
HP 9000 Networking

STREAMS/UX for the HP 9000
Reference Manual

HP Part No. J2237-90005
Printed in U.S.A.

E0195

Edition 2
© Copyright 1995, Hewlett-Packard Company.

2

Legal Notices

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19
for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs may
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright Notices. ©copyright 1983-95 Hewlett-Packard Company, all
rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright laws.

©copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

This software is based in part on the Fourth Berkeley Software Distribution

3

Legal Notices

under license from the Regents of the University of California.

©copyright 1980, 1984, 1986 Novell, Inc.
©copyright 1986-1992 Sun Microsystems, Inc.
©copyright 1985-86, 1988 Massachusetts Institute of Technology.
©copyright 1989-93 The Open Software Foundation, Inc.
©copyright 1986 Digital Equipment Corporation.
©copyright 1990 Motorola, Inc.
©copyright 1990, 1991, 1992 Cornell University
©copyright 1989-1991 The University of Maryland
©copyright 1988 Carnegie Mellon University

Trademark Notices UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the U.S.
and other countries.

4

Printing History

Printing History

The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may
be made at reprint without changing the printing date. The manual part
number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive the updated or new editions, you
should subscribe to the appropriate product support service. See your HP
sales representative for details.

Edition 1: October 1992

Edition 2: January 1995

5

Preface

Preface

STREAMS/UX for the HP 9000 is Hewlett Packard's implementation of the
AT&T de facto standard environment for communications protocols.

STREAMS/UX consists of the STREAMS environment, Transport Layer
Interface (TLI), and XTI. TLI is an industry de facto standard application
program interface for implementing transport-level communications by
means of STREAMS-based network protocol stacks. HP also provides a
Data Link Provider Interface (DLPI) adapter with the core operating system.
DLPI is one industry standard definition for message communications to
STREAMS-based network interface drivers.

This manual includes information on how to install STREAMS/UX, how to
program with STREAMS/UX, and how to debug STREAMS/UX programs.
The programming information in this manual is intended to be used in
conjunction with the AT&T STREAMS manual calledUNIX System V
Release 4 Programmer's Guide: STREAMS.

This manual contains the following chapters:

Chapter 1 Installation and Verification of STREAMS/UX
describes product installation using HP's installation and
update program,swinstall, and describes how to verify
the installation.

Chapter 2 Detailed Product Information provides a more in-depth
explanation of the product installation, including instruc-
tions for manual kernel builds, information about
STREAMS drivers and modules, and descriptions of
STREAMS-related device files.

Chapter 3 Differences Between STREAMS/UX and System V
Release 4 STREAMS summarizes differences in areas
such as commands, system calls, utilities, drivers and data
structures, and is intended primarily for programmers.
Chapter 3 is written with the assumption that the
programmer has already read the AT&T manualUNIX
System V Release 4 Programmer's Guide: STREAMS.

6

Preface

Chapter 4 STREAMS/UX Multiprocessor Support discusses UP
emulation, writing MP scalable modules and drivers, how
to port SVR4 MP modules and drivers to HP-UX, and
synchronization levels.

Chapter 5 How to Compile and Link STREAMS/UX Drivers,
Modules, and Applications provides step-by-step
instructions for each of these topics.

Chapter 6 Debugging STREAMS/UX Modules and Drivers
provides a detailed look at how to use thestrdb andadb
debugging tools to debug STREAMS modules and
drivers.

Chapter 7 STREAMS/UX-NetTL Link describes how STREAMS
uses the Network Tracing and Logging facility.

7

Installation and Verification of STREAMS/UX 13
System Requirements 15
STREAMS/UX Filesets 16
Loading STREAMS/UX Software 17
Configuring STREAMS-based Pipes with SAM 18
Verification of Correct Installation 19
Detailed Product Information 21
Adding STREAMS Drivers and Modules 23
Manual Kernel Build Procedures 23
STREAMS Drivers and Modules 25
STREAMS Drivers 25
STREAMS Modules 25
Miscellaneous STREAMS Functionality 25
Kernel Tunable Parameters 26
STREAMS-Related Device Files (Framework-specific) 28
Differences Between STREAMS/UX and System V Release 4 STREAMS 29
Overview 31
HP-UX Changes to STREAMS/UX Commands 32
autopush 32
strace and strerr 33
HP-UX Changes to STREAMS/UX System Calls 34
fattach Modifications 35
ioctl Modifications 35
pipe Modifications 35
putmsg and putpmsg Modifications 36
Maximum and Minimum Data Buffer Size 36
Maximum and Minimum Control Buffer Size 36
Data Buffer Segmentation 36
Write Offset 37
select Modifications 37
signal Modifications 38
write and writev Modifications 38
Maximum and Minimum Data Buffer Size 38
Data Buffer Segmentation 38
Write Offset 39
HP-UX Modifications to STREAMS/UX Utilities 40

8

esballoc 41
cmn_err 42
freezestr and unfreezestr 42
get_sleep_lock 42
itimeout 43
kmem_alloc 43
LOCK 43
LOCK_ALLOC 44
putctl2 44
putnextctl2 45
qprocson and qprocsoff 45
streams_put utilities 46
SV_WAIT 46
SV_WAIT_SIG 47
TRYLOCK 48
UNLOCK 48
weldq and unweldq 48
unweldq 49
weldq 50
vtop 51
HP-UX Changes to STREAMS/UX Drivers and Modules 52
clone 53
strlog 53
sad 53
echo 54
sc 54
timod 55
tirdwr 55
Stream Head 55
pipemod 56
HP-UX Changes to STREAMS/UX Data Structures 57
Message Structures 58
msgb 58
iocblk 58
copyreq 58
copyresp 58

9

Queue Structure 59
STREAMS/UX Data Structure Restrictions 60
STREAMS/UX Uniprocessor Synchronization 61
STREAMS/UX Internal Synchronization 61
Driver and Module Synchronization 63
Multiple Processes Accessing the Same Stream 64
The STREAMS/UX Scheduler 64
HP-UX Changes to Cloning 65
STREAMS/UX Hardware Driver Writing 68
STREAMS/UX Multiprocessor Support 69
Running Modules and Drivers in Uniprocessor Emulation Mode 71
How STREAMS/UX Executes UP Emulation Modules and Drivers 71
Configuring Modules and Drivers for UP Emulation 72
Mixing MP Scalable and UP Emulation Modules and Drivers 74
Performance 76
Guidelines for UP Emulation Modules and Drivers 76
Writing MP Scalable Modules and Drivers 78
Overview of STREAMS/UX MP Support 78
Suggestions for Designing MP Scalable Modules and Drivers 81
Configuring MP Scalable Modules and Drivers 82
MP Scalable Module and Driver Configuration 82
Master File $DEVICE Table Configuration 83
Module and Driver Install Function Configuration 83
Configuring the NSTRSCHED Tunable 87
Guidelines for MP Scalable Modules and Drivers 87
Porting SVR4 MP Modules and Drivers to HP-UX 92
Differences between SVR4 and HP-UX MP STREAMS 92
Strategies for Porting SVR4 MP Modules and Drivers to HP-UX 93
MP Synchronization Levels on a Uniprocessor 94
How to Compile and Link STREAMS/UX Drivers, Modules, and Applications 103
Compiling STREAMS/UX Drivers and Modules 105
Linking STREAMS/UX Drivers and Modules into the Kernel 107
Adding Driver Header and Driver Install Routine 107
Modifying Your Master File 112
Dynamically-Assigned Major Numbers and lsdev(1) 114
Compiling and Linking STREAMS/UX Applications 115

10

Compiling and Linking TLI/XTI Applications and Threads 116
Debugging STREAMS/UX Modules and Drivers 119
Introduction 120
System V Debugging Tools Supported by STREAMS/UX 121
STREAMS/UX Tracing and Logging 121
cmn_err() and printf() 121
Dump Module Example 121
strdb and adb 122
STREAMS/UX Debugging Tool 123
Running strdb 123
strdb Commands 123
STREAMS/UX Subsystem Commands 124
? and h Commands 125
q Command 126
v Command 126
s Command 126
la Command 127
lm Command 127
ll Command 127
lp Command 128
qc Command 128
qh Command 129
Primary Commands 129
Data Structure Navigation Commands 129
Commands to Change strdb Session Characteristics 140
Debugging with strdb 145
Example 1: Flow Control and Fragmentation 146
Example 2: Simple Driver Programming Error 153
Example 3: Simple Application Programming Error 162
HP-UX Kernel Debugging Tools 166
HP-UX Kernel Debugging Tools and strdb 168
What Is a System Panic? 168
Traps 169
Data Segmentation Faults 169
Instruction Page Faults 169
Protection Violations 170

11

Generating and Retrieving System Core Dumps 171
Setting Up Your System To Save a Core Dump 171
Manually Getting a Core File from the Swap Partition 172
Problems Encountered In Saving/Obtaining a Core Dump 172
Transfer of Control In Case of System Hang 172
Core File Size Requirements 173
Symbol Information 173
Using adb 174
Invoking adb 174
Context on Entry to adb 174
Debugging Hung Systems 175
Finding the Panic Message 176
Interpreting the Panic Stack Trace 177
Manual Stack Back-Tracing 177
PA-RISC Procedure Calling Conventions Overview 178
Basic Stack Back-Tracing 180
Exceptions to the Four Steps 182
Mapping Assembly Language Locations to Source Code Lines 184
Obtaining Procedure Argument Values 186
Obtaining the First Four Arguments 186
Obtaining Arguments 5 through N 189
Obtaining Register Contents from Trap save_state or panic_save_state Areas 190
Obtaining Important Kernel Global Variables 191
Obtaining Values from the Process Table Entry and User Area 192
Important User Area Fields 193
Important Process Table Fields 193
Debugging Examples 196
Example 1 196
Example 2 201
Example 3 208
STREAMS/UX-NetTL Link 217
Mapping from STREAMS/UX Messages to NetTL Messages 219
STREAMS/UX Subsystem ID and Subformatter 220
Subsystem ID 220
Subformatter 220
Quick Guide On How to Use NetTL for STREAMS/UX 221

12

13

1

Installation and Verification of
STREAMS/UX

14

Installation and Verification of STREAMS/UX

This chapter covers installation, configuration and verification of the
STREAMS/UX subsystem for HP-UX systems, and consists of the
following sections:

• System requirements

• STREAMS/UX filesets

• Loading STREAMS/UX software

• Configuring STREAMS-based pipes with the SAM program

• Verification of correct installation usingpdfck andstrvf

15

Installation and Verification of STREAMS/UX
System Requirements

System Requirements

STREAMS/UX is installed and configured automatically during an HP-UX
10.0 installation.

STREAMS/UX does not require any dedicated hardware. Its drivers are all
pseudo drivers.

STREAMS/UX is supported on all HP9000 Series 700 and 800 systems that
HP-UX 10.0 supports.

16

Installation and Verification of STREAMS/UX
STREAMS/UX Filesets

STREAMS/UX Filesets

The HP-UX STREAMS product is organized into filesets. The filesets are
organized by grouping together the files that make up the runtime
environment, the kernel build components, and the manpages.

• STREAMS-RUN—Contains Transport Level Interface (TLI) library, X/Open
Transport Interface (XTI) library, STREAMS/UX commands and
STREAMS/UX user-space header files.

• STREAMS-MAN—Contains the STREAMS/UX man pages.

• STREAMS-KRN—Contains STREAMS/UX kernel library and kernel header
files.

NOTE: The library /usr/lib/libstr.a provided as part of the HP-UX 9.0 STREAMS/UX
product is no longer supplied as of HP-UX 10.0. The STREAMS/UX system calls
for compiling STREAMS/UX applications are now part of the C libraries (for
example,libc.sl andlibc.a) as of HP-UX 10.0.

A fileset is a logical grouping of software files. HP uses this structure for
organizing distribution of a product's software components. This fileset
organization is then used by HP's installation program,swinstall, to load
product files onto a system. For more information onswinstall, refer to the
Installing and Updating HP-UX manual.

17

Installation and Verification of STREAMS/UX
Loading STREAMS/UX Software

Loading STREAMS/UX Software

Follow the steps below to load STREAMS/UX software using the HP-UX
swinstall program.

1 Insert the software media (tape or disk) into the appropriate drive.

2 Run theswinstall program using the command:

/usr/sbin/swinstall

3 Enter the mount point of the drive in the Source Depot Path field, and activate the
OK button to return to the Software Selection Window.

The Software Selection Window now contains a list of available software to
install.

4 Highlight the STREAMS/UX software. The “Selected” menu becomes active.

5 Choose Mark for Install from the “Selected” menu to choose the product to be
installed.

6 Choose Install from the “Install” menu to begin product installation and open the
Install Analysis Window.

7 Activate the OK button in the Install Analysis Window when the Status field
displays a Ready message.

8 Activate the Yes button at the Confirmation Window to confirm that you want to
install the software.

swinstall loads the fileset, runs the customized scripts for the fileset, and builds
the kernel.

9 Activate the OK button on the Note Window to return to the Install Window.

10 Activate the Show Logfile button to check for installation error messages. Refer
to the message, cause and actions to correct any unresolved problems.

11 Activate the OK button in the Logfile Window to return to the Install Window.

12 Activate the OK button in the Install window to return to the Software Selection
Window.

13 Choose Exit from the “File” menu to leaveswinstall.

18

Installation and Verification of STREAMS/UX
Configuring STREAMS-based Pipes with SAM

Configuring STREAMS-based Pipes with SAM

System Administration Manager (SAM) allows you to configure various
tunable parameters. After installation is complete, all of the STREAMS/UX
parameters are set to a default value and do not require any modifications.
You may, however, want to change one tunable parameter. If you want to use
STREAMS-based pipes, you will need to change this default value.

NOTE: By turning on STREAMS-based pipes, ALL of the pipes created by the pipe(2)
command on the system will be STREAMS-based.

You can use SAM to configure STREAMS-based pipes. Follow the steps
below:

1 In SAM, choose “Kernel Configuration,” followed by “Configurable
Parameters.”

2 Highlight the “streampipes” label, then select “Modify Configurable Parameters”
from the Actions menu.

3 Under the label “Choose One to Modify Parameters,” choose “Specify New
Formula Value.” Set the formula value to 1 (one), then press OK.

4 In the File menu, choose exit. Before SAM exits, it will ask you when you want
to have the new kernel created. Choose “Create a New Kernel Now.”

5 Press OK. The new kernel will be built and moved into place.

19

Installation and Verification of STREAMS/UX
Verification of Correct Installation

Verification of Correct Installation

Follow these steps to verify that the installation is correct:

1 Run the/usr/bin/pdfck command to verify that the STREAMS/UX software was
correctly installed on your system. Verification is done by checking a master
product description file (pdf), which is delivered with the fileset, against the files
just installed on the system. Runpdfck on each of the filesets thatswinstall
installed:

/usr/bin/pdfck /system/STREAMS-KRN/pdf
/usr/bin/pdfck /system/STREAMS-MAN/pdf (if fileset is installed)
/usr/bin/pdfck /system/STREAMS-RUN/pdf
/usr/bin/pdfck /system/STREAMS-PRG/pdf (if fileset is installed)

If the installation is correct, you should only receive a prompt after running the
pdfck command. Ifpdfck finds a problem, it will report errors in the form of:

pathname: diff_field[(details)][,...]

wherediff_field is one of the field names specified in pdf(4). The fields are
pathname, owner, group, mode, size, links, version, checksum, andlinked_to.
Each field is separated by a colon (:). For more information, refer to the pdf(4),
pdfdiff(1M) and pdfck(1M) man pages.

Any differences found bypdfck usually indicate installation problems. Verify
that the STREAMS software was installed properly by reviewing steps 1
through 13 in the “Loading STREAMS/UX Software” section, and redo these
steps if necessary.

2 To verify that STREAMS/UX software was properly configured into your
HP-UX kernel, run the STREAMS verification tool,strvf, by typing:

/usr/sbin/strvf

If the STREAMS software has been properly installed and configured into the
kernel, you should see the following messages:

-> Logging results to /var/adm/streams/strvf.log

-> Verify HP Streams installation. Verify open, putmsg, <-
-> getmsg, ioctl, and close can be performed on a stream.<-

-> HP Streams is installed and operational <-

20

Installation and Verification of STREAMS/UX
Verification of Correct Installation

If you wish, you can use theverbose (-v) option to receive information on what
strvf is doing. strvf checks the following items:

• STREAMS kernel daemons are running.

• The echo driver (a core STREAMS driver) can be opened.

• aputmsg() can be performed on theecho driver.

• agetmsg() receives the same message sent byputmsg().

• A STREAMSioctl can be passed to the echo driver and acknowledged.

• Theecho driver can be closed.

21

2

Detailed Product Information

This chapter provides a more in-depth explanation of the STREAMS/UX
product installation than Chapter 1. The information provided here is
primarily for reference.

22

Detailed Product Information

This chapter contains information about core STREAMS drivers and
modules, lists STREAMS-related tunables, and lists STREAMS-related
device files.

23

Detailed Product Information
Adding STREAMS Drivers and Modules

Adding STREAMS Drivers and Modules

NOTE: The instructions below do not apply to clustered systems. If your system is
attached to a cluster, follow the instructions in System Administration Tasks for
Series 700 computers to configure the kernel. Alternatively, you can also create a
new kernel using the SAM utility.

NOTE: Before attempting this procedure, familiarize yourself with the system
reconfiguration information in themk_kernel(1M) manual reference page and
HP-UX system literature.

Refer to the System Administration manual for your system for complete
instructions on how to create a kernel.

The software installation program,swinstall, usually builds a kernel
correctly during product installation. In the unlikely event that the kernel is
not built correctly, follow the steps below for manually building a
STREAMS kernel.

The process involves modifying the kernel configuration input file to include
the STREAMS subsystem, driver and module keywords.

Manual Kernel Build Procedures

If you used some other file to create the kernel previously, copy that file to
/stand/system before following the steps below.

1 Ensure that you have super-user capabilities.

2 Change to the/stand directory.

3 Make a backup copy of your current configuration description file (which is
commonlysystem or build/system.SAM).

4 Edit thesystem file to add drivers and/or change system parameters.

hpstreams;

dlpi;

clone;

strlog;

24

Detailed Product Information
Adding STREAMS Drivers and Modules

sad;

echo;

timod;

tirdwr;

ffs

pipemod

pipedev

sc;

5 Make a copy of the existing kernel (default name vmunix).

6 Regenerate the kernel withmk_kernel, using the editedsystem file as input.
mk_kernel creates the new hp-ux kernel (the default is
/stand/build/vmunnix_test). There are two examples below. The first creates a
new kernel in the build directory calledvmunix_test. The second example
automatically moves the kernel to the/stand directory and makes a backup if the
file, /stand/vmunix, already exists.

mk_kernel
mk_kernel -s /stand/system -o /stand/vmunix

7 If you did not use the-o option with themk_kernel command, copy the new
kernel to/stand/vmunix.

8 Reboot the new kernel. If the new kernel fails to boot, boot the system from the
backup kernel and repeat the process of creating a new kernel. To do so, follow
the instructions in your System Administration manual.

25

Detailed Product Information
STREAMS Drivers and Modules

STREAMS Drivers and Modules

The configuration of STREAMS drivers and modules is statically defined at
system creation time. The STREAMS subsystem, core drivers and modules
are part of every 10.0 system.

The following sections contain a list of the core drivers and modules,
STREAMS kernel tunable parameters, and STREAMS configuration data
structure (streams_devs[]) information. See the master(4) manpage for more
details.

STREAMS Drivers

The core STREAMS drivers are:

• clone—provides the device cloning used by STREAMS.

• strlog—provides the STREAMS logging facility.

• sad—provides the STREAMS module autopush capability.

• echo—loopback test driver used by the verification program,strvf. Refer to the
strvf(1M) manpage.

• pipedev—required for STREAMS-based pipes.

STREAMS Modules

The core STREAMS modules are:

• sc—used by autopush and provides part of the STREAMS module autopush
capability. Refer to the autopush(1M) manpage.

• timod—provides an interface from TLI/XTI to the transport provider.

• tirdwr—another TLI module; provides a read/write interface to the transport
provider.

• pipemod—handles M_FLUSH messages for STREAMS-based pipes.

Miscellaneous STREAMS Functionality

• ffs—file system type required for fattach(3C).

26

Detailed Product Information
Kernel Tunable Parameters

Kernel Tunable Parameters

The following table describes STREAMS configurable parameters that are
in /usr/conf/master.d/streams file. The master file should not be modified.
The values can be tuned using SAM.

Tunable Name
Default
Value

Use

NSTREVENT 50 Determines the maximum number of outstanding STREAMS
bufcalls allowed at any one instance. This needs to be modified
if the protocol modules to be incorporated into STREAMS need
to have more than 50 bufcalls outstanding at the same time.

STRMSGSZ 8192 Defines the maximum number of bytes that can be sent in the
data part of a STREAMS message using the functionputmsg and
write. Putmsg will return ERANGE if a data buffer is sent with a
size greater than this value.Write will segment the data into
multiple messages. If STRMSGSZ is 0, the maximum data
message size is infinite.

STRCTLSZ 1024 Defines the maximum number of bytes that can be sent in the
control part of a STREAMS message using the functionputmsg.
Putmsg will return ERANGE if a buffer is sent with a size greater
than this value. If STRCTLSZ is 0, the maximum control
message size is infinite.

NSTRPUSH 16 Defines the maximum number of STREAMS modules that can be
pushed onto a single stream.

27

Detailed Product Information
Kernel Tunable Parameters

NSTRSCHED 0 Determines the number of streams scheduler daemons
(smpsched) running on a MP system. The default value is 0,
which indicates that Streams will determine the number of
daemons based on the number of processors in the system. The
number of MP streams schedulers created is as follows:

of processors # of smpscheds created
--------------- ---------------------

2-4 1
5-8 2
8-16 3
16+ 4

If a tunable value > 0 is specified, then that value is used to
determine the number of MP schedulers (smpsched) created on a
MP system. The minimum value for this tunable is 0 and the
maximum is 32.

No MP schedulers will be created on a UP system.

Also, regardless of whether a system is MP or UP, there will
always be one UP Streams scheduler (supsched).

NOTE: This tunable is for use by specific HP products only. It
will likely be removed in future HP-UX releases.

NSTRBLKSCHED 2 Determines the number of blockable Streams scheduler daemons
(sblksched) running on a MP system. The default value is 2,
which means that two blockable Streams schedulers (sblksched)
will be created on a MP system.

If the tunable is set to 0, then no blockable Streams schedulers
will be created on a MP system. Also, on a UP system, no
blockable Streams schedulers will be created.

streamspipes 0 Determines if pipes are STREAMS-based. If set to zero, pipes
are not STREAMS-based. If non-zero, pipes are
STREAMS-based. The default is for pipes to not be
STREAMS-based.

NOTE: This tunable appears in/usr/conf/master.d/core-hpux.

Tunable Name
Default
Value

Use

28

Detailed Product Information
STREAMS-Related Device Files (Framework-specific)

STREAMS-Related Device Files
(Framework-specific)

This section lists themknod commands necessary for manually creating
device files. On a properly installed STREAMS system, these commands
are not necessary. This section is included for informational purposes. All
device files listed here are set-up to be STREAMS cloneable.

mknod /dev/strlog c 72 0x49 #73 decimal
mknod /dev/sad c 72 0x4a #74 decimal
mknod /dev/echo c 72 0x74 #116 decimal

29

3

Differences Between STREAMS/UX
and System V Release 4 STREAMS

30

Differences Between STREAMS/UX and System V Release 4 STREAMS

This chapter summarizes the differences between STREAMS/UX and
System V Release 4.2 STREAMS. Chapter 4 discusses STREAMS/UX
multiprocessor support and the differences between STREAMS/UX and
System V Release 4 Multiprocessor STREAMS. You need to use this
manual in conjunction with USL'sUNIX System V Release 4.2 STREAMS
Modules and DriversandUNIX System V Release 4.2 Device Driver
Reference. The USL manuals will be referred to as the SVR4.2 STREAMS
manual and the SVR4.2 Driver manual from now on. Unless otherwise
stated in this chapter and Chapter 4, STREAMS/UX information described
in the SVR4.2 STREAMS and SVR4.2 Driver manuals will be applicable to
STREAMS/UX.

NOTE: This chapter is intended primarily for programmers, and is written with the
assumption that you have already read the SVR4.2 STREAMS Modules and
Drivers manuals.

31

Differences Between STREAMS/UX and System V Release 4 STREAMS
Overview

Overview

This chapter will be divided into the following categories for describing
differences between HP-UX and SVR4.2 STREAMS:

• Commands

• System calls

• Utilities

• Drivers and modules

• Data structures

• STREAMS/UX uniprocessor synchronization

• Cloning

• Hardware driver writing

32

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Commands

HP-UX Changes to STREAMS/UX Commands

STREAMS/UX supports the commands listed below:

• autopush

• fdetach

• strace

• strchg

• strclean

• strconf

• strerr

• strvf

HP versions of supported STREAMS/UX commands operate somewhat
differently from the way the commands are described in theUNIX SVR4.2
Command Reference manual. NLS catalogs exist for the commands. The
catalogs are calledautopush.cat, fdetach.cat, strace.cat, strchg.cat,
strclean.cat, strconf.cat, strerr.cat, andstrvf.catand are located in the
/usr/lib/nls/C directory. Differences in the commands are described below.

autopush

The syntax for the autopush command on HP-UX is as follows:

autopush -f autopush_file_name
autopush -r -M major_num|dev_name -m minor_num
autopush -g -M major_num|dev_name -m minor_num

autopush_file_name contents:
major_num|dev_name low_minor high_minor mod_name 1...mod_name N

The HP-UXautopush command has been enhanced to allow the user to
specify the device name in place of the major number, which is
recommended since HP-UX provides dynamic major numbers. The name
can be specified in the autopush file and on the command line. Device names
are located in the HP-UX master files. The major number can still be used if
needed.

33

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Commands

strace and strerr

Thestrace andstrerr commands use the STREAMS log driver,/dev/strlog.
SVR4.2 calls this driver/dev/log, but HP-UX already includes a non-streams
driver named/dev/log.

34

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

HP-UX Changes to STREAMS/UX System Calls

NOTE: By default HP-UX terminal I/O is not implemented using STREAMS/UX in
HP-UX 10.0. But a STREAMS-basedpty is available in the STREAMS-TIO
offering included in the HP-UX runtime product.

STREAMS/UX supports the following system calls:

• close

• fattach

• fcntl

• fdetach

• getmsg

• getpmsg

• ioctl

• isastream

• open

• pipe

• poll

• putmsg

• putpmsg

• read

• readv

• select

• signal

• write

• writev

For STREAMS-based termio, see the following manpages (which are part of
the STREAMS-TIO product): grantpt(3C), ptsname(3C), and unlockpt(3C).

35

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

There are HP-UX modifications to thefattach, ioctl, pipe, poll, putmsg,
putpmsg, select, signal, write, andwritev system calls. These modifications
are as follows.

fattach Modifications

STREAMS/UX supports thefattach(3) andfdetach(3) library calls and the
fdetach(1m) command as described in theUNIX SVR4.2 Operating System
API Reference and the SVR4.2 Command Reference. In order to usefattach
andfdetach, the kernel must have theffs file system configured.ffs is added
to the/stand/system file when STREAMS/UX is installed using swinstall. If
ffs has been deleted after the install was done, re-include it as follows,
regenerate a kernel, and reboot the system.

ffs

ioctl Modifications

STREAMS/UX supportsioctl as described in the SVR4.2 STREAMS
manual.

Also, note that the multiplexor ID number returned by I_LINK and
I_PLINK is a memory address, not a small integer such as 0, 1, 2, 3.

pipe Modifications

STREAMS/UX supports STREAMS-based pipes as an optional feature.
STREAMS/UX's STREAMS-based pipes behave as described in theUNIX
SVR4.2 Operating System API Reference and theUNIX System V Release 4
Programmer's Guide: STREAMS.

By default, pipes created by thepipe(2) system call are not
STREAMS-based. In order to get STREAMS-based pipes, the
/stand/system file must have the pipemod and pipedev module and driver
configured, and the tunable parameter streampipes must be set to 1 (one).

When STREAMS/UX is installed, the/stand/system file is modified to
includepipemod andpipedev, but streampipes is set to zero by default. The
kernel must be regenerated and the system rebooted if the setting of
streampipes to non-zero is to take effect. In other words,adb'ing the running
system to turn streampipes on will have no effect on the type of pipes
created bypipe(2). Once the kernel is regenerated and rebooted, allpipe(2)

36

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

pipes on the system will be STREAMS-based. However, fifos will not be
STREAMS-based. STREAMS/UX does not support STREAMS-based
fifos.

The STREAMS/UX device pipedev is only for internal STREAMS/UX use
in implementing STREAMS-based pipes. Opening a device file with
pipedev's major number will not result in a STREAMS-based pipe, or even a
properly functioning stream. STREAMS-based pipes must be created using
thepipe(2) system call.

PIPE_BUF is a pathname variable value, and SVID, XPG4, POSIX, etc.
define it as the maximum number of bytes that is guaranteed to be written
atomically. To obtain the correct value of PIPE_BUF, use fpathconf() (see
pathconf()). For STREAMS-based pipes, the value of PIPE_BUF depends
on the configurable parameter STRMSGZ (by default, 8KB). For example,
PIPE_BUF is set to 4KB if STRMSGSZ is 4KB, 8KB if STRMSGSZ is
8KB, and 16KB if STRMSGSZ is 16KB. There is one exception. If
STRMSGSZ is set to 0 (i.e. infinite size), then PIPE_BUF for
STREAMS/UX pipes is set to 8KB.

putmsg and putpmsg Modifications

Maximum and Minimum Data Buffer Size

The size of the user's data buffer must be within the minimum and
maximum packet size range specified in the topmost STREAM module's
streamtab. It must also be less than or equal to STRMSGSZ. If the number
of bytes to transfer is not in this range, ERANGE will be returned.

Maximum and Minimum Control Buffer Size

The size of the user's control buffer must be less than or equal to both
STRCTLSZ and STRMSGSZ. If STRCTLSZ is less than or equal to zero,
the page size is used instead of STRCTLSZ for this check.

Data Buffer Segmentation

The user's data buffer may be sent in multiple data blocks chained together
to form a message. The maximum number of bytes, including the write
offset, that can be sent in one data block is equal to the page size.

37

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

Write Offset

A module or driver can send the stream head an M_SETOPTS message,
telling the STREAM head to put an offset in the beginning of the first data
block in a message sent by aputmsg call. STREAMS/UX will not put the
offset into the data block if the amount of memory required is greater than
the page size. See Chapter 5 of the SVR4.2 STREAMS manual for more
information.

select Modifications

STREAMS/UX supports the select system call for STREAMS/UX devices.
For information about theselect system call, see the select(2) man page
delivered with the HP-UX core system.

Theselect system call does not provide as much information aspoll. If
select returns an event for a STREAMS/UX device, the program can call
poll to get more information.

A select read event is returned if a poll event POLLRDNORM, POLLERR,
POLLNVAL or POLLHUP exists on the stream. In other words, a read
event is returned for the following conditions:

• a normal message is waiting to be read

• a read error exists at the stream head

• a write error exists at the stream head

• the stream is linked under a multiplexor

• a hang-up has occurred

A select write event is returned if a poll event POLLOUT, POLLWRNORM,
POLLERR, POLLNVAL, or POLLHUP exists on the STREAM. This
means that a write event is returned for the following conditions:

• normal data can be written without blocking because of flow control

• a read error exists at the stream head

• a write error exists at the stream head

• the stream is linked under a multiplexor

• a hang-up has occurred

38

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

A select exception event is returned if a poll event POLLPRI or
POLLRDBAND exists on the STREAM. More specifically, an exception
event is returned if a high-priority message or a banded message is waiting
to be read.

signal Modifications

STREAMS/UX supports signals and the HP-UXsignal system call.
However, STREAMS/UX does not support extended signals or thesiginfo_t
structure described in the siginfo(5) manpage.

write and writev Modifications

Maximum and Minimum Data Buffer Size

The size of the user's data buffer must be within the minimum and maximum
packet size range specified in the topmost STREAM module's streamtab. If
the number of bytes to transfer is not in this range, ERANGE will be
returned. Two exceptions exist in which no error occurs. The first exception
is if the data buffer is too large and either the maximum packet size is
infinite or the minimum packet size is less than or equal to zero. (An infinite
packet size is specified using the define INFPSZ in thestream.h file.) The
second exception occurs if the buffer is too small and the minimum packet
size is less than or equal to zero. With either exception, ERANGE is not
returned, and the data is transferred.

Data Buffer Segmentation

The user's data buffer may be sent in multiple messages. The maximum
amount of data that can be sent in one message is the lower value of the
topmost module's maximum packet size and STRMSGSZ. If the maximum
packet size is infinite, then the top module’s high water mark is taken into
consideration. If the high water mark is more than zero, half of the high
water mark is used; otherwise the page size is used.

39

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

Write Offset

A module or driver can send the STREAM head an M_SETOPTS message
telling it to put an offset in the beginning of each data buffer segment (i.e.
message) sent by a write call. See Chapter 5 of the SVR4.2 STREAMS
manual for more information. STREAMS/UX will not put the offset into a
message if the resulting message size exceeds STRMSGZ.

40

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

HP-UX Modifications to STREAMS/UX Utilities

STREAMS/UX supports the following kernel utilities described in the
SVR4.2 Driver manual, although some of the utilities have been modified
for HP-UX.

adjmsg
allocb
backq
bcanput
bcanputnext
bcopy
bufcall
bzero
canput
canputnext
cmn_err
copyb
copymsg
datamsg
delay
drv_getparm
drv_priv
dupb
dupmsg
enableok
esballoc
esbbcall
flushband
flushq
freeb
freemsg
freezestr
getadmin
getmid
getmajor
getminor

getq
insq
itimeout
kmem_alloc
kmem_free
linkb
LOCK
LOCK_ALLOC
LOCK_DEALLOC
major
makedev
makedevice
max
min
minor
msgdsize
msgppullup
noenable
OTHERQ
pcmsg
pullupmsg
put
putbq
putctl
putctl1
putnext
putnextctl
putnextctl1
putq
qenable
qprocsoff

qprocon
qreply
qsize
RD
rmvb
rmvq
SAMESTR
sleep
spln
splstr
strlog
strqget
strqset
SV_ALLOC
SV_BROADCAST
SV_DEALLOC
SV_WAIT
SV_WAIT_SIG
testb
timeout
TRYLOCK
unbufcall
unfreezestr
unlinkb
UNLOCK
untimeout
vtop
wakeup
WR

41

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

In addition, HP-UX provides the following new utilities.

get_sleep_lock
putctl2
putnextctl2
streams_put
unweldq
weldq

Thestrenv.h file redefines some native HP-UX kernel utilities to conform to
System V Release 4.2. Thestrenv.h file redefinesdelay, get_sleep_lock,
kmem_alloc, kmem_free, lbolt, max, min, sleep, time, timeout, and
untimeout. These defines might collide with declarations in STREAMS/UX
modules and drivers. You can customize thestrenv.h file to avoid collisions
or to use native HP-UX utilities. However, modules and drivers cannot call
the native HP-UXsleep or get_sleep_lockdirectly. If your modules and
drivers callsleep or get_sleep_lock, you must includestrenv.hto redefine
sleep andget_sleep_lock to streams_mpsleep andstreams_get_sleep_lock.
For more information about the native HP-UX primitives, see theHP-UX
Driver Development Guide, part number 98577-90014.

