
May 22, 1996

1 of 15

Programming for UNIX 95
and HP-UX Binary
Compatibility

This paper explains how HP-UX release 10.10 was
modified to obtain the UNIX 95 brand while still
providing compatibility with previous releases of
HP-UX. Simple code examples and workarounds are
provided for C language programmer and shell
script programmers. The UNIX 95 brand was the
result of the “Spec1170” initiative to provide a
“unified UNIX”.

1.0 Introduction

HP-UX release 10.10 is the first UNIX system available that conforms to the UNIX 95
Profile of the Single UNIX Specification (hereafter referred to as UNIX 95). This
release enables the development of applications that will be portable to other systems
that conform to UNIX 95.

UNIX95 defines a set of application programming interfaces (API’s). Applications that
limit their use of system interfaces to these API’s will be portable to any UNIX95 con-
forming system.

Applications developed on this release and previous releases of HP-UX will continue to
operate as they did on previous releases provided the user has not enabled the UNIX 95
environment. UNIX 95 conforming applications developed on this release will only run
on the HP-UX 10.10 and later releases.

Further information regarding X/Open, UNIX 95 and the Single UNIX Specification
see the X/Open Web page at http:/www.Xopen.org.

Configuring the system to conform to the UNIX 95 environment

2 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

2.0 Configuring the system to conform to the UNIX 95
environment

Release 10.10 of the HP-UX System can be updated to support the UNIX 95 configura-
tion by installing the following code patches.

Installing these patches enables a user to configure a session so the commands and
libraries will conform to the UNIX 95 profile.

To configure a UNIX 95 session, the user has to set the environment variableUNIX95
and also set thePATH environment variable to contain the entry/usr/bin/xpg4
before the/bin and/usr/bin entries. For example, the following entries in the
users’.profile enable the UNIX95 environment:

UNIX95=
export UNIX95
PATH=/usr/bin/xpg4:/bin:/usr/bin
export PATH

Once a session has been configured to the UNIX 95 profile, users should restrict their
usage of the system to commands and libraries that are strictly conforming. Commands
and libraries arestrictly conforming if they use only the API’s described in the UNIX
95 profile or they use other commands or libraries that are themselves strictly conform-
ing. Commands and functions that pre-date the UNIX 95 profile are denoted in this
paper asClassic HP-UX commands and functions. Use of API’s that are outside the

TABLE 1.

Patch Component

PHCO_6587 df(1)

PHCO_6633 ex(1), vi(1)

PHCO_6705 od(1)

PHCO_6712 stty(1)

PHCO_6772 getconf(3)

PHCO_6777 libc

PHCO_6820 read(1)

PHCO_7035 ps(1)

PHKL_6765 POSIX_UPE

PHNE_6688 mailx(1)

PHNE_6726 STREAMS (s800)

PHNE_6727 STREAMS (s700)

Programming with Commands

Programming for UNIX 95 and HP-UX Binary Compatibility 3 of 15

scope of the UNIX 95 profile while the session is configured to the UNIX 95 is not sup-

ported1.

The purpose of the UNIX 95 profile is to enable portability between systems imple-
mented by different vendors. There are two reasons why mixing UNIX 95 API’s with
Classic API’s is not wise: 1) If an application uses API’s that are outside the scope of the
Single UNIX Specification, there is no guarantee that the function will be available on
other UNIX 95 conforming platforms and, 2) some Classic API’s conflict with the
UNIX 95 definition of API’s of the same name or may conflict with other UNIX 95
API’s. Over time, applications will be altered to be conforming and will be ported to the
other platforms. When this happens, these API’s may be used by an application. During
a transition period, applications will be migrated to the UNIX 95 environment. For these
reasons, the restriction of strict conformance is not considered unreasonable.

3.0 Programming with Commands

3.1 Compatibility with previous versions of HP-UX

To allow the introduction of UNIX 95 behavior that is incompatible with Classic HP-
UX, the commands that exhibit incompatible behavior have been modified to exhibit
UNIX95 behavior if the UNIX95 environment variable is set. Commands that are not
easy to implement to support both the Classic HP-UX behavior and the UNIX 95 behav-
ior are placed in a separatebin directory. This means, to complete the configuration of
a user session for conformance to UNIX 95, the user also has to begin the search path
environment variable with/usr/bin/xpg4 .

