
HP Help System

Developer's Guide

Version 3.0

ABCDE

HP Part No. B1171-90077

Printed in USA January 1995

Second Edition

DRAFT 4/7/98 12:49



Copyright

c Copyright Hewlett-Packard Company 1988, 1989, 1990, 1991, 1992, 1995.

All rights reserved.

Notice

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO

THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or

consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

A copy of the speci�c warranty terms applicable to your Hewlett-Packard product and

replacement parts can be obtained from your local Sales and Service O�ce.

Printing History

The printing date will change when a new edition is printed. Minor changes may be made at

reprint without changing the printing date. The manual part number will change when

extensive changes are made.

Manual updates may be issued between editions to correct errors or document product

changes. To ensure that you receive these updates or new editions, see your HP sales

representative for details.

July 1992 . . . First Edition . . . B1171-90055

January 1995 . . . Second Edition . . . B1171-90077

Hewlett-Packard Company

Workstation Technology Division - CVL

1000 NE Circle Boulevard

Corvallis, Oregon 97330 USA



Contents

1. Introducing the HP Help System
Overview of Online Help . . . . . . . . . . . . 1-2
Objectives for Online Help . . . . . . . . . . . 1-2
How Users Get Help . . . . . . . . . . . . . 1-3

The HP Help Information Model . . . . . . . . . 1-4
A \volume" is a collection of \topics" . . . . . . 1-5
A \product family" is a group of related help

volumes . . . . . . . . . . . . . . . . . 1-5
The Author's Job . . . . . . . . . . . . . . . 1-5
Know your audience . . . . . . . . . . . . . 1-5
Consider how your help is accessed . . . . . . . 1-5
Collaborate with the application programmer . . 1-6
Organize and write your topics . . . . . . . . . 1-6
Create run-time help �les . . . . . . . . . . . 1-7
Review help as the user will see it . . . . . . . 1-8

The Programmer's Job . . . . . . . . . . . . . 1-8
Consider how your help is accessed . . . . . . . 1-8
Collaborate with the help author . . . . . . . . 1-8
Create and manage help dialogs . . . . . . . . 1-9

2. Organizing and Writing a Help Volume
A Help Volume at a Glance . . . . . . . . . . . 2-2
General Markup Guidelines . . . . . . . . . . . 2-3
Writing Your First Help Volume: A Step-by-Step

Example . . . . . . . . . . . . . . . . . . 2-4
Creating a Topic Hierarchy . . . . . . . . . . . 2-8
To create a home topic . . . . . . . . . . . . 2-9
To add a topic to the hierarchy . . . . . . . . . 2-10

Creating Meta Information Topics . . . . . . . . 2-11
To create a meta information section . . . . . . 2-11
To add a non-hierarchical topic . . . . . . . . . 2-12

Accessing Topics . . . . . . . . . . . . . . . . 2-13
To add an ID to a topic . . . . . . . . . . . . 2-14
To add an ID to an element within a topic . . . . 2-14

Using Entities . . . . . . . . . . . . . . . . . 2-15
To create a text entity . . . . . . . . . . . . 2-15
To create a �le entity . . . . . . . . . . . . . 2-16

DRAFT

4/7/98 12:49

Contents-1



3. Writing a Help Topic
Creating Structure Within a Topic . . . . . . . . 3-2
To start a paragraph . . . . . . . . . . . . . 3-2
To enter a list . . . . . . . . . . . . . . . . 3-3
To provide subheadings within a topic . . . . . 3-4
To show a computer listing . . . . . . . . . . 3-5
To add a note, caution, or warning . . . . . . . 3-5

Entering Inline Elements . . . . . . . . . . . . 3-7
To emphasize a word or phrase . . . . . . . . . 3-7
To enter a book title . . . . . . . . . . . . . 3-7
To display a computer literal . . . . . . . . . . 3-7
To display a variable . . . . . . . . . . . . . 3-8

Creating Hyperlinks . . . . . . . . . . . . . . 3-8
To create a \jump" link . . . . . . . . . . . . 3-9
To create a de�nition link . . . . . . . . . . . 3-10
To create a man page link . . . . . . . . . . . 3-11
To create an execution link . . . . . . . . . . 3-11
To create an application-de�ned link . . . . . . 3-12
To link to a meta information topic . . . . . . . 3-12

Displaying Graphics . . . . . . . . . . . . . . 3-13
To create a �gure . . . . . . . . . . . . . . . 3-13
To display an inline graphic . . . . . . . . . . 3-14
To wrap text around a graphic . . . . . . . . . 3-15

Including Special Characters . . . . . . . . . . . 3-16
To include a special character . . . . . . . . . 3-16

Including Comments and Writer's Memos . . . . . 3-17
To insert a comment . . . . . . . . . . . . . 3-17
To insert a writer's memo . . . . . . . . . . . 3-17

Creating a Keyword Index . . . . . . . . . . . . 3-18
To mark an index entry . . . . . . . . . . . . 3-18

Creating a Glossary . . . . . . . . . . . . . . . 3-19
To mark a glossary term . . . . . . . . . . . 3-19
To de�ne a term in the glossary . . . . . . . . 3-20

4. Processing and Displaying a Help Volume
Creating Run-Time Help Files . . . . . . . . . . 4-1
To run `helptag' . . . . . . . . . . . . . . . 4-2
To review and correct parser errors . . . . . . . 4-3

Viewing a Help Volume . . . . . . . . . . . . . 4-3
To run `helpview' . . . . . . . . . . . . . . . 4-3

Testing Your Help . . . . . . . . . . . . . . . 4-5

Contents-2 DRAFT

4/7/98 12:49



5. Creating and Managing Help Dialogs
The Quick Help Dialog . . . . . . . . . . . . . 5-3
To create a quick help dialog . . . . . . . . . . 5-4

The General Help Dialog . . . . . . . . . . . . 5-6
To create a general help dialog . . . . . . . . . 5-7

Creating a Dialog Cache . . . . . . . . . . . . . 5-8
To create a dialog cache . . . . . . . . . . . . 5-8
To retrieve a dialog from your cache . . . . . . 5-8
To return a dialog to your cache . . . . . . . . 5-10

6. Responding to Help Requests
Displaying Help Topics . . . . . . . . . . . . . 6-2
To display a help topic . . . . . . . . . . . . 6-3
To display a string of text . . . . . . . . . . . 6-3
To display a text �le . . . . . . . . . . . . . 6-3
To display a man page . . . . . . . . . . . . 6-3

Enabling the Help Key (F1) . . . . . . . . . . . 6-4
To add a help callback . . . . . . . . . . . . 6-4

Providing a Help Menu . . . . . . . . . . . . . 6-7
Supporting Item Help Mode . . . . . . . . . . . 6-8
To add support for \item help" . . . . . . . . 6-8

Using the Topic Access Functions . . . . . . . . . 6-9
Responding to Hyperlink Events . . . . . . . . . 6-11
To provide a hyperlink callback . . . . . . . . 6-11

Detecting When Help Dialogs are Dismissed . . . . 6-12
Using the Application-De�ned Button . . . . . . . 6-13
To enable the application-de�ned button . . . . 6-13

8. Preparing Your Product
How a Help Volume is Found . . . . . . . . . . 8-2
To change the help search paths . . . . . . . . 8-3

Gathering Run-Time Help Files . . . . . . . . . 8-4
To gather the run-time help �les for a volume . . 8-5

Registering Your Online Help . . . . . . . . . . 8-6
To register a help volume . . . . . . . . . . . 8-6
To create and register a help family . . . . . . . 8-8
To update the \browser" help volume . . . . . . 8-9

Product Preparation Checklists . . . . . . . . . 8-10

9. Providing Help On Help
Accessing Help on Help in an Application . . . . . 9-2
To set the `helpOnHelpVolume' resource . . . . . 9-2
To provide a Using Help command . . . . . . . 9-2
To provide help on help for a quick help dialog . . 9-4
To display help on help . . . . . . . . . . . . 9-4

Writing Your Own Help on Help Volume . . . . . 9-6
To copy the Help4Help source �les . . . . . . . 9-7

DRAFT

4/7/98 12:49

Contents-3



10. Native Language Support
Preparing Online Help for International Audiences . 10-2
Understanding Font Schemes . . . . . . . . . . . 10-3
To choose a font scheme . . . . . . . . . . . . 10-5

11. HelpTag Markup Reference
<!-- . . . --> . . . . . . . . . . . . . . . . . . 11-3
<abbrev> . . . . . . . . . . . . . . . . . . . 11-4
<abstract> . . . . . . . . . . . . . . . . . . 11-5
<book> . . . . . . . . . . . . . . . . . . . . 11-6
<caution> . . . . . . . . . . . . . . . . . . 11-7
<chapter> . . . . . . . . . . . . . . . . . . 11-8
<computer> . . . . . . . . . . . . . . . . . . 11-9
<copyright> . . . . . . . . . . . . . . . . . . 11-10
<dterm> . . . . . . . . . . . . . . . . . . . 11-11
<emph> . . . . . . . . . . . . . . . . . . . 11-12
<!entity> . . . . . . . . . . . . . . . . . . . 11-13
<esc> . . . . . . . . . . . . . . . . . . . . 11-15
<ex> . . . . . . . . . . . . . . . . . . . . . 11-16
<�gure> . . . . . . . . . . . . . . . . . . . 11-18
<glossary> . . . . . . . . . . . . . . . . . . 11-20
<graphic> . . . . . . . . . . . . . . . . . . 11-21
<head> . . . . . . . . . . . . . . . . . . . . 11-22
<helpvolume> . . . . . . . . . . . . . . . . . 11-23
<hometopic> . . . . . . . . . . . . . . . . . 11-24
<idx> . . . . . . . . . . . . . . . . . . . . 11-25
<image> . . . . . . . . . . . . . . . . . . . 11-26
<item> . . . . . . . . . . . . . . . . . . . . 11-27
<lablist> . . . . . . . . . . . . . . . . . . . 11-28
<link> . . . . . . . . . . . . . . . . . . . . 11-30
<list> . . . . . . . . . . . . . . . . . . . . 11-32
<location> . . . . . . . . . . . . . . . . . . 11-34
<memo> . . . . . . . . . . . . . . . . . . . 11-35
<metainfo> . . . . . . . . . . . . . . . . . . 11-36
<newline> . . . . . . . . . . . . . . . . . . 11-37
<note> . . . . . . . . . . . . . . . . . . . . 11-38
<otherfront> . . . . . . . . . . . . . . . . . 11-39
<otherhead> . . . . . . . . . . . . . . . . . 11-40
<p> . . . . . . . . . . . . . . . . . . . . . 11-41
<procedure> . . . . . . . . . . . . . . . . . 11-43
<quote> . . . . . . . . . . . . . . . . . . . 11-44
<rsect> . . . . . . . . . . . . . . . . . . . . 11-45
<s1> . . . <s9> . . . . . . . . . . . . . . . . 11-46
<term> . . . . . . . . . . . . . . . . . . . . 11-48
<title> . . . . . . . . . . . . . . . . . . . . 11-50
<user> . . . . . . . . . . . . . . . . . . . . 11-51
<var> . . . . . . . . . . . . . . . . . . . . 11-52
<vex> . . . . . . . . . . . . . . . . . . . . 11-53
<warning> . . . . . . . . . . . . . . . . . . 11-54
<xref> . . . . . . . . . . . . . . . . . . . . 11-55

Contents-4 DRAFT

4/7/98 12:49



12. Summary of Special Character Entities

13. Command Summary
Processing HelpTag Files (`helptag') . . . . . . . 13-1
Displaying Help Topics (`helpview') . . . . . . . . 13-3
Printing Help Topics (`helpprint' and `helpprintrst') . 13-4

14. Summary of Application Programmers Interface
XvhCreateHelpDialog() . . . . . . . . . . . . 14-1
XvhCreateQuickHelpDialog() . . . . . . . . . . 14-6
XvhQuickDialogGetChild() . . . . . . . . . . . 14-11
XvhReturnSelectedWidgetId() . . . . . . . . . 14-11
XvhGetTopicData() . . . . . . . . . . . . . . 14-12
XvhProcessLinkData() . . . . . . . . . . . . . 14-14
XvhFreeTopicData() . . . . . . . . . . . . . . 14-14
XvhSetCatalogName() . . . . . . . . . . . . . 14-15

Glossary

Index

DRAFT

4/7/98 12:49

Contents-5





1
Introducing the
HP Help System

The HP Help System is a complete system for developing online
help for application software. It allows authors to write online
help that includes rich graphics and text formatting, hyperlinks,
and communication with the application. HP Help provides a
programmer's toolkit for integrating the help facilities into an
application.

More speci�cally, here's what the HP Help System Developer's Kit
includes:

For Authors

The HP HelpTag markup language|a set of \tags" used in text
�les to mark organization and content of your online help.

The HP HelpTag software|a set of software tools for converting
the HelpTag �les you write into run-time help �les.

The Helpview application|a viewer program for displaying your
online help so you can read it and interact with it just as your
audience will.

Refer to \The Author's Job" to learn more about writing online help.

For Programmers

The Xvh programming library|an Application Programmer's
Interface (API) for integrating help windows into your application.

A demonstration program|a simple example that shows how to
integrate the HP Help System into an OSF/Motif application.

Refer to \The Programmer's Job" to learn more about programming
with the HP Help System.

DRAFT

4/7/98 12:49

Introducing the

HP Help System

1-1



This Manual Online

This manual is available online.

If you are using the HP Visual User Environment (HP VUE),
version 3.0 or later, use Help Manager. Open the \HP Help
System" family, then choose the \HP Help System Developer's
Guide" title.

Or, if you are not using HP VUE, execute the following command
in a terminal window:

/usr/vhelp/bin/helpview -helpVolume HPHelpKit &

Tip! The online version of this manual o�ers the time-saving advantage
of making the examples accessible electronically. You can copy and
paste them into your HelpTag �les and then edit them to �t your
needs.

Overview of Online
Help

It's virtually impossible|and certainly impractical|for anyone to
learn and remember everything there is to know about the computer
hardware and software they use to do their job. Nearly every
computer user needs help at one time or another.

Online help, unlike a printed manual, has the power of the
computer at its disposal. Most importantly, this power makes it
possible to adapt the information to the user's current \context."
Context-sensitive help provides just enough help to get the user back
on task. Too much help can often be too much of an interruption or
\context switch." In developing your online help, it's important to
keep in mind the objectives for providing online help.

Objectives for Online
Help

The two most important objectives for designing quality online help
are:

First: Get the user back on task as quickly and successfully as
possible.

Second: Educate the user to prevent future need for assistance.

1-2 Introducing the

HP Help System

DRAFT

4/7/98 12:49



How Users Get Help Online help can be divided into three general categories:

Automatic Help|The application determines when help is needed
and what to present. This is sometimes called \system initiated"
help.

Semi-Automatic Help|The user decides when help is needed,
but the system determines what to present. Semi-automatic help
is initiated by a user's gesture or exclamation for help, such as
pressing F1. The system's response is called \context-sensitive"
help because it considers the user's current context in deciding
what information to display.

Manual Help|The user requests speci�c information, such as from
a Help menu.

The Help Key

Within most applications, the primary way for a user to request help
is by pressing the help key. In recent years, the F1 function key has
become a defacto standard \help key" for many workstation and
personal computer products.

The OSF/Motif Style Guide recommends the use of F1 as the help
key, and the OSF/Motif programmer's toolkit even provides some
built-in behavior to make it easier to implement the help key in
OSF/Motif applications.

Some computers have a Help key on the keyboard.

The Help Menu

The Help menu is a common way to provide access to help
information. OSF/Motif applications provide a Help menu, which is
right-justi�ed in the menu bar. The OSF/Motif Style Guide makes
recommendations regarding the commands contained in a Help menu.

Help Buttons

Many dialogs also provide a Help button to get help on the dialog.
The OSF/Motif Style Guide recommends that choosing the Help
button in a dialog be equivalent to pressing the help key while using
that dialog. Exceptions should be made for complex dialogs, where
help on individual controls within the dialog is appropriate.

DRAFT

4/7/98 12:49

Introducing the

HP Help System

1-3



The HP Help
Information Model

There are two general styles of online help:

Application help, whose primary role is to be an integrated part of
an OSF/Motif application.

Stand-alone help, whose primary role is to provide online access
to task, reference, or tutorial information, independent of any
application software.

If you are developing online help for an application, you may
choose to organize the information exclusively for access within the
application. Or, you may design the information such that it can be
browsed without the application present, as in stand-alone help.

Part of the Application

HP Help promotes a high degree of integration between the
application and its online help. From the user's perspective, the help
is part of the application. This approach minimizes the perceived
\distance" away from the application that the user must travel to get
help.

Staying close to the application makes users more comfortable with
online help and gets them back on task as quickly as possible.

1-4 Introducing the

HP Help System

DRAFT

4/7/98 12:49



A \volume" is a
collection of \topics"

A help volume is a collection of related topics. Normally, the topics
within a volume are arranged in a hierarchy.

If you are developing application help, typically there's one help
volume per application. However, for complex applications, or a
collection of related applications, you might develop several help
volumes.

A \product family" is a
group of related help

volumes

Often, software is available as a set of related applications known as a
product family. For example, a set of o�ce productivity applications
may include a word processor, a spreadsheet application, and a
drawing program. Because each application may have its own help
volume, the multi-volume set forms a product family.

Assembling your help volumes into a product family is optional. It
is required only if you want your help to be available for browsing
within a help browser such as the HP VUE Help Manager.

The top level of the HP VUE Help Manager lists product families.
The second level, under each family, lists the volumes that are
members of the product family.

Even if you have only a single help volume, it must belong to a
product family to be browsable via the HP VUE Help Manager.

The Author's Job Writing online help di�ers from writing printed manuals, so it
is important to understand who you are writing for, how the
information is accessed, and how the information �ts into an
application.

Know your audience Just as with any writing, to do a good job you must know your
audience and understand what they require from the information you
are writing. Most importantly, with online help you need to know the
tasks they are attempting and the problems they may encounter.

Consider how your help
is accessed

It is just as important to understand how users will access your help
as it is to identify your audience correctly.

Application Help

If you are writing help for an application, you need to decide
which topics are browsable and which topics are available from the
application as context-sensitive help. A topic is \browsable" if you
can navigate to it using hyperlinks. Topics designed exclusively for
context-sensitive help might not be browsable because the only way
to display the topic may be from within a particular context in the
application.

You must also decide if you want your application's help volume
to be \registered." Registered help volumes can be displayed by

DRAFT

4/7/98 12:49

Introducing the

HP Help System

1-5



other applications (such as the HP VUE Help Manager), making the
information more widely accessible. If another help volume contains
hyperlinks to topics in your help volume, your help volume must be
registered.

Stand-Alone Help Volumes

If you are writing a stand-alone help volume (a help volume not
associated with an application) you may choose to do things very
di�erently.

First, you must provide a path for users to get to all the topics
you've written. That is, every topic must be browsable via at least
one hyperlink. Also, because there's no application associated with
your help, you must rely on a help viewer (such as Helpview) to
display your help volume.

Collaborate with the
application programmer

If you are writing application help, you should work closely with the
application programmer. The degree to which the HP Help System
is integrated into an application is a design decision that you make
collectively.

If an application and its help have very loose ties, there may be only
a handful of topics that the application is able to display directly.
This is easier to implement.

In contrast, the application could provide speci�c help for nearly
every situation in the application. This requires more work, but
bene�ts the user if done well.

It's up to you and your project team to determine the right level of
help integration for your project.

Organize and write your
topics

The HP Help System best supports a hierarchical organization of
topics. This familiar way of organizing information helps users know
where they are when viewing a particular topic.

The General Help Dialog provided by HP Help includes a \Topic
Hierarchy" list that indicates the path from the home topic (at the
top of the hierarchy) to the current topic. Essentially, this is \you are
here" information for the user.

1-6 Introducing the

HP Help System

DRAFT

4/7/98 12:49



Although HP Help has been optimized for information that
is organized in a hierarchy, you are free to create any kind of
organization you want. The Quick Help Dialog is a simpler help
window that does not include the Topic Hierarchy. In this window
you can present topics that are not organized in a hierarchy. Using
hyperlinks you can connect related topics organized in any way you
want, including \webs," \chains," and \loops."

Writing with HelpTag

Online help is written in ordinary text �les. You use special codes, or
tags, to markup elements within the information. The tags form a
markup language called HP HelpTag.

The HelpTag markup language de�nes a hierarchy of elements that
de�ne high-level elements such as chapters, sections, and subsections,
and low-level elements such as paragraphs, lists, and emphasized
words.

\General Markup Guidelines" in Chapter 2 describes the details of
using markup. Chapter 11 includes a description of each element and
the tags needed to enter it.

Think structure, not format

If you are familiar with other publishing systems, you may
be accustomed to formatting information as you like to see it.
Authoring with HelpTag requires you to think about structure and
content, not format.

As you write, you use tags to mark certain types of information.
When you do so, you are identifying what the information is, but not
how it should be formatted.

For instance, to refer to a book title, include markup like this:

<book>OSF/Motif Style Guide<\book>

This abstraction separates structure and content from format which
allows the same information to be used by other systems and perhaps
formatted di�erently. For instance, HP Help displays book titles
using an italic font. However, on another system an italic font may
not be available, so the formatter could decide that book titles are
underlined.

Create run-time help
files

The text �les you write must be \compiled" using the HelpTag
software to create run-time help �les. It's the run-time help �les that
are accessed when the user requests help.

DRAFT

4/7/98 12:49

Introducing the

HP Help System

1-7



Review help as the user
will see it

During the authoring process you will need to display your help so
you can interact with it just as your audience will. There are two
ways to do this:

Using the helpview command, you can display any help topic in
any help volume.

If you are writing application help and the HP Help System has
been integrated into your application, you can view your help by
running the application and making help requests just as the user
will.

The Programmer's
Job

The programmer adds code to an application so that when a
user requests context-sensitive help, the application displays help
information that is relevant to what the application is doing at that
time.

Example Program The /usr/vhelp/examples/helpdemo/ directory contains the source
code for a sample program called helpdemo. It demonstrates how to
add help dialogs to an OSF/Motif application.

Consider how your help
is accessed

Providing useful information to the user requires taking into account:

What confusions commonly arise? Speci�c help in these situations
can save users lots of time.

Why is the user asking for help now instead of earlier or later? If
there are several steps in a process and the user is not at the �rst
step, branch to information that is speci�c to the step being done.
This is more helpful than displaying the same information at each
step. If the user is at the �rst step, make available both detailed
information about the �rst step and an overview of all the steps.

Is the user requesting context-speci�c help or just browsing the
help information? If it is context-speci�c, supply information that's
relevant to the task now being done.

Collaborate with the
help author

Close collaboration with the online help author is needed because
the author needs to know how each context-speci�c topic is reached
and the programmer needs to know what is explained in each
context-speci�c topic. Without such coordination, the user may see
irrelevant, ambiguous, or misleading information.

Collaboration makes the best use of the programmer's understanding
of the application and the author's understanding of how to best
communicate relevant information to the user.

1-8 Introducing the

HP Help System

DRAFT

4/7/98 12:49



Create and manage
help dialogs

HP Help is designed especially for use with OSF/Motif applications.
Speci�cally, HP Help extends the OSF/Motif widget set by providing
two new widget classes (plus convenience functions to manipulate
them):

The quick help dialog , which provides a simple help window with a
topic display area and a few dialog buttons.

The general help dialog , which provides a help window that
includes a menu bar and a topic hierarchy in addition to the help
topic display area.

You can use either or both of these types of help windows within
your application. Once the application is compiled (with the HP
Help library), the help windows become part of the application.

DRAFT

4/7/98 12:49

Introducing the

HP Help System

1-9





2
Organizing and Writing
a Help Volume

Within a help volume, information is organized into �ve major
sections: the home topic, topics and subtopics, entity declarations,
meta information, and the glossary.

Home Topic

The home topic is the �rst in the topic hierarchy. All other topics
are \subtopics." Your topic hierarchy may be several levels deep.
However, to help prevent users from getting lost, you should keep
your hierarchy as shallow as possible.

Topics and Subtopics

Topics and subtopics form a hierarchy below the home topic. The
�rst level of subtopics (following <hometopic>) may begin with
<chapter> or <s1>. The <chapter> level is the only level you can
skip. That is, subtopics of an <s1> must be entered with <s2>,
subtopics of an <s2> must be entered with <s3>, and so on. There
is no visible di�erence to the user if you start your hierarchy with
<chapter> or <s1>. The only di�erence is the number of run-time
help �les that will be generated (one per chapter).

Entities

An author-de�ned entity can represent a string of characters or a �le
name. An entity declaration de�nes the entity name and the string
or �le it represents. All entity declarations must be entered before
any other markup in your help volume. Entity references can be
used anywhere within your help volume. When you process your help
volume with the HelpTag software (helptag command), each entity
reference is replaced with the text or �le that the entity represents.

Meta Information

Meta information is information about your information. It includes
information such as the volume's title, copyright notice, and abstract.
Meta information also includes general help topics that are not part
of the normal topic hierarchy.

Glossary

The glossary includes de�nitions for terms that you've used
throughout your help volume. If a term is entered using the <term>
element, then it automatically becomes a de�nition link that, when
selected, displays the glossary entry for that term.

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-1



A Help Volume at a
Glance

The following markup illustrates important elements of a help volume
and the tags used to enter them. Indentation is used to highlight the
hierarchical relationship of the elements; you don't need to indent the
help �les that you write.

All entity declarations go here (before any other markup).

<helpvolume>

<metainfo>

<title> Volume Title

<copyright>

Copyright topic goes here ...

<abstract>

The abstract describing your help volume goes here.

.

.

. There may be other meta information topics.

<\metainfo>

<hometopic> Home Topic Title

Body of the home topic goes here ...

<s1> Title of First Subtopic Goes Here

Body of the �rst subtopic goes here ...

<s1> Title of Second Subtopic

Body of the second subtopic goes here ...

.

.

.

<glossary>

The body of the glossary, which contains term de�nitions, goes here ...

<\helpvolume>

The rest of this chapter describes how to organize your help volume.
Writing individual topics is covered in the following chapter.

2-2 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



General Markup
Guidelines

Online help is written in ordinary text �les. You use special codes, or
tags, to markup elements within the information. The tags form a
markup language called HP HelpTag.

The HelpTag markup language de�nes a hierarchy of elements that
de�ne high-level elements such as chapters, sections, and subsections,
and low-level elements such as paragraphs, lists, and emphasized
words.

Creating Your volume.htg File

Online help is written in ordinary text �les. You process, or
\compile," these �les with the HP HelpTag software to create
run-time help �les that can be read by the HP Help System.

HelpTag expects a primary input �le named volume.htg, where
volume is a name you choose. Be sure your volume name is unique
and meaningful. If your volume name is too general, it may conict
with another volume that someone else has created.

If you are writing application help, one recommended practice is to
use the application's class name. For example, the class name for the
HP VUE File Manager is \Vue�le," so its helpvolume was named
Vuefile.htg.

The details of running HelpTag are covered in \To run `helptag'" in
Chapter 4.

Multiple Source Files

Although HelpTag expects a single volume.htg �le as input, you can
separate your work into multiple source �les. Additional �les are
sourced into the volume.htg �le using �le entities. A �le entity is
like a pointer to another �le. That �le, in e�ect, is inserted wherever
the entity's name appears in the volume.htg �le. The referenced �les
can also contain entity references to yet other �les. (Entities can also
be used to reference text strings.)

Markup in Your Source Files

The markup for most elements consists of a start tag and an end tag.
Start tags are entered with the element name between angle brackets
(< and >). End tags are similar, but the element name is preceded by
a backslash (\).

<element> ... text ... <\element>

For example, to mark the start and end of a book title you use
markup like this:

<book>The OSF/Motif Style Guide<\book>

Where <book> is the \start tag," and <\book> is the \end tag."

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-3



Short Form Markup

Short form markup provides another way to enter the markup for
many inline elements. Rather than entering a begin and end tag,
vertical bars are used to delimit the text like this:

<element| ... text ... |

For example, here's the short form of the <book> element shown
above:

<book|The OSF/Motif Style Guide|

If the element has parameters, they're entered before the �rst vertical
bar like this:

<element parameters| ... text ... |

Shorthand Markup

Some elements support an even shorter form where the begin and
end tags are replaced with a special two-character shortcut. For
example, the <emph> (emphasis) element, whose normal syntax looks
like this:

<emph> ... text ... <\emph>

can be entered using this shorthand form:

!! ... text ... !!

Displaying HelpTag Symbols

At times, you may need to use the left angle bracket (<), the
backslash (\), or the ampersand (&) as text characters. To do so,
precede each with an ampersand (&<, &\, or &&).

Writing Your First
Help Volume: A
Step-by-Step
Example

Here is a complete step-by-step example that demonstrates how
to create and view a stand-alone help volume. (As a stand-alone
volume, it does not involve interaction with an application.)

The markup language used in the text �les is explained in Chapter 2,
Chapter 3, and Chapter 11.

1. Create a directory where you will put most of your text �les.

2. Create one or more text �les that explain the system you are
documenting. For this simple example, all the information is put
into a single �le named Commands in the directory just created.

Tip! If you want to try this example, copy and paste the example text
directly from online help into your text editor, instead of typing the
text.

2-4 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Here is what the Commands �le contains. The element tags
within the angle brackets (< and >) indicate the structure of the
information.

<hometopic> Command Summary

<idx|commands|

Your &product; is capable of the following operations:

<list bullet>

* <xref ChannelChange>

* <xref VolumeUp>

* <xref VolumeDown>

* <xref VolumeMute>

<\list>

Choose one of the hyperlinks (underlined phrases)

to find out how to perform that operation.