Differences between the STREAMS/UX kernel utilities and the descriptions
in the SVR4.2 Driver manual are discussed below, along with information
about new utilities. This section assumes that modules and drivers include
strenv.h.

esballoc

The STREAMS/UX esballoc is the same as theesballoc call described in the
SVR4.2 Driver manual with a few differences. The HP-UXesballoccopies
the contents of thefr_rtn structure into an area of the data block not visible
to the STREAMS/UX programmer. Thenesballoc stores a pointer to this
area in thedb_freep field. This allows modules and drivers to modify the
fr_rtn parameter after callingesballoc without affecting subsequentfreeb
calls. Also, modules and drivers can change a data block'sfr_rtn
information by modifying the structure pointed to bydb_freep. The free
routine passed toesballoc can call STREAMS/UX utilities in the same way
as theput or service routine that calledfreeb. Also, a free routine can safely
access the same data structures as the put or service routine that calledfreeb.
However, unlike SVR4.2, HP-UX does not block interrupts from all
STREAMS/UX devices while the free routine runs. See “STREAMS/UX

42

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

Uniprocessor Synchronization” in this chapter and “Writing MP Scalable
Modules and Drivers” in Chapter 4 for more information aboutesballoc free
routines.

cmn_err

The STREAMS/UXcmn_err is the same as the cmn_err described in the
SVR4.2 Driver manual with a few differences. The HP-UXcmn_err always
sends messages to both the system console and the circular kernel buffer.
Inserting an exclamation point (“!”) or a circumflex (“^”) as the first
character in the format string has no effect. HP-UX simply removes these
control characters from the message, and sends the message to both the
console and the kernel buffer. There are a couple of other very minor
differences. HP-UX precedes CE_PANIC level messages with the string
panic: instead ofPANIC: . Also, the HP-UX circular kernel buffer is called
msgbuf instead of putbuf. The HP-UXmsgbuf is a fixed size, and can be
viewed using thedmesg command or theadb debugger tool.

freezestr and unfreezestr

The SVR4.2 Driver manual says thatfreezestr andunfreezestr must be called
on multiprocessors to protect searching a STREAMS/UX queue and calling
insq, rmvq, strqset, andstrqget. SVR4 MP providesfreezestr and
unfreezestr to prevent software on multiple processors from manipulating a
queue's list of messages at the same time. STREAMS/UX uses
synchronization levels for this. See “Writing MP Scalable Modules and
Drivers” in Chapter 4 for more information about synchronization levels and
HP-UX limitations oninsq, rmvq, strqset, andstrqget. Because
STREAMS/UX uses a different mechanism to protect STREAMS/UX
queues, the HP-UXfreezestr just returns the current interrupt priority level,
andunfreezestr is a no-op. HP-UX provides thefreezestr andunfreezestr
stubs to make porting code from SVR4 MP easier.

get_sleep_lock

STREAMS/UX provides some extra support for modules and drivers which
use the native HP-UXget_sleep_lock primitive. Alternatively, modules and
drivers can call the SVR4 MP SV_WAIT and SV_WAIT_SIG. Open and
close routines callget_sleep_lock before sleeping to prevent missing
wakeups. After callingget_sleep_lock, theopen or close can release

43

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

spinlocks before sleeping. Other processes cannot wakeup theopen or close
between the time it callsget_sleep_lock andsleep. Modules and drivers
must includestrenv.h to useget_sleep_lock. strenv.h redefines
get_sleep_lock to streams_get_sleep_lock. Modules and drivers cannot call
the native HP-UXget_sleep_lock directly, because STREAMS/UX needs to
do some additional synchronization before invokingget_sleep_lock.

lock_t *
get_sleep_lock(event);

 caddr_t event;

Theopen or close routine passes the event it will pass to the sleep primitive
to get_sleep_lock. get_sleep_lock obtains a sleep spinlock, and returns a
pointer to this lock.

itimeout

If the HP-UX itmeout cannot allocate memory, it panics instead of returning
0 like the SVR4 MPitimeout. The STREAMS/UXitimeout only returns 0 if
it is passed an interrupt priority level that is lower thanpltimeout. You can
increase the amount of memory available to both the newitimeout and the
existing timeout primitives using the NCALLOUT tunable. Set
NCALLOUT to the maximum number ofitimeout andtimeout requests that
can be outstanding at any one time.

kmem_alloc

The STREAMS/UXkmem_alloc tries to allocate 32 bytes if the size
parameter is set to 0. The SVR4.2kmem_alloc returns NULL instead.

LOCK

The STREAMS/UX LOCK calls the native HP-UX spinlock primitive.
LOCK has an interrupt priority level parameter, which is used to raise the
priority level and block interrupts which acquire the spinlock. The SVR4.2
Driver manual says that implementations which do not need to raise the
interrupt level can ignore this parameter. Since the HP-UX spinlock
primitive always raises the interrupt level to spl6 while a spinlock is held,
STREAMS/UX ignores the interrupt level parameter on multiprocessor
systems. For better performance on uniprocessor systems, the
STREAMS/UX LOCK raises the priority level to the parameter value

44

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

instead of acquiring a spinlock. Whether the caller will block or spin if the
lock cannot be obtained is implementation defined. The HP-UX
implementation spins.

LOCK_ALLOC

The STREAMS/UX LOCK_ALLOC calls the native HP-UXalloc_spinlock
primitive. There are some small differences between the STREAMS/UX
LOCK_ALLOC and the SVR4 MP utility. LOCK_ALLOC has a flag
parameter which indicates if the caller is willing to block while waiting for
memory to be allocated. HP-UX only allows this flag to be set to
KM_SLEEP, and returns zero if it is set to KM_NOSLEEP. The
STREAMS/UX LOCK_ALLOC accepts the following hierarchy parameter
values which are reserved for STREAMS/UX modules and drivers in
/usr/include/sys/semglobal.h and/usr/conf/h/semglobal.h:
STREAMS_USR1_LOCK_ORDER, STREAMS_USR2_LOCK_ORDER,
and STREAMS_USR3_LOCK_ORDER. The compiler options to turn on
deadlock checking for HP-UX are different than those documented in the
SVR4.2 Driver manual. The entire HP-UX kernel and the module or driver
must be compiled with SEMAPHORE_DEBUG to enable deadlock
checking. According to the SVR4.2 Driver manual, the min_pl parameter
can be ignored by implementations which do not need to raise the priority
level. The HP-UX STREAMS LOCK_ALLOC ignores it.

putctl2

STREAMS/UX also provides the additional utility calledputctl2. This
utility can be used to send a control message with a two-byte parameter to a
queue. For example,putctl2 can send the new style of an M_ERROR
message, which is two bytes long, to a queue.

int putctl2(q, type, p1, p2);

 queue_t * q;
 int type;
 int p1;
 int p2;

The q parameter is the queue to which the message is sent. The type
parameter is the message type. Thep1 andp2 parameters are the two bytes
of data in the message. Theputctl2 utility ensures that the type is not a data
type. The utility also allocates a message block, fills in the data, and calls

45

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

the put routine of the specified queue.putctl2 returns 0 if the type is
M_DATA, M_PROTO or M_PCPROTO, or if a message block cannot be
allocated.putctl2 returns 1 if it completes successfully.

putnextctl2

STREAMS/UX provides the additional utilityputnextctl2. This utility can
be used to send a control message with a two-byte parameter to the next
queue in a stream. For example,putnextctl2 can send the new style of an
M_ERROR message, which is two bytes long, to the next queue in a stream.

int putnextctl2(q, type, p1, p2);

 queue_t * q;
 int type;
 int p1;
 int p2;

Theq parameter is the queue from which the message is sent. The message
is sent toq->q_next. The type parameter is the message type. Thep1 and
p2 parameters are the two bytes of data in the message. Theputnextctl2
utility ensures that the type is not a data type. The utility also allocates a
message block, fills in the data, and calls the put routine of q->q_next.
putnextctl2 returns 0 if the type is M_DATA, M_PROTO, or M_PCPROTO,
or if a message block cannot be allocated.putnextctl2returns 1 if it
completes successfully.

qprocson and qprocsoff

SVR4 MP STREAMS/UX providesqprocson andqprocsoff, which on a
multiprocessor system allows a module'sput andservice routines to run
concurrently withopen andclose. STREAMS/UX does not allow this much
parallelism. A module's or driver'sput andservice routines cannot run at the
same time as theopen or close. Although STREAMS/UX does not run the
put or service routine in parallel with theopen or close, it does queue any
requests to run theput or service routine. STREAMS/UX will process these
whenopen finishes. Also, ifopen or close sleeps, STREAMS/UX can run
theput andservice routines whileopen or close are sleeping. However, a
put or service routine cannot do the wakeup on a sleepingopen or close.
STREAMS/UX provides stubs which are no-ops forqprocson andqprocsoff
to make porting easier.

46

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

streams_put utilities

STREAMS/UX provides a new utilitystreams_put, which allows
non-STREAMS/UX software to safely call STREAMS/UX utilities. timeout
and bufcall user functions and other non-STREAMS/UX code cannot call
several of the STREAMS/UX utilities or share data with modules and
drivers. For a more detailed discussion about these restrictions, see
“STREAMS/UX Uniprocessor Synchronization” in this chapter and
“Writing MP Scalable Modules and Drivers” in Chapter 4.

Non-STREAMS/UX code can callstreams_put, passing it a function and a
queue. STREAMS/UX runs the function as if it were the queue'sput
routine. The function can safely manipulate the queue and access the same
data structures as the queue's put routine.

#ifdef _PROTOTYPES
typedef void (*streams_put_t)(void *, MBPKP);
#else
typedef void (*streams_put_t)();
#endif

void
streams_put(func, q, mp, private)
 streams_put_t func;
 queue_t *q;
 mblk_t *mp;
 void *private;

STREAMS/UX will runfunc as if it wereq'sput routine. STREAMS/UX
passesprivate andmp to func. The non-STREAMS/UX code can pass any
value in the private parameter. The code must pass a valid message block
pointer in mp.streams_put uses fields in the message block not visible to the
STREAMS/UX programmer.

SV_WAIT

STREAMS/UX implements a subset of the SVR4 MP synchronization
variable utilities using sleep and wakeup. The HP-UX SV_WAIT differs
from the SVR4 MP utility in the following ways. When the SVR4 MP
SV_WAIT returns, the lkp spinlock is not held, and the priority level is set to
plbase (SPLNOPREEMPT on HP-UX). On a multiprocessor system, the
HP-UX SV_WAIT lowers the priority level to the value before the caller
acquired thelkp spinlock, which may not be SPLNOPREEMPT. If the caller
acquired the lock while holding other spinlocks, the priority level is lowered
to the value before the first of these nested spinlock calls. Also, the SVR4

47

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

MP SV_WAIT has a priority argument that specifies the priority the caller
would like to run at after waking. Since the HP-UX SV_WAIT is
implemented by callingsleep, the HP-UX priorities are different than the
SVR4 MP ones. On HP-UX, the priority passed into SV_WAIT is
subtracted from PZERO-1.pridisk, prinet, pritty, pritape, prihi, primed,and
prilo are defined to be 0, and do not affect the caller's priority. If you need to
change the process's priority, study the priorities in/usr/include/sys/param.h
or /usr/conf/h/param.h, and pass the needed offset to PZERO-1 in the
priority parameter.

SV_WAIT_SIG

STREAMS/UX implements a subset of the SVR4 MP synchronization
variable utilities usingsleep andwakeup. The HP-UX SV_WAIT_SIG
differs from the SVR4 MP utility in the following ways. When the SVR4
MP SV_WAIT_SIG returns, thelkp spinlock is not held, and the priority
level is set toplbase (SPLNOPREEMPT on HP-UX). On a multiprocessor
system, the HP-UX SV_WAIT_SIG lowers the priority level to the value
before the caller acquired thelkp spinlock, which may not be
SPLNOPREEMPT. If the caller acquired the lock while holding other
spinlocks, the priority level is lowered to the value before the first of these
nested spinlock calls. Also, the SVR4 MP SV_WAIT_SIG has a priority
argument that specifies the priority the caller would like to run at after
waking. Since the HP-UX SV_WAIT_SIG is implemented by callingsleep,
the HP-UX priorities are different than the SVR4 MP ones. On HP-UX, the
priority passed into SV_WAIT_SIG is added to PZERO+1|PCATCH.
pridisk, prinet, pritty, pritape, prihi, primed, andprilo are defined to be 0,
and do not affect the caller's priority. If you need to change the process's
priority, study the priorities in/usr/include/sys/param.h or
/usr/conf/h/param.h, and pass the needed offset to PZERO+1|PCATCH in
the priority parameter. The last difference is that the SVR4 MP
SV_WAIT_SIG returns if the process is first stopped by a job control signal
and then continued. The HP-UX SV_WAIT_SIG continues to sleep until it
receives a signal which does not stop the process, or an SV_BROADCAST
wakes up the process.

48

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

TRYLOCK

The STREAMS/UX TRYLOCK calls the native HP-UXcspinlock
primitive. TRYLOCK has an interrupt priority level parameter, which is
used to raise the priority level and block interrupts which acquire the
spinlock. The SVR4.2 Driver manual says that implementations which do
not require the interrupt level to be raised can ignore this parameter.
STREAMS/UX ignores the parameter on multiprocessor systems since the
HP-UX cspinlock primitive always raises the interrupt level tospl6 while a
spinlock is held. For better performance on uniprocessor systems, the
STREAMS/UX TRYLOCK raises the priority level to the parameter value
instead of acquiring a spinlock.

UNLOCK

The STREAMS/UX UNLOCK calls the native HP-UXspinunlock
primitive. UNLOCK has an interrupt priority level parameter, which is used
to lower the priority level. HP-UX will ignore this parameter on
multiprocessor systems. If the caller is not holding any other spinlocks, the
STREAMS/UX UNLOCK lowers the priority level to the value before the
caller acquired the spinlock. On uniprocessor systems, the STREAMS/UX
UNLOCK lowers the priority level to the parameter value instead of
releasing a spinlock.

weldq and unweldq

STREAMS/UX provides the additional utilities weldq and unweldq to allow
the user to build a pipe-like stream. These utilities are provided because the
programmer is not allowed to modifyq_next pointers directly. This
restriction and others are described in more detail in the section called
“HP-UX Changes to STREAMS/UX Data Structures.”

49

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

unweldq

The utility unweldq disconnects two drivers' queues that were joined by
weldq:

int unweldq (d1_wq, d2_rq, d2_wq, d1_rq, func, arg, protect_q);

 queue_t * d1_wq;
 queue_t * d2_rq;
 queue_t * d2_wq;
 queue_t * d1_rq;
 weld_fcn_t func;
 weld_arg_t arg;
 queue_t * protect_q;

d1_wq andd1_rq are one of the driver's write and read queues.d2_wqand
d2_rq are the second driver's queues.unweldq will set d1_wq->q_next and
d2_wq->q_next to zero. Also, it updates queue fields used for flow control
that are not visible to the STREAMS/UX programmer, and therefore cannot
be changed by the STREAMS/UX programmer.

unweldq returns to the caller before disconnecting the drivers.unweldq
requests that the STREAMS/UXweld daemon update the queues.

Note that if one end of a pipe-like stream created byweld is closed,
STREAMS/UX will automatically unweld the two drivers.unweldq does
not need to be called.

The weld daemon will callfunc with arg as an argument after it finishes the
request.protect_q specifies which queue the callback function can access
safely. See “STREAMS/UX Uniprocessor Synchronization” in this chapter
and “Writing MP Scalable Modules and Drivers” in Chapter 4 for a more
detailed discussion ofprotect_q.

If your driver does not need to be notified when the daemon finishes theweld
request, passweldq zero for thefunc, arg, andprotect_q parameters.

On successful completion,unweldq returns 0. Otherwise, it returns anerrno
indicating the type of error that occurred. One of the following three values
will be returned:

• ENXIO indicates that the weld daemon is not running.

• EINVAL indicates that invalid queue arguments are present.

• EAGAIN means that no memory is available.

50

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

weldq

Weldq connects two drivers' queues to form a pipe by setting theq_next
pointer:

int weldq (d1_wq, d2_rq, d2_wq, d1_rq, func, arg, protect_q);

 queue_t * d1_wq;
 queue_t * d2_rq;
 queue_t * d2_wq;
 queue_t * d1_rq;
 weld_fcn_t func;
 weld_arg_t arg;
 queue_t * protect_q;

d1_wq and d1_rq are one of the drivers' write and read queues.d2_wq and
d2_rq are the second driver's queues.weldq will set d1_wq->q_next to be
d2_rqandd2_wq->q_next to d1_rq. Also,weldq updates queue fields used
for flow control that are not visible to the STREAMS/UX programmer, and
therefore cannot be updated by the STREAMS/UX programmer.

weldq returns to the caller before connecting the drivers.weldq requests the
STREAMS/UX weld daemon to update the queues.

Theweld daemon will callfunc with arg as an argument after it finishes the
request.protect_qspecifies which queue the callback function can access
safely. See “STREAMS/UX Uniprocessor Synchronization” in this chapter
and “Writing MP Scalable Modules and Drivers” in Chapter 4 for a more
detailed discussion ofprotect_q.

If your driver does not need to be notified when the daemon finishes the
weld request, passweldq zero for thefunc, arg, andprotect_q parameters.

On successful completion,weldq returns 0. However, ifweldq fails, an
errno indicating the type of error that has occurred is returned. Theerrno
will contain one of the following three values:

• ENXIO means that the weld daemon is not running.

• EINVAL means that invalid queue arguments exist.

• EAGAIN means that no memory is available.

Note that if one end of a pipe-like stream created byweldq is closed,
STREAMS/UX will automatically unweld the two drivers.unweldq does
not need to be called.

51

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

vtop

The STREAMS/UXvtop only accepts a NULL process structure pointer. In
other words, it only converts kernel space addresses.

52

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

HP-UX Changes to STREAMS/UX Drivers and
Modules

The unsupported drivers and modules include:

• connld

• console

• ports

• sxt

• xt

NOTE: Some STREAMS-based terminal I/O functionality is contained in a separate
product called STREAMS-TIO. It is part of the HP-UX runtime product. See the
following manpages (which are part of the STREAMS-TIO product): pts(7),
ptm(7), ldterm(7), pterm(7), and pckt(7).

STREAMS/UX provides the following drivers and modules:

• clone

• strlog

• sad

• echo

• sc

• timod

• tirdwr

• pipemod

Entries for these drivers and modules can be found in the STREAMS/UX
master file. General information about these drivers follows. Information
about the stream head is also included. Differences between the HP-UX and
SVR4.2log andsad drivers are also described.

NOTE: Any driver or module not explicitly listed as supported in this section is not
supported.

53

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

clone

Major Number: 72

clone is used to provide cloning. The major number of the device file for a
cloneable driver must be the clone driver's major number, 72. The minor
number is set to the real major number of the device.

strlog

Major Number: 73

Module ID Number: 44

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128

The STREAMS/UX log driver is namedstrlog instead oflog. The special
device file is/dev/strlog. strlog provides the same functionality for logging
as described in theUNIX SVR4.2 System Files and Devices Reference, with
the exceptions described below:

• The strlog kernel utility formats binary arguments before sending messages up
the stream.

• STREAMS/UX does not provide a separate console logger or/dev/console
device. strlog does not support the I_CONSLOG ioctl. strlogprints a log
message on the console if the SL_CONSOLE flag is set.

• The HP-UXlog_ctl structure does not contain apri field. Priority and facility
codes are not supported.

sad

Major Number: 74

Module ID Number: 45

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

54

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

High Water Mark: 2048

Low Water Mark: 128

The HP-UX sad driver device file is/dev/sad. The system administrator and
users can open/dev/sad. However, only the system administrator can
execute the SAD_SAPioctl system call. This differs from the System V sad
driver, which is accessed through the/dev/sad/admin and/dev/sad/user
device files.

sad provides autopush functionality as described in theUNIX SVR4.2
System Files and Devices Reference manual.

echo

Major Number: 116

Module ID Number: 5000

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128

echo is a loopback driver used by thestrvf STREAMS/UX verification tool.
For more information aboutstrvf, see Chapter 1.

sc

Module ID Number: 5002

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128

sc provides auxiliary functions for thesad driver.

55

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

timod

Module ID Number: 5006

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128

timod provides TLI functionality as described in theUNIX SVR4.2 System
Files and Devices Reference manual.

tirdwr

Module ID Number: 0

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 16K

Low Water Mark: 128

tirdwr provides an alternative interface to the TLI library for accessing a
transport protocol provider.tirdwr is described in theUNIX SVR4.2 System
Files and Devices Referencemanual.

Stream Head

Module ID Number: 0

Module Name: sth

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 10240

Low Water Mark: 1024

56

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

The Stream head provides the interface between HP-UX system calls and
STREAMS/UX utilities in the kernel. The Stream head is the first queue
pair of every Stream and is involved in flow control. Data being read from a
stream will be taken off the stream head.

pipemod

Module ID Number: 5303

Maximum Packet Size: 8192

Minimum Packet Size: 0

High Water Mark: 8192

Low Water Mark: 8191

pipemod handles M_FLUSH messages in STREAMS/UX-based pipes.
pipemod is described in theUNIX System V Release 4 Programmer's Guide:
STREAMS manual.

57

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Data Structures

HP-UX Changes to STREAMS/UX Data Structures

STREAMS/UX data structures are almost identical to those described in the
SVR4.2 Driver manual. STREAMS/UX places additional restrictions on
how some of these structures can be accessed.

STREAMS/UX data structures that differ from the descriptions in the
SVR4.2 Driver manual are described below. Data structures identical to
those described in the SVR4.2 manual are not listed below.

STREAMS/UX data structures contain some declarations for fields used by
STREAMS/UX internally that are not visible to the STREAMS/UX
programmer. The programmer will not be affected by these fields except
that thesizeof function will return a larger value.

58

Differences Between STREAMS/UX and System V Release 4 STREAMS
Message Structures

Message Structures

These structures are slightly different from the ones in the SVR4.2 Driver
manual.

msgb

This structure is defined in the filestream.h.

Themsgb structure contains MSG_KERNEL_FIELDS, which defines fields
used internally by STREAMS/UX.

iocblk

The iocblk structure is defined instream.h.

ioc_count is defined to be a member of a union.

copyreq

Thecopyreq structure is defined instream.h.

cq_addr is defined to be a member of a union.

copyresp

Thecopyresp structure is defined instream.h.

cp_rval is defined to be a member of a union.

59

Differences Between STREAMS/UX and System V Release 4 STREAMS
Queue Structure

Queue Structure

The queue structure is slightly different from the one described in the
SVR4.2 Driver manual. The structure is defined in the filestream.h.

QUEUE_KERNEL_FIELDS defines fields used internally by
STREAMS/UX.

60

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Data Structure Restrictions

STREAMS/UX Data Structure Restrictions

STREAMS/UX has the same restrictions as those described in the Kernel
Data Structure chapter of the SVR4.2 Driver manual. Also, STREAMS/UX
limits which user written functions can access the queue structure directly.
A queue'sopen, close, put, orservice routine can manipulate the queue
structure as specified by SVR4.2. On a uniprocessor system, a queue's entry
points can access the other queue in the queue pair in the same way that they
can access their own queue. On a multiprocessor system, a queue's entry
points can manipulate queues belonging to entities with which they can
share data. They can manipulate the queues in the same way that they can
manipulate their own queue. See “Writing MP Scalable Modules and
Drivers” in Chapter 4 for more information about sharing data on
multiprocessor systems.

It is difficult to program other functions (besides those described above) to
access the queue structure directly, especially on multiprocessor systems. If
a queue's entry points access queues other than those described above, or if
non-STREAMS/UX software processes data in a STREAMS/UX queue, try
to use thestreams_put utility to manipulate the queues safely.streams_put
is described in the “HP-UX Modifications to STREAMS/UX Utilities”
section of this chapter. If you cannot usestreams_put, the code that accesses
a STREAMS/UX queue must, at a minimum, follow these additional rules.
The software must ensure that it is accessing an allocated, opened queue.
Also, it cannot dereference theq_first, q_last, orq_next pointers. In other
words, it cannot read or write data pointed at by the pointers. For example,
the function can check ifq_first is 0, but it cannot read the q_first-b_next
field. Lastly, you must implement any additional synchronization required
for your modules and drivers to work correctly. You may need to
synchronize the function accessing the STREAMS/UX queue with the
queue's entry points. This is because the function and the entry points may
access the queue in parallel on a multiprocessor system and may interrupt
each other while accessing the queue on a uniprocessor system.

61

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

STREAMS/UX Uniprocessor Synchronization

This section describes STREAMS/UX synchronization on a uniprocessor
system. Chapter 4 discusses multiprocessor synchronization. Also, Chapter
4 describes how modules and drivers running on a uniprocessor system can
use multiprocessor synchronization mechanisms to protect against
interrupts. STREAMS/UX programmers must follow the guidelines listed
below as well as those in the SVR4.2 STREAMS manual.

STREAMS/UX provides the following types of synchronization on a
uniprocessor system:

• STREAMS/UX protects its internal data structures from interrupts.

• STREAMS/UX helps protect module and driver private data structures against
interrupts.

• STREAMS/UX allows multiple processes to perform operations on the same
stream.

• The STREAMS/UX scheduler synchronizes the running of service routines with
application processing.

STREAMS/UX Internal Synchronization

STREAMS/UX protects its internal data structures, such as message queues,
against interrupts. STREAMS/UX programmers must use the following
guidelines.

1 A put, service, open, orclose routine can pass its own queue or the other queue
in its queue pair to a STREAMS/UX kernel utility. Many STREAMS/UX utilities
operate on a queue. For example,getq takes a queue as an input parameter and
returns a message from the queue. A service routine can only pass its queue or
the other queue in its queue pair togetq. The restricted utilities are backq,
bcanputnext, canputnext, flushband, flushq, freezestr, getq, insq, putbq, putnext,
putnextctl, putnextctl1, putnextctl2, putq, qreply, qsize, rmvq, SAMESTR, strqget,
strqset,andunfreezestr. Theputq utility is not restricted when it is passed a
driver's read queue or a lower mux's write queue. Anyput or service routine can
call putq if it passes it a driver's read queue or a lower mux's write queue.
However,putq's caller must guarantee that the queue passed is still allocated.
Some STREAMS/UX utilities, such ascanput, are commonly passed a parameter
of the formq->q_next. These routines are restricted in a slightly different way

62

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

than those listed above. A put or service routine can only pass its own queue's
q_next field or theq_next field of the other queue in its queue pair. These
requirements apply tobcanput, canput, put, putctl, putctl1, putctl2, and
streams_put. These utilities are not restricted when they are passed a parameter
of the formq, except that the queue must still be allocated.

2 Some STREAMS/UX utilities cannot be called from user functions passed to
timeout and bufcall or from non-STREAMS/UX code in the kernel. Also, this
software cannot share data structures with STREAMS/UX modules and drivers,
unless it raises thespl level to protect against interrupts. The utilities which
cannot be called arebackq, bcanputnext, canputnext, flushband, flushq, freezestr,
getq, insq, putbq, putnext, putnextctl, putnextctl1, putnextctl2, qreply, qsize,
rmvq, SAMESTR, strqget, strqset, andunfreezestr. The user functions and
non-STREAMS/UX code cannot callbcanput, canput, put, putctl1, putctl2,or
streams_put if they pass the utility a parameter of the formq->q_next. They can
call these utilities if they pass a parameter of the formq (q must be a valid,
allocated queue). User functions and non-STREAMS/UX code can only call
putq if they pass it a driver's read queue or a lower mux's write queue. User
functions and non-STREAMS/UX code can use the newstreams_put utility
documented in this chapter to get around these restrictions.

3 Some STREAMS/UX utilities cannot be called from free routines passed to
esballoc. A free routine can call the same utilities as the module or driver entry
point that calledfreeb.

4 If a multiplexor can execute on the ICS, take care when usingputnext to pass
messages across the multiplexor. If the upper mux passes messages downward
by passing the lower mux's write queue toputnext, the upper mux must ensure
that the driver stays linked under the mux until after theputnext completes.
Likewise, if the lower mux passes messages upward by passing the upper mux's
read queue to putnext, the lower mux must guarantee that the driver stays linked
under the mux, the mux stays open, and modules are not pushed or popped until
after theputnext finishes.

5 A protect_qparameter can be passed to theweldq utility. Theprotect_q
parameter specifies which queue thefunc parameter can access safely. Thefunc
function can use the same STREAMS/UX utilities as theprotect_q put and
service routines.

6 Theput andservice routines cannot be called directly. They must be executed by
calling STREAMS/UX utilities such asputnext, putqorqenable. They cannot be
called using the function pointer stored in theq_qinfo structure.

63

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

7 Drivers and modules should not call STREAMS/UX utilities from software
running on the interrupt control stack processing anspl6 or higher interrupt.
STREAMS/UX protects its internal data structures usingspl5.

Driver and Module Synchronization

Drivers and modules must protect their private data structures against
interrupts. This can be done in four ways. One way would occur if software
that is running on the interrupt control stack (ICS) modifies driver and
module data structures. In this case, the driver and module service and put
routines must raise thespl level before accessing their data structures.
Drivers and modules can call the STREAMS/UX utilitysplstr to raise the
spl level tospl5. Interrupts are masked while thespl level is raised.

The second way to protect data structures against interrupts is for software
running on the ICS to send a message to a stream. If this is done, drivers and
modules do not need to raise the spl level to protect their data. The software
running on the ICS does aputq on the driver's read queue. The STREAMS
scheduler will run the service routine off the ICS. When ICS software calls
putq for a priority band, the driver open function must allocate the band by
callingstrqget. This preventsputq from dynamically allocating memory for
the band on the ICS.

ICS software can callputnext or put instead ofputqto send a message to a
stream. If one of these utilities is called, STREAMS/UX will attempt to run
the put routine on the ICS. Drivers and modules will need to usespl calls to
protect data structures that they share with other drivers and modules, with
other instances of the same driver or module, or with non-STREAMS/UX
software.

The third way to protect data structures against interrupts is for interrupt
software to call theqenable utility to schedule a service routine. The
STREAMS/UX scheduler will run the service routine off the ICS.

The fourth method for protecting data structures against interrupts is to call
the newstreams_put utility. The code running on the ICS passes
streams_put a function and a queue. STREAMS/UX runs the function as if
it were the queue's put routine. The function can access the same data
structures as the queue's put routine. See “HP-UX Modifications to
STREAMS/UX Utilities” in this chapter for more information about
streams_put.

64

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

Multiple Processes Accessing the Same Stream

STREAMS/UX synchronizes multiple processes that are accessing the same
stream. Three scenarios will allow more than one process to operate on a
stream:

• Multiple processes opening a non-cloneable device with the same minor number

• A process calling fork

• Processes issuing I_SENDFD and I_RECVFD ioctls

For synchronization, STREAMS/UX will queue someopen andioctl system
calls issued by different processes, and will execute them one at a time.
STREAMS/UX queues re-opening an already open stream, and queues the
following ioctls: I_PUSH, I_POP, I_LINK, I_PLINK, I_UNLINK,
I_PUNLINK, I_FLUSH, I_FLUSHBAND, I_GETCLTIME,
I_SETCLTIME, I_GETSIG, I_SETSIG, I_LIST, I_LOOK, and I_STR.

STREAMS/UX does not process aclose call until the last file descriptor for
a stream is closed. No other system calls will be executing when
STREAMS/UX begins to dismantle the stream.

For remaining system calls, STREAMS/UX ensures that consistent results
are returned, but the calls are not executed one at a time. For example, if
two processes are reading from the same stream, one process could read the
first and third messages on the stream to satisfy a read request while the
second process reads the second and fourth messages.

The STREAMS/UX Scheduler

The STREAMS/UX scheduler runs service routines that are scheduled by
STREAMS/UX utilities such asputq. The scheduler will run all scheduled
service routines before returning to user level. The scheduler is a real time
daemon that runs at priority 100. (A low priority number denotes a high
priority. For example, a priority number of 50 would be of higher priority
than the number 100.) STREAMS/UX applications need to run at a lower
priority (higher priority number) than the STREAMS/UX scheduler;
otherwise service routines will not run before the scheduler returns to user
level from the kernel.

65

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning

HP-UX Changes to Cloning

STREAMS/UX supports two methods of cloning. See the SVR4.2
STREAMS manual for more information about cloning. Some differences
exist between HP-UX cloning and SVR4.2 cloning.

The first cloning method uses a special clone major number, 72, to provide
cloning. For each cloneable device, a device file must exist that has the
clone major number of 72 and also has a minor number equal to the major
number of the real device. When an application opens this type of device
file, STREAMS/UX passes the driver open routine CLONEOPEN in the
sflag parameter. The driver allocates a minor number and returns a new
device number containing the true major number and the chosen minor
number. The driver uses eithermakdev or to create the new device number.

The second cloning method is useful for drivers which need to be able to
encode information in their minor numbers. This is not possible in the first
method, as the clone device file for that method must have as its minor
number the major number of the driver being cloned.

In the second cloning method, the driver designates a particular minor
number as its “clone” minor number. The driver open routine checks the
minor number portion of the device number parameter passed to it, and if it
is the clone minor number, the driver open routine allocates a minor number
and returns a new device number to the caller, in the same way as the first
cloning method described above. The returned device number must contain
both a major number and the new minor number. A driver using this cloning
method may also change the major number in the device number it returns.
However, the new major number must correspond to a STREAMS/UX
driver with the same streamtab structure as the driver associated with the
original major number. Also, on a multiprocessor system, if the original
driver was MP scalable, the new one must be too. Likewise, if the original
was UP emulation, the new one must be also.

66

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning

Drivers using the second cloning method must indicate this in their install
functions or master file entries. See Chapter 5 for more information about
configuring STREAMS/UX drivers. Install functions must set the
C_CLONESMAJOR flag. For example:

INSTALL FUNCTION CONFIGURATION

static drv_info_t example_drv_info = { /*driver information*/
“example”, /* name */
“pseudo”, /* class */
DRV_CHAR | DRV_PSEUDO, /* flags */
-1, /* block major number */
-1, /* dynamically assigned

character major number */
NULL, NULL, NULL, /* cdio, gio_private,and

cdio_private structures */
}

static drv_ops_t example_drv_ops = { /* driver entry points */
NULL, /* open */
NULL, /* close */
NULL, /* strategy */
NULL, /* dump */
NULL, /* psize */
NULL, /* mount */
NULL, /* read */
NULL, /* write */
NULL, /* ioctl */
NULL, /* select */
NULL, /* option1 */
NULL, NULL, NULL, NULL, /* reserved entry points */
C_CLONESMAJOR, /* ****NOTE****C_CLONESMAJOR

flag set */
 }

static streams_info_t example_str_info = { /* streams information */
example, /* name */
-1, /* dynamically assigned major

number */
{ &examplerinit, &examplewinit,

NULL,NULL }, /* streamtab */
STR_IS_DEVICE, /* flags */
0, /* synchronization level */
““, /* elsewhere sync name */

}

int
example_install()
{

int retval;

67

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning

For definition in the $DEVICE table in the driver’s master file entry, set the
0x8000 bit in the mask field to use the second cloning method. For example:

MASTER FILE ENTRY

$DRIVER_INSTALL
* Driver Block major Char major
example 1 -1

if ((retval = install_driver(&example_drv_info, &example_drv_ops))!= 0)
return(retval);

/* Configure streams specific parameters. */
if ((retval = str_install(&example_str_info)) != 0) {

uninstall_driver(&example_drv_info);
return(retval);
}

/* Success */
return 0;

}

MASTER FILE $DEVICE TABLE CONFIGURATION

name handle type mask block char

example exampleinfo 21 80FC -1 75 /* 0x8000 set in mask */

68

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Hardware Driver Writing

STREAMS/UX Hardware Driver Writing

STREAMS/UX does not provide all the kernel utilities needed to write a
hardware driver. STREAMS/UX provides only the utilities described in this
manual. Customers who need to write hardware drivers should contact their
HP representative for additional support.

69

4

STREAMS/UX Multiprocessor
Support

70

STREAMS/UX Multiprocessor Support

This chapter describes how STREAMS/UX runs on a multiprocessor (MP)
system. The following topics are covered:

• How to run modules and drivers in uniprocessor (UP) emulation mode.

• How to write MP scalable modules and drivers.

• How to port SVR4 MP modules and drivers to HP-UX.

• How to use MP synchronization levels on a uniprocessor system to protect
against interrupts.

71

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

Running Modules and Drivers in Uniprocessor
Emulation Mode

STREAMS/UX supports uniprocessor emulation for modules and drivers.
Modules and drivers which run on uniprocessor systems can run on
multiprocessor systems under UP emulation without code changes. This
section presents an overview of UP emulation, describes how to configure
modules and drivers for UP emulation, describes what happens when a
stream contains both UP emulation and MP scalable modules, and describes
how UP emulation affects performance. Lastly, this section contains some
UP emulation programming guidelines.

How STREAMS/UX Executes UP Emulation Modules and Drivers

This section describes how STREAMS/UX supports UP emulation. HP-UX
provides UP emulation for non-STREAMS device drivers which were
developed for uniprocessor systems.

