
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP-UX Starbase Device Drivers Manual

Volume 2

HP 9000 Series 700 Computers

ABCDE

HP Part No. B2355-90047

Printed in USA April, 1993

Edition 1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
�tness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

Copyright c 1989 - 1993 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFAR 252.227-7013. for DoD
agencies, Computer Software Restricted Rights clause at FAR 52.227-19 for other
agencies.

Use of this manual and exible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright c AT&T, Inc. 1980, 1984

Copyright c The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

April 1993 . . . Edition 1. This manual is valid for HP-UX release 9.0 on all HP
9000 Series 700 Computers. This edition of the manual includes new HP VMX
information as well as manual corrections.

This manual includes some Series 300/400/800 Starbase information; however, for
revision 9.0 Starbase information on Series 300/400/800 computers, you should
read the HP-UX Starbase Device Drivers Manual part number B2355-90019.

iii

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

16. The Starbase Memory Driver

Device Description . 16-1
Setting Up the Device 16-2
Switch Settings . 16-2
Special Device Files (mknod) 16-2
Linking the Driver 16-2
Shared Libraries 16-2
Examples . 16-2
Archive Libraries 16-3

Device Initialization . 16-4
Parameters for gopen 16-4
Syntax Examples . 16-5
For C Programs: 16-5
For FORTRAN77 Programs: 16-5
For Pascal Programs: 16-5

Special Device Characteristics 16-6
Starbase Functionality 16-7
Commands Not Supported 16-7
Conditionally Supported 16-8
Con�guration . 16-9

Fast Alpha and Font Manager 16-10
SMD Errors . 16-10
Parameters for gescape 16-12

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

17. The Starbase-on-X11 Device Driver

Device Description . 17-1
Setting Up a sox11 Environment 17-2
Linking the sox11 Driver with an Application 17-2
Shared Libraries . 17-2
Examples . 17-2

Archive Libraries . 17-3
Examples . 17-3

Programmatic Initialization 17-4
Gopen Parameters 17-4
Gopen Examples 17-5

Special Device Characteristics 17-7
Device Defaults . 17-8
Line Type Defaults 17-8
Color Map Defaults 17-8
Input Defaults . 17-9

Starbase Functionality 17-10
Commands Not Supported (NO-OPS) 17-10
Gescapes . 17-10
Input Model . 17-11

Programming Strategy 17-13
Directly Calling the X11 Library 17-13
Starbase Echo . 17-13
X Cursor . 17-13
Polygon Fills . 17-13
Window Mapping . 17-14
Double Bu�ering . 17-14
Raster Text . 17-14

18. The HP-HIL Device Driver

Device Description . 18-1
Setting Up the Device 18-2
Special Device Files (mknod) 18-2
For the Series 300 18-2
For the Series 700 18-3
For the Series 800 18-3

Linking the Driver 18-3
Shared Libraries 18-3

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Examples . 18-3
Archive Libraries 18-4
Examples . 18-4

Device Initialization . 18-5
Parameters for gopen 18-5
Syntax Examples . 18-6
For C Programs: 18-6
For FORTRAN77 Programs: 18-6
For Pascal Programs: 18-6

Special Device Characteristics 18-6
Cautions . 18-7
Starbase Functionality 18-8
Locator Devices . 18-8
Relative Positioning 18-8
Absolute Positioning 18-9

Choice Devices . 18-9
HP-HIL Keyboards 18-9
Devices Without Triggers 18-10

Parameters for gescape 18-11

19. The HP Keyboard Device Driver

Device Description . 19-1
Setting Up the Device 19-1
Special Device Files 19-1
Linking the Driver 19-1
Shared Libraries 19-1
Examples . 19-2
Archive Libraries 19-2
Examples . 19-3

Device Initialization . 19-3
Parameters for gopen 19-3
Syntax Examples . 19-4
For C Programs: 19-4
For FORTRAN77 Programs: 19-4
For Pascal Programs: 19-4

Special Device Characteristics 19-4
Starbase Functionality 19-5

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

20. The HP Locator Keyboard Device Driver

Device Description . 20-1
Setting Up the Device 20-1
Special Device Files (mknod) 20-1
Linking the Driver 20-2
Shared Libraries 20-2
Examples . 20-2
Archive Libraries 20-3
Examples . 20-3

Terminfo Support Required 20-3
Initialization . 20-6
Parameters for gopen 20-6
Syntax Examples 20-6

Special Device Characteristics 20-7
Starbase Functionality 20-8
Choice Devices . 20-8
Locator Devices . 20-8
Limitations . 20-10

Parameters for gescape 20-10

21. The HP-GL Device Driver

Device Description . 21-1
Setting Up the Device 21-2
Switch Settings . 21-2
Special Device Files (mknod) 21-3
For the Series 300 and 400 21-4
HP-IB Card Device File 21-4
Serial Interface Card Device File 21-4

For the Series 700 . 21-4
Serial RS-232 Interface 21-4
Centronics Parallel Interface 21-4

For the Series 800 . 21-5
HP-IB Card Device File 21-5
Serial Interface Card Device File 21-5

Linking the Driver 21-5
Shared Libraries 21-5
Examples . 21-5
Archive Libraries 21-6

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Examples . 21-6
Device Initialization . 21-7
Parameters for gopen 21-7
Syntax Examples . 21-8
For C Programs: 21-8
For FORTRAN77 Programs: 21-8
For Pascal Programs: 21-9

Device Defaults . 21-9
Color Table . 21-9
Red, Green and Blue Values 21-10
Device Coordinate Origin Default 21-10
Direct Output . 21-10
Echo Types . 21-10
Line Type Defaults 21-10
Number of Pens 21-11
Plotter Units . 21-11
P1 and P2 Defaults 21-11
Spooled Output . 21-11
Timeouts . 21-12

Starbase Functionality 21-12
Plotter Input . 21-12
HP 9111A/T Input 21-13
Pen Selection . 21-13
Exceptions to Standard Starbase Support 21-14
Commands Not Supported (no-ops) 21-14
Commands Conditionally Supported 21-15

Parameters for gescape 21-16

22. The CADplt Device Driver

Device Description . 22-1
Setting Up the Device 22-3
Switch Settings . 22-3
HP-IB Interfacing 22-3
Serial RS-232 Interfacing 22-3

Special Device Files (mknod) 22-5
For the Series 300 and 400 22-5
HP-IB Interface . 22-5
Serial RS-232 Interface 22-5

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

For the Series 700 . 22-5
Serial RS-232 Interface 22-5
Centronics Parallel Interface 22-6

For the Series 800 . 22-6
HP-IB Card Device File 22-6
Serial Interface Card Device File 22-6

Linking the Driver 22-6
Shared Libraries 22-6
Examples . 22-7
Archive Libraries 22-7
Examples . 22-7

Device Initialization . 22-9
Parameters for gopen 22-9
Syntax Example 22-10

Device Defaults . 22-10
Color Table . 22-10
Red, Green and Blue Values 22-11
Device Coordinates 22-11
Device Coordinate Origin 22-11
Device ID . 22-12
Line Types . 22-12
Number of Pens 22-12
P1 and P2 . 22-12
Timeouts . 22-13

Starbase Functionality 22-14
Hardware Character Sets 22-14
Error Reporting and Bu�er Mode 22-16
Hardware Polygon Support 22-17
Hardware Rectangle Support 22-18
Hardware Text Support 22-19
Pen Selection . 22-20
Roll Paper, Autoloading and Rasterizing 22-20
New Device Support 22-21
Exceptions to Standard Starbase Support 22-22
Commands Not Supported (no-ops) 22-22
Commands Conditionally Supported 22-23

Parameters for gescape 22-24

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

23. The CADplt2 Device Driver

Device Description . 23-1
Setting Up the Device 23-3
Switch Settings . 23-3
HP-IB Interfacing 23-3
Serial RS-232 Interfacing 23-3

Special Device Files (mknod) 23-6
Series 300 and 400 23-6
HP-IB Interface . 23-6
Serial RS-232 Interface 23-6

For the Series 700 . 23-7
Serial RS-232 Interface 23-7
Centronics Parallel Interface 23-7

Series 800 . 23-7
HP-IB Card Device File 23-7
Serial Interface Card Device File 23-7

Linking the Driver 23-8
Shared Libraries 23-8
Examples . 23-8
Archive Libraries 23-8
Examples . 23-9

Device Initialization . 23-10
Parameters for gopen 23-10
Syntax Example 23-11
C programs: . 23-11
FORTRAN 77 programs: 23-11
Pascal programs: 23-11
PCL Context Switching 23-11
Encoded Polyline Command (PE) 23-11

Device Defaults . 23-12
Color Table . 23-12
Red, Green, and Blue Values 23-13
Device Coordinate System 23-14
Device ID . 23-14
Line Types . 23-14
P1 and P2 . 23-15
Timeouts . 23-16

Starbase Functionality 23-17

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

Hardware Character Sets 23-17
Typefaces . 23-19

Error Reporting and Bu�er Mode 23-21
Hardware Polygon Support 23-21
Hardware Text Support 23-22
Support of Starbase Font Typefaces 23-23
Supported Combinations of text path, text line path . . . 23-23

Pen Selection . 23-24
Roll Paper, Autoloading and Rasterizing 23-24
New Device Support 23-25
Exceptions to Standard Starbase Support 23-26
Commands Not Supported (no-ops) 23-26
Commands Conditionally Supported 23-27

Parameters for gescape 23-28

24. Printer Command Language Formatter

Overview . 24-1
Printer Con�gurations 24-3
Non-Spooled Operation 24-3
Spooled Operation 24-3
Spooler Conicts . 24-4

Software Structure . 24-4
Setting Up the Special Device File 24-5
The Con�guration File 24-5
Con�guration Files . 24-5
Con�guration File Template 24-8
Example Con�guration File 24-9

Printer Parameters . 24-10
Print Modes . 24-11
Print Mode: color . 24-11
Error Di�usion . 24-12
Print Mode: color2 24-12

Print Mode: primary 24-13
Print Mode: gray . 24-13
Dithering in gray Mode (Halftoning) 24-13
Disappearing Lines in gray Mode 24-14

Print Mode: monochrome 24-14
Print Mode Di�erences When Printing Single Planes 24-14

Contents-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Using the Graphics Print Procedures 24-15
Specifying the Formatter and Con�g Parameters 24-15
Using the bmprint Program 24-15
Direct Access Printing 24-17
Direct Access Using Redirection or Pipes 24-17
Spooling Examples 24-18
Controlling Print Orientation 24-19
Print Size and Clipping 24-20

Linking and Running Your Program 24-21
Warning and Error Messages 24-22
Warning Messages 24-22
Error Messages . 24-22

Setting Up the Spooler 24-24
Special Considerations for Non-Spooled Serial Output 24-25

25. Printer Command Language Imaging Formatter

Overview . 25-1
Key Points of the PCL Imaging Formatter 25-2

Printer Con�gurations 25-4
Non-Spooled Operation 25-4
Direct Access Printing 25-4

Spooled Operation 25-5
Spooled Printing 25-5
Spooler Conicts 25-6

Software Structure 25-6
Setting Up the Special Device File 25-7
Con�guration Files . 25-7
Printer Parameters . 25-7
Print Modes . 25-8
Snap to Primaries 25-8
Snap to Black and White 25-9
Color Ordered Dither or Monochrome Ordered Dither . . . 25-9
Color Error Di�usion or Monochrome Error Di�usion . . . 25-9
Disappearing Lines in Monochromatic Ordered Dither . . . 25-10
Di�erences When Printing Single Planes 25-10
Controlling Print Orientation 25-10
Print Size and Clipping 25-10

Warning and Error Messages 25-11

Contents-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

26. Computer Graphics Meta�le

Introduction . 26-1
Functionality and Encodings 26-1
Precisions . 26-2
Mode . 26-2
Picture . 26-2

To Compile and Link with the Device Driver 26-3
For Shared Libraries 26-3
Examples . 26-3

For Archive Libraries 26-4
Examples . 26-4

Initialization . 26-5
Parameters for gopen 26-5
Syntax Examples . 26-5
For C Programs: 26-5
For Fortran77 Programs: 26-5
For Pascal Programs: 26-6

Driver Default . 26-6
Default Color Map 26-7

Starbase Functionality 26-9
Commands Not Supported (no-ops) 26-9
Conditionally Supported 26-10

Parameters for gescape 26-11

27. The HP Starbase-to-Visualizer Archive Device Driver

Device Description . 27-1
Functionality . 27-1
Object De�nitions 27-2

Linking the Driver . 27-3
Shared Libraries . 27-3
Examples . 27-3

Archive Libraries . 27-4
Examples . 27-4

Device Initialization . 27-5
Parameters for gopen 27-5
Syntax Examples . 27-5
For C Programs: 27-5
For FORTRAN77 Programs: 27-5

Contents-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

For Pascal Programs: 27-6
Driver Default . 27-6

Starbase Functionality 27-7
Commands Supported 27-7
Commands Not Supported (no-ops) 27-7

Gescapes . 27-8
Gescape Syntax . 27-8

Troubleshooting . 27-9

28. The Terminal Device Driver

Device Description . 28-1
Setting Up the Device 28-1
Switch Settings . 28-1
Special Device Files (mknod) 28-2
For the Series 300 28-2
For the Series 800 28-2

