
HP 9000 Networking

LLA Programming and Migration Guide

HP Part No. 98194-90053
Printed in U.S.A.

E0195

Edition 3
© Copyright 1994, Hewlett-Packard Company.

2

Legal Notices

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19
for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs may
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright Notices. ©copyright 1983-95 Hewlett-Packard Company, all
rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright laws.

©copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

This software is based in part on the Fourth Berkeley Software Distribution

3

Legal Notices

under license from the Regents of the University of California.

©copyright 1980, 1984, 1986 Novell, Inc.
©copyright 1986-1992 Sun Microsystems, Inc.
©copyright 1985-86, 1988 Massachusetts Institute of Technology.
©copyright 1989-93 The Open Software Foundation, Inc.
©copyright 1986 Digital Equipment Corporation.
©copyright 1990 Motorola, Inc.
©copyright 1990, 1991, 1992 Cornell University
©copyright 1989-1991 The University of Maryland
©copyright 1988 Carnegie Mellon University

Trademark Notices UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the U.S.
and other countries.

4

Printing History

Printing History

The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may
be made at reprint without changing the printing date. The manual part
number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive the updated or new editions, you
should subscribe to the appropriate product support service. See your HP
sales representative for details.

First Edition: February 1991

First Edition: July 1992 (HP-UX Release 9.0)

First Edition: January 1995 (HP-UX Release 10.0)

5

Preface

Preface

Link Level Access for the HP 9000 (LLA/9000) is one of Hewlett-Packard's
data communications and data management products. The Data Link
Provider Interface (DLPI) is an industry standard which defines a
STREAMS-based interface to the Logical Link Control (LLC) 802.3
services.

TheLLA Programming and Migration Guide provides information about
migrating LLA programs to DLPI programs. This guide also contains
reference information for programmers who write or maintain programs that
access the LAN link driver provided by Hewlett-Packard's LAN/9000
product.

This manual is organized as follows:

Chapter 1 LLA to DLPI Migration provides information about
migrating programs from the HP proprietary LLA to the
industry standard DLPI. This chapter also includes
example programs that compare LLA and DLPI.

Chapter 2 LLA Concepts provides an overview of the LLA/9000
product.

Chapter 3 Using LLA explains how to use standard HP-UX file
system calls to access the LAN drivers.

Chapter 4 Network I/O Control Commands describes the special
I/O control (ioctl) commands provided with LLA.

6

Preface

Contents

7

1 LLA to DLPI Migration

LLA and DLPI Example Programs 16

2 LLA Concepts

LLA and the OSI Model 34

OSI Layer 2 35

IEEE 802.3 and Ethernet 35

Ethernet Frame Structure 36

Ethernet Destination Address 36

IEEE 802.3 Frame Structure 37

IEEE 802.3 Address Field Structures 38

LLC Structure 38

Ethernet and IEEE 802.3 Packet Comparison 40

Implementing Two Protocols 40

Device Files 41

HP-UX Calls 43

open(2) and close(2) Calls 43

read(2) and write(2) Calls 43

select(2) Call 43

ioctl(2) Call 44

Other System Calls 44

NETCTRL and NETSTAT Commands 45

LLA Header File 45

8

Contents

ioctl(2) Syntax 46

Address Conversion Routines 48

LLA Error Codes 49

3 Using LLA

Step 1: Open a Network Device File 53

Step 2: Log a User-Level Address 54

For Ethernet Device 54

LOG_TYPE_FIELD Command 54

For IEEE 802.3 Device 55

LOG_SSAP Command 55

LOG_DSAP Command 56

Step 3: Log a Destination Address 57

LOG_DEST_ADDR Command 57

Address Conversion 57

net_aton(3n) 58

net_ntoa(3n) 58

Step 4: Read or Write Data 59

Reading Data 59

Managing the Packet Receive Cache 61

Altering the I/O Timeout Interval 62

Writing Data 62

Synchronizing I/O Operations 63

Setting Up Asynchronous Signals 64

LLA_SIGNAL_MASK Command 65

Contents

9

Step 5: Close the Network Device File 66

4 Network I/O Control Commands

Collecting and Resetting Interface Statistics 69

FRAME_HEADER Command 69

LOCAL_ADDRESS Command 70

DEVICE_STATUS Command 71

MULTICAST_ ADDRESSES Command 71

MULTICAST_ADDR_LIST Command 72

RESET_STATISTICS Command 72

READ_STATISTICS Command 72

Interface Statistics 73

Managing Network Addresses 76

LOG_CONTROL Command 76

Resetting an Interface 78

RESET_INTERFACE Command 78

Managing Broadcast Packets 79

ENABLE_ BROADCAST Command 79

DISABLE_ BROADCAST Command 79

Managing Multicast Packets 80

ADD_MULTICAST Command 80

DELETE_MULTICAST Command 81

Index 83

10

Contents

11

1

LLA to DLPI Migration

12

LLA to DLPI Migration

As part of Hewlett-Packard’s movement toward industry standard
networking, HP will be discontinuing the LLA/9000 product following the
HP-UX 10.0 release. HP recommends that you migrate all existing
applications that use LLA to the industry standard Data Link Provider
Interface (DLPI). HP provides DLPI with the LAN/9000 product.

Before you begin the process of migrating your application, you may need to
review theDLPI Programmer’s Guide.

The following information explains the basic differences between LLA and
DLPI. This information is the basis for performing migration.

• Device files

LLA requires a separate device file for every LAN interface in the system. This
device file is used by LLA to uniquely identify a specific device (e.g.
/dev/lan0).

DLPI only requires one device file (/dev/dlpi) to access all supported LAN
interfaces. In addition, there are other device files (/dev/dlpiX , whereX is
0-100), used by DLPI, to access all supported LAN interfaces. The difference
between/dev/dlpi and/dev/dlpiX is clone vs. non-cloneable devices.
Basically, cloneable devices give you a separate stream for each open request.

Non-cloneable devices only give you one stream no matter how many times you
open the device. All of the LAN interfaces supported by HP DLPI support both
cloneable and non-cloneable access.

• ioctl requests

All general control requests (i.e. protocol logging, destination addresses,
multicast addresses, etc.) for LLA are issued via theioctl system call.

ioctl requests are used in DLPI only for device specific control requests. These
ioctl requests are not interpreted by DLPI, but passed directly to the driver for
processing. All general control requests in DLPI are defined with a standard
DLPI 2.0 primitive or extension. These primitives are passed to DLPI via the
putmsg system call only.

All of the standard DLPI primitives are defined in<sys/dlpi.h> . All HP
DLPI extensions (denoted in the following table with an *) are defined in
<sys/dlpi_ext.h> . TheDLPI Programmer’s Guide provides detailed
descriptions of all the primitives listed in table 1.

13

LLA to DLPI Migration

Table 1 LLA ioctls and Corresponding DLPI Primitives

LLA ioctl (req type) DLPI Primitive

LOG_TYPE_FIELD DL_BIND_REQ or DL_SUBS_BIND_REQ

LOG_SSAP DL_BIND_REQ or DL_SUBS_BIND_REQ

LOG_DSAP Not required with DLPI. The destination
address is specified with each data request (see
Transmitting data).

LOG_DEST_ADDR Not required with DLPI. The destination
address is specified with each data request (see
Transmitting data).

LOG_READ_CACHE Not defined

LOG_READ_TIMEOUT Not defined

LLA_SIGNAL_MASK Not defined

FRAME_HEADER Frame headers are delivered with each
individual packet via the control portion of the
message.

LOCAL_ADDRESS DL_PHYS_ADDR_REQ

DEVICE_STATUS DL_HP_HW_STATUS_REQ*

MULTICAST_ADDRESSES DL_HP_MULTICAST_LIST_REQ*

MULTICAST_ADDR_LIST DL_HP_MULTICAST_LIST_REQ*

RESET_STATISTICS DL_HP_RESET_STATS_REQ*

READ_STATISTICS DL_GET_STATISTICS_REQ. This primitive
returns mib and extended mib statistics for the
device in one request.

LOG_CONTROL Not required with DLPI. The control value (if
any) is determined from the primitive.

RESET_INTERFACE DL_HP_HW_RESET_REQ*

ENABLE_BROADCAST Not defined

14

LLA to DLPI Migration

• Transmitting data

LLA requires the user to log a destination address (LOG_DEST_ADDR) and a
destination sap (LOG_DSAP) prior to sending any data.

DLPI requires the user to specify the destination address and sap as part of the
data transfer request. The combination of destination MAC address and
destination sap is referred to as the DLSAP address.

The DLSAP address format is basically the destination MAC address followed
by the LLC protocol value. A complete description of the DLSAP address
format is described in theDLPI Programmer's Guide.

LLA supports thewrite system call for sending data requests.

DLPI only supports theputmsg system call for sending data over RAW (see the
DLPI Programmer's Guide) and connectionless mode streams. Thewrite system
call is only supported over connection oriented streams in the DATA_XFER
state (i.e. a connection must be established).

• Receiving LLC header information

LLA does not automatically return LLC header information when packets are
read by the user. The user is required to issue a separate control request
(FRAME_HEADER) to get the LLC header information for the last packet
received.

DLPI returns the LLC header information in the control portion of each
individually received packet (i.e. DL_UNITDATA_IND, DL_XID_IND,
DL_TEST_IND, etc). The user is not required to issue a separate control request
to get LLC header information.

• Read cache

LLA only allows a maximum of 16 packets (for normal users and 64 for super
users) to be queued before it starts dropping data.

DISABLE_BROADCAST Not defined

ADD_MULTICAST DL_ENABMULTI_REQ

DELETE_MULTICAST DL_DISABMULTI_REQ

Table 1 LLA ioctls and Corresponding DLPI Primitives

LLA ioctl (req type) DLPI Primitive

15

LLA to DLPI Migration

DLPI will read as many packets as possible until both the stream head read
queue (default is ~10k bytes) and DLPI read queue (default is ~ 60K bytes) fill.
When both these queues are full, DLPI will begin dropping data until the queues
start draining.

16

LLA to DLPI Migration
LLA and DLPI Example Programs

LLA and DLPI Example Programs

The first example shows a data transfer program using DLPI. The second
example shows the same type of program using LLA for comparison.

/***
(C) COPYRIGHT HEWLETT-PACKARD COMPANY 1992. ALL RIGHTS
RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
REPRODUCED, OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
THE PRIOR WRITTEN CONSENT OF HEWLETT PACKARD COMPANY

***/

/***
The main part of this program is composed of two parts.
The first part demonstrates data transfer over a connectionless
stream with LLC SAP headers. The second part of this program
demonstrates data transfer over a connectionless stream with
LLC SNAP headers.

***/

#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/dlpi.h>
#include <sys/dlpi_ext.h>

#define SEND_SAP 0x80 /* sending SAP */
#define RECV_SAP 0x82 /* receiving SAP */
#define SNAP_SAP 0xAA /* SNAP SAP */

/***
SNAP protocol values.