<s1 id=ChannelChange> Changing the Channel

<idx|channel, changing|

Speak the command:

<ex>channel<\ex>

followed by a number from one to ninety nine.

<s1 id=VolumeUp> Turning Up the Volume

<idx|volume, changing|

Speak the command:

<ex>volume up<\ex>

For additional volume, speak the command:

<ex>more<\ex>

(See also <xref VolumeDown>)

<s1 id=VolumeDown>Turning Down the Volume

<idx|volume, changing|

Speak the command:

<ex>volume down<\ex>

To further reduce the volume, speak the command:

<ex>more<\ex>

(See also <xref VolumeUp> and <xref VolumeMute>)

<s1 id=VolumeMute>Turning Off the Sound

<idx|volume, changing|

<idx|sound, on/off|

Speak the command:

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-5



<ex>sound off<\ex>

To restore the sound, speak the command:

<ex>sound on<\ex>

(See also <xref VolumeDown> and <xref VolumeUp>)

3. Create a text �le that gives the information a title, provides
copyright information, and provides other information about the
online help. In this example, the following text is put into a �le
called Metainfo in the same directory as the Commands �le.

<metainfo>

<title>Using the &product;

<copyright>

&copy; 1997 Voice Activation Company. All rights reserved.

<abstract>Help for Using the &product;.

<\metainfo>

Create a \build" directory

4. Create a new subdirectory named build/ that is below the
directory that contains the Commands and Metainfo �les.

Create the master HelpTag file

5. In the build/ subdirectory, create a text �le whose name is
of the form volume.htg. In this example, the �le is named
voiceact.htg.

6. In the .htg �le, de�ne entities that associate the names of the
Commands and Metainfo �les with entity names. Also, de�ne
any entities that are used (either directly or indirectly) in the
Commands and Metainfo �les. Finally, refer to the Commands and
Metainfo �les by their entity names.

In this example, the contents of the voiceact.htg �le look like
this. The text within the <!-- . . . --> elements are comments,
which are ignored.

<!-- Declare an entity for each of the source text files. -->

<!entity MetaInformation FILE "MetaInfo">

<!entity Commands FILE "Commands">

<!-- Define an entity that names the product and includes

the trademark symbol (&tm;). -->

<!entity product "VoAc&tm; Voice-Activated Remote Control">

<!-- Include the text files. -->

&MetaInformation;

&Commands;

2-6 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Prepare to run HelpTag

7. In the build/ subdirectory, create a �le named helptag.opt and
put the following text into it. This information selects HelpTag
options and indicates where to search for any �les de�ned in
FILE entity declarations.

memo

onerror=go

search=./

search=../

8. Add the /usr/vhelp/bin/ directory to your PATH environment
variable. If you're not sure how to do this, consult the online
help or documentation for your operating system or see your
system administrator.

Create the run-time help files

9. From the build/ subdirectory, execute the following command:

helptag -verbose voiceact

This command executes the HelpTag software to create a
run-time version of your online help volume. The -verbose
option tells HelpTag to display, on your screen, its progress.

10. If HelpTag reports that errors occurred, �x them by editing or
renaming the text �les as needed. (If the errors are parser errors,
they are listed in a �le named voiceact.err.)

Display the help volume

11. From the build/ subdirectory, execute the following command.
It displays the new help volume:

helpview -h voiceact &

You can now scroll the information and jump to related
information by choosing hyperlinks.

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-7



Creating a Topic
Hierarchy

The topic hierarchy within your help volume begins with the home
topic. Each help volume must have one home topic. The �rst level of
subtopics below the home topic may be entered with <chapter> or
<s1>.

Additional levels of subtopics are entered with <s2>, <s3>, and so on.
The HelpTag markup language supports hierarchies down to <s9>.
However, information more than three or four levels deep often leads
many readers to feel lost.

Within each topic that has subtopics, you should provide a path for
the reader to get to the subtopics. This requires assigning unique IDs
to all topics and creating hyperlinks within the body of each topic to
its subtopics.

Example

Suppose you want to create a hierarchy to match this simple outline:

Tutorial for New Users

Module 1: Getting Started

Module 2: Creating Your First Report

Module 3: Printing the Report

Module 4: Saving Your Work and Quitting

Task Reference

Starting and Stopping

To start the program

To quit the program

Creating Reports

To create a detailed report

To create a summary report

Concepts for Advanced Users

How Report Hot Links Work

Sharing Reports within a Workgroup

Reference

Command Summary

Report Attributes Summary

2-8 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Then the general outline of your help volume would look like this.
(The body of each topic and IDs for the topics are not shown.)

<hometopic> Welcome to Report Master

<chapter> Tutorial for New Users

<s1> Module 1: Getting Started

<s1> Module 2: Creating Your First Report

<s1> Module 3: Printing the Report

<s1> Module 4: Saving Your Work and Quitting

<chapter> Task Reference

<s1> Starting and Stopping

<s2> To start the program

<s2> To quit the program

<s1> Creating Reports

<s2> To create a detailed report

<s2> To create a summary report

<chapter> Concepts for Advanced Users

<s1> How Report Hot Links Work

<s1> Sharing Reports within a Workgroup

<chapter> Reference

<s1> Command Summary

<s1> Report Attributes Summary

You could have created an identical hierarchy by starting with <s1>s
in place of the <chapter> tags, <s2>s for the next level, and <s3>s
for the third level. The only di�erence|not seen by the reader|is
the number of �les created by HelpTag when you process the help
volume.

Again, indentation is used here to make it easier to see the structure
of the help volume. You do not have to indent your �les.

See Also

\Accessing Topics" in this chapter describes assigning IDs to
topics.
\Creating Hyperlinks" in Chapter 3 describes how to create
hyperlinks.

To create a home topic Use the <hometopic> element as follows:

<hometopic>Title

Body of topic.

If you include a meta information section (<metainfo>), the home
topic must follow it.

Examples

Here's a home topic with a title and a single sentence as its body:

<hometopic>Welcome to My Application

Congratulations, you've entered

the online help for My Application.

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-9



Here's a sample home topic that includes hyperlinks to its four
subtopics:

<hometopic>Welcome to Report Master

Welcome to the online help for Report Master.

Choose one of the following hyperlinks:

<list bullet>

* <xref Tutorial>

* <xref Tasks>

* <xref Concepts>

* <xref Reference>

<\list>

If you need help, press F1.

To help users who may be new to hyperlinks, you may want to
include a reminder to use F1 to get help on help.

To add a topic to the
hierarchy

To add another topic at the same level, repeat the same element.

Or, to add a subtopic (a topic one level deeper in the hierarchy),
use the element that is one level deeper than the preceding topic.

Example

If the current topic is an <s1>, enter a subtopic using <s2>.

<s1 id=getting-started> Getting Started

The body of this getting started topic should

include a hyperlink to each of the subtopics.

<s2 id=starting-the-program> Starting the Program

Here's the body of the �rst subtopic.

<s2 id=stopping-the-program> Stopping the Program

Here's the body of the second subtopic.

The second <s2> is also a subtopic of the <s1>.

The Parent-Child
Metaphor

Sometimes a parent-child-sibling metaphor is used to describe the
relationships between topics in a hierarchy. In the above example,
the <s1> topic is the \parent" of both <s2>s (the \children" topics).
The two <s2>s are \siblings" of one another. All three topics are
\descendents" of the home topic.

2-10 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Creating Meta
Information Topics

The meta information section is primarily intended for information
about information. Similar to providing a \Notice" page in a book,
this section includes information such as the volume title, copyright,
trademark, and other notices.

A secondary use of the meta information section is to enter general
help topics that are not part of the normal topic hierarchy. These
topics are useful for creating custom de�nition links that pop-up a
topic in a quick help dialog.

To create a meta
information section

1. Enter the <metainfo> tag to start the section, and enter the
required subelements <title> and <copyright> as shown:

<metainfo>

<title>Volume Title Here

<copyright>

Body of copyright topic here.

...

2. Enter any of the optional elements as shown:

<abstract>

Body of the abstract topic here.

Do not use any HelpTag markup within the abstract!

3. Enter the <\metainfo> end tag to end the section.
...

<\metainfo>

Notes Some elements in the meta information section require a <head>

tag before the topic heading.

The <abstract> section is recommended. Applications that access
help volumes may use the abstract to present a brief description
of the volume. Because the abstract might be displayed in plain
text windows (that are not capable of multi-font or graphics
formatting), you should avoid including any HelpTag markup in
the abstract.

Example

Here's a typical meta information section:

<metainfo>

<title> Report Master, Version 1.0

<copyright>

<otherhead>Report Master

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-11



<image>

Version 1.0

&copy; Copyright Hewlett-Packard Company 1992

All rights reserved.

<\image>

<abstract>

This is the online help for the mythical Report Master

application. This help includes a self-guided tutorial,

a summary of common tasks, general concepts, and quick

reference summaries.

<\metainfo>

The <image> element is used to preserve the author's line breaks.
The &copy; entity inserts the copyright symbol.

See Also

\To link to a meta information topic" in Chapter 3

To add a
non-hierarchical topic

Add the topic just before the end of your meta information section
using the <otherfront> element as follows:

<otherfront id=id><head> Topic Title

Body of topic.

The ID parameter and <head> tag are required.

You may add as many <otherfront> topics as you want. They
may be in any order, but they must be the last topics in the
<metainfo> . . . <\metainfo> section.

Example

This partial help volume shows how a general topic is added to the
meta information section. The topic's title is \Popup!" and its ID is
my-popup-topic.

<metainfo>

<title>My Help

<copyright>

This is My Help, Version 1.0. &copy; 1992.

.

.

.

<otherfront id=my-popup-topic><head>Popup!

This is a popup topic, displayed via a definition link

somewhere in my help volume.

<\metainfo>

<hometopic> Welcome to My Help

.

.

.

2-12 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Presumably, within some other topic in the help volume, there's a
de�nition link to display this topic. The link might look like this:

Here's a sample of a pop-up

<link my-popup-topic Definition>definition link<\link>.

The words \de�nition link" become the active hyperlink and will be
displayed with a dashed underline. Selecting the link displays the
\Popup!" topic in a quick help dialog.

See Also

\Creating Hyperlinks" in Chapter 3

Accessing Topics Many elements in the HelpTag language support an ID attribute. An
ID is a unique name used internally to identify topics and elements
within topics. An ID is de�ned only once, but multiple hyperlinks
and cross-references can refer to the same ID. IDs are not seen by the
user.

If you are writing help for an application, IDs are also used by the
application to identify particular topics to display when the user
requests help.

Rules for ID Names ID strings may contain letters (A - Z and a - z), digits (0 - 9), plus
(+), and minus (�), and must begin with a letter.

Author-de�ned IDs may not use the underscore character ( ); it is
reserved for IDs that are built into some HelpTag elements.

Case is not signi�cant, but is often used to increase readability.

ID strings cannot be longer than 64 characters.

Each ID within a single help volume must be unique.

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-13



To add an ID to a topic Use the id parameter for the element as follows:

<element id=id> ...

The elements that start a new topic and support an author-de�ned
ID are:

<chapter id=id>

<otherfront id=id>

<rsect id=id>

<s1 id=id>

<s2 id=id>.
.
.

<s9 id=id>

Built-in IDs

A few elements have built-in IDs and therefore do not support
an author-de�ned ID. Each of the following elements also starts
a new topic, but these elements have pre-de�ned IDs (shown in
parentheses):

<abstract> (_abstract)

<copyright> (_copyright)

<glossary> (_glossary)

<hometopic> (_hometopic)

<title> (_title)

To add an ID to an
element within a topic

If the element supports an author-de�ned ID, use the id parameter
for the element as follows:

<element id=id> ...

The elements (within a topic) that support an ID attribute are:

<figure id=id>

<graphic id=id>

<location id=id>

<p id=id>

Or, use the <location> element to set an ID at an arbitrary point
within the topic as follows:

<location id=id> text <\location>

Where text is any word or phrase where you want to add an ID.
The <\location> end tag is required.

Examples

Here's a �gure with the ID my-big-picture. Whenever you assign
an ID to a �gure, be sure to provide a caption.

<figure id=my-big-picture entity=big-picture-TIFF>

Here's My Figure

<\figure>

Here's a paragraph where the phrase \easier than ever" has been
assigned the ID easy-spot:

Getting help is <location id=easy-spot>easier

than ever<\location> -- just press F1.

2-14 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Using Entities An entity can represent a string of characters or the contents of
a �le. An entity declaration de�nes the entity by associating the
entity name with a speci�c character string or �le name. An entity
reference is replaced by the string or �le contents when you process
the help volume with the helptag command.

Entities are useful for:

Referencing a common string of text. This is useful if there is some
likelihood that the text may change or you simply don't want to
type it repeatedly. Each place you want the text inserted, you
reference the entity name.

Referencing an external �le. Entities are required for accessing
graphics �les. The <figure> and <graphic> elements have a
required parameter that you use to specify an entity name, which
refers to a graphic image �le.

File entities are also useful for splitting your HelpTag source into
multiple �les. Use entity references to include other �les into your
master HelpTag �le for processing.

Rules for Entity
Declarations

All entity declarations must come before any other markup in your
help volume.

Entity names may contain letters (A - Z and a - z), digits (0 - 9),
plus (+), and minus (�), and must begin with a letter.

Case is not signi�cant in entity names, but is often used to increase
readability.

Entity names cannot be longer than 64 characters.

Each entity name must be unique within a single volume.

To create a text entity 1. Declare an entity as follows:

<!entity EntityName "text">

Where EntityName is the name of the entity and text is the
string that you want substituted for every reference to the entity.
Remember, all entity declarations must come before any other
markup in your help volume.

2. For each location where you want the text string to be inserted,
enter the entity reference as follows:

&EntityName;

The \&" and \;" characters are required for the HelpTag software
to properly recognize the entity reference.

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-15



Example

The following line declares a text entity named \ProductName" that
contains the string \HP Visual User Environment":

<!entity ProductName "HP Visual User Environment">

The following sentence includes a reference to the entity:

Welcome to the &ProductName;!

When the help volume is processed with the HelpTag software, the
entity reference is replaced with the value of the entity. So, the
sentence reads:

Welcome to the HP Visual User Environment!

To create a file entity 1. Declare an entity as follows:

<!entity EntityName FILE "�lename">

Where EntityName is the name of the entity and �lename is the
name of the �le. The keyword FILE is required.

2. Reference the entity as follows:

If the �le is a text �le, enter the following entity reference at
each location where you want the contents of the �le inserted.

&EntityName;

The ampersand (&) and semicolon (;) characters are required for
the HelpTag software to properly recognize the entity reference.

If the �le is a graphics �le, include the name of the entity as a
parameter in one of the following markup lines:

<figure entity=EntityName ... >

Or:

<graphic entity=EntityName ... >

Or:

<p gentity=EntityName ... >

Do not include any path in the �le name. If the �le is not in the
current directory when you run the HelpTag software, add the
appropriate search path to the helptag.opt �le. (See \To run
`helptag'" in Chapter 4.)

2-16 Organizing and Writing

a Help Volume

DRAFT

4/7/98 12:49



Example: Text File Entities

Suppose you wrote the text for your help volume in three �les
named file1, file2, and file3, plus a fourth �le containing your
<metainfo> . . . </metainfo> section. You could include them in
your volume.htg �le like this:

<!entity MetaInformation FILE "metainfo">

<!entity MyFirstFile FILE "file1">

<!entity MySecondFile FILE "file2">

<!entity MyThirdFile FILE "file3">

&MetaInformation;

<hometopic> My Home Title

Welcome to my application's help volume.

&MyFirstFile;

&MySecondFile;

&MyThirdFile;

Example: A Graphic File Entity

Suppose a simple help volume has a �gure in the home topic and the
graphic image for the �gure is stored in a �le named picture.tif.
The following example shows how that image would be used in a
�gure.

<!entity MetaInformation FILE "metainfo">

<!entity MyPicture FILE "picture.tif">

&MetaInformation;

<hometopic>A Sample Graphic

Welcome to my application's help volume.

<figure entity=MyPicture>

A Picture

<\figure>

The text \A Picture" is the �gure's caption.

See Also

\Displaying Graphics" in Chapter 3

DRAFT

4/7/98 12:49

Organizing and Writing

a Help Volume

2-17





3

Writing a Help Topic

Each topic you write should have an element that marks the start of
the topic:

<element id=id> Topic Title

The body of the topic

Where element is one of the following: chapter, s1, s2, . . . , s9.
The body of the topic may begin on any line after the Topic Title .

The topic's position within the topic hierarchy is determined by the
element used to start the topic and by the element used to start the
immediately preceding topic. For example, a topic that starts with
<s2> and immediately follows a topic that starts with <s1> makes
the <s2> topic a subtopic of the <s1> topic.

The id is required if the topic is to be accessed either from the
application (if you are writing application help) or from a hyperlink.

The Topic Title can be any string. If the title string occupies more
than one line in your source �le, end all but the last line with an
ampersand (&). To force a line break at a particular place within the
Topic Title , use a backslash character (\).

Example

The following line marks the start of a topic using the <s1> tag:

<s1 id=welcome>Welcome to My Application

To force the title to be displayed on two lines, you use a backslash
(\) like this:

<s1 id=welcome>Welcome to \ My Application

See Also

Chapter 2 describes the general structure of a help volume,
including how to create a topic hierarchy.

DRAFT

4/7/98 12:49

Writing a Help Topic 3-1



Creating Structure
Within a Topic

Within the body of a help topic, you have the following elements to
choose from to organize and present your information:

Paragraphs are used for bodies of text.

Lists are used for itemized information. There are several types of
lists including bulleted, ordered (numbered), and plain.

Subheadings let you partion sections within a topic.

Graphics can be included within your text as inline graphics or
displayed between paragraphs as stand-alone �gures .

Hyperlinks provide references to related topics. A hyperlink may
lead to a subtopic, deeper in the hierarchy, or branch to a topic in
a completely di�erent part of the hierarchy, or even in another help
volume.

Computer literals are computer-recognized text, such as �le names
and variable names, that can be displayed as either separate
example listings or inline elements.

Notes, cautions, and warnings call the reader's attention to
important information.

Emphasis enables you to highlight important words and phrases
within paragraph text.

To start a paragraph Insert a blank line after the previous paragraph or other element.

Or, use the <p indent> element and parameter if the paragraph is
to be indented.

Or, use the <image> element if you want the paragraph to
maintain the line breaks that you enter in your source �le.

An end tag for <p> is not required. However, the <\image> end tag
is required with the <image> element.

Examples

Here are two paragraphs, separated by a blank line. Because neither
paragraph has any special parameters, the <p> tag does not have to
be entered (it is assumed when you enter one or more blank lines):

Many people prefer online help over printed

manuals because finding information can be

done more quickly. For those people, HP Help

works well on screen.

For people who prefer to read a printed page,

HP Help offers full WYSIWYG printing. Printed

output includes multi-font text formatting and

graphics.

If you want a paragraph indented from the left margin, include the
optional indent parameter:

<p indent>An indented paragraph can be used

to draw the reader's attention to an idea.

3-2 Writing a Help Topic DRAFT

4/7/98 12:49



The following paragraph overrides the automatic word wrap in help
windows and maintains the line breaks exactly as entered in the
source �le. The <image> element is especially useful for entering
addresses.

<image>

Hewlett-Packard Company

User Interface Technology Division

Corvallis, Oregon

<\image>

See Also

\To wrap text around a graphic" later in this chapter shows how to
include a graphic with a paragraph.

To enter a list Use the <list> element as shown:

<list type spacing>

* item

* item
...

* item

<\list>

Where type indicates the type of list you want: bullet (default),
order, or plain; and spacing is loose (default) or tight. Each
item in the list is marked with an asterisk (*).

Or , to create a labeled list without headings, use the <lablist>
element as shown:

<lablist spacing>

\label 1\ item 1 text

\label 2\ item 2 text
...

\label N\ item N text

<\lablist>

Where spacing is loose (default) or tight.

Or , to create a labeled list with headings, use the <lablist> and
<labheads> elements as shown:

<lablist spacing>

<labheads> \ heading for labels \ heading for items

\label 1\ item 1 text

\label 2\ item 2 text
...

\label N\ item N text

<\lablist>

DRAFT

4/7/98 12:49

Writing a Help Topic 3-3



Examples

Here's a simple list. Because the type isn't speci�ed, it defaults to
a bulleted list. Because spacing isn't speci�ed, it defaults to loose,
which leaves a blank line between each item.

<list>

* chocolate

* raspberry

* vanilla

<\list>

To format the same list without bullets or numbers and with reduced
spacing between items, you would use:

<list plain tight>

* chocolate

* raspberry

* vanilla

<\list>

Here's a list of labeled chapter descriptions. The optional label
headings are not provided.

<lablist tight>

\Chapter 1\ An overview of the system.

\Chapter 2\ How to install the system.

\Chapter 3\ How to use the system.

\Appendix A\ A quick-reference description of all system features.

<\lablist>

See Also

\<list>" in Chapter 11 summarizes the use of the <list> element
and provides additional examples.
\<lablist>" in Chapter 11 summarizes the use of the <lablist>
and <labheads> elements and provides additional examples.

To provide subheadings
within a topic

For midsize headings (slightly smaller than the topic title), use the
following markup:

<otherhead> Heading

Or, for small headings, use the following markup:

<procedure> Heading

Subheadings add structure within a topic, but they do not a�ect the
topic hierarchy.

Example

Here the <procedure> element is used to add a small heading just
before each paragraph.

<procedure>Online Help is Preferred by Many

Many people prefer online help over printed

manuals because finding information can be

done more quickly. For those people, HP Help

works well on screen.

3-4 Writing a Help Topic DRAFT

4/7/98 12:49



<procedure>WYSIWYG Printing!

For people who prefer to read a printed page,

HP Help offers full WYSIWYG printing. Printed

output includes multi-font text formatting and

graphics.

To show a computer
listing

For computer listings that do not contain any special character
sequences that will be interpreted as HelpTag markup, use the
<ex> (example) element as show:

<ex size>

Computer text here.

<\ex>

For computer listings that do contain special character sequences
used by HelpTag, use the <vex> (verbatim example) element as
shown:

<vex size>

Computer text here.

<\vex>

The optional size attribute, which determines the size of the
font used to display the example, can be speci�ed as smaller or
smallest.

Line breaks appear where you enter them in your source �le. If the
example is too wide for the help window, a horizontal scroll bar
appears so the reader can scroll to see all the example text.

See Also

\To display a computer literal"
\<ex>" in Chapter 11
\<vex>" in Chapter 11

To add a note, caution,
or warning

Include the <note>, <caution>, or <warning> element as follows:

<note>

Body of note here.

<\note>

<caution>

Body of caution here.

<\caution>

<warning>

Body of warning here.

<\warning>

To associate an icon with the note, caution, or warning element,
de�ne a �le entity that identi�es the graphics �le containing the icon.
Use one of the pre-de�ned entity names:

DRAFT

4/7/98 12:49

Writing a Help Topic 3-5



<!ENTITY NoteElementDefaultIconFile FILE "�lename">

<!ENTITY CautionElementDefaultIconFile FILE "�lename">

<!ENTITY WarningElementDefaultIconFile FILE "�lename">

If you do not want icons with notes, cautions, or warnings, simply
don't declare the corresponding entities. (Remember, all entity
declarations must come before any other markup at the beginning
of your help volume.) If you include such an entity reference, be
sure the graphics �le is in your HelpTag search path (helptag.opt).
Sample icons are provided in /usr/vhelp/helptag/icons/.

If you create your own icon images for notes, cautions, and warnings,
be sure to keep them small so they will �t into the area allocated.

Example

If you declare the following entity:

<!ENTITY CautionElementDefaultIconFile FILE "caution.pm">

and include the following note and caution in your help volume:

<note>

Pay attention -- this is important.

<\note>

<caution>

Don't try this at home!

<\caution>

then the note is displayed without an icon, and the warning
is displayed using the caution.pm graphic as its icon. (The
caution.pm �le must be in your HelpTag search path, which is
speci�ed in your helptag.opt �le.)

See Also

\To run `helptag'" in Chapter 4 includes information about using a
helptag.opt �le.
\Using Entities" in Chapter 2

3-6 Writing a Help Topic DRAFT

4/7/98 12:49



Entering Inline
Elements

Inline elements are used to mark words or phrases within a
paragraph of text. These elements a�ect the font used to format
particular items.

To emphasize a word or
phrase

Use the <emph> element (emphasis) as shown:

<emph> text <\emph>

Or, use the shorthand form:

!! text !!

Emphasized text is displayed using an italic font.

Example

Here's how you might emphasize an important word:

A thousand times <emph>no<\emph>

Or, using the shorthand form:

A thousand times !!no!!

In both cases, the word \no" is displayed in italics.

To enter a book title Use the <book> element as shown:

<book> title <\book>

Or, use the short form:

<book| title |

Book titles are displayed using an italic font.

Example

Here's how you would enter the title of this guide:

<book|The HP Help System Developer's Guide|

To display a computer
literal

Use the <computer> element as shown:

<computer> text <\computer>

Or, use the shorthand form:

`` text ''

Example

Computer text is useful for identifying a �le name. Here the
helptag.opt �le name is marked to be displayed in computer text.

Add the search path to your ``helptag.opt'' file.

DRAFT

4/7/98 12:49

Writing a Help Topic 3-7



To display a variable Use the <var> element (variable) as shown:

<var> text <\var>

Or, use the short form:

<var| text |

Or, use the shorthand form:

%% text %%

Variables are displayed using an italic font.

Example

Here's a variable within a normal sentence.

When you enter your %%password%%, the

computer unlocks your screen and keyboard.

Variables can appear within computer text or computer example
listings. This example speci�es \volume" as a variable part of a �le
name:

The HelpTag software takes your

``%%volume%%.htg'' as input.

In both of these examples, the %% pairs could have been entered with
the long form (<var> . . . <\var>) or the short form (<var| . . . |).

Creating Hyperlinks HP Help supports �ve types of hyperlinks:

Traditional hypertext to \jump" to another help topic. By default
the new topic is displayed in the same window, but you may
request that the new topic be displayed in a new window.

De�nition links to display a topic in a simple pop-up help window.
Most frequently, de�nition links are used to access the de�nition of
a new term or phrase used within a sentence.

Man page links to display any man page installed on the system.

Execution links to execute a shell command or program. This
greatly expands the possibilities for what happens when the user
activates a hyperlink.

Application-de�ned links to create custom links that the
application interprets. This provides facilities for communication
between the help system and the application.

3-8 Writing a Help Topic DRAFT

4/7/98 12:49



To create a \jump" link To jump to a topic within the same volume, use the <link>
element as shown:

<link id>text<\link>

Where id is an ID declared somewhere in the help volume, and text
is the portion of your help text that is underlined to indicate it is
an active hyperlink.

Or, to jump to a topic (within the same volume) that has a
pre-de�ned ID, use the <link> element as shown:

<link hyperlink="id">text<\link>

All the prede�ned IDs start with an underscore character (_), so
this makes it necessary to use the hyperlink="id" form.

Or, to jump to a topic in another help volume:

<link hyperlink="volume id" JumpNewView>text<\link>

If the other volume is \registered," the volume parameter is just
the base name of the volume �le. If the volume is not registered,
you must include a complete path to the volume's volume.hv �le.

The JumpNewView parameter is recommended for links to other
volumes so that the readers realize that they have jumped into
another volume. The previous view remains displayed so they can
see where they came from.

Or, if you are linking to an element with a title, use the <xref>
element as shown:

<xref id>

When you use <xref> to create a link, the title of the topic with
the ID of id is inserted in place of the <xref> element and becomes
the active hyperlink.

Also, <xref> always creates a standard \jump" link; other types of
links must be created using the <link> element.

Note You cannot use <xref> to jump to topics that have built-in IDs
(such as <hometopic> or <glossary>). To create a hyperlink to any
of those elements, you must use the <link> element.

Examples

Here's a simple hyperlink to the topic with the ID \Welcome."
(Notice that capitalization of the ID is not signi�cant.)

This is a <link welcome>simple jump<\link> link.

Here's the same link, but the title of the Welcome topic is inserted
using an <xref>:

Refer to the <xref welcome> topic.

DRAFT

4/7/98 12:49

Writing a Help Topic 3-9



Here's a link to the same topic, but this one requests a new window:

This is a <link welcome JumpNewView>new-view jump<\link> link.

This link jumps to the home topic of the current volume:

Return to <link hyperlink="_hometopic">Introduction<\link>.

This link jumps to the home topic of the Vuefile help volume:

Return to <link hyperlink="Vuefile _hometopic">Introduction<\link>.

See Also

\<link>" in Chapter 11
\<xref>" in Chapter 11

To create a definition
link

If you are linking to a term in the Glossary, use the <term>
element as shown:

<term>text<\term>

Or, use the shorthand form:

++text++

Whenever you use the <term> element, be sure you include the
corresponding de�nition in the Glossary.

Or , if you are linking to a topic within the same help volume, use
the <link> element as shown:

<link id Definition>text<\link>

Where id is a topic ID (or the ID of an element within the topic)
and text is the portion of your help text that you want to be the
active hyperlink. The Definition keyword speci�es that the link
should pop-up a quick help dialog.

Or, if you are linking to a topic in another help volume, use the
<link> element as shown:

<link hyperlink="volume id" Definition>text<\link>

If the other volume is \registered," the volume parameter is just
the base name of the volume �le. If the volume is not registered,
you must include a complete path to the volume's volume.hv �le.