Linking the Driver 28-3
Shared Libraries 28-3
Examples . 28-3
Archive Libraries 28-4
Examples . 28-4

Device Initialization . 28-5
Parameters for gopen 28-5
Syntax Examples . 28-7
For C Programs: 28-7
For FORTRAN77 Programs: 28-7
For Pascal Programs: 28-7

Special Device Characteristics 28-8
Screen Resolution 28-8
Polygons . 28-8

Device Defaults . 28-8
Default Color Map 28-8
Dither Default . 28-9
Line Types . 28-10

Starbase Functionality 28-11
Commands Not Supported (no-ops) 28-11
Conditionally Supported 28-12
Text . 28-13

Contents-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

Raster Operations 28-13
Terminal Device Access 28-13
Input . 28-13
Echo for the HP 2623 28-14
Echo for Other Terminals 28-14
Drawing Mode . 28-14

Parameters for gescape 28-16

A. Gescapes

Introduction . A-1
AUTO RESIZE DEVICE A-17
BAD SAMPLE ON DIFF SCREEN A-19
BLINK INDEX . A-20
BLINK PLANES . A-22
BLOCK WRITE SKIPCOUNT A-23
CGMESC APPL DATA A-24
CGMESC ENCODING A-26
CGMESC ESCAPE ELT A-27
CGMESC FONT IX A-29
CGMESC MESSAGE A-30
CGMESC MET NAME A-31
CGMESC PIC NAME A-32
CGMESC TOP MODE A-33
CGMESC VDC PREC A-34
CGM Elements Produced by the HP CGM Driver A-35
Delimiter Elements A-35
Meta�le Descriptor, Picture Descriptor, Control Elements . . A-35
Unconditionally Included A-35
Unconditionally Excluded A-36

Graphical Primitives A-37
Included . A-37
Excluded . A-37

Primitive Attributes A-38
Included . A-38
Excluded . A-38

External and Escape Elements A-39
CLIP OVERFLOW A-40
CONTOUR CONTROL A-42

Contents-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

CUBIC POLYPOINT A-44
DC COMPATIBILITY MODE A-47
DC PIXEL WRITE A-49
DISABLE ACKNOWLEDGE A-51
DISABLE AUTO PROMPT A-52
DRAW POINTS . A-53
ENABLE ACKNOWLEDGE A-55
ENABLE AUTO PROMPT A-56
GAMMA CORRECTION A-57
GAMMA CORRECTION for the CRX-24, CRX-24Z, and

CRX-48Z . A-59
GCRX PIXEL REPLICATE A-61
C Syntax . A-61
FORTRAN77 Syntax A-62
Pascal Syntax . A-62
GCRX SW CMAP FULL A-65
GR2D CONVEX POLYGONS A-67
GR2D DEF MASK A-69
GR2D FILL PATTERN A-72
GR2D MASK ENABLE A-75
GR2D MASK RULE A-77
GR2D OVERLAY TRANSPARENT A-80
GR2D PLANE MASK A-82
GR2D PLANE RULE A-84
GR2D REPLICATE A-86
HPGL READ BUFFER A-90
HPGL SET PEN NUM A-92
HPGL SET PEN SPEED A-93
HPGL SET PEN WIDTH A-95
HPGL WRITE BUFFER A-96
HPGL2 ADAPTIVE LINES A-98
HPGL2 CUTTER CONTROL A-100
HPGL2 FONT POSTURE A-102
HPGL2 FONT TYPEFACE A-104
HPGL2 FONT WEIGHT A-106
HPGL2 LOGICAL PEN WIDTH A-108
HPGL2 REPLOT A-110
HPGL2 SET CMAP SIZE A-112

Contents-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

HPGL2 SET MEDIA TYPE A-114
HPGL2 SET QUALITY A-116
HPTERM 640x400 A-118
HPTERM PRINT ESC A-120
IGNORE PROXIMITY A-122
IGNORE RELEASE A-123
ILLUMINATION ENABLE A-124
IMAGE BLEND . A-126
INQ 12BIT INDEXING A-130
LINEAR POLYPOINT A-132
LS OVERFLOW CONTROL A-134
OLD SAMPLE ON DIFF SCREEN A-137
OVERLAY BLEND A-138
PAN . A-140
PAN AND ZOOM A-142
PATTERN FILL . A-145
PLUG ACCELERATED PIPELINE A-149
POLYGON TRANSPARENCY A-155
PROMPT OFF . A-158
PROMPT ON . A-159
R BIT MASK . A-160
R BIT MODE . A-162
R DEF ECHO TRANS A-164
R DEF FILL PAT A-166
R DMA MODE . A-168
R ECHO CONTROL A-175
R ECHO FG BG COLORS A-178
R ECHO MASK . A-189
R FULL FRAME BUFFER A-192
R GET FRAME BUFFER A-194
R LINE TYPE . A-200
R LOCK DEVICE A-202
R OFFSCREEN ALLOC A-205
R OFFSCREEN FREE A-208
R OV ECHO COLORS A-210
R OVERLAY ECHO A-213
R TRANSPARENCY INDEX A-216
R UNLOCK DEVICE A-219

Contents-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

READ COLOR MAP A-221
REPORT PROXIMITY A-223
SBVESC BEGIN ARC and SBVESC END ARC A-224
SBVESC COMMENT A-225
SBVESC LF COORD A-226
SBVESC OBJ NAME A-227
SBVESC RT COORD A-229
SET ACCELERATION A-231
SET BANK CMAP A-232
SET BUFFER SIZE A-234
SET REPLACEMENT RULE A-236
SMD ALLOCATE MEMORY A-243
SMD DEFINE DEPTH A-244
SMD DEFINE XY A-246
SMD GET MEM REQUIRED A-249
SMD SUPPLY MEM BUFF A-250
STEREO . A-252
SWITCH SEMAPHORE A-254
TC HALF PIXEL A-256
TEXTURE CONTROL A-257
TEXTURE DOWNSAMPLE A-260
TEXTURE RETRIEVE A-262
TOGGLE 2D COLORMAP A-264
TRANSPARENCY A-266
TRIGGER ON RELEASE A-269
ZBANK ACCESS A-270
C Syntax . A-271
FORTRAN 77 Syntax A-271
Pascal Syntax . A-271

ZBUFFER ALLOC A-272
ZSTATE RESTORE A-275
ZSTATE SAVE . A-279
ZWRITE ENABLE A-282

Index

Contents-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

17-1. Default Line Types 17-8
18-1. Keys and Their Values 18-10
20-1. 20-4
21-1. Default Color Table 21-9
21-2. Current Echo Type 21-10
21-3. Prede�ned Line Types 21-11
22-1. CADplt and HPGL Driver Features 22-2
22-2. Default Color Map 22-11
22-3. Line Types . 22-12
22-4. Hardware Character Sets 22-15
22-5. Polygon Vertex Support 22-17
22-6. Hardware Text Support 22-19
22-7. HP-GL Command Support 22-21
23-1. CADplt2 Device Driver Features 23-2
23-2. Default Color Map 23-13
23-3. Line Types . 23-15
23-4. Hardware Character Sets for CADplt2 23-18
23-5. Character Set Names Common to the CADplt and CADplt2

drivers . 23-19
23-6. HP-GL/2 Typefaces 23-20
23-7. Hardware Text Support 23-22
23-8. Hardware Support of Text Font Indices 23-23
23-9. Supported Combinations of text path and text line path . . 23-24
23-10. HP-GL/2 Command Support 23-25
24-1. Printer Resolution Information 24-10
25-1. Print Modes . 25-8
26-1. Default Color Table 26-7
26-2. Top Mode Default Color Table 26-8
27-1. Troubleshooting Guide 27-9
28-1. Default Color Table 28-9

Contents-16

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

28-2. HP 2397 Power-up Color Table 28-10
28-3. Drawing Mode Replacement Rule 28-15
A-1. Supported Operation Codes (op) A-2
A-2. Supported Device Drivers A-9
A-3. A-77
A-4. A-77
A-5. A-78
A-6. Replacement Rule Truth Table A-145
A-7. Example Replacement Rules A-146
A-8. A-155
A-9. A-155
A-10. A-266
A-11. A-266
A-12. Default O�-Screen Bu�er Allocation A-272

Contents-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

16

The Starbase Memory Driver

Device Description

The Starbase Memory Driver (SMD) permits the user to treat memory like a
frame-bu�er device and direct Starbase operations to it. The SMD can be used for
quick pop-up menus from o�screen, shadow bu�ering (creating images o�screen
and then move rapidly to on-screen), etc. See the chapter \The Starbase Memory
Driver" in the Starbase Graphics Techniques manual for further information on
what the SMD is and how to use it.

The SMD driver supports three modes:

SMDpixel mode (pixel-major packing format with one bank)

SMDpixel3 mode (pixel-major packing format with three banks)

SMDplane mode (plane-major packing format with 1, 2, or 3 banks)

SMD 16-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

Setting Up the Device

Switch Settings

Switch settings are not applicable to a memory-resident frame bu�er.

Special Device Files (mknod)

No special device �le need be created when using the SMD, since the gopen path
name used is /dev/null.

Linking the Driver

Shared Libraries

SMDpixel and SMDpixel3 is the shared library �le libddSMDpix.sl in the
/usr/lib directory. The shared library �le will be explicitly loaded at run time
by compiling and linking with the starbase shared library /usr/lib/libsb.sl,
or by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

16-2 SMD

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

Archive Libraries

SMDpixel and SMpixel3 is the archive �le libddSMDpix.a in the directory
/usr/lib. This device driver may be linked to a program using the absolute
path name /usr/lib/libddSMDpix.a, an appropriate relative path name, or by
using the -l option as in -lddSMDpix with the LDOPTS environmental variable
set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddSMDpix -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddSMDpix -Wl,-L/usr/lib/X11R5 -lXwindow\
-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddSMDpix -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

SMDplane is the �le libddSMDpln.a in the directory /usr/lib. This driver is
linked the same way as SMDpixel.

If you are using raster fonts, you must also link in the libfontm.a library.

SMD 16-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

fildes = gopen(Path, Kind, Driver, Mode);

Path Always /dev/null when using the Starbase memory driver.

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

Driver The character representation of the driver type. This must be either
SMDpixel, SMDpixel3, or SMDplane. For example:

"SMDpixel" for C.

'SMDpixel'//char(0) for FORTRAN77.

'SMDpixel' for Pascal.

SMDpixel is for byte-per-pixel with a depth of 8, and SMDpixel3 is
for byte-per-pixel and three banks, giving a depth of 24.

SMDplane is for bit-per-pixel with a depth of up to 24 planes.

Mode The mode control word consisting of several ag bits which can be
or ed together. Listed below are those ag bits which have no a�ect
for this driver and those which have device-dependent actions. Flags
not discussed below operate as de�ned by the gopen procedure.

The SMD supports mode values of the RESET_DEVICE, INIT, THREE_D,
and MODEL_XFORM ags. For MODEL_XFORM, shading and hidden-
surface removal are not supported. However, opening in MODEL_XFORM
mode a�ects how matrix stack and transformation routines are per-
formed.

For all modes, the software color map is automatically initialized.

The SPOOLED ag bit causes an error for this driver and cannot
spool memory bu�ers.

The following ag bits have device dependent actions:

16-4 SMD

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

0|open the device, but defer memory bu�er allocation until
explicitly requested through gescape or until the �rst graphics
primitive is called.

INIT and RESET_DEVICE|open and initialize the device as
follows:

1. The memory bu�er is allocated.
2. Clear memory bu�er to 0s.
3. Reset the color map to its default values.

Syntax Examples

To open and initialize an SMD device (SMDpixel3 may be substituted for
SMDpixel if you desire a three-bank memory bu�er; SMDplanemay be substituted
for bit-per-pixel memory applications.):

For C Programs:

fildes = gopen("/dev/null", OUTDEV, "SMDpixel", INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/null'//char(0), OUTDEV, 'SMDpixel'//char(0), INIT)

For Pascal Programs:

fildes = gopen('/dev/null', OUTDEV, 'SMDpixel', INIT);

SMD 16-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

Special Device Characteristics

For device coordinate operations, location (0, 0) is the upper-left corner of the
memory bu�er with X-axis values increasing to the right and Y-axis values
increasing down. The lower-right corner of the bu�er is therefore xmax, ymax,
where xmax and ymax are 1 less than the X-size and Y-size speci�ed for the
memory bu�er. The size can be set through calling the gescape procedure
SMD_DEFINE_XY.

16-6 SMD

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

Starbase Functionality

Commands Not Supported

This section notes which standard Starbase capabilities are not supported by the
SMD:

An SMD memory bu�er is an output-only device. Thus, the following Starbase
input-related calls are not supported (no action is taken if they are called):

await_event read_locator_event

define_raster_echo request_choice

disable_events request_locator

echo_type sample_choice

echo_update set_locator

enable_events set_signal

initiate_request track

inquire_request_status track_off

read_choice_event

A call to inquire_input_capabilities indicates that there are no input
capabilities.

