
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP PEX Implementation and

Programming Supplement

HP9000 Series 700 Color Workstations

ABCDE

HP Part No. B2355-90118

Printed in USA June 1996

E0696

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard provides the following material \as is" and makes no warranty
of any kind with regard to this manual, including, but not limited to, the implied
warranties of merchantability and �tness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages (including lost pro�ts) in connection with
the furnishing, performance, or use of this material whether based on warranty,
contract, or other legal theory.

Some states do not allow the exclusion of implied warranties or the limitation
or exclusion of liability for incidental or consequential damages, so the above
limitation and exclusions may not apply to you. This warranty gives you speci�c
legal rights, and you may also have other rights which vary from state to state.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DoD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

Use of this manual and exible disc(s), or tape cartridge(s), or CD-ROM supplied
for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

FINAL TRIM SIZE : 7.5 in x 9.0 in

PEX and PEXlib are trademarks of the X Consortium.

Copyright c 1996, Hewlett-Packard Company

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

June 1996 . . . Edition 1. This manual is valid for HP PEX 5.1v4 on all HP9000
Series 700 Computers running HP-UX 10.20.

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

0

About This Book

This manual is intended primarily for programmers of graphics applications
and assumes familiarity with PEXlib and the installation and setup of graphics
workstations. We also assume a knowledge of the C programming language and
the X Window System .

Important information for system administrators is also included to aid installa-
tion, system maintenance, and troubleshooting.

While this book is not intended to teach operation of PEXlib, tutorial and
other learning documentation are provided with the HP PEX 3D Developer's
Environment for this purpose.

About This Book 0-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

What's New in This Book

Product changes reecting added functionality in this new edition of the HP PEX
Implementation and Programming Supplement for HP PEX 5.1v4 include:

Functionality
Triangle Primitives
PEXOCCTriangleFan

PEXOCCTriangles

Indexed Primitives
PEXHPOCCIndexedMarkers

PEXHPOCCIndexedPolylines

PEXHPOCCIndexedTriangleFan

PEXHPOCCIndexedTriangleStrip

PEXOCCIndexedTriangles

User-De�ned Line Types and Marker Glyphs
PEXHPOCCSetUserLinetype

PEXHPOCCSetUserMarkerGlyph

User-De�ned Highlight Color
PEXHPOCCSetHighlightColor

Face Lighting Control
PEXHPOCCSetFaceLightingMode

Stereo Viewing
PEXHPSetStereoMode

Wide Line Rendering Control
PEXHPChangeRenderer

Polygon O�set Rendering Control
PEXHPChangeRenderer

New Device Support
HP Visualize-EG

HP Visualize-48XP

0-2 About This Book

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

HP CDE and HP VUE

Hewlett-Packard is in the process of moving its users to a standard user
environment. Two user environments will be shipped with HP-UX 10.20: HP
VUE and HP CDE (Common Desktop Environment). Starting with HP-UX
10.20, HP CDE will be the default user environment. HP VUE will be available
with HP-UX 10.20, but will not be available in future HP-UX releases.

From a 3D graphics point of view, the change in user environments should be
transparent. See the Common Desktop Environment User's Guide for more
information on HP CDE.

Although most examples in this manual only discuss HP CDE, HP PEX 5.1v4
supports both HP CDE version 1.0 and HP VUE version 3.0.

About This Book 0-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

HP PEX Learning Products

Information about HP PEX and/or PEXlib is found in these books:

PEXlib Programming Manual|This manual provides detailed instructions for
learning and using PEX lib. Written by Tom Gaskins and published by O'Reilly
and Associates, it provides beginners with the basics for getting started in
PEXlib. Experienced programmers will use this book as a reference for more
detailed information|beyond the basics. ISBN 1-56592-028-7.
PEXlib Programming Reference|This book, also published by O'Reilly and
Associates, is a reference to the PEXlib procedures based on the MIT
document. The listings of each call and �le include syntax, semantics, and
a discussion of functionality. ISBN 1-56592-029-5.
HP PEX On-Line Information System|Here is extremely fast access to
desired information|whether it's PEXlib reference information or program
code utilities, learning to get started using PEXlib, or even for running
example programs or animation routines. Included is an on-line adaptation
of the \Getting Started" chapter from the O'Reilly and Associates' PEXlib
Programming Manual .
Portable Programming with CGE PEX 5.1|This document gives information
useful to those who want to create highly portable 3D graphics applications
using the Common Graphics Environment (CGE) PEX 5.1 Extensions.
Read Me Before Using HP PEX Runtime|Provides important information
about running the HP PEX Runtime Environment product.
Read Me Before Installing HP PEX Development|Provides important infor-
mation about the installation and use of the HP PEX Development Environ-
ment for this product release.
Graphics Administration Guide|This document, while not dealing solely with
PEX, addresses many issues common to HP's 3D APIs|PEX, PHIGS, and
Starbase. Issues include pathnames, compilation, and the operation of X
Windows.
Using the X Window System|Familiarizes users with the X Window System,
beginning with the basic concepts and ending with a reference of the X Window
commands. Includes information for system administrators.
HP Help System Developer's Guide|Documents a complete system for
developing online help for application software. Programmers can write
online help that includes graphics and text formatting, hyperlinks, and
communication with the application. HP Help also provides a programmer's
toolkit for integrating the help facilities into applications.

0-4 About This Book

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

Documentation Published by O'Reilly and Associates

O'Reilly and Associates are no longer printing the following manuals:

PEXlib Programming Manual
PEXlib Programming Reference

Although they are no longer orderable from O'Reilly and Associates, you may
still �nd these manuals in bookstores that carry technical documentation.

Document Conventions

verbatim This book makes extensive reference to PEXlib program-
ming commands. When a reference is made, the function
name is given in a typewriter-like font that indicates the
verbatim entries you will make as program text or on
the command line with �le and directory names, routine
names, parameters, and arguments.

For example: PEXEndStructure

<italic> Italic type enclosed in angle brackets indicates conceptual
parameters (not verbatim parameters). That is, you \�ll
in the blank" with a value appropriate for the context.

OC By PEX convention, this means \output command"

PEX Technically, PEX is a protocol, a 3D extension to the X
protocol that adds new functions to the X protocol for
rendering 3D graphical objects.

PEXlib A set of subroutines that follow the rules de�ned in the
PEX protocol, PEXlib creates and sends PEX protocol.
PEXlib provides an application's interface to the PEX
protocol.

About This Book 0-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

0. About This Book

What's New in This Book 0-2
HP CDE and HP VUE 0-3
HP PEX Learning Products 0-4
Documentation Published by O'Reilly and Associates 0-5

Document Conventions 0-5

1. An Overview of the HP PEX Product

The HP PEX Product 1-1
Supporting The Common Graphics Environment (CGE) . . . 1-2
Supporting Selected PEX 5.2 Functionality and HP Extensions 1-3
Product Structure . 1-3
Supported Workstation Con�gurations 1-3
Supported Environments 1-5
Mixing Graphics APIs 1-6

Information At The Speed Of Sight! 1-7
HP PEX Documentation: Tutorial, Reference, and Help . . . 1-7
How to Access the HP PEX On-Line Information System . . 1-8
The Tutorial Gets You Started 1-9
Reference Information Fast 1-11
Access to Performance Hints 1-12

How to Run Examples and Demos 1-13
How to Print HP PEX Images 1-14
How to Access PEXlib 5.2 Standard Speci�cation Draft on the

World Wide Web (WWW) 1-14

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2. Installation And Setup

Introduction . 2-1
Special Considerations for the HP-UX 10.0 Release 2-1
Special Consideration for the HP-UX 9.0X Releases 2-1
HP-UX and Older HP PEX Applications Running on a More

Recent HP-UX 9.07 System 2-2
HP-UX New HP PEX Applications Running on Older HP-UX

Systems . 2-2
HP-UX 9.05 or 9.07 X Windows Applications Running on

HP-UX 9.01 or 9.03 2-3
Installation/Veri�cation Instructions 2-4
Is Your System Software Preloaded with Instant Ignition? . . 2-4
Verify HP PEXlib on Your Workstation 2-4

Setting Up the On-line Information System 2-6
How to Print On-Line Information 2-6
How to Change the Appearance of your On-Line Display . . . 2-7
Using a Font Other Than the Default 2-7
Using the Command Line Prompt to Start the On-Line System 2-7
On-Line Learning Product File Structure 2-7

Information for HP-UX 9.0x System Administrators 2-8
To Load HP PEX . 2-8
If You Experience Di�culty During Installation 2-9
If You Reinstall The X Window System 2-9
If You Reinstall the HP-UX Operating System 2-10

The HP PEX File Structure 2-11
The PEXlib Filesets 2-11
Server Files . 2-12

3. Running HP PEXlib Programs

Introduction . 3-1
Operating Methods . 3-3
Direct Hardware Access Method (DHA) 3-5
Visible Behavioral Di�erences of DHA Method 3-6
PEX Protocol Method 3-7
X Protocol Method 3-7
Visible Behavioral Di�erences of X Protocol Method . . . 3-8

Setting and Using Environment Variables 3-9
How To Set Environment Variables 3-12

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Using Environment Variables 3-13
Environment Variable|To Specify Color 3-13
Environment Variable|PEX Protocol Method 3-14
Environment Variables|Compliance Mode 3-14
Using HPPEX DHA AUTO COLOR APPROX 3-15
Environment Variable|Colormaps 3-15
Using SB_X_SHARED_CMAP 3-16
The CRX Device And Color Support 3-18
Environment Variable|Color Recovery 3-19
Environment Variable|Turning O� the TrueColor Visual . 3-20
For Generic X Windows 3-20
For HP CDE . 3-20

PEX Fonts . 3-22
Parameter Error Checking and Reporting 3-23
The E�ects of Client Failures 3-24

4. Utilities, Compiling And Linking, Examples and Demos

Introduction . 4-1
Including Header Files In Your Applications 4-3
Using the Utility Programs 4-5
Utilities For The Common Graphics Environment 4-5
Utilities From the O'Reilly Manual 4-5
Utilities from Hewlett-Packard 4-6

Examples, Utilities and Demo Programs 4-7
Using the HP Examples 4-8

How To Link To Shared Libraries 4-8

5. Performance Hints

Steps to Getting Good 3D Graphics Performance 5-1
Identify SPU and Graphics Hardware Suited For the Application 5-2
Where to Get Information About HP Systems 5-2
System Level Benchmarks 5-2
Graphics Benchmarks 5-3
Other Considerations 5-3

Choosing a 3D Graphics Application Programmer Interface . . 5-5
Determining How the Application is Using System Resources . . 5-6
Choosing an E�ective Benchmark 5-6
Identify the Bottlenecks 5-7

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Performance Analysis Tools 5-8
Pro�ling Your Code 5-9
Pro�led PEXlib . 5-10

Other Tools . 5-10
Interpreting Published Performance Data 5-11
Examining Graphics Interactions 5-11
HP's Graphics Library Optimizations 5-12
Documentation Sources 5-12
Online Documentation 5-12
Studying Optimizations Shown in the GPC Quarterly . . . 5-13

Systematically Tuning Your Graphics Application 5-13
Attributes . 5-13

Attribute Suppression Experiments 5-14
Other PEXlib Calls You Should Experiment With 5-15
Data Formatting Experiments 5-15
Window System Interactions 5-16
Geometry Suppression 5-17

PEX Speci�cs . 5-17
DHA, Protocol Mode and VMX Mode 5-17
Structure Mode, Immediate Mode 5-18
Structure Permissions 5-19
Using Structures E�ciently 5-19
Stride and OCC vs. PEX 5.1 Interface 5-20
Using the OCC Interface 5-20
Data Formats . 5-21
Shape Hints . 5-21
Use of Complex Primitives 5-22

If the Bottleneck is Not Graphics 5-22
Build Environments 5-22
Compiler and Linker Options 5-23
Archive Math Libraries 5-23
Cache and TLB Misses 5-23
Memory Bottlenecks 5-24
If Disk Access is the Bottleneck 5-24

Summary . 5-25

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

6. Writing HP PEXlib Programs

Introduction . 6-1
Determining A Server's Features 6-2
PEX Extension Information 6-2
Enumerated Types 6-5
Enumerated Types List 6-7
Implementation-Dependent Constants 6-12

PEX Extensions . 6-14
Generalized Structure Elements (GSEs) 6-14
Escapes . 6-15

PEX Subset Lists . 6-15
Immediate Mode Subset 6-15
Structure Subset 6-15
Search Context Requests 6-15
PHIGS Workstation Resources 6-16

HP Implementation Details for Writing Programs 6-16
Supported PEX Subsets 6-16
Resource Sharing 6-17
Synchronization 6-17

HP PEXlib Programming 6-18
Color . 6-18
PEX Color Support Basics|Four Steps 6-18

1: Choose a Visual in which the Window Will be Created . . 6-19
2: Determine Use of Transparent Overlay Planes 6-20
3: Create a Colormap or Find One to Share With Other

Similar Clients in that Visual 6-21
4: Load Colors into the Colormap 6-22
5: Create a Window in the Chosen Visual, with the Colormap 6-24
PEX Color Support Basics|Portability and Interoperability . 6-24
PEX Color Support Basics|One Last Note 6-25
Color Support in HP PEX 6-26
Utilities To Help You Deal With Color 6-27
Choosing A Visual In Which the Window Will Be Created . 6-27
To Get A Colormap That Supports Transparency 6-28
Creating a Colormap or Finding One to Share 6-28
Color Approximation|Utilities And Escapes 6-29
Making Color Approximation Inquiries 6-36
E�ect of Dithering Control on Color 6-37

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Using Indexed Colors 6-37
Alpha Blending and Transparency 6-38
Screen-Door Transparency 6-38
Alpha Transparency 6-39
Implementation of Alpha Transparency 6-40
Renderer Attributes 6-41
Pipeline Context Attributes 6-41
Color Types . 6-41
With-Data Primitives 6-41
Output Command 6-43
Behaviors . 6-44
Setting Up An Alpha Blending Program 6-45

Anti-aliasing . 6-46
Line Primitives and Attributes 6-48
Line Types . 6-48
Wide-Line End Styles 6-51

Area Primitives and Attributes 6-51
NURBS Approximation 6-52
Antialiasing . 6-52

Capping and Interference Checking 6-52
Deformation . 6-53
Extended Pipeline Context Attributes 6-55
Pipeline Context Attributes 6-55

Text and Fonts . 6-56
Font Naming and Files 6-57
List of Fonts Supported by Hewlett-Packard 6-59
Internationalized Text 6-60

Marker and Cell Array 6-61
B-spline Curves and Surfaces 6-61
Bundled Attributes 6-61
Modelling . 6-61
Viewing . 6-61
Animation . 6-62
The Double-bu�ering Extension (DBE) 6-62
Background Information 6-63
Summary of DBE Client Entrypoints 6-64
Changes to Existing Functionality 6-65
Procedures Using Example Drawables 6-65

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Colormap/Visual utilities 6-66
System Requirement/Release Dependencies 6-66
Compatibility Issues 6-66
The Multi-bu�ering Extension (MBX) 6-67
Evans & Sutherland Escapes for Double-Bu�ering 6-67
Evans & Sutherland Escape Requests 6-70
HP Escape Request 6-72
Inquiring Supported Escapes 6-73

Structures . 6-73
Floating Point Formats/Conversions 6-73

Lighting, Shading, and Depth Cueing 6-74
Texture Mapping 6-74
3D Wireframe Modelling 6-74

Hidden Line and Hidden Surface Removal 6-75
Renderers . 6-76
The NPC Subvolume and Viewport 6-76
Pipeline Contexts 6-76

Lookup Tables . 6-77
Color Approximation 6-77
Color . 6-78

Namesets, Filters, and Searching 6-83
Picking . 6-83
Echo and Highlighting Filter 6-83
Echo Mode Attributes 6-83
Highlight Mode Attributes 6-84

Implications of The Exclusive Or Drawing Mode 6-84
Error Handling . 6-84

A Final Word About Writing E�cient Programs 6-85
Fast Macros . 6-85

7. HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

Overview of HP PEX5.1v3 7-1
Background Information 7-1
Global Description of the HP-PEX 5.1v3 Release 7-2
Functionality A�ecting Performance Improvements: 7-2
Additional 5.2 PEX Functionality 7-2
New Device and System Support 7-2

Programming Interfaces for Generating Output Commands . . . 7-3

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

PEXlib Explicit Interface 7-3
PEXlib Output Command Context (OCC) Interface 7-4
Flexible Data Formats 7-4
Data Alignment 7-4
Output Command Context (OC Context or OCC) 7-5
Data Structures . 7-6
Sample Usage of the OCC 7-8

Facet/Vertex Data Formats 7-10
Packed Data Format (PEXlib 5.1 method) 7-10
Stride Data Format 7-12
Unpacked Data Format 7-16

Errors and Output Command Errors 7-19
Run-Time Errors . 7-19
Simpli�ed OCC functions for Primitive OCs 7-20
Generating HP PEX 5.1 Output Commands 7-22

Examples . 7-23
Structure Permissions 7-28
Introduction . 7-28
Background Information 7-28
Using Permission Features 7-29
Changes to Existing Functionality 7-31
Pick Path . 7-31
PEXGetStructureInfo 7-32
New error condition for attributes and primitives 7-32

Z-Bu�er Block Operations 7-33
Introduction . 7-33
Background Information. 7-33
PEXEscapeWithReply: PEXHPEscapeOpcodeGetZBu�er . . 7-34
PEXHPEscapeOpcodeGetZBu�er Syntax 7-34
PEXHPEscapeOpcodeGetZBu�er Parameters 7-34
PEXHPEscapeOpcodeGetZBu�er Description 7-35
PEXHPEscapeOpcodeGetZBu�er Example 7-36

PEXEscape: PEXHPEscapeOpcodePutZBu�er 7-37
PEXHPEscapeOpcodePutZBu�er Syntax 7-37
PEXHPEscapeOpcodePutZBu�er Parameters 7-37
PEXHPEscapeOpcodePutZBu�er Description 7-37
PEXHPEscapeOpcodePutZBu�er Example 7-38

PEXEscapeWithReply : PEXEscapeOpcodeEVEInformation . 7-38

Contents-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

PEXHPEscapeOpcodeEVEInformation Syntax 7-38
PEXHPEscapeOpcodeEVEInformation Parameters 7-39
PEXHPEscapeOpcodeEVEInformation Description 7-39
PEXHPEscapeOpcodeEVEInformation Example 7-40

Plane Mask and Drawing Function 7-41

8. HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP

Extensions

Overview of HP PEX5.1v4 8-1
Background Information 8-1
Global Description of the HP-PEX 5.1v4 Release 8-2
Additional Functionality 8-2
New Device Support 8-2

New Functionality Descriptions 8-3
Wideline Control . 8-3
Stereo Viewing . 8-3
Triangle Primitives 8-5
Indexed Primitives 8-7
User-De�ned Linetypes and Marker-Glyphs 8-7
Highlight Color . 8-8
Face Lighting Control 8-8
Polygon O�set . 8-8
Improving Rendering of Edged Polygons 8-10

9. Overview of CGE PEX Texture Mapping

Step 1: Setup . 9-3
PEXGetEnumTypeInfo: Parameters 9-3
PEXGetImpDepConstants: Parameters 9-9

Step 2: Texture Preparation 9-11
PEXExtCreateFilteredTM: Parameters 9-12
PEXExtCreateFilteredTMFromWindow: Parameters 9-15
PEXExtCreateTM: Parameters 9-16
PEXExtFreeFilteredTM: Parameters 9-16
PEXExtCreateTMDescription: Parameters 9-17

Step 3: Geometry Preparation 9-19
PEXExtTMCoordFillAreaSetWithData: Parameters 9-20
PEXExtTMCoordSetOfFillAreaSets: Parameters 9-23
PEXExtTMCoordTriangleStrip: Parameters 9-23

Contents-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

PEXExtTMCoordQuadrilateralMesh: Parameters 9-23
Step 4: Set Up the Look-Up Tables (LUTs) 9-24
Binding LUT . 9-24
Coordinate-Source LUT 9-25
Composition LUT . 9-26
Sampling LUT . 9-27

Step 5: Render . 9-30
PEXSetInteriorStyle: Parameters 9-31
PEXExtSetTMPerspectiveCorrection: Parameters 9-31
PEXExtSetTMSampleFrequency: Parameters 9-31
PEXExtSetTMResourceHints: Parameters 9-32
PEXExtSetActiveTextures: Parameters 9-32
PEXExtChangePipelineContext: Parameters 9-33
PEXExtFillAreaSetWithData: Parameters 9-34
PEXExtSetOfFillAreaSets: Parameters 9-35
PEXExtTriangleStrip: Parameters 9-35
PEXExtTMCoordQuadrilateralMesh: Parameters 9-35

Step 6: Cleanup . 9-36
PEXExtFreeTM: Parameters 9-36
PEXExtFreeTMDescription: Parameters 9-36

10. Texture Mapping Tutorial
Creating and Editing Textures 10-4
Sources of Textures 10-6
Prede�ned Textures 10-7

User Interface Considerations 10-8
Using PEXlib for Texture Mapping 10-9
Step 1: Setup . 10-10
Step 2: Texture Preparation 10-11
Parameterization 10-14
User Interface Considerations for Parameterization 10-18

Step 3: Geometry Preparation 10-19
Step 4: Set up Texture Mapping Lookup Tables (LUTs) . . . 10-22
Step 5: Render . 10-24
Step 6: Clean Up . 10-25
References . 10-26

Detailed Discussions . 10-27
Discussion: MIP Map 10-27

Contents-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

User Interface Considerations for Creating Filtered Texture
Maps . 10-31

Troubleshooting . 10-32
Frequently-Asked Questions 10-32
Texture Maps . 10-35
Surface Parameterization 10-36
Standard Mapping 10-38
Environment Mapping 10-38
Performance . 10-40
Visual Quality . 10-41

A. Sample Output from xdpyinfo and pexdpyinfo

Introduction . A-1
xdpyinfo . A-1
pexdpyinfo . A-4

Glossary

Index

Contents-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

1-1. HP PEX Online Information System's Front Page 1-7
1-2. The Tutorial Lets You Practice and Experiment 1-9
1-3. On-Line Reference Pages Feature Hyperlink Navigation . . . 1-11
1-4. Easily Experiment with Programs 1-13
2-1. The Print Menu Display 2-6
6-1. ET Line Types . 6-48
7-1. Stride model, with vertex data 7-13
7-2. Application Vertex Data 7-15
7-3. Unpacked Data Model 7-16
7-4. PEX Unpacked Vertex Data Structures 7-18
8-1. Triangle Primitive Examples 8-6
10-1. Texture Mapping to Display Data 10-2
10-2. Texture Mapping to Add Realism 10-3
10-3. Coordinate Systems of the Three Types of Projection Objects 10-15
10-4. \Unfolding" a Projection Object 10-16
10-5. Geometric Model with Various Projection Objects 10-17
10-6. Projection Methods Used to Calculate Texture Coordinates . 10-20

Contents-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. Visual Types Supported by HP PEX/PEXlib 1-5
1-2. Visual Types Supported in the X Protocol Mode (VMX Driver) 1-6
2-1. Server Files . 2-12
3-1. Progression of Protocol Selection 3-5
3-2. Environment Variable Summary 3-9
3-3. Data Values That Cause Problems 3-24
4-1. Demos, Utilities, and Program Examples 4-2
4-2. Header Files for Advanced Functionality 4-4
4-3. HP Utilities in Utilities Directory 4-6
4-4. Shared Libraries and X11 Directories 4-9
6-1. PEXInitialize Error Codes 6-3
6-2. PEXInitialize Error Codes 6-4
6-3. Enumerated Type Inquiry Parameters 6-6
6-4. Enumerated Types 6-8
6-5. Implementation Dependent Constants Inquiry Parameters . . 6-12
6-6. Implementation-Dependent Constants 6-13
6-7. Unsupported Subset Entrypoints 6-16
6-8. PEX Escape With Reply Parameters 6-30
6-9. Data Structure Parameters 6-31
6-10. Return Data . 6-32
6-11. Encoding of HP-Supported Color Escape Extensions 6-35
6-12. Encoding of HP-Supported Alpha Transparency Extensions . 6-40
6-13. Alpha Blending Reply Parameters 6-43
6-14. Encoding of HP-Supported Alpha Blending Extension 6-44
6-15. 6-47
6-16. PEXGSE Parameters 6-49
6-17. Valid antialias_mode Values 6-50
6-18. Encoding HP-Supported Antialiasing and Gamma Correction

Extensions . 6-50
6-19. Text and Fonts . 6-56

Contents-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

6-20. HP PEX Font File Structure 6-57
6-21. hfontsi/usascii/stroke fonts 6-59
6-22. hfontsi/usascii/stroke fonts 6-59
6-23. hfontsi/hp_japanese/stroke fonts 6-60
6-24. Marker Type Additions 6-61
6-25. DBE Entry Points 6-64
6-26. Double-Bu�ering Escape and -Escape With Reply Parameters 6-68
6-27. Encoding HP Supported Double-Bu�ering Extensions 6-69
6-28. Inquiring Supported Escapes 6-73
6-29. Enumerated Types and Implementation-Dependent Constants 6-75
6-30. HLHSR Mode Transition Behaviors 6-76
6-31. Visible LUT Behavior 6-78
6-32. LUT Default Entries 6-80
7-1. Relationship Between OCC and Non-OCC Primitive Functions 7-21
7-2. Allowed Structure Editing Operations 7-29
9-1. Output Commands Texturable 9-2
10-1. MIP Map Usage . 10-29

Contents-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

An Overview of the HP PEX Product

The HP PEX Product

The HP PEX product brings high-performance, full-featured 3D graphics through
the X server to the HP 9000 Series 700 workstations. PEX is composed of two
parts:

PEX : Technically, PEX is only a protocol|a set of rules that an implementa-
tion follows.
PEXlib : This part is a set of subroutines that follow the rules de�ned in the
PEX protocol.

The name \PEX" is often used to refer to the above two entities as a unit.
In this document, this convention is followed: \HP PEX" refers to the whole
product, and if only the PEX protocol is being discussed, it will be stated as such.
When the implementation itself|the subroutine library|is being discussed, it is
referred to as \HP PEXlib."

HP PEX is a powerful combination of Application Programmer's Interface (API)
and workstation technology that provides integrated, distributed graphics|from
low-cost workstations for simple 2D drawings or 3D wireframe to advanced
3D workstations with sophisticated lighting, shading, and texture-mapping for
complex 3D models.

The industry-standard PEX developed by the X Consortium is a 3D Protocol
Extension to the X Window System. Hewlett-Packard's PEXlib is a low-level 3D
API or library to the PEX protocol that conforms to the PEXlib 5.1 standard.
Hewlett-Packard's implementation of PEXlib can use Direct Hardware Access
(DHA) to provide full performance, advanced 3D graphics in a local X window.

For remote rendering, HP's PEXlib emits PEX protocol requests over the
network, to be �nally rendered by a remote X server that supports PEX, or by a
PEX terminal. To enable HP PEXlib client applications to run to an X server or

An Overview of the HP PEX Product 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
X terminal that does not support the PEX extension, HP PEXlib can generate X
protocol. HP PEXlib does not support raw-mode graphics (no-windows mode).

For displaying pictures, HP PEX supports immediate-mode, structure-mode, and
mixed-mode rendering to local and remote displays.

Several capabilities serve animation and visualization applications; for exam-
ple, MBX (multi-bu�ering extension), texture mapping capabilities, alpha trans-
parency, and others.

Structure mode calculates structures once, saving a database of information in
memory on the server. When a user manipulates the 3D object, the client
formulates instructions to set up graphical operations such as rotating, clipping,
and zooming. The client sends instructions to the server to perform the
calculations and redisplay the object with minimum changes to the database.
Mixed mode o�ers users a combination of the two modes.

HP PEX implements the 5.1 PEXlib Speci�cation with the CGE extensions (see
below), and ANSI-C Language Binding. You may compile programs using either
the ANSI C or Kernighan and Ritchie C compiler options.

In the HP PEX releases 5.1v3, HP released new functionality de�ned in 5.2
PEXlib. Speci�c key features were selected to enhance performance and ease of
use in the HP PEX product. In the HP PEX release 5.1v4, HP releases more
new functionality de�ned in 5.2 PEXlib, including new features and supported
devices. HP PEX 5.1v4 also includes some extensions added by HP that are not
part of the 5.2 PEXlib standard.

Supporting The Common Graphics Environment (CGE)

Hewlett-Packard encourages programmers in programming practices that assure
the greatest portability and interoperability of programs and minimize the need
for vendor-speci�c drivers or code paths. Several workstation vendors, including
HP, provide Common Graphics Environment (CGE PEX 5.1), a library of
functions with utilities that will assist you in establishing the uniformity necessary
for programs to compile and run seamlessly regardless of the platform vendor.

One of the most exciting bene�ts about CGE is that it provides early availability
of many functions slated for future releases of PEX. The early availability of these
functions with the CGE PEX 5.1 Extensions can help you put more powerful and
more widely usable applications into the hands of your customers.

1-2 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Supporting Selected PEX 5.2 Functionality and HP Extensions

HP PEX releases 5.1v3 and 5.1v4 include some functionality and interfaces from
the future PEX/PEXlib 5.2 standards, as well as extensions designed by HP.
These features are being implemented in advance of the �nal standards, because
HP believes that they will have signi�cant value in many PEXlib applications.
In some cases, minor di�erences between the HP implementation and the �nal
PEX 5.2 standard may occur, but none should require more than very minor
adjustments to make your application 5.2 conformant. It is important to note
that the 5.1v3 and 5.1v4 releases are not a complete PEX 5.2 implementation;
instead, as the release name implies, it is PEX 5.1 plus CGE PEX 1.0 extensions,
plus certain selected items from the PEX 5.2 draft standard. Release 5.1v4 also
includes HP extensions. Some of these 5.2 features may be available only from
HP for some time to come, so use of them is a consideration for portability and
interoperability. Nevertheless, you may �nd them very valuable in the interest of
performance, functionality, and experimentation with some important features of
PEX/PEXlib 5.2.

Product Structure

Hewlett-Packard makes two PEX products available|a developer's environment,
bundled with the HP-UX Developer's Toolkit, and a runtime-only environment,
bundled with the operating system. If you ordered the Instant Ignition option,
the installation of HP PEXlib is greatly simpli�ed because the operating �les
have been pre-loaded for you and the system is ready to run the moment you
set up your workstation. This run-time product is required for each workstation
that runs HP PEXlib applications.

Supported Workstation Configurations

This release of HP PEX is supported on the HP 9000 Series 700 3D Workstations
running HP-UX 10.20 and HP CDE 1.0 (or HP VUE 3.0). However, you can
choose not to use HP CDE and use only the X Windows environment instead.

The PowerShade product (B2156B/C) provides full lighting and shading func-
tionality. HP work stations without PowerShade provide wireframe rendering
and at-shaded polygons.

An Overview of the HP PEX Product 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Some devices enable you to create transparent overlay planes that are useful,
for example, to add annotations that \oat" over images rendered in the image
planes.

As mentioned, the HP PEX Developer's environment is bundled with the HP-UX
Developer's Toolkit or the ANSI/C HP-UX Developer's Toolkit for the header
�les and development tools for the X Window System Version 11, Release 6, that
are included.

1-4 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Supported Environments

When running to a Hewlett-Packard server, an HP PEX client not using the X
protocol mode supports only the visual types shown below (as returned by the
Xlib call XGetVisualInfo). These are image visuals and overlay plane visuals,
not pixmap drawables.

Table 1-1. Visual Types Supported by HP PEX/PEXlib

Visual
Depth

Visual
Class

Double
Bu�er

Supported Devices

8 PseudoColor SW 8/8 Series 700 Color Workstations,
HP Visualize-EG

8 PseudoColor HW 8/8 CRX, CRX-24, CRX-24Z,
CRX-48Z, HCRX-8, HCRX-24,

HP Visualize-8/-24/-48

8 TrueColor SW 8/8 Model 712, HP Visualize-EG

8 TrueColor HW 8/8 HCRX-8 HCRX-24,
HP Visualize-8/-24/-48/-

48XP

12 DirectColor HW 12/12 CRX-24, CRX-24Z, HCRX-24,
HP Visualize-24/-48/-48XP

12 TrueColor HW 12/12 CRX-24, CRX-24Z, HCRX-24,
HP Visualize-24/-48/-48XP

24 DirectColor None CRX-24, CRX-24Z, HCRX-24,
HP Visualize-24/-48/-48XP

24 DirectColor HW 24/24 CRX-48Z, HP Visualize-48,
HP Visualize-48XP

24 TrueColor None CRX-24, CRX-24Z, HCRX-24,
HP Visualize-24/-48/-48XP

24 TrueColor HW 24/24 CRX-48Z,
HP Visualize-48/-48XP

An Overview of the HP PEX Product 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
When running to a Hewlett-Packard server, the X protocol method of producing
PEX graphics supports only the visual types shown below (as returned by the
Xlib call XGetVisualInfo). These are image visuals and overlay plane windows,
not pixmap drawables.

Table 1-2.

Visual Types Supported in the X Protocol Mode (VMX Driver)

Visual
Depth

Visual Class Double-Bu�er
Support

8 PseudoColor SW 8/8

8 DirectColor SW 8/8

8 TrueColor SW 8/8

24 DirectColor SW 24/24

24 TrueColor SW 24/24

Mixing Graphics APIs

The combinations of graphics APIs that are supported are these: Calls to Xlib
and PEXlib can be mixed within an application, while calls to Starbase, PHIGS,
and GKS cannot be made from a PEXlib application.

1-6 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Information At The Speed Of Sight!

The HP PEX product lets you learn about the industry standard as well as access
reference information so you work quickly and easily|displaying it all on your
workstation:

Figure 1-1. HP PEX Online Information System's Front Page

The on-line PEX-related documentation on your system is for the PEX 5.1v4
release; it includes information on standard PEX, as well as HP's extensions to
PEX.

HP PEX Documentation: Tutorial, Reference, and Help

Loaded into the HP PEX On-Line Information System is a selected portion of
Chapter 3, \Getting Started," a learning tutorial, from the PEXlib Programming
Manual . This book, as well as the PEXlib Programming Reference, are
published by O'Reilly & Associates|publishers widely acclaimed for their highly
informative and easy-to-use books on the UNIX operating system, the X Window
System, and PEX.

The HP PEX On-Line Information System is based on HP CDE Help, an
application that provides this integrated, hypertext learning environment.

An Overview of the HP PEX Product 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

How to Access the HP PEX On-Line Information System

1. To access the HP PEX On-Line Information System, simply click on the Help
Manager on the HP CDE Control Panel:

2. When the help window appears, scroll down unto \HP PEX" is visible. Click
on the PEX Cube, then the underlined \Online Documentation" text. The
PEX Online documentation will appear.

You can also bring up the on-line documentation by running the script
hvhelpi1/bin/pexman, with no arguments, from the command-line prompt. If
you want to see a particular reference page for a PEXlib function, you can also
type hvhelpi/bin/pexman hcommand namei (note that hcommand namei is case-
insensitive). For example:

hvhelpi/bin/pexman pexinitialize �Return�

If you need help in understanding how to operate the help system, you will �nd
it by clicking the left mouse button on the \Help" menu in the upper right corner
of the HP CDE Help window.

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

1-8 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

The Tutorial Gets You Started . . .

The on-line tutorial portion of the HP PEX On-Line Information System is
designed to let you learn and even practice the essential steps that PEXlib
applications must take to draw pictures:

Figure 1-2. The Tutorial Lets You Practice and Experiment

An Overview of the HP PEX Product 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
The tutorial enables you to run all the examples from PEXlib Programming
Manual . Code from these examples can also be copied and pasted into your
own programs to speed development. Many other examples and utilities are also
provided, including documentation about the new functionality released in HP
PEX 5.1v4, and tutorial information on texture mapping.

1-10 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Reference Information Fast . . .

The HP PEX On-Line Information System also provides convenient access to
reference information. You can select a PEX function, a typedef, or a #define,
use the keyword search, or simply click on the name of the command you need,
and the reference page is displayed.

Figure 1-3. On-Line Reference Pages Feature Hyperlink Navigation

An Overview of the HP PEX Product 1-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Access to Performance Hints

From the \Welcome to HP PEX!" window, select Performance Hints from the
list of available options.

Performance tuning hints have been added to on-line documentation. This
documentation is intended to be used by application developers who don't have
access to HP support channels to tune applications independently. The purpose
of this feature is to add su�cient detail, and make it accessible to customers so
that they can tune applications themselves.

1-12 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

How to Run Examples and Demos

The on-line system enables you to run the examples from the PEXlib Program-
ming Manual . From the topic entitled \Getting Started with PEX" (under \PEX
Tutorial"), click on the underlined hypertext link at the bottom of the page to
run PEX programs: \(Click here to run PEX programs)." You are presented
with a list of the example programs from Chapter 3 of the PEXlib Programming
Manual :

Figure 1-4. Easily Experiment with Programs

An Overview of the HP PEX Product 1-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
This enables you to experiment with the programs; running and editing them to
see the e�ect of settings as you change them and revert the programs to their
original state|all without having to manually copy the programs and recompile
them.

These examples can also be copied and pasted (used as utilities) in your own
PEXlib programs to speed development. Many other examples are also available
in the hpexi directory2 to use as a source of utilities from HP.

Similarly, there are texture-mapping programs that you can edit and run. You
can �nd these in the \Texture Mapping Tutorial."

How to Print HP PEX Images

Hardcopy printing of HP PEX images is supported via screenpr(1).

The screenpr command supports all the visuals and colormaps used by PEX on
the supported HP graphics devices, with a variety of colormap setups including
both PEXColorSpace and PEXColorRange.

How to Access PEXlib 5.2 Standard Specification Draft on the
World Wide Web (WWW)

The PEXlib 5.2 speci�cation is available on the World Wide Web. The URL is
http://www.x.org/pexlib/PEXlib52main.nographx.html.

The HTML version of the PEXlib 5.2 draft may be out of date with the newest
working document. The latest document can be accessed from the X Consortium
FTP site at ftp://ftp.X.org.

Note that current HP PEX releases do not implement the PEXlib 5.2 speci�-
cation. Instead, the current revisions of HP PEX implement the PEXlib 5.1
speci�cation with some of the PEXlib 5.2 features and other extensions.

2 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

1-14 An Overview of the HP PEX Product

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2

Installation And Setup

Introduction

If you are setting up a new workstation, all software may be preloaded for you
with the Instant Ignition option and you need simply verify this. If, however,
you did not order Instant Ignition, then you will need to install the PEX �lesets
from the HP-UX Developer's Toolkit.

Special Considerations for the HP-UX 10.0 Release

HP-UX 10.0 is the �rst release of HP-UX to support the UNIX V.4 �le system.
Functionality-wise, little has changed; mostly just the �le system organization.

Special Consideration for the HP-UX 9.0X Releases

You should consider the following information before you run an older HP-UX
9.0x release, such as an 9.01/9.03/9.05 PEX application on a more recent HP-UX
9.0x system, such as an HP-UX 9.07 system; before you run a more recent HP-
UX 9.0x PEX application on a later HP-UX system; or before you run a more
recent HP-UX X Windows application on an older HP-UX system.

Installation And Setup 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

HP-UX and Older HP PEX Applications Running on a More Recent
HP-UX 9.07 System

The following issue should be considered before you run an HP-UX 9.01, 9.03, or
9.05 HP PEX application on an HP-UX 9.07 system.

If your PEX application was created prior to the HP-UX 9.03 release,
the application may exercise new paths through its source when using the
TrueColor visual. To avoid compatibility problems, an environment variable
has been included in X Windows for the HP-UX 9.03 and 9.05 release only .
The name of the environment variable is:

HP_SUPPRESS_TRUECOLOR_VISUAL

This environment variable turns o� the TrueColor visual.

HP-UX New HP PEX Applications Running on Older HP-UX Systems

The following list of items should be considered before you run a new HP-UX
9.07 HP PEX application on an older HP-UX system, for example, 9.03.

If you create an HP-UX 9.05 or 9.07 HP PEX application that uses the Multi-
Bu�ered X extension (MBX) and try to run it on an HP-UX 9.01 or 9.03
system, the application will not work. MBX is supported on HP-UX 9.05 or
later systems.
If your HP-UX 9.07 PEX application was compiled using archived libraries it
will require the HP-UX or 9.07 X server when executing in the direct hardware
access (DHA) mode (that is, rendering in a local window on the same system
as the application). The HP-UX 9.07 X server is required because of graphics'
dependencies on the HP-UX 9.07 X server.
If your HP-UX 9.05 or 9.07 PEX application links libXext.l, it will not run
on an HP-UX 9.01 or 9.03 system because this library is not available on either
of these systems. To get the application to work on these systems, you need to
explicitly re-link your application using the archive library libXext.a.

2-2 Installation And Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

HP-UX 9.05 or 9.07 X Windows Applications Running on HP-UX 9.01
or 9.03

The following list of items should be considered before you run an HP-UX 9.05
or 9.07 X Windows application on an HP-UX 9.01 or 9.03 system.

If you create an HP-UX 9.05 or 9.07 X Windows application that uses the
Multi-Bu�ered X extension (MBX) and try to run it on an HP-UX 9.01 or 9.03
system, the application will not work.
If your HP-UX 9.05 or 9.07 X Windows application links libXext.l, it will not
run on an HP-UX 9.01 or 9.03 system because this library is not available on
either of these systems. To get the application to work on these systems, you
need to explicitly re-link your application using the archive library libXext.a.

Installation And Setup 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Installation/Verification Instructions

Is Your System Software Preloaded with Instant Ignition?

Your workstation is preloaded with software, which may include HP PEX, if it
was ordered with the Instant Ignition option. A yellow label attached to the
workstation in its shipping carton con�rms the workstation is preloaded:

Important

This product contains preloaded software.

Do not initialize internal hard disk drive.

Verify HP PEXlib on Your Workstation

To verify that PEX in installed correctly on your system, execute the program
<pex>;/demos/verify_install to run the veri�cation program (make sure that
verify_install's path1 is in your PATH variable �rst):

verify_install �Return�

This program draws a cube with letter-shaped holes drilled through it: one shaped
like a \P", one like an \E", and one like an \X", one letter for each of the three
dimensions. You can iconify, maximize, and resize the window at will. Close the
window to terminate the program.

You can also verify that PEX is installed and learn quite a lot about your
particular system and the various extensions enabled on your workstation, such
as the MBX and CGE extensions, with /usr/contrib/bin/X11/xdpyinfo (see
also Appendix A).

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

2-4 Installation And Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Note Depending upon your hardware and colormap settings, you may
experience \color ashing," something that is described in \Using
SB_X_SHARED_CMAP" in Chapter 3. If there are other problems
running this test graphic, subsequent error messages will point
you to a solution.

If HP PEXlib is not preloaded for you, skip to the section \Color" in Chapter 6,
and the instructions \To Load HP PEX" in this chapter.

Installation And Setup 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Setting Up the On-line Information System

If you are using the CDE environment, no additional e�ort is needed to install
the HP PEX On-Line Information System. However, you may wish, for example,
to change the appearance or color of the on-line information windows, or setup
a Postscript printer.

How to Print On-Line Information

Printing of the on-line pages will be to your default printer. If your printer is
Postscript-capable or has the fonts resident, pages are printed in the fonts as
displayed on-screen.

Figure 2-1. The Print Menu Display

The �les that control the default printer settings of the on-line information with
CDE Help are contained in the <app-defaults>; directory2. List the application
default �les, Help*. The �le Helpprint enables you to select a printer model.

2 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

2-6 Installation And Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

How to Change the Appearance of your On-Line Display

The �les that control the appearance of the on-line information with CDE Help
are contained in the <app-defaults&> directory. List the application default �les,
Help*. The Helpview �le speci�es the size, color, and fonts used in displaying
the on-line information.

Using a Font Other Than the Default

A default font is provided. However, because HP CDE saves and restores the X
font path across multiple sessions, HP CDE users will need to explicitly modify
the X font path to access fonts other than the default. This is described in \Text
and Fonts" in Chapter 6.

Using the Command Line Prompt to Start the On-Line System

To be able to run the on-line information system from a command line prompt
(with or without CDE), run the script <vhelp>3/bin/pexman. This allows you
to access the tutorial and reference information from the command line.

On-Line Learning Product File Structure

The HP PEX On-Line Information System comprises a set of �les under the
hvhelpi directory. The entirety of the documentation is accessible via pexman; it
starts with the HP PEX 5.1v4 on-line tutorial/reference and displays the top-level
topic on your screen.

3 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Installation And Setup 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Information for HP-UX 9.0x System Administrators

To Load HP PEX

If you have a 9.0x release of HP-UX, and your workstation is not preloaded with
Instant Ignition, you must install HP PEX (usually from a CD-ROM or DDS
tape or over your company network), which requires superuser capability. (If
you have HP-UX 10.0, PEX is bundled with other products, so no explicit PEX
installation is necessary.)

1. Check that the workstation is running the HP-UX operating system, 9.05 or
later; enter uname -a to display the operating system version information.

2. Verify long-�le-name capability, which is required by HP PEX. If your system
does not already support long �le names, then, as root, use sam (1M), the
menu-driven System Administration Manager program to convert the �le
system before you begin installation with update. Alternatively, you can use
the convertfs (1M) command to convert your �le system.

3. If you are using a CD-ROM or DAT, insert the source media into its device.
If you are using a CD-ROM you will also mount the device onto the system.
If you are installing HP PEX over your company network, skip this step.

4. As root, use update and follow the instructions. This update program is
interactive, it provides messages, menus, prompts, and help screens to guide
you through the procedure of selecting partitions PEX and SHLIBS.

The update program checks �leset dependencies and that required disk space
is available. It reports inadequate space, if necessary, so that you can take
corrective action.

Many types of errors, if they occur during the update program, will result in
a message describing what happened and directions to remedy the error. See
the next section \If you experience di�culty during installation".

5. Read the �le update.log, which notes any installation problems, and reports
other information from the installation process.

6. When your installation is complete, you must restart the X server.

If you are using the HP CDE environment, log out of the session. Then at the
welcome display, click on

NNNNNNNNNNNNNNNNNNNNNNN
Options , then click on

NN
Restart Server . When

the login display reappears, log in.

2-8 Installation And Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If you are using X Windows with some other window manager, stop the server
(usually this is done by typing �Shift� �CTRL� �Reset�) and then restart it.

If You Experience Difficulty During Installation

Check for any error messages that were recorded in the �le /tmp/update.log

(make sure you check the dates and times printed in the �le so you know which
update session the error messages refer to). Also check the messages that may
have been displayed from running verify_install.

Also check the device �les. Devices speci�ed in X server screen con�guration
�les must correspond to existing device �les with appropriate permission. If you
don't already have the appropriate device �le, you must create it using the mknod
command. For information on mknod, see the HP-UX Reference Manual and/or
Using the X Window System.

You may need to review following sections in this chapter in order to set up device
�les or use error messages to troubleshoot the installation before you compile and
run programs.

If You Reinstall The X Window System

The �le, libXhpPEX.1, a shared library �le which is used by the PEX server, is
installed with the X Window System with update. When HP PEX is installed,
this �le is overwritten to activate the PEX capabilities within the server.

It is important to note that if, for some reason, the X Window System is
reinstalled after HP PEX has been installed, libXhpPEX.l is overwritten and
HP PEX will fail to function. To correct this and reinstall the complete HP PEX
version of libXhpPEX.1, type the following as root:

cd /

/system/PEX5-RUN/customize HP-PA

Also note that if the �leset PEX5-RUN is removed using rmfn, the original version
of libXhpPEX.1 from the �leset X11-SERV is restored.

Installation And Setup 2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If You Reinstall the HP-UX Operating System

If, for some reason, you must reinstall the HP-UX operating system, you must
also reinstall HP PEX.

Caution HP PEX replaces some HP-UX 9.0/9.01 graphics �lesets, so
in those cases where it is necessary to reinstall your operating
system, you will need to reinstall the HP PEX product �lesets as
well.

2-10 Installation And Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The HP PEX File Structure

This section contains information about some of the �les shipped with the PEX
product that is important for you to know before you begin working with HP
PEX.

The PEXlib Filesets

The PEXlib �leset lists are found in the /etc/filesets directory under HP-UX
9.0x and are accessible via the swlist command under HP-UX 10.x . Listing the
�les in this directory that begin with PEX5 will help you understand the structure
of HP PEX.

HP PEX depends upon �lesets of other software products in order to install and
operate correctly. These �lesets must be installed before you install PEXlib in
your system.

The HP PEXDeveloper's Environment requires the header �les for the XWindow
System Version X11R6. These are included with the HP-UX Developer's Toolkit
(B2356A) or the ANSI/C HP-UX Developer's Toolkit (B2354A).

For a list of these products, please see the accompanying sheet, Read Me Before
Installing HP PEX Development .

Installation And Setup 2-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Server Files

There are a number of �les that specify or a�ect the operation of the HP PEX
server processes and are located in various directories4:

Table 2-1. Server Files

File Contains

libXhpPEX.1 This �le, in /usr/lib/X11/extensions, contains the server
libraries.

pexd This �le, in hpexdi, contains the PEX server program.

XErrorDB This �le, in /usr/lib/X11, contains the basic and standard X
error messages.

fp.PEX This �le, in /usr/lib/X11/extensions, contains directory
names that are added to font paths when the X server is started.

PEXErrorHelp This �le, in herr-helpi directory, contains additional explanation
of HP-speci�c error messages that require more than 80
characters in order to provide useful information.

PEX.cat This �le, in hnlsi directory, contains the text strings for HP
PEXlib-speci�c information included with errors to help users.

4 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

2-12 Installation And Setup

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3

Running HP PEXlib Programs

Introduction

This chapter describes the characteristics of HP PEXlib programs as they run on
HP workstations. The PEX protocol de�nes the way information is exchanged
between clients and servers. Clients send encoded requests to the PEX server
and the server generates events, replies, and errors.

One of the key enhancements that HP has made in the area of client/server
communications is enabling HP PEXlib to control and select the protocol method
of operation that provides the best rendering performance. The selection and use
of one particular method, and consequently the performance of your system, is
dependent upon criteria that are described in the next section of this chapter.

This chapter also includes information about how you can customize the HP
workstation clients by setting an operating method, particular colormap, or the
use of color recovery all through setting environment variables.

Note that for some environment variables, the implementation details you'll need
for using them are found in later chapters because they provide added graphics
functionality.

Note If you are installing HP PEX, it is essential that you pass along
this chapter to those who will be programming with HP PEXlib
or using the PEXlib application.

Before you begin using the HP PEX product, it is important to check on-line �les.
You will �nd time-critical information in the HP PEX product Release Notes �le
ReleaseNotes (10.0_Rel_Notes on HP-UX 10.0) in the hrel-notesi1 directory.

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Running HP PEXlib Programs 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

This �le contains important information about the HP PEX product that was
not available in time for printing the hardcopy documentation. This includes
information about utility programs that conveniently perform common operations
and which aid interoperability of programs. Also look in the README �les that may
be found in the various directories and subdirectories of the HP PEX product.

3-2 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Operating Methods

This section describes di�erences in how the client application can control the
way rendering is performed through the HP PEXlib interface. There are three
basic methods that PEXlib can assume: DHA, PEX, or X. You make the selection
via the type of X display connection (normally speci�ed with the environment
variable DISPLAY) and the environment variable HPPEX_CLIENT_PROTOCOL.

Instructions for setting and controlling these methods using the DISPLAY and
HPPEX_CLIENT_PROTOCOL as one of the environment variables are covered in this
chapter. (The other environment variables that a�ect PEXlib behavior are also
covered in a later section of this chapter).

In the accompanying table, you see the possible values of the environment variable
HPPEX_CLIENT_PROTOCOL against the possible values of the X DISPLAY variable.
Each cell in the table shows the order in which PEXlib tries to initialize the client
connection based on the two environment variables. The progression is shown by
\!".

If the HPPEX_CLIENT_PROTOCOL environment variable is not set, or is set to an
unrecognized value, this indicates the client wants PEXlib to select the best
possible connection method to the server based on rendering performance and
the relation between client and server systems. If a speci�c connection type is
asked for, but the connection cannot be made, PEXlib does not try any other
options and initialization fails.

A maximum of 16 display connections per HP-UX process can be initialized for
PEXlib at the same time (see PEXInitialize).

Running HP PEXlib Programs 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

De�nitions for the terms that appear in the following table are explained here:

Definitions Used In Table 3-1

hlocal hosti:n.n Indicates the client has connected to a server on the local
machine, the same machine the client is running on.

hremote hosti:n.n Indicates the client has connected to a server on the remote
machine, a machine other than one the client is running on.

hdefaulti If HPPEX_CLIENT_PROTOCOL environment variable is not set, or is
set to an unrecognized value, this indicates the client wants
PEXlib to select the best possible connection method to the
server based on rendering performance and the relation between
client and server systems.

DHA Indicates the client will try to connect to the server using DHA
(Direct Hardware Access). DHA does maintain a connection to
the server, but not for rendering. All PEX rendering is done
directly to the hardware, in cooperation with the X server.

PEX Indicates the client will try to connect to the server using the
PEX protocol extension.

X Indicates the client will try to connect to the server using the X
protocol.

3-4 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Table 3-1. Progression of Protocol Selection

HP PEX
Client
Protocol

X Display Variable

unix:n.n or hremote hosti:n.n

local:n.n or

shmlink:n.n or

hlocal hosti:n.n

hdefaulti1 DHA!PEX!X!Error PEX!X!Error

DHA DHA!Error Error

PEX PEX!Error PEX!Error

X X!Error X!Error

1 If the HPPEX_CLIENT_PROTOCOL environment variable is not set (or
is set to an unrecognized value), PEXlib selects the method for
best rendering performance.

Direct Hardware Access Method (DHA)

The DHA protocol method, a Hewlett-Packard feature, provides the highest
graphics performance for local connections, its chief advantage. However, DHA
is available only when the client and server are on the same workstation; that is,
the client is running on the local server.

Running HP PEXlib Programs 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Visible Behavioral Differences of DHA Method

A client may want to use DHA method (and will get DHA method by default on
a local machine) for performance reasons. However, since DHA method does not
generate any PEX protocol requests, some minor behavioral di�erences may be
observed. The di�erences are listed here along with a brief explanation:

Request Sequence Numbers Reported by Errors|Normally, each X/PEX
protocol request is tagged with a sequence number when it is sent to the
X server. Both the client and the server keep track of these numbers
independently. If an error occurs, the client reports an error for the request
along with the sequence number of the request.

In the DHA method, the sequence numbers reported for errors generated
by PEX requests are meaningless. In the place of the appropriate sequence
number, the application receives a sequence number for the most recent Xlib
request, as if no PEX requests were being generated. This is natural because
DHA method doesn't generate protocol, but it is a di�erence the application
may see if any errors are generated.
Floating Point Exceptions|Clients can receive oating-point exceptions due
to bad data (see table \Data Values That Cause Problems," at the end of the
chapter) or some divide-by-zero operations when running DHA.

It is often helpful to debug your applications using the DHA Protocol Method,
before attempting to run them using the X Protocol Method. This is because
errors are asynchronous in the X Protocol Method and because DHA rendering
does additional error checking.

3-6 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

PEX Protocol Method

PEX protocol method provides the best performance in distributed graphics
environments when a PEX-capable server is available, i.e., when the client and
server are on di�erent systems and the remote X server has initialized the PEX
extension. In this method, PEX protocol is transmitted over the network to the
remote server. Performance is dependent upon factors such as network loading,
bandwidth, and the type of network.

There is little that can be assumed about protocol performance when sending
PEX protocol to other vendors' PEX servers. Performance issues relating to
the network type and total bandwidth apply, but the point-to-point capacities
of the various vendors' network interface cards vary. In addition, each
particular implementation of the PEX standard will possess its own performance
characteristics.

X Protocol Method

This method is provided so that an HP PEXlib client application can run to an
X server or X terminal that does not support the PEX extension. This method
is characterized by local rendering into virtual memory, followed by XPutImage

requests to the server. Since this method also uses the network for protocol
transmission, it is subject to the same performance considerations as the PEX
Protocol method. This method can be \forced," even if the server does support
the PEX extension.

Running HP PEXlib Programs 3-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Visible Behavioral Differences of X Protocol Method

All the comments pertaining to the DHAmethod are also applicable to X Protocol
method, plus the following additional di�erences:

PEX Extension Initialization|Normally, a PEX extension is supported by the
server and a corresponding structure is created on the client side when the
PEX extension is initialized. In X protocol method, either there is no PEX
extension on the server, or, the application is forcing rendering using the X
protocol even though PEX is supported. The �rst case is the one that exhibits
a di�erence.

Since there is no PEX extension on the server, HP PEXlib creates a client-side
extension structure anyway in order to function properly. However, the server
knows nothing about a PEX client. In essence, the client thinks there is a PEX
extension, the server thinks there is not.

One result of this is that if the client calls XListExtensions or XQueryExten-
sion, the PEX extension will not show up. (For this reason, applications that
check PEX support and quit if there is no support in the server cannot use the
X protocol method without some changes.) However, the PEXInitialize call
will succeed.

Another result of this is that error reporting and extension-event handling may
collide with another valid initialized extension. The client may interpret a PEX
error or event to be from another initialized extension. This aliasing behavior
will only show up if enough valid extensions are initialized by the client so
that the error- and event spaces are �lled up|overlapping the PEX \fake"
extension.
PEX Fonts|The only font directories that are searched are the directories
named in the �le hextensionsi/fp.PEX2 on the system where the client is
running. All PEX fonts that are needed must be on the client's system.