Example

The following link creates a de�nition link that displays the copyright
topic in the meta information:

<link hyperlink="_copyright" type=Definition>Version Information<\link>

The phrase \Version Information" becomes the (underlined)
hyperlink text.

3-10 Writing a Help Topic DRAFT

4/7/98 12:49



See Also

\Creating a Glossary" later in this chapter.
\<term>" in Chapter 11
\<link>" in Chapter 11

To create a man page
link

Use the <link> element as shown:

<link manpage Man>text<\link>

To request a man page from a particular \section," use the
hyperlink parameter like this:

<link hyperlink="section manpage" Man>text<\link>

For man page links, the hyperlink parameter is the same string you
would enter if executing the man command by hand.

Note If you are writing help for an application and you include any man
page links, your application must include special support for man
pages. See \To display a man page" in Chapter 6. (The Helpview
application includes support for man page links.)

Example

Here's a link that displays the man page for the grep command:

Refer to the <link grep Man>grep(1)<\link> command.

\Man" is a keyword for the <link> element, so if you want to create
a link that displays the man page for the man command, you must
use the hyperlink parameter:

Refer to the <link hyperlink="man" Man>man(1)<\link> command.

To display a man page in a particular section, precede the man
page name with the section number. The following link displays the
\mkdir" man page from section 2 (which is di�erent than the man
page of the same name in section 1):

Refer to the <link hyperlink="2 mkdir" Man>mkdir(2)<\link> command.

See Also

\<link>" in Chapter 11

To create an execution
link

Use the <link> element with the Execute parameter as shown:

<link hyperlink="command &" Execute>text<\link>

Where command is the command string you want to execute and
text is the portion of your help text that you want to use as the
underlined hyperlink text.

DRAFT

4/7/98 12:49

Writing a Help Topic 3-11



Note If the command you are executing doesn't �nish immediately, you
should run it in the background by appending an ampersand (&) to
the command. If you don't, the help window will not operate until
the command �nishes.

Example

The following link starts the xclock program running in the
background:

<link hyperlink="xclock &" Execute>Start the clock<\link>

The phrase \Start the clock" becomes the underlined hyperlink text.

To create an
application-defined link

Use the <link> element with the AppDefined parameter as shown:

<link hyperlink="data" AppDefined>text<\link>

Where data is a text string passed to the application when the link
is invoked, and text is the underlined hyperlink text.

Example

Suppose you are writing help for an application that prints three
styles of reports. You might create three hyperlinks like this:

Choose a report type:

<list plain tight>

* <link hyperlink="Report-Daily" AppDefined>Daily Report<\link>

* <link hyperlink="Report-Month-To-Date" AppDefined>MTD Report<\link>

* <link hyperlink="Report-Year-To-Date" AppDefined>YTD Report<\link>

<\list>

If your application is prepared to handle these special links and
interpret the hyperlink strings, it could generate the appropriate
report based on the hyperlink chosen by the user.

To link to a meta
information topic

Use the <link> element as shown:

<link hyperlink="_id">text<\link>

Where id is the pre-de�ned ID associated with the element you
want to link to and text is the word or phrase that you want to be
the active hyperlink.

Most topics within the meta information section have pre-de�ned
IDs, so they do not allow author-de�ned IDs. The pre-de�ned IDs
consist of the element name preceded by an underscore character.
For example, the ID for the <copyright> topic is _copyright. (Case
is not signi�cant).

Topics entered with the <otherfront> element can be linked to just
like any normal topic in the topic hierarchy.

3-12 Writing a Help Topic DRAFT

4/7/98 12:49



See Also

\To add an ID to a topic" in Chapter 2 lists the prede�ned IDs for
meta information topics.

Displaying Graphics HP Help supports four graphics formats:

Tagged Image File Format (TIFF)|Color, grayscale, and black
and white images created by many standard drawing and scanning
applications (�lename.tif).

X Window Dump|Screen dumps from the X Window System
created with the xwd utility (�lename.xwd).

X Pixmap|Color icon images (�lename.pm).

X Bitmap|Two-color icon images (�lename.bm).

Each graphic is maintained as a separate �le. The �le format is
determined using the �lename extensions listed above.

To create a figure 1. Declare a �le entity to identify the image �le to be included in the
�gure.

<!entity graphic-entity FILE "�lename.ext">

Remember, all entity declarations must come before any other
markup at the top of your help volume.

2. Use the <figure> element as shown:

<figure entity=graphic-entity>

caption string

<\figure>

Where graphic-entity is the entity name for the graphic �le you
want to display, and caption string is an optional string to be
displayed above the graphic.

By default, �gures are numbered and the number is prepended to
your caption string . To create a non-numbered �gure, include the
nonumber parameter (as shown in one of the following examples).

If you want the �gure to be a hyperlink, use the the ghyperlink
(graphic hyperlink ) and glinktype (graphic link type) parameters as
shown:

<figure entity=graphic-entity ghyperlink="id" glinktype=type>

caption string

<\figure>

The ghyperlink and glinktype parameters work just like the
hyperlink and type parameters for the <link> element.

DRAFT

4/7/98 12:49

Writing a Help Topic 3-13



Examples

For these examples, assume that you've declared these two �le
entities at the top of your help volume:

<!entity FirstPicture FILE "first.tif">

<!entity SecondPicture FILE "second.pm">

The following �gure displays the graphic in the first.tif �le and
displays a number (by default) and caption:

<figure entity=FirstPicture>

Here's the First Picture

<\figure>

Here's a �gure that displays the second.pm �le without a number or
a caption:

<figure nonumber entity=SecondPicture>

<\figure>

If you add an ID to a �gure, you must have a caption. The caption
is needed in case an <xref> uses the �gure's ID, in which case the
caption is inserted in place of the <xref> and becomes a hyperlink to
the �gure.

The following �gure is an execution hyperlink that runs the xclock
program:

<figure entity=SecondPicture ghyperlink="xclock &" glinktype=execute>

Choose This Figure to Start the Clock

<\figure>

See Also

\<�gure>" in Chapter 11
\<link>" in Chapter 11

To display an inline
graphic

1. Declare a �le entity to identify the image �le to be used in the
�gure.

<!entity graphic-entity FILE "�lename.ext">

Remember, all entity declarations must come before any other
markup at the top of your help volume.

2. Use the <graphic> element as shown:

... text <graphic entity=graphic-entity> text ...

Where graphic-entity is the entity name for the graphic �le you
want to display.

To use a graphic as a hyperlink, place it inside a <link> element:

<link parameters><graphic entity=graphic-entity><\link>

Note The <graphic> element is intended for small graphics. Larger images
may overlap the text on the preceding line.

3-14 Writing a Help Topic DRAFT

4/7/98 12:49



Example

Here's an example that uses a small X pixmap image in the middle of
a sentence. First, at the top of the volume, the pixmap �le must be
declared as a �le entity:

<!entity SmallStopSign FILE "stopsign.pm">

Within the help text, the image is inserted using the <graphic>
element:

Whenever you see the <graphic entity=SmallStopSign> symbol,

stop and think about what you are doing.

To wrap text around a
graphic

1. Declare a �le entity to identify the image �le to be included with
the paragraph.

<!entity graphic-entity FILE "�lename.ext">

Remember, all entity declarations must come before any other
markup at the top of your help volume.

2. Use the <p> element (paragraph) with the gentity parameter as
shown:

<p gentity=graphic-entity>Paragraph text here ...

Where graphic-entity is an entity name that refers to the graphic
�le you want inserted.

Example

Suppose you want to display an icon named sample.pm and wrap
paragraph text around it. First, declare the �le entity:

<!entity sample-multicolor-icon FILE "sample.pm">

Then, enter the paragraph:

<p gentity=sample-multicolor-icon>Many HP VUE components

support multicolor icons, in addition to the two-color

images used in previous versions of HP VUE.

To right-justify the graphic, add the gposition parameter like this:

<p gentity=sample-multicolor-icon gposition=right>Many

HP VUE components support multicolor icons, in addition

to the two-color images used in previous versions of HP VUE.

Here's the markup for a paragraph wrapped around an icon, where
the icon is a hyperlink that displays a topic with the ID icon-editor

in a new window:

<p gentity=my-icon ghyperlink="icon-editor"

glinktype=JumpNewView>Many HP VUE components support

multicolor icons, in addition to the two-color images

used in previous versions of HP VUE.

See Also

\<p>" in Chapter 11

DRAFT

4/7/98 12:49

Writing a Help Topic 3-15



Including Special
Characters

Many special characters and symbols are available within HelpTag.
You display a particular character by entering the appropriate entity
reference.

Some special character entities are declared in the �le helpchar.ent.
To access them, either copy the particular entity declaration into
your own volume, or include the entire helpchar.ent �le. Unused
entity declarations are ignored.

Refer to Chapter 12 for a complete list of the available characters.

To include a special
character

1. Refer to Chapter 12 to determine the entity name for the
character you want to display. Also note whether it is a built-in
special character.

2. If the character is not a built-in special character, add the
following two lines among your other entity declarations (where
entity-name is a meaningful name to you):

<!entity entity-name FILE "helpchar.ent">

&entity-name;

Also, add this line to your helptag.opt �le:

search=/usr/vhelp/helptag

If the character is built into HelpTag, you can skip step 2.

3. Wherever you want to display the special character, enter its
entity reference:

&entity-name;

Examples

The entity for the copyright symbol ( c) is a built-in special
character, so all you have to do to display it is use this entity:

&copy;

To display the uppercase greek letter sigma (�), you must �rst
include the helpchar.ent �le (at the top of your help volume with
your other entity declarations) as shown here:

<!entity SpecialCharacterEntities FILE "helpchar.ent">

&SpecialCharacterEntities;

Then you can place the following entity reference where the sigma
character is to appear:

&Usigma;

As with any entity, case is not signi�cant in the entity names for
special characters.

3-16 Writing a Help Topic DRAFT

4/7/98 12:49



Including Comments
and Writer's Memos

Frequently it is useful to include within your source �les comments
that are not intended to be part of the help text. Text marked with
the comment element is always ignored by the HelpTag software.
Comments can be used to make notes to yourself or another author,
or to exclude some markup without taking it out of the �le.

In addition to standard comments, HelpTag also provides a <memo>

element for entering writer's memos. Memo notes appear in your
help topics during reviews, but not when you make your �nal help
�les. Authors commonly use the <memo> element to write questions
or make notes to reviewers.

To insert a comment Use the comment begin marker (<!--) and end marker (-->) as
shown:

<!-- text here is completely ignored -->

The HelpTag software ignores all markup between the <!-- and -->.
A comment cannot be nested within another comment.

Example

Here's an example that has two comments, a line before the
paragraph, and a single word within the paragraph.

<!-- Here is my rough draft of the introduction: -->

Welcome to my application. This software

is <!-- perhaps --> the fastest and most

efficient software you'll ever own.

To insert a writer's
memo

Use the <memo> element as shown:

<memo> text <\memo>

By default, the text within the <memo> element is ignored by the
HelpTag software (just like a comment). However, if you add the
memo option to your helptag.opt �le (or specify the memo option
with the helptag command), all memos within your help volume
appear in a bold font.

Example

Suppose you are writing about your application and have a question
for the project team. You can include the question within the text
using the <memo> element like this:

<memo>Team: Will the product also

support 32-bit characters?<\memo>

If you process the help volume with the following command (or
include memo in your helptag.opt �le), the memo appears in the
help text in a bold font.

helptag volume memo

DRAFT

4/7/98 12:49

Writing a Help Topic 3-17



If the memo option is not used (or the nomemo option is used), the
text within the memo is ignored and does not appear in the help
text.

Creating a Keyword
Index

The keyword index for a help volume is similar to the index for a
book. The keyword index is displayed as a sorted list of the keywords
you marked using the <idx> element.

In any general help dialog displaying your volume, the user can
access the keyword index by choosing Keyword from the Search menu
(Ctrl+K). The Filter �eld in the dialog lets the user reduce the
number of items by typing an initial letter or two. When a keyword
is selected, the titles of the topics in which it occurs are listed. To
display a topic, the user selects one of the listed titles.

To mark an index entry Within the topic you want to index, use the <idx> element as
shown:

<idx>keyword<\idx>

Or, the short form:

<idx|keyword|

Or, to control how the entry is sorted, use the <sort> subelement
as shown:

<idx>keyword<sort>sortkey<\idx>

Where keyword is the text you want to display in the index and
sortkey is the text used during sorting.

The <idx> element can be used anywhere within the topic. Neither
the keyword nor the optional sortkey are displayed in the topic.

Examples

Here's the start of a topic with two keyword index entries:

<s1 id=getting-started>Getting Started with Helpview

<idx>starting Helpview<\idx>

<idx>Helpview, starting<\idx>

Welcome ...

.

.

.

The following example indexes the plus character (+), putting it in
the keyword index where the word \plus" would appear:

<idx>+<sort>plus<\idx>

3-18 Writing a Help Topic DRAFT

4/7/98 12:49



Creating a Glossary Like a glossary in a book, your help volume can contain a glossary
that de�nes important terms. The glossary, which is marked using
the <glossary> element, is the last topic in your help volume.

Throughout your help volume, each key word or phrase that you
enter with the <term> element automatically becomes a de�nition
hyperlink to the term's de�nition in the glossary.

See Also

\<dterm>" in Chapter 11
\<glossary>" in Chapter 11
\<term>" in Chapter 11

To mark a glossary term Use the <term> element as shown:

<term>word or phrase<\term>

Or, use the short form:

<term|word or phrase|

Or, use the shorthand form:

++word or phrase++

If the term within the help text isn't spelled exactly the same as the
de�nition in the glossary, you can specify the \glossary form" of the
term like this:

<term "glossary form">word or phrase<\term>

Where glossary form is the term exactly as it appears in the glossary.
This is useful if the term must be plural in a help topic (because of
its context), but must be singular in the glossary.

Terms are displayed using a bold font and automatically become a
de�nition hyperlink. When the term is chosen, its glossary de�nition
appears in a quick help dialog.

Note If you mark a term that you intentionally do not de�ne in the
glossary, add the nogloss attribute to the <term> element. This
allows the term to be displayed in the bold font used for terms, but
without creating a link to the glossary.

Examples

If your glossary has a de�nition for the term \widget," you can enter
it as a term like this:

A ++widget++ is the fundamental building

block of OSF/Motif user interfaces.

If the glossary entry is \widget," but you need to use the plural form
within the sentence, you could enter the term like this:

<term "widget">Widgets<\term> are the fundamental

DRAFT

4/7/98 12:49

Writing a Help Topic 3-19



building blocks of OSF/Motif user interfaces.

If you want to enter the same term, but you either don't want to
include it in the glossary or you don't want it to be a hyperlink, use
the nogloss parameter like this:

<term nogloss>Widgets<\term> are the fundamental

building blocks of OSF/Motif user interfaces.

The equivalent short form is:

<term nogloss|Widgets| are the fundamental

building blocks of OSF/Motif user interfaces.

To define a term in the
glossary

Enter the <dterm> element into the glossary as shown:

<glossary>

...

<dterm>word or phrase

De�nition of the term
...

Be sure to keep the <dterm> words and phrases sorted within the
glossary.

Example

Here's part of a glossary that includes the de�nition of the term
\SGML":

<glossary>

.

.

.

<dterm>SGML

!!Standard Generalized Markup Language!!. An

international standard [ISO 8859: 1986] that

establishes a method for information interchange.

SGML prescribes constructs for marking the

structure of information separate from its

intended presentation or format. The HP HelpTag

markup language is based on the SGML standard.

3-20 Writing a Help Topic DRAFT

4/7/98 12:49



4
Processing and Displaying
a Help Volume

Before a help volume can be displayed, you must create run-time help
�les by processing your �les with the HelpTag software.

What HelpTag Does

The HelpTag software, which is invoked by the helptag command,
does three signi�cant tasks:

1. The HelpTag parser converts your marked-up �les into an
internal format understood by the the HP Help System. If you've
made any markup errors, the errors are listed in a �le named
volume.err.

2. If there are no parser errors, the master help volume �le
(volume.hv) and keyword index �le (volume.hvk) are created.

3. Finally, the help topic �les (volume*.ht) are compressed to save
disk space.

Viewing Your Volume

When HelpTag �nishes, your help volume is ready to be displayed.
You can display it using the helpview command. Or, if you have
written help for an application and the application is ready to use,
you can display your help by running the application and asking for
help.

Creating Run-Time
Help Files

When you run HelpTag (by using the helptag command), it reads
your volume.htg �le and any additional source �les that are included
using entities. Also, graphics �le names are validated.

DRAFT

4/7/98 12:49

Processing and Displaying

a Help Volume

4-1



The output from HelpTag is a set of run-time help �les. These �les,
plus your graphics �les, are read by the HP Help System to display
help topics.

HelpTag Output

All the run-time help �les have the same base name as your
volume.htg �le. For example, if your volume.htg is named
DeskScan.htg, then each generated �le will start with DeskScan.

See Also

For more information about the �les generated by HelpTag, refer to
\Gathering Run-Time Help Files" in Chapter 8.

To run `helptag' 1. Be sure the /usr/vhelp/bin/helptag command is in your search
path. (If you're not sure how to do this, contact your system
administrator.)

2. Change to the directory where your volume.htg �le is located.

3. Run the helptag command as follows:

helptag command-options volume parser-options

Where command-options are options entered before the volume
name and parser-options are options entered after the volume
name. \Processing HelpTag Files (`helptag')" in Chapter 13 lists
all available options.

Example: Commands

The following command processes a help volume named MyVolume:

helptag MyVolume

Using the -verbose option causes the progress of the processing to
be displayed on your screen:

helptag -verbose MyVolume

Adding a search path enables HelpTag to �nd �les stored in a
subdirectory (of the current directory) named graphics/:

helptag -verbose MyVolume search=graphics

Example: A `helptag.opt' File

Here's a sample helptag.opt �le showing that each option is on a
separate line. It would be appropriate for creating a draft version of
the volume.

memo

onerror=go

search=graphics/

search=entityFiles/

Before producing the �nal version of the help volume, you would
remove the memo and onerror=go lines.

4-2 Processing and Displaying

a Help Volume

DRAFT

4/7/98 12:49



To review and correct
parser errors

Look at the contents of the volume.err �le after running HelpTag
(where volume is the base name of your volume.htg �le).

Each error listed in the volume.err �le begins with a string of
asterisks (*****). For example, the following error was detected at
line 54 of the �le actions:

*****

Line 54 of actions,

Missing end tag for LIST:

...he execution host becomes the current working directory.

<s2 id=EverythingYouNeedToKnow>E...

Current element is LIST begun on Line 28 of actions.

A few lines of the �le are shown to give you some context for the
error. Also, there is a hint that the current element is a \LIST"
started on line 28 of the same �le. An <s2> is not allowed within a
list, so it appears that the author forgot to enter the <\list> end
tag.

It's possible for a single simple error to produce several error
messages. This is because the �rst error may cause the parser to
lose track of the intended context, making it impossible to interpret
subsequent markup properly.

Viewing a Help
Volume

The Helpview application can be used to display any help volume.
It supports all types of hyperlinks except application-de�ned links
(because it cannot know how your links are to be interpreted).

If you are writing application help and your application is ready to
use, you can also view your help by running your application, then
requesting help just as a user would.

To run `helpview' If the volume.hv �le for the volume you want to display is either
in the current directory or has been \registered," execute this
command:

helpview -helpVolume volume

Or, if the volume.hv is in another directory (and hasn't been
registered), execute this command:

helpview -helpVolume /full-path/volume.hv

Or, if you are using HP VUE 3.0 (or later), open a File Manager
view of the directory where the volume.hv �le is and double-click
its icon. The default action for a .hv �le is to run helpview.

The -helpVolume parameter can be shortened to -h in any of these
commands.

DRAFT

4/7/98 12:49

Processing and Displaying

a Help Volume

4-3



Example

Suppose you just edited your help volume. You would �rst process it
with the HelpTag software:

helptag MyVolume

If no errors occurred, you could then display it with this command:

helpview -h MyVolume &

Example: A Personal Help Directory

During a project, you may want to access the help volume
you are developing, but not expose it to all users on your
system. For example, suppose your working directory is
/projects/rivers/help/ and your help volume is named Myvolume.

First, create a personal help directory in your home directory where
you can register the volume:

mkdir -p $HOME/vhelp/volumes/C

Now create a symbolic link to the Myvolume.hv �le (which is created
by the HelpTag software):

ln -s /projects/rivers/help/Myvolume.hv $HOME/vhelp/volumes/C/Myvolume.hv

You can now display the volume with the following command
(regardless of your current working directory) because the
vhelp/volumes/C/ directory within your home directory is one of the
�rst places the help system looks for help volumes.

helpview -helpVolume Myvolume

To display the online version of the guide you are now reading, you
can execute this command from any directory:

helpview -helpVolume HPHelpKit

See Also

\Displaying Help Topics (`helpview')" in Chapter 13 lists options
available for the helpview command.

4-4 Processing and Displaying

a Help Volume

DRAFT

4/7/98 12:49



Testing Your Help Testing your help volume is as important as testing any software
product. Here are some tips to help you plan your testing:

Validating Hyperlinks

Display your help volume and try every hyperlink. Any underlined
text (solid or dashed underlines) is a hyperlink. Also, test any
graphics that are hyperlinks (they are not underlined).
If you are writing application-speci�c help and you have included
any JumpNewView, Man, or AppDefined links, you must test these
links from your application. Testing such links from Helpview
does not ensure that the links will operate correctly with your
application.

Verifying Entry Points

If you are writing application-speci�c help that uses IDs to access
particular help topics, there are two ways to verify that the IDs have
been properly established within the help volume:

Run your application and request help just as a user will, trying
each of the entry points. This also veri�es that the application is
using the correct IDs.
If your application is not ready to use (still under development),
you can test each ID by running Helpview for each ID:

helpview -helpVolume volume -locationId id

Where id is the location ID that you want to test. If helpview
displays the correct topic, then the ID is okay.

Testing Graphics

Physically run your application on various displays to verify that
the graphics are acceptable on color, grayscale, and monochrome
displays.
Print your help volume to verify that the printed graphics are
acceptable. Graphics appear in hardcopy the same as on a
monochrome display.
If you are using HP VUE 3.0 or later, you can also simulate
other situations by changing the \HP VUE Color Use" in Style
Manager's Color dialog.

See Also

\Printing Help Topics (`helpprint' and `helpprintrst')" in
Chapter 13

DRAFT

4/7/98 12:49

Processing and Displaying

a Help Volume

4-5





5

Creating and Managing Help Dialogs

For application programmers, the HP Help System provides a
programming library that adds help dialogs to any OSF/Motif
application. The library provides two types of help dialogs:

General help dialogs have a menu bar, a Topic Hierarchy (that tells
you where you are), and a help topic display area. (See 1 below.)

Quick help dialogs have just a topic display area and one or more
dialog buttons at the bottom. (See 2 below.)

DRAFT

4/7/98 12:49

Creating and Managing Help Dialogs 5-1



The Quick Help Dialog

The quick help dialog is designed to help you meet the �rst objective
of online help: \Get the user back on task as quickly and successfully
as possible."

The quick help dialog, which never has more than �ve buttons, has
a simple user interface, which helps keep the user focused on the
information. Hopefully the information is useful enough that the user
dismisses the dialog after reading it and continues working.

The General Help Dialog

The general help dialog has a few user interface features beyond the
features of the Quick Help Dialog. Most notably, the Topic Hierarchy
list, which appears just above the help topic display area, indicates
the location of the current topic within the hierarchy. The home
topic is always the �rst title in the hierarchy and the current topic's
title is always the last title in the list.

Standard Xt Paradigm

In terms of programming, you interact with the help dialogs the same
as you do with any other OSF/Motif widgets in your applications.
The two types of help dialogs are de�ned as two new widget classes:
XvhQuickHelpDialogWidgetClass and XvhHelpDialogWidgetClass.

Nearly every attribute of the help windows|including the volume
name and topic ID|are manipulated as widget resources. For
instance, to display a new topic, you just execute an XtSetValues()

call to set the XmNhelpVolume, XmNlocationId, and XmNhelpType

resources. For more information, refer to \Displaying Help Topics" in
Chapter 6.

Prerequisite Knowledge Integrating the HP Help System into an application requires
a working knowledge of the the C programming language, the
OSF/Motif programmer's toolkit, and the Xt Intrinsics toolkit.

5-2 Creating and Managing Help Dialogs DRAFT

4/7/98 12:49



The Quick Help
Dialog

Within a quick help dialog, users can get to more help using
hyperlinks within the displayed topic.

One of the dialog's buttons is application-de�ned, so this button can
be used for anything. However, its intended purpose is to provide a
path to more help in one of these two ways:

Let the user ask for more detailed information. In this case,
the default button label (\More") is appropriate. This is called
\progressive disclosure."

Or, let the user open a general help dialog for general browsing of
the application's help volume. In this case, \Browse . . . " is the
most appropriate button label.

The HP Help programmer's toolkit includes a convenience function
for determining the widget ID for any of the quick help dialog
buttons.

DRAFT

4/7/98 12:49

Creating and Managing Help Dialogs 5-3



To create a quick help
dialog

1. Include the appropriate header �les:

#include Xvh.h

#include QuickHelpD.h

2. Create an instance of the quick help dialog widget:

Use the XvhCreateQuickHelpDialog() convenience function.
Or, use the XtCreateManagedWidget() function.

3. Add a callback for handling hyperlink events that occur within
the dialog. (This is described in more detail in \Responding to
Hyperlink Events" in Chapter 6.)

4. Add a close callback for handling the OK button.

5. Con�gure the dialog buttons that you want to use:

If you intend to use the application-de�ned button, manage it
and add an activate callback.
If you want to disallow printing, unmanage the Print button.
Manage the Help button and add a help callback to the dialog
to allow the user to get help on help.

5-4 Creating and Managing Help Dialogs DRAFT

4/7/98 12:49



Example

The following code segment creates a quick help dialog (as a
child of parent) using the convenience function. The dialog is left
unmanaged; presumably it is managed elsewhere in the application
when a help request is made. In this example, the application-de�ned
button is enabled and used to request \more" help.

Widget quickHelpDialog, moreButton, helpButton;

ac = 0;

XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;

quickHelpDialog =

XvhCreateQuickHelpDialog (parent, "quickHelpDialog", al, ac);

The following two calls add the hyperlink and close callbacks
to the dialog. Presumably, the functions HyperlinkCB() and
CloseHelpCB() are declared elsewhere in the application.

XtAddCallback (quickHelpDialog, XmNhyperLinkCallback,

HyperlinkCB, (XtPointer)NULL);

XtAddCallback (quickHelpDialog, XmNcloseCallback,

CloseHelpCB, (XtPointer)NULL);

Here, the application-de�ned button is managed and assigned an
activate callback that invokes the application's MoreHelpCB()
function.

moreButton = XvhQuickDialogGetChild (quickHelpDialog,

XvhDIALOG_MORE_BUTTON);

XtManageChild (moreButton);

XtAddCallback (moreButton, XmNactivateCallback,

MoreHelpCB, (XtPointer)NULL);

To provide \help on help," the dialog's Help button is managed and a
help callback is added to the dialog.

helpButton = XvhQuickDialogGetChild (quickHelpDialog,

XvhDIALOG_HELP_BUTTON);

XtManageChild (helpButton);

XtAddCallback (quickHelpDialog, XmNhelpCallback,

HelpRequestCB, USING_HELP);

Like other OSF/Motif dialogs, when you add a help callback to a
quick help dialog, it is used by both the F1 key and the Help button.

See Also

\To enable the application-de�ned button" in Chapter 6
\To provide help on help for a quick help dialog" in Chapter 9

DRAFT

4/7/98 12:49

Creating and Managing Help Dialogs 5-5



The General Help
Dialog

The menu bar contains several commands, including commands that
display these additional dialogs:

Choose Print from the File menu to display the Print dialog. This
dialog lets the user choose which topics are to be printed: \All,"
\Current," and \Current and Down." (Current and Down prints
the current topic and all of its subtopics.)

Choose Keyword from the Search menu to display the Keyword
Index dialog. This dialog lists all the words and phrases that the
author has marked as index entries. Selecting a keyword, then one
of the topics where the keyword occurs, displays that topic in the
general help dialog.

Choose History from the Search menu to display the History
dialog. This dialog lists the topic titles for each topic the user has
visited. To return to any topic in the list, select its title.

Choose Using Help from the Help menu to display the Help On
Help dialog. This help information describes how to use the help
system itself.

5-6 Creating and Managing Help Dialogs DRAFT

4/7/98 12:49



To create a general
help dialog

1. Include the appropriate header �les:

#include Xvh.h

#include HelpDialog.h

2. Create an instance of the general help dialog widget:

Use the XvhCreateHelpDialog() convenience function.
Or, use the XtCreateManagedWidget() function.

3. Add a callback for handling hyperlink events that occur within
the dialog. (This is described in more detail in \Responding to
Hyperlink Events" in Chapter 6.)

4. Add a close callback for handling the Close command.

Example

The following code segment creates a general help dialog (as a
child of parent) using the convenience function. The dialog is left
unmanaged|presumably it is managed elsewhere in the application
when a help request is made.

Widget mainHelpDialog, moreButton, helpButton;

ac = 0;

XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;

mainHelpDialog =

XvhCreateHelpDialog (parent, "mainHelpDialog", al, ac);

The following two calls add the hyperlink and close callbacks
to the dialog. Presumably, the functions HyperlinkCB() and
CloseHelpCB() are declared elsewhere in the application.

