
DLPI Programmer’s Guide

Edition 4

B2355-90139

HP 9000 Networking

E0497

Printed in: United States

© Copyright 1997 Hewlett-Packard Company.

2

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and
(c) (2) of the Commercial Computer Software Restricted Rights clause at
FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY 3000 Hanover Street Palo Alto,
California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for
this pack is restricted to this product only. Additional copies of the
programs may be made for security and back-up purposes only. Resale of
the programs in their present form or with alterations, is expressly
prohibited.

Copyright Notices. ©copyright 1983-96 Hewlett-Packard Company, all
rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

©copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

This software is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of
California.

3

©copyright 1980, 1984, 1986 Novell, Inc. ©copyright 1986-1992 Sun
Microsystems, Inc. ©copyright 1985-86, 1988 Massachusetts Institute of
Technology. ©copyright 1989-93 The Open Software Foundation, Inc.
©copyright 1986 Digital Equipment Corporation. ©copyright 1990
Motorola, Inc. ©copyright 1990, 1991, 1992 Cornell University
©copyright 1989-1991 The University of Maryland ©copyright 1988
Carnegie Mellon University

Trademark Notices UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open
Company Limited.

X Window System is a trademark of the Massachusetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.

4

Contents

5

1. Introduction to DLPI

HP DLPI Features .15
Device File Format .16
Header Files .16

The Data Link Layer .17
The Service Interface .17
Modes of Communication. .19
DLPI Addressing .21

Promiscuous Mode Clarifications .26

DLPI Services .27
Local Management Services .30
Binding .32
Reserved IEEESAPS/Ethertypes. .32
Connection-mode Services .35
Connectionless-mode Services .43
Raw-mode Services. .44
An Example .47

2. DLPI Primitives

Local Management Primitives .51
PPA Initialization/De-initialization. .51
DL_HP_PPA_REQ .52
DL_HP_PPA_ACK .53
DL_INFO_REQ. .55
DL_INFO_ACK. .56
DL_ATTACH_REQ. .61
DL_DETACH_REQ .62
DL_BIND_REQ .63
DL_BIND_ACK .65
DL_UNBIND_REQ. .66

6

Contents

DL_SUBS_BIND_REQ . 67
DL_SUBS_BIND_ACK . 69
DL_SUBS_UNBIND_REQ . 70
DL_ENABMULTI_REQ . 71
DL_DISABMULTI_REQ. 72
DL_PROMISCON_REQ . 73
DL_PROMISCOFF_REQ . 75
DL_OK_ACK . 76
DL_ERROR_ACK . 77
Optional Primitives to Perform Essential Management Functions . . 78
DL_PHYS_ADDR_REQ . 78
DL_PHYS_ADDR_ACK . 80
DL_SET_PHYS_ADDR_REQ. 80
DL_GET_STATISTICS_REQ . 82
DL_GET_STATISTICS_ACK . 82
DL_HP_MULTICAST_LIST_REQ . 83
DL_HP_MULTICAST_LIST_ACK . 84

Connectionless-mode Service Primitives . 86
DL_UNITDATA_REQ. 86
DL_UNITDATA_IND . 88
DL_UDERROR_IND. 89

Raw Mode Service Primitives . 91
DL_HP_RAWDATA_REQ. 91
DL_HP_RAWDATA_IND . 92

Connection-mode Service Primitives. 94
Connection-Oriented DLPI Extensions . 94
DL_HP_INFO_REQ . 94
DL_HP_INFO_ACK . 95
DL_HP_SET_ACK_TO_REQ . 99
DL_HP_SET_P_TO_REQ . 100

Contents

7

DL_HP_SET_REJ_TO_REQ .101
DL_HP_SET_BUSY_TO_REQ. .101
DL_HP_SET_SEND_ACK_TO_REQ. .102
DL_HP_SET_MAX_RETRIES_REQ .103
DL_HP_SET_ACK_THRESH_REQ .104
DL_HP_SET_LOCAL_WIN_REQ .105
DL_HP_SET_REMOTE_WIN_REQ .106
DL_HP_CLEAR_STATS_REQ. .107
DL_HP_SET_LOCAL_BUSY_REQ .108
DL_HP_CLEAR_LOCAL_BUSY_REQ .109
DL_CONNECT_REQ .110
DL_CONNECT_IND .111
DL_CONNECT_RES .113
DL_CONNECT_CON .115
DL_TOKEN_REQ. .117
DL_TOKEN_ACK. .117
DL_DATA_REQ .118
DL_DATA_IND. .119
DL_DISCONNECT_REQ. .119
DL_DISCONNECT_IND .121
DL_RESET_REQ .122
DL_RESET_IND. .123
DL_RESET_RES .124
DL_RESET_CON .125

Primitives to Handle XID and TEST Operations 127
DL_TEST_REQ. .127
DL_TEST_IND .128
DL_TEST_RES .130
DL_TEST_CON .131
DL_XID_REQ .132
DL_XID_IND .133

8

Contents

DL_XID_RES. 135
DL_XID_CON . 136

DLPI States . 138

A. Sample Programs

Connection Mode . 144

Connectionless Mode . 156

Raw Mode . 167

Glossary

9

Printing History
The manual printing date and part number indicate its current edition.
The printing date will change when a new edition is printed. Minor
changes may be made at reprint without changing the printing date. the
manual part number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive the updated or
new editions, you should subscribe to the appropriate product support
service. See your HP sales representative for details.

Third Edition: December 1995

Fourth Edition: April 1997

10

11

Preface
This guide provides STREAMS kernel-level programming information
that is specified by the ISO Data Link Service Definition DIS 8886 and
Logical Link Control DIS 8802/2 (LLC). Where the two standards do not
conform, DIS 8886 prevails.

This guide assumes familiarity with the OSI Reference Model
terminology, OSI Data Link Services, and STREAMS. It is organized as
follows:

Chapter 1 Introduction to DLPI

This chapter provides an overview of DLPI, including
addressing information and information on DLPI
services.

Chapter 2 DLPI Primitives

This chapter describes local management primitives,
connectionless mode primitives, raw mode primitives,
and primitives to handle XID and TEST operations.

Appendix A Sample Programs

This appendix contains sample programs for
connection mode, connectionless mode, and raw mode.

12

13

1 Introduction to DLPI

14 Chapter 1

Introduction to DLPI

The Data Link Provider Interface (DLPI) is an industry standard
definition for message communications to STREAMS-based network
interface drivers. A service provider interface is a specified set of
messages and the rules that allow passage of these messages across
layer boundaries.

Chapter 1 15

Introduction to DLPI
HP DLPI Features

HP DLPI Features
Hewlett-Packard’s implementation of the Data Link Provider Interface,
HP DLPI, conforms to the DLPI Version 2.0 Specification as a Style 2
provider. HP DLPI offers data link service users:

• Clone (maximum 900) and non-clone (maximum 100) access.

• Support for Ethernet/IEEE802.3, FDDI, Fibre Channel, 100VG and
Token Ring.

• Support for connectionless and connection-mode services
(connection-mode services are supported only over IEEE802.3 and
Token Ring).

• Also support for raw-mode services. For details on raw mode, see the
DL_BIND_REQ, DL_HP_RAW_REQ and DL_HP_RAW_IND
primitives. Raw mode is supported on Ethernet/802.3, FDDI, Token
Ring, Fibre Channel and 100VG.

• Style 2.

• I_STR ioctl is supported for doing device-specific control/diagnostic
requests.

• Priority messages are supported over 100VG (see
DL_UNIT_DATA_REQ primitive).

• For support of third-party devices, refer to the third-party user
manuals.

• Support for the following HP products: Ethernet/IEEE802.3, FDDI,
Fibre Channel, 100VG and Token Ring.

• The following devices support all levels of promiscuous mode: NIO
ethernet LAN, J2146A (HP-PB) NIO LAN only (the 36967A-20N
(HP-PB) card is NOT supported), CIO ethernet LAN driver, Series
700 core and HP EISA LAN. For support of third-party devices, refer
to the third-party user manuals.

NOTE The HP ATM adapter provides its own “native” DLPI provider, which
should not be confused with this DLPI provider.

HP DLPI does not currently include:

• Quality of Service (QOS) management.

16 Chapter 1

Introduction to DLPI
HP DLPI Features

• Connection Management STREAMS; DL_SUBS_BIND_REQ and
DL_SUBS_UNBIND_REQ over connection-oriented STREAMS.

• Acknowledged connectionless-mode services.

Device File Format
The following is a description of the device file formats required for
accessing the STREAMS DLPI LAN driver.

NOTE HP DLPI supports up to 100 non-clone device files. HP recommends that
device file names follow the naming convention /dev/dlpiX , where X is
the number of the device.

Header Files
There are two DLPI header files: dlpi.h and dlpi_ext.h . Both are in
/usr/include/sys . dlpi.h contains definitions for the standard DLPI
primitives. dlpi_ext.h contains definitions for the HP extended DLPI
primitives.

Name Type Major # Minor # Access

/dev/dlpi c 72 0x77 Clone access

/dev/dlpiX c 119 0xX Non-clone access

Chapter 1 17

Introduction to DLPI
The Data Link Layer

The Data Link Layer
The data link layer (layer 2 in the OSI Reference Model) is responsible
for the transmission and error-free delivery of bits of information over a
physical communications medium. The model defines networking
functionality at several layers and service providers between the layers.

A model of the data link layer is presented here to describe concepts that
are used throughout this guide. It is described in terms of an interface
architecture, as well as addressing concepts needed to identify different
components of that architecture. The description of the model assumes
familiarity with the OSI Reference Model.

The Service Interface
Each layer of the OSI Reference Model has two standards:

• one that defines the services provided by the layer.

• one that defines the protocol through which layer services are
provided.

DLPI is an implementation of the first type of standard. It specifies an
interface to the services of the data link layer. Figure 1-1 illustrates how
DLPI performs this function.

18 Chapter 1

Introduction to DLPI
The Data Link Layer

Figure 1-1 Abstract View of DLPI

The data link interface is the boundary between the network and the
data link layers of the OSI Reference Model. The network layer entity is
the user of the services of the data link interface (DLS user), and the
data link layer entity is the provider of those services (DLS provider).
This interface consists of a set of primitives that provide access to the
data link layer services, plus the rules for using those primitives (state
transition rules). A data link interface service primitive might request a
particular service or indicate a pending event.

To provide uniformity among the various UNIX system networking
products, an effort is underway to develop service interfaces that map to
the OSI Reference Model. A set of kernel-level interfaces, based on the
STREAMS development environment, constitute a major portion of this
effort. The service primitives that make up these interfaces are defined
as STREAMS messages that are transferred between the user and
provider of the service. DLPI is one such kernel-level interface, and is
targeted for STREAMS protocol modules that either use or provide data
link services. In addition, user programs that wish to access a
STREAMS-based data link provider directly may do so using the
putmsg(2) and getmsg(2) system calls.

Referring to Figure 1-1, the DLS provider is configured as a STREAMS
driver, and the DLS user accesses the provider using open(2) to establish
a stream to the DLS provider. The stream acts as a communication

Data Link
User

Request/Response
Primitives

Indication/Confirmation
Primitives

Data Link
Provider

DLPI

Chapter 1 19

Introduction to DLPI
The Data Link Layer

endpoint between a DLS user and the DLS provider. After the stream is
created, the DLS user and DLS provider communicate via messages
discussed later.

DLPI is intended to free data link users from specific knowledge of the
characteristics of the data link provider. Specifically, the definition of
DLPI hopes to achieve the goal of allowing a DLS user to be implemented
independent of a specific communications medium. Any data link
provider (supporting any communications medium) that conforms to the
DLPI specification may be substituted beneath the DLS user to provide
the data link services. Support of a new DLS provider should not require
any changes to the implementation of the DLS user.

Modes of Communication
Although DLPI supports three modes of communication,
Hewlett-Packard supports connection and connectionless modes. The
connection mode is circuit-oriented and enables data to be transferred
over a pre-established connection in a sequenced manner. Data may be
lost or corrupted in this service mode due to provider-initiated
resynchronization or connection aborts.

The connectionless mode is message-oriented and supports data transfer
in self-contained units with no logical relationship required between
units. Because there is no acknowledgment of each data unit
transmission, this service mode can be unreliable in the most general
case. However, a specific DLS provider can provide assurance that
messages will not be lost, duplicated, or reordered.

Raw mode interface is also supported. Raw mode allows the DLS user to
send and receive packets with complete LLC and MAC header
information.

Connection-mode Service
The connection-mode service is characterized by four phases of
communication:

• Local Management

• Connection Establishment

• Data Transfer

• Connection Release

20 Chapter 1

Introduction to DLPI
The Data Link Layer

Local Management. This phase enables a DLS user to initialize a
stream for use in communication and establish an identity with the DLS
provider.

Connection Establishment. This phase enables two DLS users to
establish a data link connection between them to exchange data. One
user (the calling DLS user) initiates the connection establishment
procedures, while another user (the called DLS user) waits for incoming
connect requests. The called DLS user is identified by an address
associated with its stream.

A called DLS user may either accept or deny a request for a data link
connection. If the request is accepted, a connection is established
between the DLS users and they enter the data transfer phase.

For both the calling and called DLS users, only one connection my be
established per stream. Thus, the stream is the communication endpoint
for a data link connection.

The called DLS user may choose to accept a connection on the stream
where it received the connect request, or it may open a new stream to the
DLS provider and accept the connection on this new, responding stream.
By accepting the connection on a separate stream, the initial stream can
be designated as a listening stream through which all connect requests
will be processed. As each request arrives, a new stream (communication
endpoint) can be opened to handle the connection, enabling subsequent
requests to be queued on a single stream until they can be processed.

Data Transfer. In this phase, the DLS users are considered peers and
may exchange data simultaneously in both directions over an established
data link connection. Either DLS user may send data to its peer DLS
user at any time. Data sent by a DLS user is guaranteed to be delivered
to the remote user in the order in which it was sent.

Connection Release. This phase enables either the DLS user, or the
DLS provider, to break an established connection. The release procedure
is considered abortive, so any data that has not reached the destination
user when the connection is released may be discarded by the DLS
provider.

Chapter 1 21

Introduction to DLPI
The Data Link Layer

Connectionless-mode Service
The connectionless mode service does not use the connection
establishment and release phases of the connection mode service. The
local management phase is still required to initialize a stream. Once
initialized, however, the connectionless data transfer phase is
immediately entered. Because there is no established connection,
however, the connectionless data transfer phase requires the DLS user to
identify the destination of each data unit to be transferred. The
destination DLS user is identified by the address associated with that
user.

DLPI Addressing
Each user of DLPI must establish an identity to communicate with other
data link users. This identity consists of two pieces. First, the DLS user
must somehow identify the physical medium over which it will
communicate. This is particularly evident on systems that are attached
to multiple physical media. Second, the DLS user must register itself
with the DLS provider so that the provider can deliver protocol data
units destined for that user. Figure 1-2 illustrates the components of this
identification approach, which are explained below.

Figure 1-2 Data Link Addressing Components

Physical Attachment Identification
The physical point of attachment (PPA in Figure 1-2) is the point at
which a system attaches itself to a physical communications medium. All
communication on that physical medium funnels through the PPA. On
systems where a DLS provider supports more than one physical medium,
the DLS user must identify which medium it will communicate through.

DLSAP

DLS Users

DLS

PPA

Provider

Physical Media

22 Chapter 1

Introduction to DLPI
The Data Link Layer

A PPA is identified by a unique PPA identifier. For media that support
physical layer multiplexing of multiple channels over a single physical
medium (such as the B and D channels of ISDN), the PPA identifier must
identify the specific channel over which communication will occur.

Two styles of DLS provider are defined by DLPI, distinguished by the
way they enable a DLS user to choose a particular PPA. The style 1
provider assigns a PPA based on the major/minor device the DLS user
opened. This style of provider is appropriate when few PPAs will be
supported.

If the number of PPAs a DLS provider will support is large, a style 2
provider implementation is more suitable. The style 2 provider requires
a DLS user to explicitly identify the desired PPA using a special attach
service primitive. For a style 2 driver, the open(2) creates a stream
between the DLS user and DLS provider, and the attach primitive then
associates a particular PPA with that stream. The format of the PPA
identifier is specific to the DLS provider.

DLPI provides a mechanism to get and/or modify the physical address.
The primitives to handle these functions are described in Chapter 2. The
physical address value can be modified in a post-attached state. This
modifies the value for all streams for that provider for a particular PPA.
The physical address cannot be modified if even a single stream for that
PPA is in the bound state.

The DLS user uses the supported primitives DL_ATTACH_REQ,
DL_BIND_REQ, DL_ENABMULTI_REQ, and DL_PROMISCON_REQ
to define a set of enabled physical and SAP address components on a per
stream basis. It is invalid for a DLS provider to ever send upstream a
data message for which the DLS user on that stream has not requested.
The burden is on the provider to enforce the isolation of SAP and
physical address space effects on a per-stream basis by any means that it
chooses.

HP PPA Format
The PPA number which is passed in the DL_ATTACH_REQ primitive
should correspond to the network management ID (NMID) of the
interface being attached to. The network management ID is obtainable
in one of two ways: 1) the lanscan(1M) command, and 2)
programmatically via the HP_PPA_REQ primitive (see Chapter 2).

Chapter 1 23

Introduction to DLPI
The Data Link Layer

Data Link User Identification
A data link user’s identity is established by associating it with a data
link service access point (DLSAP), which is the point through which the
user will communicate with the data link provider. A DLSAP is identified
by a DLSAP address.

The DLSAP address identifies a particular data link service access point
that is associated with a stream (communication endpoint). A bind
service primitive enables a DLS user to either choose a specific DLSAP
by specifying its address, or to determine the DLSAP associated with a
stream by retrieving the bound DLSAP address. The DLSAP address can
then be used by other DLS users to access a specific DLS user. The
format of the DLSAP address is specific to the DLS provider. However,
DLPI provides a mechanism for decomposing the DLSAP address into
component pieces. The DL_INFO_ACK primitive returns the length of
the SAP component of the DLSAP address, along with the total length of
the DLSAP address.

HP’s DLSAP Address Format (802.3, Ethernet, Token
Ring, FDDI)
Ethernet/IEEE802.3 and FDDI MAC addresses are presented in
canonical format. Token Ring MAC addresses are presented in wire
format.

DLSAPs are what DLPI defines as an address through which the user
will communicate to a Data Link Service (DLS) provider. The content of
the DLSAP address will depend on the context in which it is used (i.e.
which primitive is being processed or acknowledged). The basic format of
the DLSAP address is always the same.

The basic DLSAP address format is:

|MAC address | SAP/Ethertype | SNAP (SAP = 0xAA) | [RIF]|

[] indicates that this information is optional.

The three possible variations of the DLSAP address format based on the
protocol value are:

• 802.2 SAP format

| DA/SA | DSAP/SSAP | [RIF, up to 18bytes] |

• Ethertype format

| DA/SA | TYPE |

24 Chapter 1

Introduction to DLPI
The Data Link Layer

• SNAP SAP format

| DA/SA | 0xAA | SNAP | [RIF, up to 18bytes] |

HP’s DLSAP Address Format for Fibre Channel
The four possible formats for Fibre Channel are:

• 802.2 SAP format

| N_Port_Id | Process Associator | FC_Type |DSAP/SSAP|

• 802.2 SAP without Process Associator format

| N_Port_Id | FC_Type | DSAP/SSAP |

• SNAP/SAP format

|N_Port_Id|Process Associator|FC_Type|0xAA|SNAP Info|

• SNAP/SAP without Process Associator format

| N_Port_Id | FC_Type | 0xAA | SNAP Info |

Certain DLS providers require the capability of binding on multiple
DLSAP addresses. This can be achieved through subsequent binding of
DLSAP addresses. DLPI supports peer and hierarchical binding of
DLSAPs. When the user requests peer addressing, the DLSAP specified
in a subsequent bind may be used in lieu of the DLSAP bound in the
DL_BIND_REQ. This will allow for a choice to be made between a
number of DLSAPs on a stream when determining traffic based on
DLSAP values. An example of this would be to specify various ether_type
values as DLSAPs. The DL_BIND_REQ, for example, could be issued
with an ether_type value of IP, and a subsequent bind could be issued
with an ether_type value of ARP. The provider may now multiplex off the
ether_type field and allow for either IP or ARP traffic to be sent up this
stream.

When the DLS user requests hierarchical binding, the subsequent bind
will specify a DLSAP that will be used in addition to the DLSAP bound
using a DL_BIND_REQ. This will allow additional information to be
specified, that will be used in a header or used for demultiplexing. An
example of this would be to use hierarchical bind to specify the
Organizational Unique Identifier (OUI) to be used by SNAP.

If a DLS provider supports peer subsequent bind operations, the first
SAP that is bound is used as the source SAP when there is ambiguity.

Chapter 1 25

Introduction to DLPI
The Data Link Layer

DLPI supports the ability to associate several streams with a single
DLSAP, where each stream may be a unique data link connection
endpoint. However, not all DLS providers can support such
configurations because some DLS providers may have no mechanism
beyond the DLSAP address for distinguishing multiple connections. In
such cases, the provider will restrict the DLS user to one stream per
DLSAP.

26 Chapter 1

Introduction to DLPI
Promiscuous Mode Clarifications

Promiscuous Mode Clarifications
The following definitions are being defined for the various levels of
promiscuous mode.

DL_PROMISC_PHYS—Before the STREAM has been bound (with the
DL_BIND_REQ primitive), the DLPI user receives all traffic on the wire
regardless of SAP or address. After the STREAM has been bound, the
DLPI user receives all traffic on the wire that matches the protocol(s) the
user has bound to on the promiscuous STREAM; this includes protocols
bound with the DL_SUBS_BIND_REQ.

DL_PROMISC_SAP—Before the STREAM has been bound (with the
DL_BIND_REQ primitive), the DLPI user receives all traffic destined for
this interface (physical addresses, broadcast addresses or bound
multicast addresses) that matches any SAP enabled on that interface.
After the STREAM has been bound, the DLPI user receives only those
packets originally destined for the interface that match one of the
protocol(s) bound on the promiscuous STREAM.

NOTE The Series 700 core and EISA LAN and100VG drivers are currently the
only hardware supporting promiscuous mode which is known to have a
MULTICAST_ALL command. This command allows the chip to receive
all packets with the group bit set. The other drivers will require that the
hardware be in full promiscuous mode and then filter on the group bit in
the driver.

DL_PROMISC_MULTI—Before the STREAM has been bound (with the
DL_BIND_REQ primitive), the DLPI user receives all multicast packets
on the wire regardless of the SAP. After the STREAM has been bound,
the DLPI user receives all multicast packets that match one of the
protocol(s) bound on the promiscuous STREAM.

NOTE Each LAN interface currently allows only one stream to enable the
promiscuous mode service. This restriction will be removed with a future
release of the DLPI provider.

Chapter 1 27

Introduction to DLPI
DLPI Services

DLPI Services
The various features of the DLPI interface are defined in terms of the
services provided by the DLS provider and the individual primitives that
may flow between the DLS user and DLS provider.

HP DLPI supports two of the three modes of service: connection and
connectionless. HP DLPI does not support acknowledged connectionless
service. The connection mode is circuit-oriented and enables data to be
transferred over an established connection in a sequenced manner. The
connectionless mode is message-oriented and supports data transfer in
self-contained units with no logical relationship required between units.
DLPI also includes a set of local management functions that apply to all
modes of service.

DLPI supports the XID and TEST services that appear in the following
table. The DLS user can issue an XID or TEST request to the DLS
provider. The provider will transmit an XID or TEST frame to the peer
DLS provider. On receiving a response, the DLS provider sends a
confirmation primitive to the DLS user. On receiving an XID or TEST
frame from the peer DLS provider, the local DLS provider sends up an
XID or TEST indication primitive to the DLS user. The user must
respond with an XID or TEST response frame to the provider.