HP-UX uses a semaphore called the I/O semaphore and a spinlock known as
thespl lock to implement UP emulation. HP-UX uses the I/O semaphore to
serialize driver system calls. HP-UX acquires the I/O semaphore before
calling the driver to process a system call. HP-UX uses thespl lock to
prevent a driver interrupt on one processor from running in parallel with a
driver system call on another processor. When a driver callsspln to raise the
spl level, HP-UX acquires thespl lock. When an interrupt occurs for a UP
emulation driver, HP-UX acquires thespl lock before calling the driver's
interrupt handler.

STREAMS/UX extends UP emulation for STREAMS/UX modules and
drivers. A stream can be entered in two ways. One way is through a system
call. Either the I/O system or STREAMS/UX acquires the I/O semaphore
before executing a system call for a UP emulation stream. Also, a stream
can be entered from non-STREAMS software in the kernel. For example, an
interrupt handler can callputq, putnext,put, or streams_put to enter a stream.

If code on the interrupt control stack (ICS) callsputq for a UP emulation
stream, the STREAMS/UX UP emulation scheduler runs the service routine.
This scheduler acquires the I/O semaphore. If an interrupt occurs for a UP

72

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

emulation driver, the I/O system acquires the spl lock. Then if the interrupt
handler callsput, putnext, orstreams_put, STREAMS/UX usually executes
the put routine on the ICS with the spl lock. Note that the STREAMS/UX
utilities do not acquire thespl lock. An MP scalable interrupt handler may
not be able to safely callput, putnext, orstreams_put to enter a UP
emulation stream.

STREAMS/UX protects the various callback functions in different ways.
STREAMS/UX does not have to acquire the I/O semaphore orspl lock to
runesballoc free routines in UP emulation mode. The free routine will
automatically run in the same mode as the module which callsfreeb. Also,
the HP-UX I/O system protects timeout callback routines by obtaining the
spl lock before running the routine.

Bufcall andweld callback functions are always run under UP emulation.
The STREAMS/UX memory and weld daemons always obtain the I/O
semaphore before running UP emulation or MP scalable callback routines.
This should not hurt the performance of MP scalable modules becauseweldq
andbufcall are not called very often.

Configuring Modules and Drivers for UP Emulation

Modules and drivers run in UP emulation mode by default. To configure a
module or driver to run in UP emulation mode, do not specify any MP flags.
The examples below show how to configure UP emulation modules and
drivers by creating a master file $DEVICE table entry or a module or driver
install function. See Chapter 5 for more information about configuring
modules and drivers.

73

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

MASTER FILE $DEVICE TABLE CONFIGURATION

name handle type mask block char

lo loinfo 21 FC -1 75 /* 0x10000 not set in mask */
lmodb lmbinfo 40 0 -1 -1 /* 0x10000 not set in mask */

INSTALL FUNCTION CONFIGURATION

LO DRIVER

static drv_info_t lo_drv_info = { /* driver information */
 “lo”, /* name */
 “pseudo”, /* class */

DRV_CHAR | DRV_PSEUDO, /* *****NOTE***** DRV_MP_SAFE flag not specified */
 -1, /* block major number */

 75, /* character major number */
NULL, NULL, NULL, /* cdio, gio_private, and cdio_private structures */

}

static drv_ops_t lo_drv_ops = { /* driver entry points */
 NULL, /* open */
 NULL, /* close */
 NULL, /* strategy */
 NULL, /* dump */
 NULL, /* psize */
 NULL, /* mount */
 NULL, /* read */
 NULL, /* write */
 NULL, /* ioctl */
 NULL, /* select */
 NULL, /* option1 */
 NULL, NULL, NULL, NULL, /* reserved entry points */
 0, /* device flags */
}

static streams_info_t lo_str_info = { /* streams information */
 “lo”, /* name */
 75, /* major number */
 {&lorinit, &lowinit, NULL, NULL},/* streamtab */

STR_IS_DEVICE, /* *****NOTE***** MGR_IS_MP flag not specified */
 0, /* synchronization level */

 “”, /* elsewhere sync name */
}

74

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

Mixing MP Scalable and UP Emulation Modules and Drivers

Because UP emulation and MP scalability are configured separately for each
module or driver, it is possible for a stream to contain both UP emulation
and MP scalable modules and drivers. If any module or driver in a stream
needs to run in UP emulation mode, STREAMS/UX runs the entire stream
under UP emulation.

int
lo_install()
{
 int retval;

 if ((retval = install_driver(&lo_drv_info, &lo_drv_ops)) != 0)
 return(retval);

 if ((retval = str_install(&lo_str_info)) != 0) {
 uninstall_driver(&lo_drv_info);
 return(retval);
 }

 /* success */
 return 0;

}

LMODB MODULE

static streams_info_t lmodb_str_info = { /* streams information */
 “lmodb”, /* name */
 -1, /* major number */

{ &lmodbrinit, &lmodbwinit }, /* streamtab */
STR_IS_MODULE, /* *****NOTE***** MGR_IS_MP flag not

specified */
 0, /* synchronization level */
 “”, /* elsewhere sync name */
}

int
lmodb_install()
{
 int retval;

 return(str_install(&lmodb_str_info));

 }

75

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

When a module is pushed onto a stream, STREAMS/UX checks if either the
module is configured for UP emulation or if the stream is running under UP
emulation. If either condition is true, the module and the entire stream run
under UP emulation. Also, when the module is popped, the stream does not
change back to its original mode.

When a driver is linked under a multiplexor, STREAMS/UX checks if both
streams run in the same mode. If they do not, STREAMS/UX changes the
MP scalable stream to run in UP emulation mode. When the driver is
unlinked, STREAMS/UX does not change a stream back to its original
mode.

STREAMS/UX does not support mixing MP scalable and UP emulation
modules in an upper mux because an upper mux is a clonable device.
STREAMS/UX does not detect that upper mux streams are related. In
particular, STREAMS/UX does not support pushing a UP emulation module
onto only one MP scalable upper mux stream. STREAMS/UX changes only
this one stream to run under UP emulation. It does not change the control
stream or the other upper mux streams. You should design your modules and
drivers so that only MP scalable modules are pushed onto MP scalable upper
muxes. Also, STREAMS/UX does not support linking a UP emulation
driver under an MP scalable upper mux. STREAMS/UX only changes the
control stream to run under UP emulation. It does not change the other
upper mux streams. You should link only MP scalable drivers under an MP
scalable upper mux.

Some examples of supported streams configurations which contain both MP
scalable and UP emulation modules and drivers are listed below.

• If an MP scalable driver is linked under a UP emulation mux, STREAMS/UX
changes the MP scalable driver to run in UP emulation mode. For example, DLPI
is MP scalable in 10.0. When it is linked under UP emulation SNA,
STREAMS/UX changes the drivers to run in UP emulation mode.

• When an MP scalable module is pushed onto a UP emulation stream,
STREAMS/UX runs the module under UP emulation. For example, timod is MP
scalable. When it is pushed onto a UP emulation OSI stream, it runs under UP
emulation.

• When a UP emulation module is pushed onto an MP scalable stream,
STREAMS/UX changes the entire stream to run under UP emulation. For
example, DLPI is MP scalable in Release 10.0. When UP emulation Portable
Netware modules are pushed onto DLPI, the entire stream runs in UP emulation

76

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

mode. Another example is STREAMS/UX pipes, which are MP scalable. If UP
emulation modules are pushed onto a pipe, the pipe runs under UP emulation.

• As described earlier in this section, all userbufcall callback functions are
executed in UP emulation mode. If an MP scalable module callsbufcall, the
callback routine runs under UP emulation. If the callback routine invokes a put
procedure, the put procedure also runs in UP emulation mode. For example, the
DLPI driver is MP scalable in 10.0 and callsbufcall. Thebufcall callback
function runs under UP emulation.

Performance

Performance of UP emulation modules and drivers will likely worsen as
more processors are added to a system. If a large number of users will be
running your modules and drivers on MP systems, you should probably
modify the code to be MP scalable.

MP scalable modules that run over non-STREAMS/UX UP emulation
drivers will be forced to run in UP emulation mode. You can achieve better
performance by changing drivers to be MP scalable.

Guidelines for UP Emulation Modules and Drivers

• It is easier to develop STREAMS/UX based software which runs completely
under UP emulation or is completely MP scalable. Try to avoid mixing UP
emulation and MP scalable modules and drivers in the same stream or
multiplexor.

• It may be safe for UP emulation modules and drivers to call MP scalable
non-STREAMS software. The MP scalable software must be able to run while
the I/O semaphore is held. Note that if a put or service routine calls
non-STREAMS functions, these functions cannot acquire semaphores because
this might cause theput or service routine to block.

• Be careful with MP scalable non-STREAMS kernel code when calling UP
emulation STREAMS/UX modules. It is better if the non-STREAMS code
schedules a service routine instead of invoking a put procedure. Scheduling the
service routine will wake up the UP emulation scheduler daemon to run the
routine. The daemon acquires the I/O semaphore. If non-STREAMS code calls
put, putnext, orstreams_put, STREAMS/UX will not acquire either the I/O
semaphore or thespl lock.

• Modules and drivers which can run MP scalable and run under UP emulation
must use queue or queue pair synchronization. An example of an MP scalable

77

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

module which can run in UP emulation mode is timod. Although timod will be
configured to be MP scalable, it is pushed onto many streams, some of which run
in UP emulation mode.

• Do not push a UP emulation module onto an MP scalable upper mux. Do not link
a UP emulation driver under an MP scalable upper mux. It is better for the mux
to contain either all MP scalable modules and drivers or all UP emulation
modules and drivers.

• The UP emulation scheduler runs differently from the uniprocessor scheduler.
This may affect STREAMS application programs. On multiprocessor systems,
the scheduler may not run a service routine before the process which scheduled
the routine returns to user level.

• UP emulation modules and drivers need to follow the guidelines in the
“STREAMS/UX Uniprocessor Synchronization” section of Chapter 3.

78

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

Writing MP Scalable Modules and Drivers

Overview of STREAMS/UX MP Support

HP-UX STREAMS supports MP scalable drivers and modules. You can
configure the amount of parallelism for modules and drivers. Pick a level
which is consistent with a module's or driver's use of shared data structures.
STREAMS/UX provides five levels of parallelism which are calledqueue,
queue pair, module, elsewhere,andglobal. They are described below. Also,
STREAMS provides extra synchronization for module and driveropen and
close functions. This synchronization is also described below. The term
module is used in this discussion to mean both modules and drivers, unless
otherwise stated.

Figure 1 is useful for understanding STREAMS/UX MP support. The
diagram shows four streams, ECHO-A, ECHO-B, DLPI-A and SAD-A.
ECHO-A and ECHO-B both contain theecho driver. DLPI-A containsdlpi,
and SAD-A hassad. Each driver contains a read and a write queue.
echo_rput andecho_rsrv operate on an echo driver's read queue.echo_wput
andecho_wsrv access the write queue. Thedlpi andsad driver functions are
similar to the echo driver functions. STREAMS/UX executesecho, dlpi,
andsad driver functions differently depending on the MP synchronization
level configured for the drivers.

79

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

Figure 1 Understanding STREAMS/UX MP Support

The queue synchronization level provides the most concurrency. It
serializes access to a queue so that only one function at a time can
manipulate the queue. Applications can take advantage of multiple
processors because functions that operate on different queues run in parallel.
For example, assume that the echo driver in Figure 1 uses queue
synchronization. STREAMS/UX does not run ECHO-A's echo_rput and
echo_rsrv in parallel. Also, STREAMS/UX does not execute ECHO-A's
echo_wputandecho_wsrv concurrently. However, STREAMS/UX can run
ECHO-A'secho_rput at the same time as ECHO-A'secho_wput.
STREAMS/UX allows ECHO-A's read queue functions to run in parallel
with ECHO-A's write queue routines. Also, any of ECHO-A's procedures
can run at the same time as ECHO-B, DLPI-A or SAD-A routines. If a
module uses queue synchronization, a queue's put and service routines can
easily share data with each other because STREAMS/UX does not execute
the routines concurrently.

Thequeue pair synchronization level serializes access to a read and write
queue pair so that only one of the queue pair's functions can run at a time.
Queue pair synchronization still allows concurrency because functions for

Stream Head

Read Queue Write Queue

echo_rput
echo_rsrv

echo_wput
echo_wsrv

ECHO-A

Stream Head

Read Queue Write Queue

dlpi_rput
dlpi_rsrv

dlpi_wput
dlpi_wsrv

DLPI-A

Stream Head

Read Queue Write Queue

sad_rput
sad_rsrv

sad_wput
sad_wsrv

SAD-A

Stream Head

Read Queue Write Queue

echo_rput
echo_rsrv

echo_wput
echo_wsrv

ECHO-B

Echo Echo

SadDlpi

80

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

different queue pairs run in parallel. (A queue pair is also known as a
module instance.) For example, assume that the echo driver in Figure 1 is
configured for queue pair synchronization. STREAMS/UX runs ECHO-A's
echo_rput, echo_rsrv, echo_wput, andecho_wsrv one at a time. In other
words, STREAMS/UX does not execute any of ECHO-A's echo driver
functions concurrently, nor will STREAMS/UX run any of ECHO-B's echo
driver functions in parallel. However, STREAMS/UX can run an ECHO-A
function at the same time as an ECHO-B function. Also, any of ECHO-A's
functions can run in parallel with DLPI-A or SAD-A routines. If a module
uses queue pair synchronization, a queue pair's functions run one at a time
and can share data.

Themodule synchronization level serializes access to all of a module's
queue pairs or instances. STREAMS/UX runs only one function at a time for
all of a module's queue pairs. However, STREAMS/UX runs functions for
different modules in parallel. Modules are different if they have different
master file entries. For example, timod and tirdwr are different modules.
Assume that the echo driver in Figure 1 is configured for module
synchronization. STREAMS/UX does not runecho driver functions in
ECHO-A and ECHO-B in parallel.

However, STREAMS/UX can run an echo driver function at the same time
as dlpi or a sad driver function. Because STREAMS/UX allows only one
function for all of a module's queue pairs to run at a time, the module's queue
pairs can share data.

Theelsewhere synchronization level serializes a group of different modules.
STREAMS/UX runs only one function at a time for the group of modules.
STREAMS/UX runs functions in different groups concurrently. Suppose the
echo and dlpi drivers in Figure 1 are configured to be members of an
elsewhere synchronization group. Also, assume the sad driver is configured
to be in a differentelsewhere group. Only one driver function in ECHO-A,
ECHO-B and DLPI-A can run at a time. However, a function in ECHO-A,
ECHO-B or DLPI-A can run in parallel with a function in SAD-A. Also, a
function in ECHO-A, ECHO-B or DLPI-A can run at the same time as a
function in a module which uses a different synchronization level than
elsewhere. The modules in a group can share data.

Theglobal synchronization level does not provide parallelism within
STREAMS/UX. Only one module out of those configured for global
synchronization can run at a time. Suppose that in Figure 1, the echo, dlpi

81

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

and sad drivers use global synchronization. Only one driver function in
ECHO-A, ECHO-B, DLPI-A and SAD-A can run at a time. However, one
of these drivers could run in parallel with a module configured for a
synchronization level other thanglobal. All modules configured withglobal
synchronization can share data.

The STREAMS/UX synchronization levels also apply to open and close.
For example, if a module is configured for queue pair synchronization, none
of theput or service routines for the queue pair can run at the same time as
the queue pair'sopen or close. Also, open cannot run at the same time as
close. The least amount of protection that STREAMS/UX provides for
opens and closes is queue pair. Even if a module is configured with queue
synchronization, it will run as if it were configured with queue pair
synchronization during opens and closes.

STREAMS/UX provides additional protection foropens andcloses.
STREAMS/UX executes only oneopen or close across all streams at a time.
For example in Figure 1, if STREAMS/UX is executing the ECHO-A echo
driver'sopen routine, the DLPI-A dlpiopen cannot run nor can any other
module's or driver'sopen or close. An exception to this occurs if anopen or
close sleeps. When this happens, otheropens andcloses can occur. Anopen
or close function that sleeps may need to use a spinlock together with the
get_sleep_lock, SV_WAIT or SV_WAIT_SIG utilities to prevent missing
wakeups. These utilities are described in the “HP-UX Modifications to
STREAMS/UX Utilities” section in Chapter 3. Also, SV_WAIT and
SV_WAIT_SIG are discussed in the SVR4.2 Driver manual.

STREAMS does not synchronize the running of timeout and bufcall
callback functions with modules and drivers. This chapter lists some
restrictions on what these callback functions can do.

Suggestions for Designing MP Scalable Modules and Drivers

This section contains recommendations for designing MP scalable modules
and drivers:

• Modules and drivers that run over UP emulation hardware drivers must run under
UP emulation. Before changing STREAMS/UX modules and drivers to be MP
scalable, modify hardware drivers to be MP scalable.

• You can improve the performance of modules and drivers by using the elsewhere
synchronization level. Configure all modules and drivers in a subsystem to be in

82

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

the same group. They can all share data. However, STREAMS/UX will not
synchronizebufcall andtimeoutcallback functions or any non-STREAMS/UX
code with the modules or drivers. You may be able to use thestreams_put utility
described in Chapter 3. In general, UP emulation provides more protection for
bufcall, timeout, and non-STREAMS functions.

• To change modules and drivers to be MP scalable, analyze how the code shares
data structures. Determine which structures are shared and which module and
driver entry points read and write to the structures. Using this information, choose
synchronization levels for modules and drivers that correctly serialize access to
shared data.

• If all modules and drivers of a product share the same structure, consider
changing the module and driver data structures and algorithms to allow for more
parallelism. Alternatively, consider using spinlocks to protect shared structures
that are accessed infrequently or for short amounts of time. Using spinlocks is a
good way to protect structures which are not accessed on the main read and write
paths. You can either use the native HP-UX spinlock primitives or the SVR4 MP
LOCK, TRYLOCK, UNLOCK, LOCK_ALLOC andLOCK_DEALLOC utilities.
The SVR4 MP utilities are discussed under “HP-UX Modifications to
STREAMS/UX Utilities” in Chapter 3 and in the SVR4.2 Driver manual.

• Use service routines only for flow control, recovering from resource shortages or
executing interrupt completions in a process context. Service routines degrade
performance.

• Be careful when writingtimeout andbufcall callback functions, as well as
non-STREAMS code that calls STREAMS/UX utilities or shares data with
modules and drivers. See the “Guidelines for MP Scalable Modules and Drivers”
section.

Configuring MP Scalable Modules and Drivers

This section describes how to configure MP scalable modules and drivers.

MP Scalable Module and Driver Configuration

If you want a module or driver to be MP scalable, you must specify
additional configuration parameters. You need to:

• Add a flag indicating that the module or driver is MP scalable

• Add a keyword which specifies the synchronization level the module or driver
uses

• Add async name if the module or driver requireselsewhere synchronization

83

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

The sync name indicates which modules and drivers belong to a group. Choose a
sync name with eight characters or less, and configure the name for each
member of the group. See Chapter 5 for more information about configuring
STREAMS/UX modules and drivers.

Master File $DEVICE Table Configuration

To configure an MP scalable module or driver using a master file $DEVICE
table entry, add the 0x10000 (MGR_IS_MP) flag to the mask value. Also
add an entry to the master file $STREAMS_DVR_SYNC table. This entry
contains the module or driver's name, a keyword specifying the
synchronization level, and async name if the module or driver requires
elsewhere synchronization. There are five synchronization level keywords:
sync_global, sync_elsewhere, sync_module, sync_qpair, andsync_queue.
The STREAMS/UX master file contains a list of the valid keywords in the
$STREAMS_SYNC_LEVEL table. The examples below show $DEVICE
and $STREAMS_DVR_SYNC table entries.

Module and Driver Install Function Configuration

If a module or driver is configured using an install function, add the
MGR_IS_MP flag to the inst_flags field in the streams_info_tstructure.
Also, if you are configuring a driver, set the DRV_MP_SAFE flag in the

* name handle type mask block char
*
$DEVICE
strlog loginfo 21 120FC -1 73 /* Added 0x10000 to mask */
dlpi dlpiinfo 21 120FC -1 119 /* Added 0x10000 to mask */
tirdwr tirdwrinfo 40 12000 -1 -1 /* Added 0x10000 to mask */
A Ainfo 40 12000 -1 -1 /* Added 0x10000 to mask */
B Binfo 40 12000 -1 -1 /* Added 0x10000 to mask */
C Cinfo 40 12000 -1 -1 /* Added 0x10000 to mask */
D Dinfo 21 120FC -1 116 /* Added 0x10000 to mask */
$$$
* name sync level sync name
*
$STREAMS_DVR_SYNC
strlog sync_module /* Added sync level */
dlpi sync_qpair /* Added sync level */
tirdwr sync_queue /* Added sync level */
A sync_elsewhere ABsync /* Added sync level & name
*/
B sync_elsewhere ABsync /* Added sync level & name */
C sync_elsewhere netsync /* Added sync level & name */
D sync_elsewhere netsync /* Added sync level & name */
$$$

84

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

drv_info_tstructure. Specify a synchronization level in theinst_sync_level
field. The possible values areSQLVL_GLOBAL, SQLVL_ELSEWHERE,
SQLVL_MODULE, SQLVL_QUEUEPAIR andSQLVL_QUEUE. If the
module or driver is using the elsewhere synchronization level, add a sync
name to theinst_sync_info field. Note that a module or driver which uses an
install function for configuration needs an entry in the master file
$DRIVER_INSTALL table. (Do not put an entry in the $DEVICE table if an
install function is used.) The examples below show MP scalable module and
driver install functions.

STRLOG DRIVER

static drv_info_t strlog_drv_info = { /* driver information */
 “strlog”, /* name */
 “pseudo”, /* class */

DRV_CHAR | DRV_PSEUDO | /* *****NOTE***** DRV_MP_SAFE flag specified */
 DRV_MP_SAFE,

 -1, /* block major number */
 73, /* character major number */

NULL, NULL, Null, /* cdio, gio_private, and cdio_private
structures

}

static drv_ops_t strlog_drv_ops = { /* driver entry points */
 NULL, /* open */
 NULL, /* close */
 NULL, /* strategy */
 NULL, /* dump */
 NULL, /* psize */
 NULL, /* mount */
 NULL, /* read */
 NULL, /* write */
 NULL, /* ioctl */
 NULL, /* select */
 NULL, /* option1 */
 NULL, NULL, NULL, NULL, /* reserved entry points */
 0, /* device flags */
}

static streams_info_t strlog_str_info = { /* streams information */
 “strlog”, /* name */
 73, /* major number */
 {&logrinit, &logwinit, NULL, NULL}, /* streamtab */

STR_IS_DEVICE | STR_SYSV4_OPEN | /* *****NOTE***** MGR_IS_MP flag specified */
MGR_IS_MP,
SQLVL_MODULE, /* *****NOTE***** synch level specified */
““, /* elsewhere sync name */

}

}

85

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

int
strlog_install()
{
 int retval;

 if ((retval = install_driver(&strlog_drv_info, &strlog_drv_ops)) != 0)
 return(retval);

 if ((retval = str_install(&strlog_str_info)) != 0) {
 uninstall_driver(&strlog_drv_info);
 return(retval);
 }

 /* success */
 return 0;

TIRDWR MODULE

static streams_info_t tirdwr_str_info = { /* streams information */
 “tirdwr”, /* name */
 -1, /* major number */
 { &rinit, &winit, NULL, NULL }, /* streamtab */

STR_IS_MODULE | STR_SYSV4_OPEN | /* *****NOTE***** MGR_IS_MP flag specified */
 MGR_IS_MP

SQLVL_QUEUE, /* *****NOTE***** synch level specified */
 “”, /* elsewhere sync name */

}

int
tirdwr_install()
{
 int retval;

 return(str_install(&tirdwr_str_info));
}

C MODULE

static streams_info_t c_str_info = { /* streams information */
 “C”, /* name */
 -1, /* major number */
 { &crinit, &cwinit, NULL, NULL }, /* streamtab */

STR_IS_MODULE | STR_SYSV4_OPEN | /* *****NOTE***** MGR_IS_MP flag specified
 MGR_IS_MP

 SQLVL_ELSEWHERE, /* *****NOTE***** synch level specified */
 “netsync”, /* *****NOTE***** sync name specified */
}

86

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

int
C_install()
{
 int retval;

 return(str_install(&c_str_info));

}

D DRIVER

static drv_info_t d_drv_info = { /* driver information */
 “D”, /* name */
 “pseudo”, /* class */

DRV_CHAR | DRV_PSEUDO | /* *****NOTE***** DRV_MP_SAFE flag specified */
 DRV_MP_SAFE,

 -1, /* block major number */
-1, /* dynamically assigned character major number */

NULL, NULL, NULL, /* cdio, gio_private, and cdio_private
structures */

}

static drv_ops_t d_drv_ops = { /* driver entry points */
 NULL, /* open */
 NULL, /* close */
 NULL, /* strategy */
 NULL, /* dump */
 NULL, /* psize */
 NULL, /* mount */
 NULL, /* read */
 NULL, /* write */
 NULL, /* ioctl */
 NULL, /* select */
 NULL, /* option1 */
 NULL, NULL, NULL, NULL, /* reserved entry points */
 0, /* device flags */
}

static streams_info_t d_str_info = { /* streams information */
 “D”, /* name */

-1, /* dynamically assigned major number */
 { &drinit, &dwinit, NULL, NULL}, /* streamtab */

STR_IS_DEVICE | STR_SYSV4_OPEN | /* *****NOTE***** MGR_IS_MP flag specified */
MGR_IS_MP,
SQLVL_ELSEWHERE, /* *****NOTE***** synch level specified */

 “netsync”, /* *****NOTE***** sync name specified */
}

87

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

Configuring the NSTRSCHED Tunable

STREAMS/UX provides a new tunable, NSTRSCHED, which allows you to
set the number of STREAMS/UX scheduler daemons running on a
multiprocessor system. The default value is 0, which indicates that
STREAMS/UX will determine the number of daemons based on the number
of processors in the system. The minimum value is 0 and the maximum is
32.

You should leave NSTRSCHED set to the default value. STREAMS/UX
will set the number of daemons based on the number of processors in the
system. STREAMS/UX will create fewer daemons than there are
processors. There is no benefit to creating more daemons than processors.
You might want to increase the value of NSTRSCHED if the system does a
lot of STREAMS/UX processing or decrease it if the system does very little
STREAMS/UX work. You can determine the number of scheduler daemons
running on the system by executing theps -ef command, and counting the
number ofsmpsched processes.

Guidelines for MP Scalable Modules and Drivers

• It is easier to develop STREAMS/UX-based software that runs completely MP
scalable or completely under UP emulation. Try to avoid mixing MP scalable and
UP emulation modules and drivers in the same stream or multiplexor.

• MP scalable STREAMS/UX modules and drivers cannot call UP emulation
software. A put or service routine cannot acquire the I/O semaphore becauseput

int
D_install()
{
 int retval;

 /* Configure driver and obtain dynamically assigned major number. */
 if ((retval = install_driver(&d_drv_info, &d_drv_ops)) != 0)
 return(retval);

 /* Configure streams specific parameters. */
 if ((retval = str_install(&d_str_info)) != 0) {
 uninstall_driver(&d_drv_info);
 return(retval);
 }

 /* Success */
 return 0;

}

88

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

andservice routines cannot block. This means, for example, that modules and
drivers which run over a UP emulation hardware driver must run under UP
emulation.

• Modules and drivers which can run both MP scalable and under UP emulation
must use queue or queue pair synchronization. An example of an MP scalable
module which can run in UP emulation mode istimod. Althoughtimod is
configured to be MP scalable, it is pushed onto many streams, some of which run
in UP emulation mode.

• The MP scheduler runs differently from the uniprocessor scheduler. This may
affect STREAMS/UX application programs. On multiprocessor systems, the
scheduler may not run a service routine before the process which scheduled the
routine returns to user level.

• A module or driver's synchronization level determines the entities with which it
can share data. It also determines the entities with which it can share its
STREAMS/UX queues. For example, if a module uses queue pair
synchronization, the writeput routine can callinsq to insert a message onto the
module's read queue. But, if the module uses queue synchronization, the write
put routine can only callinsq to insert messages onto the write queue. The
synchronization level determines which queues a module or driver can pass to
STREAMS/UX utilities.

In general, aput or service routine can only pass its own queue or queues
belonging to entities with which it can share data. The restricted utilities are
backq, bcanputnext, canputnext, flushband, flushq, freezestr, getq, insq, putbq,
putnext, putnextctl, putnextctl1, putnextctl2, putq, qreply, qsize, rmvq,
SAMESTR, strqget, strqset andunfreezestr. Theputq utility is not restricted
when it is passed a driver's read queue or a lower mux's write queue. Anyput or
service routine can callputq if it passes a driver's read queue or a lower mux's
write queue. However,putq's caller must guarantee that the queue passed in is
still allocated.

Some STREAMS/UX utilities, such as canput, are commonly passed a
parameter of the formq->q_next. These routines are restricted in a different
way from those listed above. A put or service routine can only pass its own
queue'sq_next field or theq_next field of queues belonging to entities with
which it can share data. These requirements apply tobcanput, canput, put,
putctl, putctl1, putctl2, andstreams_put. These utilities are not restricted when
they are passed a parameter of the formq, except that the queue must still be
allocated.

• Some restrictions exist for timeout and bufcall callback routines as well as
non-STREAMS/UX code in the kernel. This software cannot share data

89

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

structures with STREAMS/UX modules and drivers, unless spinlocks are used to
protect critical sections. Also, the code cannot call the following utilities:backq,
bcanputnext, canputnext, flushband, flushq, freezestr, getq, insq, putbq, putnext,
putnextctl, putnextctl1, putnextctl2, qreply, qsize, rmvq, SAMESTR, strqget,
strqset, andunfreezestr.

Callback routines and non-STREAMS code cannot callbcanput, canput, put,
putctl, putctl1, putctl2 or streams_put if they pass the utility a parameter of the
form q->q_next. They can call these utilities if they pass a parameter of the
form q (q must be a valid, allocated queue). Callback and non-STREAMS code
can callputq only if they pass it a driver's read queue or a lower mux's write
queue. Callback and non-STREAMS code can use the newstreams_pututility
documented in the section “HP-UX Modifications to STREAMS/UX Utilities”
in Chapter 3.

• Some restrictions exist on free routines passed toesballoc. A free routine can call
STREAMS/UX utilities in the same way as the put or service routine that calls
freeb. A free routine can access the same data structures as the put or service
routine that calls freeb.

• A protect_qparameter can be passed to theweldq utility. Theprotect_q
parameter specifies which queue thefunc parameter can access safely. Thefunc
function can use the same STREAMS/UX utilities as theprotect_q put and
service routines. Also, the function can access the same data structures as the
protect_q put andservice routines.

• Put andservice routines cannot be called directly. They must be executed by
calling STREAMS/UX utilities such asputnext, put, putq, orqenable. They
cannot be called using the function pointer stored in theq_qinfo structure.

• STREAMS/UX applications in which multiple processes access the same stream
need to know how STREAMS/UX will synchronize operations on the stream.
See “Multiple Processes Accessing the Same Stream” in Chapter 3.

• Modules and drivers can allocate their own spinlocks to protect data structures.
If they do, they should use the lock orders reserved for them in
/usr/include/sys/semglobal.h or /usr/conf/h/semglobal.h:
STREAMS_USR1_LOCK_ORDER, STREAMS_USR2_LOCK_ORDER, and
STREAMS_USR3_LOCK_ORDER.

The lock order is passed in the order parameter of the native HP-UX
alloc_spinlock primitive and the hierarchy parameter of the SVR4 MP
LOCK_ALLOC utility. The HP-UX kernel uses this information to check for
deadlocks when the kernel is compiled withSEMAPHORE_DEBUG. When a
module acquires a spinlock, the spinlock's order must be higher than the order of
any spinlocks the module already holds. Modules and drivers cannot hold

90

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

spinlocks when calling some STREAMS/UX utilities. See Table 1 at the end of
this chapter for more information. See the SVR4.2 Driver manual for more
information about SVR4 MP hierarchies.

• To reduce contention and improve performance, you should minimize the
amount of time that modules and drivers hold spinlocks.

• To improve performance, modules and drivers should verify that they are actually
running on a multiprocessor system before calling the HP-UX native spinlock
primitives. The SVR4 MP LOCK and UNLOCK routines described in Chapter
3 do this for the caller. If a spinlock is being used only to protect against software
running on other processors, but not interrupts, modules or drivers can call the
MP_SPINLOCK andMP_SPINUNLOCK macros in/usr/include/sys/spinlock.h
(or /usr/conf/h/spinlock.h). These macros obtain only the requested spinlock if
they are executing on a multiprocessor system. If a spinlock is being used to
protect against both software running on other processors and interrupts, modules
and drivers should check the uniprocessor flag and raise thespl level if they are
running on a uniprocessor system. Example code is shown below.

if (uniprocessor)
 x = splstr();
else
 spinlock(mylock);

• Be careful when choosing a multiplexor's synchronization level. When a driver
is linked under a mux, STREAMS/UX changes the driver's Stream head to be the
lower mux. STREAMS/UX uses the upper mux's synchronization level for the
lower mux. So if the upper mux uses global, elsewhere, or module
synchronization, the lower and upper muxes can share data. If the upper mux
uses queue or queue pair synchronization, the lower and upper muxes cannot
share data.

The synchronization level also influences how messages can be passed across
the mux. If the upper mux uses global, elsewhere, or module synchronization, it
can pass messages downward by passing the lower mux's write queue toputq,
put, or putnext. Likewise, the lower mux can pass messages upward by passing
the upper mux's read queue toputq, put, orputnext. If the upper mux uses queue
or queue pair synchronization, it can only useputq and put to pass messages to
the lower mux. To useputnext, the upper mux must ensure that the driver stays
linked under the mux until after the putnext completes. Also, the lower mux can
only use putq and put to pass messages to the upper mux. To useputnext, the
lower mux must guarantee that the driver stays linked under the mux, that the
mux stays open, and that modules are not pushed or popped until after the
putnext completes.

91

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

No matter which utility is used to pass messages across the mux, you must make
sure that the queues passed to the utilities are still allocated. You may also want
to check that the driver is still linked under the mux.

• Follow the design guidelines in the SVR4.2 STREAMS manual. The guidelines
are located at the end of these chapters: Overview of STREAMS Modules and
Drivers, STREAMS Modules, STREAMS Drivers, and STREAMS
Multiplexing. For STREAMS/UX, you do not need to follow some of these
guidelines. However, if you ignore them, your software will not be portable to
SVR4 STREAMS. For HP-UX STREAMS, you do not need to callqprocson or
qprocsoff as you do for SVR4 MP STREAMS. Also, you can use synchronization
levels to protect module and driver private structures instead of SVR4 MP locks
and synchronization primitives. Lastly, you do not need to use SVR4 MP
canputnext andbcanputnext instead ofcanput andbcanput on STREAMS/UX.

92

STREAMS/UX Multiprocessor Support
Porting SVR4 MP Modules and Drivers to HP-UX

Porting SVR4 MP Modules and Drivers to HP-UX

Please read the previous section, “Writing MP Scalable Modules and
Drivers,” before this one. If you compare the previous section to the
SVR4.2 STREAMS manual, you will notice that there are some differences
between SVR4 MP STREAMS and HP-UX MP STREAMS. This section
discusses these differences and describes strategies for porting SVR4 MP
modules and drivers to HP-UX.

Differences between SVR4 and HP-UX MP STREAMS

HP-UX STREAMS provides MP scalability differently from SVR4 MP
STREAMS. There are two main differences. The first pertains to which
STREAMS/UX entities run in parallel. SVR4 MP STREAMS executes put
and service routines for the same queue concurrently although only one
instance of a service routine can run at a time. HP-UX, unlike SVR4 MP,
allows the developer to configure which STREAMS/UX entities run in
parallel. The most parallelism that a STREAMS/UX developer can
configure is to run entry points for different queues concurrently. Unlike
SVR4 MP, HP-UX only allows one entry point for a queue to run at a time.
The put and service routines for the same queue cannot run in parallel. Also,
multiple instances of a queue's put or service routine cannot execute
concurrently.