***/
u_char SEND_SNAP_SAP[5] = {0x50, 0x00, 0x00, 0x00, 0x00};
u_char RECV_SNAP_SAP[5] = {0x60, 0x00, 0x00, 0x00, 0x00};

/***
global areas for sending and receiving messages

***/
#define AREA_SIZE 5000 /* bytes; big enough for largest possible msg */

#define LONG_AREA_SIZE (AREA_SIZE / sizeof(u_long)) /* AREA_SIZE / 4 */

u_long ctrl_area[LONG_AREA_SIZE];/* for control messages */
u_long data_area[LONG_AREA_SIZE];/* for data messages */

struct strbuf ctrl_buf = {
AREA_SIZE, /* maxlen = AREA_SIZE */
0, /* len gets filled in for each message */
ctrl_area /* buf = control area */

};

17

LLA to DLPI Migration
LLA and DLPI Example Programs

struct strbuf data_buf = {
AREA_SIZE, /* maxlen = AREA_SIZE */
0, /* len gets filled in for each message */
data_area /* buf = data area */

};

/***
get the next message from a stream; get_msg() returns one of the
following defines

***/
#define GOT_CTRL 1 /* message has only a control part */
#define GOT_DATA 2 /* message has only a data part */
#define GOT_BOTH 3 /* message has control and data parts */

int
get_msg(fd)

int fd; /* file descriptor */
{

int flags = 0; /* 0 ---> get any available message */
int result = 0; /* return value */

/*
zero first byte of control area so the caller can call check_ctrl
without checking the get_msg return value; if only data was
in the message and the user was expecting control or control +
data, then when he calls check_ctrl it will compare the expected
primitive zero and print information about the primitive
that it got.
*/
ctrl_area[0] = 0;

/* call getmsg and check for an error */
if(getmsg(fd, &ctrl_buf, &data_buf, &flags) < 0) {

printf("error: getmsg failed, errno = %d\n", errno);
exit(1);

}
if(ctrl_buf.len > 0) {

result |= GOT_CTRL;
}
if(data_buf.len > 0) {

result |= GOT_DATA;
}
return(result);

}

/***
check that control message is the expected message

***/
void
check_ctrl(ex_prim)

int ex_prim; /* the expected primitive */
{

dl_error_ack_t*err_ack = (dl_error_ack_t *)ctrl_area;

/* did we get the expected primitive? */
if(err_ack->dl_primitive != ex_prim) {

/* did we get a control part */
if(ctrl_buf.len) {

/* yup; is it an ERROR_ACK? */
if(err_ack->dl_primitive == DL_ERROR_ACK) {

/* yup; format the ERROR_ACK info */

18

LLA to DLPI Migration
LLA and DLPI Example Programs

printf("error: expected primitive
 0x%02x, ", ex_prim);

printf("got DL_ERROR_ACK\n");
printf(" dl_error_primitive =

0x%02x\n", err_ack->
dl_error_primitive);

printf(" dl_errno = 0x%02x\n",
err_ack->dl_errno);

printf(" dl_unix_errno = %d\n",
err_ack->dl_unix_errno);

exit(1);
} else {

/*
didn't get an ERROR_ACK either; print
whatever primitive we did get
 */
printf("error: expected primitive

0x%02x, ", ex_prim);
printf("got primitive 0x%02x\n",

err_ack->dl_primitive);
exit(1);

}
} else {

/* no control; did we get data? */
if(data_buf.len) {

/* tell user we only got data */
printf("error: check_ctrl found only

 data\n");
exit(1);

} else {
/*
no message???; well, it was probably an
interrupted system call
*/
printf("error: check_ctrl found no

 message\n");
exit(1);

}
}

}
}

/***
put a message consisting of only a data part on a stream

***/
void
put_data(fd, length)

int fd; /* file descriptor */
int length; /* length of data message */

{
/* set the len field in the strbuf structure */
data_buf.len = length;

/* call putmsg and check for an error */
if(putmsg(fd, 0, &data_buf, 0) < 0) {

printf("error: put_data putmsg failed, errno = %d\n", errno);
exit(1);

}
}

/***
put a message consisting of only a control part on a stream

19

LLA to DLPI Migration
LLA and DLPI Example Programs

***/
void
put_ctrl(fd, length, pri)

int fd; /* file descriptor */
int length; /* length of control message */
int pri; /* priority of message: either 0 or RS_HIPRI */

{
/* set the len field in the strbuf structure */
ctrl_buf.len = length;

/* call putmsg and check for an error */
if(putmsg(fd, &ctrl_buf, 0, pri) < 0) {

printf("error: put_ctrl putmsg failed, errno = %d\n",
 errno);

exit(1);
}

}

/***
put a message consisting of both a control part and a control
part on a stream

***/
void
put_both(fd, ctrl_length, data_length, pri)

int fd; /* file descriptor */
int ctrl_length; /* length of control part */
int data_length; /* length of data part */
int pri; /* priority of message: either 0

or RS_HIPRI */
{

/* set the len fields in the strbuf structures */
ctrl_buf.len = ctrl_length;
data_buf.len = data_length;

/* call putmsg and check for an error */
if(putmsg(fd, &ctrl_buf, &data_buf, pri) < 0) {

printf("error: put_both putmsg failed, errno = %d\n",
 errno);

exit(1);
}

}

/***
open the DLPI cloneable device file, get a list of available
PPAs, and attach to the first PPA; returns a file descriptor
for the stream

***/
int
attach() {

int fd; /* file descriptor */
int ppa; /* PPA to attach to */
dl_hp_ppa_req_t *ppa_req = (dl_attach_req_t *)ctrl_area;
dl_hp_ppa_ack_t *ppa_ack = (dl_hp_ppa_ack_t *)ctrl_area;
dl_hp_ppa_info_t *ppa_info;
dl_attach_req_t *attach_req = (dl_attach_req_t *)ctrl_area;
char *mac_name;

/* open the device file */
if((fd = open("/dev/dlpi", O_RDWR)) == -1) {

printf("error: open failed, errno = %d\n", errno);
exit(1);

20

LLA to DLPI Migration
LLA and DLPI Example Programs

}

/*
find a PPA to attach to; we assume that the first PPA on the
remote is on the same media as the first local PPA
*/
/* send a PPA_REQ and wait for the PPA_ACK */
ppa_req->dl_primitive = DL_HP_PPA_REQ;
put_ctrl(fd, sizeof(dl_hp_ppa_req_t), 0);
get_msg(fd);
check_ctrl(DL_HP_PPA_ACK);
/* make sure we found at least one PPA */
if(ppa_ack->dl_length == 0) {

printf("error: no PPAs available\n");
exit(1);

}
/* examine the first PPA */
ppa_info = (dl_hp_ppa_info_t *)((u_char *)ctrl_area +

ppa_ack->dl_offset);
ppa = ppa_info->dl_ppa;
switch(ppa_info->dl_mac_type) {

case DL_CSMACD:
case DL_ETHER:

mac_name = "Ethernet";
break;

case DL_TPR:
mac_name = "Token Ring";
break;

case DL_FDDI:
mac_name = "FDDI";
break;

default:
printf("error: unknown MAC type in ppa_info\n");
exit(1);

}
printf("attaching to %s media on PPA %d\n", mac_name, ppa);

/*
fill in ATTACH_REQ with the PPA we found, send the ATTACH_REQ,
and wait for the OK_ACK
*/
attach_req->dl_primitive = DL_ATTACH_REQ;
attach_req->dl_ppa = ppa;
put_ctrl(fd, sizeof(dl_attach_req_t), 0);
get_msg(fd);
check_ctrl(DL_OK_ACK);

/* return the file descriptor for the stream to the caller */
return(fd);

}

/***
bind to a sap with a specified service mode and max_conind;
returns the local DLSAP and its length

***/
void
bind(fd, sap, max_conind, service_mode, dlsap, dlsap_len)

int fd; /* file descriptor */
int sap; /* 802.2 SAP to bind on */
int max_conind; /* max # connect indications to accept */
int service_mode; /* either DL_CODLS or DL_CLDLS */
u_char *dlsap; /* return DLSAP */
int *dlsap_len; /* return length of dlsap */

21

LLA to DLPI Migration
LLA and DLPI Example Programs

{
dl_bind_req_t *bind_req = (dl_bind_req_t *)ctrl_area;
dl_bind_ack_t *bind_ack = (dl_bind_ack_t *)ctrl_area;
u_char *dlsap_addr;

/* fill in the BIND_REQ */
bind_req->dl_primitive = DL_BIND_REQ;
bind_req->dl_sap = sap;
bind_req->dl_max_conind = max_conind;
bind_req->dl_service_mode = service_mode;
bind_req->dl_conn_mgmt = 0; /* conn_mgmt is NOT supported */
bind_req->dl_xidtest_flg = 0; /* user handles TEST/XID pkts */

/* send the BIND_REQ and wait for the OK_ACK */
put_ctrl(fd, sizeof(dl_bind_req_t), 0);
get_msg(fd);
check_ctrl(DL_BIND_ACK);

/* return the DLSAP to the caller */
*dlsap_len = bind_ack->dl_addr_length;
dlsap_addr = (u_char *)ctrl_area + bind_ack->dl_addr_offset;
memcpy(dlsap, dlsap_addr, *dlsap_len);

}

/***
bind to a SNAP sap via the DL_PEER_BIND, or DL_HIERARCHICAL_BIND
subsequent bind class; returns the local DLSAP and its length

***/
void
subs_bind(fd, snapsap, snapsap_len, subs_bind_class, dlsap, dlsap_len)
int fd;
u_char *snapsap;
int subs_bind_class;
u_char *dlsap;
int *dlsap_len;
{

dl_subs_bind_req_t *subs_bind_req = (dl_subs_bind_req_t*)ctrl_area;
dl_subs_bind_ack_t *subs_bind_ack = (dl_subs_bind_ack_t*)ctrl_area;
u_char *dlsap_addr;

/* Fill in Subsequent bind req */
subs_bind_req->dl_primitive = DL_SUBS_BIND_REQ;
subs_bind_req->dl_subs_sap_offset = DL_SUBS_BIND_REQ_SIZE;
subs_bind_req->dl_subs_sap_length = snapsap_len;
subs_bind_req->dl_subs_bind_class = subs_bind_class;
memcpy((caddr_t)&subs_bind_req[1], snapsap, snapsap_len);

/* send the SUBS_BIND_REQ and wait for the OK_ACK */
put_ctrl(fd, sizeof(dl_subs_bind_req_t)+snapsap_len, 0);
get_msg(fd);
check_ctrl(DL_SUBS_BIND_ACK);

/* return the DLSAP to the caller */
*dlsap_len = subs_bind_ack->dl_subs_sap_length;
dlsap_addr = (u_char *)ctrl_area + subs_bind_ack->dl_subs_sap_offset;
memcpy(dlsap, dlsap_addr, *dlsap_len);

}

/***

22

LLA to DLPI Migration
LLA and DLPI Example Programs

unbind, detach, and close
***/
void
cleanup(fd)

int fd; /* file descriptor */
{

dl_unbind_req_t*unbind_req = (dl_unbind_req_t *)ctrl_area;
dl_detach_req_t*detach_req = (dl_detach_req_t *)ctrl_area;

/* unbind */
unbind_req->dl_primitive = DL_UNBIND_REQ;
put_ctrl(fd, sizeof(dl_unbind_req_t), 0);
get_msg(fd);
check_ctrl(DL_OK_ACK);

/* detach */
detach_req->dl_primitive = DL_DETACH_REQ;
put_ctrl(fd, sizeof(dl_detach_req_t), 0);
get_msg(fd);
check_ctrl(DL_OK_ACK);

/* close */
close(fd);

}

/***
receive a data packet;

***/
int
recv_data(fd)

int fd; /* file descriptor */
{

dl_unitdata_ind_t *data_ind = (dl_unitdata_ind_t *)ctrl_area;
char *rdlsap;
int msg_res;

msg_res = get_msg(fd);
check_ctrl(DL_UNITDATA_IND);
if(msg_res != GOT_BOTH) {

printf("error: did not receive data part of message\n");
exit(1);

}
return(data_buf.len);

}

/***
send a data packet; assumes data_area has already been filled in

***/
void
send_data(fd, rdlsap, rdlsap_len, len)

int fd; /* file descriptor */
u_char *rdlsap; /* remote dlsap */
int rdlsap_len; /* length of rdlsap */
int len; /* length of the packet to send */

{
dl_unitdata_req_t *data_req = (dl_unitdata_req_t *)ctrl_area;
u_char *out_dlsap;

/* fill in data_req */

23

LLA to DLPI Migration
LLA and DLPI Example Programs

data_req->dl_primitive = DL_UNITDATA_REQ;
data_req->dl_dest_addr_length = rdlsap_len;
data_req->dl_dest_addr_offset = sizeof(dl_unitdata_req_t);
/* copy dlsap */
out_dlsap = (u_char *)ctrl_area + sizeof(dl_unitdata_req_t);
memcpy(out_dlsap, rdlsap, rdlsap_len);

put_both(fd, sizeof(dl_unitdata_req_t) + rdlsap_len, len, 0);
}

/***
print a string followed by a DLSAP

***/
void
print_dlsap(string, dlsap, dlsap_len)

char *string; /* label */
u_char *dlsap; /* the DLSAP */
int dlsap_len; /* length of dlsap */

{
int i;

printf("%s", string);
for(i = 0; i < dlsap_len; i++) {

printf("%02x", dlsap[i]);
}
printf("\n");

}

/***
main

***/
main() {

int send_fd, recv_fd; /* file descriptors */
u_char sdlsap[20]; /* sending DLSAP */
u_char rdlsap[20]; /* receiving DLSAP */
int sdlsap_len, rdlsap_len; /* DLSAP lengths */
int i, j, recv_len;

/*
PART 1 of program. Demonstrate connectionless data
transfer with LLC SAP header.
*/

/*
First, we must open the DLPI device file, /dev/dlpi, and attach
to a PPA. attach() will open /dev/dlpi, find the first PPA
with the DL_HP_PPA_INFO primitive, and attach to that PPA.
attach() returns the file descriptor for the stream. Here we
do an attach for each file descriptor.
*/
send_fd = attach();
recv_fd = attach();

/*
Now we have to bind to a IEEESAP. We will ask for connectionless
data link service with the DL_CLDLS service mode. Since we are
connectionless, we will not have any incoming connections so we
set max_conind to 0. bind() will return our local DLSAP and its
length in the last two arguments we pass to it.
*/
bind(send_fd, SEND_SAP, 0, DL_CLDLS, sdlsap, &sdlsap_len);

24

LLA to DLPI Migration
LLA and DLPI Example Programs

bind(recv_fd, RECV_SAP, 0, DL_CLDLS, rdlsap, &rdlsap_len);

/* print the DLSAPs we got back from the binds */
print_dlsap("sending DLSAP = ", sdlsap, sdlsap_len);
print_dlsap("receiving DLSAP = ", rdlsap, rdlsap_len);

/*
Time to send some data. We'll send 5 data packets in sequence.
*/
for(i = 0; i < 5; i++) {

/* send (i+1)*10 data bytes with the first byte = i */
data_area[0] = i;
/* Initialize data area */
for (j = 1; j < (i+1)*10; j++)

data_area[j] = "a";
print_dlsap("sending data to ",rdlsap, rdlsap_len);
send_data(send_fd, rdlsap, rdlsap_len, (i + 1) * 10);
/* receive the data packet */
recv_len = recv_data(recv_fd);
printf("received %d bytes, first word = %d\n", recv_len,

(u_int)data_area[0]);
}

/*
We're finished with PART 1. Now call cleanup to unbind, then
detach, then close the device file.
*/
cleanup(send_fd);
cleanup(recv_fd);

/*
PART 2 of program. Demonstrate connectionless data transfer
with LLC SNAP SAP header.
*/

/*
As demonstrated in the first part of this program we must first
open the DLPI device file, /dev/dlpi, and attach to a PPA.
*/
send_fd = attach();
recv_fd = attach();

/*
The first method for binding a SNAP protocol value (which is
demonstrated below) requires the user to first bind the SNAP
SAP 0xAA, then issue a subsequent bind with class
DL_HIERARCHICAL_BIND with the 5 bytes of SNAP information.