Application developers should modify their applications to function properly regardless
of whether the user has configured their session to be a Classic HP-UX environment or
a UNIX 95 environment. To help developers assess how much the UNIX 95 environ-
ment might impact their application, the following four tables describe how key com-
mands behave with the UNIX 95 environment enabled.These tables are grouped by the
expected impact on applications that presently operate with the commands in the Clas-
sic mode. To obtain more detailed information regarding these changes, the developer
should refer to the individual manual pages for these commands.

The following table lists command changes due to UNIX95 that may affect applications

1. Since the UNIX 95 profile of the XPG4 introduces functions that are not compatible with
Classic HP-UX, and Hewlett-Packard is committed to protect the customers software invest-
ment, this release has Classic as the default behavior. Many Classic libraries and applications
have not yet been modified to be strictly conforming. This release of HP-UX is intended to be
used by application developers so they may alter their applications and libraries to be strictly
conforming. A future release may make UNIX95 the default configuration.

Programming with Commands

4 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

by causing scripts to break, abnormal program termination or inappropriate behavior:

TABLE 2.

Command UNIX95 change from Classic behavior

delta Different output format.

df Different output format.

ex Different command processing, regular expression processing, substitute
processing; new error conditions;-t semantics altered.

get Different output format.

nl Text line numbered if only graphic characters are present; only 1 file at a time is
permitted

od Output different with ‘-s ’, ‘ -A d ’ ‘ -A o ’, ‘ -A x ’, ‘ -A n ’,
‘ -N count ’ option

pr Time column formats changed; number of form feed characters different with pr
-F command; output different with-sc and-columns options; output
different if the following options are used together
“ -ad -Frt -e -h “my_header” -i -l 54 -n -o 2 -s -w 72 ”; exit
code different when option arguments are missing

ps Time column formats changed; column headings different;-a -d -g -s
process selected by session nor process groups; uid/user column with-f and-
l displays effective not real users;-u users selected based on effective UID not
real UID; field widths/alignment changed

sh Error conditions encountered in built-in commands not specified by XPG4 will
no longer cause subshell processing to exit the subshell.

sort Exit value has changed with-o option; behaves differently for the following two
conditions: 1) when individual options are supplied 2) when options are grouped
and supplied; The order of different options relative to one another produce
different outputs; When the characteri is specified in conjunction with a key
description, then a call to sort does not interpret these modifier in the same
manner as the corresponding option but only applies the modifier to the specific
key, overriding any option specifications, rather than to all key descriptions;
behaves differently for files starting with a “/ ”, “ .. ”, ” . ” and of the type
“ f1/f2/.../fn ”

wc Syntax altered;-c is now mutually exclusive to-l and-w ; output format is
altered.

who -H , -T have major output changes;-s is now mutually exclusive with-T, -a,
-d

Programming with Commands

Programming for UNIX 95 and HP-UX Binary Compatibility 5 of 15

The following table lists command changes that may affect applications by causing
them to produce erroneous results:

TABLE 3.

Command UNIX95 change from Classic behavior

cal Error messages now go to stderr not stdout; hard-coded day/month now use
abbreviated information in the locale; outputs two months in a row, not three

ctags EXIT returns non-zero for failure;-t (create tags fortypedefs) is now the
default behavior

cu -d now gives the MAX level of debugging;-D is a work-around to permit old
behavior

dd Appends ‘\n ’ at the end of the last (partial) conversion buffer for conv-unblock;
conversion “blocks” at the end of every input buffer when the input buffer is not
an even multiple of the conversion buffer.

du -r (prints messages about unreadable directories) is now the default behavior;
-s and-a are now mutually exclusive

m4 Behavior of theifdef built-in macro changed; Added options delimiter-- ;
Error flagged when a non-numeric argument is passed to the following built-in
macros:decr, divert, incr, m4exit, substr, undivert,
eval ; When the first argument of built-in ‘ifdef ’ macro is not defined or is
zero and there is no third argument, then the macro value set to null; The TEXT
which is before ‘m4exit ’ is printed; Whenm4wrap is invoked more than once,
then the arguments are processed in the same order after reading the end-of-file
character; m4 passes when it is invoked with a ‘space’ between the option and
its argument; when multiple files are given to ‘m4’, even it fails to perform
action on first file, it does not continue with next file; Output of the macro
‘dumpdef ’ goes to stdout instead of stderr.