2 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

3-8 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Setting and Using Environment Variables

This section provides instructions for setting and controlling the environment
variables that you can use to con�gure the PEXlib client.

To assure interoperability, your program should look for the existence of
environment variables, since these variables are implementation-dependent, in
order to use them as program parameters. If these do not exist, then the program
uses default values.

Environment variables supported on HP workstations are summarized in the
following table. Additional information you'll need for implementing them is
provided either later in this chapter or in Chapter 6, as appropriate.

Table 3-2. Environment Variable Summary

Environment Variable
Name

Range of
Values

Description

HPPEX_CLIENT_PROTOCOL hdefaulti1 , DHA,
PEX, X

Desired rendering method. If method other
than default is speci�ed, initialization fails if
selected method cannot be used.

HPPEX_DHA_ECHO_COLOR #xxx2 Default colors echoed for primitives in a
newly-created renderer. Note that echoing in
HP PEX is done using \exclusive-or" drawing
mode. This means that the actual echo color
rendered will vary in di�erent image locations,
based upon the frame bu�er contents prior to
rendering.

HPPEX_DHA_HIGHLIGHT_COLOR #xxx2 Colors highlighted for primitives.

1 DHA is the default if not set.

2 Color resources are set using color names from the X11 color database rgb.txt (e.g., \White"), or
using the syntax #rrggbb. See \How To Set Environment Variables."

Running HP PEXlib Programs 3-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Table 3-2. Environment Variable Summary (continued)

Environment Variable
Name

Range of
Values

Description

HPPEX_DHA_COMPLIANCE_MODE hany valuei; e.g.,
True.

This variable enables complete PEXlib
compliance with the o�cial standard
speci�cation. Because this variable must be set
in order to cause complete compliance, HP
PEXlib runs in the highest-performance mode
by default. If your application cannot tolerate
any di�erences from the standard, then set this
variable. It is recommended this variable be
set during development of an application to
enable more robust error-checking. Because
users must explicitly set
HPPEX_DHA_COMPLIANCE_MODE, HP PEXlib's
default behavior will exhibit minor di�erences
from the standard.

HPPEX_DHA_AUTO_COLOR_APPROX hany valuei; e.g.,
True.

When this variable is not set, HP PEX
provides standard behavior with respect to the
setting of the color approximation table. When
this variable is set to any value, HP PEX
enables some clients to run successfully that
would otherwise abort, attempting to set an
unsupported color approximation entry (which
is not standard PEX behavior).

SB_X_SHARED_CMAP hany valuei; e.g.,
True.

If you are using a low-end graphics device with
only one hardware colormap, you can avoid
color ashing through the use of this variable,
setting it to any value. Use of
SB_X_SHARED_CMAP and achieving generally
satisfactory behavior requires some
explanation; please see additional information
in \Using SB_X_SHARED_CMAP".

3-10 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Table 3-2. Environment Variable Summary (continued)

Environment Variable
Name

Range of
Values

Description

HP_DISABLE_COLOR_RECOVERY hany valuei; e.g.,
True.

When this variable is set to any value before
PEXBeginRendering or other similar entrypoint
that binds the renderer to the window, the
color recovery feature is disabled. For more on
the use of this environment variable, see
\Environment Variable|Color Recovery".

HP_ENABLE_TRANSPARENT_MODE hany valuei; e.g.,
True

When this variable is set to any value, before
starting the X11 server, the overlay planes
become transparent. For more on the use of
overlay planes and this environment variable,
see \2: Determine Use of Transparent Overlay
Planes" in Chapter 6.

HP_COUNT_ TRANSPARENT_IN_

OVERLAY_VISUAL

hany valuei; e.g.,
True

Determines whether or not you want to count
the \transparent color" as a real color in the
overlay visual. (Formerly named
CRX24_COUNT_TRANSPARENT_IN_ OVERLAY).

HPPEX_TXTR_SHMEM_THRESHOLD If an application wants to adjust the threshold
to a lower limit, this variable can be exported.
This variable will set the decimal number of
bytes for a shared memory segment. The
current threshold for texel maps is greater
than or equal to a 1024 x 1024 x 3 byte (3MB)
size. The system will attempt to allocate a
shared memory segment.

Running HP PEXlib Programs 3-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

How To Set Environment Variables

There are two ways to set environment variables. The choice depends on whether
you are using HP CDE or if you are simply using the X environment.

Both methods are illustrated using the HP_ENABLE_TRANSPARENT_MODE environ-
ment variable:

Setting Environment Variables In HP CDE

If you are using HP CDE (Common Desktop Environment) add the following
line to your Xconfig �le:

Dtlogin*environment:HP_ENABLE_TRANSPARENT_MODE=TRUE

The Xconfig �le may contain commented out entries for some of the more
popular resources, including \environment". You need to �nd the line
containing \environment", add the appropriate value, and uncomment the
line. To eliminate the overlay plane, remove the line.
Setting Environment Variables In X Windows

If you are using x11start, make sure you have the environment variable
HP_ENABLE_TRANSPARENT_MODE set before you execute x11start:

export HP_ENABLE_TRANSPARENT_MODE=TRUE

The best way to do this is to include it in your $HOME/.profile. To eliminate
the overlay plane, this environment variable is unset by typing:

unset HP_ENABLE_TRANSPARENT_MODE

. . . and restarting the X11 server.

3-12 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Using Environment Variables

Environment Variable|To Specify Color

Color resources are set using color names either from the X11 color database
rgb.txt, or using the syntax #RedGreenBlue where Red , Green, and Blue are
hexadecimal numbers containing 1, 2, 3, or 4 digits (that is, #rgb, #rrggbb,
#rrrgggbbb, and #rrrrggggbbbb are all legal syntaxes). These hexadecimal numbers
indicate the amount used of that primary color. There must be the same number
of digits for each of the primary colors.

For example, color names from rgb.txt or a color speci�ed by one of these can
take the following form (where r , g , and b are hexadecimal digits):

#rgb 4 bits per color

#rrggbb 8 bits per color

#rrrgggbbb 12 bits per color

#rrrrggggbbbb 16 bits per color

To set an environment variable for color, you may use this syntax:

export HPPEX_DHA_ECHO_COLOR=red

or
export HPPEX_DHA_ECHO_COLOR="#ffff00000000"

Colors are set, using the syntax shown above, for these HP environment variables:

HPPEX_DHA_ECHO_COLOR

HPPEX_DHA_HIGHLIGHT_COLOR

The default colors are echoed for primitives in a newly-created Renderer. Note
that echoing in HP PEX is done using \exclusive-or" drawing mode. This means
that the actual echo color rendered will vary in di�erent image locations based
upon the frame bu�er contents prior to rendering.

More information about application resources, including color, is found in the
book Using the X Window System.

Running HP PEXlib Programs 3-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Environment Variable|PEX Protocol Method

When using the PEX Protocol Method of connecting to the server, (that is,
you have set HPPEX_CLIENT_PROTOCOL to PEX), you must reset the following
environment variables, if you wish to use them, before the X server is started
on the PEX server's system for the variables to have an e�ect:

HPPEX_DHA_ECHO_COLOR

HPPEX_DHA_HIGHLIGHT_COLOR

HPPEX_DHA_COMPLIANCE_MODE

HPPEX_DHA_AUTO_COLOR_APPROX

Setting these variables before starting the client process will not a�ect the PEX
server which, ultimately, does the �nal rendering.

Environment Variables|Compliance Mode

The environment variable HPPEX_DHA_COMPLIANCE_MODE allows users to specify
whether HP PEXlib strictly adheres to the standard, or to maximize HP PEX's
performance, allowing some minor behavioral di�erences. In most PEXlib
applications, these di�erences should be acceptable and preferable for the
performance edge. For this reason this is the default behavior; that is, the variable
is not set.

If your application cannot tolerate any di�erences from the standard, then set
this variable. It is also recommended this variable be set during development
of an application to enable more robust error checking. Because users must
explicitly set HPPEX_DHA_COMPLIANCE_MODE, this default behavior will exhibit
minor di�erences from the standard.

Here are the di�erences from the standard when HPPEX_DHA_COMPLIANCE_MODE

is o�:

Specular Reections|A directional eyepoint is used in lighting calculations;
this is manifested as subtle changes in specular reections.
Disabled Clamping|Clamping of ambient, di�use, and specular reection
attribute values is disabled.
Error Checking|Comprehensive parameter error checking is not performed.
The burden of transmitting good data to PEXlib procedures is placed upon
the application.
Higher Performance|The fastest transformation and rasterization paths are
enabled to give applications a signi�cant performance boost.

3-14 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Because invalid data can cause programs to fail, Hewlett-Packard suggests the
compliance mode variable be set during development of the application, and unset
once the application is defect-free. The precise performance di�erences with the
mode set and unset vary with the application. The application documentation
should specify whether or not this variable should be set.

Using HPPEX DHA AUTO COLOR APPROX

When the variable HPPEX_DHA_AUTO_COLOR_APPROX is not set, HP PEX checks
the values in a color approximation table entry and reports an error if any of the
values do not match what is supported on the particular device and visual.

If the variable is set to any value, HP PEX recognizes unsupported values as the
color approximation entry values are set. But rather than reporting an error,
it creates and initializes a new X color map with a supported content for any
window on which the invalid color approximation entry is used at the time it
is installed. While this is not standard PEX behavior, the advantage is that it
allows some clients to run that would otherwise fail.

Environment Variable|Colormaps

Note If you are installing HP PEX, it is essential that you pass
along the information about resetting the environment variable,
SB_X_SHARED_CMAP to those who will be programming with HP
PEXlib or using the PEXlib application.

Running HP PEXlib Programs 3-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Using SB_X_SHARED_CMAP

On graphics devices with only one hardware colormap, PEX applications may
experience \color ashing." Color ashing is the condition where colors displayed
on the workstation screen change as the focus moves from X window to X window
and where the PEX image looks correct only when the focus is in its window.

This is common on low-end graphics devices because most PEX applications are
demanding in their color usage, more demanding than many other X clients and
window managers. Therefore, the PEX default color sampling requires a di�erent
colormap setup than many X clients and window managers. When the graphics
device only supports one hardware colormap, both colormaps cannot be installed
at the same time, and the switch from one colormap to another in hardware
causes color ashing.

HP o�ers a method for avoiding color ashing on low-end graphics devices
through the use of the environment variable SB_X_SHARED_CMAP. The use of this
environment variable is explained in further detail below. However, you need
to be aware that this may result in anomalous color behavior with some color-
demanding X clients and window managers such as HP CDE. (An example of
aberrant color behavior would be the minute hand on the clock in the HP CDE
front panel leaving behind a di�erent color as it moves around the face of the
clock.)

If you are using a low-end graphics device with only one hardware colormap, you
can avoid color ashing through the use of the SB_X_SHARED_CMAP environment
variable. This is the best choice if you do not use color-demanding X clients and
window managers such as HP CDE in \High Color" mode (the default HP CDE
color mode). If you must avoid aberrant color behavior by color-demanding X
clients, then this method is not available to you.

In general, if you attempt to share X colormaps among color-demanding X and
PEX applications on a low-end graphics device, you may experience unexpected
color behavior.

The setting of the SB_X_SHARED_CMAP environment variable determines the
supported PEXColorSpace color approximation entry on the display. This
environment variable has e�ect only on older simple HP displays that only
support depth 8 visuals and exerts its e�ect at the time that the X/PEX server
is started. (Changing the value after the server is running has no e�ect, except
when X protocol mode is being used with a non-HP server. In this case, the local

3-16 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

value of the variable at the time the PEX application is started controls the color
approximation support.)

SB_X_SHARED_CMAP is especially important if you have PEX applications that
need to share a colormap (perhaps the default colormap) with other X clients.
In such a case, it is common for the X clients and window managers to be using
pixel values in the low end of the colormap, for X rendering and for borders and
backgrounds. On all of the single-visual devices, HP PEX supports a colormap in
which the lowest forty cells are available for X clients, and the upper 216 cells are
set up in an RGB color space sampling that HP PEX supports via PEXColorSpace
approximation. This colormap con�guration is often called a \6j6j6" colormap,
because the color sampling includes six levels each of red, green, and blue.

The 6j6j6 default colormap setup and PEX color approximation support are
enabled by setting SB_X_SHARED_CMAP to any value before the X/PEX server
is started. If SB_X_SHARED_CMAP is not set, HP PEX supports a color sampling
using 8 values of red, 8 of green, and 4 of blue. This colormap con�guration
is called \8j8j4." (It is also sometimes called \3:3:2", for the number of planes
allocated to each of red, green, and blue. Note that \j" is used to delimit color
levels and \:" is used to delimit frame bu�er planes.) Since 8j8j4 mode consumes
all 256 cells in the colormap, a PEX application must use a colormap other than
the default.

Regardless of which protocol method of connecting to the server is used, you
must reset the environment variable, SB_X_SHARED_CMAP, if you wish to use it,
before the X server is started on the PEX server's system for the variable to have
an e�ect.

On devices with only one hardware colormap, both the 6j6j6 colormap being
used by the other clients, and the 8j8j4 colormap being used by PEX, cannot be
installed at the same time. This results in \color ashing", since the PEX image
will not look correct except when the 8j8j4 colormap is installed.

Running HP PEXlib Programs 3-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Note If your PEX application does not require the higher 8j8j4 color
resolution, set your SB_X_SHARED_CMAP environment variable to
\True" on these lower-end graphics devices. Be aware that this
may result in aberrant color behavior on the part of other color-
demanding X applications as discussed above. However, setting
the environment variable will allow many PEX applications to
share a colormap with other clients, avoiding the \color ashing"
problem.

The CRX Device And Color Support

The CRX device (only) exhibits one exception to standard X/PEX color support.
For best performance, it requires a color sampling (either 6j6j6 or 8j8j4) in the
colormap that contains the same number and values of cells as the other single-
visual devices, but the cells are not in the \canonical" order described by X
standard colormap properties or PEX color approximation entries. HP provides
a program, xhpcmap, to transform a canonical color sampling into the required
\shu�ed" setup.

If your PEX applications all use this utility or equivalent code, you can
set SB_X_SHARED_CMAP to \True" as described above, and obtain the best
performance possible on the CRX. If, however, you have applications that do not
incorporate code to set up the \shu�ed" colormap, or there are other reasons
why the special colormap is unacceptable, you can set SB_X_SHARED_CMAP to the
special value XA_RGB_DEFAULT before starting the X/PEX server. HP PEX will
render correctly using a canonical 6j6j6 colormap, but rendering performance on
CRX may be noticeably impacted. The only mechanism to cause rendering to
a canonical 8j8j4 colormap on CRX is to set HPPEX_CLIENT_PROTOCOL to \X"
though, again, performance may be a�ected.

3-18 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Environment Variable|Color Recovery

In order to provide higher-quality shaded images on low-cost 3D graphics systems
like the Model 712, as well as the HCRX-8 devices, you can take advantage of
a new feature called color recovery. Color recovery provides better pictures on
low-cost workstations than are possible using only dithering by attempting to
eliminate the apparent graininess caused by dithering.

Use of the color recovery feature attaches a di�erent colormap to the X window
than the application originally attaches. The colormap substitution occurs on
the �rst PEXBeginRendering or other similar entrypoint that binds the renderer
to the window. However, since it only occurs in TrueColor visuals, color ashing
due to this change should not be objectionable. Applications that attempt to free
the colormap they created will succeed; it is recommended that they not assume
they can free whatever colormap is currently attached to the window, since the
substitution may have occurred and they will get a permissions error.

Color recovery requires a di�erent dither cell size when rendering shaded polygons
and a digital �lter is used when displaying the contents of the frame bu�er to
the screen. For this reason, color recovery can occasionally produce undesirable
artifacts in the image. Some applications that read or write PEX images as raster
images may be a�ected by the di�erent dither cell.

To disable color recovery, you'll need to set and export the environment variable
HP_DISABLE_COLOR_RECOVERY in the environment in which the X/PEX server is
started before running your application. This disables the colormap substitution
and color recovery. However, if this environment variable is not set in the server's
environment, but is set in the DHA client's environment, color recovery is disabled
for the client only.

The color recovery colormap is a read-only colormap. Attempts to change it are
ignored and errors are not reported.

Running HP PEXlib Programs 3-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Environment Variable|Turning Off the TrueColor Visual

TrueColor visuals are supported with 9.05 release and later releases of HP-UX.
Note that applications created prior to the 9.03 release of HP-UX may exercise
new paths through their source when using this visual. To avoid compatibility
problems, an environment variable has been included in X Windows for the HP-
UX 9.03 and 9.05 release only . The name of this environment variable is:

HP_SUPPRESS_TRUECOLOR_VISUAL

Note The HP_SUPPRESS_TRUECOLOR_VISUAL environment variable is
supported on HP-UX 9.03 and 9.05 only. It will not be supported
in future releases of HP-UX.

The existence (not the value) of the HP_SUPPRESS_TRUECOLOR_VISUAL environ-
ment variable before starting the X11 server disables the TrueColor visual. If you
set this environment variable after starting X11 server, it will be ignored.

To set the HP_SUPPRESS_TRUECOLOR_VISUAL environment variable before the X11
server is started, use one of the methods given below.

For Generic X Windows. If you are using x11start, make sure you have the
environment variable HP_SUPPRESS_TRUECOLOR_VISUAL set before you execute
x11start:

export HP_SUPPRESS_TRUECOLOR_VISUAL=TRUE

The best way to do this is to include it in your $HOME/.profile.

To unset the environment variable, type:

unset HP_SUPPRESS_TRUECOLOR_VISUAL

and restart the X11 server.

For HP CDE. If you are using HP CDE (Common Desktop Environment) add the
following line to your Xconfig �le:

Dtlogin*environment:HP_SUPPRESS_TRUECOLOR_VISUAL=TRUE

The Xconfig �le may contain commented out entries for some of the more
popular resources, including \environment." Simply �nd the line containing
\environment," add the appropriate value, and uncomment the line.

3-20 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

To unset the environment variable, remove this line:

Dtlogin*environment:HP_SUPPRESS_TRUECOLOR_VISUAL=TRUE

from your Xconfig �le and restart the X11 server.

Running HP PEXlib Programs 3-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

PEX Fonts

PEX fonts are separate from X fonts in the HP implementation. The PEX fonts
are located in the hpex-fontsi directory3. The way the server �nds PEX fonts
is through the X font-path mechanism. The application must be careful when
manipulating the X font path; it is possible to leave PEXlib client applications
without fonts. Just as with Xlib, the burden is on the client application to be a
good X font-path citizen.

In order that the HP PEX fonts be con�gured into the default font path, the X
server will look for �le hextensionsi/fp.PEX on startup. If it exists, and if the
default font path is not overridden on the server command line, the paths listed
in this �le (full paths ending in /, one path per line) will be part of the server's
default font path. HP PEXlib installation will create this �le to include paths
for all the shipped PEX fonts.

Users of HP CDE should know that CDE saves the font path from each session
and uses it for the next session. This means that the path to PEX fonts won't
be properly set when using HP PEX for the �rst time after it has been installed.
When you �rst use HP PEX following installation, you'll need to use xset to put
the PEX fonts into the X font path. See \Text and Fonts" in Chapter 6.

3 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

3-22 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Parameter Error Checking and Reporting

The HP PEXlib client, when emitting PEX protocol, does no parameter error
checking. The standard PEX method is for the server to detect parameter errors
in incoming protocol requests and report them to the client.

If DHA rendering is being used, or the X protocol method is in e�ect, parameter
error checking will be done in the client process. Error reporting is handled
di�erently when in the DHA and client process methods versus the PEX protocol
method. In DHA and X methods, errors are synchronous so that special PEX
sequence numbers are not reported.

The standard PEX error types and messages documented in the PEX Protocol
Speci�cation are generated by HP PEXlib. When running remotely to an HP
PEX server or when running DHA, additional error data is included with the
standard PEX error messages to help users better under stand the sources of the
errors. An NLS-compatible error catalog, hnlsi/PEX.cat4, contains the additional
error messages for DHA PEXlib or when communicating with an HP PEX server.
Some of these error messages cannot be adequately explained in 80 characters,
the limit on error messages, so the �le herr-helpi/PEXErrorHelp provides the
additional HP-speci�c information to which users are referred.

The NLS error catalog resides in the directories hnlsi/msg/C and hnlsi/american.
This additional information is handled by special functions installed in the Xlib
extension hooks that enable the default X error handler to detect and print the
values. The default X error handler, as of X11R6, is able to call these value-
printing functions.

The basic and standard PEX error messages reside in the usual X11 error message
catalog, hx11 i/XErrorDB, which is not NLS-compatible.

Certain errors, such as those related to calling a PEXlib routine before PEXlib
itself has been initialized, and some graphics pipeline errors, cannot be handled
as regular PEX errors. These types of errors are printed to stderr with PEX
context information to aid troubleshooting.

4 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Running HP PEXlib Programs 3-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Effects of Client Failures

The most common situation in which one PEXlib client can adversely a�ect
another occurs when a client passes bad values in its data. This may cause
a server to dump core, thus a�ecting all the clients connected to that server.
However, the e�ects of this vary according the connection method of the PEXlib
client|whether DHA, PEX, or X.

In the PEX method, a client can send bad oating-point data values to the PEX
server, causing it to abort and a�ecting all other PEX clients. The HP PEX
server supplies reasonable default values as results for operations involving bad
data. The resulting images may not appear as you expected them, but the server
will not fail. The e�ects of bad data on non-HP servers is unknown.

For clients using the X protocol method to render to a non-PEX-capable server,
an abort will normally occur only on the client side|without a�ecting any other
X or PEX clients. However, if for some reason the client aborts the X server
itself, all other X/PEX clients also abort just as if any other X client aborts the
X server.

Bene�ts gained by operating clients in the DHA protocol method are speed,
isolation from other clients, and if a DHA client aborts, it is not likely to a�ect
other PEXlib clients.

The following table describes the most common data values causing these
problems and should be avoided:

Table 3-3. Data Values That Cause Problems

NaN (\Not a Number") There is a reserved value in oating-point bit
space that is called NaN. It is generated, for
example, when 0/0 is evaluated.

+Infinity There is a reserved value in oating-point bit
space for positive in�nity.

-Infinity There is a reserved value in oating-point bit
space for negative in�nity.

It is important to know of these three conditions because many applications
generate their graphics data as part of some application-speci�c calculations|and

3-24 Running HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

generated data is prone to producing these \toxic numbers." If this occurs, your
displayed images can appear with unexpected results. To avoid this situation,
your application must not generate these three conditions or must �lter these
conditions from their data.

Running HP PEXlib Programs 3-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4
Utilities, Compiling And Linking, Examples and
Demos

Introduction

The PEXlib Programming Manual , Chapter 3, \Getting Started", and the on-line
version of Chapter 3, HP PEX On-Line Information System, both illustrate the
general steps for creating and running PEXlib programs. Speci�cs are included
in the on-line documentation, where source code is compiled; see the make �les
for details. Instructions in this chapter are supplemental and necessary in order
to develop and run programs on Hewlett-Packard workstations.

Utilities, Compiling And Linking, Examples and Demos 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Listing the contents of the hpexi directory1, you will see a number of important
subdirectories, including:

Table 4-1. Demos, Utilities, and Program Examples

Subdirectory Description

demos Contains programs that demonstrate 3D capabilities of HP
PEX. The PEX veri�cation program verify_install, for
example, is included here.

hhp-examplesi The program examples in this directory illustrate ways to
achieve special graphics e�ects using PEXlib calls.

hora-examplesi Contains source �les for all the programs and utilities
described in the PEXlib Programming Manual .

hcge-examplesi Contains program examples that demonstrate some of the
portability and functionality of the CGE PEX 5.1
extensions.

hpex-utilsi Contains general information and a number of important
utilities dealing with colormaps and visuals,
double-bu�ering, gamma correction, and use of Motif
widgets.

hcge-utilsi Contains important, highly recommended utilities that will
assist you in creating highly portable applications.

README Read this �le to learn about obtaining and using the source
�les.

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

4-2 Utilities, Compiling And Linking, Examples and Demos

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Including Header Files In Your Applications

HP PEX uses standard C and X11 header �les, providing de�nitions and
declarations shared among program �les (list the hpex incl i directory2). Most, if
not all programs, will require that at least these header �les must be included at
the beginning of your programs. Your program may require others in addition to
these.

#include <sys/types.h>

#include <stdio.h>

#include <string.h>

#include <X11/X.h>

#include <X11/Xlib.h>

#include <X11/Xutil.h>

Most HP PEXlib programs and applications that only use the standard PEXlib
data types, de�nitions, and function declarations, need only include the header
�le PEXlib.h under the hincludei directory. Use the following syntax:

#include <X11/PEX5/PEXlib.h>

Notice that PEXlib.h includes several key Xlib header �les such as Xlib.h. It
also includes PEX.h, which is a separate �le in the same directory, and contains
the de�nitions and types de�ned by the PEX protocol.

Still other header �les may be needed by your program, depending on your
application. For example, in order to provide access to the additional
functionality of multi-bu�ering extension and the CGE extensions (among varied
workstation platforms from workstation vendors, including Hewlett-Packard) you
must include PEXExtlib.h, as shown below. Among these header �les are
PEXExtlib.h and PEXHPlib.h, which must be included in your program after
PEXlib.h, as the �nal include example shows.

#include <X11/PEX5/PEXExtlib.h>

#include <X11/PEX5/PEXHPlib.h>

For 5.1v3 and later HP PEX releases, a new header �le, PEXHPlibint.h is
included by PEXlib.h.

2 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Utilities, Compiling And Linking, Examples and Demos 4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Another example is the colormap and visual utilities that require you to include
PEXUtCmap.h from the hcge utilsi3 directory. This header �le de�nes the
constants and structure types for use with these utilities.

Instructions for including various additional header �les are usually provided with
the README �le that accompanies the utility or function. The README also includes
instructions for using or operating the utilities.

Table 4-2. Header Files for Advanced Functionality

File1 Description

PEXHPlib.h Contains the data types, declarations, and function declarations
required by extensions to the PEXlib API that are supported by
Hewlett-Packard.

PEXExtlib.h Contains CGE extensions for portability and interoperability.

multibuf.h Multi-bu�ering extension from libXext.sl.2

1 See list below for complete pathnames

2 See the O'Reilly PEXlib Programming Manual, 14.2: \The Multi-bu�ering Extension" for further
information.

Now your header �le declarations at the beginning of your program should appear:

#include <sys/types.h>

#include <stdio.h>

#include <string.h>

#include <X11/X.h>

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/PEX5/PEXlib.h>
#include <X11/PEX5/PEXExtlib.h>

#include <X11/PEX5/PEXHPlib.h>

#include <X11/extensions/multibuf.h>

3 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

4-4 Utilities, Compiling And Linking, Examples and Demos

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Using the Utility Programs

A number of utilities have been added to the HP PEXlib product that simplify
and speed programming or which enable you to display sophisticated images.

Utilities For The Common Graphics Environment

To encourage and assist you in the development of applications based on the
common graphics interoperability conventions, a number of highly recommended
utilities are made available in the directory hcge-utilsi4:

PEXUtCmap.c

PEXUtCmap.h

PEXUtCmapint.c

PEXUtCmapint.h

PEXUtExt.h

PEXUtdbint.h

A shared library providing these utilities is shipped as hpex-libi4/libPEXUt.sl.

Utilities From the O'Reilly Manual

The directory hora examplesi, which contains the examples from PEXlib Pro-
gramming Manual , also contains the book_utils.c utility. O'Reilly developed
this utility to set up the workstation. However, it is important to notice that HP
has modi�ed book_utils.c shipped with the HP PEX product to provide im-
proved interoperability and properly set up HP workstations to run the O'Reilly
programs.

Hewlett-Packard recommends that you use the HP-modi�ed utility instead,
especially if you intend to use programs from other workstations which use
O'Reilly examples, or if you obtain the programs again directly from O'Reilly &
Associates per the instructions in the Preface of PEXlib Programming Manual ,
\Obtaining the Example Programs."

#include "book_utils.h"

4 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Utilities, Compiling And Linking, Examples and Demos 4-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Utilities from Hewlett-Packard

Hewlett-Packard ships a number of additional utilities with the HP PEX product.
These utilities are in the hpex utilsi directory5. See the README �le in this
directory to learn about these utilities and how they are useful.

Table 4-3. HP Utilities in Utilities Directory

Subdirectory Description

PEXSimple.c A basic Motif widget for a PEX drawing area.

hpgamma.c An HP utility to enable gamma-correction for anti-aliasing.

pexutcmap.c

pexutcmaphp.c

pexutcmapint.c

Source code for HP-originated utilities for visual selection
and colormap creation.

pexutdb.c

pexutdbint.c

Source code for HP-originated utilities for portable double
bu�ering.

5 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

4-6 Utilities, Compiling And Linking, Examples and Demos

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Examples, Utilities and Demo Programs

The HP PEX product contains many examples and programs, in addition to those
supplied with the O'Reilly PEXlib Programming Manual , that demonstrate use
of various functions and utilities that can make you more productive or to display
more sophisticated images.

The hpexi directory contains the examples and demos. This directory and
subdirectories for each of the examples and programs also contains a README

�le to explain the contents and, importantly, instructions for using the programs.
This table notes some of these examples; see the directories themselves for a
complete list, and the README �les in the directories for explanations.

hhp-examplesi/SubsetAAModeling|Interactive demos showing the di�erences
between subset mode, mixed mode and immediate mode rendering. These
examples also demonstrate antialiasing capabilities.
hpexi/demos/drive/PEXdrive|HP's networked driving simulator.
hhp-examplesi/TexMap/boundary.c, . . . /composition.c, . . . /orienta-

tion.c, . . . /param.c, and . . . /texture.c|Texture-mapping examples (see
Chapter 9)
hhp-examplesi/pexdpyinfo|A utility for developers; displays PEX extension
information, plus information on the enumerated types, implementation-
dependent constants, lookup table entries, and sup ported PEX visuals for
a particular display. See \pexdpyinfo" in Appendix A.
hhp-examplesi/dblbuffer_pexut|Rotates a cube using the PEXUt double-
bu�ering and color utilities.
hhp-examplesi/wireframe.c|Uses two supplied graphic object data �les to
display both wire frame and solid surface image with shading.
hhp-examplesi/overlay.c|Simple example of overlay and image plane use.
hhp-examplesi/screen_dump.c|Example of programmatic invocation of the
screenpr(1) command to generate a screen-resolution dump to a PCL printer.
hhp-examplesi/alpha_blend.c, alpha/alpha_twopass.c|Alpha blending ex-
amples demonstrate the use of the HP alpha blending extensions to PEX func-
tionality.
hpexi/demos/verify_install|Rotates the PEX cube.
hhp-examplesi/hp_example_utils.c|Utility procedures for the examples
hhp-examplesi/cge_simplewin.c and hhp-examplesi/cge_makewin.c|
Programs that illustrate the use of the two most powerful colormap/visual
utilities in CGE.

Utilities, Compiling And Linking, Examples and Demos 4-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

hhp-examplesi/widgetdemo|Demonstrates creation of XgPEXSimple Motif
widget, displays dotted line in it, and provides a pulldown menu to close it.
hhp-examplesi/wideline_ctl.c|Demonstrates the control of stroked versus
�lled widelines.
hhp-examplesi/polyoff/polyoff_ctl.c|Demonstrates use of the polygon
o�set performance feature.

Using the HP Examples

The �le6 hhp-examplesi/README describes how Makefile is used to build
executable programs of the various examples included in the directory.

How To Link To Shared Libraries

HP PEXlib is supported on the Series 700 workstations using shared libraries
that must be linked with the application program.

When you compile your PEXlib programs, you must link the application with the
PEXlib library libPEX5 just as described in the PEXlib Programming Manual
and on-line system. Notice that the PEX library is dependent on the math library.

A compile line will typically appear:

cc program.c -I/usr/include/X11R6 -Ihpex-incli/X11R6 -Lhx11r6i \

-Lhpex-libi -lPEX5 -lXext -lX11 -lm

See the Graphics Administration Guide for more information on compiling.

6 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

4-8 Utilities, Compiling And Linking, Examples and Demos

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

This table summarizes the shared libraries and X11 directories that are linked on
the command line example above.

Table 4-4. Shared Libraries and X11 Directories

Library Description

libX11 X11 routines

libXext X11 extensions

libPEX5 PEXlib routines

libm math functions

Utilities, Compiling And Linking, Examples and Demos 4-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5

Performance Hints

Steps to Getting Good 3D Graphics Performance

As an application developer, one of your primary concerns is designing and tuning
your application so that it runs at full performance on supported platforms. On
HP graphics systems, a simple technique can be applied to graphics-intensive
applications that will help you accomplish this goal.

The �rst step in this process is to choose appropriate hardware and software for
the application that you will be running. Once the application has been written
or ported to this platform, determine if you are reaching expected performance
levels. If not, determine where the bottlenecks in the application are, or how the
application is using system resources.

If the problem is in the application's interaction with the graphics hardware or
software, some straightforward techniques can be used to help identify the source
of the problem, and some simple guidelines can be followed in order to improve
performance. If the problem is not related to the application's use of graphics,
other options may be available to improve application performance.

Although many of these techniques apply to all of the graphics libraries supported
by Hewlett-Packard, the speci�c tuning graphics guidelines discussed here focus
on PEXlib.

Performance Hints 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Identify SPU and Graphics Hardware Suited For the
Application

Your choice of a hardware platform will depend on the type of application you
are planning to support. For example, will end users spend only a small amount
of time creating a model, but spend most of their time rotating objects and
viewing them from di�erent directions? If so, the graphics hardware may be the
more important consideration. On the other hand, if the application is going
to solve complicated equations while rendering, the choice of CPU may be more
important to your application performance.

Where to Get Information About HP Systems

Benchmarks and technical information about HP systems is published in the
Product Data Sheet for that system, which is available from your sales represen-
tative. If you have access to World Wide Web, you can also �nd much of this
information by opening Hewlett Packard's home page, at http://www.hp.com.
From the home page, you can access information about HP computers and pe-
ripherals, support services, hints for troubleshooting problems on HP systems
and other timely information. Another source of news about HP products is The
Hewlett-Packard Journal .

System Level Benchmarks

Several benchmarks are published about HP graphics systems that should help
you to determine if the system is an appropriate choice for your application.
Typical system data includes SPECint and SPECfp ratings, and Linpack and
Dhrystone benchmark results.

5-2 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Graphics Benchmarks

The Graphics Performance Characterization committee (GPC) provides a set of
Picture Level Benchmarks (PLBs), which are a standardized, vendor-independent
measure of graphics performance. The benchmarks are run from the PLB
interpreter program, which executes a series of graphics calls. A number of
data sets, which contain graphics calls that a typical application might make, are
provided by the GPC committee. For example, PLBWire93 is a good indicator of
wireframe application performance. PLBSurf94 is a good indicator of 3D shaded
surface performance. Xmark93 is a good indicator of how the user interface will
perform.

Other published graphics data includes triangles/second, vectors/second and
quadrilaterals/second. This type of performance number is not always available
for a given device. Beware of these speci�cations, because they rarely reect
actual performance of an application. These benchmarks and PLBs are usually
available on the Product Data Sheet. Other information about GPCs is available
in the GPC Quarterly. You can receive copies of that publication from university
libraries, by subscription, or from a sales representative. The GPC Quarterly
is published by the National Computer Graphics Association (NCGA), 2722
Merrilee Drive, Suite 200, Fairfax, VA 22031.

Other Considerations

Other performance considerations for 3D graphics users include:

Does the graphics system include a hardware Z bu�er? A hardware Z bu�er
is used to accelerate hidden surface removal. If your application renders 3D
solids or surfaces, a hardware Z bu�er will accelerate rendering and animation
of complex models.
Is hardware double-bu�ering supported at the depth your application needs?
Double-bu�ering allows smooth movement of dynamic images. To the human
eye, double-bu�ered animation sequences appear to run faster.
Does the system include overlay planes? Running the graphical user interface
(GUI) in the overlay planes and the graphics in the image planes can result
in a substantial performance improvement for some 3D applications. This
is because exposure events, caused by GUI interactions like pop-up menus,
can force expensive redrawing of the graphics images when the pop-up menus
disappear.

Performance Hints 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Is rasterization of primitives accelerated? If it isn't, rendering times are
strongly impacted by window sizes.
How does the graphics system interact with the CPU? If the graphics
computations are done completely by the graphics device, graphics performance
will not scale with a faster CPU. If the mathematical computations are done
in the CPU, instead of by specialized graphics hardware, graphics performance
will scale with CPU performance.
Is texture mapping supported in hardware? Texture mapping gives an
application the ability to map a 2D image onto a 3D surface for a more realistic
rendering.

Software double-bu�ering, hidden surface removal and texture mapping are
supported on all HP graphics devices. However, hardware support signi�cantly
improves performance for this functionality.

5-4 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Choosing a 3D Graphics Application Programmer
Interface

HP supports several graphics application programmer interfaces (APIs). Your
choice of API will depend on the features of the API, as well as performance.

PEX is a vendor-independent extension to the X Window System that is
supported by major workstation vendors including HP, Sun, IBM, and DEC.
PEXlib is the corresponding API that generates PEX protocol. PEX provides
client/server graphics and the broadest set of functionality supported on HP
platforms. PEXlib provides full performance graphics on HP systems.

Starbase is a low-level, proprietary API that has been used by HP customers for
many years. Starbase is a feasible option for many applications that do not need
client/server technology. Starbase runs at full performance on all HP-designed
graphics devices now, and will continue to be supported in the future.

HP-PHIGS is a high-performance implementation of the industry standards,
PHIGS and PHIGS PLUS. The current release of HP-PHIGS (Version 3.0) is
the last major release of the product. Future systems may not run HP-PHIGS
at full performance. Figaro and GPHIGS are commercial products. Figaro is
available from Template Graphics Software. GPHIGS is supplied by G5G.

OpenGL is supported on HP-UX 9.07 for application developers that use
OpenGL. The OpenGL software distributed by Hewlett-Packard is an Evans
& Sutherland product for Freedom systems, and is supported by Evans &
Sutherland. OpenGL runs at full performance on Freedom systems. Evans &
Sutherland plans to enhance OpenGL over time.

Performance Hints 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Determining How the Application is Using System
Resources

Choosing an Effective Benchmark

To accurately verify whether or not your application is reaching maximum
performance levels, you will need to run some benchmarks. An e�ective
benchmark focuses on the critical functionality of the application. What tasks
does a typical end-user repeat most often while using your application? Is the
data used in the application typical of the complexity of the data that your end
users work with?

In addition, it is important that the benchmark does not spend a lot of time
in startup activities, but does spend enough time on other tasks to give you an
accurate understanding of performance issues. Benchmark performance should
scale on di�erent systems according to the published speci�cations. If it doesn't,
your benchmark is probably not spending enough time on the critical application
tasks, in this case, rendering graphics.

Finally, the benchmark results should be repeatable, with approximately the same
timing measurements for each time a given task is run.

5-6 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Identify the Bottlenecks

If the use of system resources is not balanced by the application, performance
can slow down considerably. Performance bottlenecks can occur in many di�erent
places in your applications, including: graphics, the CPU, memory, the network,
and I/O systems. For example, an application that does extensive mathematical
computations on data before displaying that data may be CPU-bound. In other
words, it will spend a long time processing data and using the CPU resources
before sending any information down for graphics processing, although it might
appear as if graphics is slow.

It is critical that you understand how the system resources are being used before
beginning to tune your code. Otherwise, the time spent tuning code may have
little impact on your overall application performance. For example, if graphics
is the bottleneck and you are already getting maximum performance from the
graphics hardware, no amount of change to the interactions between the graphics
and your application will improve your application's performance. Similarly, if the
network is the bottleneck, no amount of graphics tuning will improve application
performance.

Performance Hints 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Performance Analysis Tools

Several HP-UX tools are available to help you determine how the system resources
are being used.

/bin/time is a UNIX command that can be used to run a program and determine
what percentage of time is being spent in user code and what percentage is being
spent in the system.

For example, running a demo program from the PEXlib Programming Manual
produced these timing results.

$ /bin/time night-time

real 15.2

user 11.4

sys 0.4

The �rst time is the time elapsed while running the program. The user time
shows how much time was spent in the night-time code, plus how much time
was spent in all of the libraries linked with the code (including libPEX5.sl). The
sys time shows how much time was spent in the HP-UX kernel.

GlancePlus is an interactive performance diagnostic tool for HP-UX systems. It
provides general data on system resources and active processes. You can use
Glance to view information about the current use of system resources and active
resources. Speci�c data is available about the current CPU, memory, disk I/O,
LAN, NFS, and swap usage. Glance provides both global system information
and speci�c process information.

HP-PerfRX is a tool that continually logs global performance data about
processes running on your system and prints tables and graphs showing global
system resource usage. It provides summaries of system usage metrics over time.
These tools would probably not be useful for initial performance tuning. However,
the information might provide insight into how di�erent processes are a�ecting
overall application performance on a particular system.

If you order a new system with instant ignition, you will automatically get
trial copies of Glance and HP-PerfRX. For ordering information, or access to
trial copies of Glance, GlancePlus, or HP-PerfRX, call 1-800-237-3990 in North
America.

5-8 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

HP/PAK, the HP Performance Analysis Kit, consists of three tools that help
you analyze the performance of your applications. Each of the tools examines
program performance at a di�erent level of detail. XPS looks at the relative use
of system resources by all processes at the system level. DPAT is an interactive
tool that looks at the performance of a process at the procedure level. HPC looks
at the performance of compute-bound procedures at the statement/instruction
level. In HP-UX 10.0, HP/PAK is bundled with compilers.

Profiling Your Code

Pro�ling tools are available on HP-UX. Execution pro�les provide information
about where your application spends most of its time to help you to identify
performance bottlenecks.

The gprof(1) command can be used to give you some raw data about the
amount of time spent in each of your application's procedure calls. gprof

requires recompilation of your application. gprof also provides cumulative timing
information about the execution time of each procedure and the subroutines it
calls. Shared libraries are not pro�lable, so gprof will not provide information
about the graphics calls your application makes unless you follow the instructions
described in the next section; only the information about the procedures in your
graphics libraries will be pro�led.

If you have purchased SoftBench, you also have access to the SoftBench
Performance Analyzer. Softbench provides user-friendly access to pro�ling
information similar to the information produced by gprof, and some other
features as well. More details on SoftBench Performance pro�ling can be found
in the SoftBench User's Guide.

Performance Hints 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Profiled PEXlib

If you have HP-UX 9.07 or 10.10, and have installed HP-PEX 5.1, Version 3.0
or later, a pro�led archive library containing the highest level of PEXlib calls is
shipped in hpro�lei1. To get additional information about time spent in PEXlib
calls, add libPEX5_prof.a to your link line, as shown in the example below.

cc -DHPPEX_PROCEDURES program.c -I/usr/include/X11R6 \

-L/usr/lib/X11R6 \

-W, -L /usr/contrib/PEX5/lib \

-lPEX5_prof -l PEX5 -lXext -lX11 -lm

This pro�led library is only useful for performance tuning. It should not be used
to build an actual product, since it is not a supported part of the HP-PEXlib
product.

Other Tools

Many of the techniques described in this document are somewhat invasive. In
other words, you need to be able to modify and recompile code to perform
some experiments. You may also be able to get access to less invasive tools by
contacting your sales representative. Included in this set are tools that extract
graphics calls from your application, producing compilable code. By using that
extracted code, you can e�ectively duplicate the interactions of your library with
the graphics library, without rebuilding your entire application.

There are several reasons to do this. First, you can easily �nd out what percentage
of time is spent in your application outside of the graphics library. To do this,
run your application benchmark and time the results. Next, run your application
benchmark and extract graphics calls. Create a compilable program of just
graphics calls, run it, and time the results. By comparing the two timings you can
see exactly how much time is spent in application overhead compared to graphics
calls.

Another reason for extracting calls from your program is to see how e�ciently
graphics calls are being used. For example, you can look for redundant attribute
setting calls. You can also see the e�ects of di�erent sequences of calls on graphics
performances. For example, polylines might be rendered very fast when preceded

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

5-10 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

by one sequence of attribute calls, but not rendered according to published
speci�cations when preceded by another set of attribute setting calls. Extracting
the calls gives you an easy way to view the sequence of graphics operations as
performed by your application.

Interpreting Published Performance Data

One way to determine if your application's graphics performance is reaching
acceptable levels is to compare your benchmark results with the published �gures
from the Product Data Sheet for your system.

The performance level that you achieve may vary from the published benchmark
numbers. For example, the size of vectors in your application might di�er from
the size of vectors quoted in the Product Data Sheet. If your vectors are longer
than the vectors described in the benchmark, and more pixels need to be drawn,
your application will not draw as many vectors/second as were drawn in the
benchmark. It is best to use the GPC benchmarks to get an indication of the
type of application performance you can expect to see.

If all conditions are the same as the Product Data Sheet benchmarks, you should
be able to achieve performance comparable to the numbers listed on the Product
Data Sheet. Otherwise, it is possible that your application is not executing the
most optimized paths of the graphics libraries. If so, it is worth trying some of
the experiments described next.

Examining Graphics Interactions

If after pro�ling your benchmarks you determine that graphics is the bottleneck,
and, furthermore, that you are not achieving maximum performance on a graphics
system, you need to look at your application's interaction with the graphics
libraries.

Performance Hints 5-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

HP's Graphics Library Optimizations

All HP-UX graphics products are tuned for maximum performance based on
typical application usage. In other words, there are some combinations of
primitives and attributes that HP graphics libraries will execute faster than other
combinations of primitives and attributes. In order to determine what those
paths are, you need to study the available documentation for each release. If this
documentation does not help you understand the performance problems you are
experiencing, then you will need to perform some simple experiments.

Documentation Sources

In most cases, the combinations of primitives and attributes that are optimized
do not vary from one API to another, since optimizations are focused on typical
application usage. However, there may be some performance issues speci�c to
the graphics products that you are using. HP tunes its graphics libraries for
each release. For most graphics APIs, some documentation is shipped with the
product about performance tuning. In order to be aware of all performance
improvements in the graphics library, read the Release Notes and PERF_NOTES

whenever you plan to support a new release of any of HP's graphics APIs.

Most vendors ship similar documentation. When designing your application, it
is good practice to read the documentation from multiple vendors, in order to
determine which primitives and attributes work best across all of the platforms
you plan to support.

Online Documentation

Tips for improving application performance on PEXlib are published in the
Release Notes document. These �les are found in the /etc/newconfig directory
on HP-UX 9.01, 9.03, 9.05 and 9.07 releases, or, on HP-UX 10.0 and later releases,
in /opt/graphics/PEX5.

Starbase tips are available in /usr/lib/starbase/PERF_NOTES on HP-UX 9.07 or
earlier releases, and in /opt/graphics/PERF_NOTES for systems running HP-UX
10.0 or later releases.

5-12 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Studying Optimizations Shown in the GPC Quarterly

In general, PLB benchmarks are most useful for comparing systems before
purchase. However, there is one piece of information in the GPC Quarterly
that is helpful to application developers for performance tuning. Published with
a summary of the GPC results is a description of the optimizations made by the
vendor to achieve maximum performance for the benchmark. By applying the
optimizations used in the benchmarks to your program, you should be able to
improve performance in your application.

Systematically Tuning Your Graphics Application

Attributes

The settings of attributes, the number of times attributes are called, and the
types of attributes used in your program can all a�ect graphics performance.
Some attribute settings simply involve more work than others. For example, for
each light turned on in a PEXSetLightSourceState call, a set of mathematical
computations must be done to light the primitives in the scene. The more light
sources turned on, the more expensive the call.

Redundant attribute settings (for example, attribute calls that are made more
than once but don't change values of the current settings) can be very expensive in
some implementations. Although the HP graphics libraries do a lot of redundancy
checking, certain redundant attribute calls will cause primitives to be drawn
using non-optimized paths in the graphics libraries. This can slow graphics
performance considerably. Always avoid making duplicate calls to attribute
setting routines. If you must set attributes frequently to di�erent values, consider
grouping primitives that share similar attributes. For example, sort the primitives
according to reection characteristics, and render all primitives with the same
reection characteristics at once.

Finally, some attribute settings are not optimized by the implementation.

All three of these factors can a�ect your application performance. The next
section describes an experimentation process that will help you determine which
attribute calls are having the most impact on graphics performance.

Performance Hints 5-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Attribute Suppression Experiments

It is relatively simple to determine whether or not you are setting attributes
correctly in order to execute the optimized paths in the graphics libraries. Run
your benchmark on your application as it is currently written and record the
timing results. Then, experimenting with one attribute call at a time, suppress
the attribute calls (that is, comment out the function calls) in your benchmark
and rerun it. Compare the timing results. This will change the appearance of
the rendering, but that is acceptable for this kind of experimentation. If you get
signi�cantly better results with a reduction in attribute calls, look for redundancy
in attribute calls.

A single attribute call may not a�ect whether or not your application hits
the optimized paths. Sometimes you need to experiment with sets of related
attributes. If attributes are changed in sets, you need to experiment with the
entire set. For example, in PEXlib, both the view orientation matrix and the
view mapping matrix might be modi�ed to change the view. Commenting
out these calls one at a time would have no e�ect, since the view orientation
matrix and the view mapping matrix are concatenated each time one of them
changes; but commenting both calls out at the same time might show a signi�cant
improvement.

For example, in PEXlib, you might experiment with the following attribute calls:

PEXlib Lighting and Shading Calls:

PEXSetLightSourceState

PEXSetReflectionModel

PEXSetSurfaceInterpMethod

PEXSetTableEntries (for lighting table setup)
PEXSetDepthCueIndex

PEXSetTableEntries (for depth cueing table)
PEXSetPolylineInterpMethod

PEXlib Viewing Calls:

PEXViewOrientationMatrix

PEXViewMappingMatrix

PEXSetTableEntries (for view matrix)
PEXSetViewIndex

5-14 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

PEXlib Surface Attributes:

PEXSetReflectionAttributes

PEXSetInteriorStyle

PEXlib Color Attributes:

PEXSetLineColor

PEXSetLineColorIndex

PEXSetMarkerColor

PEXSetMarkerColorIndex

PEXSetSurfaceColor

PEXSetSurfaceColorIndex

PEXSetTextColor

Other PEXlib Calls You Should Experiment With

PEXSetFacetCullingMode

PEXSetFacetDistinguishFlag
PEXSetLineWidth

If your application does not set attributes redundantly, then it might be that your
application is setting attributes in a way that is not optimized in the libraries.
You need to look at the attribute calls and determine if an optimized path might
work for your application instead. While it is not always possible to reduce the
number of attribute calls, you may want to make some appropriate tradeo�s
between appearance and performance. For example, in a preview operation, it
may not be necessary to turn depth cueing on or use wide lines.

If you are confused about which paths are optimized, use the published
documentation that is shipped with your libraries, or study the optimizations
described in the GPC Quarterly.

Data Formatting Experiments

Just as redundant attribute changes can impact performance, frequent changes
in the data formats can also a�ect application performance. In this case, data
format refers to whether or not normals and colors are passed to PEXlib with the
vertices. In primitive calls like PEXFillAreaWithData, this information is passed
to PEXlib in the vertex_attributes mask. If you are using the OCC interface,
vertex attributes are described in the PEXOCC structure.

Performance Hints 5-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Determining how changes in data formats are a�ecting your overall application
performance is more di�cult than the attribute experiments described above.
You will need either to sort the data passed to PEXlib or to perform multipass
rendering using your data. To sort data, you would need to group all of the
geometry with identical vertex attributes and render it all at once. In a multipass
rendering, you would need to traverse the data several times. The �rst pass
might only render primitives without vertex normals. The second pass might
render only primitives with vertex normals, etc., until you have rendered all of
the primitives in the model. Timing results can be a little confusing, though,
because the traversal time needs to be accounted for in a multipass rendering.

Translation between the application's native data format and a packed data
format can also have an impact on performance. See the section called Data
Formats below for PEX-speci�c information on data formats.

Window System Interactions

Window size may be a factor in rendering performance. Larger windows can be
slower, especially when rasterization is not done in hardware. On HP systems,
this is usually not a problem. In HP-PEXlib, window size might be a factor in
texture mapping performance, since hardware acceleration is not available for
texture mapping on all devices.

Window system interactions can a�ect performance if the user interactions cause
the graphics to be redrawn frequently. This can happen when the application
generates a lot of exposure events, and when menus and other user interface
items are drawn in the image planes.

5-16 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Geometry Suppression

Often the amount of detail in the geometric model is greater than the amount of
detail needed to render an object realistically. By experimenting with geometry
suppression you may also be able to improve application performance. In this
case, your application does not render all of the geometry available.

Two general techniques can be applied to many graphics applications. In the
�rst, multiple variations of the geometry are used. Depending on the level of
resolution required for the user's task, di�erent geometry is rendered. In some
cases, a very coarse resolution is acceptable. Multiple primitives can be combined
into a single primitive. Objects that are too small to be seen can be removed
altogether, and replaced with an alternate representation.

Another technique uses bounding boxes to trivially reject all o�screen geometry.
This technique is useful when you have a \world" scene, and the viewer can only
look in one direction.

PEX Specifics

DHA, Protocol Mode and VMX Mode

On HP systems, there are three fundamental ways to communicate with the
graphics libraries and render 3D graphics in PEXlib. Direct Hardware Access
(DHA) is the fastest method available when both client and server are on the
same workstation. In DHA mode, graphics commands are sent directly to the
graphics rendering libraries by PEXlib. In contrast, in protocol mode, graphics
requests are sent over the network to the graphics server, where they are decoded
and translated into graphics commands that are then sent to the graphics libraries
on the server. In the X protocol method, PEXlib commands are translated into
X protocol requests, which in turn travel over the network to be decoded by the
X server and rendered.

Whenever both the client and server are available on the same system and
performance is important, you should run in DHA mode. This is the default,
but you can explicitly control the mode by setting the environment variable
HPPEX_CLIENT_PROTOCOL to DHA.

Performance Hints 5-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Structure Mode, Immediate Mode

In PEXlib, there are two ways to draw a scene. If you are using immediate
mode, you can pass all of the primitives and attributes in the scene to PEXlib
one at a time, each time you want to draw the picture. In structure mode, you
store all of the primitives and attributes in a graphics database, then tell PEX to
render the contents of that database. Immediate mode rendering is best suited
for applications that need to modify model data frequently, or need to reduce
memory usage. Structure mode can be used when the data is somewhat static
throughout the application.

When running locally, structure mode reduces procedure call overhead and
parameter processing times. Most of the cost is incurred at the time the model is
built, not when it is rendered. For example, error checking of parameters can be
done when the data is stored in the structure, and does not have to be repeated
each time the model is rendered.

Structure mode is even more useful in a distributed environment. Since the
network is frequently the bottleneck in distributed application performance, it is
important to try to minimize network tra�c. Storing the data in structures is
one way to do that.

Many applications combine the two modes. Non-changing data is stored in
structures, but other data that changes frequently is sent to the graphics server
in immediate mode. For example, the geometry of a model might be stored in a
structure, but viewing calls are made each time the scene is redrawn.

5-18 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Structure Permissions

Structure permissions control the access to structures by applications. By
calling PEXSetStructurePermission, an application can set the permission of
a structure to either PEXStructureWriteOnly or PEXStructureLocked. Write-
only structures cannot be read by PEXFetchElements, and locked structures
cannot be edited.

By setting structure permissions appropriately, you permit PEXlib to use its
internal knowledge about the best performance paths, and pack primitives in
the most e�cient way for the hardware on which it is running. For example, if
a locked structure contains multiple PEXPolyline primitives, PEXlib can pack
those primitives into a single PEXPolylineSetWithData call, reducing procedure
call overhead and resulting in faster execution of those polylines. This example
is only possible when the structure is locked.

Other optimizations are even possible in write-only structures. For example,
decomposition of polygons can be done only once per write-only structure, instead
of every time the contents of the structure are rendered.

Whenever an application needs to continually rerender unchanging models,
storing data in structures with write-only or locked permissions should be
considered. If you need to edit your structure, set the structure permissions
to PEXStructureWriteOnly. If you don't need to edit, best performance can be
achieved by setting permissions to PEXStructureLocked.

Using Structures Efficiently

The ExecuteStructure output command that is used to create a structure
network can be expensive, because attributes' values are saved when a child
structure is executed, and are restored when the traversal returns to the parent
structure. Consequently, it is good practice to avoid excessively deep structure
networks and avoid creating structures that have very few elements.

Performance Hints 5-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Stride and OCC vs. PEX 5.1 Interface

PEXlib o�ers two major argument interfaces for output commands (primitives
and attributes): an explicit interface and an output command context interface
(OCC). The explicit interface requires that you specify the display, resource ID
(renderer or structure), and request type for every output command function call
that you make. The explicit interface is the only interface available on PEXlib
5.1 (including HP-PEXlib, Versions 1.0 and 2.0).

The OCC interface is currently available in HP-PEXlib5.1, Version 3, and will
be available in the PEXlib 5.2 implementation. The OCC interface generates
the same protocol as it generated using the explicit interface, so that PEXlib
programs using the OCC interface can communicate with earlier 5.1 servers.

Output commands using the OCC interface replace the �rst three arguments,
and other frequently used primitive descriptions, like vertex_attributes, with
a single OC context. The OC context is an opaque structure that contains
many of the arguments that are commonly found in the explicit interface output
commands.