XtAddCallback (mainHelpDialog, XmNhyperLinkCallback,

HyperlinkCB, (XtPointer)NULL);

XtAddCallback (mainHelpDialog, XmNcloseCallback,

CloseHelpCB, (XtPointer)NULL);

See Also

Chapter 9
\To enable the application-de�ned button" in Chapter 6

DRAFT

4/7/98 12:49

Creating and Managing Help Dialogs 5-7



Creating a Dialog
Cache

Because authors can create hyperlinks that request a new window,
your application must be able to create an arbitrary number of
help windows. But, creating and destroying widgets as they are
needed can cause your application to run slower. So, to optimize
performance and make e�cient use of resources, caching help dialogs
is recommended.

A dialog cache is a list of the help dialogs that your application has
already created. When the user dismisses a dialog, the widget stays
in the cache instead of being destroyed.

The next time the user requests help that would otherwise require a
new widget, your application can scan the cache list looking for a
dialog that isn't currently being used.

To create a dialog
cache

1. Declare a structure that you can use to create a linked list
of dialogs. Typically, a help dialog cache structure has these
attributes:

Keeps track of the Widget ID for each help dialog.
Maintains a ag that indicates which type of help dialog it is
(quick help or general help).
Maintains an \in use" ag.

2. When you create a help dialog, be sure to add it to your cache.

3. When the user closes a help dialog, return the dialog to your cache
by clearing its \in use" ag, then unmanage it.

Example

The following type de�nition demonstrates a simple structure that
you could use to build a dialog cache. Instances of this structure
would be connected (via the next element) to form a linked list.

typedef struct _HelpDialogCacheStruct {

Widget dialog; /* The dialog's handle. */

Boolean inUse; /* The `in use' ag. */

Boolean isQuickHelpDialog; /* The dialog type ag. */

struct _HelpDialogCacheStruct *next; /* Next in the list. */

} HelpDialogCacheStruct;

To retrieve a dialog
from your cache

Scan the cache looking for a dialog of the correct type whose \in
use" ag is false.

If there are no dialogs available in the cache, create a new one, add
it to the cache (marked \in use") and use it.

Example

The following FetchHelpDialog() function scans a dialog cache for
a help dialog of the speci�ed type and returns a Widget ID. If an
unused dialog is not found, one is created, added to the cache and
returned. (If you are viewing this example online, you can copy and

5-8 Creating and Managing Help Dialogs DRAFT

4/7/98 12:49



paste this example directly into your source code to save the trouble
of typing it.)

Widget

FetchHelpDialog(Boolean lookingForQuickHelpDialog)

{

/* Declare a local pointer for walking the cache. */

HelpDialogCacheStruct *pCacheStruct;

/* Declare another, in case we need to add a new item to the cache. */

HelpDialogCacheStruct *pNewCacheStruct;

/* Set the local pointer to the �rst item in the cache list. */

pCacheStruct = pFirstHelpDialogCacheStruct;

/* Scan the cache for an unused help dialog. */

while (pCacheStruct != (_HelpDialogCacheStruct)NULL)

{

/* Is this dialog available? */

if ( (pCacheStruct->inUse == False)

/* And, is it the correct type? */

&& ( ( lookingForQuickHelpDialog

&& pCacheStruct->isQuickHelpDialog)

|| ( !lookingForQuickHelpDialog

&& !pCacheStruct->isQuickHelpDialog)))

{

/* Yes! This is a match. */

pCacheStruct->inUse = True;

return ((Widget)pCacheStruct->dialog);

}

else

{

/* Nope. Go on to the next item. */

pCacheStruct = pCacheStruct->next;

}

}

/* Searching the cache was unsuccessful.*/

/* Create a new item in the cache. */

pNewCacheStruct = (HelpDialogCacheStruct *)

XtMalloc((sizeof(HelpDialogCacheStruct)));

/* Fill in the new structure. */

pNewCacheStruct->inUse = True;

pNewCacheStruct->isQuickHelpDialog =

lookingForQuickHelpDialog;

pNewCacheStruct->next =

pFirstHelpDialogCacheStruct->next;

pFirstHelpDialogCacheStruct = pNewCacheStruct;

/* Create the new help dialog widget. */

ac = 0;

XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;

if (lookingForQuickHelpDialog)

{

pNewCacheStruct->dialog = XvhCreateQuickHelpDialog

(topLevel, "quickHelpDialog", al, ac);

}

else

{

DRAFT

4/7/98 12:49

Creating and Managing Help Dialogs 5-9



pNewCacheStruct->dialog = XvhCreateHelpDialog

(topLevel, "helpDialog", al, ac);

}

/* Done. Return the new dialog. */

return ((Widget)pNewCacheStruct->dialog);

}

The example above assumes the following:

That the pointer to the head of the cache
(pFirstHelpDialogCacheStruct) is initialized to NULL
during application start up.
That the calling routine tests the return value to determine if a
valid widget ID is returned.
That the parent for all help dialogs is a widget named topLevel.
That the variables al and ac (used in Xt argument lists) are
declared external to this function.
The help volume name is \MyApplication."

To return a dialog to
your cache

Unmanage the dialog and clear the dialog's \in use" ag.

Example

The following function is called when a help dialog is closed (via the
close callback):

Boolean

HelpCloseCB (

Widget closedDialog,

XtPointer clientData,

XtPointer callData )

{

/* Declare a local pointer for walking the cache. */

HelpDialogCacheStruct *pCacheStruct;

/* Search the cache list for dialog. */

pCacheStruct = pFirstHelpDialogCacheStruct;

while (pCacheStruct != (HelpDialogCacheStruct *)NULL)

{

if (pCacheStruct->dialog == closedDialog)

break;

pCacheStruct = pCacheStruct->next;

}

/* Unmanage the dialog. */

XtUnmanageChild(closedDialog);

/* If the dialog wasn't found, the cache is corrupt. Return failure. */

if (pCacheStruct == (HelpDialogCacheStruct *)NULL)

return (False);

/* Mark the dialog unused, then return success. */

pCacheStruct->inUse = False;

return (True);

}

5-10 Creating and Managing Help Dialogs DRAFT

4/7/98 12:49



6
Responding to
Help Requests

When a user requests help while using your application, it's the
application's responsibility to determine what help topic should be
displayed.

Context Sensitivity

Some help requests amount to an explicit request for speci�c
information, such as help on \version" (which usually displays the
copyright topic). Other help requests, however, may require some
degree of \context sensitivity." That is, some processing might be
needed to determine the appropriate help topic based on the user's
current context within the application.

For instance, your application might test the status of certain modes
or settings to determine the appropriate help topic. Or, it might test
the value of an input �eld and provide detailed help if the value is
not valid, and general help if the value is valid.

Entry Points

An entry point is a speci�c location within a help volume|usually
the beginning of a topic|that can be directly accessed by requesting
help within the application.

From the author's point of view, entry points are established by
assigning IDs at the appropriate places within the help volume.
From the programmer's point of view, entry points are created by
enabling the user to request help and using the appropriate ID when
a particular request is made.

There are three general ways for users to request help:

By pressing the help key (which is F1 on most keyboards).
By choosing the Help button in a dialog.
By choosing a command from the application's Help menu.

Displaying Topics

When a help request is made, the application determines what help
topic to display. It then creates (if necessary) and manages a help
dialog, and sets the appropriate resources to display a help topic.

Most requests display help topics that are part of the application's
help volume. But, the HP Help System's help dialogs are also
capable of displaying man pages, text �les, and simple text strings.

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-1



Displaying Help
Topics

The HP Help System's help dialogs are based exclusively on Xt
Intrinsics and OSF/Motif programming, so you change the values
within a help dialog just like any other widget: by setting resources.

The XmNhelpType resource determines what type of information is
displayed. It can be set to any of these values:

XvhHELP_TYPE_TOPIC for displaying normal help topics that are
part of a help volume. The volume is speci�ed by setting the
XmNhelpVolume resource; the topic is speci�ed by setting the
XmNlocationId resource.

XvhHELP_TYPE_STRING for displaying a string supplied by the
application. Automatic word wrap is disabled, so line breaks are
observed as speci�ed in the string. The string is speci�ed by
setting the XmNstringData resource.

XvhHELP_TYPE_DYNAMIC_STRING for displaying a string supplied by
the application, using word wrap to format the text. Line breaks
within the string are used to separate paragraphs. The string is
speci�ed by setting the XmNstringData resource.

XvhHELP_TYPE_FILE for displaying a text �le. The name of the �le
to be displayed is speci�ed by setting the XmNhelpFile resource.

XvhHELP_TYPE_MAN for displaying a manual reference page (\man
page") in a help dialog. The man page to be displayed is speci�ed
by setting the XmNmanPage resource.

These values are de�ned in the Xvh.h �le.

See Also

Chapter 5 includes information on creating new dialogs and
maintaining a dialog cache.

6-2 Responding to

Help Requests

DRAFT

4/7/98 12:49



To display a help topic 1. Create a help dialog or retrieve one from your dialog cache.

2. Set the following resources for the help dialog:

XmNhelpType Set to XvhHELP_TYPE_TOPIC.

XmNhelpVolume Set to the volume name for your
application.

XmNlocationId Set to the topic ID that you want to
display.

You can also set other values for the dialog, such as its size and
title.

3. Manage the dialog using XtManageChild().

Example

This program segment displays a topic with the ID getting-started

in the volume MyVolume.

ac = 0;

XtSetArg (al[ac], XmNhelpType, XvhHELP_TYPE_TOPIC); ac++;

XtSetArg (al[ac], XmNhelpVolume, "MyVolume"); ac++;

XtSetArg (al[ac], XmNlocationId, "getting-started"); ac++;

XtSetArg (al[ac], XmNcolumns, 40); ac++;

XtSetArg (al[ac], XmNrows, 12); ac++;

XtSetValues (helpDialog, al, ac);

XtManageChild (helpDialog);

If the help volume MyVolume is not registered, then a complete path
to the MyVolume.hv �le is required for the value of XmNhelpVolume.

To display a string of
text

1. Create a quick help dialog or retrieve one from your dialog cache.

You can use a general help dialog to display string data, but this
isn't recommended because most of its features do not apply to
string data.

2. Set the following resources for the help dialog:

XmNhelpType Set to XvhHELP_TYPE_DYNAMIC_STRING

(if you want wordwrap enabled) or
XvhHELP_TYPE_STRING (if you want the line
breaks within the string to be maintained).

XmNstring-

Data

Set to the string you want to display. A copy
of the string is kept internally, so you need not
maintain your copy of it.

You can also set other values for the dialog, such as its size and
title.

3. Manage the dialog using XtManageChild().

Example

This program segment displays a string stored in the variable
descriptionString.

ac = 0;

XtSetArg (al[ac], XmNhelpType, XvhHELP_TYPE_DYNAMIC_STRING); ac++;

XtSetArg (al[ac], XmNstringData, (char *)descriptionString); ac++;

XtSetValues (quickHelpDialog, al, ac);

XtManageChild (quickHelpDialog);

If the string is no longer needed within the application, the memory

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-3



Example

The following program segment displays the man page for the grep
command. It also sets the size of the dialog to better suit a man
page.

ac = 0;

XtSetArg (al[ac], XmNhelpType, XvhHELP_TYPE_MAN); ac++;

XtSetArg (al[ac], XmNmanPage, "grep"); ac++;

XtSetArg (al[ac], XmNcolumns, 80); ac++;

XtSetArg (al[ac], XmNrows, 20); ac++;

XtSetValues (quickHelpDialog, al, ac);

XtManageChild (quickHelpDialog);

Enabling the Help
Key (F1)

The help key mechanism is a feature built into all OSF/Motif
manager widgets and primitive widgets. The help key is enabled by
adding a \help callback" to the widget where you want the help key
active.

Within your application, you should add a help callback to each
widget where you want a unique entry point into help. The help
callback mechanism automatically \walks" up the widget hierarchy
(up to the shell widget) until it �nds a widget with a help callback,
then invokes that callback.

If you add a help callback to a manager widget, when the help key is
pressed for any of its children, the manager's help callback is invoked
(unless the child widget has a help callback of its own).

To add a help callback Use the XtAddCallback() function as follows:

XtAddCallback (

Widget widget,

String XmNhelpCallback,

XtCallbackProc HelpRequestCB,

XtPointer clientData );

Where:

widget The widget where you want to activate the
help key.

HelpRequestCB() The function in your application that handles
the help request when the user presses the help
key.

clientData The data you want passed to the
HelpRequestCB() function. Typically, this data
identi�es the topic to be displayed.

When the user presses the help key, the help callback is invoked for
the widget with the current keyboard focus. If that widget does not
have a help callback, the help callback for its nearest ancestor that
does have a help callback is invoked.

6-4 Responding to

Help Requests

DRAFT

4/7/98 12:49



If no help callbacks are found, nothing happens. Therefore, it is
recommended that you add a help callback to each shell in your
application. This ensures that no user requests for help are lost.

Adding a help callback to a dialog shell automatically enables the
Help button on the dialog to invoke the help callback.

The Importance of Client Data

Specifying a unique value for clientData in each help callback
you add saves you the trouble of writing a separate function to
process each help callback. Your application can have a single
callback procedure to process all help requests (referred to above as
HelpRequestCB()). Within that procedure, use the clientData to
identify where the user requested help. That is, each time you add a
help callback, you should provide a unique value for clientData.

Example

The following example demonstrates one way to associate IDs with
entry points. A Help.h �le is used to de�ne a unique integer for each
clientData value for each help callback. Also de�ned are two ID
strings for each widget: one for normal F1 help, the other for \item
help mode" (where the user picks a widget to get a description).

For this example, we'll assume that the application's user interface
is just a main window with three input �elds: Name, Address, and
Telephone Number. Here's what the Help.h �le would contain:

#define HELP_volumeName "MyVolume"

#define HELP_MainWindow 100

#define HELP_MainWindow_ID "basic-tasks"

#define HELP_MainWindow_ITEM_ID "main-window-desc"

#define HELP_NameField 101

#define HELP_NameField_ID "specifying-a-name"

#define HELP_NameField_ITEM_ID "name-field-desc"

#define HELP_AddressField 102

#define HELP_AddressField_ID "specifying-an-address"

#define HELP_AddressField_ITEM_ID "address-field-desc"

#define HELP_PhoneField 103

#define HELP_PhoneField_ID "specifying-a-phone-no"

#define HELP_PhoneField_ITEM_ID "phone-field-desc"

Within the part of the application that initially creates the widgets, a
help callback is added to each widget as follows:

XtAddCallback (mainWindow, XmNhelpCallback,

HelpRequestCB, HELP_MainWindow);

XtAddCallback (nameField, XmNhelpCallback,

HelpRequestCB, HELP_NameField);

XtAddCallback (addressField, XmNhelpCallback,

HelpRequestCB, HELP_AddressField);

XtAddCallback (phoneField, XmNhelpCallback,

HelpRequestCB, HELP_PhoneField);

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-5



Within the HelpRequestCB() function, the clientData parameter
is used to dispatch the help requests (via a switch() statement).
Within each case, the value of a global ag itemHelp is tested to see
if the help callback was invoked by the F1 key (the ag is \false") or
by the user picking the widget in item help mode (the ag is \true").

XtCallbackProc HelpRequestCB (

Widget w,

XtPointer clientData,

XtPointer callData )

{

char *topicToDisplay;

Boolean useQuickHelpDialog;

/* Determine the topic ID for the given `clientData.' */

switch ((int)clientData)

{

case HELP_MainWindow:

useQuickHelpDialog = False;

if (itemHelpFlag)

topicToDisplay = HELP_MainWindow_ITEM_ID;

else

topicToDisplay = HELP_MainWindow_ID;

break;

case HELP_NameField:

useQuickHelpDialog = True;

if (itemHelpFlag)

topicToDisplay = HELP_NameField_ITEM_ID;

else

topicToDisplay = HELP_NameField_ID;

break;

case HELP_AddressField:

useQuickHelpDialog = True;

if (itemHelpFlag)

topicToDisplay = HELP_AddressField_ITEM_ID;

else

topicToDisplay = HELP_AddressField_ID;

break;

case HELP_PhoneField:

useQuickHelpDialog = True;

if (itemHelpFlag)

topicToDisplay = HELP_PhoneField_ITEM_ID;

else

topicToDisplay = HELP_PhoneField_ID;

break;

default:

/* An unknown clientData was received. */

/* Put your error handling code here. */

return;

break;

}

/* Display the topic. */

ac = 0;

XtSetArg (al[ac], XmNhelpType, XvhHELP_TYPE_TOPIC); ac++;

XtSetArg (al[ac], XmNhelpVolume, HELP_volumeName); ac++;

6-6 Responding to

Help Requests

DRAFT

4/7/98 12:49



XtSetArg (al[ac], XmNhelpType, topicToDisplay); ac++;

if (useQuickHelpDialog)

{

XtSetValues (mainQuickHelpDialog, al, ac);

XtManageChild (mainQuickHelpDialog);

}

else

{

XtSetValues (mainHelpDialog, al, ac);

XtManageChild (mainHelpDialog);

}

/* Clear the `item help' ag. */

itemHelpFlag = False;

}

The above function assumes that the application uses two
help dialogs for all help requests (mainHelpDialog and
mainQuickHelpDialog), and that those dialogs have already been
created. It also assumes that al and ac (used in assembling Xt
argument lists) are declared elsewhere.

Providing a Help
Menu

The OSF/Motif Style Guide recommends that each menu bar include
a Help menu. The Help menu may contain a variety of commands
that let the user access di�erent types of online help for your
application.

The most important commands include:

Introduction displays the home topic of your application's help,
allowing the user to use hyperlinks to navigate to any desired
information.

Using Help displays \help on help." This is information that tells
the user how to use the help system.

Version displays your application's version and copyright
information. The copyright topic (created using the <copyright>
element), has the ID _copyright.

Additional commands may display help on special keyboard usage,
application tasks, reference, or tutorials. You should design your
help menu to best suit your application, while staying within the
guidelines and recommendations of the OSF/Motif Style Guide.

See Also

\To create a home topic" in Chapter 2 describes how authors
create the home topic for a help volume.
\To create a meta information section" in Chapter 2 describes how
authors create a copyright topic.
Chapter 9 describes how \help on help" is found and how to add it
to your application.

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-7



Supporting Item
Help Mode

Some applications provide an \On Item" or \Help Mode" command
in their Help menu. This command temporarily rede�nes the mouse
pointer as a question mark (?) to prompt the user to pick an item
on the screen. When an item is picked, the application is expected to
display a description of the item.

The HP Help System provides a convenience function,
XvhReturnSelectedWidgetId(), that changes the pointer
to a question mark and waits for the user to pick a widget.
The ID of the selected widget is returned. This function is
similar to the XmTrackingLocate() function except that
XvhReturnSelectedWidgetId() returns NULL if the user presses Esc
to cancel the operation.

To display help on the selected item, your application can simply
invoke the help callback for the returned widget. This is equivalent
to the user pressing F1 while using that widget.

If you want the application to di�erentiate between item help and F1
help, you can set a ag before calling the widget's help callback. The
help callback procedure can then use that ag to determine that the
callback was invoked as a result of item help and alter its response
accordingly.

To add support for
\item help"

1. Write a function that uses the XvhReturnSelectedWidgetId()
function and lets the user pick a widget. Within that function,
invoke the help callback for the selected widget. In the following
steps, this function is called HelpMode(), but you can name it
whatever you want.

2. Add to your Help menu a command button labeled \On Item."
Add an \activate" callback that invokes your HelpMode()
function.

3. Add a help callback to each widget in your application where you
want item help to be available.

If the selected widget does not have a help callback, the application
should try its parent widget. Similarly, if the parent does not have a
help callback, the application should continue to walk up the widget
hierarchy until it �nds a help callback.

Example

The following procedure is a sample HelpModeCB() function that
would be invoked by choosing On Item from the Help menu.

6-8 Responding to

Help Requests

DRAFT

4/7/98 12:49



Boolean HelpModeCB()

{

/* Declare a variable for the selected widget. */

Widget selectedWidget = (Widget)NULL;

/* Let the user select a widget. */

selectedWidget = XvhReturnSelectedWidget (topLevelShell);

while (selectedWidget != (Widget)NULL)

{

/* If the selected widget has a help callback, invoke it and return `success.' */

if ((XtHasCallbacks (selectedWidget, XmNhelpCallback)

== XtCallbackHasSome))

{

itemHelpFlag = True;

XtCallCallbacks (selectedWidget, XmNhelpCallback,

(XtPointer)NULL);

return (True);

}

/* Otherwise, try the widget's parent. */

else

selectedWidget = XtParent (selectedWidget);

}

/* No help callback was found, return `failure.' */

return (False);

}

Using the Topic
Access Functions

The HP Help System programming toolkit provides three functions
for retrieving the text within help topics. These functions are
intended for use in character-based applications running on a
terminal or in a terminal emulator window. It's up to the application
to control the user interface to the help information.

Here are descriptions of the functions:

XvhGetTopicData() retrieves help text from a help volume, based
on the volume �le location and an ID. The topic's text is returned
in a list of lines, formatted to a given column width. Information
about the hyperlinks that occur within the topic is also returned.

XvhProcessLinkData() processes a particular hyperlink, returning
the destination volume and ID (which can, in turn, be processed by
XvhGetTopicData()).

XvhFreeTopicData() frees the data returned by
XvhGetTopicData().

Graphics and special characters are ignored by the topic access
functions.

See Also

Chapter 14 includes a more detailed description of each function.

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-9



Like most other widgets within your application, help windows have
some behavior that must be supported by the application.

Hyperlink Events

Most standard hyperlink events are handled internally by the HP
Help System. However, there are three types of hyperlinks that your
application is responsible for handling:

Jump-new-view hyperlinks|Your application must create the new
help dialog (or get one from your cache) to honor the author's
request for a \new view."

Man page links|Your application must create a new quick
help dialog (or get one from your cache) to display a man page.
Typically, the size of man page windows is di�erent than all other
help windows.

Application-de�ned links|Your application must interpret the
data associated with these links. Application-de�ned links exist
only if you and the author have collaborated to create them.

When Dialogs Are Dismissed

When the user closes a help dialog, your application needs to know so
it can return the dialog to its cache, or destroy it. The general help
dialog supports a \help closed" callback. To detect when a general
help dialog is dismissed, add a callback to its OK button.

Quick Help Buttons

The behavior for some of the buttons in quick help dialogs must be
handled by your application. These buttons can be managed and
unmanaged as needed. You add behavior just like any other push
button: using an \activate callback."

See Also

\Creating Hyperlinks" in Chapter 3 describes the types of links
supported by the HP Help System and explains how to create
them.

6-10 Responding to

Help Requests

DRAFT

4/7/98 12:49



Responding to
Hyperlink Events

Your application needs to provide support only for the types of
hyperlinks used within the help volume to be displayed. In general, it
is recommended that you provide support for all link types.

For your application to be noti�ed when a hyperlink is chosen, it
must add a \hyperlink callback" to the help dialog. You must write a
callback function that handles the hyperlink appropriately.

To provide a hyperlink
callback

1. Add a hyperlink callback to each help dialog as shown:

XtAddCallback (helpDialog, XmNhyperLinkCallback,

HyperlinkCB, (XtPointer)NULL);

Where helpDialog is the widget ID of the help dialog and
HyperlinkCB is the name of the callback function for handling
hyperlinks.

2. Write the HyperlinkCB function to handle the hyperlink events
that can occur within the dialog.

Within the hyperlink callback, you have access to the following
callback structure (which is declared in <Xvh/Xvh.h>):

typedef struct

{

int reason;

XEvent *event;

char *locationId;

char *helpVolume;

char *specification;

int hyperType;

} XvhHelpDialogCallbackStruct;

The hyperType element indicates which type of link was executed.
Its possible values are XvhLINK_JUMP_NEW, XvhLINK_MAN, and
XvhLINK_APP_DEFINED.

Example

The following function, HyperlinkCB(), illustrates the general
structure needed to handle hyperlink callbacks.

XtCallbackProc

HyperlinkCB (widget, clientData, callData)

Widget widget;

XtPointer clientData;

XtPointer callData;

{

XvhHelpDialogCallbackStruct *hyperData =

(XvhHelpDialogCallbackStruct *) callData;

switch ((int)hyperData->hyperType)

{

case XvhLINK_JUMP_NEW:

/* Handles "jump new view" hyperlinks. */

break;

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-11



case XvhLINK_MAN_PAGE:

/* Handles "man page" hyperlinks. */

break;

case XvhLINK_APP_DEFINED:

/* Handles "application-de�ned" hyperlinks. */

break;

default:

break;

}

Detecting When
Help Dialogs are
Dismissed

To detect when a general help dialog is closed, add the following
callback to the dialog:

XtAddCallback (helpDialog, XmNcloseCallback,

HelpCloseCB, (XtPointer)NULL);

Where helpDialog is the widget ID for the help dialog and
HelpCloseCB is the name of the callback procedure you've written to
handle closing dialogs.

To detect when a quick help dialog is closed, add the following
callback to the dialog's OK button:

XtAddCallback (XvhQuickDialogGetChild (helpDialog,

XvhDIALOG_OK_BUTTON),

XmNactivateCallback, HelpCloseCB, (XtPointer)NULL);

Where helpDialog is the widget ID for the help dialog and
HelpCloseCB is the name of the callback procedure you've written to
handle closing dialogs.

A sample HelpCloseCB function is included in \To return a dialog to
your cache" in Chapter 5.

6-12 Responding to

Help Requests

DRAFT

4/7/98 12:49



Using the
Application-Defined
Button

The quick help dialog's application-de�ned button lets you add
custom behavior to any quick help dialog. This button can be used
for anything you want, but its intended purpose is to provide a path
to more help in one of these two ways:

Lets the user progressively ask for more information. This is
sometimes called \progressive disclosure." In this case, the default
button label (\More") is appropriate.

Or, lets the user open a general help dialog for general browsing of
the application's help volume. In this case, \Browse . . . " is the
most appropriate button label.

To enable the
application-defined

button

1. Get the button's ID.

2. Add an activate callback to the button.

3. Manage the button.

Example

The following code segment gets the button's ID, assigns a callback,
and manages the button. It assumes that quickHelpDialog was just
created.

Widget moreButton;

moreButton = XvhQuickDialogGetChild (quickHelpDialog,

XvhDIALOG_MORE_BUTTON);

XtAddCallback (moreButton, XmNactivateCallback,

MoreHelpCB, NULL);

XtManageChild (moreButton);

See Also

\To create a quick help dialog" in Chapter 5

DRAFT

4/7/98 12:49

Responding to

Help Requests

6-13





8

Preparing Your Product

When it comes time to prepare your �nal product, you must be sure
that all your help �les are created and installed properly.

Where to Install Your Help Files

There are no restrictions regarding where your run-time help �les can
be installed. However, these conventions are recommended:

Application-speci�c help is usually installed with the rest of the
application's �les. For example, if your application is installed
in a directory named /opt/myapp/ then your run-time help
�les should be installed in a help subdirectory in the same area:
/opt/myapp/help/.

If you've written a stand-alone help volume, your run-time
help �les should go in their own subdirectory named
/etc/vhelp/help/product/, where product is a meaningful
directory name for your product.

Within your product/ subdirectory, an additional subdirectory
is recommended for the run-time help �les for each help volume
(volume/). For example, help volumes for the HP-UX operating
system are installed in /usr/lib/vhelp/help/hpux/, which has a
separate subdirectory for each HP-UX help volume.

You should also provide a language/ subdirectory to accommodate
help in multiple languages (where language matches the user's LANG
environment variable). For example, the German version of the HP
VUE online help is stored in /usr/vue/help/de_DE.iso88591/. The
default version is stored in /usr/vue/help/C.

Registration

An additional important step in installing your help �les is
registration. The registration process enables two important features
of the HP Help System:

Cross-volume hyperlinks|A hyperlink in one help volume can
refer to another help volume using just the volume name and an
ID within the volume. If the destination volume is registered, the
link does not have to specify where the volume is stored on the
�lesystem.

Help family browsing|If you also register a \product family" that
contains one or more help volumes, then your help volumes will be
browsable using the HP VUE Help Manager.

DRAFT

4/7/98 12:49

Preparing Your Product 8-1



How a Help Volume
is Found

When you specify a help volume, you can use a complete path to the
volume.hv �le, or you can provide just the base name of the volume.
If you specify a complete path, the HP Help System looks only for
the exact directory and �le name you provide.

However, if you provide just the base name (volume), the help system
searches several directories for the volume. The search ends when
the �rst matching volume.hv �le is found. The value of the user's
LANG environment variable is also used to locate help in the proper
language (if it's available).

Personal Help Volumes

HP Help �rst looks in the user's home directory, searching these
subdirectories (in the following order):

vhelp/volumes/language/

vhelp/volumes/

vhelp/

vhelp/volumes/C/

Individual users can override this list of directories by setting the
XVHHELPUSERSEARCHPATH environment variable.

System-Wide Help Volumes

If no match is found after searching for personal help volumes, the
system-wide locations are searched. They are:

/etc/vhelp/volumes/language/

/etc/vhelp/volumes/

/etc/vhelp/volumes/C/

The default system search paths can be overridden by setting
the XVHHELPSYSTEMSEARCHPATH environment variable.
Generally, this environment variable is set for all users by the system
administrator.

For systems running HP VUE (version 3.0 or later), the
/etc/vue/config/Xsession script is recommended for setting the
XVHHELPSYSTEMSEARCHPATH variable for all users. The
Xsession script is executed for each user when they log into HP
VUE.