make Options delimiter-- added; Exit status is zero when a target failed with-k
option; With-q option for and out-of-date target returns 1; Option-S overrides
option-k ; Environment variable MAKEFLAGS are used; Operands processed
in the order specified in the command line; Command-line macros are added to
the MAKEFLAGS variable; When the target is up to date, “target up to date”
message is written on stdout. Earlier, no message was written.; Exit code
changed; MAKEFLAGS defined in the makefile overrides the environment
macro of the same name; The .SILENT flag affects only specified targets; File
listing modified in case of the$? macro; Output format changed in case of the
.c , .f and the.sh suffix rules.

wc Results no longer given per option specified now only one set of results provided
in a fixed order; ‘\v ’, ‘ \f ’and ‘\r ’ are also excepted as delimiters to the word

Programming with Commands

6 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

The following table lists command changes that may affect applications because they
have mutually exclusive options or other recoverable problems:

TABLE 4.

Command UNIX95 change from Classic behavior

admin Unreadable files silently ignored

cmp Behaves differently for files starting with type “F1/F2 ”; exit values changed
with not read only files i.e. whose read bit is not set.

cp The-f and-i options are no longer mutually exclusive.

find A period (.) in a filename is exactly matched by using a period as the first char-
acter or immediately following a slash character in the pattern.

lex -v and-n options are mutually exclusive;-v and-t now output to stdout or
stderr; if no input file specifications or - is used, stdin is used

locale “locale -k frac_digits int_frac_digits ” is changed to return -1.

ls -t comparison is done by collating sequence if modified times are equal; first
newline char is removed if first item is a directory.

mkdir The mkdir with the-m option sets the mask as per the permissions provided. The
remaining bits are retained as per theumask.

mkfifo The mkfifo with the-m option sets the mask as per the permissions provided for
the specified ‘who’. The other bits are retained as per theumask.

paste Ignores unreadable files silently; returns with exit status 1 when one of the oper-
ands is invalid.

printf External appearance is changed for unconverted strings.

prs Unreadable files are silently ignored;-c and-d arguments are mandatory; if
error occurs, processing continues but exits with non-zero status.

rmdel Unreadable files are silently ignored.

sact Unreadable files are silently ignored; When fopen returns zero for the file name
containing the module, the error message “No outstanding deltas
for: %s ” will be printed on the stdout instead of stderr.

stty When setting the speed of a terminal port, both the input and output speed are set
to the same value.

unget/sact Unreadable files are silently ignored; If error occurs, processing continues but
exits with non-zero status

Programming with Commands

Programming for UNIX 95 and HP-UX Binary Compatibility 7 of 15

The following table lists command changes that may affect applications because they
have error return values changed or other minor changes:

TABLE 5.

Command UNIX95 change from Classic behavior

asa When the first character removed from the input line is <space>, then asa outputs
the rest of the input line without change; When the first character removed from
the input line is ‘0’, then asa outputs a newline character followed by the rest of
the input line; When the first character removed from the input line is ‘1’, then
the asa outputs one or more characters that causes an advance to the next page
followed by the rest of the input line; When the first character removed from the
input line is ‘+’, then the asa replaces the newline character of the previous line
with one or more implementation-dependent characters that causes printing to
return to column position 1 followed by the rest of the input line; When the first
character removed from the input is ‘+’, then the asa outputs the rest of the input
line without change; When no file operands are specified, then the asa uses stan-
dard input; the characters-- are specified to a command which accepts operands
to delimit the end of options. Any arguments following the-- which start with a
- are considered by the command to be operands and not as options; processes
operands in command line order; When an input file is defined as a text file, then
at leastLINE_MAX bytes can be accumulated from a set of continued input lines;
When no error occurs during the execution of a utility, then no error messages are
written to standard error and the exit status from the utility is zero; When a utility
is unable to perform the requested action on an external object (file, directory,
user, process etc.) specified by an operand, then the utility issues a diagnostic
message to standard error and continues processing subsequent operands. The
final exit status of the utility is non-zero.

bc Very large numbers are split across lines with 70 characters, this includes ‘\ ’ and
‘ \n ’ characters; scale(<zero>) is 0 even though bc is invoked with-l option.

cancel When an error occurs during execution of a utility, then the diagnostic message is
written to standard error; Exit status is non-zero. The exit value is now 2.

cd An absolute pathname of the new working directory are written to the standard
output.

compress When an error occurs while processing one of the operands, the final exit value is
non-zero.

date In the classic behavior, this command prompts for confirmation in case the date
is to be set backward. This behavior will change in the XPG4 version because the
stdin is NULL for this command and hence the user cannot be prompted.

expr When performing a match, if the two regular expressions are strings and if there
is no match, then null string is written to standard out. A newline character is not
written;expr supports nested parenthesis. The sub-expression can be nested to
any depth.