The second difference has to do with synchronizing access to module and
driver private data structures. SVR4 MP STREAMS does not provide
protection for private structures. The module or driver code uses spinlocks
to synchronize access. STREAMS/UX provides protection for private
structures. The developer configures the amount of concurrency for a
module or driver based on the entities with which it shares data structures.
For example, if all instances of a module access the same table, the
programmer can configure the module so that only one instance runs at a
time.

93

STREAMS/UX Multiprocessor Support
Porting SVR4 MP Modules and Drivers to HP-UX

Strategies for Porting SVR4 MP Modules and Drivers to HP-UX

The best way to port SVR4 MP scalable modules and drivers to HP-UX is to
change the SVR4 MP code to use the STREAMS/UX synchronization
levels. First, analyze how the SVR4 MP code shares data structures, and
then configure the modules and drivers to use synchronization levels which
correctly serialize access to shared data. You can use defines to change
module and driver spinlock calls to no-ops. This approach is likely to get the
best performance, but may require much effort. Also, the STREAMS/UX
synchronization levels may not be suitable for all designs.

To make porting easier, STREAMS/UX will provide support for the SVR4
MP spinlock primitives. SVR4 MP modules and drivers could be ported to
HP-UX by configuring them to run with queue synchronization and leaving
in the calls to SVR4 MP spinlock routines. A disadvantage of this porting
strategy is that it may not achieve as much performance as the first. Some of
the synchronization provided by STREAMS/UX will be redundant with the
synchronization implemented by module and driver spinlocks. In some
cases, a combination of these two strategies may make sense. For example,
suppose several modules and drivers share the same structure, but do not
access it on the main read and write paths. You can use SVR4 MP spinlocks
to protect this data, but use the STREAMS/UX synchronization levels to
protect other structures.

94

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

MP Synchronization Levels on a Uniprocessor

This section describes how modules and drivers can use MP synchronization
levels on a uniprocessor system to protect their private data structures
against interrupts. Please read “Writing MP Scalable Modules and Drivers”
in this chapter and “STREAMS/UX Uniprocessor Synchronization” in
Chapter 3 before reading this section.

In addition to the techniques described under “Driver and Module
Synchronization” in Chapter 3, modules and drivers can use MP
synchronization levels to protect their private structures against interrupts.
By default STREAMS/UX configures modules and drivers to use queue pair
synchronization. This is why modules and drivers do not need to raise the
spl level to protect their data if software running on the ICS sends a message
to a stream. Suppose an interrupt occurs while one of a queue pair's entry
points is running. STREAMS/UX will re-schedule sending the message to
the stream to after the entry point finishes executing. You can configure
uniprocessor modules and drivers to use synchronization levels other than
queue pair synchronization if they need more protection.

For example, you could configure a module to use module synchronization
if multiple instances of the module share the same data structure, and if the
module updates the structure when it is running on the ICS. If you configure
the module to use module synchronization, STREAMS/UX will wait until
no instances of the module are running before sending it a message.
Alternatively, you could change the module to raise the spl level while
accessing the shared structure.

You configure synchronization levels for modules and drivers that run on a
uniprocessor system in the same way as for MP scalable modules and
drivers. You must specify the synchronization level the module or driver
uses, and if the module or driver requires elsewhere synchronization, you
must specify async name. Thesync name indicates which modules and
drivers belong to a group. Pick async name with 8 or fewer characters, and
configure the name for each member of the group. You configure the
synchronization level and the sync name in either the master file
$STREAMS_DVR_SYNC table or in an install functionstreams_info_t
structure.

95

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

You can configure modules and drivers to use a particular synchronization
level whether or not they are MP scalable, run under UP emulation, or only
run on a uniprocessor system. The section “Configuring MP Scalable
Modules and Drivers” in this chapter shows examples of configuring MP
scalable modules and drivers to use synchronization levels. There is no
difference between configuring modules and drivers which run only on a
uniprocessor system and modules and drivers which run under UP
emulation. Examples of configuring uniprocesor/UP emulation modules
and drivers are shown below. Examples are given for both master file
entries and module and driver install functions. See Chapter 5 for more
information about configuring modules and drivers.

MASTER FILE $DEVICE TABLE CONFIGURATION

* name handle type mask block char
*
$DEVICE
A Ainfo 40 2000 -1 -1 /* UP module, since 0x10000 not in mask */
B Binfo 40 2000 -1 -1 /* UP module, since 0x10000 not in mask */
C Cinfo 40 2000 -1 -1 /* UP module, since 0x10000 not in mask */
D Dinfo 21 20FC -1 116 /* UP driver, since 0x10000 not in mask */

$$$
* name sync level sync name
*
$STREAMS_DVR_SYNC
A sync_module /* Module uses synch level */
B sync_module /* Module uses synch level */
C sync_elsewhere netsync /* Module uses synch level & name */
D sync_elsewhere netsync /* Driver uses synch level & name */
$$$

96

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

INSTALL FUNCTION CONFIGURATION

B MODULE

static streams_info_t b_str_info = { /* streams information */
“B”, /* name */
-1, /* major number */
{ &brinit, &bwinit, NULL, NULL }, /* streamtab */
STR_IS_MODULE | STR_SYSV4_OPEN, /* *****NOTE***** MGR_IS_MP not specified */

SQLVL_MODULE, /* *****NOTE***** synch level specified */
 “”, /* sync name */
}

int
B_install()
{
 int retval;

 return(str_install(&b_str_info));

}

D DRIVER

static drv_info_t d_drv_info = { /* driver information */
“D”, /* name */
“pseudo”, /* class */
DRV_CHAR | DRV_PSEUDO, /* *****NOTE***** DRV_MP_SAFE flag not specified */

-1, /* block major number */
-1 /* dynamically assigned character major number */

NULL, NULL, NULL, /* cdio, gio_private,and cdio_private structures
*/

structures */
}

static drv_ops_t d_drv_ops = { /* driver entry points */
 NULL, /* open */
 NULL, /* close */
 NULL, /* strategy */
 NULL, /* dump */
 NULL, /* psize */
 NULL, /* mount */
 NULL, /* read */
 NULL, /* write */
 NULL, /* ioctl */
 NULL, /* select */
 NULL, /* option1 */
 NULL, NULL, NULL, NULL, /* reserved entry points */
 0, /* device flags */
}

97

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

static streams_info_t d_str_info = { /* streams information */
 “D”, /* name */

-1, /* dynamically assigned major number */
 { &drinit, &dwinit, NULL, NULL}, /* streamtab */

STR_IS_DEVICE | STR_SYSV4_OPEN, /* *****NOTE***** MGR_IS_MP flag not specified */
 SQLVL_ELSEWHERE, /* *****NOTE***** synch level specified*/

 “netsync”, /* *****NOTE***** sync name specified */
}

int
D_install()
{
 int retval;

 /* Configure driver and obtain dynamically assigned major number. */
 if ((retval = install_driver(&d_drv_info, &d_drv_ops)) != 0)
 return(retval);

 /* Configure streams specific parameters. */
 if ((retval = str_install(&d_str_info)) != 0) {
 uninstall_driver(&d_drv_info);
 return(retval);
 }

 /* Success */
 return 0;

}

98

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

The following table indicates if spinlocks can be held across calls to
different STREAMS/UX utilities. Also, it specifies if the SVR4 MP
STREAMS/UX utilities have the same restrictions.

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call?
Differs From
SVR4 MP?

adjmsg Yes No

allocb Yes, if use STREAMS/UX user lock orders. No

backq Yes No

bcanput Yes, if use STREAMS/UX user lock orders. No

bcanputnext Yes, if use STREAMS/UX user lock orders. No

bcopy Yes No

bufcall Yes, if use STREAMS/UX user lock orders.

bzero Yes No

canput Yes, if use STREAMS/UX user lock orders. No

canputnext Yes, if use STREAMS/UX user lock orders. No

cmn_err No Yes

copyb Yes, if use STREAMS/UX user lock orders. No

copymsg Yes, if use STREAMS/UX user lock orders. No

datamsg Yes No

delay No No

drv_getparm Yes No

drv_priv Yes No

dupb Yes, if use STREAMS/UX user lock orders. No

dupmsg Yes, if use STREAMS/UX user lock orders. No

enableok Yes, if use STREAMS/UX user lock orders. No

99

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

esballoc Yes, if use STREAMS/UX user lock orders. No

esbbcall Yes, if use STREAMS/UX user lock orders. No

flushband Yes, if use STREAMS/UX user lock orders
(flushband may call useresballoc free
routines).

No

flushq Yes, if use STREAMS/UX user lock orders
(flushq may call useresballoc free routines).

No

freeb Yes, if use STREAMS/UX user lock orders
(freeb may call useresballoc free routines).

No

freemsg Yes, if use STREAMS/UX user lock orders
(freemsg may call useresballoc free
routines).

No

freezestr Yes No

getadmin Yes, if use STREAMS/UX user lock orders. No

getmid Yes, if use STREAMS/UX user lock orders. No

getmajor Yes No

getminor Yes No

getq Yes, if use STREAMS/UX user lock orders. No

insq Yes, if use STREAMS/UX user lock orders. No

itimeout Yes, if use STREAMS/UX user lock orders. No

kmem_alloc Yes, if use STREAMS/UX user lock orders
and KM_NOSLEEP.

No

kmem_free Yes, if use STREAMS/UX user lock orders. No

linkb Yes No

LOCK Yes, if use lock orders correctly. No

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call?
Differs From
SVR4 MP?

100

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

LOCK_ALLOC No Yes

LOCK_DEALLOC Yes, if use STREAMS/UX user lock orders. No

major Yes No

makedev Yes No

makedevice Yes No

max Yes No

min Yes No

minor Yes No

msgdsize Yes No

msgpullup Yes, if use STREAMS/UX user lock orders. No

noenable Yes, if use STREAMS/UX user lock orders. No

OTHERQ Yes No

pcmsg Yes No

pullupmsg Yes, if use STREAMS/UX user lock orders. No

put No No

putbq Yes, if use STREAMS/UX user lock orders. No

putctl No No

putctl1 No No

putctl2 No No

putnext No No

putnextctl No No

putnextctl1 No No

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call?
Differs From
SVR4 MP?

101

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

putnextctl2 No No

putq Yes, if use STREAMS/UX user lock orders,
and does not pass driver’s read queue or
lower mux’s write queue.

Yes

qenable Yes, if use STREAMS/UX user lock orders. No

qprocsoff Yes Yes

qprocson Yes Yes

qreply No No

qsize Yes No

RD Yes, if use STREAMS/UX user lock orders. No

rmvb Yes No

rmvq Yes, if use STREAMS/UX user lock orders. No

SAMESTR Yes, if use STREAMS/UX user lock orders. No

sleep No No

spln No Yes

splstr No Yes

streams_put No No

streams_get_sleep_lock Yes, if use STREAMS/UX user lock orders. No

strlog No Yes

strqget Yes, if use STREAMS/UX user lock orders. No

strqset Yes, if use STREAMS/UX user lock orders. No

SV_ALLOC Yes, if use STREAMS/UX user lock orders
and KM_NOSLEEP.

No

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call?
Differs From
SVR4 MP?

102

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

SV_BROADCAST Yes, if use STREAMS/UX user lock orders. No

SV_DEALLOC Yes, if use STREAMS/UX user lock orders. No

SV_WAIT No, except forlkp parameter lock. No

SV_WAIT_SIG No, except forlkp parameter lock. No

testb Yes, if use STREAMS/UX user lock orders. No

timeout Yes, if use STREAMS/UX user lock orders. No

TRYLOCK Yes No

unbufcall No No

unfreezestr Yes No

unlinkb Yes No

UNLOCK Yes No

untimeout Yes, if locks can be held across call to
timeout callback function.

No

unweldq Yes, if use STREAMS/UX user lock orders. No

vtop Yes No

wakeup Yes, if use STREAMS/UX user lock orders. No

weldq Yes, if use STREAMS/UX user lock orders. No

WR Yes, if use STREAMS/UX user lock orders. No

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call?
Differs From
SVR4 MP?

103

5

How to Compile and Link
STREAMS/UX Drivers, Modules, and
Applications

104

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications

This chapter describes how STREAMS/UX drivers and modules can be
added to the HP-UX kernel, and how STREAMS/UX TLI and XTI
applications can be compiled and linked.

105

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling STREAMS/UX Drivers and Modules

Compiling STREAMS/UX Drivers and Modules

The steps for compiling STREAMS/UX drivers and modules follow.

1 Include the appropriate STREAMS/UX include files in the driver and module
sources. Table 2 describes the files. Drivers and modules are compiled in the
/usr/conf directory. They contain include statements with relative path names.
The table shows the path names.

2 If you are only adding modules, you will need to archive those modules into a
library.

3 Compile the sources in/usr/conf with the appropriate options. Create a directory
under/etc/conf and place your source files in this directory. Use the following
command line with appropriate substitutions to compile your source code.

@${CC} -I. -c ${CFLAGS} ${NOGLOOPTS} $(your_file).c

Table 2 STREAMS/UX and TPI Include Files

Include File Use

“../h/stream.h” Needed by all drivers and modules.

“../h/stropts.h” Needed by all drivers and modules.

“../h/strlog.h” Needed by drivers and modules that callstrlog. Note that
log.h andsyslog.h are not needed. STREAMS/UX does not
support priority and facility codes.

“../h/strstat.h” Needed by drivers and modules that use theqi_mstat field of
theqinit structure to maintain statistics.

“../h/strenv.h” Needed by drivers and modules that use DKI functions.

“../h/cmn_err.h” Needed by drivers and modules that use cmn_err().

“../h/tihdr.h” Needed by drivers and modules that use TPI.

106

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling STREAMS/UX Drivers and Modules

Compile each of your modules and archive the object files into a library using
thear command. It is best to place all of your driver and module code into the
same library. In the example below,libexample1.a is the name of the library and
obj*.o are the object files:

rm -f libexample1.a
ar -r libexample1.a ojb1.o obj2.o ... objn.o

107

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

Linking STREAMS/UX Drivers and Modules into
the Kernel

Linking STREAMS/UX drivers and modules into the kernel is a multi-step
process. A summary of the steps is:

1 Create or modify your master file to reflect changes.

2 Add a driver header with the information previously located in the/etc/master file
into theetc/master.d directory.

3 Add a driver install routine for both STREAMS drivers and STREAMS modules
(“driver” in the case of the STREAMS subsystem refers to both STREAMS
drivers and STREAMS modules).

4 Adjust any STREAMS/UX tunables if necessary.

5 Create your library and copy it to /usr/conf/lib.

6 Re-generate your kernel using mk_kernel(1).

7 Once the system is re-booted, uselsdev(1M) to determine the value of any
dynamically-assigned major numbers, if applicable.

8 Create device files withmknod(1M).

Details about the Driver Header, Driver Install Routine, and lsdev(1) follow.

Adding Driver Header and Driver Install Routine

The STREAMS driver writer must add a driver header and a driver install
routine for their STREAMS drivers and modules. The driver header consists
of three data structure declarations (for a STREAMS driver and actually
only one for a STREAMS module). The driver install function will get
called by the I/O system to “install” your pseudo driver into the I/O
subsystem tables. The driver header essentially contains the information
previously contained in the master file.

The main job of your driver install routine is to call one or both of the
functions, install_driver (CDIO3) and/orstr_install().

108

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

For a STREAMS driver, your driver install routine will need to call both the
function install_driver (CDIO3) andstr_install(). And for a STREAMS
module, your driver install routine will only need to call thestr_install()
routine.

The call toinstall_driver() initializes thecdevsw entry points and d_flags for
your STREAMS driver. The call to thestr_install() function fills out either
thedmodsw (for a STREAMS driver) or thefmodsw (for a STREAMS
module) switch tables used by the STREAMS subsystem.

NOTE: Thestr_install() function will replace theopen, close, read, write, ioctl, select, and
option1 cdevsw entry points with the STREAMS/UX-specific entry points. So it
is best to use NULLs in thedrv_ops_t structure as illustrated in the example later
in this section.

Keep in mind that you can call yourdriver_link routine from the driver
install to perform any necessary driver initialization tasks. You should not
perform any operations which require returning error conditions or data.
Plus, it is best to keep driver install routines small and clean to avoid bootup
problems.

If you are writing MP STREAMS drivers and STREAMS modules, refer to
Chapter 4 for specific MP requirements. Chapter 4 provides examples of
driver headers and driver install routines relating to MP drivers and
modules.

The driver header can be declared in either a.h or in the.c file that contains
the driver install entry point. The driver install entry point MUST be in a.c
file.

For both STREAMS drivers and STREAMS modules, the following include
files contain the needed structures and defines:

#include “../h/conf.h”
#include “../h/stream.h”

Streams Driver

For STREAMS drivers, the following data structures will need to be
declared in the.h or .c file: drv_info_t, drv_ops_t and streams_info_t.

109

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

An example of these declarations using the STREAMS test driver, “tlo” is as
follows: (The STREAMStlo test driver is used only as an example
throughout this section. Please tailor this example to your specific driver
configuration).

drv_info_t

static drv_info_t tlo_drv_info = {
“tlo”, /* driver name */
“pseudo”, /* driver class */
DRV_CHAR | DRV_PSEUDO | DRV_MP_SAFE, /* flages */
-1, /* block major number */
-1, /* char major number */
NULL, NULL, NULL, /* cdio, gio_private and

cdio_
private always NULL

*/};

drv_ops_t

static drv_ops_t tlo_drv_ops = {
NULL, /* d_open */
NULL, /* d_close */
NULL, /* d_strategy */
NULL, /* d_dump */
NULL, /* d_psize */
NULL, /* d_mount */
NULL, /* d_read */
NULL, /* d_write */
NULL, /* d_ioctl */
NULL, /* d_select */
NULL, /* d_option1 */
NULL, NULL, NULL, NULL, /* reserved entry points */
NULL, /* d_flags */

};

streams_info_t

static streams_info_t tlo_str_info = {
“tlo”, /* name */
-1, /* dynamic major number */
{ &tlorinit, &tlowinit, NULL

NULL }, /* streamtab */
STR_IS_DEVICE | MGR_IS_MP | /* streams flags */
STR_SYSV4_OPEN,
SQLVL_QUEUE, /* sync level */
““, /* elsewhere sync name */

};

110

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

The definitions of thestreams_flags used in thestreams_info_t structure are
(see stream.h and conf.h):

STR_IS_DEVICE /* Indicates a driver is being installed */
STR_IS_MODULE /* Indicates a module is being installed */
STR_SYSV4_OPEN /* Indicates SVR4 open is being used, SVR3 open

is default */
MGR_IS_MP /* Module/driver is MP-scalable */

Thesync level used in thestreams_info_t structure is one of the following
defined in stream.h:

SQLVL_DEFAULT
SQLVL_GLOBAL
SQLVL_ELSEWHERE
SQLVL_MODULE
SQLVL_QUEUEPAIR
SQLVL_QUEUE

For STREAMS drivers, a driver install routine needs to be added to the .c
file for your driver. This function MUST be calledxxxx_install, wherexxxx
is the driver handle used for your driver. Exactness is needed so that your
driver install routine is correctly called by the I/O subsystem during bootup.

Illustrated below is an example of the driver install routine for the example
tlo driver.

In this tlo example, a major number of -1 was defined in both thetlo_drv
_info andtlo_str_info structure declarations. This invokes the dynamic
major facility. When using this facility, you will need to obtain the system

int
tlo_install()
{

int retval;

if ((retval = install_driver (&tlo_drv_info, &tlo_drv_ops)) !=0)
return (retval);

if ((retval = str_install (&tlo_str_info)) !=0) {
uninstall_driver (&tlo_drv_info);
return (retval);

}
return (0); /* return success */

}

111

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

assigned “dynamic” major number by running thelsdev(1) command after
the system has rebooted with the kernel that includes your driver. There are
details later in this section onlsdev(1).

STREAMS Module

For STREAMS modules, steps identical to those executed for a STREAMS
driver are needed, but with the following exceptions:

For the driver header, you only need to declare astreams_info_t structure.
This is because STREAMS modules do not have any cdevsw-related
information. They only have STREAMS-specific information and this is
configured by callingstr_install() with a definedstreams_info_t.

For the driver install routine, you need only to call thestr_install() function.
There is no need to callinstall_driver(CDIO3).

An example of these declarations using the STREAMS test module,
“lmodb,” is as follows: (The STREAMSlmodb test module is used only as
an example. Please tailor this example to your specific module
configuration).

Thestreams_flags and thesync level to be used in thestreams_info_t
structure are the same as illustrated above in the “STREAMS Driver”
section, except we are using “STR_IS_MODULE,” instead of
“STR_IS_DEVICE.”

streams_info_t

static streams_info_t lmodb_str_info = {
“lmodb”, /* name */
-1, /* major number */
{ &lmodbrinit, &lmodbwinit, NULL, NULL},/* streamtab */
STR_IS_MODULE, /* streams flags */
SQLVL_QUEUEPAIR, /* sync level */
““, /* elsewhere sync name */

};

112

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

Illustrated below is an example of the driver install routine required for a
STREAMS module, using the examplelmodb module.

int
lmodb_install()
{

int retval;

if ((retval = str_install (&lmodb_str_info)) != 0)
{

return (retval);
}
return 0; /* return success */

};

Modifying Your Master File

In 10.0, the/etc/master file is replaced by a collection of files located in
/usr/conf/master.d directory. It is recommended that you create your own
individual master file, calling it something appropriate. See
/usr/conf/master.d/streams for the master file used by the STREAMS/UX
framework. You may use the STREAMS master file as a template for
creating your specific master file.

You will need to add entries for each of your STREAMS drivers to the
$DRIVER_INSTALL section of your master file. See the master(4)
manpage for a description of the master file section layouts and dynamic
major numbers.

113

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

An example $DRIVER_INSTALL section from the STREAMS/UX master
file is as follows:

In addition, you will also need to add additional entries for any STREAMS
modules to the $DRIVER_INSTALL section as well. Using the example
lmodb module:

When adding an entry to the $DRIVER_INSTALL section of your master
file, do NOT add an entry to the $DEVICE section of your master file. This
will result in a possible conflict (such as duplicate major numbers) and/or a
lack of a call to your driver install routine at bootup. The only way to use the
dynamic major number facility is to configure your STREAMS driver as
documented in this section.

$DRIVER_INSTALL

* Driver install table
*
* This table contains the name of drivers which have converged I/O header
* structures and install entry points. Drivers in this table should not
* be defined in the driver table above.

* Driver Block major Char major
clone -1 72
strlog -1 73
sad -1 74
echo -1 116

* Example driver entry which must use dynamic major numbers indicated by -1
tlo -1 -1

$DRIVER_INSTALL

* Driver install table
*
* This table contains the name of drivers which have converged I/O header
* structures and install entry points. Drivers in this table should not
* be defined in the driver table above.

* Driver Block major Char major
lmodb -1 -1

114

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

For more details on driver headers and driver install routines, please read the
HP-UX Driver Development Guide (P/N 98577-90000-E1).

Dynamically-Assigned Major Numbers and lsdev(1)

When using the dynamic major number facility, you will need to determine
which major number was assigned to your driver during bootup, by
consultinglsdev(1). Once the system is booted with your new kernel, run the
lsdev(1) command. See the lsdev(1) manpage for all the option details, but in
brief you can uselsdev(1) as shown below.

NOTE: For STREAMS-clonable devices, use 72 for the major and your driver’s assigned
major number for the minor number.

lsdev -h -d < your_driver_name_here >

(the -h means thatlsdev does not print a header)

and use the result for your mknod(1M):

mknod /dev/<device_file_name> c 72 0x<dyn_major result>

mknod /dev/<device_file_name> c <dyn_major result> 0x0

The firstmknod command is for a clonable device. The second is for a
non-clonable device.

115

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking STREAMS/UX Applications

Compiling and Linking STREAMS/UX Applications

Follow these steps for compiling and linking STREAMS/UX applications:

1 Include the appropriate header files. The following header files may be found in
/usr/include or /usr/include/sys. Those found in/usr/include are pointers to the
files found in/usr/include/sys. POSIX compliance required the files to be moved
to the sys directory so pointer files were established for source backward
compatibility.

2 Compile the source files. There are no required compiler or linker options for
STREAMS/UX. See the appropriate compiler man page for which options to
choose.

NOTE: The STREAMS/UX system calls have been made thread-safe and are part oflibc.
If you link the application with the threads library,libcma, then you may make use
of the threads utilities. No special considerations are needed for STREAMS-based
applications, though it is recommended that the developer have a thorough
understanding of threads principles before coding such an application using the
STREAMS/UX system calls. Please read the following section for additional
caveats for coding threaded applications.

Table 3 STREAMS/UX Include Files

Include File Use

<stropts.h> or <sys/stropts.h> Needed by all STREAMS/UX applications.

<poll.h> or <sys/poll.h> Needed by programs that usepoll.

<sad.h> or <sys/sad.h> Needed by programs that open thesad driver.

<strlog.h> or <sys/strlog.h> Needed by programs that open thestrlog driver. Note
thatlog.h andsyslog.h are not needed. STREAMS/UX
does not support priority and facility codes.

116

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking TLI/XTI Applications and Threads

Compiling and Linking TLI/XTI Applications and
Threads

As with the STREAMS/UX system calls, compiling and linking a TLI or
XTI application requires no special compile or linking options. Choose the
appropriate include files from the table below and compile. Link your
application with either the TLI library,libnsl_s.a or libnsl_s.sl, or the XTI
library, libxti.a or libxti.sl. Both libraries are in/usr/lib.

These libraries have been made thread-safe, that is, these libraries may be
used with both non-threaded and multi-threaded applications. Please see
OSF/DCE documentation for the POSIX threads library calls that may be
used.

The following caveats apply to this release of these libraries:

• When a thread is executing within a TLI/XTI library call, the thread may not be
canceled. The library will turn both general and asynchronous cancellation off
during execution. This is necessary to avoid corruption of internal mutex
structures.

• The global variablet_errno and the functiont_strerror() will return values on a
per-thread basis. These values are stored in thread-specific pointers via the
pthread_setspecific() andpthread_getspecific() functions.

• It is possible to deadlock a process should the application attempt to execute in
loopback using two threads within the same process’ address space. It is

Table 4 TLI/XTI Include Files

Include File Use

<xti.h> or <sys/xti.h> Needed by all XTI applications.

<tiuser.h> or <sys/tiuser.h> Needed by all TLI applications.

<poll.h> or <sys/poll.h> Needed by programs that use poll.

<stropts.h> or <sys/stropts.h> Needed by programs that use the STREAMS/UX
interface to perform operations such as pushing
modules onto a stream.

117

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking TLI/XTI Applications and Threads

recommended that for loopback applications, the sending and receiving threads
be in separate processes which will avoid any deadlock situation.

NOTE: The libraries use two levels of internal locks and it is only during the small time
frame between obtaining and releasing the locks that a deadlock can occur.

• Thelibcma.a or libcma.sl library must be linked into the application before either
the libnsl_s.a or thelibxti.a libraries are linked.

• The include file,pthread.h,must be the first include file defined within an
application to have all entry points properly mapped.

• Independent of the TLI/XTI libraries, if you cancel a thread and it was either
waiting on a mutex or a condition variable, it is best to consider either the mutex
or the condition variable as corrupted and either re-initialize or destroy and
recreate them.

Here are some basic tips on coding TLI/XTI multi-threaded applications.

• Thepthreads library is a user space library. Threads execute using either the
default round-robin scheduling mechanism or a scheduling mechanism that the
application controls. The default order of execution is not predictable nor should
it be relied upon. For instance, if a thread spawns multiple threads, the new
threads will not be allowed to execute until either the initiating thread executes a
blocking call, executes apthread_yield(), or its time slice expires. It is
recommended that a thread executing apthread_create() issue apthread_yield()
and possibly apthread_join() to allow the other threads a chance to execute and
finish their tasks before continuing its processing.

For TLI/XTI, this technique is useful for a responder application which listens
for incoming connections and creates a new thread to complete the connection.
In this case, the responder could either yield to the new thread or could continue
to listen for incoming connect indications until there are no pending indications.
At this time it yields or executes a poll call that will block, which allows the
other threads to be scheduled for execution. This avoids the potential TLOOK
error condition should another indication arrive before the previous one is
processed and cleared.

Another example is if the responder detects a POLLHUP condition exists and
creates a thread to handle the disconnect, and then continues to execute. The
result could be poll() detecting this condition occurring multiple times when it
really only exists once. It is recommended that the thread be coded such that
either apthread_yield() is immediately executed following thepthread_create()
or if the responder thread is handling multiple connections, it executes a
pthread_join() and waits for the disconnect thread’s completion.

118

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking TLI/XTI Applications and Threads

• If using condition variables, apthread_cond_signal() must be sent for each
thread waiting on that condition. Condition variables are useful for synchronizing
activity on a single endpoint where multiple threads may be attempting to
manipulate that endpoint. Another use is coordinating multiple endpoints that
need to arrive at a particular state before proceeding. This contrasts with mutex
usage which is better suited for critical data or code section protection.

An example would be if an application were replicating data at multiple sites,
each thread would drive its appropriate endpoint to the state before the final
commit is ready. When the controlling thread has detected that all endpoints are
currently waiting at the same condition variable, thepthread_cond_signal()
could be sent to each thread with the controlling thread waiting until the threads
are complete before releasing the shared memory buffer.

• If the application is utilizing thepoll() system call, the application will need to
have error handling code in each thread to avoid unnecessary processing. For
example, if multiple threads are sending data to a single endpoint and that
endpoint becomes flow-controlled, when the flow-control condition is relieved,
thepoll() system call will return that the endpoint is writable. At this point one or
more threads could be scheduled to execute which may result in one thread
succeeding with the rest returning TFLOW errors.

• If a thread is exiting, it is recommended that the thread callpthread_detach() is
used to release any memory that has been allocated for that thread’s usage. If the
detach is not performed, that memory can be lost and the application could
experience memory shortage problems. Once the process is terminated, all
memory should be returned to the system.

119

6

Debugging STREAMS/UX Modules
and Drivers

120

Debugging STREAMS/UX Modules and Drivers
Introduction

Introduction

This chapter describes tools for debugging STREAMS/UX modules and
drivers. STREAMS/UX supports many System V tools, and provides new
ones. This chapter contains the following:

• An overview of the System V tools supported by HP-UX.

• A description of a new tool,strdb, that displays STREAMS/UX data structures
in running systems and HP-UX core dumps. Examples are included to show the
use ofstrdb in debugging driver and application problems.

• An in depth discussion of an HP-UX tool,adb, that helps programmers analyze
core dumps. Examples show how to useadb andstrdb to debug STREAMS/UX
drivers and modules.

Other sections of this manual also contain debugging information. You
should run thestrvf verification tool to check that STREAMS/UX is
properly installed before trying to debug modules and drivers. The
STREAMS/UX Synchronization section of Chapter 3 contains module and
driver programming guidelines. Read through these guidelines and the
design guidelines in Chapter 7 of theUNIX System V Release 4
Programmer’s Guide: STREAMS before testing modules and drivers.

121

Debugging STREAMS/UX Modules and Drivers
System V Debugging Tools Supported by STREAMS/UX

System V Debugging Tools Supported by
STREAMS/UX

STREAMS/UX supports many of the System V STREAMS debugging
tools. Refer to Appendix D in the SVR4PG manual for a description of the
System V tools.

STREAMS/UX Tracing and Logging

STREAMS/UX supports tracing and logging. See Appendix D and the
strace(1M), strclean(1M), strerr(1M), and log(7) man pages in the SVR4PG
manual for more information about these tools. Some differences exist in
the user interfaces of these tools on HP-UX. These differences are described
in Chapter 3 of this manual and the corresponding HP-UX man pages.

cmn_err() and printf()

HP-UX supports the DKI functioncmn_err(). See Appendix D of the
SVR4PG manual and theUnix System V Release 4 Device Driver
Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual for more
information aboutcmn_err().

Also, HP-UX supportsprintf for STREAMS/UX modules and drivers. If a
STREAMS/UX module or driver callsprintf, HP-UX prints the requested
message on the system console, and stores the message in thedmesg buffer.

Dump Module Example

The SVR4PG manual presents a STREAMS dump module in Appendix D.
The dump module traces messages flowing into and out of another
STREAMS module. Appendix D contains the module source code.
Programmers can copy and tailor the code to develop their own debugging
tool for HP-UX. The sample master file entry and dump module include
statements must be changed for HP-UX. See Chapter 2 and Chapter 5 of
this manual for more information about the HP-UX master file and
STREAMS/UX include statements.

122

Debugging STREAMS/UX Modules and Drivers
System V Debugging Tools Supported by STREAMS/UX

strdb and adb

STREAMS/UX providesstrdb for debugging.strdb can be used with the
HP-UX crash andadb tools for debugging.

123

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

STREAMS/UX Debugging Tool

HP-UX provides thestrdb tool for examining STREAMS/UX data
structures in the kernel.strdb is an interactive tool. You run thestrdb
program, and then enter commands to see data structures. This section
describesstrdb commands and shows examples of usingstrdb to find
STREAMS/UX driver problems. Thestrdb man page summarizesstrdb
commands.

Running strdb

The syntax for thestrdb command is:

strdb [vmunix_executable_file_name][vmunix_core_file_name]]

STREAMS/UX programmers can runstrdb to look at snapshots of
STREAMS/UX data structures in the kernel while HP-UX is running. Also,
programmers can runstrdb to look at STREAMS/UX data structures in a
vmunix core file. To see STREAMS/UX data structures while the system is
running, enter:

strdb

Sometimes the system is booted using a different kernel than/stand/vmunix,
for example/vmunix.prev. In this case, runstrdb by entering:

strdb /vmunix.prev

To look at STREAMS/UX data structures in a core file, pass the name of the
hp-ux program and core files tostrdb. For example, if the program and core
files have the paths /var/adm/vmunix.0 and/var/adm/vmcore.0, enter:

strdb /var/adm/vmunix.0 /var/adm/vmcore.0

strdb Commands

After invokingstrdb, you can enter commands to look at STREAMS/UX
data structures.strdb runs in two modes, primary and STREAMS/UX
subsystem. Each mode provides different commands.

124

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Primary mode commands change the characteristics of thestrdb session. For
example, one command turns on logging to a file. Primary mode commands
also allow you to navigate through STREAMS/UX data structures. When
strdb starts up, you are in primary mode. You switch to STREAMS/UX
subsystem mode by entering the:S command.

STREAMS/UX subsystem mode commands report what STREAMS/UX are
configured and active on the system. Also, theqh command allows you to
begin examining a particular stream's queues. This command displays a
selected stream head read queue. In addition, it puts you into primary mode
so that you can use the primary mode navigation commands to traverse the
rest of that stream's queues. All the commands for both modes are listed
later in this chapter.

In a typicalstrdb session, you might do the following:

1 Startstrdb (you are in primary mode).

2 Execute the:S command to enter STREAMS/UX subsystem mode.

3 Use STREAMS/UX subsystem mode commands to find the active stream you
want to examine.

4 Execute theqh command to display the selected stream head read queue. This
puts you in primary mode.

5 Enter primary mode navigation keys to display fields in the stream head read
queue, and traverse the rest of that stream's queues.

STREAMS/UX Subsystem Commands

When you first enterstrdb, strdb prints a message saying that you have not
yet specified a stream to display. You can enter the :S command to get into
the STREAMS/UX subsystem mode. strdb will display the following help
menu.

STREAMS subsystem help commands
? - show this help menu
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor' - list all drivers linked under the STREAMS

driver 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device

'name'and whose minor number is 'minor'
lp 'name' 'minor' - list all drivers persistently linked under

the STREAMS device 'name' and minor number
'minor'

125

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q - quit the STREAMS subsystem commands
qc 'driver' 'file' - print 'driver' read / write side qcount to

'file'
qh 'name' 'minor' - display STREAM head queue structure

for device 'name' and minor number 'minor'
s [m | d] - Option d lists all the STREAMS drivers

configured in the system. Option m lists
all the modules configured in the system

v - print version of STREAMS structures
displayed

The?, h, q, v, s, la, lm, ll , lp, qc, andqh commands are available in
subsystem mode. To execute these commands, enter the command at the ":"
prompt. The commands help you find the stream that you want to examine.
The commands are described below.