In addition to providing a reduced argument count for output commands, the
OCC interface supports di�erent data formats. The packed form is the same
form that was used in earlier releases of PEXlib. It requires you to format data
into packed data structures de�ned by PEXlib. The stride form allows you to
supply data formatted in application-de�ned structured arrays without the need
to copy the data into the PEXlib-de�ned structures before invoking the PEXlib
functions. The unpacked form allows you to supply the data in separate lists for
each data type. Vertex coordinates, normals, and colors are stored in separate
lists in the unpacked form.

Using the OCC Interface

In general, the OCC interface uses far fewer arguments than the explicit
interface, making coding easier and improving performance. The OCC interface
is recommended for applications that are supported on HP-PEXlib, Version 3.0 or
later. Best performance is achieved by minimizing the number of calls that modify
the OCC context, and not intermixing calls that use di�erent OCC contexts.

5-20 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Data Formats

If your application is running in DHA mode on HP, the selection of data interface
may have a signi�cant impact on performance of your application performance.
The OCC interface is implemented at the PEXlib level; the protocol generated
by the OCC interface is identical to the protocol generated using the 5.1 PEXlib
interface. Consequently, performance is only a�ected when running in DHA
mode.

HP-PEXlib is optimized to use the packed and stride data interfaces most
e�ciently. The unpacked data interface is executed signi�cantly slower. However,
whether or not to use the packed interface depends on the size and nature of
your data. Using the unpacked form may be more e�cient than converting
large amounts of data to the packed form, if the packed form is di�erent from
the application's native data format, and if conversion routines are more time-
consuming than the di�erence in performance you will get by calling HP-PEXlib
using the packed data interface. In order to determine which interface to use for
your application, write some simple benchmarks and experiment with the data
formats and conversion routines.

One advantage of the stride interface is that it is possible to change vertex and
facet attributes without copying data. If your application is going to rerender
the same geometric data with di�erent attributes, the stride interface is an
appropriate choice.

Shape Hints

All PEXlib FillArea calls accept a shape_hint parameter. By providing a
value other than PEXShapeUnknown, you can bypass some unnecessary processing
in some cases. For example, on HP hardware, convex shapes can be passed
to the graphics hardware immediately. Non-convex shapes may require some
preprocessing by PEXlib.

In early releases of HP-PEXlib, shape hints were ignored. In PEXlib 5.1, Version
3.0, shape hints make signi�cant performance di�erences in many cases. The use
of shape hints for potentially non-convex polygons (that is, polygons with more
than four sides) is strongly recommended.

Remember that the shape hints must be accurate. Incorrect shape hints can
result in the wrong picture being drawn, or in slower performance.

Performance Hints 5-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Use of Complex Primitives

Best performance on the newer graphics products can be achieved by reducing the
CPU \non-graphics" overhead, such as procedure call overhead. Applications can
reduce overhead by packing more primitives into library calls. In HP-PEXlib 5.1,
Version 3, a number of complex primitives are supported. However, just using
those primitives is not enough. Applications must send enough primitives per
call to amortize the overhead. Best performance is achieved when at least eight
primitives are packed per call, with performance levelling out at some point above
�fty primitives per call. However, some applications have achieved signi�cant
performance improvements simply by changing the number of triangles per strip
from two or three to �ve or six.

Compound primitives optimized for PEXlib include:

PEXTriangleStrip

PEXPolylineSetWithData

PEXFillAreaSet

PEXSetOfFillAreaSets

PEXQuadrilateralMesh

PEXFillAreaSetWithData

If the Bottleneck is Not Graphics

By pro�ling your code, or running /bin/time, you may have determined that
graphics is not the bottleneck for your application. Several of the more promising
options for tuning your code are described below.

Build Environments

Compilers are continually tuned by Hewlett-Packard. Simply updating to newer
revisions of compilers and rebuilding your application may improve performance
signi�cantly.

5-22 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Compiler and Linker Options

If your application is CPU bound, you may be able to substantially improve
performance just by compiling and linking with some optimization options. For
example, compiler options can automatically remove dead code, make better
use of registers, optimize loops, generate in-line code, optimize for a particular
architecture (for example, PA RISC, Version 1.0; or PA RISC, Version 1.1), and
optimize your application based on a run-time pro�le. For C programs, this
process is described in Optimizing HP C Programs. Linker optimization options
are described in Programming on HP-UX.

Archive Math Libraries

If graphics applications are spending signi�cant time in the math libraries, linking
with the archive version instead of the shared version might help. This is because
the symbol resolution overhead is reduced with archive libraries.

Cache and TLB Misses

Cache and Translation Lookaside Bu�er (TLB) misses can cause a CPU
bottleneck. A cache holds frequently accessed data and instructions in \local"
memory that is faster for the process to access than main memory. A cache miss
occurs when the processor needs to reference memory, and a copy of the memory
is not stored in cache. Because it is very expensive for the processor to access
main memory, frequent cache misses will slow down application performance
considerably.

The Translation Lookaside Bu�er is used to map physical memory to virtual
memory. It contains translations for recently addressed virtual pages. A TLB
miss occurs if your application tries to access a page of virtual memory that has
not been mapped to physical memory.

Both cache misses and TLB misses can be avoided by improving locality in your
application. For example, loops can be written to sequentially access contiguous
memory addresses, as opposed to accessing data that is scattered throughout
memory. Code routines that frequently call each other should be included in the
same source �les, or the �les containing those routines should be listed next to
each other in the ld command. You can also use the ld(1) options for pro�le-
based optimization to reposition code so that better locality is achieved. Note
that pro�le-based optimization will not improve the locality of data references.
Pro�le-based optimization is described in Optimizing HP C Programs.

Performance Hints 5-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Memory Bottlenecks

If memory is the bottleneck and your program is thrashing (that is, pages of
virtual memory are excessively swapped into physical memory), you may be able
to improve application performance just by increasing the amount of physical
memory in your system. You can also tune your application's memory usage.
To do this, consider the following, all of which will require some code changes in
your application:

Improve locality within your program. Frequently accessed items that are
relatively small and reside in di�erent pages will increase the size of memory
needed to swap in pages containing those items.
Reduce heap fragmentation. Fragmentation occurs when memory is allocated
and freed in patterns that leave unused holes in the heap.
Eliminate memory leaks. Memory leaks occur when an allocated piece of
memory is no longer needed but is not freed. Several high-quality commercial
products are available on Hewlett Packard systems to help you identify and
eliminate memory leaks within your program. You should be able to get
information about commercial tools from your sales representative.
Reduce the size of code and data structures. For example, if a structure
contains 32-bit values for each of several boolean values, consider using a group
of 1-bit �elds instead. Infrequently used code and data can be separated from
frequently used code and data.
Re-use memory. You can consider using bu�ers that are allocated once to
store temporary items, instead of allocating and freeing memory at di�erent
times throughout the execution of your program. This will help reduce
fragmentation of the heap, and avoid calls to malloc and free, which are
expensive procedures.
Consider using primitives that reuse data, like PEXTriangleStrip or PEXSetOf-
FillAreaSets. PEXSetOfFillAreaSets uses a single \database" of vertices.
A set of connectivity lists describe how to connect those vertices to make a
polygon.

If Disk Access is the Bottleneck

If the problem is disk access, you might consider modifying your program to access
the disk more e�ciently. For example, make some tradeo�s between memory
usage and disk usage. Blocks of frequently used data could be read in all at once
and stored in memory, instead of accessing the disk each time an item is accessed.

5-24 Performance Hints

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Summary

Good graphics application performance depends on a number of factors, including
the raw performance capabilities of the graphics hardware and software used
by the application; the e�cient, balanced use of system resources; and calling
sequences that use the most optimized paths through the graphics libraries. Each
application is di�erent. No single set of rules will provide optimal performance for
a speci�c application. Good design for e�cient use of system resources, an under
standing of the performance-critical tasks, and some amount of experimentation
are the keys to achieving the best graphics application performance possible.

Performance Hints 5-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

6

Writing HP PEXlib Programs

Introduction

This chapter provides you with recommendations and speci�c details of the HP
PEX implementation that a�ect how you will write your programs.

As a PEXlib programmer, if it is among your objectives to write programs that are
portable and interoperable on a variety of workstations and graphics devices|you
will want to do so without sacri�cing performance. To succeed at this, you may
want, for example, to add PEXlib inquiries to your program that will enable it
to determine which protocol version is supported by the server, attribute values
that are supported, the visuals that you may use with PEX, as well as other
details of implementation such as the number of supported line widths.

The information and examples that you need to accomplish this is described
in this and following chapters in this book as well as a companion publication,
Portable Programming with CGE PEX 5.1 . (More information and examples
of speci�c PEXlib inquiries are provided for you in Chapter 24, \Determining a
Server's Features" in PEXlib Programming Manual .)

The Portable Programming with CGE PEX 5.1 was written speci�cally to assist
you in creating highly portable 3D graphics applications on platforms supporting
the Common Graphics Environment, including HP. It contains tools and utilities
that you can use to develop portable and interoperable applications more easily.

Writing HP PEXlib Programs 6-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Determining A Server's Features

You can learn quite a lot about your particular system, server, and the supported
X and PEX extensions with the xdpyinfo command. On Hewlett-Packard
workstations this command is in the directory1 hcontribi/bin/X11. See sample
output in Appendix A.

An HP PEX example program, pexdpyinfo, displays detailed information on
the PEX extensions on your work station; information such as the enumerated
types, implementation-dependent constants, lookup table entries, and supported
PEX visuals for a particular display. See sample output in \pexdpyinfo" in
Appendix A.

In order to use this utility, you'll �rst need to use the Makefile to build the
executable. See the README �le in hhp-examplesi for instructions. See the �le
pexdpyinfo.spec for usage details. The �le pexdpyinfo.design contains design
information and pexdpyinfo.c, the source code, for developers interested in
extending the capabilities of the utility.

PEX Extension Information

As described in the PEXlib Programming Manual , Chapter 24, the extension
information returned from PEXInitialize and PEXGetExtensionInfo veri�es
that a PEX extension exists within the PEX server in order to set PEXlib
variables and establish communication with the server.

HP PEX supports the Immediate Mode subset. HP PEX also supports the
Structure Mode rendering subset of PEX functionality with all but the Search
Context requests. This means that calls to SearchContext entrypoints (except
to issue protocol to another server) will report a BadImplementation error. Calls
to Workstation or PickMeasure entrypoints will report a BadRequest error. The
Workstation and PickMeasure entry points do not emit protocol. Search context
request protocol is generated and can be sent to servers that do support those
requests. Errors are detected and reported by the client.

Your program can determine which subsets are supported by a PEX server in an
interoperable way with PEXGetExtensionInfo:

PEXExtensionInfo *PEXGetExtensionInfo(Display *display)

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

6-2 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

This also tells what version of protocol is supported by the PEX server as well
as other information that can be used for error handling.

PEXlib functions that have a display parameter are not allowed to be called
before calling PEXInitialize. If the application calls a PEXlib function that is
not allowed to be called before PEXInitialize is called, HP PEXlib will ignore
the call.

The following table shows the HP-speci�c error codes that can be returned from
the PEXInitialize function. We recommend that you print the error string
which is returned in your program for more information needed to determine the
cause of the error.

Table 6-1. PEXInitialize Error Codes

Return
Value

Standard PEX Error Strings

4 PEXlib client-side memory allocation failed during

initialization

3 The PEX extension does not support a compatible floating-point

format

2 The PEX extension does not support a compatible protocol

version

1 The PEX extension does not exist or could not be initialized

0 successful initialization

Writing HP PEXlib Programs 6-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-2. PEXInitialize Error Codes

Return
Value

HP-Speci�c Error Strings

�1 (The error string returned here varies according to the error condition. Print
the error string which is returned in your program to learn about the actual
error condition.)

�2 The maximum number of displays have already been initialized

�3 Something is wrong with the X display name

�4 (The �4 error string is not used)

�5 Attempt to initialize a DHA connection failed

�6 Attempt to initialize a PEX connection failed

�7 Attempt to initialize a X connection failed

�8 Something is wrong with the X11R6 libraries (application may be
linked with pre-X11R6 libraries)

The PEX extension information pointer returned from PEXInitialize will be
valid only if PEXInitialize succeeds or the error PEXBadProtocolVersion is
generated. Any other error that occurs in PEXInitialize will cause the PEX
extension information pointer to be NULL.

6-4 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Enumerated Types

Enumerated types de�ne values used to de�ne attributes such as marker types
(dot, asterisk, circle, or \�"). Other examples include line type, color type, and
interior style. Because a PEX server may not support all enumerated types, PEX
provides the PEXGetEnumTypeInfo information inquiry for determining which
enumerated types are supported by the particular server.

The table below lists the enumerated types supported by HP PEX on supported
graphics devices. For writing interoperable programs it is best to inquire which
values are supported by using the PEXGetEnumTypeInfo inquiry rather than
relying on documentation from vendors of vendor-speci�c support.

PEXGetEnumTypeInfo(

Display *display,

Drawable drawable,

unsigned long count,

int *enum_types,

unsigned long item_mask,

unsigned long **info_count_return,

PEXEnumTypeDesc **enum_info_return)

Writing HP PEXlib Programs 6-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-3. Enumerated Type Inquiry Parameters

Value Description

display A valid display pointer.

drawable An example drawable indicating the screen and depth of
the window for which the values will be used.

count The number of enumerated types.

enum_types A list of enumerated types for which information is to be
returned.

item_mask A mask indicating the data to be returned for each type.

info_count_return Returns an array of counts. For each enumerated type,
there is an entry specifying the number of descriptors in the
return value array.

enum_info_return Returns an array of enumerated type descriptors containing
the enumerated type information.

For example, you may use the enumerated type descriptors to inquire which
double-bu�ering escapes are supported. This information is covered earlier in
this chapter in \Inquiring Supported Escapes".

6-6 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Enumerated Types List

Information about HP-supported enumerated types is shown here. There are
standard PEXlib inquiries which return HP-supported enumerated types.

CGE PEX 1.0 also de�nes additional enumerated types to list extension features
for which PEXlib 5.1 does not de�ne a mechanism of inquiry. For example,
PEXExtETOC can be inquired to list extension OCs (Output Commands) beyond
the PEXlib standard. See the PEXExt.h and PEXHPlib.h �les for lists of extension
enumerated types.

Writing HP PEXlib Programs 6-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-4. Enumerated Types

Enumerated Type HP PEX 5.1v4

MarkerType All PEX types, plus the following:
PEXHPMarkerTriangle

PEXHPMarkerSquare

PEXHPMarkerDiamond

PEXHPMarkerCrossSquare

PEXATextStyle PEXATextNotConnected

PEXATextConnected

InteriorStyle All styles but Pattern

HatchStyle 45 degrees, 135 degrees, plus CGE and HP
types

LineType All PEX, CGE, and HP types

SurfaceEdgeType All PEX types

PickDeviceType DCHitbox, NPCHitVolume

PolylineInterpMethod None, Color (only with PowerShade)

CurveApproxMethod Implementation-dependent (AdaptiveDC)
WCSRelative

NPCRelative

DCRelative

ReflectionModel All PEX types

SurfaceInterpMethod None, Color (only with PowerShade)

SurfaceApproxMethod Implementation-dependent (AdaptiveDC)
WCSRelative

NPCRelative

DCRelative

TrimCurveApproxMethod Implementation-dependent (adapt to surface
criteria)

ModelClipOperator All PEX types

LightType All PEX types

6-8 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-4. Enumerated Types (continued)

Enumerated Type HP PEX 5.1v4

ColorType Index, RGBFloat, HPRGBA

FloatFormat IEEE_754_32

HLHSRMode Off,PEXHPHLHSRZBuffer
(only with PowerShade);
PEXHPHLHSRZBufferID (only with
PowerShade);
PEXHPHLHSRZBufferReadOnly (only with
PowerShade);
PEXHPHLHSRZBufferIDReadOnly (only with
PowerShade)

PromptEchoType Not Applicable

DisplayUpdateMethod Not Applicable

ColorApproxType PEXColorSpace

PEXColorRange

PEXHPColorApproxTypeIndexed

ColorApproxModel RGB

GDP No supported GDPs

GDP3 No supported GDP3s

GSE HP_GSE_SET_ANTIALIAS_MODE

RenderingColorModel RGB

ParametricSurface-

Characteristics

None (default);
Implementation-dependent (interior edging)

PickOneMethod PEXPickLast

PickAllMethod PEXPickAllAll

Writing HP PEXlib Programs 6-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-4. Enumerated Types (continued)

Enumerated Type HP PEX 5.1v4

Escape ES_ESCAPE_DBLBUFFER

ES_ESCAPE_ET_DBLBUFFER

ES_ESCAPE_ET_SWAPBUFFER

ES_ESCAPE_ET_SWAPBUFFERCONTENT

ES_ESCAPE_SWAPBUFFER

ES_ESCAPE_SWAPBUFFERCONTENT

HP_ESCAPE_DFRONT

HP_ESCAPE_ET_DFRONT

HP_ESCAPE_ET_SET_GAMMA_CORRECTION

HP_ESCAPE_SET_GAMMA_CORRECTION

PEXEscapeQueryColorApprox

PEXEscapeSetEchoColor

PEXExtEscapeChangePipelineContext

PEXExtEscapeChangeRenderer

PEXExtEscapeCreateTM

PEXExtEscapeCreateTMDescription

PEXExtEscapeCreateTMFromResources

PEXExtEscapeFetchElements

PEXExtEscapeFreeTM

PEXExtEscapeFreeTMDescription

PEXExtEscapeGetPipelineContext

PEXExtEscapeGetRendererAttributes

PEXExtEscapeGetTableEntries

PEXExtEscapeGetTableEntry

PEXExtEscapeOpcodeChangePipelineContext

PEXExtEscapeOpcodeChangeRenderer

PEXExtEscapeOpcodeCreateTM

PEXExtEscapeOpcodeCreateTMDescription

PEXExtEscapeOpcodeCreateTMFromResources

PEXExtEscapeOpcodeFetchElements

PEXExtEscapeOpcodeFreeTM

PEXExtEscapeOpcodeFreeTMDescription

PEXExtEscapeOpcodeGetPipelineContext

PEXExtEscapeOpcodeGetRendererAttributes

PEXExtEscapeOpcodeGetTableEntries

PEXExtEscapeOpcodeGetTableEntry

PEXExtEscapeOpcodeQueryColorApprox

6-10 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-4. Enumerated Types (continued)

Enumerated Type HP PEX 5.1v4

Escape (continued) PEXExtEscapeOpcodeSetTableEntries

PEXExtEscapeQueryColorApprox

PEXExtEscapeSetTableEntries

PEXHPEscapeOpcodeStereoMode

PEXHPEscapeChangePipelineContext

PEXHPEscapeChangeRenderer

PEXHPEscapeDfront

PEXHPEscapeGetPipelineContext

PEXHPEscapeGetRendererAttributes

PEXHPEscapeGetZBuffer

PEXHPEscapeOpcodeChangePipelineContext

PEXHPEscapeOpcodeChangeRenderer

PEXHPEscapeOpcodeDfront

PEXHPEscapeOpcodeGetPipelineContext

PEXHPEscapeOpcodeGetRendererAttributes

PEXHPEscapeOpcodeGetZBuffer

PEXHPEscapeOpcodePutZBuffer

PEXHPEscapeOpcodeSetGammaCorrection

PEXHPEscapeOpcodeSetZBuffer

PEXHPEscapePutZBuffer

PEXHPEscapeSetGammaCorrection

PEXHPEscapeSetZBuffer

PEXHPEscapeEVEInformation

Writing HP PEXlib Programs 6-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Implementation-Dependent Constants

There are other PEX values in addition to enumerated types that vary among
implementations, as allowed by the PEX standard. Implementation-dependent
constants de�ne things like the maximum value of a name or the number of
line widths. The table \Implementation-Dependent Constants" below lists the
constants that are supported in HP PEX.

As with other implementation-dependent features, it is best to inquire about
supported implementation-dependent constants using the standard PEXlib
inquiry, PEXGetImpDepConstants.

PEXGetImpDepConstants(

Display *display,

Drawable drawable,

unsigned long count,

unsigned short *names,

PEXImpDepConstant **constants_return)

Table 6-5.

Implementation Dependent Constants Inquiry Parameters

Value Description

display A pointer to a display structure returned by a successful
XOpenDisplay call.

drawable The resource identi�er of a drawable.

count The number of implementation-dependent constants.

names An array of names of implementation-dependent constants
to be returned.

constants_return Returns an array of implementation-dependent constants.

6-12 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

This table lists some of the implementation-dependent constants that are
supported in HP PEX. For an exhaustive list, see the include �les PEX.h,
PEXExt.h, PEXlib.h, and PEXHPlib.h.

Table 6-6. Implementation-Dependent Constants

Implementation-Dependent
Constant

HP PEX 5.1v4

NumSupportedLineWidths No limit

MinLineWidth 1

MaxLineWidth 16383

NominalLineWidth 1

NumSupportedEdgeWidth 1

MinEdgeWidth 1

MaxEdgeWidth 1

NominalEdgeWidth 1

NumSupportedMarkerSizes No limit

MinMarkerSize 1

MaxMarkerSize No limit

NominalMarkerSize 3

CIELUV values (approximate,
true values are
monitor-dependent)

red.u = 0.450
red.v = 0.522
red.l = 1.0
green.u = 0.120
green.v = 0.561
green.l = 1.0
blue.u = 0.175
blue.v = 0.157
blue.l = 1.0
white.u = 0.188
white.v = 0.466
white.l = 1.0

Writing HP PEXlib Programs 6-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-6. Implementation-Dependent Constants (continued)

Implementation-Dependent
Constant

HP PEX 5.1v4

MaxNameSetNames MAXINT

MaxModelClipPlanes With PowerShade, 6;
without, False

TransparencySupported With PowerShade, True
without, False

DitheringSupported True or False

MaxNonAmbientLights With PowerShade, 15;

MaxNurbOrder 6

MaxTrimCurveOrder 6

BestColorApproxValues 0 (PEXColorApproxAnyValues)

DoubleBufferingSupported True

PEXHPIDDeformationSupported True or False

PEXHPIDCappingPlanesSupported True or False

PEXHPIDInterferenceSupported True or False

PEXHPIDPolygonOffsetSupported True or False

PEX Extensions

Generalized Structure Elements (GSEs)

HP PEX supports one GSE, used to enable or disable line and edge antialiasing
(see \Line Types"). This is not a standard feature (there are no standard GSEs
speci�ed by PEX), but may have value for your application. The constants and
data structure for the PEXlib interface are de�ned in the header �le PEXHPlib.h.

6-14 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Escapes

Extensions to PEX are provided by HP for capabilities beyond the standard.
These are implemented, according to provisions in the PEX standard, in a way
that makes for a common interface to the extensions which does not negatively
a�ect the portability of applications.

The Evans & Sutherland escape requests are described in the section \Anima-
tion", later in this chapter. The section also shows an example of the syntax and
return information. Other escapes are documented in other relevant sections of
this manuals.

PEX Subset Lists

Immediate Mode Subset

HP PEX supports the Immediate Mode subset.

Structure Subset

HP PEX also supports the Structure Mode rendering subset of PEX functionality
with all but the Search Context requests.

Search Context Requests

These functions emit protocol but the HP PEX server does not process them and
will generate an error upon receiving them.

PEXChangeSearchContext

PEXCopySearchContext

PEXCreateSearchContext

PEXFreeSearchContext

PEXGetSearchContext

PEXSearchNetwork

Writing HP PEXlib Programs 6-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

PHIGS Workstation Resources

HP PEX does not support the PHIGS Workstation subset because it is expected
to be removed from PEX at a future version. These functions will not emit
protocol and will generate a BadRequest.

This table lists the PEX functions in subsets that HP PEX does not support as
allowed by the standard.

Table 6-7. Unsupported Subset Entrypoints

PEXCreateWorkstation

PEXExecuteDeferredActions

PEXFreeWorkstation

PEXFreeWorkstationInfo

PEXGetWorkstationDynamics

PEXGetWorkstationInfo

PEXGetWorkstationPostings

PEXGetWorkstationViewRep

PEXMapDCToWC

PEXMapWDToDC

PEXPostStructure

PEXRedrawAllStructures

PEXRedrawClipRegion

PEXSetWorkstationBufferMode

PEXSetWorkstationDisplayUpdateMode

PEXSetWorkstationHLHSRMode

PEXSetWorkstationViewport

PEXSetWorkstationViewPriority

PEXSetWorkstationViewRep

PEXSetWorkstationWindow

PEXUnpostAllStructures

PEXUnpostStructure

PEXUpdateWorkstation

PEXSetPWAttributeMask

PEXGetPickDevice

PEXChangePickDevice

PEXCreatePickMeasure

PEXFreePickMeasure

PEXGetPickMeasure

PEXUpdatePickMeasure

HP Implementation Details for Writing Programs

Supported PEX Subsets

The O'Reilly PEXlib Programming Manual , Chapter 3, \Getting Started," is a
good starting point for learning to use features of PEXlib as well as inquiring PEX
extension information, enumerated types, and speci�c implementation-dependent
constants. You'll also need to learn HP implementation details that are covered
in this and the following chapters.

6-16 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Resource Sharing

Because X resources are global in the server, X window applications have been
able to share resources between processes by passing the resource ID through some
inter-process communications mechanism. HP PEX does not support sharing of
PEX resources.

Synchronization

All the normal requirements for achieving proper ordering of rendering and
windowing operations in X programs also apply to PEXlib programs. In
particular, note that some kinds of requests are re-routed to the window manager
(for example, XConfigureWindow). For these requests, it is good practice to wait
for the proper type of X event to con�rm that the operation has been completed
before rendering further in the window.

Writing HP PEXlib Programs 6-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

HP PEXlib Programming

The remaining sections of this chapter are arranged to supplement the informa-
tion in the same order that it is presented in the O'Reilly PEXlib Programming
Manual . The sections are in order, beginning with the following section, \Color".

Color

This section begins with a general discussion, a quick primer, on the basics of
PEX color support, and follows with a more detailed discussion of the speci�cs
of the HP implementation. A companion publication, Portable Programming
with CGE PEX 5.1 , covers issues and general interoperability programming
recommendations.

The application of color in the X Window System and interactions with PEX are
often complex so that an understanding of background information makes it easier
to accomplish color portability among a wide variety of X servers and display
devices. In some areas, conventions for interoperable X color programming have
already been developed, particularly in the area of allocating colormap cells.

If you're not familiar with X visuals, colormaps, and other basics, a good place
to begin is the book Xlib Programming Manual , from O'Reilly. In addition,
you'll �nd good program examples to guide you in dealing with colormaps in the
examples directories under hpexi2. Various utilities that help you deal with color
support are also available and are explained later in this chapter, as well as in
the Portable Programming with CGE PEX 5.1 .

PEX Color Support Basics|Four Steps

PEX itself does not create any new issues in managing X colors. It requires the
same basic series of steps that X applications require:

Choose a visual in which the window will be created.
Create a colormap or �nd one to share with other similar clients in that visual.
Load colors into the colormap.
Create a window in the chosen visual with the proper colormap.

2 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

6-18 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Color is an important element in shaded images such as those typically drawn via
PEX. A PEX application may be more \demanding" in each of these steps than
a simple X application. The colormap that is used by your HP PEXlib program
must be consistent with the color approximation speci�ed in your program. The
colormap's interpolation ramp and the color approximation describing that ramp
are limited by the visual selected, which in turn are limited by individual vendors
or graphics devices. PEX may not be supported in all visuals.

With this in mind, let's take a closer look at these steps.

1: Choose a Visual in which the Window Will be Created

Many simple X applications don't take explicit actions to evaluate the color
capabilities of a visual for this step. That's because they simply use the default
visual for the X server. The default visual is often a PseudoColor visual of eight
or fewer planes and is occasionally located in the overlay planes if the device has
them.

A PEX application, on the other hand, is often more sophisticated about visual
selection. PEX rendering may not be supported in the default visual for the
server, either because the default visual is not capable of the kinds of color ranges
that PEX images require, or because the graphics rendering pipeline needed for
PEX cannot support that visual. It may also be because it has other limitations
that make using it di�cult for PEX. The bottom line is, an application should
not simply create a window in the default visual and expect PEX to successfully
create a renderer and draw in it. Instead, the application should select a visual
type based on application needs and one which PEX supports.

You'll �nd that the PEXlib Programming Manual features a utility procedure that
chooses a PEX-capable visual, ora_find_best_visual(). Since PEX usually
requires a lot of color cells in order to display a shaded image well, this utility
searches for the visual with the most colors. It also prefers read-only visuals such
as TrueColor.

While this procedure can be used on many servers, it may not work on some
others. Your application may need to use a more involved method to choose a
PEX visual. For example, if your application needs to use double-bu�ering, it
must choose a visual that supports that operation.

Writing HP PEXlib Programs 6-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

It is wise to use PEXMatchRenderingTargets when using a PEX 5.1 server,
because this routine lets the application know positively whether or not a visual
is supported by PEX.

Ready-made solutions to the visual selection problem and other problems are
available in the utilities directories under hpexi3. They contain a number
of utilities to help programs select visuals as well as resolve colormap issues,
and create windows for HP workstations. One such utility of interest here is
PEXUtSelectVisual. Programmers are encouraged to use the cge_utilities in
order to advance portability and interoperability.

2: Determine Use of Transparent Overlay Planes

In the PEXlib Programming Manual , 5.7, \Color Approximation," mention is
made of \window memory," or \frame bu�er," and its role in rendering and
making pixels on the display take on desired colors. In Hewlett-Packard terms,
all the rows and columns of the frame bu�er array are mapped directly onto the
rows and columns of pixels on the display. And as you'd expect, the display
refreshes images by scanning through the frame bu�er, line by line, to re-display
the image.

To display color and intensity on the screen, each place in the frame bu�er must
have more than one bit. This is described in literature from Hewlett-Packard as
the depth of the frame bu�er. (Also see PEXlib Programming Manual , 5.7.1.1,
for its discussion of the number of bits in the pixel segments determining the
number of colors displayed.) Frame bu�er depth, of course, is determined by the
hardware or software with which it can be implemented.

Simple monochrome systems only require the frame bu�er to record whether or
not individual pixels are on or o�, so the frame bu�er has a depth of one. A
simple color system will provide at least four bits to describe each pixel and is
termed a 4-plane system. Most graphics systems provide eight-bit pixels, termed
8-plane systems, and so on, up to 12-, 24-, and 48-plane systems.

To this system of planes devoted to the color approximation and display of images,
Hewlett-Packard adds a capability for planes that \overlay" the image planes.
Rendering to the overlay plane visuals generally does not a�ect the contents of
the image plane visuals that appear underneath. This makes it possible to render

3 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

6-20 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

text or other graphics to the overlay window without re-rendering the image
window graphics. This is especially useful for user-interface objects (menus and
such) or annotation text that \oats" over image-plane objects. These overlay
planes provide lesser functionality than the image planes.

The overlay planes' transparency feature enables you to render opaque objects
(for example, menus and text) to a transparent overlay plane and at the same
time, view rendered objects in the image planes. For example, you may want to
show a map of the United States without all of its state boundaries, and then
add the state boundaries as you need them. This can be done by creating two
X windows: one in the overlay planes and one in the images planes. The United
States map would be draw in the image planes window and the state boundaries
in a transparent overlay planes window.

The overlay and image planes, then, are accessed by using di�erent visuals to
create X windows and colormaps.

3: Create a Colormap or Find One to Share With Other Similar
Clients in that Visual

Once you've chosen a visual, it may be necessary to �nd or create an X colormap
for it before any windows can be created in that visual. If the chosen visual is not
the default, this is necessary be cause the X server often creates only a colormap
for the default visual.

Even in the default visual, it can be bene�cial for an application to share a
colormap rather than create one of its own. This will, for example, reduce color
ashing|the distracting e�ect of displayed objects changing colors as colormaps
with di�erent contents are installed. (Colormap installation is typically under
control of a window manager, and is often triggered by moving the pointer from
one window to another.) If multiple windows can be rendered using the same
color map, the chances of this ashing can be reduced.

Convenience and e�ciency are other reasons to share a colormap. If your
application will create four windows and put similar information in all of them,
why create and set up four colormaps? This is time-consuming and wastes server
resources. On the other hand, your application may actually need di�erent
colormaps for the four windows|but be ready for the color ashing.

These same principles apply to concurrent PEX clients. In fact, it is likely that
all PEX clients coexisting in a particular visual can be satis�ed sharing the same

Writing HP PEXlib Programs 6-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

colormap (see the next item in this list that discusses the colormap contents).
Even if each PEX client has its own colormap resource, it is likely that the
colormap contents will be very similar, and the severity of color ashing among
them will be much reduced.

X standard colormap properties are elements of an established convention that
allows description and sharing between X clients of the kind of colormaps that
are appropriate for PEX. The book Xlib Programming Manual o�ers information
on this convention.

4: Load Colors into the Colormap

Once a colormap is found or created, it may be necessary to load colors into the
cells. Typically, if a colormap is being shared, the contents of most of the cells
have already been agreed upon. The convention in sharing is the �rst client that
needs a standard colormap may set it up. By putting the resource ID into the
standard colormap property, it makes the colormap available for sharing. Later
clients simply use it without changing it.

PEX never deals directly with the contents of the colormap, it only generates
pixel values as directed by the color approximation table entry that is in e�ect
during rendering. To get a correct image on the screen, the colormap must be
set up to match the color approximation table entry. Color approximation is
the \translation step" between the RGBs (or other colors) that are the output
of the PEX rendering pipeline, and the X colormap attached to the window.
Color approximation, and the corresponding setup of the colormap, are the most
critical elements in achieving correct appearance of PEX rendering.

Most PEX applications will �nd that color approximation type PEXColorSpace
is the most natural method to use. This is because PEXColorSpace attempts to
reproduce the RGB values produced by the PEX rendering pipeline as faithfully
as it can, given a limited number of color levels for each of red, green, and blue.
In other words, the colors that are displayed are as true to the colors of the
primitives, lights, etc., as possible.

The colors in the X colormap for PEXColorSpace are expected to represent a
\sampling" of the color space, also called a color ramp. For a set number of
red levels, green levels, and blue levels, all the combinations are expected to be
represented in the colormap, either by separate cells (in the case of PseudoColor
visuals) or by combinations of red, green, and blue components (in the case of

6-22 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

DirectColor and TrueColor visuals). Again, the hcge utilsi directory4 provides
utilities that aid in setting up a colormap to contain a color sampling.

Ideally, every PEX implementation could support any color approximation setup
that is \legal." However, this is not likely to be the case and even if it were,
rendering performance would be impaired for setups that were unnatural to the
device. You should expect that each implementation will only support a small
set of possible color approximation entries well|so your application must choose
one of those. The HP server implements an escape that can be used to decide
whether or not a color approximation entry is supported. This escape is part
of a recently established convention for PEX color interoperability. Other PEX
servers will also be implementing this escape; it is discussed in more detail later
in this chapter \Color Approximation|Utilities And Escapes".

PEXColorRange is used primarily for applications using the RGB channels in
the PEX rendering pipeline to represent data other than color. For example, a
�nite-element analysis might use the red channel to represent temperature, and
the green and blue channels to represent other data. PEXColorRange gives the
application a way to apply a simple function to the data (after the pipeline may
have interpolated it across surfaces) to convert it to colors that represent the data
combinations.

There is one other interesting application of PEXColorRange. On a GrayScale or
StaticGray visual, many colormap cells can be saved by using PEXColorRange

to convert the RGB coming from the rendering pipeline to a gray intensity level
before the lookup in the X colormap.

One more step may be needed in order to load the colormap correctly for PEX
rendering. Some graphics hardware or software may not be able to render to
a colormap setup conforming to the PEX color approximation scheme, perhaps
because the hardware or driver software was developed before the advent of PEX.
Rather than not supporting PEX on such hardware, the vendor may furnish
instructions (or a utility routine) to adjust the colormap contents to the behavior
of the hard ware rendering.

4 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Writing HP PEXlib Programs 6-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

5: Create a Window in the Chosen Visual, with the Colormap

PEX adds no new tasks to this step. Assuming the visual that has been chosen
is supported by PEX, and the colormap has been set up to match the color
approximation, your application can create the window normally, and should
then be able to create Lookup Tables and Renderers using the window as an
example drawable, and/or bind a Renderer to the window for drawing or picking.

PEX Color Support Basics|Portability and Interoperability

A basic PEXlib programming goal is to enable your application to run, without
change, across all the X platforms from one vendor. It may also be a goal that
your application port, without signi�cant change, to PEXlib from other vendors,
and/or to run via PEX protocol to servers from other vendors. PEX and PEXlib
are intended to support these similar and valuable objectives.

When writing the part of your application dealing with X and PEX color
issues, you are dealing in one area where these device-speci�c and vendor-speci�c
capabilities and issues are exposed. Therefore, it is important to anticipate the
wide range of color capabilities your application may encounter when operating
across the network or during a port to another vendor's PEX implementation.

For example, not all workstations support all the visual classes. This means that
on some servers, there may be several PEX-capable visuals to choose from and
you must write your application so that it can �nd one that exactly meets its
color requirements. However, there are often advantages in choosing a visual
other than the default, if you can. Advantages include these:

Non-default visuals may access separate hardware colormap resources, which
may allow both your application and other concurrently operating clients to
\look correct" at the same time.
Because your application's color needs may not match those of most of the
simple concurrent X clients, choosing a visual other than the default means
your application will not interfere with or compete against other X clients for
colormap cells.

6-24 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

On other servers, there may only be one relatively limited visual. In such a
situation, your application has two choices:

It may be able to operate successfully with a limited range of colors that �t
into a colormap that can be shared.
It may need to create a separate colormap and you (and your end user) will
have to tolerate the color ashing if there are insu�cient hardware colormaps
to keep them all installed.

Some servers may have several hardware colormaps and color ashing may not be
much of a problem when running on those servers. If you have not incorporated
any code to attempt to share colormaps with other clients, and then you run the
application on a server that has only one hardware colormap resource, the ashing
could be severe. (The ashing could be severe anyway; it can only be avoided
when all the clients that are running concurrently cooperate in the sharing of
limited color resources.)

The implementation limitations on color-approximation support mentioned
earlier are another example of the kind of con�guration dependency that must
be dealt with in order to make an application truly interoperable and portable.

Programming for this kind of portability and interoperability requires some
decided e�ort. You should note, however, that with X and PEX, the same
solutions that give portability across a single vendor's platforms can also
contribute to portability and interoperability across vendors and networks|so
time spent on design for interoperability is seldom wasted.

PEX Color Support Basics|One Last Note . . .

Although at this time there are no completely-established interoperability conven-
tions speci�c to PEX color issues, these conventions are being developed through
the e�orts of software application developers via the PEX Interoperability Con-
sortium. Staying up to date on these conventions, and even participating in their
development, is of value to you as a PEXlib programmer.

Writing HP PEXlib Programs 6-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Color Support in HP PEX

Now, apply these basic strategies (that your application might use for selecting
a visual and setting up a compatible color approximation table and colormap
contents) to Hewlett-Packard graphics workstations:

If you de�nitely need to coexist in the same visual with many other X clients
(this applies to low-end devices that have only one visual), you can use the
DefaultVisual and DefaultColormap macros (de�ned in Xlib.h) to acquire
the visual information and colormap ID. This is the simplest method, but is
not recommended for high-end systems because it does not use the full color
capabilities of the graphics device.

HP PEX is capable of rendering to the default colormap on the supported
low-end devices, but only if the SB_X_SHARED_CMAP variable is set when the
X/PEX server is started. See Chapter 3 for more information on this and
other environment variables.
A more sophisticated method of visual selection, one that shares the colormap
with other clients in order to avoid color ashing, is to have your application
search for standard colormap properties on the server and use one of the visuals
described there. In order to share the colormap, �rst check to see if the ID for
a colormap is already present in the property. If so, use it without modifying
its contents. If there is no ID in the property (its value is \None"), then create
a colormap and initialize it according to the description in the property.

Note that conventions regarding the use of colormap properties in conjunction
with PEX are still being developed and that not all servers create properties.
Therefore, we recommend that your application should have an alternative
strategy in case properties are not present.

6-26 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Utilities To Help You Deal With Color

HP PEX helps you resolve PEX color issues through the de�nition of X
standard colormap properties, prede�ned color-approximation LUT entries that
are appropriate for the HP graphics devices on which PEX programs run, and a
complete set of utilities for selecting visuals, creating and loading colormaps and
creating windows in the visuals.

These utilities are in one of the utilities directories under the hpexi directories5.

Instructions for using the utilities are documented in README �les in the same
directories.

Choosing A Visual In Which the Window Will Be Created

Several of the devices supported by HP PEX have only a single visual; several
others have two or more visuals that are PEX-capable. The visuals range from 8-
bit PseudoColor all the way up to 24-plane DirectColor. Because interactivity
is important to most PEX applications, HP PEX largely supports visuals that
are capable of double-bu�ering (see the appropriate section of this manual for
more information on double-bu�ering).

In the table \Visual Types Capable of Multi-Bu�ering," you see a list of
supported visuals on HP PEX graphics devices and whether or not double-
bu�ering is supported. For maximum application portability, it is best to use the
PEXMatchRenderingTargets call and the PEXGetEnumTypeInfo call to determine
whether or not the visual of interest to your application is supported on HP.

Many programs have similar requirements in choosing a visual. The HP PEX
server de�nes a standard X colormap property, PEX_BEST_MAP, that de�nes what
HP considers to be the \best" color approximation on each visual on a particular
device for the widest range of applications.

The �rst entry in the property describes the visual that provides the most color
capabilities but can still be double-bu�ered. If these are your criteria for selecting
a visual in your application, you can fetch the value of the property using
XGetWindowProperty (an Xlib entry point) and use the visual named in the
�rst entry.

5 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Writing HP PEXlib Programs 6-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

To Get A Colormap That Supports Transparency

If you need an overlay colormap that supports transparency, create the color
map using the visual that includes transparency in its SERVER_OVERLAY_VISUALS
property. If this property exists on the root window of a particular screen,
that screen has overlay planes. This property also allows a program be able
to determine which visuals are in the overlay planes and which are not, and to
access the transparency information to determine if there is a \transparent color"
which can be used to \see through" the overlay planes to the image planes.

This property is accessed by the visual-selection utility PEXUtSelectVisual in
hcge utilsi6, then the layer criterion (image or overlay) is applied as a selection
factor.

Creating a Colormap or Finding One to Share

HP PEX changes nothing in the process of creating a colormap in X|colormaps
are created using the XCreateColormap call. XCreateColormap returns a
resource ID that can be used for the new colormap.

Shareable colormaps can be found using the colormap properties. If the colormap
ID in the XStandardColormap structure returned by XGetRGBColormaps or
XGetWindowProperty is \None", (a constant de�ned by Xlib), you'll need to
create a colormap with XCreateColormap. This ID can be put into a standard
colormap property if you wish to share the resource with other clients.

6 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

6-28 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Color Approximation|Utilities And Escapes

How can your application determine the particular color sampling that HP PEX
supports? As discussed in Chapter 25 of the PEXlib Programming Manual ,
escapes provide for features not de�ned by the standard PEX speci�cation.
In this case, the escape PEXEscapeQueryColorApprox enables applications to
inquire whether or not a particular color approximation entry is supported by
the PEX server and its (or that of the very similar CGE extension escape
PEXExtQueryColorApprox) use is recommended to assure portability.

To illustrate a basic color approximation inquiry, see the �le pexutcmap.c in
the hpex-utilsi directory. A basic color-approximation inquiry is implemented by
PEXUtVerifyColorApproximation.

Writing HP PEXlib Programs 6-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The syntax for PEXEscapeWithReply is:

char* PEXEscapeWithReply(

Display *display,

unsigned long escape_id,

int length,

char *escape_data,

unsigned long *reply_length_return)

Table 6-8. PEX Escape With Reply Parameters

Value Description

display A pointer to a display structure returned by a successful
XOpenDisplay call.

escape_id Set to PEXEscapeQueryColorApprox.

length The length, in bytes, of data for the escape request.

*escape_data Set to the address of a structure of type
PEXEscapeQueryColorApproxData

*reply_length_return Returns the length, in bytes, of the reply data.

return Interpret the return value to be a block of storage
beginning with a structure of type
PEXEscapeQueryColorApproxReplyData, followed by
zero or more structures of type PEXColorApproxEntry.

As with all PEX escapes, the technique which most contributes to interoperability
is to inquire whether or not the PEX server supports an escape_id before at-
tempting to use it by calling PEXGetEnumTypeInfo for the PEXETEscape enumer-
ation. The values returned for index and mnemonic �elds for this escape are PEX-
ETEscapeQueryColorApproxData and PEXETMEscapeQueryColorApproxData re-
spectively. If you send an escape_id to a server that does not support it, a
BadValue error is reported.

6-30 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The input data structure (*escape_data) for PEXEscapeWithReply for this
particular opcode is de�ned as:

typedef struct {

Drawable drawable;

PEXColorApproxEntry capx;

} PEXEscapeQueryColorApprox;

Table 6-9. Data Structure Parameters

Value Description

drawable The identi�er of an example drawable in the correct screen and
visual (similar to the drawable parameter of other PEXlib inquiries
such as PEXGetEnumTypeInfo).

capx A color approximation table entry for which you wish to check
support by the server. A typical source for the information in such
an entry would be a standard colormap property, but your
application could acquire or generate this information by other
means.

Notice that the capx �eld is not a pointer. You must actually copy the
information into this embedded structure (by using a C structure copy).

The function of the PEXEscapeQueryColorApprox opcode is to allow the server
to verify whether or not the supplied color entry can be supported by the PEX
server. If the entry is supported, the return data indicates such. If the entry is
not supported, the server returns one or more supported entries from which your
application may choose.

Writing HP PEXlib Programs 6-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The PEXEscapeQueryColorApproxReplyData is de�ned as:

typedef struct {

char capx_is_supported;

char all_capx;

char reserved1[2];

unsigned long count;

unsigned int reserved3[3];

} PEXEscapeQueryColorApproxReplyData;

Table 6-10. Return Data

Value Description

capx_is_supported True indicates that the color approximation entry you sent
is supported \as is." False indicates otherwise.

all_capxs True indicates that all supported (alternative)
color-approximation entries have been returned in the list
that follows the PEXEscapeQueryColorApproxReplyData
structure. False indicates otherwise.

count The number of PEXColorApproxReplyData structures
returned in the storage following the reply structure. This is
zero if capx_is_supported is False.

6-32 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The set of alternative color approximation entries can be accessed by computing
the appropriate pointer and using array indexing, as in the following example:

Drawable my_example_drawable;

PEXColorApproxEntry my_candidate_color_approx;

PEXColorApproxEntry my_chosen_color_approx;

PEXEscapeQueryColorApproxData query_in;

char *return_ptr;

unsigned long return_size;

PEXEscapeQueryColorApproxReplyData *query_out;

PEXColorApproxEntry *alternative_entries;

(example drawable ID and candidate color approximation entry omitted)

query_in.drawable = my_example_drawable;

query_in.capx = my_candidate_color_approx;

return_ptr = PEXEscapeWithReply(display, PEXEscapeQueryColorApprox,

sizeof (PEXEscapeQueryColorApproxData)),

(char *) &query_in,

&return_size);

if (return_ptr == NULL) {

(the request failed, and some kind of error is reported)

}

else {

query_out = (PEXEscapeQueryColorApproxReplyData *) return_ptr;

alternative_entries = (PEXColorApproxEntry *) (return_ptr

+ sizeof(PEXEscapeQueryColorApproxReplyData));

if (query_out->capx_is_supported) {

(the candidate is supported)

my_chosen_color_approx = my_candidate_color_approx;

}

else {

(use the various �elds in ``query out'' as needed)

(select from the alternative entries)

my_chosen_color_approx = alternative_entries[0];

my_chosen_color_approx = alternative_entries[query_out->count-1];

}

(always free the returned storage when done)

XFree(return_ptr);

}

Writing HP PEXlib Programs 6-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

This escape can also report a BadDrawable error (if the example drawable ID is
not valid) or BadValue (due to an illegal value in one of the color approximation
entry �elds).

6-34 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-11. Encoding of HP-Supported Color Escape Extensions

Extension/size Type/value Explanation

PEXEscapeWithReply (PEXEscapeQueryColorApprox�hrequesti)

4 0x80010001 vendor ID = MIT

2 INT16 Floating point format

2 unused

4 CARD32 example: drawable_id

2 INT16 Color approximation type

2 INT16 Color approximation model

2 CARD16 max1

2 CARD16 max2

2 CARD16 max3

1 SWITCH Dither: 0!O�; 1!On

1 Unused

4 CARD32 multiplier 1

4 CARD32 multiplier 2

4 CARD32 multiplier 3

hfpi FLOAT weight 1

hfpi FLOAT weight 2

hfpi FLOAT weight 3

4 CARD32 base pixel

PEXEscapeWithReply (PEXEscapeQueryColorApprox � hreplyi)

4 0x80010001 Escape ID

1 BOOLEAN Given color approximation is supported

1 BOOLEAN Exhaustive list of color approximations

2 Unused

4 CARD32 Number n of alternatives is supported color
approximations

12 Unused

12
(3�hfpi+28)�hni

LISTofCOLOR_APPROX Alternative supported color approximations
(same format as request encoding, from
color approximation type to end of request)

Writing HP PEXlib Programs 6-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Making Color Approximation Inquiries

The Hewlett-Packard implementation of PEX does not support arbitrary color
samplings. In fact, for any given device and environment, only one color sampling
(and therefore, only one particular PEXColorSpace color approximation setup) is
supported.

You need access to the color sampling information|you must use the escape|
at the time that you load the colormap. PEXEscapeWithReply cannot be called
before PEXInitialize; therefore, it is convenient to call PEXInitialize before
window and colormap creation, not afterwards.

The prede�ned entry support in the HP PEX color approximation table means
that if you plan to use PEXColorSpace approximation, you don't even need
to call PEXSetTableEntries to set up a table entry, although in general, this
is an important practice to assure interoperability. It is very important that
you do create a color approximation table, because HP PEX cannot set up the
correct prede�ned entry (which may vary from one device to the next) until
you indicate what screen and visual to use, by passing an example drawable to
PEXCreateLookupTable. We recommend that you always set the table entry
explicitly because other PEX implementations may not have prede�ned entries.

Here is another implication of the single color-sampling support per con�guration
in HP PEX: If you call PEXSetTableEntries to set a PEXColorSpace color
approximation table entry to values that do not match the one supported setting,
the server reports an error.

Some applications may need to use PEXColorRange color approximation rather
than PEXColorSpace. While PEXColorRange is supported on HP devices on
PseudoColor and StaticColor visuals, it is not supported on DirectColor or
TrueColor visuals. The only restriction on the color approximation entry values,
beyond what the PEX standard prescribes, is that the mult1, mult2, and mult3

values in the color approximation entry must be 1.0, 0.0, and 0.0, respectively.

In cases where the device depends on colormap interpolation ramps that can be
described in an XStandardColormap structure, you can use some of the utilities
described in the PEXlib Programming Manual , but in other cases, you will need
to use the utility code provided by Hewlett-Packard to set the colormap properly.

6-36 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

If your graphics device is a CRX, you will need to use the special utilities for
adjusting the colormap for that hardware. Source code for these utilities is
provided online and described in the README �le in the hpex-utilsi directory7.

Effect of Dithering Control on Color

For some applications, it is desirable to disable dithering|such as �nite-element
analysis or data visualization that bene�t from the resulting color banding e�ects.
On most devices, this is accomplished in the color approximation table entry by
setting the dither hint to PEXOff. However, dithering cannot be disabled on CRX
devices when using PEXColorSpace. Dithering is not performed in 24-bit visuals
so the dither hint has no e�ect for those targets.

Using Indexed Colors

PEX supports speci�cation of color attributes for primitives and light sources
and the renderer's background color via color indices as well as via RGB triples.
In fact, the PEX standard speci�es that the default value for all colors is index
1 (except for the renderer background color, which defaults to index 0).

By default, however, the PEX standard does not specify what color is selected
by index 1. HP PEX de�nes that default color to be white. This means that if
you don't create a table of type PEXLUTColor and associate it with the renderer,
all primitives will be drawn in white by default.

For many applications, it is natural to specify colors in terms of RGB. These
applications do not need to create a color lookup table, but do need to set the
renderer background color and the primitive colors to RGB values before they
cause PEX to use those attributes, otherwise everything will be drawn in white.

For applications that need to use indexed colors, it is important to note that the
HP PEX color table only has eight entries prede�ned to a set of simple primary
colors. If you use many color indices but don't load the entries in the table, you'll
still end up with a lot of things drawn in white.

Remember, the color table is at the \front end" of the PEX rendering pipeline.
Indexed colors are always converted to RGBs as primitives enter the pipeline
(unless using PEXHPColorApproxTypeIndexed). This means that there is no

7 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Writing HP PEXlib Programs 6-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

correspondence between colors you load into the PEX color lookup table, and the
colors you must put in the X colormap. The rendering pipeline always operates
in RGB. For this reason, PEXColorSpace is the most natural color approximation
method, even for applications that use indexed colors.

Alpha Blending and Transparency

Alpha blending is a frame bu�er operation that blends a source color with
whatever color is already in the frame bu�er, for each pixel in an image. Alpha
transparency allows per-pixel blending of surface colors with other objects in
the scene to produce high-quality transparency e�ects. The alpha transparency
method results in a much smoother transparency than that achieved via the
screen-door transparency method that has been available to date. See the
example programs in hhp-examplesi8 and the README for instructions.

Screen-Door Transparency

Screen-door transparency (available in previous releases of HP PEX) is compu-
tationally very fast. Currently, the only control over screen-door transparency is
the \transmission coe�cient" in the front- and back-surface reection attributes.
A coe�cient of 0.0 indicates a completely opaque surface; a coe�cient of 1.0
means the surface is completely transparent and does not contribute to the im-
age. Screen-door transparency is accomplished by mapping the coe�cient value
into one of a discrete number of levels de�ned by a \screen door pattern cell".
On most HP devices, this is a 4�4 cell, so there are 17 possible levels, from 0

16 ,

completely opaque (all pixels in the cell are drawn), to 16
16 , completely transparent

(no pixels are drawn).

Screen-door transparency is very fast because it requires no frame bu�er reads
and can be built into the rasterizers or the frame bu�er data path. This allows
transparent objects to be animated with little or no performance impact.

The �xed-raster nature of the screen-door cell, and the fact that it is typically tiled
either in screen coordinates or window coordinates, sometimes creates unpleasant
visual artifacts. For example, two equally-transparent surfaces, one in front of
the other, result in only the top surface being visible, because the screen-door
cells overlay exactly. The image gets no color contribution from the surface that

8 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

6-38 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

is farther away, and the user cannot see it at all. There also may be interference
patterns between the screen-door cell and any dithering pattern that is in use.

Alpha Transparency

\Alpha" is an extra channel carried along with colors (or vertex data from which
colors can be computed; for example, by lighting equations) that speci�es the
opacity of the color. Typically, an alpha of 1.0 indicates complete opacity, and 0.0
indicates complete transparency (i.e., the inverse of the transmission coe�cient).

Alpha transparency blends the color of a transparent surface with the colors of
other primitives that are \behind" it for every pixel of the surface. This eliminates
the aliasing artifacts due to screen-door cells, but requires that the current color of
each pixel be read out of the frame bu�er and that a blending algorithm be applied
to mix the new surface color with the existing color. The blending functions
make use of the alpha channel to do the mixing. These extra operations can
have signi�cant performance impacts if not built into the graphics hardware, and
have some even when the hardware does o�er support. This part of the necessary
functionality is called alpha blending, and it has uses in other techniques besides
alpha transparency; for example, antialiasing and texture mapping both require
some alpha blending.

In addition to alpha blending, to render a correct picture, alpha transparency
requires two or more passes to render the primitives in the image. The �rst
pass renders the background color and all \opaque" primitives. This creates the
\background image" to be used in blending with transparent primitives. Then,
the transparent primitives are rendered in one or more passes, blending their
colors with the image already rendered. Ideally, the primitives are rendered
in sorted order from most-distant in Z to nearest, for each pixel in the image.
Compromises for better performance are possible, but introduce various sorts of
visual artifacts.

HP PEX provides extensions to support simple alpha blending and to use the
Z-bu�er in a read-only mode|to test the Z-bu�er value without changing it.
These features can be utilized in an application to implement various alpha
transparency e�ects. Additional work would be required in the application to
do view-dependent Z-bu�er sorting even at the level of HP PEX primitives.

Writing HP PEXlib Programs 6-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Implementation of Alpha Transparency

Values are shown here; mnemonic strings have names derived from the value
identi�ers in the usual fashion.

Table 6-12.

Encoding of HP-Supported Alpha Transparency Extensions

Extension/New Values Numeric
Value

Explanation

PEXETColorType

PEXHPColorTypeRGBA 0x8700 An addition to existing
enumerated type

PEXETHLHSRMode

PEXHPHLHSRZBufferReadOnly 0x8700 Additions to existing
enumerated type

PEXHPHLHSRZBufferIDReadOnly 0x8701

PEXHPETTransparencyMethod 0x8700 New enumerated type

PEXHPTransparencyMethodScreenDoor 0x8700 No alpha transparency is in
e�ect

PEXHPTransparencyMethodAlphaBlend 0x8701 Alpha blending is in e�ect

PEXHPETAlphaBlendFunction 0x8701 New enumerated type

PEXHPAlphaBlendFunctionSrcColor 0x8700 Use only the source color

PEXHPAlphaBlendFunctionSimpleAlpha 0x8701 Blend the source color with
the frame bu�er color
according to the formula
hsrci��+ hdesti�(1��)

6-40 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Renderer Attributes

The transparency_method HP extension Renderer attribute controls the type
of transparency algorithm supported by the renderer. Its default is PEXHPTrans-
parencyMethodScreenDoor. See PEXHPChangeRenderer in the on-line documen-
tation for information on how to set this attribute.