The second method (which is not demonstrated in this program) is
to bind any supported protocol value (see section 5) and then
issue a subsequent bind with class DL_PEER_BIND. The data area
area of the subsequent bind should include 6 bytes of data, the
first byte being the SNAP SAP 0xAA followed by 5 bytes of SNAP
information.
*/
bind(send_fd, SNAP_SAP, 0, DL_CLDLS, sdlsap, &sdlsap_len);
bind(recv_fd, SNAP_SAP, 0, DL_CLDLS, rdlsap, &rdlsap_len);

/*
Now we must complete the binding of the SNAP protocol value
with the subsequent bind request and a subsequent bind class
of DL_HIERARCHICAL_BIND.
*/

25

LLA to DLPI Migration
LLA and DLPI Example Programs

subs_bind(send_fd, SEND_SNAP_SAP, 5, DL_HIERARCHICAL_BIND,
sdlsap, &sdlsap_len);

subs_bind(recv_fd, RECV_SNAP_SAP, 5, DL_HIERARCHICAL_BIND,
rdlsap, &rdlsap_len);

/* print the DLSAPs we got back from the binds */
print_dlsap("sending DLSAP = ", sdlsap, sdlsap_len);
print_dlsap("receiving DLSAP = ", rdlsap, rdlsap_len);

/*
Time to send some data. We'll send 5 data packets in sequence.
*/
for(i = 0; i < 5; i++) {

/* send (i+1)*10 data bytes with the first byte = i */
data_area[0] = i;
/* Initialize data area */
for (j = 1; j < (i+1)*10; j++)

data_area[j] = "a";
print_dlsap("sending data to ",rdlsap, rdlsap_len);
send_data(send_fd, rdlsap, rdlsap_len, (i + 1) * 10);
/* receive the data packet */
recv_len = recv_data(recv_fd);
printf("received %d bytes, first word = %d\n", recv_len,

data_area[0]);
}

/*
We're finished. Now call cleanup to unbind, then detach,
then close the device file.
*/
cleanup(send_fd);
cleanup(recv_fd);

}

26

LLA to DLPI Migration
LLA and DLPI Example Programs

/***
 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1992. ALL RIGHTS
 RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED,
 REPRODUCED, OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT
 THE PRIOR WRITTEN CONSENT OF HEWLETT PACKARD COMPANY
***/

/**
The main part of this program is composed of two parts.
The first part demonstrates data transfer over LLA
with LLC SAP headers. The second part of this program
demonstrates data transfer over LLA with LLC SNAP headers.

**/

#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/netio.h>

#define SEND_SAP 0x80 /* sending SAP */
#define RECV_SAP 0x82 /* receiving SAP */
#define SNAP_SAP 0xAA /* SNAP SAP */

/***
SNAP protocol values.

**/
u_char SEND_SNAP_SAP[5] = {0x50, 0x00, 0x00, 0x00, 0x00};
u_char RECV_SNAP_SAP[5] = {0x60, 0x00, 0x00, 0x00, 0x00};

/***
global areas for sending and receiving messages

**/
#define MAX_PKT_SIZE 1500 /* Maximum packet size for Ethernet */

u_long data_area[MAX_PKT_SIZE]; /* for data messages */

struct fis ctrl_buf;

/***
Read a packet on LLA file descriptor fd.

**/
int
get_pkt(fd)

int fd; /* file descriptor */
{

int recv_cnt;

/*
 * Read a packet from the device.
 */

/* call read and check for an error */
if((recv_cnt = read(fd, data_area, MAX_PKT_SIZE)) < 0) {

printf("error: read failed, errno = %d\n", errno);
exit(1);

}

27

LLA to DLPI Migration
LLA and DLPI Example Programs

return(recv_cnt);
}

/**
Send a packet over LLA

***/
void
put_data(fd, length)

int fd; /* file descriptor */
int length; /* length of data message */

{

/* call putmsg and check for an error */
if(write(fd, data_area, length) < 0) {

printf("error: put_data putmsg failed, errno = %d\n", errno);
exit(1);

}
}

/***
Send a control request to the driver.

**/
void
put_ctrl(fd, cmd)

int fd; /* file descriptor */
int cmd; /* NETCTRL or NETSTAT */

{

/* Send control request to driver */
if(ioctl(fd, cmd, &ctrl_buf) < 0) {

printf("error: put_ctrl putmsg failed, errno = %d\n", errno);
exit(1);

}
}

/**
Open an LLA device. The device file specifies which device you
attaching to. There is no need to issue a seperate attach control
request to designate which device you are using. In this example
we will default to /dev/lan0.

*/
int
attach() {

int fd; /* file descriptor */
char *mac_name;

/* open the device file */
if((fd = open("/dev/lan0", O_RDWR)) == -1) {

printf("error: open failed, errno = %d\n", errno);
exit(1);

}

/* return the file descriptor for the LLA device to the caller */
return(fd);

}

28

LLA to DLPI Migration
LLA and DLPI Example Programs

/**
Bind to a sap. LLA does not automatically return the local MAC
address and local sap information when binding a protocol value.
You must explicitly request the local MAC address via the
LOCAL_ADDRESS control request.

**/
void
bind(fd, sap)

int fd; /* file descriptor */
int sap; /* 802.2 SAP to bind on */

{

ctrl_buf.reqtype = LOG_SSAP;
ctrl_buf.vtype = INTEGERTYPE;
ctrl_buf.value.i = sap;

/* send the LOG_SSAP request. LLA will return success or
 failure when the ioctl completes, so there is no need to
 wait for an acknowledgement.

 */
put_ctrl(fd, NETCTRL);

}

/**
Get the local MAC address.

**/
void
get_local_address(fd, ret_addr)

int fd; /* file descriptor */
caddr_t ret_addr;/* return local address here */

{

ctrl_buf.reqtype = LOCAL_ADDRESS;

/* send the LOCAL_ADDRESS request. LLA will return success or
 failure when the ioctl completes, so there is no need to
 wait for an acknowledgement.

 */
put_ctrl(fd, NETSTAT);

/* Copy the address to ret_addr */
memcpy(ret_addr, (caddr_t)ctrl_buf.value.s, 6);

}

/**
Set the destination MAC and SAP address.

**/
void
set_dst_address(fd, dest_addr, dsap, length)

int fd; /* file descriptor */
caddr_t dest_addr;/* return local address here */
int dsap; /* destination sap */
int length; /* destination sap length */

{

ctrl_buf.reqtype = LOG_DEST_ADDR;
ctrl_buf.vtype = 6;
memcpy((caddr_t)ctrl_buf.value.s, dest_addr, 6);

29

LLA to DLPI Migration
LLA and DLPI Example Programs

/* send the LOG_DEST_ADDR request. LLA will return success or
 failure when the ioctl completes, so there is no need to
 wait for an acknowledgement.

 */
put_ctrl(fd, NETCTRL);

/* Only log sap addresses, SNAP addresses do not need to
 be logged twice.
 */
if (length == INTEGERTYPE) {
 ctrl_buf.reqtype = LOG_DSAP;
 ctrl_buf.vtype = INTEGERTYPE;
 ctrl_buf.value.i = dsap;
 put_ctrl(fd, NETCTRL);
}

}

/**
bind to a SNAP sap.

**/
void
bind_snap(fd, snapsap)
int fd;
u_char *snapsap;
{

/* Fill in SNAP req */
ctrl_buf.reqtype = LOG_SNAP_TYPE;
ctrl_buf.vtype = 5;
memcpy((caddr_t)ctrl_buf.value.s, snapsap, 5);

/* send the SNAP request. */
put_ctrl(fd, NETCTRL);

}

/**
Close the file descriptor. This will automatically unbind the
protocol.

**/
void
cleanup(fd)

int fd; /* file descriptor */
{

/* close */
close(fd);

}

/**
receive a data packet;

**/
int
recv_data(fd)

int fd; /* file descriptor */
{

int length;

length = get_pkt(fd);
if(length == 0) {

printf("error: did not receive any data part \n");

30

LLA to DLPI Migration
LLA and DLPI Example Programs

exit(1);
}
return(length);

}

/**
send a data packet; assumes data_area has already been filled in
and a destination address has already been logged.

**/
void
send_data(fd, len)

int fd; /* file descriptor */
int len; /* length of the packet to send */

{
put_data(fd, len);

}

/**
print a string followed by a destination MAC and SAP address.

**/
void
print_dest_addr(string, dest_addr, dest_addr_len)

char *string; /* label */
u_char *dest_addr; /* the destination address */
int dest_addr_len; /* length of dest_addr */

{
int i;

printf("%s", string);
for(i = 0; i < dest_addr_len; i++) {

printf("%02x", dest_addr[i]);
}
printf("\n");

}

/**
main

**/
main() {

int send_fd, recv_fd; /* file descriptors */
u_char local_addr[20]; /* local MAC address */
int i, j, recv_len;

/*
PART 1 of program. Demonstrate connectionless data transfer with
LLC SAP header.
*/

/*
First, we must open the LLA device file, /dev/lan0. LLA does
not require a seperate control request to specify which device
you want to use, it is explicit in the open request (via the
device file minor number).
*/
send_fd = attach();
recv_fd = attach();

/*
Now we have to bind to a IEEESAP. Since LLA only supports
connectionless services there is no need to specify a specific

31

LLA to DLPI Migration
LLA and DLPI Example Programs

service mode. LLA also does not return the local MAC address
automatically when binding, so we need to issue a seperate control
request (LOCAL_ADDRESS)to get this information (see below).
*/
bind(send_fd, SEND_SAP);
bind(recv_fd, RECV_SAP);

/*
The following calls to get_local_address and set_dst_address
are required for LLA because of one primary difference in sending
data over LLA and DLPI. The difference is that DLPI
requires you to specify the destination address as part of the
data request and LLA requires the destination address to be
logged prior to the data request.