Programming with Commands

8 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

grep grep with -l option stdin as input should give on stdout “(standard
input)\n ” message. Same for-l -m ; grep on regular expression should
print correct result and return exit 0 for successful grep with-e, -f, -i, -
x, and-v options; Null pattern should select every input line. Same with-e,
-f, -v , options; Null pattern with option-E should select every input line; RE
“ \ ” should work; grep-F and fgrep results should match; Also match with simi-
lar valid parameters applied to both; With-q option and first inaccessible input
file, grep should exit with zero status

localedef If the implementation supports thePOSIX2_C_BIND option then localedef
should besystem() ’d andpopen() ’d; invoking localedef with invalid input
should return error code 3; The characters-- can be specified to a command
which accepts operands to delimit the end of options. Any arguments following
the-- which start with a- are considered by the command to be operands and
not as options;-i option on should create return and exit 0; Should read from
stdin if -f option not specified. Should return 0 if succeeds; symbolic constant
POSIX2_LOCALEDEF is defined

lpstat Previously did not support the end-of-options (--)

renice Better error processing

sed Errors should be redirected to stderr; should work when label length is eight
characters; A call tosed -f script_file accepts a script_file consisting of edit-
ing commands, one per line; the sed command ‘/A/p ’ command produces cor-
rect results; script ‘/BRE/p ’ should print correct results with zero exit status;
When the editing commandD does not delete the whole of the current pattern
space, then the next cycle of editing commands is applied to the remaining pat-
tern space; The editing commandH appends to the hold space a <newline> fol-
lowed by the contents of the pattern space;r < pathname> command should
return with zero exit status for correct operation;w < pathname> command
should return with zero exit status for correct operation; The editing commandx
switches the contents of the pattern and hold spaces.

strings Non zero exit value on failure.

tabs Detects new error conditions.

time Exit value changed for error conditions: cannot find executable, cannot invoke

type Any errors occurred should be output to stderr; When an error occurs, the exit
status should be non-zero.

uncom-
press

When an error occurs while processing one of the operands, the final exit value is
non-zero.

unexpand There is no space character preceding the tab character in the output.

uucp Filename to be transferred can be specified using metacharacters like?, *. .

uulog Change in the/var/uucp/.Log directory permission from the existing value
of only “r ” for all, to “r+w ” for all.

uupick Exit code changed; Error message is dumped in stderr instead of stdout.

uustat Exit code changed; Error message is dumped in stderr instead of stdout.

TABLE 5.

Command UNIX95 change from Classic behavior

Programming with the C language

Programming for UNIX 95 and HP-UX Binary Compatibility 9 of 15

3.2 Workaround

Until an application has been modified to tolerate both the Classic HP-UX behavior or
the UNIX 95 behavior of system commands, it can be altered with a simple workaround
that will allow the command to continue to function properly. Clearing theUNIX95
environment before invoking any UNIX 95 command will cause the command to exe-
cute with its Classic behavior.

4.0 Programming with the C language

As with command programming, the code development engineer must restrict API
usage to a strictly conforming (see page 2) UNIX 95 definition if the UNIX 95 develop-
ment environment is enabled. If an application, developed with the UNIX 95 develop-
ment environment, uses libraries supplied by applications, those libraries must be
strictly conforming. This transitive property of strict conformance must be adhered to so
that incompatible Classic functions are not linked with a program that is designed to
operate with UNIX 95 functions. Not only are function semantics different, but some
data structures are different, depending upon whether they are compiled in the Classic
or UNIX 95 environments.

Mixing the Classic and UNIX 95 development environments is not a supported configu-
ration. Partially enabling the UNIX 95 development environment is not a supported
configuration. Either of these two conditions may lead to unexplained application
behavior or abnormal application termination.