Pipeline Context Attributes

There is one new Pipeline Context attribute supported for alpha blending. The
alpha_blend_function default is PEXHPAlphaBlendFunctionSrcColor. Please
see PEXHPChangePipelineContext in the on-line documentation for information
on how to change it.

Color Types

An additional color type is de�ned, which carries alpha as a fourth channel. This
color type is currently accepted only by primitives that can include color data per
facet or per vertex. Since HP PEX only supports oating-point color values, only
one type, PEXHPColorTypeRGB, need be supported (added to the PEXETColorType
enumerated type). The encoding for the new color type is straightforward; its
size is four words.

With-Data Primitives

In order to pass alpha values per-vertex or -facet into the CGE PEX extended
with-data primitive entrypoints, additional vertex and facet data types are
de�ned that use the new color types. There was no need to de�ne new bits for
the vertex_attributes and facet_attributes masks, because the color_type
attribute in the existing parameter lists carries all the information that is
necessary.

There are three unions that appear in with-data primitive parameter lists
that might support RGBA color: PEXFacetData, PEXArrayOfFacetData, and
PEXArrayOfVertex. PEXListOfVertex is also indirectly a�ected since it contains
PEXArrayOfVertex as a �eld. Also a�ected are the vertex data structures,
PEXExtArrayOfVertex and PEXExtListOfVertex.

Writing HP PEXlib Programs 6-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The PEXFacetData union is most a�ected since its size would be changed, though
it is only passed to primitives by reference and in all cases only a single facet's
worth of data is passed. However, it is embedded directly inside members of
the PEXOCData union, so changing it would create an incompatibility for old
programs using the PEXlib OC encoding routines. Therefore, the union has not
been changed and typecasting of the pointer is necessary when calling the entry
points that use this union. A typical example of the typecasting technique would
be:

.

.

.

PEXHPColorRGBA facet_color;.
.
.

facet_color.red = 1.0;

facet_color.green = 0.5;

facet_color.blue = 1.0;

facet_color.alpha = 0.5;.
.
.

PEXFillAreaSetWithData(..., PEXHPColorTypeRGBA, ...,

((PEXFacetData *) &(facet_color), ...);.
.
.

In a similar vein, no change to union PEX[Ext]ArrayOfFacetData is implemented.
Instead, the following technique can be used to pass a pointer to the data.

.

.

.

PEXHPColorRGBA facet_color;

PEXArrayOfFacetData facet_data;.
.
.

facet_color.red = 1.0;

facet_color.green = 0.5;

facet_color.blue = 1.0;

facet_color.alpha = 0.5;.
.
.

facet_data.rgb = (PEXColorRGB *) &facet_color;.
.
.

A technique similar to that shown above for PEXArrayOfFacetData can be
used to pass this color data via PEX[Ext]ArrayOfVertexData or, indirectly,
PEX[Ext]ListOfVertex.

6-42 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Output Command

The function PEXHPSetAlphaBlendFunction creates an output primitive at-
tribute that sets the blend functions for alpha blending and alpha transparency.
Unsupported values will default to PEXHPAlphaBlendFunctionSrcColor, which
results in source color rendering. Also see PEXHPChangeRenderer.

PEXHPSetAlphaBlendFunction(

Display *display,

XID resource_id,

PEXOCType OCtype,

int blend_function)

Using this routine, parameters are as follows:

Table 6-13. Alpha Blending Reply Parameters

Value Description

display A pointer to a display structure returned by a successful
XOpenDisplay call.

resource_id The resource ID of the structure or renderer.

req_type The request type for the output command (PEXOCRender,
PEXOCStore, PEXOCRenderSingle, or PEXOCStoreSingle).

blend_function The alpha blending function to apply.

Writing HP PEXlib Programs 6-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

This entrypoint generates an extended OC with an output command number of
0x8700. The encoding for the output command is:

Table 6-14. Encoding of HP-Supported Alpha Blending Extension

Extension/size Type/value Explanation

2 0x8700 Output command number

2 Output command length

2 INT16 Alpha blend function

2 unused

Behaviors

The default value of all attributes results in alpha transparency being o�;
screen-door transparency is in e�ect. Alpha values are not interpolated across
primitives when in screen door mode; only the front and back surface transmission
coe�cients induces screen-door transparency.

The transmission coe�cient in the surface reection attributes is directly mapped
to an alpha value for surfaces as 1�hcoe� i. This alpha value is used for surfaces
that do not have per-facet or per-vertex alpha data, when alpha transparency is
enabled.

Texture mapping can produce textures with alpha values. Depending on the
compositing rule in use, alpha values from the surface color or alpha-per-vertex
may or may not be used. For example, a texture map with alpha values and
a \replace" composition rule does not use any color channels (including alpha)
from the surface, but the \modulate" rule does. When surface alpha is used, it is
applied as part of the surface color, during the �rst texture mapping compositing
operation. For example, an opaque surface may become transparent due to alpha
in a texture.

Alpha is not applied to vector/edge antialiasing. It is not e�ective for interior
style \hollow".

When depth cueing is enabled, it is applied after a source alpha value is derived
for the pixel, but it does not modify the alpha channel of the pixel color as it does
the red, green, and blue channels|that is, during depth-cue modi�cation of the

6-44 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

color, the source alpha value is carried through unchanged. After depth cueing,
the alpha value is used to blend with the pre-existing frame bu�er contents.

On targets that do not support alpha blending (e.g., 8-plane visuals and CRX-
24), when the transparency method calls for alpha blending, HP PEX does not do
transparency. Speci�cally, screen-door transparency is not substituted for alpha
blending. (In fact, the PEXHPETTransparencyMethod enumerated type does not
list any alpha method as a supported value on such platforms, so a BadValue

error is reported if an attempt is made to put the renderer in such a mode.)

Setting Up An Alpha Blending Program

Two sequences to set up alpha blending are illustrated in pseudocode below.

1. A typical sequence to set up simple alpha blending:

PEXHPChangeRenderer(. . .); (htransparency methodi=
PEXHPTransparencyMethodAlphaBlend)
PEXHPChangePipelineContext(. . .); (halpha blend functioni=
PEXHPAlphaBlendFunctionSimpleAlpha)

2. And then:

PEXRenderNetwork(); (for Structure Mode)
or

PEXBeginRendering(); (for Immediate Mode)
(render the OCs)
PEXEndRendering();

3. A simple two-pass transparency can be implemented in the client using the
following mixed-mode sequence:

PEXBeginRendering();

(render opaque OCs in immediate mode or via PEXExecuteStructure)

PEXHPChangeRenderer(...);

htransparency methodi=PEXHPTransparencyMethodAlphaBlend;

hhlhsr modei=PEXHPHLHSRZBufferReadOnly);

PEXHPSetAlphaBlendFunction(...);

halpha blend functioni=PEXHPAlphaBlendFunctionSimpleAlpha);

(render transparent OCs in immediate mode or via PEXExecuteStructure)

PEXEndRendering();

Writing HP PEXlib Programs 6-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Anti-aliasing

HP supports twomethods of anti-aliasing for producing high-quality images, most
noticeable as smooth lines and polygon edges. In the �rst, which was provided
with HP PEX 5.1v1, anti-aliasing is provided through a GSE (see \Line Types").
However, this GSE is not the preferred method and is retained primarily for
compatibility reasons.

The second and preferred method, added for HP PEX 5.1v2 is an OC routine
PEXExtOCSetPrimitiveAA, which selects the primitives that are to be anti-
aliased. A blending operation speci�es the anti-aliased method to be used.

Note that there is no mention of gamma correction made in the PEX 5.2 or
CGE PEX 1.0 speci�cations. Thus, it is not addressed in the speci�cation.
However, HP PEX supports the Gamma Correction Escape in order to maintain
compatibility with older programs. Other tools for setting up a gamma corrected
colormap should be considered by application developers.

The PEXExtSetPrimitiveAA entry point controls anti-aliasing. The blend_op

parameter indicates the blend operation to be used. For HP PEX,
PEXExtPrimAABlendOpImpDep and PEXExtPrimAABlendOpSimpleAlpha have the
same result. The calculation for PEXExtPrimAABlendOpSimpleAlpha is
��hsrc colori + (1��)�hdest colori.

6-46 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The HP/CGE PEX 1.0 supported/unsupported anti-aliasing methods are:

Table 6-15.

PEXExtPrimAANone HP/CGE PEX 1.0 supported
(default)

PEXExtPrimAAPoint unsupported by HP

PEXExtPrimAAVector HP/CGE PEX 1.0 supported

PEXExtPrimAAPointAndVector unsupported by HP

PEXExtPrimAAPolygon unsupported by HP

PEXExtPrimAAPointAndPolygon unsupported by HP

PEXExtPrimAAVectorAndPolygon unsupported by HP

PEXExtPrimAAPointVectorAndPolygon unsupported by HP

Setting the mode to an unsupported index will cause the mode to default to
PEXExtPrimAANone.

Enumerated type PEXExtETPrimitiveAABlendOp indicates the supported blend
operations. PEXExtPrimAABlendOpImpDep and
PEXExtPrimAABlendOpSimpleAlpha are both supported on HP. Both methods
use the same algorithm on HP.

Note that anti-aliasing is not supported on some unaccelerated devices and on
all 8-bit visuals. Use PEXGetEnumTypeInfo to determine anti-aliasing capability
for a particular drawable. If anti-aliasing is not supported attempts to enable it
will be silently ignored.

Writing HP PEXlib Programs 6-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Line Primitives and Attributes

Line Types

These line types are supported:

PEXLineTypeSolid

PEXLineTypeDashed

PEXLineTypeDotted

PEXLineTypeDashDot

PEXExtLineTypeCenter (CGE extension)
PEXExtLineTypePhantom (CGE extension)
PEXHPOCCSetUserLinetype

Figure 6-1. ET Line Types

Additional information and recommendations about extended line types, the
PEXExtETMLineType enumerated type lists, and the use of antialiasing to enhance
the appearance of lines and edges are also covered in the Portable Programming
with CGE PEX 5.1 .

HP PEX supports only an edgewidth scale factor of 1.0. Any OC that attempts
to set it is silently mapped to 1.0.

To improve the quality of images, of lines and polygon edges in particular,
antialiasing functionality is available.

Antialiased images, however, do not look their best unless gamma correction has
been performed on the X colormap contents. Therefore, it is recommended that
if you use the HP GSE for anti-aliasing that you also apply gamma correction to
your colormap.

6-48 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Utilities in the hpex-utilsi directory9 include a utility procedure that you can call
to create a gamma-corrected colormap. Note that gamma correction may cause
some vectors to be drawn without antialiasing to appear dimmed. You should
be aware of this e�ect, although it is unusual for an application to enable and
disable antialiasing during traversal.

The PEXGSE entrypoint has the following interface:

void PEXGSE(

Display *display,

XID resource_id,

PEXOCRequestType req_type,

long id,

int length

char *data)

Table 6-16. PEXGSE Parameters

Value Description

display A pointer to a display structure returned by a successful
XOpenDisplay call

resource_id The resource identi�er of the renderer or structure

req_type The request type for the output command (PEXOCRender,
PEXOCStore, PEXOCRenderSingle or PEXOCStoreSingle)

id The identi�er of the GSE

length The length, in bytes, of the GSE data

data A pointer to the GSE data

9 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

Writing HP PEXlib Programs 6-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

To use the HP antialias mode GSE, the ID parameter should be set to
HP_GSE_SET_ANTIALIAS_MODE. The data structure type name needed for the
data parameter is hpGSESetAntialiasMode. The antialias_mode �eld in this
structure can take one of the following values:

Table 6-17. Valid antialias_mode Values

HP_ANTIALIAS_MODE_OFF Disables antialiasing for line primitives and for
�ll-area edges.

HP_ANTIALIAS_MODE_BEST Enables antialiasing for both line primitives and
for �ll area edges using a �ltering method that is
device-dependent, but which gives the best visual
results for the device.

Table 6-18.

Encoding HP-Supported Antialiasing and Gamma Correction

Extensions

Extension/Size Type/Value Explanation

PEXGSE (HP_GSE_SET_ANTIALIAS_MODE)

4 0x80070001 HP opcode (decimal1)

4 INT32 antialias_mode;
HP_ANTIALIAS_MODE_OFF (0) or
HP_ANTIALIAS_MODE_BEST (1)

PEXEscape(HP_ESCAPE_SET_GAMMA_CORRECTION � hrequesti)

4 0x80070002 HP opcode (decimal2)

4 CARD32 drawable_id

4 INT32 gamma_correction mode;

HP_GAMMA_CORRECTION_OFF (0) or
HP_GAMMA_CORRECTION_ON (1)

6-50 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Wide-Line End Styles

Cap and join style support is provided through two CGE extension OCs:
PEXExtOCSetLineCapStyle and PEXExtOCSetLineJoinStyle. De�ned values
(not all necessarily supported by HP PEX) for these additional enumerated types
are:

PEXExtETLineCapStyle

PEXExtETLineCapStyleButt

PEXExtETLineCapStyleRound

PEXExtETLineCapStyleProject

PEXExtETLineJoinStyle

PEXExtETLineJoinStyleImpDep

PEXExtETLineJoinStyleMiter

PEXExtETLineJoinStyleRound

PEXExtETLineJoinStyleBevel

Area Primitives and Attributes

The PEX standard makes interior style PEXInteriorStylePattern optional
and HP PEXlib does not support \pattern" interior styles, defaulting to
PEXInteriorStyleHollow. Attempts to set an unsupported style results in the
default PEXInteriorStyleHollow. Attempts to create a pattern LUT result in
a BadPEXLookupTable error.

Writing HP PEXlib Programs 6-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

NURBS Approximation

Setting the curve approximation criteria to a particular value for NURBS surface
trim curves has no e�ect in HP PEX. Trimming curves are automatically
computed with a resolution compatible with the surface approximation criteria.

The parametric surface characteristics attribute can be set to either of two
values: PEXNone or PEXPSCImpDep. The setting PEXPSCImpDep is intended to
implement a method by which all edges of all �ll areas generated by NURBS
surface tessellation are made visible. In the HP PEX 5.1 release, the parametric
surface characteristics attribute has no e�ect. The appearance of NURBS
surfaces is governed entirely by interior attributes. When �ll area edging is
enabled, NURBS interior edges are visible. This behavior is avoided by disabling
edging around NURBS. Hewlett-Packard recommends that applications set the
parameter surface characteristics attribute for portability and because HP PEX
behavior may change in future releases.

Antialiasing

HP PEX supports a Generalized Structure Element (GSE) to enable or disable
line- and edge antialiasing. This is not a standard feature (there are no standard
GSEs speci�ed by PEX), but may have value for your application. The constants
and data structure for the PEXlib interface are de�ned in the header �le
PEXHPlib.h. Please see the section \Line Types" for more information.

Capping and Interference Checking

These two visualization techniques are suited to the modeling of solid objects
common to MCAD applications. Capping is an adjunct to model clipping that re-
closes a capped volume where it has been clipped. The result appears as though
a section has been cut from a solid object. Interference checking can detect
interpenetrating solids by highlighting overlapping caps within a clip plane.

HP PEX supports the formation and rendering of capping facets to indicate how
a volume-enclosing set of surfaces is intersected by a model clipping plane. It
also allows capping facets for di�erent enclosed volumes to be collected and their
intersection to be rendered, usually using a distinguishing set of attributes. This
is called \interference checking," since it can be used to show intersection of two
or more volumes (solids) in a model clipping plane.

6-52 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

PEX de�nes model clipping, but does not address capping or interference
checking. Responding to customer request, HP developed an interface to provide
access to these features through PEXlib. This interface supports the de�nition of
volumes independently of the primitives or structures used to de�ne them. The
interface is implemented with the procedure PEXHPSetCappingPlanes (see the
reference page in the on-line documentation). This entrypoint is implemented as
an Extended Output Command (extended-OC).

Deformation

Another technique useful for modeling of solid objects and MCAD applications
is deformation. Deformation modi�es geometric coordinates in the \with-data"
primitives before modeling transformations are applied. There are four steps
required to control deformation:

1. Set the values in a \global" deformation factor. The deformation factor is a
complex number, meaning that it has real and imaginary components. This
factor is multiplied by the deformation values, which are de�ned for each
individual vertex. Depending on the current deformation mode, the real or
imaginary portion of the product is then added to the geometric coordinates
of the vertex.

2. Set the deformation values supplied with each vertex in a with-data primitive.
For each vertex, the individual deformation value is multiplied by the global
deformation factor. Depending on the current deformation mode, the real or
imaginary portion of the product is then added to the geometric coordinates
of the vertex.

3. Set the deformation value location.
4. Set the deformation mode. The deformation mode is an attribute that turns

deformation calculations on and o�, and (if deformation calculations are
turned on) determines which portions of the product of the deformation factor
and deformation values are added to the geometric coordinates of a vertex.

In the HP PEX 5.1v2 implementation, a new attribute command,
PEXHPSetDeformationMode is used to set the deformation mode, and the value of
the global complex deformation factor. The initial deformation mode and factors
can be set in the pipeline context.

Writing HP PEXlib Programs 6-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The following CGE PEX 1.0 extended area primitives will accept deformation
values in the vertex data:

PEXExtFillAreaSetWithData

PEXExtTriangleStrip

PEXExtQuadrilateralMesh

PEXExtSetOfFillAreaSets

These primitives are de�ned in the CGE PEX 1.0 speci�cation. Existing 5.1 area
primitives (PEXFillAreaSetWithData, PEXTriangleStrip,
PEXSetOfFillAreaSets, etc.) are una�ected by the deformation mode.

The HP extended primitives PEXHPPolylineSetWithData and
PEXHPMarkersWithData will also accept deformation data.

Deformation values are stored in a list of oats. There may be one list of oats
containing \extra data" like texture mapping data or deformation values per
vertex. These values are passed to PEXlib for each vertex, following the vertex
normals, colors and edges ags. Extra vertex data, like deformation values
and texture mapping coordinates, can appear anywhere in this list of oats.
PEXHPSetDeformationValueLocation indicates where in the list of extra data
deformation values can be found.

The deformation value location is also an attribute whose initial value can be set
in the pipeline context, modi�able via PEXHPChangePipelineContext.

It is not likely that deformation will be incorporated in a future revision of the
PEX standard.

There is no (inquirable) enumerated type for the deformation mode since HP is
the only vendor that supports deformation.

These are the HP extended OCs required to support deformation, inquirable by
enumerated type PEXETExtOC.

SetDeformationMode

SetDeformationValueLocation

Extended Polyline Set With Data
Extended Polymarker With Data

6-54 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Extended Pipeline Context Attributes

These values are part of the list returned by an inquiry of enumerated type
PEXETExtPC.

PEXHPPCDeformationMode

PEXHPPCDeformationValueLocation

Pipeline Context Attributes

Deformation mode may be set in the pipeline context. The default value for
deformation mode is PEXHPDeformationOff. PEXHPChangePipelineContext is
used to modify the extended pipeline context. See Chapter 6 for details on
changing the HP-only attributes in the pipeline context.

Deformation values are stored in a list of oats associated with each vertex
in a with-data primitive. The deformation value location is an index into
that list of oats. The default value for the deformation value location is
index 0. The deformation value location can also be changed using the
PEXHPChangePipelineContext routine de�ned in Chapter 6.

This value is returned by an inquiry of enumerated type PEXExtETID:

PEXHPIDDeformationSupported

Writing HP PEXlib Programs 6-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Text and Fonts

The fonts supported by HP PEXlib are accessed using the X Logical Font
Description (XLFD) conventions. PEX stroke fonts can be regarded as in�nitely
scalable and rotatable, although, unlike scalable bitmap fonts, no process of font
generation occurs when a font is opened.

The values shown in the following tables are supported for XLFD name �elds to
access HP fonts that are returned by PEXListFonts and PEXListFontswithInfo

and are accepted by PEXLoadFont.

Table 6-19. Text and Fonts

Field Name HP Value(s) and Explanation

FOUNDRY hp

FAMILY_NAME Stick, simplex sans serif, polygonal sans serif, polygonal serif

WEIGHT_NAME medium, bold

SLANT r

SETWIDTH_NAME normal

ADD_STYLE_NAME normal, accel

PIXEL_SIZE 0 hconvention for scalable fontsi

POINT_SIZE 0 hconvention for scalable fontsi

RESOLUTION_X 0 hconvention for scalable fontsi

RESOLUTION_Y 0 hconvention for scalable fontsi

SPACING p, m

AVERAGE_WIDTH 0 hconvention for scalable fontsi

CHARSET_REGISTRY

CHARSET_ENCODING

hp-roman8, iso8859-1, hp-japaneseeuc, jisx0208.1983-0

These properties are de�ned for HP PEX fonts: FOUNDRY, FAMILY_NAME,
WEIGHT_NAME, ADD_STYLE_NAME, SPACING, CHARSET_REGISTRY, and
CHARSET_ENCODING.

6-56 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Font Naming and Files

The default font used by PEX is a monospaced, stroke, hproman8 font (i.e., non-
proportional, hproman8 glyph layout, one byte per character). This applies to
both DHA applications and to the PEX server. Unlike other PEX fonts that you
can inquire for font information, additional font information is not available for
the default font.

The pattern of the FAMILY_NAME �eld starting with PEX is an HP convention for
stroke fonts, it is not yet an interoperability convention.

HP PEX font �les, used by both the HP PEX server and DHA PEXlib,
are organized in the following directory structure that parallels the X11 font
structure.

Table 6-20. HP PEX Font File Structure

hfontsi directory

font_info/stroke usascii/stroke usascii/stroke hp_japanese/stroke

fonts style usascii and ascii and jisascii, katakana,

information hproman fonts latin1 fonts kanji fonts

The fonts are represented in an HP-speci�c format (the same used by Starbase
and HP-PHIGS). All PEX fonts have the �le name su�x \.pht" and their �le
names also indicate the character set and font style. The speci�c fonts supported
by Hewlett-Packard, including both the XLFD and �le names, are listed at the end
of this section in the three \Fonts" tables.

The X server font path is used by the PEX server to gain access to the PEX
fonts. At server startup, whenever the font path is changed, and whenever the
font directories are explicitly rescanned using xset -fp or xset -rehash, the
X server (and font server in X11R6) searches the new directories for fonts.dir
�les. It will merge new �les into a hash table so it can quickly �nd all fonts
without searching each of the directories named in the font path.

For PEX font directories there is a corresponding phonts.dir �le that is ignored
by the X server, but is read by the PEX extension. This keeps the sets of
X11 fonts and PEX fonts disjoint so XListFonts never returns PEX fonts and
PEXListFonts never return X bitmap fonts.

Writing HP PEXlib Programs 6-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

X11R6 supports the X font server. However, the font server supports only X
fonts, not PEX fonts.

Another �le, hextensionsi10/fp.PEX, contains a list of directories to be added to
the X font path during server initialization; it should always contain at least one
of those directories.

Since HP CDE saves and restores the X font path across multiple sessions, HP
CDE users will need to explicitly modify the X font path to access fonts other
than the default. This can often be done by resetting the font path to the default,
including the directories in hextensionsi/fp.PEX.

To reset the font path, type:

xset fp default �Return�

This is not an appropriate solution for users who have customized their font
paths.

10 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

6-58 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

List of Fonts Supported by Hewlett-Packard

The speci�c fonts supported by Hewlett-Packard, including both the XLFD and
�le names are:

Table 6-21. hfontsi/usascii/stroke fonts

Font File Name Supported XLFD Names

usascii.1.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-m-0-hp-roman8

usascii.2.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-hp-roman8

usascii.-2.pht -hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-hp-roman8

usascii.-4.pht -hp-PEX polygonal sans serif-bold-r-normal-normal-0-0-0-0-p-0-hp-roman8

usascii-6.pht -hp-PEX polygonal serif-bold-r-normal-normal-0-0-0-0-p-0-hp-roman8

usascii.-8.pht -hp-PEX polygonal serif-bold-r-accel-0-0-0-0-p-0-hp-roman8

Table 6-22. hfontsi/usascii/stroke fonts

Font File Name Supported XLFD Names

ascii.1.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-m-0-iso8859-1

ascii.2.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-iso8859-1

ascii.-1.pht -hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-m-0-iso8859-1

ascii.-2.pht -hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-iso8859-1

Writing HP PEXlib Programs 6-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-23. hfontsi/hp_japanese/stroke fonts

Font File

Name''

Supported XLFD Names

jisasc.1.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-m-0-hp-japaneseeuc

jisasc.2.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-hp-japaneseeuc

jisasc.-2.pht -hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-

hp-japaneseeuc

jisasc.-4.pht -hp-PEX simplex sans serif-bold-r-normal-normal-0-0-0-0-p-0-

hp-japaneseeuc

jisasc.-6.pht -hp-PEX polygonal serif-bold-r-normal-normal-0-0-0-0-p-0-hp-japaneseeuc

kanjeuc.2.pht -hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-jisx0208.1983-0

kanjeuc.-2.pht -hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-

jisx0208.1983-0

kanjeuc.-4.pht -hp-PEX polygonal sans serif-bold-r-normal-normal-0-0-0-0-p-0-

jisx0208.1983-0

kanjeuc.-6.pht -hp-PEX polygonal serif-bold-r-normal-normal-0-0-0-0-p-0-

jisx0208.1983-0

With the HP PEX 5.1v2 release and later, HP supports both annotation text
styles PEXATextNotConnected (default) and PEXATextConnected.

Internationalized Text

The kanjeuc* fonts are two-byte fonts which support two-byte-encoded text
strings.

HP PEX supports rendering two-byte PEX-encoded text and two-byte PEX-
encoded annotation strings and two-byte encoded fonts. PEXCSByte, PEXCSShort
and PEXCSLong are supported lengths for PEX-encoded text strings. Since HP
PEX does not support three-byte fonts, using PEXCSLong-encoded text is not
recommended at this time.

6-60 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Marker and Cell Array

Hewlett-Packard adds the following extension marker types:

Table 6-24. Marker Type Additions

Extension/Size Type/value

PEXHPMarkerTriangle 0x8700

PEXHPMarkerSquare 0x8701

PEXHPMarkerDiamond 0x8702

PEXHPMarkerCrossSquare 0x8703

The HP PEXlib implementation meets the PEX \cell array" requirements by
simulating the cell array: drawing its outline with polylines.

B-spline Curves and Surfaces

Hewlett-Packard makes no implementation-dependent additions to these func-
tions of PEXlib.

Bundled Attributes

Hewlett-Packard makes no implementation-dependent additions to these func-
tions of PEXlib.

Modelling

Hewlett-Packard makes no implementation-dependent additions to these func-
tions of PEXlib.

Viewing

Hewlett-Packard makes no implementation-dependent additions to these func-
tions of PEXlib.

Writing HP PEXlib Programs 6-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Animation

Animation, or imparting the appearance of motion to objects, is accomplished
with any of several methods. Each method o�ers speci�c advantages that
you'll need to consider when selecting the most appropriate method for the
circumstances.

HP PEXlib supports rendering to X multi-bu�er (MBX) as an e�cient and
portable method for creating animated images.

However, the option to resort to double-bu�ering with a pixmap, when MBX and
E&S escapes are not available, is not supported.

The Double-buffering Extension (DBE)

HP PEXlib 5.1v3 and later releases support the use of the Double-Bu�ering
Extension (DBE) version 1.0, as a means for double-bu�ering PEX (and X)
graphics. DBE is a newer, simpler standard than MBX, which was supported in
HP PEXlib 5.1v2 and which is still recommended for applications that wish to
be CGE PEX 1.0 compliant.

6-62 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Background Information

In the 5.1v2 release, HP PEXlib supported the Multi-bu�ering Extension (MBX)
to accomplish double-bu�ering. In other words, MBX bu�ers were accepted as
valid targets for the Renderer, and could be used in any inquiry or procedure
call that required an example drawable. The application program would need to
make MBX calls directly (Xmbuf(. . .)) to create and swap bu�ers, but could
pass the ID of an MBX bu�er to the Renderer to cause drawing to that bu�er.
This allowed mixed X and PEX rendering in the back bu�er, something that the
earlier Evans & Sutherland escapes did not allow.

Since that release, a simpler double-bu�ering extension (DBE) has been brought
through a rapid review process to become a new standard. DBE is very similar
to MBX in many respects, but is simpler in that it only supports basic double-
bu�ering (MBX supports creation of more than two bu�ers for a window) and
allows for API-dependent interaction during clearing and swapping. Again, the
application must directly make DBE calls (Xdbe . . . ()) in order to create and
swap bu�ers.

HP PEXlib 5.1v3 and later releases support the use of a DBE back bu�er name
in a manner very similar to the MBX support.

Writing HP PEXlib Programs 6-63

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Summary of DBE Client Entrypoints

Here is a brief summary of the DBE client side entrypoints. To use these, the
application program must include header �le X11/extensions/Xdbe.h. For more
detail, please see the reference pages in the appropriate X library manuals.

Table 6-25. DBE Entry Points

Entry Point Description

XdbeQueryExtension Veri�es that an X server supports the extension,
and, if so, what version it supports (currently the
only known version is 1.0).

XdbeGetVisualInfo Returns information about DBE support for
Visuals on one or more screens of a server.

XdbeFreeVisualInfo Frees the storage allocated by
XdbeGetVisualInfo.

XdbeAllocateBackBufferName Allocates a Drawable ID for the back bu�er for a
particular window. If this is the �rst name being
created for the back bu�er, resources may be
allocated as part of this call. It is important to
note that DBE only supports one back bu�er for a
window; calling this entrypoint multiple times
simply creates multiple names for the same bu�er.
A back bu�er name always addresses the back
bu�er, regardless of how many times swapping has
occurred. If the window's Visual does not support
double-bu�ering, this procedure results in a
BadMatch error.

XdbeDeallocateBackBufferName Releases a DBE back-bu�er name. If the last
existing name for the back bu�er is being released,
resources may be freed as part of this call.

XdbeSwapBuffers Swaps the front and back bu�ers for one or more
windows. A swap action can be given for each
window, specifying what should be done to the
back bu�er after the swap.

6-64 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-25. DBE Entry Points (continued)

Entry Point Description

XdbeBeginIdiom Speci�es the beginning of a mixed sequence of
calls, typically to accomplish swapping and
clearing, that may or may not be optimized. In
this release, the HP implementation does not
optimize any sequences.

XdbeEndIdiom Speci�es the end of a sequence of calls.

XdbeGetBackBufferAttributes Returns the ID of the window to which a
back-bu�er name is assigned.

Changes to Existing Functionality

PEXMatchRenderingTargets

Visuals that support creation of a DBE back bu�er name match the
PEXBufferDrawable target type. For practical purposes, the set of visuals on
each device that support DBE is the same set that supports at least two MBX
bu�ers. An application can directly inquire what Visuals support DBE via the
XdbeGetVisualInfo entrypoint.

It is important to note that in HP's implementation, some visuals that cannot
support double-bu�ering will be listed as supporting creation of one MBX bu�er
(see XmbufGetScreenInfo), in accordance with CGE PEX 1.0 requirements.
However, these visuals will not be listed as supporting DBE (via the function
XdbeGetVisualInfo) because no back bu�er can be created for them.

Procedures Using Example Drawables

The following procedures that have an \example Drawable" entrypoint will all
accept a DBE back bu�er name as a valid example drawable:

PEXGetEnumTypeInfo

PEXGetImpDepConstants

PEXCreateLookupTable

PEXCreateRenderer

Writing HP PEXlib Programs 6-65

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Colormap/Visual utilities

In this release, no changes have been made to either the HP-originated utilities
(in /usr/lib/PEX5/utilities) or to the CGE utilities (in . . . /cge_utilities)
to make use of DBE. Applications that wish to use DBE can select a visual that
can double-bu�er using the utilities as provided, and then use
XdbeGetVisualInfo to verify that DBE is supported on the visual. This is not
di�erent in nature from the current usage, where a visual can be selected using a
double-bu�ering criterion, but the application must determine whether MBX is
supported.

System Requirement/Release Dependencies

The HP PEX library (libPEX5.sl) generates references to some DBE client
library entrypoints. The library that implements these is libXext.sl. It is
absolutely necessary that the version of libXext.sl on a client system be new
enough to implement these entrypoints, otherwise a runtime error (unsatis�ed
reference) will occur when PEXlib attempts to validate a Drawable ID passed
into any procedure. The system release that includes HP PEXlib 5.1v3 and later
releases also include an appropriate version of libXext.sl.

Whether or not the X server actually supports DBE is another matter.
PEXlib will operate correctly whether or not the X server supports DBE. It
is recommended that the application use XdbeQueryExtension or a more general
Xlib extension query to verify that DBE is actually supported before attempting
to create a back bu�er name.

Compatibility Issues

No special compatibility issues are created by adding the support. However, if an
application is modi�ed to use DBE, then it will only compile and link successfully
on systems that have the header �les and the client library entrypoints. This is
a portability consideration for application writers.

6-66 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The Multi-buffering Extension (MBX)

MBX works as described in PEXlib Programming Manual (section 14.2),
rendering to speci�c and separate image bu�ers. Bu�er IDs can be used in
any PEXlib call that requires a drawable ID. It is recommended that you use
the function XmbufQueryExtension �rst, in order to determine whether the
MBX extension is supported. Additionally, PEXMatchRenderingTargets reports
PEXBufferDrawable targets on visuals that support multi-bu�ering. The visuals
reported to be multi-bu�er-capable are listed in the table below.

You should be aware of other characteristics of MBX that a�ect your programs.
On systems with hardware double-bu�ering, setting up two bu�ers will provide
hardware double-bu�ering sup port. However, on low-end systems or visual types
without hardware double-bu�ering, operation is software-bu�ered.

See the Graphics Administration Guide for information about supported visuals
on particular devices. If MBX is not available on your device, then you can use
the Evans & Sutherland double-bu�ering escapes on the same visuals to achieve
motion.

Evans & Sutherland Escapes for Double-Buffering

The escapes PEXEscape and PEXEscapeWithReply allow for access to the Evans
& Sutherland method of double-bu�ering, an HP implementation-dependent
functionality, that is described here. The structures for these functions are de�ned
in the �le PEXHPlib.h which also includes both the Evans & Sutherland escape
requests and the HP companion escape request, HPESCAPE_DFRONT.

void PEXEscape(

Display *display,

unsigned long escape_id,

int length,

char *escape_data)

char* PEXEscapeWithReply(

Display *display,

unsigned long escape_id,

int length,

char *escape_data,

unsigned long *reply_length_return)

Writing HP PEXlib Programs 6-67

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Using either escape, data parameters are as shown in the table below:

Table 6-26.

Double-Buffering Escape and -Escape With Reply Parameters

Value Description

display A pointer to a display structure returned by a
successful XOpenDisplay call.

escape_id The escape identi�er.

length The length, in bytes, of data for the escape
request.

*escape_data A pointer to data for the escape request:
� For ES_ESCAPE_DBLBUFFER, use
esEscapeDblBuffer

� For ES_ESCAPE_SWAPBUFFER, use
esEscapeSwapBuffer

� For ES_ESCAPE_SWAPBUFFERCONTENT,
use esEscapeSwapBufferContent
� For HP_ESCAPE_DFRONT, use
hpEscapeSetRenderingBuffer

*reply_length_return Returns the length, in bytes, of the reply data
(if applicable).

6-68 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-27. Encoding HP Supported Double-Buffering Extensions

Extension/Size Type/value Explanation

PEXEscape (HP_ESCAPE_DFRONT)

4 0x80070001 HP opcode (decimal1)

4 CARD32 drawable

4 BOOLEAN render_to_front_buffer (True if visible bu�er is
drawing destination)

PEXEscape (ES_ESCAPE_DBLBUFFER)

4 0x80040001 ES opcode (decimal1)

4 CARD32 drawable

4 CARD32 BufferMode (True if double-bu�ering)

PEXEscape (ES_ESCAPE_SWAPBUFFER)

4 0x80040002 ES opcode (decimal2)

4 CARD32 drawable

PEXEscapeWithReply (ES_ESCAPE_SWAPBUFFERCONTENT�hrequesti)

4 0x80040003 ES opcode (decimal3)

4 CARD32 drawable

PEXEscapeWithReply (ES_ESCAPE_SWAPBUFFERCONTENT�hreplyi)

4 0x80040003 ES opcode (decimal3)

4 CARD32 content (ES_DB_SWAP_CONTENT_UNDEFINED)

Writing HP PEXlib Programs 6-69

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Evans & Sutherland Escape Requests

By specifying the Evans & Sutherland escape requests the following de�ned
functionality is accessed.

ES_ESCAPE_DBLBUFFER|This request sets up the speci�ed drawable to be
double bu�ered. Drawing commands directed at this drawable are written
into the undisplayed bu�er when the bufferMode is ES_RENDERER_DBLBUFFER.
A back (undisplayed) bu�er is allocated when this escape is received with
bufferMode set to ES_RENDERER_DBLBUFFER. The back bu�er is deallocated
when this escape is received with bufferMode set to
ES_RENDERER_SINGLEBUFFER.

Sending this escape with bufferMode set to ES_RENDERER_SINGLEBUFFER when
the drawable is already single-bu�ered has no e�ect. Sending this escape
with bufferMode set to ES_RENDERER_DBLBUFFER when the drawable is already
double-bu�ered has no e�ect. Sending this escape when the RendererState is
Rendering has an e�ect that is implementation-dependent.

This escape is not intended to enable mixing X and PEX graphics. Attempts
to do so when the renderer is in double-bu�er mode produces implementation-
dependent results. It is recommended that applications use either the X Multi-
bu�er Extension (MBX) or this escape for double bu�ering, but not both.
MBX should always be used if available.
ES_ESCAPE_SWAPBUFFER|This request swaps bu�ers on the speci�ed draw-
able. The undisplayed bu�er becomes the displayed bu�er and the pre-
viously displayed bu�er is in a state described by the value returned by
ES_ESCAPE_SWAPBUFFERCONTENT. Sending this escape with a drawable that is
not double-bu�ered has no e�ect. Sending this escape when the RendererState
is Rendering has an e�ect that is implementation-dependent.

6-70 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

ES_ESCAPE_SWAPBUFFERCONTENT|This escape (the only one that is a
PEXEscapeWithReply) returns the same value for a given drawable at all times.
It is unnecessary to issue this escape after every swap because the state of the
previously-displayed bu�er remains consistent for the drawable. The possible
values of the content are:
ES_DB_SWAP_CONTENT_UNDEFINED means that the content of the previously-
displayed bu�er is unde�ned. This is the HP value.
ES_DB_SWAP_CONTENT_CLEAR_TO_BACKGROUND means that the previously-
displayed bu�er is cleared to background after the \swap bu�er" request.
ES_DB_SWAP_CONTENT_UNCHANGEDmeans that the previously-displayed bu�er
content is unchanged after the \swap bu�er" request.
ES_DB_SWAP_CONTENT_FRONTBUFFER means that the previously-displayed
bu�er has the same content as the currently-displayed bu�er after the \swap
bu�er" request.

If the speci�ed escape identi�er is not supported, a value error is generated.

Writing HP PEXlib Programs 6-71

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

HP Escape Request

The HP escape, HP_ESCAPE_DFRONT, is a companion escape to the Evans &
Sutherland double-bu�ering escapes described above. It allows you to set the
Renderer drawing destination to either the front (visible) bu�er or the back
(hidden) bu�er. This feature is useful for supporting interactive echoes over
a visible rendered image and it allows bu�er swapping to be reserved for
actual image regeneration alone, rather than requiring both echoes and image
regeneration to jointly control bu�er swapping.

By specifying the HP companion escape request, the following de�ned function-
ality is accessed:

HP_ESCAPE_DFRONT|If bu�ers have been allocated for the drawable via the
ES_ESCAPE_DBLBUFFER request:
If render_to_front_buffer is True, the front, visible bu�er is the renderer's
drawing destination.
If render_to_front_buffer is False, the back, hidden bu�er is the
destination. The e�ect is visible at the next request that causes the renderer
to draw.

If no bu�ers have been allocated for the drawable, this escape has no e�ect
until double bu�ering is turned on. Just as for the Evans & Sutherland
escapes, this HP escape is intended to a�ect only PEX Renderer drawing,
not X drawing. E�ects on X drawing are implementation-dependent.

6-72 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Inquiring Supported Escapes

You can use the enumerated type descriptors to inquire which double-bu�ering
escapes are supported. These are also de�ned in the implementation-dependent
header �le, PEXHPlib.h.

The enumerated-type mnemonic strings and values returned from
PEXGetEnumTypeInfo when inquiring with PEXEscape are:

Table 6-28. Inquiring Supported Escapes

EnumType

Value
Enumerated Type Descriptor Returned Mnemonic String

0x8401 ES_ESCAPE_ET_DBLBUFFER ES_ESCAPE_DBLBUFFER

0x8402 ES_ESCAPE_ET_SWAPBUFFER ES_ESCAPE_SWAPBUFFER

0x8403 ES_ESCAPE_ET_SWAPBUFFERCONTENT ES_ESCAPE_SWAPBUFFERCONTENT

0x8701 HP_ESCAPE_ET_DFRONT HP_ESCAPE_DFRONT

Structures

Search context resources are not supported with HP PEX 5.1v3 and later releases;
however, protocol requests can be issued to PEX servers that do support search
contexts.

Floating Point Formats/Conversions

The O'Reilly PEXlib Programming Manual , Section 15.6.4, \Copying Output
Commands Between Servers," describes the transmission of data and the need
for conversion of oating-point formats between servers. At this release of HP
PEXlib, oating-point conversion support is not implemented. This means
that an application using HP PEXlib to generate PEX protocol to a non-HP
server that does not support PEXIEEE_754_32 oating-point format will fail when
PEXInitialize is called. Any attempt to use other oating-point formats will
silently fail when using the PEX Protocol Method.

Writing HP PEXlib Programs 6-73

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Lighting, Shading, and Depth Cueing

Texture Mapping

Texture mapping simulates a wide variety of surface material properties and detail
for relatively modest costs in computation. Speci�c control of interior colors and
transparency of an area primitive results from a special \mapped" correspondence
between a texture image and 3D surface during rendering.

PEX support for texture mapping is currently under development by the PEX
consortium, as noted in the PEXlib Programming Manual (16.1.9). However,
HP is supporting CGE-extension texture mapping in the HP PEX 5.1v3 and
5.1v4 product releases. As such, a tutorial for texture mapping and the HP
implementation details of the extension are covered in the later chapters of this
book with the other advanced features (see Chapter 10).

3D Wireframe Modelling

If PowerShade is not installed, certain lighting and shading functions are disabled,
leaving 3D wireframe functionality still available. Speci�c lighting and shading
functions that are disabled in the wireframe con�guration are:

Lighting
Surface- and polyline shading
Alpha- or screen-door transparency
Z-bu�ering
Antialiasing
Model clipping
Facet distinguishing

In order for code to run unmodi�ed on workstations regardless of PowerShade,
errors as a result of calls to these non-supported functions are not reported. Also,
the following attributes retain their default values despite attempts to change
them:

Facet distinguishing ag defaults to FALSE

Model clip ag defaults to PEXNoClip

6-74 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The following table illustrates the enumerated types and implementation-
dependent constants that are di�erent in the 3D wireframe con�guration than
when PowerShade is present.

Table 6-29.

Enumerated Types and Implementation-Dependent Constants

LUT HP PEX 5.1v4

Enumerated Types

PEXETHLHSRMode PEXHLHSROff

PEXETPolylineInterpMethod PEXPolylineInterpNone

PEXETSurfaceInterpMethod PEXSurfaceInterpNone

PEXETReflectionModel PEXReflectionNone

Antialiasing GSE Unsupported

Gamma Escape Supported, but has no e�ect

Implementation-Dependent Constants

PEXIDTransparencySupported False

Hidden Line and Hidden Surface Removal

Hewlett-Packard makes no implementation-dependent additions to these func-
tions of PEXlib. See \Renderers", next.

Writing HP PEXlib Programs 6-75

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Renderers

HP PEXlib o�ers immediate dynamics for all attributes, including Lookup Tables
and Nameset contents.

This list describes the speci�cs of immediate dynamics for hlhsr_mode, if changed
while the renderer is active:

Table 6-30. HLHSR Mode Transition Behaviors

To!
From#

O� Z Bu�er Z Bu�er
Read-Only

Z Bu�erID Z Bu�erID
Read-Only

O� 1 1 1 1

Z Bu�er 3 2 2 2

Z Bu�er Read-Only 3 2 2 2

Z Bu�erID 3 2 2 2

Z Bu�erID Read-Only 3 2 2 2

1. Transitions from Off to any other mode may cause allocation of a Z Bu�er
and can potentially generate an allocation error. If traversal-time control of
Z-Bu�er comparisons is needed, HP recommends that a \Z Bu�erID" mode
be used at PEXBegin* and PEXSetHLHSRIdentifier be used during traversal.

2. Switching between HLHSR modes other than Off can be done while the
renderer is active. Z-bu�er contents are preserved.

3. Transitions from any mode to Offmay deallocate the Z Bu�er and the contents
may not be preserved.

The NPC Subvolume and Viewport

While this is standard PEX behavior, it is important to note that the viewport
attribute value does not track the window size when use_drawable is True;
therefore, inquiring it is not a substitute for standard ways of acquiring the
window size such as XGetWindowAttributes.

Pipeline Contexts

There have been no additions by HP to this section.

6-76 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Lookup Tables

Color Approximation

The color approximation lookup table (LUT) does not support arbitrary
de�nitions of type PEXColorSpace. The default entry for the LUT may not
represent the supported de�nition of that type for drawables of a particular depth
and visual class. However, the prede�ned entry in a LUT that has been created
for that visual and class does represent the supported de�nition.

Servers from other vendors may support arbitrary values. It is the application's
responsibility to use the LUT appropriately. The color approximation LUT on
most devices respects the dither ag. The implementation-dependent constant
DitheringSupported is false on devices that never dither. It is True on devices
where dithering is possible and on those devices the dither hint in the color
approximation LUT entry may or may not have an e�ect, depending on the
device. If it has no e�ect, then dithering is always used.

Writing HP PEXlib Programs 6-77

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Color

When realized values are inquired from the color LUT, the values will be in the
same color type used when the entry was speci�ed.

Visible LUT behavior is speci�ed in the table \LUT Default Entries" below.
These are the values that are used when there isn't a current LUT of the speci�ed
type bound to a renderer, or if the entry being indexed does not exist and there
is not any entry at the default index of the LUT.

The values shown in the table are also the values of the prede�ned entries for the
LUTs in all cases except Color and ColorApprox LUTS. In the case of a Color

LUT, entries 0{7 are de�ned as:

Table 6-31. Visible LUT Behavior

0 (0.0,0.0,0.0) Black

1 (1.0,1.0,1.0) White

2 (1.0,0.0,0.0) Red

3 (1.0,1.0,0.0) Yellow

4 (0.0,1.0,0.0) Green

5 (0.0,1.0,1.0) Cyan

6 (0.0,0.0,1.0) Blue

7 (1.0,0.0,1.0) Magenta

6-78 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

In the case of ColorApprox LUTs, the prede�ned entries depend on the drawable
(visual) characteristics associated with the LUT.

Writing HP PEXlib Programs 6-79

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-32. LUT Default Entries

LUT HP PEX 5.1v2

LineBundle

line_type PEXLineTypeSolid

polyline_interp PEXPolylineInterpNone

curve_approx PEXApproxImpDep,
(PEXApproxDCRelative), 1.0

line_width 1.0

line_color fPEXColorTypeIndexed, 1g

MarkerBundle

marker_type PEXMarkerAsterisk

marker_scale 1.0

marker_color fPEXColorTypeIndexed, 1g

TextBundle

text_font_index 1

text_precision PEXStrokePrecision

char_expansion 1.0

char_spacing 0.0

text_color fPEXColorTypeIndexed, 1g

TextFont

font Roman8

View

clip_flags PEXClippingAll

clip_limits (0.0, 0.0, 0.0), (1.0, 1.0, 1.0)

orientation (identity matrix)

mapping (identity matrix)

6-80 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-32. LUT Default Entries (continued)

LUT HP PEX 5.1v2

InteriorBundle

interior_style PEXInteriorStyleHollow

interior_style_index 1

surface_color fPEXColorTypeIndexed, 1g

reflection_attr f1.0, 1.0, 1.0, 0.0, 0.0
(PEXColorTypeIndexed, 1)g

reflection_model PEXReflectionNone

surface_interp PEXSurfaceInterpNone

bf_interior_style PEXInteriorStyleHollow

bf_interior_style_index 1

bf_surface_color fPEXColorTypeIndexed, 1g

bf_reflection_attr f1.0, 1.0, 1.0, 0.0, 0.0
(PEXColorTypeIndexed, 1)g

bf_reflection_model PEXReflectionNone

bf_surface_interp PEXSurfaceInterpNone

surface_approx fPEXApproxImpDep,
(PEXApproxDCRelative), 1.0 ,1.0g

EdgeBundle

surface_edges PEXOff

surface_edge_type PEXSurfaceEdgeSolid

surface_edge_width 1.0

surface_edge_color fPEXColorTypeIndexed, 1g

Pattern

not supported

Writing HP PEXlib Programs 6-81

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-32. LUT Default Entries (continued)

LUT HP PEX 5.1v2

Light

light_type PEXLightAmbient

direction (0, 0, 0) (not used for ambient light)

point 0.0 (not used for ambient light)

concentration 0.0 (not used for ambient light)

spread_angle 0.0 (not used for ambient light)

attenuation 0.0 (not used for ambient light)

color fPEXColorTypeRGB, (1.0,1.0,1.0)g

DepthCue

mode PEXOff

front_plane 1.0

back_plane 0.0

front_scaling 1.0

back_scaling 0.5

color fPEXColorTypeIndexed, 0g

ColorApprox

approxType PEXColorSpace

approxModel PEXColorApproxRGB

max1 5

max2 5

max3 5

dither PEXOff

mult1 36

mult2 6

mult3 1

weight1 1.0

weight2 0.0

weight3 0.0

basePixel 40

color fPEXColorTypeRGB, (1.0,1.0,1.0)g

6-82 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Namesets, Filters, and Searching

Hewlett-Packard makes no implementation-dependent additions to these func-
tions of PEXlib.

Picking

HP PEX supports the PEXPickLast method for PickOne traversals and the
PEXPickAllAll method for PEXPickAll traversals. Neither of these methods
uses the current setting of HLHSR.

Echo and Highlighting Filter

The actual visual appearance of echo and highlight modes is an implementation-
dependent choice that is not prescribed by the PEX and PEXlib speci�cations.
The following are the echo and highlight attributes for HP PEXlib:

Echo Mode Attributes

All primitive color attributes are set to the current echo color. The
default echo color is white, but can be changed either by setting the
HPPEX_DHA_ECHO_COLOR environment variable (before starting the client) or
by calling PEXSetEchoColor()

Line and surface edge types are solid
Interior style is set to outline mode
Drawing mode is \exclusive or" as described in the next section
Lighting is disabled
Line and surface color interpolation is disabled
Antialiasing is disabled
Depth cueing is disabled
HLHSR computations are disabled
Front- and backface facet distinguishing is disabled
Alpha blending is disabled
Line width is disabled

Writing HP PEXlib Programs 6-83

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Highlight Mode Attributes

All primitive color attributes are set to the highlight color. The default
highlight color is white, but can be changed before the client is started by
setting the HPPEX_DHA_HIGHLIGHT_COLOR environment variable or by calling
PEXHPOCCSetHighlightColor().
Line color interpolation is disabled

Implications of The Exclusive Or Drawing Mode

HP PEXlib implements echo mode using \exclusive or" drawing mode for rapid
display and erasure of echo images. This implementation causes the following
behaviors:

Draw and erase (PEXEcho and PEXUnecho) of primitives must be exactly paired
to achieve the desired results. For example, consider a primitive that is �rst
rendered with PEXEcho mode. A subsequent rendering with PEXUnecho mode
erases the primitive expected, but a second PEXUnecho rendering causes the
primitive to be displayed again rather than being erased as PEXUnecho implies.
The actual echo color rendered varies from the speci�ed echo color in di�erent
image locations based upon the frame bu�er contents prior to echoing.

Error Handling

HP PEX prints additional information for PEX errors.

6-84 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

A Final Word About Writing Efficient Programs . . .

The discussion in Chapter 3 described how selection of the proper protocol
method for the circumstances could improve performance (whether DHA, PEX,
or X). In this section, the application developer can also improve performance by
considering these general rules:

Performance of HP PEXlib is improved if, in a series of OC commands, multiple
OC targets are not alternated, or intermixed. The best performance is achieved
when you send a series of OCs to one target, switch to the next, send series
#2, switch, and so on. Using target one, then two, then three, then one, then
two, then three, etc., causes multiple context switches and promotes thrashing.
Similarly, avoid mixing attribute changes and primitives together, and avoid
redundant attribute changes if possible.
Namesets that start names at 0 and increment by 1 o�er best performance.
Do not use names higher than 1024 because some other implementations of
PEX do not support these.

Also see Chapter 5 for hints on tuning performance. A variety of factors that
a�ect performance have been documented in order to help an application writer
better understand the variety of factors and tools that need to be considered
when addressing performance issues. These performance hints are also available
in the HP PEXlib on-line documentation.

Fast Macros

For higher performance, some of the PEXlib OC entry points are de�ned as
macros instead of procedures. If it is necessary for your application that the
PEXlib OC entrypoints be true procedures, you'll need to use the compile
line option -DHPPEX_PROCEDURES. If your application requires one particular
OC entrypoint to be a true procedure, then the C preprocessor statement,
#undefhentrypoint namei can be used to unde�ne the macro for the named
procedure after the #include <X11/PEX5/PEXlib.h>. When linked, the symbol
will bind with the true procedure.

Writing HP PEXlib Programs 6-85

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Using fast macros for an incremental gain in performance has some programming
drawbacks. These are:

You cannot take the address of a PEXlib entrypoint that is implemented as a
macro. If the application had its own list that stored the address of PEXlib
procedures, it would not compile while using fast macros.
You cannot do this:

#define RENDER display, resource_id, PEXOCRender

PEXFillArea(RENDER, ...);

6-86 Writing HP PEXlib Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

7
HP PEX 5.1v3|Selected 5.2 PEXlib
Functionality

Overview of HP PEX5.1v3

This chapter is intended to give an overall view of what is new or di�erent about
HP-PEX in the 5.1v3 release. There are both new features and entrypoints, and
changes in support for existing features.

Note that a newer release of HP-PEX is now available. For information on HP-
PEX 5.1v4, see Chapter 8.

Background Information

Previous releases of HP-PEX have been PEX 5.1 based. The initial release (HP-
PEX 5.1v1) was a richly featured, almost complete implementation of the PEX
5.1 standard, and had only a few extensions beyond the standard (most of them
were related to double-bu�ering support). 5.1v1 was released in conjunction with
HP-UX 9.01.

The second release (5.1v1.1) added support for the HP 712 systems, and included
some defect �xes. This release was made available as a patch update to 9.01, but
was most closely associated with HP-UX 9.03.

The third release (5.1v2) added support for the CGE PEX 1.0 extension set,
including texture mapping, drafting primitives, and other features agreed upon
by the participants in COSE. In addition, there were new HP extensions for
capping, deformation, and other HP customer-requested features. Support was
also added for the HCRX family of displays. This release was associated with HP-
UX 9.05; in fact, HP-PEX runtime support was bundled with the basic system
at this release.

HP PEX 5.1v3 includes some functionality and interfaces from the future
PEX/PEXlib 5.2 standards. These features are being implemented in advance
of the �nal standards, because HP believes that they will have signi�cant

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

value in many PEXlib applications. In some cases, minor di�erences between
the HP implementation and the �nal PEX 5.2 standard may occur, but none
should require more than very minor adjustments to make your application 5.2
conformant. It is important to note that 5.1v3 is not a complete PEX 5.2
implementation; instead, as the release name implies, it is PEX 5.1, plus CGE
PEX 1.0 extensions, plus certain selected items from the PEX 5.2 draft standard.
Some of these 5.2 features may be available only from HP for some time to come,
so use of them is a consideration for portability and interoperability. Nevertheless,
you may �nd them very valuable in the interest of performance, functionality, and
experimentation with some important features of PEX/PEXlib 5.2.

Features have been added that improve performance as well as usability. See
Chapter 5 here or in the on-line documentation.

Global Description of the HP-PEX 5.1v3 Release

Functionality Affecting Performance Improvements:

OCC interface from the 5.2 PEXlib Speci�cation
Stride and Unpacked Data Models from the 5.2 PEXlib Speci�cation
Structure Permissions Accessible with PEXSetStructurePermission() from
the PEXlib 5.2 Speci�cation
Documentation on \Performance Hints"

Additional 5.2 PEX Functionality

Z-Bu�er Read and Write Operations
Plane Mask
Drawing Mode

New Device and System Support

HP Visualize-8/-24/-48: New 3D Graphics Accelerated Devices
DBE: Simple X Double-Bu�ering Extension

7-2 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Programming Interfaces for Generating Output
Commands

PEXlib Explicit Interface

PEXlib o�ers two major argument interfaces for the output command functions:
the explicit interface and the output command context, or \OC Context" (OCC)
interface.

