.

However, to reset the execution to synchronous mode, the communication
endpoint must be closed and reopened without using O_NDELEY in the
ap_open() call.



58 Chapter 4

Programming Guide
5. Managing Multiple Connections

5. Managing Multiple Connections
Before writing an application with multiple connections, you may need to
consider the following items:

• Execution mode

• Connection retry

• Resource constraints

Execution Mode
For using multiple connections, asynchronous mode is recommended.
Using multiple connections introduces factors that cannot be controlled
such as: when a task will complete, how long a task will take, or whether
or not tasks will complete sequentially. Factors affecting task completion
include network traffic and the load on the system. Using synchronous
mode can introduce deadlock situations. For example, consider the
following scenario using first synchronous then asynchronous
processing:

Two processes, an initiator and responder are each managing two
communication endpoints. The initiator side of the communication
endpoints are labeled A and B. The responder side of the communication
endpoints are labeled C and D (see Figure 4-1).

Communication endpoint A initiates a connection and transfers two data
packets over the connection to C. Two data packets are transferred over
the connection from C to A. Then endpoint A initiates a connect release
after it receives the two data packets.

Now, since the completion time of each task is not guaranteed (as
previously described), the following situation could occur:

• The initiator process is servicing endpoint B which has just sent out a
connection request (A_ASSOC_REQ) and is waiting for confirmation
(A_ASSOC_CNF).

• Endpoint A received the first data packet and is waiting for its turn to
receive the last data packet already on the queue before it sends out a
release request (A_RELEASE_REQ). At the same time, the responder
process is servicing endpoint C which has already sent its two data



Chapter 4 59

Programming Guide
5. Managing Multiple Connections

packets and is waiting for the release indication (A_RELEASE_IND)
while endpoint D is in AP_IDLE state waiting for the connection
indication (A_ASSOC_IND).

Figure 4-1 Multiple Connections Scenario

• If the connections are using synchronous mode, a deadlock situation
occurs. Endpoint A is blocked until endpoint B receives a
A_ASSOC_CNF which will never happen, because the remote process
is servicing endpoint C which is waiting for A_RELEASE_REQ sent
by endpoint A and endpoint A is blocked.

• On the other hand, using asynchronous mode, ap_rcv() will return
AP_AGAIN on communication endpoint B because there is no data to
process. It would not block the process, and the application can
continue to service the next connection. Communication endpoint A
would then be able to receive its last data packet and send a release
request (A_RELEASE_REQ) to endpoint C. Then C would be able to
process its release indication (A_RELEASE_IND) and reply
(A_RELEASE_RSP). Endpoint D would receive its connection
indication (A_ASSOC_IND) and so on.

For more information on how an application can handle synchronous and
asynchronous mode processing, see the section “Using Synchronous vs.
Asynchronous Mode.”.

Initiator Process Responder Process
====================================================

servicing servicing

Conn B Conn C
.sent A_ASSOC_REQ
.waiting for
A_ASSOC_CNF

.sent all data packets

.waiting for
A_RELEASE_IND

Conn A
.sent all data packets
.waiting for its turn
to receive its last
data packet before
it sends A_RELEASE_REQ

Conn D
.in IDLE state
.waiting for
A_ASSOC_IND



60 Chapter 4

Programming Guide
5. Managing Multiple Connections

Connection Retry
When there is a resource shortage, ap_snd() may return AP_AGAIN. The
application should re-send the same primitive as outlined in the ap_snd()
manpage.

NOTE In the case of a connection request (A_ASSOC_REQ), if a resource
shortage occurs in the OTS stack, a reject may be received as a
A_PABORT_IND or A_ABORT_IND.

A_PABORT_IND indicates a shortage of memory in the OTS stack while
trying to establish a connection. This is caused by the dynamic memory
allocation scheme in the stack. A_ABORT_IND may occur if there is a
memory shortage on the remote side of the connection request.

To handle this situation, an application can implement a connection
retry mechanism to re-send the request again. Keep in mind that this
type of resource shortage problem should be temporary. To avoid waiting
indefinitely, set a counter to keep track of the number of retries.

Resource Constraints
Each connection will take up some resources of the system. These
resources may include file descriptors and memory space. Since A/P uses
ap_open() to create a communication endpoint and each endpoint
corresponds to a file descriptor, there is a limited number of file
descriptors that can be opened per process. For memory usage, when it is
initially started, each A/P instance will take up about 540 bytes. This
memory is consumed by the storage of the A/P environment attributes
and buffer space for the A/P library itself.

The actual size of memory used per connection depends on the values of
its environment attributes. For example, AP_BIND_PADDR may have a
longer or shorter address. In addition to the A/P library memory usage,
connections use some space within the OTS stack at each layer including
the presentation, session, and transport layers.

For an application with a large number of connections, you need to be
aware of the following system behavior and limitations:

• System maximums

• Process maximums

• Other application interactions



Chapter 4 61

Programming Guide
5. Managing Multiple Connections

Note that if an ACSE/Presentation call (such as ap_open()) fails because
of temporary memory shortage, the application may want to retry the
same call later.

System Maximums
OTS supports up to 4096 virtual circuit (VC) connections at the transport
and network layer (X.25 CONS). If applications such as X.400 or FTAM
are also in use, note that each session access connection also uses a
transport connection. If XTI API applications are also in use, note that
each XTI connection also uses a transport connection. The number of
X.25 VCs supported may be further limited by hardware configuration
limits and the number and type of X.25 interface cards.

The system has no priority for connection requests versus data transfers
on existing connections. It is recommended that an application
successfully bring up all required connections before transferring data.

Connection management should not occur during data transfer. The
application pacing should avoid possible timing problems.

Process Maximums
It is possible to have a single process use up to the maximum number of
connections. Under these circumstances, observe the following
restrictions:

• A low rate of incoming data, including connect indications.

• Incoming events do not occur at the same time on all of the
connections. Too many concurrent events can overflow buffers. The
AP_AGAIN error may occur more often.

• The application should receive incoming events as soon as possible to
regularly poll the connection for events.

• Check burst rate.

• Check pacing of execution watching for timing errors.

• Check if the number of connections gradually increases or decreases.

Because communication endpoints are file descriptors, the maximum
number of communication endpoints (and connections) per process is
limited by the maximum number of open files allowed per process by HP-
UX. The number of connections allowed per process is further limited by
any other files opened by the process.



62 Chapter 4

Programming Guide
6. Other Tasks

6. Other Tasks
Other items to consider in developing A/P applications include:

• File descriptors

• Signal handling

• Error checking

File Descriptors
Communication endpoints for ACSE/Presentation applications are
HP-UX file descriptors. Because of unpredictable results, HP
recommends you do not use HP-UX file system calls such as exec(2),
dup(2), read(2), write(2), ioctl(2), or select(2) with HP OTS/9000 A
CSE/Presentation file descriptors. Note that fork(2) can be used, but do
not use fork(2) with exec(2).

A communication endpoint is returned when the ACSE/Presentation call
ap_open() is invoked.

Note that the user may need to increase the open file limit for the
application process to support a large number of connections. Refer to
the getrlimit() and setrlimit() system call manpages for more information
on changing file limits.

Signal Handlers
ACSE/Presentation calls interrupted by the arrival of a signal will not be
restarted by the library. You are responsible for managing signals and
providing recovery routines for the duration of any ACSE/Presentation
calls. Signals are interrupts such as when you enter ˆC on a terminal to
exit from a program.