? and h Commands

Enter the? or h command to see the help menu for STREAMS/UX
subsystem mode.strdb prints the text shown below.

?

STREAMS subsystem help commands
? - show this help menu
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor'- list all drivers linked under the STREAMS

driver 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device
'name'
 and whose minor number is 'minor'
lp 'name' 'minor'- list all drivers persistently linked under

the STREAMS device 'name' and minor number
'minor'

q - quit the STREAMS subsystem commands
qc 'driver' 'file'- print 'driver' read / write side qcount to
file
qh 'name' 'minor'- display STREAM head queue structure for

device 'name' and minor number 'minor'
s [m | d] - Option d lists all the STREAMS drivers

configured in the system. Option m lists
all the modules configured in the system

v - print version of STREAMS structures
displayed

126

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q Command

Enter theq command to exit STREAMS/UX subsystem mode and enter
primary mode. This is shown below.

 q

 No current structure S:0

v Command

Enter the v command to display the version of STREAMS/UX data
structures. This version should always be Release V 4.0. An example is
shown below.

 v

 STREAMS Version based on Release V 4.0

s Command

Enter thes [m|d] command to see the STREAMS/UX modules and drivers
configured into the system. These are the modules and drivers included in
the multiuser S800 file or the workstationdfile. Specify eitherm to see the
modules ord to see the drivers. Examples are shown below.

s m

List of MODULES

timod
tirdwr
lmodb
lmode
lmodt
lmodr
lmodc
sc
bufcall

s d

List of DRIVERS

 clone MAJOR = 72
 strlog MAJOR = 73
 sad MAJOR = 74
 lo MAJOR = 75
 tmx MAJOR = 77
 tidg MAJOR = 78
 tivc MAJOR = 79

127

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

 loop MAJOR = 114
 sp MAJOR = 115
 test_wel MAJOR = 130

la Command

Enter thela command to see a list of opened streams for a driver. Also, enter
the name of the driver. This name can be obtained froms command output.
An example is shown below.

la tivc

tivc MAJOR = 79
ACTIVE Minor 0x00002f Stream head RQ = 0x676a00
ACTIVE Minor 0x00000f Stream head RQ = 0x663300
ACTIVE Minor 0x00000e Stream head RQ = 0x6a5900
ACTIVE Minor 0x00002e Stream head RQ = 0x71f800
ACTIVE Minor 0x00004e Stream head RQ = 0x6ccf00
ACTIVE Minor 0x00000d Stream head RQ = 0x67b300
ACTIVE Minor 0x00004d Stream head RQ = 0x73c700
ACTIVE Minor 0x00002d Stream head RQ = 0x728800
ACTIVE Minor 0x00004c Stream head RQ = 0x74f600
ACTIVE Minor 0x00000c Stream head RQ = 0x68d100
ACTIVE Minor 0x00002b Stream head RQ = 0x730a00

lm Command

Enter thelm command to see a list of the modules pushed onto a driver. You
must specify the driver name and the minor number. The minor number can
be obtained from thela command output. An example is shown below.

lm tivc 47

STREAM Head
timod
Driver tivc

ll Command

Enter the ll command to see a list of drivers linked under a multiplexor. You
must enter the multiplexor name and the minor number. The multiplexor
name can be obtained from thes output. The minor number is from thela
output. An example is shown below.

ll tmx 0

lo MAJOR = 75 minor = 2
lo MAJOR = 75 minor = 1
lo MAJOR = 75 minor = 0

128

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

lp Command

Enter thelp command to see a list of drivers persistently linked under a
multiplexor. You must enter the multiplexor name and the minor number. An
example is shown below.

lp tmx 1

lo MAJOR = 75 minor = 2
lo MAJOR = 75 minor = 1
lo MAJOR = 75 minor = 0

qc Command

Enter theqc command to display theq_count field of a driver's read and
write queues. Theq_count field contains the number of bytes of data in the
messages on the queue. The command will show theq_count values for all
the opened streams of the requested driver. You must enter the driver name
and the name of a file to contain theq_count values. strdb will create the
specified file and write theq_count values into it. An example is shown
below.

qc tmx stat

<< exit from strdb >>

%more stat
MINOR = 5
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 4214
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0
MINOR = 4
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 842
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0
MINOR = 1
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 930
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0
MINOR = 0
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0
MINOR = 3
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 3970
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0
MINOR = 2
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 1300
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 0

129

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

qh Command

Enter theqh command to see a stream head read queue. Enter the driver
name and minor number to specify the stream head read queue to display.
An example is shown below. Whenstrdb prints the stream head read queue,
you are put in primary mode. This lets you enter navigation commands to
look at data structures pointed to by fields in the queue. These navigation
commands are described below under “Primary Commands.”

qh tmx 0

struct queue 0x584300 S:1

q_qinfo = 0x2944f0 q_pad1[2] = 00
q_first = 0x0 q_other = 0x584374
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x5f8500
q_count = 0
q_flag = 0x1029
 QREADR
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

Primary Commands

strdb provides two types of primary mode commands. One kind is used to
navigate through data structures. The other kind changes the characteristics
of thestrdb session.

Data Structure Navigation Commands

When you enter theqh command,strdb prints the stream head read queue
and puts you in primary mode. You can enter navigation commands to look
at data structures pointed to by fields in the queue. Note that primary mode
does not prompt you for commands; you just enter the command keys. You
do not need to enter a carriage return with navigation commands. In the
example below, a ? is entered to see which fieldsstrdb can format.strdb

130

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

prints the commands for formatting these fields. A carriage return will clear
the help screen and redisplay the stream head read queue. In the example
below, them key is entered to see the message block pointed to by q_first.
Next, a ? is entered to see which message block fieldsstrdb can format.

qh tmx 1

struct queue 0x21f7600 S:1

q_qinfo = 0x1f7924 q_pad1[2] = 00
q_first = 0x2156780 q_other = 0x21f7600
q_last = 0x2185800
q_next = 0x0
q_link = 0x0
q_ptr = 0x267be8
q_count = 22518
q_flag = 0x1120
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

?

navigation for structure queue
'i' = q_qinfo (qinit)
'm' = q_first (msgb)
'z' = q_last (msgb)
'n' = q_next (queue)
'l' = q_link (queue)
'b' = q_bandp (qband)
'o' = q_other (queue)

-- Hit any key to continue --

<carriage return>

struct queue 0x21f7600 S:1

q_qinfo = 0x1f7924 q_pad1[2] = 00
q_first = 0x2156780 q_other = 0x21f7600
q_last = 0x2185800
q_next = 0x0
q_link = 0x0
q_ptr = 0x267be8
q_count = 22518

131

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_flag = 0x1120
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

m

struct msgb 0x2156780 S:2

b_next = 0x204ac00
b_prev = 0x0
b_cont = 0x21fb700
b_rptr = 0x2242bf2
b_wptr = 0x2242bf2
b_datap = 0x0
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

?

navigation for structure msgb
'n' = b_next (msgb)
'p' = b_prev (msgb)
'm' = b_rptr (b_rptr)
'c' = b_cont (msgb)
'd' = b_datap (datab)

-- Hit any key to continue --

strdb provides different navigation commands for each data structure it
formats. The navigation commands for all the data structures are shown
below.

Queue Navigation

'i' = q_qinfo (qinit)
'm' = q_first (msgb)
'z' = q_last (msgb)
'n' = q_next (queue)
'l' = q_link (queue)
'b' = q_bandp (qband)
'o' = q_other (queue)

132

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Qinit Navigation

'i' = qi_minfo (module_info)
's' = qi_mstat (module_stat)

Message Block Navigation

'n' = b_next (msgb)
'p' = b_prev (msgb)
'm' = b_rptr (b_rptr)
'c' = b_cont (msgb)
'd' = b_datap (datab)

Data Block Navigation

'd' = db_f (a__datab)

Queue Band Navigation

'n' = qb_next (qband)
'f' = qb_first (msgb)
'l' = qb_last (msgb)

The following information includes more navigation command examples.
TheCTRL-P, CTRL-T, :m,CTRL-U, :b, and:x commands, which are used in
conjunction with the navigation commands, are shown with examples.

You can enter? to see what navigation keys are available.

qh tmx 0

struct queue 0x21f7b00 S:1

q_qinfo = 0x1f7a18 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7b74
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x21f7a00
q_count = 0
q_flag = 0x1029
 QREADR
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00

133

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_pad1[1] = 00

?

navigation for structure queue
'i' = q_qinfo (qinit)
'm' = q_first (msgb)
'z' = q_last (msgb)
'n' = q_next (queue)
'l' = q_link (queue)
'b' = q_bandp (qband)
'o' = q_other (queue)

-- Hit any key to continue --

After typing a key to continue, you can enter any of the keys shown in the
help text. For example, if you entero, the stream head write queue will be
displayed. This is shown below.

o

struct queue 0x21f7b74 S:2

q_qinfo = 0x1f7a34 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7b00
q_last = 0x0
q_next = 0x21f7674
q_link = 0x0
q_ptr = 0x21f7a00
q_count = 0
q_flag = 0x102a
 QNOENB
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x2800
q_lowat = 0x400
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

At this point you can entern to see the next write queue on the stream. Note
thatstrdb provides the same navigation keys for each queue structure.
Therefore, you can enter the same keys for the stream head write queue as
for the stream head read queue. An example of entering then key is shown
below.

n

struct queue 0x21f7674 S:3

134

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_qinfo = 0x1f7924 q_pad1[2] = 00
q_first = 0x2156780 q_other = 0x21f7600
q_last = 0x2185800
q_next = 0x0
q_link = 0x0
q_ptr = 0x0029cc48
q_count = 22518
q_flag = 0x1120
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

This queue contains a non-zeroq_first pointer. Them navigation key can be
used to look at the messages on the queue. This is shown below.

m

struct msgb 0x2156780 S:4

b_next = 0x204ac00
b_prev = 0x0
b_cont = 0x21fb700
b_rptr = 0x2242bf2
b_wptr = 0x2242bf2
b_datap = 0x0
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

Them key displays the first message on the queue. The? command shows
the navigation queues available for the message block data structure.

?

navigation for structure msgb
'n' = b_next (msgb)
'p' = b_prev (msgb)
'm' = b_rptr (b_rptr)
'c' = b_cont (msgb)
'd' = b_datap (datab)

-- Hit any key to continue --

Then key shows the next message on the queue.

135

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

n

struct msgb 0x204ac00 S:5

b_next = 0x21f4b00
b_prev = 0x218ee00
b_cont = 0x2198080
b_rptr = 0x223dc00
b_wptr = 0x223ddc3
b_datap = 0x204ac40
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

Them key shows the data associated with this message block.

m

struct msgb 0x204ac00 Message data at 0x0223dc00 S:6

0x0223dc00 : 01491800 76777879 7a616263 64656667 |
.I..vwxyzabcdefg
0x0223dc10 : 68696a6b 6c6d6e6f 70717273 74757677 | hijklmnopqrstuvw
0x0223dc20 : 78797a61 62636465 66676869 6a6b6c6d | xyzabcdefghijklm
0x0223dc30 : 6e6f7071 72737475 76777879 7a616263 | nopqrstuvwxyzabc
0x0223dc40 : 64656667 68696a6b 6c6d6e6f 70717273 | defghijklmnopqrs
0x0223dc50 : 74757677 78797a61 62636465 66676869 | tuvwxyzabcdefghi
0x0223dc60 : 6a6b6c6d 6e6f7071 72737475 76777879 | jklmnopqrstuvwxy
0x0223dc70 : 7a616263 64656667 68696a6b 6c6d6e6f | zabcdefghijklmno
0x0223dc80 : 70717273 74757677 78797a61 62636465 | pqrstuvwxyzabcde
0x0223dc90 : 66676869 6a6b6c6d 6e6f7071 72737475 | fghijklmnopqrstu
0x0223dca0 : 76777879 7a616263 64656667 68696a6b | vwxyzabcdefghijk
0x0223dcb0 : 6c6d6e6f 70717273 74757677 78797a61 | lmnopqrstuvwxyza
0x0223dcc0 : 62636465 66676869 6a6b6c6d 6e6f7071 | bcdefghijklmnopq
0x0223dcd0 : 72737475 76777879 7a616263 64656667 | rstuvwxyzabcdefg
0x0223dce0 : 68696a6b 6c6d6e6f 70717273 74757677 | hijklmnopqrstuvw
0x0223dcf0 : 78797a61 62636465 66676869 6a6b6c6d | xyzabcdefghijklm
0x0223dd00 : 6e6f7071 72737475 76777879 7a616263 | nopqrstuvwxyzabc
0x0223dd10 : 64656667 68696a6b 6c6d6e6f 70717273 | defghijklmnopqrs
0x0223dd20 : 74757677 78797a61 62636465 66676869 | tuvwxyzabcdefghi
0x0223dd30 : 6a6b6c6d 6e6f7071 72737475 76777879 | jklmnopqrstuvwxy
Type c for more data
Any other key will quit this display

You can continue to type thec key to see the rest of the data. Enter a key
other thanc to stop examining data.

Note that each time strdb displays a data structure, it pushes it onto a stack.
strdb saves structures on a stack so you can re-examine them later.strdb
increments and displays the stack depth. The depth appears in the upper
right hand corner of the screen as “S:depth.” In the current example, the
message data is on the top of the stack, and the depth is 6.

136

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

At this point, you may want to see the next message in the queue. To do this,
enter a key other thanc to stop examining data. Then you can enter the
primary mode commandCTRL-P to pop the message data and get back to
the message block for the data. This is shown below.

<< press a key besides c >>

^P

struct msgb 0x204ac00 S:5

b_next = 0x21f4b00
b_prev = 0x218ee00
b_cont = 0x2198080
b_rptr = 0x223dc00
b_wptr = 0x223ddc3
b_datap = 0x204ac40
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

In this example, you could have returned to the message block by entering
CTRL-T to transpose the top two stack entries instead of popping. This has
the advantage that the message data is still on the stack in case you want to
look at it later. The last example is redone below usingCTRL-T. Notice that
the stack depth for the message block is 6 after transposing instead of 5 after
popping.

^T

struct msgb 0x204ac00 S:6

b_next = 0x21f4b00
b_prev = 0x218ee00
b_cont = 0x2198080
b_rptr = 0x223dc00
b_wptr = 0x223ddc3
b_datap = 0x204ac40
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

Besides popping the top of the stack or transposing stack entries, you can
pop back to a mark. Enter the:m command to set a mark on the data
structure stack. Later, enterCTRL-U to pop back to the structure with the
mark. For example, suppose that in the previous examples:m was entered

137

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

afterstrdb displayed the write queue below the stream head write queue.
Then in the current example,CTRL-U could be entered to pop back to this
queue. This is shown below.

^U

struct queue 0x21f7674 S:3

q_qinfo = 0x1f7924 q_pad1[2] = 00
q_first = 0x2156780 q_other = 0x21f7600
q_last = 0x2185800
q_next = 0x0
q_link = 0x0
q_ptr = 0x0029cc48
q_count = 22518
q_flag = 0x1120
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

When you enter theCTRL-U command,strdb prints the data it saved in the
marked entry. If you are running strdb on a running system instead of a core
file, the data may not be current. In the above example, the queue may
contain different data whenCTRL-U is entered than it did when the contents
of the queue were pushed on the stack. To see the current values, enter the
CTRL-R command.CTRL-R updates the displayed data structure with new
values from/dev/kmem. This is shown below. Notice that there are no
longer any messages in the queue.

^R

struct queue 0x21f7674 S:3

q_qinfo = 0x1f7924 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7600
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x0029cc48
q_count = 0
q_flag = 0x1120
 QUSE
 QOLD
 QSYNCH

138

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

You may want to useCTRL-R when you are entering navigation commands,
not just when you pop the data structure stack. This is becausestrdb does
not automatically update the display when the contents of data structures
change. You need to enter theCTRL-R command to update the display with
new values from/dev/kmem.

In the previous example, suppose you want to print a field in the queue that
strdb does not format. This can be done using:b. The :b command prints
the contents of memory starting at a specified address. Optionally, you can
specify the number of bytes that:b should print. If you want to see theq_ptr
structure, enter the following.

:b 0x29cc48

0x0029cc48 : 00000001 005d9a00 00000000 00000000 |
.....]..........
 0x0029cc58 : 00000001 005d8b00 00000000 00000000 | ]..........
 0x0029cc68 : 00000001 00605100 00000000 00000000 | `Q.........
 0x0029cc78 : 00000000 00000000 00000000 00000000 |
 0x0029cc88 : 00000000 00000000 00000000 00000000 |
 0x0029cc98 : 00000000 00000000 00000000 00000000 |
 0x0029cca8 : 00000000 00000000 00000000 00000000 |
 0x0029ccb8 : 00000000 00000000 00000000 00000000 |
 0x0029ccc8 : 00000000 00000000 00000000 00000000 |
 0x0029ccd8 : 00000000 00000000 00000000 00000000 |
 0x0029cce8 : 00000000 00000000 00000000 00000000 |
 0x0029ccf8 : 00000000 00000000 00000000 00000000 |
 0x0029cd08 : 00000000 00000000 00000000 00000000 |
 0x0029cd18 : 00000000 00000000 00000000 00000000 |
 0x0029cd28 : 00000000 00000000 00000000 00000000 |
 0x0029cd38 : 00000000 00000000 00000000 00000000 |

-- Hit any key to continue --

The :x command is often used with :b. If theq_ptr buffer contains a pointer
to a STREAMS/UX data structure, you can format the structure using :x.
You know that word 0x0029cc4c in theq_ptr buffer contains a queue
address, 0x005d9a00. The:x command takes two arguments, a structure
address and its type. You can enter:x ? to see which types are accepted by
the:x command. This is shown below.

139

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

:x ?

known data structure descriptions...
 streamtab
 msgb
 a__datab
 datab
 free_rtn
 queue
 qband
 qinit
 module_info
 module_stat
 strapush
 ioc_pad

 iocblk
 copyreq
 copyresp

 stroptions

-- Hit any key to continue --

The type for a STREAMS/UX queue isqueue. You can double check which
type to use by looking in the include file<sys/stream.h>. An example of
entering the:x command to format the queue is shown below.

:x queue 0x5d9a00

struct queue 0x5d9a00 S:4

q_qinfo = 0x294418 q_pad1[1] = 00
q_first = 0x0 q_pad1[2] = 00
q_last = 0x0 q_other = 0x5d9a74
q_next = 0x5ceb00
q_link = 0x0
q_ptr = 0x29cc48
q_count = 0
q_flag = 0x1129
 QREADR
 QWANTR
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = 256
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x5393c0
q_nband = 1
q_pad1[0] = 00

140

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Commands to Change strdb Session Characteristics

After enteringstrdb, you can enter the :? command to get information about
primary commands. Note that primary mode does not prompt for
commands; you just enter the command keys.

:?

key - navigate from current structure
^D | :q - exit
^L - refresh
^K - log screen contents if logging enabled
? - show navigation keys for current structure
:? - show known commands
:x ? - show known structure descriptions
:x 'name' 'addr' - show structure 'name' at address 'addr'
:b 'addr' 'len' - show screenful of binary data at address
'addr'

('len' defaults to 256 if not specified)
^P - pop stack
^U - pop stack to previous mark
^T - transpose top stack entries
^R - re-read current structure from memory
:s - enable structure Stacking
:l 'name' 'o|c' - start[o] / stop[c] logging to 'name'
:m - mark current stack location
:u - Unenable structure stacking
:S - STREAMS subsystem commands

There are two types of primary commands, data structure navigation and
commands to changestrdb session characteristics. This section describes the
commands that changestrdb session characteristics:

• :?

• CTRL-D

• :q

• CTRL-L

• :l

• :u

• :s

• :S

141

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Enter the:? command to see the help menu for primary mode.strdb prints
the text shown below.

:?

key - navigate from current structure
^D | :q - exit
^L - refresh
^K - log screen contents if logging enabled
? - show navigation keys for current structure
:? - show known commands
:x ? - show known structure descriptions
:x 'name' 'addr' - show structure 'name' at address 'addr'
:b 'addr' 'len' - show screenful of binary data at address
'addr'

('len' defaults to 256 if not specified)
^P - pop stack
^U - pop stack to previous mark
^T - transpose top stack entries
^R - re-read current structure from memory
:s - enable structure Stacking
:l 'name' 'o|c' - start[o] / stop[c] logging to 'name'
:m - mark current stack location
:u - Unenable structure stacking
:S - STREAMS subsystem commands

Enter theCTRL-D or the:q command to exit fromstrdb.

Enter theCTRL-L command to refresh the screen.

Enter the:l command to start and stop logging to a file. strdb will log
commands and their output to a file. Enter the:l command specifying a file
name and the o option to open the log file and start logging. Then you can
enterstrdb commands and see the output on the terminal. strdb saves a
record of the commands and output in the logging file. Once logging is
enabled, useCTRL-K to dump the current screen contents to the log file.
This allows the user to selectively log debug data and actions taken. You can
close the log file and stop logging by entering the:l command, the file name,
and thec option. An example is shown below.

:l strdb.log o

 No current structure S:0

:S

STREAMS subsystem help commands..
? - show this help menu
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor' - list all drivers linked under the STREAMS
driver

142

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device

'name' and whose minor number is 'minor'
lp 'name' 'minor' - list all drivers persistently linked under

the STREAMS device 'name' and minor number
'minor'

q - quit the STREAMS subsystem commands
qc 'driver' 'file' - print 'driver' read / write side qcount to

file
qh 'name' 'minor' - display STREAM head queue structure

for device 'name' and minor number
'minor'

s [m | d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system

v - print version of STREAMS structures
displayed

qh tmx 1

struct queue 0x20a2300 S:1

q_qinfo = 0x1f7a18 q_pad1[2] = 00
q_first = 0x0 q_other = 0x20a2374
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x206d900
q_count = 0
q_flag = 0x1029
 QREADR
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

: ^k (screen data is dumped to strdb.log)

:l strdb.log c

:u and :s

When you enterstrdb, data structure stacking is enabled. Each timestrdb
displays a data structure, it pushes it onto a stack.strdb increments and
displays the stack depth. Data structure stacking is useful for going back
and reviewing data structures thatstrdb has already displayed. This is
described in the previous section, “Data Structure Navigation Commands.”

143

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

You can disable data structure stacking by entering the:u command. When
data structure stacking is disabled, strdb does not display the stack depth.
Data structure stacking is re-enabled by entering the:s command. An
example is shown below. Note how the stack depth displayed in the upper
right hand corner of the screen changes.

qh tmx 0

struct queue 0x21f7b00 S:1

q_qinfo = 0x1f7a18 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7b74
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x21f7a00
q_count = 0
q_flag = 0x1029
 QREADR
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

:u

struct queue 0x21f7b00

q_qinfo = 0x1f7a18 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7b74
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x21f7a00
q_count = 0
q_flag = 0x1029
 QREADR
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0

144

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_pad1[0] = 00
q_pad1[1] = 00

o

struct queue 0x21f7b74

q_qinfo = 0x1f7a34 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7b00
q_last = 0x0
q_next = 0x21f7674
q_link = 0x0
q_ptr = 0x21f7a00
q_count = 0
q_flag = 0x102a
 QNOENB
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x2800
q_lowat = 0x400
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

:s

struct queue 0x21f7b74 S:1

q_qinfo = 0x1f7a34 q_pad1[2] = 00
q_first = 0x0 q_other = 0x21f7b00
q_last = 0x0
q_next = 0x21f7674
q_link = 0x0
q_ptr = 0x21f7a00
q_count = 0
q_flag = 0x102a
 QNOENB
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x2800
q_lowat = 0x400
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

:S

145

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Enter the :S command to switch from primary mode to STREAMS/UX
subsystem mode. After invoking strdb, you are in primary mode. Enter:S
to switch to STREAMS/UX subsystem mode. In STREAMS/UX subsystem
mode, you can see which STREAMS/UX are configured and active on the
system. An example is shown below.

strdb

 No current structure S:0

:S

STREAMS subsystem help commands..
? - show this help menu
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor' - list all drivers linked under the STREAMS

driver 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device

'name' and whose minor number is 'minor'
lp 'name' 'minor' - list all drivers persistently linked under
the

STREAMS device 'name' and minor number
'minor'
q - quit the STREAMS subsystem commands
qc 'driver' 'file' - print 'driver' read / write side qcount
to file
qh 'name' 'minor' - display STREAM head queue structure
 for device 'name' and minor number 'minor'
s [m | d] - Option d lists all the STREAMS drivers
 configured in the system. Option m lists
 all the modules configured in the system
v - print version of STREAMS structures
displayed

Debugging with strdb

This section shows examples of usingstrdb to debug STREAMS/UX drivers
and modules. The examples show how to usestrdb on a running system.
Theadb debugging section of this chapter shows an example of usingstrdb
in conjunction withadb to analyze an HP-UX core file.

146

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Example 1: Flow Control and Fragmentation

In this example, the user has written a loopback driver which uses theqreply
STREAMS/UX utility to send all incoming messages up to the stream head
read queue.

Figure 2 Stream Created By Opening Loopback (lo) Driver

The user writes a simple test for the driver. The test openslo, writes data to
it, reads the data, and then closes the driver. The program is shown below.

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

main()
{

char wbuf[1024];
char rbuf[1024];
int fd, i, n, cnt;

printf(“Open the loopback driver.\n”);
fd = open(“/dev/lo0”, O_RDWR);

Read Queue Write Queue

Read Queue Write Queue

Stream Head

lo driver

qreply moves
message to
stream head

lo_write_put(q,m) ; lo_write_srv(q) ;
if m not hipri if stream head not flow controlled

putq qreply
else else

qreply putbq

147

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

if (fd < 0)
printf(“Open returned %d and errno = %d.\n”,

n, errno);

/* Fill buffer with data to write */
for (n = 0; n < 1024; n++)

wbuf[n] = (char) n;

printf(“Call write with nbytes set to 1024.\n”);
n = write(fd, wbuf, 1024);
if (n != 1024)

printf(“Write returned %d and errno = %d.\n”,
n, errno);

printf(“Call read to read in the message sent down
stream.\n”);

n = read(fd, rbuf, 1024);
if (n != 1024)

printf(“Read returned %d and errno =
%d.\n”,n,errno);

printf(“Close the loopback driver.\n”);
close(fd);

}

When the user runs the program, it prints the following results:

Open the loopback driver.
Call write with nbytes set to 1024.
Call read to read in the message sent down stream.
Read returned 512 and errno = 0.
Close the loopback driver.

The user runs strdb to find out why the test program read only 512 bytes of
data instead of 1024. First, the user changes the test program to sleep
between thewrite() andread() calls. When the program sleeps, the user runs
strdb to see what happened to the data. This is shown below.

strdb

 No current structure S:0

The user types:S to enter STREAMS/UX subsystem mode.

:S

STREAMS subsystem help commands..
? - show this help menu
d - print status of STREAMS daemon
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor' - list all drivers linked under the STREAMS
driver

148

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device

'name' and whose minor number is 'minor'
lp 'name' 'minor' - list all drivers persistently linked under

the STREAMS device 'name' and minor number
'minor'

q - quit the STREAMS subsystem commands
qc 'driver' 'file' - print 'driver' read / write side qcount

to file
qh 'name' 'minor' - display STREAM head queue structure

for device 'name' and minor number
'minor'

s [m | d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system

v - print version of STREAMS structures
displayed

Then the user enters thela command forlo to see what minor number the
driver assigned to the stream.

la lo

 stack empty S:0

lo MAJOR = 75
ACTIVE Minor 0x000000 Stream head RQ = 0x00515500

-- Hit any key to continue --

Next, the user entersqh for lo and minor number 0 to start examining the
stream. strdb formats the stream head read queue.

qh lo 0

struct queue 0x515500 S:1

q_qinfo = 0x2954f0 q_pad1[2] = 00
q_first = 0x50da00 q_other = 0x515574
q_last = 0x513780
q_next = 0x0
q_link = 0x0
q_ptr = 0x530600
q_count = 512
q_flag = 0x103d
 QREADR
 QFULL
 QWANTR
 QWANTW
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1

149

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user notes thatq_count, the number of bytes of data on the queue, is
512. This is the amount of data the test program was able to read. The user
realizes that the test program could only read 512 bytes, because that is all
that was in the queue. The user continues examining the stream in order to
find out what happened to the other 512 bytes of data. The user enters theo
navigation key to see the other queue, the stream head write queue.

o

struct queue 0x515574 S:2

q_qinfo = 0x29550c q_pad1[2] = 00
q_first = 0x0 q_other = 0x515500
q_last = 0x0
q_next = 0x4bc974
q_link = 0x0
q_ptr = 0x530600
q_count = 0
q_flag = 0x102a
 QNOENB
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x2800
q_lowat = 0x400
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user sees that there is no data in this queue. The user enters then key to
see the next queue,lo's write queue.

n

struct queue 0x4bc974 S:3

q_qinfo = 0x2951cc q_pad1[2] = 00
q_first = 0x537800 q_other = 0x4bc900
q_last = 0x50d100
q_next = 0x0
q_link = 0x0
q_ptr = 0x2b1fa8
q_count = 512
q_flag = 0x1124

150

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

 QFULL
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = 256
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user sees that the rest of the data is on this queue. The user wonders
why thelo driver did not put this data on the stream head write queue. The
user enters theCTRL-P command to go back to the stream head read queue.

^P

struct queue 0x515574 S:2

q_qinfo = 0x29550c q_pad1[2] = 00
q_first = 0x0 q_other = 0x515500
q_last = 0x0
q_next = 0x4bc974
q_link = 0x0
q_ptr = 0x530600
q_count = 0
q_flag = 0x102a
 QNOENB
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x2800
q_lowat = 0x400
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

^P

struct queue 0x515500 S:1

q_qinfo = 0x2954f0 q_pad1[2] = 00
q_first = 0x50da00 q_other = 0x515574
q_last = 0x513780
q_next = 0x0
q_link = 0x0
q_ptr = 0x530600
q_count = 512

151

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q_flag = 0x103d
 QREADR
 QFULL
 QWANTR
 QWANTW
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user notices that the QFULL flag is set. This indicates that the queue is
flow controlled. q_hiwat is set to 0x200 (512 decimal). Therefore,lo can
write only 512 bytes of data to the stream head before a user program does a
read, relieving the flow control condition.

The user realizes that this problem occurs because STREAMS/UX
fragmented the 1024 bytes into smaller messages. If STREAMS/UX put all
the data in one message, lo would put the entire message on the stream head
read queue.lo would be able to do this because the driver tests once for flow
control before sending the data upstream. Then, whenlo tests for flow
control, the stream head read queue is empty.lo cannot send all the data
when it is fragmented becauselo must check for flow control before sending
each fragment. After 512 bytes are in the stream head write queue, the flow
control check fails.

The user wonders why STREAMS/UX fragmented the data. The user enters
m to look at the fragments.

m

struct msgb 0x50da00 S:2

b_next = 0x513780
b_prev = 0x0
b_cont = 0x0
b_rptr = 0x47a700
b_wptr = 0x47a800
b_datap = 0x50da40
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

152

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user notes that there are 256 bytes in this message (b_wptr - b_rptr =
256). The user looks at the next message by entering then key.

n

struct msgb 0x513780 S:3

b_next = 0x0
b_prev = 0x50da00
b_cont = 0x0
b_rptr = 0x4efc00
b_wptr = 0x4efd00
b_datap = 0x5137c0
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

This message also contains 256 bytes. The user enters navigation
commands to viewlo's write queue. The user examines the sizes of the
messages on this queue. They are also 256 bytes. The user reads
documentation describing how STREAMS/UX executes thewrite() system
call. According to the stream(2) man page, STREAMS/UX fragments when
the data size is larger than the topmost stream module'smaxpsz. lo is the
topmost stream module; itsmaxpsz is 256.

The user can fix this problem in two ways. One way is to change the test
program to perform multiple reads to receive all the data. Another way is to
change the driver'smaxpsz to be 1024.

153

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Example 2: Simple Driver Programming Error

In this example, the user has written a loopback driver,sp, which uses
timeout to simulate interrupts. sp's put routine callstimeout for each
message it receives. When the timeout expires, HP-UX callssp's timeout
function. This function callsputq() to put the message onsp's read queue.

Figure 3 Stream Created By Opening Loopback (sp) Driver

Thesp_put() routine puts the incoming message on a queue insp's private
data structure before callingtimeout(). sp's timeout function takes the first
message off the queue, and callsputq to put the message onsp's read queue.
sp's open routine saves a pointer tosp's private data structure in the write and
read queues'q_ptr field. sp's private data structure and thesp_put() and
sp_timeout() routines are shown below.

Read Queue Write Queue

Read Queue Write Queue

Stream Head

sp driver

timer pops &
timeout calls
sp_timeout,
which calls putq

sp_put sets
timeout

.

. later

.

154

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

struct sp {
 unsigned sp_state; /* Set to SPOPEN when driver opened. */
 /* Cleared when driver is closed. */
 queue_t *sp_rdq; /* Contains sp's read q pointer. */
 mblk_t *first_mp; /* Pointer to head of message list. */

/* Messages are saved here until */
/* timeout expires. */

 mblk_t *last_mp; /* Pointer to tail of message list. */
};

/* Driver state values. */
#define SPOPEN 01

static sp_put(q, mp)
queue_t *q;
mblk_t *mp;
{
 struct sp *private;
 unsigned int s;

 /*
 * Check the message type.
 */
 switch (mp->b_datap->db_type) {
 case M_DATA:
 case M_PROTO:
 case M_PCPROTO:
 /* Raise the spl level to protect private structure,
 * since timeout functions such as sp_timeout can
 * interrupt sp_put.
 */
 s = splstr();
 /* Put the message at the tail of the
 * private data structure queue.
 */
 private = q->q_ptr;
 if (!private->last_mp)
 private->first_mp = mp;
 else
 private->last_mp->b_next = mp;
 private->last_mp = mp;
 splx(s);
 /* Set the timeout */
 timeout(sp_timeout,private,1);
 break;
 default:
 printf(“Routine sp_put: Illegal message %x received.\n”,
 mp->b_datap->db_type);
 break;
 }
}

155

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

static sp_timeout(private)
struct sp *private;
{
 mblk_t *temp;
 unsigned int s;

 /* Make sure driver isn't being closed. */
 if ((private->sp_state & SPOPEN) && (private->first_mp)) {

/* Take message off head of queue in private data
structure. */
 temp = private->first_mp;
 private->first_mp = private->first_mp->b_next;
 temp->b_next = NULL;
 /* Call putq to put message on sp's read queue and send
it upstream. */
 putq(private->sp_rdq, temp);
 }
}

The user writes a test for the driver. The test openssp, and goes into a loop
callingputmsg() to send data and callinggetmsg() to receive the data back.
The test prints a message each time it receives 100 messages. The user runs
the program, but it does not print any messages. While the program is
running, the user runsstrdb to see what is happening on the stream. This is
shown below.

strdb

 No current structure S:0

The user types:S to enter STREAMS/UX subsystem mode.

:S

STREAMS subsystem help commands..
? - show this help menu
d - print status of STREAMS daemon
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor' - list all drivers linked under the STREAMS

driver 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device
 ‘name’ and whose minor number is 'minor'
lp 'name' 'minor' - list all drivers persistently linked under

the STREAMS device 'name' and minor number
'minor'

q - quit the STREAMS subsystem commands
qc 'driver' 'file' - print 'driver' read / write side qcount to
file
qh 'name' 'minor'- display STREAM head queue structure
 for device 'name' and minor number 'minor'
s [m | d] - Option d lists all the STREAMS drivers
 configured in the system. Option m lists

156

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

 all the modules configured in the system
v - print version of STREAMS structures
displayed

Then the user enters thela command forsp to see what minor number the
driver assigned to the stream.

la sp

 stack empty S:0

sp MAJOR = 115
ACTIVE Minor 0x000000 Stream head RQ = 0x005c1500

-- Hit any key to continue --

Next, the user enters theqh command forsp and minor number 0 to start
examining the stream.strdb formats the stream head read queue.

qh sp 0

struct queue 0x5c1500 S:1

q_qinfo = 0x2964f0 q_pad1[2] = 00
q_first = 0x0 q_other = 0x5c1574
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x5f0100
q_count = 0
q_flag = 0x1029
 QREADR
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user sees that there are no messages on the stream head read queue. The
user decides to look for messages on other queues in the stream. The user
enters theo key to see the other queue in this pair, the stream head write
queue.