In addition, raw mode service is now supported. Raw mode allows the
DLS user to send and receive packets with complete LLC and MAC
headers.

Table 1-1 provides information about the DLPI services that are
described in the following sections.

28 Chapter 1

Introduction to DLPI
DLPI Services

Table 1-1 Cross-Reference of DLS Services and Primitives

Phase of
Communication Service Primitives

Local Management Information
Reporting

DL_INFO_REQ
DL_INFO_ACK
DL_ERROR_ACK
DL_HP_PPA_REQ
DL_HP_PPA_ACK

Attach DL_ATTACH_REQ
DL_DETACH_REQ
DL_OK_ACK
DL_ERROR_ACK

Bind DL_BIND_REQ
DL_BIND_ACK
DL_SUBS_BIND_REQ
DL_SUBS_BIND_ACK
DL_UNBIND_REQ
DL_SUBS_UNBIND_REQ
DL_OK_ACK
DL_ERROR_ACK

Other DL_ENABMULTI_REQ
DL_DISABMULTI_REQ
DL_PROMISCON_REQ
DL_PROMISCOFF_REQ
DL_OK_ACK
DL_ERROR_ACK
DL_HP_MULTICAST_LIST_REQ
DL_HP_MULTICAST_LIST_ACK

Chapter 1 29

Introduction to DLPI
DLPI Services

Connection
Establishment

Connection
Establishment

DL_CONNECT_REQ
DL_CONNECT_IND
DL_CONNECT_RES
DL_CONNECT_CON
DL_DISCONNECT_REQ
DL_DISCONNECT_IND
DL_TOKEN_REQ
DL_TOKEN_ACK
DL_OK_ACK
DL_ERROR_ACK

Connection-mode
Data Transfer

Data Transfer DL_DATA_REQ
DL_DATA_IND

Reset DL_RESET_REQ
DL_RESET_IND
DL_RESET_RES
DL_RESET_CON
DL_OK_ACK
DL_ERROR_ACK

Connection Release Connection Release DL_DISCONNECT_REQ
DL_DISCONNECT_IND
DL_OK_ACK
DL_ERROR_ACK

Connectionless-mode
 Data Transfer

Data Transfer DL_UNITDATA_REQ
DL_UNITDATA_IND

Error Reporting DL_UDERROR_IND

Phase of
Communication Service Primitives

30 Chapter 1

Introduction to DLPI
DLPI Services

Local Management Services
The local management services apply to the connection and
connectionless modes of communication. These services, which fall
outside the scope of standards specification, define the method for
initializing a stream that is connected to a DLS provider. DLS provider
information reporting services are also supported by local management
facilities.

Information Reporting Service
This service provides information about the DLPI stream to the DLS
user. The message DL_INFO_REQ requests the DLS provider to return
operating information about the stream. The DLS provider returns the
information in a DL_INFO_ACK message as shown in Figure 1-3.

Figure 1-3 Message Flow: Information Reporting

Raw Mode Data
Transfer

DL_HP_RAWDATA_REQ
DL_HP_RAWDATA_IND

XID and TEST XID DL_XID_REQ
DL_XID_IND
DL_XID_RES
DL_XID_CON

TEST DL_TEST_REQ
DL_TEST_IND
DL_TEST_RES
DL_TEST_CON

Phase of
Communication Service Primitives

DL_INFO
request

DL_INFO
acknowledge

Chapter 1 31

Introduction to DLPI
DLPI Services

Attach Service
The attach service assigns a physical point of attachment (PPA) to a
stream. This service is required for style 2 DLS providers to specify the
physical medium over which communications will occur. The DLS
provider indicates success with a DL_OK_ACK message and failure with
a DL_ERROR_ACK message. The normal message sequence is
illustrated in Figure 1-4.

Figure 1-4 Message Flow: Attaching a Stream to a Physical Line

A PPA may be disassociated with a stream using the
DL_DETACH_REQ. The normal message sequence is illustrated in
Figure 1-5.

Figure 1-5 Message Flow: Detaching a Stream to a Physical Line

Bind Service
The bind service associates a data link service access point (DLSAP) with
a stream. The DLSAP is identified by a DLSAP address.

DL_BIND_REQ requests that the DLS provider bind a DLSAP to a
stream. It also notifies the DLS provider to make the stream active with
respect to the DLSAP for processing connectionless data transfer and
connection establishment requests. DL_SUBS_BIND_REQ provides the
added capability on binding on multiple DLSAP addresses.

DL_ATTACH
request

DL_OK
acknowledge

DL_DETACH
request

DL_OK
acknowledge

32 Chapter 1

Introduction to DLPI
DLPI Services

Binding
The following protocol values are currently supported by the DLPI
driver:

• IEEE802.2 SAPS

• ethernet types

• SNAP

Valid IEEE802.2 SAPS include even numbers from 0-255, excluding
reserved SAPS (see the section “Reserved IEEESAPS/Ethertypes”). Valid
ethernet types range from 0x600 to 0xFFFF, excluding reserved
ethertypes (see the section “Reserved IEEESAPS/Ethertypes”). The
SNAP protocol values contain three bytes of organization ID plus two
bytes of additional data. If the first three bytes are 0, the following two
bytes are an ethernet type with valid values from 0x0-0xFFFF. If the
first three bytes are non-zero, the following two bytes are organization
specific with valid values from 0x0-0xFFFF.

IEEE802.2 SAPS and ethernet types are bound to the driver via the
DL_BIND_REQ or the DL_SUBS_BIND_REQ (DL_PEER_BIND class
only). SNAP protocol values can be logged in two ways. The first method
requires you to first bind the SNAP SAP 0xAA via the DL_BIND_REQ
primitive. You then must issue a DL_SUBS_BIND_REQ (must be
DL_HIERARCHICAL_BIND class) with the five bytes of SNAP data.
The second method requires you to bind any non-SNAP protocol value
via the DL_BIND_REQ primitive and then issue a
DL_SUBS_BIND_REQ (must be DL_PEER_BIND class) with six bytes
of data. The first byte must be the SNAP SAP 0xAA followed by five
bytes of SNAP data.

Reserved IEEESAPS/Ethertypes
Refer to the IETF RFC 1010 “Assigned Numbers.”

The DLS provider indicates success with a DL_BIND_ACK or a
DL_SUBS_BIND_ACK message and failure with a DL_ERROR_ACK
message.

The normal flow of messages is illustrated in Figure 1-6.

Chapter 1 33

Introduction to DLPI
DLPI Services

Figure 1-6 Message Flow: Binding a Stream to a DLSAP

DL_UNBIND_REQ requests the DLS provider to unbind all DLSAPs
from a stream. The DL_UNBIND_REQ also unbinds all the
subsequently bound DLSAPs that have not been unbound. The DLS
provider indicates success with a DL_OK_ACK message and failure with
a DL_ERROR_ACK message.

DL_SUBS_UNBIND_REQ requests the DLS provider to unbind the
subsequently bound DLSAP. The DLS provider indicates success with a
DL_OK_ACK message and failure with a DL_ERROR_ACK message, as
shown in Figure 1-7.

Figure 1-7 Message Flow: Unbinding a Stream from a DLSAP

DL_ENABMULTI_REQ requests the DLS provider to enable specific
multicast addresses on a per stream basis. The provider indicates
success with a DL_OK_ACK message and failure with a
DL_ERROR_ACK message.

The normal message sequence is illustrated in Figure 1-8.

DL_BIND
request

DL_BIND
acknowledge

DL_SUBS_BIND
request

DL_SUBS_BIND
acknowledge

DL_UNBIND
request

DL_OK
acknowledge

DL_SUBS_UNBIND
request

DL_SUBS_OK
acknowledge

34 Chapter 1

Introduction to DLPI
DLPI Services

Figure 1-8 Message Flow: Enabling a Specific Multicast Address on a
Stream

DL_DISABMULTI_REQ requests the DLS provider to disable specific
multicast addresses on a per stream basis. The provider indicates
success with a DL_OK_ACK message and failure with a
DL_ERROR_ACK message.

The normal message sequence is illustrated in Figure 1-9.

Figure 1-9 Message Flow: Disabling a Specific Multicast Address on a
Stream

DL_PROMISCON_REQ requests the DLS provider to enable
promiscuous mode on a per stream basis, either at the physical level of at
the SAP level. The provider indicates success with a DL_OK_ACK
message and failure with a DL_ERROR_ACK message.

The normal message sequence is illustrated in Figure 1-10.

Figure 1-10 Message Flow: Enabling Promiscuous Mode on a Stream

DL_ENABMULTI
request

DL_OK
acknowledge

DL_DISABMULTI
request

DL_OK
acknowledge

DL_PROMISCON
request

DL_OK
acknowledge

Chapter 1 35

Introduction to DLPI
DLPI Services

DL_PROMISCOFF_REQ requests the DLS provider to disable
promiscuous mode on a per stream basis, either at the physical level of at
the SAP level. The provider indicates success with a DL_OK_ACK
message and failure with a DL_ERROR_ACK message.

The normal message sequence is illustrated in Figure 1-11.

Figure 1-11 Message Flow: Disabling Promiscuous Mode on a Stream

Connection-mode Services
The connection-mode services enable a DLS user to establish a data link
connection, transfer data over that connection, reset the link, and release
the connection when the conversation has terminated.

Connection Establishment Service
The connection establishment service establishes a data link connection
between a local DLS user and a remote DLS user for the purpose of
sending data. Only one data link connection is allowed on each stream.

Normal Connection Establishment. In the connection
establishment model, the calling DLS user initiates connection
establishment, while the called DLS user waits for incoming requests.
DL_CONNECT_REQ requests that the DLS provider establish a
connection. DL_CONNECT_IND informs the called DLS user of the
request, which may be accepted using DL_CONNECT_RES.
DL_CONNECT_CON informs the calling DLS user that the connection
has been established.

The normal sequence of messages is illustrated in Figure 1-12.

DL_PROMISCOFF
request

DL_OK
acknowledge

36 Chapter 1

Introduction to DLPI
DLPI Services

Figure 1-12 Message Flow: Successful Connection Establishment

Once the connection is established, the DLS users may exchange user
data using DL_DATA_REQ and DL_DATA_IND.

The DLS user may accept an incoming connect request on either the
stream where the connect indication arrived or at an alternate,
responding stream. The responding stream is indicated by a token in the
DL_CONNECT_RES. This token is a value associated with the
responding stream and is obtained by issuing a DL_TOKEN_REQ on
that stream. The DLS provider responds to this request by generating a
token for the stream and returning it to the DLS user in a
DL_TOKEN_ACK.

Connection Handoff
Connections may be established on a stream other than that which
received the DL_CONNECT_IND by passing a non-zero dl_resp_token in
the DL_CONNECT_RES. The dl_resp_token value is obtained by doing a
DL_TOKEN_REQ on the stream the connection is being passed to (the
data stream). The DL_CONNECT_RES is done on the stream which
received the DL_CONNECT_IND (the control stream). Both the control
and data streams must be bound on the same local SAP. After the
DL_CONNECT_RES, the control stream will be left in the
INCON_PEND state if there are more outstanding connect indications;
otherwise, it will be left in the IDLE state. The data stream will be in the
DATAXFER state.

The normal sequence of messages for obtaining a token is illustrated in
Figure 1-13.

DL_CONNECT
request

DL_CONNECT
confirm

DL_CONNECT

DL_CONNECT

DL_OK

response

indication

acknowledge

Chapter 1 37

Introduction to DLPI
DLPI Services

Figure 1-13 Message Flow: Token Retrieval

In the typical connection establishment scenario, the called DLS user
processes one connect indication at a time, accepting the connection on
another stream. Once the user responds to the current connect
indication, the next connect indication (if any) can be processed. DLPI
also enables the called DLS user to multi-thread incoming connect
indications. The user can receive multiple connect indications before
responding to any of them. This enables the DLS user to establish
priority schemes on incoming connect requests.

Connection Establishment Rejection. In certain situations, the
connection establishment request cannot be completed. The following
describes the occasions under which DL_DISCONNECT_REQ and
DL_DISCONNECT_IND primitives will flow during connection
establishment, causing the connect request to be aborted.

Figure 1-14 illustrates the situation where the called DLS user chooses
to reject the connect request by issuing DL_DISCONNECT_REQ instead
of DL_CONNECT_RES.

Figure 1-14 Message Flow: Called DLS User Rejection of Connection
Establishment Attempt

Figure 1-15 illustrates the situation where the DLS provider rejects a
connect request for lack of resources or other reasons. The DLS provider
sends DL_DISCONNECT_IND in response to DL_CONNECT_REQ.

DL_TOKEN
request

DL_TOKEN
acknowledge

DL_CONNECT
request

DL_DISCONNECT
indication

DL_CONNECT

DL_DISCONNECT

DL_OK

request

indication

acknowledge

38 Chapter 1

Introduction to DLPI
DLPI Services

Figure 1-15 Message Flow: DLS Provider Rejection of a Connection
Establishment Attempt

Figure 1-16 through Figure 1-18 illustrate the situation where the
calling DLS user chooses to abort a previous connection attempt. The
DLS user issues DL_DISCONNECT_REQ at some point following a
DL_CONNECT_REQ. The resulting sequence of primitives depends on
the relative timing of the primitives involved, as defined in the following
time sequence diagrams.

Figure 1-16 Message Flow: Both Primitives are Destroyed by Provider

Figure 1-17 Message Flow: DL_DISCONNECT Indication Arrives before
DL_CONNECT Response is Sent

DL_CONNECT
request

DL_DISCONNECT
indication

DL_CONNECT
request

DL_OK
acknowledge

DL_DISCONNECT
request

DL_CONNECT
request

DL_OK
acknowledge

DL_CONNECT

DL_DISCONNECT
indication

indication
DL_DISCONNECT

request

Chapter 1 39

Introduction to DLPI
DLPI Services

Figure 1-18 Message Flow: DL_DISCONNECT Indication Arrives after
DL_CONNECT Response is Sent

Data Transfer Service
The connection-mode data transfer service provides for the exchange of
user data in either direction or in both directions simultaneously
between DLS users. Data is transmitted in logical groups called data
link service data units (DLSDUs). The DLS provider preserves both the
sequence and boundaries of DLSDUs as they are transmitted.

Normal data transfer is neither acknowledged nor confirmed. It is up to
the DLS users, if they so choose, to implement a confirmation protocol.

Each DL_DATA_REQ primitive conveys a DLSDU from the local DLS
user to the DLS provider. Similarly, each DL_DATA_IND primitive
conveys a DLSDU from the DLS provider to the remote DLS user. The
normal flow of messages is illustrated in Figure 1-19.

Figure 1-19 Message Flow: Normal Data Transfer

DL_CONNECT
request

DL_OK

request

DL_CONNECT

DL_CONNECT

DL_OK

response

indication

acknowledge

DL_DISCONNECT
indication

DL_DISCONNECT

acknowledge

DL_DATA
request

DL_DATA
indication

40 Chapter 1

Introduction to DLPI
DLPI Services

Connection Release Service
The connection release service provides for the DLS users or the DLS
provider to initiate the connection release. Connection release is an
abortive operation and any data in transit (has not been delivered to the
DLS user) may be discarded.

DL_DISCONNECT_REQ requests that a connection be released.
DL_DISCONNECT_IND informs the DLS user that a connection has
been released. Normally, one DLS user requests disconnection and the
DLS provider issues an indication of the ensuing release to the other
DLS user, as illustrated by the message flow in Figure 1-20.

Figure 1-20 Message Flow: DLS User-Invoked Connection Release

Figure 1-21 illustrates that when two DLS users independently invoke
the connection release service, neither received a
DL_DISCONNECT_IND.

Figure 1-21 Message Flow: Simultaneous DLS User Invoked Connection
Release

Figure 1-22 illustrates that when the DLS provider and the local DLS
user simultaneously invoke the connection release service, the remote
DLS user receives a DL_DISCONNECT_IND.

DL_DISCONNECT
request

DL_DISCONNECT
indicationDL_OK

acknowledge

DL_DISCONNECT
request DL_DISCONNECT

request
DL_OK

acknowledge DL_OK
acknowledge

Chapter 1 41

Introduction to DLPI
DLPI Services

Figure 1-22 Message Flow: Simultaneous DLS User & DLS Provider Invoked
Connection Release

Reset Service
The reset service may be used by the DLS user to resynchronize the use
of a data link connection, or by the DLS provider to report detected loss
of data unrecoverable within the data link service.

Invocations of the reset service will unblock the flow of DLSDUs if the
data link connection id congested; DLSDUs may be discarded by the DLS
provider. The DLS user or users that did not invoke the reset will be
notified that a reset has occurred. A reset may require a recovery
procedure to be performed by the DLS users.

The interaction between each DLS user and the DLS provider will be one
of the following:

• a DL_RESET_REQ from the DLS user, followed by a
DL_RESET_CON from the DLS provider,

• a DL_RESET_IND from the DLS provider, followed by a
DL_RESET_RES from the DLS user.

The DL_RESET_REQ acts as a synchronization mark in the stream of
DLSDUs that are transmitted by the issuing DLS user; the
DL_RESET_IND acts as a synchronization mark in the stream of
DLSDUs that are received by the peer DLS user. Similarly, the
DL_RESET_RES acts as a synchronization mark in the stream of
DLSDUs that are transmitted by the responding DLS user; the
DL_RESET_CON acts as a synchronization mark in the stream of
DLSDUs that are received by the DLS user which originally issued the
reset.

The resynchronizing properties of the reset service are:

• No DLSDU transmitted by the DLS user before the synchronization
mark in that transmitted stream will be delivered to the other DLS
user after the synchronization mark in that received stream.

DL_DISCONNECT
request

DL_DISCONNECT
indicationDL_OK

acknowledge

42 Chapter 1

Introduction to DLPI
DLPI Services

• The DLS provider will discard all DLSDUs submitted before the
issuing of the DL_RESET_REQ that have not been delivered to the
peer DLS user when the DLS provider issues the DL_RESET_IND.

• The DLS provider will discard all DLSDUs submitted before the
issuing of the DL_RESET_RES that have not been delivered to the
initiator of the DL_RESET_REQ when the DLS provider issues the
DL_RESET_CON.

• No DLSDU transmitted by a DLS user after the synchronization
mark in that transmitted stream will be delivered to the other DLS
user before the synchronization mark in that received stream.

The complete message flow depends on the origin of the reset, which may
be the DLS provider or either DLS user. Figure 1-23 illustrates the
message flow for a reset invoked by one DLS user.

Figure 1-23 Message Flow: DLS User-Invoked Connection Reset

Figure 1-24 illustrates the message flow for a reset invoked by both DLS
users simultaneously.

Figure 1-24 Message Flow: Simultaneous DLS User-Invoked Connection
Reset

Figure 1-25 illustrates the message flow for a reset invoked by the DLS
provider.

DL_RESET
request

DL_RESET

DL_RESET

DL_RESET

DL_OK

response

indication

acknowledgeconfirm

DL_RESET
request DL_RESET

request

DL_RESET
confirm DL_RESET

confirm

Chapter 1 43

Introduction to DLPI
DLPI Services

Figure 1-25 Message Flow: DLS Provider-Invoked Connection Reset

Figure 1-26 illustrates the message flow for a reset invoked
simultaneously by one DLS user and the DLS provider.

Figure 1-26 Message Flow: Simultaneous DLS User & DLS Provider-Invoked
Connection Reset

Connectionless-mode Services
The connectionless-mode services enable a DLS user to transfer units of
data to peer DLS users without incurring the overhead of establishing
and releasing a connection. The connectionless service does not, however,
guarantee reliable delivery of data units between peer DLS users (e.g.
lack of flow control may cause buffer resource shortages that result in
data being discarded).

Once a stream has been initialized via the local management services, it
may be used to send and retrieve connectionless data units.

Connectionless Data Transfer
The connectionless data transfer service provides for the exchange of
user data (DLSDUs) in either direction or in both directions
simultaneously without having to establish a data link connection. Data

DL_RESET
indication DL_RESET

indication

DL_OK
acknowledge

DL_RESET
response
DL_OK

acknowledge

DL_RESET
response

DL_RESET
request

DL_RESET
indication

DL_RESET
confirm

DL_RESET
response
DL_OK

acknowledge

44 Chapter 1

Introduction to DLPI
DLPI Services

transfer is neither acknowledged nor confirmed, and there is no
end-to-end flow control provided. As such, the connectionless data
transfer service cannot guarantee reliable delivery of data. However a
specific DLS provider can provide assurance that messages will not be
lost, duplicated, or reordered.

DL_UNITDATA_REQ conveys one DLSDU to the DLS provider.
DL_UNITDATA_IND conveys one DLSDU to the DLS user. The normal
flow of messages is illustrated in Figure 1-27.

Figure 1-27 Message Flow: Connectionless Data Transfer

Error Reporting Service
The connectionless-mode error reporting service may be used to notify a
DLS user that a previously sent data unit either produced an error or
could not be delivered. This service does not, however, guarantee that an
error indication will be issued for every undeliverable data unit.

Figure 1-28 Connectionless-Mode Error Reporting

Raw-mode Services
The raw-mode services enable a DLS user to transfer packets containing
complete MAC and LLC headers to a peer DLS user. The raw-mode
service does not guarantee reliable delivery of data units between peer
DLS users (e.g. lack of flow control may cause buffer resource shortages
that result in data being discarded).

The DLS user requests the raw-mode services by setting the service
mode in the DL_BIND_REQ to DL_HP_RAWDLS.

DL_UNITDATA
request

DL_UNITDATA
indication

DL_UDERROR
indication

Chapter 1 45

Introduction to DLPI
DLPI Services

Raw-mode Data Transfer
The raw-mode data transfer service provides the same service as the
connectionless data transfer service. The only difference is that the raw-
mode DLS user builds the complete MAC and LLC headers prior to data
transfer, whereas the connectionless-mode DLS user merely specifies the
peer DLS user and the DLS provider then builds the complete MAC and
LLC headers before transferring the packet.

The DL_HP_RAWDATA_REQ conveys one DLSDU to the DLS provider.
The DL_HP_RAWDATA_IND conveys one DLSDU to the DLS user. The
normal flow of messages is illustrated in Figure 1-29.

Figure 1-29 Message Flow: Raw Data Transfer

Error Reporting Service
The raw-mode error reporting service provides the same services as the
connectionless-mode error reporting services. However, the
DL_ERROR_ACK primitive is used in place of the DL_UDERROR
primitive to report all error conditions in raw-mode.

Figure 1-30 Raw-Mode Error Reporting

XID and TEST Service
The XID and TEST service enables the DLS user to issue an XID or
TEST request to the DLS provider. On receiving a response for the XID
or TEST frame transmitted to the peer DLS provider, the DLS provider
sends up an XIS or TEST confirmation primitive to the DLS user. On
receiving an XID or TEST frame from the peer DLS provider, the local

DL_HP_RAWDATA
request

DL_HP_RAWDATA
indication

DL_ERROR_ACK
indication

46 Chapter 1

Introduction to DLPI
DLPI Services

DLS provider sends up an XID or TEST indication respectively to the
DLS user. The DLS user must respond with an XID or TEST response
primitive.

If the DLS user requested automatic handling of the XID or TEST
response, at bind time, the DLS provider will send up an error
acknowledgment on receiving an XID or TEST request. Also, no
indications will be generated to the DLS user on receiving XID or TEST
frames from the remote side.

XID and TEST Packet Handling
XID and TEST packets are handled differently on connection oriented
streams than they are on connectionless streams. On connectionless
streams, XID and TEST packets may be sent and received by any stream
at any time after binding. On connection oriented streams, XID and
TEST packets may be sent and received at any time after binding by
streams specifying a non- zero dl_max_conind in the DL_BIND_REQ.
Connection oriented streams which specify a zero dl_max_conind in the
DL_BIND_REQ will only receive XID and TEST packets after a
connection has been established.

LLC Type 2 monitors XID packets sent and received on connection
oriented streams. If the stream has a connection established, LLC Type 2
will set the local and remote receive window sizes to those specified in
the XID packets.