The SMD's memory is never visible; you can never see the image with your
eyes. Thus, these two visibility-related calls are ignored for the SMD.

await_retrace display_enable

SMD 16-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

The SMD does not emulate features provided by device hardware. For example,
the Z-bu�er hidden-surface removal and shading that can be done by the
transform engine drivers are not supported. Explicitly, the functions not
supported are:

alpha_transparency light_attenuation

backface_control light_model

bf_alpha_transparency light_switch

bf_control line_endpoint

bf_fill_color line_filter

bf_interior_style perimeter_filter

bf_perimeter_color set_capping_planes

bf_perimeter_repeat_length set_model_clip_indicator

bf_perimeter_type set_model_clip_volume

bf_surface_coefficients shade_range

bf_surface_model surface_coefficients

bf_texture_index surface_model

contour_enable texture_index

define_contour_table texture_viewport

define_texture texture_window

define_trimming_curve viewpoint

deformation_mode zbuffer_switch

depth_cue

depth_cue_color

depth_cue_range

hidden_surface

interior_style (INT_OUTLINE)

interior_style (INT_POINT)

intline_width

light_ambient

Conditionally Supported

Routines which are partially supported are:

bank_switch For SMDpixel mode, this call is ignored. For SMDpixel3
and SMDplane, this call is supported.

shade_mode The color map mode may be selected, but shading cannot
be turned on

16-8 SMD

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

vertex_format The user can call this routine, but the driver does not
recognize any extra coordinates.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with_data

Additional data per vertex will be ignored if not sup-
ported by this device. For example, contouring data will
be ignored if the device does not support it.

Configuration

A packing format to emulate the full 1024�400 resolution of the Series 300
medium-resolution frame bu�er (driver 300l is not supported).

Note The 300l driver normally does vector generation turning on
two pixels at a time. This is because its resolution is actually
1024�400, but Starbase treats the device as 512�400. There
is a gescape operation that lets you treat the 300l resolution
as 1024�400 during block_write and block_read operations.
When using this mode, the driver does not skip every other byte
of input (or output).

The SMD driver does not provide locking and unlocking capabilities that permit
shared access to a single memory bu�er.

The HP 98720 driver supports 8 planes, 16 planes, or 24 planes of frame
bu�er. If using the 16 planes, only 8 planes are displayabled at a time (double-
bu�ered). With 24 planes, you can double-bu�er with two sets of 12 planes.
Thus, these modes are intended for double-bu�ering applications. SMDpixel3

SMD 16-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

always emulates a full 24 planes and does not emulate 8 or 16 planes. You can
use these 24 planes to double-bu�er with either 8 or 12 planes per bu�er.

SMDplane emulates exactly the number of planes speci�ed:

1, 3, 4, 6, or 8 planes: 1 bank.

16 planes: 2 banks (8 planes, double-bu�ered).

24 planes: 3 banks.

Fast Alpha and Font Manager

The SMD supports raster text calls from the \Fast Alpha and Font Manager
Libraries" as documented in Fast Alpha/Font Manager Programmer's Manual .
Since raster fonts consist of one byte per pixel, raster text is written only to the
currently selected bank when the SMD is being used in SMDpixel3 mode. This
is similar to the operation of other raster functions like block_write.

SMD Errors

The general philosophy of SMD error reporting is that when a Starbase function
is invoked which is not supported by SMD a no-op is performed, but no error or
warning is issued.

Errors are issued for operations that will not work, for example, input on an
output-only device.

Harmless errors (a color map index out of range) cause warnings to be issued.

SMD reports the following errors:

SMD opened with SPOOLED, OUTINDEV, or INDEV speci�ed.
The user supplies an address to a block of memory for the memory bu�er after
the memory bu�er has already been allocated. Or the user supplies the NULL
pointer in the SMD_SUPPLY_MEM_BUFF parameter of the gescape call.
The user tries to rede�ne the depth via gescape on an SMDpixel3 format.
The user supplies an invalid gescape opcode.

16-10 SMD

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

After frame bu�er resizing, either by a depth rede�nition or X, Y rede�nition,
the frame bu�er is greater than 232-1 bytes (4 gigabytes). This is the maximum
size that a frame bu�er can be.
User tries to rede�ne the depth for a SMDpixel memory bu�er beyond 8 planes
or some value other than 1,3,4,6, or 8.
User tries to de�ne the depth for a SMDplane memory bu�er beyond 24 planes
or some value other than 1, 3, 4, 6, 8, 16, or 24.
User speci�es an X or Y value in R_DEFINE_XY larger than 215-1 (32,767).
The memory bu�er could not be allocated. One possible reason is that the
size causes the application to exceed its current address space limitation. The
maximum amount of memory that can be allocated depends on the amount
of swap space available to the system, the maximum data segment size per
process in the system, and the number of processes running. The total address
space (used by all currently running processes) cannot exceed the amount of
swap space available in the system.

If the SMD is unable to allocate the amount of memory requested, it returns
what it can allocate depending on the amount asked for. If the allocation
happens via gescape, this information is returned in arg2. If the allocation
happens at gopen or at the time of the �rst graphics primitive, this information
is reported to stderr.

The amount SMD claims it can allocate will uctuate, since it is dependent on
the number of other processes running at that time.

It is your responsibility to size down your application or other processes to be
able to get the memory you are requesting. Possible methods of sizing down
the application are:
Decrease the number of other bitmapped display drivers that are running
with the application. Each driver maps the frame bu�er into the address
space.
Decrease how much memory is being requested from the SMD.
Recon�gure your system with more swap space or a larger data segment size
per process (refer to the system's con�guration manual).
Decrease the number of other processes running in the system concurrently.
This will give more address space to the SMD application program.

SMD 16-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

16

Parameters for gescape

Detailed information about gescape functions can be found in Appendix A of
this manual.

R_BIT_MODE|bit mode (supported by SMDpixel and SMDpixel3).

Note R_BIT_MODE is always true for SMDplane.

R_BIT_MASK|bit Mask (supported by SMDpixel and SMDpixel3).
DEF_FILL_PAT|de�ne �ll pattern (supported by SMDpixel and SMDpixel3).
R_GET_FRAME_BUFFER|get frame bu�er pointer (supported by all SMD drivers).
R_LINE_TYPE|de�ne line type

The following gescape functions are unique to this driver:

SMD_DEFINE_DEPTH|de�ne memory bu�er depth
SMD_DEFINE_XY|de�ne X, Y dimensions
SMD_SUPPLY_MEM_BUFF|supply memory bu�er
SMD_GET_MEM_REQUIRED|determining memory requirements
SMD_ALLOCATE_MEMORY|allocate frame bu�er

16-12 SMD

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

17

The Starbase-on-X11 Device Driver

Device Description

The Starbase-on-X11 (sox11) device driver libraries,libddsox11.a and
libddsox11.sl, allow an application to use Starbase functions within version 11
of the X Window System. The sox11 driver implements the device-dependent
Starbase routines by calling the X11 library, Xlib, and may be described as an
implementation of Starbase \on top of" X11.

The implementation allows Starbase applications to use the features of version
11 of the X Window System. This includes running applications over the
network, where the application runs as a client on one machine while using
the X11 display server to perform I/O either on another machine or locally.
A Starbase application can use any HP 9000 Series 300/400/700/800 machine
running Starbase as its X11 client machine, while the same application may use
any accessible hardware running an X11 server to perform all I/O operations.
Thus an X11 window serves as a virtual device for Starbase.

Not all Starbase calls (for example, 3D solids-modeling calls) can be translated
into Xlib calls because this driver does not support full Starbase functionality.
However, since Xlib works over the network between a client and a server,
the sox11 driver permits Starbase to work over the network, but with reduced
functionality and performance compared to Starbase running with the Starbase
display drivers.

Note that the X11 server performing I/O for the application need not necessarily
be running on HP equipment, however, di�erences in behavior can result if such
non-HP equipment is used.

SOX11 17-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

Setting Up a sox11 Environment

The sox11 driver can be used on any machine once Starbase and version 11 of the
XWindow System have been installed. No special installation need be performed,
and no special nodes need to be made in order to use the sox11 driver. As long
as Starbase and X11 have been installed on the system, applications may run on
any accessible display being controlled by an X11 server.

Linking the sox11 Driver with an Application

Shared Libraries

The /usr/lib directory contains the shared sox11 Device Driver �le named
libddsox11.sl.

The device driver will be explicitly loaded at run time by compiling and linking
with the Starbase shared library /usr/lib/libsb.sl, or by using the -l option
-lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

17-2 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
To use the sox11 device driver, two others libraries, Xlib -lX11 and the HP
extension library -lXhp11 must also be linked into the application.

Upon device initialization the proper driver will be loaded. See the discussion
of the gopen procedure in the Device Initialization section of this chapter for
details.

Archive Libraries

The name of the archive sox11 driver is libddsox11.a. This driver may be linked
into your application using an absolute path name /usr/lib/libddsox11.a,
an appropriate relative path name, or by using the -l option -lddsox11 with
the LDOPTS environmental variable set to -a archive. Xlib -lx11 and the HP
extension library -lXhp11 must also be linked into the application. The absolute
path name of the driver is /usr/lib/libddsox11.a.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -lddsox11 -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for FORTRAN, use:

F77 example.f -lddsox11 -Wl,-L/usr/lib/X11R5 -lXwindow \

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddsox11 -Wl,-L/usr/lib/X11R5 -lXwindow \

-lsb1 -lsb2 -lXhp11 -lX11 -o example

Note that libsb1.a and libsb2.a must be linked before the X11 libraries and
that libXhp11.a must be linked before libX11.a.

SOX11 17-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
Both X11 libraries are necessary for proper functionality. The libX11.a library
allows you to make calls to X, while the libXhp11.a library adds HP's extended
calls.

Programmatic Initialization

In order to use Starbase functionality within an X11 window, you must perform
a gopen() call on an existing targeted X11 window. The window may be of any
size and location on a device controlled by an X11 server. Multiple processes may
gopen() the same window (as long as only one process gopen() a window as an
INDEV), and a single process may gopen() multiple windows.

An X11 window for use with the sox11 driver is easily created in either of two
ways:

From outside a program by executing xwcreate from a terminal window
command line. The use of xwcreate is documented in the Using the X Window
System manual.

From within a program by calling XCreateWindow() and using
make_X11_gopen_string() to create a string to pass to gopen(). The use of
XCreateWindow() is documented in the Programming with Xlib manual. The
use of
make_X11_gopen_string() is documented in the Starbase Reference manual.

Gopen Parameters

The gopen() procedure has four parameters: Path, Kind, Driver, and Mode.

Path The pathname of the window as speci�ed to the xwcreate command
or the string returned by the make_X11_gopen_string() command.

Kind The I/O characteristics of the device. This parameter may be
OUTDEV, INDEV, or OUTINDEV for this driver. If OUTDEV
is used, then only the output display routines will be available to
the application. If INDEV or OUTINDEV is used, then X11 will
present a virtual input device interface where a keyboard is present
as a CHOICE device and a three button pointer may be accessed as
both a CHOICE device and a LOCATOR device.

17-4 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

Note Due to the nature of the X11 protocol, only one process may open
a window as INDEV at a time. If more than one process tries to
access a window as INDEV, an error will result.

Driver The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire
the device and by default load the accelerated driver (if applicable).
For example:

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver.
In this case the UNACCELERATED/ACCELERATED ag is ignored. For
example:

"sox11" for C
'sox11'//char(0) for FORTRAN77
'sox11' for Pascal

Mode The mode control word, which consists of several ag bits which
are OR'd together. The RESET DEVICE and INIT ags clear the
window and cause the default Starbase colormap to be set for the
sox11 window, but do NOT cause any hardware to be reset in the
devices.

Gopen Examples

An X11 window must �rst exist before trying to use gopen() with X11. The
xwcreate command creates a window and a pty �le. The �le can be used as a
device �le by gopen() to access the window. The name of the �le is the name of
the window supplied to xwcreate pre�xed by the �le path. The default path is
/dev/screen. See the xwcreate manual page for details.