Get the local MAC address so that we can send loopback packets.
*/
get_local_address(send_fd, local_addr);

/*
Set the destination MAC and SAP address to the local address.
This will allow us to send loopback packets.
*/
set_dst_address(send_fd, local_addr, RECV_SAP, INTEGERTYPE);

/* print the MAC and SAP addresses we are sending and receiving on */
local_addr[6] = SEND_SAP;
print_dest_addr("sending too = ", local_addr, 7);
local_addr[6] = RECV_SAP;
print_dest_addr("receiving on = ", local_addr, 7);

/*
Time to send some data. We'll send 5 data packets in sequence.
*/
for(i = 0; i < 5; i++) {

/* send (i+1)*10 data bytes with the first byte = i */
data_area[0] = i;
/* Initialize data area */
for (j = 1; j < (i+1)*10; j++)

data_area[j] = "a";
print_dest_addr("sending data to ",local_addr, 7);
send_data(send_fd, (i + 1) * 10);
/* receive the data packet */
recv_len = recv_data(recv_fd);
printf("received %d bytes, first word = %d\n", recv_len,

(u_int)data_area[0]);
}

/*
We're finished with PART 1. Now call cleanup to close the device file.
*/
cleanup(send_fd);
cleanup(recv_fd);

/*
PART 2 of program. Demonstrate connectionless data transfer with
LLC SNAP SAP header.
*/

/*
As demonstrated in the first part of this program we must first
open the DLPI device file, /dev/dlpi, and attach to a PPA.
*/

32

LLA to DLPI Migration
LLA and DLPI Example Programs

send_fd = attach();
recv_fd = attach();

/*
Bind the send and recv SNAP protocols. When binding SNAP over
LLA the SNAP address will be used as both the sending and receiving
protocol address. Therefore, there is no need to issue a seperate
request to log the destination SNAP protocol. However, we still need
to set the destination MAC address.
*/
bind_snap(send_fd, SEND_SNAP_SAP);

/*
The following bind is not needed because we are running in loopback
mode with only one LAN interface. Since the sending LLA device
will use the same SNAP address for sending and receiving we'll
just loopback on the same LLA file descriptor.
bind_snap(recv_fd, RECV_SNAP_SAP);
*/
get_local_address(send_fd, local_addr);

/*
Set the destination MAC and SAP address to the local address.
This will allow us to send loopback packets. As mention above,
the SNAP address does not need to be logged, it is used here
only to distinguish SAPs and SNAP values.
*/
set_dst_address(send_fd, local_addr, RECV_SNAP_SAP, 6);

/* print the MAC and SAP addresses we are sending and receiving on */
memcpy((caddr_t)&local_addr[6], SEND_SNAP_SAP, 5);
print_dlsap("sending too = ", local_addr, 11);
print_dlsap("receiving on = ", local_addr, 11);

/*
Time to send some data. We'll send 5 data packets in sequence.
*/
for(i = 0; i < 5; i++) {

/* send (i+1)*10 data bytes with the first byte = i */
data_area[0] = i;
/* Initialize data area */
for (j = 1; j < (i+1)*10; j++)

data_area[j] = "a";
print_dlsap("sending data to ",local_addr, 11);
send_data(send_fd, (i + 1) * 10);

/* receive the data packet. Since we are sending
 to the SNAP address we enabled on the send_fd we
 must also receive on this file descriptor.
 */
recv_len = recv_data(send_fd);
printf("received %d bytes, first word = %d\n", recv_len,

data_area[0]);
}

/*
We're finished. Now call cleanup to then close the device file.
*/
cleanup(send_fd);
cleanup(recv_fd);

}

33

2

LLA Concepts

34

LLA Concepts
LLA and the OSI Model

LLA and the OSI Model

NOTE: The information contained in this manual applies to HP 9000 Series 700 and Series
800 computer systems only.

A network architecture is a structured, modular design for networks. The
Reference Model of Open Systems Interconnection (OSI) is a network
architecture model developed by the International Standards Organization
(ISO). HP based the development of the LAN/9000 product on the OSI
model.

In the OSI model, communication tasks are assigned to seven logically
distinct modules calledlayers. Each layer performs a specific data
communication function. Interfaces between each layer allow each layer to
communicate with the layers directly above and below it. Each layer may
also communicate with its peer layer on a remote computer.

LLA (Link Level Access) allows you to access the LAN/9000 device driver
at Layer 2 (Data Link Layer) in the OSI architecture. This driver controls the
Ethernet/IEEE 802.3 LAN interface card at Layer 1 (Physical Layer). The
portions of the LAN/9000 that implement the Ethernet and IEEE 802.3
protocols are, at Layer 2, the driver and, at Layer 1, the interface card and
the remaining hardware that connects the HP 9000 computer to the LAN
cable.

Because it provides access to Layer 2, LLA allows you to create applications
that communicate with other vendors that also implement IEEE
802.3/Ethernet at Layer 1 and Layer 2, but that do not implement the same
protocols as HP at higher layers. LLA also provides an alternative to using
the other process-to-process communication services provided by the
LAN/9000 product.

NOTE: Refer to theNetworking Overview for a complete description of the OSI model. Refer
to Installing and Administering LAN/9000 Software for a complete description of
how the LAN/9000 product relates to the OSI model.

35

LLA Concepts
OSI Layer 2

OSI Layer 2

The purpose of Layer 2 (Data Link Layer) is to provide reliable transmission
of data over the physical media. Layer 2 accomplishes this by packing raw
bits intomessage frames for transmission, detecting transmission errors and
controlling access to the physical media. Layer 1 transmits the frames.

IEEE 802.3 and Ethernet

IEEE 802.3 is a standard data link protocol defined by the Institute of
Electrical and Electronic Engineers (IEEE) and adopted by the International
Standards Organization (ISO) for Layer 1 and Layer 2. IEEE 802.3 defines a
baseband coaxial bus media with a media speed of 10 Megabits per second,
a Media Access protocol Carrier Sense Multiple Access/Collision Detection
(CSMA/CD), and the IEEE 802.2 Logical Link Control protocol.

Ethernet is a de-facto standard link level protocol that was developed before
IEEE 802.3 was defined. IEEE 802.3 is a standard that evolved from
Ethernet. Ethernet is not as precisely defined as IEEE 802.3, either
electrically or in the frame header. Like IEEE 802.3, Ethernet also defines a
baseband, coaxial, bus media, and the Media Access Method CSMA/CD.

IEEE 802.3 and Ethernet nodes can coexist on the same cable, but cannot
communicate with each other.

36

LLA Concepts
Ethernet Frame Structure

Ethernet Frame Structure

The Ethernet packet contains the following information:

• Preamble. The preamble is a 64-bit (8 byte) field that contains a synchronization
pattern consisting of alternating ones and zeros and ending with two consecutive
ones. After synchronization is established, the preamble is used to locate the first
bit of the packet. The preamble is generated by the LAN interface card.

• Destination Address. The destination address field is a 48-bit (6 byte) field that
specifies the station or stations to which the packet should be sent. Each station
examines this field to determine whether it should accept the packet.

• Source Address. The source address field is a 48-bit (6 byte) field that contains
the unique address of the station that is transmitting the packet.

• Type field. The type field is 16-bit (2 byte) field that identifies the higher-level
protocol associated with the packet. It is interpreted at the data link level.

• Data Field. The data field contains 46 to 1500 bytes. Each octet (8-bit field)
contains any arbitrary sequence of values. The data field is the information
received from Layer 3 (Network Layer). The information, or packet, received
from Layer 3 is broken into frames of information of 46 to 1500 bytes by Layer 2.

• CRC Field. The Cyclic Redundancy Check (CRC) field is a 32-bit error
checking field. The CRC is generated based on the destination address, type and
data fields.

The packet is transmitted from the first byte of the preamble to the last byte
of the CRC. Each byte is transmitted least significant bit first to most
significant bit last.

Ethernet Destination Address

The destination address field in the Ethernet frame is a 48-bit (6 byte)
address that contains the station address of the Ethernet/IEEE 802.3
interface card to which the packet is directed.

The first bit (Bit 1) of the destination address indicates the type of address. If
it is set to zero, the field contains the unique address of one of the stations. If
it is set to one, the field specifies a logical group of stations. If the address
field contains all ones, the packet is broadcast to all stations.

37

LLA Concepts
IEEE 802.3 Frame Structure

IEEE 802.3 Frame Structure

The 802.3 packet is very similar to the Ethernet packet. It contains the
following information:

• Preamble. The preamble field consists of seven bytes of alternating ones and
zeros. After synchronization is established, the preamble is used to locate the first
bit of the packet. The preamble is generated by the LAN interface card.

• Start Frame Delimiter (SFD). The SFD is the 8-bit sequence 10101011 that is
the same as the eighth byte of the Ethernet preamble. Together the 802.3
preamble and the SFD are identical to the Ethernet preamble.

• Destination Address. The 802.3 protocol gives the manufacturer the option of
implementing either 16 or 48 bit addresses. HP implements the 48-bit (6 byte)
address to be compatible with Ethernet's 48-bit (6 byte) address. The destination
address specifies the station or stations to which a packet should be sent. Each
station examines this field to determine whether or not it should accept the
packet.

• Source Address. The source address field is a 48-bit (6 byte) field that contains
the unique address of the station that is transmitting the packet.

• Length Field. The 2-byte length field is equal to the number of bytes in the LLC
field plus the number of bytes in the pad field. If the LLC is less than 46 bytes,
then the size of the pad field is 46 minus the size of the LLC. The LLC plus pad
must be a minimum of 46 bytes, but no greater than 1500 bytes.

• LLC Field . The LLC field contains the 802.2 packet that becomes part of the
802.3 packet.

• Pad Field. The LLC and pad fields must be between 46 and 1500 bytes in length.
If the data is not a minimum of 43 bytes, the field is padded with undefined
characters or groups of bytes. The pad is automatically stripped off by the LAN
interface card.

• CRC Field. The Cyclic Redundancy Check (CRC) field is a 32-bit error
checking field. The CRC is generated based on the destination address, source
address, type and data fields.

38

LLA Concepts
IEEE 802.3 Frame Structure

IEEE 802.3 Address Field Structures

The source and destination address fields of the IEEE 802.3 contain 48 bits
(6 bytes) each. The source address is the address of the station sending the
packet; the destination address is the address of the station to which the
packet is directed.

The first bit (least significant bit) of the first byte of the destination address is
used to distinguish between an individual and a group address. A zero
indicates individual access; a one indicates group access. The second bit of
the first byte distinguishes between globally and locally administered
addresses. A zero indicates global and a one indicates local. All ones in the
destination field indicates a broadcast address; therefore, all active stations
will receive the packet.

LLC Structure

The LLC is the 802.2 packet that becomes part of the 802.3 packet. The
802.2 packet consists of four fields.

The information field is an integral number of bytes in the range of 0 to
1497. The information field, combined with the control, DSAP and SSAP
fields, must be 3 to 1500 bytes. The control field is 16 bits in length when it
is used for formats using sequence numbers, and 8 bits when it is used for
formats not using sequence numbers. Type 1 service uses an 8-bit control
field. Since HP implements Type 1, HP uses the 8-bit control field.

DSAP Address Field The DSAP field contains a Destination Service Access
Point. A DSAP is a unique user-level address that identifies the higher-level
protocol used on the destination machine.

The DSAP address is one byte in length. The least significant bit in the
DSAP identifies whether an individual or a group of individuals should
receive the packet. The remaining seven bits, or the most significant bits of
the DSAP, are the address.

When the DSAP is all ones, broadcasting is enabled. An individual address
indirectly identifies the higher-level protocol implemented on the destination
node. Group DSAPs are reserved for future use.

39

LLA Concepts
IEEE 802.3 Frame Structure

SSAP Address FieldThe SSAP field contains a Source Service Access
Point. An SSAP is a unique user-level address that identifies the higher-level
protocol used on the source machine. The SSAP and the DSAP must be the
same in order for two nodes to communicate.

The SSAP is one byte in length. The least significant bit of the SSAP
indicates whether the packet is a command or a response. All zeroes in the
SSAP indicates a null address.

40

LLA Concepts
Ethernet and IEEE 802.3 Packet Comparison

Ethernet and IEEE 802.3 Packet Comparison

The two types of packets are the same through the preamble, destination and
source fields. The type and length fields are also the same number of bytes in
length (two bytes each). Ethernet uses the type field to convey the protocol
used at higher levels; IEEE 802.3 uses the Destination Service Access Point
(DSAP) for that purpose. Ethernet has no Source Service Access Point
(SSAP) or control fields. Because Ethernet does not have the DSAP, SSAP
or control fields, there are three extra bytes available for data.

Implementing Two Protocols

Since LLA allows implementation of both the IEEE 802.3 and Ethernet
protocols, it must distinguish between the two types of packets. LLA does
this by assuming that all packets are 802.2/3 packets and then checking the
length field. If the value in the length field is less than 1536 bytes, the packet
is processed as an 802.2/3 packet. Otherwise, the packet is assumed to be an
Ethernet packet. Once this assumption is made, the length field is assumed to
be the type field.

41

LLA Concepts
Device Files

Device Files

Device files are used to identify the LAN driver, Ethernet/IEEE 802.3
interface card, and protocol to be used. Each LAN driver/interface card and
protocol combination (Ethernet or IEEE 802.3) is associated with a device
file.

A network device file is like any other HP-UX device file. When you write
to a network device file after opening it, the data goes out on the network,
just as when you write to a disk drive device file, the data goes out onto the
disk.

By convention, device files are kept in a directory called/dev . When the
LAN/9000 product is installed, several special device files are created.
Among these files are the network device files associated with the LAN
interface. If default names are used during installation, these files are called
/dev/lan0 and/dev/ether0 for IEEE 802.3 and Ethernet respectively.