Mixing relocatable modules or shared libraries compiled in the Classic development
environment with modules compiled in the UNIX 95 development environment may
lead to unexpected operation since data structures may be different depending upon the
environment. For instance, the signal context structure differs depending upon the

uuto Exit code changed; Options delimiter “-- ” added; Error message is dumped in
stderr instead of stdout.

uux Exit code changed; Options delimiter “-- ” added; Options -j and-n can be
grouped; Output written changed if command fails; Works if order of options
changed; Pathname expansion is carried out; Alias substitution is performed in
shell pipeline processed; Works for absolute pathname; Works for pathname pre-
ceded by~name; When~ is used, expand to thePUBDIR value; Picks a file from
the current directory if no file path specified;uux accepts input from stdin;uux
works if non-local filenames must be unique within theuux request.

what Better error processing for invalid options

xargs Non zero exit value on failure.

zcat When an error occurs while processing one of the operands, the final exit value is
non-zero.

TABLE 5.

Command UNIX95 change from Classic behavior

Programming with the C language

10 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

development environment. Applications that use the UNIX 95 environment and the sig-
nal context must insure all functions that use the context structure are compiled in the
UNIX 95 environment.

4.1 Configuring the development environment to conform to the UNIX 95
environment

In addition to setting theUNIX95 environment variable and thePATH environment
variable, the development engineer has to set the macro definition
_XOPEN_SOURCE_EXTENDED in the application source code or as a compile time
option to the C compiler. If the development engineer fails to set thePATH environ-
ment variable, then the linker will report undefined external symbols for any references
to the “context” functions.

Once the development environment has been properly configured to the UNIX 95 envi-
ronment, the relocatable modules produced will be consistent with the functions in the
system libraries when the application is linked. Once an application is linked, it is iden-
tified as a UNIX 95 application. The system will treat applications that are identified as
UNIX 95 differently than those that are unmarked (the default, Classic mode). These
applications will operate as UNIX 95 applications even if they are executed with the
UNIX 95 environment disabled.

4.2 Process Signals

Two new signals have been added to HP-UX to conform to the UNIX 95 API. These are
SIGXCPU andSIGXFSIZE . The former is generated by the system when an applica-
tion exceeds the number of CPU seconds to which it has been limited. The later is gen-
erated by the system when an application attempts to write to a file that will cause it to
grow larger than the number of blocks to which it has been limited.

By default, the limits for CPU seconds and file size are each set to infinity. Unless the
user sets these limits to some value less than infinity, they will not affect any applica-
tion. If the user lowers the limits for CPU seconds or file size, and an application
exceeds either of these limits, the system will not deliver either of these signals to the
process if it is a Classic application. However, if the user or an application explicitly
directs the system to deliver either of these signals to a process, even if it is a Classic
application, the system will deliver the signal.

It must be assumed that applications may be run on systems where the user wishes to
limit CPU time or file size. For this reason, all applications (including Classic applica-
tions) that catch signals and are expected to run on awide range of systems should be
modified to handle these signals. If this change is not made, an application may experi-
ence data corruption if the system delivers a signal that it could have caught.

4.2.1 The SIGXFSIZ signal
This new signal has been added to the system and will be delivered by the kernel to a
UNIX 95 application whenever the application attempts to write into a file that will
cause the file to grow beyond the limit set for the application. The default action for a
UNIX 95 application is to kill the process and leave a core file. If the application is a
Classic application, the kernel will not send the signal as a result of the file size exceed-

Programming with the C language

Programming for UNIX 95 and HP-UX Binary Compatibility 11 of 15

ing the application limit. However, if an application explicitly sends this signal to a
Classic application, the signal will be delivered and the default action will be taken.

4.2.2 The SIGXCPU signal
This new signal has been added to the system and will be delivered by the kernel to a
UNIX 95 application whenever the application exceeds the CPU time limit set for the
application. The default action for a UNIX 95 application is to kill the process and leave
a core file. If the application is a Classic application, the kernel will not send the signal
as a result of exceeding the application limit. However, if an application explicitly
sends this signal to a Classic application, the signal will be delivered and the default
action will be taken.

4.2.3 The sigcontext structure
The sigcontext data structure was modified to have a clean namespace. Applications
must not access elements of this structure that are not described in the UNIX 95 API.