Three methods for a C program to create and gopen() an X11 window follow.
These examples create a 150x150 window named window1 at location 5,5 on the
default display. They then gopen() window1 for an output application. Method

SOX11 17-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
#2 is identical to method #1 except that the xwcreate command has been moved
inside the program. Method #1:

#include <starbase.c.h>

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

int fildes; /* Starbase graphics descriptor */

fildes = gopen(argv [1], OUTDEV, argv [2], INIT);

if(filedes == -1) exit(1);

ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7);

make_picture_current(fildes);

sleep(10);

gclose(fildes);

}

If the above program is called \myprog," then it would be run using the following
commands:

xwcreate -geometry 150x150+5+5 window1

myprog /dev/screen/window1

xwdestroy window1

Method #2:

#include <starbase.c.h>

#include <stdio.h>

main()

{

int fildes; /* Starbase graphics descriptor */

system("xwcreate -geometry 150x150+5+5 window1");

fildes = gopen("/dev/screen/window1", OUTDEV, "sox11", INIT);

if(filedes == -1) exit(1);

ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7);

make_picture_current(fildes);

sleep(10);

gclose(fildes);

}

Method #3:

#include <starbase.c.h>

#include <X11/Xlib.h>

17-6 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
#include <stdio.h>

main()

{

Display *Xdisplay; /* X display connection */

Window window; /* X window identifier */

XEvent event; /* Holds X server events */

int fildes; /* Starbase graphics descriptor */

extern char *make_X11_gopen_string();

if ((Xdisplay = XOpenDisplay(NULL)) == NULL) {

fprintf(stderr, "Can't open %s\en", XDisplayName(NULL));

exit(1);

}

window = XCreateSimpleWindow(Xdisplay, /*Create the window */

DefaultRootWindow(Xdisplay),

5, 5, 150, 150, 2,

WhitePixel(Xdisplay, DefaultScreen(Xdisplay)),

BlackPixel(Xdisplay, DefaultScreen(Xdisplay)));

XSelectInput(Xdisplay, window, StructureNotifyMask);

XMapWindow(Xdisplay, window);

XSync(Xdisplay, 0);

do { /* Make sure window is visible */

XNextEvent(Xdisplay, &event); /* Before writing to it */

} while (event.type != MapNotify || event.xmap.window != window);

fildes = gopen(make_X11_gopen_string(Xdisplay, window), /* Gopen window */

OUTDEV, "sox11", INIT);

ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7); /* Render a picture */

make_picture_current(fildes);

sleep(10);

gclose(fildes);

XCloseDisplay(Xdisplay);

}

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper left corner of the
window at the time gopen() is executed. Values along the horizontal axis increase
to the right. Values on the vertical axis increase in a downward direction.

SOX11 17-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

Device Defaults

The device defaults depend upon the defaults for the display device on which
the window is located. These defaults are determined by the X11 server for that
display device. For example, an X11 server on a monochrome display defaults
to only having one plane of color, black and white, while an X11 server on a
pseudo-color display utilizes as many planes of color as the display allows.

Some virtual device defaults are determined by the software driver, lib-

ddsox11.a. These are as documented below.

Line Type Defaults

Default line types are shown in the table below:

Table 17-1. Default Line Types

Line Type Bit Pattern

0 1111111111111111

1 1111111100000000

2 1010101010101010

3 1111111111111010

4 1111111111101010

5 1111111111100000

6 1111111111110110

7 1111111110110110

Color Map Defaults

When executing a gopen in an X11 window without an INIT ag set, the
X11 colormap for the window is read into the Starbase color map. A call to
inquire_color_table provides information about the color map. The X11
server and direct calls to the X11 library arbitrate over the allocation of color
cells.

define_color_table is supported. The default color table is set up if a device
is opened with the INIT ag set. Note that the color scheme of all the windows
will change when this call is made and the window receives \colormap focus" (see
below).

17-8 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
define_color_table will de�ne a virtual colormap for the window. Anytime the
\colomap focus" is given to the window by the window manager, that window's
virtual colormap will be installed in the hardware colormap . In the window
manager (vuewm or mwm), colormap focus can be set in three ways:

pointer Anytime the pointer enters the window, that window is
given the colormap focus.

explicit Anytime the window receives a button click, it is given
colormap focus.

keyboard Any window that has input focus has colormap focus.

Be aware that the same color may have di�erent values in di�erent colormaps
and that switching colormaps a�ects every window on your screen. For example,
if you want to run Starbase on X11, you could run into the following situations.

If you use the X11 colormap, your X environment has the proper colors, but
the Starbase window is strangely colored.

If you use the Starbase colormap, the Starbase window has the proper colors,
but your X environment is strangely colored.

Input Defaults

The keyboard input is by default set to \cooked" mode. This mode returns
National Language Support (NLS) values for the full range of ASCII representable
keys. Other special function keys return keycodes de�ned by the reference page
for XrInitMap(3X).

Also, by default, only key presses and button presses are reported.

An application can request to be sent raw keystrokes or key and button releases
through gescapes. See the section describing the input gescapes for details.

The X11 pointer is CHOICE device ordinal one, a mask of all buttons pressed is
CHOICE device ordinal two, the X11 keyboard is CHOICE device ordinal three,
and the X11 pointer position is LOCATOR device ordinal one.

SOX11 17-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

Starbase Functionality

Commands Not Supported (NO-OPS)

The following commands are not supported. These commands will not generate
Starbase errors.

await_retrace depth_cue_range

backface_control hidden_surface

bank_switch light_ambient

bf_control light_attenuation

bf_fill_color interior_style (INT_OUTLINE, INT_POINT)

bf_interior_style light_model

bf_perimeter_color light_source

bf_perimeter_type light_switch

bf_perimeter_repeat_length shade_mode

bf_surface_coeficients shade_range

bf_surface_model surface_coefficient

dbuffer_switch surface_model

define_trimming_curve viewpoint

depth_cue zbuffer_switch

depth_cue_color

Gescapes

The following gescapes are supported by the sox11 driver. Detailed information
on these gescapes can be found in Appendix A of this manual.

READ COLOR MAP

R BIT MASK

R BIT MODE

R DEF FILL PAT

TRIGGER ON RELEASE

IGNORE RELEASE

17-10 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
All other gescapes are used to control the input model. These gescapes are
described in the following section (Input Model).

XN INPUT RAW

XN KEY RELEASE

XN BUTTON RELEASE

Input Model

A Starbase application is free to gopen an X11 window with the OUTDEV ag
and utilize the X11 library calls to perform input. The Starbase application may
also choose to use Starbase library input routines if the INDEV or OUTINDEV
ags are used as arguments to gopen. A program should use exclusively either
X11 input routines or Starbase input routines. Using both within the same
application may cause an XError.

The sox11 input model represents X11 as a virtual device including a keyboard
and an X11 pointer. The keyboard is accessed as a CHOICE device while the
X11 pointer is accessed as a CHOICE and a LOCATOR device.

The default mode returns HP Roman-8 keycodes. This is the \cooked" mode for
input keystrokes. Special function keys and control keys are not supported in
this mode and their return value is unde�ned. These keys generate a two-byte
sequence. The sample_choice and request_choice functions will return one of
the two bytes. The other byte is discarded. (As to which byte is retained, this is
unde�ned.)

\Raw" input for this driver consists of an integer composed of two parts. The
�rst half (or upper two bytes) specify the state of the keyboard at the time of the
button or key press (that is, an \Extend char" or \CTRL" key is depressed at
the time of the event). The lower half (or last two bytes) is a server dependent
key symbol which, for this server, identi�es each key or button.

In \cooked" mode the X11 pointer buttons are represented by values one through
�ve, corresponding to the X11 pointer button used. Button one typically
represents the left-hand button, two represents the middle button, etc. In \raw"
mode the value returned by a button is determined by the \raw" value returned
by the X11 server for that button.

SOX11 17-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17
The X Window System input device can also return raw keycodes. These codes
are the unmapped keycodes and the keyboard state information returned by
the X11 server. The input model can be placed in \raw" mode using the
XN INPUT RAW gescape with a value of TRUE in the �rst argument of the
gescape. Similarly the input model can be reset to the default \cooked" mode
using the XN INPUT RAW gescape with the �rst argument containing the value
of FALSE.

By default the sox11 driver returns only events associated with the key press and
button press input. An application can request input events associated with both
presses and releases of keys or buttons. Requesting the release events associated
with X11 pointer buttons or keys can be controlled independently.

An application can request events associated with both button presses and button
releases by using the XN BUTTON RELEASE gescapes. The value returned
by a button release event is the negative value of the corresponding button press
event.

An application can request to be sent events associated with both key presses
and key releases using the XN KEY RELEASE gescape. The value returned by
a key release event is the negative value of the corresponding key press event.

Both of these gescapes are set by sending a �rst argument of TRUE. Both
gescapes are reset by sending a �rst argument of FALSE.

HP-HIL pointing devices controlled by the X11 server are mapped into the virtual
X11 pointer device represented by the input model. The X11 pointer cannot
be controlled by both the X11 server, sox11, and the HP-HIL device driver,
libddhil.a, at the same time. If the pointer device is to be controlled by the
Starbase HP-HIL device driver, then the pointer must be excluded from the X11
server.

17-12 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

Programming Strategy

Directly Calling the X11 Library

A window resize event will have no e�ect on the space that the driver runs in.
At the time of the gopen(), the driver determines window size and it will run in
that space until gopen() is executed in the window again.

Starbase Echo

When a Starbase echo is used, it is removed before every Series of Starbase prim-
itives and placed back in the window after drawing is �nished. This increases
performance dramatically compared to putting the echo back after every prim-
itive, but it means that, after every series of draws, make_picture_current()
should be called so that the echo will reappear in the window.

X Cursor

When a window is created within a Starbase application by making a call to
XCreateWindow() or XCreateSimpleWindow(), no default X cursor is de�ned
for the window. Instead, the window inherits its cursor from its parent.

If a window is created via the xwcreate command, however, the white left arrow
cursor is installed by sox11 at gopen time.

This allows maximum exibility for applications creating their own window. Any
cursor may be de�ned for the window using any of the Xlib cursor calls, and that
cursor won't be changed by sox11.

Polygon Fills

The sox11 driver uses the following polygon �ll algorithm: A border pixel is
drawn only if the polygon is to the right of or underneath the border pixel. This
allows two polygons using the exclusive OR rule to be drawn next to each other
without any loss of continuity.

SOX11 17-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

17

Window Mapping

When running in a \window smart" environment, be sure to map the created
window and do an XSync before gopening sox11. This ensures that your window
exists, and that no drawing calls will be lost. In order to ensure all drawing calls
are displayed, you must create a retained window or trap all exposure events and
redraw the portion that was previously occluded or unmapped.

Double Buffering

Double bu�ering is accomplished by modifying the colormaps for the Starbase
window. See the \Colormap Defaults" section for details. Be aware, however, of
the problems that can occur when a virtual colormap is changed.

Note that double bu�ering is not supported in CMAP FULL mode.

Raster Text

If you wish to get the most e�cient performance from calls to fm_write, set the
colormode ag to FALSE. See the fast alpha/font manager documentation for
details.

The following fast alpha/font manager calls are not supported when rendering to
a remote window:

fm_kjfontinfo

fm_rasterfontinfo

Raster text to non-HP equipment is not supported.

17-14 SOX11

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

18

The HP-HIL Device Driver

Device Description

The Hewlett-Packard Human Interface Link (HP-HIL) Device Driver is used to
provide graphics input from the following devices:

HP 45911A HP-HIL Graphics Tablet

HP 46020A HP-HIL Keyboard

HP 46021A HP-HIL Keyboard

HP 46060A HP-HIL Mouse

HP 46060B HP-HIL 3-Button Mouse

HP 46083A HP-HIL Knob

HP 46085A HP-HIL Control Dial Module

HP 46086A HP-HIL 32-Button Box

HP 46087A HP-HIL A-Size Digitizer

HP 46088A HP-HIL B-Size Digitizer

HP 46089A HP-HIL 4-Button Cursor for the HP 46087/88A Tablets

HP 46094A HP-HIL Quadrature Box

HP 46095A HP-HIL Quadrature 3-Button Mouse

HP 80409A HP-HIL 3-Button Track Ball

HP-HIL 18-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Setting Up the Device

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further information. The name of this special device
�le is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the name that is suggested for these
devices is hil1 for the �rst device on the hil loop, hil2 for the next device, etc.

There may be up to seven devices connected to a single HP-HIL driver board
allowing device �le names of the form hil1, hil2, . . . , hil7.

The HP 46085A HP-HIL Control Dial Module must have three device �les created
for it since each set of three dials in a row acts as a HP-HIL device.

The following examples will create a special device �le for this device. Remember
that you must be superuser or root to use the mknod command.

For the Series 300

The mknod parameters should create a character device with a major number of
24 and a minor number of 0x0000hai where hai is the device's one digit address
(position on the HP-HIL loop from the computer interface card).

mknod /dev/hilhai c 24 0x0000hai0

18-2 HP-HIL

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

For the Series 700

The mknod parameters should create a character device with a major number of
24 and a minor number of 0x2030hai0 wherehai is the device's one digit address
(position on the HP-HIL loop from the computer interface card).

mknod /dev/hilhai c 24 0x2030hai0

For the Series 800

The mknod parameters should create a character device with a major number of 24
and a minor number of 0x00hluihai0 where hlui is the two-digit hardware logical
unit and hai is the device's one-digit address (position from the computer interface
card). Note that the 0x causes the number to be interpreted hexadecimally.

mknod /dev/hilhai c 24 0x00hluihai0

or

mknod /dev/hil_hlui.hai c 24 0x00hluihai0

Linking the Driver

Shared Libraries

The shared HP HP-HIL Device Driver is the �le named libddhil.sl in the
/usr/lib directory. The device driver will be explicitly loaded at run time by
compiling and linking with the starbase shared library /usr/lib/libsb.sl, or
by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

HP-HIL 18-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The archive HP-HIL Device Driver is located in the /usr/lib directory with
the �le name libddhil.a . This device driver may be linked to a program by
using the absolute path name /usr/lib/libddhil.a, an appropriate relative
path name, or by using the -l option as in -lddhil.