The explicit interface is the interface de�ned for PEXlib 5.1 and is included in
the PEXlib 5.2 speci�cation for backwards compatibility, so PEXlib 5.1 programs
compile with PEXlib 5.2 libraries. Although you may still use the explicit
interface, you are encouraged to use the OCC interface to take advantage of the
performance and functional improvements available in PEXlib 5.2. All output
commands using the explicit interface use the same �rst three arguments:

display Speci�es the display connection.

resource_id Speci�es the resource identi�er for the targeted renderer (for
displaying output commands immediately) or structure (for
storing output commands).

req_type Speci�es whether the application renders the output commands
immediately (in which case the resource_id argument identi�es
the renderer resource), or stores the output commands in a
structure (in which case the resource_id argument identi�es
the structure resource)

The explicit interface requires that you specify all arguments on every output
command function you invoke.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXlib Output Command Context (OCC) Interface

The output command context interface (introduced with PEXlib 5.2) requires
that the �rst argument always be the OC context, replacing the three arguments
listed above. The OC context is an opaque structure that contains many of the
arguments that are commonly found in the output command functions. Your
application uses a set of special OCC manipulation functions to modify the
�elds in the opaque OC context. Then your application uses the OC Context
in subsequent invocations of output command functions. The OCC interface
uses far fewer arguments than the explicit interface, making coding easier and
improving performance in some implementations.

Note: the attribute and primitive output commands introduced after 5.1 do not
o�er the explicit argument interface format. This is to encourage the use of the
OCC argument interface in newer applications over the older explicit interface.

Flexible Data Formats

The OCC style functions for primitives that have facet and/or vertex data
parameters allow you to supply the graphical data (coordinates, vertex attributes,
facet attributes, and oating-point data) in packed, stride, or unpacked form.
The packed form is the only form supported in PEXlib 5.1 and requires you to
format the data into packed data structures de�ned by PEXlib. The stride form
is more exible and allows you to supply data formatted in application-de�ned
structured arrays without the need to copy the data into the PEXlib-de�ned
structures before invoking the PEXlib function. The unpacked form allows you
to supply the data in separate lists for each data type.

Data Alignment

On many machine architectures, data alignment can be very important for
performance and correct execution. For example, some machines require that
pointers point to word boundaries when accessing word-length data items.
Because the OCC interface allows you to control the o�set applied to pointers
for data accesses, you should be extra careful when specifying OCC pointers and
o�sets to ensure that you are following your machine's data alignment policies.

7-4 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Output Command Context (OC Context or OCC)

The OC Context maintains the state of some common PEXlib arguments across
PEXlib function calls. The OC context enables you to set the desired values
of these arguments and then reuse them by specifying just the OC Context in
several subsequent function calls. This eliminates the need to re-specify these
same arguments in every function call, reducing redundancy and improving
performance in some environments.

The OC Context itself is an opaque data structure with members that are referred
to as values. Programs cannot alter the values of the OC Context directly.
Instead, programs must use additional function calls to manipulate the values of
the context. This ensures that the PEXlib implementation is informed whenever
an OC Context value is changed.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Data Structures

The primary data structure used with the OC Context is the PEXOCCValues data
structure which you use to set the value �elds via the bitmask/value mechanism.
It is important to realize that you do not alter the OC Context itself. You instead
specify your desired changes in the PEXOCCValues data structure and use OCC
functions to alter the OC Context with this data structure as input. The default
values assigned to the OC Context, when your application creates it, are also
given below:

typedef struct { /* DEFAULT Values */

Display *display; /* undefined */

PEXRenderer renderer; /* undefined */

PEXStructure structure; /* undefined */

PEXOCRequestType req_type; /* PEXOCRender */

int shape_hint; /* PEXShapeUnknown */

int ignore_edges; /* False */

int contour_hint; /* PEXContourUnknown */

int contours_all_one; /* False */

unsigned int facet_attributes; /* PEXGANone */

unsigned int line_vertex_attributes; /* PEXGANone */

unsigned int marker_vertex_attributes; /* PEXGANone */

unsigned int surface_vertex_attributes; /* PEXGANone */

unsigned int edge_attributes; /* PEXGANone */

unsigned int facet_fp_data_count; /* 0 */

unsigned int line_vertex_fp_data_count; /* 0 */

unsigned int marker_vertex_fp_data_count; /* 0 */

unsigned int surface_vertex_fp_data_count; /* 0 */

int color_type; /* PEXColorTypeRGB */

char *encoding_state; /* NULL Pointer */

int data_model; /* PEXDataPacked */

union {

PEXOCCStrideData stride;

PEXOCCUnpackedData unpacked;

} data_model_specs;

} PEXOCCValues;

7-6 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

typedef struct { /* all members 0 */

int facet_stride;

int vertex_stride;

int facet_color_offset;

int facet_normal_offset;

int facet_fp_data_offset;

int vertex_coord_offset;

int vertex_color_offset;

int vertex_normal_offset;

int vertex_edge_offset;

int vertex_radius_offset;

int vertex_axes_offset;

int vertex_angle_offset;

int line_vertex_fp_data_offset;

int marker_vertex_fp_data_offset;

int surface_vertex_fp_data_offset;

} PEXOCCStrideData;

typedef struct { /* all members 0 */

int facet_color_size;

int facet_normal_size;

int facet_fp_data_count;

int vertex_coord_size;

int vertex_color_size;

int vertex_normal_size;

int vertex_edge_size;

int vertex_radius_size;

int vertex_axes_size;

int vertex_angle_size;

int line_vertex_fp_data_count;

int marker_vertex_fp_data_count;

int surface_vertex_fp_data_count;

} PEXOCCUnpackedData;

The semantics of each member in the PEXOCCValues structure is the same as it
is in the explicit interface.

Specify all size and o�set members in terms of bytes. The htypei_fp_data_count
members represent the number of oating point values.

The encoding_state member is reserved for use by future internationalized text
functions to retain character encoding state for languages that require it.

The data_model member indicates the data model used to pass vertex and facet
data to OCC primitive functions. You should set this member to PEXDataPacked,
PEXDataStride, or PEXDataUnpacked.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

The OCC itself is de�ned as:

typedef struct _PEXOCC *PEXOCC;

{

XExtData *ext_data; /* hook for extension */

/* PEXlib private data */

}

#endif

*PEXOCC;

You cannot access any members within the OCC directly. You must simply pass
the OCC to functions that modify or use the contents of the context structure.

Sample Usage of the OCC

To invoke the OC functions that use the OC Context, your application must �rst
create an OC Context with the PEXCreateOCC function. This function returns an
OC Context initialized with default values for future reference. The application
can change the default context values when it creates the OC Context and/or can
change values later by invoking the PEXChangeOCC function. These two functions
set the value �elds via a bitmask/value mechanism and are suitable when you are
setting several values at once. There are also OC Context convenience functions
that, through a simpler interface, enable you to set only one value per function
in the OCC.

7-8 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Here is a coded example of how to use the OC Context. The last two statements
illustrate the di�erence between an OCC function and a non-OCC function:

PEXOCCValues ocvalues;

unsigned int mask;

PEXOCC myocc;

ocvalues.display = my_display;

PEXSetOCCValueMask(&mask, PEXOCCMDisplay);

ocvalues.renderer = my_renderer;

PEXSetOCCValueMask(&mask, PEXOCCMRenderer);

ocvalues.color_type = PEXColorTypeRGB;

PEXSetOCCValueMask(&mask, PEXOCCMColorType);

ocvalues.surface_vertex_attributes = PEXGAColor;

PEXSetOCCValueMask(&mask, PEXOCCMSurfaceVertexAttributes);

myocc = PEXCreateOCC(&mask), &ocvalues);

PEXOCCTriangleStrip(myocc, NULL, count, vertices);

/* This is the old, explicit interface */

PEXTriangleStrip(display, resource_id, req_type, PEXGANone,

PEXGAColor, 0, 0, PEXRGBFloat, NULL, count, vertices);

Invoke the PEXFreeOCC function to deallocate the memory associated with the
OC Context.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Facet/Vertex Data Formats

There are three ways to provide facet and vertex data to PEXlib:

Packed Data Format (PEXlib 5.1 method)

Unlike the stride and unpacked formats, you can use the packed data format with
either OCC primitive functions or with non-OCC primitive functions. The use of
the packed data format with non-OCC functions, as with PEXlib 5.1 functions,
is as follows (this example has no facet data and supplies colors and normals in
the vertex data):

PEXVertexRGBNormal my_vertices[20];

PEXArrayOfVertex verts;

/* code to init my_vertices */

verts.rgb_normal = my_vertices;

PEXTriangleStrip(display, rend, PEXOCRender, 0,

PEXGAColor | PEXGANormal, PEXColorTypeRGB,

NULL, 20, verts);

You can also use packed data format with OCC style functions, which you may
�nd useful when converting older code to use the OCC style functions:

PEXVertexRGBNormal my_vertices[20];

/* code to init my_vertices */

PEXOCCTriangleStrip(context, NULL, 20, my_vertices);

This usage assumes that you have already initialized the OC Context �elds
with the correct values. In particular, you need to set the display, renderer
(or structure), req_type, surface_vertex_attributes, color_type, and
data_model (PEXDataPacked, of course) �elds. Unless these �elds change,
you only need to set these once. You do not need to set any �elds in the
data_model_specs union.

Also, you do not need the PEXArrayOfVertex union to pass the vertex data in
the function. The type of the facet and vertex data parameters is PEXPointer,

7-10 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

which allows you to pass any type in this parameter. This is important for the
stride interface described in the next section. However, for both facet and vertex
data, you are responsible for making sure that the data you are passing accurately
reects the attributes that you set in the facet or vertex attribute �elds.

PEXlib does not supply a set of structure type de�nitions for facet or vertex data
that include oating-point data because there is no way to determine how many
oating point numbers you want to supply with a facet or vertex. Therefore, you
may �nd it convenient to design your own data structure to pass in the facet
or vertex parameters of some OC functions when using the PEXDataPacked data
model. You need to design the data structure with the following ordering rules
in mind.

For facet data, the required order is:

PEXColor* One of the PEXlib color types, if provided.

PEXVector Normal, if provided.

float[n] Floating point data, if provided.

For vertex data, the required order is:

PEXCoord (or PEXCoord2D) Center.

PEXColor* One of the PEXlib color types, if provided.

PEXVector Normal, if provided.

unsigned int Edges, if provided.

float[n] Floating point data, if provided.

As an example, if you wish to supply vertex data for FillArea using 3D
coordinates, RGB oating-point colors and three oating-point numbers (for
texture data), you would create a structure like this:

typedef struct {

PEXCoord center;

PEXColorRGB rgb;

float texture_data[3];
} MY_PEXRGBTextureVertexData;

Remember to set the correct surface vertex attributes in the OCC. In this
case you would make sure that the PEXGA2D ag is o�, the PEXGAColor

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

is on and the PEXGAFloatData ag is on. You set the color_type �eld
in the OCC to PEXColorTypeRGB and the number of oats in the OCC
(surface_vertex_fp_data_count) to three.

You may then pass the address of an array of these structures directly in the
OCC form of a function:

MY_PEXRGBTextureVertexData my_vertices[20];

/* code to init my_vertices */

PEXOCCTriangleStrip(context, NULL, 20, my_vertices);

Stride Data Format

The stride format allows you to access the facet and vertex data directly from
application data structures if the data is arranged in a \structured array" format,
where the application stores facet or vertex data in an array of structures; each
structure in the structured array corresponds to data for a single facet or vertex
along with other application speci�c data. You specify the size, or \stride" of
each array element and the o�sets of each of the facet or vertex data items within
the array element. Using this format, you eliminate the need to copy the facet
or vertex data from the application data structure to an array of PEXlib packed
data structures.

The stride format was initially designed because applications often have data
stored in di�erent structures than the PEXlib OC entry points require. Some-
times application data is stored in a structure that represents a single vertex,
or sometimes it is in a structure that represents all the colors that will be used.
Often this data format does not change or changes infrequently. For an imple-
mentation of PEXlib this means that the speci�c data values will not need to
be checked to see if they have changed which can improve performance in DHA,
immediate mode.

7-12 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Here is an illustration of the stride model, using vertex data:

Figure 7-1. Stride model, with vertex data

In this example, you supply a pointer to the beginning of the structured array in
the function call.

PEXOCCTriangleStrip(context, NULL, 20, vertex_data_pointer);

To use the PEXDataStride format, you need to set some additional members
in the OC Context to inform PEXlib of the details of your data's format. The
following steps use the \bitmask/value" method of initializing the OC Context.
You may instead create the OC Context �rst and then use the convenience
functions, or use a combination of the two approaches.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Fill in the appropriate members of a PEXOCCValues data structure:
Assign all the members of the PEXOCCStrideData data structure that are
applicable to your data. You only need to set the members for the vertex or
facet data that you are actually using. The PEXOCCStrideData structure is
a part of the data_model_specs union, so you should use the stride union
member to access this structure.
Assign the value PEXDataStride to the data_model member of the PEXOC-
CValues structure.
Assign other members of the PEXOCCValues structure such as display,
renderer, color_type, etc., as discussed in previous sections.

Use the PEXSetOCCValueMask function to set a bit in a bitmask that
corresponds to every member you initialize in the PEXOCCValues data structure.
Use the PEXOCCValues data structure and the bitmask you have initialized to
create an OC Context with the PEXCreateOCC function.

Once the OCC is created and initialized, you may use it multiple times to draw
primitives using graphic data whose form is described by the PEXOCCStrideData
structure you have de�ned. The OCC-style primitive functions accept data
parameters of type void*, so you may pass a pointer to your data that is of
any type, including application-speci�c types.

Some primitives, such as Fill Area Set and Polylines (Polyline Set) are de�ned
by a nested list of vertices. Since you cannot work directly with a nested list of
vertices, you use the \PEXListOfVertexData data structure", which looks like:

typedef struct {

unsigned long count;

PEXPointer vertices;

} PEXListOfVertexData;

7-14 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

For each �ll-area-set contour or polyline in the set, you allocate one of these
structures and �ll it in with the number of points in that contour or line and a
pointer to the �rst vertex in the list. Note that the type of the vertices pointer
is PEXPointer, so you set this pointer to point to a structured array, just as in
the non-nested case. The list of these PEXListOfVertexData structures must be
contiguous and you pass the address of the �rst one in the vertex data argument
of the primitive function call.

Figure 7-2. Application Vertex Data

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Unpacked Data Format

You use this data format when your data is arranged in lists or arrays of points,
colors, normals, etc. Each of these lists can reside anywhere in memory, since
you supply a pointer to the start of each list. You also must specify the size
of each element in the list by using the PEXOCCUnpackedData member of the
data_model_specs union.

Figure 7-3. Unpacked Data Model

7-16 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Using the PEXDataUnpacked format is similar to using the PEXDataStride

format, except:

Set the data_model member to the value of PEXDataUnpacked.
Set the appropriate members of the PEXOCCUnpackedData member of the
data_model_specs union with the values that reect your data's organization.
You only need to set the members for the vertex or facet data components that
you are actually using.

For unpacked data, you need to pass pointers to the beginning of each list of
data by placing them in the following structure and passing the address of this
structure in the PEXlib function.

typedef struct {

PEXPointer coords;

PEXPointer colors;

PEXPointer normals;

PEXPointer edges;

PEXPointer radii;

PEXPointer axes;

PEXPointer angles;

PEXPointer fp_data;

} PEXUnpackedVertexData;

An example of using the unpacked data pointers:

PEXUnpackedVertexData verts;

verts.coords = my_coords;

verts.colors = my_colors;

verts.normals = my_normals;

verts.fp_data = my_fp_data;

PEXOCCTriangleStrip(context, NULL, count, &verts);

When working with facet data, use the PEXUnpackedFacetData data structure.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Some primitives, such as �ll area set and polylines (polyline set) are de�ned by
a nested list of vertices. Since you cannot work directly with a nested list of
vertices, you use the PEX ListOfVertexData data structure, which looks like:

typedef struct {

unsigned long count;

PEXPointer vertices;

} PEXListOfVertexData;

For each Fill Area Set Contour or Polyline in the set, you allocate one of these
structures and �ll it in with the number of points in that contour or line and a
pointer to the �rst vertex in the list. Note that the type of the vertices pointer
is PEXPointer, so you set this pointer to point to a PEXUnpackedVertex data
structure, just as in the non-nested case. The list of these PEXListOfVertexData
structures must be contiguous and you pass the address of the �rst one in the
vertex data argument of the primitive function call.

Figure 7-4. PEX Unpacked Vertex Data Structures

7-18 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Errors and Output Command Errors

The PEX output commands are designed so that the PEX implementation can
often continue to process an OC with an error in it by using defaults or fall-back
values. However, in some cases, it is not practical to de�ne a reasonable fall-back
value and so the PEX implementation stops processing OCs and generates an
error, usually a BadPEXOutputCommand error.

Many BadPEXOutputCommand errors are very speci�c to the output command and
are listed with the function. There are another set of errors that are common to a
number of output commands and are not generally listed with each OC function.

BadPEXOutputCommand: Most cases are listed with each OC. Some of the causes
common to many OCs are:

An argument expected to contain a value from a �xed enumeration contains
an unde�ned value. An example of this is the text_path text attribute. If you
stick with the listed possibilities, or possibilities allowed by an extension, then
you should not get errors.
The color data is not in a format supported by the PEX implementation. Since
a large number of output commands use color data, this error is not listed with
each OC function.
Setting a bit in a bitmask to one when that bit is de�ned as unused. To avoid
errors, set only bits that have been de�ned by PEXlib, though some PEX 5.1
implementations may tolerate the setting of unde�ned bits.

Run-Time Errors

The PEXOCCSet* functions ignore unde�ned bits in the mask argument. Any error
in setting the OC context will not become apparent until the OCC is actually
used in an OC function that uses the OC context.

PEXOCCSet Functions will return a bad status if the OCC functions do return a
status, then the application can check for an error.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Simplified OCC functions for Primitive OCs

Beginning with PEXlib release 5.1v3, the output command context (OCC) makes
it possible to generate primitives that use a wide variety of attributes with a
smaller number of functions. The following table describes what OCC functions
to use to generate the corresponding primitive in terms of the non-OCC function
form. Primitives added after PEXlib release 5.1v3 will, in general, be accessible
only via the OCC function format. In the 5.1v3 release, HP PEXlib does not
support the PEXGA2D ag in �ll area OCC primitives.

7-20 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Table 7-1.

Relationship Between OCC and Non-OCC Primitive Functions

OCC Form Non-OCC Form

PEXOCCAnnotationText PEXAnnotationText

PEXOCCAnnotationText2D PEXAnnotationText2D

PEXOCCCellArray PEXCellArray

PEXOCCCellArray2D PEXCellArray2D

PEXOCCEncodedAnnoText PEXEncodedAnnoText

PEXOCCEncodedAnnoText2D PEXEncodedAnnoText2D

PEXOCCEncodedText PEXEncodedText

PEXOCCEncodedText2D PEXEncodedText2D

PEXOCCExtendedCellArray PEXExtendedCellArray

PEXOCCFillArea PEXFillArea

PEXOCCFillArea PEXFillArea2D

PEXOCCFillArea PEXFillAreaWithData

PEXOCCFillAreaSet PEXFillAreaSet

PEXOCCFillAreaSet PEXFillAreaSet2D

PEXOCCFillAreaSet PEXFillAreaSetWithData

PEXOCCGDP PEXGDP

PEXOCCGDP PEXGDP2D

PEXOCCIndexedFillAreaSets PEXSetOfFillAreaSets

PEXOCCMarkers PEXMarkers

PEXOCCMarkers PEXMarkers2D

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Table 7-1.

Relationship Between OCC and Non-OCC Primitive Functions

(continued)

OCC Form Non-OCC Form

PEXOCCPolyline PEXPolyline

PEXOCCPolyline PEXPolyline2D

PEXOCCPolylines PEXPolylineSetWithData

PEXOCCQuadrilateralMesh PEXQuadrilateralMesh

PEXOCCText PEXText

PEXOCCText2D PEXText2D

PEXOCCTriangleStrip PEXTriangleStrip

Generating HP PEX 5.1 Output Commands

PEX 5.2 introduces �ve primitive output commands in the protocol de�nition
(PEXOCFillAreaSetWithDataFP, PEXOCPolylineSetWithDataFP,
PEXOCQuadrilateralMeshFP, PEXOCSetOfFillAreaSetsFP,
PEXOCTriangleStripFP) that are similar to their 5.1 counterparts, except that
they support optional oating-point values in the facet and vertex data. By
default, the PEXlib 5.2 OCC-style functions generate these \FP" forms when
connected to a PEX 5.2 server, or to an HP server support release 5.1v3. However,
if connected to another vendor's PEX 5.1 server, HP-PEXlib generates the 5.1
version of these output commands. If HP-PEXlib is generating a 5.1 version of
the opcode and you supply data via the OCC-style function that is in conict
with the capabilities of the PEX 5.1 output command, you may cause an output
command error.

Note that you may also always generate PEX 5.1 output commands by using the
non-OCC forms of the functions.

7-22 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Examples

Below is an example illustrating two ways to set up for rendering a
PEXOCCTriangleStrip using the PEXDataStride data model with an array of
application de�ned vertex data structures. Note that the OCC setup is required
only one time provided that nothing in the data format changes. The OCC can
then be re-used on all subsequent triangle strip primitives.

/* Following is a sample definition of an application's data structure

containing vertices, colors, normals, and other application data. */

typedef struct {

PEXVector normal;

PEXColorRGB color;

PEXCoord point;.
.
. (Other application data)

} app_vertex_def;

/* Define an array of app_vertex_def structures */

app_vertex_def *app_vertices;

{

Display *dpy;

PEXRenderer rdr;

PEXOCC tri_context;

PEXOCCValues occ_values;

unsigned long occ_mask = 0;

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

/* Method #1:

* Set the OCCValues structure for OCC context creation.

* Note that for convenience in this example, we utilize

* the default values for:

* facet_attributes (PEXGANone),

* req_type (PEXOCRender), and

* color_type (PEXColorTypeRGB). */

occ_values.display = dpy;

PEXSetOCCValueMask(&occ_mask, PEXOCCMDisplay);

occ_values.renderer = rdr;

PEXSetOCCValueMask(&occ_mask, PEXOCCMRenderer);

occ_values.surface_vertex_attributes = PEXGAColor | PEXGANormal;

PEXSetOCCValueMask(&occ_mask, PEXOCCMSurfaceVertexAttributes);

occ_values.data_model = PEXDataStride;

PEXSetOCCValueMask(&occ_mask, PEXOCCMDataModel);

occ_values.data_model_specs.stride.vertex_stride = sizeof(app_vertex_def);

occ_values.data_model_specs.stride.vertex_coord_offset = sizeof(PEXVector) +

sizeof(PEXColorRGB);

occ_values.data_model_specs.stride.vertex_color_offset = sizeof(PEXVector);

occ_values.data_model_specs.stride.vertex_normal_offset = 0;

PEXSetOCCValueMask(&occ_mask, PEXOCCMDataModelSpecs);

/* Create the OC context */

tri_context = PEXCreateOCC(&occ_mask, &occ_values);

/* Method #2

* Note that the OCC Convenience functions could also have been used to set

* up the OCC Context as below. In this method, the OCC context is created

* with all default values, and then the convenience functions are used to

* change selected fields. */

PEXOCCStrideData stride_data;

tri_context = PEXCreateOCC(&occ_mask, &occ_values);

PEXSetOCCDisplay(tri_context, dpy);

PEXSetOCCRenderer(tri_context, rdr);

PEXSetOCCSurfaceVertexAttributes(tri_context, PEXGAColor|PEXGANormal);

PEXSetOCCDataModel(tri_context, PEXDataStride);

stride_data.vertex_stride = sizeof(app_vertex_def);

stride_data.vertex_coord_offset = sizeof (PEXVector) + sizeof (PEXColorRGB);

stride_data.vertex_color_offset = sizeof (PEXVector);

stride_data.vertex_normal_offset = 0;

PEXSetOCCDataModelSpecs(tri_context, &stride_data);

7-24 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

/* Malloc space for NUM_TRI_POINTS application vertices */

app_vertices=(app_vertex_def*)malloc((NUM_TRI_POINTS)*sizeof(app_vertex_def));

/* Fill in vertex structures */

for(i = 0; i << NUM_TRI_POINTS; i++)

{

app_vertices[i].point = vertex coordinate data;

app_vertices[i].color = vertex color data;

app_vertices[i].normal = vertex normal data;.
.
. (Fill in any other application vertex data)

}

/* Render the triangle strip

* Note the PEXPointer cast on the app_vertices argument */

PEXOCCTriangleStrip(tri_context, /* Triangle OCC */

(PEXPointer) NULL, /* Facet Data */

NUM_TRI_POINTS, /* Num Points */

(PEXPointer) app_vertices); /* Vertices */

/* If we want to render the triangle strip again but without colors and

* normals, then we only need to set the surface vertex attributes in the

* OC Context and call PEXOCCTriangleStrip() again. */

PEXSetOCCSurfaceVertexAttributes(tri_context,PEXGANone);

PEXOCCTriangleStrip(tri_context, /* Triangle OCC */

(PEXPointer)NULL, /* Facet Data */

NUM_TRI_POINTS, /* Num Points */

(PEXPointer)app_vertices); /* Vertices */

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Below is the same example, this time illustrating the PEXDataUnpacked format-
ting method to be used in rendering.

/* Following are the application vertex, color, and normal arrays. */

PEXVector *normals;

PEXColorRGB *colors;

PEXCoord *vertices;

{

Display *dpy;

PEXRenderer rdr;

PEXOCC tri_context;

PEXOCCValues occ_values;

unsigned long occ_mask = 0;

/* Note that the OCC Convenience functions are used to set up the OCC Context

* as below. In this method, the OCC context is created with all default

* values, and then the convenience functions are used to change selected

* fields. */

PEXOCCUnpackedVertexData unpacked_vertices;

PEXOCCUnPackedData unpacked_data;

tri_context = PEXCreateOCC(&occ_mask, &occ_values);

PEXSetOCCDisplay(tri_context, dpy);

PEXSetOCCRenderer(tri_context, rdr);

PEXSetOCCSurfaceVertexAttributes(tri_context, PEXGAColor|PEXGANormal);

PEXSetOCCDataModel(tri_context, PEXDataUnpacked);

unpacked_data.vertex_coord_size = sizeof(PEXCoord);

unpacked_data.vertex_color_size = sizeof(PEXColorRGB);

unpacked_data.vertex_normal_size = sizeof(PEXVector);

PEXSetOCCDataModelSpecs(tri_context, &unpacked_data);

/* Malloc space for NUM_TRI_POINTS application vertices, colors, and normals */

vertices = (PEXCoord*)malloc((NUM_TRI_POINTS)*sizeof(PEXCoord));

colors = (PEXColorRGB*)malloc((NUM_TRI_POINTS)*sizeof(PEXColorRGB));

normals = (PEXVector*)malloc((NUM_TRI_POINTS)*sizeof(PEXVector));

/* Fill in vertex, color, and normal data */

for (i=0; i<< NUM_TRI_POINTS; i++) {

vertices[i] = vertex coordinate data;

colors[i] = vertex color data;

normals[i] = vertex normal data;

}

7-26 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

/* Fill in the pointers to vertices, colors, and normals in the unpacked

* vertices structure. */

unpacked_vertices.coords = vertices;

unpacked_vertices.colors = colors;

unpacked_vertices.normals = normals;

/* Render the triangle strip

* Note the PEXPointer cast on the app_vertices argument */

PEXOCCTriangleStrip(tri_context, /* Triangle OCC */

(PEXPointer) NULL, /* Facet Data */

NUM_TRI_POINTS, /* Num Points */

(PEXPointer) unpacked_vertices); /* Vertices */

}

/* If we want to render the triangle strip again but without colors and

* normals, then we only need to set the surface vertex attributes in the OC

* Context and call PEXOCCTriangleStrip() again. */

PEXSetOCCSurfaceVertexAttributes(tri_context, PEXGANone);

PEXOCCTriangleStrip(tri_context, /* Triangle OCC */

(PEXPointer)NULL, /* Facet Data */

NUM_TRI_POINTS, /* Num Points */

(PEXPointer)unpacked_vertices); /* Vertices */

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Structure Permissions

Introduction

Structure permissions control access to a structure so performance optimization
can take place. The application developer is signaling PEXlib that the given
structure or element is static and should now be altered to improve performance.
The two levels of permission are write-only and locked. The structure can be
made write-only to allow only additions and replacements or it can be locked so
no editing is allowed.

Background Information

The motivation for this feature is to improve performance without burdening
the developer with implementation-dependent knowledge. After a structure is
locked or made write-only an implementation is free to operate on the structure
to improve performance. Permissions are easy to use but require some planning
by the application developer to deal with related issues.

This creates another reason for developers to consider using structures because
they can achieve performance gains and still have interoperability. Because there
are two levels of permission in PEX structures there are some additional bene�ts
for using PEX.

Performance optimizations cannot be automatically applied in immediate mode,
so implementing them in structures increases the performance gap between
immediate mode and structure mode (traversals already run somewhat faster
than the same rendering via immediate mode). Most applications choose between
these modes based on one or more of the following considerations: rendering
performance, data stability, and data size.

7-28 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Using Permission Features

Here is an overall summary of the edit operations that are allowed on structures
with the various permissions:

Table 7-2. Allowed Structure Editing Operations

Operation ReadWrite WriteOnly Locked

Move element pointer allowed allowed error

copy elements into
structure

allowed allowed from another
WriteOnly structure

error

delete elements allowed allowed error

insert elements allowed allowed error

overwrite elements allowed allowed error

change structure
references

allowed allowed allowed

To get the maximum bene�ts from this feature, the design of the application must
accommodate the constraints of permissions. After a structure is locked it may
not be edited. But many applications mix rendering and editing of structures.

The main reason to lock a structure is to increase its rendering speed. If the data
in the structure is static for a long period of time (e.g. while a model is being
interactively viewed but not modi�ed), then locking is probably a worthwhile
performance improvement. Perhaps even an entire structure hierarchy or sub-
hierarchy may be locked. Some examples where static data might be viewed
include:

Walkthrough of an architectural model;
Animation of a non-articulated object, e.g., for a video production;
Interactive manipulation of a part or an assembly of parts, e.g., to show another
designer what has been created in an MCAD package.

Tradeo�s and careful choices need to be made in cases where the data in structures
may be modi�ed, especially at interactive or animation speeds. Once a structure

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

is locked, it cannot be unlocked, so the application must have a way to regenerate
the data in a ReadWrite or WriteOnly structure.

An application that supports an alternating edit/view cycle of user interaction
might operate on an editable hierarchy during the edit session, and then create
a separate locked structure hierarchy while viewing or animating. However, the
amount of extra data space required for the extra copy must be traded o� against
the performance improvement. One strategy is to keep a ReadWrite copy of the
structure and edit it, then lock it after editing. Another strategy is to make the
structure WriteOnly, retaining the ability to add and delete elements; this would
allow only some performance optimizations to be performed, but no duplication
of storage (such as is implied by keeping a separate Locked structure) would be
required. Whatever strategy is used, applications must be designed to preserve
or re-create structures or elements, changing of permissions must be optimized
and the partitioning of structures must be well designed.

Here is another example: In an animated, articulated model (such as a robot
arm), it would be impractical to lock the structures containing the modeling
matrices that control the positions of dependent parts of the arm. It would be
better to keep the actual attributes and primitives that make up each part of the
arm in separate structures that can be locked, and keep the modeling matrices
in editable structures.

An extra consideration arises in the case of an application that is going to
perform picking on its structure hierarchy. WriteOnly permission preserves the
element o�sets of all elements in the structure, so a path returned by picking
on a WriteOnly structure can be used for editing. Locked structures preserve
o�sets to execute structure commands however, primitive element o�sets are not
guaranteed to be preserved in a Locked structure, and several primitive elements
may be merged and so become indistinguishable. This means that the path
returned when a hit occurs on a primitive in a Locked structure is valid for
that (locked) structure hierarchy, but may not be useful to guide editing on the
ReadWrite version of the same structure. Therefore, it is recommended that
picking traversals be done on ReadWrite or WriteOnly structures, even if the
image with which a user might interact during picking was created with a Locked
structure.

7-30 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

All these strategies come together when a complex model is built and modi�ed
by picking pieces to modify. The following outline shows how this might be done
by keeping a ReadWrite copy of the structure.

PEXCreateStructure A

PEXCreateStructure ALocked.
.
. (add elements or edit existing elements of structure

A)

while(event)

VIEW:

PEXCopyStructure A->ALocked

PEXSetStructurePermission ALocked

PEXStructureLocked

PEXRenderNetwork ALocked (rendering performance is optimum at this point

because optimization was done)

PICK:

set pick aperture

path = PEXPickOne(A)

PEXBeginRendering

PEXAccumulateState(path) (the path returned by PEXPickOne can be used to
change line color or to redraw the picked element in
some other color)

PEXRenderElements(path)

PEXEndRendering (the old structure is destroyed because it cannot
be changed to ReadWrite and copying to it is not
allowed)

PEXDestroyStructure ALocked

PEXFreePath(path) (exit PICK with an editable structure \A" that can be
further edited and locked again as shown at the start
of this example)

Changes to Existing Functionality

Pick Path

Picking and PEXAccumulateState continue to function as before even though
they may now be traversing locked structures. The pick path that the
picking operations return is usable by PEXAccumulateState applied to the
same structures. It is not necessarily transferable to ReadWrite versions of the
structures, because elements o�sets of hit primitives may change.

It is possible to pick \through" a locked structure because PEXExecuteStructure
elements will always be preserved in the locked structure.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXGetStructureInfo

The structure that is returned has an added �eld for the permission values. This
is the new structure:

typedef struct {

unsigned long element_count;

unsigned long size;

Bool has_refs;

unsigned short edit_mode;

unsigned long element_pointer;

unsigned short structure_permission;

} PEXStructureInfo;

New error condition for attributes and primitives

Any of the OCs can now return a BadPEXStructurePermission error when
the req type is PEXOCStore or PEXOCSingleStore, if the referenced structure
is locked. This a�ects both the old form and the new OCC form of OCs.

This also a�ects the CGE and HP OC extensions.

7-32 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Z-Buffer Block Operations

Introduction

HP PEXlib 5.1v3 o�ers various ways to read blocks from the Z-bu�er or write
blocks into the Z-bu�er.

There are two main reasons why you might want to read/write the Z-bu�er.
One is so you can implement your own picking that considers the Z-bu�er state.
The second reason is to save/restore either the entire window or only a section
of the window. When saving/restoring 3D graphics, the Z-bu�er needs to be
saved/restored along with the frame bu�er. An example implementation of a Z
picking method is provided in the on-line examples.

HP PEXlib 5.2 provides four entry points for Z-bu�er block operations. These
entry points are: PEXPutZBuffer, PEXGetZBuffer,
PEXCopyPixmapToZBuffer and PEXCopyZBuffer ToPixmap. HP PEXlib also
supplies three new PEXEscapeWithReply opcodes for Z-bu�er support: PEXH-

PEscapeOpcodePutZBuffer, PEXHPEscapeOpcodeGetZBuffer and PEXEscapeOp-
codeEVEInformation. The standard 5.2 entrypoints are documented on-line.
This chapter describes the HP escapes in more detail.

Background Information.

These Z-bu�er block operations are new to PEXlib 5.2. They are classi�ed as
non-OC Rendering requests. Previously, PEXlib users had no way of directly
accessing the Z-bu�er.

To use the Z-bu�er values you need such information as the depth of the Z-bu�er,
plus the minimum and maximum values in the Z-bu�er. To give access to this
functionality, HP PEXlib implements a new PEXEscapeWithReply opcode. It is
called PEXEscapeOpcodeEVEInformation.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXEscapeWithReply: PEXHPEscapeOpcodeGetZBuffer

This section describes the PEXHPEscapeOpcodeGetZBuffer opcode.

PEXHPEscapeOpcodeGetZBuffer Syntax

The syntax for this PEXEscapeWithReply is:

char *PEXEscapeWithReply(

Display *display,

unsigned long escape_id,

int length,

char *escape_data,

unsigned long *reply_length_return)

PEXHPEscapeOpcodeGetZBuffer Parameters

display A pointer to a display structure returned by a successful
XOpenDisplay call.

escape_id This is the opcode: PEXHPEscapeOpcodeGetZBuffer

length The length, in bytes, of the data for the escape request.

escape_data This is an array of ints with the following �elds:

escape_data[0] Renderer (the Renderer ID)
escape_data[1] X (x coordinate of the block to read)
escape_data[2] Y (y coordinate of the block to read)
escape_data[3] Width (width of block to read)
escape_data[4] Height (height of block to read)

reply_length_return Length of the reply data in bytes.

7-34 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXHPEscapeOpcodeGetZBuffer Description

PEXHPEscapeOpcodeGetZBuffer allows the user to read a block from the Z-bu�er.
This call is identical to PEXGetZBuffer except that the Z-bu�er values are the raw
hardware values, not normalized. The parameters that go into the escape_data
structure are the same ones and in the same order as the parameters that are
passed into PEXGetZBuffer.

Even though PEXEscapeWithReply returns a char pointer, you should cast this
into a pointer to a structure of type PEXHPEscapeGetZBuffer which is de�ned
in PEXHPlib.h. To access the Z-bu�er values in this structure, start looking at
&(GetZbufferStructure[1]).

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXHPEscapeOpcodeGetZBuffer Example

Here is one way to use PEXHPEscapeOpcodeGetZBuffer:

int escape_data[20];

int *zbuffer_data;

PEXHPEscapeGetZBuffer *reply_data;

/* Set up to read a 2x3 Z-buffer block at (10,20) */

escape_data[0] = renderer;

escape_data[1] = 10;

escape_data[2] = 20;

escape_data[3] = 2;

escape_data[4] = 3;

/* Read raw Z-buffer values from the Z-buffer. */

reply_data = (PEXHPEscapeGetZBuffer *)

PEXEscapeWithReply(display,

PEXHPEscapeOpcodeGetZBuffer,20,

(char *)escape_data, &reply_length);

/* Point to the Z-buffer values */

zbuffer_data = (int *) &(reply_data[1]);

/* Grab the first Z-buffer value */

zbuf_value_1 = zbuffer_data[0];

/* Grab the second Z-buffer value */

zbuf_value_2 = zbuffer_data[1];

7-36 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXEscape: PEXHPEscapeOpcodePutZBuffer

This section describes the PEXHPEscapeOpcodePutZBuffer opcode.

PEXHPEscapeOpcodePutZBuffer Syntax

The syntax for this PEXEscape is:

void PEXEscape(

Display *display,

unsigned long escape_id,

int length,

char *escape_data)

PEXHPEscapeOpcodePutZBuffer Parameters

display A pointer to a display structure returned by a successful
XOpenDisplay call.

escape_id This is the opcode: PEXHPEscapeOpcodePutZBuffer
length The length, in bytes, of the data for the escape request.
escape_data This is an array of ints with the following �elds:

escape_data[0] Renderer (the Renderer ID)
escape_data[1] X (x coordinate of the block to write)
escape_data[2] Y (y coordinate of the block to write)
escape_data[3] Width (width of block to write)
escape_data[4] Height (height of block to write)
es-

cape_data[5..N]

Z-bu�er values to write

PEXHPEscapeOpcodePutZBuffer Description

PEXHPEscapeOpcodePutZBuffer allows you to write a block into the Z-bu�er.
This call is identical to PEXPutZBuffer except that the Z-bu�er values are the raw
hardware values, not normalized. The parameters that go into the escape_data
structure are the same ones and in the same order as the parameters that are
passed into PEXPutZBuffer.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXHPEscapeOpcodePutZBuffer Example

Here is one way to use PEXHPEscapeOpcodePutZBuffer:

int escape_data[36];

/* Set up to write a 2x2 Z-buffer block at (10,20).

* We will write the value 0x7FFFF000 into the Z-buffer */

escape_data[0] = renderer;

escape_data[1] = 10;

escape_data[2] = 20;

escape_data[3] = 2;

escape_data[4] = 2;

escape_data[5] = 0x7FFFF000;

escape_data[6] = 0x7FFFF000;

escape_data[7] = 0x7FFFF000;

escape_data[8] = 0x7FFFF000;

/*Write raw Z-buffer values into the Z-buffer. */

PEXEscape(display,PEXHPEscapeOpcodePutZBuffer,36,

(char *)escape_data);

PEXEscapeWithReply : PEXEscapeOpcodeEVEInformation

This section describes the PEXEscapeOpcodeEVEInformation entry point.

PEXHPEscapeOpcodeEVEInformation Syntax

The syntax for this PEXEscapeWithReply is:

void PEXEscapeWithReply(

Display *display,

unsigned long escape_id,

int length,

char *escape_data

unsigned long *reply_length_return)

7-38 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXHPEscapeOpcodeEVEInformation Parameters

display A pointer to a display structure returned by a successful
XOpenDisplay call.

escape_id This is the opcode: PEXHPEscapeOpcodeEVEInforma-

tion

length The length, in bytes, of the data for the escape request.
escape_data This is an array of ints with the following �elds:

escape_data[0] Renderer (the Renderer ID)
reply_length_return Length of the reply data in bytes.

PEXHPEscapeOpcodeEVEInformation Description

PEXHPEscapeOpcodeEVEInformation allows the user to inquire the details of the
Z-bu�er. Even though PEXEscapeWithReply returns a char pointer, the user
should cast this into a pointer to a structure of type PEXHPEscapeEVEInfor-

mation which is de�ned in PEXHPlib.h. This structure de�nes what values are
returned.

EVEInfo[0] unsigned int depth (depth of the Z-bu�er)
EVEInfo[1] unsigned int min_z (minimum Z-bu�er value)
EVEInfo[2] unsigned int max_z (maximum Z-bu�er value)

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PEXHPEscapeOpcodeEVEInformation Example

Here is one way to use PEXHPEscapeOpcodeEVEInformation:

int escape_data[1];

PEXHPEscapeEVEInformation *EVEInfo;

/* Grab Z-buffer statistics.*/

escape_data[0] = renderer;

EVEInfo = (PEXHPEscapeEVEInformation *)

PEXEscapeWithReply(display,

PEXHPEscapeOpcodeEVEInformation,4,

(char *) escape_data, &reply_length_return);

/* Grab the Z-buffer depth */

zbuffer_depth = EVEInfo->depth;

/* Grab the minimum Z-buffer value */

zbuffer_min_z = EVEInfo->min_z;

/* Grab the maximum Z-buffer value */

zbuffer_max_z = EVEInfo->max_z;

7-40 HP PEX 5.1v3|Selected 5.2 PEXlib Functionality

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Plane Mask and Drawing Function

HP-PEXlib 5.1v3 supports the PEXlib 5.2 attribute output commands PEXOCC-
SetPlaneMask and PEXOCCSetDrawingFunction. The online reference pages pro-
vide details on the interfaces to these entrypoints.

Both of these attributes are applied in the very last step in PEX rendering, when
a source pixel value (derived from the rendering pipeline RGB value using the
current Color Approximation table entry) is combined with a destination pixel
value (already in the frame bu�er). The plane mask determines which planes
(bits) in the source pixel are to be combined with the corresponding bits of the
destination pixel. The drawing function determines what logical function will be
applied in the combining.

It is important to understand that the source, destination, and resulting new
pixel values are related to the contents of the X Colormap. If you wish to use
these functions to cause certain colors to appear on the screen, you must predict
what source pixel value will be produced by PEX, and what resultant pixel value
you need to access the desired X Colormap entry.

These pixel/color relationships are relatively easy to compute for a PseudoColor
visual that uses a typical PEXColorSpace Colormap containing an orderly color
\ramp". However, you should be aware that for other classes of Visuals, and
on certain devices that do not use orderly color ramps, the mapping of pixels to
colors may not be so simple to compute. Make sure your application allows for
such variations in color environment if you want maximum portability.

On the other hand, if you only wish to use the functions to either completely
enable or disable drawing (using the plane mask), or to draw in a way that can
be later \undrawn" (for example, with an exclusive-OR drawing function value),
then you do not need to be concerned with the Colormap contents.

HP PEX 5.1v3|Selected 5.2 PEXlib Functionality 7-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

8
HP PEX 5.1v4|More Selected 5.2 PEXlib
Functionality and HP Extensions

Overview of HP PEX5.1v4

This chapter is intended to give an overall view of what is new or di�erent
about HP-PEX in this release. There are both new features and entrypoints,
and changes in support for existing features.

Background Information

HP PEX 5.1v4 is a superset of HP PEX 5.1v3, which is described in the chapter
called \HP PEX 5.1v3|Selected 5.2 PEXlib Functionality".

HP PEX 5.1v4 includes more functionality and interfaces from the future
PEX/PEXlib 5.2 standards and HP extensions. These features are being
implemented in advance of the �nal standards, because HP believes that they
will have signi�cant value in many PEXlib applications. In some cases, minor
di�erences between the HP implementation and the �nal PEX 5.2 standard may
occur, but none should require more than very minor adjustments to make your
application 5.2 conformant. It is important to note that 5.1v4 is not a complete
PEX 5.2 implementation; instead, as the release name implies, it is PEX 5.1, plus
certain selected items from the PEX 5.2 draft standard, plus other extensions.
Some of these 5.2 features may be available only from HP for some time to come,
so use of them is a consideration for portability and interoperability. Nevertheless,
you may �nd them very valuable in the interest of performance, functionality, and
experimentation with some important features of PEX/PEXlib 5.2.

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Global Description of the HP-PEX 5.1v4 Release

Additional Functionality

HP-PEX Release 5.1v4 includes support for the following new functionality and
entry points. Further information is contained later in this chapter.

Triangle Primitives
PEXOCCTriangleFan

PEXOCCTriangles

Indexed Primitives
PEXHPOCCIndexedMarkers

PEXHPOCCIndexedPolylines

PEXHPOCCIndexedTriangleFan

PEXHPOCCIndexedTriangleStrip

PEXOCCIndexedTriangles

User-De�ned Line Types and Marker Glyphs
PEXHPOCCSetUserLineType

PEXHPOCCSetUserMarkerGlyph

User-De�ned Highlight Color
PEXHPOCCSetHighlightColor

Face Lighting Control
PEXHPOCCSetFaceLightingMode

Stereo Viewing
PEXHPSetStereoMode

Wide Line Rendering Control
PEXHPChangeRenderer

Polygon O�set Rendering Control
PEXHPChangeRenderer

New Device Support

HP-PEX Release 5.1v4 includes support for all devices supported with HP-PEX
Release 5.1v3, plus support for two new devices:

HP Visualize-EG

HP Visualize-48XP

8-2 HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

New Functionality Descriptions

Wideline Control

A new wideline control renderer attribute (PEXHPRAWideLineControl) is settable
via PEXHPChangeRenderer.

This HP extended renderer attribute controls the method used to render wide
lines. The attribute value PEXHPWideLineControlStroked instructs the renderer
to draw wide lines as a series of multiple strokes. The default attribute value
PEXHPWideLineControlImpDep allows the renderer to choose any method to
render the wide lines.

Stereo Viewing

The HP-de�ned opcode for PEXEscape, PEXHPEscapeOpcodeStereoMode, places
a speci�ed window (and in some cases, the entire graphics display) in stereo mode,
if the display device supports stereo display. When enabled, the application is
expected to manage rendering of left and right views; this function only enables
or disables the hardware state require to drive stereographic viewing equipment.
The basic actions required of the application logic are explained below.

Information on HP graphics displays and monitors that support stereo viewing
is not included here. For information about stereo viewing equipment that is
compatible with HP displays, please contact your HP sales representative.

The escape data block can be set up using the supplied data structure type,
hpEscapeStereoMode, de�ned in PEXHPlib.h:

typedef struct

{

Window window;

unsigned int enabled;

} hpEscapeStereoMode;

The window �eld should be set to the resource identi�er of a window intended for
PEX rendering. On all HP displays supported by HP-PEX to date, this must be
a full-screen, borderless window. This is because the graphics display hardware
does not have the capability of displaying some parts of the screen in stereo mode
and some in non-stereo mode. Since most other X clients do not support this

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

method of using the hardware, it is necessary to restrict the window con�guration
in this way.

The enabled �eld should be set to True to enable stereo display mode for the
window, and False to disable it.

The direct-call interface, PEXHPSetStereoMode, is available for applications that
do not have portability issues in using such platform-dependent entrypoints.
Please see the reference page for PEXHPSetStereoMode for further details.

Here are the basic application actions and other important information required
in order to perform stereo rendering:

1. The HP displays that support only full-screen stereo mode do so as follows: the
frame bu�er (to which the window is mapped) is split in half vertically, with
the upper half being treated as the left-eye bu�er, and the bottom half as the
right-eye bu�er. For example, a 1280�1024 window would be logically split
into two 1280�512 bu�ers. Be aware that the vertical resolution of the window
is e�ectively halved when in stereo mode, even though the graphics display
hardware automatically alters its output video signal so that each bu�er is
alternately displayed using the entire screen. The stereo viewing hardware is
connected to an output of the graphics display that synchronizes the shuttering
mechanism being used (LCD, polarization, etc.) with the alternating left- and
right-eye images.

2. The basic action of the application is to render two views per logical frame (a
left-eye view and a right-eye view) into the corresponding halves of the window.
It is important to always render the pair of images together, e.g. before a
double-bu�er swap, in order to avoid mismatched left and right images.

3. The application must manage two views, one for the left eye and one
for the right eye. Normally, when modeling real-world geometric objects,
two perspective views are set up to represent eyepoints that are spaced
approximately as far apart as a pair of human eyes. However, sometimes
the distance is made larger to exaggerate the visual parallax. Caution must
be used to avoid causing headaches and nausea (literally) for the end user.

4. Note that the aspect ratio of each half-window bu�er is di�erent than in the
normal non-stereo mode. The application must manage the rendering such
that it occurs in the correct half-windows for the two views. This is best done
in PEX by computing the view mapping matrix to \distort" the aspect ratio
of the view window into either the upper or lower half of the NPC (Normalized

8-4 HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Projection Coodinate) space, while leaving the Renderer's NPC-to-viewport
mapping unchanged.

If the PEX utility PEXViewMappingMatrix is used to compute the view
mapping matrix, specify the view \window" (in view reference coordinates,
or VRCs) normally, but specify the \viewport" (in NPCs) to be either the
upper or lower half of the NPC space.

5. Most stereo viewing uses animation as a key feature to help the user get visual
cues from the image. Typically, the application would use some type of double-
bu�ering as part of the animation. All the supported mechanisms (Evans and
Sutherland escapes, MBX, and DBE) can be used normally in stereo mode.
The only di�erence in usage is to render both a left and a right image before
swapping.

6. Code that relies on inquiries of the window's vertical resolution must be
conditioned to divide the vertical resolution by two when in stereo mode. Any
X rendering (including menus and other widgets) must be constrained to half
of the window's height, and repeated in both halves. This is not automatically
done by the X server or by most toolkit libraries, so the application has to
take responsibility for this as well.

Note that while in stereo display mode, every pixel is \stretched" vertically,
so X raster fonts and other bitmaps will appear elongated.

7. When stereo mode is disabled, usage of the frame bu�er goes back to normal,
with the display's vertical resolution mapped to the window's height. In real
use, an application would also go back to using a single view rendering per
frame. While debugging stereo operation, it is sometimes useful to continue
to render the half-window images with the hardware mode disabled, allowing
the two images to be examined without stereo viewing equipment.

Triangle Primitives

In addition to the triangle strip primitive, HP PEXlib now supports the triangle
fan and independent triangle primitives. All three primitives behave in the same
manner, except in the way the vertices specify the geometry. See the following
�gure and descriptions for more detail.

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Figure 8-1. Triangle Primitive Examples

For the triangle strip, each triangle is formed by a vertex and the two vertices
that precede it in the vertex list.

For the triangle fan, each triangle is formed by a vertex, the vertex that precedes
it in the vertex list, and the �rst vertex in the list.

For the independent triangles, each three consecutive vertices in the vertex list
de�ne an independent triangle.

For more information on triangle primitives, see the following on-line reference
pages:

PEXOCCTriangleFan

PEXOCCTriangles

PEXOCCTriangleStrip

8-6 HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Indexed Primitives

In addition to the SOFAS primitive, HP PEXlib now supports additional
primitives that use a connectivity list to index into a list of vertices. Markers,
polylines, triangle fans, triangle strips, and independent triangles now support
this method of specifying vectors.

With the addition of these new indexed primitives, most primitives using vertex
lists have both indexed and non-indexed forms. The indexed form is useful for
applications that have a long vertex list, but use only subsets of that list for each
primitive. The indexed primitives let the application \pick and choose" which
vertices from the list are actually used to draw each primitive, without needing
to copy the chosen vertices into a temporary list.

In all cases, the indexed primitives behave like their non-indexed forms, except
for the added level of indirection implied by the list of indicies.

For more information on indexed primitives, see the following on-line reference
pages:

PEXHPOCCIndexedMarkers

PEXHPOCCIndexedPolylines

PEXHPOCCIndexedTriangleFan

PEXHPOCCIndexedTriangleStrip

PEXOCCIndexedTriangles

User-Defined Linetypes and Marker-Glyphs

Before this release, the PEXlib programmer could only access PEX-de�ned
linetypes and marker-glyphs. This release provides new functions to allow you to
de�ne custom linetypes and marker-glyphs.

You may specify a linetype with a 16-bit \on-o�" bitmask and a repeat factor
that \stretches" the pattern.

De�ne markers with a list of polylines, like a polyline set, to specify multiple
\strokes". Each \stroke" may be a number of connected line segments. Markers
cannot be de�ned with a \bitmap".

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

For more information on user-de�ned linetypes and marker-glyphs, see the
following on-line reference pages:

PEXHPOCCSetUserLineType

PEXHPOCCSetUserMarkerGlyph

Highlight Color

Prior to this release, you had to select the highlight color prior to running the
PEXlib application by setting an environment variable, or letting it remain the
default color of white. PEXlib now supplies a function to allow you to change
the highlight color at any point during program execution.

For more information on highlight color, see the following on-line reference page:

PEXHPOCCSetHighlightColor

Face Lighting Control

Allows the HP PEX renderer to assume \bidirectional" implicit geometric
normals for use in lighting calculations.

This function is useful when facet normals are not provided by the application and
the ordering of vertices for surface area primitives, like a Fill Area, is inconsistent.
If this function is used to con�gure PEXlib to assume bidirectional implicit
geometric normals, facets that are implicitly back-facing due to their vertex order
are illuminated as if they were front-facing.

For more information on face lighting control, see the following on-line reference
page:

PEXHPOCCSetFaceLightingMode

Polygon Offset

A new Polygon O�set attribute (PEXHPRAPolygonOffset) is settable via PEXH-

PChangeRenderer.

The HP extended renderer attribute PEXHPRAPolygonOffset causes the interior
pixels of front- and back-facing area primitives (polygons, triangle strips,
quadrilateral meshes, polyhedra, and other such primitives), when in interior
style PEXInteriorStyleSolid or PEXExtInteriorStyleTexture. This attribute

8-8 HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

is used to generate Z-bu�er values that are o�set from what the default Z-
bu�er values would be. This behavior allows an application to use an algorithm
that may yield signi�cantly better performance in rendering �lled areas with
edging (on those graphics devices that support the attribute) over the default
PEX method for rendering edged areas. Details of the algorithm are explained
below. Other uses to reduce rendering artifacts are also possible. This
attribute is only useful when hidden surface rendering (HLHSR) is enabled (see
the PEXChangeRenderer on-line help page).

An application can call PEXGetImpDepConstants with implementation-dependent
constant name PEXHPIDDoesPolygonOffset to determine if this Renderer at-
tribute is implemented on a particular target.

Note that the o�set is applied in the device coordinate (DC) Z-axis only, not
in any geometric space such as modeling coordinates or world coordinates.
Thus, it displaces the rendered pixels after all modeling, viewing, and viewport
transformations have been applied.

The o�set value is computed from two parts:

1. A �xed o�set (or bias) value that is always applied. The bias is speci�ed as a
device-independent oating point value. HP-PEX multiplies this value by the
device-speci�c Z-bu�er increment value. Thus, a bias value of 1.0 is typical.

2. A factor value that HP-PEX multiplies by each planar facet's maximum Z-
gradient with respect to the DC X or Y axes. Areas that are orthogonal to
the viewing direction have a Z-gradient of zero, so the factor has no e�ect.
Areas that slope sharply away from the viewpoint have large Z-gradients so
the factor value adds a signi�cant additional o�set. The factor is speci�ed as
a oating point value without units. A starting value of 1.0 is suggested, but
depending on the nature of the geometry and the viewing transformation, an
adjustment to achieve the desired rendering e�ect may be required.

The results of the bias computation and the factor computation are summed to
create the DC Z o�set that is applied to the area primitive. Positive bias and
factor values result in Z-bu�er values that are \farther away" from the viewer;
this is the normal usage. The results are unde�ned for non-planar facets, as a
single Z-gradient cannot be computed for them.

This attribute also requires an integer ag value indicating whether polygon o�set
is to be enabled or disabled. The bias and factor values are only used when the
enable ag is set; however, they should always be given valid oating point values.