If an interrupt occurs while executing A/P functions, the operating
system class error EINTR is returned. When detected, you must
re-invoke the A/P function. If EINTR is detected while executing
ap_snd() or ap_rcv(), the call must be invoked again as described in how
to handle AP_AGAIN in the ap_snd() and ap_rcv() manpages (for both
synchronous and asynchronous processing). The A/P library continues
the call from where it left off.



Chapter 4 63

Programming Guide
6. Other Tasks

Signal handlers can be written to capture signals and exit, or to prevent
signals from interrupting critical call sequences.

Error Checking Routines
Along with processing signals, ACSE/Presentation applications need to
check for return codes from calls and particular error conditions that are
returned. Error conditions related to ACSE/Presentation as well as other
protocol errors can be returned.

The global variable ap_errno and the ap_error() function are used for
error reporting. The ap_error() call prints an ASCII string error message
corresponding to the last received ap_errno. A/P library errors and
system errors can be received in the ap_errno variable.

A list of A/P specific errors you can access using ap_error() is included in
the ap_intro manpage.

For determining where problems occur, you can also use API tracing
which is described in Chapter 5,Ttroubleshooting your Application.

Error-handling in Multi-Threaded
Applications
Multi-threaded applications must define ap_errno as:

extern unsigned long _ap_errno()
#define ap_errno _ap_errno()

This ensures that the application can still use ap_errno which would
return the thread-specific ap_errno value to the application.



64 Chapter 4

Programming Guide
7. Before Running ACSE/Presentation Applications

7. Before Running ACSE/Presentation
Applications
In order to run ACSE/Presentation applications between two processes
or systems, make sure:

• your local and remote systems have the correct configuration such as
local and destination NSAPs

• that the OTS stack has been started successfully on both your local
and remote systems

• you start your responder process first.

Multi-threaded ACSE/Presentation Example
Multi-threaded sample programs with similar functionality are also
included online in the /opt/ots/apli/demo/threads_demo
directory. These programs use Kernel Threads.



Chapter 4 65

Programming Guide
ACSE/Presentation Example

ACSE/Presentation Example
Sample programs are included online in the /opt/ots/apli/demo directory.
You’ll also find:

• A readme file describing how the programs work.

• Header files included by the programs in the incl  subdirectory.

• Functions specific to the Marben ASN.1 compiler and run-time
library to build, encode, decode, and free PDUs or C data structures
generated by the compiler are included in the file: asn1_if.c.

NOTE Note: To use a different compiler, customize these functions for the C
data structures and encoding/decoding routines generated by your ASN.1
compiler.

• Main program for the initiator process: init.c

• Main program for the responder process: resp.c

• Utility program used by both the initiator and responder: utils.c



66 Chapter 4

Programming Guide
Program using ROSE

Program using ROSE
Additional programs are included online in /opt/ots/rose/demo
which exercise the ROSE library functions and provide an example using
ROSE API tracing. Multi-threaded sample programs with similar
functionality are also included online in the
/opt/ots/rose/demo/threads_demo  directory. These programs use
Kernel Threads. Refer to the online README f ile for more information.



67

5 Troubleshooting Your
Application

This chapter describes API tracing for ACSE/Presentation followed by
API tracing for ROSE.



68 Chapter 5

Troubleshooting Your Application
Using A/P API Tracing

Using A/P API Tracing
You enable tracing in your application program and the tracing output is
printed to a trace file. Different levels of tracing are provided with the
trace facility. For example, you can trace procedure entry and exits, error
conditions, or both.

A/P API Tracing Using Environmental
Variables
A/P API has been enhanced to allow control of tracing via environment
variables. The original API tracing mechanism provided through global
variables is still available, however the new method means you do not
need to write any special code in your application to take advantage of
API tracing.

The following is an example of the new mechanism for APRI:

export AP_TRACE=io
initiator -nlocal_node -Nremote_node

Thu May 16 10:21:46 1996 -> ap_open()
> pathname = /dev/osipi
> oflags = 0x0

Thu May 16 10:21:47 1996 <- ap_open() = 4

Thu May 16 10:21:47 1996 -> ap_init_env()
fd = 4.
env_file = NULL
flags = 0.

Thu May 16 10:21:47 1996 <- ap_init_env() = 0

Thu May 16 10:21:47 1996 -> ap_set_env()
fd = 4.
attr = AP_ROLE_ALLOWED
*val = 1

Thu May 16 10:21:47 1996 <- ap_set_env() = 0

This example shows the environment variable, AP_TRACE, being set to
the ASCII characters “io” (meaning input and output parameters). For
csh(1) users the setenv(1) command should be used. The program is then
invoked and the API tracing is automatically enabled to the level
specified in the environment variable.

The program shown does not require any special user code for handling
the environment variables, or controlling the API tracing global
variables. The mechanism works by having the AP library itself test the



Chapter 5 69

Troubleshooting Your Application
Using A/P API Tracing

environment variables on the first valid APRI call (always ap_open) and
then set the global API trace variables according to the value of the
environment variables. If no environment variables are present, then no
API tracing takes place.

Environment Variable Names
The names of the ACSE/Presentation (AP) environment variables
available are as follows:

AP_TRACE

AP_TRACE_FILE

AP_TRACE_MAX_UDATA

See “Trace Output” for the effects of these environment variables.

AP_TRACE:. The value defined for this variable indicates the trace
level to be used for each API call. It is actually a set of flags, defined in
the file /usr/ include/api_trace.h.

Default = 0 (trace_off).

You may set this value in one of two ways:

1. It may be treated as an integer value and may be set using either
decimal or hexadecimal notation, for example:

AP_TRACE=0xff

2. It may be treated as a set of ASCII flags. The following standard flags
are defined.

i = input parameters

o = output parameters

x = external procedure entry exit

e = error tracing

n = internal tracing

AP_TRACE_FILE:. The name of the file that is to receive tracing
results.

Default = stderr.



70 Chapter 5

Troubleshooting Your Application
Using A/P API Tracing

AP_TRACE_MAX_UDATA:. The maximum amount of user data (in
bytes) that will be displayed when parameters are displayed.

Default = 16.

Tracing Using Global Variables
A/P API tracing is controlled by three global variables. The variables are
described below:

Selecting Types of Tracing
The level of A/P tracing is controlled by the ap_trace variable.

The ap_trace variable is defined as a bitmask that can be set to
particular values (as defined in the file /opt/ots/lib/api_trace.h) and as
listed in the following table.

For example, if you want to trace output parameters only, you would set
ap_trace to API_TR_OUTPUT.

ap_trace An integer value which constitutes a
bitmask to control the level of tracing
performed. By default this mask is 0.

ap_trace_fp A pointer to a UNIX file to receive the
tracing output. By default this is set to
stderr.

ap_trace_max_udata The maximum amount of user data (in
bytes) that will be displayed during tracing.
The default is 16.



Chapter 5 71

Troubleshooting Your Application
Using A/P API Tracing

Enable A/P API Tracing Using Global
Variables
To enable A/P tracing in your program, add the following statements to
your program:

1. Include the appropriate definitions by adding these lines:

#include <stdio.h>
#include <api_trace.h>
extern int ap_trace;
extern int ap_trace_max_udata;
extern FILE *ap_trace_fp;

API_TR_ENTRY_EXIT Traces procedure entry and exit. No
parameter information is displayed. This is
useful if you are only interested in seeing
what A/P calls your program is making.
Note that this trace is automatically
generated if you use API_TR_INPUT,
API_TR_OUTPUT, or
API_TR_INT_ENTRY_EXIT.