The LDOPTS environmental variable must be set to -a archive. The reason for
using this environmental variable is that the -l option will look for a shared
library driver �rst and then look for the archive driver if shared was not found.
By exporting the LDOPTS variable as speci�ed above, the -l option will only look
for archive drivers. For more information, refer to the Programming on HP-UX
manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddhil -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddhil -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddhil -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

18-4 HP-HIL

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path When opening a device for exclusive access, this parameter is the
name of the special device �le created by the mknod command as
speci�ed in the last section, that is, /dev/hil1. When opening
a device for shared access in an X11 environment, this parameter
describes a device/window combination. Please refer to the
chapter \Input Operation" in the Starbase Graphics Techniques
manual.

Kind Indicates the I/O characteristics of the device. This parameter must
be INDEV for this driver.

Driver The character representation of the driver type. This is hp-hil

modi�ed to meet the syntax of the programming language used,
namely:

"hp-hil" for C.

'hp-hil'//char(0) for FORTRAN77.

'hp-hil' for Pascal.

Mode This parameter is ignored.

HP-HIL 18-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Syntax Examples

To open and initialize an HP-HIL Mouse device at the second position on the
loop for input:

For C Programs:

fildes = gopen("/dev/hil2",INDEV,"hp-hil",INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/hil2'//char(0), INDEV,'hp-hil'//char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/hil2',INDEV,'hp-hil',INIT);

Special Device Characteristics

At each HP-HIL address there can be:

0, 1 or 2 locator devices (each can return X,Y,Z values)

0 or 2 choice device types

Enabling events with class = ALL will enable all of the above that are present.
If a choice device is present, you will get two choice events for each button press.
One is the button number, the other is the 32-bit wide bit map.

Some locator devices, such as the HP 46085A HP-HIL Control Dial Module 9-
Knob Box, have no buttons on them. This means that they can only be sampled.
Request and event functions have no meaning for these devices.

18-6 HP-HIL

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Cautions

1. Opening up a keyboard hil device in a non-window environment will take
away ITE keyboard access from the console until that device is closed.

2. Forking a process while an hil device is open will keep that device open until
the child process is complete or the device is explicitly closed by the child.

HP-HIL 18-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Starbase Functionality

Locator Devices

There are several defaults created at gopen time.

Relative Positioning

For some HP-HIL locator devices, position location is relative to the initial
position of the locator device (0, 0, 0).

For example, the initial \position" of a mouse is (0, 0, 0). Any move by the
mouse is with respect to that position. All relative devices have a default P1, P2
locator area that is 20 centimeters square. Movement of relative devices beyond
the P1, P2 limits is ignored and the device remains located at the point the device
crossed the P1, P2 boundary.

If you move beyond the P1, P2 limits and then move the relative device in the
reverse direction, the device position immediately starts to change. All motion
beyond the clip limit is forgotten, and the reversal point becomes the new limit
position.

If the procedure set_p1_p2 is executed with the FRACTIONAL parameter, the
fraction is with respect to 20 centimeters.

If the procedure set_p1_p2 is executed with the METRIC parameter, the limit
values are unlimited and can be larger than 20 centimeters.

The initial position of relative devices such as a mouse can be set via the
set_locator procedure.

Movement of the mouse is converted from device units to virtual device coordinate
values. The size of a device unit can be found using the inquire_sizes function.
To change the reference point, use the set_locator procedure. All location
coordinates are clipped to the rectangle de�ned by P1 and P2.

The default P1, P2 area for relative hil devices is square. To get a mapping from
the full range of the input device to the full range of the output device, either
call set_p1_p2 with METRIC parameters that have an aspect ratio equal to the
aspect ratio of the output device or call mapping_mode(DISTORT).

18-8 HP-HIL

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Absolute Positioning

For some HP-HIL locator devices, position is absolutely de�ned. Information
concerning the limits of these devices is provided with the manuals for these
devices.

To �nd the resolution of the device, use the inquire_sizes procedure.

Input values are not clipped, and absolute devices may return points outside of
the VDC extent.

Choice Devices

Choice devices are divided into two groups.

Ordinal 1|Reports the button number as an integer. Pressing a button
returns a positive value. By default, releasing a button will return zero. If
the gescape TRIGGER_ON_RELEASE has been executed, releasing a button will
return a negative valued button number.

Ordinal 2|Reports a 32-bit wide bit mask. The least signi�cant bit equals
button 1 and the most signi�cant bit equals button 32. A one value indicates
that the button is pressed. Buttons greater than 32 will trigger this report,
but will not a�ect the bit mask returned. Releasing a button will cause the
corresponding bit to be reset to zero.

HP-HIL Keyboards

If an HP-HIL keyboard is accessed using the Starbase gopen call, the keyboard
will no longer report to the terminal emulator. Be sure to leave a way to gclose

since the break key will not stop the program.

All keyboards are considered to be USASCII keyboards. When a key is depressed,
the USASCII integer value of that key is returned. Exceptions are �f1� thru
�f8� plus the four unmarked keys in the upper-right corner of the keyboard
representing keys 1 thru 12 respectively.

HP-HIL 18-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Table 18-1. Keys and Their Values

Key Value Key Value Key Value

Break 232 Delete line 240 System 248

Reset 233 Clear line 241 User 249

Stop 234 Clear display 242 Prev 250

Stop 234 Clear display 242 Prev 250

Extend char (left) 235 Menu 243 Next 251

Extend char (right 236 HOME 244 up arrow 252

Insert char 237 Select 245 down arrow 253

Delete char 238 Enter 246 right arrow 254

Insert line 239 Print 247 left arrow 255

Devices Without Triggers

Some devices provide location data, but have no buttons. Since they have no
trigger action, special rules apply to them.

All requests are invalid.

inquire_request_status is never TRUE (1). This means use sample proce-
dures only.

There is no way to generate an event.

18-10 HP-HIL

FINAL TRIM SIZE : 7.5 in x 9.0 in

18

Parameters for gescape

The hp-hil driver supports the following gescapes. Detailed information about
gescape functions can be found in Appendix A.

IGNORE_RELEASE|Trigger when button pressed.

TRIGGER_ON_RELEASE|Trigger when button released.

These gescape functions are unique to this driver:

DISABLE_AUTO_PROMPT|Disable HP-HIL auto prompt.

ENABLE_AUTO_PROMPT|Enable HP-HIL auto prompt.

IGNORE_PROXIMITY|Ignores stylus proximity.

PROMPT_OFF|Switch prompt indicator o�.

PROMPT_ON|Switch prompt indicator on.

REPORT_PROXIMITY|Reports stylus proximity.

SET_ACCELERATION|Set acceleration and threshold values.

HP-HIL 18-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

19

19

The HP Keyboard Device Driver

Device Description

This driver allows an Hewlett-Packard keyboard to be used as a choice device.
When an event occurs, the ordinal ASCII value of the key depressed is returned.

Setting Up the Device

Special Device Files

The device �le used for the keyboard that you are logged into is in the
/dev directory with the �le name tty. For other keyboards on your system,
your system administrator may set up di�erent device �les. See your system
administrator for information about those �les.

Linking the Driver

Shared Libraries

The shared keyboard device driver is the �le named libddkbd.sl in the /usr/lib
directory. The device driver will be explicitly loaded at run time by compiling
and linking with the starbase shared library /usr/lib/libsb.sl, or by using the
-l option -lsb.

KBD 19-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

19

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The archive keyboard device driver is located in the /usr/lib directory with the
�le name libddkbd.a. This device driver may be linked to a program by using the
absolute path name /usr/lib/libddkbd.a, an appropriate relative path name,
or by using the -l option as in -lddkbd with the LDOPTS environmental variable
set to -a archive.

The reason for using this environmental variable is that the -l option will look
for a shared library driver �rst and then look for the archive driver if shared was
not found. By exporting the LDOPTS variable as speci�ed above, the -l option
will only look for archive drivers. For more information, refer to the Programming
on HP-UX manual on linking shared or archive libraries.

19-2 KBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

19

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddkbd -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddkbd -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddkbd -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path This is the name of the special device �le created by the mknod

command as speci�ed in the last section. For example, /dev/tty.

Kind This indicates the I/O characteristics of the device. The parameter
must be INDEV for this driver.

Driver This is the character representation of the driver type. For this
driver, use keyboard or kbd modi�ed to meet the syntax of the
programming language used. For example, use one of the following
appropriate for the language being used:

"keyboard" for C.

"kbd" for C.

KBD 19-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

19

'keyboard'//char(0) for FORTRAN77.

'kbd'//char(0) for FORTRAN77.

'keyboard' for Pascal.

'kbd' for Pascal.

Mode This parameter is ignored.

Syntax Examples

To open and initialize a keyboard device for input:

For C Programs:

fildes = gopen("/dev/tty",INDEV,"kbd",INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/tty'//char(0),INDEV,'kbd'//char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/tty',INDEV,'kbd',INIT);

Special Device Characteristics

The keyboard driver only supports one choice subdevice.

No locator functions are currently supported.

To get access to local keys (such as arrow keys), the transmit function's escape
code should be sent to the tty before accessing the tty with the gopen

command. These functions are E
C&s1A to transmit local functions, and E

C&s0A

not to transmit local functions.

The HP-HIL driver can also be used to access the HIL keyboard, but only one
driver (HIL or keyboard) can access the keyboard with a gopen command at
any one time.

The keyboard driver and the terminal driver cannot be used simultaneously for
input from the same device because they interfere with each other's operation.

19-4 KBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

19

Starbase Functionality

Since tty devices do not generate key transitions (key up and key down),
sample_choice command gives it best approximation. When events are enabled,
the choice value returned (if any) is the last key pressed in the last one half second.
If events are not enabled, the choice value returned (if any) is the last key pressed
since the last sample_choice command or choice request.

At gopen time, the keyboard driver performs several tasks that should be noted.
It saves and replaces any signal handlers with its own handlers (except for the
SIGKILL, non-terminating, and ignored signals). Then the current state of the
tty (see tty(4)) is inquired and saved. The state of the tty is then changed (to
Canonical Input, No Echo, One character blocking reads, etc.) using ioctl and
fcntl. If a signal is received by the current process, one of the keyboard signal
handlers is called. This signal handler restores the old state of the tty and then
calls the signal handler that was present at gopen time.

If events are enabled and the current process gets killed by any signal, the
Starbase daemon program will also restore the state of the tty. This is done
in case a SIGKILL was received. If events are not enabled and the current process
gets killed, the tty is left in a bad state. To �x this try typing:

�CONTROL� J stty hp �CONTROL� J

Sophisticated users that need to use their own signal handlers and/or change the
state of the tty should be aware of these operations and program around them.

The keyboard driver uses the sigvector system call to set up its signal handlers.
The sigvector system call is incompatible with the signal system call. Thus,
users who need to use their own signal handlers will need to use sigvector. For
more information, see sigvector(2) and signal(2) in the HP-UX Reference.

KBD 19-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

20

The HP Locator Keyboard Device Driver

Device Description

This driver allows a Hewlett-Packard keyboard to be used as a choice input
device. Arrow keys can be used as a locator device if they are described in the
terminfo(4) data base.

The keyboard is treated as an ASCII device and is accessed via the termio(7)
interface. The HP-HIL Device Driver provides raw access to HIL keyboards.

Setting Up the Device

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. Refer to the mknod(1M) entry
in the HP-UX Reference for further information. The name of this special device
�le is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. The special
device �le /dev/tty always refers to the keyboard at which you are logged in to
the system. For other keyboards on your system, your system administrator may
set up di�erent device �les. Normally, for a terminal keyboard, the device �le
used to access the terminal can be used, but a getty(1M) process also running on
the terminal will interfere with correct behavior of the keyboard device. Logging
in to the other terminal and executing a long sleep(1) is one way to temporarily

LKBD 20-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

disable the getty process; the sleep can normally be terminated with the �BREAK�
key. For the same reason, a program cannot concurrently get both user textual
input and graphics input from the same keyboard.

The following example will create a /dev/tty special device �le. Remember
that you must be superuser to use the mknod command. This �le usually exists
and therefore does not need to be created.

mknod /dev/tty c 2 0x000000 �RETURN�

Note that the leading Ox causes the number be interpreted hexadecimally.

Linking the Driver

Shared Libraries

The shared locator keyboard device driver is the �le named libddlkbd.sl in the
/usr/lib directory. The device driver will be explicitly loaded at run time by
compiling and linking with the starbase shared library /usr/lib/libsb.sl, or
by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

20-2 LKBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

Archive Libraries

The archive locator keyboard device driver is located in the /usr/lib directory
with the �le name libddlkbd.a. This device driver may be linked to a program
by using the -l option as in -lddlkbd with the LDOPTS environmental variable
set to -a archive. The driver also requires the curses(3) library to be linked.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddlkdb -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddlkdb -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddlkbd -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

Terminfo Support Required

The locator keyboard driver uses the terminfo(5) data base and curses(3) to
enable and recognize the escape sequences sent by the terminal arrow keys. In
order to do this, the terminfo data base entry for your current terminal (as
indicated by the TERM environment variable) must include the necessary items. If
these items are not present, the choice device will still function, but the locator
device will not work properly.

LKBD 20-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

Modifying a terminfo entry should be done in several steps:

1. The current entry can be placed in a text �le for editing by using untic, which
reverses the e�ect of the tic(1M) processing program:

untic $TERM >myentry

2. The following items must be added to the entry if not present:

Table 20-1.