Specifying Paths

Both environment variables use a colon-separated list of directories.
That is, you separate multiple directories with the colon character
(:). In addition, the paths use a special variable syntax in which
a percent character (%) followed by a letter indicates where values
should be inserted before the search takes place.

8-2 Preparing Your Product DRAFT

4/7/98 12:49



For example, the default system-wide search paths are speci�ed using
this syntax:

/etc/vhelp/%T/%L/%H:

/etc/vhelp/%T/%H:

/etc/vhelp/%T/%L/%H.hv:

/etc/vhelp/%T/%H.hv:

/etc/vhelp/%T/C/%H:

/etc/vhelp/%T/C/%H.hv

Where %T is replaced with the type of �le being searched for (which
is volumes, in most cases), %L is replaced by the value of the user's
LANG environment variable, and %H is the name of the �le being
searched for. Both %H and %H.hv are speci�ed for each directory,
which means the .hv extension is optional when specifying a help
volume.

Creating Symbolic Links

To \register" a help volume, you create a symbolic link in one of the
directories that the help system searches. The link should have the
same name as your volume.hv �le and it should use a relative path
to the .hv �le.

Creating symbolic links during installation is recommended rather
than putting all your run-time help �les directly into one of the help
directories. (You create symbolic links with the ln command. Refer
to your operating system's online help or documentation to learn
more about symbolic links.)

To change the help
search paths

For a personal con�guration, set the
XVHHELPUSERSEARCHPATH environment variable
to override the default personal search path. This is useful during
project development to access a help volume that you don't want
others to access.

For system-wide con�guration, set the
XVHHELPSYSTEMSEARCHPATH environment
variable to override the system search path. Changing this
variable is useful for accessing help installed on another system
in your network. Typically, this task is performed by the system
administrator for all users. On systems running HP VUE 3.0 or
later, edit the /etc/vue/config/Xsession script to change this
variable.

Example

This example shows how the XVHHELPSYSTEMSEARCHPATH
environment variable is used within HP VUE to access help installed
on another computer on the network. (These tasks require superuser
permission to mount a new �lesystem and edit the Xsession script.)

To make the remote �les accessible, \mount" the remote
system's /usr/ disk volume on your local system in the directory

DRAFT

4/7/98 12:49

Preparing Your Product 8-3



/usr/hostname/usr/. (Refer to the operating system documentation
or online help to learn how to \mount" a network �le system.)

Once the remote �les are physically available, you must tell the HP
Help System where to look for them. You do this in HP VUE by
editing the /etc/vue/config/Xsession �le. Search for the section
of the �le that de�nes XVHHELPSYSTEMSEARCHPATH, then
uncomment and edit the lines so that they look like this:

XVHHELPSYSTEMSEARCHPATH=\

/etc/vhelp/%T/%L/%H:\

/etc/vhelp/%T/%H:\

/etc/vhelp/%T/%L/%H.hv:\

/etc/vhelp/%T/%H.hv:\

/etc/vhelp/%T/C/%H:\

/etc/vhelp/%T/C/%H.hv:\

/net/hostname/etc/vhelp/%T/%L/%H:\

/net/hostname/etc/vhelp/%T/%H:\

/net/hostname/etc/vhelp/%T/%L/%H.hv:\

/net/hostname/etc/vhelp/%T/%H.hv:\

/net/hostname/etc/vhelp/%T/C/%H:\

/net/hostname/etc/vhelp/%T/C/%H.hv

Where hostname is the name of the directory you created for the
remote system.

When you're done editing, save the �le, then log out and back in. To
update your Help Manager, run this command:

/usr/vue/bin/helpgen

Gathering Run-Time
Help Files

The run-time help �les generated by the HelpTag software include
the following:

volume.hv The master help volume �le accessed by the HP Help
System. Information stored in this �le is used to
access the actual help topics stored in the .ht �les.

volume.hvk The keyword index �le for the volume.

volumeNN .ht The help topic �les, where NN numbers the �les
sequentially (00, 01, 02 . . . ). If you didn't use
any <chapter> elements within your help volume,
you'll have only a single topic �le (volume00.ht).
Otherwise, you'll have an additional .ht �le for each
chapter.

When you move the run-time help �les to a new location, they must
all stay together in the same directory. More importantly, when you
move graphics �les, they must remain in the same relative location,
with respect to the other run-time �les.

8-4 Preparing Your Product DRAFT

4/7/98 12:49



Caution Never rename a run-time help �le or graphics �le after running
HelpTag. The information stored in the volume.hv �le depends on
the original names.

If you rename your volume.htg �le or any of your graphics �les, be
sure to rerun HelpTag.

To gather the run-time
help files for a volume

From the directory where you ran HelpTag, copy these �les into
the installation directory:

volume.hv

volume.hvk

volume*.ht

Where the basename, volume, is the same as the basename of your
volume.htg �le.

If your volume includes any graphics, copy the graphics �les too.

Note Graphics �les must be installed in the same relative position to the
volume.hv �le that they were in when the helptag command was
run.

For example, if your graphics �les are in a subdirectory named
graphics/ one level below your volume.htg �le, then when you
install your help �les in a di�erent location, the graphics must again
be placed in a subdirectory named graphics/ one level below the
volume.hv �le.

You don't need to ship the volume.htg or any additional �les
generated by the HelpTag software.

Example

Here's a method for copying the run-time help �les for your volume
and installing them in another directory. This example assumes
that the graphics for this help volume are stored in a graphics/

subdirectory.

First, change to the directory where you ran HelpTag to create the
run-time help �les. Then, run this tar (tape archive) command:

tar cvf /tmp/myhelp.tar volume.hv* volume*.ht graphics

This creates a �le named /tmp/myhelp.tar. To install your help �les
in another directory (install-directory), change to that directory:

cd install-directory

Then, execute this command:

tar xvf /tmp/myhelp.tar

To test the �les you've moved, run Helpview to display your volume.
If you are still in the directory where you unpacked the �les, you

DRAFT

4/7/98 12:49

Preparing Your Product 8-5



don't need to specify a path to the volume (because Helpview always
looks �rst in the current directory for the requested volume):

helpview -helpVolume volume &

Registering Your
Online Help

Registering your online help is important because it makes it easier
to access the help you provide. For authors and programmers, it's
easier because references to your volume can use just the volume
name|without specifying the volume's actual location.

If you register a product family with one or more help volumes, you
make your help available for general browsing. This allows access to
application-speci�c help without using the application. Or, if you are
writing stand-alone help, this is the only way for users to get to your
help.

Registering Help Volumes

After the run-time �les for a help volume have been installed, the
volume is registered by creating a symbolic link to the volume's
volume.hv �le. The link is created in one of the directories that
the help system searches for volumes. For most help volumes, the
appropriate place for the link is /etc/vhelp/volumes/language/,
where language is C for the default computer language (which is
usually English).

Registering a Product Family

If you are also registering a product family, you create and install
a help family �le (product.hf) with the rest of the product's help
�les. You register the family �le by creating a symbolic link to the
product.hf �le. For most products, the appropriate place for the link
is /etc/vhelp/families/language/.

Family �les are read by the helpgen program (which is part of HP
VUE), which uses them to create a special help volume that lists
the families (and the volumes within each family) installed on the
system.

To register a help
volume

In one of the standard help directories, put a relative symbolic link
that points to the directory containing your volume.hv �le.

The standard help directory most often used as the location of the
relative symbolic link is /etc/vhelp/volumes/language/, where
language is C for the default computer language (which is usually
English).

Create the symbolic link after all the help �les and graphics have
been installed.

8-6 Preparing Your Product DRAFT

4/7/98 12:49



Use the ln command to create the relative symbolic link. If the link
you create is not relative, the help volume will not be accessible from
a remote system. A relative symbolic link uses ../ to designate the
directory at the next higher level.

Example

If the volume.hv �le is /opt/myapp/help/C/myapp.hv, and the help
volume is being registered in /etc/vhelp/volumes/C/, the following
relative symbolic link would be used:

/etc/vhelp/volumes/C/myapp.hv

-> ../../../../opt/myapp/help/C/myapp.hv

There are four occurrences of ../ because /etc/vhelp/volumes/C/
is four levels deep. Remember that each ../ refers to moving up one
level in the directory hierarchy.

Why Relative Links?

The /opt/ location can be at di�erent levels on di�erent systems, so
an absolute symbolic link will not work on all systems. In contrast,
the location of the volume.hv �le relative to the directory in which it
is registered is typically the same on all systems.

For example, suppose one system has the opt/ disk at
/net/hostname/opt/ and a second system has the opt/
disk at /opt/. A relative symbolic link that begins with
../../../../opt/myapp/help/C/ will correctly point to
/net/hostname/opt/myapp/help/C/ on the �rst system and
/opt/myapp/help/C/ on the second system.

DRAFT

4/7/98 12:49

Preparing Your Product 8-7



To create and register a
help family

1. Pick a �le name that is unique to your product. Use the .hf
extension to identify the �le as a help family .

family.hf

2. Enter the following lines into the �le:

*.charSet: character-set

*.title: family title

*.bitmap: icon �le

*.abstract: family abstract

*.volumes: volume volume volume ...

Where character-set speci�es the characterset used by the family
title and family abstract strings. The family title and family
abstract should not contain any HelpTag markup; this �le is not
processed with the HelpTag software.

The icon �le is optional. If you provide one, the path you use
to specify the location of the �le should be relative to the
/etc/vue/help/language/Browser/ directory. (See the example
below.) If you do not provide an icon, do not include the
*.bitmap resource in your family �le.

The list of volume names identi�es which volumes belong to the
family. The volumes will be listed in the order they appear on this
line. A volume may be listed in more than one family.

Any line in the �le that begins with an exclamation mark (!) is
ignored.

3. When you prepare your �nal product, you should install your
family.hf �le with the rest of your help �les, then create a relative
symbolic link in /etc/vhelp/families/language/ that points to
the family.hf �le. (See the example below.)

If any of the values occupy more than one line, end each line|except
the last|with a backslash (\).

8-8 Preparing Your Product DRAFT

4/7/98 12:49



Example

Here's a family �le for the online version of this manual. Notice that
comments at the top of the �le identify the �le:

!##############################################

!# #

!# HP Help Developer's Kit Product Family #

!# #

!# Version 3.0 #

!# #

!##############################################

*.charSet: iso8859-1

*.title: HP Help System, Version 3.0

*.bitmap: ../../../../usr/vhelp/help/C/HelpKit/HPHelpKit.pm

*.abstract: Online reference for authors and programmers using the HP Help System.

*.volumes: HPHelpKit.hv helpdemo.hv

The help family �le actually included with the HP VUE software
may not exactly match this example. (If HP VUE 3.0 is installed on
your system, see the �le /etc/vhelp/families/C/HPHelpKit.hf.)

To update the
\browser" help volume

Your installation process should execute this command after
installing all your help �les and creating the links for registration:

/usr/vue/bin/helpgen

The helpgen program creates a new volume stored in
/usr/vue/help/language/Browser/ that contains a two-level
hierarchy. The �rst level lists each of the help families; the second
level lists the volumes within each family. (The helpgen program is
part of HP VUE.)

The volume titles that appear within a product family are
jump-new-view links to the home topic of each volume.

To display the browser volume, execute this command:

helpview -helpVolume browser &

Note If you run helpgen while the browser volume is displayed in a help
window, you should close the window, then rerun helpview.

DRAFT

4/7/98 12:49

Preparing Your Product 8-9



Product Preparation
Checklists

The following checklists should help you verify that you've prepared
your product correctly. Of course, there's no substitute for testing
your product by using it just as a user will.

For Authors

A �nal version of the run-time help �les was created.

Here are the recommended commands for creating the run-time
�les:

helptag -clean volume

helptag volume nomemo onerror=stop

The -clean option removes �les from any previous helptag
command, the nomemo option ensures that writer's memos are not
displayed, and the onerror=stop option stops processing if any
parser errors occur. You should not distribute a help volume that
has any parser errors.

All hyperlinks have been tested . Each hyperlink displays the proper
topic or performs the correct action.

All graphics are acceptable. The graphics have been tested on
various color, grayscale, and monochrome displays.

For Product Integrators

The proper run-time �les are installed. They include:

volume.hv

volume.hvk

volume00.ht, volume01.ht, ... , volumeNN.ht

The number of .ht �les depends on how many <chapter>s the
author created.

All graphics are installed in the proper locations. Each graphics �le
must be installed in the same relative position to the .hv �le that
it was in relative to the .htg �le when the HelpTag software was
run.

A relative symbolic link was created to register each help volume.
The link is in the /etc/vhelp/volumes/language/ directory and
points to the actual volume.hv �les. For example, this command
registers the myapp volume:

ln -s ../../../../opt/myapp/help/C/myapp.hv /etc/vhelp/volumes/C/myapp.hv

Making the path relative is important to making the registration
work properly when help is shared on a network.

A product family �le is installed and registered. The family �le is
installed with the other help �les. It is registered by creating a
symbolic link in the /etc/vhelp/families/language/ directory.
For example, this command registers the myapp family �le:

ln -s ../../../../opt/myapp/help/C/myapp.hf /etc/vhelp/families/C/myapp.hf

8-10 Preparing Your Product DRAFT

4/7/98 12:49



For Programmers

The application sets the correct values for these required resources:

App-class*helpVolume: volume

App-class*helpOnHelpVolume: help-on-help-volume

The helpVolume resource identi�es the help volume for your
application. The helpOnHelpVolume identi�es the help volume
that contains the help on using the help system.

The application sets the desired values for the following optional
resources:

App-class*XvhHelpDialogWidget*onHelpDialog*rows: rows

App-class*XvhHelpDialogWidget*onHelpDialog*columns: columns

App-class*XvhHelpDialogWidget*definitionBox*rows: rows

App-class*XvhHelpDialogWidget*definitionBox*columns: columns

The onHelpDialog resources control the size of the quick help
dialogs used to display Help On Help. The definitionBox
resources control the size of the quick help dialog used for
de�nition links:

A help font scheme has been appended to the application's app-
defaults �le. Each font scheme is a set of resources. Sample font
schemes are provided in the /usr/vhelp/examples/fontschemes/
directory.

DRAFT

4/7/98 12:49

Preparing Your Product 8-11





9

Providing Help On Help

\Help on help" tells users how to use the HP Help System.
Speci�cally, it describes such tasks as using hyperlinks, using the
keyword index, and printing help topics. Normally, help on help is
supplied as an individual help volume named \Help4Help."

For Application Help

If you are writing application-speci�c help, there are two ways
to ensure that your application has help on help for its own help
dialogs:

Rely on an existing help on help volume. For example, on HP
workstations running HP-UX 9.0 or later, the standard Help4Help
volume is installed with the X Window System.

Or, supply your own help on help volume. The HelpTag
source �les for the Help4Help volume are provided in the
/usr/vhelp/help/C/Help4Help/ directory.

For Stand-Alone Help

If you are writing stand-alone help, you are probably relying on the
Helpview program already being installed and ready to use. If this
is the case, you don't have to worry about help on help because
Helpview accesses the standard Help4Help volume by default.

How Help on Help is Found

Each application that uses the HP Help System (including Helpview)
has a helpOnHelpVolume resource that identi�es a help volume to be
accessed for help on help topics. For Helpview, this resource is set as
follows:

Helpview*helpOnHelpVolume: Help4Help

The run-time help �les for the Help4Help volume are installed in
/usr/vue/help/language/Help4Help/. A symbolic link to the
Help4Help.hv �le is created in the /etc/vhelp/volumes/language/
directory to register the volume. (HP VUE does not have to be
running to access this help volume.)

If you provide your own help on help volume, be sure to give it a
unique name so it doesn't conict with another help on help volume
that may be installed on the system.

DRAFT

4/7/98 12:49

Providing Help On Help 9-1



Accessing Help on
Help in an
Application

Your application should do the following to support help on help:

Set the helpOnHelpVolume resource to identify the help volume
you want to access.

Add a \Using Help" command to the application's Help menu.

Add support for getting help on quick help dialogs.

To set the
`helpOnHelpVolume'

resource

Add a line to your application's app-defaults �le like this:

App-class*helpOnHelpVolume: volume

Where App-class is the application's class name and volume is the
name of the help on help volume you want to access.

Or, within your application, set the helpOnHelpVolume resource
for each general help dialog you create. (Quick help dialogs do not
support this resource.)

Examples

Here's the line from Helpview's app-defaults �le that speci�es the
help on help volume:

Helpview*helpOnHelpVolume: Help4Help

To specify the help on help volume when creating a help dialog, add
it to the argument list passed to the create function as shown here:

ac = 0;

XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;

XtSetArg (al[ac], XmNhelpOnHelpVolume, "Help4Help"); ac++;

helpDialog = XvhCreateHelpDialog (parent, "helpDialog", al, ac);

To provide a Using Help
command

1. Add to your Help menu a button labeled \Using Help". Also add
the necessary \activate" callback to call your HelpRequestCB()
function.

2. Add support to within your HelpRequestCB() function to display
help on help. Speci�cally:

Create a quick help dialog (or retrieve one from your cache).
Set the dialog's title to \Help On Help."
Display the home topic of the help on help volume.
Manage the quick help dialog.

Example

The following lines create a menu button labeled \Using Help . . . "
that calls the HelpRequestCB() function.

/* Create the `Using Help ...' button. */

labelStr = XmStringCreateLtoR ("Using Help ...", XmSTRING_DEFAULT_CHARSET);

ac = 0;

XtSetArg (al[ac], XmNlabelString, labelStr); ac++;

button = XmCreatePushButtonGadget (parent, "usingHelpButton", al, ac);

XtManageChild (button);

9-2 Providing Help On Help DRAFT

4/7/98 12:49



XmStringFree (labelStr);

/* Add a callback to the button. */

XtAddCallback (button, XmNactivateCallback, HelpRequestCB, USING_HELP);

USING_HELP is the client data passed to the HelpRequestCB()
function when the menu button is chosen by the user. Presumably it
has been de�ned somewhere in the application (perhaps in a Help.h

�le) as a unique integer:

#define USING_HELP 47

To see how the HelpRequestCB() function handles the USING_HELP
case, see the example in \To display help on help".

DRAFT

4/7/98 12:49

Providing Help On Help 9-3



To provide help on help
for a quick help dialog

1. After creating the quick help dialog, do the following:

Manage the dialog's Help button.
Add a help callback to the dialog.

2. Add support in your HelpRequestCB() function to handle the
case when a user requests help in a quick help dialog. Speci�cally:

Create a quick help dialog (or retrieve one from your cache).
Set the dialog's title to \Help On Help."
Display the home topic of the help on help volume.
Manage the quick help dialog.

Example

The following program segment creates a quick help dialog, manages
its Help button, and adds a help callback to the dialog:

/* Create a quick help dialog. */

ac = 0;

XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;

helpDialog = XvhCreateHelpDialog (parent, "helpDialog", al, ac);

/* Manage the dialog's Help button. */

XtManageChild (XvhQuickDialogGetChild (quickHelpDialog,

XvhDIALOG_HELP_BUTTON));

/* Add a help callback to enable the F1 key and the Help button. */

XtAddCallback (quickHelpDialog, XmNhelpCallback,

HelpRequestCB, USING_HELP);

To see how the HelpRequestCB() function handles the USING_HELP
case, see the example in \To display help on help".

To display help on help 1. Create a quick help dialog (or retrieve one from your cache).

2. Display in the dialog the home topic of your help on help volume.

Help on help can be displayed in a general help window. However,
a quick help dialog is recommended because its user interface is
simpler, which is less intimidating to new users who commonly need
help on help.

Example

The following program segment is part of a HelpRequestCB()

function. Presumably, the USING_HELP constant is passed to the
function because the user chose Using Help from the application's
Help menu or chose the Help button in a quick help dialog.

9-4 Providing Help On Help DRAFT

4/7/98 12:49



This example assumes that the application never creates more than
one \Help On Help" dialog and maintains its widget ID in a variable
called onHelpDialog.

case USING_HELP:

if (onHelpDialog == (Widget)NULL)

{

/* Get a quick help dialog for use as the `help on help' dialog. */

onHelpDialog = FetchHelpDialog (True);

if (onHelpDialog == (Widget)NULL)

/* We didn't get a dialog! Add your error handling code here. */

}

/* Set the proper volume and ID to display the home topic of

the help on help volume. Also, set the dialog's title. */

ac = 0;

XtSetArg (al[ac], XmNtitle, "Help On Help"); ac++;

XtSetArg (al[ac], XmNhelpType, XvhHELP_TYPE_TOPIC); ac++;

XtSetArg (al[ac], XmNhelpVolume, "Help4Help"); ac++;

XtSetArg (al[ac], XmNlocationId, "_hometopic"); ac++;

XtSetValues (onHelpDialog, al, ac);

/* If the `help on help' dialog is already managed, it might

be in another workspace, so unmanage it. */

if (XtIsManaged (onHelpDialog))

XtUnmanageChild (onHelpDialog);

/* Manage the `help on help' dialog. */

XtManageChild (onHelpDialog);

break;

To see how the rest of the HelpRequestCB() function might be
structured, refer to the example in \To add a help callback" in
Chapter 6.

See Also

\To create a quick help dialog" in Chapter 5
\To retrieve a dialog from your cache" in Chapter 5 (includes a
sample FetchHelpDialog() function)
\To display a help topic" in Chapter 6

DRAFT

4/7/98 12:49

Providing Help On Help 9-5



Writing Your Own
Help on Help Volume

If you need to provide your own help on help volume, you should
start with the existing Help4Help volume, then make the necessary
changes. All the source �les used to write the Help4Help volume are
provided in the /usr/vhelp/help/C/Help4Help/ directory.

It is important that you name your help on help volume something
other than Help4Help, to prevent installation conicts. Consider
picking a name that is speci�c to your product. For example, if your
application's help volume is \Newapp," perhaps your help for help
volume could be \NewappH4H."

Required Entry Points

To ensure that context-sensitive help within a help dialog operates
correctly, you must provide the following entry points (IDs) within
your help on help volume. (These are already included in the
Help4Help source �les.)

ID Topic Description

_hometopic Displays an introduction to using the help system.
This topic is displayed when you choose Using
Help from the general help dialog's Help menu, or
when you press F1 in a quick help dialog. (The
ID _hometopic is created automatically by the
<hometopic> element.)

_copyright Displays the copyright and version information for
the help on help volume. This topic is displayed
when you choose Version from the general help
dialog's Help menu. (The ID _copyright is
created automatically by the <copyright>
element.)

history Displays a topic that describes how to use the
History dialog. This topic is displayed when you
choose Help or press F1 within the History dialog.

printing Displays a topic describing how to use the Print
dialog. This topic is displayed when you choose
Help or press F1 within the Print dialog.

keyword-index Displays a topic describing how to use the
Keyword Search dialog. This topic is displayed
when you choose Help or press F1 within the
Keyword Search dialog.

9-6 Providing Help On Help DRAFT

4/7/98 12:49



To copy the Help4Help
source files

1. Copy the entire /usr/vhelp/help/C/Help4Help/ directory to a
new working directory (new-dir) using a command like this:

cp -r /usr/vhelp/help/C/Help4Help new-dir

This creates new-dir and copies all the �les and directories into it.

2. To permit editing the �les (which are copied as \read only"),
change the permissions using a command like this:

chmod -R u+w new-dir

The source for the Help4Help volume includes these �les:

MetaInfo Printing Commands

HomeTopic TopicMap Config

Hyperlinks History KeywordIndex

Also included is a build/ directory, where you run HelpTag to create
the run-time help �les. Graphics are stored in the build/graphics/
subdirectory.

Be sure to rename the Help4Help.htg �le before running HelpTag.
Your help on help volume should have a unique name to prevent
conicts with other help on help volumes.

Example

The following commands create a copy of the help on help volume
and make its �les writable. (Presumably the projects/ subdirectory
already exists.)

cp -r /usr/vhelp/help/C/Help4Help /home/dex/projects/NewHelp4Help

chmod -R u+w /home/dex/projects/NewHelp4Help

To build a new version of the run-time help �les, �rst ensure that the
directory /usr/vhelp/bin/ is in your search path. Then, change to
the new directory, rename the Help4Help.htg �le, and run HelpTag:

cd /home/dex/projects/NewHelp4Help

mv Help4Help.htg NewH4H.htg

helptag NewH4H

When the HelpTag software is done, you can display the new help on
help volume using this command:

helpview -helpVolume NewH4H &

DRAFT

4/7/98 12:49

Providing Help On Help 9-7





10

Native Language Support

If your product is intended for an international audience, then
providing online help in the users' native language is important. The
HP Help System supports the authoring and displaying of online help
in virtually any language. Several factors, which are explained below,
contribute to providing online help in the user's native language.

Character Sets and Multibyte Characters

A character set determines how a computer's internal character
codes (numbers) are mapped to recognizable characters. In most
languages, single-byte characters are su�cient for representing an
entire character set. However, there are some languages that use
thousands of characters. Some of these languages require two or four
bytes to represent each character uniquely.

The Helpview application supports multi-byte character sets.

The HelpTag Software

When you process a help volume to create run-time help �les, the
HelpTag software must be told what character set you used to author
your �les. The character set information is used to determine the
proper fonts for displaying help topics. If you do not specify a
character set, HelpTag assumes the default, which is ISO 8859-1.

Note When writing HelpTag �les, you may use multi-byte characters for
any help text. However, the HelpTag markup itself (tag names,
entity names, IDs, and so on), must be entered using eight-bit
characters.

The Xvh Message Catalog

The menus, buttons, and labels that appear in help dialogs should
also be displayed in the user's native language. To enable this, Help
dialogs read such strings from a message catalog named Xvh.cat.

The Xvh.cat �le has been translated into several languages and
these translations are included with the HP Help System Developer's
Kit. Look in the /usr/vhelp/nls/ directory. If the language you
need is not supplied, you'll have to translate the message catalog
(/usr/vhelp/nls/C/Xvh.msg) and then use the gencat command to
create the needed run-time message catalog �le.

DRAFT

4/7/98 12:49

Native Language Support 10-1



Font Schemes

One of the primary functions of the HelpTag software is to convert
your marked-up �les into run-time formats that the HP Help System
understands. Text is formatted by specifying particular attributes
such as type family, size, slant, and weight. Font schemes are used to
\map" combinations of attributes to actual font speci�cations.

Formatting of some languages also requires a formatting table. This
table speci�es rules for word wrap and other processing. If you are
preparing a Japanese help volume, be sure the sample formatting
table in /usr/vhelp/nls/ja_JP.SJIS/fmt_tbl.cat is installed
in the /usr/lib/nls/japanese/ directory. (If you are using the
Japanese EUC character set, use the euc/ subdirectory.)

The LANG Environment Variable

The user's LANG environment variable is important for these two
reasons:

The value of LANG is used to locate the correct help volume.

When a help topic is displayed, the correct fonts and formatting
rules are chosen based on the user's LANG variable. This is
especially important for Asian languages that have word-wrap
rules that are more sophisticated than European and American
languages.

See Also

\How a Help Volume is Found" in Chapter 8
Also refer to the NLS documentation for your computer's operating
system or programmer's kit.

Preparing Online
Help for
International
Audiences

The following checklist summarizes the questions you should answer
when providing online help for international audiences:

Are help topics written with an international audience in mind?

Did you copy the /usr/vhelp/helptag/helplang.ent �le and
localize the string entities it contains? Using the entities in this
�le, you can override the English strings built into the HelpTag
software.

Was the HelpTag software run using the correct character set
option? Here are the most common character set names:

iso8859-1

hp-roman8

hp-japanese15

hp-korean15

10-2 Native Language Support DRAFT

4/7/98 12:49



If you author in another character set, you may have to translate
the Xvh.msg message catalog �le and provide a font scheme that
supports the new character set.

Within your HelpTag markup, are all tag names, entity names, and
IDs entered using an eight-bit character set, even if the help text
uses multi-byte characters?

When the user's LANG environment variable is set to the correct
language, are the help �les installed so they are found and
displayed appropriately?

If you have integrated the HP Help System into an application,
have you properly set the \locale" using the setlocale()
function?

See Also

\How a Help Volume is Found" in Chapter 8 describes how search
paths (which use the value of LANG) are used to locate help �les.
The man page for the setlocale() function describes when and
how to use the setlocale() function.
The man page for the gencat command describes how to create a
message catalog �le. You'll use this command if you translate the
Xvh.msg �le.

Understanding Font
Schemes

When you write a help volume using the HelpTag markup language,
you don't specify the fonts and sizes of the text. When you run
the HelpTag software, the structural information you've entered is
formatted into run-time help �les which include text attributes.

A font scheme maps text attributes to actual font speci�cations. For
example, if a help topic has some text formatted as \sans serif, bold,
italic," the font scheme dictates which X font is actually used to
display the text.

One of the primary uses of font schemes is to provide a choice of
font sizes. The HelpTag software formats the body of most topics as
10-point text. However, because the actual display font is determined
by the font scheme being used, all 10-point text could be speci�ed to
use a 14-point font.

Font Resources

Each font scheme is actually a set of X resources. These resources
are read by the application displaying the help. For example,
if you use Helpview to display a help volume, the font scheme
is included in Helpview's app-defaults �le (/usr/lib/X11/app-
defaults/Helpview). For application help, the resources may be
added to the application's app-defaults �le.