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

The data values that are part of the attribute are set in the polygon_offset

substructure of the PEXHPRendererAttributes structure. This substructure is
of type PEXHPPolygonOffsetValues and contains three �elds that are used as
follows:

enabled Enable ag: set to True to enable polygon o�set; set to False

to disable application of the o�set.
offset Bias value.
slope_factor Factor value.

Thus, a typical usage of PEXHPChangeRenderer to set this attribute might be:

PEXHPRendererAttributes hp_attrs;

unsigned long hp_ra_mask;

hp_attrs.polygon_offset.enabled = True;

hp_attrs.polygon_offset.offset = 1.0;

hp_attrs.polygon_offset.slope_factor = 1.0;

hp_ra_mask = 0;

PEXHPSetRendererAttributeMask(hp_ra_mask, PEXHPRAPolygonOffset)

PEXHPChangeRenderer (display, renderer_id, &hp_ra_mask, &hp_attrs);

Improving Rendering of Edged Polygons

This attribute can be used to improve rendering of edged polygons, as follows:

The normal way to render edged areas in HP-PEX (and the way that must still be
used in cases where PEXHPIDDoesPolygonOffset indicates that the functionality
is not supported) is to set the interior style to PEXInteriorStyleSolid, and
enable surface edging via PEXSetSurfaceEdgeFlag. HP-PEX renders the interior
pixels in the �ll color and the edge pixels in the edge color. Special rasterization
is done to avoid \stitching" of edges.

\Stitching" occurs when scattered pixels of a primitive (in this case an edge
vector) are not drawn because the Z-bu�er values at those pixels already indicate
that the primitive is \obscured" (in this case by the interior �ll pixels).

Better performance can be achieved in rendering edged areas by �lling many
areas, and then rendering all the edges as polyline primitives in a second pass.
Among other reasons behind the performance improvement, this distributes the
cost of modifying the graphics pipeline state from \�ll" mode to \vector" mode
over many primitives, rather than switching modes during each area primitive.

8-10 HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Such a \grouping" of operations must be done at the application level. Obviously,
the edging is done via line primitives in this algorithm, so line attributes must
be set to the desired edge values.

The typical problem with this better-performing method of rendering is that when
the edge vectors are rendered, a lot of stitching is visible because of the values
already stored in the Z-bu�er by the �ll rendering. O�setting the �ll rendering in
the Z-bu�er can eliminate this stitching. Thus, this extended Renderer attribute
allows for better-looking images using a faster rendering method.

Note that the per-area polygon o�set computation does slightly slow down the
rendering of �lled areas, but for applications that can render signi�cant numbers
of area primitives followed by a few polyline primitives with many vertices
(hundreds, perhaps), the \grouping" of area primitives and of polylines more
than makes up for the computation overhead.

It should be noted that use of polygon o�set can introduce artifacts in hidden-
surface rendering. For example, if a solid object such as a cube is being rendered,
then depending on the angle of the view, one side might have a higher Z-gradient
than an adjoining side. Because the more sharply-angled side could be o�set
more (depending on the factor value), all the pixels of the adjoining side might
not be obscured. This could result in ragged joints, especially with back-facing
parts of the solid.

One way to avoid this particular artifact, if the geometry to be rendered is
appropriate, is to enable back-face culling, which is a recommended practice
in any case for performance reasons. Other artifacts in the conjunction or
intersection of �lled areas with each other or with other types of primitives can
also occur.

Here is a partial code skeleton as an example of how an application can make
use of polygon o�set for edging of �lled areas. Note that this sample code is only
intended to show the basic logic; it may not be the most e�cient code design in
terms of geometry management or avoiding unnecessary attribute changes.

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Display *display;

Window window;

PEXRenderer renderer_id;

short id_name;

PEXImpDepConstant *id_const_info;

PEXHPRendererAttributes hp_attrs;

unsigned long hp_ra_mask;

.

.

.

display = XOpenDisplay(...); /* Initialize an X connection. */

PEXInitialize (display, ...); /* Initialize PEX on the connection. */

.

.

.

/* Create a window or buffer drawable in a particular target

Visual, to be used for PEX rendering. */

window = ...

.

.

.

/* Create a Renderer for this target. */

renderer_id = PEXCreateRenderer (display, window, ...);

/* Inquire whether polygon offset is supported by Renderers

created for this target. */

id_name = PEXHPIDDoesPolygonOffset;

PEXGetImpDepConstants (display, window, 1, &id_name, &id_const_info);

.

.

.

/* Enable HLHSR (i.e., use of the Z-buffer) */

PEXChangeRenderer (display, renderer_id, ..., PEXRAHLHSRMode);

/* Enable back-face culling for performance, and to eliminate

the most common polygon-offset artifact. */

PEXSetFacetCullingMode (display, renderer_id, ..., PEXBackFaces);

.

.

.

/* Set up fill attributes (other than interior style). */

.

.

.

if (id_const_info[0].integer) {

/* Since the attribute is supported, use faster algorithm. */

/* Set up line attributes with desired edge attribute values. */

8-12 HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

/* Set the interior style to solid, without edging. */

PEXSetInteriorStyle (display, renderer_id, PEXOCRender,

PEXInteriorStyleSolid);

PEXSetSurfaceEdgeFlag (display, renderer_id, PEXOCRender, PEXOff);

/* Enable polygon offset. */

hp_attrs.polygon_offset.enabled = True;

hp_attrs.polygon_offset.offset = 1.0;

hp_attrs.polygon_offset.slope_factor = 1.0;

hp_ra_mask = 0;

PEXHPSetRendererAttributeMask(hp_ra_mask, PEXHPRAPolygonOffset)

PEXHPChangeRenderer (display, renderer_id, &hp_ra_mask, &hp_attrs);

/* Collect area primitive geometry for edges to be rendered into

polyline geometry format. (In some cases, the same geometry arrays

can be used for both filling and edging passes.) */

.

.

.

/* Fill: Render primitives with or without edge flags (they will be

ignored). */

... /* Area primitive calls */

/* Edge: Render the edge geometry with or without move/draw flags. */

... /* Polyline calls */

}

else {

/* Since the attribute is not supported, let HP-PEX draw the edges. */

/* Set up edge attributes. */

/* Set the interior style to solid, with edging. */

PEXSetInteriorStyle (display, renderer_id, PEXOCRender,

PEXInteriorStyleSolid);

PEXSetSurfaceEdgeFlag (display, renderer_id, PEXOCRender, PEXOn);

/* Fill and Edge: Render primitives with or without edge flags. */

... /* Area primitive calls */

}

HP PEX 5.1v4|More Selected 5.2 PEXlib Functionality and HP Extensions 8-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

9

Overview of CGE PEX Texture Mapping

This overview shows the parameters and data structures for PEXlib texture
mapping calls. Use this section as a resource while developing texture-mapping
programs; it explains texture-mapping parameters in detail. Note that in the
\Parameters" sections, only those parameters directly related to texture mapping
are described (for example, the Display argument is not explained in any detail).
Please refer to the PEXlib Programming Reference and the PEXlib Programming
Manual for descriptions of Display, and the other parameters that are not directly
related to texture mapping; also see the HP PEX On-Line Reference for a
hypertext version of this chapter, as well as the PEXlib Reference.

In the HP PEX 5.1v3 and later releases , the Output Command Context (OCC)
interface for PEXOCCTriangleStrip, PEXOCCQuadrilateralMesh, PEXOCCFil-

lArea, PEXOCCFillAreaSet, and PEXOCCIndexedFillAreaSets supports texture
mapping and deformation data. The OCC interface is part of the 5.2 PEXlib
speci�cation; it is recommended over the Common Graphics Environment (CGE)
extended output commands. However, in HP PEX 5.1v3 and later releases, the
CGE interface to texture mapping must still be used; for example, you must use
PEXExtCreateTM and the four TM LUTs from the CGE implementation, rather
than the 5.2 equivalent de�nitions.

OCC versions can be used instead of PEXExtFillAreaSetWithData,
PEXExtSetOfFillAreaSets, PEXExtTriangleStrip, PEXExtQuadrilateralMesh,
if the appropriate OC Context has been established. (See the appropriate refer-
ence pages in the Alphabetical List of PEX Functions for more details.)

Overview of CGE PEX Texture Mapping 9-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Also, in HP PEX releases 5.1v3 and later releases;, PEXSetInteriorStyle is
de�ned to be PEXExtInteriorStyleTexture and the parameterization method
speci�ed is not PEXExtTMParamExplicit, then 5.1 Output Commands will
be texturable for the Output Commands that correspond to the 5.2 Output
Commands.

Table 9-1. Output Commands Texturable

5.1 Output Commands 5.2/HP Output Commands CGE Output Commands

PEXFillAreaWithData PEXOCCFillArea

PEXFillAreaSetWithData PEXOCCFillAreaSet PEXExtFillAreaSetWithData

PEXSetOfFillAreaSets PEXOCCIndexedFillAreaSets PEXExtSetOfFillAreaSets

PEXQuadrilateralMesh PEXOCCQuadrilateralMesh PEXExtQuadrilateralMesh

PEXTriangleStrip PEXOCCTriangleStrip PEXExtTriangleStrip

PEXOCCTriangleFan

PEXOCCTriangles

PEXOCCIndexedTriangles

PEXHPOCCIndexedTriangleStrip

PEXHPOCCIndexedTriangleFan

Texture mapping can be accomplished in six main steps, each of which is described
below:

1. Set up,
2. Texture preparation,
3. Geometry preparation,
4. Set up the LUTs (Binding, Coordinate Source, Sampling, and Composition),
5. Render, and
6. Clean up.

Optional functions are noted as such; all other function calls are required.

9-2 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Step 1: Setup

Setting up for texture mapping involves ensuring that texture mapping is sup-
ported on the current implementation of PEXlib, and inquiring implementation-
dependent constants that a�ect texture mapping.

Function: PEXGetEnumTypeInfo (optional). Get enumerated type information
to ensure that texture mapping is supported by this implementation of PEXlib.
Returns non-zero if successful and zero if an error occurred.
Function: PEXFreeEnumInfo (optional). Free memory allocated by
PEXGetEnumTypeInfo.
Function: PEXGetImpDepConstants (optional). Determine texture mapping
implementation dependent constants. Returns non-zero if successful and zero
if an error occurred.

PEXGetEnumTypeInfo: Parameters

int *enum_types;

Set enum_types = PEXETEscape. If one of the entries returned in
enum_info_return has the value PEXExtEscapeChangePipelineContext, tex-
ture mapping, along with other CGE PEX extensions, is supported by this imple-
mentation of PEXlib. The application may want to query additional enumerated
types to get more detailed information about which texture mapping enumerated
types are supported by this implementation.

Overview of CGE PEX Texture Mapping 9-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

These are the extended PEX enumerated types.

PEXExtETEnumType

PEXExtETOC

PEXExtETPC

PEXExtETRA

PEXExtETLUT

PEXExtETID

PEXExtETTMRenderingOrder

PEXExtETTMCoordSource

PEXExtETTMCompositeMethod

PEXExtETTMTexelSampleMethod

PEXExtETTMBoundaryCondition

PEXExtETTMClampColorSource

PEXExtETTMDomain

PEXExtETTexelType

PEXExtETTMResourceHint

PEXExtETTMType

PEXExtETTMParameterizationMethod

PEXExtETTMPerspectiveCorrection

PEXExtETTMSampleFrequency

PEXExtETPrimitiveAAMode
PEXExtETPrimitiveAABlendOp

PEXExtETLineCapStyle

PEXExtETLineJoinStyle

9-4 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

The following are the extended enumerated types that may be returned.

PEXExtETOC

PEXExtOCTMPerspectiveCorrection

PEXExtOCTMSampleFrequency

PEXExtOCTMResourceHints

PEXExtOCActiveTextures

PEXExtOCBFActiveTextures

PEXExtOCFillAreaSetWithData

PEXExtOCSetOfFillAreaSets

PEXExtOCTriangleStrip

PEXExtOCQuadrilateralMesh

PEXExtOCPrimitiveAA

PEXExtOCLineCapStyle

PEXExtOCLineJoinStyle

PEXExtOCEllipse

PEXExtOCEllipse2D

PEXExtOCCircle2D

PEXExtOCEllipticalArc

PEXExtOCEllipticalArc2D

PEXExtOCCircularArc2D

PEXExtETPC
PEXExtPCMinShift

PEXExtPCTMPerspectiveCorrection

PEXExtPCTMResourceHints

PEXExtPCTMSampleFrequency

PEXExtPCActiveTextures

PEXExtPCBFActiveTextures

PEXExtPCPrimitiveAA

PEXExtPCLineCapStyle

PEXExtPCLineJoinStyle

PEXExtPCMaxShift

PEXExtETRA

PEXExtRAMinShift

PEXExtRATMBindingTable

PEXExtRATMCoordSourceTable

PEXExtRATMCompositionTable

PEXExtRATMSamplingTable

PEXExtRAMaxShift

Overview of CGE PEX Texture Mapping 9-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtETLUT
PEXExtLUTTMBinding

PEXExtLUTTMCoordSource

PEXExtLUTTMComposition

PEXExtLUTTMSampling

PEXExtETID

PEXExtIDMaxTextureMaps

PEXExtIDMaxFastTMSize

PEXExtIDPowerOfTwoTMSizesRequired

PEXExtIDSquareTMRequired

PEXExtETTMRenderingOrder

PEXExtTMRenderingOrderPreSpecular

PEXExtTMRenderingOrderPostSpecular

PEXExtETTMCoordSource

PEXExtTMCoordSourceVertexCoord

PEXExtTMCoordSourceVertexNormal

PEXExtTMCoordSourceFloatData

PEXExtETTMCompositeMethod

PEXExtTMCompositeReplace

PEXExtTMCompositeModulate

PEXExtTMCompositeBlendEnvColor

PEXExtTMCompositeDecal

PEXExtTMCompositeDecalBackground

PEXExtTMCompositeReplaceBlendedColors

PEXExtETTMTexelSampleMethod

PEXExtTMTexelSampleSingleBase

PEXExtTMTexelSampleLinearBase

PEXExtTMTexelSampleSingleInMipmap

PEXExtTMTexelSampleLinearInMipmap
PEXExtTMTexelSampleSingleBetweenMipmaps

PEXExtTMTexelSampleLinearBetweenMipmaps

PEXExtETTMBoundaryCondition

PEXExtTMBoundaryCondClampColor

PEXExtTMBoundaryCondBoundary

PEXExtTMBoundaryCondWrap

PEXExtTMBoundaryCondMirror

9-6 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtETTMClampColorSource

PEXExtTMClampColorSourceAbsolute

PEXExtTMClampColorSourceExplicit

PEXExtETTMDomain

PEXExtTMDomainColor1D

PEXExtTMDomainColor2D

PEXExtTMDomainColor3D

PEXExtETTexelType

PEXExtTexelLuminanceInt8

PEXExtTexelLuminanceInt16

PEXExtTexelLuminanceAlphaFloat

PEXExtTexelLuminanceAlphaInt8

PEXExtTexelLuminanceAlphaInt16

PEXExtTexelRGBFloat

PEXExtTexelRGBInt8

PEXExtTexelRGBInt16

PEXExtTexelRGBAlphaFloat

PEXExtTexelRGBAlphaInt8

PEXExtTexelRGBAlphaInt16

PEXExtTexelLuminanceFloat

PEXExtETTMType

PEXExtTMTypeMipMap

PEXExtETTMParameterizationMethod

PEXExtTMParamExplicit

PEXExtTMParamReflectSphereVRC

PEXExtTMParamReflectSphereWC
PEXExtTMParamLinearVRC

PEXExtETTMPerspectiveCorrection

PEXExtTMPerspCorrectNone

PEXExtTMPerspCorrectVertex

PEXExtTMPerspCorrectPixel

PEXExtETTMSampleFrequency

PEXExtTMSampleFrequencyPixel

PEXExtTMSampleFrequencyInterpDep

PEXExtETTMResourceHint

PEXExtTMResourceHintNone

PEXExtTMResourceHintSpeed

PEXExtTMResourceHintSpace

Overview of CGE PEX Texture Mapping 9-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtETPrimitiveAAMode

PEXExtPrimAANone

PEXExtPrimAAPoint

PEXExtPrimAAVector

PEXExtPrimAAPointVector

PEXExtPrimAAPolygon

PEXExtPrimAAPointPolygon

PEXExtPrimAAVectorPolygon

PEXExtPrimAAPointVectorPolygon

PEXExtETPrimitiveAABlendOp

PEXExtPrimAABlendOpImpDep

PEXExtPrimAABlendOpSimpleAlpha

PEXExtETLineCapStyle

PEXExtLineCapStyleButt

PEXExtLineCapStyleRound

PEXExtLineCapStyleProjecting

PEXExtETLineJoinStyle

PEXExtLineJoinStyleImpDep

PEXExtLineJoinStyleRound

PEXExtLineJoinStyleMiter

PEXExtLineJoinStyleBevel

Additional Types of PEXETEscape

PEXExtEscapeChangePipelineContext
PEXExtEscapeGetPipelineContext

PEXExtEscapeChangeRenderer

PEXExtEscapeGetRendererAttributes

PEXExtEscapeSetTableEntries

PEXExtEscapeGetTableEntries

PEXExtEscapeGetTableEntry

PEXExtEscapeCreateTM

PEXExtEscapeCreateTMDescription

PEXExtEscapeFreeTM

PEXExtEscapeFreeTMDescription

PEXExtEscapeFetchElements

PEXExtEscapeQueryColorApprox

PEXExtEscapeCreateTMExtraData

9-8 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Additional Types of PEXETLineType

PEXExtLineTypeCenter

PEXExtLineTypePhantom

Additional Types of PEXETHatchStyle

PEXExtHatchStyle45Degrees

PEXExtHatchStyle135Degrees

Additional Types of PEXETInteriorStyle

PEXExtInteriorStyleTexture

PEXGetImpDepConstants: Parameters

names[0] = PEXExtIDMaxTextureMaps;

Maximum number of texture maps that can be applied to a single primitive. For
HP PEX, PEXExtIDMaxTextureMaps is device-dependent and should be inquired.
For many HP systems, PEXExtIDMaxTextureMaps = 8; that is, a maximum of
eight maps can be applied to a single primitive. Note that an unlimited number
of textures can be loaded at any one time, but a maximum of eight can be applied
to a single primitive.

names[1] = PEXExtIDMaxFastTMSize;

Maximum size of any dimension of the base level of a texture map which allows
an optimized implementation. Larger maps may not be optimized. A value
of zero indicates that any size of texture map is equally optimized. For HP
PEXlib, PEXExtIDMaxFastTMSize is device-dependent and should be inquired
for the current device.

names[2] = PEXExtIDPowerOfTwoTMSizesRequired;

Overview of CGE PEX Texture Mapping 9-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

True if the size of all dimensions of all texel arrays de�ning a texture map must
be powers of two. For HP PEX, PEXExtIDPowerOfTwoTMSizesRequired = True.
Note, however, that the PEXExtCreateFilteredTM and
PEXExtCreateFilteredTMFromWindow utilities can be used to upsample texel
arrays to a power of two.

names[3] = PEXExtIDSquareTMRequired;

True if each level of a texture map must have equally sized dimensions. For HP
PEX, PEXExtIDSquareTMRequired is False.

9-10 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Step 2: Texture Preparation

Preparing a texture for use by PEXlib involves pre-�ltering the texture to create
a MIP map, importing the map into PEXlib and combining the map with
parameterization and rendering information to create a texture map description.

Function: PEXExtCreateFilteredTM (optional). Creates a �ltered texture
map from base_map and stores the results in texel_array. After this call,
texel_array should be passed to PEXExtCreateTM to import it into PEXlib.
Function: PEXExtCreateFilteredTMFromWindow (optional). Create a �ltered
texture map, texel_array from the X resources, base_color_map and
base_alpha_map. After this call, the texel_array should be passed to
PEXExtCreateTM to import it into PEXlib. Returns zero if successful.
Function: PEXExtCreateTM. Converts the data described by the domain,
domain_data, and texel_arrays into an internal texture map resource.
Returns the X resource ID for the map.
Function: PEXExtFreeFilteredTM (optional). Free texel data created by
PEXExtCreateFilteredTM or PEXExtCreateFilteredTMFromWindow utilities.
This routine may be called after the texel_array is used with
PEXExtCreateTM.
Function: PEXExtCreateTMDescription. Create a texture map description by
combining texture resource(s) with parameterization and rendering informa-
tion.

Overview of CGE PEX Texture Mapping 9-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtCreateFilteredTM: Parameters

int domain;

Speci�es the dimension of the texture map and how the texture map will a�ect
a primitive. Only the primitive color can be a�ected. Supported values are:

PEXExtTMDomainColor1D: Texture mapping a�ects the color and alpha values
using a 1D texture map.

PEXExtTMDomainColor2D: Texture mapping a�ects the color and alpha values
using a 2D texture map.

struct PEXExtTMDomainData {

union {

struct {

PEXEnumTypeIndex tm_type; /* Specifies the kind of filtered map

to create. Only PEXExtTMTypeMipMap

(MIP map) is supported. */

PEXExtImpDepData tm_type_data; /* Not used by hppex */

PEXEnumTypeIndex texel_type; /* Specifies the format of the data in

the base_map. Supported values and

their associated types: */

PEXExtTexelRGBFloat struct PEXExtTexelRGB {

float red; /* \ */

float green; /* > 0.0 to 1.0 */

float blue; /* / */

}

PEXExtTexelRGBInt8 struct PEXExtTexelRGB8 {

unsigned char red; /* \ */

unsigned char green; /* > 0 to 255 */

unsigned char blue; /* / */

}

PEXExtTexelRGBAlphaFloat struct PEXExtTexelRGBAlpha {

float red; /* \ */

float green; /* \ 0.0 to 1.0 */

float blue; /* / */

float alpha; /* / */

}

PEXExtTexelRGBAlphaInt8 struct PEXExtTexelRGBAlpha8 {

unsigned char red; /* \ */

unsigned char green; /* \ 0 to 255 */

unsigned char blue; /* / */

unsigned char alpha; /* / */

}

9-12 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

unsigned short int num_levels; /* Number of MIP map levels to create.

If num_levels is set to zero, the

optimum number of levels will be

generated to create a full (MIP)

map and num_levels will be updated

to reflect the number of levels

created. */

} color;

} data;

} domain_data;

/*--*/

unsigned int power_of_two_tm_required; /* Indicates whether the

dimensions of texture maps must be a

power of two. Value returned by

PEXGetImpDepConstants. If true, this

utility will apply image sizing to

meet the power of two requirement. If

the image must be decreased in size, a

box filter will be applied. If the

image must be enlarged, linear

interpolation will be applied. */

/*--*/

unsigned int square_tm_required; /* Indicates whether or not the

texture maps must be square. Value

returned by PEXGetImpDepConstants. If

true, this utility will apply image

sizing to meet the square texture map

requirement. */

/*--*/

struct PEXExtTexelArray {

PEXExtTexelDimension dimension; /* width, height, depth */

union {

PEXExtTexelLuminance *luminance; /* Not used by HP PEX */

PEXExtTexelLuminance8 *luminance8; /* Not used by HP PEX */

PEXExtTexelLuminance16 *luminance16; /* Not used by HP PEX */

PEXExtTexelLuminanceAlpha *luminance_alpha; /* Not used by HP PEX */

PEXExtTexelLuminanceAlpha8 *luminance_alpha8 /* Not used by HP PEX */

PEXExtTexelLuminanceAlpha16 *luminance_alpha16; /* Not used by HP PEX */

PEXExtTexelRGB *rgb; /* float R, G, B */

PEXExtTexelRGB8 *rgb8; /* unsigned char R, G, B */

PEXExtTexelRGB16 *rgb16; /* Not used by HP PEX */

PEXExtTexelRGBAlpha *rgb_alpha; /* float R, G, B, A */

PEXExtTexelRGBAlpha8 *rgb_alpha8; /* unsigned char R, G, B, A*/

PEXExtTexelRGBAlpha16 *rgb_alpha16; /* Not used by HP PEX */;

} array;

} *base_map; /* Source texture map */

Overview of CGE PEX Texture Mapping 9-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

/*--*/

struct PEXExtTexelDimension {

unsigned short int t0; /* Texture map width */

unsigned short int t1; /* Texture map height */

unsigned short int t2; /* Texture map depth: should be 0 */

};

/*--*/

PEXExtTexelArray **texel_array /* Texture map array allocated and

filled by this utility. Pass this

array to PEXExtCreateTM and then free

it using PEXExtFreeFilteredTM. */

9-14 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtCreateFilteredTMFromWindow: Parameters

See also descriptions of domain, domain_data, power_of_two_tm_required,
square_tm_required, and texel_array under
\PEXExtCreateFilteredTM: Parameters".

unsigned int luminance_channel_selector; /* Luminance channel source

selector. Unused by HP PEX */

/*--*/

XID base_color_map; /* X window identifier of an

unobscured window to use as

the source texture map. Use

for the texture map's color

data. */

/*--*/

unsigned int alpha_channel_selector; /* Alpha channel source

selector. Used only if alpha is to be

included in the texture map and

specified in the texel_type of

domain_data. The channels available as

source of the alpha data are dependent

upon the depth or visual class of the

base_alpha_map window. If the resource

is a 24-bit resource, red, green and

blue channels are available as a source

for alpha data. If it is an 8-bit

resource, the whole 8-bit channel is

used as the source. Supported values

are:

PEXExtChannelNTSCLuminance:

Alpha is a combination of the

resource (red * 0.299 +

green * 0.587 + blue * 0.114)

PEXExtChannelRed:

Alpha is in the red channel.

PEXExtChannelGreen:

Alpha is in the green channel.

PEXExtChannelBlue:

Alpha is in blue channel. */

/*--*/

XID base_alpha_map; /* X window identifier of an

unobscured window to use as the source

texture map. Used for the texture map's

alpha data. (May be NULL if alpha is

not specified by the texel_type in

domain_data.) */

Overview of CGE PEX Texture Mapping 9-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtCreateTM: Parameters

Also see descriptions of domain, domain_data, and texel_arrays under PEX-

ExtCreate FilteredTMParms.

PEXExtTexelArray *texel_arrays; /* Texture map data. Number of arrays

depends on the number of levels and

the texture map type (as defined by

domain and domain_data). Texel arrays

are ordered sequentially by logical

levels, the base level being first in

the list. Every subsequent map is

ordered by its level from the largest

dimension down to the smallest

dimension. The texels are assumed to

be stored in the order t0, t1, t2.

texel_arrays may be created using

PEXExtCreateFilteredTM or

PEXExtCreateFilteredTMFromWindow.

Because an internal copy of the data

is kept, the memory used by

texels_arrays may be freed immediately

after calling PEXExtCreateTM using the

function PEXExtFreeFilteredTM. */

PEXExtFreeFilteredTM: Parameters

See also descriptions of domain, domain_data, and texel_array under \PEX-
ExtCreateFilteredTM: Parameters".

9-16 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtCreateTMDescription: Parameters

Note that for best results when using PEXExtTMParamReflectSphereWC, the
boundary conditions should be set to PEXExtTMBoundaryCondWrap to achieve the
most natural results. The boundary conditions, t0_boundary and t1_boundary

are set in the Sampling LUT. The wrap boundary condition leads to better hiding
of the texture seams in the case of World Coordinate reection mapping.

int parameterization; /* The texture map parameterization type

defines how texture map coordinates are

derived. They may be explicitly defined by

the primitive's vertex data or calculated via

a projection mapping by HP PEX. Supported

values are:

PEXExtTMParamExplicit: This method specifies

that the texture coordinates are included

with the primitive's vertex data. The

texture's entry in the Texture Coordinate

Source Lookup Table defines how these

coordinates are accessed. The application

can directly provide the coordinates with

the primitive's vertex data or they can be

derived using PEXExtTMCoord* utilities.

PEXExtTMParamReflectSphereVRC: PEXlib

derives the texture coordinates using an

infinite sphere with (0,0,0) as its origin

and the +Y axis as its axis of revolution.

The texture seams lie on the positive and

negative X axes. A reflection vector in

VRCs is computed to determine a point on

the interior of the sphere. Reflection, or

environment, mapping results.

PEXExtTMParamReflectSphereWC: PEXlib

derives the texture coordinates. The 3D

source texture coordinates are normalized

and conceptually projected onto an

infinite sphere surrounding the object to

calculate the 2D texture coordinates. The

axis of revolution of the sphere is the +Y

axis (WCs). The texture seam sweeps from

the +X axis (WCs) in a counterclockwise

direction [0..2pi]. A reflection vector

in WCs is computed to determine a point on

the interior of the sphere. Reflection

mapping results.

PEXExtTMParamLinearVRC: Texture coordinates

are determined by the PEXlib server with

respect to a projection reference plane

Overview of CGE PEX Texture Mapping 9-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

defined in view reference coordinates

(VRC). At the time of activation

(PEXExtSetActiveTextures), equations p0

and p1 are inversely transformed from VRC

space back into Model Coordinate (MC)

space. Once there, they define a

projection function such that objects

appear to "swim" through a solid field of

texture coordinates. The result is texture

mapping. */

/*--*/

struct PEXExtTMParameterizationData {

union {

struct {

PEXMatrix matrix; /* Reflection matrix used to transform the

texture coordinates relative to the projection

object (sphere). Used only when

parameterization is set to

PEXExtTMParamReflectSphereVRC or

PEXExtTMParamReflectSphereWC. */

} reflection;

struct { /* Linear equations used */

float p0[4]; /* when parameterization */

float p1[4]; /* is equal to */

} linear; /* PEXExtTMParamLinearVRC */

} data;

} *param_data;

/*--*/

int tm_rendering_order; /* Indicates whether the

texture is applied before or after the

specular component is calculated.

Supported values are:

PEXExtTMRenderingOrderPreSpecular:

Specular component is computed

after texturing.

PEXExtTMRenderingOrderPostSpecular:

Texture mapping is applied after

the specular component has been

computed. */

/*--*/

unsigned int count; /* Number of texture map resource

identifiers in *tm_ids. */

/*--*/

PEXExtTextureMap *tm_ids; /*A pointer to a list of texture map

resource identifiers. */

9-18 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Step 3: Geometry Preparation

Geometry preparation is concerned with generating the texture coordinates for
primitives that are to be texture-mapped. Note that an application has three
choices for computing vertex coordinates:

Set hparameterizationi equal to PEXExtTMParamReflectSphereVRC or
PEXExtTMParamReflectSphereWC and pass to PEXExtCreateTMDescription

and allow PEXlib to calculate the texture coordinates. This produces view-
dependent environment mapping.
Set hparameterizationi equal to PEXExtTMParamExplicit and pass it to
PEXExtCreateTMDescription and compute the texture coordinates within the
application and store them with the primitive's vertex data.
Set hparameterizationi equal to PEXExtTMParamExplicit and pass it to
PEXExtCreateTMDescription and compute the texture coordinates using one
of the PEXExtTMCoord* utilities described below.

The only PEXlib primitives that can be texture-mapped are either
PEXExtFillAreaSetWithData, PEXExtSetOfFillAreaSets,
PEXExtTMCoordTriangleStrip, and PEXExtQuadrilateralMesh; or, alterna-
tively, PEXOCCFillArea, PEXOCCFillAreaSet, PEXOCCIndexedFillAreaSets,
PEXOCCTriangleStrip, and PEXOCCQuadrilateralMesh.

Function: PEXExtTMCoordFillAreaSetWithData (optional). Computes the
texture coordinates for a �ll area set with data and stores them in the vertex
lists. Returns zero if successful.
Function: PEXExtTMCoordSetOfFillAreaSets (optional). Computes the
texture coordinates for a set of �ll area sets and stores them in the speci�ed
vertex data �elds. Returns zero if successful.
Function: PEXExtTMCoordTriangleStrip (optional). Computes the texture
coordinates for a triangle strip and stores them in the speci�ed vertex data
�elds. Returns zero if successful.
Function: PEXExtTMCoordQuadrilateralMesh (optional). Computes the
texture coordinates for a quadrilateral mesh and stores them in the speci�ed
vertex data �elds. Returns zero if successful.

Overview of CGE PEX Texture Mapping 9-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtTMCoordFillAreaSetWithData: Parameters

struct PEXExtTMCoordData { /* Parameterization data for this primitive */

PEXEnumTypeIndex projection; /* Projection method (or projection object).

Supported values:

PEXExtTMProjectionSphereWC: The texture

coordinates are derived using an infinite

sphere as a projection object with (0,0,0)

as its origin and the +Y axis as the axis

of revolution. The texture seams lie on

the positive and negative X axes. A

direction vector in WCs is computed using

either the vertex coordinate or vertex

normal depending on the coord_source

parameter to determine a point on the

interior of the sphere.

PEXExtMProjectionCylinderWC: The texture

coordinates are derived using an infinite

cylinder as a projection object with

(0,0,0) as its origin and the +Y axis as

the axis of revolution. The texture seam

sweeps from the +X axis in a

counterclockwise direction. If the

coord_source is

PEXExtTMCoordSourceVertexCoord, a ray

perpendicular to the +Y axis in WCs

through the vertex is computed to

determine a point and its height on the

interior of the cylinder. If the

coord_source is

PEXExtTMCoordSourceVertexNormal, a

direction vector in WCs is computed to

determine a point on the interior of the

cylinder.

PEXExtTMProjectionLinearWC: The texture

coordinates are derived from a linear

projection using the equations defined by

p0 and p1 and specified in the

param_data. Using coord_source equal to

PEXExtTMCoordVertexCoord is recommended

for the linear projection. */

PEXExtTMParameterizationData param_data;

9-20 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtEnumTypeIndex coord_source;

/* Specifies source coordinates for computing

the projections. Supported values are:

PEXExtTMCoordSourceVertexCoord: Use the

vertex coordinate to compute the direction

vector for the projection.

PEXExtTMCoordSourceVertexNormal: Use the

vertex normal to compute the direction

vector for the projection. The vertex

normal will be computed if it does not

already exist. Using either the vertex

coordinate or vertex normal will produce

different visual results, one of which may

be more pleasing to the end-user depending

on the given primitive, texture, and

desired results. */

unsigned short int fp_data_index;

/* Index within the vertex floating point data

list in which to store the calculated texture

coordinates. Space for two coordinates must

already exist and this index must point to a

valid location. */

PEXMatrix mc_transform; /* Applied to vertices and vertex normals in

model coordinates prior to computing the

specified projection. */

} *tm_coord_data;

/*--*/

struct PEXExtTMParameterizationData {

union {

struct {

PEXMatrix matrix; /* If projection is either

PEXExtTMProjectionSphere or

PEXExtTMProjectionCylinderWC, this

transform is applied to vertices and

vertex normals after mc_transform has

been applied. It is used to orient

the data relative to the projection

object. */

} reflection

struct { /* Linear projection */

float p0[4]; /* equations used with */

float p1[4]; /* PEXExtTMProjectionLinearWC */

} linear;

PEXExtImpDepData imp_dep; /* Not used by HP PEX */

} data;

} *param_data;

Overview of CGE PEX Texture Mapping 9-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

/*--*/

unsigned int vertex_fp_data_size

/* Number of floating point data

values defined with the vertex. To

accommodate texture coordinates, this

number should be at least two and may

be higher if additional floating point

data is included with the primitive's

vertex data. */

/*--*/

unsigned int vertex_attributes;

/* The flag PEXExtGAData must be

included in this mask if the texture

coordinates are included in the

vertex_lists. */

/*--*/

struct PEXExtListOfVertex{ /* Primitive vertices */

unsigned long count; /* Number of vertices */

PEXExtArrayOfVertex vertices; /* pointer to vertices */

} *vertex_lists; /* Space must be allocated within

vertex lists to hold the vertices

computed by this utility. See the

description under

``PEXExtFillAreaSetWithData'' for

information on packing the texture

coordinates into the vertex_list. */

/*--*/

union PEXExtArrayOfVertex {

PEXCoord *no_data;

PEXVertexIndexed *index;

PEXVertexRGB *rgb;

PEXVertexHSV *hsv;

PEXVertexHLS *hls

PEXVertexCIE *cie;

PEXVertexRGB8 *rgb8;

PEXVertexRGB16 *rgb16;

PEXVertexNormal *normal;

PEXVertexEdge *edge;

PEXVertexIndexedNormal *index_normal;

PEXVertexRGBNormal *rgb_normal;

PEXVertexHSVNormal *hsv_normal

PEXVertexHLSNormal *hls_normal;

PEXVertexCIENormal *cie_normal;

PEXVertexRGB8Normal *rgb8_normal;

PEXVertexRGB16Normal *rgb16_normal;

PEXVertexIndexedEdge *index_edge;

PEXVertexRGBEdge *rgb_edge;

PEXVertexHSVEdge *hsv_edge;

PEXVertexHLSEdge *hls_edge;

9-22 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXVertexCIEEdge *cie_edge;

PEXVertexRGB8Edge *rgb8_edge;

PEXVertexRGB16Edge *rgb16_edge;

PEXVertexNormalEdge *normal_edge;

PEXVertexIndexedNormalEdge *index_normal_edge;

PEXVertexRGBNormalEdge *rgb_normal_edge;

PEXVertexHSVNormalEdge *hsv_normal_edge;

PEXVertexHLSNormalEdge *hls_normal_edge;

PEXVertexCIENormalEdge *cie_normal_edge;

PEXVertexRGB8NormalEdge *rgb8_normal_edge;

PEXVertexRGB16NormalEdge *rgb16_normal_edge;

PEXPointer with_fp_data;

}

PEXExtTMCoordSetOfFillAreaSets: Parameters

See also \PEXExtTMCoordFillAreaSetWithData: Parameters" for a description
of tm_coord_data, vertex_fp_data_size, vertex_attributes, and vertices.

PEXExtTMCoordTriangleStrip: Parameters

See \PEXExtTMCoordFillAreaSetWithData: Parameters" for a description of
tm_coord_data, vertex_fp_data_size, and vertices.

PEXExtTMCoordQuadrilateralMesh: Parameters

See \PEXExtTMCoordFillAreaSetWithData: Parameters" for a description of
tm_coord_data, vertex_fp_data_size, and vertices.

Overview of CGE PEX Texture Mapping 9-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Step 4: Set Up the Look-Up Tables (LUTs)

Four LUTs|Binding, Coordinate Source, Composition, and Sampling|are used
to control the mapping of textures onto primitives. These LUTs are created,
manipulated, and inquired using the standard calls
PEXCreateLookupTable, PEXGetTableInfo, PEXGetDefinedIndices, and the
extended calls, PEXExtSetTableEntries, PEXExtGetTableEntry,
PEXExtGetTableEntries, and PEXExtFreeTableEntries.

The function PEXExtChangeRenderer must be used to register the Texture Map-
ping Lookup Tables with the PEX renderer. PEXExtSetRendererAttributeMask
or PEXExtSetRendererAttributeMaskAll may be used to set the mask needed
by the PEXExtChangeRenderer call. The extended calls
PEXExtGetRendererAttributes and PEXExtFreeRendererAttributes can be
used to inquire and free the extended attributes of a PEX renderer.

\Binding LUT": Associates a texture map with its orientation on a primitive,
its texture composition and the texture-map sampling method by referencing
the texture map description and indices into the Coordinate Source LUT,
Composition LUT, and Sampling LUT. In general, there will be one Binding
LUT entry for each primitive in the database that is to be texture-mapped.
\Coordinate-Source LUT": De�nes how a texture map is oriented on a
primitive.
\Composition LUT": De�nes how the values in a texture map are blended with
a primitive's color and alpha values.
\Sampling LUT": De�nes how a texture map is sampled as it is mapped onto
a primitive.

Binding LUT

htable typei = PEXExtLUTTMBinding

struct PEXExtTMBindingEntry {

PEXExtTMDescription tm_description_id; /* Texture ID. Returned by

PEXExtCreateTMDescription */

PEXTableIndex coord_source_index; /* Index into Coordinate

Source LUT */

PEXTableIndex composition_index; /* Index into Composition

LUT */

PEXTableIndex sampling_index; /* Index into Sampling LUT */

}

9-24 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Coordinate-Source LUT

htable typei = PEXExtLUTTMCoordSource

struct PEXExtTMCoordSourceEntry {

PEXEnumTypeIndex tm_source; /* tm_source and fp_data_index are

used only with texture maps that are

defined for explicit parameterization;

that is, parameterization is set to

PEXExtTMParamExplicit when

PEXExtCreateTMDescription is

called. For other parameterization

methods, these values are ignored.

The only supported value is:

PEXExtTMCoordSourceFloatData: Source

is included in the vertex's

floating-point data list

(default). */

unsigned short int fp_data_index; /* Specifies the location of the

floating-point data at the end of

vertex if tm_source is set to

PEXExtTMCoordSourceFloatData. */

PEXMatrix orientation; /* The texture coordinates are

transformed by the orientation matrix

before they are interpolated. */

}

Overview of CGE PEX Texture Mapping 9-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Composition LUT

htable typei = PEXExtLUTTMComposition

struct PEXExtTMCompositionEntry {

PEXEnumTypeIndex method; /* Specifies how the texture map is

blended with a primitive's existing

color and alpha data. Supported

values are:

PEXExtTMCompositeReplace: The

texture map data replaces the

primitive's existing data

(default operation).

PEXExtTMCompositeModulate: The

texture map and primitive data are

blended.

PEXExtTMCompositeDecal: The

texture-map color and the

primitive color are blended by the

texture map alpha. If the texture

map alpha is not defined, the

texture map color replaces the

primitive color, and the

primitive's alpha is replaced

with 1.0. */

unsigned short reserved; /* Ignored */

union {

PEXColorSpecifier decal_bkgd_color;/* Not used by HP PEX */

struct {

unsigned long channel_number; /* R=0, G=1, B=2 */

PEXColorSpecifier color;

} blend_env; /* Not used by HP PEX */

struct {

unsigned long channel_number; /* R=0, G=1, B=2 */

PEXColorSpecifier color1;

PEXColorSpecifier color2;

} blend_repl; /* Not used by HP PEX */

PEXExtImpDepData imp_dep; /* Not used by HP PEX */

} data;

}

9-26 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Sampling LUT

htable typei = PEXExtLUTTMSampling

struct PEXExtTMSamplingEntry {

PEXEnumTypeIndex minification_method;

/* Used when multiple texture-map texels map

to a single primitive pixel. Supported values

are:

PEXExtTMTexelSampleSingleBase: The closest

single texel selected by the texture

coordinate(s) is sampled from the base

texture map level (default).

PEXExtTMTexelSampleLinearBase: The 2^n

closest texels selected by the texture

coordinate(s) are sampled from the base

texture map level. Note that n is the

dimension (1D, 2D, or 3D) of the texture

map. The weighted average of the selected

texels is used.

PEXExtTMTexelSampleSingleInMipmap: The

closest single texel selected by the

texture coordinate(s) is sampled from the

closest texture map level to the sample

depth.

PEXExtTMTexelSampleLinearInMipmap: The

2^n closest texels selected by the

texture coordinate(s) are sampled from the

closest texture map level to the sample

depth. Note that n is the dimension

(1D, 2D, or 3D) of the texture map. The

weighted average of the selected texels is

used.

PEXExtTMTexelSampleBetweenMipmaps: The

closest texel selected by the texture

coordinate(s) is sampled from the two

closest texture map levels to the sample

depth. The texel found at the exact

sample depth by linear interpolation

between these two sampled texels is used.

If the sample depth is beyond the base or

pinnacle texture-map levels, that level is

used and this method behaves like

PEXExtTMTexelSampleSampleInMipmap.

PEXExtTMTexelSampleLinearBetweenMipmaps: The

2^n closest texels selected by the

Overview of CGE PEX Texture Mapping 9-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

texture coordinate (s) are sampled from

the two closest texture map levels to the

sample depth. Note that n is the

dimension (1D, 2D, or 3D) of the texture

map. A weighted average is taken of these

2^n texels on each of the texture map

levels. The texel found at the exact

sample depth by linear interpolation

between these two calculated texels is

used. If the sample depth is beyond the

base or pinnacle texture map levels, that

level is used and this method behaves like

PEXExtTMTexelSampleLinearInMipmap. */

PEXEnumTypeIndex magnification_method;

/* Used when a single texture-map texel is too

large to map to a single pixel of a primitive.

Supported values are:

PEXExtTMTexelSampleSingleBase: The closest

single texel selected by the texture

coordinate(s) is sampled from the base

texture map level (default).

PEXExtTMTexelSampleLinearBase: The 2^n

closest texels selected by the texture

coordinate(s) are sampled from the base

texture map level. Note that n is the

dimension (1D, 2D, or 3D) of the texture

map. The weighted average of the selected

texels is used. */

PEXEnumTypeIndex t0_boundary_condition; /* X boundary condition */

PEXEnumTypeIndex t1_boundary_condition; /* Y boundary condition */

PEXEnumTypeIndex t2_boundary_condition; /* Z boundary condition;

not used by HP PEX */

/* Specifies the texturing to be applied when

the texture coordinates select a point outside

the texture map. Supported values are:

PEXExtTMBoundaryCondClampColor: The

color specified by the clamp color source

is applied.

PEXExtTMBoundaryCondBoundary: The closest

boundary texture map texel is used.

PEXExtTMBoundaryCondWrap: Texel

sampling wraps back to the opposite

texture border creating a "rubber stamp"

effect.

PEXExtTMBoundaryCondMirror: Texel

sampling is reversed across the texture

9-28 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

map. This produces the effect of

alternating the texture map with a version

of the map that is "backwards", "upside

down", or both (depending on the values of

t0_boundary_condition and

t1_boundary_condition). */

PEXEnumTypeIndex boundary_clamp_color_source;

/* Determines source of color if the

boundary_condition is

PEXExtTMBoundaryCondClampColor. Supported

values are:

PEXExtTMClampColorSourceAbsolute:

Texturing is discontinued. The

primitive's color beyond the texture map

boundary remains unchanged (default).

PEXExtTMClampColorSourceExplicit: The color

specified in clamp_color is used. */

PEXColorSpecifier clamp_color;

/* Used when the boundary condition is

PEXExtTMBoundaryCondClampColor and the

clamp color source is

PEXExtTMClampColorSourceExplicit (default is

R = G = B = 0.0). */

float depth_sampling_bias_hint;

/* Used to adjust the sampling depth. A

factor of -1.0 moves the sampling depth one

level toward the Mip map's base level,

effectively making the texturing more

detailed or jaggy. A positive factor moves

the sampling depth away from the base level,

effectively blurring the texture (default is

0.0.). */

float t0_frequency_hint; /* \ Frequency hints */

float t1_frequency_hint; /* / for each dimension */

float t2_frequency_hint; /* t2 not used by HP PEX */

/* If a particular texture map has low spatial

frequency that would lead to unacceptable

blurring when sampling occurs, this hint maybe

set to a value between 0.0 and 1.0. A value

of 1.0 indicates unknown spatial frequency or

high spatial frequency (that is, there are

abrupt changes of color in the texture map).

The default is 1.0. */

}

Overview of CGE PEX Texture Mapping 9-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Step 5: Render

The rendering step actually applies textures to primitives and controls texture-
mapping rendering options. The individual calls included in the rendering step
may be executed repeatedly in response to input from the user.

Function: PEXSetInteriorStyle PEXSetBFInteriorStyle. Set front-face and
back-face interior style.
Function: PEXExtSetTMPerspectiveCorrection (optional). Sets the method
of perspective correction for texture mapping. This determines how texture
coordinate values in surface interiors are computed by PEXlib.
Function: PEXExtSetTMSampleFrequency (optional). The texture mapping
sample frequency speci�es the frequency to use when sampling texels in a
texture map.
Function: PEXExtSetTMResourceHints (optional). Set texture mapping
resource hints. De�ne preferences for resource usage and texture priorities.
Function: PEXExtSetActiveTextures. Set currently active front-face/back-
face textures.
Function: PEXExtChangePipelineContext. Modify the extended pipeline
context. Use PEXExtGetPipelineContext for inquiries.
Function: PEXExtFillAreaSetWithData or PEXOCCFillAreaSet (optional).
3D �ll-area primitives with additional data. To texture-map a �ll area set,
this routine must be called after setting interior style to
PEXExtInteriorStyleTexture.
Function: PEXExtSetOfFillAreaSets or PEXOCCIndexedFillAreaSets (op-
tional). 3D Set of Fill area primitives with additional data. To texture map
a set of �ll-area sets, this routine must be called after setting interior style to
PEXExtInteriorStyleTexture.
Function: PEXExtTriangleStrip or PEXOCCTriangleStrip (optional). 3D
Triangle Strip primitive with additional data. To texture map a triangle strip,
this routine must be called after setting interior style to
PEXExtInteriorStyleTexture.
Function: PEXExtQuadrilateralMesh or PEXOCCQuadrilateralMesh (op-
tional). 3D Quadrilateral Mesh primitive with additional data. To texture
map a quadrilateral mesh, this routine must be called after setting interior
style to PEXExtInteriorStyleTexture.

9-30 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

If the Output Commands used in the Rendering phase of texture mapping are
placed in a structure, and an application must access those Output Commands,
the following extended calls must be used:

PEXExtCountOCs

PEXExtDecodeOCs

PEXExtEncodeOCs

PEXExtFetchElements

PEXExtFetchElementsAndSend

PEXExtFreeOCData

PEXExtGetSizeOCs

PEXSetInteriorStyle: Parameters

int style; /* Interior style. Set style to

PEXExtInteriorStyleTexture to enable texture

mapping for subsequent primitives defined by

PEXExtFillAreaSetWithData,

PEXExtSetOfFillAreaSets, PEXExtTriangleStrip,

or PEXExtQuadrilateralMesh. If the style

PEXExtInteriorStyleTexture is applied to any

other primitives, the interior style will be

treated as PEXInteriorStyleSolid. */

PEXExtSetTMPerspectiveCorrection: Parameters

int method; /* Type of texture mapping interpolation to

apply. Supported values are:

PEXExtTMPerspCorrectNone: Texture

coordinates are linearly interpolated

without any effort to apply perspective

correction (default).

PEXExtTMPerspCorrectPixel: As the

texture-mapping coordinates are

interpolated, their values are manipulated

at each step to account for a perspective

projection. */

PEXExtSetTMSampleFrequency: Parameters

int frequency; /* Sample frequency. Supported value is:

PEXExtTMSampleFrequencyPixel: Texels are

sampled once for each pixel.*/

Overview of CGE PEX Texture Mapping 9-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtSetTMResourceHints: Parameters

int optimization_hint; /* Resource optimization approach to

consider for all subsequently

activated textures. Supported values

are:

PEXExtTMResourceHintNone: Use the

default optimization.

PEXExtTMResourceHintSpeed: Attempt

to optimize performance of texture

mapping.

PEXExtTMResourceHintSpace: Attempt

to optimize memory usage of

texture mapping. */

unsigned int count; /* Number of indices in the priorities

list. */

PEXTableIndex priorities; /* Array of Binding LUT indices in

priority order (first texture is

expected to be used most, etc.). */

PEXExtSetActiveTextures: Parameters

unsigned short int count; /* The number of textures listed in

the textures list */

unsigned short int *textures; /* An ordered list of texture Binding

LUT indices corresponding to the

texture maps to activate and apply to

subsequent extended primitives when

their interior style is

PEXExtInteriorStyleTexture. If

texturing is enabled but this list is

empty, a default black-and-white

checkerboard texture is applied to the

primitives. */

9-32 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtChangePipelineContext: Parameters

unsigned long *value_mask; /* Indicates which attribute values are

specified. PEXExtSetPCAttributeMask

can be called to set up non-extended and

extended portions of the value_mask.

Texture-mapping pipeline context attributes

are:

PEXExtPCTMPerspectiveCorrection (see

PEXExtSetTMPerspectiveCorrection).

PEXExtPCTMResourceHints (see

PEXExtSetTMResourceHints).

PEXExtPCTMSampleFrequency (see

PEXExtSetTMSampleFrequency).

PEXExtPCActiveTextures (see

PEXExtSetActiveTextures).

PEXExtPCBFActiveTextures (see

PEXExtSetBFActiveTextures). */

Overview of CGE PEX Texture Mapping 9-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

PEXExtFillAreaSetWithData: Parameters

unsigned int vertex_fp_data_size; /* Number of floating point values

defined with each vertex. This number

should be increased by two if texture

coordinates are included with the data

in vertex_lists and were calculated

by the utility

PEXExtTMCoordFillAreaSetWithData. */

unsigned int vertex_attributes; /* The flag PEXExtGAData must be

included in this mask if the texture

coordinates are included in the

vertex_lists. */

/*--*/

PEXExtListOfVertex *vertex_lists; /* If this primitive is to be textured

with a map that was described to

PEXExtCreateTMDescription using

parameterization method

PEXExtTMParamExplicit, the vertex

lists must contain texture coordinates

for each vertex. The texture

coordinates can be derived by the

application or using

PEXExtTMCoordFillAreaSetWithData.

The data must be packed in vertex_lists

in the order:

1. coordinate data

2. color data (if present)

3. normal (if present)

4. edge data (if present)

5. additional floating point data,

such as texture coordinates */

/* For example, if the application has the coordinates, normal, and two

texture coordinates for each vertex, the following data structure should be

defined: */

typedef struct { /* The first entry should be an existing

PEXArrayOfVertex member. */

PEXVertexNormal coords_and_normal;

float texture_coords[2];

} MyPEXVertexNormalTexCoord;

MyPEXVertexNormalTexCoord my_vertex_data;

PEXExtArrayOfVertex vertex_data;

my_vertex_data.coords_and_normal.point.x = MY_VERTEX_X;

my_vertex_data.coords_and_normal.point.y = MY_VERTEX_Y;

9-34 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

my_vertex_data.coords_and_normal.point.z = MY_VERTEX_Z;

my_vertex_data.coords_and_normal.normal.x = MY_VERTEX_NORMAL_X;

my_vertex_data.coords_and_normal.normal.y = MY_VERTEX_NORMAL_Y;

my_vertex_data.coords_and_normal.normal.z = MY_VERTEX_NORMAL_Z;

my_vertex_data.texture_coords[1] = MY_TEXTURE_COORDINATE_X;

my_vertex_data.texture_coords[2] = MY_TEXTURE_COORDINATE_Y;

/* Note that PEXExtTMCoordFillAreaSetWithData can be used to fill in

my_vertex_data. */

vertex_data.with_fp_data = (PEXPointer) &my_vertex_data;

PEXExtSetOfFillAreaSets: Parameters

See description of PEXExtFillAreaSetWithData, PEXOCCFillArea or
PEXOCCFillAreaSet for more information about vertex_fp_data_size,
vertex_attributes, and vertices.

PEXExtTriangleStrip: Parameters

See description of PEXExtTriangleStrip or PEXOCCTriangleStrip for more
information about
vertex_fp_data_size, vertex_attributes, and vertices.

PEXExtTMCoordQuadrilateralMesh: Parameters

See description of PEXExtTMCoordQuadrilateralMesh or
PEXOCCTMCoordQuadrilateralMesh for more information about
vertex_fp_data_size, vertex_attributes, and vertices.

Overview of CGE PEX Texture Mapping 9-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Step 6: Cleanup

Cleanup involves releasing the memory used by texture resources when those
resources are no longer needed.

Function: PEXExtFreeTM (optional). Free a texture map resource.
Function: PEXExtFreeTMDescription (optional). Free a texture map descrip-
tion resource.

PEXExtFreeTM: Parameters

PEXExtTextureMap texture_map; /* Texture resource to free; created

using PEXExtCreateTM. */

PEXExtFreeTMDescription: Parameters

PEXExtTMDescription tm_description; /* Texture description resource to free;

created using PEXExtCreateTMDescription. */

9-36 Overview of CGE PEX Texture Mapping

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

10

Texture Mapping Tutorial

This tutorial describes the \big picture" of texture mapping to help you, the
application developer, determine how best to integrate this technology into your
applications. Listed herein are many of the considerations that must be addressed
when presenting texture mapping to an end-user.

Texture Mapping Tutorial 10-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
Texture mapping has many di�erent uses, including:

Data Display. Texture maps can be used to display many di�erent kinds of
scienti�c data including, but not limited to satellite, seismic, medical imaging,
and geographic data.

Figure 10-1. Texture Mapping to Display Data

10-2 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Realism. Texture mapping greatly increases the realism of a rendering and
is especially valuable for presentation and design. Imagine how uninteresting
and arti�cial-looking the image below would be with an unpatterned oor,
unpatterned walls, a blank (or simple geometric) picture on the wall, blank
windows, at �replace, etc.

Figure 10-2. Texture Mapping to Add Realism

Data Reduction. Data size can be drastically reduced by mapping details onto
geometric objects instead of modeling those details. Imagine the size of the
dataset required if, in the picture above, every brick in the �replace, every
tongue of ame in the �re, every tree branch and cloud outside the windows,
every piece of wood in the parquet oor, every streak in the marble columns,
and every bit of pattern in the wallpaper were individually geometrically
modeled! It quickly becomes obvious that texture mapping can save enormous
amounts of disk space and processing time.

Texture Mapping Tutorial 10-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Creating and Editing Textures

End-users will want to use texture maps from many di�erent sources. For
scienti�c data display applications, the texture maps will be created from real-
world data and may be in almost any for mat. One of the application developer's
jobs is to support the importation of this data into the application or to document
the supported formats so the end user can translate their data into these formats.