Capability Description Capability ID

enable keypad smkx

disable keypad rmkx

up arrow. kcuu1

down arrow kcud1

right arrow kcuf1

left arrow kcub1

scroll up kind

scroll down kri

home up khome

home down kll

For example, to extend the standard Hewlett-Packard terminal, the entry must
include the following items (the �rst six of which are usually included in the
terminfo entry as shipped with HP-UX):

smkx=\E&s1A

rmkx=\E&s0A

kcuu1=\EA

kcud1=\EB

kcuf1=\EC

kcub1=\ED
kind=\ES

kri=\ET

khome=\Eh

kll=\EF

20-4 LKBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

3. You should set your TERMINFO environment variable to a local directory for
testing purposes. The system will look in this directory �rst when attempting
to set up a terminal interface.

For the C shell:

setenv TERMINFO /users/joe/term

For the Bourne shell:

TERMINFO=/users/joe/term

export TERMINFO

4. The tic(1M) processor is used to compile the modi�ed entry. The tic will
use the current value of TERMINFO as the base directory for its output. Be
forewarned: tic creates subdirectories as necessary in the base directory.

tic -v myentry

5. Finally, the entry should be tested to make sure it is correct. When that
has been determined, the entry can be recompiled (by the superuser) into the
system default base directory, /usr/lib/terminfo. This should not be done
until it is absolutely certain that the entry is correct and that no information
has been lost from the original. After the entry is placed in the default location,
the TERMINFO environment variable need no longer be set to gain access to the
modi�ed entry.

LKBD 20-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the special device �le created by the mknod command
as speci�ed in the last section, e.g. /dev/tty.

Kind Indicates the I/O characteristics of the device. This parameter must
be INDEV for this driver.

Driver The character representation of the driver type. This is lkbd

modi�ed to meet the syntax of the programming language used,
namely:

"lkbd" for C.

'lkbd'//char(0) for Fortran77.

'lkbd' for Pascal.

Mode The mode control word (consists of several ag bits or ed together.
For this driver, the mode parameter is ignored. The driver always
starts with default values for locator position and resolution as
described in the following examples.

Syntax Examples

To open and initialize a keyboard device for output:

For C programs:

fildes = gopen("/dev/tty",INDEV,"lkbd",INIT);

For FORTRAN77 programs:

fildes = gopen('/dev/tty'//char(0), INDEV,'lkbd'//char(0),INIT)

For Pascal programs:

fildes = gopen('/dev/tty',INDEV,'lkbd',INIT);

20-6 LKBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

Special Device Characteristics

The locator keyboard driver replaces handlers for most signals with its own
cleanup routine in order to restore your keyboard processing to its state before
gopen was called. If you have speci�ed handlers for any signals, they will be
called after the cleanup. Cleanup is not done for SIGPWR, SIGKILL, SIGCLD, or
SGWINDOW. Your handler is restored at gclose.

Input processing is set to canonical, no echo, one-character non-blocking reads
while the driver is opened. Should the driver be killed in such a way that it
cannot clean up, the tty may be left in a bad state. To �x this, try typing:

�CONTROL� J stty hp �CONTROL� J

Sophisticated users that need to use their own signal handlers and/or change the
state of the tty should be aware of the locator keyboard driver behavior and
program their applications accordingly.

The locator keyboard driver uses the sigvector system call to set up its signal
handlers. The sigvector system call is incompatible with the signal system
call. Thus, users who need to use their own signal handlers will need to use
sigvector. For more information, see sigvector(2) and signal(2) in the HP-
UX Reference.

LKBD 20-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

Starbase Functionality

Choice Devices

The driver supports one choice device. When used as a choice device, the ordinal
ASCII value of the key depressed is returned. Since key transitions cannot be
detected, sample_choice will return the key pressed most recently in the last
0.1 second. If a tenth of a second has elapsed since a keypress, the choice value
returned will be zero. An exception to this rule is the ASCII �escape� key. The
curses routines, in attempting to recognize escape sequences sent by the keypad,
will wait one second before deciding that the �escape� key (value 27) has in fact been
pressed. Escape sequences that are not recognized (due to their absence from the
terminfo data base entry) will be interpreted as two or more keypresses, the �rst
is �escape�.

Locator Devices

When the locator is enabled, the alphanumeric keypad arrow keys change the
locator position one unit in the appropriate direction. Certain other keys have
been de�ned to change the locator position by ten units rather than one. The
supported set of locator keys is:

up arrow increment y by one unit

down arrow decrement y by one unit

right arrow increment x by one unit

left arrow decrement x by one unit

scroll up increment y by ten units

scroll down decrement y by ten units

home up increment x by ten units

home down decrement x by ten units

These functions do not map to the same keys on all keyboards. Some keyboards
may not support the second set of four keys. This will not prevent the arrow
keys from functioning properly as long as the terminfo entry describes them.

20-8 LKBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

On the ITF keyboard normally used with Series 300 systems, the four fast

locator keys are mapped as follows:

fast up shift + up arrow

fast down shift + down arrow

fast right shift + home

fast left home

One locator device is supported. The locator position is relative to the initial
position of the device; the default is (0, 0, 0). The initial position can be set by
the set_locator procedure.

The initial resolution of the locator is 1024�1024. The resolution of the locator
can be changed by calling set_p1_p2. One keystroke corresponds to a motion of
one device unit in X or Y, and also is de�ned as one millimeter for purposes of
the set_p1_p2 call with the METRIC parameter. If the FRACTIONAL parameter is
used, the fractions will be multiplied by the 1024�1024 device extents. If METRIC
is used, the number of millimeters exactly speci�es the number of units in the
locator limits. This allows mapping of any desired number of clicks to the display
being used during tracking.

Movement of the locator beyond the current P1, P2 limits is ignored; the device
remains located at the point at which the P1, P2 limit is reached. To get a
mapping from the full range of the input device to the full range of the output
device, call either set_p1_p2 with METRIC parameters that have an aspect ratio
equal to the aspect ratio of the output device, or call mapping_mode with the
hdistorti parameter TRUE.

The arrow keys provide no natural trigger for locator events and requests.
Consequently, any ordinary key is considered a trigger for the locator. This
means that if both a choice request and a locator request are pending, both will
be satis�ed at the time of the choice input. However, the locator request may
timeout if no key is pressed. Similarly, locator events are captured at the time
of a choice keypress. If both locator and choice events are enabled, the choice
keypress will cause two simultaneous events to be queued, one from the locator
and one from the choice device.

LKBD 20-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

20

Limitations

Due to the serial processing used on keyboard inputs and the operation of some
keyboards, some combinations of input functions are not possible. For example,
simultaneously tracking from the locator device and sampling the choice device
does not work well because most keyboards do not operate in a continuous rollover
mode. In other words, holding down one of the arrow keys and a choice key will
not cause a stream of alternating arrow and choice keystrokes to be sent to the
host computer. Instead, the last key pressed, or perhaps the �rst key in the
scanning sequence built into the keyboard, will be sent repeatedly. In general,
continuous high-speed sampling of a serial device is not advisable.

The lkbd, kbd, and hpterm drivers will interfere with each other if any
combination is used simultaneously for input from the same terminal.

Parameters for gescape

The following gescape functions are supported by the lkbd driver. Detailed
information about these functions can be found in Appendix A of this manual:

ENABLE_ACKNOWLEDGE|Allows bell character when request/event is satis�ed.
DISABLE_ACKNOWLEDGE|Disables bell function.

20-10 LKBD

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

21

The HP-GL Device Driver

Device Description

The Hewlett-Packard Graphics Language (HP-GL) Device Driver is a least-
common-denominator HP-GL command-set driver. All standard HP-GL com-
mand set devices should work properly with this driver. Hewlett-Packard has
tested and supports the following HP-GL devices with HP-IB interfaces and se-
rial (RS-232) interfaces for plotters:

HP 9111A tablet
HP 7440A plotter
HP 7470A plotter
HP 7475A plotter
HP 7550A plotter
HP 7570A plotter
HP 7575A plotter
HP 7576A plotter
HP 7580A plotter
HP 7580B plotter
HP 7585B plotter
HP 7586B plotter
HP 7595A plotter
HP 7596A plotter
HP C1600A plotter
HP C1601A plotter

HP-GL 21-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Setting Up the Device

Switch Settings

For operation of a device with HP-IB interface, the HP-IB address must be the
same as the device �le address (see \Special Device Files (mknod)").

For operation of this device with RS-232 the plotter must be con�gured by the
user where applicable as follows:

8-bit character size
No parity
Desired baud rate
One stop bit if baud rate is greater than 110, otherwise two bits

The device driver \libddhpgl.a" automatically con�gures the plotter to the
following:

XON/XOFF protocol with dc1 and dc3 signals
\;" command terminator
hnewlinei response terminator

The device driver \libddhpgl.a" also sets the termio(4) structure for the device
interface to the following:

8-bit character size
XON/XOFF protocol
No parity
Disable signals INTR and QUIT

2400 baud rate if initially 300
No postprocessing
Canonical processing
Turn o� ERASE and KILL symbols

Note There must not be a getty running on the serial device �le. The
following command will sleep a getty:

sleep 2000000000 < /dev/plts

21-2 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Note If the device is a SPOOLED �le, the termio(4) structure for the
device interface will not be automatically con�gured, and the
user must con�gure the interface.

The default values for a newly opened interface are:

300 cs8 cread hupcl (see termio(4), stty(1))

The following commands will correctly con�gure the device
interface that already has the above defaults:

sleep 2000000000 < /dev/plts &

stty hbaudi

ixon ignbrk icanon isig clocal < /dev/plts

stty erase ^- kill ^- < /dev/plts

where hbaudi is the baud rate of the device (600, 1200, 2400,
etc.), and /dev/plts is the device �le for the serial plotter.

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference manual for further information. The name of this
special device �le is passed to Starbase in the gopen procedure. Since superuser
capabilities are needed to create special device �les, they are normally created by
the system administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le. The following examples will create a special
device �le for this device. Remember that you must be the superuser (the root
user) to use the mknod command.

HP-GL 21-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

For the Series 300 and 400

HP-IB Card Device File

The mknod parameters should create a character device �le with a major number
of 21 and a minor number of 0xhscihadi00 where hsci is the select code and hadi
is the device's address.

mknod /dev/hpgl c 21 0xhscihadi00

Serial Interface Card Device File

The mknod parameters should create a character device �le with a major number
of 1 and a minor number of 0xhscihadi04 where hsci is the select code and hadi
is the port address.

mknod /dev/hpgl c 1 0xhscihadi04

For the Series 700

Serial RS-232 Interface

For Serial Port A, the mknod parameters should create a character device �le with
a major number of 1 and a minor number of 0x204004:

mknod /dev/plts c 1 0x204004

For Serial Port B, the mknod parameters should create a character device �le with
a major number of 1 and a minor number of 0x205004:

mknod /dev/plts c l 0x205004

Centronics Parallel Interface

The mknod parameters should create a character device �le with a major number
of 11 and a minor number of 0x206002:

mknod /dev/plt_parallel c 11 0x206002

21-4 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

For the Series 800

HP-IB Card Device File

The mknod parameters should create a character device �le with a major number
of 21 and a minor number of 0x00hluihadi where hlui is the hardware logical unit
and hadi is the device's address.

mknod /dev/hpgl c 21 0x00hluihadi

Serial Interface Card Device File

The mknod parameters should create a character device �le with a major number
of 1 and a minor number of 0x00hluihadi where hlui is the hardware logical unit
and hadi is the port address.

mknod /dev/hpgl c 1 0x00hluihadi

Linking the Driver

Shared Libraries

The shared HP-GL Device Driver is the �le named libddhpgl.sl in the /usr/lib
directory. The device driver will be explicitly loaded at run time by compiling
and linking with the starbase shared library /usr/lib/libsb.sl.

Note that use of the library libdvio.a requires the use of -Wl,-E when using
plotter driver shared libraries as shown in the Examples section.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -L/usr/lib/X11R5 -Wl,-E -lddhpgl\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -Wl,-E -lddhpgl\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -o example

or with Pascal use,

HP-GL 21-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

pc example.p -Wl,-L/usr/lib/X11R5 -Wl,-E -lddhpgl\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The archive HP-GL Device Driver has a �le name of libddhpgl.a and is located
in the /usr/lib directory. This device driver may be linked to a program by using
the absolute path name /usr/lib/libddhpgl.a, an appropriate relative path
name, or by using the -l option as in -lddhpgl with the LDOPTS environmental
variable set to -a archive.

The reason for using the LDOPTS environmental variable is the -l option will look
for a shared library driver �rst and then look for the archive driver if shared was
not found. By exporting the LDOPTS variable as speci�ed above, the -l option
will only look for archive drivers. For more information, refer to the Programming
on HP-UX manual on linking shared or archive libraries.

Note that if you link in libddhpgl.a, you must also link in libdvio.a (see the
section Examples).

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -L/usr/lib/X11R5 -lddhpgl -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -lm -o example

or for FORTRAN, use:

F77 example.f -Wl,-L/usr/lib/X11R5 -lddhpgl -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -o example

or for Pascal, use:

pc example.p -Wl,-L/usr/lib/X11R5 -lddhpgl -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -o example

21-6 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, Mode.