Each resource within a font scheme has this general form:

DRAFT

4/7/98 12:49

Native Language Support 10-3



*pitch.size.slant.weight.style.char-set: font

Where . . .

pitch Speci�es the horizontal spacing of characters. This �eld
should be either p (proportional) or m (monospace).

size Speci�es the height of the desired font. For help �les
formatted with HelpTag, this value should be 8, 10, 12, or
14.

slant Speci�es the slant of the desired font. Usually this �eld
is either roman for upright letters or italic for slanted
letters.

weight Speci�es the weight of the desired font. Usually this �eld is
either medium or bold.

style Speci�es the general style of the desired font. For help �les
formatted with HelpTag, this value should be either serif
or sans_serif.

char-set Speci�es the character set used to author the help text.
This value must match the character set that was speci�ed
when HelpTag was run. The default is iso8859-1. Some
special characters are displayed using a symbol character
set.

An asterisk (*) can be used in a �eld to specify a font that has any
value of that particular attribute. For instance, the symbol set (for
special characters and special symbols) distinguishes a unique font
based only on size and character set. Its font resources appear like
this within a font scheme:

*.8.*.*.*.symbol: -adobe-symbol-medium-r-normal--8-*-*-*-p-*-adobe-fontspecific

*.10.*.*.*.symbol: -adobe-symbol-medium-r-normal--10-*-*-*-p-*-adobe-fontspecific

*.12.*.*.*.symbol: -adobe-symbol-medium-r-normal--12-*-*-*-p-*-adobe-fontspecific

*.14.*.*.*.symbol: -adobe-symbol-medium-r-normal--14-*-*-*-p-*-adobe-fontspecific

The /usr/vhelp/examples/fontschemes/ directory contains some
sample font schemes. The naming convention of the sample �les uses
the actual pixel height of the font used to display text formatted as
\10-point" text. For example, the �le help014.fns contains a font
scheme where all 10-point text is displayed using a 14-pixel font.

10-4 Native Language Support DRAFT

4/7/98 12:49



To choose a font
scheme

Edit the app-defaults �le for the application that displays the
online help. Replace the current font resources (if any) with the
new scheme.

If you are making this change just for yourself, copy the app-defaults
�le into your home directory before editing it.

Example: Fonts for Helpview

To use a larger size font in your Helpview windows, �rst change to
your home directory:

cd

Then copy the Helpview app-defaults �le and make it writable:

cp /usr/lib/X11/app-defaults/Helpview

chmod u+w Helpview

Edit the Helpview �le to replace the existing font scheme with the
largest scheme (help017.fns). Search for the block of comments
titled \Font Scheme." Delete all the lines that follow those
comments. Then, insert the contents of this �le:

/usr/vhelp/examples/fontschemes/help017.fns

Save your new Helpview �le. Any new instance of Helpview that you
start will now use the new font scheme. Try it by displaying the HP
Help System Developer's Guide:

helpview -helpVolume HPHelpKit &

DRAFT

4/7/98 12:49

Native Language Support 10-5





11

HelpTag Markup Reference

All the HelpTag markup elements (and their associated tags) are
described in alphabetical order. To help determine the name of a tag
based on how it is used, the elements are grouped below according to
use. (A few elements appear in more than one group.)

Meta information (information about your volume):

<metainfo>

<title>

<copyright>

<abstract>

Structure of a help volume:

<!entity>

<helpvolume>

<hometopic>

<chapter>

<s1> . . . <s9> (heading)
<rsect> (reference section)
<otherhead>

<procedure>

<p> (paragraph)

Inline elements:

<book>

<computer> (shorthand: ``text'')
<emph> (emphasis) (shorthand: !!text!!)
<ex> (example) and <vex> (verbatim example)
<image>

<term> (shorthand: ++text++)
<user> (user input)
<var> (variable) (shorthand: %%text%%)
<newline>

<p> (paragraph)
<quote>

& . . . ; (see <!entity>)

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-1



Important information:

<note>

<caution>

<warning>

<emph> (emphasis) (shorthand: !!text!!)

Lists:

<list>

<lablist> (labeled list)
<item> (shorthand: *)

Graphics:

<figure>

<graphic>

Glossary and keyword index:

<glossary>

<dterm> (de�nition of term)
<term> (shorthand: ++text++)
<idx> (index)

Cross-references and hyperlinks:

<xref> (cross-reference)
<link>

<location>

<term>

Hidden text:

<!-- . . . --> (comment)
<memo>

Titles and headings:

<abbrev>

<head>

<otherhead>

<procedure>

Override meaning of HelpTag markup:

<esc> (escape from markup recognition)
<vex> (verbatim example)

11-2 HelpTag Markup Reference DRAFT

4/7/98 12:49



<!-- . . . -->

<!-- . . . --> Comment

Text you want the HelpTag software to ignore. Comments cannot be
nested.

Syntax

<!-- comment text here -->

The comment text can contain any text except two dashes (--).

Example

The following markup hides both a comment and a �gure:

<!-- Let's leave out this figure for now:

<figure entity=DeltaGee>

Before and After Processing

<\figure> -->

See Also

\<memo>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-3



<abbrev> Abbreviated title

Indicates an alternate, typically shorter, heading for a topic that
has a long title. The abbreviated title is used within the HP Help
System's dialogs whenever the title of a topic is displayed in a list
(such as in the Topic Hierarchy and the History dialog).

Syntax

<topic-element>title

<abbrev>short title

Where topic-element is <hometopic>, <chapter>, <s1>, or any other
element that begins a new topic.

The <abbrev> tag must appear on the line immediately following the
heading.

An end tag is not required.

Examples

Here is a simple example:

<chapter>Ways of Treating Headings that are Too Long

<abbrev>Long Headings

Suppose you want to have a topic that doesn't have its title displayed
in the help text display area, but you do want a title to appear in the
Topic Hierarchy. The following markup shows how this can be done:

<chapter>&empty;

<abbrev>chapter title

See Also

\<chapter>"
\<rsect>"

11-4 HelpTag Markup Reference DRAFT

4/7/98 12:49



<abstract>

<abstract> Abstract

Short description of the help volume

Syntax

<metainfo>
...

<abstract>

abstract text here ...

<\abstract>
...

<\metainfo>

The abstract text should not contain HelpTag markup because
the abstract may be read and displayed by applications that don't
recognize the markup.

The <abstract> element is automatically assigned the ID string
_abstract. An author-de�ned ID cannot be assigned. The
_abstract ID can be used with the <link> element, but not with
the <xref> element.

Example

This markup briey describes the contents of a help volume:

<abstract>

Online help for the HP VUE File Manager, Version 3.0.

<\abstract>

Note

When creating a link to an element within the <metainfo> element,
be sure it is a type=Definition link. The following markup shows
how to create a link to the abstract:

<link hyperlink="_abstract" type=Definition>

Choose this link for an abstract.<\link>

See Also

\<metainfo>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-5



<book> Book title

Identi�es the title of a book.

Syntax

<book>book title<\book>

Or:

<book|book title|

HelpTag formats book titles using an italic font.

Examples

Either of the following two variations:

Refer to <book>The Elements of Style<\book>

for further details.

Or:

Refer to <book|The Elements of Style|

for further details.

produce:

Refer to The Elements of Style for further details.

11-6 HelpTag Markup Reference DRAFT

4/7/98 12:49



<caution>

<caution> Caution notice

Speci�es information that warns the user about a potential loss of
data.

Syntax

<caution>

text of caution

<\caution>

The default heading for the caution is \Caution". To specify a
di�erent heading, use the <head> tag as shown here:

<caution><head>alternate heading

text of caution

<\caution>

The <\caution> end tag is required.

To specify that an icon be displayed with the caution, de�ne a �le
entity at the top of your help volume as follows:

<!entity CautionElementDefaultIconFile FILE "�lename">

Where �lename is the name of the icon graphic. A sample
caution icon named cauticon.pm is provided in the
/usr/vhelp/helptag/icons/ directory.

Example

Here is a caution message:

<caution>

Do not press the DELETE key at this time.

<\caution>

For an example that shows how to use the <head> element to specify
a non-default heading, refer to \<note>".

See Also

\<note>" includes an example of changing a heading.
\<warning>"
\<�gure>"
\<head>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-7



<chapter> Chapter

Indicates the start of a new topic with a new title.

Syntax

<chapter id=id>title

topic text ...

An end tag is not required.

If the topic title is long, you may want to provide an alternate
abbreviated title using <abbrev>.

Examples

Here are two markups that begin a new topic:

<chapter>A Manual of Style

<chapter id=writer>The Careful Writer

See Also

\<abbrev>"
\<link>"
\<rsect>"
\<s1> . . . <s9>"
\<xref>"

11-8 HelpTag Markup Reference DRAFT

4/7/98 12:49



<computer>

<computer> Computer literal

Displays text that represents computer input or output.

Syntax

<computer>text<\computer>

Or:

``text''

The shorthand form uses two left apostrophes or grave accents (``)
and two right apostrophes ('').

Examples

The following markup:

<computer>Enter the correct numerical value.<\computer>

produces the following output:

Enter the correct numerical value.

The following markup uses the shorthand form:

Everything in ``computer'' comes out looking ``like this''.

and it produces:

Everything in computer comes out looking like this.

Variables can be nested within computer text. For example, the
following markup:

``void DisplayTopic (%%topic%%);''

produces:

void DisplayTopic (topic);

See Also

\<ex>"
\<user>"
\<var>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-9



<copyright> Copyright notice

Used to enter text for the copyright notice.

Syntax

<metainfo>

<title>Title (always before copyright)

<copyright>

&copy; Copyright notice here ...

This element is required within the <metainfo> section and must
follow the <title> element.

The end tag is not required.

The prede�ned entity &copy; produces the copyright symbol ( c).

Example

<metainfo>

<title>HP Help System Developer's Guide

<copyright>

&copy; Copyright 1992 Hewlett-Packard Company.

All rights reserved.

See Also

\<metainfo>"
\<title>"

11-10 HelpTag Markup Reference DRAFT

4/7/98 12:49



<dterm>

<dterm> De�ned term

Identi�es a term and the term's de�nition within the glossary.

Syntax

<glossary>

<dterm>�rst term

de�nition of �rst term
...

<dterm>Nth term

de�nition of Nth term

This element is used within the <glossary> section.

The name of the term follows the <dterm> tag and appears on the
same line. The term's de�nition begins on the line following the
<dterm> tag.

An end tag is not required.

Example

The following markup de�nes the �rst two words in a glossary:

<glossary>

<dterm>ex libris

From the books. Used before the owner's name on bookplates.

<dterm>key word

A word exemplifying the meaning or value of a letter or symbol.

See Also

\<glossary>"
\<term>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-11



<emph> Emphasized text

Formats the text in a font that draws attention to the text.

Syntax

<emph>text<\emph>

Or:

!!text!!

The shorthand form for the <emph> element is a set of double
exclamation marks (!!) before and after the text.

If you use the <emph> start tag, the <\emph> end tag is required.

Examples

Either of the following two markups:

A thousand times <emph>no<\emph>.

A thousand times !!no!!.

produce:

A thousand times no.

See Also

\<book>"
\<quote>"
\<term>"
\<var>"

11-12 HelpTag Markup Reference DRAFT

4/7/98 12:49



<!entity>

<!entity> Entity declaration

Assigns an entity name to a string of characters or to an external �le.

Syntax

<!entity entityname "string">

Or:

<!entity entityname FILE "�lename">

An entity name can contain up to 64 letters, digits, and hyphens.
Case is not signi�cant in entity names, but is often used to improve
readability for the author. The �rst character must be a letter. No
space is permitted between the left angle bracket (<), the exclamation
mark (!) and entity in an <!entity> declaration.

Entity declarations must always precede any other markup or text in
the help volume.

Where you want the de�ned entity to appear, insert an entity
reference using this syntax:

&entityname;

The entity reference consists of an ampersand (&), followed by the
entity name (as de�ned in the entity declaration), and ending with a
semicolon (;).

Purposes for Entities

There are four common reasons for de�ning an entity:

Text that is associated with an entity name appears only once so
that changing the text requires making a change in only one place.
All references to the entity automatically change when HelpTag
reprocesses the �les.
The ine�ciency of typing the same long or complex text string
many times can be avoided (along with typing mistakes) by typing
just a short entity reference wherever that text string will appear.
The full text string needs to be typed only once.
The <figure> and <graphic> elements do not accept a �le name.
The name of the �le that contains the �gure must be speci�ed in
an entity declaration.
It is convenient to put the help text into multiple �les, yet HelpTag
accepts only one source �le. These needs can be balanced by
creating one �le that contains entity declarations and entity
references that refer to the �les that contain the actual help text.

Examples

The volume.htg source �le can contain the following entity
declarations and entity references so that the actual text can be put
into the named �les:

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-13



<!entity>

<!entity topic1 FILE "topic1">

<!entity topic2 FILE "topic2">

<!entity topic3 FILE "topic3">

&topic1;

&topic2;

&topic3;

The following entity declaration causes the words \HP Precision
Architecture" to be displayed wherever the &hppa; entity reference
appears in the marked-up �les.

<!entity hppa "HP Precision Architecture">

The following entity declaration for a �gure is placed at the
beginning of the source �le:

<!entity CloseUpFig FILE "figname.tif">

and the �gure would be inserted where the following markup
appears:

<figure entity=CloseUpFig>

Close Up View

<\figure>

See Also

\Using Entities" in Chapter 2
\<�gure>"
\<xref>"
Chapter 12

11-14 HelpTag Markup Reference DRAFT

4/7/98 12:49



<esc>

<esc> Escape

Causes text to be passed directly to the run-time help �les without
being interpreted by HelpTag.

Syntax

<esc>text<\esc>

Or:

<esc|text|

If the long form is used, the text cannot contain the three-character
sequence <\x (the less-than symbol followed by a backslash followed
by a letter). The <\esc> end tag is required.

If the short form is used, the text cannot contain the vertical bar
character (|).

Example

The following markup:

<esc|characters !! or \|

produces:

characters !! or n

See Also

\General Markup Guidelines" in Chapter 2
\<vex>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-15



<ex> Computer example

Shows computer text without changing the spacing or line breaks.

Syntax

<ex [nonumber | number] [smaller | smallest]>

example text here ...

<\ex>

Where:

nonumber (Default.) Omits the adding of line numbers to the
beginning of each line.

number Puts a line number at the beginning of each line.

smaller or
smallest

Displays the example using smaller fonts. This makes
long lines �t within a narrower width.

Examples are printed in computer font, and they are indented from
the left text margin.

If you include the number attribute, the line numbers of the example
will be numbered. This is useful for referring to speci�c lines.

The following character pairs, which have special meanings in other
contexts, are treated as ordinary text within an example:

!!

--

++

"

The <\ex> end tag is required.

11-16 HelpTag Markup Reference DRAFT

4/7/98 12:49



<ex>

Example

The following markup:

<ex>

Examples are printed

in computer font.

<\ex>

produces:

Examples are printed

in computer font.

See Also

\<computer>"
\<user>"
\<vex>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-17



<figure> Figure

Inserts a graphical image.

Syntax

<figure [nonumber] entity=entity id=id number=n>

caption string

<\figure>

nonumber Suppresses the word \Figure" and the
automatically generated �gure number.

entity=name Speci�es a �le entity that identi�es the
�le which contains the graphic image to be
inserted.

id=name Optional. De�nes an ID name that can be
used in cross-references to this �gure.

number=n Optional. Used to override the automatically
generated �gure number.

ghyperlink="id" Optional. Speci�es that the graphic portion
of the �gure be a hyperlink. References
to this location would use the speci�ed id
identi�er.

glinktype=type Optional. Speci�es the type of hyperlink.
The default type is Jump. Other type values
include JumpNewView, Definition, Man,
Execute, and AppDefined.

gdescription="text" Optional. Provides a description of the
hyperlink. This description is used by the
topic access functions.

The <\figure> end tag is required.

To integrate an external graphics �le into a help topic, you must have
an entity declaration (<!entity entityname FILE "�lename">) that
associates the entity name with the graphic's �le name.

11-18 HelpTag Markup Reference DRAFT

4/7/98 12:49



<figure>

Examples

The following markup inserts a graphic with the speci�ed caption
and an automatically generated �gure number:

<!entity MapFigure FILE "mappic.xwd">.
.
.

<figure entity=MapFigure>

Caption for Figure

<\figure>

The following markup inserts a �gure that is numbered but does not
have a caption. The �gure is referred to later in the text.

<!entity MyPicture FILE "mappic.xwd">.
.
.

<figure id=Layout entity=MapFigure>

<\figure>.
.
.

<xref Layout> shows the layout of ...

The following markup inserts a �gure using a speci�c �gure number
and a caption. The caption is split into two lines where the backslash
(n) character appears.

<figure number=99 entity=SchemDiag>

Schematic that Illustrates\the Overall System Design

<\figure>

See Also

\<!entity>"
\<graphic>"
\<link>"
\<xref>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-19



<glossary> Glossary

Starts the glossary section which contains the de�nitions for all the
terms that are marked with the <term> element.

Syntax

<glossary>

<dterm>�rst term

de�nition of �rst term can continue

over multiple lines or paragraphs

<dterm>second term

de�nition of second term ...

...

\Glossary" is automatically used as the heading for the glossary
section.

A <dterm> element identi�es each term and its de�nition.

All terms marked with <term> without the nogloss parameter are
required to be in the glossary. If the term is not in the glossary,
omitted terms are listed in the �lename.err �le, which is created
when you run HelpTag.

An end tag for <glossary> is not required.

Example

Here is a simple glossary with two de�nitions:

<glossary>

<dterm>oxymoron

A combination of contradictory words.

<dterm>veritable

Being in fact the thing named. Authentic.

See Also

\<term>"
\<dterm>"

11-20 HelpTag Markup Reference DRAFT

4/7/98 12:49



<graphic>

<graphic> Inline graphic

Used for inserting a graphical element within a line of text.

Syntax

<graphic entity=name>

Where:

name An entity name which is de�ned in an entity
declaration. The entity declaration associates the
entity name with the name of the �le that contains
the graphic to be inserted.

The <graphic> element is similar to <figure> except that the
<graphic> element is intended for embedding small graphics
within text, whereas the <figure> element inserts �gures between
paragraphs.

Examples:

The following markup �rst de�nes an entity (mini-icon) as being
associated with the contents of a graphics �le (named \mini.pm").
Then the <graphic> element indicates the location of the graphic
within a line of text.

<!entity mini-icon FILE "mini.pm">.
.
.

The <graphic entity=mini-icon> icon

is used for very small images.

The following markup de�nes the inline graphic as a hyperlink to a
topic whose ID is mini-icon-topic:

The <link mini-icon-topic><graphic entity=mini-icon><\link> icon

is used for very small things.

See Also

\<!entity>"
\<�gure>"
\<link>"
\<p>"
\To include a special character" in Chapter 3

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-21



<head> Heading

Indicates the title for elements that normally do not have a title
(such as image, lablist, list, and otherfront) or have a default title
(such as note, caution and warning).

Syntax

<element><head>title text

A heading starts with the �rst non-blank character after the <head>
tag. The <head> tag can appear on the same line as the element to
which a heading is being added, or on the following line.

The <head> element can be used with elements that expect a title,
but it is not required in those cases.

Headings that are wider than the heading area are automatically
wrapped onto successive lines. To force a speci�c line break, put a
backslash (n) where you want the line to break.
A heading ends at the end of the line in the source �le unless the line
ends with an ampersand (&). If a heading spans multiple lines in
your source �le, put an ampersand after all the lines except the last.

The <\head> end tag is not required.

Examples

The following markup adds a title to a list and speci�es the start of a
new line where the backslash appears:

<list><head>Printing Options\for the QRZ Hardware

The following markup overrides the default \Note" heading. The
ampersand (&) indicates that the heading continues on the following
line.

<note><head>Tips&

& Traps

Take special note of this.

<\note>

See Also

\<otherfront>"
\<note>"
\<caution>"
\<warning>"

11-22 HelpTag Markup Reference DRAFT

4/7/98 12:49



<helpvolume>

<helpvolume>
Application help volume

This is the \root" structural element; it contains all the markup for
an entire help volume.

Syntax

all entity declarations
...

<helpvolume>
...

all of your help is included here, either

literally or using �le entity references
...

<\helpvolume>

If you do not enter this tag, its presence is automatically assumed by
the HelpTag software.

All entity declarations must appear before the <helpvolume> start
tag.

See Also

\A Help Volume at a Glance" in Chapter 2
\<!entity>"
\<hometopic>"
\<metainfo>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-23



<hometopic> \Home" or top-level help topic

Identi�es the start of the top-level help topic.

Syntax

<hometopic>heading

topic text begins here ...

There is only one home topic for a help volume. It comes after the
meta information (<metainfo>) and before the �rst <chapter> or
<s1>.

Linking to the Home
Topic

The <hometopic> element does not support an author-de�ned ID
identi�er. The HelpTag software assigns the pre-de�ned identi�er
_hometopic. To create a hyperlink to the home topic, use <link
hyperlink="_hometopic"> . . . <\link>.

Example

<hometopic>Welcome to Online Help

This is the home topic for the online help ...

<chapter>First Subtopic

This is the first subtopic ...

<chapter>Second Subtopic

This is the second subtopic ...

.

.

.

See Also

\A Help Volume at a Glance" in Chapter 2
\To create a home topic" in Chapter 2
\<metainfo>"

11-24 HelpTag Markup Reference DRAFT

4/7/98 12:49



<idx>

<idx> Index entry

De�nes an entry to appear in the keyword index.

Syntax

<idx>text<\idx>

Or:

<idx|text|

Or:

<idx>text<sort>sort key<\idx>

Where:

text The text string that appears in the keyword index.

sort key An optional text string used when sorting the index.
The sort key inuences where the text appears in the
keyword index. The sort key string does not appear
in the keyword index.

The keyword index is displayed by choosing Keyword from the
Search menu in a general help dialog. (The keyword index is not
available in quick help dialogs.) When the index entry is chosen in
the Keyword Index dialog, the topics that contain the index entry
are listed. Choosing one of the listed topics displays that topic. The
Keyword Index dialog remains available for further keyword index
access.

Either the <idx> start and end tags or the short form can be used.

The <sort> element changes the sort order for a keyword index
entry. Speci�cally, the <sort> element is used within the <idx>
element to request that the keyword appear at the location indicated
by the sort key string. No end tag for <sort> is required.

Examples

The following markup shows the de�nition of some simple index
entries. The index entries are indented to make the source text easier
to read.

<idx|keyboard|

<idx|disk drive|

<idx|screen, LCD|

An HP Portable Vectra CS PC has a full

size keyboard, built-in disk drives and

a detachable LCD screen.

The following example displays \+" in the keyword index, but it
appears where \plus" would appear.

<idx>+<sort>plus<\idx>

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-25



<image> As-is image

Shows text with the same line breaks as are in the source text.

Syntax

<image [id=id] [indent]>

text

<\image>

Text between the <image> and <\image> tags is shown with the
same spacing, indentation and line breaks that appear in the actual
text. No justi�cation, word wrapping or removal of empty lines is
done. However, a proportional font is used, so columns of text that
are lined up on a computer screen may not line up in the displayed
help information.

All in-line text elements and special characters are recognized.

The indent parameter causes the displayed text to be indented from
the left margin.

Either the start and end tags (<image> and <\image>) or the short
form (<image| . . . |) can be used.

If the displayed text is too wide to �t within the display area, a
horizontal scroll bar automatically appears.

See Also

\<ex>"
\<vex>"
\<p>"

11-26 HelpTag Markup Reference DRAFT

4/7/98 12:49



<item>

<item> List item

Identi�es an item in a list.

Syntax

<list>

* List item

* List item

<\list>

Or:

<list order>

<item id=name> List item

<item id=name> List item

<item id=name> List item
...

<\list>

The shorthand form, which is an asterisk (*), is almost always used.

The long form allows you to cross-reference an item in a list.
You can only cross-reference items in an ordered list because the
automatically-assigned item numbers are used in the cross-reference
text (which HelpTag substitutes for the <xref> element).

See Also

\<list>"
\<head>"
\<xref>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-27



<lablist> Labeled list

Starts a labeled list in which the labels appear in the left column and
the items (to which the labels refer) appear in the right column.

Syntax

<lablist
�
loose | tight

�
>

[ <labheads> \Heading 1 \ Heading 2 ]

\label\ text for the �rst item

\label\ text for the second item
...

<\lablist>

Where:

loose (Default.) Requests a vertical gap between the items
in the list.

tight Requests no extra vertical space between items in the
list.

Backslashes (\) indicate the start and end of a label; leading and
trailing spaces are ignored. The text of the labeled item follows the
second backslash, either on the same line or on the following line.
The end of the item is indicated by one of the following:

An empty line.
The start of another labeled item.
The <\lablist> end tag.

If a labeled item consists of more than one paragraph, leave an empty
line between the paragraphs. The end of the labeled list is indicated
by the required <\lablist> end tag.

Labels that are wider than the prede�ned label area extend into the
right column.

The optional column headings, one for each column, immediately
follow the <labheads> tag (on the same line). The column headings
are separated from one another by the backslash (\) character. The
<\labheads> end tag is not required. However, the <lablist> end
tag is required.

Example

The following markup:

<lablist tight>

<labheads> \ Unit \ Meaning

\in\ inches

\pc\ picas

\pt\ points

\mm\ millimeters

\cm\ centimeters

11-28 HelpTag Markup Reference DRAFT

4/7/98 12:49



<lablist>

<\lablist>

produces this output:

Unit Meaning
in inches
pc picas
pt points
mm millimeters
cm centimeters

See Also

\<head>"
\<list>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-29



<link> Hyperlink

Delimits text or an inline <graphic> to be used as a hyperlink.

Syntax

<link hyperlink [type] ["description"]>text<\link>

Or,

<link hyperlink="hyperlink" [type=type] [description="description"]>

The hyperlink attribute, which is required, is a value that identi�es
the destination or the behavior for the link. For a standard \jump"
link, hyperlink is the ID of the element you want to jump to.

The type parameter can have the following values:

Jump (Default.) Jumps to the topic that contains the ID
hyperlink .

JumpNewView Jumps to the topic that contains the ID hyperlink ,
but requests that the hosting application display the
topic in a new window.

Definition Displays, in a temporary de�nition window, the topic
which contains the ID hyperlink .

Execute Executes the hyperlink string as a command.

Man Displays a man page using the hyperlink string as the
parameter(s) to the man command.

AppDefined Sends the hyperlink string to the hosting application
for special processing.

The text between the begin and end tags becomes the \hot spot"
that the user will choose to invoke the link.

Capitalization is not signi�cant for the hyperlink and type values.

Notes

Avoid using the type keywords (listed above) as values for
hyperlink . If you must do so, explicitly identify the parameters as
shown in the second syntax line above.

The <link> element is not needed in a cross-reference that uses the
<xref> element because a hyperlink is automatically created where
the <xref> element is used.

Examples

The following markup de�nes a simple hyperlink to the topic
with the ID Welcome. Notice that capitalization of the ID is not
signi�cant.

Refer to the <link welcome>Welcome<\link> topic.

11-30 HelpTag Markup Reference DRAFT

4/7/98 12:49



<link>

The following markup de�nes the same hyperlink jump as in the
previous example but the <link> element is not used because a
cross-reference (<xref . . . >) is automatically a hyperlink. In this
case, the title of the Welcome topic is automatically supplied by
HelpTag.

Refer to the <xref welcome> topic.

The following markup de�nes a hyperlink that is activated when the
inline graphic is chosen. A new window is opened to display the
referenced help information.

The <link clockInfo JumpNewView>

<graphic entity=ClockIcon><\link> icon ...

The following markup creates a link that displays the man page for
the grep command:

For more details, refer to the

<link grep Man>grep man page<\link>.

See Also

\<abstract>"
\<�gure>"
\<graphic>"
\<hometopic>"
\<idx>"
\<location>"
\<xref>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-31



<list> List

Starts a list consisting of items that are optionally marked with
bullets or automatically-generated numbers.

Syntax

<list [bullet | order | plain] [continue] [loose | tight]>

* �rst item

* second item
...

<\list>

Where:

bullet (Default.) Displays a bullet before each item.

plain Does not put a bullet, number or letter in front of
each item.

order Displays a number in front of each item. The
numbers are automatically generated and begin with
the number one.

continue Requests that the numbering of items continue from
the previous list.

loose (Default.) Requests a vertical gap between the items.

tight Requests no extra vertical spacing between the items.

Each item must start on a new line preceded by either an asterisk
(*) or the <item> tag. The asterisk is the shorthand form of the
<item> tag. Spaces and tabs may appear on either side of the
asterisk. Items may continue over multiple lines. An item can consist
of multiple paragraphs, in which case an empty line must separate
the paragraphs. The nesting of lists is allowed, so a list can appear
within a list.

The <\list> end tag is required.

11-32 HelpTag Markup Reference DRAFT

4/7/98 12:49



<list>

Examples

The following markup:

<list>

* chocolate

* raspberry

* vanilla

<\list>

produces:

chocolate

raspberry

vanilla

The following markup:

<list plain tight>

* Word Processing

* Graphics

* Printing

<\list>

produces:

Word Processing
Graphics
Printing

See Also

\<item>"
\<lablist>"
\<head>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-33



<location> Location

De�nes an ID as referring to the location of the <location>
element. The ID is usually used as a destination for a hyperlink or
cross-reference.

Syntax

<location id=id>text<\location>

Or:

<location id=id|text|

Where:

id The identi�er for the current location, which can be
used as a destination for hyperlinks.

text The block of text where you want to assign the ID.

The <location> element is not needed at locations where there is
already an element (such as <hometopic> and <figure>) that has a
built-in ID or accommodates an author-de�ned id parameter.