API_TR_INPUT Provides traces of A/P function call input
parameters. This is useful if you want to
verify that A/P is actually receiving the
values you expect.

API_TR_OUTPUT Provides traces of A/P function call output
parameters. This is useful if you want to
verify what values A/P is passing back to
your program.

API_TR_INT_ENTRY_EXIT Enables internal tracing. Use if directed to
do so by your HP support representative.

API_TR_INT_ERROR Enables external and internal error tracing.
Recommended that users turn this tracing
on at all times. Includes filename and line
number information useful for HP factory
support.



72 Chapter 5

Troubleshooting Your Application
Using A/P API Tracing

2. Within your program, enable tracing and select the level of tracing
you want by modifying the value of the ap_trace variable. For
example, to enable procedure tracing, input parameters tracing,
output parameters tracing, and error tracing enter the statement:

ap_trace = API_TR_ENTRY_EXIT | API_TR_INPUT |
API_TR_OUTPUT|API_TR_INT_ERROR;

3. If you want to redirect the trace output from the default file stderr
enter the statement: where /tmp/my_ap_trace is the name of the file
you choose for tracing.

if ((ap_trace_fp = fopen(“/tmp/my_ap_trace”, “w”)) ==
NULL) ap_trace_fp = stderr;

4. If you want more than the first 16 bytes of data to be displayed (the
default), then modify the ap_trace_max_udata parameter. For
example to increase the data displayed to 256 bytes enter:

p_trace_max_udata = 256;

Trace Output
The format of the trace output is as follows:

• The first line indicates what function is being called and at what
time. The “->” symbol indicates procedure entry for example:

15:53:38 -> ap_open()

• The subsequent line(s) indicate the input parameters to the function
call. The parameter name and its value are listed. For example:

14:53:39 -> ap_set_env()
fd = 3.
attr = AP_ROLE_ALLOWED

*val = 1

• After the input parameters are displayed, the procedure exit is
shown. The time of return, and the return value are shown. The “<-”
symbol indicates procedure exit. For example:

15:53:38 <- ap_open() = 3

• Lastly, any output parameters returned by the function call are
displayed. The parameter name is listed with its value. For example:



Chapter 5 73

Troubleshooting Your Application
Using A/P API Tracing

15:53:38 <- ap_set_env() = 0
attr = AP_CNTX_NAME
val->len = 4
val->buf = (4/4)
52 01 00 04 R....

• The amount of data displayed is based on the value set for
ap_trace_max_udata. For example, if ap_trace_max_udata is set to
16, only the first 16 bytes are displayed as shown below:

val->sad.buf = (16/22)
06 69 5F 73 73 65 6C 06 69 5F 74 73 65 6C 07
48.i_ssel.i_tsel.H

The item “(16/22)” indicates that 16 of the 22 bytes of data output is
displayed. The following line contains the actual data in both
hexadecimal and ASCII representation.

Note that for some of the A/P calls such as ap_snd(), ap_rcv() and
ap_poll() the notation “>” is used to indicate input parameters and “<“
indicates output parameters. For example:

14:53:40 -> ap_poll()
> nfds = 1
> timeout = -1
> fds = Ox68FAC6A8
> fds[0].fd = 3
> fds[0].events = Ox4
< fds[0].revents = Ox4
14:53:40 <- ap_poll() = 1

Tracing in Multi-threaded Applications
A/P API traces in multi-threaded applications include thread-ids of the
executing threads as part of the trace output.  This identifies a particular
part of the trace output as belonging to a particular thread. The format
of the trace output for multi-threaded applications is as follows:

>>> thread-id  = 5 >>>
Wed Mar  5 15:26:30 1997 -> ap_open()
<<< thread-id  = 5 <<<

>>> thread-id  = 6 >>>
Wed Mar  5 15:26:30 1997 -> ap_open()
<<< thread-id  = 6 <<<

>>> thread-id  = 7 >>>
Wed Mar  5 15:26:30 1997 -> ap_open()
<<< thread-id  = 7 <<<
>>> thread-id  = 5 >>>
>  pathname = /dev/osipi
>  oflags = 0x0
<<< thread-id  = 5 <<<



74 Chapter 5

Troubleshooting Your Application
Using A/P API Tracing

>>> thread-id  = 6 >>>
>  pathname = /dev/osipi
>  oflags = 0x0
<<< thread-id  = 6 <<<
>>> thread-id  = 7 >>>
>  pathname = /dev/osipi
>  oflags = 0x0
<<< thread-id  = 7 <<<

The line >>> thread-id = 5 >>> denotes that the lines following it have
been output by the thread with the thread-id 5.  Also, the line <<<
thread-id = 5 <<< denotes the end of trace output from the thread with
thread-id 5.  So, every group of tracing lines is enclosed within lines of
the form >>> thread-id = no >>> and <<< thread-id = no <<<.  This
unambiguously identifies the thread which has output these tracing
lines.  The tracing output from various threads may be interleaved which
denotes that they are being scheduled in and out while they are
executing and doing tracing output.



Chapter 5 75

Troubleshooting Your Application
Using ROSE API Tracing

Using ROSE API Tracing
Tracing is enabled in your application program and the tracing output is
printed to a trace file. Different levels of tracing are provided with the
trace facility. For example, you can trace procedure entry and exits, error
conditions, or both. ROSE tracing has been implemented to be consistent
with ACSE/Presentation tracing.

Environment Variable Names
The names of the ROSE environment variables available are as follows:

ROSE_TRACE

ROSE_TRACE_FILE

ROSE_TRACE_MAX_UDATA

The effect of these environment variables below.

AP_TRACE:
These values indicates the trace level to be used for each API call. It is
actually a set of flags, defined in the file //opt/ots/lib/api_trace.h.

Default = 0 (trace_off).

You may set this value in one of two ways:

1. It may be treated as an integer value and may be set using either
decimal or hexadecimal notation, for example:

AP_TRACE=0xff

2. It may be treated as a set of ASCII flags. The following standard flags
are defined.

i = input parameters

o = output parameters

x = external procedure entry exit

e = error tracing

n = internal tracing



76 Chapter 5

Troubleshooting Your Application
Using ROSE API Tracing

AP_TRACE_FILE:
The name of the file that is to receive tracing results.

Default = stderr.

AP_TRACE_MAX_UDATA:
The maximum amount of user data (in bytes) that will be displayed
when parameters are displayed.

Default = 16.

Tracing Using Global Variables
ROSE API tracing is controlled by three global variables. The variables
are described below:

Table 5-1 ROSE Trace Variables

Selecting Types of Tracing
The level of ROSE tracing is controlled by the rose_trace variable.

The rose_trace variable is defined as a bitmask that can be set to
particular values (as defined in the file /opt/ots/lib/api_trace.h) and as
listed in Table 5-1.

For example, if you want to trace output parameters only, you would set
rose_trace to API_TR_OUTPUT.

rose_trace An integer value which constitutes a
bitmask to control the level of tracing
performed. By default this mask is 0

rose_trace_fp A pointer to a UNIX file to receive the
tracing output. By default this is set to
stderr.

rose_trace_max_udata The maximum amount of user data (in
bytes) that will be displayed during tracing.
The default is 16.