The normal flow of message is illustrated in Figure 1-31 and Figure 1-32.

Figure 1-31 Message Flow: XID Service

DL_XID
request

DL_XID

DL_XID

DL_XID
response

indication

confirm

Chapter 1 47

Introduction to DLPI
DLPI Services

Figure 1-32 Message Flow: Test Service

An Example
To summarize, Figure 1-33 is an example that illustrates the primitives
that flow during a complete, connection-mode sequence between stream
open and stream close.

DL_TEST
request

DL_TEST

DL_TEST

DL_TEST
response

indication

confirm

48 Chapter 1

Introduction to DLPI
DLPI Services

Figure 1-33 Message Flow: A Connection-Mode Example
DL_ATTACH

request
DL_ATTACH

request

DL_BIND
request

DL_OK
acknowledge

DL_OK
acknowledge

DL_BIND
acknowledge

DL_BIND
request

DL_BIND
acknowledge

DL_CONNECT
confirm

DL_CONNECT
request

DL_CONNECT
response

DL_CONNECT
indication

DL_OK
acknowledge

DL_DATA
request

DL_DATA
request

DL_DATA
indication

DL_DATA
indication

DL_DISCONNECT
request

DL_DISCONNECT
indication

DL_OK
acknowledge

DL_DETACH
request

DL_UNBIND
request

DL_OK
acknowledge

DL_OK
acknowledge

DL_OK
acknowledge

DL_DETACH
request

DL_UNBIND
request

DL_OK
acknowledge

49

2 DLPI Primitives

50 Chapter 2

DLPI Primitives

The kernel-level interface to the data link layer defines a
STREAMS-based message interface between the provider of the data
link service (DLS provider) and the consumer of the data link service
(DLS user). STREAMS provides the mechanism in which DLPI
primitives may be passed between the DLS user and DLS provider.

Before DLPI primitives can be passed between the DLS user and the
DLS provider, the DLS user must establish a stream to the DLS provider
using open(2). The DLS provider must therefore be configured as a
STREAMS driver. When interactions between the DLS user and DLS
provider have completed, the stream may be closed.

The STREAMS messages used to transport data link service primitives
across the interface have one of the following formats:

• One M_PROTO message block followed by zero or more M_DATA
blocks. The M_PROTO message block contains the data link layer
service primitive type and all relevant parameters associated with
the primitive. The M_DATA block(s) contain any DLS user data that
might be associated with the service primitive.

• One M_PCPROTO message block containing the data link layer
service primitive type and all relevant parameters associated with
the service primitive.

• One or more M_DATA message blocks conveying user data.

The following sections describe the format of the supported primitives.
The primitives are grouped into four categories:

• Local Management Service Primitives

• Connectionless-mode Service Primitives

• Connection-mode Service Primitives

• Primitives to handle XID and TEST operations

All of the DLPI extensions listed in this chapter are defined in
<sys/dlpi_ext.h> and <sys/dlpi.h> .

Chapter 2 51

DLPI Primitives
Local Management Primitives

Local Management Primitives
This section describes the local management service primitives. These
primitives support the information reporting, Attach and Bind. Once a
stream has been opened by a DLS user, these primitives initialize the
stream, preparing it for use.

PPA Initialization/De-initialization
The PPA associated with each stream must be initialized before the DLS
provider can transfer data over the medium. The initialization and
de-initialization of the PPA is a network management issue, but DLPI
must address the issue because of the impact such actions will have on a
DLS user. More specifically, DLPI requires the DLS provider to initialize
the PPA associated with a stream at some point before it completes the
processing of the DL_BIND_REQ. Guidelines for initialization and
de-initialization of a PPA by a DLS provider are presented here.

A DLS provider may initialize a PPA using the following methods:

• pre-initialized by some network management mechanism before the
DL_BIND_REQ is received; or

• automatic initialization on receipt of a DL_BIND_REQ or
DL_ATTACH_REQ.

A specific DLS provider may support either of these methods, or possibly
some combination of the two, but the method implemented has no impact
on the DLS user. From the DLS user’s viewpoint, the PPA is guaranteed
to be initialized on receipt of a DL_BIND_ACK. For automatic
initialization, this implies that the DL_BIND_ACK may not be issued
until the initialization has completed.

If pre-initialization has not been performed and/or automatic
initialization fails, the DLS provider will fail the DL_BIND_REQ. Two
errors, DL_INITFAILED and DL_NOTINIT, may be returned in the
DL_ERROR_ACK response to a DL_BIND_REQ if PPA initialization
fails. DL_INITFAILED is returned when a DLS provider supports
automatic PPA initialization, but the initialization attempt failed.
DL_NOTINIT is returned when the DLS provider requires
pre-initialization, but the PPA is not initialized before the
DL_BIND_REQ is received.

52 Chapter 2

DLPI Primitives
Local Management Primitives

A DLS provider may handle PPA de-initialization using the following
methods:

• automatic de-initialization upon receipt of the final
DL_DETACH_REQ (for style 2 providers) or DL_UNBIND_REQ (for
style 1 providers), or upon closing of the last stream associated with
the PPA;

• automatic de-initialization after expiration of a timer following the
last DL_DETACH_REQ, DL_UNBIND_REQ, or close as appropriate;
or

• no automatic de-initialization; administrative intervention is
required to de-initialize the PPA at some point after it is no longer
being accessed.

A specific DLS provider may support any of these methods, or possibly
some combination of them, but the method implemented has no impact
on the DLS user. From the DLS user’s viewpoint, the PPA is guaranteed
to be initialized and available for transmission until it closes or unbinds
the stream associated with the PPA.

DLS provider-specific addendum documentation should describe the
method chosen for PPA initialization and de-initialization.

DL_HP_PPA_REQ
This primitive is used to obtain a list of all the valid PPAs currently
installed in the system.

This message consists of one M_PCPROTO message block which
contains the following structure.

Format

typedef struct {
 u_long dl_primitive;
} dl_hp_ppa_req_t;

Parameters

dl_primitive

DL_HP_PPA_REQ

State

Chapter 2 53

DLPI Primitives
Local Management Primitives

The message is valid in any State in which a local acknowledgment is not
pending, as described in Appendix B, Allowable Sequence of DLPI
Primitives, of the DLPI 2.0 specification.

New State

The resulting state is unchanged.

Response

The DLPI driver responds to this request with a DL_HP_PPA_ACK.

DL_HP_PPA_ACK
This primitive is sent in response to a DL_HP_PPA_REQ; it conveys
information on each valid PPA currently installed in the system.

This message consists of one M_PCPROTO message block which
contains the following structure and information.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_length;

u_long dl_count;
 u_long dl_offset;
} dl_hp_ppa_ack_t;

Parameters

dl_primitive

DL_HP_PPA_ACK

dl_length

length of the data area following the DL_HP_PPA_ACK primitive.
The data area is formatted as one or more dl_hp_ppa_info_t
structures (see below).

dl_count

number of PPAs in the list.

dl_offset

offset from the beginning of the M_PCPROTO block where the
dl_hp_ppa_info_t information begins.

54 Chapter 2

DLPI Primitives
Local Management Primitives

/* info area in DL_HP_PPA_ACK */
 typedef struct {

u_long dl_next_offset;
 u_long dl_ppa;
 u_char dl_hw_path[100];

u_long dl_mac_type;
 u_char dl_phys_addr[20];
 u_long dl_addr_length;
 u_long dl_mjr_num;
 u_char dl_name[64]

u_long dl_instance_num
u_long dl_mtu;
u_long dl_hdw_state;
u_char dl_module_id_1[64];
u_char dl_module_id_2[64];
u_char dl_arpmod_name[64];
u_char dl_nmid;
u_long dl_reserved1;
u_long dl_reserved2;

} dl_hp_ppa_info_t;

dl_next_offset

offset of next ppa info structure from start of info area.

dl_ppa

PPA # assigned to LAN interface.

dl_hw_path

hardware path of LAN interface.

dl_mac_type

MAC type of LAN interface.

dl_phys_addr

station address.

dl_addr_length

length of station address.

dl_mjr_num

major number of interface driver.

dl_name

name of driver.

dl_instance_num

instance number of device.

Chapter 2 55

DLPI Primitives
Local Management Primitives

dl_mtu

MTU

dl_hdw_state

hardware state

dl_module_id_1

default module ID name for the stream. The default name is “lan.”
This value is used as the interface name when executing the
ifconfig command.

dl_module_id_2

optional module ID name for streams that support multiple
encapsulation types. If the user is attached to a stream that supports
ETHER and IEEE8023, then this name is set to “snap.” Otherwise,
the field is set to NULL. This value is used as the interface name
when executing the ifconfig command.

dl_arpmod_name

identifies the ARP helper module for the network interface. If the
driver does not have an ARP helper, this field will be NULL.

dl_nmid

identifies the network management ID value for a specific interface.

dl_reserved[1,2]

reserved fields

State

The message is valid in any State in response to a DL_PPA_REQ.

New State

The resulting state is unchanged.

DL_INFO_REQ
Requests information of the DLS provider about the DLPI stream. This
information includes a set of provider-specific parameters, as well as the
current state of the interface.

56 Chapter 2

DLPI Primitives
Local Management Primitives

The message consists of one M_PCPROTO message block, which
contains the following structure.

Format

typedef struct {
 ulong dl_primitive;
} dl_info_req_t;

Parameters

dl_primitive

DL_INFO_REQ

State

The message is valid in any state in which a local acknowledgment is not
pending, as described in Appendix B, Allowable Sequence of DLPI
Primitives, of the DLPI 2.0 specification.

New State

The resulting state is unchanged.

DL_INFO_ACK
This message is sent in response to DL_INFO_REQ; it conveys
information about the DLPI stream to the DLS user.

This message consists of one M_PCPROTO message block, which
contains the following structure.

Format

typedef struct {
 ulong dl_primitve;
 ulong dl_max_sdu;
 ulong dl_min_sdu;
 ulong dl_addr_length;
 ulong dl_mac_type;
 ulong dl_reserved;
 ulong dl_current_state;
 ulong dl_sap_length;
 ulong dl_service_mode;
 ulong dl_qos_length;
 ulong dl_qos_offset;
 ulong dl_qos_range_length;
 ulong dl_provider_style;
 ulong dl_addr_offset;
 ulong dl_version;
 ulong dl_brdcst_addr_length;

Chapter 2 57

DLPI Primitives
Local Management Primitives

 ulong dl_brdcst_addr_offset;
 ullong dl_growth;
} dl_info_ack_t;

Parameters

dl_primitive

DL_INFO_ACK

dl_max_sdu

maximum number of bytes that may be transmitted in a data link
service data unit (DLSDU). This value must be a positive integer that
is greater than or equal to the value of dl_min_sdu.

dl_min_sdu

minimum number of bytes that may be transmitted in a DLSDU. The
value is never less than one.

dl_addr_length

length, in bytes, of the provider’s DLSAP address.

dl_mac_type

type of medium supported. Possible values:

DL_CSMACD

Carrier Sense Multiple Access with Collision Detection (ISO
8802/3).

DL_TPB

Token-Passing Bus (ISO 8802/4).

DL_TPR

Token-Passing Ring (ISO 8802/5).

DL_METRO

Metro Net (ISO 8802/6).

DL_ETHER

Ethernet Bus.

DL_HDLC

bit synchronous communication line.

58 Chapter 2

DLPI Primitives
Local Management Primitives

DL_CHAR

character synchronous communication line.

DL_CTCA

channel-to-channel adapter.

DL_FDDI

Fiber Distributed Data Interface.

DL_OTHER

any other medium not listed above.

NOTE dl_mac_type is not valid until after a dl_attach_req has been issued.

dl_reserved

reserved field whose value must be set to zero.

dl_current_state

state of the DLPI interface for the stream when the DLS provider
issued this acknowledgment.

dl_sap_length

current length of the SAP component of the DLSAP address. It may
have a negative, zero or positive. A positive value indicates the
ordering of the SAP and PHSYCAL component within the DLSAP
address as SAP component followed by PHYSICAL component. A
negative value indicates PHYSICAL followed by the SAP. A zero
value indicates that no SAP has yet been bound. The absolute value
of the dl_sap_length provides the length of the SAP component within
the DLSAP address.

dl_service_mode

if returned before the DL_BIND_REQ is processed, this conveys
which services modes the DLS provider can support. It contains a
bit-mask specifying on or more than one of the following values:

DL_CODLS

connection-oriented data link service.

DL_CLDLS

Chapter 2 59

DLPI Primitives
Local Management Primitives

connection-less data link service.

DL_HP_RAWDLS

raw-mode service.

DL_ACLDLS

acknowledged connectionless data link service.

Since ATM is a connection-oriented link, the value of this field will
always be DL_CODLS.

dl_qos_length

length, in bytes, of the negotiated/selected values of the quality of
service (QOS) parameters. The returned values are those agreed
during the negotiation. If QOS has not yet been negotiated, default
values will be returned; these values correspond to those that will be
applied by the DLS provider on a connect request.

The QOS values are conveyed in the structures defined in the above
sections in this chapter. For any parameter the DLS provider does not
support or cannot determine, the corresponding entry will be set to
DL_UNKNOWN.

dl_qos_offset

offset from the beginning of the M_PCPROTO block where the
current QOS parameters begin.

dl_qos_range_length

length, in bytes, of the available range of QOS parameter values
supported by the DLS provider. This the range available to the calling
DLS user in a connect request. The range of available QOS values is
conveyed in the structures defined in the following section in this
chapter. For any parameter the DLS provider does not support or
cannot determine, the corresponding entry will be set to
DL_UNKNOWN.

dl_qos_range_offset

offset from the beginning of the M_PCPROTO block where the
available range of quality of service parameters begins.

dl_provider_style

60 Chapter 2

DLPI Primitives
Local Management Primitives

style of DLS provider associated with the DLPI stream. The following
provider classes are defined.

DL_STYLE1

PPA is implicitly attached to the DLPI stream by opening the
appropriate major/minor device number.

DL_STYLE2

DLS user must explicitly attach a PPA to the DLPI stream using
DL_ATTACH_REQ.

ATM DLPI only supports DL_STYLE2.

dl_addr_offset

offset of the address that is bound to the associated stream. If the
DLS user issues a DL_INFO_REQ prior to binding a DLSAP, the
value of dl_addr_len will be 0 and consequently indicate that there
has been no address bound.

dl_version

current supported version of the DLPI.

dl_brdcst_addr_length

length of the physical broadcast address. ATM DLPI does not support
broadcast addresses and therefore, the value of this field will be zero.

dl_brdcst_addr_offset

not applicable to ATM DLPI.

dl_growth

growth field for future use. The value of this field will be zero.

State

The message is valid in any state in response to a DL_INFO_REQ.

New State

The resulting state is unchanged.

Chapter 2 61

DLPI Primitives
Local Management Primitives

DL_ATTACH_REQ
Requests the DLS provider to associate a physical point of attachment
(PPA) with a stream.

The message consists of one M_PROTO message block, which contains
the following structure.

Format

typedef struct {
 ulong dl_primitive;
 ulong dl_ppa;
} dl_attach_req_t;

Parameters

dl_primitive

DL_ATTACH_REQ

dl_ppa

identifier of the physical point of attachment to be associated with the
stream.

State

The message is valid in state DL_UNATTACHED.

New State

The resulting state is DL_ATTACH_PENDING.

Response

If the attach request is successful, DL_OK_ACK is sent to the DLS user
resulting in state DL_UNBOUND.

If the request fails, DL_ERROR_ACK is returned and the resulting state
is unchanged.

Reasons for Failure

DL_BADPPA

The specified PPA is invalid.

DL_ACCESS

The DLS user did not have proper permission to use the requested
PPA.

62 Chapter 2

DLPI Primitives
Local Management Primitives

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_DETACH_REQ
Requests the DLS provider to disassociate a physical point of attachment
(PPA) with a stream.

The message consists of one M_PROTO message block, which contains
the following structure.

Format

typedef struct {
 ulong dl_primitive;
} dl_detach_req_t;

Parameters

dl_primitive

DL_DETACH_REQ

State

The message is valid in state DL_UNBOUND.

New State

The resulting state is DL_DETACH_PENDING.

Response

If the detach request is successful, DL_OK_ACK is sent to the DLS user
resulting in state DL_UNATTACHED.

If the request fails, DL_ERROR_ACK is returned and the resulting state
is unchanged.

Reasons for Failure

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_SYSERR

Chapter 2 63

DLPI Primitives
Local Management Primitives

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_BIND_REQ
Requests the DLS provider to bind a DLSAP to the stream. The DLS
user must identify the address of the DLSAP to be bound to the stream.
The DLS user also indicates whether it will accept incoming connection
requests on the stream. Finally, the request directs the DLS provider to
activate the stream associated with the DLSAP.

The message consists of one M_PROTO message block, which contains
the following structure.

Format

typedef struct {
 ulong dl_primitive;
 ulong dl_sap;
 ulong dl_max_conind;
 ushort dl_service_mode;
 ushort dl_conn_mgmt;
 ulong dl_xidtest_flg;
} dl_bind_req_t;

Parameters

dl_primitive

DL_BIND_REQ

dl_sap

DLSAP that will be bound to the DLPI stream.

dl_max_conind

maximum number of outstanding DL_CONNECT_IND messages
allowed on the DLPI stream. If the value is zero, the stream cannot
accept any DL_CONNECT_IND messages. If greater than zero, the
DLS user will accept DL_CONNECT_IND messages up to the given
value before having to respond with a DL_CONNECT_RES or a
DL_DISCONNECT_REQ.

dl_service_mode

desired mode of service for this stream. This field should be set to one
of the following:

DL_CODLS

64 Chapter 2

DLPI Primitives
Local Management Primitives

connection-mode

DL_CLDLS

connectionless-mode

DL_HP_RAWDLS

raw-mode

dl_conn_mgmt

indicates that the stream is the “connection management” stream for
the PPA to which the stream is attached. This field should be set to
zero.

dl_xidtest_flg

indicates to the DLS provider that XID and/or TEST responses for
this stream are to be automatically generated by the DLS Provider.

State

The message is valid in state DL_UNBOUND.

New State

The resulting state is DL_BIND_PENDING.

Response

If the bind request is successful, DL_BIND_ACK is sent to the DLS user
resulting in state DL_IDLE.

If the request fails, DL_ERROR_ACK is returned and the resulting state
is unchanged.

Reasons for Failure

DL_BADADDR

The DLSAP address information was invalid or was in an incorrect
format.

DL_INITFAILED

Automatic initialization of the PPA failed.

DL_NOTINIT

The PPA had not been initialized prior to this request.

DL_ACCESS

Chapter 2 65

DLPI Primitives
Local Management Primitives

The DLS user did not have proper permission to use the requested
DLSAP address.

DL_BOUND

The DLS user attempted to bind a second stream to a DLSAP with
dl_max_conind greater than zero, or the DLS user attempted to bind
a second “connection management” stream to a PPA.

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_NOADDR

The DLS provider could not allocate a DLSAP address for this
stream.

DL_UNSUPPORTED

The DLS provider does not support requested service mode on this
stream.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_NOAUTO

Automatic handling of XID and TEST responses not supported.

DL_NOXIDAUTO

Automatic handling of XID response not supported.

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_BIND_ACK
Reports the successful bind of a DLSAP to a stream, and returns the
bound DLSAP address to the DLS user. This primitive is generated in
response of a DL_BIND_REQ.

The message consists of one M_PCPROTO message block, which
contains the following structure.

Message Format

66 Chapter 2

DLPI Primitives
Local Management Primitives

typedef struct {
 ulong dl_primitive;
 ulong dl_sap;
 ulong dl_addr_length;
 ulong dl_addr_offset;
 ulong dl_max_conind;
 ulong dl_xidtest_flg;
} dl_bind_ack_t;

Parameters

dl_primitive

DL_BIND_ACK

dl_sap

DLSAP address information associated with the bound DLSAP. It
corresponds to the dl_sap field of the associated DL_BIND_REQ,
which contains part of the DLSAP address.

dl_addr_length

length of the complete DLSAP address that was bound to the DLPI
stream.

dl_addr_offset

offset from the beginning of the M_PCPROTO block where the
DLSAP address begins.

dl_max_conind

allowed maximum number of outstanding DL_CONNECT_IND
messages to be supported on the DLPI stream.

dl_xidtest_flg

XID and TEST responses supported by the provider.

State

The message is valid in state DL_BIND_PENDING.

New State

The resulting state is DL_IDLE.

DL_UNBIND_REQ
Requests the DLS provider to unbind the DLSAP that had been bound by
a previous DL_BIND_REQ from this stream.

Chapter 2 67

DLPI Primitives
Local Management Primitives

The message consists of one M_PROTO message block, which contains
the following structure.

Format

typedef struct {
 ulong dl_primitive;
} dl_unbind_req_t;

Parameters

dl_primitive

DL_UNBIND_REQ

State

The message is valid in state DL_IDLE.

New State

The resulting state is DL_UNBIND_PENDING.

Response

If the unbind request is successful, DL_OK_ACK is sent to the DLS user
resulting in state DL_UNBOUND.

If the request fails, DL_ERROR_ACK is returned and the resulting state
is unchanged.

Reasons for Failure

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_SUBS_BIND_REQ
Requests the DLS provider bind a subsequent DLSAP to the stream. The
DLS user must identify the address of the subsequent DLSAP to be
bound to the stream.

Format

The message consists of one M_PROTO message block, which contains
the following structure.

68 Chapter 2

DLPI Primitives
Local Management Primitives

typedef struct {
ulong dl_primitive;
ulong dl_subs_sap_offset;
ulong dl_subs_sap_length;
ulong dl_subs_bind_class;

} dl_subs_bind_req_t;

Parameters

dl_primitive

DL_SUBS_BIND_REQ

dl_subs_sap_offset

offset of the DLSAP from the beginning of the M_PROTO block.

dl_subs_sap_length

length of the specified DLSAP.

dl_subs_bind_class

specifies either peer or hierarchical addressing.

DL_PEER_BIND

specifies peer addressing. The DLSAP specified is used in lieu of
the DLSAP bound in the BIND request.

DL_HIERARCHICAL_BIND

specifies hierarchical addressing. The DLSAP specified is used in
addition to the DLSAP specified using the BIND request.

State

The message is valid in state DL_IDLE.

New State

The resulting state is DL_SUBS_BIND_PND.

Response

If the subsequent bind request is successful, DL_SUBS_BIND_ACK is
sent to the DLS user resulting in state DL_IDLE.

Reasons for Failure

DL_BADADDR

The DLSAP address information was invalid or was in an incorrect
format.

Chapter 2 69

DLPI Primitives
Local Management Primitives

DL_ACCESS

The DLSAP user did not have proper permission to use the requested
DLSAP address.

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_UNSUPPORTED

Requested addressing class not supported.

DL_TOOMANY

Limit exceeded on the maximum number of DLSAPs per stream.

DL_SUBS_BIND_ACK
Reports the successful bind of a subsequent DLSAP to a stream, and
returns the bound DLSAP address to the DLS user. This primitive is
generated in response to a DL_SUBS_BIND_REQ.

Format

The message consists of one M_PROTO message block, which contains
the following structure.

typedef struct {
 ulong dl_primitive;
 ulong dl_subs_sap_offset;
 ulong dl_subs_sap_length;
} dl_subs_bind_ack_t;

Parameters

dl_primitive

DL_SUBS_BIND_ACK

dl_subs_sap_offset

offset of the DLSAP from the beginning of the M_PCPROTO block.

dl_subs_sap_length

length of the specified DLSAP.

70 Chapter 2

DLPI Primitives
Local Management Primitives

State

The message is valid in state DL_SUBS_BIND_PND.

New State

The resulting state is DL_IDLE.

DL_SUBS_UNBIND_REQ
Requests the DLS provider to unbind the DLSAP that had been bound by
a previous DL_SUBS_BIND_REQ from this stream.