157

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

o

struct queue 0x5c1574 S:2

q_qinfo = 0x29650c q_pad1[2] = 00
q_first = 0x0 q_other = 0x5c1500
q_last = 0x0
q_next = 0x605e74
q_link = 0x0
q_ptr = 0x5f0100
q_count = 0
q_flag = 0x102a
 QNOENB
 QWANTR
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x2800
q_lowat = 0x400
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user looks at the next queue,sp's write queue, by entering then key.

struct queue 0x605e74 S:3

q_qinfo = 0x296434 q_pad1[2] = 00
q_first = 0x0 q_other = 0x605e00
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x29ec48
q_count = 0
q_flag = 0x1128
 QWANTR
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = 256
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x53b400
q_nband = 1
q_pad1[0] = 00
q_pad1[1] = 00

Next the user enters theo key to look at the other queue in this pair,sp's read
queue.

158

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

o

struct queue 0x605e00 S:5

q_qinfo = 0x296418 q_pad1[2] = 00
q_first = 0x0 q_other = 0x605e74
q_last = 0x0
q_next = 0x5c1500
q_link = 0x0
q_ptr = 0x29ec48
q_count = 0
q_flag = 0x1129
 QREADR
 QWANTR
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = 256
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x53b3c0
q_nband = 1
q_pad1[0] = 00
q_pad1[1] = 00

The user sees that there are no messages on the stream. Next, the user
examinessp's private data structure. The user enters the:b command,
specifying theq_ptr field value, 0x29ec48.

:b 0x29ec48

0x0029ec48 : 00000001 00605e00 00000000 005fb600 |`^......uq.
0x0029ec58 : 00000000 00000000 00000000 00000000 |
0x0029ec68 : 00000000 00000000 00000000 00000000 |
0x0029ec78 : 00000000 00000000 00000000 00000000 |
0x0029ec88 : 00000000 00000000 00000000 00000000 |
0x0029ec98 : 00000000 00000000 00000000 00000000 |
0x0029eca8 : 00000000 00000000 00000000 00000000 |
0x0029ecb8 : 00000000 00000000 00000000 00000000 |
0x0029ecc8 : 00000000 00000000 00000000 00000000 |
0x0029ecd8 : 00000000 00000000 00000000 00000000 |
0x0029ece8 : 00000000 00000000 00000000 00000000 |
0x0029ecf8 : 00000000 00000000 00000000 00000000 |
0x0029ed08 : 00000000 00000000 00000000 00000000 |
0x0029ed18 : 00000000 00000000 00000000 00000000 |
0x0029ed28 : 00000000 00000000 00000000 00000000 |
0x0029ed38 : 00000000 00000000 00000000 00000000 |

-- Hit any key to continue --

The user sees that the first word ofsp's private data structure is 0x00000001.
Looking at thesp structure declaration shown above, this word issp's state.
The driver is SPOPEN. The next word ofsp's private structure is
0x00605e00. According to thesp struct declaration, this issp's read queue

159

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

address. As shown above,strdb also reports thatsp's read queue address is
0x00605e00. The next two words are pointers to messages being saved until
timeouts expire. The first word is the head of the message queue. Its value
is 0x00000000. The second word is the tail. Its value is 0x005fb600. The
user does not understand how the head of the list can be 0 and the tail
non-zero. The user decides to askstrdb to format the message on the tail of
the queue using the:x command. First, the user enters the:x ? command to
see the names of the structures thatstrdb formats.

:x ?

known data structure descriptions...
 streamtab
 msgb
 a__datab
 datab
 free_rtn
 queue
 qband
 qinit
 module_info
 module_stat
 strapush
 ioc_pad

 iocblk
 copyreq
 copyresp
 stroptions

-- Hit any key to continue --

The user sees thatstrdb formats msgb, a message block. The user can
double check that this is the correct structure name by looking in the
sys/stream.h include file. Then, the user enters the:x command to see the
message block.

:x msgb 0x005fb600

struct msgb 0x5fb600 S:6

b_next = 0x5fb700
b_prev = 0x0
b_cont = 0x5fb680
b_rptr = 0x599400
b_wptr = 0x5996ac
b_datap = 0x5fb640
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

160

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user wonders if this is a valid message block. The fields seem to contain
correct values. The user checks the data by entering them key.

m

struct msgb 0x5fb600 Message data at 0x00599400 S:7

0x00599400 : 00000000 00000000 00000005 00000000 |
0x00599410 : 00000294 0000070c 6d6e6f70 71727374 |mnopqrst
0x00599420 : 75767778 797a6162 63646566 6768696a | uvwxyzabcdefghij
0x00599430 : 6b6c6d6e 6f707172 73747576 7778797a | klmnopqrstuvwxyz
0x00599440 : 61626364 65666768 696a6b6c 6d6e6f70 | abcdefghijklmnop
0x00599450 : 71727374 75767778 797a6162 63646566 | qrstuvwxyzabcdef
0x00599460 : 6768696a 6b6c6d6e 6f707172 73747576 | ghijklmnopqrstuv
0x00599470 : 7778797a 61626364 65666768 696a6b6c | wxyzabcdefghijkl
0x00599480 : 6d6e6f70 71727374 75767778 797a6162 | mnopqrstuvwxyzab
0x00599490 : 63646566 6768696a 6b6c6d6e 6f707172 | cdefghijklmnopqr
0x005994a0 : 73747576 7778797a 61626364 65666768 | stuvwxyzabcdefgh
0x005994b0 : 696a6b6c 6d6e6f70 71727374 75767778 | ijklmnopqrstuvwx
0x005994c0 : 797a6162 63646566 6768696a 6b6c6d6e | yzabcdefghijklmn
0x005994d0 : 6f707172 73747576 7778797a 61626364 | opqrstuvwxyzabcd
0x005994e0 : 65666768 696a6b6c 6d6e6f70 71727374 | efghijklmnopqrst
Type c for more data
Any other key will quit this display

The user knows that this is the data the test program sends. The user
wonders what is in the next message. To see the next message, the user
enters a key other thanc to stop viewing data. Then, the user pops back to
the data's message block.

^P

struct msgb 0x5fb600 S:6

b_next = 0x5fb700
b_prev = 0x0
b_cont = 0x5fb680
b_rptr = 0x599400
b_wptr = 0x5996ac
b_datap = 0x5fb640
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

Next the user enters then key to see the next message block.

n

struct msgb 0x5fb700 S:7

b_next = 0x5fb800
b_prev = 0x0
b_cont = 0x5fb780
b_rptr = 0x599800

161

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

b_wptr = 0x599b36
b_datap = 0x5fb740
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

Again, the values in this message block appear valid. The user double
checks the data by entering them key.

m

struct msgb 0x5fb700 Message data at 0x00599800 S:8

0x00599800 : 00000000 00000000 00000006 00000000 |
0x00599810 : 0000031e 0000081e 7778797a 61626364 |wxyzabcd
0x00599820 : 65666768 696a6b6c 6d6e6f70 71727374 | efghijklmnopqrst
0x00599830 : 75767778 797a6162 63646566 6768696a | uvwxyzabcdefghij
0x00599840 : 6b6c6d6e 6f707172 73747576 7778797a | klmnopqrstuvwxyz
0x00599850 : 61626364 65666768 696a6b6c 6d6e6f70 | abcdefghijklmnop
0x00599860 : 71727374 75767778 797a6162 63646566 | qrstuvwxyzabcdef
0x00599870 : 6768696a 6b6c6d6e 6f707172 73747576 | ghijklmnopqrstuv
0x00599880 : 7778797a 61626364 65666768 696a6b6c | wxyzabcdefghijkl
0x00599890 : 6d6e6f70 71727374 75767778 797a6162 | mnopqrstuvwxyzab
0x005998a0 : 63646566 6768696a 6b6c6d6e 6f707172 | cdefghijklmnopqr
0x005998b0 : 73747576 7778797a 61626364 65666768 | stuvwxyzabcdefgh
0x005998c0 : 696a6b6c 6d6e6f70 71727374 75767778 | ijklmnopqrstuvwx
0x005998d0 : 797a6162 63646566 6768696a 6b6c6d6e | yzabcdefghijklmn
0x005998e0 : 6f707172 73747576 7778797a 61626364 | opqrstuvwxyzabcd
Type c for more data
Any other key will quit this display

The user continues to look at the message blocks in the list. The list seems
to go on indefinitely. It seems as ifprivate->last_mp is being updated
correctly, but thatprivate->first_mp is not. Looking atsp_put, the user sees
thatfirst_mp is not updated unlesslast_mp is 0 when the list is empty. It
seems as ifprivate->last_mp was not set to 0 correctly. The user looks at
sp_timeout() where messages are removed from the list. Indeed,
sp_timeout() updates onlyfirst_mp. last_mp is not set to zero when the list
is empty.

162

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user changessp_timeout() to check if the list is empty, and sets
private->last_mp to 0 if it is. The corrected function is shown below.

static sp_timeout(private)
struct sp *private;
{
 mblk_t *temp;
 unsigned int s;

 /* Make sure driver isn't being closed. */
 if ((private->sp_state & SPOPEN) && (private->first_mp)) {
 /* Take message off head of queue in private data structure. */
 temp = private->first_mp;
 private->first_mp = private->first_mp->b_next;
 /* The following statement fixes the bug. */
 if (private->first_mp == NULL) private->last_mp = NULL;
 temp->b_next = NULL;
 /* Call putq to put message on sp's read queue and send it upstream.
*/
 putq(private->sp_rdq, temp);
 }
}

Example 3: Simple Application Programming Error

In this example, the user writes a test program for the stream described in
Example 1. The test program opens several of these STREAMS/UX and
execs two processes, one that loops doingputmsgs() and another that loops
doinggetmsgs(). The test prints a message to the terminal each time it
successfully receives 100 STREAMS/UX messages. Some code fragments
are shown below.

Put Process

/* Initialize the stream and poll structures */
for (i=0; i<stream_count; i++) {
 upper_fd[i].fd = i + OPEN_FILES;
 upper_fd[i].events = POLLOUT;
 .
 .
 .
 }

/* Loop polling to see which STREAMS are writable and writing to them */
while (1) {

 if (poll(upper_fd, stream_count, -1) <= 0) {
 err_handler(“Poll returned error %d.\n”,errno);
 }

 for (i=0; i < stream_count; i++) {
 if (upper_fd[i].revents) {
 do_a_put(&(str_ctl[i]), &(upper_fd[i]));
 } /* if */
 } /* for */

163

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

} /* while */

Get Process

/* Initialize the stream and poll structures */
for (i=0; i<stream_count; i++) {
 upper_fd[i].fd = i + OPEN_FILES;
 upper_fd[i].revents = POLLIN|POLLRDBAND;
 .
 .
 .
 }

/* Loop polling to see which STREAMS are readable and reading from them
*/
while (1) {

 if (poll(upper_fd, stream_count, -1) <= 0) {
 err_handler(“Poll returned error %d.\n”,errno);
 }

 for (i=0; i < stream_count; i++) {
 if (upper_fd[i].revents) {
 do_a_get(&(str_ctl[i]), &(upper_fd[i]));
 } /* if */
 } /* for */

} /* while */

The user runs the test, but it does not print any messages. The user runs
strdb to find the problem.

strdb

 No current structure S:0

The user types:S to enter STREAMS/UX subsystem mode.

:S

STREAMS subsystem help commands..
? - show this help menu
d - print status of STREAMS daemon
h - show this help menu
la 'name' - list all active STREAMS on device 'name'
ll 'name' 'minor' - list all drivers linked under the STREAMS

driver 'name' and minor number 'minor'
lm 'name' 'minor' - list all modules pushed on STREAMS device

'name' and whose minor number is 'minor'
lp 'name' 'minor' - list all drivers persistently linked under

the STREAMS device 'name' and minor number
'minor'

q - quit the STREAMS subsystem commands
qc 'driver' 'file' - print 'driver' read / write side qcount to

file
qh 'name' 'minor' - display STREAM head queue structure

for device 'name' and minor number 'minor'

164

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

s [m | d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists

 all the modules configured in the system
v - print version of STREAMS structures

displayed

Then the user enters thela command forlo to see what minor number the
driver assigned to the stream.

la lo

 stack empty S:0

lo MAJOR = 75
ACTIVE Minor 0x000000 Stream head RQ = 0x005c1500

-- Hit any key to continue --

Next the user entersqh for lo and minor number 0 to start examining the
stream.strdb formats the stream head read queue.

qh lo 0

struct queue 0x5c1500 S:1

q_qinfo = 0x2944f0 q_pad1[2] = 00
q_first = 0x5e1480 q_other = 0x5eed74
q_last = 0x5e1480
q_next = 0x0
q_link = 0x0
q_ptr = 0x76bf00
q_count = 769
q_flag = 0x103d
 QREADR
 QFULL
 QWANTR
 QWANTW
 QUSE
 QSYNCH
q_minpsz = 0
q_maxpsz = -1
q_hiwat = 0x200
q_lowat = 0x100
q_bandp = 0x0
q_nband = 0
q_pad1[0] = 00
q_pad1[1] = 00

The user notices that the stream head read queue contains several messages
that the test program should be able to read. In fact, the queue is full since
q_count is greater thanq_hiwat, and the QFULL flag is set.

165

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user goes back to the code for the get process to see ifpoll() is being
called incorrectly. The user checks the parameters passed topoll(). The user
sees that the initialization code setrevents instead ofevents before calling
poll(). poll() returns 0 in therevents field because noevents were requested.
The corrected code fragment is shown below.

Get Process

/* Initialize the stream and poll structures */
for (i=0; i<stream_count; i++) {

 upper_fd[i].fd = i + OPEN_FILES;
 upper_fd[i].events = POLLIN|POLLRDBAND; /* Changed revents to events

*/
 .
 .
 .
 }

166

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools

HP-UX Kernel Debugging Tools

This section describes the HP-UX kernel debugging tools and techniques
available for HP-UX release 10.0. These tools and techniques may change
from release to release. This manual will focus primarily on the Series 700
and 800 debugging tools and techniques. Sources of additional information
for the Series 700 are cited below.

Kernel level debugging is associated with the hardware that a kernel is
running on. The kernel level debugging tools are different for the different
hardware platforms.

For the Series 700, kernel level debugging may be performed usingddb.
ddb can be used to set breakpoints, single-step through code, examine the
contents of data structures at key points, change the contents of structures
and variables, and use most other normal debugging techniques.ddb is
documented inHP-UX Driver Development Guide, part number
98577-90013.ddb is not part of the standard Series 700 HP-UX product. To
obtain a copy ofddb software, contact your HP representative.

For Series 700 and 800, kernel level debugging may be performed using
adb, which is a general purpose assembly language debugging program.
adb allows you to look at HP-UX files and system core files that result from
system panics, to examine system registers and memory locations as they
were at the time of the panic, and to print data from these files in a variety of
formats. adb can also be used to examine a running HP-UX system.adb is
part of the standard HP-UX product and is located in/usr/bin on every
HP-UX system. It is important to use the revision ofadb which corresponds
with the release of the kernel being debugged -- for example, a 9.0 version of
adb will not work well on a 10.0 kernel. This chapter describes in detail
how to useadb to debug kernel problems on Series 700 and 800 systems.
For additional information onadb, refer to the following items:

• adb(1) man page

• ADB Tutorial, part number 92432-90005

• Assembly Language Reference Manual, part number 92432-90001

• PA-RISC 1.1 Architecture and Instruction Set Reference Manual, part number
09740-90039

167

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools

• PA-RISC Procedure Calling Conventions Reference Manual, part number
09740-90015

168

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools and strdb

HP-UX Kernel Debugging Tools and strdb

Thestrdb tool can be used in conjunction with other standard HP-UX kernel
debugging tools to provide STREAMS/UX-specific information and data
formatting. Generally, if your system is running normally except for
STREAMS/UX, it is recommended that you usestrdb to debug the problem.
If your system panics or hangs,strdb can be used on the resulting system
core dump, along withadb to diagnose the problem.strdb is documented
earlier in this chapter, and examples of usingadb andstrdb together are
given at the end of this chapter.

What Is a System Panic?

Unlike user code, programming errors in kernel code can cause system
panics. A system panic will result in a panic message to the console. Also,
a system core dump will be generated. This is a copy of physical memory at
the time of the panic. The panic message and core dump can be examined
usingadb andstrdb to determine the cause of the panic.

There are three main categories of panics. The first category is when a
kernel routine callspanic() because of a system inconsistency from which it
cannot recover. In this case, the panic message contains a string from the
routine that calledpanic(), explaining why panic was called. In the example
below, the panic string is “ifree: freeing free inode.” A hexadecimal stack
trace will also be printed. Interpreting the stack trace will be described later.

System Panic:
@(#)9245XA HP-UX (A.10.00) #1: Wed Sep 28 15:47:13 PDT 1994
panic: (display==0xb000, flags==0x0) ifree: freeing free inode

PC-Offset Stack Trace (read across, most recent is 1st):
0x0014766c 0x001480b0 0x000b3a38 0x000b411c 0x000b3b78 0x000b76

5c
0x000b10d8 0x000aefd0 0x0001c500

End Of Stack

The second category is the occurrence of a kernel level trap or exception
condition. These usually involve virtual memory and are described below.
A hexadecimal stack trace is also printed.

169

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools and strdb

The third is the occurrence of a High Priority Machine Check (HPMC),
which usually indicates a hardware problem. An HPMC is characterized by
a total, sudden system halt and an HPMC “tombstone” printed on the
console, which records the contents of the system's registers. If you
encounter an HPMC, contact your HP service representative. Note that an
HPMC tombstone is also printed out after a TOC (Transfer of Control -- see
“Transfer of Control In Case of System Hang” for details). There is no need
to contact an HP representative for an HPMC tombstone that is the result of
a TOC.

Traps

Some very common panics occur from either the trap routing or interrupt
routing routines. Whenever this low level code detects a trap occurring in
the system and it believes that it cannot be corrected, it will panic the
machine. The most common faults are described below.

Data Segmentation Faults

Usually, a data segmentation fault occurs when a process (in kernel mode)
attempts to dereference a null pointer. If you receive a data segmentation
fault, information similar to the following will be printed on the system
console:

trap type 15, pcsq.pcoq = 0.85b7c, isr.ior = 0.4
@(#)9245XA HP-UX (A.10.00) #0: Sat Aug 13 23:17:54 PDT 1994
panic: (display==0xbf00, flags==0x0) Data segmentation fault

pcsq.pcoq is the current instruction address, andisr.ior is the current data
address. This trap message means that the instruction at location 0x85b7c
tried to reference address 4 in space 0. You could look inadb to see what the
instruction was trying to do. The instruction may have been attempting to
get a value 4 bytes off of some pointer. Because of a possible logic problem,
the pointer might not have been initialized.

Instruction Page Faults

An instruction page fault occurs when a process in kernel mode jumps to an
address which is not mapped, and tries to execute it. Because the page is not
mapped, and the kernel is not paged, a fault is generated. This would appear
as the following:

170

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools and strdb

trap type 6 pcsq.pcoq = 0.0 isr.ior = 4.78
@(#)9245XA HP-UX (A.10.00) #0: Sat Aug 13 23:17:54 PDT 1994
panic: (display==0xbf00, flags==0x0) Instruction page fault

Thepcsq.pcoq pair is important; the user attempted to jump to page zero and
start executing. In this case, because the fault was an instruction page fault,
the isr.ior pair is meaningless. The page fault may have occurred because of
an indirect procedure call, where the address of the routine to be called was
not initialized.

Protection Violations

A third common panic is the protection violation. This type of panic occurs
when the kernel tries to reference a data structure that does not belong to the
current process. This panic also occurs if the kernel attempts to reference an
object in a way which is not permitted by the access rights assigned to the
page where the object resides, for example, an attempt to write on a
read-only page. Another frequently overlooked area of protection faults are
unaligned access violations. These appear to be protection faults, but are
caused by performing an operation on an unaligned address, for example,
load word on a non-word aligned address. In each of these cases, trap type
18 or 7 would be generated. Thepcsq.pcoq pair would give the offending
instruction, and theisr.ior would give the offending data address referenced.

171

Debugging STREAMS/UX Modules and Drivers
Generating and Retrieving System Core Dumps

Generating and Retrieving System Core Dumps

HP-UX will attempt to create a snapshot of physical memory and register
contents before it stops running. This snapshot can assist engineers in
determining the cause of the problem because it holds a record of what the
system was doing at the time it crashed. The correct name for this snapshot
is acore dump. The default location for this snapshot is the primary swap
area, but it is possible to configure systems to put the snapshot on another
disk device. See theSystem Administration Tasks manuals for the Series 700
and the Series 800 for information on configuring dump devices.

A core dump is composed of two files, a core file and an object file. The
core file is an image of the system's physical memory and register contents at
the time of a crash. The object file is the kernel file,/stand/vmunix.

To retrieve a core dump, the program/usr/sbin/savecore must be executed.
savecore will retrieve the core file from the swap device, along with a copy
of the system's kernel file, and save both in a specified directory. The core
file and the kernel file make up the core dump pair (for example,vmcore.N
andvmunix.N whereN is a number that associates a core dump pair).

adb andstrdb require that both members of a core dump pair be present. In
addition, it is very important that these members match foradb andstrdb to
be effective. They must match because the kernel (vmunix.N) file contains
information which is used byadb andstrdb as a road map into the core
(vmcore.N) file.

Setting Up Your System To Save a Core Dump

In order to have system core dumps saved automatically during boot-up, the
savecore function must be enabled in the system’s/etc/rc.config file. Search
this file for the string SAVECORE and follow the instructions in the
comments.

172

Debugging STREAMS/UX Modules and Drivers
Generating and Retrieving System Core Dumps

Manually Getting a Core File from the Swap Partition

If savecore() was not run at boot-up, or did not succeed, you can still run
savecore(1m) manually by taking the following steps:

savecore begins by reporting the date and time of the crash. Next, it looks in
the specified directory for a file namedbounds. Thebounds file contains the
next sequence number (N), whichsavecore will use to create a unique core
file and kernel file.savecore will copy the core image from the primary
swap device to a file namedvmcore.N. Lastly,savecore copies
/stand/vmunix to a file namedvmunix.N to complete the core dump pair.

Problems Encountered In Saving/Obtaining a Core Dump

If /stand/vmunix was not the kernel that was running when the crash
occurred, savecore will exit quickly without printing any message and will
not save the core file. Use the -d option to tellsavecore what kernel was
running at the time of the system crash:

/usr/sbin/savecore -d /stand/vmunix.bad /var/adm/crash

If a core dump pair is incomplete or not saved after a panic, you can look to
the savecore(1m) man page for help.

Transfer of Control In Case of System Hang

A system hang is a situation in which the system seems to be up but does not
respond to external user control. Should this happen to your system, you
will want to obtain a core dump so that the cause for the hang can be
analyzed. The method for obtaining a core dump of a kernel in this state is
to use the Transfer of Control (TOC) mechanism. The TOC mechanism
causes the machine to vector through a special address which will cause the
machine to do a core dump. Most Series 700 and 800 machines have the
capability to perform TOC but the methods for performing this task are
machine-dependent:

• Series 800 Models 850, 855, 86x, F, G, H, I, and 870: If you have an access port
connected to your machine, you must enable it through your front panel. Next,

/usr/bin/bdf # find enough space for the dump
mkdir /tmp/syscore # assuming /tmp has enough space
/usr/sbin/savecore /tmp/syscore # savecore to the chosen directory

173

Debugging STREAMS/UX Modules and Drivers
Generating and Retrieving System Core Dumps

type a “Control b” on the console. This will put your console under the
supervision of the access port. You will get a “CM>” prompt, at which you may
type “TC.”

• Series 800 Models 834/5, 845, and 8x2 have a key-operated TOC mechanism.
To execute a TOC, turn the key all the way to the right (clockwise).

• Series 800 Models 808 and 815 have a button-operated TOC mechanism. From
the rear of the machine, look for this button on the lower right-hand side (it will
be marked TOC). You will need an object, like a pen, to push the TOC button.

• Series 700s have a button-operated TOC mechanism. The button is on the right
side front of the computer. Pull open the door covering the system activity
LED's, and the TOC button is the small white button on the far left.

Core File Size Requirements

It is best if the size of thevmcore.N file is equal to that of the machine's
physical memory. Because the core file is an image of memory at the time
of a crash, if its size is not equal to the machine's physical memory size,
some information will be lost. However, it is still possible to get some
information from a partial core dump.

Symbol Information

Make sure that the vmunix.N file has not been stripped.adb andstrdb will
not work without symbol information. Use thefile command to confirm that
the symbols have not been stripped:

file vmunix.0
vmunix.0 s800 executable -not stripped

174

Debugging STREAMS/UX Modules and Drivers
Using adb

Using adb

This section describes how to useadb on core dumps obtained following a
system crash. See “Generating and Retrieving System Core Dumps” for
information on how these dumps are obtained.adb can also be used to
examine a system that is currently running.

See the adb(1) man page orADB Tutorial for more information.

Invoking adb

When usingadb on a system core dump, you must use the “-k” option. This
option will tell adb to treat the core dump as a system core dump instead of a
user process core dump, which is organized differently. For example, to call
adb on the dump pairvmcore.1 andvmunix.1, perform the following:

adb -k vmunix.1 vmcore.1

When usingadb on a running HP-UX system, you also use the “-k” option,
and use /stand/vmunix as the object file and/dev/mem as the core file:

adb -k /stand/vmunix /dev/mem

You will probably need to be superuser to access/dev/mem. Because you
are examining a running (and continuously changing) system,adb will not
be able to set you up in any specific process context, but you will be able to
examine kernel global variables.

Context on Entry to adb

adb maintains a set of registers corresponding to the registers of the
machine. Theadb command$r will print out the values of these registers.
Whenadb is invoked on a system core with the-k option, it sets these
registers to the values of the machine registers at the time the system core
dump was taken. These register values are not the values the registers
contained at the point the panic or trap occurred. Instead, they are the values
the registers contained at the time the kernel started dumping a copy of
physical memory to the swap area. How to use these “dump time” register
values to determine the state of the registers at the time the trap or panic

175

Debugging STREAMS/UX Modules and Drivers
Using adb

occurred will be described later. These “panic time” register values enable
the user to examine the context of the process that was running at the time of
the system crash.

Debugging Hung Systems

If the system core dump is from a transfer of control (TOC) of a hung
system, adb will be unable to determine the “dump time” or “panic time”
register values. In these cases,adb can still be used to determine the
contents of the kernel message buffer (see “Finding the Panic Message”),
and to examine kernel global variables (see “Obtaining Important Kernel
Global Variables”), but it will not be able to give you a stack trace or context
for the process that was running at the time of the system crash.

It is especially important, when looking at a dump from a system which
appeared to be hung, to check the kernel globalsfreemem, freemem_cnt, and
avenrun. These variables may indicate that your system was out of memory
or was overloaded. (See “Obtaining Important Kernel Global Variables” for
more information.)

It can also be helpful, before doing a TOC on a system which appears hung,
to determine how complete the system paralysis is. The following table
describes hang symptoms, from the least severe to the most severe. This
table may help you determine where your system fits on this continuum.

Symptom Explanation

Some processes, like your shell or
your tests, do not run, but other
processes are running.

Your system is not hung, but there is some other problem
holding back your processes. If you have a terminal session
that is working, usestrdb andadb to look at the kernel and the
STREAMS/UX subsystem state.

You cannot login, either locally or
remotely.

Your system may not be hung, its networking software state,
terminal I/O orgetty processes may be deadlocked in some
way. If you have a terminal session that is working, usestrdb
andadb to look at the kernel and the STREAMS/UX
subsystem state.

176

Debugging STREAMS/UX Modules and Drivers
Using adb

Finding the Panic Message

The kernel maintains a circular message buffer into which text can be
printed using the kernelprintf, msg_printf, andcmn_err routines. At the
time of a panic, a panic message is printed to this buffer. A stack trace
consisting of instruction addresses in hexadecimal is also printed out, as well
as the current instruction and data addresses being accessed at the time of the
crash. Other interesting information may also be located in the buffer, such
as system boot-up messages and kernel error messages that may help pin
down the cause of the panic. To print out this buffer, invokeadb on the
system dump and type the following:

msgbuf+10/s

Examples ofmsgbuf contents are included in the examples at the end of this
chapter.

You cannot ping your system. Your system may not be hung, its networking software state
may be deadlocked in some way. If you have a terminal
session that is working, usestrdb andadb to look at the kernel
and the STREAMS/UX subsystem state.

Carriage returns do not echo on the
console or on other login sessions.

Your system is hung, but is probably TOC-able. TOC the
system and examine the kernel globals in the dump.

Your system has an LED activity
display which is not being updated;
it is showing no system activity at
all.

Your system is hung, but is probably TOC-able. TOC the
system and examine the kernel globals in the dump.

Your system has an access port
enabled, and typingCTRL-b on the
console gives no response, or you
attempt to TOC a system without an
access port with no success.

Your system is ignoring very high-level interrupts, and it is so
thoroughly hung that you will probably be unable to TOC it.
Hangs as severe as this are extremely rare. Hit the system
reset button, and try to debug the problem using other
methods such as code reviews,panics, orprintfs.

Symptom Explanation

177

Debugging STREAMS/UX Modules and Drivers
Using adb

Interpreting the Panic Stack Trace

adb can be used to translate the hexadecimal stack trace printed after the
panic message into procedure addresses. For each hexadecimal number in
the stack trace, use theadb i command to determine where in the kernel the
address occurs. For example, the hex stack trace below can be deciphered as
follows:

PC-Offset Stack Trace (read across, most recent is 1st):
0x0016da70 0x000e5a68 0x000d34cc 0x0009ea14 0x00099714 0x0009

2fdc
0x0006e0c8 0x0006dbb8 0x0006d2a8 0x001954e8 0x00194fa4 0x000b

7e24
0x001846d4 0x00181730 0x00156538 0x00156af8 0x001567b8 0x000e

6d80
0x000d3aac
End Of Stack

In adb (text preceded by “#” are comments):

0x0016da70/i # use of adb i command
panic+30: addil -1000,dp # adb's response
0x000e5a68/i
trap+0xADC: b trap+1004
0x000d34cc/i
$call_trap+20: rsm 1,r0
0x0009ea14/i
flushq+60: ldbs 0xD(r21),r22
0x00099714/i
q_free+1C: ldw -0xA4(sp),r31

Manual Stack Back-Tracing

You may need to useadb to manually back-trace your stack. This is
necessary when the hexadecimal stack trace printed bypanic is incomplete.
For example,panic may print a few hex addresses and then the message:

stktrc: cannot find descriptor

or

stktrc: cannot find rp

You may also need to do a manual stack back-tracing if you wish to find out
how the arguments the routines in your stack trace were called. You will
need the value of the stack pointer for each routine in the stack and manual
stack back-tracing will tell you these values.

178

Debugging STREAMS/UX Modules and Drivers
Using adb

PA-RISC Procedure Calling Conventions Overview

The following is a very brief overview of the PA-RISC procedure calling
convention. More information can be obtained from thePA-RISC Procedure
Calling Conventions Reference Manual.

PA-RISC machines have 32 general use registers. These registers are
identical physically, but are assigned different roles by the PA-RISC
operating systems and compilers in order to enable procedure calls to take
place efficiently and consistently. The following table lists these special
roles:

Table 5 General Use Register Roles

r0 Value is always zero.

r1 Scratch register.

r2 Return pointer, also known asrp. This is the instruction address the
called procedure will return to when it is finished executing.

r3 - r18 Callee saves. If the called procedure wishes to modify any of these
registers, it must save the original contents on its stack and restore the
contents before returning to the caller.

r19 - r22 Caller saves. The called procedure is free to modify these registers
without saving the original contents. If the calling procedure wants to
retain the contents, it must save them before making the procedure call
and restore them after the call returns.

r23 - r26 First four procedure arguments, also known asarg0, arg1, arg2, andarg3.
The calling procedure loads the first four procedure arguments into these
registers before making the procedure call.

r27 Global data pointer, also known asdp.

r28 - r29 Procedure return values, also known asret0 andret1. The called
procedure loads the return values into these registers before returning.

r30 Stack pointer, also known as sp.

r31 Millicode return pointer, or scratch register.

179

Debugging STREAMS/UX Modules and Drivers
Using adb

The only registers you need to be concerned with for manual stack
back-tracing are r2 (rp) and r30 (sp), although the other registers become
important when trying to determine what arguments a procedure in the trace
was called with.

In order to implement these register roles, at the start of each procedure a
stack frame is allocated andcallee save registers which the called procedure
is planning to modify are stored in the stack frame. The stack frame is
allocated simply by incrementing thesp by the size of the stack frame
needed, using either the stwm or ldo instruction. For example, below are the
instructions which create the stack frame forioctl. Numbers in brackets ([])
refer to the notes below.

ioctl: stw rp,-14(sp) [1]
ioctl+4: stwm r3,100(sp) [2]
ioctl+8: stw r4,-0xFC(sp) [3]
ioctl+0xC: stw r5,-0xF8(sp) [4]
ioctl+10: stw r6,-0xF4(sp) [5]

[1] Store return instruction address at 0x14 above the caller's stack pointer.
Note that the return address is stored in the caller's stack frame, not the
callee's stack frame.

[2] Store the contents of r3 at the currentsp, then allocate the stack frame by
adding 0x100 to sp. Thestwm instruction stands for store word and modify.

[3] Store the contents of r4 atsp - 0xFC, just below where you stored r3.

[4] Store the contents of r5 atsp - 0xF8, just below where you stored r4.

[5] Store the contents of r6 atsp - 0xF4, just below where you stored r5.

The instructionldo (load offset) can be used instead ofstwm for allocating
the stack. For example:

doadump: stw rp,-14(sp) [1]
doadump+4: ldo 30(sp),sp [2]

[1] Store return instruction address in caller's stack frame.

[2] Add 0x30 to the current value in registersp and store the result insp,
allocating stack frame.

180

Debugging STREAMS/UX Modules and Drivers
Using adb

Basic Stack Back-Tracing

Given the stack pointer,sp, and the current instruction address,pcoqh, it is
possible to get the previous stack pointer and instruction address. The
starting values for sp andpcoqh are obtained from theadb $r command. As
mentioned above, when adb is invoked on a system core with the -k option,
it sets these registers to the values of the machine registers at the time the
system core dump was taken. The$r command prints out these registers.
Below are the first few lines of the$r display.

pcsqh 0 pcoqh 24B34 doadump+0xEC
pcsqt 0 pcoqt 0 _fp_status
rp 0xDBF48 panic_boot+354

arg0 1 arg1 0xC57B arg2 2000 arg3
9BD70152
sp 20F380 ret0 303847 ret1 797 dp 1F6000

There are four steps to back-tracing a stack:

1 Determine the size of the current stack frame.

The size of the current stack frame is simply the amount the spis incremented at
the entry to the current procedure. To find that number, useadb to print out the
first few instructions of the current procedure. To determine the initial current
procedure, look at the value of the registerpcoqh, which appears at the end of
the first line of the $r output. In most cases, this initial procedure will be
doadump.

doadump/3i
doadump+3: stw rp,-14(sp)
 ldo 30(sp),sp
 mfctl iva,r22

doadump's second instruction is an ldo which increments the stack pointer by
0x30, so doadump's stack frame size is 0x30.

2 Determine the previous stack pointer.

The previous stack pointer is the current stack pointer, minus the current stack
frame size.adb can be used to keep track of thesp register by calculating the
previous stack pointer using the following adb commands:

<sp-0x30>sp [1]
.=X [2]
 20F350 [3]

[1] Take the current value of the sp register, decrement it by 0x30, and store the
result back into the sp register. Seeadb documentation for more information on
adb registers and the “<“ and “>” operators.

181

Debugging STREAMS/UX Modules and Drivers
Using adb

[2] Print out the new value of sp. This information should be saved in case you
need to find out the contents of registers which have been pushed onto the stack
frame. Seeadb documentation for more information about the concept of “.”,
the current location in the core file.