4.2.4 Mixing signal paradigms

Using the Classic signal paradigm provided by the functionsbsdproc , signal ,
sigvector , sigblock , sigsetmask or sigspace with the UNIX 95 signal par-
adigm may cause undetermined application behavior. The UNIX 95 function
bsd_signal may be used in place ofsignal if appropriate.

4.3 The nftw function

The functionnftw has been modified to conform to UNIX 95. This change occurs in
the fourth argument passed bynftw to the application specified function. This parame-
ter is a call-by-value parameter in the Classic environment and is a call-by-reference
(pointer) in UNIX 95 environment.

Applications that use the Classic version ofnftw should not be mixed with relocatable
modules compiled in the UNIX 95 environment.

4.4 The sigpause function

The functionsigpause has been modified to conform to UNIX 95. The Classic ver-
sion takes a signal mask as an argument. UNIX 95 version takes a signal number as an
argument.

When the UNIX operating system was first introduced it provided less than 32 unique
signals. Over the intervening years, implementations provided API’s that passed the sig-
nal information from an application to the system via a bit-mask, with each bit repre-
senting one of the signals. Since thelong integer declaration was “guaranteed” to be at
least 32-bits wide, it was used to implement this bit-mask.

Now that the number of signals supported by the kernel exceeds the number of signals
that can be represented by the signal mask, using the Classic version ofsigpause (or
any other function that uses a 32-bit signal mask) will not function properly with func-
tions that enable the additional signals.

Programming with the C language

12 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

4.5 The setpgrp function

Thesetpgrp function has been modified to conform to the UNIX 95 API. The Classic
version ofsetpgrp does not change the session ID. The UNIX 95 version ofset-
pgrp sets the session ID to PID when the process group leader is not also the session
leader.

Thesetsid HP-UX manual page has stated for years thatsetpgrp is provided for
backward compatibility only. All applications should be modified to use thesetsid
function instead ofsetpgrp . To understand whysetpgrp is not a preferred inter-
face, See “Setpgrp” on page 14 for a historical perspective of the changes the function
setpgrp has undergone.

4.6 Mixing library files

Library files that depend upon the Classic behavior cannot be mixed with libraries that
depend upon UNIX 95 behavior. If a library has been modified tosetpgrp3 or
nftw2 (as was recommended in the 10.0 release), they can be used with a UNIX 95
application that usessetpgrp andnftw .

It may not be possible to change the source code that an application depends upon
because it uses functions provided by a third party library. To accommodate this situa-
tion, the following solutions will suffice. While these workarounds violate the principle
of strict conformance, they will work until the application can be modified to com-
pletely conform to the UNIX 95 API’s.

4.6.1 setpgrp

If the source code for an application that depends upon the Classic behavior cannot be
obtained, and no other part of the application depends on the UNIX 95 behavior of the
functionsetpgrp , the application developer can include a relocatable module when
linking the application that contains the code illustrated in the following example.

#include <signal.h>

int
setpgrp(pid, pgrp)
int pid;
int pgrp;
{

return setpgrp3(pid, pgrp);
}

This function will allow the developer to link an unmodified relocatable module to the
Classicsetpgrp function.

Programming with the C language

Programming for UNIX 95 and HP-UX Binary Compatibility 13 of 15

4.6.2 nftw

If the source code for an application that depends upon the Classic behavior cannot be
obtained, and no other part of the application depends on the UNIX 95 behavior of the
functionnftw , the application developer can include a relocatable module when link-
ing the application that contains the code illustrated in the following example.

#include <ftw.h>

int
nftw(filename, fn, flag, depth)
char * filename;
int (*fn)();
int flag;
int depth;
{

return nftw2(filename, fn, flag,
 depth);

}

This function will allow the developer to link an unmodified relocatable module to the
apparently Classicnftw function.

Appendix

Hewlett-Packard has met customer programming needs by implementing key specifica-
tions, such as the X/Open Portability Guide (XPG), the System V Interface Definition
(SVID) and the Application Environment Specification (AES). However, the combina-
tion of some of these specifications creates a situation where programming interfaces
that differ in functionality have the same name.