Format

The message consists of one M_PROTO message block, which contains
the following structure.

typedef struct {
 ulong dl_primitive;
 ulong dl_subs_sap_offset;
 ulong dl_subs_sap_length;
} dl_subs_unbind_req_t;

Parameters

dl_primitive

DL_SUBS_UNBIND_REQ

dl_subs_sap_offset

offset of the DLSAP from the beginning of the M_PROTO block.

dl_subs_sap_length

length of the specified DLSAP.

State

The message is valid in state DL_IDLE.

New State

The resulting state is DL_SUBS_UNBIND_PND.

Response

If the unbind request is successful, a DL_OK_ACK is sent to the DLS
User. The resulting state is DL_IDLE.

If the request fails, DL_ERROR_ACK is returned and the resulting state
is unchanged.

Chapter 2 71

DLPI Primitives
Local Management Primitives

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_BADADDR

The DLSAP address information was invalid or was in an incorrect
format.

DL_ENABMULTI_REQ
Requests the DLS Provider to enable specific multicast addresses on a
per Stream basis. It is invalid for a DLS Provider to pass upstream
messages that are destined for any address other than those explicitly
enabled on that Stream by the DLS User.

Format

The message consists of one M_PROTO message block, which contains
the following structure:

typedef struct {
 ulong dl_primitive;
 ulong dl_addr_length;
 ulong dl_addr_offset;
} dl_enabmulti_req_t;

Parameters

dl_primitive

DL_ENABMULTI_REQ

dl_addr_length

length of the multicast address.

dl_addr_offset

offset from the beginning of the M_PROTO message block where the
multicast address begins.

State

72 Chapter 2

DLPI Primitives
Local Management Primitives

This message is valid in any state in which a local acknowledgment is
not pending with the exception of DL_UNATTACH.

New State

The resulting state is unchanged.

Response

If the enable request is successful, a DL_OK_ACK is sent to the DLS
user. If the request fails, DL_ERROR_ACK is returned and the resulting
state is unchanged.

Reasons for Failure

DL_BADADDR

Address information was invalid or was in an incorrect format.

DL_TOOMANY

Too many multicast address enable attempts. Limit exceeded.

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_NOTSUPPORTED

Primitive is known, but not supported by the DLS Provider.

DL_DISABMULTI_REQ
Requests the DLS Provider to disable specific multicast addresses on a
per Stream basis.

Format

The message consists of one M_PROTO message block, which contains
the following structure:

typedef struct {
 ulong dl_primitive;
 ulong dl_addr_length;
 ulong dl_addr_offset;
} dl_disabmulti_req_t;

Parameters

dl_primitive

DL_DISABMULTI_REQ

Chapter 2 73

DLPI Primitives
Local Management Primitives

dl_addr_length

length of the physical address.

dl_addr_offset

offset form the beginning of the M_PROTO message block where the
multicast address begins.

State

This message is valid in any state in which a local acknowledgment is
not pending with the exception of DL_UNATTACH.

New State

The resulting state is unchanged.

Response

If the disable request is successful, a DL_OK_ACK is sent to the DLS
user. If the request fails, DL_ERROR_ACK is returned and the resulting
state is unchanged.

Reasons for Failure

DL_BADADDR

Address information was invalid or in an incorrect format.

DL_NOTENAB

Address specified is not enabled.

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_NOTSUPPORTED

Primitive is known, but not supported by the DLS Provider.

DL_PROMISCON_REQ
This primitive requests the DLS Provider to enable promiscuous mode
on a per Stream basis, either at the physical level or at the SAP level.

The DL Provider will route all received messages on the media to the
DLS User until either a DL_DETACH_REQ or a
DL_PROMISCOFF_REQ is received or the Stream is closed.

74 Chapter 2

DLPI Primitives
Local Management Primitives

Format

The message consists of one M_PROTO message block, which contains
the following structure.

typedef struct {
 ulong dl_primitive;
 ulong dl_level;
} dl_promiscon_req_t;

Parameters

dl_primitive

DL_PROMISCON_REQ

dl_level

indicates promiscuous mode at the physical or SAP level.

DL_PROMISC_PHYS

Before or after the STREAM has been bound, the DLPI user
receives all traffic on the wire regardless of protocol or physical
address.

DL_PROMISC_SAP

Before or after the STREAM has been bound, the DLPI user
receives all traffic destined for this interface (physical addresses,
broadcast addresses or bound multicast addresses) that matches
any protocol enabled on that interface.

DL_PROMISC_MULTI

Before or after the STREAM has been bound, the DLPI user
receives all multicast packets on the wire regardless of the
protocol it is destined for.

State

The message is valid in any state when there is no pending
acknowledgment.

New State

The resulting state is unchanged.

Response

If enabling of promiscuous mode is successful, a DL_OK_ACK is
returned. Otherwise, a DL_ERROR_ACK is returned.

Chapter 2 75

DLPI Primitives
Local Management Primitives

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_NOTSUPPORTED

Primitive is known but not supported by the DLS Provider.

DL_UNSUPPORTED

Requested service is not supplied by the provider.

DL_PROMISCOFF_REQ
This primitive requests the DLS Provider to disable promiscuous mode
on a per Stream basis, either at the physical level or at the SAP level.

Format

The message consists of one M_PROTO message block, which contains
the following structure.

typedef struct {
 ulong dl_primitive;
 ulong dl_level;
} dl_promiscoff_req_t;

Parameters

dl_primitive

DL_PROMISCOFF_REQ

dl_level

indicates promiscuous mode at the physical or SAP level.

DL_PROMISC_PHYS

Before or after the STREAM has been bound, the DLPI user
receives all traffic on the wire regardless of protocol or physical
address.

DL_PROMISC_SAP

76 Chapter 2

DLPI Primitives
Local Management Primitives

Before or after the STREAM has been bound, the DLPI user
receives all traffic destined for this interface (physical addresses,
broadcast addresses or bound multicast addresses) that matches
any protocol enabled on that interface.

DL_PROMISC_MULTI

Before or after the STREAM has been bound, the DLPI user
receives all multicast packets on the wire regardless of the
protocol it is destined for.

State

The message is valid in any state in which the promiscuous mode is
enabled and there is no pending acknowledgment.

New State

The resulting state is unchanged.

Response

If the promiscuous mode disabling is successful, a DL_OK_ACK is
returned. Otherwise, a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_NOTSUPPORTED

Primitive is known but not supported by the DLS Provider.

DL_NOTENAB

Mode not enabled.

DL_OK_ACK
Acknowledges to the DLS user that a previously issued request primitive
was received successfully. It is only initiated for those primitives that
require a positive acknowledgment.

Chapter 2 77

DLPI Primitives
Local Management Primitives

Format

The message consists of one M_PCPROTO message block, which
contains the following structure.

typedef struct {
 ulong dl_primitive;
 ulong dl_correct_primitve;
} dl_ok_ack_t;

Parameters

dl_primitive

DL_OK_ACK

dl_correct_primitive

identifies the successfully received primitive that is being
acknowledged.

State

The message is valid in response to a DL_ATTACH_REQ,
DL_DETACH_REQ, DL_UNBIND_REQ, DL_CONNECT_RES,
DL_RESET_RES, DL_DISCON_REQ, DL_SUBS_UNBIND_REQ,
DL_PROMISCON_REQ, DL_ENABMULTI_REQ,
DL_DISADMULTI_REQ or DL_PROMISCOFF_REQ from any of several
states as defined in Appendix B, Allowable Sequence of DLPI Primitives,
of the DLPI 2.0 specification.

New State

The resulting state depends on the current state and is defined fully in
Appendix B, Allowable Sequence of DLPI Primitives, of the DLPI 2.0
specification.

DL_ERROR_ACK
Informs the DLS user that the previous request or response was invalid.

Format

The message consists of one M_PCPROTO message block, which
contains the following structure.

typedef struct {
 ulong dl_primitive;
 ulong dl_error_primitive;

78 Chapter 2

DLPI Primitives
Local Management Primitives

 ulong dl_errno;
 ulong dl_unix_errno;
} dl_error_ack_t;_

Parameters

dl_primitive

DL_ERROR_ACK

dl_error_primitive

primitive that is in error.

dl_errno

DLPI error code associated with the failure.

dl_unix_errno

UNIX system error code associated with the failure. This value
should be non-zero only when dl_errno is set to DL_SYSERR. It is
used to report UNIX system failures that prevent the processing of a
given request or response.

State

The message is valid in every state where an acknowledgement or
confirmation of a previous request or response is pending.

New State

The resulting state is that from which the acknowledged request or
response was generated.

Optional Primitives to Perform Essential
Management Functions
This section describes optional primitives. Some of these primitives may
not be supported by the DLS provider.

DL_PHYS_ADDR_REQ
Requests the DLS provider to return the physical address associated
with the stream depending upon the value of the address type selected in
the request.

Format

Chapter 2 79

DLPI Primitives
Local Management Primitives

The message consists one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_addr_type;
} dl_phys_addr_req_t;

Parameters

dl_primitive

DL_PHYS_ADDR_REQ

dl_addr_type

type of address requested - factory physical address or current
physical address

DL_FACT_PHYS_ADDR

DL_CURR_PHYS_ADDR

State

The message is valid in any attached state in which a local
acknowledgement is not pending. For a style 2 provider, this would be
after a PPA is attached using the DL_ATTACH_REQ. For a style 1
provider, the PPA is implicitly attached after the stream is opened.

New State

The resulting state is unchanged.

Response

The provider responds to the request with a DL_PHYS_ADDR_ACK if
the request is supported. Otherwise, a DL_ERROR_ACK is returned.

Reasons for Failure

DL_NOTSUPPORTED

The primitive is known, but not supported by the DLS provider.

DL_OUTSTATE

The primitive was issued from an invalid state.

80 Chapter 2

DLPI Primitives
Local Management Primitives

DL_PHYS_ADDR_ACK
This primitive returns the value for the physical address to the link user
in response to a DL_PHYS_ADDR_REQ.

Format

The message consists one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_addr_length;
 ulong dl_addr_offset;
} dl_phys_addr_ack_t;

Parameters

dl_primitive

DL_PHYS_ADDR_ACK

dl_addr_length

length of the requested hardware address.

dl_addr_offset

offset from beginning of the M_PROTO message block.

State

The message is valid in any state in response to a
DL_PHYS_ADDR_REQ.

New State

The resulting state is unchanged.

DL_SET_PHYS_ADDR_REQ
Sets the physical address value for all streams for that provider for a
particular PPA.

Format

The message consists one M_PROTO message block containing the
structure shown below.

Chapter 2 81

DLPI Primitives
Local Management Primitives

typedef struct {
 ulong dl_primitive;
 ulong dl_addr_length;
 ulong dl_addr_offset;
} dl_set_phys_addr_req_t;

Parameters

dl_primitive

DL_SET_PHYS_ADDR_REQ

dl_addr_length

length of the requested hardware address.

dl_addr_offset

offset from beginning of the M_PROTO message block.

State

The message is valid in any attached state in which a local
acknowledgement is not pending. For a style 2 provider, this would be
after a PPA is attached using the DL_ATTACH_REQ. For a style 1
provider, the PPA is implicitly attached after the stream is opened.

New State

The resulting state is unchanged.

Response

The provider responds to the request with a DL_OK_ACK on successful
completion. Otherwise, a DL_ERROR_ACK is returned.

Reasons for Failure

DL_BADADDR

The address information was invalid or was in an incorrect format.

DL_NOTSUPPORTED

The primitive is known, but not supported by the DLS provider.

DL_SYSERR

A system error has occurred.

DL_OUTSTATE

The primitive was issued from an invalid state.

82 Chapter 2

DLPI Primitives
Local Management Primitives

DL_BUSY

One or more streams for that particular PPA are in the DL_BOUND
state.

DL_GET_STATISTICS_REQ
Directs the DLS provider to return statistics.

Format

The message consists one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
} dl_get_statistics_req_t;

Parameters

dl_primitive

DL_GET_STATISTICS_REQ

State

The message is valid in any attached state in which a local
acknowledgement is not pending.

New State

The resulting state is unchanged.

Response

The DLS provider responds to the request with a
DL_GET_STATISTICS_ACK if the primitive is supported. Otherwise, a
DL_ERROR_ACK is returned.

Reasons for Failure

DL_NOTSUPPORTED

The primitive is known, but not supported by the DLS provider.

DL_GET_STATISTICS_ACK
Returns statistics in response to the DL_GET_STATISTICS_REQ. The
content of this statistics block is the following:

Format

Chapter 2 83

DLPI Primitives
Local Management Primitives

The message consists one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_stat_length;
 ulong dl_stat_offset;
} dl_get_statistics_ack_t;

Parameters

dl_primitive

DL_GET_STATISTICS_ACK

dl_stat_length

length of the statistics structure.

dl_stat_offset

offset from the beginning of the M_PCPROTO message block where
the statistics information resides.

State

The message is valid in any state in response to a
DL_GET_STATISTICS_REQ.

New State

The resulting state is unchanged.

The DL_GET_STATISTICS_ACK returns standard mib and optionally
extended mib information for all HP supported networking interfaces. It
is up to the DLPI user to check the interface-specific field of the Interface
MIB to determine whether there is a transmission MIB.

DL_HP_MULTICAST_LIST_REQ
Requests the DLS Provider to return a list of all currently enabled
multicast addresses on a specific LAN interface.

Format

The message consists one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
} dl_hp_multicast_list_req_t;_

84 Chapter 2

DLPI Primitives
Local Management Primitives

Parameters

dl_primitive

DL_HP_MULTICAST_LIST_REQ

State

The message is valid in any state in which there is not a local
acknowledgment pending with the exception of DL_UNATTACH.

New State

The resulting state is unchanged.

Response

If the multicast request is successful, a
DL_HP_MULTICAST_LIST_ACK is sent to the DLS user. If the requests
fails, DL_ERROR_ACK is returned and the resulting state is unchanged.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_HP_MULTICAST_LIST_ACK
Reports the successful completion of a DL_HP_MULTICAST_LIST_REQ
primitive. A complete list of the multicast addresses for a specific LAN
interface are returned after the control message header.

Format

The message consists one M_PROTO message block containing the
structure shown below.

typedef struct {
ulong dl_primitive;
ulong dl_offset;
ulong dl_length;
ulong dl_count;

} dl_hp_multicast_list_ack_t;

Parameters

Chapter 2 85

DLPI Primitives
Local Management Primitives

dl_primitive

DL_HP_MULTICAST_LIST_ACK

dl_offset

offset to the data in the multicast acknowledgment.

dl_length

length of data area, in bytes.

dl_count

total number of 6 byte multicast addresses in the data area of the
multicast acknowledgment.

State

The message is valid in any state in response to a
DL_HP_MULTICAST_LIST_REQ.

New State

The resulting state is unchanged.

86 Chapter 2

DLPI Primitives
Connectionless-mode Service Primitives

Connectionless-mode Service Primitives
This section describes the connectionless-mode service primitives.

DL_UNITDATA_REQ
Conveys one DLSDU from the DLS user to the DLS provider for
transmission to a peer DLS user.

Because connectionless data transfer is an unacknowledged service, the
DLS provider makes no guarantees of delivery of connectionless
DLSDUs. It is the responsibility of the DLS user to do any necessary
sequencing or retransmission of DLSDUs in the event of a presumed
loss.

Priority messages are currently only supported over 100VG. To send a
priority message over 100VG, a user must have superuser capabilities
and set the dl_priority fields in the DL_UNITDATA_REQ primitive to
the following values:

dl_min must be set to 0.

dl_max must be set to 1.

The dl_priority field will be ignored on interfaces which do not support
priority messages.

Format

The message consists of one M_PROTO message block containing the
structure shown below, followed by one or more M_DATA blocks
containing at least one byte of data. The amount of user data that may be
transferred in a single DLSDU is limited. This limit is conveyed by the
parameter dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
 ulong dl_primitive;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 dl_priority_t dl_priority;
} dl_unitdata_req_t;

Parameters

dl_primitive

DL_UNITDATA_REQ

Chapter 2 87

DLPI Primitives
Connectionless-mode Service Primitives

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_priority

priority value within the supported range for this particular DLSDU.

State

The message is valid in state DL_IDLE.

New State

The resulting state is unchanged.

Response

If the DLS provider accepts the data for transmission, there is no
response. This does not, however, guarantee that the data will be
delivered to the destination DLS user, since the connectionless data
transfer is not a confirmed service.

If the request is erroneous, DL_UDERROR_IND is returned, and the
resulting state is unchanged.

If for some reason the request cannot be processed, the DLS provider
may generate a DL_UDERROR_IND to report the problem. There is,
however, no guarantee that such an error report will be generated for all
undeliverable data units, since connectionless data transfer is not a
confirmed service.

Reasons for Failure

DL_BADADDR

The destination DLSAP address was in an incorrect format or
contained invalid information.

DL_BADDATA

The amount of data in the current DLSDU exceeded the DLS
provider's DLSDU limit.

88 Chapter 2

DLPI Primitives
Connectionless-mode Service Primitives

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_UNSUPPORTED

Requested priority not supplied by provider.

DL_UNITDATA_IND
Conveys one DLSDU from the DLS provider to the DLS user.

Format

The message consists of one M_PROTO message block containing the
structure shown below, followed by one or more M_DATA blocks
containing at least one byte of data. The amount of user data that may be
transferred in a single DLSDU is limited. This limit is conveyed by the
parameter dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
 ulong dl_primitive;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_src_addr_length;
 ulong dl_src_addr_offset;
 ulong dl_group_address;
 } dl_unitdata_ind_t;

Parameters

dl_primitive

DL_UNITDATA_IND

dl_dest_addr_length

length of the address of the DLSAP where this DL_UNITDATA_IND
is intended to be delivered.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length

length of the DLSAP address of the sending DLS user.

dl_src_addr_offset

Chapter 2 89

DLPI Primitives
Connectionless-mode Service Primitives

offset from the beginning of the M_PROTO message block where the
source DLSAP address begins.

dl_group_address

is set by the DLS provider upon receiving and passing upstream a
data message when the destination address of the data message is a
multicast or broadcast address.

State

The message is valid in any attached state.

New State

The resulting state is unchanged.

DL_UDERROR_IND
Informs the DLS user that a previously sent DL_UNITDATA_REQ
produced an error or could not be delivered. The primitive indicates the
destination DLSAP address associated with the failed request, and
conveys an error value that specifies the reason for failure.

Format

The message consists of either one M_PROTO message block or one
M_PCPROTO message block containing the structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_unix_errno;
 ulong dl_errno;
} dl_uderror_ind_t;

Parameters

dl_primitive

DL_UDERROR_IND

dl_dest_addr_length

length of the DLSAP address of the destination DLS user.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

90 Chapter 2

DLPI Primitives
Connectionless-mode Service Primitives

dl_unix_errno

UNIX system error code associated with the failure. This value
should be non-zero only when dl_errno is set to DL_SYSERR. It is
used to report UNIX system failures that prevent the processing of a
given request.

dl_errno

DLPI error code associated with the failure. See Reasons for Failure
in the description of DL_UNITDATA_REQ for the error codes that
apply to an erroneous DL_UNITDATA_REQ. In addition, the error
value DL_UNDELIVERABLE may be returned if the request was
valid but for some reason the DLS provider could not deliver the data
unit (e.g. due to lack of sufficient local buffering to store the data
unit). There is, however, no guarantee that such an error report will
be generated for all undeliverable data units, since connectionless
data transfer is not a confirmed service.

State

The message is valid in state DL_IDLE.

New State

The resulting state is unchanged.

Chapter 2 91

DLPI Primitives
Raw Mode Service Primitives

Raw Mode Service Primitives
This section describes the raw mode service primitives.

DL_HP_RAWDATA_REQ
Requests the DLS provider to send one completely formatted DLSDU to
a peer DLS user. The DLSDU is assumed to have a complete Link and
MAC Level header included.

As with connectionless data transfer, raw mode is an unacknowledged
service, and the DLS provider makes no guarantees of delivery of
connectionless DLSDUs. It is the responsibility of the DLS user to do any
necessary sequencing or retransmission of DLSDUs in the event of a
presumed loss.

Format

The message consists of one M_PROTO message block containing the
structure shown below, followed by one or more M_DATA message blocks
containing at least one byte of data. The amount of user data that may be
transferred in a single DLSDU is limited. This limit is conveyed by the
parameter dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
 ulong dl_primitive;
} dl_hp_rawdata_req_t;

Parameters

dl_primitive

DL_HP_RAWDATA_REQ

State

The message is valid in state DL_IDLE.

New State

The resulting state is unchanged.

Response

92 Chapter 2

DLPI Primitives
Raw Mode Service Primitives

If the DLS provider accepts the data for transmission, there is no
response. This does not, however, guarantee that the data will be
delivered to the destination DLS user, since the connectionless data
transfer is not a confirmed service.

If the request is erroneous, a DL_ERROR_ACK is returned, and the
resulting state is unchanged.

Reasons for Failure

DL_BADPRIM

Request was issued from a state in which the
DL_HP_RAWDATA_REQ was not recognized.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_HP_RAWDATA_IND
Conveys one completely formatted DLSDU from the DLS provider to the
DLS user. The DLSDU contains the complete Link and MAC Level
headers.

Format

The message consists of one M_PROTO message block containing the
structure shown below, followed by one or more M_DATA message blocks
containing at least one byte of data. The amount of user data that may be
transferred in a single DLSDU is limited. This limit is conveyed by the
parameter dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
 ulong dl_primitive;
} dl_hp_rawdata_ind_t;

Parameters

dl_primitive

DL_HP_RAWDATA_IND

State

The message is valid in state DL_IDLE.

New State

Chapter 2 93

DLPI Primitives
Raw Mode Service Primitives

The resulting state is unchanged.

94 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

Connection-mode Service Primitives
This section describes the service primitives that support the
connection-mode service of the data link layer. These primitives support
the establishment of connections, connection-mode data transfer, and
connection release services.

In the connection establishment model, the calling DLS user initiates a
request for a connection, and the called DLS user receives each request
and either accepts or rejects it. In the simplest form, the called DLS user
is passed a connect indication and the DLS provider holds any
subsequent indications until a response for the current outstanding
indication is received. At most one connect indication is outstanding at
any time.

DLPI also enables a called DLS user to multi-thread connect indications
and responses. The DLS provider will pass all connect indications to the
called DLS user (up to some pre-established limit as set by
DL_BIND_REQ and DL_BIND_ACK). The called DLS user may then
respond to the requests in any order.

To support multi-threading, a correlation value is needed to associate
responses with the appropriate connect indication. A correlation value is
contained in each DL_CONNECT_IND, and the DLS user must use this
value in the DL_CONNECT_RES or DL_DISCONNECT_REQ primitive
used to accept or reject the connect request.

Once a connection has been accepted or rejected, the correlation value
has no meaning to a DLS user. The DLS provider may reuse the
correlation value in another DL_CONNECT_IND.

Connection-Oriented DLPI Extensions
These primitives are only valid on connection-oriented DLPI STREAMS.
Connection-oriented DLPI streams are those on which a DL_BIND_REQ
with dl_service_mode set to DL_CODLS has been done.

DL_HP_INFO_REQ
Requests the DLS provider to provide information on the state of the
connection on a DLPI stream.