[3] adb output in response to the previous command,.=X

3 Find the current return pointer.

Your current procedure is doadump, and you have just setsp so that it is the
same value it was when doadump was first entered, before theldo instruction
was executed. Recall that doadump's first instruction is:

stw rp,-14(sp)

Because you have just setsp to the same value it had when doadump's first
instruction was executed, you can find therp by looking at what is insp-0x14:

<sp-0x14/X [1]
crash_monarch_stack+1EC: 0xDBF48 [2]

[1] Print out the value of the locationsp-0x14 in hexadecimal.

[2] adb's response.crash_monarch_stack+1EC can safely be ignored.
0xDBF48 is the instruction address which was inrp.

4 Find out which procedure the return pointer points to.

Theadb i command will tell you this:

0xDBF48/i [1]
panic_boot+354: comibt,=,n 0,ret0,panic_boot+368 [2]

[1] use of thei command

[2] adb's response

Notice that the$r command has already indicated thatrp corresponds to
panic_boot+354.

To continue back-tracing the stack, iterate the four steps shown above. Here
is theadb sequence of commands and responses to trace the next two levels
back in this stack. Text preceded by “#” are comments.

panic_boot/3i # look at beginning of
panic_boot: # panic_boot for stack frame
panic_boot: stw rp,-14(sp) # size

stwm r3,80(sp) # stack frame size is 0x80
stw r4,-7C(sp)

<sp-0x80>sp # calculate new sp
.=X # print out new sp

20F2D0
<sp-0x14/X # find rp in caller's

182

Debugging STREAMS/UX Modules and Drivers
Using adb

crash_monarch_stack+16C: 0xDB938 # stack frame
0xDB938/i # what instruction address
boot+24: addil 0,dp # does rp correspond to?
boot/3i # look at beginning of boot
boot: # for stack frame size
boot: stw rp,-14(sp)

stwm r3,80(sp) # stack frame size is 0x80
stw r4,-7C(sp)

<sp-0x80>sp # calculate new sp
.=X # print out new sp

20F250
<sp-0x14/X # find rp in caller's
crash_monarch_stack+0xEC: 1518A4 # stack frame
1518A4/i # what instruction address
panic+0xF0: ldw -94(sp),rp # does rp correspond to?
panic/3i # look at beginning of panic
panic: # for stack frame size
panic: stw rp,-14(sp)

stwm r3,80(sp) # stack frame size is 0x80
stw r4,-7C(sp)

If you are doing a manual stack back-trace in order to find out values of
registers which have been pushed onto the stack, it is useful to save the
results of the four steps at each iteration for future reference. A table such as
the following can be helpful:

Exceptions to the Four Steps

The four basic steps of stack back-tracing have some exceptions:

• panic: If your procedure address is in panic, you need to take special steps to find
out the true value of your current stack pointer. Instead of being the previoussp
minus the previous frame size, panic'ssp can be found at location
panic_save_state. Do the following to find the value using adb and reset adb's
copy of sp:

panic_save_state/X [1]
panic_save_state: [2]
panic_save_state: 7FFE6F48
7FFE6F48>sp [3]

[1] Ask adb to print out locationpanic_save_state in hex.

sp pcoqh Procedure Address Frame Size

20F380
20F350
20F2D0
20F250

24B34
0xDBF48
0xDB938
1518A4

doadump+0xEC
panic_boot+354
boot+24
panic+0xF0

0x30
0x80
0x80
0x80

183

Debugging STREAMS/UX Modules and Drivers
Using adb

[2] These two lines areadb's response. panic's actualsp is 7FFE6F48.

[3] Resetsp to the correct address.

Now that you have panic's real stack pointer, the other steps in the back-tracing
process can be executed normally. Text preceded by “#” are comments.

• $call_trap, $call_int, $ihndlr_rtn, $thndlr_rtn, $RDB_trap_patch,
$RDB_int_patch: These procedures do not follow the ordinary procedure
calling conventions. They are written in assembly language, and are used to
create asave state structure which saves the values of all registers at the time of
a trap or an interrupt. Thesave state is then passed totrap() or the appropriate
interrupt routine. The save state starts atsp - 0x230, and you can retrieve the
previous stack pointer and currentpcogh from thesave state, as shown below.
The offsets into thesave state are for the 10.0 release, and may change from
release to release.

<sp-0x230>sp [1]
<sp+0x84/X [2]
7FFE6C1C: 96B70 [3]
<sp+0x78/X [4]
7FFE6C10: 7FFE6B98 [5]
7FFE6B98>sp [6]
96B70/i [7]
qenable+10: ldws 0(r20),r21
qenable/3i
qenable:
qenable: stw rp,-14(sp)
 ldo 80(sp),sp
 stw arg0,-0xA4(sp)

[1] Resetsp to point to the top of the save state structure.

<sp-0x80>sp # calculate new sp
.=X # print out new sp

7FFE6EC8
<sp-0x14/X # find rp in caller's
7FFE6EB4: 0xDF108 # stack frame
0xDF108/i # what instruction address
trap+0xA28: b trap+0xF18 # does rp correspond to?
trap/3i # Look at beginning of trap
trap: # for stack frame size
trap: stw rp,-14(sp)

stwm r3,100(sp) # stack frame size is 0x100
stw r4,-0xFC(sp)

<sp-0x100>sp # calculate new sp
.=X # print out new sp

7FFE6DC8
<sp-0x14/X # find rp in caller's
7FFE6DB4: 0xD0BD4 # stack frame
0xD0BD4/i # what instruction address
$call_trap+20: rsm 1,r0 # does rp correspond to?

184

Debugging STREAMS/UX Modules and Drivers
Using adb

[2] Save state structure + 0x84 is the location of thepcogh.

[3] adb's response -- 96B70 is the return instruction address.

[4] Save state structure + 0x78 is the location of thesp.

[5] adb's response -- 7FFE6B98 is the current stack pointer.

[6] Resetsp to the correct value.

[7] Continue to iterate the four basic stack back-tracing steps.

The table of results from the back-tracing so far should look like this:

Mapping Assembly Language Locations to Source Code Lines

Once you know the instruction address location where the system panic or
trap occurred, the troubleshooting step is to find where in the source code the
panic or trap occurred. For panics, search the source code for the panic
which uses the same string that was printed out when the kernel panicked.
This will tell you exactly where the panic occurred in the source code. The
method for traps is to useadbto print out the procedure in which the trap
occurred in assembly language. Then, work backwards from the instruction
address, looking for clues in the assembly instructions which will help
pinpoint the corresponding location in the source. The most useful clue is a
branch to another procedure. In PA-RISC, branches are done with the
branch and link instruction, bl, and in assembly a branch will look like this:

sp pcoqh Procedure Address Frame Size

20F380
20F350
20F2D0
7FFE6F48
7FFE6EC8
7FFE6DC8
7FFE6B98

24B34
0xDBF48
0xDB938
1518A4
0xDF108
0xD0BD4
96B70

doadump+0xEC
panic_boot+354
boot+24
panic+0xF0
trap+0xA28
$call_trap+20
qenable+10

0x30
0x80
0x80
0x80
0x100

0x80

185

Debugging STREAMS/UX Modules and Drivers
Using adb

bl copen,rp [1]

[1] a procedure call tocopen()

or:

bl creat+34,rp (save_pn_info) [1]

[1] a procedure call tosave_pn_info()

By comparing the branches in the assembly code before and after the
instruction where the trap occurred with the procedure calls in the source
code, the corresponding source code line can often be determined. See the
examples at the end of this chapter for more details.

Other useful assembly code landmarks are the use of theextru, extrs, zdep,
andldws instructions in checking and setting flag bits, and the use of the
compare and branch instructions,comb, combf, combt, comib, comibf, and
comibt, to implement if statements. For example, theioctl() source code:

if ((fp->f_flag & (FREAD|FWRITE)) == 0)

is implemented by the assembly code:

ioctl+60: ldws 0(r8),r13 [1]
ioctl+64: extru r13,1F,2,r14 [2]
ioctl+68: comibf,=,n 0,r14,ioctl+80 [3]

[1] Load from memory address pointed to by r8, into r13.

[2] Extract 2 bits from r13, starting at bit 1F, place bits in r14.

[3] If r14 is not zero, branch to ioctl+0x80.

In the example above,fp is in r8. Iffp were null, a trap type 15 would occur
at ioctl+60, when attempting to load off of a null pointer.

For more information about PA-RISC assembly language, see theAssembly
Language Reference Manual (part number 92432-90001), thePA-RISC 1.1
Architecture and Instruction Set Reference Manual (part number
09740-90039), or thePA-RISC Procedure Calling Conventions Reference
Manual (part number 09740-90015).

186

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Procedure Argument Values

It is often useful in debugging a problem to know what parameter values a
procedure in the stack trace was called with. For example, in the following
stack trace it would be useful to know the argumentsflushq() was called
with.

panic+30: addil -1000,dp
trap+0xADC: b trap+1004
$call_trap+20: rsm 1,r0
flushq+60: ldbs 0xD(r21),r22
q_free+1C: ldw -0xA4(sp),r31

Obtaining the First Four Arguments

Arguments 0 through 3 are passed from the calling procedure to the called
procedure by loading the values into registers 23 - 26. These registers are
also known asarg0, arg1, arg2, andarg3. For example, here isbmap()
preparing to callrealloccg() by movingrealloccg()'s arguments from the
registers they are in to the argument registers by doing anor on the source
registers with r0, which is always zero:

bmap+16C: or r10,r0,arg1
bmap+170: or ret0,r0,arg2
bmap+174: or r8,r0,arg3
bmap+178: or r4,r0,arg0
bmap+17C:

Next, here isflushq() preparing to callrmvq() by loadingarg0 andarg1 from
its stack frame. Note thatarg1 gets loaded in the delay slot of the branch
instructionbl. See theAssembly Language Reference Manual or the
PA-RISC 1.1 Architecture and Instruction Set Reference Manual for more
information on branch delay slots.

flushq+0xE0: ldw -64(sp),arg0
flushq+0xE4: bl rmvq,rp
flushq+0xE8: ldw -34(sp),arg1

After allocating its stack frame and saving any callee save registers, the
called procedure will usually load the argument registers into some of the
callee save registers that it just saved the values of. For example, here is
realloccg() saving the contents of the callee save registers r3 - r10 and
loadingarg0 - arg3 into somecallee save registers.

187

Debugging STREAMS/UX Modules and Drivers
Using adb

realloccg: stw rp,-14(sp)
realloccg+4: stwm r3,80(sp)
realloccg+8: stw r4,-7C(sp)
realloccg+0xC: stw r5,-78(sp)
realloccg+10: stw r6,-74(sp)
realloccg+14: stw r7,-70(sp)
realloccg+18: stw r8,-6C(sp)
realloccg+1C: stw r9,-68(sp)
realloccg+20: stw r10,-64(sp)
realloccg+24: or arg0,r0,r3
realloccg+28: or arg1,r0,r6
realloccg+2C: or arg2,r0,r7
realloccg+30: or arg3,r0,r4

Here isrmvq() storing its arguments away in its stack frame:

rmvq: stw rp,-14(sp)
rmvq+4: ldo 80(sp),sp
rmvq+8: stw arg0,-0xA4(sp)
rmvq+0xC: stw arg1,-0xA8(sp)

If the arguments were put intocallee save registers, the next procedure up in
the stack trace will save these registers in its stack frame. You can retrieve
these values from the stack. If the arguments are stored on the stack frame,
you can also retrieve them from the stack. But first you must make sure that
the contents of thecallee save registers or the stack frame locations you are
interested in were not modified between the time the arguments were loaded
at the beginning of the procedure and the time the next procedure call on the
stack trace took place. The easiest way to determine this is to haveadb print
out the assembly code for the procedure into a file and use an editor such as
vi to find all references to the register between the beginning of the
procedure and the branch to the next procedure in the stack trace. If none of
these references modify the register, the value which the next procedure has
saved in its stack frame is valid.

To print the assembly of a procedure to a file usingadb:

$>filename [1]
procedure,100/ia [2]
$> [3]

[1] Tell adb to directstdout to the filefilename. There should be no space
between $> and the filename.

[2] Print the first 0x400 instructions of procedure.

[3] Setstdout back to the terminal.

188

Debugging STREAMS/UX Modules and Drivers
Using adb

Now, editfilename, and search for all instances of the register or stack frame
location of interest. Any instruction which would modify the contents of the
register could potentially overwrite the information you are trying to get.
Below are some examples of modifying instructions. Note that in all cases
the register being modified, also known as the target register, is the last
register in the instruction.

ldw 10(r3),r4 will overwrite r4
ldhs 4(r3),rp will overwrite rp
ldo -1(r20),r22 will overwrite r22
ldwx r31(arg3),r21 will overwrite r21
or r3,r0,arg0 will overwrite arg0
extrs ret1,1F,10,r21 will overwrite r21
zdep r20,1A,1B,r31 will overwrite r31
sub r31,arg1,r31 will overwrite r31
sh3add arg1,r0,r31 will overwrite r31
stw r19,-38(sp) will overwrite memory location sp - 0x38

Sometimes an instruction which modifies the register of interest can appear
to occur between the beginning of the procedure and the call to the next
procedure in the stack because of how the assembly code is laid out.
However, the modifying instruction actually would not have been executed
because it was part of a conditional code path that was not taken. For
example, this C code fromioctl():

if ((fp->f_flag & (FREAD|FWRITE)) == 0) {
 u.u_error = EBADF;
 return;
}

compiles into this assembly:

ioctl+60: ldws 0(r8),r13
ioctl+64: extru r13,1F,2,r14
ioctl+68: comibf,=,n 0,r14,ioctl+80
ioctl+6C: ldw 68(r3),r19
ioctl+70: ldo 9(r0),r21
ioctl+74: sth r21,312(r19)
ioctl+78: b ioctl+7F0
ioctl+7C: ldw -1D4(sp),rp
ioctl+80: ldws 4(r5),r7

If the if statement is false, the branch atioctl+68 is taken, and instruction
ioctl+6C is never executed because the,n in ioctl+68 causes the instruction
in the branch delay slot to be nullified, or not executed. ioctl+70 through
ioctl+7c are never executed because the branch at ioctl+68 branches past
these instructions to ioctl+80. If ioctl+6c through ioctl+7C had been
executed, r19, r21, and rp would have been modified.

189

Debugging STREAMS/UX Modules and Drivers
Using adb

Suppose you have determined that the procedure whose arguments you are
interested in does not modify the registers it loaded the arguments into
before the next procedure call in your stack. You can look at the appropriate
location in the stack frame of the next procedure call in the stack to get the
value. For example, if a routine whose registers you are interested in has
called panic, you look at the beginning of panic's assembly to see which
callee save registers it saves in its stack.

panic: stw rp,-14(sp)
panic+4: stwm r3,40(sp)
panic+8: stw r4,-3C(sp)
panic+0xC: stw r5,-38(sp)
panic+10: stw r6,-34(sp)

Obtain panic'ssp by manual stack back-tracing, and then r3 is atsp - 0x40,
r4 at sp - 0x3C, and so on.

Obtaining Arguments 5 through N

Only the first four arguments to a procedure are passed via registers. Any
remaining arguments are pushed onto the calling procedure's stack frame,
where the called procedure will retrieve them. If you have the calling
procedure'ssp you can useadb to get the values of the arguments. For
example,symlink() callslookuppn(), which has six arguments. Here is the
assembly code which sets up the six arguments:

symlink+40: stw r4,-34(sp)
symlink+44: stw r3,-38(sp)
symlink+48: ldo -3C(sp),arg2
symlink+4C: ldo -9C(sp),arg0
symlink+50: or r0,r0,arg1
symlink+54: bl rename+34,rp (lookuppn)
symlink+58: or r0,r0,arg3

If you want to get the fifth argument, you see thatsymlink() places it in its
stack frame at sp - 0x34. Argument 5 is at -0x34 because the procedure
calling convention specifies that arguments get placed in the stack frame in
reverse order, so arg6 is at sp - 0x38, just above arg5, and iflookuppn() had
seven arguments, arg7 would be placed at sp - 0x3C. If you know
symlink()'s sp from doing a manual stack back-trace, you can use it to get the
value of argument 5:

7FFE6B98-0x34/X
7FFE6B64: 2D7298 # adb's response

190

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Register Contents from Trap save_state or panic_save_state Areas

If the system core dump was produced by a panic or a trap, copies of all the
registers at the time of the trap or panic were saved in memory and are
available in the core dump. For a trap, the registers are saved on the stack, in
the order specified in the structsave_state, which is defined in
/usr/include/machine/save_state.h. For a panic, the registers are saved in a
statically allocated memory location calledpanic_save_state, in the order
specified in the structrpb, which is defined in/usr/include/machine/rpb.h.
See the examples at the end of this chapter for details of how to access
registers in the trapsave_state area. The mechanics of accessing
panic_save_state fields are similar, though the offsets into the save area are
different. For example, if you want to get r3 out of thepanic_save_state
area, look at/usr/include/machine/rpb.h and note that the fieldrp_gr3 is the
sixth word in structrpb. Therefore, it can be found atpanic_save_state + 5
words ==panic_save_state + 0x14.

Not all registers in these save areas are guaranteed to be the same as at the
time of the panic or trap, because some registers must be used by the system
to execute the panic or trap path and save away the other registers. Registers
which may not be preserved are r1, r19 - r22, r31, arg0, arg1, arg2, and arg3.
Use your judgment with the contents of these registers in the save areas. If
they look odd, they may have been overwritten.

If your stack trace includes a call totrap(), it will also have a call topanic()
higher up (later in time) than the trap. In this case, it is safer to look in the
trapsave_state structure on the stack than thepanic_save_state area for
registers you are curious about, because the trap saved the registers closer in
time to when the problem which caused the system crash occurred.

191

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Important Kernel Global Variables

To print out the value of a kernel global variable, simply use the symbol
name with the appropriate formatting option (see adb(1) and the ADB
Tutorial for more information). The following table lists some of the more
interesting kernel globals, with the appropriateadb format for printing them,
and brief descriptions of what they mean.

adb Command Description

msgbuf+0xc/sD Kernel’s circular printf buffer.

freemem/D Amount of free memory, in pages. If zero or a small number,
system is out of memory.

physmem/D Size of physical memory, in pages.

maxfree/D Number of free pages soon after system boot.

desfree/D Number of free pages the system tries to keep available.

minfree/D Minimum free pages before system starts swapping processes out.

avefree/D Average number of free pages over past 5 seconds.

avefree30/D Average number of free pages over past 30 seconds.

freemem_cnt/D Number of processes currently waiting for memory. If large
number, many processes are stopped waiting for memory.

avenrun/3F System load average, for the last one minute, five minutes, and 10
minutes, in floating point notation. If large numbers, system may
be too heavily loaded.

lbolt/X Seconds since boot.

time/Y Current time, printed out inctime(3C) format.

_release_version/s HP-UX version string.

utsname+0x9/s System hostname

utsname+0x12/s HP-UX release number.

utsname+0x24/s System hardware model number.

192

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Values from the Process Table Entry and User Area

It is possible to useadb to print out fields of interest from the process table
entry and user area of the process that was running when the system crashed.
The following subsection describes how to print certain important fields and
gives a very brief description of each field. For more information on the
meaning of these fields, seeThe Design of the UNIX Operating System by
Maurice Bach, pub. Prentice-Hall, orThe Design and Implementation of the
4.3 BSD UNIX Operating System by Leffler, McKusick, Karels and
Quarterman, pub. Addison-Wesley.

adb, when called with the -k option, should print out the address of the user
area and process table entry of the process that was running when the system
crashed.adb will print this out when it is first entered, so the first output you
should see fromadb is:

u 7FFE6000 u.u_procp 4D2F20

u is the location of the user area, and should always be at virtual address
7FFE6000. When the kernel switches to a new process, it always maps the
physical address of the process' user area to virtual address 7FFE6000.
u.u_procp is the location of this process' process table entry. This address
will vary from process to process. Ifadb does not print theu andu.u_procp
values on entry, it was unable to determine the currently running process at
crash time.adb was unable to print these values probably because your core
dump was the result of a Transfer of Control (TOC).

If the process that caused the panic was running on the Interrupt Control
Stack (ICS), theu andu.u_procp pointers will not contain valid information
for the process. When an interrupt occurs the kernel executes the appropriate
kernel code to process the interrupt without switching to a new user context.
Theu andu_procp address whichadb will print will be the process that was
running when the interrupt occurred. The interrupt interrupted the running
of that process in order to process the interrupt. Look at the panic message
in msgbuf to tell if the panic occurred while on the ICS. If you see a
message like the following after the hex stack trace, the process was on the
ICS.

NOT sync'ing disks (on the ICS) (0 buffers to flush):

193

Debugging STREAMS/UX Modules and Drivers
Using adb

Important User Area Fields

The table below describes theadb command to use to print important user
area fields.u means the value markedu printed onadb entry (see example
above). When executing theadb commands in the table below, substitute
theu value printed onadb entry for the letteru.

For example, to printu_comm, given theadb entry printout u 7FFE6000
u.u_procp 4D2F20, type:

0x7FFE6000+0x260/s

See/usr/include/sys/user.h for more information on fields in the user area.
These offset values are for HP-UX release 10.0, and may change from
release to release.

Important Process Table Fields

The table below describes theadb command to use to print important
process table fields.p means the value markedu.u_procp printed onadb
entry (see example above). When executing theadb commands in the table
below, substitute theu.u_procp value printed out onadb entry for the letter
p. For example, to print outp_flag, given theadb entry printout at the
beginning of this section, type:

0x4D2F20+0x20/X

See/usr/include/sys/proc.h for more information on fields in the proc
structure. These offset values are for HP-UX release 10.0, and may change
from release to release.

Field Name Address Description

u_procp u+0x258/X Pointer to process table entry.

u_comm u+0x260/s [Series 700]
u+0x264/s [Series 800]

Name of command used to start this process. For
STREAMS/UX, this is usuallystrsched.

u_arg u+0x270/10X [Series 700]
u+0x274/10X [Series 800]

Arguments to current system call. For
STREAMS/UX service routines being run by
strsched, these should all be zero.

194

Debugging STREAMS/UX Modules and Drivers
Using adb

Field Name Address Description

p_flag p+0x20/X [Series 700]
p+0xc/X [Series 800]

per-process flags, seeproc.h

p_flag2 p+0x24/X [Series 700]
p+0x48/X [Series 800]

per-process flags, seeproc.h

p_mpflag p+0x10/X [Series 800 only] per-process flags, seeproc.h

p_stat p+0xc/b [Series 700]
p+0x32/b [Series 800]

current process state, seeproc.h

p_uid p+0x2c/D [Series 700]
p+0x0x50/D [Series 800]

real user id, used to direct tty signals

p_suid p+0x30/D [Series 700]
p+0x54/D [Series 800]

set effective uid

p_pid p+0x38/D [Series 700]
p+0x5c/D [Series 800]

process id

p_ppid p+0x3c/D [Series 700]
p+0x60/D [Series 800]

process id of parent

p_pgrp p+0x34/D [Series 700]
p+0x58/D [Series 800]

process id of process group leader

p_wchan p+0x40/X [Series 700]
p+0x1c/X [Series 800]

event process is sleeping on
should be zero if currently running

p_sleeptime p+0x24/X [Series 800 only] time of last sleep or wakeup (in seconds)

p_cptickstotal p+0x4c/X [Series 700]
p+0x14/X [Series 800]

cpu ticks (total for life of process)

p_cursig p+0xe/b [Series 700]
p+0x34/b [Series 800]

number of current pending signal, if any

p_sig p+0x10/X [Series 700]
p+0x38/X [Series 800]

signals pending to this process

p_sigmask p+0x14/X [Series 700]
p+0x3c/X [Series 800]

current signal mask

195

Debugging STREAMS/UX Modules and Drivers
Using adb

p_sigignore p+0x18/X [Series 700]
p+0x40/X [Series 800]

signals being ignored

p_sigcatch p+0x1c/X [Series 700]
p+0x44/X [Series 800]

signals being caught by user

Field Name Address Description

196

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

Debugging Examples

Example 1

The following core dump was obtained while using a modified version of the
sp driver, which is described in example #2 in thestrdb section of this
chapter.

On entry to adb, we first look at themsgbuf to look for the panic message
and hex stack trace. The interesting portion ofmsgbuffor this dump is:

msgbuf+10/s
 .
 .
 .
interrupt type 15, pcsq.pcoq = 0.3b2cc, isr.ior = 0.0
Data page fault on interrupt stack
 B2352A HP-UX () #1: Fri Aug 14 00:49:59 PDT 1992
panic: (display==0xbf00, flags==0x0) Interrupt
PC-Offset Stack Trace (read across, most recent is 1st):
 0x0013e81c 0x000cddb8 0x000bc93c 0x0003b2cc 0x0012e2bc
0x0016b350
End Of Stack

First we translate the hex stack trace in the panic message into procedure
names and addresses. Using theadb i command for each of the hex
addresses in the panic message stack trace, we get the following symbolic
stack trace:

panic+40: addil 800,dp
interrupt+7E8: rsm 1,r0
$ihndlr_rtn: rsm 1,r0
sp_timeout+2C: ldws 0(arg3),arg2
softclock+94: b,n softclock+30
external_interrupt+350: ldil 261000,r22

The address where the illegal data access occurred issp_timeout+2C. The
isr.ior in the panic message indicates that the data address that caused the
panic is 0.0, and the instruction atsp_timeout+2C is ldws 0(arg3),arg2, so
arg3 must have been 0 at the time of the panic. So we are probably
dereferencing a null pointer. Our first task is to find out which pointer this is.
To do this we need to know which source code linesp_timeout+2C
corresponds to. Here is the source code forsp_timeout():

197

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

struct sp {
 unsigned sp_state;
 queue_t *sp_rdq;
 mblk_t *mp;
 mblk_t *last_mp;
};

static sp_timeout(lp)
struct sp *lp;
{
 mblk_t *temp;
 unsigned int s;

 if (lp->sp_state & SPOPEN) {
 /* Put message on driver's read queue */
 s = splstr();
 temp = lp->mp;
 lp->mp = lp->mp->b_next;
 if (lp->mp == NULL) lp->last_mp = NULL;
 temp->b_next = NULL;
 putq(lp->sp_rdq,temp);
 splx(s);
 }
}

Here is the relevant portion of the assembly code. The instruction which
caused the panic is marked with an “*.”

sp_timeout,20?ia # adb command
sp_timeout: # adb's response
sp_timeout: stw rp,-14(sp)
sp_timeout+4: stwm r3,40(sp)
sp_timeout+8: stw r4,-3C(sp)
sp_timeout+0xC: or arg0,r0,r3
sp_timeout+10: ldws 0(r3),arg1
sp_timeout+14: bb,>=,n arg1,31,sp_timeout+58
sp_timeout+18: bl tmxlwsrv+6C,rp (splstr)
sp_timeout+1C: or r0,r0,r0
sp_timeout+20: or ret0,r0,r4
sp_timeout+24: ldws 8(r3),arg1
sp_timeout+28: ldws 8(r3),arg3

*sp_timeout+2C: ldws 0(arg3),arg2
sp_timeout+30: stws arg2,8(r3)

At sp_timeout+0xC, arg0, which corresponds to the source code variablelp
is moved to r3. We know arg0 islp, becauselp is the first argument to
sp_timeout(). sp_timeout+0x14 looks like the if statement in the source
code, becausebb is a branch instruction.sp_timeout+0x18 is the call to
splstr(). sp_timeout+0x28 loads arg3 with the memory contents at location
r3 + 0x8. arg3 is the source code variablelp->mp. We can guess this
because mp is 8 bytes from the start oflp, according to the declaration for
the structsp. So our problem is thatlp->mp is NULL. We want to confirm

198

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

this, and want to look at the rest of *lp. To do so, we need to find the value
of r3 at the time of the panic. We may be able to extract this information
from the stack if we know the value ofsp at the time of the panic. To get this
information, we do a manual stack back-trace. See “Manual Stack
Back-Tracing” for details on how this is done. The resulting table is shown
below:

Now that we have the values ofsp, we want to look into the stack of the
procedure abovesp_timeout() in the stack trace to find what value that
procedure saved in its stack for r3. In this case, the procedure above
sp_timeout() is$ihndlr_rtn. $ihndlr_rtn is one of the low-level kernel utility
procedures which is hand-coded in assembly and does not create a normal
stack frame. Instead it creates a “save state” area, which contains the values
of all the registers at the time the trap or interrupt took place. The structure
save_state is defined in/usr/include/machine/save_state.h. The general
registers are stored first, and are located at “top of save state area” +
“register number” * 4. For example, r3 will be 3*4 = 12 off of the beginning
of the save state area. To find the top of the save state area, subtract the size
of thesave_state structure from the value ofsp for $ihndlr_rtn:

0x16560-0x230>sp # set sp to top of trap save state
<sp/X
16330: 0xF000009 # first word of save state area
<sp+0xC/X # find contents of r3 (lp) at sp + 3*4
icsBase+33C: 24C258
24C258+0x8/X # find 8 off of r3 (lp->mp)
sp_sp+18: 0 # lp->mp is NULL
0x24c258/4X # look at all of lp:

state *sp_rdq *mp *last_mp
sp_sp+10: 1 1040C00 0 10F7C00

We can also usestrdb to look atlp. (See thestrdb section of this chapter for
details.) There may be several instances of thesp driver, each with a
different minor number, so we must look at each one until we find the

sp pcoqh Procedure Address Frame Size

0x1fdb80
0x1fdb50
0x1fdad0
0x16860
0x167e0
0x16560
0x16330
0x162f0

0x24b34
0xc8f48
0xc8938
0x13e8cc
0xcddb8
0xbc93c
0x3b2cc
0x12e2bc

doadump+0xec
panic_boot+0x354
boot+0x24
panic+0xf0
interrupt+0x7e8
$ihndlr_rtn
sp_timeout+0x2c
softclock+0x94

0x30
0x80
0x100
0x80
0x280
0x230
0x40
0x80

199

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

instance whoseq_ptr is the same as the address we have forlp. lp is a
pointer to thesp driver's private data, which is also pointed to byq_ptr. The
strdb STREAMS/UX subsystemla command will tell us what minor
numbers are in use for thesp driver:

:la sp

sp MAJOR = 115
ACTIVE Minor 2 Stream head RQ = 0x0810eb000
ACTIVE Minor 1 Stream head RQ = 0x081107a00
ACTIVE Minor 0 Stream head RQ = 0x0810ebe00

The strdb STREAMS/UX subsystem commandlm will show us what
modules may have been pushed into the stream above thesp driver:

:lm sp 0

STREAM Head
lmodc
Driver sp

In this case, the panicking stream happens to correspond to thesp with
minor number 1. From thestrdb STREAMS/UX subsystem, we use “:qh sp
1” to get to the read queue of the stream head containingsp driver with
minor number 1. Then theo command to get to the write queue of the stream
head. Next then command twice to get from the stream head through the
module lmodc to the driversp. Here is the display of theq information for
driversp, minor number 1. Note thatq_ptr is 0x24c258, which is the
address oflp.

:qh sp 1

struct queue 0x1040c74

q_qinfo = 0x1e545c q_pad1[2] = 00
q_first = 0x0q_other = 0x1040c00
q_last = 0x0
q_next = 0x0
q_link = 0x0
q_ptr = 0x24c258
q_count = 0
q_flag = 0x1128
 QWANTR
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = 256
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x105fd40

200

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

q_nband = 1
q_pad1[0] = 00
q_pad1[1] = 00

Now that we have reached the queue structure for the panickingsp driver
instance, we can usestrdb or adb to examine its contents. Using thestrdb
command:b, we can look atq_ptr, and see that itsmp field (the third word)
is NULL:

At this point, we have probably learned all that we can from the dump and
must turn to the source code to discover the cause of this problem. We next
examine the code carefully everywhere thatlp->mp is updated or should be
updated. Becausesp driver's put routine,spput(), should be updating
lp->mp, we look at it first.

static spput(q, mp)
queue_t *q;
mblk_t *mp;
{
 struct sp *lp;
 unsigned int s;

 switch (mp->b_datap->db_type) {
 case M_DATA:
 case M_PROTO:
 case M_PCPROTO:
 s = splstr();
 lp = q->q_ptr;
 if (!lp->last_mp)
 lp->last_mp = mp;
 else
 lp->last_mp->b_next = mp;
 splx(s);

:b 0x24c258

0x0024c258 00 00 00 01 01 04 0c 00 00 00 00 00 01 0f 7c 00 |
0x0024c268 00 00 00 01 01 0f 8e 00 00 00 00 00 00 00 00 00 |
0x0024c278 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c288 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c298 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c2a8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c2b8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c2c8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c2d8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c2e8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c2f8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c308 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c318 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c328 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024c338 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

201

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

 timeout(sp_timeout,lp,1);
 break;
 default:
 printf(“Routine spput: Should not be here\n”);
 break;
 }
}

Note thatspput() never updateslp->mp. It just adds the new message to the
tail of the list usinglp->last_mp. But oncesp_timeout() has processed the
last message on the list and setlp->mp to NULL, spput() will never update
lp->mp to point at the next message it receives. This causessp_timeout() to
be called withlp->mp == NULL. If we changespput() if statement to
properly updatelp->mp as shown below, this panic will be fixed.

if (!lp->mp)
 /*
 * head of list is NULL so list is empty -- put new message
 * at head of list
 */
 lp->mp = mp;
else
 /*
 * list is not empty -- put new message at tail of list
 */
 lp->last_mp->b_next = mp;
/*
 * update list tail pointer to point to new message
 */
lp->last_mp = mp;

Example 2

The following core dump was obtained while using a modified version of the
sp driver, which is described in example #2 in thestrdb section of this
chapter.

On entry toadb, we first look at themsgbuf to look for the panic message
and hex stack trace. The interesting portion ofmsgbuf for this dump is:

msgbuf+0xc/s
 .
 .
 .
trap type 15, pcsq.pcoq = 0.3b584, isr.ior = 0.0
 B2352A HP-UX () #1: Fri Aug 14 00:49:59 PDT 1992
panic: (display==0xbf00, flags==0x0) Data segmentation fault
PC-Offset Stack Trace (read across, most recent is 1st):
 0x0013e81c 0x000cc108 0x000bd3f4 0x0003b584 0x00049a48 0x0004bd0c
 0x0002f7d4 0x00046178 0x00049a48 0x000460d0 0x00046594 0x0012cc10
 0x000bedd0 0x00024cf0
End Of Stack

202

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

First we translate the hex stack trace in the panic message into procedure
names and addresses. Using theadb i command for each of the hex
addresses in the panic message stack trace, we get the following symbolic
stack trace:

panic+40: addil 800,dp
trap+0xA28: b trap+0xF18
$call_trap+20: rsm 1,r0
spput+4C: stws r31,0(r1)
csq_lateral+80: b,n csq_lateral+8C
puthere+4C: ldw -54(sp),rp
lmodcsrv+5C: bl getq,rp
sq_wrapper+50: ldw -54(sp),rp
csq_lateral+80: b,n csq_lateral+8C
runq_run+58: b,n runq_run+74
str_sched_daemon+264: b str_sched_daemon+160

The address where the illegal data access occurred isspput+4C. Theisr.ior
in the panic message indicates that the data address that caused the panic is
0.0, and the instruction atspput+4C is stws r31,0(r1), so r1 must have been 0
at the time of the panic. We are probably dereferencing a null pointer. Our
first task is to find out which pointer this is. To do this we need to know to
which source code linespput+4C corresponds to. Here is the source code
for spput():

struct sp {
 unsigned sp_state;
 queue_t *sp_rdq;
 mblk_t *mp;
 mblk_t *last_mp;
};

static spput(q, mp)
queue_t *q;
mblk_t *mp;
{
 struct sp *lp;
 unsigned int s;

 switch (mp->b_datap->db_type) {
 case M_DATA:
 case M_PROTO:
 case M_PCPROTO:
 lp = q->q_ptr;
 if (!lp->mp)
 lp->mp = mp;
 else
 lp->last_mp->b_next = mp;
 lp->last_mp = mp;
 timeout(sp_timeout,lp,1);
 break;
 default:

203

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

 printf(“Routine spput: Should not be here\n”);
 break;
 }
}

Here is the relevant portion of the assembly code. The instruction where the
panic occurred is marked with an “*”.

 spput,40?ia
 spput:
 spput: stw rp,-14(sp)
 spput+4: ldo 40(sp),sp
 spput+8: or arg1,r0,r31
 spput+0xC: ldw 14(r31),r22
 spput+10: ldbs 0xD(r22),arg1
 spput+14: ldo -41(r0),arg2
 spput+18: ldo -41(arg1),arg3
 spput+1C: combt,=,n arg2,arg3,spput+30
 spput+20: ldo -40(r0),ret1
 spput+24: combt,=,n ret1,arg3,spput+30
 spput+28: ldo 42(r0),r19
 spput+2C: combf,=,n r19,arg3,spput+78
 spput+30: ldw 14(arg0),arg1
 spput+34: ldws 8(arg1),ret0
 spput+38: comibf,=,n 0,ret0,spput+48
 spput+3C: stws r31,8(arg1)
 spput+40: b spput+54
 spput+44: stws r31,0xC(arg1)
 spput+48: ldws 0xC(arg1),r1
* spput+4C: stws r31,0(r1)
 spput+50: stws r31,0xC(arg1)
 spput+54: ldil 3B000,rp
 spput+58: ldo 298(rp),r20
 spput+5C: extru,= r20,1F,1,r21
 spput+60: ldw -4(dp),r21
 spput+64: ldo 1(r0),arg2
 spput+68: bl spclose+0xB4,rp (timeout)

First, we try to get a general idea wherespput+0x4C falls in the source code.
It occurs before the call totimeout() atspput+0x68. The pattern ofcombt
andcombf instructions from spput+0x1C tospput+0x2C correspond to the
switch statement in the source code. We guess this by noticing that we have
loaded a value into arg3 which we compare against three different values,
which resembles the first three case statements in the switch statement. It is
unlikely that the default case of the switch statement, which just does a
printf(), would cause the system to panic.spput+0x4C is probably in the
source code in the case statement for M_DATA, M_PROTO, and
M_PCPROTO. Thecomibf instruction atspput+0x38 must correspond to
the if (!lp->mp) source statement, because it is a conditional branch
statement, and it is comparing a register to 0 (zero).