The <location> element enables portions of a topic or section to
serve as destinations for hyperlinks and cross-references.

Example

The following markup names a location and elsewhere creates a
hyperlink to the location.

<s1 id=ConfigTopic> Configuration

...

<location id=SecondHalfConfigTopic>some text<\location>

...

<s1 id=ConfigTopic> Usage

...

See <link SecondHalfConfigTopic>Configuration<\link>

for additional information.

The advantage of linking to the ID in the <location> element
is that the help window automatically scrolls to the point where
the <location> is entered. In contrast, a link to the topic's ID
(\Con�gTopic" in this case), always goes to the top of the topic.

See Also

\<xref>"
\<link>"

11-34 HelpTag Markup Reference DRAFT

4/7/98 12:49



<memo>

<memo> Memo

Identi�es a writer's comments or questions, which do not appear in
the �nal help volume.

Syntax

<memo>

memo text

<\memo>

Or:

<memo|memo text|

Memo text is printed in drafts of your help volume if you specify
memo in the helptag.opt �le. Otherwise, memo text is not printed,
especially when you create the final version of the help volume.
Memo text, when it appears, is printed in a di�erent typeface.

Examples

Here is an example of a memo:

<memo>

Patti: We need a drawing to illustrate this.

<\memo>

The following markup uses the short form of the <memo> element:

<memo|Mike: Please explain how the following

command is supposed to work|

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-35



<metainfo> Meta information

Starts the meta information section, which contains information
about the information contained in the help volume. This
information includes the volume's title and a copyright notice.

Syntax

<helpvolume>

<metainfo>

<title> volume title

<copyright>

&copy; Copyright XYZ Company 1992...

<abstract>

brief description of help volume.
.
.

<\metainfo>

<hometopic>....
.
.

The meta information section is required. The title and copyright
subsections are required within the meta information section.
Inclusion of the abstract subsection is strongly recommended.

The <otherfront> element can be used to de�ne subsections other
than the prede�ned title, copyright and abstract subsections.

The <\metainfo> end tag is required.

Example

<metainfo>

<title>Inventory Tracking Software

<copyright>

&copy; Copyright 1992 Hewlett-Packard Company.

All rights reserved.

<abstract>

Explains how to use the Inventory Tracking Software

<\metainfo>

See Also

\<title>"
\<copyright>"
\<abstract>"
\<otherfront>"

11-36 HelpTag Markup Reference DRAFT

4/7/98 12:49



<newline>

<newline> New line

Starts a new line within a paragraph.

Syntax

text<newline>text on next line

Text that follows the <newline> element begins on a new line.

Example

The following markup ensures that the �le name begins on a new
line:

Put your files for the manual in the special directory

<newline>/userguide/draftdoc.

See Also

\<vex>"
\<ex>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-37



<note> Note

Creates a special format that attracts attention to text which makes
an important point.

Syntax

<note>

text of note

<\note>

The default heading for the note is \Note". To specify a di�erent
heading, use the <head> element.

If you want an icon to appear with the note, de�ne
NoteElementDefaultIconFile in an <!entity . . . > declaration.

The <\note> end tag is required.

Examples

Here is a note that uses the default heading:

<note>

Pay attention; this is important.

<\note>

The following markup speci�es a di�erent heading:

<note><head>Read This

Pay attention; this is important.

<\note>

See Also

\<caution>"
\<warning>"
\<head>"

11-38 HelpTag Markup Reference DRAFT

4/7/98 12:49



<otherfront>

<otherfront> Other meta information (front matter)

Used for meta information (front matter) that does not �t within one
of the prede�ned categories.

Syntax

<metainfo>
...

<otherfront [id=id] ><head>title of section

text

If a heading is needed, use the <head> element.

<otherfront> must follow all other subsections of <metainfo>.

See Also

\<metainfo>"
\<head>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-39



<otherhead> Other heading

Creates a subheading within a topic.

Syntax

<otherhead>heading

Headings may occur anywhere within the text of a topic. The
<otherhead> element does not alter the topic hierarchy and its title
does not appear in the Topic Hierarchy list.

The <\otherhead> end tag is not needed.

Example

Here is an example in which <otherhead> elements identify two
subsections within an <s1> topic:

<s1>Getting Started

text

<otherhead>Copying Files

text

<otherhead>Editing Configuration Files

text

See Also

\<head>"
\<procedure>"
\<rsect>"
\<s1> . . . <s9>"

11-40 HelpTag Markup Reference DRAFT

4/7/98 12:49



<p>

<p> New paragraph

Starts a paragraph that is indented or wrapped around a graphic.

Syntax

<p [indent] [gentity=graphic-ent [gposition=pos]

[ghyperlink=gid [glinktype=type]]] [id=id] >text...

Where:

indent Optional. Speci�es that the paragraph be indented
from the current left margin.

graphic-ent Optional. The name of a graphic entity around
which the paragraph is to be wrapped. The gentity
parameter and graphic-ent value are required if the
gposition, ghyperlink, or glinktype parameter is
used.

pos Optional. Either left or right to indicate whether
the optional graphic is to be left-justi�ed or
right-justi�ed.

gid Optional. Speci�es that the graphic be a hyperlink
and speci�es the destination of the hyperlink. The
ghyperlink parameter and gid value are required if
the glinktype parameter is used. (The id value,
not the gid value, would be used to reference this
paragraph's location.)

type Optional. Speci�es the type of hyperlink. The
default type is Jump. Other type values include
JumpNewView, Definition, Man, Execute, and
AppDefined.

id Optional. De�nes an ID name that can be used in
cross-references to this location.

text The text of the paragraph that wraps around the
graphic.

Use the <p> element only if you need to indent a paragraph or wrap
the paragraph around a graphic.

A <\p> end tag is not required.

Example

Here are two paragraphs, the second of which is indented:

Some people do not like to read manuals.

<p indent>This is not always a good idea.

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-41



<p>

See Also

\<head>"
\<procedure>"
\<rsect>"
\<s1> . . . <s9>"
\To wrap text around a graphic" in Chapter 3

11-42 HelpTag Markup Reference DRAFT

4/7/98 12:49



<procedure>

<procedure> Procedure

Starts a section within a topic.

Syntax

<procedure>heading

procedure text...

Procedures may occur anywhere within the text of a topic. They
are not part of the topic hierarchy and are not listed in the Topic
Hierarchy list.

An end tag is not needed.

Example

This paragraph and the \Example" heading were produced using the
following markup:

<procedure>Example

This paragraph and the "Example" heading were

produced using the following markup:

See Also

\<head>"
\<otherhead>"
\<s1> . . . <s9>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-43



<quote> Quote

Puts text within directional quotation marks.

Syntax

<quote>text<\quote>

Or:

"text"

Use the start and end tags (<quote> . . . <\quote>) or a pair of
double quotation marks (" . . . ") to delimit the text.

Example

The following markup:

... referred to in this manual as "the Standard" ...

produces:

. . . referred to in this manual as \the Standard" . . .

See Also

\<book>"
\<computer>"
\<term>"
\<user>"
\<var>"

11-44 HelpTag Markup Reference DRAFT

4/7/98 12:49



<rsect>

<rsect> Reference section

Identi�es an entry in the reference section.

Syntax

<rsect [id=id] >reference section heading
...

<rsub>reference subsection heading

A reference section (<rsect>) is used within a topic or section,
typically for a series of similar sections. For example, each reference
section could describe one software command.

An <rsect> consists of:

Required heading.
Optional introductory text.
Optional reference subsections or <rsub>s.

Each <rsect> section can have multiple <rsub> sections. Each
<rsub> element must have a heading, but the heading does not
appear in the table of contents. A cross-reference to a reference
subsection is not allowed.

<rsect> headings (but not <rsub> headings) appear in the table of
contents.

End tags (for either <rsect> or <rsub>) are not required.

Example

The following markup illustrates the use of this element:

<rsect>purge.
.
.

<rsub>Syntax

purge %%filename%%

<rsub>Example

purge file01

See Also

\<abbrev>"
\<chapter>"
\<s1> . . . <s9>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-45



<s1> . . . <s9> Subsection ( <s1>, <s2>, ... , <s9>)

Starts a topic in the hierarchy.

Syntax

<sn [id=name] >heading

topic text...

Where n is the level number (1, 2, . . . , or 9).

Topics entered with <chapter> can have subtopics entered with
<s1>, <s1> topics can have <s2> subtopics, and so on. You cannot
skip a level.

The heading for a section can be on the same line as the <sn> tag
or on the next line; a heading is required. Text within a section is
optional.

The end tag is usually omitted, but in some instances the end tag
may be necessary. For example, when a section is followed by an
<rsect> element that is on the same level, an end tag for the section
is required. Without the end tag the <rsect> element would be
considered a subsection of the section preceding it.

Examples

The following example illustrates a three-level hierarchy within a
topic.

<chapter>Running the Processor

topic text...

<s1>Getting Started

To run the program, type in the user

code and your password.

<s1>Customizing

You may now set up this conversion program

to change your computer from beige to red.

<s2>Configuration

Use either the disk drive or the tape drive

to archive your �les.

<s3>Disk Drive Advantages

See data sheet for speci�cations.

<s3>Tape Drive Advantages

See data sheet for speci�cations.

<s2>Support

If you really need help, call technical support.

In the following markup, a section end tag (<\s1>) is used to make
the <rsect> section be at the same level in the hierarchy.

<s1>�rst level heading

text

11-46 HelpTag Markup Reference DRAFT

4/7/98 12:49



<s1> . . . <s9>

<s1>�rst level heading

text

<\s1>

<rsect>�rst level heading

text

In contrast, leaving out the end tag causes the <rsect> section to
become a subtopic of the second <s1> section:

<s1>�rst level heading

text

<s1>�rst level heading

text

<rsect>second level heading

text

See Also

\<chapter>"
\<head>"
\<rsect>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-47



<term> Glossary term

Writes a newly introduced term in a special font and establishes a
hyperlink to its de�nition in the glossary.

Syntax

<term baseform
�
gloss | nogloss

�
>text<\term>

Or:

<term baseform
�
gloss | nogloss

�
|text|

Or:

++text++

Where:

baseform The form of the term as it appears in the glossary if
it is not the same as used in the text. This di�erence
can occur, for example, when the term is used in the
text in its plural form but appears in the glossary
in its singular form. If the term includes spaces or
special characters, put the baseform string in quotes.

gloss (Default.) Requests that HelpTag verify that the
term is in the glossary.

nogloss Allows the term to be missing from the glossary.

The shorthand form for <term> is double plus signs (++) used before
and after the term.

Note If your help volume does not include a glossary, use the nogloss
parameter.

When HelpTag processes the help volume, warning messages are
issued to indicate glossary terms that both do not appear in the
glossary and do not use the nogloss parameter.

Tagging a term with the <term> element automatically creates a
hyperlink to the glossary. If there is no glossary, the link will not
work.

A <term> end tag is required if the long form is used.

Example

The following markup puts \structural elements" in a special font to
indicate it is a glossary term and creates a hyperlink to the glossary.
Because the nogloss parameter is not used, HelpTag ensures that
the singular form (\structural element") appears in the glossary.

SGML views a document as a hierarchy of

<term "structural element"|structural elements|.

11-48 HelpTag Markup Reference DRAFT

4/7/98 12:49



<term>

See Also

\<glossary>"
\<dterm>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-49



<title> Help volume title

Speci�es the title of the help volume.

Syntax

<metainfo>

<title>help volume title

The <title> element is a required subelement of the <metainfo>
(meta information) element. It follows immediately after the
<metainfo> tag. Because this is the title of the volume, and the title
may be displayed by other applications (help managers, for example)
that may not be able to format the title, you should avoid anything
other than plain text within the title.

The <\title> end tag is not required.

Example

Here is a sample volume title:

<metainfo>

<title>The Super Hyperlink User's Guide

See Also

\<metainfo>"

11-50 HelpTag Markup Reference DRAFT

4/7/98 12:49



<user>

<user> User's response

Indicates the user's response to a computer prompt.

Syntax

<user>response<\user>

Or:

<user|response|

This element is used to distinguish user input from computer output
in a computer dialogue. It is typically used within the <ex> element,
where spaces and line breaks between the <user> start tag and the
<\user> end tag are signi�cant.

If used within a paragraph, <user> text must not break across lines
in your source �le.

The <user> end tag is required if the long form is used.

Example

The following markup produces two di�erent fonts, one to indicate
what the computer displays and another to indicate what the user
types:

<ex>

Do you wish to continue? (Yes or No) <user>Yes<\user>

<\ex>

See Also

\<user>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-51



<var> Variable

Indicates a user-supplied variable in a command.

Syntax

<var>

text

<\var>

Or:

%%text%%

The <\var> end tag is required if the long form is used.

In the shorthand form, the text is delimited with double percent
signs (%%).

Examples

These markups:

INPUT %%filename%%

Or:

INPUT <var>filename<\var>

produce:

INPUT �lename

See Also

\<ex>"
\<computer>" includes an example of a variable within computer
text.
\<user>"

11-52 HelpTag Markup Reference DRAFT

4/7/98 12:49



<vex>

<vex> Verbatim example

Indicates a verbatim example in which HelpTag elements are not
interpreted as elements.

Syntax

<vex [smaller | smallest]>

example text

<\vex>

Within a verbatim example, no HelpTag elements are recognized
except <\ which is assumed to be an end tag.

Use this element when you need to use shorthand forms of tags that
would otherwise be interpreted as markup. The e�ect is similar to
using <esc> in text, with output similar to <ex>. Line breaks and
spacing are preserved as they appear in the source �le.

The smaller and smallest fonts enable wide examples to �t within
the margins.

Example

The following markup:

<vex smaller>

You can use shorthand form characters, such as %%

or !! or ++ without using the <esc> element to allow

them to print.

<\vex>

produces:

You can use shorthand form characters, such as %%

or !! or ++ without using the <esc> element to allow

them to print.

See Also

\<esc>"
\<ex>"
\<image>"

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-53



<warning> Warning

Calls the reader's attention to a situation that could be dangerous to
the user.

Syntax

<warning>

text

<\warning>

The text of the warning message is printed in boldface.

The default heading for the warning is \Warning". To specify a
di�erent heading, use the <head> element.

To display a graphic with the warning, de�ne
WarningElementDefaultIconFile in an <!entity>

declaration.

The <\warning> end tag is required.

Examples

The following markup creates a warning message:

<warning>

Failure to follow these guidelines could result

in serious consequences.

<\warning>

The following markup speci�es a di�erent heading for the warning
message:

<warning><head>Danger!

Do not open the high voltage compartment.

<\warning>

See Also

\<note>"
\<caution>"
\<head>"

11-54 HelpTag Markup Reference DRAFT

4/7/98 12:49



<xref>

<xref> Cross-reference

Inserts text that identi�es another location of the help volume and
creates a hyperlink to that location.

Syntax

<xref id>

Where:

id The identi�er of the topic or location that is being
cross-referenced.

Cross-references are translated into section titles or topic, �gure, list
item or line numbers. The cross-reference text becomes a hyperlink
that, when chosen by a user, jumps to the cross-referenced location.

The id parameter must be de�ned in the element to which <xref>

refers. In both the xref parameter and the id parameter, the name
must be spelled exactly the same. Capitalization, however, is not
signi�cant.

The id parameter is important because it allows you to
cross-reference the element referred to. For example, if you want to
refer readers to an appendix for more information, you would write,
\Refer to <xref publish> for details." This prints out as \Refer to
Appendix X for details", where X is the number of the appendix
containing the information.

The id parameter can appear with:

<chapter>

<s1>, <s2>, . . . <s9>
<rsect>

<appendix>

<figure>

<lineno>

<item>

A cross-reference to an id that contains an underscore (such as
\ abstract" or \ hometopic") is not allowed.

DRAFT

4/7/98 12:49

HelpTag Markup Reference 11-55



<xref>

Example

Suppose an ID named \analyzer" were de�ned in the following
markup:

<s1 id=analyzer>Logic Analyzers

Here is markup that contains a cross-reference to the above topic:

The HP 16500A logic analysis system, described in

<xref analyzer>, can be configured to a user's needs.

After translation by the helptag command, the <xref> element
would be replaced by \Logic Analyzers" as shown here:

The HP 16500A logic analysis system, described in

Logic Analyzers, can be configured to a user's needs.

The text \Logic Analyzers" would appear as a hyperlink that, when
chosen by a user, jumps to the cross-referenced help topic.

See Also

\<!entity>"
\<link>"
\<location>"
\<term>"
\<�gure>"
\<chapter>"
\<s1> . . . <s9>"
\<otherhead>"
\<rsect>"

11-56 HelpTag Markup Reference DRAFT

4/7/98 12:49



12

Summary of Special Character Entities

The following special characters can be inserted into text by typing
the associated entity name in the position where the special character
is to appear.

Note To use any of the entity names that are marked with an asterisk, you
must use the helpchar.ent �le as explained in \To include a special
character" in Chapter 3. The �le is in /usr/vhelp/helptag/.

Symbol and entity
name

Description

Current Date and Time

4/7/98 &date; Today's date (when HelpTag is run)

12:49 &time; Current time (when HelpTag is run)

Typographical Symbols

c &copy; Copyright symbol

R &reg; Registered symbol

TM &tm; Trademark symbol

{ &endash; En dash (short dash)

| &emdash; Em dash (long dash)

� &bullet; * Bullet

. . . &ellipsis; Ellipsis (horizontal)

. . . . &pellipsis; Ellipsis (end-of-sentence)

... &vellipsis; Vertical ellipsis

' &squote; Single quote

" &dquote; Double quote

t &vblank; Vertical blank

( ) &empty; Empty (no text)

( ) &sigspace; Signi�cant space

x &S; * Section

{ &P; * Paragraph

DRAFT

4/7/98 12:49

Summary of Special Character Entities 12-1



Basic Math Symbols

� &minus; Minus

� &pm; Plus over minus

� &div; Divide

� &times; Multiply

� &leq; Less than or equal to

� &geq; Greater than or equal to

6= &neq; Not equal to

Units

am &a.m.; AM

pm &p.m.; PM

� &deg; Degrees

0 &minutes; Minutes, prime, or feet

00 &seconds; Seconds, double prime, or inches

Currency Symbols

/c &cents; Cents

$ &sterling; Sterling

Lowercase Greek Letters

� &alpha; * Lowercase Greek Alpha

� &beta; * Lowercase Greek Beta

� &chi; * Lowercase Greek Chi

� &delta; * Lowercase Greek Delta

" &varepsilon; * Alternate lowercase Greek Epsilon

� &phi; * Lowercase Greek Phi

' &varphi; * Open lowercase Greek Phi

 &gamma; * Lowercase Greek Gamma

� &eta; * Lowercase Greek Eta

� &iota; * Lowercase Greek Iota

� &kappa; * Lowercase Greek Kappa

� &lambda; * Lowercase Greek Lambda

� &mu; * Lowercase Greek Mu

� &nu; * Lowercase Greek Nu

� &pi; * Lowercase Greek Pi

$ &varpi; * Alternate lowercase Greek Pi (or Omega)

� &theta; * Lowercase Greek Theta

12-2 Summary of Special Character Entities DRAFT

4/7/98 12:49



# &vartheta; * Open lowercase Greek Theta

� &rho; * Lowercase Greek Rho

� &sigma; * Lowercase Greek Sigma

� &tau; * Lowercase Greek Tau

� &upsilon; * Lowercase Greek Upsilon

! &omega; * Lowercase Greek Omega

� &xi; * Lowercase Greek Xi

 &psi; * Lowercase Greek Psi

� &zeta; * Lowercase Greek Zeta

Uppercase Greek Letters

� &Udelta; * Uppercase Greek Delta

� &Uphi; * Uppercase Greek Phi

� &Ugamma; * Uppercase Greek Gamma

� &Ulambda; * Uppercase Greek Lambda

� &Upi; * Uppercase Greek Pi

� &Utheta; * Uppercase Greek Theta

� &Usigma; * Uppercase Greek Sigma

� &Uupsilon; * Uppercase Greek Upsilon


 &Uomega; * Uppercase Greek Omega

� &Uxi; * Uppercase Greek Xi

	 &Upsi; * Uppercase Greek Psi

Advanced Math Symbols

2 &squared; * Squared

3 &cubed; * Cubed

1/4 &one-fourth; * One fourth

1/2 &one-half; * One half

3/4 &three-fourths; * Three fourths

1 &infty; * In�nity

� &equiv; * Exactly equals

6= &not-eq; * Not equal to

� &approx; * Approximate sign (two wavy lines)

: &neg; * Not

\ &cap; * Cap (Set intersection)

[ &cup; * Cup (Set union)

_ &vee; * Vee (Logical OR)

DRAFT

4/7/98 12:49

Summary of Special Character Entities 12-3



^ &wedge; * Wedge (Logical AND)

2 &in; * In

� &subset; * Proper subset

� &subseteq; * Subset

� &supset; * Proper superset

� &supseteq; * Superset

8 &forall; * For all (Universal symbol)

9 &exists; * There exists (Existential symbol)

f &function; * Function symbol (or orin sign)

6 &angle; * Angle

�= &cong; * Congruent

/ &propto; * Proportional to

? &perp; * Perpendicular to

� &cdot; * Centered dot

� &oplus; * Plus in circle


 &otimes; * Times in circle

� &oslash; * Slash in circle (Empty set)

@ &partial; * Partial di�erential delta
P

&sum; * Summation (Uppercase Greek Sigma)
Q

&prod; * Product (Uppercase Greek Pi)

Arrows

 &leftarrow; * Left arrow

! &rightarrow; * Right arrow

" &uparrow; * Up arrow

# &downarrow; * Down arrow

$ &leftrightarrow; * Left/right arrow

( &bigleftarrow; * Big left arrow

) &bigrightarrow; * Big right arrow

* &biguparrow; * Big up arrow

+ &bigdownarrow; * Big down arrow

, &bigleftrightarrow; * Big left/right arrow

Card Suits

} &diamondsuit; * Diamond suit

~ &heartsuit; * Heart suit

12-4 Summary of Special Character Entities DRAFT

4/7/98 12:49



� &spadesuit; * Spade suit

| &clubsuit; * Club suit

Miscellaneous Symbols

� &diamond; * Diamond

@ &aleph; * Hebrew Aleph

r &nabla; * Nabla (Inverted uppercase Greek Delta)
p

&surd; * Radical segment, diagonal

} &wp; * Weierstraussain symbol

< &Re; * Fraktur R

= &im; * Fraktur I

See also

\General Markup Guidelines" in Chapter 2 explains how to include
special HelpTag characters (&, \, and <).

DRAFT

4/7/98 12:49

Summary of Special Character Entities 12-5





13

Command Summary

The commands summarized here are:

helptag Compiles HelpTag source �les into run-time
�les.

helpview Displays a help volume, text �le, or man
page.

helpprint and
helpprintrst

Print all or part of a help volume. If the
help volume contains multi-byte characters,
helpprintrst is used.

Processing HelpTag
Files (`helptag')

The HelpTag software, invoked with the helptag command, compiles
your HelpTag source �les into run-time help �les. You run helptag

in the directory where your volume.htg �le is located.

Command Syntax

helptag [command-options] volume [parser-options]

Where command-options are options entered before the volume name
and parser-options are options entered after the volume name.

Command Options

-clean Removes all �les generated from any previous run of
HelpTag for the given volume.

-shortnames Causes the names of all generated �les to be limited
to a maximum of eight characters for the base name
and three characters for the extension. This allows
run-time help �les to be moved to systems where
longer names may not be supported.

-verbose Displays the progress of the helptag command and
displays any parser errors that occur. Parser errors
are also saved in a �le named volume.err.

Parser Options

Parser options, which are entered after the volume name, are passed
directly to the parser, which is the part of the HelpTag software that
converts your marked-up �les into run-time �les.

DRAFT

4/7/98 12:49

Command Summary 13-1



Any of these options can be either entered on the command line after
the volume name, or listed in a �le named helptag.opt located in
the current directory:

onerror Speci�es whether the helptag command should
continue if a parser error is encountered. The default
is onerror=stop, which causes the command to stop
even if one parser error is encountered. If you specify
onerror=go, processing will continue, but the created
run-time help �les may not work properly.

charset Speci�es which character set was used to author the
text �les. The correct character set name is needed
to ensure that the help topics are displayed in the
proper font. The default is charset=iso8859-1.

You can also specify a character set within
your help volume by declaring an entity
named \LanguageElementDefaultCharset".
(This is demonstrated in the
/usr/vhelp/helptag/helplang.ent �le.)
See also Chapter 10.

search Adds another directory to the list of directories
that are searched to �nd referenced �le entities.
To specify multiple directories, use multiple
search=directory options. If no search options are
used, only the current directory is searched.

clearsearch Clears the list of search directories. This option is
useful in the command line to override search options
speci�ed in the helptag.opt �le.

memo Causes author's memos (which are entered using
the <memo> element) to be included. The default is
nomemo, which causes HelpTag to ignore memos.

nomemo Causes HelpTag to ignore author's memos (which
are entered with the <memo> element). This is the
default.

See Also

\Creating Run-Time Help Files" in Chapter 4
\Gathering Run-Time Help Files" in Chapter 8
\Viewing a Help Volume" in Chapter 4

13-2 Command Summary DRAFT

4/7/98 12:49



Displaying Help
Topics (`helpview') Command Syntax

Here are the various ways to invoke Helpview:

helpview -helpVolume volume [ -locationId id ] &

helpview -man &

helpview -manPage man &

helpview -file �lename &

Where:

-helpVolume volume Speci�es the name of the volume.hv �le you
want to view. A path is not required unless
the volume is not in the current directory and
the volume has not been \registered."

-locationId id Speci�es an ID. Helpview displays the topic
that contains id . If you do not specify an ID,
Helpview uses _hometopic by default.

-man Displays a dialog that prompts for a man
page to view, then displays the requested
man page.

-manPage man Speci�es that a particular man page be
displayed.

-file �lename Speci�es that a particular text �le be
displayed.

The default volume and id can be set in Helpview's app-defaults �le
(/usr/lib/X11/app-defaults/Helpview).

See Also

\Registering Your Online Help" in Chapter 8
\Viewing a Help Volume" in Chapter 4

DRAFT

4/7/98 12:49

Command Summary 13-3



Printing Help Topics
(`helpprint' and
`helpprintrst')

The HP Help System uses the Helpprint application to print
help topics. Helpprint can be run manually (with the helpprint
command) or directly from Helpview (by choosing Print from the File
menu).

A second printing program is provided for printing help volumes that
contain multi-byte characters (such as Japanese or Korean). The
helpprintrst command operates just like the helpprint command
except that its output does not depend on printer fonts. Instead,
helpprintrst creates a page-size graphic image of each help topic.

Both printing programs are in the /usr/vhelp/bin/ directory. If you
are using HP VUE 3.0, they are also in the /usr/vue/bin/ directory.

Command Syntax

helpprint -helpVolume volume [ -locationId id ] [ -R ]

helpprintrst -helpVolume volume [ -locationId id ] [ -R ]

Where:

helpVolume volume Speci�es a full path to the help volume
(.hv �le) that contains the topics to be
printed. This parameter is required.

-locationID id Identi�es the topic to print. The default
topic is \_hometopic"|which applies if
this parameter is not speci�ed.

-R Recursively prints all the subtopics
that are beneath the topic speci�ed in
the -locationID parameter. If the -R
parameter is not used, only the speci�ed
topic is printed.

Examples

Each of the following commands prints topics from the HPHelpKit
volume (which is the online version of this guide):

To print just the copyright topic:

helpprint -helpVolume /etc/vhelp/volumes/C/HPHelpKit.hv -locationId _copyright

To print the entire volume:

helpprint -helpVolume /etc/vhelp/volumes/C/HPHelpKit.hv -R

To print the \Command Summary" section and all its subtopics:

helpprint -helpVolume /etc/vhelp/volumes/C/HPHelpKit.hv -locationId CommandSummary -R

13-4 Command Summary DRAFT

4/7/98 12:49



See Also

\Processing HelpTag Files (`helptag')"
\Viewing a Help Volume" in Chapter 4

DRAFT

4/7/98 12:49

Command Summary 13-5





14
Summary of Application
Programmers Interface

The HP Help System's Application Programmers Interface (API)
includes the following functions:

Functions for creating and working with help dialogs:

\XvhCreateHelpDialog()"
\XvhCreateQuickHelpDialog()"
\XvhQuickDialogGetChild()"

Function for implementing item help mode:

\XvhReturnSelectedWidgetId()"

Functions for working directly with help text:

\XvhGetTopicData()"
\XvhProcessLinkData()"
\XvhFreeTopicData()"

Function for specifying the message catalog for the Xvh library:

\XvhSetCatalogName()"

XvhCreateHelpDia-
log()

#include <Xvh/Xvh.h>

#include <Xvh/HelpDialog.h>

Widget XvhCreateHelpDialog (

Widget parent,

String name,

ArgList arglist,

Cardinal argcount );

Where:

parent Speci�es the parent widget ID.

name Speci�es the name of the new help dialog.

arglist Speci�es the argument list.

argcount Speci�es the number of attribute-value pairs in the
argument list (arglist).

This function creates a new instance of a general help dialog and
returns its ID. The widget ID returned is a Dialog Shell widget which
serves as the top level child in the created help dialog. Refer to the

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-1



OSF/Motif documentation for more information on the Dialog Shell
widget and applicable resources.

Resources

The following resources are speci�c to the help dialog widget.

XmNcloseCallback

Speci�es the list of callback functions executed when the user
chooses Close from the dialog's File menu. (See \Detecting When
Help Dialogs are Dismissed" in Chapter 6.)