This manual assumes that the LAN/9000 product has already been installed.
Before you begin using LLA, you should verify that the network device files
exist. If the device file directory was named/dev , use the following
commands:

ls -l /dev/lan0

ls -l /dev/ether0

The following listing shows an example of the major number definition on a
Series 800 computer only:

crw-rw-rw- 1 bin bin 50 0x000000 Jan 28 08:58 lan0

crw-rw-rw- 1 bin bin 50 0x000001 Jan 28 08:58 ether0

The fifth column is the major number, the sixth column is the minor number,
and the final column is the name of the device file. In the previous example,
the major number is 50. Bits 16 through 23 of the minor number (00 in the
example) represent the instance number of LAN interface. The last bit, bit
32, specifies the protocol. A value of 1 signifies Ethernet; a value of 0
signifies IEEE 802.3. As shown in the example, a given LAN interface has
one instance (in this case it is zero) but is associated with two device files:
one for the Ethernet protocol and one for the IEEE 802.3 protocol.

42

LLA Concepts
Device Files

For Series 700 computers, the major number definition is the same as on a
Series 800 computer with the exception of the minor number which is bits 8
through 15. For the Series 700, the minor number for an Ethernet device file
would be 0x202001. The minor number for an IEEE device file would be
0x202000.

NOTE: For complete information about LAN/9000 product installation and network device
file creation, refer toInstalling and Administering LAN/9000 Software. For complete
information on device files, refer toSystem Administration Tasks.

43

LLA Concepts
HP-UX Calls

HP-UX Calls

LLA uses six standard HP-UX file system calls to access the drivers that
control the Ethernet/IEEE 802.3 interface cards:

• open(2)

• close(2)

• read(2)

• write(2)

• select(2)

• ioctl(2)

NOTE: This manual provides brief descriptions of theopen(2), close(2), read(2), write(2),
select(2), and ioctl(2)calls. For complete information about these or any HP-UX
calls, refer to the appropriate man page. The file system call,fstat(), is not supported
for LAN device files. EINVAL will be returned. Use thestat() system call instead.

open(2) and close(2) Calls

The HP-UXopen(2) call is used to open a device file associated with a LAN
driver. The HP-UXclose(2) command is used to close a network device file.

read(2) and write(2) Calls

The HP-UXread(2) call is used to read data from the network. The HP-UX
write(2) call is used to write data out to the network.

select(2) Call

The HP-UX select(2) call can be used beforeread(2) orwrite(2) calls to help
an application synchronize its I/O operations.

44

LLA Concepts
HP-UX Calls

ioctl(2) Call

The HP-UXioctl(2) call is used to construct, inspect, and control the
network environment in which an LLA application will operate. All LLA
applications must use theioctl(2) call to configure source and destination
addresses before data can be sent or received using the HP-UXread(2) and
write(2) calls. Theioctl(2) call syntax that is used for LLA is described later
in this chapter.

Other System Calls

The HP-UXstat(2) call is used to obtain information about a device file,
such as the device number, access control, user ID of the file owner, and
group ID of the file group. Thefstat (2) call is not supported for LAN device
files.

45

LLA Concepts
NETCTRL and NETSTAT Commands

NETCTRL and NETSTAT Commands

LLA defines two types of network I/O control commands:

• NETCTRL commands are used to set up device-specific parameters prior to read
and write operations and to reset the network I/O card and its statistical registers.
There are two types of NETCTRL commands:

• those which affect the network I/O cards, and

• those which affect a particular connection to the network I/O card.

• NETSTAT commands are used to obtain device-dependent status and statistical
information.

NETCTRL and NETSTAT commands are specified using theioctl(2)
command. Both types of commands are explained in chapter 3, “Using
LLA,” and chapter 4, “Network I/O Control Commands.”

LLA Header File

A special C header file,/usr/include/netio.h , is provided with the
LLA software. This file contains definitions of all the data structures and
macros (including NETSTAT and NETCTRL) that are used to interface with
LLA.

46

LLA Concepts
ioctl(2) Syntax

ioctl(2) Syntax

The following is a description of theioctl(2) call syntax that is used for
LLA. (The LLA data structures and macros used below are defined in the
header file/usr/include/netio.h .)

int ioctl(fildes, request, arg)
intfildes, request;
struct fis *arg;

fildes Specifies on which device theioctl operation is to be
performed. This is the file descriptor of a successfully
opened network device file.

request Specifies which type of LLA command to perform. This
parameter must be either NETSTAT or NETCTRL.

arg Thearg structure contains the address of an instance of
the fis data structure. Thefis data structure contains
information necessary to perform a specific NETCTRL or
NETSTAT command. Thearg parameter must be set to
the address of afis structure before anioctl call is made.
The type of information stored inarg is:

structfis{intreqtype;
intvtype;
union{floatf;
inti;
unsignedchars[100];
}value;
};

reqtype Contains the name of the NETCTRL or NETSTAT
command to be executed.

vtype Identifies the type of value in the value union:

vtype = INTEGERTYPE
indicates that the value is in value.i.

vtype = FLOATTYPE
indicates that the value is in value.f.

vtype = a non-negative integer (0≤ vtype≤ 99)
indicates that the value is a character string in value.s.

47

LLA Concepts
ioctl(2) Syntax

This integer also specifies the length of the string.

NOTE: No LLA operations use FLOATTYPE values.

If successful,ioctl(2) returns a value of 0; if an error occurs, -1 is returned.
Actual error values are returned to the HP-UX external variableerrno. An
ioctl(2) call will fail if:

• fildes is not a valid file descriptor.

• request is not appropriate for the selected device.

• request or arg are invalid.

• Resources are not available to service the request at this time.

48

LLA Concepts
Address Conversion Routines

Address Conversion Routines

LLA provides two special library routines that allow you to translate station
addresses between ASCII and binary formats. These library routines, called
net_aton(3n) andnet_ntoa(3n), are explained in chapter 3, “Using LLA.”
Both routines are located in/usr/lib/libn.a .

49

LLA Concepts
LLA Error Codes

LLA Error Codes

The HP-UX file system calls utilized by LLA (open(2), close(2), read(2),
write(2), select(2), andioctl(2)) are integer functions that return -1 when an
error is encountered. Actual error values are returned to the HP-UX external
variableerrno. The values forerrno are defined in the file
/usr/include/sys/errno.h and in the man page forerrno(2).

50

LLA Concepts
LLA Error Codes

51

3

Using LLA

52

Using LLA

WARNING: LLA is a utility for sophisticated users. Because LLA can have potentially
destructive or catastrophic effects on your network, only programmers with
experience with networking, the Ethernet and IEEE 802.3 protocols and I/O
device drivers should use LLA.

You must perform the following steps in order to transmit and receive data
over a network using LLA:

1 Open a network device file.

2 Log a user-level address.

3 Log a destination address (this step is only required for writing data).

4 Read or write data.

5 Close the network device file.

This chapter describes the standard HP-UX file system calls and LLA
NETCTRL commands that are used to perform these steps. Additional
NETCTRL commands are described in chapter 4, “Network I/O Control
Commands.”

NOTE: The behavior of Ethernet/IEEE 802.3 device file descriptors is similar to that of other
file descriptors: multiple processes sharing a file descriptor can interfere with each
other. You should be particularly aware of this when using the NETCTRL commands
described in this chapter and when performingread(2) operations.

53

Using LLA
Step 1: Open a Network Device File

Step 1: Open a Network Device File

You must use the HP-UXopen(2) call to open the network device file before
performingread(2) andwrite(2) operations. The following is a brief
description of theopen(2) call.

int open(path, oflag)
char *path;
int oflag;

path Points to a path name that identifies the device.

oflag Constructed by using the OR symbol (‘|’desired flag
options.

Theopen(2) call returns a file descriptor for the file that was opened. The
only applicable option flags are the delay flag, O_NDELAY, the read only
flag, O_RDONLY, and the read/write flag, O_RDWR. If O_NDELAY is set
and no data is available, aread(2) call returns immediately. If you wish to
use only the NETSTAT commands, specify the O_RDONLY flag. For other
uses, youmust specify the O_RDWR flag.

The first example below shows a device file being opened without
specifying the delay flag:

open(“/dev/lan0”, O_RDWR);

The next example shows a device file being opened with the delay flag
specified:

open(“/dev/lan0”, O_RDWR|O_NDELAY);

The following error values may be returned toerrno:

• EINVAL—This value is returned if neither O_RDWR, O_RDONLY, nor
O_WRONLY was specified, or if an option other than O_RDWR, O_RDONLY,
O_WRONLY, or O_NDELAY was specified.

• ENXIO—This value is returned if the device specified does not exist, the device
file has an invalid logical unit number or unsupported protocol.

• ENOBUFS—This value is returned if no network memory is available (not
enough memory) to set up the data link structures. Refer toInstalling and
Administering LAN/9000 Software for more information about network memory.

54

Using LLA
Step 2: Log a User-Level Address

Step 2: Log a User-Level Address

Before you can performread(2) or write(2) operations to a network
interface, you must log a user-level address. Atype field represents a user-
level address if the device is Ethernet. Asource service access point, or
ssap, represents a user-level address if the device is IEEE 802.3.

The following sections describe how to log a type field or a ssap using the
HP-UX ioctl(2) call with NETCTRL commands.

For Ethernet Device

If you perform read or write operations to an Ethernet device, you must
specify a user-level address by logging a type field of the Ethernet header
with the driver.

LOG_TYPE_FIELD Command

To log a type field using anioctl(2) call, you must specify NETCTRL in the
ioctl(2) call'srequest parameter and initialize thearg parameter to contain
the LOG_TYPE_FIELD command.

Initialization ofarg for a LOG_TYPE_FIELD command is:

arg.reqtype = LOG_TYPE_FIELD
arg.vtype = INTEGERTYPE
arg.value.i = type field

The type field is the user-level address for the network connection being
established. The format of the type field is an integer in the range of 1536 to
65535. Using values outside of this range results in an EINVAL error.

A LOG_TYPE_FIELD command fails with an EBUSY error if the type field
is already logged or in use by another file descriptor on the same device file.

55

Using LLA
Step 2: Log a User-Level Address

WARNING: DO NOT assign the following type field values, as they are reserved addresses:
2048, 2053, 2054, 32773. Using them may adversely affect operation of the HP
network and will result in an EBUSY error. Other specifically reserved
addresses include 4096 through 4111. These types are reserved for use by
Berkeley Trailer Protocols. If your network is a multivendor network or an
internetwork system, authorization to use specific type field values should be
obtained from Xerox Corporation.

Only one type field per network interface can be declared per open file
descriptor. The type field cannot be changed once it is logged, and cannot be
shared among other open file descriptors.

The driver uses the type field during read and write operations. The device
header attached to the data on a write(2) call contains the type field. The
read(2) call returns the data from a packet only if the type field on the packet
header matches the logged type field.

For IEEE 802.3 Device

If you perform read or write operations to an IEEE 802.3 device, you must
specify a user-level address by logging a source service access point (ssap)
with the driver.

LOG_SSAP Command

To log the ssap using anioctl(2) call, you must specify NETCTRL in the
ioctl(2) call'srequest parameter and initialize thearg parameter to contain
the LOG_SSAP command.

Initialization ofarg for a LOG_SSAP command is:

arg.reqtype = LOG_SSAP
arg.vtype = INTEGERTYPE
arg.value.i = ssap

The ssap is the user-level address for the network connection being
established, and it must be a unique address. The format of the ssap is an
even integer in the range of 2 to 254. Using odd values or values outside of
this range will result in an EINVAL error. (Odd values are reserved by the
IEEE.) Only one ssap per network interface can be declared per open file
descriptor. Once an ssap has been logged, it cannot be changed without
closing and reopening the device file.

56

Using LLA
Step 2: Log a User-Level Address

NOTE: DO NOT assign the following ssap values, as they are reserved addresses:6, 252,
248. Using them will adversely affect operation of the HP network.

LOG_SSAP fails with an EBUSY error if the ssap value is already logged or
in use by another file descriptor on the same device file.

LOG_DSAP Command

The dsap is the user address of the remote protocol with which
communication is desired. The driver uses the ssap/dsap fields in read and
write operations. The link level header attached to the data on awrite(2) call
contains the ssap/dsap values.read(2) calls will return the data from a packet
only if the dsap value on the packet header of incoming IEEE 802.3 packets
matches the logged ssap value.

Unlike the ssap, which cannot be changed without closing and reopening the
device file, a dsap can be changed as often as necessary. If you want to
change the dsap, you must execute a LOG_DSAP command.

To log a dsap using anioctl(2) call, you must specify NETCTRL in the
ioctl(2) call'srequest parameter and initialize thearg parameter to contain
the LOG_DSAP command.