Some end-users will want to create their own texture maps using paint
programs, scanners, video-in equipment, screen grabs, etc. Again, the
application needs to provide a mechanism for the user to use �les with these
formats for texture maps.
The binary version of a texture �le reader, read_texture, is included in the
directory hhp-examplesi/TexMap1. This utility will read �les from several
di�erent formats and produce a PEXlib-compatible texture data structure
suitable for passing to PEXExtCreateFilteredTM. A source code interface to
the read_texture utility is provided in read_tex.c in the same directory. All
of the example programs included in this tutorial use this interface to read
texture �les. The utility will read the �les formats listed in the following table
of �le su�xes, formats, supported versions, and typical contents:
.tif TIFF, version 5.0 (6.0 for TIFF JPEG). Contains

PC, scanned, or FAX images. Note that TIFF
images may be in uncompressed format, or any of the
following compressed formats: JPEG, LZW, G3, G4,
or Packbits.

.jpg or .jpeg JFIF, version 8-R8. Contains JPEG-compressed im-
ages.

.gif GIF, version 87a. Contains xv and xgif images.

.xwd XWD, version X11. Contains pixmap images from xwd

(Z format).
.xbm or .bm XBM, version X11. Contains bitonal X bitmap images.
.xpm or .pm XPM, version 3.0. Contains color X pixmap images.
.bmf BMF, version 1. Contains Starbase bitmap images (Z

format).

1 The actual pathname of this directory depends on the �le system structure. See
the Graphics Administration Guide for details.

10-4 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
The �le reader, read_texture, is provided for your convenience, particularly
to use one of the example programs with a texture �le of your own choosing.
The �le reader is not guaranteed to read all �les in the supported formats; in
particular, it does not support maps with an alpha channel included. For a more
robust and complete solution, the HP product, HP B2157A \Image Developer's
Toolkit for the S700" supplies source code for read/write, display, �le format
conversions, and compression/decompression for multiple �le types. Please
contact your local Hewlett-Packard Sales O�ce or the Customer Information
Center at (800)752-0900 for more information on ordering this product.
Libraries of prede�ned textures are also available. These provide myriad
textures including interiors (carpets, tiles, wood grains), and natural textures
(skies, rainbows, etc.).

Texture Mapping Tutorial 10-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Sources of Textures

The following products facilitate texture creation and editing. Please contact
the companies directly for details and pricing. These products are listed for
your information only, and except for the products from HP, do not represent an
endorsement by HP.

Pixel!FX Scanner support, image viewing and manipulation including resize,
blend, rotate, etc. Supports TIFF, XWD, X bitmap and GIF formats. Contact:
Mentalix, 1700 Alma Drive Suite 110, Plano, Texas 75075. Phone: (214)423-
9377; Fax: (214)423-1145.
HP C1788A ScanJet IIc for Series 700 Workstations High-performance, color
and grayscale atbed scanner. Scans to TIFF format. Contact your local
Hewlett-Packard Sales O�ce or the Customer Information Center at (800)752-
0900.
HP Z1100A RasterOps VideoLive Card Digitizes and captures images from
video to main memory on demand. Saves images to TIFF �les. Contact
your local Hewlett-Packard Sales O�ce or the Customer Information Center
at (800)752-0900.
HP MPower Software supports image scanning, view, and manipulation of
images for scale, contrast, and brightness. Supports TIFF, JFIF, GIF, XWD,
XBM, XBM, and BMF. Contact your local Hewlett-Packard Sales O�ce or the
Customer Information Center at (800)752-0900.
HP B2157A Image Developer's Toolkit for S700 Developer's tool for bundled
HP-UX Image Lib. ImageLib supports read/write, display, �le format
conversions and compression/decompression for multiple �le types including
TIFF, JFIF, GIF, XWD, XBM, and XPM. Includes source code. Contact
your local Hewlett-Packard Sales O�ce or the Customer Information Center
at (800)752-0900.

10-6 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Predefined Textures

There are texture map libraries on CD-ROM available from the following
sources. Please contact the companies listed for pricing and more information.
These products are listed for your information only, and do not represent an
endorsement by HP.

Pixar One Twenty Eight CD Photographic textures include bricks, fabrics,
environmental, landscaping, etc. Includes 128 512�512�24 bit images in
TIFF format. Contact: Pixar, Attn: Renderman Retail, 1001 West Cutting
Boulevard, Richmond, CA 94804. Phone: (510)236-4000, fax: (510)236-0388.
ImageCELs R Includes building materials, environmental, \designer" patterns,
landscaping, and industrial �nishes. Supports �le formats: 8-bit GIF, PCS,
IFF, TIFF, TGA, and DIB; 16-bit TGA, I16, WIN; 24-bit TGA and CEL. To
request a catalog, call (408)252-4706 (you must use fax machine handset).
Contact: ImagetectsTM, P.O. Box 4, Saratoga, CA 95071-0004. Phone:
(408)252-5487, fax: (408)252-7409.
PhotoDisc Photographs of people, nature, places, etc. in PICT or JPEG-
Compressed TIFF format. Contact: PhotoDisc, Inc. 2013 Fourth Avenue,
Seattle, Washington 98121. Phone: (206)441-9355, fax: (206)441-9379.

Texture Mapping Tutorial 10-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

User Interface Considerations

Determining how to present texture mapping to the end user of an application
deserves careful consideration. When texture mapping is used to increase realism,
\getting it right" relies on trial-and-error user interaction. Users will want to
try di�erent texture placements and rendering options before deciding which
combination is best for the speci�c texture and geometry. The application
developer's challenge is to give end users an appropriate amount of control over
the options. Advanced texture-mapping users will want control over all possible
parameters to achieve the desired e�ects. Novice users, however, would be
confused by having too many choices. Throughout this document, user-interface
considerations will be discussed as they pertain to the di�erent features of PEXlib
texture mapping.

At a minimum, a texture-mapping application will need to provide a list (or set of
lists) of available textures. As discussed, these textures may come from a variety
of sources. An application may want to provide searching mechanisms based
on a texture name, picture icon of the texture, or key words (such as \woods")
to facilitate texture retrieval. Hyperlink technologies are another possibility for
searching and retrieving speci�c textures. Many applications will also need to
provide a way for users to pick an object to receive the chosen texture(s).

Object partitioning must also be considered by users of texture mapping. If a user
wants to realistically texture-map an o�ce chair, for example, the cushions and
legs must be partitioned into separate geometric objects so that upholstery can be
applied to the cushions, and chrome or other material can be applied to the legs.
For advanced users, the cushions may need to be partitioned further to accomplish
the desired e�ect on the top and each side of each cushion. This partitioning must
be accomplished when the model is �rst created or the application must provide
a mechanism for object partitioning at any time during the design process.

10-8 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Using PEXlib for Texture Mapping

There are six main steps required to use PEXlib texture mapping; these steps
are described in the next sections of the tutorial:

\Step 1: Setup"
A. Ensure texture mapping support.
B. Inquire implementation dependent constants.
\Step 2: Texture Preparation"
A. Create a �ltered map resource from the source texture map and import it

into PEXlib.
B. Create a texture map description resource.
\Step 3: Geometry Preparation"
A. Compute texture coordinates with PEXlib utilities.
\Step 4: Set up Texture Mapping Lookup Tables (LUTs)"
A. Create one or more Coordinate Source LUT entries to specify how a texture

is mapped onto a primitive.
B. Create one or more Composition LUT entries to describe how texture map

data is combined with the existing color and alpha data of a primitive.
C. Create one or more Sampling LUT entries to specify how a �ltered texture

map is sampled or accessed.
D. Create one or more Binding LUT entries to associate a texture description

with entries in the Coordinate Source, Composition, and Sampling LUTs.
\Step 5: Render"
A. Set up rendering options.
B. Enable texture mapping for subsequent primitives.
C. Activate texture(s).
D. Render primitives.
\Step 6: Clean Up"
A. Free resources used by texture mapping.

Texture Mapping Tutorial 10-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
The graphics pipeline|that sequence of steps your graphical data goes through
in the process of getting from your model to the �nished image on the display|
is as follows:

1. Prespecular texturing;
2. Lighting and shading;
3. Postspecular texturing;
4. Depth cueing;
5. Screen door transparency applied;
6. Replacement rules are applied;
7. Final alpha blending with the frame bu�er (if supported in hardware).

Of course, your program may or may not use all of these features; the above
merely shows the order in which the processes may occur.

Step 1: Setup

A. Ensure texture mapping support. Setup for texture mapping ensures that
texture mapping is supported by the current PEXlib implementation by
calling PEXGetEnumTypeInfo. (Don't forget to call PEXFreeEnumInfo, when
�nished with the memory allocated by PEXGetEnumTypeInfo.) See also \Step
1: Setup" in Chapter 9 in the Texture Mapping Overview.

B. Inquire implementation dependent constants. In general, all applications
should inquire texture mapping implementation dependent constants via
PEXGetImpDepConstants. Di�erent implementations of PEXlib may return
di�erent values for these constants that must be considered. For example,
the constant PEXExtIDPowerOfTwoTMSizesRequired must be passed by the
application to either PEXExtCreateFilteredTM or
PEXExtCreateFilteredTMFromWindow.

10-10 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Step 2: Texture Preparation

A. Create a �ltered map resource from the source texture map and import it into
PEXlib.

Texture preparation involves creating a �ltered map (a \MIP map") from
your source map using PEXExtCreateFilteredTM or
PEXExtCreateFilteredTMFromWindow and importing that map into PEXlib
via PEXExtCreateTM.

Note that after PEXExtCreateTM has been called, PEXExtFreeFilteredTM can
be called to reclaim memory used for the �ltered map.

(See also \User Interface Considerations for Creating Filtered Texture Maps"
and \Discussion: MIP Map".)

B. Create a texture map description resource.

Once the map has been imported into PEXlib, PEXExtCreateTMDescription
must be called to combine texture identi�er(s), parameterization and render-
ing information to form a texture map description. In addition to providing
PEXExtCreateTMDescription with the texture resource identi�er(s) returned
by PEXExtCreateTM, three key parameters must be speci�ed:

parameterization

param_data

rendering_order

The parameterization parameter speci�es how texture coordinates will be de-
rived. Texture coordinates determine how a texture is mapped onto a primi-
tive. The possible values for parameterization are
PEXExtTMParamExplicit, PEXExtTMParamReflectSphereVRC,
PEXExtTMParamReflectSphereWC, and PEXExtTMParamLinearVRC. The fol-
lowing list describes the di�erent e�ects produced by using these di�erent
values.

Texture Mapping Tutorial 10-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

PEXExtParamExplicit (view-independent, standard mapping)

The application calculates texture coordinates or uses the client-side
utilities PEXExtTMCoordFillAreaSetWithData,
PEXExtTMCoordSetOfFillAreaSets, PEXExtTMCoordTriangleStrip,
and/or PEXExtTMCoordQuadrilateralMesh.

Visual result: The texture map is �xed to the primitive, regardless of the
position of the camera or animation of the primitive.
PEXExtTMParamReflectSphereVRC (view-dependent, reection mapping)

Texture coordinates are determined by the PEXlib server with respect to
the current camera position.

Visual result: The texture map is reected onto the primitive. If the camera
moves, the texture map will appear to move along with it and the object
will reect essentially the same portion of the texture map regardless of the
point of view.
PEXExtTMParamReflectSphereWC (view-dependent, reection mapping)

Texture coordinates are determined by the PEXlib server with respect to
the current camera position.

The texture map is reected onto the primitive and produces \true"
environment mapping. If the camera moves, the object will reect a
di�erent portion of the texture map in much the same way as if you were
to move around a chrome ball that reects your environment.
PEXExtTMParamLinearVRC (view-dependent, standard mapping)

Texture coordinates are determined by the PEXlib server with respect to
the current camera position.

Texture coordinates are determined by the PEXlib server with respect to a
projection reference plane de�ned in view reference coordinates (VRC).

At the time of activation (PEXExtSetActiveTextures), equations p0 and
p1 are inversely transformed from VRC space back into Model Coordinate
(MC) space. Once there, they de�ne a projection function such that
objects appear to \swim" through a solid �eld of texture coordinates. This
technique can sometimes be very e�ective in revealing the surface contours
of an object in motion if the right type of texture map grid is employed.

10-12 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
It should be noted that the visual result of this technique is subject to the
currently active view orientation, local and global transforms at the time of
activation. If scaling and rotation are incorporated in any of these matrices,
repetition and distortion of the texture �eld may result.

The distinction between view-dependent and view-independent texture coordi-
nates is an important one. View-independent texture mapping results in a texture
�xed on a primitive that does not change when the point of view changes. View-
dependent mapping means that the apparent texture does change depending on
the point of view of the camera.

When view-independent mapping (PEXExtParamExplicit) is desired, the texture
coordinates can be calculated once for each primitive and need not be recomputed
if the position of the camera changes. For this reason, the client-side utilities,
PEXExtTMCoordFillAreaSetWithData,
PEXExtTMCoordSetOfFillAreaSets, PEXExtTMCoordTriangleStrip, and
PEXExtTMCoordQuadrilateralMesh are provided to pre-calculate the texture
coordinates. These utilities are described in the next section.

View-dependent mapping, on the other hand, demands that the texture coordi-
nates be calculated each time the view point is moved. In this case, it is logical
for the server to calculate the coordinates each time a texture mapped primitive
is rendered. View-dependent, server-side texture coordinates are derived for pa-
rameterization values PEXExtTMParamSphereVRC, PEXExtTMParamSphereWC, and
PEXExtTMParamLinearVRC. The former two values cause a projection onto an in-
�nite sphere to be used in calculating the texture coordinates, while
PEXExtTMParamLinearVRC causes a linear projection to be used to compute the
coordinates. See \Parameterization", below, for a more thorough explanation of
the process of calculating texture coordinates.

Note that two of the four possible parameterization values,
PEXExtTMParamReflectSphereVRC and PEXExtTMParamReflectSphereWC, result
in \reection mapping." The other two methods produce \standard" texture
mapping. A reection mapping di�ers from a \standard" texture mapping in
that the texture coordinates for reection mapping are based on the calculation
of reection vectors for each vertex in a primitive. The result is an object that
reects, or mirrors, the texture map. Reection mapping can be likened to
viewing the reections of a room by looking at a shiny Christmas tree ornament.
\Standard" texture mapping does not rely on reection vectors at all. A texture

Texture Mapping Tutorial 10-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
is placed on an object much the same way as a piece of wrapping paper is applied
to a gift.

Environment mapping is a form of reection mapping where the texture map is a
picture of the environment from the viewpoint of the object at the center of the
environment. PEXlib reection mapping can also be used to simulate chrome or
other shiny materials. Because some shiny materials like chrome are not perfect
reectors, reection mapping provides a relatively inexpensive way to simulate a
shiny object.

The param_data parameter contains the linear equations p0 and p1 and a
reflection_matrix. The values speci�ed in p0 and p1 de�ne the linear
equations used for parameterization equal to PEXExtTMParamLinearVRC. The
reection matrix can be used to orient a spherical or cylindrical projection object
so that texture seams or distortions will appear where they are less noticeable
once the texture is mapped onto a primitive. It is often desirable to align the
axis of revolution of the projection object with the natural axis of symmetry for
the geometrical object (if it has one). It is recommended that the matrix contain
only 3D rotations and it should be noted that the matrix is never applied to the
linear projection.

In addition to parameterization information, the rendering_order must be
passed to PEXExtCreateTMDescription. The two alternative values are
PreSpecular, meaning that any specular highlight is added after the texture
component, and PostSpecular, which speci�es that texture mapping a�ects the
color after specular has been applied.

Parameterization

Surface parameterization is the name given to the process of generating texture
coordinates. Texture coordinates (t0 ,t1) \tie" a 2D texture map to a 3D
geometric model|a sphere, a cylinder or a plane:

10-14 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Figure 10-3. Coordinate Systems of the Three Types of Projection Objects

Finding the correspondence between a 2D map and 3D object is not as trivial
as it might appear. In the case of PEXlib, mathematical projections are used to
derive the correspondence, in a two-step process.

Texture Mapping Tutorial 10-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
First, the geometric model is projected onto a standard volume, or projection
object, and second, the projection object is \unfolded" to a at, 2D surface that
corresponds to a 2D texture map.

Figure 10-4. \Unfolding" a Projection Object

10-16 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
These two steps are described in more detail below.

A. The geometric model is conceptually placed in the center of a projection
object. (PEXlib supports projection objects sphere, cylinder, and plane). For
each vertex in the model, a vector is calculated that intersects the projection
object.

Figure 10-5. Geometric Model with Various Projection Objects

Projection objects of may be rotated using the matrix passed to
PEXExtCreateTMDescription or the PEXExtTMCoord* utilities.

Several di�erent methods of projection, or methods to �nd the intersection,
are supported including using a reection vector, vertex coordinate, or vertex
normal.

For spherical and cylindrical projections, t0 corresponds to the intersection
with the projection object in terms of an azimuth and will have a value
between 0 and 2�. The t1 coordinate for a spherical projection corresponds
to an elevation between ��/2 and �/2. The t1 coordinate for a cylindrical
projection corresponds to a height on the cylinder. For a planar projection,
t0 and t1 correspond to the abscissa and ordinate on the plane, respectively.

B. The second step in the process involves unfolding the projection object into
a at plane which trivially maps to a 2D texture map. For a spherical
projection, this means mapping from the range [0,2�] to [0,1] in X , and from
the range [��/2,�/2] to [0,1] in Y . For a cylindrical projection, [0,2�] maps
to [0,1] in X and the [0,h] maps to [0,1] in Y , where h is the height of the

Texture Mapping Tutorial 10-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
cylinder. Finally, for planar projections, [0,w] maps to [0,1] and [0,h] maps
to [0,1] where w and h are the width and height of the projection plane,
respectively.

Before the texture coordinates are used to access the texture map, they are
�rst transformed by the orientation matrix in the Coordinate Source LUT.
This transformation e�ectively allows the texture to be translated, rotated
and scaled before it is applied to the geometry.

User Interface Considerations for Parameterization

An application may allow an advanced user to choose between the many
di�erent parameterization methods supported by PEXlib. The user interface
for the methods may be presented in terms of view independence, reection
mapping vs. \standard" texture mapping, and projection objects. To further
control the generation of texture coordinates, a user may also need to be able
to manipulate the projection object matrix for each projection. For explicit
projections created by PEXExtTMCoord*, a user may be given a choice of using
the vertex coordinates or vertex normals when creating the projection vector for
a projection. This allows the user to further \tweak" the results of the texture
coordinates calculations to produce the desired e�ects.

Note that although PEXlib supports powerful texture coordinate generation
techniques, some advanced texture mapping applications may want to extend
the capabilities further and allow users to modify individual texture coordinates
interactively, thus achieving complete control over texture placement. Such an
application would want to display the actual texture coordinates and the texture
mapped object and allow the user to pick one or more coordinates and move
them using a mouse or other input device. Another scheme would display the 2D
texture map and overlay the 2D texture coordinates. This would allow the user to
manipulate the coordinates in 2D, a much simpler operation than manipulation
in 3D.

10-18 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Step 3: Geometry Preparation

A. Compute texture coordinates with PEXlib utilities.

Recall from the \Step 2: Texture Preparation" discussion, that when param-
eterization is set to PEXExtParamExplicit and passed to
PEXExtCreateTMDescription, the texture coordinates are expected to be
computed by the client-side PEXlib utilities (or by the application), not by
the PEXlib server as determined by the other values of parameterization.
PEXlib will generate texture coordinates for Extended or OC Context Fill
Area Sets, Set of Fill Area Sets, Triangle Strips, or Quadrilateral Meshes via
the utility routines PEXExtTMCoordFillAreaSetWithData,
PEXExtTMCoordSetOfFillAreaSets, PEXExtTMCoordTriangleStrip, or PEX-
ExtTMCoordQuadrilateralMesh.

The only PEXlib primitives that can be texture-mapped are either
PEXExtFillAreaSetWithData, PEXExtSetOfFillAreaSets,
PEXExtTriangleStrip, and PEXExtQuadrilateralMesh; or, alternatively,
PEXOCCFillArea, PEXOCCFillAreaSet, PEXOCCIndexedFillAreaSets, PEX-
OCCTriangleStrip, and PEXOCCQuadrilateralMesh.

Texture coordinates created by the PEXExtTMCoordFillAreaSetWithData,
PEXExtTMCoordSetOfFillAreaSets, PEXExtTMCoordTriangleStrip, and
PEXExtTMCoordQuadrilateralMesh routines result in \standard" texture
mapping, as opposed to reection mapping. Standard mapping is independent
of the camera, and as such, may be calculated once for each primitive. These
utilities calculate the texture coordinates and store them with the primitive's
vertex data. The application must reserve space within the coordinate data
for the texture coordinates before these utilities are called.

Texture Mapping Tutorial 10-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
The PEXExtTMCoord* utilities require that the following information be
speci�ed:

projection: PEXExtTMProjectionSphereWC,
PEXExtTMProjectionCylinderWC, and PEXExtTMProjectionLinearWC are
supported projection objects. The primitive described in a call to one
of these utilities will be conceptually projected onto the projection object
(sphere, cylinder, or plane) to derive the texture coordinates.

Figure 10-6. Projection Methods Used to Calculate Texture Coordinates

matrix: For greater control over the positioning of texture coordinates
relative to a primitive, the projection object can be transformed by the
matrix in param_data for either the spherical or cylindrical projections.
This can serve to change the orientation of the projection. The user
may want to change the orientation of the projection to move texture
seams or distortions where they will be less noticeable once the texture
is mapped onto a primitive. It is often desirable to align the axis of
revolution of the projection object with the natural axis of symmetry for
the geometrical object (if it has one). The projection matrix is passed to
the PEXExtTMCoord* utilities in the tm_coord_data parameter for explicit
projections and to PEXExtCreateTMDescription for all other projections.
It is recommended that the matrix contain only 3D rotations and should
be noted that it is never applied to linear projections.
coord_source: The coordinate source to be used to compute the texture
coordinates must be supplied. For cylindrical and spherical projections,
a direction vector is computed using either the vertex coordinate or the
vertex normal. Using one or the other may produce results that are more
pleasing to the end user depending on the primitive and texture map.

10-20 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
If PEXExtTMCoordSourceVertexNormal is selected, but normals are not
supplied with the primitive's vertex data, the normals will be derived by
the utility.
model_transform: A model coordinate transform is provided to convert
from model to world coordinates, if desired. One advanced use of the
model_transform, for example, is a tire modeled once but instantiated four
times. The model transform for each instantiation could be speci�ed and the
texture coordinates for each model transform stored in a di�erent location
of the tire primitives' vertex lists. This would result in four sets of texture
coordinates being stored with each vertex. By using the mc_transform,
each tire would be properly texture mapped according to its orientation in
the scene.
vertex_attributes: Note that an application must set the ag
PEXExtGAData in the vertex_attributes parameter passed to the
PEXExtTMCoord* utilities to notify PEXlib that there will be texture
coordinates stored with the vertex data.

(See also \User Interface Considerations for Parameterization".)

Texture Mapping Tutorial 10-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Step 4: Set up Texture Mapping Lookup Tables (LUTs)

The texture mapping Lookup Tables control how a texture is positioned on
an object and how the texture mapped object will appear once it is rendered.
These LUTs are created, manipulated, and inquired using the standard calls,
PEXCreateLookupTable, PEXGetTableInfo, PEXGetDefinedIndices, and the
extended calls PEXExtSetTableEntries, PEXExtGetTableEntry,
PEXExtGetTableEntries, and PEXExtFreeTableEntries.

Note that to change renderer attributes, including which Lookup Tables are
associated with a renderer, the extended routine PEXExtChangeRenderer must
be used.

A. Create one or more \Coordinate-Source LUT" in Chapter 9 entries to specify
how a texture is mapped onto a primitive.

The Coordinate Source LUT speci�es how a texture is placed on the geometry.
Of prime importance is the orientation matrix. Each texture coordinate
is transformed by this matrix before accessing the texture map. Many
applications will need to provide end-user access to the orientation matrix (via
a mouse or other input device) so that textures can be positioned precisely on
objects. For these applications, there is no exact way to know how a texture
should be oriented and user input is indispensable. For example, only the end-
user knows how a texture mapped label should be oriented on a package. For
other applications, particularly when mapping real-world data, the position
of the texture map is intrinsic to the texture data and the user will not need
to position the textures on the object.

The orientation matrix di�ers from the reection matrix used by
PEXExtCreateTMDescription and PEXExtTMCoord* in that it is applied to
the texture coordinates before accessing the texture map while the reection
matrix is applied to the projection object as one of the steps taken to
determine the texture coordinates.

B. Create one or more \Composition LUT" in Chapter 9 entries to describe how
texture-map data is combined with the existing color and alpha data of a
primitive.

The Composition LUT speci�es how a texture map is combined with a
primitive's existing color and alpha values. Supported composition techniques
are Replace, Modulate, and Decal:

10-22 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

C. The Replace operation overwrites the primitive's existing color with that of
the texture map. Likewise, if a texture alpha is speci�ed, the primitive's alpha
is replaced. If alpha is not speci�ed, the primitive's alpha remains unchanged.

D. The Modulate operation multiplies each component (R, G, B) of the
primitive's existing color with each component of the texture map color. If
texture alpha is speci�ed, the primitive's alpha is multiplied by the texture
alpha to determine the �nal alpha.

E. The Decal operation functions much like Replace when alpha is not included
in the texture map, in that the texture map color replaces the primitive's
color. However, alpha is set to 1.0. If, on the other hand, alpha is speci�ed in
the texture map, the following equation is used to determine the �nal blended
color:

Cout = Cin � (1� ta) + tc � ta

where Cin is the primitive's existing color, ta is the texture map alpha, and
tc is the texture map color.

F. Create one or more \Sampling LUT" in Chapter 9 entries to specify how a
�ltered texture map is sampled or accessed.

The entries in the Sampling LUT de�ne how a texture map is sampled as
it is mapped onto a primitive. Several di�erent parameters determine the
sampling method:

When the texture coordinates for a primitive map multiple texels to a single
pixel, the mini�cation method is used to determine exactly how the texels
should be used to determine the color for that pixel.
When the texture coordinates map one texel to multiple pixels, the
magni�cation method determines what values should be assigned to the
multiple pixels.
Boundary conditions t0_boundary_condition, t1_boundary_condition,
and t2_boundary_condition specify how texturing should be applied when
the texture coordinates select a point outside the texture map. The
t0_boundary_condition is for the t0 (horizontal) coordinate,
t1_boundary_condition is used for the t1 (vertical) coordinate, and
t2_boundary_condition is not used.
The depth_sampling_bias_hint can be used to adjust which level of a
texture MIP map is sampled. This results in sharpening or blurring the
texture detail depending upon the new level selected in the map.

Texture Mapping Tutorial 10-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

The t0_frequency_hint, t1_frequency_hint, and t2_frequency_hint,
can be applied by advanced texture mapping users based on the actual
data in a given texture map. If blurring in any one direction would be
unacceptably high due to low spatial frequency, this hint may be set to a
value between 0.0 and 1.0 for that direction. The a�ect will be to bias the
texture map sampling to reduce the blurring.

G. Create one or more \Binding LUT" in Chapter 9 entries to associate a texture
description with entries in the Coordinate Source, Composition, and Sampling
LUTs. Binding LUT entries are passed to PEXExtSetActiveTextures to
activate one or more textures for subsequent primitives.

Step 5: Render

A. Set up rendering options.

Optionally use PEXExtSetTMSampleFrequency. The texture mapping
sample frequency speci�es the frequency to use when sampling texels in
a texture map. The only supported value for frequency is
PEXExtTMSampleFrequencyPixel, meaning that texture map texels are
sampled once for each pixel.
Optionally use PEXExtSetTMPerspectiveCorrection to control whether to
apply perspective correction. Because texture coordinates are calculated for
vertices only, these coordinates must be interpolated to �nd the appropriate
values for the points between the vertices and on the interior of the
primitives. This call determines whether perspective correction is applied
during interpolation.
Optionally use PEXExtSetTMResourceHints. This call allows the user
to ask PEXlib to optimize texture mapping performance to the possible
detriment of memory usage, or vice versa. It is also possible to specify a
list of textures that are believed to be the ones most often used by the
user. Note that as hints, the requests made by this call may or may not
be followed. Although the way in which system resources are used may be
a�ected by these resource hints, the actual image displayed will not change.
Enable texture mapping for subsequent primitives.

To texture-map a primitive, the interior style must be set to
PEXExtInteriorStyleTexture via PEXSetInteriorStyle. Alternatively,
bundle tables may be used and PEXSetInteriorBundleIndex may be
called.

10-24 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

B. Activate texture(s).

One or more textures must be activated using the call
PEXExtSetActiveTextures. Backface textures can be activated by
PEXExtSetBFActiveTextures. Note that the number of active textures
allowed may be inquired using PEXGetImpDepConstants.

Note that if the application needs to rede�ne the pipeline context,
PEXExtChangePipelineContext can be called to set the texture mapping
attributes perspective correction, resource hints, sample frequency, and front-
face and back-face active textures.

C. Render primitives.

Primitives that are to be texture mapped must be rendered using either one
of the routines, PEXExtFillAreaSetWithData,
PEXExtSetOfFillAreaSets, PEXExtTriangleStrip, or PEXExtQuadrilat-

eralMesh; or, alternatively, PEXOCCFillArea, PEXOCCFillAreaSet, PEX-

OCCIndexedFillAreaSets, PEXOCCTriangleStrip, and PEXOCCQuadrilat-

eralMesh.

Step 6: Clean Up

A. Free resources used by texture mapping. The routines PEXExtFreeTM and
PEXExtFreeTMDescription remove the association between a resource ID and
the texture map and a resource ID and texture map description, respectively.
The storage held by a resource will be freed when no other resource references
it.

Texture Mapping Tutorial 10-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

References

Bier, Eric A. and Sloan, Kenneth R., Jr., \Two-Part Texture Mappings," IEEE
Computer Graphics and Applications , Sept. 1986, The Computer Society, Los
Alamitos, CA, pp. 40|53.
Blinn, James F. and Newell, Martin E., \Texture and Reection in Computer
Generated Images," Communications of the ACM , Vol. 19, No. 10 (Oct 1976);
Association for Computing Machinery, Inc., New York, 1976, pp. 542|547.
Blinn, James F., \Simulation of Wrinkled Surfaces," ACM Computer Graphics ,
Vol. 12, No 3., (SIGgraph Proceedings 1978), Association for Computing
Machinery, Inc., New York, 1978, pp. 286|292.
Catmull, Edwin, \A Subdivision Algorithm for Computer Display of Curved
Surfaces," doctoral dissertation, University of Utah, Salt Lake City, Utah,
December 1974.
Crow, Franklin C., \Summed-Area Tables for Texture Mapping," ACM
Computer Graphics , Vol. 18, No. 3, (SIGGRAPH Proceedings 1984),
Association for Computing Machinery, Inc., New York, 1984, pp. 207|212.
Glassner, Andrew S., 3D Computer Graphics|A User's Guide for Artists and
Designers , Design Press, New York, 1989.
Heckbert, Paul S., \Survey of Texture Mapping," IEEE Computer Graphics
and Applications, Nov. 1986, The Computer Society, Los Alamitos, CA, 1986,
pp. 56|67.
Peachey, Darwyn R., \Solid Texture of Complex Surfaces," ACM Computer
Graphics , Vol. 19, No. 3, (SIGgraph Proceedings 1985), Association for
Computing Machinery, Inc., New York, 1985, pp. 279|286.
Watt, Alan and Watt, Mark, Advanced Animation and Rendering Techniques|
Theory and Practice, Addison-Wesley Publishing Company, ACM Press, New
York, 1992.
Williams, Lance, \Pyramidal Parametrics," ACM Computer Graphics , Vol. 17,
No. 3, (SIGgraph Proceedings 1983), Association for Computing Machinery,
Inc., New York, pp. 1|11.
Wolberg, George, Digital Image Warping' IEEE Computer Society Press, Los
Alamitos, 1990.

10-26 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Detailed Discussions

This section contains more detailed discussions of some selected texture mapping-
related topics below:

\Discussion: MIP Map"
\User Interface Considerations for Creating Filtered Texture Maps"
\Parameterization"

Discussion: MIP Map

\MIP" stands for multum in parvo; literally, \many things in a small place."

Why use MIP maps?

MIP maps are generally used to reduce the aliasing e�ects that naturally take
place with texture mapping. Because the cost and repetition of anti-aliasing
calculations are high, pre-computing their values in the form of a MIP map
can dramatically reduce the overall performance cost of anti-aliasing.

When a texture map is accessed for a single screen pixel, one of three things
can happen:
The pixel maps to less than one texel (this means that several screen pixels
map to a single texel of the texture map.) The texel information must be
\magni�ed" (by interpolating information from neighboring texels) to cover
the pixel.
One pixel maps to a single texel (the ideal case)
One pixel maps to several texels. The texel information must be \mini�ed"
to represent the average color of all the covered texels.

In cases 1 and 3, a MIP map allows a color to be easily approximated for the
screen pixels in near-constant time. This averaging mechanism minimizes the
e�ects of aliasing as much as possible in a cost-e�ective manner.

Texture Mapping Tutorial 10-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

How is a MIP map created?

A MIP map is a pyramid of images with the base of the pyramid equal to the
original source texture map. Each successive level of the texture map is created
using a box �lter for each texel in the next level. In other words, four texels in
one level of the map (in a 2�2 square) are averaged to create one texel in the
next, smaller level. Thus, each successive level in a MIP map is a quarter of
area of the previous level. The number of levels in a MIP map is also referred
to as the depth of the map. The highest, and smallest, level of the MIP map
is referred to as the \pinnacle."

PEXlib provides the utilities PEXExtCreateFilteredTM and
PEXExtCreateFilteredTMFromWindow to create a MIP map from a source
map provided by the application. One of the parameters passed to the
PEXExtCreateFilteredTM* utilities is the number of levels to create. If zero is
speci�ed, the optimum number of levels will be created to produce a full MIP
map.

10-28 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

How is a MIP map used?

The values speci�ed in the Sampling LUT determine how the MIP map
is actually sampled to �nd the appropriate color for a single pixel. The
mini�cation method speci�es how the map should be sampled when one screen
pixel maps to several texels and the magni�cation method determines what to
do in the case of multiple pixels mapping to a single texel. The possible methods
are detailed in the table below and vary depending on how many pixels per level
are sampled and how many levels are sampled to determine the �nal color. Note
that for magni�cation, only the �rst two, PEXExtTMTexelSampleSingleBase
and PEXExtTMTexelSampleLinearBase are recommended. In the table, where
\2n" is speci�ed, n refers to the texture map dimension: 1, 2, or 3.

Table 10-1. MIP Map Usage

Method (mini�cation or magni�cation) Texels sampled
per level

Level(s)
sampled

PEXExtTMTexelSampleSingleBase 1 Base level only

PEXExtTMTexelSampleLinearBase 2n Base level only

PEXExtTMTexelSampleSingleInMipmap 1 One level closest to sample
depth

PEXExtTMTexelSampleLinearInMipmap 2n One level closest to sample
depth

PEXExtTMTexelSampleBetweenMipmaps 1 Two levels closest to
sample depth

PEXExtTMTexelSampleLinearBetweenMipmaps 2n Two levels closest to
sample depth

Texture Mapping Tutorial 10-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
Given these methods, the MIP map is sampled according to the following
formula:
The number of texels in the base map that are covered by a single pixel
determines if the mini�cation method or magni�cation method should be
used. The number of texels also determines which level should be sampled if
the mini�cation method speci�es a level other than the base level. The
depth_sampling_bias_hint value in the Sampling LUT can shift this
sampled level up or down to make the texture appear more detailed or more
blurred.
The mini�cation method or magni�cation method, as appropriate, is used
to determine how many pixels should be sampled.
If more than one texel is sampled as speci�ed by the mini�cation method or
magni�cation method, the texels are averaged to derive the �nal color value.

10-30 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
User Interface Considerations for Creating Filtered Texture Maps

Some PEXlib implementations require texture map dimensions to be a power of
two and/or require square maps (your implementation's requirements can be de-
termined by PEXGetImpDepConstants). The utilities PEXExtCreateFilteredTM
and PEXExtCreateFilteredTMFromWindow will resize the maps if demanded by
the implementation. In some rare instances, the user may want total control over
how the images are resized to meet the implementation requirements. The user
may want to specify whether the map be cropped to meet the requirements or
shrunk or enlarged using a �lter. In these cases, the application will need to
perform the shrinking or enlargement itself, before calling
PEXExtCreateFilteredTM (or PEXExtCreateFilteredTMFromWindow). The util-
ities PEXExtCreateFilteredTM and
PEXExtCreateFilteredTMFromWindow �lter according to these rules:

If a power of two is required, each dimension is resized to the closest power
of two. If the closest power of two is smaller than the original dimension of
the map, the map is down-sampled using a box �lter. If the closest power of
two is greater than the original dimension, the map is up-sampled using linear
interpolation.
If texture maps are required to be square, the texture map will be enlarged
using linear interpolation to have dimensions equal to the largest of the two
original dimensions.
If both power-of-two and square texture maps are required, the dimensions will
�rst be resized to a power of two and then the largest dimension will be used
as the dimension of the �nal map.

Texture Mapping Tutorial 10-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Troubleshooting

This troubleshooting section is separated into several sections; choose the desired
texture-mapping subject matter.

Frequently-Asked Questions

Q. What areas should be checked if textures fail to render?

A. Texture mapping may fail when some of the following conditions occur:

Neither the extended primitives (PEXExtFillAreaSetWithData,
PEXExtSetOfFillAreaSets, PEXExtTriangleStrip,
PEXExtQuadrilateralMesh) were called; nor were the OCC alternatives
PEXOCCFillArea, PEXOCCFillAreaSet, PEXOCCIndexedFillAreaSets,
PEXOCCTriangleStrip, and PEXOCCQuadrilateralMesh called. These are
the only primitives for which texture mapping is supported.

The interior style PEXExtInteriorStyleTexture was not speci�ed for
either front and/or back faces.

The PEX server does not support the 5.1 texture mapping extended
renderer, determined by inquiring its support with PEXGetEnumTypeInfo.

No texture maps or coordinates were supplied. In this case, the default map
(a black-and-white checkerboard) is used, but since no texture coordinates
existed, the default speci�es a coordinate of (0,0) per vertex, which
translates into a single point of a white square (or black square on some
implementations non-HP implementations).

Texture coordinates were out of range when the active texture coordinate
clamp condition was PEXExtTMBoundaryCondBoundary. Scaling coordi-
nates to be between [0,1) or attempting the clamp condition
PEXExtTMBoundaryCondWrap (if it is supported) may resolve this.

Texture coordinates were out of range when the active texture coordinate
clamp condition was PEXExtTMBoundaryCondClampColor. If the clamp
color speci�ed was black (the default), then the surface should appear
black as well. Try specifying a color of red (1,0,0) in the Sampling LUT
entry to determine if the clamp condition is being used.

The texture map input may be invalid. If so, try another map type and
be certain it abides by any implementation-dependent constraints such as

10-32 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
PEXExtIDPowerOfTwoTMSizesRequired and
PEXExtIDSquareTMRequired. Note that the utilities
PEXExtCreateFilteredTM and PEXExtCreateFilteredTMFromWindow can
be used to ensure the implementation constants are met.

Data from the utilities for texture coordinates or �ltered texture maps
was invalid. Be certain to check the return status of these functions to
determine the correctness of their data.

Q. Under what conditions might one see the default texture (a checkerboard)
appear?

A. The default texture appears when:

When the active [backface] texture list is empty (zero in length).
When the active [backface] texture list speci�es a nonexistent Binding LUT
entry.
When a user Binding LUT table is unspeci�ed.
When an invalid TMDescription or texture map ID is detected.

Q. What types of image �le formats does PEXlib support?

A. None. The library supports utilities to perform xwd-like window grabs
(PEXExtCreateFilteredTMFromWindow) once an image is displayed, however
it cannot read or use a �le format directly.

Q. Does PEXlib limit the number or size of textures which can be used?

A. PEXlib does not limit the number of textures which can be prede�ned
by PEXExtCreateTM or PEXExtCreateTMDescription, however, implemen-
tations may limit the actual number of textures which can be applied to
any one extended surface primitive at a time. This limit is speci�ed by the
constant PEXExtIDMaxTextureMaps on a per-primitive basis. The size of a
texture may also be limited by the value speci�ed in
PEXExtIDMaxFastTMSize if texture mapping acceleration is available to a
user. Both values can be inquired by PEXGetEnumTypeInfo.

Texture Mapping Tutorial 10-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Q. Why do the scaling matrices in the TMCoordSrc LUT behave inversely to
their expected e�ect on a texture; for example, scaling values greater than 1
create multiple copies of a map on my surface?

A. Texture coordinate space is ideally de�ned between zero and one [0.0,1.0).
When a texture coordinate is scaled by a value greater than one in the
orientation matrix of a TMCoordSrc LUT entry, its value spans a texture
coordinate space distance greater than or equal to one. In this case, the
texture coordinates will, if the correct wrap or mirror boundary conditions
are set, sample more than one texture \space" in a periodic fashion.

For example, the orientation matrix:
2
664
3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

3
775

transforms the texture coordinates (0,0) and (1,1) to be the new forms
(0,0) and (3,2). As the texture coordinates are interpolated across texture
space, the boundary conditions for zero and one are examined and the
appropriate wrap or clamp actions taken. (To wrap, compute the value
t00 = t0�bt0c and t01 = t1�bt1c.) In the above example, boundary conditions
of PEXExtTMBoundaryCondWrap for t0 and t1 would result in three copies of
the texture in the t0 direction and two copies in the t1 direction. This stems
from the fact that the texture space range of zero to one [0,1) �ts into the
above ranges three and two times, respectively.

A matrix of the type:
2
664
0:25 0 0 0
0 0:25 0 0
0 0 1 0
0 0 0 1

3
775

would map the texture coordinates (0,0) and (1,1) to the new forms (0,0)
and (0.25, 0.25) in texture space, thus sampling only a fraction of the total
map.

10-34 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
Texture Maps

Q. How does one avoid or �x the unpleasant texture seams which may occur on
an object?

A. Texture seams can become visible when:

The boundary condition PEXExtTMBoundaryCondWrap is active in a given
direction and opposing edges of a texture map do not match in color.
To correct this, ensure the opposing edges of a map (top=bottom,
left=right) share the same color. This can be performed in many
interactive image processing and paint packages. Alternatively, the
boundary condition PEXExtTMBoundaryCondMirror, if supported, may
help in certain situations.
Texture coordinates on a primitive do not quite stretch between [0,1), thus
the underlying color of a primitive (such as white) reveals the edge of the
map. In this situation, explicit texture coordinates can either be scaled and
restored in the vertex to account for this condition (scale operation occurs
once) or the orientation matrix in the TMCoordSrc LUT can hold a scale
matrix (less e�cient due to per image cost to rescale texture coordinates).
Two textures in proximity to each other (by nature of their texture
coordinates) do not overlap at their edges cleanly due to precision problems
or because of contrasting colors. Under these situations, corrections may
be possible by either editing textures to share edge colors explicitly or
forcing one texture to overlap the other via its orientation matrix.
The texture coordinate utility functions (PEXExtTMCoord*) are susceptible
to producing parameterizations with obvious \seams." Seams created here
occur when a projection method wraps over a boundary condition (both
cylindrical or spherical projections have seams at their positive (+X) axes).
Using the orientation matrix contained in the param_data argument of
these utility functions can reorient this seam condition to other parts of an
object's geometry (in many desirable cases, the side opposite the observer).

Texture Mapping Tutorial 10-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Q. Why does my input texture map appear to be inverted (upside down) on the
textured surface?

A. The problem may be caused by the ordering of your texture map scanlines.
PEXlib texture maps assume to have their origins (0,0) at the lower left edge
of the quadrant. Many formats (such as X) assume the upper left. Maps
should be inverted in scanline order if their origins are in conict with PEXlib.
Alternatively, an appropriate orientation matrix can ip these coordinates as
well, although this method may cause more calculation and precision costs
later in the pipeline. (The utility PEXExtCreateFilteredTMFromWindow

already performs this inversion.)

Surface Parameterization

Q. When parameterizing certain objects (such as a sphere composed of poly-
gons), why do texture maps appear to sometimes \swirl" around the natural
poles of the object?

A. The poles of a sphere correspond to the \top" and \bottom" edges of a 2D
texture as they collapse down to one point. Since the texture coordinate
utilities PEXExtTMCoord* compute projections on a per-vertex basis, it is not
possible to represent all points along these edges as one point. Instead, the
projection utility will usually choose one or more points (depending upon the
coordinate source selected), which will then be interpolated during rendering.
When this occurs, a swirling e�ect appears which is often emphasized by
having large primitives at the top (or bottom) of the sphere. This visual
e�ect can be minimized by reducing the sizes of any \polar" primitives of
the sphere, but it cannot be totally eliminated from this parameterization
approach. (Ray tracers escape this problem by evaluating the projection
equation at each pixel, not each vertex, thus minimizing the e�ect of the
polar singularity.)

10-36 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Q. Why do certain primitives (the extended primitives
PEXExtFillAreaSetWithData, PEXExtSetOfFillAreaSets,
PEXExtTriangleStrip, and PEXExtQuadrilateralMesh; or the OCC alter-
natives PEXOCCFillArea, PEXOCCFillAreaSet,
PEXOCCIndexedFillAreaSets, PEXOCCTriangleStrip, and
PEXOCCQuadrilateralMesh) sometimes appear to have discontinuous tex-
tures applied across their surfaces, even though the texture coordinate utili-
ties worked on the primitive all at once?

A. The primitives described above are shared-vertex types of surface primitives.
Although facets of these primitives may share geometric vertices, they may
not actually share the shading normals associated at these points. Thus, if
the texture coordinate source is PEXExtTMCoordSourceVertexNormal and a
facet normal must be substituted, the coordinates stored in the vertex will
be those of the last shared facet to that vertex point (which may be incorrect
for all other primitives). The only solutions to this problem are to ensure
that facets sharing vertices also share vertex shading normals when using
PEXExtTMCoordSourceVertexNormal or to use
PEXExtTMCoordSourceVertexCoord when possible.

Q. What causes textures to become \squeezed" at unnatural locations on my
object geometry?

A. Spherical projections computed by the texture coordinate utilities
PEXExtTMCoord* create known artifacts around the poles of their projection
object. These poles lie along the +Y axis in world space (WC). If the natural
axis of symmetry for an object (such as a vase) uses a di�erent axis (such as
the Z axis), then the orientation matrix in the parameterization data record
should incorporate a rotation of 90 degrees to bring this axis in conjunction
with the +Y axis of the projection object. This will reduce the apparent
distortion by keeping the lines of symmetry aligned.

Texture Mapping Tutorial 10-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
Standard Mapping

Q. What operations a�ect the apparent position of a texture on the surface of
a primitive?

A. The apparent position of a texture on a surface occurs due to the location of
texture coordinates within the 2D space of a standard texture map. Texture
coordinates select regions of the texture to \pin" to the vertices of a facet.
To alter the selected regions, several measures can be taken:

Texture coordinates can be \moved" during their creation by controlling
the method of a surface parameterization. Both
PEXExtTMProjectionSphereWC and PEXExtTMProjectionCylinderWC use
orientation matrices in their parameterization, e�ectively transforming a
texture coordinate before it is stored.

A TMCoordSrc LUT entry contains a unique transformation matrix which
can scale, translate, or rotate texture coordinates within 2D texture space.
Use of this feature can aid in exactly positioning texture coordinates over
the interesting areas of a texture map.

Editing the contents of the target texture map to relocate, rescale, or
otherwise alter the locations of interest with respect to the object's texture
coordinates.

Environment Mapping

Q. Under certain conditions, why do some of the facets of a surface fail to texture
map when using PEXExtTMParamReflectSphereWC?

A. The implementation of PEXExtTMParamReflectSphereWC under HP PEXlib
detects a condition where a parameterized primitive may cross the natural
seam of the texture (the seam of the WC sphere is at the +X axis). To
correct this condition, try using the boundary clamp conditions
PEXExtTMBoundaryCondWrap for both t0 and t1 to ensure correct continuity
of the map across a seam.

10-38 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Q. What advantage does PEXExtTMParamReflectSphereWC o�er over
PEXExtTMParamReflectSphereVRC?

A. If PEXExtTMParamReflectSphereWC is supported in your implementation,
then reections on a surface will change with respect to location of the view
in world coordinates (WC). As an object or viewpoint changes position, so
does the apparent reection along its surface. This di�ers from
PEXExtTMParamReflectSphereVRC, which computes reections in eye coor-
dinates (VRCs), a coordinate system which always keeps the reected envi-
ronment �xed behind the viewer. From a natural perspective,
PEXExtTMParamReflectSphereWC behaves more like an enclosing environ-
ment as the eye position moves relative to the reective surface. (HP PEXlib
supports the functionality of PEXExtTMParamReflectSphereWC.)

Q. How are chrome or metallic e�ects best simulated?

A. Chrome and other highly reective surfaces are only as interesting as the
environments they are found in. In real-world situations, chrome objects are
often photographed in special enclosures which include both light and dark
regions. Texture maps to simulate this e�ect should include both light and
dark regions of a map such as those found in sparsely lit rooms. Photographs
or other image data can be converted speci�cally for this purpose. The quality
of rendered reection is also dependent upon the clarity of detail in a texture
map. The sharper the detail contained in a map, the greater the impression
of �ne chrome there will be on a rendered model.

Texture Mapping Tutorial 10-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
Performance

Q. Under what conditions will my texture mapping performance be the best?

A. Several steps can be taken to improve texture mapping throughput in the
system:

Attempt to render all extended surface primitives using the same set of
textures at the same time. Activating di�erent textures on a per-primitive
basis can be costly.

Minimize the mixture of surface primitives going to PEX. When the
supported extended primitives for texture mapping
(PEXExtFillAreaSetWithData, PEXExtSetOfFillAreaSets,
PEXExtTriangleStrip, PEXExtQuadrilateralMesh), or the OCC versions
of these primitives (PEXOCCFillArea, PEXOCCFillAreaSet,
PEXOCCIndexedFillAreaSets, PEXOCCTriangleStrip, and
PEXOCCQuadrilateralMesh) are mixed with other types of primitives,
the overall cost to switch modes|texturing versus non-texturing|will
increase.

A single active texture map will generally perform better than multiple
active texture maps. The performance cost, however, varies with general
size of the map, type of map, number of maps, and the complexity of the
texture operations associated with each map.

Texture maps which use the \Int8" (byte) level organization save
considerable memory resource on a given system. Larger maps, because of
their dimension or the fact that they are comprised of \Float" data, will
impact the operating system by increasing the application's use of swap
space.

Pre-transforming texture coordinate data stored at a vertex and using
identity orientation matrices for all TMCoordSrc LUT entries will reduce
the amount of computation spent during texture mapping. Although these
matrices help position a texture on the surface of an object, it is often
possible to �x these texture coordinate values by pre-transforming them
one time since they are not likely to change after their location can be tied
down.

10-40 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

10
Visual Quality

Q. My texture map has many �ne details in it, some only one texel wide (such
as lines). When I rotate the surface it is applied to, these lines tend to break
up or ash. What can I do to correct this?

A. Texture mapping is all about sampling theory. Essentially, the more discrete
samples taken, the better the reconstruction of the original, continuous
signal. The artifact you are experiencing is sampling \aliasing," the loss
of reconstruction information. To reduce or eliminate visual artifacts, try
the following:

Increase the size of your texture map. Since aliasing is based on a factor
of screen pixel size to its coverage on the texture map, a greater size map
with more information can often improve color sampling.

Use a MIP map with more than one level. MIP maps are precomputed
sampling �lters which try to account for aliasing during sampling. Use
of a MIP map can often improve image quality during animation due to
problems with sampling.

Use better sampling methods for your MIP map.
PEXExtTMTexelSampleSingleBase uses only one sample and is prone
to aliasing. PEXExtTMTexelSampleLinearBetweenMipmaps uses many
samples and an neighbor interpolation �lter to approximate colors, thus
reducing the inaccuracy of single point sampling. (The only drawback to
using more interpolation is a softening of sharp detail due to the blending
used in the computation.)

Texture Mapping Tutorial 10-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Q. Portions of my textured surface appear to be blotched with regions of blurred
detail. What are they and how can I correct this?

A. The artifact witnessed here occurs due to the design of the Mip Map anti-
aliasing �lter. As a renderer attempts to approximate an area of texels to
sample in texture space, it selects di�erent map levels to sample. The regions
of blurred detail are visible transitions which are occurring due to the current
sampling method. To reduce the visual impacts of these artifacts, several
steps should be attempted:

Create your own MIP maps using better �lters than those o�ered
by PEXExtCreateFilteredTM and PEXExtCreateFilteredTMFromWindow.
These utilities employ box- and linear �lters to minify and scale incoming
image data. Other image processing �lters such as Gaussian can lead to
improved images.
Increase the level of �ltering.
PEXExtTMTexelSampleLinearBetweenMipmaps provides the highest qual-
ity of visual control, however, it also requires the greatest amount of com-
putation; this can reduce pipeline throughput.
Increase the size of the depth_sampling_bias_hint in the TMSampling

LUT to greater than one to force sampling to occur in deeper maps away
from the base map. The overall blurring of detail will increase, however it
will appear more uniform. Decrease the size to improve sharpness.
Decrease the t*_frequency_hint in any of the t0 or t1 directions.
Depending upon the level of detail in a map and its frequency, this bias
will reduce the contribution of t0 or t1 gradient calculations such that the
levels of Mip Map will change more rapidly based upon the contributing
factor of the other's (t1 or t0) gradient. This hint, however, may not be
implemented under all implementations or devices.
Reduce the level of high frequency detail in the original texture map.
Areas of high change (gradient) reveal greater levels of visual artifacts
when viewed on a textured surface.
Decrease the size of the primitives to which the texture will be applied.
Sometimes the interaction between light shade interpolation and texture
surface causes mach-bands or other artifacts to become more pronounced.
Increasing the level of detail can sometimes improve the �nal visual
outcome.