Chapter 5 77

Troubleshooting Your Application
Using ROSE API Tracing

Table 5-2 ROSE Tracing Types

Enable ROSE API Tracing
To enable ROSE tracing in your program, add the following statements
to your program:

1. Include the appropriate definitions by adding these lines:

#include <stdio.h>
#include <api_trace.h>
extern int rose_trace;
extern int rose_trace_max_udata;
extern FILE *rose_trace_fp;

API_TR_ENTRY_EXIT Traces procedure entry and exit. No
parameter information is displayed. This is
useful if you are only interested in seeing
what ROSE calls your program is making.
Note that this trace is automatically
generated if you use API_TR_INPUT,
API_TR_OUTPUT, or
API_TR_INT_ENTRY_EXIT.

API_TR_INPUT Provides traces of ROSE function call input
parameters. This is useful if you want to
verify that ROSE is actually receiving the
values you expect.

API_TR_OUTPUT Provides traces of ROSE function call
output parameters. This is useful if you
want to verify what values ROSE is passing
back to your program.

API_TR_INT_ENTRY_EXIT Enables internal tracing. Use if directed to
do so by your HP support representative.

API_TR_INT_ERROR Enables external and internal error tracing.
Recommended that users turn this tracing
on at all times. Includes filename and line
number information useful for HP factory
support.



78 Chapter 5

Troubleshooting Your Application
Using ROSE API Tracing

2. Within your program, enable tracing and select the level of tracing
you want by modifying the value of the rose_trace variable. For
example, to enable procedure tracing, input parameters tracing,
output parameters tracing and error tracing, enter the statement:

rose_trace =
API_TR_ENTRY_EXIT|API_TR_INPUT|API_TR_OUTPUT|API_TR_I
 NT_ERROR;

3. If you want to redirect the trace output from the default file stderr
enter the statement:

if ((rose_trace_fp=fopen(“/tmp/my_ro_trace”, “w”))
== NULL); rose_trace_fp = stderr;

where /tmp/my_ro_trace is the name of the file you choose for tracing.

4. If you want more than the first 16 bytes of data to be displayed (the
default), then modify the rose_trace_max_udata parameter. For
example to increase the data displayed to 256 bytes enter:

rose_trace_max_udata = 256 ;

Trace Output
ROSE tracing is included in the online ROSE program example. The
format of the trace output is consistent with the format described for A/P
tracing:

• The first line indicates what function is being called and at what
time. The “->” symbol indicates procedure entry. For example:

12:54:30 -> ro_bind()

• The subsequent line(s) indicate the input parameters to the function
call. The parameter name and its value are listed.

• After the input parameters are displayed, the procedure exit is
shown. The time of return, and the return value are shown. The “<-”
symbol indicates procedure exit. For example:

12:54:30 <- ro_bind() NO ERRORS

• Lastly, any output parameters returned by the function call are
displayed. The parameter name is listed with its value.



Chapter 5 79

Troubleshooting Your Application
Using ROSE API Tracing

• The amount of data displayed is based on the value set for
rose_trace_max_udata. For example, if rose_trace_max_udata is set
to 16, only the first 16 bytes are displayed.

Tracing in Multi-threaded Applications
The format of the trace output in ROSE API traces in multi-threaded
applications is consistent with the format described for A/P API traces in
similar applications.



80 Chapter 5

Troubleshooting Your Application
Using ROSE API Tracing



81

A ACSE/Presentation Reference
Pages

This appendix includes a list of the supported ACSE/Presentation
attributes and a glossary of terms



82

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives
ACSE/Presentation Primitives

Table A-1 AP_ENV Table of Attributes

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)

AP_ACSE_AVAIL

Bitmask indicating
available versions of
the ISO ACSE protocol

unsigned
long

or'd bits:
AP_ACSEVER1

bit values:
AP_ACSEVER1

always never

AP_ACSE_SEL

Bitmask indicating
which version of the
ISO ACSE protocol is
currently selected

unsigned
long

or'd bits:

AP_ACSEVER1

bit values:

AP_ACSEVER1

always only in states:

AP_UNBOUND
AP_IDLE

AP_BIND_PADDR

Presentation address
to which the stream
supporting this
instance of the
A/P-Library is bound

ap _paddr_t N.A. Any allowed by the C type
ap_paddr_t

always only in state

AP_UNBOUND

AP_CLD_AEID

Called application
entity invocation
identifier

long AP_CLD_AEID_NOVAL Any allowed by the C type
long

always only in states:

AP_UNBOUND
AP_IDLE



83

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_CLD_AEQ

Called application
entity qualifier

any_t None Any allowed by the C type
any_t

always only in states:

AP_UNBOUND
AP_IDLE

AP_CLD_APID

Called application
process invocation
identifier

long AP_CLD_APID_NOVAL Any allowed by the C type
long

always only in states:

AP_UNBOUND
AP_IDLE

AP_CLD_APT

Called application
process title

any_t None Any allowed by the C type
any_t

always only in states:

AP_UNBOUND
AP_IDLE

AP_CLD_CONN_ID

Session connection
identifier proposed by
the association-
responder

ap_conn _id_t None Any allowed by the C type
ap_conn_id_t

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_CLG_AEID

Calling application
entity invocation
identifier

long AP_CLG_AEID_NOVAL Any allowed by the C type
long

always only in states:

AP_UNBOUND
AP_IDLE

AP_CLG_AEQ

Calling application
entity qualifier

any_t None Any allowed by the C
type any_t

always only in states:

AP_UNBOUND
AP_IDLE

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



84

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_CLG_APID

Calling application
process invocation
identifier

long AP_CLG_APID_NOVAL Any allowed by the C type
long

always only in states:

AP_UNBOUND
AP_IDLE

AP_CLG_APT

Calling application
process title

any_t None Any allowed by the C type
any_t

always only in states:

AP_UNBOUND
AP_IDLE

AP_CLG_CONN_ID

Session connection
identifier proposed by
the
association-initiator

ap_conn _id_t None Any allowed by the C type
ap_conn_id_t

always only in states:

AP_UNBOUND
AP_IDLE

AP_CNTX_NAME

Application context
for the association

objid_t N.A. Any allowed by the C type
objid_t

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_DCS

Defined context set
(This attribute
consolidates
information conveyed
by the AP_PCDL and
AP_PCDRL
attributes.)

ap_dcs_t N.A. Any allowed by the C type
ap_dcs_t

in any state
but

AP_UNBOUND

never

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



85

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_DPCN

Default presentation
context name

ap_dcn_t None Any allowed by the C type
ap_dcn_t *

never never

AP_DPCR

Default presentation
context result

long AP_DPCR_NOVAL one of:

AP_DPCR_NOVAL
AP_ACCEPT *
AP_USER_REJ *
AP_PROV_REJ *

never never

AP_INIT_SYNC_PT

Initial synchronization
point serial number

unsigned
long

AP_MIN_SYNCP range from

AP_MIN_SYNCP to
AP_MAX_SYNCP(999999)

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_LCL_PADDR

Presentation address
used by the local
entity

ap _paddr_t N.A. Any allowed by the C type
ap_paddr_t

always never

AP_LIB_AVAIL

Bitmask indicating
available versions of
the A/P-Library

unsigned
long

AP_LIBVER1 bit values:

AP_LIBVER1

always never

AP_LIB_SEL

Bitmask indicating
which version of the A/
P-Library is currently
selected

unsigned
long

AP_LIBVER1 bit values:

AP_LIBVER1

always only in state:

AP_UNBOUND

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



86

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_MODE_AVAIL

Specifies the modes in
which the ACSE
services may operate

unsigned
long

or'd bits:

AP_NORMAL_MODE
AP_X410_MODE

bit values:

AP_NORMAL_MODE
AP_X410_MODE

always never

AP_MODE_SEL

Specifies the mode in
which the ACSE
services will operate
for this association

unsigned
long

or'd bits:

AP_NORMAL_MODE

bit values:

AP_NORMAL_MODE
AP_X410_MODE

always only in states:

AP_UNBOUND
AP_IDLE

AP_MSTATE

State of
AP_MORE bits (both
send and receive)

unsigned
long

or'd bits: NULL bit values:

AP_SNDMORE AP_RCVMORE

always never

AP_PCDL

Presentation context
definition list

ap_cdl_t None Any allowed by the C type
ap_cdl_t

only in states:

AP_IDLE
AP_WASSOCrs
p_ASSOCind

only in state:

AP_IDLE

AP_PCDRL

Presentation context
definition result list

ap _cdrl_t None Any allowed by the C type
ap_cdrl_t

all states
except:

AP_IDLE
AP_UNBOUND

only in state:

AP_WASSOCrsp_
ASS OCind

AP_PFU_AVAIL

Bitmask indicating
which Presentation
Layer functional units
are available

unsigned
long

or'd bits: NULL bit values: NULL always never

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



87

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_PFU_SEL

Bitmask indicating
which Presentation
Layer functional units
are currently selected

unsigned
long

or'd bits: NULL bit values: NULL always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_PRES_AVAIL

Bitmask indicating
available versions of
the ISO Presentation
Layer protocol

unsigned
long

or'd bits:

AP_PRESVER1

bit values:

AP_PRESVER1

always never

AP_PRES_SEL

Bitmask indicating
which version of the
ISO Presentation
Layer protocol is
currently selected

unsigned
long

or'd bits:

AP_PRESVER1

bit values:

AP_PRESVER1

always only in states:

AP_UNBOUND
AP_IDLE

AP_REM_PADDR

Presentation address
of remote entity

ap _paddr_t N.A. Any allowed by the C type
ap_paddr_t

always only in states:

AP_UNBOUND
AP_IDLE

AP_ROLE_ALLOWED

Indicates which roles
(association-initiator
or
association-responder)
 the library user may
play

unsigned
long

or'd bits:

AP_INITIATOR
AP_RESPONDER

bit values:

AP_INITIATOR
AP_RESPONDER

always only in state

AP_UNBOUND

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



88

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_ROLE_CURRENT

Indicates whether the
library user is the
association-initiator
or the association-
responder for the
current association

unsigned
long

None bit values:

AP_INITIATOR
AP_RESPONDER

in any states
but:

AP_UNBOUND
AP_IDLE

never

AP_RSP_AEID

Responding
application entity
invocation identifier

long AP_RSP_AEID_NOVAL Any allowed by the C type
long

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_RSP_AEQ

Responding
application entity
qualifier

any_t None Any allowed by the C type
any_t

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_RSP_APID

Responding
application process
invocation identifier

long AP_RSP_APID_NOVAL Any allowed by the C type
long

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

AP_RSP_APT

Responding
application process
title

any_t None Any allowed by the C type
any_t

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



89

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_SESS_AVAIL

Bitmask indicating
available versions of
the ISO Session Layer
protocol

unsigned
long

or'd bits:

AP_SESSVER1
AP_SESSVER2

bit values:

AP_SESSVER1
AP_SESSVER2

always never

AP_SESS_OPT_AVAIL

Bitmask indicating
whether certain
optional capabilities
of the session layer are
supported by the
underlying protocol
provider

unsigned
long

or'd bit

AP_UCBC

bit values:

AP_UCBC

AP_UCEC *

always never

AP_SESS_SEL

Bitmask indicating
which version of the
ISO Session Layer
protocol is currently
selected

unsigned
long

or'd bits:

AP_SESSVER2

bit values:

AP_SESSVER1
AP_SESSVER2

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



90

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_SFU_AVAIL

Bitmark indicating
which Session Layer
functional units are
available

unsigned
long

or'd bits:

AP_SESS_DUPLEX
AP_SESS_MINORSYNC
AP_SESS_RESYNC
AP_SESS_NEGREL

or'd bits:

AP_SESS_HALFDUPLEX*
AP_SESS_DUPLEX
AP_SESS_XDATA *
AP_SESS_MINORSYNC
AP_SESS_MAJORSYNC *
AP_SESS_RESYNC
AP_SESS_ACTMGMT *
AP_SESS_NEGREL
AP_SESS_CDATA *
AP_SESS_EXCEPT *
AP_SESS_TDATA *

always never

AP_SFU_SEL

Bitmark indicating
which Session Layer
functional units are
currently selected

unsigned
long

or'd bits:

AP_SESS_DUPLEX

bit values:

AP_SESS_HALFDUPLEX *
AP_SESS_DUPLEX
AP_SESS_XDATA *
AP_SESS_MINORSYNC
AP_SESS_MAJORSYNC *
AP_SESS_RESYNC
AP_SESS_ACTMGMT *
AP_SESS_NEGREL
AP_SESS_CDATA *
AP_SESS_EXCEPT *
AP_SESS_TDATA *

always only in states

AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_
ASS OCind

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



91

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_STATE

Current state of the
A/P- Library Interface

unsigned
long

AP_UNBOUND one of:

AP_UNBOUND
AP_DATAXFER
AP_WASSOCrsp_ASSOCind
AP_WASSOCcnf_ASSOCreq
AP_WRELrsp_RELind
AP_WRELcnf_RELreq
AP_WRESYNrsp_RESYNind
AP_WRESYNcnf_RESYNreq
AP_WRELrsp_RELind_
init
AP_WRELcnf_RELreq_
rsp
AP_WACTDrsp_ACTDind
AP_WACTDcnf_ACTDreq
AP_WACTErsp_ACTEind
AP_WACTEcnf_ACTEreq
AP_WACTIrsp_ACTIind
AP_WACTIcnf_ACTIreq
AP_WSYNCMArsp_SYNCMA
ind
AP_WSYNCMAcnf_SYNCMA
req
AP_WCDATArsp_CDATAind
AP_WCDATAcnf_CDATAreq
AP_WRECOVERYind
AP_WRECOVERYreq

always never

AP_STREAM_FLAGS

Bitmark indicating
characteristics of the
connection endpoint
supporting the A/P-
Library

unsigned
long

None bit values:

AP_NDELAY

always always

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



92

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

AP_TOKENS_AVAIL

Bitmark indicating
which session tokens
are available

unsigned
long

or'd bits: NULL bit values:

AP_DATA_TOK *
AP_SYNCMINOR_TOK
AP_MAJACT_TOK *
AP_RELEASE_TOK

always never

AP_TOKENS_OWNED

Bitmark indicating
which tokens the user
currently controls

unsigned
long

N.A. bit values:

AP_DATA_TOK *
AP_SYNCMINOR_TOK
AP_MAJACT_TOK *
AP_RELEASE_TOK

in any states
but:

AP_UNBOUND
AP_IDLE
AP_WASSOCcn_
ASSOCreq
AP_WASSOCrsp
_ASSOCind

never

Name of attribute/
Purpose Data Type Default value of

attribute

Values legal for this
attribute (* = not

supported by
current release)

Readable
states

(value of
AP_STATE
attribute)

Writable
states

(value of
AP_STATE
attribute)



93

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

Table A-2 AP_RCV Table of Attributes

Primitive This primitive valid in
states

Ap_env
attribute
that must

be set

May change
attributes

Next state (values of
AP_STATE attribute)

A_ABORT_IND all except:

AP_UNBOUND AP_IDLE

none AP_STATE AP_IDLE

A_ASSOC_IND AP_IDLE AP_BIND_PA
DDR

AP_LIB_SEL

AP_ACSE_SEL
AP_CLD_AEID
AP_CLD_AEQ
AP_CLD_APID
AP_CLD_APT
AP_CLG_AEID
AP_CLG_AEQ
AP_CLG_APID
AP_CLG_APT
AP_CLG_CONN_ID
AP_CNTX_NAME
AP_INIT_SYNC_PT
AP_LCL_PADDR
AP_MODE_SEL
AP_PCDL
AP_PFU_SEL
AP_PRES_SEL
AP_REM_PADDR
AP_ROLE_CURRENT
AP_SESS_SEL
AP_SFU_SEL
AP_STATE
AP_TOKENS_AVAIL
AP_TOKENS_OWNED

AP_WASSOCrsp_ASSOCind



94

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

A_ASSOC_CNF AP_WASSOCcnf_ASSOCreq none AP_ACSE_SEL
AP_CLD_CONN_ID
AP_CNTX_NAME
AP_DCS
AP_INIT_SYNC_PT
AP_PFU_SEL
AP_PCDRL
AP_PRES_SEL
AP_REM_PADDR
AP_SESS_SEL
AP_SFU_SEL
AP_STATE
AP_TOKENS_AVAIL
AP_TOKENS_OWNED

(AP_IDLE, AP_DATAXFER)

A_PABORT_IND all except:

AP_UNBOUND AP_IDLE

none AP_STATE AP_IDLE

A_RELEASE_IND AP_DATAXFER
AP_WRELcnf_RELreq

none AP_STATE AP_WRELrsp_RELind
(AP_WRELrsp_RELind_
init or
AP_WRELcnf_RELreq_rsp)

A_RELEASE_CNF AP_WRELcnf_RELreq
AP_WRELcnf_RELreq_rsp

none AP_STATE (AP_IDLE or
AP_DATAXFER)
AP_WRELrsp_RELind

P_DATA_IND AP_DATA XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

none none no state change

P_RESYNC_IND AP_DATAXFER
AP_WSYNCMAcnf_SYNCMAreq
AP_WSYNCMArsp_SYNCMArsp
AP_WACTEcnf_ACTEreq
AP_WRECOVERYind
AP_WRECOVERYreq
AP_WRESYNCcnf_RESYNreq
AP_WRELcnf_RELreq

none AP_STATE AP_WRESYNrsp_RESYNind

Primitive This primitive valid in
states

Ap_env
attribute
that must

be set

May change
attributes

Next state (values of
AP_STATE attribute)



95

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

P_RESYNC_CNF AP_WRESYNcnf_RESYNreq none AP_STATE
AP_TOKENS_OWNED

AP_DATAXFER

P_SYNCMINOR_IND AP_DATA_XFER none none no state change

P_SYNCMINOR_CNF AP_DATA_XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTreq

none none no state change

P_TOKENGIVE_IND AP_DATAXFER
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WSYNCHMArsp_
SYNCHMAind
AP_WACTErsp_ACTEind
AP_WRECOVERYind
AP_WRECOVERYreq
AP_WCDATAcnf_CDATAreq

none AP_STATE
AP_TOKENS_OWNED

no state change
no state change
no state change
no state change
no state change
(no state change or
AP_DATAXFER)
(no state change or
AP_DATAXFER)
no state change

P_TOKENPLEASE_IND AP_DATAXFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WCDATAcnf_CDATAreq

none none no state change

RO_ERROR_IND AP_DATAXFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

none none no state change

RO_INVOKE_IND AP_DATAXFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

none none no state change

RO_REJECTP_IND AP_DATAXFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

none none no state change

Primitive This primitive valid in
states

Ap_env
attribute
that must

be set

May change
attributes

Next state (values of
AP_STATE attribute)



96

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

RO_REJECTU_IND AP_DATAXFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

none none no state change

RO_RESULT_IND AP_DATAXFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

none none no state change

Primitive This primitive valid in
states

Ap_env
attribute
that must

be set

May change
attributes

Next state (values of
AP_STATE attribute)



97

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

Table A-3 AP_SND Table of Attributes

Primitive This primitive, valid in
states

Ap_env attributes
that may be set
(must be set in

BOLD)

May change
attributes

Next state (values of
AP_STATE
attribute)

A_ABORT_REQ all except:

AP_UNBOUND AP_IDLE

none AP_STATE AP_IDLE

A_ASSOC_REQ AP_IDLE AP_BIND_PADDR
AP_CNTX_NAME
AP_LCL_PADDR
AP_REM_PADDR
AP_LIB_SEL
AP_ACSE_SEL
AP_ROLE_ALLOWEDAP_
CLD_AEID
AP_CLD_AEQ
AP_CLD_APID
AP_CLD_APT
AP_CLG_AEID
AP_CLG_AEQ
AP_CLG_APID
AP_CLG_APT
AP_CLG_CONN_ID
AP_MODE_SEL
AP_PCDL AP_PFU_SEL
AP_PRES_SEL
AP_SESS_SEL
AP_SFU_SEL
AP_INIT_SYNC_PT

AP_ROLE_
CU RRENT
AP_STATE
AP_TOKENS_
OWNED

AP_WASSOCcnf_
ASSOCreq

A_ASSOC_RSP AP_WASSOCrsp_ASSOCind AP_PCDRL
AP_CNTX_NAME
AP_RSP_AEID
AP_RSP_AEQ
AP_RSP_APID
AP_RSP_APT
AP_CLD_CONN_ID
AP_PFU_SEL
AP_SESS_SEL
AP_SFU_SEL
AP_INIT_SYNC_PT

AP_DCS
AP_STATE
AP_TOKENS_
OWNED

(AP_IDLE,
AP_DATAXFER)



98

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

A_PABORT_REQ all except:

AP_UNBOUND AP_IDLE

none AP_STATE AP_IDLE

A_RELEASE_REQ AP_DATAXFER none AP_STATE AP_WRELcnf_RELreq

A_RELEASE_RSP AP_WRELrsp_RELind
AP_WRELrsp_RELind_init

none AP_STATE (AP_IDLE or
AP_DATAXFER)
AP_WRELcnf_RELreq

P_DATA_REQ AP_DATAXFER
AP_WRELrsp_RELind
AP_WSYNCHMArsp_SYNCMAind
AP_WACTErsp_ACTEind

none none no state change

P_RESYNC_REQ AP_DATAXFER
AP_WRELrsp_RELind
AP_WRESYNrsp_RESYNind
AP_WSYNCMAcnf_SYNCMAreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WRECOVERYreq

none AP_STATE AP_IDLE

P_RESYNC_RSP AP_WRESYNrsp_RESYNind none AP_STATE
AP_TOKENS_
OWNED

AP_DATAXFER

P_SYNCMAJOR_REQ AP_DATA_XFER none AP_SESS_VA
AP_SESS_VM
AP_SESS_VS C
AP_STATE

AP_SYNCMAcnf_
SYN CMAreq

P_SYNCMAJOR_RSP AP_SYNCrsp_SYNCMAind none AP_SESS_VA
AP_SESS_VR
AP_STATE

AP_DATA_XFER

P_SYNCMINOR_REQ AP_DATA_XFER none none no sate change

P_SYNCMINOR_RSP AP_SYNCMArsp_SYNCMAind none none no state change

Primitive This primitive, valid in
states

Ap_env attributes
that may be set
(must be set in

BOLD)