Path The name of the special device �le created by the mknod command
speci�ed in the last section (for example, /dev/hpgl.)

Kind Indicates the I/O characteristics of the device. This parameter may
be one of the following:

OUTDEV|output only
INDEV|input only
OUTINDEV|input or output

Driver The character representation of the driver type. This must be either
hpgl or hpgls, e.g., on HP-IB devices:

"hpgl" for C.

'hpgl'//char(0) for FORTRAN77.

'hpgl' for Pascal.

The following is an example on RS-232 devices:

"hpgls" for C.

'hpgls'//char(0) for FORTRAN77.

'hpgls' for Pascal.

Mode The mode control word, consisting of several ag bits or ed together.
Listed below are the ag bits which have device-dependent actions:

0 open the device, but do nothing else.

HP-GL 21-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

INIT open and initialize the device in a
device-dependent manner. For plotters, INIT is
a DF command. The following are not changed:

P1 and P2
Current pen number and position
Pen speed, force and acceleration
90 degree rotation or axis alignment

RESET_DEVICE open and completely initialize the device. For
plotters, this is an IN command. The values of
P1 and P2 are set equal to the paper limits of the
plotter.

SPOOLED open the device for spooled operation. Only an
OUTDEV may be spooled.

THREE_D open the device and set Starbase to
three-dimensional mode

Note Spooling with the HP-GL driver automatically scales P1 and P2
to the plotting surface area. In order to turn o� the scaling
function, the Starbase command set_p1_p2 with METRIC units
must be called.

Syntax Examples

For C Programs:

To open and initialize an HP-IB HP-GL device for output:

fildes = gopen("/dev/hpgl", OUTDEV, "hpgl", INIT);

To open and initialize an RS-232 HP-GL device for output:

fildes = gopen("/dev/plotter", OUTDEV, "hpgls", INIT);

For FORTRAN77 Programs:

To open an HP-IB HP-GL device for spooled output:

fildes = gopen('myfile'//char(0), OUTDEV, 'hpgl'//char(0), SPOOLED);

21-8 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

To open an RS-232 HP-GL device for spooled output:

fildes = gopen('myfile'//char(0), OUTDEV, 'hpgls'//char(0), SPOOLED);

For Pascal Programs:

To open and initialize an HP-IB HP-GL device for spooled output:

fildes := gopen('myfile', OUTDEV, 'hpgl', INIT+SPOOLED);

To open and initialize an RS-232 HP-GL device for spooled output:

fildes := gopen('myfile', OUTDEV, 'hpgls', INIT+SPOOLED);

Device Defaults

Color Table

The HP-GL default color table is the Starbase default color table. To read the
current color table values, use the inquire_color_table procedure. The o�cial
color table is stored in the device driver, allowing di�erent color tables to be used
for di�erent devices in the same program. The default color map has eight entries
as shown in the table below:

Table 21-1. Default Color Table

Pen Color Red Green Blue

0 white (pen up) 0.0 0.0 0.0

1 black 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

You can change the color tables values with the define_color_table procedure.

HP-GL 21-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Red, Green and Blue Values

Functions that pass red, green and blue values are supported. The pen most
closely corresponding in value to the red, green and blue values is selected using
the current color table entries. A square-root-of-sum-of-squares algorithm is used
to identify the pen.

Device Coordinate Origin Default

The device coordinate origin (0, 0) is device dependent. Use the hardware manual
provided with your HP-GL device to get the range of device coordinate values
and coordinate orientation.

Direct Output

The result of a inquire_id procedure call is the value returned by an OI

command, i.e., the device is interrogated.

Echo Types

Both tracking and echo update use the current echo type as de�ned as follows:

Table 21-2. Current Echo Type

Type Description

0 Pen Up

1 Pen Up

2 Pen Down

Line Type Defaults

The following table shows the prede�ned line types. Device dependent
information is listed after the table.

21-10 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Table 21-3. Predefined Line Types

Index Name Approximate Pattern

0 SOLID Solid

1 DASH 0.25, 0.50, 0.25

2 DOT 4�8 dots per repeat length

3 DASH_DOT 0.4, 0.1, dot, 0.1, 0.35

4 DASH_DOT_DOT 0.35, 0.1, dot, 0.1, dot, 0.1, 0.35

5 LONG_DASH 0.375, 0.25, 0.375

6 CENTER_DASH 0.35, 0.1, 0.1, 0.1, 0.35

7 CENTER_DASH_DASH 0.25, 0.1, 0.1, 0.1, 0.1, 0.1, 0.25

HP-GL plotters do not support line type 4; line type 7 is substituted.

Number of Pens

The default number of pens is 8. The number of pens may be speci�ed using
the HPGL_SET_PEN_NUM gescape. The gescape commands unique to this device
driver are discussed later in this section.

Plotter Units

If the device responds to an OF command, plotter units are set to that response.
Otherwise, the plotter units parameter is set to a default value of 0.025 millimeter
per plotter unit.

P1 and P2 Defaults

The values for P1 and P2 are device dependent. When you power up the plotter
the values of P1 and P2 will equal the paper limits. Afterwards P1 and P2
will not change unless the user changes them from the plotter's front panel, the
device is opened in RESET_DEVICE mode, or the Starbase command set_p1_p2 is
performed. If the paper size on the plotter is changed, it is the user's responsibility
to ensure that the values of P1 and P2 are correct.

Spooled Output

The result of an inquire_id procedure call, when using spooled output, is always
\HP-GL" (with a terminating '\0`).

HP-GL 21-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

The values used for P1, P2 and plotter resolution are the default values for the
HP 7580B plotter with \D" size paper. A scaling command (HP-GL command
SC) is automatically done to the spool �le so that the default P1 and P2 are
mapped onto the actual device. This means that the full VDC extent will be
�tted to the plotting surface, and the entire picture will be plotted.

If the values of P1 and P2 are changed using the Starbase command set_p1_p2

with METRIC units while in SPOOLED mode, the scaling will be turned o� . The
setting of P1 and P2 with FRACTIONAL units will not change the scaling.

Note Spooling with the HP-GL driver automatically scales P1 and P2
to the plotting surface area. To turn o� the scaling function, the
Starbase command set_p1_p2 with METRIC units must be called.

If the Starbase command set_p1_p2 with METRIC units is to
be used while spooling, it must occur before any primitives are
drawn or undesired results will occur.

Timeouts

A timeout of 10 seconds is used for the initial status read of the device (if not
spooled), after which the timeout is 0 seconds (no timeout).

Starbase Functionality

Plotter Input

Each HP-GL plotter can be considered a locator device in digitizer mode. Three
values are located: X, Y, and Z. The X and Y values specify an absolute Cartesian
location on the plotter's scaled plotting area in Virtual Device Coordinates. The
Z value equals the maximum Virtual Device Coordinate if the pen is down, and
the minimum Virtual Device Coordinate if the pen is up.

When in digitizer mode, the plotter displays its \enter" indicator. The �Enter�
button is used to trigger either an event or request.

Sample calls will not cause the plotter to display its enter indicator.

21-12 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Note Not all plotters are capable of indicating an enter condition.
Consult your plotter manual for further information.

HP 9111A/T Input

The HP 9111A/T Graphics Tablet can be considered a locator device and a choice
device.

The 16 \soft keys" de�ned on the tablet can be used as choice input buttons.

The tablet's digitizing surface is the locator area. Three values are located: X, Y,
and Z. The X and Y values specify an absolute Cartesian location on the tablet's
surface. The location is in Virtual Device Coordinates. The Z value equals the
maximum VDC if the stylus is pressed, and the minimum VDC if the stylus is
not pressed.

Pen Selection

The following set of rules are used to select the pen the plotter will actually use.

If the program speci�es a pen number that is zero, the plotter does a PEN UP.

If the program speci�es a pen number that is less than or equal to the number
of pens the device driver recognizes, that pen number is sent to the plotter. If
the plotter has a pen with that number, it is used. If the plotter does not have a
physical pen with that number, a device-dependent action will occur. Either the
plotter will use the pen with the largest number, or a MOD calculation is made
and the resulting pen number is used.

If the program speci�es a pen number that is larger than the number of pens
the device driver recognizes, the device driver does a MOD calculation to de�ne
the pen number to send to the plotter. If the MOD calculation returns a non-
zero value, the driver sends that calculated pen number to the plotter. If the
MOD calculation returns a zero value the device driver makes an exception from
sending pen number 0, and sends the largest pen number.

HP-GL 21-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Exceptions to Standard Starbase Support

Commands Not Supported (no-ops)

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

alpha_transparency display_enable

await_retrace double_buffer

backface_control drawing_mode

background_color file_to_bitmap

background_color_index file_to_dcbitmap

bank_switch file_to_intbitmap

bf_alpha_transparency fill_dither

bf_control hidden_surface

bf_fill_color intbitmap_print

bf_interior_style intbitmap_to_file

bf_perimeter_color intblock_move

bf_perimeter_repeat_length intblock_read

bf_perimeter_type intblock_write

bf_surface_coefficients interior_style (INT_OUTLINE)

bf_surface_model interior_style (INT_POINT)

bf_texture_index intline_width

bitmap_print light_ambient

bitmap_to_file light_attenuation

block_move light_model

block_read light_source

block_write light_switch

clear_control line_endpoint

contour_enable line_filter

dbuffer_switch pattern_define

dcbitmap_print perimeter_filter

dcbitmap_to_file set_capping_planes

dcblock_move set_model_clip_indicator

dcblock_read set_model_clip_volume

dcblock_write shade_mode

define_contour_table shade_range

define_raster_echo surface_coefficients

define_texture surface_model

define_trimming_curve texture_index

deformation_mode texture_viewport

depth_cue texture_window

depth_cue_color viewpoint

depth_cue_range write_enable

depth_cue-range zbuffer_switch

21-14 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Commands Conditionally Supported

The following commands are supported under the listed conditions:

clear_view_surface New page on devices with automatic paper feeders.1

define_color_table Updates software color table only (an operator must
physically change the pens).

hatch_spacing Care should be taken to specify spacings greater than or
equal to one pen width.

interior_style Only the INT_SOLID, INT_HATCH, and INT_HOLLOW styles
are supported.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The \use" parameter must be zero, any extra coordinates
supplied will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data will be ignored if not supported by this
device. For example, contouring data will be ignored if
this device does not support it.

1 Some plotters will only eject the paper if it has been plotted on.

HP-GL 21-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

21

Parameters for gescape

The hpgl driver supports the following gescapes. Refer to Appendix A of this
manual for details on gescapes.

HPGL_SET_PEN_NUM|Set plotter number of pens.
HPGL_SET_PEN_SPEED|Set plotter pen velocity.
HPGL_SET_PEN_WIDTH|Set plotter pen width.
HPGL_WRITE_BUFFER|Permits direct communication of HP-GL commands to
supported devices.

21-16 HP-GL

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

22

The CADplt Device Driver

Device Description

The CADplt Device Driver is an HP-GL command set driver. This driver is
contained in the libddCADplt.a archive library or the libddCADplt.sl shared
library. This driver provides hardware support for certain areas of functionality
for Starbase graphics. All standard HP-GL command set devices should work
properly with this driver. If CADplt does not work with your HP-GL plotter,
try the HP-GL driver.

Hewlett-Packard has tested and supports the following HP-GL devices with HP-
IB and serial RS-232 interfaces.

HP 7510A color �lm recorder
HP 7550A plotter
HP 7570A plotter
HP 7580B plottery
HP 7585B plottery
HP 7586B plotter
HP 7595A plotter
HP 7596A plotter
HP C1600A plotter
HP C1601A plotter
HP 7575A plotter
HP 7576A plotter

y For plotters with serial number 2402 or higher

CADPLT 22-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Although this device driver and the libddhpgl.a device driver both access HP-
GL devices, there are major di�erences between them. These di�erences are
listed in the following table.

Table 22-1. CADplt and HPGL Driver Features

Feature CADplt HP-GL

Supports all HP-GL devices no yes

Supports input operations no yes

Hardware polygon support yes no

Hardware rectangle support yes no

Hardware text support
(FLOAT_XFORM interface only)

yes no

Roll paper support yes no

Isotropic spooling yes no

HP-GL error checking yes no

22-2 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Setting Up the Device

Switch Settings

HP-IB Interfacing

The HP-IB address of the device must correspond to the device �le minor number,
see \Special Device Files (mknod)" in this chapter.

Serial RS-232 Interfacing

The serial interface on the device must be set as follows:

8-bit character size
no parity
desired baud rate
one stop bit if baud rate is greater then 110, otherwise two stop bits

The device driver libddCADplt.a will automatically set the Operating System
I/O interface for the serial device to the following con�gurations:

1. device handshaking
XON/XOFF protocol with dc1 and dc3 signals
\;" command terminator
hnewlinei response terminator

2. device interface, termio(4)
8-bit character size
XON/XOFF protocol
no parity
disabled INTR and QUIT signals
2400 baud rate if initially 300 1

no postprocessing
canonical processing
unde�ne ERASE and KILL symbols

1 The default baud rate for a serial interface is 300 baud when the device �le is
freshly opened. If the default is still in e�ect, then the device driver will change
the baud rate to 2400 as this is what many serial devices are run at. However,
if you have changed the the baud rate from the default value of 300, then the
driver assumes you have purposely changed it and will not modify it.