History

As a result of an industry effort in 1994, X/Open augmented the X/Open Portability
Guide release 4 (XPG4), nearly doubling the number of Application Programming
Interfaces (API) that will be common on all UNIX™ System platforms. In a related
event, Novell Corporation transferred the rights to the UNIX trademark to X/Open. This
transfer strengthened the UNIX System market by associating the UNIX trademark and
brand with a unified, open specification rather than the proprietary implementation of an
operating system. By design, HP-UX 10.0 already contains many of these API’s,
enabling near-term conformance to the XPG4v2 specification for the Single UNIX.

To accomplish the expansion of the XPG4 API set, a team of system vendors unified the
set of existing API’s that were described in other specifications. These included the

Programming with the C language

14 of 15 Programming for UNIX 95 and HP-UX Binary Compatibility

SVID from Novell Corporation and the AES from the Open Software Foundation.
Additional API’s were included due to their industry acceptance, as demonstrated by
their use in popular applications running on one or more UNIX System platform.

Compatibility Challenge

Every effort was made to minimize the conflict these API’s might have on systems that
implement functions that have the same name but are subtly different. As might be
expected in an imperfect world, this did inevitably lead to name collisions that could not
be resolved by compromising the specification. When this situation occurred, a decision
was made to select from the set of conflicting specifications with the understanding that
this would put some implementations temporarily out of conformance with the resulting
specification. Although the selection may seem arbitrary, considerable thought was
given to the impact that would result from choosing between conflicting API’s. Every
effort was made to incorporate as many API’s as were warranted by industry usage in
popular applications.

After the set of API’s was selected, Hewlett-Packard Company engineering staff
designed an implementation of HP-UX that would conform to the new version of the
XPG4. Due to HP’s commitment to our installed base, a goal was set to minimize the
impact this new version of HP-UX would have on existing customers and application
developers. Of the approximately 1,170 API’s described in XPG 4 version 2, HP-UX
had implemented all except 25 API’s prior to release 10.0. Of the API’s that were not
implemented, all except four of these API’s could be implemented in release 10.0 with-
out creating a conflict with the API’s that presently constitute HP-UX.

Once the four conflicting API’s had been identified, the development staff created an
appropriate migration strategy for the existing customer base. This migration strategy
provides several alternatives the customer or application developer can use to retain
their investment in software while moving forward to release 10.10 which implements
the common interface definition that is defined in XPG4v2.

Function Changes

Setpgrp

To understand how subtly the semantics of this function have changed, the following
excerpts will help application development engineers understand the differences.

SVID-1 (‘85)

Setpgrp sets the process group ID of the calling process to the process ID of the calling
process and returns the new process group ID.

SVID-2 (‘86)

Programming with the C language

Programming for UNIX 95 and HP-UX Binary Compatibility 15 of 15

The functionsetpgrp sets the process-group-ID of the calling process to the process-
ID of the calling process and returns the new process-group-ID.

XPG/2 (‘87)

Setpgrp sets the process group ID of the calling process to the process ID of the call-
ing process and returns the new process group ID.

Unless the process is already a process group leader,setpgrp disassociates the pro-
cess from the terminal group, if any.

SVID-3 (‘89)

If the calling process is not already a session leader, the functionsetpgrp sets the
process group ID and session ID of the calling process to the process ID of the calling
process, and releases the calling process’s controlling terminal.

XPG/3 (‘89)

WITHDRAWN (superseded bysetsid).

HP-UX

If the calling process is not a process group leader,setsid orsetprgp creates a new
session. The calling process becomes the session leader of this new session, becomes
the process group leader of a new process group, and has no controlling terminal. The
process group ID of the calling process is set equal to the process ID of the calling pro-
cess. The calling process is the only process in the new process group, and the only pro-
cess in the new session.

setprgp returns the value of the process group ID of the calling process.

XPG/4v2 (‘94)

If the calling process is not already a session leader,setpgrp sets the process group
ID of the calling process to the process ID of the calling process. Ifsetpgrp creates a
new session, then the new session has no controlling terminal.

Thesetpgrp function has no effect when the calling process is a session leader.

Summary

Hewlett-Packard Company is committed to operating system standards. By working
with other organizations during the formulation of these standards, they can be com-
pleted without a significant impact on applications already operating on HP-UX. When
it is not possible for these changes to be made without affecting applications running on
HP-UX, white papers similar to this one will be published to provide an easy migration
path to future releases.