May change
attributes

Next state (values of
AP_STATE
attribute)



99

AC
SE/Presentation R

eference Pages
ACSE/Presentation Prim

itives

P_TOKENGIVE_REQ AP_DATAXFER
AP_WSYNCHMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WRBCOVERYreq

none AP_STATE
AP_TOKENS_
OWNED

no state change
no state change
no state change
no state change
no state change (no
state change or
AP_DATAXFER)

P_TOKEN
PLEASE_R EQ

AP_DATAXFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WCDATArsp_CDATAind

none none no state change

RO_ERROR_REQ AP_DATAXFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAindA
P_WACTErsp_ACTEind

none none no state change

RO_INVOKE_REQ AP_DATAXFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

none none no state change

RO_RESULT_REQ AP_DATAXFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

none none no state change

Primitive This primitive, valid in
states

Ap_env attributes
that may be set
(must be set in

BOLD)

May change
attributes

Next state (values of
AP_STATE
attribute)



100 Appendix A

ACSE/Presentation Reference Pages
ACSE/Presentation Primitives



Glossary 101

Glossary

Application Layer Layer 7 of
the OSI model; the user interface
to network services and
applications that provides services
to directly support users.

ACSE Association Control Service
Element. The service element in
the OSI Application layer
responsible for association
establishment and release.

AE Title Application entity title.
A unique name identifying an OSI
service such as FTAM. The AE
title consists of two parts, the AP-
title and the AE- qualifier.

AFI Authority format identifier.
The first part of the IDP definition
of an NSAP. See IDP.

A/P ACSE/Presentation. Used to
describe the ACSE/Presentation
part of Hewlett-Packard's APRI
implementation.

APLI ACSE/Presentation library
interface (see APRI). Another term
used to describe the ACSE/
Presentation part of Hewlett-
Packard's APRI implementation.

APRI Abbreviation for ACSE/
Presentation and ROSE Interface.
Hewlett-Packard's programmatic
interface to the OSI services

provided by ACSE, Presentation
and remote operation service
element (ROSE).

ARPA See DARPA.

ASN.1 Abstract Syntax Notation
One. The OSI description language
used to define data types. Abstract
syntax describes data types
independent of the underlying
system used.

BCD binary coded decimal.

BSD Berkeley Software
Distribution; a set of networking
protocols developed primarily for
user with the UNIX operating
system. The Berkeley protocols are
often used on the same network
with ARPA.

CCITT See International
Consultative Committee on
Telephone and Telegraph

CLNS See Connectionless network
service.

CMIP Common Management
Information Protocol.

CMISE See Management
Information Service Element.



102 Glossary

Glossary

Common Management
Information Protocol. the OSI
network management protocol.

Common Element. The OSI
application layer service element
for network management.

conformance adherence to a
product specification; along with
interoperability, a defining
characteristic of an OSI-
compatible product.

Connectionless network
service. The layer 3 network
layer that provides datagrams to
transmit data.

Connection oriented network
service. The layer 3 network
layer that provides end-to-end
connection (virtual circuit) to
transmit data.

CONS See Connection oriented
network service.

Corporation for Open Systems

a non- profit, multinational
consortium of computer users and
vendors whose primary mission is
to provide test procedures for
conformance to OSI.

COS See Corporation for Open
Systems

DARPA Defence Advanced
Research Projects Agency; a
branch of the Department of
Defense (U.S.) that developed a set
of networking protocols widely
used in engineering and
manufacturing.

Data Link Layer Layer 2 of the
OSI model; establishes rules for
transmission of data over the
physical medium.

de facto standard a networking
standard whose wide use makes it
an unofficial industry standard.

draft international standard
(DIS) the second stage of the
process by which ISO develops
standards; means the standard is
complete and stable.

draft proposal (DP) the first
stage in the development of ISO
standards; means the developers
believe the standard is technically
stable.

ECMA European Computer
Manufacturers Association.



Glossary 103

Glossary

EDI Electronic Data Interchange;
an emerging Application Layer
standard for the electronic
exchange of business data.

ES End system.

EWOS European Workshop on
Open Systems.

FDDI Fiber Distributed Data
Interface; a standard for a local
area network that uses fiber optics
and operates at 100 Mbps.

FTAM File Transfer, Access and
Management; an Application
Layer standard that enables users
to transfer and access files within
a multivendor network.

GOSIP Government OSI Profile;
a set of OSI specifications that the
U.S. Government is using for its
network procurement.

IEEE 802 a series of standards for
local area networking developed by
the Institute of Electrical and
Electronics Engineers (IEEE).

implementors agreement

accord reached by computer users
and vendors on how they will
implement a networking standard
so that their products can

communicate. Also known as
functional standard or standard
profiles.

international standard (IS) a
networking standard that has been
approved by ISO or CCITT.

International Consultative
Committee on Telephone and
Telegraph division of the U.N.
International Telecommunications
Union that coordinates standard-
setting activities.

interoperability the ability of
different vendors' products to
communicate along a network;
along with conformance, a
requirement of an OSI product.

Integrated Services Digital
Network a developing standard
whose goal is to permit the
integration of data networks with
telephone communications and
other services (e.g., video) by
means of digital technology.

IDI Initial domain identifier. The
second part of the initial domain
part (IDP) definition of an NSAP.
See IDP.

IDP Initial domain part. The IDP
part of an NSAP identifies which
national or international group



104 Glossary

Glossary

has defined the NSAP format for a
given NSAP. It is partitioned into
two parts, the authority format
identifier (AFI) and the initial
domain identifier (IDI). IDP spaces
are managed by organizations
such as AFNOR, ANSI and NIST.

ISDN See Integrated Services
Digital Network

IS-IS Protocol Intermediate
system to intermediate system
protocol. An evolving ISO protocol
standard to provide automatic
routing between intermediate
systems.

ISO International Standard
Organization; the international
body that is coordinating the effort
to establish OSI standards for
multivendor networking.

local area network (LAN) a
data communications network of
limited size- within a building,
group of buildings or campus.

MAP Manufacturing Automation
Protocol; a subset of OSI standards
that specifies networking
protocols for manufacturing.

migration the non-disruptive
replacement of proprietary
networks with standards-based
networks.

MMS Manufacturing Messaging
Service; a networking standard
that defines methods for the
provision of specific applications
for manufacturing.

multivendor networking the
linking of hardware, software,
computers and peripherals made
by different vendors into a single
communications network.

NIST National Institute of
Standards and Technology
(formerly NBS). Runs
implementors' workshops that
develop agreements among
vendors on which subsets of
standards will be implemented.

network a combination of
hardware and software that allows
the transfer of data, both locally
and over great distances, between
two or more systems.

Network Layer Layer 3 of the
OSI model; governs the routing
and switching of data among
networks.



Glossary 105

Glossary

ODA Office Document
Architecture; a developing
standard that enables text,
graphics and facsimile, in different
document formats, to be moved
over a multivendor network.

OSI Open Systems
Interconnection; the name used to
describe a set of data
communications standards which
have been agreed upon at an
international level by national
standards bodies.

OSI Reference Model a
modular, seven-layer construct
that specifies how data will travel
among systems of a multivendor
network, as well as within a single
system.

Physical Layer Layer 1 of the
OSI model; enables the sending
and receiving of bits between
nodes on a network.

Presentation Address An
address made up of a P-selector, S-
selector and T-selector
(presentation, session, and
transport selectors) and one or
more NSAPs. Optionally, it can
include the application entity (AE)
title which is a unique name
identifying an OSI service such as
FTAM.