10-42 Texture Mapping Tutorial

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

A

Sample Output from xdpyinfo and pexdpyinfo

Introduction

In \Determining A Server's Features" in Chapter 6, you were introduced to
two helpful utilities, xdpyinfo and pexdpyinfo. Sample output from these are
illustrated here for an HP 9000 Model 725/100 with HP Visualize-24 graphics:

xdpyinfo

name of display: hpsys00:0.0

version number: 11.0

vendor string: Hewlett-Packard Company

vendor release number: 600000

maximum request size: 4194300 bytes

motion buffer size: 100

bitmap unit, bit order, padding: 32, MSBFirst, 32

image byte order: MSBFirst

number of supported pixmap formats: 4

supported pixmap formats:

depth 1, bits_per_pixel 1, scanline_pad 32

depth 8, bits_per_pixel 8, scanline_pad 32

depth 12, bits_per_pixel 16, scanline_pad 32

depth 24, bits_per_pixel 32, scanline_pad 32

keycode range: minimum 10, maximum 135

focus: PointerRoot

number of extensions: 13

BIG-REQUESTS

DOUBLE-BUFFER

HP-SMT

HPExtension

MIT-SHM

MIT-SUNDRY-NONSTANDARD

Multi-Buffering

SHAPE

X3D-PEX

Sample Output from xdpyinfo and pexdpyinfo A-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

XIE

XInputExtension

XTEST

XTestExtension1

default screen number: 0

number of screens: 1

screen #0:

dimensions: 1280x1024 pixels (342x273 millimeters)

resolution: 95x95 dots per inch

depths (4): 1, 8, 12, 24

root window id: 0x2a

depth of root window: 8 planes

number of colormaps: minimum 1, maximum 4

default colormap: 0x28

default number of colormap cells: 256

preallocated pixels: black 0, white 1

options: backing-store YES, save-unders YES

largest cursor: 64x64

current input event mask: 0x0

number of visuals: 8

default visual id: 0x21

visual:

visual id: 0x20

class: PseudoColor

depth: 8 planes

available colormap entries: 256

red, green, blue masks: 0x0, 0x0, 0x0

significant bits in color specification: 8 bits

visual:

visual id: 0x21

class: PseudoColor

depth: 8 planes

available colormap entries: 256

red, green, blue masks: 0x0, 0x0, 0x0

significant bits in color specification: 8 bits

visual:

visual id: 0x22

class: PseudoColor

depth: 8 planes

available colormap entries: 255

red, green, blue masks: 0x0, 0x0, 0x0

significant bits in color specification: 8 bits

visual:

visual id: 0x23

class: TrueColor

depth: 8 planes

available colormap entries: 8 per subfield

red, green, blue masks: 0xe0, 0x1c, 0x3

A-2 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

significant bits in color specification: 8 bits

visual:

visual id: 0x24

class: DirectColor

depth: 12 planes

available colormap entries: 16 per subfield

red, green, blue masks: 0xf00, 0xf0, 0xf

significant bits in color specification: 8 bits

visual:

visual id: 0x25

class: TrueColor

depth: 12 planes

available colormap entries: 16 per subfield

red, green, blue masks: 0xf00, 0xf0, 0xf

significant bits in color specification: 8 bits

visual:

visual id: 0x26

class: DirectColor

depth: 24 planes

available colormap entries: 256 per subfield

red, green, blue masks: 0xff0000, 0xff00, 0xff

significant bits in color specification: 8 bits

visual:

visual id: 0x27

class: TrueColor

depth: 24 planes

available colormap entries: 256 per subfield

red, green, blue masks: 0xff0000, 0xff00, 0xff

significant bits in color specification: 8 bits

Sample Output from xdpyinfo and pexdpyinfo A-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

pexdpyinfo

PEX information for hpsys00:0.0

PEX EXTENSION INFORMATION

major version number: 5 (0x5)

minor version number: 1 (0x1)

release number: 10400 (0x28a0)

vendor: Hewlett-Packard Company

subset information: Immediate

subset information: Structure Rendering

PEX ENUMERATED TYPES

PEXETATextStyle

Type 0: NotConnected (1) (0x1)

Type 1: Connected (2) (0x2)

PEXETColorApproxModel

Type 0: RGB (1) (0x1)

PEXETColorApproxType

Type 0: ColorSpace (1) (0x1)

Type 1: ColorRange (2) (0x2)

Type 2: HP_ColorApproxTypeIndexed (34560) (0x8700)

PEXETColorType

Type 0: Indexed (0) (0x0)

Type 1: RGBFloat (1) (0x1)

Type 2: HP_ColorTypeRGBA (34560) (0x8700)

PEXETCurveApproxMethod

Type 0: HP_AdaptiveDC (1) (0x1)

Type 1: WCS_Relative (9) (0x9)

Type 2: NPC_Relative (10) (0xa)

Type 3: DC_Relative (11) (0xb)

PEXETDisplayUpdateMode

PEXETFloatFormat

Type 0: IEEE_754_32 (1) (0x1)

PEXETGDP2D

PEXETGDP

PEXETGSE

Type 0: HP_GSE_SET_ANTIALIAS_MODE (34561) (0x8701)

PEXETHatchStyle

Type 0: 45Degrees (34561) (0x8701)

Type 1: 135Degrees (34562) (0x8702)

Type 2: ExtHatchStyle45Degrees (36864) (0x9000)

Type 3: ExtHatchStyle135Degrees (36865) (0x9001)

PEXETHLHSRMode

Type 0: Off (1) (0x1)

Type 1: ZBuffer (2) (0x2)

A-4 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Type 2: ZBufferId (6) (0x6)

Type 3: HP_HLHSRZBufferReadOnly (34560) (0x8700)

Type 4: HP_HLHSRZBufferIDReadOnly (34561) (0x8701)

PEXETInteriorStyle

Type 0: Hollow (1) (0x1)

Type 1: Solid (2) (0x2)

Type 2: Hatch (4) (0x4)

Type 3: Empty (5) (0x5)

Type 4: ExtInteriorStyleTexture (36864) (0x9000)

PEXETLightType

Type 0: Ambient (1) (0x1)

Type 1: WCS_Vector (2) (0x2)

Type 2: WCS_Point (3) (0x3)

Type 3: WCS_Spot (4) (0x4)

PEXETLineType

Type 0: Solid (1) (0x1)

Type 1: Dashed (2) (0x2)

Type 2: Dotted (3) (0x3)

Type 3: DashDot (4) (0x4)

Type 4: HP_Centerline (34561) (0x8701)

Type 5: HP_Phantom (34562) (0x8702)

Type 6: ExtLineTypeCenter (36864) (0x9000)

Type 7: ExtLineTypePhantom (36865) (0x9001)

PEXETMarkerType

Type 0: Dot (1) (0x1)

Type 1: Cross (2) (0x2)

Type 2: Asterisk (3) (0x3)

Type 3: Circle (4) (0x4)

Type 4: X (5) (0x5)

Type 5: HP_Triangle (34560) (0x8700)

Type 6: HP_Square (34561) (0x8701)

Type 7: HP_Diamond (34562) (0x8702)

Type 8: HP_CrossSquare (34563) (0x8703)

PEXETModelClipOperator

Type 0: Replace (1) (0x1)

Type 1: Intersection (2) (0x2)

PEXETParaSurfCharacteristics

Type 0: None (1) (0x1)

Type 1: HP_InteriorEdging (2) (0x2)

PEXETPickDeviceType

Type 0: DC_HitBox (1) (0x1)

Type 1: NPC_HitVolume (2) (0x2)

PEXETPolylineInterpMethod

Type 0: None (1) (0x1)

Type 1: Color (2) (0x2)

PEXETPromptEchoType

PEXETReflectionModel

Type 0: NoShading (1) (0x1)

Type 1: Ambient (2) (0x2)

Sample Output from xdpyinfo and pexdpyinfo A-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Type 2: Diffuse (3) (0x3)

Type 3: Specular (4) (0x4)

PEXETRenderingColorModel

Type 0: RGB (1) (0x1)

PEXETSurfaceApproxMethod

Type 0: HP_AutoMesh (1) (0x1)

Type 1: WCS_Relative (9) (0x9)

Type 2: NPC_Relative (10) (0xa)

Type 3: DC_Relative (11) (0xb)

PEXETSurfaceEdgeType

Type 0: Solid (1) (0x1)

Type 1: Dashed (2) (0x2)

Type 2: Dotted (3) (0x3)

Type 3: DashDot (4) (0x4)

PEXETSurfaceInterpMethod

Type 0: None (1) (0x1)

Type 1: Color (2) (0x2)

PEXETTrimCurveApproxMethod

Type 0: HP_AdaptToSurfaceCriteria (1) (0x1)

PEXETEscape

Type 0: SetEchoColor (1) (0x1)

Type 1: QueryColorApprox (33025) (0x8101)

Type 2: ES_ESCAPE_DBLBUFFER (33793) (0x8401)

Type 3: ES_ESCAPE_SWAPBUFFER (33794) (0x8402)

Type 4: ES_ESCAPE_SWAPBUFFERCONTENT (33795) (0x8403)

Type 5: HP_ESCAPE_DFRONT (34561) (0x8701)

Type 6: HP_ESCAPE_SET_GAMMA_CORRECTION (34562) (0x8702)

Type 7: ExtEscapeChangePipelineContext (36864) (0x9000)

Type 8: ExtEscapeGetPipelineContext (36865) (0x9001)

Type 9: ExtEscapeChangeRenderer (36866) (0x9002)

Type 10: ExtEscapeGetRendererAttributes (36867) (0x9003)

Type 11: ExtEscapeSetTableEntries (36868) (0x9004)

Type 12: ExtEscapeGetTableEntries (36869) (0x9005)

Type 13: ExtEscapeGetTableEntry (36870) (0x9006)

Type 14: ExtEscapeCreateTM (36871) (0x9007)

Type 15: ExtEscapeFreeTM (36873) (0x9009)

Type 16: ExtEscapeFetchElements (36875) (0x900b)

Type 17: ExtEscapeQueryColorApprox (36876) (0x900c)

Type 18: ExtEscapeCreateTMExtraData (36877) (0x900d)

Type 19: HP_EscapeChangePipelineContext (34563) (0x8703)

Type 20: HP_EscapeGetPipelineContext (34564) (0x8704)

Type 21: HP_EscapeChangeRenderer (34565) (0x8705)

Type 22: HP_EscapeGetRendererAttributes (34566) (0x8706)

Type 23: HP_EscapeEVEInformation (34689) (0x8781)

Type 24: HP_EscapeGetZBuffer (34690) (0x8782)

Type 25: HP_EscapePutZBuffer (34691) (0x8783)

Type 26: HP_EscapeStereoMode (34568) (0x8708)

Type 27: HP_EscapeLockStructure (34569) (0x8709)

PEXETPickAllMethod

A-6 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Type 0: All (1) (0x1)

PEXETPickOneMethod

Type 0: Last (1) (0x1)

ExtEnumType

Type 0: ExtEnumType (36864) (0x9000)

Type 1: ExtOC (36865) (0x9001)

Type 2: ExtPC (36866) (0x9002)

Type 3: ExtRA (36867) (0x9003)

Type 4: ExtLUT (36868) (0x9004)

Type 5: ExtID (36869) (0x9005)

Type 6: ExtTMRenderingOrder (36870) (0x9006)

Type 7: ExtTMCoordSource (36871) (0x9007)

Type 8: ExtTMCompositeMethod (36872) (0x9008)

Type 9: ExtTMTexelSampleMethod (36873) (0x9009)

Type 10: ExtTMBoundaryCondition (36874) (0x900a)

Type 11: ExtTMClampColorSource (36875) (0x900b)

Type 12: ExtTMDomain (36876) (0x900c)

Type 13: ExtTexelType (36877) (0x900d)

Type 14: ExtTMParameterizationMethod (36880) (0x9010)

Type 15: ExtTMType (36879) (0x900f)

Type 16: ExtTMPerspectiveCorrection (36881) (0x9011)

Type 17: ExtTMSampleFrequency (36882) (0x9012)

Type 18: ExtTMResourceHint (36878) (0x900e)

Type 19: ExtPrimitiveAAMode (36883) (0x9013)

Type 20: ExtPrimitiveAABlendOp (36884) (0x9014)

Type 21: ExtLineCapStyle (36885) (0x9015)

Type 22: ExtLineJoinStyle (36886) (0x9016)

Type 23: HP_TransparencyMethod (34560) (0x8700)

Type 24: HP_AlphaBlendFunction (34561) (0x8701)

ExtOC

Type 0: ExtOCTMPerspectiveCorrection (36864) (0x9000)

Type 1: ExtOCTMSampleFrequency (36865) (0x9001)

Type 2: ExtOCTMResourceHints (36866) (0x9002)

Type 3: ExtOCActiveTextures (36867) (0x9003)

Type 4: ExtOCBFActiveTextures (36868) (0x9004)

Type 5: ExtOCFillAreaSetWithData (36869) (0x9005)

Type 6: ExtOCSetOfFillAreaSets (36870) (0x9006)

Type 7: ExtOCTriangleStrip (36871) (0x9007)

Type 8: ExtOCQuadrilateralMesh (36872) (0x9008)

Type 9: ExtOCPrimitiveAA (36873) (0x9009)

Type 10: ExtOCLineCapStyle (36874) (0x900a)

Type 11: ExtOCLineJoinStyle (36875) (0x900b)

Type 12: ExtOCEllipse (36876) (0x900c)

Type 13: ExtOCEllipse2D (36877) (0x900d)

Type 14: ExtOCCircle2D (36878) (0x900e)

Type 15: ExtOCEllipticalArc (36879) (0x900f)

Type 16: ExtOCEllipticalArc2D (36880) (0x9010)

Type 17: ExtOCCircularArc2D (36881) (0x9011)

Type 18: HP_OCSetAlphaBlendFunction (34560) (0x8700)

Sample Output from xdpyinfo and pexdpyinfo A-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Type 19: HP_OCSetDeformationMode (34561) (0x8701)

Type 20: HP_OCSetDeformationValueLocation (34562) (0x8702)

Type 21: HP_OCSetCappingPlanes (34563) (0x8703)

Type 22: HP_OCPolylineSetWithData (34564) (0x8704)

Type 23: HP_OCMarkersWithData (34565) (0x8705)

Type 24: HP_OCIndexedTriangleStrip (34567) (0x8707)

Type 25: HP_OCIndexedTriangleFan (34568) (0x8708)

Type 26: HP_OCIndexedMarkers (34569) (0x8709)

Type 27: HP_OCIndexedPolylines (34570) (0x870a)

Type 28: HP_OCFaceLightingMode (34571) (0x870b)

Type 29: HP_OCUserLineType (34572) (0x870c)

Type 30: HP_OCUserMarkerGlyph (34573) (0x870d)

Type 31: HP_OCHighlightColor (34574) (0x870e)

ExtPC

Type 0: ExtPCTMPerspectiveCorrection (36864) (0x9000)

Type 1: ExtPCTMResourceHints (36865) (0x9001)

Type 2: ExtPCActiveTextures (36867) (0x9003)

Type 3: ExtPCBFActiveTextures (36868) (0x9004)

Type 4: ExtPCPrimitiveAA (36869) (0x9005)

Type 5: ExtPCLineCapStyle (36870) (0x9006)

Type 6: ExtPCLineJoinStyle (36871) (0x9007)

Type 7: ExtPCTMSampleFrequency (36866) (0x9002)

Type 8: HP_PCAlphaBlendFunction (34560) (0x8700)

Type 9: HP_PCDeformationMode (34561) (0x8701)

Type 10: HP_PCDeformationValueLocation (34562) (0x8702)

Type 11: HP_PCFaceLightingMode (34563) (0x8703)

Type 12: HP_PCUserLineType (34564) (0x8704)

Type 13: HP_PCUserMarkerGlyph (34565) (0x8705)

Type 14: HP_PCHighlightColor (34566) (0x8706)

ExtRA

Type 0: ExtRATMBindingTable (36864) (0x9000)

Type 1: ExtRATMCoordSourceTable (36865) (0x9001)

Type 2: ExtRATMCompositionTable (36866) (0x9002)

Type 3: ExtRATMSamplingTable (36867) (0x9003)

Type 4: HP_RATransparencyMethod (34560) (0x8700)

Type 5: HP_RAWideLineControl (34561) (0x8701)

Type 6: HP_RAPolygonOffset (34562) (0x8702)

ExtLUT

Type 0: ExtLUTTMBinding (36864) (0x9000)

Type 1: ExtLUTTMCoordSource (36865) (0x9001)

Type 2: ExtLUTTMComposition (36866) (0x9002)

Type 3: ExtLUTTMSampling (36867) (0x9003)

ExtID

Type 0: ExtIDMaxTextureMaps (36864) (0x9000)

Type 1: ExtIDMaxFastTMSize (36865) (0x9001)

Type 2: ExtIDPowerOfTwoTMSizesRequired (36866) (0x9002)

Type 3: ExtIDSquareTMRequired (36867) (0x9003)

Type 4: HP_IDDeformationSupported (34560) (0x8700)

Type 5: HP_IDCappingPlanesSupported (34561) (0x8701)

A-8 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Type 6: HP_IDInterferenceSupported (34562) (0x8702)

Type 7: HP_IDPolygonOffsetSupported (34563) (0x8703)

ExtTMRenderingOrder

Type 0: ExtTMRenderingOrderPreSpecular (36864) (0x9000)

Type 1: ExtTMRenderingOrderPostSpecular (36865) (0x9001)

ExtTMCoordSource

Type 0: ExtTMCoordSourceFloatData (36866) (0x9002)

ExtTMCompositeMethod

Type 0: ExtTMCompositeReplace (36864) (0x9000)

Type 1: ExtTMCompositeModulate (36865) (0x9001)

Type 2: ExtTMCompositeDecal (36867) (0x9003)

ExtTMTexelSampleMethod

Type 0: ExtTMTexelSampleSingleBase (36864) (0x9000)

Type 1: ExtTMTexelSampleLinearBase (36865) (0x9001)

Type 2: ExtTMTexelSampleSingleInMipmap (36866) (0x9002)

Type 3: ExtTMTexelSampleLinearInMipmap (36867) (0x9003)

Type 4: ExtTMTexelSampleSingleBetweenMipmaps (36868) (0x9004)

Type 5: ExtTMTexelSampleLinearBetweenMipmaps (36869) (0x9005)

ExtTMBoundaryCondition

Type 0: ExtTMBoundaryCondClampColor (36864) (0x9000)

Type 1: ExtTMBoundaryCondBoundary (36865) (0x9001)

Type 2: ExtTMBoundaryCondWrap (36866) (0x9002)

Type 3: ExtTMBoundaryCondMirror (36867) (0x9003)

ExtTMClampColorSource

Type 0: ExtTMClampColorSourceAbsolute (36864) (0x9000)

Type 1: ExtTMClampColorSourceExplicit (36865) (0x9001)

ExtTMDomain

Type 0: ExtTMDomainColor1D (36864) (0x9000)

Type 1: ExtTMDomainColor2D (36865) (0x9001)

ExtTexelType

Type 0: ExtTexelRGBFloat (36870) (0x9006)

Type 1: ExtTexelRGBInt8 (36871) (0x9007)

Type 2: ExtTexelRGBAlphaFloat (36873) (0x9009)

Type 3: ExtTexelRGBAlphaInt8 (36874) (0x900a)

Type 4: HPTexelAlphaRGBFloat (34560) (0x8700)

Type 5: HPTexelAlphaRGBInt8 (34561) (0x8701)

ExtTMParameterizationMethod

Type 0: ExtTMParamExplicit (36864) (0x9000)

Type 1: ExtTMParamReflectSphereVRC (36865) (0x9001)

Type 2: ExtTMParamReflectSphereWC (36866) (0x9002)

Type 3: ExtTMParamLinearVRC (36867) (0x9003)

ExtTMType

Type 0: ExtTMTypeMipMap (36864) (0x9000)

ExtTMPerspectiveCorrection

Type 0: ExtTMPerspCorrectNone (36864) (0x9000)

Type 1: ExtTMPerspCorrectPixel (36866) (0x9002)

ExtTMSampleFrequency

Type 0: ExtTMSampleFrequencyPixel (36864) (0x9000)

ExtTMResourceHint

Sample Output from xdpyinfo and pexdpyinfo A-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Type 0: ExtTMResourceHintNone (36864) (0x9000)

Type 1: ExtTMResourceHintSpeed (36865) (0x9001)

Type 2: ExtTMResourceHintSpace (36866) (0x9002)

ExtPrimitiveAAMode

Type 0: ExtPrimAANone (36864) (0x9000)

ExtPrimitiveAABlendOp

Type 0: ExtPrimAABlendOpImpDep (36864) (0x9000)

Type 1: ExtPrimAABlendOpSimpleAlpha (36865) (0x9001)

ExtLineCapStyle

Type 0: ExtLineCapStyleButt (36864) (0x9000)

ExtLineJoinStyle

Type 0: ExtLineJoinStyleImpDep (36864) (0x9000)

Type 1: ExtLineJoinStyleMiter (36866) (0x9002)

HP_TransparencyMethod

Type 0: HP_TransparencyMethodScreenDoor (34560) (0x8700)

HP_AlphaBlendFunction

Type 0: HP_AlphaBlendFunctionSrcColor (34560) (0x8700)

Type 1: HP_AlphaBlendFunctionSimpleAlpha (34561) (0x8701)

PEX IMPLEMENTATION-DEPENDENT CONSTANTS

PEXIDDitheringSupported: YES

PEXIDDoubleBufferingSupported: YES

PEXIDTransparencySupported: YES

PEXIDBestColorApprox: 0

PEXIDChromaticityRedU: 0.450

PEXIDChromaticityRedV: 0.522

PEXIDLuminanceRed: 1.000

PEXIDChromaticityGreenU: 0.120

PEXIDChromaticityGreenV: 0.561

PEXIDLuminanceGreen: 1.000

PEXIDChromaticityBlueU: 0.175

PEXIDChromaticityBlueV: 0.157

PEXIDLuminanceBlue: 1.000

PEXIDChromaticityWhiteU: 0.188

PEXIDChromaticityWhiteV: 0.466

PEXIDLuminanceWhite: 1.000

PEXIDNominalLineWidth: 1

PEXIDNumSupportedLineWidths: 0

PEXIDMinLineWidth: 1

PEXIDMaxLineWidth: 16383

PEXIDNominalEdgeWidth: 1

PEXIDNumSupportedEdgeWidths: 1

PEXIDMinEdgeWidth: 1

PEXIDMaxEdgeWidth: 1

PEXIDNominalMarkerSize: 3

PEXIDNumSupportedMarkerSizes: 0

PEXIDMinMarkerSize: 3

PEXIDMaxMarkerSize: 2147483647

A-10 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PEXIDMaxNameSetNames: 2147483647

PEXIDMaxModelClipPlanes: 6

PEXIDMaxNonAmbientLights: 15

PEXIDMaxNURBOrder: 6

PEXIDMaxTrimCurveOrder: 6

PEXIDMaxHitsEventSupported: YES

PEXExtIDMaxTextureMaps: 8

PEXExtIDMaxFastTMSize: 0

PEXExtIDPowerOfTwoTMSizesRequired: YES

PEXExtIDSquareTMRequired: NO

HP_IDDeformationSupported: YES

HP_IDCappingPlanesSupported: YES

HP_IDInterferenceSupported: YES

HP_IDPolygonOffsetSupported: NO

PREDEFINED LOOKUP TABLE ENTRIES

PEXLUTColorApprox

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 0

type: 1 (0x1)

model: 1 (0x1)

max1: 7 (0x7)

max2: 7 (0x7)

max3: 3 (0x3)

dither: 1 (0x1)

mult1: 32

mult2: 4

mult3: 1

weight1: 0.000

weight2: 0.000

weight3: 0.000

base_pixel: 0

PEXLUTColor

Maximum Entries: 65535 (0xffff)

Predefined Entries: 8 (0x8)

Entry 0

type: PEXColorTypeRGB

value

red: 0.000

green: 0.000

blue: 0.000

Entry 1

type: PEXColorTypeRGB

Sample Output from xdpyinfo and pexdpyinfo A-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

value

red: 1.000

green: 1.000

blue: 1.000

Entry 2

type: PEXColorTypeRGB

value

red: 1.000

green: 0.000

blue: 0.000

Entry 3

type: PEXColorTypeRGB

value

red: 1.000

green: 1.000

blue: 0.000

Entry 4

type: PEXColorTypeRGB

value

red: 0.000

green: 1.000

blue: 0.000

Entry 5

type: PEXColorTypeRGB

value

red: 0.000

green: 1.000

blue: 1.000

Entry 6

type: PEXColorTypeRGB

value

red: 0.000

green: 0.000

blue: 1.000

Entry 7

type: PEXColorTypeRGB

value

red: 1.000

green: 0.000

blue: 1.000

PEXLUTDepthCue

Maximum Entries: 65535 (0xffff)

A-12 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Predefined Entries: 1 (0x1)

Entry 0

mode: 0 (0x0)

front_plane: 1.000

back_plane: 0.000

front_scaling: 1.000

back_scaling: 0.500

color

type: PEXColorTypeIndexed

value

indexed: 0 (0x0)

PEXLUTEdgeBundle

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

edge_flag: 0 (0x0)

type: 1 (0x1)

width: 1.000

color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

PEXLUTInteriorBundle

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

style: 1 (0x1)

style_index: 0 (0x0)

reflection_model: 1 (0x1)

interp_method: 1 (0x1)

bf_style: 1 (0x1)

bf_style_index: 0 (0x0)

bf_reflection_model: 1 (0x1)

bf_interp_method: 1 (0x1)

surface_approx

method: 1 (0x1)

u_tolerance: 1.000

v_tolerance: 1.000

color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

reflection_attr

ambient: 1.000

Sample Output from xdpyinfo and pexdpyinfo A-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

diffuse: 1.000

specular: 1.000

specular_conc: 0.000

transmission: 0.000

specular_color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

bf_color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

bf_reflection_attr

ambient: 1.000

diffuse: 1.000

specular: 1.000

specular_conc: 0.000

transmission: 0.000

specular_color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

PEXLUTLight

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

type: 1 (0x1)

direction

x: 0 (0x0)

y: 0 (0x0)

z: 0 (0x0)

point

x: 0 (0x0)

y: 0 (0x0)

z: 0 (0x0)

concentration: 0.000

spread_angle: 0.000

attenuation1: 0.000

attenuation2: 0.000

color

type: PEXColorTypeRGB

value

red: 1.000

green: 1.000

blue: 1.000

PEXLUTLineBundle

A-14 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

type: 1 (0x1)

interp_method: 1 (0x1)

curve_approx

method: 1 (0x1)

tolerance: 1.000

width: 1.000

color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

PEXLUTMarkerBundle

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

type: 3 (0x3)

scale: 1.000

color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

PEXLUTPattern

Failed to get PEX lookup table info

PEXLUTTextBundle

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

font_index: 1 (0x1)

precision: 2 (0x2)

char_expansion: 1.000

char_spacing: 0.000

color

type: PEXColorTypeIndexed

value

indexed: 1 (0x1)

PEXLUTTextFont

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 1

Sample Output from xdpyinfo and pexdpyinfo A-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

font_index: 65536 (0x10000)

PEXLUTView

Maximum Entries: 65535 (0xffff)

Predefined Entries: 1 (0x1)

Entry 0

clip_flags: 7 (0x7)

clip_limits

min

x: 0.000

y: 0.000

z: 0.000

max

x: 1.000

y: 1.000

z: 1.000

PEXExtLUTTMBinding

Maximum Entries: 65535 (0xffff)

Predefined Entries: 0 (0x0)

PEXExtLUTTMCoordSource

Maximum Entries: 65535 (0xffff)

Predefined Entries: 0 (0x0)

PEXExtLUTTMComposition

Maximum Entries: 65535 (0xffff)

Predefined Entries: 0 (0x0)

PEXExtLUTTMSampling

Maximum Entries: 65535 (0xffff)

Predefined Entries: 0 (0x0)

AVAILABLE PEX FONTS

-hp-PEX stick-medium-r-normal-normal-0-0-0-0-m-0-hp-roman8

-hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-hp-roman8

-hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-hp-roman8

-hp-PEX polygonal sans serif-bold-r-normal-normal-0-0-0-0-p-0-hp-roman8

-hp-PEX polygonal serif-bold-r-normal-normal-0-0-0-0-p-0-hp-roman8

-hp-PEX polygonal serif-bold-r-normal-accel-0-0-0-0-p-0-hp-roman8

-hp-PEX stick-medium-r-normal-normal-0-0-0-0-m-0-hp-japaneseeuc

-hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-hp-japaneseeuc

-hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-hp-japaneseeuc

-hp-PEX polygonal sans serif-bold-r-normal-normal-0-0-0-0-p-0-hp-japaneseeuc

-hp-PEX polygonal serif-bold-r-normal-normal-0-0-0-0-p-0-hp-japaneseeuc

-hp-PEX stick-medium-r-normal-normal-0-0-0-0-m-0-iso8859-1

A-16 Sample Output from xdpyinfo and pexdpyinfo

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

-hp-PEX stick-medium-r-normal-normal-0-0-0-0-p-0-iso8859-1

-hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-m-0-iso8859-1

-hp-PEX simplex sans serif-medium-r-normal-normal-0-0-0-0-p-0-iso8859-1

SUPPORTED PEX VISUALS

Target 0

type: Window

depth: 12 (0xc)

visual: TrueColor

Target 1

type: Window

depth: 12 (0xc)

visual: DirectColor

Target 2

type: Window

depth: 24 (0x18)

visual: TrueColor

Target 3

type: Window

depth: 24 (0x18)

visual: DirectColor

Target 4

type: Window

depth: 8 (0x8)

visual: TrueColor

Target 5

type: Window

depth: 8 (0x8)

visual: PseudoColor

Target 6

type: Window

depth: 8 (0x8)

visual: PseudoColor

Target 7

type: Window

depth: 8 (0x8)

visual: PseudoColor

Target 8

type: Buffer

depth: 12 (0xc)

visual: TrueColor

Target 9

type: Buffer

depth: 12 (0xc)

visual: DirectColor

Sample Output from xdpyinfo and pexdpyinfo A-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Glossary

Abscissa

The value representing the distance of a point from the Y-axis in the Cartesian
coordinate system, measured along a line parallel to the X-axis. (Compare
\Ordinate".)

Active Texture List
A list of binding table entries which speci�es the currently active textures
within the rendering pipeline. All appropriate primitives will receive texture
mapping e�ects sequentially evaluated from this list. Two separate lists exist
for front- and backface distinguishing. (See PEXExtSetActiveTextures and
PEXExtSetBFActiveTextures).

Alpha Blending

The operation of blending a source pixel color with a destination (frame bu�er)
pixel color according to some rule on alpha values.

Alpha Transparency

An application of alpha blending to achieve the e�ect of transparent
primitives; requires a multi-pass algorithm in order to generate realistic
images.

Anti-aliasing

A method for producing high-quality images using pixel coverage and blending
techniques, most noticeable as smooth lines and polygon edges.

Azimuth

The horizontal angular distance from a �xed reference direction to a point.

Binding Lookup Table

A lookup table whose entries represent entire texture maps to the rendering
pipeline. Each entry within the binding lookup table contains reference

Glossary-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

information for an X texture resource, texture coordinates for each primitive,
color composition rules, and texture map sampling and quality controls. (See
\Binding LUT" in Chapter 9).

Boundary Condition: Clamp Absolute

When a texture coordinate accesses a texel outside of the texture map,
texturing is discontinued and the primitive's existing color data is used. (See
\Sampling LUT" in Chapter 9.)

Boundary Condition: Clamp Color

When a texture coordinate accesses a texel outside of the texture map,
texturing is discontinued and the \clamp col or" is applied. (See \Sampling
LUT" in Chapter 9.)

Boundary Condition: Mirror

When a texture coordinate accesses a texel out side of the texture map,
sampling is reversed across the texture map. (See \Sampling LUT" in
Chapter 9.)

Boundary Condition: Wrap

When a texture coordinate accesses a texel out side of the texture map,
sampling wraps back to the opposite texture border creating a \rubber stamp"
e�ect. (See \Sampling LUT" in Chapter 9.)

Capping

A visualization technique, used with model clipping that re-closes a volume
that has been clipped, making the object appear as though it had been cut
away.

Color Ramp

The colors in a colormap for PEXColorSpace which are expected to represent
a \sampling" of the color space.

Composition Lookup Table

A lookup table with entries used to determine how texture map values will
be applied to the current color of the rendering pipeline. Entries within this
table control the blending and replacement rules for each texture-mapping
operation. (See \Composition LUT" in Chapter 9.)

Glossary-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Composition Type: Decal

If alpha is not included in the texture map, the texture map color replaces
the primitive's existing color. If, on the other hand, alpha is speci�ed in the
texture map, the following equation is used to determine the �nal blended
color:

Cout = Cin � (1� ta) + tc � ta

where Cin is the primitive's existing color, ta is the texture map alpha and tc

is the texture map color.

(See \Composition LUT" in Chapter 9.)

Composition Type: Modulate

The texture map color and alpha (if it exists) blend with the primitive's
existing color and alpha. The texture color (alpha) is multiplied by the
primitive's color (alpha) to determine the �nal result. (See \Composition
LUT" in Chapter 9.)

Composition Type: Replace

The texture map color and alpha (if it exists) overwrite the primitive's existing
color and alpha. (See \Composition LUT" in Chapter 9.)

Coordinate Source Lookup Table

A lookup table with entries used to determine how texture coordinates
are to be derived for texture mapping. Texture coordinates are either
explicitly stored with a vertex as oating point data or they are derived from
other vertex data (point, color, normal). (See \Coordinate-Source LUT" in
Chapter 9.)

Deformation

A technique for computing a displacement in model coordinates for each
vertex of a primitive, based on data supplied with the vertex.

Interference Checking

A method for visualizing and detecting inter-penetrating solids by highlighting
overlapping caps within a clip plane.

Magni�cation Method

The process used to determine the �nal color for a screen pixel when more

Glossary-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

than one screen pixel maps to one texture map texel. (See \Sampling LUT"
in Chapter 9.)

Mini�cation Method

The process used to determine the �nal color for a screen pixel when one
screen pixel maps to more than one texture-map texel. (See \Sampling LUT"
in Chapter 9.)

MIP Map

A pre-computed area-sampling mechanism which �xes the cost of approxi-
mating the average color over a large number of pixels in a texture image. A
MIP map (and RIP map, which involves additional rectangular dimensions)
is created as an image \pyramid" of down-sampled maps, or \levels." Tradi-
tionally, each pixel in a level n equals the average of four pixels beneath it
at level n+1. Thus the resolution of each map becomes half of the preced-
ing level until the top level is reached, which has one pixel representing the
average color of the entire original base-level map.

See also \Discussion: MIP Map" in Chapter 10.

Ordinate

The value representing the distance of a point from the X-axis in the Cartesian
coordinate system, measured along a line parallel to the Y-axis. (Compare
\Abscissa".)

Overlay Planes

Display hardware often has two kinds of display planes, image and overlay.
The image plane allows the hardware to help the graphics commands run
faster and more e�ciently. Overlay planes are graphics frame bu�er planes
that store pixel data that is independent of the image bu�er. These planes
can be used for alpha text, windows, cursors, or menus as well as graphics.
They can be written to and turned on and o� independently of the graphics,
or image, planes.

Parameterization Lookup Table

A lookup table with entries used to determine how texture coordinates are
to be derived for texture mapping. Texture coordinates are either explicitly
stored with a vertex as oating-point data or they are derived from other
vertex data (point, color, normal).

Glossary-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Preparation

The data-processing phase before rendering where texture data are loaded
and area primitives with data are \surface parameterized" with texture
coordinates per vertex.

Projection Object

A standard volume used in calculation of texture coordinates. A primitive is
conceptually placed at the center of a projection object and each of the prim-
itive's vertices are projected onto the projection object. The intersections
of the vertices with the projection object determine the texture coordinates.
(See PEXExtCreateTMDescription and PEXExtTMCoord*) Spherical, cylindri-
cal, and planar projection objects are possible objects.

Reection Mapping

A type of texture mapping that uses reection vectors to calculate texture
coordinates. The result is an object that reects or mirrors the texture map
much like a shiny Christmas tree ornament reects its environment. See also
Standard Mapping.

Sampling Lookup Table

A lookup table with entries used to control texture map sampling (derivation
of a color sample from an image) and rendering quality hints for each texture.
(See \Sampling LUT" in Chapter 9.)

Standard Mapping

Standard texture mapping refers to the mapping of a texture onto an object
much like a piece of wrapping paper is applied to a package. See also
Reection Mapping.

Surface Parameterization

A mathematical projection of a 3D surface onto a 2D surface which, in
e�ect, \ties" facet data to corresponding regions of a texture image map,
thus orienting an image on the primitive. (See the texture parameterization
utilities, such as PEXExtTMCoordFillAreaSetWithData.)

Texel

One texture map element. Texel is analogous to the term \pixel"|a texel is
to a texture map as a pixel is to a bitmap. A texel may be a oating point
value, an 8-bit integer, or in another for mat.

Glossary-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Texture Map

A 1D, 2D, or 3D data set consisting of \texels" (or texture elements). A 1D
texture map is an array of values; a 2D texture map is a two-dimensional
image, and a 3D texture map is a set of 2D texture maps. HP PEX supports
1D and 2D texture maps. (See texel.)

Texture Mapping

A rendering e�ect which enhances the surface detail of an area primitive
for usually less cost than explicitly modeling the information. Texture
mapping controls interior color and transparency through special \mapped"
correspondences between texture images and area primitives during the
rendering phase.

View-Dependent Mapping

Texture mapping that changes with the position of the camera. If the camera
(or point of view) changes, the orientation of the texture map on the texture-
mapped object changes.

View-Independent Mapping

Texture mapping that does not change with the position of the camera. A
texture map is �xed on an object and does not change even if the position
of the camera or object changes. Describes the characteristics of a virtual
colormap that has been or can be created for use on a particular screen.

Visual Class

Distinguishes between color or monochrome, whether the color map is
read/write or read-only, and whether a pixel value provides a single index
to the colormap or is decomposed into separate indices for red, green, or blue
values.

Glossary-6

Index

Index

3

3D Graphics Application Programmer
Interface, 5-5

3D Graphics Performance, 5-1
3D Wireframe, 6-74

A

Abscissa, Glossary-1
ACM Computer Graphics, 10-26
Active Texture List, Glossary-1
Alpha Blending, Glossary-1
Alpha Transparency, Glossary-1
Animation, DBE and MBX, 6-62
Anti-aliasing, Glossary-1
Antialiasing, 6-48
Application Programmer Interface, 3D,

5-5
Application, SPU and Graphics, 5-2
Archive Math Libraries, 5-23
Area Primitives and Attributes, 6-51
Attributes, 5-13
Attribute Suppression Experiments,

5-14
Azimuth, Glossary-1

B

Benchmarks, Graphics, 5-3
Benchmarks, performance, 5-6
Benchmarks, System Level, 5-2
Binding Lookup Table, Glossary-1
\bmf" �le format, 10-4
\bm" �le format, 10-4

book_utils.c, 4-5
Bottlenecks, memory, 5-24
Bottlenecks, non-graphic, 5-22
Bottlenecks, performance, 5-7
Boundary Condition
Clamp Absolute, Glossary-2
Clamp Color, Glossary-2
Mirror, Glossary-2
Wrap, Glossary-2

B-spline Curves and Surfaces, 6-61
Build Environments, 5-22
Bundled Attributes, 6-61

C

Cache, 5-23
Cache and Translation Lookaside Bu�er

(TLB) Misses, 5-23
Capping, Glossary-2
CDE and Font Path, 6-58
CD, Pixar One Twenty Eight, 10-7
Cell Arrays, 6-61
cge_utilities/ directory, 6-27
Changes to Existing Functionality, 7-31
Changing the Appearance of On-Line

Display, 2-7
Choosing A Visual, 6-27
Cleaning Up, 10-25
Cleanup step of Texture Mapping, 9-36
Client Aborts, 3-24
Client Failures, 3-24
Color
Approximation, 6-29

Index-1

Approximation Lookup Tables, 6-77
Avoiding ashing, 3-16
Avoiding Flashing, 6-26
Con�guration Utilities, 6-27, 6-29,

6-36
Dithering, 6-37
Flashing, 2-4, 3-15, 3-19, 6-21, 6-25,

6-26
Lookup Tables, 6-77
Portability and Interoperability, 6-24
Ramp, 6-22
Recovery, 3-19
Support, 6-18
Support in HP PEX, 6-26

Colormap Issues, 6-24, 6-27, 6-29
CRX, 6-36

Color ramp, 6-18
Color Ramp, Glossary-2
Color Specifying, Using #rgb, 3-13
Communications of the ACM, 10-26
Compiler Options, 5-23
Compiling and Running Program

Examples, 1-13
Compiling Programs, 4-1
Complex Primitives, 5-22
\Compliance Mode" Environment

Variable, 3-14
Composition Lookup Table, Glossary-2
Composition Type
Decal, Glossary-3
Modulate, Glossary-3
Replace, Glossary-3

Coordinate Source Lookup Table,
Glossary-3

Creating Textures, 10-4
CRX Colormap, 6-36
Customizing HP-PA, 2-8

D

Data Formats, 5-21
Data Formatting Experiments, 5-15

DBE, 6-62
Deformation, Glossary-3
Demonstration Programs, 4-1
Depth Cueing, 6-74
Detailed Discussions, 10-27
Determining A Server's Features, 6-2
Device Files, 2-9
DHA, 5-17
DHA (Direct Hardware Access), 3-5
Direct Hardware Access (DHA)
Behavioral Di�erences, 3-5

Discussion
MIP Map, 10-27

Disk access problem, 5-24
DISPLAY, 3-3
Dithering Control and E�ects on Color,

6-37
Documentation, Online, 5-12
Documentation Sources, 5-12
Document Conventions, 0-5
Double-bu�ering, 5-3, 6-62
Drawing Function, 7-41
Dtlogin*environment

Setting Environment Variables, 3-12

E

Echo and Highlighting Filter, 6-83
Editing Textures, 10-4
E�ects of Client Failures, 3-24
Enumerated Types, 6-5
Environments, Supported, 1-5
Environment variable
DISPLAY, 3-3
HP_DISABLE_COLOR_RECOVERY, 3-19
HP_SUPPRESS_TRUECOLOR_VISUAL,

3-20
SERVER_OVERLAY_VISUALS, 6-28

Environment variables
\Compliance Mode", 3-14
HP_DISABLE_COLOR_RECOVERY, 3-9
HP_ENABLE_TRANSPARENT_MODE, 3-9

Index-2

Index

HPPEX_CLIENT_PROTOCOL, 3-3, 3-9
HPPEX_DHA_AUTO_COLOR_APPROX, 3-9,

3-14
HPPEX_DHA_COMPLIANCE_MODE, 3-9
HPPEX_DHA_ECHO_COLOR, 3-9
HPPEX_DHA_HIGHLIGHT_COLOR, 3-9
SB_X_SHARED_CMAP, 3-9

Environment Variables
Dtlogin*environment, 3-12
HP_ENABLE_TRANSPARENT_MODE, 3-12
Setting, 3-9
Unsetting, 3-9
Why To Use Them, 3-1
Xconfig, 3-12

Error Checking and Reporting, 3-23
Error Codes, 6-3
Error condition for attributes and

primitives (new), 7-32
Error Handling, 6-84
Error Message Files
stderr, 3-23
XErrorDB, 3-23

Errors, PEX Output Command, 7-19
E&S Escape Requests, 6-70
Evans & Sutherland Escape Requests,

6-70
Example Programs, 4-1
Examples
xhpcmap, 3-18

Examples, HP PEX 5.1, 7-23
Experiments, Attribution Suppression,

5-14
Experiments, data formatting, 5-15
Experiments, PEXlib calls, 5-15

F

Face Lighting Control, 8-8
Facet Distinguishing, 6-74
Facet/Vertex Data Formats, 7-10
Fast Macros, 6-85
File formats, 10-4

File Structure
Fileset Dependencies, 2-11
Server Files, 2-12

Filters, 6-83
Flashing, 3-15, 3-19, 6-21, 6-25, 6-26
Avoiding, 3-16, 6-26

Flashing colors, 2-4
Floating Point
Aborts, 3-24
Formats, 6-73

Fonts
Default, 6-57
Files, 6-57
Font path with CDE, 3-22
Font Path With CDE, 6-58
General, 3-22
General, Supported by HP, 6-56, 6-57
List, Supported by Hewlett-Packard,

6-59
PEXListFonts, 6-57

Fonts directory, 3-22
Formats, Data, 5-21
Frame Bu�er, 6-20

G

Gamma Correction, 6-48
Generating Output Commands,

Programming Interface for, 7-3
Geometry Preparation, 10-19
Geometry Preparation step of Texture

Mapping, 9-19
Geometry Suppression, 5-17
\gif" �le format, 10-4
GPC Quarterly, Optimization, 5-13
Graphics application, tuning, 5-13
Graphics Benchmarks, 5-3
Graphics/CPU, 5-4
Graphics Interactions, 5-11
Graphics Library Optimizations, 5-12
Graphics Performance, 3D, 5-1
Graphics performance, attributes, 5-13

Index-3

H

Hardware Z bu�er, 5-3
Hatch Styles, 6-51
Header Files, 4-1
Help, Hypertext, 1-7
Hidden Line and Hidden Surface

Removal, 6-75
Highlight Color, 8-8
HLSHSR, 6-75
$HOME/.profile, 3-12
HP_DISABLE_COLOR_RECOVERY, 3-19
Setting, 3-9

HP_ENABLE_TRANSPARENT_MODE

Setting, 3-9
Setting Environment Variables, 3-12

HP Escape Request, 6-72
HP PEX 5.1 Examples, 7-23
HP PEX 5.1 Output Commands,

Generating, 7-22
HP PEX5.1v3, Background Information,

7-1
HP PEX5.1v3, Description, 7-2
HP PEX5.1v3 Overview, 7-1
HP PEX5.1v4, Background Information,

8-1
HP PEX5.1v4, Description, 8-2
HP PEX5.1v4, New Device Support,

8-2
HP PEX5.1v4, New Functionality, 8-2
HP PEX5.1v4 Overview, 8-1
HPPEX_CLIENT_PROTOCOL, 3-3
Setting DHA, PEX, X, 3-9

HPPEX_DHA_AUTO_COLOR_APPROX, 3-14
Setting, 3-9

HPPEX_DHA_COMPLIANCE_MODE

Setting, 3-9
HPPEX_DHA_ECHO_COLOR

Setting, 3-9
HPPEX_DHA_HIGHLIGHT_COLOR

Setting, 3-9
HP PEX/PEXlib Product

Developer's Environment, 1-3
Supported Con�gurations, 1-3

HP PEX Product Numbers, 1-3
HP's Graphics Library, 5-12
HP_SUPPRESS_TRUECOLOR_VISUAL

environment variable, 2-2, 3-20
HP Systems, Information about, 5-2
Hypertext Help, 1-7

I

IEEE Computer Graphics and
Applications, 10-26

ImageCELs, 10-7
Immediate Mode, 5-18, 6-2
Implementation-Dependent Constants,

6-12
Include Files, 4-1
Indexed Primitives, 8-6
Initialization, 6-3
Inquiring Supported Escapes, 6-73
Installation, 2-1
Checking Device Files, 2-9
Instant Ignition, 1-3
Step-By-Step Instructions, 2-4
Troubleshooting, 2-9
Using CD-ROM or DDS tape, 2-8
Veri�cation, 2-4
With Instant Ignition, 2-4

Instant Ignition, 1-3
Installation, 2-4

Interface, explicit, 5-20
Interface, OCC, 5-20
Interface, Output Command Context

(OCC), 5-20
Interference Checking, Glossary-3
Interoperability
Color Handling, 6-24
Conventions, 6-25
General, 6-1

Index-4

Index

J

\jpeg" �le format, 10-4
\jpg" �le format, 10-4

L

libXhpPEX.l, 2-8
Lighting, 6-74
Linker Options, 5-23
Linking Programs, 4-1
Linking to Shared Libraries, 4-8
Look-Up Table Setup step of Texture

Mapping, 9-24
LUTs, 6-77
LUT Setup step of Texture Mapping,

9-24
LUTs, Setting Up, 10-22

M

Magni�cation Method, Glossary-3
man, 1-8
man pages, 2-7
MANPATH variable, 2-7
Markers, 6-61
Math libraries, archive, 5-23
MBX, 6-67
Memory Bottlenecks, 5-24
Mini�cation Method, Glossary-4
MIP Map, Glossary-4
Misses, Cache and Translation Lookaside

Bu�er (TLB), 5-23
Mixing Graphics APIs, 1-6
Modelling, 6-61
Multi-bu�ering, 6-67

N

Name Set, 6-83
Non-graphics bottlenecks, 5-22
Numbers
Floating Point, 6-73

O

OCC functions, simpli�ed for primitive
OCs, 7-20

OCC interface, 5-20
OC Context, 7-5
Online Documentation, 5-12
On-Line Information
Changing Printer Settings, 2-6
Compiling and Running Examples,

1-13
Default Display Settings, 2-7
File Structure, 2-7
Overview, 1-7
Printing Settings, 2-6

On-Line Reference Information, 2-7
Operating Methods
A�ect on Performance, 3-3
Selecting, 3-3
Selection Progression, 3-3

Optimization, GPC Quarterly, 5-13
Ordinate, Glossary-4
Output Command Context Interface

(OCC), 5-20
Output Command Context (OCC), 7-3,

7-5
Overlay planes, 5-3
Overlay Planes, 6-18, 6-20, Glossary-4
Determining Support, 6-28

Overlay Planes For Text Annotation,
3-9

Overview of HP PEX Product, 1-1
Overview of Texture Mapping, 9-1
Overview of Texture Mapping Tutorial,

10-1

P

Parameterization, 10-14
Parameterization Lookup Table,

Glossary-4
PATH variable, 2-7
Performance

Index-5

Analysis Tools, HP-UX, 5-8
Benchmarks, 5-6
Bottlenecks, 5-7
Data, published, 5-11
Double-bu�ering, 5-3
Graphics/CPU, 5-4
Hardware Z bu�er, 5-3
Information, 5-9
Non-graphics bottlenecks, 5-22
Overlay planes, 5-3
Rasterization of primitives, 5-3
Texture mapping, 5-4
Window size as a factor, 5-16

Performance Hints, 1-12
Performance Recommendations, 6-85
Compliance Mode, 3-14
Fast Macros, 6-85

Permission Features, Using, 7-29
PEX5.1, 5-20
PEXColorSpace, 3-15, 6-22, 6-37, 6-77
pexdpyinfo, 6-2
PEXEscape, 6-14
PEXEscapeOpcodeEveInformation, 7-38
PEXEscapeWithReply, 6-14
PEXEscapeOpcodeEveInformation,

7-38
PEXHPEscapeOpcodeGetZBuffer, 7-34
PEXHPEscapeOpCodePutZBuffer, 7-37

PEXExtChangePipelineContext routine,
9-30

PEXExtCreateFilteredTMFromWindow

routine, 9-11
PEXExtCreateFilteredTM routine, 9-11
PEXExtCreateTMDescription routine,

9-11
PEXExtCreateTM routine, 9-11
PEX Extensions, 6-15
PEXExtFillAreaSetWithData routine,

9-30
PEXExtFreeFilteredTM routine, 9-11

PEXExtFreeTMDescription routine,
9-36

PEXExtFreeTM routine, 9-36
PEXExtQuadrilateralMesh routine,

9-30
PEXExtSetActiveTextures routine,

9-30
PEXExtSetOfFillAreaSets routine,

9-30
PEXExtSetTMPerspectiveCorrection

routine, 9-30
PEXExtSetTMResourceHints routine,

9-30
PEXExtSetTMSampleFrequency routine,

9-30
PEXExtTMCoordFillAreaSetWithData

routine, 9-19
PEXExtTMCoordQuadrilateralMesh

routine, 9-19
PEXExtTMCoordSetOfFillAreaSets

routine, 9-19
PEXExtTMCoordTriangleStrip routine,

9-19
PEXExtTriangleStrip routine, 9-30
PEX Fonts
fonts directory, 3-22

PEXFreeEnumInfo routine, 9-3
PEXGetEnumTypeInfo, 6-5
PEXGetEnumTypeInfo routine, 9-3
PEXGetExtensionInfo, 6-2
PEXGetImpDepConstants, 6-12
PEXGetImpDepConstants routine, 9-3
PEXGetStructureInfo, 7-32
PEXHPEscapeOpcodeGetZBuffer, 7-34
PEXHPEscapeOpCodePutZBuffer, 7-37
PEXInitialize, 6-16
PEXInitialize Error Codes, 6-3
PEXlib calls, 5-15
PEXlib Explicit Interface, 7-3
PEXlib Output Command Context

(OCC) Interface, 7-4

Index-6

Index

PEXlib, pro�led, 5-10
PEXListFonts, 6-56, 6-57
PEXListFontswithInfo, 6-56
PEXLoadFont, 6-56
PEXLUTColor, 6-37
pexman, 1-8
adding to PATH, 2-7

PEX Product
Developer's Environment, 1-3
Run-Time Libraries, 1-3

PEX Protocol, 3-7
PEXSetInteriorStyle routine, 9-30
PEX Speci�cs, 5-17
pexutcmap.c, 6-29
Picking, 6-83
PickMeasure, 6-2
Pick Path, 7-31
Pipeline Contexts, 6-76
Pixar One Twenty Eight CD, 10-7
Pixel!FX, 10-6
Plane Mask, 7-41
\pm" �le format, 10-4
Polygon O�set, 8-8
Improving Rendering of Edged

Polygons, 8-10
Portability
Color Handling, 6-24
General, 6-1

Portability and Interoperability in Color
Handling, 6-24

PowerShade option deleted, 6-74
Prede�ned Textures, 10-7
Preparation, Glossary-5
Preparing the Geometry, 10-19
Preparing the Texture, 10-11
Primitive functions, non-OCC, 7-20
Primitive functions, OCC, 7-20
Print On-Line Information, 2-6
Pro�led PEXlib, 5-10
Pro�ling tools, 5-9
Program

xhpcmap, 3-18
Programming Examples from

Documentation, 2-7
Programming Interface, Generating

Output Commands, 7-3
Projection Object, Glossary-5
Protocol Mode, 5-17
Published Performance Data, 5-11

R

Ramp, 6-18, 6-22, 6-29
Rasterization of primitives, 5-3
References, 10-26
Reection Mapping, Glossary-5
Related publications, 0-4
Release Notes, 3-1
Rendering, 10-24
Rendering step of Texture Mapping,

9-30
Resource Sharing, 6-17
rgb.txt, 3-13
Routines
PEXExtChangePipelineContext, 9-30
PEXExtCreateFilteredTM, 9-11
PEXExtCreateFilteredTMFromWin-

dow, 9-11
PEXExtCreateTM, 9-11
PEXExtCreateTMDescription, 9-11
PEXExtFillAreaSetWithData, 9-30
PEXExtFreeFilteredTM, 9-11
PEXExtFreeTM, 9-36
PEXExtFreeTMDescription, 9-36
PEXExtQuadrilateralMesh, 9-30
PEXExtSetActiveTextures, 9-30
PEXExtSetOfFillAreaSets, 9-30
PEXExtSetTMPerspectiveCorrec-

tion, 9-30
PEXExtSetTMResourceHints, 9-30
PEXExtSetTMSampleFrequency, 9-30
PEXExtTMCoordFillAreaSetWith-

Data, 9-19

Index-7

PEXExtTMCoordQuadrilateralMesh,
9-19

PEXExtTMCoordSetOfFillAreaSets,
9-19

PEXExtTMCoordTriangleStrip, 9-19
PEXExtTriangleStrip, 9-30
PEXFreeEnumInfo, 9-3
PEXGetEnumTypeInfo, 9-3
PEXGetImpDepConstants, 9-3
PEXSetInteriorStyle, 9-30

S

Sampling Lookup Table, Glossary-5
Sampling of color space, 6-22
SB_X_SHARED_CMAP, 3-15, 6-26
Setting, 3-9

SearchContext, 6-2
Search context requests, 6-73
Searching, 6-83
Server Files, 2-12
SERVER_OVERLAY_VISUALS, 6-28
Setting Up, 10-10
Setting Up LUTs, 10-22
Setup of Texture Mapping, 9-3
Shading, 6-74
Shape Hints, 5-21
Shared Libraries
Compile Line Summary, 4-9
File Structure and Location, 2-11
How To Link, 4-8

Six Steps in Texture Mapping, 10-9
Sources of Textures, 10-6
Specular Reections, 3-14
SPU and Graphics, 5-2
Standard Mapping, Glossary-5
stderr, 3-23
Step 1. Setup, 10-10
Step 2. Texture Preparation, 10-11
Step 3. Geometry Preparation, 10-19
Step 4. Set up Texture Mapping Lookup

Tables (LUTs), 10-22

Step 5. Render, 10-24
Step 6. Clean Up, 10-25
Steps in Texture Mapping, 9-1, 10-9
Stereo Viewing, 8-3
Stride and OCC, 5-20
Stride Interface, 7-3
Structure Mode, 5-18, 6-2
Structure Permissions, 5-19, 7-28
Structure Permissions, Background

Information, 7-28
Structures, 5-19, 6-73
Structures, using e�ciently, 5-19
Summary, 5-25
Supported Environments, 1-5
Supported PEX Subsets, 6-16
Supported Visual Types, 1-5
Surface Parameterization, 10-14,

Glossary-5
Synchronization, 6-17
System Level Benchmarks, 5-2
System Resources, Use of, 5-6

T

Technicolor, 2-4
Texel, Glossary-5
Text, 6-56
Text and Fonts, 6-56
Texture Map, Glossary-6
Texture mapping, 5-4
Texture Mapping, 6-74, Glossary-6
Texture Mapping, Cleanup, 9-36
Texture Mapping, Geometry Preparation,

9-19
Texture Mapping, Look-Up Table Setup,

9-24
Texture Mapping, Overview, 9-1
Texture Mapping, Rendering, 9-30
Texture Mapping, Setup, 9-3
Texture Mapping, Step 1. Setup, 10-10
Texture Mapping, Step 2. Texture

Preparation, 10-11

Index-8

Index

Texture Mapping, Step 3. Geometry
Preparation, 10-19

Texture Mapping, Step 4. Set up Texture
Mapping Lookup Tables (LUTs),
10-22

Texture Mapping, Step 5. Render,
10-24

Texture Mapping, Step 6. Clean Up,
10-25

Texture Mapping, Texture Preparation,
9-11

Texture Mapping Tutorial, 10-1
Texture Mapping, Uses, 10-1
Texture Preparation, 10-11
Texture Preparation step of Texture

Mapping, 9-11
Textures, Prede�ned, 10-7
Textures, Sources, 10-6
The NPC Subvolume and Viewport,

6-76
/tmp/update.log, 2-9
Tools, performance analysis, 5-8
Tools, Performance information, 5-10
Tools, pro�ling, 5-9
Translation Lookaside Bu�er (TLB),

5-23
Transparent Overlay Planes, 3-9, 6-20,

6-28, Glossary-4
Triangle Primitives, 8-5
Troubleshooting, 2-9
TrueColor visual, turning o�, 3-20
Tuning graphics application, 5-13

U

UI Considerations, 10-8
Unsupported Subset Entrypoint, 6-16
update, 2-8
update.log, 2-9
Updating compiler and rebuilding

application, 5-22

User-De�ned Linetypes and Marker-
Glyphs, 8-7

User Interface Consideration for
Parameterization, 10-18

User Interface Considerations, 10-8
User Interface Considerations for

Creating Filtered Texture Maps,
10-31

Using Indexed Colors, 6-37
Using PEXlib for Texture Mapping,

10-9
/usr/share/vhelp/bin, 2-7
Utilities, 4-1, 6-22, 6-27, 6-29
utilities/, 6-22
utilities/ directory, 6-27, 6-29
Utilities directory, 6-20

V

verify_install, 2-4
View-Dependent Mapping, Glossary-6
View-Independent Mapping, Glossary-6
Viewing, 6-61
Visual Class, Glossary-6
Visual types, Supported, 1-5
VMX Modes, 5-17

W

Wideline Control, 8-3
Window Memory, 6-20
Window size, 5-16
Window System Interactions, 5-16
Wireframe, 6-74
Workstation, 6-2
Workstation Con�gurations, 1-3
Workstation Subset, 6-16
World Wide Web (WWW), 1-14

X

\xbm" �le format, 10-4
X Color Issues and PEX, 6-18
X Colormap Sharing, 3-15

Index-9

Xconfig

Setting Environment Variables, 3-12
xdpyinfo, 2-4, 6-2
XErrorDB, 3-23
xhpcmap program, 3-18
\xpm" �le format, 10-4
X Protocol
Behavioral Di�erences, 3-7

\xwd" �le format, 10-4
X Window System
If You Reinstall, 2-8

Z

Z-Bu�er Block Operations, 7-33

Z-Bu�er Block Operations, Background

Information, 7-33

Index-10