Chapter 2 95

DLPI Primitives
Connection-mode Service Primitives

Format

typedef struct {
u_long dl_primitive;

} dl_hp_info_req_t;

Parameters

dl_primitive

DL_HP_INFO_REQ

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_HP_INFO_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_INFO_ACK
This message is sent in response to a DL_HP_INFO_REQ; it conveys
information on the state of the connection on a DLPI stream.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_mem_fails;
 u_long dl_queue_fails;
 u_long dl_ack_to;
 u_long dl_p_to;
 u_long dl_rej_to;
 u_long dl_busy_to;
 u_long dl_send_ack_to;
 u_long dl_ack_to_cnt;
 u_long dl_p_to_cnt;
 u_long dl_rej_to_cnt;
 u_long dl_busy_to_cnt;
 u_long dl_local_win;

96 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

 u_long dl_remote_win;
 u_long dl_i_pkts_in;
 u_long dl_i_pkts_in_oos;
 u_long dl_i_pkts_in_drop;
 u_long dl_i_pkts_out;
 u_long dl_i_pkts_retrans;
 u_long dl_s_pkts_in;
 u_long dl_s_pkts_out;
 u_long dl_u_pkts_in;
 u_long dl_u_pkts_out;
 u_long dl_bad_pkts;
 u_long dl_retry_cnt;
 u_long dl_max_retry_cnt;
 u_long dl_max_retries;
 u_long dl_ack_thresh;
 u_long dl_remote_busy_cnt;
 u_long dl_hw_req_fails;
} dl_hp_info_ack_t;

Parameters

dl_primitive

DL_HP_INFO_ACK

dl_mem_fails

number of memory allocations that have failed.

dl_queue_fails

number of times that the DLS provider was unable to forward a
message because the queue was full.

dl_ack_to

length of the ACK timeout in tenths of a second. The ACK timeout
determines the length of time that LLC Type 2 will wait for an
acknowledgment of any outstanding I PDUs or for a response to a U
PDU before attempting to force a response.

dl_p_to

length of the P timeout in tenths of a second. The P timeout
determines the length of time that LLC Type 2, after sending a
command with the P bit set to 1, will wait for a response with the F
bit set to 1 before attempting to force a response.

dl_rej_to

length of the REJ timeout in tenths of a second. The REJ timeout
determines the length of time that LLC Type 2 will wait for a
response to a REJ PDU before attempting to force a response.

Chapter 2 97

DLPI Primitives
Connection-mode Service Primitives

dl_busy_to

length of the BUSY timeout in tenths of a second. The BUSY timeout
determines the length of time that LLC Type 2 will wait for an
indication that a remote busy condition has been cleared before
attempting to force a response.

dl_send_ack_timeout

length of the SEND_ACK timeout in tenths of a second. The
SEND_ACK timeout determines the maximum length of time that
LLC Type 2 will delay acknowledgment of I PDUs if it has not
received dl_send_ack_threshold I PDUs.

dl_ack_to_cnt

number of times that the ACK timer has expired.

dl_p_to_cnt

number of times that the P timer has expired.

dl_rej_to_cnt

number of times that the REJ timer has expired.

dl_busy_to_cnt

number of times that the BUSY timer has expired.

dl_local_win

size of the LLC Type 2 local receive window.

dl_remote_win

size of the LLC Type 2 remote receive window.

dl_i_pkts_in

number of I PDUs correctly received.

dl_i_pkts_in_oos

number of I PDUs received out of sequence.

dl_i_pkts_in_drop

number of I PDUs correctly received, but which were dropped because
of a lack of resources.

98 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

dl_i_pkts_out

number of I PDUs acknowledged by the remote system.

dl_i_pkts_retrans

number of I PDUs re-transmitted.

dl_s_pkts_in

number of S PDUs received.

dl_s_pkts_out

number of S PDUs transmitted.

dl_u_pkts_in

number of U PDUs received.

dl_u_pkts_out

number of U PDUs transmitted.

dl_bad_pkts

number of PDUs with bad control fields received.

dl_retry_cnt

most recent number of times that LLC Type 2 has attempted to force
a response from the remote due to a timer expiration. This value is
re-set to 0 when a response is received.

dl_max_retry_cnt

maximum value that dl_retry_cnt has attained.

dl_max_retries

maximum allowed number of retries before re-setting the connection.
This is sometimes known as the N2 variable.

dl_ack_thresh

maximum number of I PDUs that can be received before an
acknowledgment is sent. If this threshold is reached, an
acknowledgment is sent and the SEND_ACK timer is restarted.

dl_remote_busy_cnt

Chapter 2 99

DLPI Primitives
Connection-mode Service Primitives

number of times that the remote system has reported that it was
busy.

dl_hw_req_fails

number of times that LLC Type 2 has been unable to transmit due to
congestion in the interface device driver or interface card.

State

The message is valid in any state in response to a DL_HP_INFO_REQ.

New State

The resulting state is unchanged.

DL_HP_SET_ACK_TO_REQ
Requests the DLS provider to set the ACK timeout to the specified value.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_ack_to;
} dl_hp_set_ack_to_req_t;

Parameters

dl_primitive

DL_HP_SET_ACK_TO_REQ

dl_ack_to

new value of the ACK timeout in tenths of a second. The ACK timeout
determines the length of time that LLC Type 2 will wait for an
acknowledgment of any outstanding I PDUs or for a response to a U
PDU before attempting to force a response.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and Dl_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

100 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_SET_P_TO_REQ
Requests the DLS provider to set the P timeout to the specified value.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_p_to;
} dl_hp_set_p_to_req_t;

dl_primitive

DL_HP_SET_P_TO_REQ

dl_p_to

new value of the P timeout in tenths of a second. The P timeout
determines the length of time that LLC Type 2, after sending a
command with the P bit set to 1, will wait for a response with the F
bit set to 1 before attempting to force a response.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

Chapter 2 101

DLPI Primitives
Connection-mode Service Primitives

DL_HP_SET_REJ_TO_REQ
Requests the DLS provider to set the REJ timeout to the specified value.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_rej_to;
} dl_hp_set_rej_to_req_t;

Parameters

dl_primitive

DL_HP_SET_REJ_TO_REQ

dl_rej_to

new value of the REJ timeout in tenths of a second. The REJ timeout
determines the length of time that LLC Type 2 will wait for a
response to a REJ PDU before attempting to force a response.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_SET_BUSY_TO_REQ
Requests the DLS provider to set the BUSY timeout to the specified
value.

Format

102 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

typedef struct {
 u_long dl_primitive;
 u_long dl_busy_to;
} dl_hp_set_busy_to_req_t;

Parameters

dl_primitive

DL_HP_SET_BUSY_TO_REQ

dl_busy_to

new value of the BUSY timeout in tenths of a second. The BUSY
timeout determines the length of time that LLC Type 2 will wait for
an indication that a remote busy condition has been cleared before
attempting to force a response.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_SET_SEND_ACK_TO_REQ
Requests the DLS provider to set the SEND_ACK timeout to the
specified value.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_send_ack_to;
} dl_hp_set_send_ack_to_req_t;

Parameters

Chapter 2 103

DLPI Primitives
Connection-mode Service Primitives

dl_primitive

DL_HP_SET_SEND_ACK_TO_REQ

dl_send_ack_to

new value of the SEND_ACK timeout in tenths of a second. The
SEND_ACK timeout determines the maximum length of time that
LLC Type 2 will delay acknowledgment of I PDUs if it has not
received dl_send_ack_threshold I PDUs.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_SET_MAX_RETRIES_REQ
Requests the DLS provider to set the maximum allowed number of
retries to the specified value.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_max_retries;
} dl_hp_set_max_retries_req_t;

Parameters

dl_primitive

DL_HP_SET_MAX_RETRIES_REQ

dl_max_retries

104 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

maximum allowed number of retries before re-setting the connection.
This is sometimes known as the N2 variable.

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_SET_ACK_THRESH_REQ
Requests the DLS provider to set the acknowledgment threshold to the
specified value.

NOTE Setting the ack thresh will not affect the local window size.

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_ack_thresh;
} dl_hp_set_ack_thresh_req_t;

Parameters

dl_primitive

DL_HP_SET_ACK_THRESH_REQ

dl_ack_thresh

maximum number of I PDUs that can be received before an
acknowledgment is sent. If this threshold is reached, an
acknowledgment is sent and the SEND_ACK timer is restarted. This
value cannot be greater than the remote receive window size.

State

Chapter 2 105

DLPI Primitives
Connection-mode Service Primitives

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the specified dl_ack_thresh is valid and the primitive was issued from
a valid state, the DLS provider responds with a DL_OK_ACK. Otherwise
a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

If the specified dl_ack_thresh is greater than the remote receive
window size, then a DL_ERROR_ACK with dl_errno set to
DL_SYSERR and dl_unix_errno set to EINVAL is returned.

DL_HP_SET_LOCAL_WIN_REQ
Requests the DLS provider to set the local window size to the specified
value.

NOTE Setting the local window size also causes the DLPI read side streams
queue hi water mark to be set to (local_window_size * MTU). The
(local_window_size * MTU) cannot exceed (1 << 16) - (2 * MTU).

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_local_win;
} dl_hp_set_local_win_req_t;

Parameters

dl_primitive

DL_HP_SET_LOCAL_WIN_REQ

dl_local_win

106 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

size of the local receive window. This value must be greater than 0
and less than 128.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the specified dl_local_win is valid and the primitive was issued from a
valid state, the DLS provider responds with a DL_OK_ACK. Otherwise a
DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

If the specified dl_local_win is invalid, then a DL_ERROR_ACK with
dl_errno set to DL_SYSERR and dl_unix_errno set to EINVAL is
returned.

DL_HP_SET_REMOTE_WIN_REQ
Requests the DLS provider to set the remote window size to the specified
value.

NOTE Setting the remote window size causes the ack thresh to be set to
((remote_window_size + 1) / 2).

Format

typedef struct {
 u_long dl_primitive;
 u_long dl_remote_win;
} dl_hp_set_remote_win_req_t;

Parameters

dl_primitive

Chapter 2 107

DLPI Primitives
Connection-mode Service Primitives

DL_HP_SET_REMOTE_WIN_REQ

dl_remote_win

size of the remote receive window. This value must be greater than 0
and less than 128.

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the specified dl_remote_win is valid and the primitive was issued from
a valid state, the DLS provider responds with a DL_OK_ACK. Otherwise
a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_SYSERR

If the specified dl_remote_win is invalid, then a DL_ERROR_ACK
with dl_errno set to DL_SYSERR and dl_unix_errno set to EINVAL is
returned.

DL_HP_CLEAR_STATS_REQ
Requests the DLS provider to zero the mem_fails, queue_fails,
ack_to_cnt, p_to_cnt, rej_to_cnt, busy_to_cnt, i_pkts_in, i_pkts_in_oos,
i_pkts_in_drop, i_pkts_out, i_pkts_retrans, s_pkts_in, s_pkts_out,
u_pkts_in, u_pkts_out, bad_pkts, max_retry_cnt, remote_busy_cnt, and
hw_req_fails statistics which are reported in the DL_HP_INFO_ACK
primitive.

Format

typedef struct {
 u_long dl_primitive;
} dl_hp_clear_stats_req_t;

108 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

Parameters

dl_primitive

DL_HP_CLEAR_STATS_REQ

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_SET_LOCAL_BUSY_REQ
Requests that the DLS provider inform the remote system that the local
system is busy and cannot accept new data packets.

Format

typedef struct {
 u_long dl_primitive;
} dl_hp_set_local_busy_req_t;

Parameters

dl_primitive

DL_HP_SET_LOCAL_BUSY_REQ

State

The message is valid in state IDLE.

New State

The resulting state is unchanged.

Response

Chapter 2 109

DLPI Primitives
Connection-mode Service Primitives

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_HP_CLEAR_LOCAL_BUSY_REQ
Requests that the DLS provider inform the remote system that the local
system is no longer busy and is again able to accept new data packets.

Format

typedef struct {
 u_long dl_primitive;
} dl_hp_clear_local_busy_req_t;

Parameters

dl_primitive

DL_HP_CLEAR_LOCAL_BUSY_REQ

State

The message is valid in the states DL_IDLE, DL_DATAXFER,
DL_OUTCON_PENDING, DL_INCON_PENDING,
DL_USER_RESET_PENDING, and DL_PROV_RESET_PENDING after
a DL_HP_SET_LOCAL_BUSY_REQ message.

New State

The resulting state is unchanged.

Response

If the primitive is issued from a valid state, the DLS provider responds
with a DL_OK_ACK. Otherwise a DL_ERROR_ACK is returned.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

110 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

DL_CONNECT_REQ
Requests the DLS provider to establish a data link connection with a
remote DLS user.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_qos_length;
 ulong dl_qos_offset;
 ulong dl_growth;
} dl_connect_req_t;

Parameters

dl_primitive

DL_CONNECT_REQ

dl_dest_addr_length

length of the DLSAP address that identifies the DLS user with whom
a connection is to be established.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_qos_length

length of the quality of service (QOS) parameter values desired by the
DLS user initiating a connection.

dl_qos_offset

offset from the beginning of the M_PROTO message block where the
quality of service parameters begin.

dl_growth

defines a growth field for future enhancements to this primitive. Its
value must be set to zero.

State

The primitive is valid in state DL_IDLE.

Chapter 2 111

DLPI Primitives
Connection-mode Service Primitives

New State

The resulting state is DL_OUTCON_PENDING.

Response

There is no immediate response to the connect request. However, if the
connect request is accepted by the called DLS user, DL_CONNECT_CON
is sent to the calling DLS user, resulting in state DL_DATAXFER.

If the request is erroneous, DL_ERROR_ACK is returned and the
resulting state is unchanged.

Reasons for Failure

DL_BADADDR

The destination DLSAP address was in an incorrect format or
contained invalid information.

DL_BADQOSPARAM

The quality of service parameters contained invalid values.

DL_BADQOSTYPE

The quality of service structure type was not supported by the DLS
provider.

DL_ACCESS

The DLS user did not have proper permission to use the responding
stream.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_CONNECT_IND
Conveys to the local DLS user that a remote (calling) DLS user wishes to
establish a data link connection.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

112 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

typedef struct {
 ulong dl_primitive;
 ulong dl_correlation;
 ulong dl_called_addr_length;
 ulong dl_called_addr_offset;
 ulong dl_calling_addr_length;
 ulong dl_calling_addr_offset;
 ulong dl_qos_length;
 ulong dl_qos_offset;
 ulong dl_growth;
} dl_connect_ind_t;

Parameters

dl_primitive

DL_CONNECT_IND

dl_correlation

correlation number to be used by the DLS user to associate this
message with the DL_CONNECT_RES, DL_DISCONNECT_REQ, or
DL_DISCONNECT_IND that is to follow.

dl_called_addr_length

length of the address of the DLSAP for which this
DL_CONNECT_IND primitive is intended.

dl_called_addr_offset

offset from the beginning of the M_PROTO message block where the
called DLSAP address begins.

dl_calling_addr_length

length of the address of the DLSAP from which the
DL_CONNECT_REQ primitive was sent.

dl_calling_addr_offset

offset from the beginning of the M_PROTO message block where the
calling DLSAP address begins.

dl_qos_length

length of quality of service parameter values desired by the calling
DLS user.

dl_qos_offset

offset from the beginning of the M_PROTO message block where the
quality of service parameters begin.

Chapter 2 113

DLPI Primitives
Connection-mode Service Primitives

dl_growth

growth field for future enhancements to this primitive. Its value will
be set to zero.

State

The message is valid in state DL_IDLE, or state DL_INCON_PENDING
when the maximum number of outstanding DL_CONNECT_IND
primitives has not been reached on this stream.

New State

The resulting state is DL_INCON_PENDING, regardless of the current
state.

Response

The DLS user must eventually send either DL_CONNECT_RES to
accept the connect request or DL_DISCONNECT_REQ to reject the
connect request. In either case, the responding message must convey the
correlation number received in the DL_CONNECT_IND. The DLS
provider will use the correlation number to identify the connect request
to which the DLS user is responding.

DL_CONNECT_RES
Directs the DLS provider to accept a connect request from a remote
(calling) DLS user on a designated stream. The DLS user may accept the
connection on the same stream where the connect indication arrived, or
on a different stream that has been previously bound.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_correlation;
 ulong dl_resp_token;
 ulong dl_qos_length;
 ulong dl_qos_offset;
 ulong dl_growth;
} dl_connect_res_t;

Parameters

dl_primitive

DL_CONNECT_RES

114 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

dl_correlation

correlation number that was received with the DL_CONNECT_IND
associated with the connection request. The DLS provider will use the
correlation number to identify the connect indication to which the
DLS user is responding.

dl_resp_token

if non-zero, the token associated with the responding stream on which
the DLS provider is to establish the connection; this stream must be
attached to a PPA and bound to a DLSAP.

dl_qos_length

length of the quality of service parameter. This should be the same
parameter specified in the DL_CONNECT_IND.

dl_qos_offset

offset from the beginning of the M_PROTO message block where the
quality of service parameters begin.

dl_growth

growth field for future enhancements to this primitive. Its value will
be set to zero.

State

The primitive is valid in state DL_INCON_PENDING.

New State

The resulting state is DL_CONN_RES_PENDING.

Response

If the connect response is successful, DL_OK_ACK is sent to the DLS
user. If no outstanding connect indications remain, the resulting state for
the current stream is DL_IDLE; otherwise, it remains
DL_INCON_PENDING. For the responding stream (designated by the
parameter dl_res_token), the resulting state is DL_DATAXFER. If the
current stream and responding stream are the same, the resulting state
of that stream is DL_DATAXFER. These streams may only be the same
when the response corresponds to the only outstanding connect
indication.

Chapter 2 115

DLPI Primitives
Connection-mode Service Primitives

If the request fails, DL_ERROR_ACK is returned on the stream where
the DL_CONNECT_RES primitive was received, and the resulting state
of that stream and the responding stream is unchanged.

Reasons for Failure

DL_BADTOKEN

The token for the responding stream was not associated with a
currently open stream.

DL_BADQOSPARAM

The quality of service parameters contained invalid values.

DL_BADQOSTYPE

The quality of service structure type was not supported by the DLS
provider.

DL_BADCORR

The correlation number specified in this primitive did not correspond
to a pending connect indication.

DL_ACCESS

The DLS user did not have proper permission to use the responding
stream.

DL_OUTSTATE

The primitive was issued from an invalid state, or the responding
stream was not in a valid state for establishing a connection.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_PENDING

Current stream and responding stream is the same and there is more
than one outstanding connect indication.

DL_CONNECT_CON
Informs the local DLS user that the requested data link connection has
been established.

116 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_resp_addr_length
 ulong dl_resp_addr_offset
 ulong dl_qos_lenth;
 ulong dl_qos_offset;
 ulong dl_growth;
} dl_connect_con_t;

Parameters

dl_primitive

DL_CONNECT_CON

dl_resp_addr_length

length of the address of the responding DLSAP associated with the
newly established data link connection.

dl_resp_addr_offset

offset from the beginning of the M_PROTO message block where the
responding DLSAP address begins.

dl_qos_length

length of the quality of service parameter the DLS user selected when
issued the DL_CONNECT_REQ.

dl_qos_offset

offset from the beginning of the M_PROTO message block where the
quality of service parameter begin.

dl_growth

growth field for future enhancements to this primitive. Its value will
be set to zero.

State

The message is valid in state DL_OUTCON_PENDING.

New State

The resulting state is DL_DATAXFER.

Chapter 2 117

DLPI Primitives
Connection-mode Service Primitives

DL_TOKEN_REQ
Requests that a connection response token be assigned to the stream and
returned to the DLS user. This token can be supplied in the
DL_CONNECT_RES primitive to indicate the stream on which a
connection will be established.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
} dl_token_req_t;

Parameters

dl_primitive

DL_TOKEN_REQ

State

The message is valid in any state in which a local acknowledgement is
not pending, as described in Appendix B, Allowable Sequence of DLPI
Primitives, of the DLPI 2.0 specification.

New State

The resulting state is unchanged.

Response

The DLS provider responds to the information request with a
DL_TOKEN_ACK.

DL_TOKEN_ACK
This message is sent in response to DL_TOKEN_REQ; it conveys the
connection response token assigned to the stream.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_token;
} dl_token_ack_t;

118 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

Parameters

dl_primitive

DL_TOKEN_ACK

dl_token

connection response token associated with the stream. This value
must be a non-zero value. The DLS provider will generate a token
value for each stream upon receipt of the first DL_TOKEN_REQ
primitive issued on that stream. The same token value will be
returned in response to all subsequent DL_TOKEN_REQ primitives
issued on a stream.

State

The message is valid in any state in response to a DL_TOKEN_REQ.

New State

The resulting state is unchanged.

DL_DATA_REQ
Conveys a complete DLS Data Unit (DLSDU) from the DLS user to the
DLS provider for transmission over the data link connection.

Format

The message consists of one or more M_DATA message blocks containing
at least one byte of data.

State

The message is valid in state DL_DATAXFER. If it is received in state
DL_IDLE or DL_PROV_RESET_PENDING, it should be discarded
without generating an error.

New State

The resulting state is unchanged.

Response

If the request is valid, no response is generated. If the request is
erroneous, a STREAMS M_ERROR message should be issued to the DLS
user specifying an errno value of EPROTO. This action should be
interpreted as a fatal, unrecoverable, protocol error. A request is
considered erroneous under the following conditions.

Chapter 2 119

DLPI Primitives
Connection-mode Service Primitives

• The primitive was issued from an invalid state. If the request is
issued in state DL_IDLE or DL_PROV_RESET_PENDING, however,
it is silently discarded with no fatal error generated.

• The amount of data in the current DLSDU is not within the DLS
provider’s acceptable bounds as specified by dl_min_sdu and
dl_max_sdu in the DL_INFO_ACK.

DL_DATA_IND
Conveys a DLSDU from the DLS provider to the DLS user.

Format

The message consists of one or more M_DATA message blocks containing
at least one byte of data.

State

The message is valid in state DL_DATAXFER.

New State

The resulting state is unchanged.

DL_DISCONNECT_REQ
Requests the DLS provider to disconnect an active data link connection
or one that was in the process of activation, either outgoing or incoming,
as a result of an earlier DL_CONNECT_IND or DL_CONNECT_REQ. If
an incoming DL_CONNECT_IND is being refused, the correlation
number associated with that connect indication must be supplied. The
message indicates the reason for the disconnection.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_reason;
 ulong dl_correlation;
} dl_disconnect_req_t;

Parameters

dl_primitive

DL_DISCONNECT_REQ

120 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

dl_reason

reason for the disconnection.

DL_DISC_NORMAL_CONDITION: normal release of a data link
connection.

DL_DISC_ABNORMAL_CONDITION: abnormal release of a data
link connection.

DL_CONREJ_PERMANENT_COND: a permanent condition caused
the rejection of a connect request.

DL_CONREJ_TRANSIENT_COND: a transient condition caused the
rejection of a connect request.

DL_UNSPECIFIED: reason unspecified

dl_correlation

if non-zero, conveys the correlation number that was contained in the
DL_CONNECT_IND being rejected. This value permits the DLS
provider to associate the primitive with the proper
DL_CONNECT_IND when rejecting an incoming connection. If
disconnect request is releasing a connection that is already
established, or is aborting a previously sent DL_CONNECT_REQ,
the value of dl_correlation should be zero.

State

The message is valid in any of the states: DL_DATAXFER,
DL_INCON_PENDING, DL_OUTCON_PENDING,
DL_PROV_RESET_PENDING, DL_USER_RESET_PENDING.

New State

The resulting state is one of the disconnect pending states, as defined in
Appendix B, Allowable Sequence of DLPI Primitives, of the DLPI 2.0
specification.

Response

If the disconnect is successful, DL_OK_ACK is sent to the DLS user
resulting in state DL_IDLE.

If the request fails, DL_ERROR_ACK is returned, and the resulting
state is unchanged.

Reasons for Failure

Chapter 2 121

DLPI Primitives
Connection-mode Service Primitives

DL_BADCORR

The correlation number specified in this primitive did not correspond
to a pending connect indication.

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_DISCONNECT_IND
Informs the DLS user that the data link connection on this stream has
been disconnected, or that a pending connection (either
DL_CONNECT_REQ or DL_CONNECT_IND) has been aborted. This
primitive indicates the origin and the cause of the disconnect.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
 ulong dl_originator;
 ulong dl_reason;
 ulong dl_correlation;
} dl_disconnect_ind_t;

Parameters

dl_primitive

DL_DISCONNECT_IND

dl_originator

whether the disconnect was DLS user or DLS provider originated
(DL_USER or DL_PROVIDER, respectively).

dl_reason

the reason for the disconnection:

DL_DISC_PERMANENT_CONDITION: connection release due to
permanent connection.