204

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

We may be able to determine whether we executed the “if” clause or the
“else” clause of the if statement, based on the fact that we know we executed
spput+0x4C (because a trap occurred while executing it). Thecomibf
instruction branches to its target address if the condition it is checking is
false. Thiscomibf instruction compares ret0 to zero. If ret0 equals zero,
comibf will not branch, and execution will continue tospput+0x3C and
spput+0x40. spput+0x40 is an unconditional branch tospput+0x54, which
is pastspput+0x4C. Therefore, if ret0 had been zero, we never would have
executedspput+0x4C. So ret0 was not zero. Since we know that thecomibf
instruction corresponds to “if (!lp->mp),” we know that lp->mp was not
NULL, and thecomibf instruction branches tospput+0x48 if lp->mp is not
NULL, we can be confident thatspput+0x48 andspput+0x4C are part of the
else clause of theif statement, which consists of one statement,
“lp->last_mp->b_next = mp;.”

Now we know which source code line we panicked on. We need to
determine which source code pointer the register r1 corresponds to, because
dereferencing r1 is what caused the panic. To do this, we work backwards
from spput+0x4C to see where r1's contents came from. Onspput+0x48, r1
gets loaded from arg1 + 0xC. Now we look backward to see where arg1
came from. It is tempting to assume that arg1 is the second argument to
spput, which ismp. But atspput+0x10, arg1 is the target of a load, so at
spput+0x48 arg1 does not contain mp. It is also tempting to look at
spput+0x44 for the origins of arg1's contents, because that instruction has
arg1 as its target. But because we took thecomibf atspput+0x38, we must
have branched aroundspput+0x44, so we can ignore this instruction.
Looking further backward tospput+0x30, arg1 gets loaded from arg0 +
0x14. arg0 has not been the target of a load instruction since the beginning
of spput, so it must still contain the first argument tospput, q. Looking at the
source code, the only time thatq is referenced is to setlp in the statement
before the if. So arg1 must correspond tolp. Looking at the source code line
where the panic occurred, “lp->last_mp->b_next = mp,” and the assembly
code linesspput+0x48 andspput+0x4C, it appears thatspput+0x48 is setting
r1 to lp->last_mp, andspput+0x4C is attempting to put the contents of r31
into memory location r1 + 0, which must be “lp->last_mp->b_next”.

So our problem is that lp->last_mp is NULL. It may help us to look at the
rest of*lp , and to do so we need to find the value of arg1 at the time of the
panic. We may be able to extract this information from the stack if we know

205

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

the value of sp at the time of the panic. To get this information, we do a
manual stack back-trace. See “Manual Stack Back-Tracing” for details on
how this is done. The resulting table is shown below:

Now that we have the values ofsp, we want to look into the stack frame of
the procedure abovespput() in the stack trace, to find what value that
procedure saved in its stack for arg1. In this case, the procedure above
spput() is $call_trap. $call_trap is one of the low-level kernel utility
procedures which is hand-coded in assembly and does not create a normal
stack frame. Instead it creates a “save state” area, which contains the values
of all the registers at the time the trap or interrupt took place. The structure
save_state is defined in/usr/include/machine/save_state.h. The general
registers are stored first, and are located at “top of save state area” +
“register number” * 4. So, for example, arg1, which is also known as r25,
will be 25*4 = 100 off of the beginning of the save state area. To find the top
of the save state area, subtract the size of thesave_state structure (0x230 in
release 9.0) from the value ofsp for $call_trap:

0x7ffe6e08-0x230>sp # set sp to top of trap save state
<sp/X
7FFE6BD8: 0xF000009 # first word of save state area
0x7ffe6bd8+0x4/X
7FFE6BDC: 0 # find contents of r1 (lp->last_mp)

at sp + 1*4. NULL, as we thought
0x7ffe6bd8+0x64/X # find contents of arg1 (lp) at

sp + 25*4.
7FFE6C38: 0xFFFFFFBF

0xFFFFFFBF is a very unlikely value forlp. It is more likely that the
contents of arg1 were changed in the process of taking a trap. The four arg
registers are considered scratch registers, and the trap path is very likely to
have overwritten these registers before it created the save state area.

sp pcoqh Procedure Address Frame Size

0x1fdb80
0x1fdb50
0x1fdad0
0x7ffe6f88
0x7ffe6f08
0x7ffe6e08
0x7ffe6bd8
0x7ffe6b98

0x24b34
0xc8f48
0xc8938
0x13e8cc
0xcc108
0xbd3f4
0x3b584
0x49a48

doadump+0xEC
panic_boot+354
boot+0x24
panic+0xf0
trap+0xf18
$call_trap
spput+0x4c
csq_lateral+0x80

0x30
0x80
0x80
0x80
0x100
0x230
0x40
0x80

206

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

However, there is an alternative way to find out the value oflp. If we can
determine what the procedure that calledspput() set arg0 to before the call,
we will know the value ofq, andlp is q->q_ptr.

The procedure which calledspput() is csq_lateral(). The point where the
call was made is marked with an asterisk. Note that the procedure call here
is made using the instructionble instead of the usual instructionbl. This is
becausecsq_lateral does not know the name of the procedure it is going to
call. csq_lateral() is passed a structure which contains the address of a
procedure to call and the arguments with which to call it. Because the
compiler cannot tell at compile time how far away in the executable image
the procedure address is, it must use a branch and link external, ble,
instruction in order to be sure it will be able to reach the procedure address
being branched to.

 csq_lateral+40,15?ia
 csq_lateral+40: ldws 8(r3),arg2
 csq_lateral+44: depi -1,1E,1,arg2
 csq_lateral+48: stws arg2,8(r3)
 csq_lateral+4C: bl csq_turnover+108,rp (UNCRIT)
 csq_lateral+50: or r6,r0,arg0
 csq_lateral+54: ldw 10(r5),ret1
 csq_lateral+58: comibt,=,n 0,ret1,csq_lateral+68
 csq_lateral+5C: ldw 10(r5),arg0
 csq_lateral+60: ldw 1C(arg0),r19
 csq_lateral+64: bb,<,n r19,18,csq_lateral+84
 csq_lateral+68: ldw 1C(r5),arg1
 csq_lateral+6C: stw r0,1C(r5)
 csq_lateral+70: ldw 14(r5),r6
 csq_lateral+74: ldw 18(r5),arg0
* csq_lateral+78: ble 0(sr4,r6)
 csq_lateral+7C: or r31,r0,rp
 csq_lateral+80: b,n csq_lateral+8C

At csq_lateral+0x74, arg0 is loaded from r5 + 0x18. So if we can find out
what value r5 had at that point, we can determine the value ofq. r5 is a
callee save register, so there is a chance thatspput saved r5 in its stack
frame. We look at the first few instructions ofspput:

spput/6i
spput:
spput: stw rp,-14(sp)
 ldo 40(sp),sp
 or arg1,r0,r31
 ldw 14(r31),r22
 ldbs 0xD(r22),arg1
 ldo -41(r0),arg2

207

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

We see thatspput did not save r5. Callee registers are only saved if the
callee plans to overwrite the register. So we cannot get r5 fromspput's stack
frame, but ifspput did not save r5 that means it did not overwrite it;
therefore, the value for r5 in the save state area will be the same value that r5
had atcsq_lateral+0x74. Look at 4*5 into the save state area:

<sp+0x14/X # sp + 4*5 == r5
7FFE6BEC: 11002A0
11002A0+0x18/X # q is r5 + 0x18
11002B8: 10EE674
10EE674+0x14/X # lp is q + 0x14
10EE688: 24C278
24C278+0xC/X # lp->last_mp = lp + 0xC
sp_sp+3C: 0 # lp->last_mp is NULL
0x24c278/4X # look at all of lp:
 # state sp_rdq mp last_mp
sp_sp+30: 1 10EE600 0 0

Note that at the point the panic occurred,lp->mp was NULL, even though
we can be sure that at the time we checkedlp->mp at instruction
spput+0x38, lp->mp was not NULL. How can this be true? As we saw in
the previous example,sp_timeout() modifies thelp structure, and it runs out
of timeout. In other words,spput() callstimeout() to schedulesp_timeout()
to run after a specified amount of time. At each system clock tick, the kernel
examines the list of procedures created bytimeout() and schedules those
procedures whose time has expired to run. Because a clock tick is a high
level interrupt, it can occur at any time, and may suspendspput() if it is
running. A clock tick may have occurred betweenspput+0x38 and
spput+0x4C, allowingsp_timeout() to run and setlp->mp to NULL. In
order to prevent this, we need to protect access to thelp structure by using
splstr() around all critical sections of code in thesp driver which manipulate
lp. Sospput() source code should be changed as shown below:

case M_DATA:
case M_PROTO:
case M_PCPROTO:
 /*
 * Use splstr() to protect access to q->q_ptr area from
 * interrupts which may schedule sp_timeout().
 */
 s = splstr();
 lp = q->q_ptr;
 if (!lp->mp)
 lp->mp = mp;
 else
 lp->last_mp->b_next = mp;
 /*
 * Return to previous interrupt level

208

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

 */
 splx(s);

In order to protect access to q->q_ptr,sp_timeout() must also callsplstr()
before it accesses q->q_ptr. The source code forsp_timeout() in the first
example in this section shows the correct use ofsplstr().

See the STREAMS/UX synchronization section of Chapter 3 for guidelines
on protecting module and driver critical sections.

Example 3

The following core dump was obtained while using a modified version of the
sp driver, which is described in example #2 in thestrdb section of this
chapter.

On entry to adb, we first look at themsgbuf to look for the panic message
and hex stack trace. The interesting portion ofmsgbuf for this dump is:

msgbuf+0xc/s
 .
 .
 .
trap type 15, pcsq.pcoq = 0.9ea14, isr.ior = 0.d
@(#)9245XA HP-UX (A.09.00) #0: Thu Aug 13 23:17:54 PDT 1992
panic: (display==0xbf00, flags==0x0) Data segmentation fault

PC-Offset Stack Trace (read across, most recent is 1st):
0x0016da70 0x000e5a68 0x000d34cc 0x0009ea14 0x00099714 0x0009

2fdc
0x0006e0c8 0x0006dbb8 0x0006d2a8 0x001954e8 0x00194fa4 0x000b

7e24
0x001846d4 0x00181730 0x00156538 0x00156af8 0x001567b8 0x000e

6d80
0x000d3aac

End Of Stack

First we translate the hex stack trace in the panic message into procedure
names and addresses. Using the adb i command for each of the hex
addresses in the panic message stack trace, we get the following symbolic
stack trace:

panic+30: addil -1000,dp
trap+0xADC: b trap+1004
$call_trap+20: rsm 1,r0
flushq+60: ldbs 0xD(r21),r22
q_free+1C: ldw -0xA4(sp),r31
osr_pop_subr+0xB44: b osr_pop_subr+0xB4C
osr_close_subr+4D8: stw ret0,-40(sp)
pse_close+8A0: stw ret0,-3C(sp)

209

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

hpstreams_close+58: stw ret0,-40(sp)
call_open_close+448: or ret0,r0,r3
closed+138: or ret0,r0,r5
ufs_close+11C: movb,tr r0,ret0,ufs_close+15C
vn_close+24: ldw -54(sp),rp
vno_close+50: addil -59800,dp
closef+0xE8: ldw 18(r3),arg0
exit+2B4: bl uffree,rp
rexit+20: ldw -54(sp),rp
syscall+2A4: ldhs 0(r9),r19

The address where the illegal data access occurred isflushq+0x60. The
isr.ior in the panic message indicates that the data address that caused the
panic is 0.d, and the instruction atflushq+0x60 is ldbs 0xD(r21),r22, so r21
must have been 0 at the time of the panic. So we are probably dereferencing
a null pointer. Our first task is to find out which pointer this is. To do this we
need to know which variable r21 was supposed to contain. We do not have
source code forflushq(), because it is a STREAMS/UX internal procedure,
but we do know from its man page what arguments it takes, and we do have
the assembly version of the code. Here is the relevant portion of the
assembly. The instruction where the panic occurred is marked with an “*”.

 flushq,20?ia
 flushq:
 flushq: stw rp,-14(sp)
 flushq+4: ldo 40(sp),sp
 flushq+8: stw arg0,-64(sp)
 flushq+0xC: stw arg1,-68(sp)
 flushq+10: ldw -68(sp),r20
 flushq+14: zdepi 1,10,1,r21
 flushq+18: and r20,r21,r22
 flushq+1C: stw r22,-3C(sp)
 flushq+20: ldw -68(sp),r31
 flushq+24: addil -8000,r0
 flushq+28: ldo -1(r1),r19
 flushq+2C: and r31,r19,r20
 flushq+30: stw r20,-68(sp)
 flushq+34: ldw -64(sp),r21
 flushq+38: ldws 4(r21),r22
 flushq+3C: stw r22,-34(sp)
 flushq+40: ldw -34(sp),r1
 flushq+44: comibt,=,n 0,r1,flushq+120
 flushq+48: or r0,r0,r0
 flushq+4C: ldw -34(sp),r31
 flushq+50: ldws 0(r31),r19
 flushq+54: stw r19,-38(sp)
 flushq+58: ldw -34(sp),r20
 flushq+5C: ldw 14(r20),r21
* flushq+60: ldbs 0xD(r21),r22
 flushq+64: stw r22,-40(sp)
 flushq+68: ldw -68(sp),r1

210

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

We can findflushq()'s calling sequence in its man page in SVR4PG:

void flushq(queue_t *q, int flag)

It is more likely that*q or one of its members is NULL than the parameter
flag being the cause of our problem. We will trace the use of the first
argument, originally in arg0, throughflushq, to see how it might be related to
the contents of r21.

At flushq+0x8, arg0 is pushed onto the stack at offset sp - 0x64. Neither
arg0 nor -64(sp) is referenced again untilflushq+0x34. Atflushq+0x34, r21
is loaded with -64(sp), so at this point r21 contains*q. At flushq+0x38, r22
is loaded from memory location 4 + r21. Looking at the structure definition
for queue_t, found in/usr/include/sys/stream.h, we see that the second word
in a queue_t structure, which would be found at memory location r21 + 4, is
theq_first pointer.

So r22 now containsq->q_first. At flushq+0x3C, r22 is stored back in the
stack, atsp - 0x34.

At this point, it may be useful to try and work backwards fromflushq+0x5C,
where r21 gets loaded from 0x14 + r20, because at the next instruction,
flushq+0x60, we know that r21 is NULL. We notice that atflushq+0x58, r20
is loaded fromsp - 0x34. Atflushq+0x3C, we know thatsp - 0x34 was

struct queue {
struct qinit * q_qinfo; /* procedures and limits for queue */
struct msgb * q_first; /* head of message queue */
struct msgb * q_last; /* tail of message queue */
struct queue * q_next; /* next QUEUE in Stream */
struct queue * q_link; /* link to scheduling queue */
caddr_t q_ptr; /* to private data structure */
ulong q_count; /* weighted count of characters on q

*/
ulong q_flag; /* QUEUE state */
long q_minpsz; /* min packet size accepted */
long q_maxpsz; /* max packet size accepted */
ulong q_hiwat; /* high water mark, for flow control

*/
ulong q_lowat; /* low water mark */
struct qband * q_bandp; /* band information */
unsigned char q_nband; /* number of bands */
unsigned char q_pad1[3]; /* reserved */
struct queue * q_other; /* pointer to other Q in queue pair

*/
QUEUE_KERNEL_FIELDS

};

211

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

q->q_first. Checking the instructions betweenflushq+0x3C and
flushq+0x58 shows thatsp - 0x34 has not been stored to by any of these
instructions, only loaded from. So atflushq+0x58, r20 is loaded with
q->q_first. At flushq+0x5C, r21 is loaded with some field ofq->q_first.
Looking at the structure definition forstruct msgb, also found in
/usr/include/sys/stream.h, we find that the sixth word of themsgb structure,
which would be found at memory location r20 + 5 words == r20 + 0x14, is
b_datap.

struct msgb {
struct msgb * b_next; /* next message on queue */
struct msgb * b_prev; /* previous message on queue */
struct msgb * b_cont; /* next message block of message */
unsigned char * b_rptr; /* first unread data byte in buffer

*/
unsigned char * b_wptr; /* first unwritten data byte */
struct datab * b_datap; /* data block */
unsigned char b_band; /* message priority */
unsigned char b_pad1;
unsigned short b_flag; /* message flags */
long b_pad2;
MSG_KERNEL_FIELDS

};

So our problem is thatq->q_first->b_datap is NULL. We want to confirm
this, and to look at the rest of theq structure. To do that we need to find the
value ofsp - 0x64 at the time of the panic. We may be able to extract this
information from the stack if we know the value ofsp at time of the panic.
To get this information, we do a manual stack back-trace. See “Manual
Stack Back-Tracing” for details on how this is done. The resulting table is
shown below:

sp pcoqh Procedure Address Frame Size

0x2418c0
0x241890
0x2417d0
0x7ffe7750
0x7ffe7710
0x7ffe7650
0x7ffe7420

0x1c374
0xdfcd0
0xdf3a8
0x16db14
0xe5a68
0xd34cc
0x9ea14

doadump+0xec
panic_boot+0x354
boot+0x34
panic+0xd4
trap+0xadc
$call_trap
flushq+0x60

0x30
0xc0
0x80
0x40
0xc0
0x230
0x40

212

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

Now that we have the values ofsp for flushq, we know theq address we are
interested in is at 0x7ffe7420 - 0x64:

0x7ffe7420-0x64/X
7FFE73BC: 5E9C00

Looking at the first few words of theq structure, we can determine the value
of q_first, which is the second word:

5E9C00/4X
5E9C00: 294160 5D8C00 6C1880 0

Looking atq_first, we can see that the sixth word,b_datap, is NULL:

5D8C00/8X
5D8C00: 646480 0 646400 644000

6440D1 0 0 0

We can also usestrdb to look atq andq_first. See thestrdb section of this
chapter for more information. Because there may be several instances of the
sp driver, each with a different minor number, we must look at each one until
we find the stream which contains a queue whose address is the same as the
address we have forq. The strdb STREAMS/UX subsystemla command
will tell us what minor numbers are in use for thesp driver:

:la sp

sp MAJOR = 115
ACTIVE Minor 0x000013 Stream head RQ = 0x00607b00
ACTIVE Minor 0x000012 Stream head RQ = 0x00605c00

These instances ofsp are far fewer than we had expected.lm on minor
number 0x12 shows thatlmodc has already been popped off the stream:

:lm sp 0x12

STREAM Head
Driver sp

and using :qh sp 0x12, and o and n as needed to traverse all the queues in
this stream shows that none of these queues have address 0x5e9c00.lm on
sp 0x13 shows that lmodc is still pushed abovesp on this stream, but
traversing all the queues in this stream shows that none of them are the
queue we are looking for. We can use thestrdb primary mode:x command
to formatq_first as a struct msgb to confirm our finding fromadb that
q->q_first->b_datap is NULL. (We find the structure type forq_first from
/usr/include/sys/stream.h).

213

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

:x msgb 0x5d8c00

struct msgb 0x5d8c00 S:1

b_next = 0x646480
b_prev = 0x0
b_cont = 0x646400
b_rptr = 0x644000
b_wptr = 0x6440d1
b_datap = 0x0
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

b_datap could be NULL because its resources have been freed, or it could
be NULL because the data structure was corrupted in some way. To try to
narrow this down, we want to look at the message buffer b_cont. If its
b_datap is also NULL, the possibility of corruption becomes less likely. We
can use :x msgb 0x646400 to format theb_cont field ofq->q_first. It is
easier, however, to see if there is a navigation key available for theb_cont
field. “?” lists the available navigation keys:

navigation for structure msgb
'n' = b_next (msgb)
'p' = b_prev (msgb)
'm' = b_rptr (b_rptr)
'c' = b_cont (msgb)
'd' = b_datap (datab)

Using thec navigation key, we see thatb_datap for b_cont is also NULL.
This makes it very likely that this message has already been freed.

struct msgb 0x646400 S:2

b_next = 0x5d8c00
b_prev = 0x0
b_cont = 0x0
b_rptr = 0x651400
b_wptr = 0x6517e1
b_datap = 0x0
b_band = 0
b_pad1 = 00
b_flag = 0x0
b_pad2 = 0

Now we try to get information about the queue which was pointing to this
message at the time of the panic. We use:x to format 0x5e9c00 as a queue
structure to see what information it may still contain.

:x queue 0x5e9c00

214

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

struct queue 0x5e9c00 S:3

q_qinfo = 0x294160 q_pad1[0] = 00
q_first = 0x5d8c00 q_pad1[1] = 00
q_last = 0x6c1880 q_pad1[2] = 00
q_next = 0x0 q_other = 0x5e9c74
q_link = 0x0
q_ptr = 0x0
q_count = 24896
q_flag = 0x1135
 QREADR
 QFULL
 QWANTW
 QUSE
 QOLD
 QSYNCH
q_minpsz = 0
q_maxpsz = 256
q_hiwat = 0x8000
q_lowat = 0x4000
q_bandp = 0x539d00
q_nband = 1

Note that this is a read queue whoseq_next pointer is NULL. This implies
that this queue is not a connected part of a stream, and is in the process of
being closed. To find out what driver or module this queue is being used by,
we want to look atq_qinfo. We could use :x qinit 0x294160, or look for an
appropriate navigation key:

?

navigation for structure queue
'i' = q_qinfo (qinit)
'm' = q_first (msgb)
'z' = q_last (msgb)
'n' = q_next (queue)
'l' = q_link (queue)
'b' = q_bandp (qband)
'o' = q_other (queue)

We use the i navigation key to print the following:

struct qinit 0x294160 S:4

qi_putp = 0x785ac
qi_srvp = 0x78794
qi_qopen = 0x7841c
qi_qclose = 0x78490
qi_qadmin = 0x0
qi_minfo = 0x294148
qi_mstat = 0x0

215

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

Using theadb i command, we can find out the name of theqi_putp routine:

0x785ac/i
lmodcput:
lmodcput: stw rp,-14(sp)

This means the modulelmodc was using the queue on which the panic
occurred. We can double check this by looking at theqi_minfo structure in
strdb. Again, we can either use :x module_info 0x294148, or we could see if
there is a navigation key available forqi_minfo:

?

navigation for structure qinit
'i' = qi_minfo (module_info)
's' = qi_mstat (module_stat)

Using theqinit i navigation key to print themodule_info structure:

struct module_info 0x294148 S:5

mi_idnum = 0x3ec
mi_idname = 0x23a0a8
mi_minpsz = 0
mi_maxpsz = 256
mi_hiwat = 0x8000
mi_lowat = 0x4000

and using the adb s command to printmi_idname as a string:

0x23a0a8/s
lmcinfo+10: lmodc

So we had the panic occur on anlmodc read queue which was in the process
of being closed. Our stack trace confirms this. We are making the exit
system call, close all open file descriptors and as part of process clean-up.
The last close of a stream causes each module and driver to be popped and
its resources freed, including its message buffers. Whenever a panic occurs
which involvesb_datap being NULL, the cause is usually that the buffer has
already been freed but a pointer to it was not zeroed out, and a module or
driver continues to access the buffer through this non-zeroed pointer. The
best way to find the cause of this problem is to look through the source code
for all calls tofreemsg() or freeb(), and check that all pointers to the buffer
being freed are zeroed out.

216

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

For thesp driver, we found thatspclose() callsfreemsg():

static spclose(q)
queue_t *q;
{
 struct sp *lp;
 unsigned int s;
 mblk_t *mp, *t_mp;

 lp = (struct sp *) (q->q_ptr);
 /* Free messages queued by spput() on interim mesg queue. */
 s = splstr();
 mp = lp->mp;
 while (mp != NULL) {
 t_mp = mp;
 mp = mp->b_next;
 freemsg(t_mp);
 }
 splx(s);
 flushq(WR(q), 1);
 q->q_ptr = NULL;
}

freemsg() is called to free all messages held in the interim message queue in
our private data area, but we do not zero out the pointerslp->mp or
lp->last_mp, which point to the head and tail of the private interim queue. A
call tosp_timeout() may still be pending in the timeout queue. When
sp_timeout() is executed, becauselp->mp is non-NULL, it will callputq() to
passlp->mp up tosp's read queue, wheresp's service routine will call
putnext() to put it inlmodc's read queue. Whenflushq() is called onlmodc's
read queue, it tries to free this already freed message, causing a trap type 15
panic on the NULLb_datap. Adding the following code tospclose() will fix
this problem:

 .
 .
 .
 freemsg(t_mp);
 }
 splx(s);
 /*
 * NULL out list pointers to insure the messages they point to
 * will not be freed twice.
 */
 lp->mp = NULL;
 lp->last_mp = NULL;
 flushq(WR(q), 1);
 q->q_ptr = NULL;
}

217

7

STREAMS/UX-NetTL Link

218

STREAMS/UX-NetTL Link

NetTL (Network Tracing and Logging facility) is the facility used by
network drivers and modules to capture network error events or trace data.
In HP-UX 10.0, a mechanism will enable STREAMS/UX to deliver
log/trace messages to NetTL. Previously, STREAMS/UX had its own error
logging and tracing facility.

This chapter describes the STREAMS/UX-NetTL link, which integrates the
STREAMS/UX logging and tracing facility with NetTL. STREAMS/UX
error and trace messages generated bystrlog() or byputmsg() to a
STREAMS/UX log driver can also be delivered to NetTL with the
STREAMS/UX-NetTL link.

With the STREAMS/UX-NetTL link, a single common interface for
network tracing and logging will exist. Also, STREAMS/UX logging can
benefit from NetTL's powerful features like message filtering.

Implementation of the STREAMS/UX-NetTL link is transparent to strerr
and strace users. These commands work just as before even when NetTL is
running.

219

STREAMS/UX-NetTL Link
Mapping from STREAMS/UX Messages to NetTL Messages

Mapping from STREAMS/UX Messages to NetTL
Messages

Both STREAMS/UX error logging and event tracing messages are mapped
to NetTL logging messages.

NetTL log class is determined by STREAMS/UX log messages' flags
according to the following rule:

If (flags & SL_ERROR) NetTL log class
then -------------------

if (flags & SL_FATAL) ---> DISASTER
if (flags & SL_WARN) ---> WARNING
if (flags & SL_NOTE) ---> INFORMATIVE
otherwise ---> ERROR

else all messages ---> INFORMATIVE

As a default, only DISASTER and ERROR messages are logged. You can
change this setting by using thenettlconf command (see nettlconf(1M)).

220

STREAMS/UX-NetTL Link
STREAMS/UX Subsystem ID and Subformatter

STREAMS/UX Subsystem ID and Subformatter

Subsystem ID

STREAMS/UX subsystem ID used by NetTL is:

ID Name: STREAMS
ID Number: 129

Subformatter

The messages logged by the NetTL facility can be formatted to a readable
form by thenetfmt command (see netfmt(1M)). The STREAMS/UX
subformatter can be used to filter messages on STREAMS/UX module ID
and sub-ID.

The filter configuration file syntax for STREAMS/UX is the following:

STREAMS module_id sub_id

module_id and sub_id can be a decimal number or * as a wild card.

For example:

STREAMS 1 100
STREAMS 2 *
STREAMS * 101

221

STREAMS/UX-NetTL Link
Quick Guide On How to Use NetTL for STREAMS/UX

Quick Guide On How to Use NetTL for
STREAMS/UX

• Check if NetTL is running.

nettl -status

NetTL will start running by default after the system boot (see nettl(1M) for more
detail).

If NetTL is running, you can check the log file name, STREAMS/UX subsystem
ID, STREAMS/UX log classes, etc.

• If it is not running, a superuser needs to start NetTL.

nettl -start

• NetTL can be stopped by a superuser.

nettl -stop

• You can change the set of NetTL log classes you are interested in.

By default, only DISASTER and ERROR messages are logged. A superuser can
modify this default by using the nettlconf command (see nettlconf(1M)). Bit
masks for turning on log classes are the following:

INFORMATIVE 1
WARNING 2
ERROR 4
DISASTER 8

For example:

• To log only DISASTER messages,

nettlconf -id 129 -class 8

• To log DISASTER, ERROR, and WARNING messages,

nettlconf -id 129 -class 14

• To verify your changes,

nettlconf -status

• To activate your changes, you need to restart NetTL.

222

STREAMS/UX-NetTL Link
Quick Guide On How to Use NetTL for STREAMS/UX

• You can format and read the logged messages.

netfmt -f /var/adm/nettl.LOG00

The default error log file is /var/adm/nettl.LOG00.

• You can format and filter the logged messages.

netfmt -f /var/adm/nettl.LOG00 -c filter_file

The filter_file would look like:

Example 1: To format only STREAMS DISASTER messages:

formatter filter subsystem STREAMS
formatter filter class DISASTER

Example 2: To filter on time:

formatter filter time_from 12:34:56 1/1/94
formatter filter time_through 21:43:56 1/2/94

Example 3: To filter on STREAMS module ID and sub-ID:

STREAMS 1 100
STREAMS 2 *
STREAMS * 101

Example 4: More complex example:

formatter filter subsystem STREAMS
formatter filter class DISASTER
formatter filter class ERROR
formatter filter class WARNING
formatter filter time_from 12:34:56 1/1/94
formatter filter time_through 21:43:56 1/2/94
STREAMS 1 100
STREAMS 2 *
STREAMS * 101

223

Symbols
/etc/dmesg, 24
/etc/update, 16
? command, 125

A
adb, 120, 122, 174

invoking, 174
registers, 174

applications, compiling and linking, 115
assembly language mapping, 184
autopush command, 32

B
basic stack back-tracing, 180

C
changing strdb session characteristics, 140
clone driver, 25, 53
cloning, HP-UX modifications, 65
close call, 64
cmn_err utility, 42
commands

?, 125
autopush, 32
h, 125
la, 127
ll, 127
lm, 127
lp, 128
mknod, 28
pdfck, 19
q, 126
qc, 128
qh, 129
s, 126
strace, 33
strclean, 33
strerr, 33
v, 126

compiling and linking STREAMS
applications, 115

compiling and linking TLI applications,
116

compiling STREAMS drivers and
modules, 105

copyreq message structure, 58
copyresp message structure, 58

core dumps, 171
generating, 171
retrieving, 171

core file, size requirements, 173

D
data segmentation faults, 169
data structure navigation commands, 129
data structure restrictions, 60
driver and module synchronization, 63
drivers

clone, 25, 53
compiling, 105
echo, 25, 54
pipedev, 25
pipemod, 56
sad, 25, 53
strlog, 25, 53

drivers and modules
linking into kernel, Series 300/700, 107

drivers, unsupported, 52

E
echo driver, 25, 54
esballoc utility, 41

F
fattach, 35
files

stream.h, 58
filesets

STREAMS, 16, 23
STREAMS-DLPI, 23
STREAMS-MAN, 16

flow control, 146
fragmentation, 146
freezestr and unfreezestr utility, 42

G
get_sleep_lock utility, 42

H
h command, 125
hardware requirements, 15
hung systems, debugging, 175

I
include files, 115

installation
verification of, 19

instruction page faults, 169
internal synchronization, 61
interrupt control stack (ICS), 63
interrupts, 63
iocblk message structure, 58
ioctl, 35
itimeout utility, 43

K
kernel

manual build for Series 800, 23
tunable parameters, 26

kmem_alloc utility, 43

L
la command, 127
linking drivers and modules into kernel,

Series 300/700, 107
ll command, 127
lm command, 127
LOCK utility, 43
LOCK_ALLOC utility, 44
logging, 121
lp command, 128

M
manual stack back-tracing, 177
message structures, HP-UX modifications

copyreq, 58
copyresp, 58
iocblk, 58
msgb, 58

mknod commands, 28
modules

compiling, 105
pipemod, 25
sc, 25, 54
timod, 25, 55
tirdwr, 25, 55

modules, unsupported, 52
msgb message structure, 58

N
NSTRPUSH, 26

Index

224

Index

P
panic

data segmentation faults, 169
instruction page faults, 169
protection violations, 170
stack trace, 177

panic message, 176
panic_save_state, 190
pdfck, 19
pipe, 35
pipedev driver, 25
pipemod driver, 56
pipemod module, 25
primary commands, 129
priority number, 64
procedure argument values, 186
process table entry, 192
protection violations, 170
putctl2 utility, 44
putmsg system call, 26, 36
putnextctl2 utility, 45
putpmsg system call, 36
putq, 63, 64

Q
q command, 126
qc command, 128
qh command, 129
qprocson and qprocsoff utility, 45
queue structure, 59

R
requirements

hardware, 15

S
s command, 126
sad driver, 25, 53
sc module, 25, 54
scheduler, 64
select system call, 37
signal system call, 38
sizeof function, 57
spl level, 63
strace, 33
strclean, 33
strdb, 120, 122

commands, 123

running, 123
stream head, 55
streams_put utilities, HP-UX

modifications
streams_put utilities, 46

streams_put utility, 46
streamtab, 107
strerr command, 33
strlog driver, 25, 53
STRMSGSZ, 26
strvf, 19, 120

verbose (-v) option, 19
subsystem commands, 124
SV_WAIT utility, 46
SV_WAIT_SIG utility, 47
swap partition, 172
synchronization

driver and module, 63
internal, 61
uniprocessors, 61

system calls, HP-UX modifications
fattach, 35
ioctl, 35
pipe, 35
putmsg, putpmsg, 36
select, 37
signal, 38
write, writev, 38

system calls, supported, 34
system panic, 168

T
timod module, 25, 55
tirdwr module, 25, 55
TLI applications, compiling and linking,

116
TOC, 172
tracing, 121
Transfer of Control, 172
trap save_state, 190
TRYLOCK utility, 48
tunable parameters, 26

U
uniprocessor synchronization, 61
UNLOCK utility, 48
unweldq utility, 48, 49
utilities, HP-UX

putctl2, 44
unweldq, 48
weldq, 48

utilities, HP-UX modifications
cmn_err, 42
esballoc, 41
freezestr and unfreezestr, 42
get_sleep_lock, 42
itimeout, 43
kmem_alloc, 43
LOCK, 43
LOCK_ALLOC, 44
putnextctl2, 45
qprocson and qprocsoff, 45
SV_WAIT, 46
SV_WAIT_SIG, 47
TRYLOCK, 48
UNLOCK, 48
unweldq, 49
vtop, 51
weldq, 50

V
v command, 126
verification of installation, 19
verification tool

strvf, 19
vtop utility, 51

W
weldq utility, 48, 50
write system call, 38
writev system call, 38