Initialization ofarg for a LOG_DSAP command is:

arg.reqtype = LOG_DSAP
arg.vtype = INTEGERTYPE
arg.value.i = dsap

The format of the dsap field follows the same conventions and restrictions
described above for the ssap field, although odd dsaps and a dsap of zero
may be logged. The dsap value can be changed as many times as necessary.
LOG_DSAP must be executed after the LOG_SSAP operation.

57

Using LLA
Step 3: Log a Destination Address

Step 3: Log a Destination Address

Before writing to a network device, a destination address should be declared.
This is done using an HP-UXioctl(2) call.

LOG_DEST_ADDR Command

To declare a destination address using anioctl(2) call, you must specify
NETCTRL in theioctl(2) call'srequest parameter and initialize thearg
parameter to contain the LOG_DEST_ADDR command.

Initialization ofarg for the LOG_DEST_ADDR command is:

arg.reqtype = LOG_DEST_ADDR
arg.vtype = length of arg.value.s = 6
arg.value.s = destination address

The destination address is thestation address, in binary form, of the remote
Ethernet/IEEE802.3 device that is to receive the data. The device header
attached to the data packets onwrite(2) calls contains the destination
address. LOG_DEST_ADDR can be called as often as necessary.

A station address (also referred to as an Ethernet address, LAN address,
IEEE 802.3 address or network station address) is a link-level address that is
the unique address of an Ethernet/IEEE 802.3 interface card. This value is
set at the factory and cannot be changed. To find out what the station address
is for a particular card, you can run thelanscan(1M) command or refer to the
Network Map for your network. Since the LOG_DEST_ADDR requires that
you specify the station address in binary form, you must convert the
hexadecimal address before executing this command. LLA provides two
address conversion routines for this purpose.

Address Conversion

Two address conversion routines,net_aton(3n) andnet_ntoa(3n), are
provided to help you translate station addresses between hexadecimal, octal
or decimal and binary formats. Thenet_aton(3n) library routine converts a
hexadecimal, octal or decimal address to a binary address; thenet_ntoa(3n)
library routine converts a binary address to an ASCII hexadecimal address.
Both routines are provided in/usr/lib/libc.a .

58

Using LLA
Step 3: Log a Destination Address

net_aton(3n)

Thenet_aton(3n) routine converts an Ethernet or IEEE 802.3 station address
to binary form. The function is:

char *net_aton(dstr, sstr, size)
char *dstr;
char *sstr;
int size;

dstr Pointer to the binary address returned by the function.

sstr Pointer to a null-terminated ASCII form of a station
address (Ethernet or IEEE802.3). This address may be an
octal, decimal or hexadecimal number as used in the C
language. In other words, a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal. Otherwise, the
number is interpreted as decimal.

size Length of the binary address to be returned indstr . The
length is 6 for Ethernet/IEEE802.3 addresses.

A NULL value is returned if any error occurs, otherwisedstr is returned.

net_ntoa(3n)

Thenet_ntoa(3n) routine converts a 48-bit binary address to its ASCII
hexadecimal equivalent. The function is:

char *net_ntoa(dstr, sstr, size)
char *dstr;
char *sstr;
int size;

dstr Pointer to the ASCII hexadecimal address returned by the
function.dstr is null-terminated and padded with
leading zeroes if necessary.dstr must be at least (2 * size
+ 3) bytes long to accommodate the size of the converted
address.

sstr Pointer to a station address in its binary form.

size Length ofsstr .

A NULL value is returned if any error occurs, otherwisedstr is returned.

59

Using LLA
Step 4: Read or Write Data

Step 4: Read or Write Data

You must use the HP-UXread(2) call to read data from the network. You
must use the HP-UXwrite(2) call to send data out to the network.

NOTE: Before attempting to read or write data, you must declare a user-level address. Before
attempting to write data, you must declare a destination address. These tasks are
described earlier in steps 2 and 3. An attempt to read or write data without having
logged a user-level address or an attempt to write data prior to logging a destination
address will return the error EDESTADDRREQ.

Reading Data

The following is a brief description of the HP-UXread(2) call.

int read(fildes, buf, nbytes)
int fildes;
char *buf;
unsigned nbytes;

fildes Specifies which device the data is to be read from.read
fails if fildes is not a valid file descriptor.

buf Buffer into which data read from the network is placed.

nbytes nbytes should be greater than or equal to zero. A
negative number returns a -1 with EINVAL in theerrno
variable. Maximum number of bytes of data to be read.

Upon successful completion,read(2) returns the number of bytes actually
read and placed in the buffer. If an error occurs,read(2)returns a -1. If a
packet (the data message and its Ethernet/IEEE802.3 header) is not
immediately available, the process is blocked until a packet with the proper
user-level address (specified by LOG_TYPE_FIELD for Ethernet and by
LOG_SSAP for IEEE 802.3) arrives, or until a timeout occurs (EIO is
returned on timeout). However, if the O_NDELAY flag is set, the process is
NOT blocked, but returns -1 with EWOULDBLOCK in theerrno variable.

Blocked read operations will terminate upon delivery of signals to the
calling process, and the error EINTR is returned to the process.

60

Using LLA
Step 4: Read or Write Data

Read and write operations may only address a single packet of data
appropriate for the protocol being used.

The link level frame header is not returned with the read, only user data will
be placed in the user's buffer. The frame header for the last read packet may
be obtained with theioctl NETSTAT FRAME_HEADER call.

Themaximum number of data bytes that can be transferred perread(2)
call is:

• 1500 bytes for Ethernet.

• 1497 bytes for IEEE802.3.

Theminimum number of data bytes that can be transferred perread(2)
call is:

• 46 data bytes for Ethernet.

• 0 data bytes for IEEE 802.3.

NOTE: A packet is truncated to fit in the user buffer if the allocated buffer (buf) is too small.
Since the packet size is usually not known before it is received, it is recommended
that you always use a buffer size of 1500 bytes when reading.

A received data packet cannot be less than the minimum data packet size
because the sending node pads such packets. For IEEE 802.3, the receiving
node detects and strips off any padding characters. They are not stripped
from Ethernet packets. The actual data delivered is equal to or less than the
user buffer size. If the received data packet is greater than the user-specified
buffer size, then the actual data delivered will be truncated. The user
program should compare the amount of bytes read with the amount
requested.

Padded characters are not stripped off by the Ethernet drivers. Usually, the
user program is expecting data to always be a certain size and can ignore the
padded characters.

For example:

• User buffer is 1400 bytes.
• Minimum number is 46 data bytes for Ethernet and 0 data bytes for

61

Using LLA
Step 4: Read or Write Data

IEEE 802.3.
• Inbound packet contains 40 data bytes.
• For IEEE 802.3, 40 bytes are returned.
• For Ethernet, 46 bytes (40 + 6 pad characters) are returned.

NOTE: The LAN drivers do not guarantee data delivery. On a successfulwrite(2), the only
guarantee is that the data has been queued for transmission by the LAN interface
card. Likewise, there is no guarantee that, once transmitted, data will be received by
the target computer. The desired degree of reliability must be coded into your
program using acknowledgment or sequencing algorithms.

Managing the Packet Receive Cache

By default, only one packet received for an active type field or destination
sap (dsap) is cached prior to a read of the associated file descriptor.
Subsequent packets received for that file descriptor are discarded. This one-
packet cache may be suitable for request/reply protocols, but may not be
suitable for applications that communicate with more than one host or where
windowing protocols are used. The NETCTRL command
LOG_READ_CACHE can be used to increase the receive caching for up to
16 packets for normal users and 64 packets for super users.

The following section describes how to specify the LOG_READ_CACHE
command using theioctl(2) call.

LOG_READ_CACHE Command To alter the read cache, you must specify
NETCTRL in the ioctl(2) call'srequest parameter and initialize thearg
parameter to contain the LOG_READ_CACHE command.

Initialization ofarg for the LOG_READ_CACHE command is:

arg.reqtype = LOG_READ_CACHE
arg.vtype = INTEGERTYPE
arg.value.i = number of packets £ 16 (normal user) or
 64 (super user) to be added to cache

If you assign arg.value.i a value greater than 16 (64, super user), it is
interpreted as 16 (64, super user). LOG_READ_CACHE returns an
ENOBUFS error toerrno if the requested memory is unavailable.

62

Using LLA
Step 4: Read or Write Data

Altering the I/O Timeout Interval

The default timeout value forread(2) is zero. A timeout value of zero causes
an executingread(2) operation to be blocked indefinitely until data is
available. The NETCTRL command LOG_READ_TIMEOUT is provided
to set the timeout value for read operations.

The following section describes how to specify the
LOG_READ_TIMEOUT command using theioctl(2) call.

LOG_READ_TIMEOUT Command To alter the I/O timeout interval using
an ioctl(2) call, you must specify NETCTRL in theioctl(2) call'srequest
parameter and initialize thearg parameter to contain the
LOG_READ_TIMEOUT command.

Initialization ofarg for the LOG_READ_TIMEOUT command is:

arg.reqtype = LOG_READ_TIMEOUT
arg.vtype = INTEGERTYPE
arg.value.i = read timeout value in milliseconds

A positive timeout value causes aread(2) to fail if no data is available and
the specified time has elapsed. If a read timeout occurs, read will return a -1
with EIO placed inerrno. A negative timeout value will fail with EINVAL
returned. Theread(2) option O_NDELAY overrides the timeout mechanism;
if data is not immediately available, aread(2) returns a -1 with an
EWOULDBOCK error inerrno immediately.

NOTE: Due to race conditions caused by asynchronous interrupts, the accuracy of the timer
is guaranteed only to the extent that it does not timeout sooner than the assigned
value.

Writing Data

The following is a brief description of the HP-UXwrite(2) call.

int write(fildes, buf, nbytes)
int fildes;
char *buf;
unsigned nbytes;

fildes Specifies which device the data is to be written to. A
write(2) call fails if fildes is not a valid file descriptor.

buf Pointer to a buffer that holds the data to be written.

63

Using LLA
Step 4: Read or Write Data

nbytes Number of bytes of data to be written.

Upon successful completion,write(2) returns the number of bytes actually
written. If an error occurs,write(2) returns a -1. Thewrite(2) call transfers
packets to an internal transmit queue, from which they are sent out on the
network. If a write is performed when the transmit queue is exhausted or if
network memory allocated to this connection is insufficient to handle the
write request, ENOBUFS is returned.

Read and write operations can only address a single packet of data
appropriate for the protocol being used.

Themaximum number of data bytes that can be transferred perwrite(2)
call is:

• 1500 bytes for Ethernet.

• 1497 bytes for IEEE802.3.

Theminimum number of data bytes that can be transferred perwrite(2)
call is:

• 46 data bytes for Ethernet.

• 0 data bytes for IEEE802.3.

If a write(2) packet is smaller than the minimum size, it is padded with
undefined characters. These are removed by a receiving IEEE802.3 driver,
but not by a receiving Ethernet driver. If awrite(2) packet is greater than the
maximum number of bytes, 0 bytes are written, and the error EMSGSIZE is
returned.

NOTE: The network drivers do not guarantee data delivery. On a successfulwrite(2), the
only guarantee is that the data has been queued for transmission by the LAN interface
card. Likewise, there is no guarantee that, once transmitted, data will be received by
the target computer. The desired degree of reliability must be coded into your
program using acknowledgment or sequencing algorithms.

Synchronizing I/O Operations

You can use the HP-UXselect(2) call before performingread(2) or write(2)
operations to help an application synchronize its I/O operations.select(2) is
not supported for exceptional conditions. The following is a brief
description of theselect(2) call.

64

Using LLA
Step 4: Read or Write Data

int select (nfds, readfds, writefds,
execptfds, timeout)
int nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

nfds Specifies the maximum number of file descriptors for
which to check.

readfds Pointer to a bit-mapped integer that specifies which file
descriptors are to be checked for reading.

writefds Pointer to a bit-mapped integer that specifies which file
descriptors are to be checked for writing.

execptfds File descriptor for pending exceptional conditions.This
not supported by LLA. Use a value of 0 for the bit which
refers to the network device.

timeout If a non-zero pointer, this parameter specifies a maximum
interval to wait for the selection to complete. If it is a zero
pointer, theselect(2) waits until an event causes one of the
masks to be returned with a valid (non-zero) value.

A select(2) call returns on aread(2) operation when a packet is available for
the correct user-level address. Theselect(2) call returns on awrite(2)
operation when there is room for the packet in the transmit queue.

Becauseselect(2) does not reserve resources, it does not guarantee
uninterrupted completion of a subsequent I/O operation.

Setting Up Asynchronous Signals

As a companion toselect(2), the user may set up a file descriptor to receive
signals asynchronously. This is done with the ioctl(2) command, using the
NETCTRL request type LLA_SIGNAL_MASK. If this mask is set to
LLA_PKT_RECV, a SIGIO signal is generated on the user process when a
packet arrives for a file descriptor associated with that process. If the mask is
set to LLA_Q_OVERFLOW, a SIGIO signal is generated on the user
process when the inbound queue for an associated file descriptor overflows,
which causes a packet to be dropped. These two options may be combined in
the mask, so the SIGIO signal is generated by either condition. If signals are
used with more than one LLA file descriptor,select(2) may be used to help
determine which file descriptor generated the signal.