Presentation Layer Layer 6 of
the OSI model; where data are put
into usable form.

proprietary networking

networking that uses the products
and protocols of a single vendor.

protocol a formalized set of rules
by which computers communicate.

ROSE Remote Operations Service
Element. The OSI application
service element which manages
request/reply interactions.

SAP Service Access Point. A SAP
is a pipe between two OSI layers
such that an entity at layer n + 1
can obtain a set of services from
layer n.

Selector a sequence of octets
(bytes) used to identify a SAP.

Session Layer Layer 5 of the OSI
model; permits the setup of a
communications path along a
network and manages the
coordination between processes.

SNA Systems Network
Architecture; IBM's proprietary
networking formats, protocols and
procedures that are also a de facto
networking standard.



106 Glossary

Glossary

SPAG Standards Promotion and
Applications Group; based in
Europe and working with COS on
the development and promotion of
conformance tests procedures for
OSI products.

TCP transmission control
protocol. A network protocol that
establishes and maintains
connections between nodes. TCP
is the transport protocol used in
ARPA networks. Internet protocol
(IP) addresses are used to identify
systems in an ARPA network.

Transport Layer Layer 4 of the
OSI model; provides end-to-end
data integrity between processes.

United Kingdom GOSIP The
United Kingdom defined set of OSI
standards which includes a specific
NSAP format.

wide area network a network
that covers a large area; can be as
large as the entire world.

X.25 an international networking
standard, developed by the
CCITT, for the connection of
computer equipment to packet
switching networks.

X.400 CCITT standard for
electronic message handling
systems (e.g., electronic mail) in
multivendor environments.

X.500 Directory Services An
international OSI standard for
distributed directory services for
multivendor OSI environments.
Directory Services refer to any
service which stores information
about people or things in the
world. The most common example
of a directory service is the phone
book produced by the telephone
company.



Index

Index 107

A
A/P calls

used in a session, 29
A/P primitives

short names, 24
A_ASSOC_REQ, 37
A_ASSOC_RSP, 38, 39
A_PABORT_IND, 43
A_RELEASE_REQ, 42
A_RELEASE_RSP, 42
ACSE/Presentation

before running applications, 64
calls, 23
calls not supported, 19
calls, summary, 23
functions by task, 22
limitations, 19
multi-thread program

example, 64
order of primitives used, 24
primitives, summary, 24, 82
summary, 15

addressing, 50
communication endpoint, 50

AP_AGAIN, 57
AP_BIND_PADDR, 35
ap_close(), 44

close communication endpoint,
44

AP_CNTX_NAME, 37, 52
AP_DCS, 40, 52
ap_env()

limitations, 19
ap_errno, 63
ap_get_env()

PCDL, 38
PCDRL, 40

ap_init_env()
initialize A/P environment, 34

AP_LIB_SEL
migrating, 52

AP_MORE, 40, 55, 57
ap_open()

establish association, 33
AP_PCDL, 37, 38
ap_poll(), 37, 38, 40, 42, 43
ap_rcv()

data, 40
limitations, 19
receive assoc. request, 38
receive release request, 42
receive release response, 43

AP_REM_PADDR, 36
AP_ROLE_ALLOWED, 35

changing, 35
ap_set_env()

bind endpoint, 35
context name, 37
establish roles, 35
PCDL, 37
PCDRL, 38
remote p-address, 36

ap_snd()
limitations, 19
release request, 42
request association, 37
send data, 40

ap_trace, 70
ap_trace_fp, 70
ap_trace_max_udata, 70
AP_UNBOUND state, 35, 51
API tracing, 68, 75

enable in your program, 71, 77
output description, 72, 78

API_TR
_ENTRY_EXIT, 71, 77
_INPUT, 71, 77
_INT_ENTRY_EXIT, 71, 77
_INT_ERROR, 71, 77
_OUTPUT, 71, 77

application context, 52
ASN.1

compiler, 55
references for, 14

asynchronous
blocking, 56

asynchronous mode, 56
description, 56
setting, 56

attributes
tables provided, 22

audience for manual, 20

B
binding endpoints, 35
binding p-address, 51

C
changing modes, 57
client,server, 49
close communication endpoint,

44
communication endpoint

file limits, 61
communication endpoints, 50,

62
confirm association, 38
confirm release request, 42
connection retry, 60
connections

large numbers, 60
multiple, 58
transport, 61

control data, 54
create a communication

endpoint, 33

D
data

control, 54
encryption, 55
send and receive, 40
user, 54

data transfer
setup, 36

decoding data, 55
dynamic memory allocation, 60



108 Index

Index

E
EINTR, 62
enable API tracing, 71, 77
encoding data, 55
endpoints

binding, 35
ENV_FILE

parameter, null, 34
env_file, 19
environment file, 19
environment variables

getting, 19
setting, 19

error checking routines, 63
error handling

in multi-threaded applications,
63

establish roles
initiator, 35
responder, 35

establishing an association, 34
example multi-thread program,

66
example ROSE program, 66
examples

program names, 65
ROSE, reference, 66

exchanging data, 40

F
file descriptors

communication endpoints, 62
system calls not used, 62

file system calls
not supported, 62

fork(2), 62
freeing resources, 44

I
implementation

standards supported, 17

initialize the A/P environment,
34

initiator
roles, 49

L
limitations, 18

ACSE/Presentation, 19

M
manpages

A/P calls, 22
A/P primitives, 22
short names for, 14

memory usage, 60
migration

new versions, 52
multiple connections, 58

use asynch. mode, 58
multiple process

restrictions, 61
multi-thread

ACSE/Presentation program
example, 64

error handling, 63
tracing, 73, 79

multi-threads, 66

O
open file limits

changing, 62
OTS/9000

new releases, 47
overview of product, 13

P
P_DATA_IND, 40
P_DATA_REQ, 40
PCDL, 52
presentation context, 52

presentation context definition
list, 37

presentation selector
max. size, 51

process maximums, 61
programming

migration considerations, 52
programming guide, 45
programming tasks

summary, 46
provider abort, 43
p-selector

max. size, 51

R
reference manuals, 20
reject association, 39
release an association, 42
ap_snd(), 42
remote address, 36
request association, 37
request release, 42
resource constraints, 60
responder

roles, 49
retrieving environment

variables
limitations, 19

retry
connections, 60

ROSE, 66
calls, summary list, 27
how used, 15
limitations, 19
primitives, summary list, 27

rose_trace, 76
rose_trace_max_udata, 76
RTS

not supported, 19

S
sample session



Index

Index 109

calls used, 31
send data, 40
sending and receiving data, 40
setting environment variables

limitations, 19
short names

used with man, 24
signal handlers, 62, 63
sptype, 57

setting, 55
standards

documents, 20
supported standards, 17

X.410, 17
synchronous mode, 56

description, 56
system maximums, 61
system support

14 character file names, 14
systems supported, 14

T
tracing

A/P APIs, 68
in multi-threaded applications,

73, 79
ROSE API, 75
types of, 70, 76
using environment variables,

68
using global variables, 70
using ROSE global variables,

76
transfer syntax, 38
troubleshooting

API tracing for A/P, 68
API tracing for ROSE, 75
using API tracing, 67

U
ubuf, 19, 40
using ACSE/Presentation, 29

W
What is ACSE/Presentation, 15
What is ROSE, 15
who should use this manual, 20

X
X.410, 17
XAP

migration guidelines, 52
migration to, 52