122 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

DL_DISC_TRANSIENT_CONDITION: connection released due to
transient connection.

DL_CONREJ_DEST_UNKOWN: unknown destination for connect
request.

DL_CONREJ_DEST_UNREACH_PERMANENT: could not reach
destination for connect request - permanent condition.

DL_CONREJ_DEST_UNREACH_TRANSIENT: could not reach
destination for connect request - transient condition.

DL_CONREJ_QOS_UNAVAIL_PERMANENT: requested quality of
service parameters permanently unavailable during connection
establishment.

DL_CONREJ_QOS_UNAVAIL_TRANSIENT: requested quality of
service parameters temporarily unavailable during connection
establishment.

DL_UNSPECIFIED: reason unspecified

dl_correlation

if non-zero, the correlation number that was contained in the
DL_CONNECT_IND that is being aborted. This value permits the
DLS user to associate the message with the proper
DL_CONNECT_IND. If the disconnect indication is indicating the
release of a connection that is already established, or is indicating the
rejection of a previously sent DL_CONNECT_REQ, the value of
dl_correlation should be zero.

State

The message is valid in any of the states: DL_DATAXFER,
DL_INCON_PENDING, DL_OUTCON_PENDING,
DL_PROV_RESET_PENDING, DL_USER_RESET_PENDING.

New State

The resulting state is DL_IDLE.

DL_RESET_REQ
Requests that the DLS provider initiate the re-synchronization of a data
link connection. This service is abortive, so no guarantee of delivery can
be assumed about data that is in transit when the reset request is
initiated.

Chapter 2 123

DLPI Primitives
Connection-mode Service Primitives

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
} dl_reset_req_t;

Parameters

dl_primitive

DL_RESET_REQ

State

The message is valid in state DL_DATAXFER.

New State

The resulting state is DL_USER_RESET_PENDING.

Response

If the disconnect is successful, DL_OK_ACK is sent to the DLS user
resulting in state DL_IDLE.

If the request fails, DL_ERROR_ACK is returned, and the resulting
state is unchanged.

Reasons for Failure

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_RESET_IND
Informs the DLS user that either the remote DLS user is
re-synchronizing the data link connection, or the DLS provider is
reporting loss of data for which it can not recover. The indication conveys
the reason for the reset.

Format

124 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
ulong dl_primitive;
ulong dl_originator;
ulong dl_reason;

} dl_reset_ind_t;

Parameters

dl_primitive

DL_RESET_REQ

dl_originator

whether the reset was originated by the DLS user or DLS provider
(DL_USER or DL_ PROVIDER, respectively).

dl_reason

reason for the reset:

DL_RESET_FLOW_CONTROL: indicates flow control congestion

DL_RESET_LINK_ERROR: indicates a data link error situation

DL_RESET_RESYNCH: indicates a request for re-synchronization of
a data link connection.

State

The message is valid in state DL_DATAXFER.

New State

The resulting state is DL_PROV_RESET_PENDING.

Response

The DLS user should issue a DL_RESET_RES primitive to continue the
resynchronization procedure.

DL_RESET_RES
Directs the DLS provider to complete re-synchronizing the data link
connection.

Format

Chapter 2 125

DLPI Primitives
Connection-mode Service Primitives

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
} dl_reset_res_t;

Parameters

dl_primitive

DL_RESET_RES

State

The primitive is valid in state DL_PROV_RESET_PENDING.

New State

The resulting state is DL_RESET_RES_PENDING.

Response

If the reset response is successful, DL_OK_ACK is sent to the DLS user
resulting in state DL_DATAXFER.

If the reset response is erroneous, DL_ERROR_ACK is returned, and the
resulting state is unchanged.

Reasons for Failure

DL_OUTSTATE

The primitive was issued from an invalid state.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_RESET_CON
Informs the reset-initiating DLS user that the reset has completed.

Format

The message consists of one M_PROTO message block containing the
structure shown below.

typedef struct {
 ulong dl_primitive;
} dl_reset_con_t;

126 Chapter 2

DLPI Primitives
Connection-mode Service Primitives

Parameters

dl_primitive

DL_RESET_CON

State

The message is valid in state DL_USER_RESET_PENDING.

New State

The resulting state is DL_DATAXFER.

Chapter 2 127

DLPI Primitives
Primitives to Handle XID and TEST Operations

Primitives to Handle XID and TEST
Operations
This section describes the primitives used for XID and TEST operations.

DL_TEST_REQ
Conveys the TEST command DLSDU from the DLS user to the DLS
provider for transmission to a peer DLS provider.

Format

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
} dl_test_req_t;

Parameters

dl_primitive

DL_TEST_REQ

dl_flag

flag values for the request as follows:

DL_POLL_FINAL indicates if the poll/final bit is set.

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

State

128 Chapter 2

DLPI Primitives
Primitives to Handle XID and TEST Operations

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

The resulting state is unchanged.

Response

On an invalid TEST command request, a DL_ERROR_ACK is issued to
the user. If the DLS provider receives a response from the remote side, a
DL_TEST_CON is issued to the DLS user. It is recommended that the
DLS user use a timeout procedure to recover from a situation when there
is no response from the peer DLS user.

Reasons for Failure

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_BADADDR

DLSAP address information was invalid or was in an incorrect
format.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_NOTSUPPORTED

Primitive is known but not supported by the DLS provider.

DL_TESTAUTO

Previous bind request specified automatic handling of TEST
responses.

DL_UNSUPPORTED

Requested service not supplied by provider.

DL_TEST_IND
Conveys the TEST indication DLSDU from the DLS provider to the DLS
user.

Format

Chapter 2 129

DLPI Primitives
Primitives to Handle XID and TEST Operations

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_src_addr_length;
 ulong dl_src_addr_offset;
 } dl_test_ind_t;

Parameters

dl_primitive

DL_TEST_IND

dl_flag

flag values associated with the received TEST frame:

DL_POLL_FINAL indicates if the poll/final bit is set.

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length

length of the source DLSAP address. If the source user is
implemented using DLPI, this address is the full DLSAP address
returned on the DL_BIND_ACK.

dl_src_addr_offset

offset from the beginning of the M_PROTO message block where the
source DLSAP address begins.

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

130 Chapter 2

DLPI Primitives
Primitives to Handle XID and TEST Operations

The resulting state is unchanged.

Response

The DLS user must respond with a DL_TEST_RES.

DL_TEST_RES
Conveys the TEST response DLSDU from the DLS user to the DLS
provider in response to a DL_TEST_IND.

Format

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 } dl_test_res_t;

Parameters

dl_primitive

DL_TEST_RES

dl_flag

flag values for the response as follows:

DL_POLL_FINAL indicates if the poll/final bit is set.

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

Chapter 2 131

DLPI Primitives
Primitives to Handle XID and TEST Operations

The resulting state is unchanged.

DL_TEST_CON
Conveys the TEST response DLSDU from the DLS provider to the DLS
user in response to a DL_TEST_REQ.

Format

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_src_addr_length;
 ulong dl_src_addr_offset;
 } dl_test_con_t;

Parameters

dl_primitive

DL_TEST_CON

dl_flag

flag values for the request as follows:

DL_POLL_FINAL indicates if the poll/final bit is set.

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length

length of the source DLSAP address. If the source user is
implemented using DLPI, this address is the full DLSAP address
returned on the DL_BIND_ACK.

dl_src_addr_offset

132 Chapter 2

DLPI Primitives
Primitives to Handle XID and TEST Operations

offset from the beginning of the M_PROTO message block where the
source DLSAP address begins.

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

The resulting state is unchanged.

DL_XID_REQ
Conveys one XID DLSDU from the DLS user to the DLS provider for
transmission to a peer DLS user.

Format

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 } dl_xid_req_t;

Parameters

dl_primitive

DL_XID_REQ

dl_flag

flag values for the response as follows:

DL_POLL_FINAL indicates status of the poll/final bit in the xid
frame.

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

Chapter 2 133

DLPI Primitives
Primitives to Handle XID and TEST Operations

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

The resulting state is unchanged.

Response

On an invalid XID request, a DL_ERROR_ACK is issued to the user. If
the remote side responds to the XID request, a DL_XID_CON will be
sent to the user. It is recommended that the DLS user use a timeout
procedure on an XID_REQ. The timeout may be used if the remote side
does not respond to the XID request.

Reasons for Failure

DL_BADDATA

The amount of data in the current DLSDU exceeded the DLS
provider’s DLSDU limit.

DL_XIDAUTO

Previous bind request specified provider would handle XID.

DL_OUTSTATE

Primitive was issued from an invalid state.

DL_BADADDR

The DLSAP address information was invalid or was in an incorrect
format.

DL_SYSERR

A system error has occurred and the UNIX system error is indicated
in the DL_ERROR_ACK.

DL_NOTSUPPORTED

Primitive is known but not supported by the DLS provider.

DL_XID_IND
Conveys an XID DLSDU from the DLS provider to the DLS user.

Format

134 Chapter 2

DLPI Primitives
Primitives to Handle XID and TEST Operations

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_src_addr_length;
 ulong dl_src_addr_offset;
 } dl_xid_ind_t;

Parameters

dl_primitive

DL_XID_IND

dl_flag

flag values associated with the received XID frame:

DL_POLL_FINAL indicates if the received xid frame had the
poll/final bit set.

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length

length of the source DLSAP address. If the source user is
implemented using DLPI, this address is the full DLSAP address
returned on the DL_BIND_ACK.

dl_src_addr_offset

offset from the beginning of the M_PROTO message block where the
source DLSAP address begins.

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

Chapter 2 135

DLPI Primitives
Primitives to Handle XID and TEST Operations

The resulting state is unchanged.

Response

The DLS user must respond with a DL_XID_RES.

DL_XID_RES
Conveys an XID DLSDU from the DLS user to the DLS provider in
response to a DL_XID_IND.

Format

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 } dl_xid_res_t;

Parameters

dl_primitive

DL_XID_RES

dl_flag

flag values associated with the received XID frame:

DL_POLL_FINAL

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

136 Chapter 2

DLPI Primitives
Primitives to Handle XID and TEST Operations

The resulting state is unchanged.

DL_XID_CON
Conveys an XID DLSDU from the DLS provider to the DLS user in
response to a DL_XID_REQ.

Format

The message consists of one M_PROTO message block, followed by zero
or more M_DATA blocks containing zero or more bytes of data. The
message structure is as follows:

typedef struct {
 ulong dl_primitive;
 ulong dl_flag;
 ulong dl_dest_addr_length;
 ulong dl_dest_addr_offset;
 ulong dl_src_addr_length;
 ulong dl_src_addr_offset;
 } dl_xid_con_t;

Parameters

dl_primitive

DL_XID_CON

dl_flag

flag values associated with the received XID frame:

DL_POLL_FINAL

dl_dest_addr_length

length of the DLSAP address of the destination DLS user. If the
destination user is implemented using DLPI, this address is the full
DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset

offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length

length of the source DLSAP address. If the source user is
implemented using DLPI, this address is the full DLSAP address
returned on the DL_BIND_ACK.

dl_src_addr_offset

Chapter 2 137

DLPI Primitives
Primitives to Handle XID and TEST Operations

offset from the beginning of the M_PROTO message block where the
source DLSAP address begins.

State

The message is valid in states DL_IDLE and DL_DATAXFER.

New State

The resulting state is unchanged.

138 Chapter 2

DLPI Primitives
DLPI States

DLPI States
Table 2-1 describes the states associated with DLPI. It presents the state
name used in the state transition table, the corresponding DLPI state
name used throughout this specification, a brief description of the state,
and an indication of whether the state is valid for connection-oriented
data link service (DL_CODLS), connectionless data link service
(DL_CLDLS), acknowledged connectionless data link service (ACLDLS)
or all.

Table 2-1 DLPI States

State DLPI State Description Service
Type

0) UNATTACHED DL_UNATTACHED Stream opened but PPA
not attached

ALL

1) ATTACH PEND DL_ATTACH_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_ATTACH_REQ

ALL

2) DETACH PEND DL_DETACH_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_DETACH_REQ

ALL

3) UNBOUND DL_UNBOUND Stream is attached but not
bound to a DLSAP

ALL

4) BIND PEND DL_BIND_PENDING The DLS user is waiting for
an acknowledgment of a
DL_BIND_REQ

ALL

5) UNBIND PEND DL_UNBIND_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_UNBIND_REQ

ALL

6) IDLE DL_IDLE The stream is bound and
activated for use -
connection establishment
or connectionless data
transfer may take place

ALL

Chapter 2 139

DLPI Primitives
DLPI States

7) UDQOS PEND DL_UDQOS_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_UDQOS_REQ

DL_CLDLS

8) OUTCON PEND DL_OUTCON_
PENDING

An outgoing connection is
pending - the DLS user is
waiting for a
DL_CONNECT_CON

DL_CODLS

9) INCON PEND DL_INCON_
PENDING

An incoming connection is
pending - the DLS provider
is waiting for a
DL_CONNECT_RES

DL_CODLS

10) CONN_RES
PEND

DL_CONN_RES_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_CONNECT_RES

DL_CODLS

11) DATAXFER DL_DATAXFER Connection-mode data
transfer may take place

DL_CODLS

12) USER RESET
PEND

DL_USER_RESET_
PENDING

A user-initiated reset is
pending - the DLS user is
waiting for a
DL_RESET_CON

DL_CODLS

13) PROV RESET
PEND

DL_PROV_RESET_
PENDING

A provider-initiated reset
is pending - the DLS
provider is waiting for a
DL_RESET_RES

DL_CODLS

14) RESET_RES
PEND

DL_RESET_RES_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_RESET_RES

DL_CODLS

15) DISCON 8
PEND

DL_DISCON8_
ENDING

The DLS user is waiting for
an acknowledgment of a
DL_DISCONNECT_REQ
issued from the
DL_OUTCON_PENDING
state

DL_CODLS

State DLPI State Description Service
Type

140 Chapter 2

DLPI Primitives
DLPI States

The following rules apply to the maintenance of DLPI state:

• The DLS provider is responsible for keeping a record of the state of
the interface as viewed by the DLS user, to be returned in the
DL_INFO_ACK.

16) DISCON 9
PEND

DL_DISCON9_
PENDING

The DLS user is waiting for
an acknowledgement of a
DL_DISCONNECT_REQ
Issued from the
DL_INCON_PENDING
state.

DL_CODLS

17) DISCON 11
PEND

DL_DISCON11_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_DISCONNECT_REQ
issued from the
DL_DATAXFER state

DL_CODLS

18) DISCON 12
PEND

DL_DISCON12_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_DISCONNECT_REQ
issued from the
DL_USER_RESET_
PENDING state

DL_CODLS

19) DISCON 13
PEND

DL_DISCON13_
PENDING

The DLS user is waiting for
an acknowledgment of a
DL_DISCONNECT_REQ
issued from the
DL_PROV_RESET_
PENDING state

DL_CODLS

20) SUBS_BIND
PEND

DL_SUBS_BIND_
PND

The DLS user is waiting for
an acknowledgment of a
DL_SUBS_BIND_REQ

ALL

21) SUBS_
UNBIND PEND

DL_SUBS_UNBIND_
PND

The DLS user is waiting for
an acknowledgment of a
DL_SUBS_UNBIND_REQ

ALL

State DLPI State Description Service
Type

Chapter 2 141

DLPI Primitives
DLPI States

• The DLS provider may never generate a primitive that places the
interface out of state.

• If the DLS provider generates a STREAMS M_ERROR message
upstream, it should free any further primitives processed by its write
side put or service procedure.

• The close of a stream is considered an abortive action by the DLS
user, and may be executed from any state. The DLS provider must
issue appropriate indications to the remote DLS user when a close
occurs. For example, if the DLPI state is DL_DATAXFER, a
DL_DISCONNECT_IND should be sent to the remote DLS user. The
DLS provider should free any resources associated with that stream
and reset the stream to its unopened condition.

The following points clarify the state transition table.

• If the DLS provider supports connection-mode service, the value of
the outcnt state variable must be initialized to zero for each stream
when that stream is first opened.

• The initial and final state for a style 2 DLS provider is
DL_UNATTACHED. However, because a style 1 DLS provider
implicitly attaches a PPA to a stream when it is opened, the initial
and final DLPI state for a style 1 provider is DL_UNBOUND. The
DLS user should not issue DL_ATTACH_REQ or DL_DETACH_REQ
primitives to a style 1 DLS provider.

• A DLS provider may have multiple connect indications outstanding
(i.e. the DLS user has not responded to them) at one time. As the
state transition table points out, the stream on which those
indications are outstanding will remain in the
DL_INCON_PENDING state until the DLS provider receives a
response for all indications.

• The DLPI state associated with a given stream may be transferred to
another stream only when the DL_CONNECT_RES primitive
indicates this behavior. In this case, the responding stream (where
the connection will be established) must be in the DL_IDLE state.

• The labeling of the states DL_PROV_RESET_PENDING and
DL_USER_RESET_PENDING indicate the party that started the
local interaction, and does not necessarily indicate the originator of
the reset procedure.

142 Chapter 2

DLPI Primitives
DLPI States

• A DL_DATA_REQ primitive received by the DLS provider in the
state DL_PROV_RESET_PENDING (i.e. after a DL_RESET_IND has
been passed to the DLS user) or the state DL_IDLE (i.e. after a data
link connection has been released) should be discarded by the DLS
provider.

• A DL_DATA_IND primitive received by the DLS user after the user
has issued a DL_RESET_REQ should be discarded.

To ensure accurate processing of DLPI primitives, the DLS provider
must adhere to the following rules concerning the receipt and generation
of STREAMS M_FLUSH messages during various state transitions.

• The DLS provider must be ready to receive M_FLUSH messages from
upstream and flush its queues as specified in the message.

• The DLS provider must issue an M_FLUSH message upstream to
flush both the read and write queues after receiving a successful
DL_UNBIND_REQ primitive but before issuing the DL_OK_ACK.

• If an incoming disconnect occurs when the interface is in the
DL_DATAXFER, DL_USER_RESET_PENDING, or
DL_PROV_RESET_PENDING state, the DLS provider must send up
an M_FLUSH message to flush both the read and write queues before
sending up a DL_DISCONNECT_IND.

• If a DL_DISCONNECT_REQ is issued in the DL_DATAXFER,
DL_USER_RESET_PENDING, or DL_PROV_RESET_PENDING
states, the DLS provider must issue an M_FLUSH message upstream
to flush both the read and write queues after receiving the successful
DL_DISCONNECT_REQ but before issuing the DL_OK_ACK.

• If a reset occurs when the interface is in the DL_DATAXFER or
DL_USER_RESET_PENDING state, the DLS provider must send up
an M_FLUSH message to flush both the read and write queues before
sending up a DL_RESET_IND or DL_RESET_CON.

143

A Sample Programs

This appendix contains sample programs for connection, connectionless,
and raw modes.

144 Appendix A

Sample Programs
Connection Mode

Connection Mode
/**
 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1992. ALL RIGHTS
 RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
 REPRODUCED, OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
 THE PRIOR WRITTEN CONSENT OF HEWLETT PACKARD COMPANY
**/

/**
 This program demonstrates data transfer over a connection oriented
 DLPI stream. It also demonstrates connection handoff.
**/

#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/dlpi.h>
#include <sys/dlpi_ext.h>

#define SEND_SAP 0x80 /* sending SAP */
#define RECV_SAP 0x82 /* receiving SAP */

/**
 global areas for sending and receiving messages
**/
#define AREA_SIZE 5000 /* bytes; big enough for largest possible msg */

#define LONG_AREA_SIZE (AREA_SIZE / sizeof(u_long)) /* AREA_SIZE / 4 */

/* these are u_long arrays instead of u_char to insure proper alignment */
u_long ctrl_area[LONG_AREA_SIZE]; /* for control messages */
u_long data_area[LONG_AREA_SIZE]; /* for data messages */

struct strbuf ctrl_buf = {
 AREA_SIZE, /* maxlen = AREA_SIZE */
 0, /* len gets filled in for each message */
 ctrl_area /* buf = control area */
};

struct strbuf data_buf = {
 AREA_SIZE, /* maxlen = AREA_SIZE */
 0, /* len gets filled in for each message */
 data_area /* buf = data area */
};

/**
 get the next message from a stream; get_msg() returns one of the
 following defines
**/

Appendix A 145

Sample Programs
Connection Mode

#define GOT_CTRL 1 /* message has only a control part */
#define GOT_DATA 2 /* message has only a data part */
#define GOT_BOTH 3 /* message has both control and data parts */

int
get_msg(fd)
 int fd; /* file descriptor */
{
 int flags = 0; /* 0 ---> get any available message */
 int result = 0; /* return value */
 /*
 zero first byte of control area so the caller can call check_ctrl
 without checking the get_msg return value; if there was only data
 in the message and the user was expecting control or control + data,
 then when he calls check_ctrl it will compare the expected primitive
 zero and print information about the primitive that it got.
 */
 ctrl_area[0] = 0;

 /* call getmsg and check for an error */
 if(getmsg(fd, &ctrl_buf, &data_buf, &flags) < 0) {
 printf(”error: getmsg failed, errno = %d\n”, errno);
 exit(1);
 }
 if(ctrl_buf.len > 0) {
 result |= GOT_CTRL;
 }
 if(data_buf.len > 0) {
 result |= GOT_DATA;
 }
 return(result);
}

/**
 check that control message is the expected message
**/
void
check_ctrl(ex_prim)
 int ex_prim; /* the expected primitive */
{
 dl_error_ack_t *err_ack = (dl_error_ack_t *)ctrl_area;

 /* did we get the expected primitive? */
 if(err_ack->dl_primitive != ex_prim) {
 /* did we get a control part */
 if(ctrl_buf.len) {
 /* yup; is it an ERROR_ACK? */
 if(err_ack->dl_primitive == DL_ERROR_ACK) {
 /* yup; format the ERROR_ACK info */
 printf(”error: expected primitive 0x%02x, ”,
 ex_prim);
 printf(”got DL_ERROR_ACK\n”);
 printf(” dl_error_primitive = 0x%02x\n”,
 err_ack->dl_error_primitive);
 printf(” dl_errno = 0x%02x\n”,
 err_ack->dl_errno);
 printf(” dl_unix_errno = %d\n”,

146 Appendix A

Sample Programs
Connection Mode

 err_ack->dl_unix_errno);
 exit(1);
 } else {
 /*
 didn't get an ERROR_ACK either; print whatever
 primitive we did get
 */
 printf(”error: expected primitive 0x%02x, ”,
 ex_prim);
 printf(”got primitive 0x%02x\n”,
 err_ack->dl_primitive);
 exit(1);
 }
 } else {
 /* no control; did we get data? */
 if(data_buf.len) {
 /* tell user we only got data */
 printf(”error: check_ctrl found only data\n”);
 exit(1);
 } else {
 /*
 no message???; well, it was probably an
 interrupted system call
 */
 printf(”error: check_ctrl found no message\n”);
 exit(1);
 }
 }
 }
}

/**
 put a message consisting of only a data part on a stream
**/
void
put_data(fd, length)
 int fd; /* file descriptor */
 int length; /* length of data message */
{
 /* set the len field in the strbuf structure */
 data_buf.len = length;

 /* call putmsg and check for an error */
 if(putmsg(fd, 0, &data_buf, 0) < 0) {
 printf(”error: put_data putmsg failed, errno = %d\n”, errno);
 exit(1);
 }
}

Appendix A 147

Sample Programs
Connection Mode

/**
 put a message consisting of only a control part on a stream
**/
void
put_ctrl(fd, length, pri)
 int fd; /* file descriptor */
 int length; /* length of control message */
 int pri; /* priority of message: either 0 or RS_HIPRI */
{
 /* set the len field in the strbuf structure */
 ctrl_buf.len = length;