65

Using LLA
Step 4: Read or Write Data

The NETCTRL command LLA_SIGNAL_MASK is provided to allow the
user to request the generation of a SIGIO signal to the user process upon
certain events.

LLA_SIGNAL_MASK Command

Initialization ofarg for the LLA_SIGNAL_MASK command is:

arg.reqtype = LLA_SIGNAL_MASK

arg.vtype = INTEGERTYPE

arg.value.i = LLA_NO_SIGNAL Do not generate any signals
(default).

 LLA_PKT_RECV SIGIO generated when packet
has arrived on queue.

 LLA_Q_OVERFLOW SIGIO generated when inbound
queue has overflowed, results
in a dropped packet.

If signal disabling is desired, setvalue.i to LLA_NO_SIGNAL:

arg.value.i = LLA_NO_SIGNAL

If one of, but not both of LLA_PKT_RECV or LLA_Q_OVERFLOW is
desired, assign the appropriate value tovalue.i :

arg.value.i = LLA_PKT_RECV

or

arg.value.i = LLA_Q_OVERFLOW

If both LLA_PKT_RECV and LLA_Q_OVERFLOW are desired, OR the
values together:

arg.value.i = LLA_Q_OVERFLOW | LLA_Q_OVERFLOW

The only case in which a signal will not be generated despite the appropriate
event occurring is if the process is already blocked on a read to the LLA
connection.

NOTE: Combining mask values results in an ambiguous cause of a received signal, since it
could be generated either by the arrival of a packet or by inbound queue overflow.
Also, the driver will only signal the process which last configured the
LLA_SIGNAL_MASK. Processes that share file descriptors can potentially interfere
with the intended use of LLA SIGIO.

66

Using LLA
Step 5: Close the Network Device File

Step 5: Close the Network Device File

You must use the HP-UXclose(2) call to close a network device file. The
following is a brief description of close(2) call.

int close(fildes)
int fildes;

fildes Specifies which Ethernet/IEEE802.3 device file is to be
closed.

The operation fails iffildes is not a valid open file descriptor.

67

4

Network I/O Control Commands

68

Network I/O Control Commands

This chapter describes the NETCTRL and NETSTAT commands provided
by LLA to perform the following activities:

• Collect and Reset Interface Statistics.

• Manage Network Addresses.

• Reset an Interface.

• Manage Broadcast Packets.

• Manage Multicast Packets.

The commands described in this chapter are organized according to these
activities. All of these activities are accomplished using the standard HP-UX
ioctl(2) call.

The NETCRTL and NETSTAT commands may be executed anytime after
you have successfully opened an LLA device file.

69

Network I/O Control Commands
Collecting and Resetting Interface Statistics

Collecting and Resetting Interface Statistics

Commands are provided for collecting and resetting interface statistics. The
following commands are used as NETSTAT commands only.

• FRAME_HEADER.

• LOCAL_ADDRESS.

• DEVICE_STATUS.

• MULTICAST_ADDRESSES.

• MULTICAST_ADDR_LIST.

Several other commands, referred to asReset and Read Statistics
Commands, can be used as either NETCTRL or NETSTATioctl(2)
commands. The meaning of each of these commands is different depending
on whichrequest value (NETCTRL or NETSTAT) is used.

FRAME_HEADER Command

This command returns the Ethernet/IEEE802.3 device header associated
with the lastread(2) call. The header contains the target computer's station
address (the destination address), the transmitting computer's station address
(the source address), and the user-level address.

NOTE: The FRAME_HEADER command returns unpredictable information if there has not
been a previousread(2).

Initialization ofarg for an Ethernet FRAME_HEADER command is:

arg.reqtype = FRAME_HEADER

FRAME_HEADER returns:

arg.vtype = 14

arg.value.s = s[0] to s[5] = destination address

The destination address is the sender's destination
address, which could be the local device's station
address, a multicast address or the broadcast
address.

70

Network I/O Control Commands
Collecting and Resetting Interface Statistics

s[6] to s[11] = source address

The source address is the station address of the
sender's device.

s[12] to s[13] = type field

The type field is the user-level address, specified as a
2 byte unsigned integer.

Initialization ofarg for an IEEE802.3 FRAME_HEADER command is:

arg.reqtype = FRAME_HEADER

FRAME_HEADER returns:

arg.vtype = 17

arg.value.s = s[0] to s[5] = destination address

s[6] to s[11] = source address

s[12] to s[13] = received packet's length,
including data, dsap/ssap and control field

s[14] = dsap value

s[15] = ssap value

s[16] = control field value

Use thenet_ntoa(3n) routine to convert the returned destination addresses to
ASCII form.

LOCAL_ADDRESS Command

This command returns the station address of the local Ethernet/IEEE 802.3
device.

Initialization ofarg for the LOCAL_ADDRESS command is:

arg.reqtype = LOCAL_ADDRESS

LOCAL_ADDRESS returns:

arg.vtype = 6
arg.value.s = local station address

71

Network I/O Control Commands
Collecting and Resetting Interface Statistics

If necessary, use the net_ntoa(3n) routine to convert the returned address to
ASCII form.

DEVICE_STATUS Command

This command returns the value of the current status of the local
Ethernet/IEEE 802.3 device.

Initialization ofarg for the DEVICE_STATUS command is:

arg.reqtype = DEVICE_STATUS

DEVICE_STATUS returns:

arg.vtype = INTEGERTYPE
arg.value.i = INACTIVE
 INITIALIZING
 ACTIVE
 FAILED

The constants returned toarg.value.i are defined in the LLA header file
/usr/include/netio.h . These constants have the following meanings:

• INACTIVE —the driver is “alive” but not currently active.

• INITIALIZING —the driver is processing an initialization request.

• ACTIVE—the driver is “alive,” and a request is active on the card.

• FAILED—the driver is in a “dead” state. A reset is required.

MULTICAST_ ADDRESSES Command

This command returns the current number of accepted multicast addresses.

Initialization ofarg for the MULTICAST_ADDRESSES command is:

arg.reqtype = MULTICAST_ADDRESSES

MULTICAST_ADDRESSES returns:

arg.vtype = INTEGERTYPE
arg.value.i = number of multicast addresses

72

Network I/O Control Commands
Collecting and Resetting Interface Statistics

MULTICAST_ADDR_LIST Command

This command returns the current list of accepted multicast addresses.

Initialization ofarg for the MULTICAST_ADDR_LIST command is:

arg.reqtype = MULTICAST_ADDR_LIST

MULTICAST_ADDR_LIST returns:

arg.vtype = length of arg.value.s
arg.value.s = list of multicast addresses

The value inarg.vtype represents the number of bytes used for the
contiguous address list inarg.value.s . Each address is six bytes long.
The maximum number of bytes that can be returned is 96.

RESET_STATISTICS Command

The RESET_STATISTICS command can be used as a NETCTRLioctl(2)
command to reset all interface statistics that are kept by the interface card.
When request equals NETCTRL andarg.reqtype is
RESET_STATISTICS, all statistics counters are reset to zero. No operands
are necessary. The NETCTRL reset statistics command requiressuper-user
capability.

An unrecognized request type will return anerrno value of EINVAL. A
NETCTRL request without super-user capability will return the error
EPERM.

READ_STATISTICS Command

Whenrequest equals NETSTAT, the current value of the statistic specified in
arg.reqtype is returned.

The value returned from a statistics counter represents the value since the
last reset of that counter. The value of the statistic applies to the device, as
opposed to an open file descriptor associated with the device. The result is
returned in the appropriate field of thearg.value union.

An unrecognized request type will return anerrno value of EINVAL.

73

Network I/O Control Commands
Collecting and Resetting Interface Statistics

Interface Statistics

The following NETSTAT commands are used to collect interface statistics
that are kept by the interface card.

RESET_STATISTICS NETSTAT: Not applicable. Will return EINVAL if
used.

RX_FRAME_COUNT NETSTAT: Returns the number of packets received
without error.

TX_FRAME_COUNT NETSTAT: Returns the number of packets
transmitted without error.

UNTRANS_FRAMES NETSTAT: Returns the number of packets that, due
to some error, could not be transmitted.

UNDEL_RX_FRAMES NETSTAT: Returns the number of packets which
were received, but due to some error, could not be
delivered to an appropriate network connection.

RX_BAD_CRC_FRAMES NETSTAT: Returns the number of packets received
with a bad CRC.

NO_HEARTBEAT This is a hardware-dependent statistic that indicates
problems with the Medium Attachment Unit (MAU)
cabling.

NETSTAT: Returns the number of transmit packets
for which no heartbeat was detected.

MISSED_FRAMES NETSTAT: Returns the number of times that the
card missed packets due to lack of resources.

ALIGNMENT_ERRORS NETSTAT: Returns the number of packets received
with an alignment error and a bad CRC.

NOTE: These packets are also counted by the
RX_BAD_CRC_FRAMES counter.

DEFERRED NETSTAT: Returns the number of packets that had
to defer before transmission.

ONE_COLLISION NETSTAT: Returns the number of transmissions
completed with one collision.

MORE_COLLISIONS NETSTAT: Returns the number of transmissions
completed with more than one collision.

74

Network I/O Control Commands
Collecting and Resetting Interface Statistics

LATE_COLLISIONS NETSTAT: Returns the number of transmit packets
for which the card detected a late collision.

EXCESS_RETRIES NETSTAT: Returns the number of packets that were
not transmitted due to an excessive number of retries
(16 or more).

CARRIER_LOST NETSTAT: Returns the number of transmit packets
that failed due to the loss of the carrier.

This is a hardware-dependent statistic that indicates
problems with the Medium Attachment Unit (MAU)
cabling.

BAD_CONTROL_FIELD NETSTAT: Returns the number of IEEE802.3
packets received with an invalid control field.

UNKNOWN_PROTOCOL NETSTAT: Returns the number of packets dropped
because the type field or dsap referenced an
unknown protocol.

TDR NETSTAT returns the time (in bit times) from when
a frame started to transmit until a collision occurred.
This statistic can be useful for grossly determining
where on the cable a problem is located. This
statistic is not updated after an external loopback
frame is transmitted.

RX_XID NETSTAT: Returns the number of IEEE 802.3 XID
packets that were received.

RX_TEST NETSTAT: Returns the number of IEEE 802.3
TEST packets that were received.

RX_SPECIAL_DROPPED NETSTAT: Returns the number of IEEE 802.3 XID
or TEST packets that were received but not
responded to due to lack of resources.

ILLEGAL_FRAME_SIZE NETSTAT: Returns the numbers of times the card
received and discarded packets that were illegal in
size (greater than 1514 bytes). Not supported on
Series 700.

NO_TX_SPACE NETSTAT: Returns the number of times that the
card exhausted its transmit buffer space. Not
supported on Series 700 or Model 8x7S systems.

75

Network I/O Control Commands
Collecting and Resetting Interface Statistics

LITTLE_RX_SPACE NETSTAT: Returns the number of times the card
had one or no buffers to accept incoming packets.
Not supported on Series 700 or Model 8x7S
systems.

76

Network I/O Control Commands
Managing Network Addresses

Managing Network Addresses

Five NETCTRL commands are provided to manage network addresses.
These commands are:

• LOG_TYPE_FIELD—(Ethernet) Log type field of the Ethernet header.

• LOG_SSAP—(IEEE 802.3) Log source service access point.

• LOG_DEST_ADDR—(Ethernet or IEEE 802.3) Log destination network station
address.

• LOG_DSAP—(IEEE 802.3) Change destination service access point.

• LOG_CONTROL—(IEEE 802.3; requiressuper-user capability) Override
Unnumbered Information control field of IEEE 802.3 header.

The first four commands, LOG_TYPE_FIELD, LOG_SSAP,
LOG_DEST_ADDR, and LOG_DSAP, are described in chapter 3, “Using
LLA.” Refer to that chapter for information on these commands. The
remaining command, LOG_CONTROL, is described below.

NOTE: The LOG_CONTROL command isonly applicable to the IEEE 802.3 protocoland
conforms to its specification. Refer to the IEEE 802.3 specification for detailed
information about the UI, XID and TEST control fields mentioned below.

LOG_CONTROL Command

You can call LOG_CONTROL after you have logged a ssap. The
Unnumbered Information (UI) control field of the IEEE802.3 header is the
default used for normal communication. With super-user capability, you can
override this default with XID_CONTROL or TEST_CONTROL.