XmNcolumns

Speci�es the desired width of the help display area. The
XmNcolumns resource expects a number (type Dimension) value
that represents the number of average-width characters (based on
the current font). The default is 40.

XmNhelpFile

Speci�es the name of a text �le to be displayed in the help dialog.
This resource is used only when the XmNhelpType resource is set
to XvhHELP_TYPE_FILE.

The XmNhelpFile resource expects a string (char *) value. Its
default is the NULL string.

XmNhelpOnHelpVolume

Speci�es the help volume used to display \help on help." This
volume is accessed if the user requests help while using the help
dialog.

The XmNhelpOnHelpVolume resource expects a string (char *)
value. Its default is the NULL string.

XmNhelpPrint

Speci�es the command used to print help topics. The
XmNhelpPrint resource expects a string (char *) value. Its
default is /usr/vhelp/bin/helpprint.

XmNhelpType

Speci�es the type of information to be displayed in the help
dialog. Valid values, which are de�ned in <Xvh/Xvh.h>, include
the following:

XvhHELP_TYPE_TOPIC indicates that the information is a
formatted help topic. The displayed topic is located using the ID
speci�ed by the XmNlocationId resource in the volume speci�ed
by XmNhelpVolume. (XvhHELP_TYPE_TOPIC is the default value for
the XmNhelpType resource.)

XvhHELP_TYPE_STRING indicates that the information is a
text string provided in the XmNstringData resource. Newline

14-2 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



characters within the string are used to determine line breaks
when formatting the string.

XvhHELP_TYPE_DYNAMIC_STRING indicates that the information is
a text string provided in the XmNstringData resource. Newline
characters within the string are used to separate paragraphs.
Text in the string is automatically wrapped to �t the current size
of the window.

XvhHELP_TYPE_MAN_PAGE indicates that the information is a man
page. The text to be displayed is retrieved internally by executing
the man command using the value of the XmNmanPage resource.

XvhHELP_TYPE_FILE indicates that the information is in a
text �le. The �le name is identi�ed using the value of the
XmNhelpFile resource.

XmNhelpVolume

Speci�es the help volume to use. This resource is used in
conjunction with the XmNlocationId resource, which speci�es an
ID within the volume. The XmNhelpType resource must be set to
XvhHELP_TYPE_TOPIC.

The XmNhelpVolume resource expects a string (char *) value. Its
default is the NULL string.

XmNhyperLinkCallback

Speci�es the list of callback functions executed when a hyperlink
event occurs within the help dialog. Callbacks should be added
to the dialog using the standard XtAddCallback() function. (See
\Responding to Hyperlink Events" in Chapter 6.)

XmNlocationId

Speci�es the ID string for a help topic. The XmNhelpVolume
resource must be set to specify the help volume in which the
corresponding ID resides, and XmNhelpType must be set to
XvhHELP_TYPE_TOPIC.

The XmNlocationId resource expects a string (char *) value. Its
default is the NULL string.

XmNmanPage

Speci�es a man page to display. This resource is used when the
XmNhelpType resource is set to XvhHELP_TYPE_MAN_PAGE.

The XmNmanPage resource expects a string (char *) value. Its
default is the NULL string. The string is passed directly to the
system man command to �nd and display the man page.

XmNprinter

Speci�es the printer device name to be used for printing help
topics.

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-3



The XmNprinter resource expects a string (char *) value. Its
default is the NULL string, which causes printed help topics to be
directed to the system's default printer.

XmNrows

Speci�es the desired height of the help display area in terms of
the number of rows of text. The height of each row is determined
by the current font scheme in use. The XmNrows resource expects
a number (type Dimension) value. The default is 15.

XmNscrollBarDisplayPolicy

Controls the automatic placement of scroll bars around the help
topic display area. If set to XvhAS_NEEDED_SCROLLBARS, scroll
bars are displayed only if the help text doesn't completely �t
within the display area. (XvhAS_NEEDED_SCROLLBARS is the
default value for this resource.)

If XmNscrollBarDisplayPolicy is set to XvhSTATIC_SCROLLBARS,
the scroll bars are always managed, regardless of the size of the
current help topic.

If XmNscrollBarDisplayPolicy is set to XvhNO_SCROLLBARS, the
scroll bars are never managed, even if the current help topic is too
big to competely �t within the display area.

XmNstringData

Speci�es a string of characters to display in the help dialog.
This resource is used when the XmNhelpType resource is set to
XvhHELP_TYPE_STRING or XvhHELP_TYPE_DYNAMIC_STRING.

If XmNhelpType is set to XvhHELP_TYPE_STRING, newline
characters in the string are used to determine the line
breaks when formatting the text. If XmNhelpType is set
to XvhHELP_TYPE_DYNAMIC_STRING, newline characters
are interpreted as paragraph separators and the string is
automatically wrapped to �t the current display area.

The XmNstringData resource expects a string (char *) value. Its
default is the NULL string.

XmNtopicTitle

Speci�es the topic title to be used in conjunction with either the
XmNstringData or XmNhelpFile resource. The topic title is used
to represent the topic in the History list. This resource is used
only when the XmNhelpType is set to XvhHELP_TYPE_STRING,
XvhHELP_TYPE_DYNAMIC_STRING, or XvhHELP_TYPE_FILE.

The XmNtopicTitle resource expects a string (char *) value. Its
default is the NULL string.

14-4 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



XmNvisiblePathCount

Speci�es the height of the Topic Hierarchy area (which is just
below the help dialog's menu bar). The XmNvisiblePathCount
resource expects an int (integer) value that speci�es the number
of visible items. The default value is 4.

Callback Information

A pointer to the following structure is passed to each callback.

typedef struct {

int reason;

XEvent *event;

char *locationId;

char *helpVolume;

char *specification;

int hyperType;

} XvhHelpDialogCallbackStruct;

Where:

reason This element indicates why the callback was
invoked.

event This element points to the event that
triggered the callback.

locationId This element points to the current topic ID.
If the dialog is not displaying a topic, this
value is NULL.

helpVolume This element points to the current help
volume. If the dialog is not displaying a
formatted help topic, this value is NULL.

specification This element points to author-supplied data
that is used in application-de�ned hyperlinks.
This value is NULL if the event that invoked
the callback was not an application-de�ned
hyperlink.

hyperType This element indicates the type of hyperlink
that invoked this callback. The value is one
of: XvhLINK_JUMP_NEW, XvhLINK_MAN, or
XvhLINK_APP_DEFINE.

Usage Tips

To destroy an instance of a help dialog, use XtDestroyWidget().

To display a help dialog, use XtManageChild().

To hide a help dialog, use XtUnmanageChild().

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-5



See Also

\Displaying Help Topics" in Chapter 6
\Responding to Hyperlink Events" in Chapter 6
\Detecting When Help Dialogs are Dismissed" in Chapter 6
\To create a general help dialog" in Chapter 5
\Creating a Dialog Cache" in Chapter 5

XvhCreateQuick-
HelpDialog()

#include <Xvh/Xvh.h>

#include <Xvh/QuickHelpD.h>

Widget XvhCreateQuickHelpDialog (

Widget parent,

String name,

ArgList arglist,

Cardinal argcount );

Where:

parent Speci�es the parent widget ID.

name Speci�es the name of the new help dialog.

arglist Speci�es the argument list.

argcount Speci�es the number of attribute-value pairs in the
argument list (arglist).

This function creates a new instance of a general help dialog and
returns its ID. The widget ID returned is a Dialog Shell widget which
serves as the top level child in the created help dialog. Refer to the
OSF/Motif documentation for more information on the Dialog Shell
widget and applicable resources.

Resources

The following resources are speci�c to the quick help dialog widget.

XmNbackLabelString

Speci�es the string label for the Back button. The
XmNbackLabelString resource expects a compound string (type
XmString) value. The default string is \Backtrack."

XmNcolumns

Speci�es the desired width of the help display area. The
XmNcolumns resource expects a number (type Dimension) value
that represents the number of average-width characters (based on
the current font). The default is 40.

XmNhelpFile

14-6 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



Speci�es the name of a text �le to be displayed in the help dialog.
This resource is used only when the XmNhelpType resource is set
to XvhHELP_TYPE_FILE.

The XmNhelpFile resource expects a string (char *) value. Its
default is the NULL string.

XmNhelpPrint

Speci�es the command used to print help topics. The
XmNhelpPrint resource expects a string (char *) value. Its
default is /usr/vhelp/bin/helpprint.

XmNhelpType

Speci�es the type of information to be displayed in the quick help
dialog. Valid values, which are de�ned in <Xvh/Xvh.h>, include
the following:

XvhHELP_TYPE_TOPIC indicates that the information is a
formatted help topic. The topic is located using the ID speci�ed
by the XmNlocationId resource in the volume speci�ed by
XmNhelpVolume. (XvhHELP_TYPE_TOPIC is the default value for
the XmNhelpType resource.)

XvhHELP_TYPE_STRING indicates that the information is the text
string in the XmNstringData resource. Newline characters within
the string are used to determine line breaks when formatting the
string.

XvhHELP_TYPE_DYNAMIC_STRING indicates that the information
is the text string in the XmNstringData resource. Newline
characters within the string are used to separate paragraphs.
Text in the string is automatically wrapped to �t the current size
of the window.

XvhHELP_TYPE_MAN_PAGE indicates that the information is a man
page. The text to be displayed is retrieved internally by executing
the man command using the value of the XmNmanPage resource.

XvhHELP_TYPE_FILE indicates that the information is in a
text �le. The �le name is identi�ed using the value of the
XmNhelpFile resource.

XmNhelpVolume

Speci�es the help volume to use. This resource is used in
conjunction with the XmNlocationId resource, which speci�es an
ID within the volume. The XmNhelpType resource must be set to
XvhHELP_TYPE_TOPIC.

The XmNhelpVolume resource expects a string (char *) value. Its
default is the NULL string.

XmNhyperLinkCallback

Speci�es the list of callback functions executed when a hyperlink
event occurs within the help dialog. Callbacks should be added

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-7



to the dialog using the standard XtAddCallback() function. (See
\Responding to Hyperlink Events" in Chapter 6.)

XmNlocationId

Speci�es the ID string for a help topic. The XmNhelpVolume
resource must be set to specify the help volume in which the
corresponding ID resides, and XmNhelpType must be set to
XvhHELP_TYPE_TOPIC.

The XmNlocationId resource expects a string (char *) value. Its
default is the NULL string.

XmNmanPage

Speci�es a man page to display. This resource is used when the
XmNhelpType resource is set to XvhHELP_TYPE_MAN_PAGE.

The XmNmanPage resource expects a string (char *) value. Its
default is the NULL string. The string is passed directly to the
system man command to �nd and display the man page.

XmNminimizeButtons

Speci�es whether the dialog's buttons should be resized so they
are all the same width as the widest button and the same height
as the tallest button. The XmNminimizeButtons resource expects
a Boolean value (True or False). The default is True, which
makes the buttons all the same size. If this resource is False, the
button sizes are not altered from their default sizes.

XmNmoreLabelString

Speci�es the string label for the More button. The
XmNprintLabelString resource expects a compound string (type
XmString) value. The default string is \More." If this button is
used to display a general help dialog, the recommended label is
\Browse . . . "

XmNokCallback

Speci�es the list of callback functions executed when the user
chooses the OK button. The callback reason is XvhCR_OK. (See
\Detecting When Help Dialogs are Dismissed" in Chapter 6.)

XmNokLabelString

Speci�es the string label for the OK button. The
XmNokLabelString resource expects a compound string (type
XmString) value. The default string is \OK."

XmNprinter

Speci�es the printer device name to be used for printing help
topics.

The XmNprinter resource expects a string (char *) value. Its
default is the NULL string, which causes printed help topics to be
directed to the system's default printer.

14-8 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



XmNrows

Speci�es the desired height of the help display area in terms of
the number of rows of text. The height of each row is determined
by the currently used font scheme. The XmNrows resource expects
a number (type Dimension) value. The default is 15.

XmNscrollBarDisplayPolicy

Controls the automatic placement of scroll bars around the help
topic display area. If set to XvhAS_NEEDED_SCROLLBARS, scroll
bars are displayed only if the help text doesn't completely �t
within the display area. (XvhAS_NEEDED_SCROLLBARS is the
default value for this resource.)

If XmNscrollBarDisplayPolicy is set to XvhSTATIC_SCROLLBARS,
the scroll bars are always managed, regardless of the size of the
current help topic.

If XmNscrollBarDisplayPolicy is set to XvhNO_SCROLLBARS, the
scroll bars are never managed, even if the current help topic is too
big to competely �t within the display area.

XmNstringData

Speci�es a string of characters to display in the help dialog.
This resource is used when the XmNhelpType resource is set to
XvhHELP_TYPE_STRING or XvhHELP_TYPE_DYNAMIC_STRING.

If XmNhelpType is set to XvhHELP_TYPE_STRING, newline
characters in the string are used to determine the line
breaks when formatting the text. If XmNhelpType is set
to XvhHELP_TYPE_DYNAMIC_STRING, newline characters
are interpreted as paragraph separators and the string is
automatically wrapped to �t the current window size.

The XmNstringData resource expects a string (char *) value. Its
default is the NULL string.

XmNhelpLabelString

Speci�es the string label for the Help button. The
XmNhelpLabelString resource expects a compound string (type
XmString) value. The default string is \Help."

XmNprintLabelString

Speci�es the string label for the Print button. The
XmNprintLabelString resource expects a compound string (type
XmString) value. The default string is \Print . . . "

Callback Information

A pointer to the following structure is passed to each callback.

typedef struct {

int reason;

XEvent *event;

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-9



char *locationId;

char *helpVolume;

char *specification;
int hyperType;

} XvhHelpDialogCallbackStruct;

reason This element indicates why the callback was
invoked.

event This element points to the event that
triggered the callback.

locationId This element points to the current topic ID.
If the dialog is not displaying a topic, this
value is NULL.

helpVolume This element points to the current help
volume. If the dialog is not displaying a
formatted help topic, this value is NULL.

specification This element points to author-supplied data
that is used in application-de�ned hyperlinks.
This value is NULL if the event that invoked
the callback was not an application-de�ned
hyperlink.

hyperType This element indicates the type of hyperlink
that invoked this callback. The value is one
of: XvhLINK_JUMP_NEW, XvhLINK_MAN, or
XvhLINK_APP_DEFINE.

Usage Tips

To destroy an instance of a quick help dialog, use
XtDestroyWidget().

To display a quick help dialog, use XtManageChild().

To hide a quick help dialog, use XtUnmanageChild().

See Also

\Displaying Help Topics" in Chapter 6
\Responding to Hyperlink Events" in Chapter 6
\Detecting When Help Dialogs are Dismissed" in Chapter 6
\Using the Application-De�ned Button" in Chapter 6
\To create a quick help dialog" in Chapter 5
\Creating a Dialog Cache" in Chapter 5

14-10 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



XvhQuickDi-
alogGetChild()

#include <Xvh/QuickHelpD.h>

Widget XvhQuickDialogGetChild (

Widget widget,

unsigned char child );

Description

XvhQuickDialogGetChild is used to access a component within a
Quick Help Dialog. The parameters given to the function are the
Quick Help Dialog widget and a value indicating which child to
access.

widget Speci�es the widget ID of the quick help dialog.

child Speci�es a component within the Quick Help Dialog.
The following are legal values for this parameter:

XvhDIALOG_OK_BUTTON

XvhDIALOG_PRINT_BUTTON

XvhDIALOG_HELP_BUTTON

XvhDIALOG_SEPARATOR

XvhDIALOG_MORE_BUTTON
XvhDIALOG_BACK_BUTTON

Return Value

Returns the widget ID of the speci�ed Quick Help Dialog child. An
application should not assume that the returned widget will be of
any particular class.

Usage

XvhQuickDialogGetChild() allows developers to create and display
Quick Help Dialogs with di�erent button con�gurations.

XvhReturnSelected-
WidgetId()

#include <Xvh/HelpUtil.h>

int XvhReturnSelectedWidgetId (

Widget parent,

Cursor cursor,

Widget *widget );

Where:

parent Speci�es the widget ID to use as the basis of the
interaction. This can be any valid widget within
the application's widget hierarchy. Usually it is a
top-level or application shell widget.

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-11



cursor Speci�es the shape to be used for the pointer during
the interaction. If cursor is NULL, the function uses
a default pointer shape.

widget The ID of the widget that the user selects. If the
value returned is NULL, the function was canceled
with the Esc key or an error occurred.

Description

This function temporarily grabs the pointer so the user can select any
widget on the screen. The function completes when the user selects a
widget or presses Esc to cancel the function.

If a successful selection has been made, the widget parameter
contains the widget ID of the selected widget.

The function always returns one of the following exit status values:

XvhSELECT_VALID Indicates that the selection was successful.
The widget parameter should contain the
ID of the selected widget.

XvhSELECT_INVALID Indicates that the user selected an invalid
widget outside the scope of the current
application's widget hierarchy.

XvhSELECT_ABORT Indicates that the user canceled the
function by pressing the Esc key.

XvhSELECT_ERROR Indicates that the function terminated
due to an error.

See Also

\Supporting Item Help Mode" in Chapter 6 explains how the
XvhReturnSelectedWidgetId() function is used to implement
\item help mode."

XvhGetTopicData() #include <Xvh/FormatTerm.h>

int XvhGetTopicData (

char *helpVolume,

char *locationId,

int maxColumns,

char ***helpList,

XvhHyperLines **hyperList );

Where:

helpVolume Speci�es the help volume �le. This must be a fully
quali�ed path to a help volume �le (volume.hv).

14-12 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



locationId Speci�es the topic ID to search for within the
helpVolume.

maxColumns Speci�es the maximum number of characters per line
for formatting the help text.

helpList A returned value containing a pointer to a list of
NULL-terminated strings. Each string is a line of
help text. Blank lines are allocated with zero-length
line. The caller is responsible for freeing the helpList
information using the XvhFreeTopicData() function.

hyperList A returned value containing a pointer to a list of
NULL-terminated hyperlink speci�cations. See
below for more information. The caller is responsible
for freeing the hyperList information using the
XvhFreeTopicData() function.

The XvhGetTopicData() function provides a mechanism for
retrieving help text from a help volume. All graphics and special
characters are stripped from the data.

Hyperlinks found within the topic are assembled in a list (hyperList)
and a pointer to that list is returned. It is up to the application
to display the list of possible links and provide a user interface for
choosing a link. When a link is chosen, the XvhProcessLinkData()
function is used to follow the link to display the related topic.

If any problems occurred while processing the information, a value
of -1 is returned and the appropriate error message is generated. If
the requested information is found and processed with no errors, then
this function returns zero (0).

The hypertext speci�cations returned by the XvhGetTopicData()
function are of type XvhHyperLines, which is a structure de�ned as
follows:

typedef struct {

char *title;

char *linkData;

int hyperType;

} XvhHyperLines;

Where:

title This element speci�es the title to the hypertext topic
that is pointed to by linkData.

linkData This element speci�es a pointer to a string that is
the hypertext link information. Depending on the
type of hypertext link, this could be a �le name, an
ID string, or a command to execute.

hyperType This element speci�es the hyperlink type, which
is one of these values: XvhLINK_JUMP_REUSE,
XvhLINK_JUMP_NEW, XvhLINK_DEFINITION,
XvhLINK_EXECUTE, or XvhLINK_APP_DEFINED.

DRAFT

4/7/98 12:49

Summary of Application

Programmers Interface

14-13



XvhProcessLink-
Data()

#include <Xvh/FormatTerm.h>

int XvhProcessLinkData (

XvhHyperLines *hyperList,

char **helpVolume,

char **locationId );

Where:

hyperList Is a pointer to an individual structure in the
hyperList value returned by the XvhGetTopicData()
function. The caller is responsible for
freeing the hyperList information using the
XvhFreeTopicData() function.

helpVolume Speci�es the help volume �le. This must be a fully
quali�ed path to a help volume �le (volume.hv).

locationId Speci�es the topic ID to locate within the
helpVolume.

The XvhProcessLinkData() function provides a mechanism for
traversing hyperlinks that occur within a topic retrieved with the
XvhGetTopicData() function.

If the requested information is found and formatted with no errors, a
status of zero (0) is returned. If any problems occurred, a value of -1
is returned.

XvhFreeTopicData() #include <Xvh/FormatTerm.h>

void XvhFreeTopicData (

char **helpList;

XvhHyperLines *hyperList; );

Where:

helpList Is a pointer to a list of strings to be freed.

HyperList Is a pointer to a list of hyperlink speci�cations to be
freed.

The XvhFreeTopicData() function frees the memory allocated for
structures returned by the XvhGetTopicData() function.

14-14 Summary of Application

Programmers Interface

DRAFT

4/7/98 12:49



XvhSetCatalog-
Name()

#include <Xvh/Xvh.h>

void XvhSetCatalogName (

char *catFile; );

Where:

catFile The name of the message catalog �le.

The XvhSetCatalogName() function sets the name of the message
catalog used to supply the labels and error messages for help dialogs.

Users of the HP Help System Developer's Kit who ship a translated
version of their product must uniquely name their translated version
of the Xvh.cat message catalog �le (for example appName_Xvh.cat).
This ensures that other products will not overwrite the message
catalog �le for your application's help dialogs .

DRAFT

4/7/98 12:49

14-15





Glossary

application help
Online help for a particular application (software).

application-de�ned link
A hyperlink designed especially for invoking some application
behavior. To invoke the behavior, the help must be displayed
in dialogs created by the application. (Application-de�ned
hyperlinks are ignored by Helpview.)

automatic help
Help presented by the system as the result of a particular
condition or error. Sometimes called \system initiated" help. For
example, error dialogs are a form of \automatic help." See also
semi-automatic help and manual help.

caution
A warning to the user about possible loss of data. See also note
and warning

close callback
An application function called when a help dialog is closed.

context-sensitive help
Online information that is relevant to what the user is doing
within an application. Sometimes, pressing the F1 key is referred
to as \context-sensitive help" because the choice of help topic is
based on the user's context.

cross-volume hyperlink
A hyperlink that jumps to a topic in a di�erent help volume.
Cross-volume hyperlinks are entered using the <link> element,
where the hyperlink parameter speci�es the volume name and an
ID (separated by a space):

<link hyperlink="volume id"> text <\link>

dialog cache
A list of help dialogs that have been created but may not be
in use. When the application needs a new help dialog, it �rst
searches its dialog cache for an unused dialog. If one is found, it
is used. Otherwise, all dialogs are in use, so a new one is created.

DRAFT

4/7/98 12:49

Glossary-1



element
A logical portion of information, such as a book title, a
paragraph, a list or a topic. Normally, the extent of an element is
marked by tags, although the tags for some elements are assumed
by context.

emphasis
An element of text that calls attention to the text (usually by
being formatted as italic).

entity
A text string or �le with a name. Most entities are named by
the author (using the <!entity> element), but some entities are
prede�ned. See also entity declaration and entity reference.

entity declaration
Markup that establishes an entity name and its value. See also
entity and entity reference.

entity reference
Use of an entity name preceded by an ampersand (&) and followed
by a semicolon (;) that indicates to HelpTag that the entity is to
be inserted where the entity name appears. See also entity and
entity declaration.

entry point
A point within a help volume that may be displayed directly as
the result of a request for help. That is, a topic where the user
may \enter" or begin reading online help. Any topic, or location
within a topic, that has an ID can become an entry point.

example listing
A body of text in which line breaks are left as they are and which
is displayed in a computer font. The text is typically an example
of a portion of a computer �le. Example listings are entered using
the <ex> or <vex> elements.

�gure
A graphic or illustration that appears in the help information.

general help dialog
A window in which help information is displayed. General help
dialogs have a menu bar, a Topic Hierarchy (which displays the
current topic location), and a help topic display area. In addition,
the dialog has the following subdialogs: History, Keyword Index,
and Print. See also quick help dialog.

manual help
A style of online help that requires the user to know what help
is needed and how to get it. For example, most commands in
a Help menu are considered \manual" help because the user
chooses when and what to view. See also automatic help and
semi-automatic help.

Glossary-2 DRAFT

4/7/98 12:49



help browser
A general purpose application for viewing the online help installed
on a system. HP VUE 3.0 uses the Helpview program as a \help
browser" by displaying a special browser volume that lists the
help installed on the system. (HP VUE uses a utility called
helpgen to create the browser volume.)

help callback
An application function called when the user presses the F1 key.

help key
A designated key|usually the F1 function key|used to request
help on the current context. Some keyboards have a dedicated
\Help" key that may take the place of F1. In OSF/Motif
applications, the help key is enabled by adding a \help callback"
to a widget.

help on help
Help about how to use the help dialog windows. The user gets
this information by pressing F1 while using a help window, or by
choosing Using Help from the Help menu in a general help dialog.

help volume
A complete body of information about a subject. Also, this
term can refer to either the set of source �les that contain the
marked-up text or the run-time �les generated by running
HelpTag.

History dialog
A dialog that shows the sequence of topics the user has visited.
The history sequence can be traversed in reverse order to make it
easy for the user to return to earlier topics. The History dialog
remembers only the 20 most recent topics.

home topic
The topic at the top of the hierarchy in a help volume. This is
the topic that is displayed when the user indicates a desire to
browse a help volume. HelpTag provides a built-in ID for the
home topic: _hometopic.

hyperlink callback
An application function that is invoked when a user chooses a
hyperlink. This function is responsible for handling the types of
hyperlinks not handled automatically within the help dialog.

DRAFT

4/7/98 12:49

Glossary-3



hyperlink
A segment of text (word or phrase) or graphic image that has
some \behavior" associated with it. The most common type of
hyperlink is a \jump" link, which connects to a related topic.
When the user chooses a jump link, the related topic is displayed.

Hyperlinks can also be used to invoke other kinds of behavior,
such as executing a system command or invoking speci�c
application behavior.

inline graphic
A small graphic (illustration) that appears within a line of text.

jump-new-view hyperlink
A hyperlink that, when chosen, displays its information in a
new dialog window. Jump-new-view links are intended for
cross-volume links. The user senses a \new context" by a new
window being displayed.

keyword index
A list of important words and phrases that appear throughout
a help volume. The keyword index, like the index in a book,
is an alphabetical list of the words and a list of each important
occurrence. The HP Help System presents the keyword index in a
dialog when the user chooses Keyword from the Search menu (in
a general help dialog).

man page link
A hyperlink which, if activated, displays a \man page", which is a
brief online explanation of a system command. The information
in man pages are not supplied through the HelpTag system.

note
A message to the user that draws attention to important
information. If the information is critically important, a caution
or warning is used instead. See also caution and warning.

parser
The portion of the HelpTag software that reads the source
�les (which are created by the author) and converts them into
run-time help �les that the HP Help System dialogs can read. If
the author uses markup incorrectly (or incompletely), the parser
detects the problems and indicates that \parser errors" have
occurred.

product family
A set of help volumes that are related to one another because the
applications they refer to are related.

quick help dialog
A simple window that displays help information. A quick help
dialog has a help topic display area and a few buttons. See also
general help dialog, which o�ers additional capabilities.

Glossary-4 DRAFT

4/7/98 12:49



registration
The process of declaring a help volume to be accessible for
browsing or cross-volume linking.

run-time help �les
The �les generated by the helptag command. These are the �les
distributed to users who will use the HP Help System.

semi-automatic help
A style of online help in which the user requests help and the
system decides, based on the current circumstances, which help
information to display. \Context-sensitive" help (pressing the F1
key) is an example of semi-automatic help. See also automatic
help and manual help.

short form markup
An abbreviated way of marking an element where the end tag is
marked with a single vertical bar and the last character of the
begin tag is also a vertical bar. For example, the short form of
the <book> element is:

<book|text|

shorthand markup
An abbreviated way of marking an element where the begin and
end tags are replaced with a special two-character sequence. For
example, the shorthand form of the <computer> element is two
opening single quotation marks followed by two closing single
quotation marks like this:

``text''

stand-alone help
Help information intended to be used independently of
application software. For example, online help that explains the
basics of computer programming may not be associated with
a particular application. A stand-alone help volume can be
displayed using the helpview command.

Tagged Image File Format (TIFF)
A standard graphics �le format. The HP Help System dialogs
support TIFF 5.0 images. TIFF images are identi�ed by the .tif
�lename extension.

tag
A text string that marks the beginning or end of an element. A
start tag consists of a left angle bracket (<) followed by a special
character string (consisting of only letters), optional parameters
and values, and terminated by a right angle bracket (>). An end
tag consists of a left angle bracket (<), a backslash (\), the same
special character string, and a right angle bracket (>).

DRAFT

4/7/98 12:49

Glossary-5



topic
Information about a speci�c subject. Usually, this is about one
screenful of information. Online help topics are linked to one
another through hyperlinks.

topic hierarchy
A help volume's branching structure in which the home topic
branches out (via hyperlinks) to progressively more detailed
topics. See also home topic.

warning
Help information that warns the user about possible injury or
unrecoverable loss of data. See also caution and note.

widget
The fundamental building block of graphical user interfaces. The
OSF/Motif widget set provides widgets of all sorts, suitable for
constructing an application user interface.

X bitmap
A two-tone image that has one foreground color and one
background color. Bitmap image �les are identi�ed by the .bm
�lename extension.

X pixmap
A multi-color image. Pixmap image �les are identi�ed by the .pm
�lename extension.

X window dump
An image captured from an X Window System display. The xwd
utility is used to capture a window image. X window dump image
�les are identi�ed by the .xwd �lename extension.

Glossary-6 DRAFT

4/7/98 12:49