 /* call putmsg and check for an error */
 if(putmsg(fd, &ctrl_buf, 0, pri) < 0) {
 printf(”error: put_ctrl putmsg failed, errno = %d\n”, errno);
 exit(1);
 }
}

/**
 put a message consisting of both a control part and a control part
 on a stream
**/
void
put_both(fd, ctrl_length, data_length, pri)
 int fd; /* file descriptor */
 int ctrl_length; /* length of control part */
 int data_length; /* length of data part */
 int pri; /* priority of message: either 0 or RS_HIPRI */
{
 /* set the len fields in the strbuf structures */
 ctrl_buf.len = ctrl_length;
 data_buf.len = data_length;

 /* call putmsg and check for an error */
 if(putmsg(fd, &ctrl_buf, &data_buf, pri) < 0) {
 printf(”error: put_both putmsg failed, errno = %d\n”, errno);
 exit(1);
 }
}

/**
 print a string followed by a DLSAP
**/
void
print_dlsap(string, dlsap, dlsap_len)
 char *string; /* label */
 u_char *dlsap; /* the DLSAP */

148 Appendix A

Sample Programs
Connection Mode

 int dlsap_len; /* length of dlsap */
{
 int i;

 printf(”%s0x”, string);
 for(i = 0; i < dlsap_len; i++) {
 printf(”%02x”, dlsap[i]);
 }
 printf(”\n”);
}

/**
 open the DLPI cloneable device file, get a list of available PPAs,
 and attach to the first PPA; returns a file descriptor for the stream
**/
int
attach() {
 int fd; /* file descriptor */
 int ppa; /* PPA to attach to */
 dl_hp_ppa_req_t *ppa_req = (dl_attach_req_t *)ctrl_area;
 dl_hp_ppa_ack_t *ppa_ack = (dl_hp_ppa_ack_t *)ctrl_area;
 dl_hp_ppa_info_t *ppa_info;
 dl_attach_req_t *attach_req = (dl_attach_req_t *)ctrl_area;
 char *mac_name;

 /* open the device file */
 if((fd = open(”/dev/dlpi”, O_RDWR)) == -1) {
 printf(”error: open failed, errno = %d\n”, errno);
 exit(1);
 }

 /*
 find a PPA to attach to; we assume that the first PPA on the
 remote is on the same media as the first local PPA
 */
 /* send a PPA_REQ and wait for the PPA_ACK */
 ppa_req->dl_primitive = DL_HP_PPA_REQ;
 put_ctrl(fd, sizeof(dl_hp_ppa_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_HP_PPA_ACK);
 /* make sure we found at least one PPA */
 if(ppa_ack->dl_length == 0) {
 printf(”error: no PPAs available\n”);
 exit(1);
 }
 /* examine the first PPA */
 ppa_info = (dl_hp_ppa_info_t *)((u_char *)ctrl_area +
 ppa_ack->dl_offset);
 ppa = ppa_info->dl_ppa;
 switch(ppa_info->dl_mac_type) {
 case DL_CSMACD:
 case DL_ETHER:
 mac_name = ”Ethernet”;
 break;
 case DL_TPR:
 mac_name = ”Token Ring”;
 break;

Appendix A 149

Sample Programs
Connection Mode

 case DL_FDDI:
 mac_name = ”FDDI”;
 break;
 default:
 printf(”error: unknown MAC type in ppa_info\n”);
 exit(1);
 }
 printf(”attaching to %s media on PPA %d\n”, mac_name, ppa);

 /*
 fill in ATTACH_REQ with the PPA we found, send the ATTACH_REQ,
 and wait for the OK_ACK
 */
 attach_req->dl_primitive = DL_ATTACH_REQ;
 attach_req->dl_ppa = ppa;
 put_ctrl(fd, sizeof(dl_attach_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

 /* return the file descriptor for the stream to the caller */
 return(fd);
}

/**
 bind to a sap with a specified service mode and max_conind;
 returns the local DLSAP and its length
**/
void
bind(fd, sap, max_conind, service_mode, dlsap, dlsap_len)
 int fd; /* file descriptor */
 int sap; /* 802.2 SAP to bind on */
 int max_conind; /* max # of connect indications to accept */
 int service_mode; /* either DL_CODLS or DL_CLDLS */
 u_char *dlsap; /* return DLSAP */
 int *dlsap_len; /* return length of dlsap */
{
 dl_bind_req_t *bind_req = (dl_bind_req_t *)ctrl_area;
 dl_bind_ack_t *bind_ack = (dl_bind_ack_t *)ctrl_area;
 u_char *dlsap_addr;

 /* fill in the BIND_REQ */
 bind_req->dl_primitive = DL_BIND_REQ;
 bind_req->dl_sap = sap;
 bind_req->dl_max_conind = max_conind;
 bind_req->dl_service_mode = service_mode;
 bind_req->dl_conn_mgmt = 0; /* conn_mgmt is NOT supported */
 bind_req->dl_xidtest_flg = 0; /* user will handle TEST & XID pkts */

150 Appendix A

Sample Programs
Connection Mode

 /* send the BIND_REQ and wait for the OK_ACK */
 put_ctrl(fd, sizeof(dl_bind_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_BIND_ACK);

 /* return the DLSAP to the caller */
 *dlsap_len = bind_ack->dl_addr_length;
 dlsap_addr = (u_char *)ctrl_area + bind_ack->dl_addr_offset;
 memcpy(dlsap, dlsap_addr, *dlsap_len);
}

/**
 unbind, detach, and close
**/
void
cleanup(fd)
 int fd; /* file descriptor */
{
 dl_unbind_req_t *unbind_req = (dl_unbind_req_t *)ctrl_area;
 dl_detach_req_t *detach_req = (dl_detach_req_t *)ctrl_area;

 /* unbind */
 unbind_req->dl_primitive = DL_UNBIND_REQ;
 put_ctrl(fd, sizeof(dl_unbind_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

 /* detach */
 detach_req->dl_primitive = DL_DETACH_REQ;
 put_ctrl(fd, sizeof(dl_detach_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

 /* close */
 close(fd);
}

/**
 send a connect request to a DLSAP
**/
void
connect_req(fd, dlsap, dlsap_len)
 int fd; /* file descriptor */
 u_char *dlsap; /* DLSAP to connect with */
 int dlsap_len; /* length of dlsap */
{
 dl_connect_req_t *con_req = (dl_connect_req_t *)ctrl_area;
 dl_connect_res_t *con_res = (dl_connect_res_t *)ctrl_area;
 u_char *tdlsap;

 /* fill in the connect request */
 con_req->dl_primitive = DL_CONNECT_REQ;
 con_req->dl_dest_addr_length = dlsap_len;
 con_req->dl_dest_addr_offset = sizeof(dl_connect_req_t);
 /* QOS is not supported; these fields must be set to zero */
 con_req->dl_qos_length = 0;
 con_req->dl_qos_offset = 0;

Appendix A 151

Sample Programs
Connection Mode

 con_req->dl_growth = 0;

 /* copy in the dlsap */
 tdlsap = (u_char *)ctrl_area + con_req->dl_dest_addr_offset;
 memcpy(tdlsap, dlsap, dlsap_len);

 /* send the connect request */
 print_dlsap(”sending CONNECT_REQ to DLSAP ”, dlsap, dlsap_len);
 put_ctrl(fd, sizeof(dl_connect_req_t) + dlsap_len, 0);
}

/***
 get a connection response token for a stream; returns the token
***/
u_long
get_token(fd)
 int fd; /* file descriptor */
{
 dl_token_req_t *tok_req = (dl_token_req_t *)ctrl_area;
 dl_token_ack_t *tok_ack = (dl_token_ack_t *)ctrl_area;

 /*
 Send down a token request. Note that unlike most of the other
 messages this one is a PCPROTO message so we call put_ctrl with
 RS_HIPRI instead of zero.
 */
 tok_req->dl_primitive = DL_TOKEN_REQ;
 put_ctrl(fd, sizeof(dl_token_req_t), RS_HIPRI);

 /* wait for the token ack */
 get_msg(fd);
 check_ctrl(DL_TOKEN_ACK);

 /* return the token */
 return(tok_ack->dl_token);
}

/***
 get a connect indication from a stream; returns the correlation number
***/
u_long
connect_ind(fd)
 int fd; /* file descriptor */
{
 dl_connect_ind_t *con_ind = (dl_connect_ind_t *)ctrl_area;
 u_char *dlsap;
 int dlsap_len;

 /* wait for the connect indication */
 get_msg(fd);
 check_ctrl(DL_CONNECT_IND);

 /* print the calling DLSAP */
 dlsap = (u_char *)ctrl_area + con_ind->dl_calling_addr_offset;
 dlsap_len = con_ind->dl_calling_addr_length;
 print_dlsap(”received CONNECT_IND from DLSAP ”, dlsap, dlsap_len);

152 Appendix A

Sample Programs
Connection Mode

 /* return the correlation number */
 return(con_ind->dl_correlation);
}

/**
 send a connect response with a specified correlation and token;
 wait for the OK_ACK
**/
void
connect_res(fd, correlation, token)
 int fd; /* file descriptor */
 u_long correlation; /* correlation number of CONNECT_IND */
 /* being responded to */
 u_long token; /* token of stream to pass connection to */
{
 dl_connect_res_t *con_res = (dl_connect_res_t *)ctrl_area;

 /* fill in the connect response */
 con_res->dl_primitive = DL_CONNECT_RES;
 con_res->dl_correlation = correlation;
 con_res->dl_resp_token = token;
 /* QOS is not supported; these fields must be set to zero */
 con_res->dl_qos_length = 0;
 con_res->dl_qos_offset = 0;
 con_res->dl_growth = 0;

 put_ctrl(fd, sizeof(dl_connect_res_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);
}

/**
 send a DISCONNECT_REQ and wait for the OK_ACK
**/
void
disconnect_req(fd)
 int fd; /* file descriptor */
{
 dl_disconnect_req_t *disc_req = (dl_disconnect_req_t *)ctrl_area;

 /* fill in the disconnect request */
 disc_req->dl_primitive = DL_DISCONNECT_REQ;
 /* this is a normal disconnect */
 disc_req->dl_reason = DL_DISC_NORMAL_CONDITION;
 /*
 Since we are not rejecting a CONNECT_IND, we set the correlation
 to zero.

Appendix A 153

Sample Programs
Connection Mode

 */
 disc_req->dl_correlation = 0;

 /* send the disconnect request */
 put_ctrl(fd, sizeof(dl_disconnect_req_t), 0);

 /* wait for the OK_ACK */
 get_msg(fd);
 check_ctrl(DL_OK_ACK);
}

/**
 main
**/
main() {
 int send_fd; /* file descriptor for sending stream */
 int recv_c_fd; /* fd for recv ctrl stream */
 int recv_d_fd; /* fd for recv data stream */
 u_char sdlsap[20]; /* sending DLSAP */
 u_char rcdlsap[20]; /* receiving control DLSAP */
 u_char rddlsap[20]; /* receiving data DLSAP */
 int sdlsap_len, rcdlsap_len, rddlsap_len; /* DLSAP lengths */
 u_long correlation; /* correlation number for CONNECT_IND */
 u_long token; /* token for recv_d stream */
 int i; /* loop counter */

 /*
 We'll use three streams: a sending stream, a receiving stream bound
 with max_conind = 1 (the ”control” stream), and a receiving stream
 bound with max_conind = 0 (the ”data” stream). The connect indication
 will be handed off from the control stream to the data stream.
 We initially open only the sending stream and the receiving control
 stream.
 */

 /*
 First, we must open the DLPI device file, /dev/dlpi, and attach
 to a PPA. attach will open /dev/dlpi, find the first PPA
 with the DL_HP_PPA_INFO primitive, and attach to that PPA.
 attach() returns the file descriptor for the stream.
 */
 send_fd = attach();
 recv_c_fd = attach();

 /*
 Now we must bind the streams to saps. The bind function will
 return the local DLSAP and its length for each stream in the last
 two arguments. Only the receiving control stream has a non-zero
 max_conind.
 */
 bind(send_fd, SEND_SAP, 0, DL_CODLS, sdlsap, &sdlsap_len);
 bind(recv_c_fd, RECV_SAP, 1, DL_CODLS, rcdlsap, &rcdlsap_len);

 /*
 Start the connection establishment process by sending a CONNECT_REQ
 from the sender to the receiver control stream.
 */

154 Appendix A

Sample Programs
Connection Mode

 connect_req(send_fd, rcdlsap, rcdlsap_len);

 /*
 The receiver control stream gets a CONNECT_IND. We need the
 correlation number to relate the CONNECT_IND to the CONNECT_RES
 we will send down later.
 */
 correlation = connect_ind(recv_c_fd);

 /*
 We want to handle the actual data transfer over a dedicated
 receiver stream. Here, we attach and bind a second stream on
 the receivers sap with max_conind = 0.
 */
 recv_d_fd = attach();
 bind(recv_d_fd, RECV_SAP, 0, DL_CODLS, rddlsap, &rddlsap_len);

 /*
 To pass the connection from the control stream to the data stream,
 we need a token for the data stream. get_token returns this.
 */
 token = get_token(recv_d_fd);

 /*
 Now we do a CONNECT_RES on the control stream. The correlation
 specifies the CONNECT_IND we are responding to, and the token,
 since it is non-zero, specifies the stream to which we want to
 hand off the connection.
 */
 connect_res(recv_c_fd, correlation, token);

 /* Get the CONNECT_CON back on the senders stream */
 get_msg(send_fd);
 check_ctrl(DL_CONNECT_CON);
 printf(”connection established\n”);

 /*
 We now have a connection established between the send_fd stream and
 the recv_d_fd stream. The recv_c_fd stream is in the IDLE state
 and is ready to process another CONNECT_IND. Since we won't be
 establishing any new connections, we'll call cleanup on the
 receiver control stream to unbind, detach, and close the file
 descriptor.
 */
 cleanup(recv_c_fd);

 /* Fill in data_area with some data to send. */
 for(i = 0; i < 60; i++) {
 data_area[i] = i;
 }

 /* Send 5 packets of data. */
 for(i = 0; i < 5; i++) {
 put_data(send_fd, (i + 1) * 10);
 printf(”sent %d bytes of data\n”, (i + 1) * 10);
 }

Appendix A 155

Sample Programs
Connection Mode

 /* Receive the 5 packets. */
 for(i = 0; i < 5; i++) {
 if(get_msg(recv_d_fd) != GOT_DATA) {
 printf(”error: didn't get data\n”);
 check_ctrl(0);
 exit(1);
 }
 printf(”received %d bytes of data\n”, data_buf.len);
 }

 /*
 We're finished. Now we tear down the connection. We'll send
 a DISCONNECT_REQ on the receiver side.
 */
 disconnect_req(recv_d_fd);

 /* and receive the DISCONNECT_IND on the sender side. */
 get_msg(send_fd);
 check_ctrl(DL_DISCONNECT_IND);

 /* And finally, we tear down the sender and receiver streams */
 cleanup(send_fd);
 cleanup(recv_d_fd);
}

156 Appendix A

Sample Programs
Connectionless Mode

Connectionless Mode
/**
 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1992. ALL RIGHTS
 RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
 REPRODUCED, OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
 THE PRIOR WRITTEN CONSENT OF HEWLETT PACKARD COMPANY
**/

/**
 The main part of this program is composed of two parts.
 The first part demonstrates data transfer over a connectionless
 stream with LLC SAP headers. The second part of this program
 demonstrates data transfer over a connectionless stream with
 LLC SNAP headers.
***/

#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/dlpi.h>
#include <sys/dlpi_ext.h>

#define SEND_SAP 0x80 /* sending SAP */
#define RECV_SAP 0x82 /* receiving SAP */
#define SNAP_SAP 0xAA /* SNAP SAP */

/***
 SNAP protocol values.
**/
u_char SEND_SNAP_SAP[5] = {0x50, 0x00, 0x00, 0x00, 0x00};
u_char RECV_SNAP_SAP[5] = {0x60, 0x00, 0x00, 0x00, 0x00};

/***
 global areas for sending and receiving messages
**/
#define AREA_SIZE 5000 /* bytes; big enough for largest possible msg */

#define LONG_AREA_SIZE (AREA_SIZE / sizeof(u_long)) /* AREA_SIZE / 4 */

u_long ctrl_area[LONG_AREA_SIZE]; /* for control messages */
u_long data_area[LONG_AREA_SIZE]; /* for data messages */

struct strbuf ctrl_buf = {
 AREA_SIZE, /* maxlen = AREA_SIZE */
 0, /* len gets filled in for each message */
 ctrl_area /* buf = control area */
};

struct strbuf data_buf = {

Appendix A 157

Sample Programs
Connectionless Mode

 AREA_SIZE, /* maxlen = AREA_SIZE */
 0, /* len gets filled in for each message */
 data_area /* buf = data area */
};

/**
 get the next message from a stream; get_msg() returns one of the
 following defines
**/
#define GOT_CTRL 1 /* message has only a control part */
#define GOT_DATA 2 /* message has only a data part */
#define GOT_BOTH 3 /* message has both control and data parts */

int
get_msg(fd)
 int fd; /* file descriptor */
{
 int flags = 0; /* 0 ---> get any available message */
 int result = 0; /* return value */

 /*
 zero first byte of control area so the caller can call check_ctrl
 without checking the get_msg return value; if there was only data
 in the message and the user was expecting control or control + data,
 then when he calls check_ctrl it will compare the expected primitive
 zero and print information about the primitive that it got.
 */
 ctrl_area[0] = 0;

 /* call getmsg and check for an error */
 if(getmsg(fd, &ctrl_buf, &data_buf, &flags) < 0) {
 printf(”error: getmsg failed, errno = %d\n”, errno);
 exit(1);
 }
 if(ctrl_buf.len > 0) {
 result |= GOT_CTRL;
 }
 if(data_buf.len > 0) {
 result |= GOT_DATA;
 }
 return(result);
}

/**
 check that control message is the expected message
**/
void
check_ctrl(ex_prim)
 int ex_prim; /* the expected primitive */
{
 dl_error_ack_t *err_ack = (dl_error_ack_t *)ctrl_area;

 /* did we get the expected primitive? */
 if(err_ack->dl_primitive != ex_prim) {
 /* did we get a control part */
 if(ctrl_buf.len) {
 /* yup; is it an ERROR_ACK? */

158 Appendix A

Sample Programs
Connectionless Mode

 if(err_ack->dl_primitive == DL_ERROR_ACK) {
 /* yup; format the ERROR_ACK info */
 printf(”error: expected primitive 0x%02x, ”,
 ex_prim);
 printf(”got DL_ERROR_ACK\n”);
 printf(” dl_error_primitive = 0x%02x\n”,
 err_ack->dl_error_primitive);
 printf(” dl_errno = 0x%02x\n”,
 err_ack->dl_errno);
 printf(” dl_unix_errno = %d\n”,
 err_ack->dl_unix_errno);
 exit(1);
 } else {
 /*
 didn't get an ERROR_ACK either; print whatever
 primitive we did get
 */
 printf(”error: expected primitive 0x%02x, ”,
 ex_prim);
 printf(”got primitive 0x%02x\n”,
 err_ack->dl_primitive);
 exit(1);
 }
 } else {
 /* no control; did we get data? */
 if(data_buf.len) {
 /* tell user we only got data */
 printf(”error: check_ctrl found only data\n”);
 exit(1);
 } else {
 /*
 no message???; well, it was probably an
 interrupted system call
 */
 printf(”error: check_ctrl found no message\n”);
 exit(1);
 }
 }
 }
}

/**
 put a message consisting of only a data part on a stream
**/
void
put_data(fd, length)
 int fd; /* file descriptor */
 int length; /* length of data message */

Appendix A 159

Sample Programs
Connectionless Mode

{
 /* set the len field in the strbuf structure */
 data_buf.len = length;

 /* call putmsg and check for an error */
 if(putmsg(fd, 0, &data_buf, 0) < 0) {
 printf(”error: put_data putmsg failed, errno = %d\n”, errno);
 exit(1);
 }
}

/**
 put a message consisting of only a control part on a stream
**/
void
put_ctrl(fd, length, pri)
 int fd; /* file descriptor */
 int length; /* length of control message */
 int pri; /* priority of message: either 0 or RS_HIPRI */
{
 /* set the len field in the strbuf structure */
 ctrl_buf.len = length;

 /* call putmsg and check for an error */
 if(putmsg(fd, &ctrl_buf, 0, pri) < 0) {
 printf(”error: put_ctrl putmsg failed, errno = %d\n”, errno);
 exit(1);
 }
}

/**
 put a message consisting of both a control part and a control part
 on a stream
**/
void
put_both(fd, ctrl_length, data_length, pri)
 int fd; /* file descriptor */
 int ctrl_length; /* length of control part */
 int data_length; /* length of data part */
 int pri; /* priority of message: either 0 or RS_HIPRI */
{
 /* set the len fields in the strbuf structures */
 ctrl_buf.len = ctrl_length;
 data_buf.len = data_length;

 /* call putmsg and check for an error */
 if(putmsg(fd, &ctrl_buf, &data_buf, pri) < 0) {
 printf(”error: put_both putmsg failed, errno = %d\n”, errno);
 exit(1);
 }
}

/**
 open the DLPI cloneable device file, get a list of available PPAs,
 and attach to the first PPA; returns a file descriptor for the stream
**/
int

160 Appendix A

Sample Programs
Connectionless Mode

attach() {
 int fd; /* file descriptor */
 int ppa; /* PPA to attach to */
 dl_hp_ppa_req_t *ppa_req = (dl_attach_req_t *)ctrl_area;
 dl_hp_ppa_ack_t *ppa_ack = (dl_hp_ppa_ack_t *)ctrl_area;
 dl_hp_ppa_info_t *ppa_info;
 dl_attach_req_t *attach_req = (dl_attach_req_t *)ctrl_area;
 char *mac_name;

 /* open the device file */
 if((fd = open(”/dev/dlpi”, O_RDWR)) == -1) {
 printf(”error: open failed, errno = %d\n”, errno);
 exit(1);
 }

 /*
 find a PPA to attach to; we assume that the first PPA on the
 remote is on the same media as the first local PPA
 */
 /* send a PPA_REQ and wait for the PPA_ACK */
 ppa_req->dl_primitive = DL_HP_PPA_REQ;
 put_ctrl(fd, sizeof(dl_hp_ppa_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_HP_PPA_ACK);
 /* make sure we found at least one PPA */
 if(ppa_ack->dl_length == 0) {
 printf(”error: no PPAs available\n”);
 exit(1);
 }
 /* examine the first PPA */
 ppa_info = (dl_hp_ppa_info_t *)((u_char *)ctrl_area +
 ppa_ack->dl_offset);
 ppa = ppa_info->dl_ppa;
 switch(ppa_info->dl_mac_type) {
 case DL_CSMACD:
 case DL_ETHER:
 mac_name = ”Ethernet”;
 break;
 case DL_TPR:
 mac_name = ”Token Ring”;
 break;
 case DL_FDDI:
 mac_name = ”FDDI”;
 break;
 default:
 printf(”error: unknown MAC type in ppa_info\n”);
 exit(1);
 }
 printf(”attaching to %s media on PPA %d\n”, mac_name, ppa);

 /*
 fill in ATTACH_REQ with the PPA we found, send the ATTACH_REQ,
 and wait for the OK_ACK

Appendix A 161

Sample Programs
Connectionless Mode

 */
 attach_req->dl_primitive = DL_ATTACH_REQ;
 attach_req->dl_ppa = ppa;
 put_ctrl(fd, sizeof(dl_attach_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

 /* return the file descriptor for the stream to the caller */
 return(fd);
}

/**
 bind to a sap with a specified service mode and max_conind;
 returns the local DLSAP and its length
**/
void
bind(fd, sap, max_conind, service_mode, dlsap, dlsap_len)
 int fd; /* file descriptor */
 int sap; /* 802.2 SAP to bind on */
 int max_conind; /* max # of connect indications to accept */
 int service_mode; /* either DL_CODLS or DL_CLDLS */
 u_char *dlsap; /* return DLSAP */
 int *dlsap_len; /* return length of dlsap */
{
 dl_bind_req_t *bind_req = (dl_bind_req_t *)ctrl_area;
 dl_bind_ack_t *bind_ack = (dl_bind_ack_t *)ctrl_area;
 u_char *dlsap_addr;