• XID control field: Any data written to the network device is ignored. An XID
request packet is transmitted instead, and any network responses will be returned
through a subsequentread(2) call.

• TEST control field: Data written to the network device causes a TEST packet
containing the data to be transmitted. Any network responses will be returned
through a subsequentread(2) call.

Initialization ofarg for the LOG_CONTROL command is:

77

Network I/O Control Commands
Managing Network Addresses

arg.reqtype = LOG_CONTROL

arg.vtype = INTEGERTYPE

arg.value.i = UI_CONTROL for normal data frame (default) = 3
 XID_CONTROL for XID frame = 0xBF

 TEST_CONTROL for TEST frame = 0xF3

78

Network I/O Control Commands
Resetting an Interface

Resetting an Interface

The NETCTRL command RESET_INTERFACE is provided to reset the
Ethernet/IEEE 802.3 device. This command forces a complete hardware
self-test. It also resets all interface statistics counters. The
RESET_INTERFACE command requiressuper-user capability.

NOTE: A reset can drop packets or impair any currently active network connections at the
local computer.

RESET_INTERFACE Command

Initialization ofarg for the RESET_INTERFACE command is:

arg.reqtype = RESET_INTERFACE

79

Network I/O Control Commands
Managing Broadcast Packets

Managing Broadcast Packets

Two NETCTRL commands, ENABLE_BROADCAST and
DISABLE_BROADCAST, are provided to control the reception of
broadcast packets. Broadcast packets are packets with the destination
address field containing all 1s. These commands requiresuper-user
capability.

ENABLE_ BROADCAST Command

ENABLE_BROADCAST allows broadcast packets to be received by the
local network device.

Initialization ofarg for the ENABLE_BROADCAST command is:

arg.reqtype = ENABLE_BROADCAST

DISABLE_ BROADCAST Command

DISABLE_BROADCAST prohibits broadcast packets from being received.

CAUTION: Use of the DISABLE_BROADCAST command may be catastrophic to an active HP
network.

Initialization ofarg for the DISABLE_BROADCAST command is:

arg.reqtype = DISABLE_BROADCAST

80

Network I/O Control Commands
Managing Multicast Packets

Managing Multicast Packets

Two NETCTRL commands, ADD_MULTICAST and
DELETE_MULTICAST, are provided to control multicast packets. Both
commands requiresuper-user capability.

ADD_MULTICAST Command

The ADD_MULTICAST command adds the multicast address specified in
arg.value.s to the device's list of accepted multicast addresses. This
multicast address list is maintained inside the LAN card. If a packet is
received with a multicast destination address, this address is compared to the
receiving device's current list. If the address is not in the list, the packet is
discarded. This operation is performed by the LAN card, not by the device
driver.

Initialization ofarg for the ADD_MULTICAST command is:

arg.reqtype = ADD_MULTICAST
arg.vtype = length of arg.value.s = 6
arg.value.s = multicast address

A multicast address is defined by the user and is not tied to the physical
station address of a computer. After such address is defined, any node in the
network that has added this address to its device multicast address list (by
issuing the ADD_MULTICAST command) will receive any packet with its
destination field equal to this multicast address. A valid multicast address is
a 48-bit value with the least significant bit turned on to indicate a group
address. Up to 16 multicast addresses can be supported simultaneously.

The following errors can be returned:

• EPERM—Indicates that the application is not running under super-user
capabilities.

• EINVAL—Indicates that the multicast list is full; an improper address size was
used; the group address bit was not set (not a multicast address); or the specified
address is already in the list.

81

Network I/O Control Commands
Managing Multicast Packets

DELETE_MULTICAST Command

The DELETE_MULTICAST command removes the multicast address
specified inarg.value.s from the device's current list of accepted
multicast addresses.

Initialization ofarg for the DELETE_MULTICAST command is:

arg.reqtype = DELETE_MULTICAST
arg.vtype = length of arg.value.s = 6
arg.value.s = multicast address

CAUTION: Deletion of an HP special multicast address may be catastrophic to an active HP
network. These addresses are: 0x090009000001, 0x090009000002.

A valid multicast address is a 48-bit value with the least significant bit
turned on to indicate a group address.

The following errors can be returned:

• EPERM—Indicates that the application is not running under super-user
capabilities.

• EINVAL—Indicates that the multicast list is empty; an improper address size
was specified; the group address bit was not set (not a multicast address); or the
specified address is not in the list.

You can usenet_aton(3n) to translate the ASCII form of the multicast
address into its network-internal form.

82

Network I/O Control Commands
Managing Multicast Packets

83

Symbols
/usr/include/netio.h, 45
/usr/include/sys/errno.h, 49
/usr/lib/libn.a, 48

A
ADD_MULTICAST, 80
address conversion

net_aton(3), 57
net_ntoa(3n), 57

addresses, network
network address management, 76

addresses, network, managing
NETCTRL and NETSTAT, 68

addresses, source and destination
source addresses and destination

addresses, 44
addresses, user-level logging

user-level address logging, 54
ASYNCHRONOUS SIGNALS, 64

B
BAD_CONTROL_FIELD, 74
broadcast packets, 79

NETCTRL, 68

C
C header files

error value definitions, 49
LLA structure and macro definitions, 45
network address conversion routines, 48

caching, 61
card-level statistics commands for

NETCTRL and NETSTAT
CARRIER_LOST, 74
DEFER, 73
EXCESS_RETRIES, 74
ILLEGAL_FRAME_SIZE, 74
LATE_COLLISIONS, 74
MISSED_FRAMES, 73
MORE_COLLISIONS, 73
NO_HEARTBEAT, 73
ONE_COLLISION, 73
RESET_STATISTICS, 72, 73
RX_BAD_CRC_FRAMES, 73
RX_FRAME_COUNT, 73
UNDEL_RX_FRAMES, 73
UNTRANS_FRAMES, 73

CARRIER_LOST, 74
close(2), 43, 49, 66
coexistence of IEEE 802.3 and Ethernet

nodes, 35
CSMA/CD

IEEE 802.3 protocol, 35

D
Data Link Layer, 34

data transmission method, 35
purpose, 35

DEFERRED, 73
DELETE_MULTICAST, 81
destination addresses, 57, 69, 70
destination service access points, 56, 61,

70
device drivers

system calls used to access, 43
device files

closing, 43
creating, 42
default names for network device files,

41
descriptors, problems with, 52
directory, 41
logical unit bit representation for

Ethernet and IEEE 802.3 protocols,
41

major and minor numbers, 41
opening, 43
purpose, 41
verifying existence of, 41

DEVICE_STATUS, 71
devices, resetting, 78
device-specific parameters, setting

NETCTRL, 45
DISABLE_BROADCAST, 79
DLPI example program, 16
driver-level statistics command for

NETCTRL and NETSTAT
TDR, 74

driver-level statistics commands for
NETCTRL and NETSTAT

BAD_CONTROL_FIELD, 74
RX_SPECIAL_DROPPED, 74
RX_TEST, 74
RX_XID, 74
UNKNOWN_PROTOCOL, 74

dsap
destination service access points, 56

E
EBUSY, 56
EBUSY error, 55
EDESTADDRREQ, 59
EINTR, 59
EINVAL, 53, 55, 80
EIO, 62
EMSGSIZE, 63
ENABLE_BROADCAST, 79
ENOBUFS, 53, 63
ENOSPC, 63
ENXIO, 53
EPERM, 80, 81
errno(2), 49, 72

/usr/include/sys/errno.h, 49
errors

EBUSY, 56
EDESTADDRREQ, 59
EINTR, 59
EINVAL, 53, 55, 59, 80, 81
EIO, 62
EMSGSIZE, 63
ENOBUFS, 53, 63
ENOSPC, 63
ENXIO, 53
EPERM, 80, 81
EWOULDBLOCK, 59, 62

Ethernet, 34
Ethernet packet, 36
Ethernet protocol

definition, 35
general comparison to IEEE 802.3

protocol, 35
user-level address logging, 54

EWOULDBLOCK, 59, 62
example programs, 16
EXCESS_RETRIES, 74

F
FRAME_HEADER, 69

I
IEEE 802.3, 34
IEEE 802.3 frame structure, 37
IEEE 802.3 protocol

Index

84

Index

coexistence with Ethernet, 35
CSMA/CD, 35
definition, 35
general comparison to Ethernet protocol,

35
source service access points, and

destination service access points, 54
unnumbered information (UI) control

field, 76
user-level address logging, 54

ILLEGAL_FRAME_SIZE, 74
interface card,resetting

NETCTRL, 45
interface statistics, collecting and resetting

NETCTRL and NETSTAT, 68
ioctl(2), 43, 44

error codes, 49
NETCTRL, NETSTAT, and user-level

address logging, 45
syntax, 46
using to reset interface card statistics, 72

L
LAN interface card, 34
LATE_COLLISIONS, 74
Layer 1, 34
Layer 2, 34
Link Level Access

LLA, 34
LLA

device drivers and interface cards
accessed, 34

error values, 49
general programming steps, 52
structure and macro header file, 45
warnings, 52

LLA example program, 16
LLA ioctls vs DLPI primitives, 12
LLA migration, 12
LOCAL_ADDRESS, 70
LOG_CONTROL, 76
LOG_DEST_ADDR, 57, 76
LOG_DSAP, 56, 76
LOG_READ_CACHE, 61
LOG_READ_TIMEOUT, 62
LOG_SSAP, 55, 56, 76
LOG_TYPE_FIELD, 76

M
message frames, 35
migrating to DLPI, 12
MISSED_FRAMES, 73
MORE_COLLISIONS, 73
multicast packets

ADD_MULTICAST, 80
DELETE_MULTICAST, 81
NETCTRL, 68
reserved addresses, 81

MULTICAST_ADDR_LIST, 72
MULTICAST_ADDRESS, 71
multivendor networks, 34, 55

N
net_aton(3n), 48, 57, 81
net_ntoa(3n), 48, 57, 70, 71
NETCTRL, 68

broadcast packet management, 79
declaring a destination address, 57
description of, 45
destination service access point logging,

56
interface card reset and read commands,

72
multicast packets, 80
network address management, 76
packet caching, 61
problems with, 52
resetting devices, 78
setting read timeout values, 62
source service access point logging, 55
user-level address logging, 55, 56

NETSTAT, 68, 72
card-level (driver-level) statistics

commands for NETCTRL and
NETSTAT, and ioctl(2), 73

description of, 45
device address, 69
device address information, 70
device header information, 69
device status, 69, 71
interface card reset and read command,

72
ioctl(2), 45
multicast addresses, 69, 71, 72

network address management
changing dsap values, 76

declaring a destination address, 57, 76
source service access point logging, 55,

76
type field logging, 54, 76

network architecture, 34
network I/O control

ioctl(2), 43
NO_HEARTBEAT, 73

O
O_NDELAY, 59, 62
ONE_COLLISION, 73
Open Systems Interconnection

OSI model, 34
open(2), 43

error codes, 49
error values, 53
with read(2) and write(2) commands, 53

OSI model, 34
specific layers, LAN, NS, and ARPA, 34

P
packet receive cache, 61
Physical Layer, 34

R
race conditions, 62
read(2), 43

error codes, 49
problems with, 52, 69
recommended buffer size for data

transfer, 60
select(2) and ioctl(2), 43
timeouts, 62
user-level address logging, 59
with open(2), 53

reading data
blocked reads, 59
read(2), 43, 59

receiving data
general programming steps, 52

RESET_INTERFACE, 78
RESET_STATISTICS, 72, 73
RX_BAD_CRC_FRAMES, 73
RX_FRAME_COUNT, 73
RX_SPECIAL_DROPPED, 74
RX_TEST, 74
RX_XID, 74

Index

85

S
select(2), 43, 63

error codes, 49
read(2) and write(2), 43

SIGIO, 64
source addresses, 69, 70
source service access points, 54, 70

changing, 55
reserved addresses, 56
restricted values, 55
user-level address logging syntax, 55

ssap
source service access points, 54

station address
destination addresses and source

addresses, 69
synchronizing I/O

select(2), 43
synchronizing I/O operations, 63

T
TDR, 74
TEST_CONTROL, 76
timeouts, 62
transmitting data

general programming steps, 52
TX_FRAME_COUNT, 73
type fields, 54, 61, 70

logging, 54
restricted values, 55

U
UI_CONTROL, 77
UNDEL_RX_FRAMES, 73
UNKNOWN PROTOCOL, 74
unnumbered information (UI) control field

overriding, 76
UNTRANS_FRAMES, 73
user-level address logging, 54, 59, 69

ioctl(2) and NETCTRL, 54

W
write(2), 43, 59

error codes, 49
reliability, 61, 63
select(2) and ioctl(2), 43
with open(2), 53

writing data

write(2), 43, 62

X
XID_CONTROL, 76, 77