 /* fill in the BIND_REQ */
 bind_req->dl_primitive = DL_BIND_REQ;
 bind_req->dl_sap = sap;
 bind_req->dl_max_conind = max_conind;
 bind_req->dl_service_mode = service_mode;
 bind_req->dl_conn_mgmt = 0; /* conn_mgmt is NOT supported */
 bind_req->dl_xidtest_flg = 0; /* user will handle TEST & XID pkts */

 /* send the BIND_REQ and wait for the OK_ACK */
 put_ctrl(fd, sizeof(dl_bind_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_BIND_ACK);

 /* return the DLSAP to the caller */
 *dlsap_len = bind_ack->dl_addr_length;
 dlsap_addr = (u_char *)ctrl_area + bind_ack->dl_addr_offset;
 memcpy(dlsap, dlsap_addr, *dlsap_len);
}

/**
 bind to a SNAP sap via the DL_PEER_BIND, or DL_HIERARCHICAL_BIND
 subsequent bind class; returns the local DLSAP and its length
**/
void
subs_bind(fd, snapsap, snapsap_len, subs_bind_class, dlsap, dlsap_len)
int fd;
u_char *snapsap;
int subs_bind_class;
u_char *dlsap;

162 Appendix A

Sample Programs
Connectionless Mode

int *dlsap_len;
{
 dl_subs_bind_req_t *subs_bind_req = (dl_subs_bind_req_t*)ctrl_area;
 dl_subs_bind_ack_t *subs_bind_ack = (dl_subs_bind_ack_t*)ctrl_area;
 u_char *dlsap_addr;

 /* Fill in Subsequent bind req */
 subs_bind_req->dl_primitive = DL_SUBS_BIND_REQ;
 subs_bind_req->dl_subs_sap_offset = DL_SUBS_BIND_REQ_SIZE;
 subs_bind_req->dl_subs_sap_length = snapsap_len;
 subs_bind_req->dl_subs_bind_class = subs_bind_class;
 memcpy((caddr_t)&subs_bind_req[1], snapsap, snapsap_len);

 /* send the SUBS_BIND_REQ and wait for the OK_ACK */
 put_ctrl(fd, sizeof(dl_subs_bind_req_t)+snapsap_len, 0);
 get_msg(fd);
 check_ctrl(DL_SUBS_BIND_ACK);

 /* return the DLSAP to the caller */
 *dlsap_len = subs_bind_ack->dl_subs_sap_length;
 dlsap_addr = (u_char *)ctrl_area + subs_bind_ack->dl_subs_sap_offset;
 memcpy(dlsap, dlsap_addr, *dlsap_len);

}

/**
 unbind, detach, and close
**/
void
cleanup(fd)
 int fd; /* file descriptor */
{
 dl_unbind_req_t *unbind_req = (dl_unbind_req_t *)ctrl_area;
 dl_detach_req_t *detach_req = (dl_detach_req_t *)ctrl_area;

 /* unbind */
 unbind_req->dl_primitive = DL_UNBIND_REQ;
 put_ctrl(fd, sizeof(dl_unbind_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

 /* detach */
 detach_req->dl_primitive = DL_DETACH_REQ;
 put_ctrl(fd, sizeof(dl_detach_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

 /* close */
 close(fd);
}

/**
 receive a data packet;
**/
int
recv_data(fd)
 int fd; /* file descriptor */

Appendix A 163

Sample Programs
Connectionless Mode

{
 dl_unitdata_ind_t *data_ind = (dl_unitdata_ind_t *)ctrl_area;
 char *rdlsap;
 int msg_res;

 msg_res = get_msg(fd);
 check_ctrl(DL_UNITDATA_IND);
 if(msg_res != GOT_BOTH) {
 printf(”error: did not receive data part of message\n”);
 exit(1);
 }
 return(data_buf.len);
}

/**
 send a data packet; assumes data_area has already been filled in
**/
void
send_data(fd, rdlsap, rdlsap_len, len)
 int fd; /* file descriptor */
 u_char *rdlsap; /* remote dlsap */
 int rdlsap_len; /* length of rdlsap */
 int len; /* length of the packet to send */
{
 dl_unitdata_req_t *data_req = (dl_unitdata_req_t *)ctrl_area;
 u_char *out_dlsap;

 /* fill in data_req */
 data_req->dl_primitive = DL_UNITDATA_REQ;
 data_req->dl_dest_addr_length = rdlsap_len;
 data_req->dl_dest_addr_offset = sizeof(dl_unitdata_req_t);
 /* copy dlsap */

data_req->dl_priority.dl_min = 0;
data_req->dl_priority.dl_max = 0;

 out_dlsap = (u_char *)ctrl_area + sizeof(dl_unitdata_req_t);
 memcpy(out_dlsap, rdlsap, rdlsap_len);
 put_both(fd, sizeof(dl_unitdata_req_t) + rdlsap_len, len, 0);
}

/**
 print a string followed by a DLSAP
**/
void
print_dlsap(string, dlsap, dlsap_len)
 char *string; /* label */
 u_char *dlsap; /* the DLSAP */
 int dlsap_len; /* length of dlsap */
{
 int i;

 printf(”%s”, string);
 for(i = 0; i < dlsap_len; i++) {
 printf(”%02x”, dlsap[i]);
 }
 printf(”\n”);
}

164 Appendix A

Sample Programs
Connectionless Mode

/**
 main
**/
main() {
 int send_fd, recv_fd; /* file descriptors */
 u_char sdlsap[20]; /* sending DLSAP */
 u_char rdlsap[20]; /* receiving DLSAP */
 int sdlsap_len, rdlsap_len; /* DLSAP lengths */
 int i, j, recv_len;

 /*
 PART 1 of program. Demonstrate connectionless data transfer with
 LLC SAP header.
 */

 /*
 First, we must open the DLPI device file, /dev/dlpi, and attach
 to a PPA. attach() will open /dev/dlpi, find the first PPA
 with the DL_HP_PPA_INFO primitive, and attach to that PPA.
 attach() returns the file descriptor for the stream. Here we
 do an attach for each file descriptor.
 */
 send_fd = attach();
 recv_fd = attach();

 /*
 Now we have to bind to a IEEESAP. We will ask for connectionless data
 link service with the DL_CLDLS service mode. Since we are
 connectionless, we will not have any incoming connections so we
 set max_conind to 0. bind() will return our local DLSAP and its
 length in the last two arguments we pass to it.
 */
 bind(send_fd, SEND_SAP, 0, DL_CLDLS, sdlsap, &sdlsap_len);
 bind(recv_fd, RECV_SAP, 0, DL_CLDLS, rdlsap, &rdlsap_len);

 /* print the DLSAPs we got back from the binds */
 print_dlsap(”sending DLSAP = ”, sdlsap, sdlsap_len);
 print_dlsap(”receiving DLSAP = ”, rdlsap, rdlsap_len);

 /*
 Time to send some data. We'll send 5 data packets in sequence.
 */
 for(i = 0; i < 5; i++) {
 /* send (i+1)*10 data bytes with the first byte = i */
 data_area[0] = i;
 /* Initialize data area */
 for (j = 1; j < (i+1)*10; j++)
 data_area[j] = ”a”;
 print_dlsap(”sending data to ”,rdlsap, rdlsap_len);
 send_data(send_fd, rdlsap, rdlsap_len, (i + 1) * 10);
 /* receive the data packet */
 recv_len = recv_data(recv_fd);
 printf(”received %d bytes, first word = %d\n”, recv_len,
 data_area[0]);
 }

Appendix A 165

Sample Programs
Connectionless Mode

 /*
 We're finished with PART 1. Now call cleanup to unbind, then detach,
 then close the device file.
 */
 cleanup(send_fd);
 cleanup(recv_fd);

 /*
 PART 2 of program. Demonstrate connectionless data transfer with
 LLC SNAP SAP header.
 */

 /*
 As demonstrated in the first part of this program we must first
 open the DLPI device file, /dev/dlpi, and attach to a PPA.
 */
 send_fd = attach();
 recv_fd = attach();

 /*
 The first method for binding a SNAP protocol value (which is
 demonstrated below) requires the user to first bind the SNAP
 SAP 0xAA, then issue a subsequent bind with class DL_HIERARCHICAL_BIND
 with the 5 bytes of SNAP information.

 The second method (which is not demonstrated in this program) is
 to bind any supported protocol value (see section 5) and then issue
 a subsequent bind with class DL_PEER_BIND. The data area of the
 subsequent bind should include 6 bytes of data, the first byte being
 the SNAP SAP 0xAA followed by 5 bytes of SNAP information.
 */
 bind(send_fd, SNAP_SAP, 0, DL_CLDLS, sdlsap, &sdlsap_len);
 bind(recv_fd, SNAP_SAP, 0, DL_CLDLS, rdlsap, &rdlsap_len);

 /*
 Now we must complete the binding of the SNAP protocol value
 with the subsequent bind request and a subsequent bind class
 of DL_HIERARCHICAL_BIND.
 */
 subs_bind(send_fd, SEND_SNAP_SAP, 5, DL_HIERARCHICAL_BIND, sdlsap,
 &sdlsap_len);
 subs_bind(recv_fd, RECV_SNAP_SAP, 5, DL_HIERARCHICAL_BIND, rdlsap,
 &rdlsap_len);
 /* print the DLSAPs we got back from the binds */
 print_dlsap(”sending DLSAP = ”, sdlsap, sdlsap_len);
 print_dlsap(”receiving DLSAP = ”, rdlsap, rdlsap_len);

 /*
 Time to send some data. We'll send 5 data packets in sequence.
 */
 for(i = 0; i < 5; i++) {
 /* send (i+1)*10 data bytes with the first byte = i */
 data_area[0] = i;
 /* Initialize data area */
 for (j = 1; j < (i+1)*10; j++)
 data_area[j] = ”a”;

166 Appendix A

Sample Programs
Connectionless Mode

 print_dlsap(”sending data to ”,rdlsap, rdlsap_len);
 send_data(send_fd, rdlsap, rdlsap_len, (i + 1) * 10);
 /* receive the data packet */
 recv_len = recv_data(recv_fd);
 printf(”received %d bytes, first word = %d\n”, recv_len,
 data_area[0]);
 }

 /*
 We're finished. Now call cleanup to unbind, then detach,
 then close the device file.
 */
 cleanup(send_fd);
 cleanup(recv_fd);
}

Appendix A 167

Sample Programs
Raw Mode

Raw Mode
/*
 * (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1993. ALL RIGHTS
 * RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
 * REPRODUCED, OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
 * THE PRIOR WRITTEN CONSENT OF HEWLETT PACKARD COMPANY
 */

/**
 The program demonstrates RAW mode data transfer over an
 802.3 interface.
**/

#define PPA 1
#define FRAME_LEN 1500 /* max message size is 1514;MAC+LLC+data */
#define SEQ_OFFSET 100
#define INSAP 22
#define OUTSAP 24

#define OUTER_LOOPS 10
#define INNER_LOOPS 25

#include <sys/types.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <math.h>
#include <ctype.h>

#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/poll.h>
#include <sys/dlpi.h>
#include <sys/dlpi_ext.h>
#include <netinet/if_ieee.h>

#define bcopy(source, destination, length) memcpy(destination, source, length)
#define ETHER_HLEN 14

char tag[80];

#define AREA_SZ 5000 /*-=-* buffer length in bytes *-=-*/

u_long ctl_area[AREA_SZ];
u_long dat_area[AREA_SZ];

struct strbuf ctl = {AREA_SZ, 0, ctl_area};
struct strbuf dat = {AREA_SZ, 0, dat_area};

#define GOT_CTRL 1

168 Appendix A

Sample Programs
Raw Mode

#define GOT_DATA 2
#define GOT_BOTH 3
#define GOT_INTR 4

/*-=-* get a message from a stream; return type of message *-=-*/
int
get_msg(fd)
 int fd;
{
 int flags = 0;
 int res, ret;

 ctl_area[0] = 0;
 dat_area[0] = 0;
 ret = 0;

 res = getmsg(fd, &ctl, &dat, &flags);

 if(res < 0) {
 if(errno == EINTR) {
 return(GOT_INTR);
 } else {
 printf(”%s,get_msg: getmsg failed, errno = %d\n”, tag, errno);
 exit(1);
 }
 }
 if(ctl.len > 0) {
 ret |= GOT_CTRL;
 }
 if(dat.len > 0) {
 ret |= GOT_DATA;
 }
 return(ret);
}

/*-=-* verify that dl_primitive in ctl_area = prim *-=-*/
int
check_ctrl(prim)
 int prim;
{
 dl_error_ack_t *err_ack = (dl_error_ack_t *)ctl_area;

 if(err_ack->dl_primitive != prim) {
 if(err_ack->dl_primitive == DL_ERROR_ACK) {
 printf(”%s,check_ctrl: got DL_ERROR_ACK\n”,tag);
 printf(” dl_error_primitive = 0x%02x\n”,
 err_ack->dl_error_primitive);

Appendix A 169

Sample Programs
Raw Mode

 printf(” dl_errno = 0x%02x\n”, err_ack->dl_errno);
 printf(” dl_unix_errno = %d\n”, err_ack->dl_unix_errno);
 exit(1);
 } else {
 printf(”%s,check_ctrl: expected primitive 0x%02x”, tag, prim);
 printf(”, got primitive 0x%02x\n”, err_ack->dl_primitive);
 exit(1);
 }
 }
}

/*-=-* put a control message on a stream *-=-*/
void
put_ctrl(fd, len, pri)
 int fd, len, pri;
{
 ctl.len = len;

 if(putmsg(fd, &ctl, 0, pri) < 0) {
 printf(”%s,put_ctrl: putmsg failed, errno = %d\n”, tag, errno);
 exit(1);
 }
}

/*-=-* put a control + data message on a stream *-=-*/
void
put_both(fd, clen, dlen, pri)
 int fd, clen, dlen, pri;
{
 ctl.len = clen;
 dat.len = dlen;

 if(putmsg(fd, &ctl, &dat, pri) < 0) {
 printf(”%s,put_both: putmsg failed, errno = %d\n”, tag, errno);
 exit(1);
 }
}

/*-=-* open file descriptor and attach *-=-*/
int
dl_open(ppa)
 int ppa;
{
 int fd;
 dl_attach_req_t *attach_req = (dl_attach_req_t *)ctl_area;

 if((fd = open(”/dev/dlpi”, O_RDWR)) == -1) {
 printf(”%s,dl_open: open failed, errno = %d\n”,tag, errno);
 exit(1);
 }

 attach_req->dl_primitive = DL_ATTACH_REQ;
 attach_req->dl_ppa = ppa;

 put_ctrl(fd, sizeof(dl_attach_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_OK_ACK);

170 Appendix A

Sample Programs
Raw Mode

 return(fd);
}

/*-=-* send DL_BIND_REQ *-=-*/
void
dl_bind(fd, sap, addr)
 int fd, sap;
 u_char *addr;
{
 dl_bind_req_t *bind_req = (dl_bind_req_t *)ctl_area;
 dl_bind_ack_t *bind_ack = (dl_bind_ack_t *)ctl_area;

 bind_req->dl_primitive = DL_BIND_REQ;
 bind_req->dl_sap = sap;
 bind_req->dl_max_conind = 1;
 bind_req->dl_service_mode = DL_HP_RAWDLS;
 bind_req->dl_conn_mgmt = 0;
 bind_req->dl_xidtest_flg = 0;

 put_ctrl(fd, sizeof(dl_bind_req_t), 0);
 get_msg(fd);
 check_ctrl(DL_BIND_ACK);

 bcopy((u_char *)bind_ack + bind_ack->dl_addr_offset, addr,
 bind_ack->dl_addr_length);
}

void xxx();

void
main(argc, argv)
 int argc;
 char *argv[];
{
 int infd, outfd;
 struct pollfd pinfo;
 int i, j, inseq;
 u_char addr[25];
 struct ieee8023_hdr *mac_hdr = (struct ieee8023_hdr *)dat_area;
 struct ieee8022_hdr *llc_hdr;
 dl_hp_rawdata_req_t *rawdat_req = (dl_hp_rawdata_req_t *)ctl_area;
 dl_hp_rawdata_ind_t *rawdat_ind = (dl_hp_rawdata_ind_t *)ctl_area;
 dl_error_ack_t *err_ack = (dl_error_ack_t *)ctl_area;

 /* MAC header size is 14 bytes */
 llc_hdr = (struct ieee8022_hdr *)&((u_char *)dat_area)[14];

 if(!(infd = dl_open(PPA))) {
 printf(”error: open failed\n”);
 exit(1);
 }
 if(!(outfd = dl_open(PPA))) {
 printf(”error: open failed\n”);
 exit(1);
 }
 dl_bind(infd, INSAP, addr);

Appendix A 171

Sample Programs
Raw Mode

 dl_bind(outfd, OUTSAP, addr);

 pinfo.fd = outfd;
 pinfo.events = POLLIN | POLLPRI;
 pinfo.revents = 0;

 for(i = 0; i < OUTER_LOOPS; i++) {
 for(j = 0; j < INNER_LOOPS; j++) {
 bcopy(addr, mac_hdr->destaddr, 6);
 /* card will stuff in source addr
 * The ieee header length does not include the
 * ethernet MAC header.
 */
 mac_hdr->length = FRAME_LEN - ETHER_HLEN;
 llc_hdr->dsap = INSAP;
 llc_hdr->ssap = OUTSAP;
 llc_hdr->ctrl = IEEECTRL_DEF;
 sprintf(&dat_area[SEQ_OFFSET], ”%d”, i * INNER_LOOPS + j);
 rawdat_req->dl_primitive = DL_HP_RAWDATA_REQ;
 put_both(outfd, sizeof(dl_hp_rawdata_req_t), FRAME_LEN, 0);
 printf(”+”);
 fflush(stdout);
 if(poll(&pinfo, 1, 0)) {
 get_msg(outfd);
 check_ctrl(DL_ERROR_ACK);
 if(err_ack->dl_error_primitive != DL_HP_RAWDATA_REQ ||
 err_ack->dl_errno != DL_SYSERR ||
 err_ack->dl_unix_errno != ENOBUFS) {
 check_ctrl(0);
 } else {
 /* re-send same pkt */
 printf(”\nENOBUFS\n”);
 j--;
 }
 }
 }

 for(j = 0; j < INNER_LOOPS; j++) {
 get_msg(infd);
 printf(”-”);
 fflush(stdout);
 check_ctrl(DL_HP_RAWDATA_IND);
 if(dat.len != FRAME_LEN) {
 printf(”\nlength error: expected %d, got %d\n”,
 FRAME_LEN, dat.len);
 }
 inseq = strtol(&dat_area[SEQ_OFFSET], 0, 0);
 if(inseq != (i * INNER_LOOPS + j)) {
 printf(”\nseq error: expected %d, got %d\n”,
 i * INNER_LOOPS + j, inseq);
 }
 }
 }
 printf(”\n”);
}

172 Appendix A

Sample Programs
Raw Mode

Glossary 173

Glossary

Called DLS user The DLS
user in connection mode that
processes requests for
connections from other DLS
users.

Calling DLS user The DLS
user in connection mode that
initiates the establishment of a
data link connection.

Communication endpoint

The local communication
channel between a DLS user
and DLS provider.

Connection establishment

The phase in connection mode
that enables two DLS users to
create a data link connections
between them.

Connectionless mode A
mode of transfer in which data
is passed from one user to
another in self-contained units
with no logical relationship
required among the units.

Connection mode A circuit-
oriented mode of transfer in
which data is passed from one
user to another over an

established connection in a
sequenced manner.

Connection release The
phase in connection mode that
terminates a previously
established data link
connection.

Data link service data
unit A grouping of DLS user
data whose boundaries are
preserved from one end of a
data link connection to the
other.

Data transfer The phase in
connection and connectionless
mode that supports the transfer
of data between two DLS users.

DLSAP A point at which a DLS
user attached itself to a DLS
provider to access data link
services.

DLSAP address An identifier
used to differentiate and locate
specific DLS user access points
to a DLS provider.

DLS provider The data link
layer protocol that provides the
services of the Data Link

174 Glossary

Glossary

Provider Interface.

DLS user The user-level
application or user-level or
kernel-level protocol that
accessess the services of the
data link layer.

Local management The
phase in connection and
connectionless modes in which
a DLS user initiates a stream
and binds a DLSAP to the
stream. Primitives in this
phase generate local operations
only.

PPA The point at which a
system attaches itself to a
physical communications
medium.

PPA identifier An identifier
of a particular physical medium
over which communication
transpires.

Index

175

D
DL_ATTACH_REQ, 61
DL_BIND_ACK, 65
DL_BIND_REQ, 63
DL_CONNECT_CON, 116
DL_CONNECT_IND, 111
DL_CONNECT_REQ, 110
DL_CONNECT_RES, 113
DL_DATA_IND, 119
DL_DATA_REQ, 118
DL_DETACH_REQ, 62
DL_DISABMULTI_REQ, 72
DL_DISCONNECT_IND, 121
DL_DISCONNECT_REQ, 119
DL_ENABMULTI_REQ, 71
DL_ERROR_ACK, 77
DL_GET_STATISTICS_ACK,

82
DL_GET_STATISTICS_REQ,

82
DL_HP_CLEAR_LOCAL_BUSY

_REQ, 109
DL_HP_CLEAR_STATS_REQ,

107
DL_HP_INFO_ACK, 95
DL_HP_INFO_REQ, 95
DL_HP_MULTICAST_LIST_AC

K, 84
DL_HP_MULTICAST_LIST_RE

Q, 83
DL_HP_PPA_ACK, 53
DL_HP_PPA_REQ, 52
DL_HP_RAWDATA_IND, 92
DL_HP_RAWDATA_REQ, 91
DL_HP_SET_ACK_THRESH_R

EQ, 104
DL_HP_SET_ACK_TO_REQ, 99
DL_HP_SET_BUSY_TO_REQ,

101
DL_HP_SET_LOCAL_BUSY_R

EQ, 108
DL_HP_SET_LOCAL_WIN_RE

Q, 105

DL_HP_SET_MAX_RETRIES_
REQ, 103

DL_HP_SET_P_TO_REQ, 100
DL_HP_SET_REJ_TO_REQ,

101
DL_HP_SET_REMOTE_WIN_R

EQ, 106
DL_HP_SET_SEND_ACK_TO_

REQ, 103
DL_INFO_ACK, 56
DL_INFO_REQ, 56
DL_OK_ACK, 77
DL_PHYS_ADDR_ACK, 80
DL_PHYS_ADDR_REQ, 78
DL_PROMISCOFF_REQ, 75
DL_PROMISCON_REQ, 74
DL_RESET_CON, 125
DL_RESET_IND, 123
DL_RESET_REQ, 123
DL_RESET_RES, 124
DL_SET_PHYS_ADDR_REQ,

80
DL_SUBS_BIND_ACK, 69
DL_SUBS_BIND_REQ, 67
DL_SUBS_UNBIND_REQ, 70
DL_TEST_CON, 131
DL_TEST_IND, 128
DL_TEST_REQ, 127
DL_TEST_RES, 130
DL_TOKEN_ACK, 117
DL_TOKEN_REQ, 117
DL_UDERROR_IND, 89
DL_UNBIND_REQ, 67
DL_UNITDATA_IND, 88
DL_UNITDATA_REQ, 86
DL_XID_CON, 136
DL_XID_IND, 133
DL_XID_REQ, 132
DL_XID_RES, 135
DLPI

binding, 32
connection handoff, 36
device file format, 16

DLSAP addressing, 23
features, 15
header files, 16
PPA format, 22
unsupported features, 15

DLPI extensions
connection-oriented, 94