CADPLT 22-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Note There must not be a getty running on the serial device �le. The
following command will sleep a getty:

sleep 1000000 < /dev/plts &

Note If the device is in SPOOLED mode, the device interface termio(4)
will not be automatically con�gured for you. It is your
responsibility to con�gure the interface correctly as below:

Given a freshly opened device interface with the following
defaults:

300 cs8 cread hupcl

The following commands will correctly con�gure the device
interface:

sleep 1000000 < /dev/plts &

stty hbaudi ixon ignbrk icanon isig clocal < /dev/plts

stty erase ^- kill ^- < /dev/plts

where hbaudi is the baud rate of the device and /dev/plts is the
device �le for the serial device.

22-4 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) command in
the HP-UX Reference manual for further information. The name of this special
device �le is passed to Starbase in the gopen procedure. Since superuser or root
capabilities are needed to create special device �les, they are normally created by
the system administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le. The following examples will create a special
device �le for this device. Remember that you must be the superuser or root to
use the mknod command.

For the Series 300 and 400

HP-IB Interface

The mknod parameters should create a character device �le with a major number
of 21 and a minor number of 0xhscihadi00h where hsci is the select code and hadi
is the device's HP-IB address.

mknod /dev/plt c 21 0xhscihadi00

Serial RS-232 Interface

The mknod parameters should create a character device �le with a major number
of 1 and a minor number of 0xhscihadi04 where hsci is the select code and hadi
is the port address.

mknod /dev/plts c 1 0xhscihadi04

For the Series 700

Serial RS-232 Interface

For Serial Port A, the mknod parameters should create a character device �le with
a major number of 1 and a minor number of 0x204004:

CADPLT 22-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

mknod /dev/plts c 1 0x204004

For Serial Port B, the mknod parameters should create a character device �le with
a major number of 1 and a minor number of 0x205004:

mknod /dev/plts c l 0x205004

Centronics Parallel Interface

The mknod parameters should create a character device �le with a major number
of 11 and a minor number of 0x206002:

mknod /dev/plt_parallel c 11 0x206002

For the Series 800

HP-IB Card Device File

The mknod parameters should create a character device �le with a major number
of 21 and a minor number of 0x00hluihadi where hlui is the hardware logical unit
and hadi is the device's address.

mknod /dev/hpgl c 21 0x00hluihadi

Serial Interface Card Device File

The mknod parameters should create a character device �le with a major number
of 1 and a minor number of 0x00 hlui hadi where hlui is the hardware logical unit
and hadi is the port address.

mknod /dev/hpgl c 1 0x00hluihadi

Linking the Driver

Shared Libraries

The shared device driver is the �le named libddCADplt.sl in the /usr/lib

directory. The device driver will be explicitly loaded at run time by compiling
and linking with the starbase shared library /usr/lib/libsb.sl.

22-6 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Note that use of the library libdvio.a requires the use of -Wl,-E when using
plotter driver shared libraries as shown in the Examples section.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -L/usr/lib/X11R5 -Wl,-E -lddCADplt\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -Wl,-E -lddCADplt \

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -Wl,-E -lddCADplt\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -o example

Upon device initialization the proper driver will be loaded. See the discussion
of the gopen procedure in the Device Initialization section of this chapter for
details.

Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le
name libddCADplt.a. This device driver may be linked to a program by using
the absolute path name /usr/lib/libddCADplt.a, an appropriate relative path
name, or by using the -l option as in -lddCADplt with the LDOPTS environmental
variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

CADPLT 22-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

If you link in libddCADplt.a, you must also link in libdvio.a as below:

cc example.c -L/usr/lib/X11R5 -lddCADplt -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -lm -o example

or for FORTRAN, use:

F77 example.f -Wl,-L/usr/lib/X11R5 -lddCADplt -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -o example

or for Pascal, use:

pc example.p -Wl,-L/usr/lib/X11R5 -lddCADplt -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -o example

22-8 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, Mode.

Path This is the name of the special device �le created by the mknod

command as speci�ed in the section \Special Device Files" such as
/dev/plt.

Kind This indicates the I/O characteristics of the device. This parameter
may only be OUTDEV.

Driver This is the character representation of the driver type. This must be
CADplt.

Mode This is the mode control word which consists of several ag bits which
are or ed together. Listed below are the ag bits and their device
dependent actions:

0 open the device but do nothing else

INIT open and initialize the device in a device dependent
manner. For this device driver the INIT mode will
send the HP-GL command DF to the device. This
command will not change the following:

P1 and P2
pen speed, force and acceleration
90 degree rotation or axis alignment

RESET_DEVICE open and completely initialize the device. For this
device driver the RESET_DEVICE mode will send the
HP-GL command IN to the device. This command
will reset the device's con�guration including P1 and
P2.

SPOOLED open the device for spooled operation.

THREE_D open the device for three-dimensional primitives.

CADPLT 22-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Syntax Example

For C programs:

fildes = gopen("/dev/plt", OUTDEV, "CADplt", RESET_DEVICE);

fildes = gopen("spoolfile", OUTDEV, "CADplt", RESET_DEVICE | SPOOLED);

For FORTRAN 77 programs:

fildes = gopen('/dev/plt'//char(0), OUTDEV, 'CADplt'//char(0), INIT)

fildes = gopen('/dev/plt'//char(0), OUTDEV, 'CADplt'//char(0), 0)

For Pascal programs:

fildes := gopen('/dev/plt', OUTDEV, 'CADplt', RESET_DEVICE+THREE_D);

fildes := gopen('spoolfile', OUTDEV, 'CADplt', RESET_DEVICE+SPOOLED);

Device Defaults

Color Table

The HP-GL default color table is the same as the Starbase default color table.
To read the current color table values, use the inquire_color_table procedure.
The o�cial color table is stored in the device driver allowing di�erent color tables
to be used for di�erent devices in the same program. The default color map has
eight entries as shown in the following table.

22-10 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Table 22-2. Default Color Map

Pen Color Red Green Blue

0 white (pen up) 0.0 0.0 0.0

1 black 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

You can change the color table values with the define_color_table procedure.

Red, Green and Blue Values

Functions that pass red, green and blue values are supported. The pen most
closely corresponding in value to the red, green and blue values is selected using
the current color table entries. A \square root of sum of squares" algorithm is
used to identify the pen.

Device Coordinates

The default number of millimeters per device coordinates is 0.025. If the gopen
mode is not SPOOLED, the device driver will inquire the device and use the value
returned.

Device Coordinate Origin

The device coordinate origin (0, 0) is device dependent. You should consult your
device hardware manual to get the origin. In general, the origin is normally
centered between the P1 and P2 extent so that there are an equal number of
negative and positive device coordinates on each side of the origin. The one
known exception is the HP 7550 plotter which places the origin in the lower left
corner of the paper.

CADPLT 22-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Device ID

If the device is not in SPOOLED mode, then the device driver will send the HP-GL
command OI and use the returned string as the device ID. If the device is spooled,
the device ID will be CADplt.

Line Types

The following table shows the default line types that are available.

Table 22-3. Line Types

Index Type

0 SOLID

1 DASH

2 DOT

3 DASH_DOT

4 CENTER_DASH_DASH

5 LONG_DASH

6 CENTER_DASH

7 CENTER_DASH_DASH

Number of Pens

The default number of pens is 8. The number of pens may be speci�ed using the
HPGL_SET_PEN_NUMBER gescape.

P1 and P2

The values for P1 and P2 are device dependent and will vary depending on the
gopen mode that was used when accessing the device as below:

INIT or 0 mode

The values of P1 and P2 will be equal to the current values the device is set to.
The device driver will inquire these values and use them unmodi�ed. When
a device is opened in this mode, it is the your responsibility to insure that
appropriate P1 and P2 values are currently established.

RESET_DEVICE mode

22-12 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

The HP-GL command IN will be sent to the plotter. This will cause the
device to reset P1 and P2 to take advantage of the full size of the paper that
is currently loaded. The device driver will then inquire these values and use
them. This mode insures that the current values of P1 and P2 will match the
paper size that is loaded.

SPOOLED mode

Since the device driver cannot inquire the P1 and P2 values from the device,
the driver assumes the limits are as below:

P1 x: -23144, P1 y: -17048

P2 x: 23144, P2 y: 17048

which are the limits for HP 7596A 36-inch roll paper. The device driver will
then put the HP-GL command SC in the spool �le. This will cause the device
to scale the assumed P1 and P2 values to the actual P1 and P2 values in
e�ect when the spooled �le is dumped to the device. The a�ect of the scaling
command is to cause the entire drawing to be expanded or compressed so that
it will �ll the P1 and P2 extent that the device currently has. In order to turn
o� the scaling function, the Starbase procedure set_p1_p2 with METRIC units
must be called.

Note Some devices will not guarantee isotropic scaling when you spool
to them. Check your device hardware manual to see if the HP-GL
command SC supports the �fth parameter for isotropic scaling. If
it does not, then the P1, P2 aspect ratio must match the default
P1, P2 ratio above, or the drawing will be distorted.

Timeouts

An initial timeout of 10 seconds is used when the procedure gopen is called. If
the device is accessed correctly by the gopen call within the timeout, then the
timeout is removed completely for all further action. Should the device be taken
o� line or fail after a successful gopen call, the device driver can inde�nitely
\hang" during operation.

CADPLT 22-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Starbase Functionality

Hardware Character Sets

When performing hardware generated text, this device driver will recognize the
following character sets for the call designate_character_set. The device
driver will then instruct the device to load that speci�c character set. If the
designated character set is not supported, an error may or may not be reported
according to the state of the bu�er mode ag (see \Error Reporting and Bu�er
Mode" in this section). You should check the device hardware manual to see
if the device will support the designated character set. At this time the device
driver does not support variable width characters.

Note Hardware character sets are not supported when the device is
gopened with INT_XFORM.

22-14 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Table 22-4. Hardware Character Sets

Font # CHSET name Description

0 usascii ANSI ASCII

1 9825 9825 Character Set

2 french French

2 german German

3 scandinavian Scandinavain

4 spanish Spanish/Latin American

5 special Special Symbols

6 jisascii JIS ASCII

7 hproman Roman Extensions

8 katakana Katakana

9 iso_irv ISO Inter. Ref. Vers.

30 iso_swedish_1 ISO Swedish

31 iso_swedish_2 ISO Swedish for Names

32 iso_norway_v1 ISO Norway, Version 1

33 iso_german ISO German

34 iso_french_v1 ISO French, Version 1

CADPLT 22-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Table 22-4. Hardware Character Sets (continued)

Font # CHSET name Description

35 iso_united ISO United Kingdom

36 iso_italian ISO Italian

37 iso_spanish ISO Spanish

38 iso_portuguesy ISO Portuguese

39 iso_norway_v2 ISO Norway, Version 2

60 iso_french_v2 ISO French, Version 2

99 iso_drafting Drafting Symbols

100 kanji_v1 Kanji, part 1

101 kanji_v2 Kanji, part 2

yThis is not a typographical error. The program recognizes this spelling.

Error Reporting and Buffer Mode

This device driver has two states for reporting errors depending on the bu�er
mode, as set by the procedure buffer_mode.

Bu�ering On

When bu�ering is enabled, the device driver will bu�er all commands in an
internal bu�er before sending them to the device. All HP-GL errors generated
by the device will be masked out. Regular Starbase errors will still be reported
as normal.

Bu�ering O�

When bu�ering is disabled, the device driver will send each command to the
device as it receives it. After each command is sent, the device driver will then
inquire the device's status and report any HP-GL errors that occured. This
mode should only be used when debugging an application.

When the gopen mode is SPOOLED, the spooled �le will mask out all HP-GL errors
generated, regardless of the bu�er mode.

22-16 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Hardware Polygon Support

All Starbase polygon interiors and borders are drawn by using the device's
hardware support for polygons. This will normally result in an increase in
rendering speed and a decrease in the size of spooled �les. Polygon hardware
support conforms to Starbase speci�cations as de�ned in the Starbase Graphics
Techniques manual. Hardware support is provided through the use of the HP-GL
commands PM, FP, and EP. You can not turn o� hardware support of polygons.2

The number of vertices supported is device dependent. For some devices, the
default number of vertices supported can be modi�ed by adjusting the size of the
memory partitions through software control. There are two methods of changing
the memory partition: through use of the HP-GL command GM and use of the
HP-GL escape function \ESC.T". Users should refer to the device's programming
manual on using these commands. The following table summarizes the default
number of vertices supported and if that default can be changed using the HP-GL
command GM or \ESC.T".

Table 22-5. Polygon Vertex Support

Device # Vertices GM ESC.T

HP 7596A 219 yes yes

HP 7595A 219 yes yes

HP 7586B 218 no yes

HP 7585B 218 no yes

HP 7580B 218 no yes

HP 7570A 93 yes yes

HP 7550A 127 yes yes

HP 7510A 495 yes yes

2 The present exception to this is for polygons drawn with the interior_style

parameter INT_HATCH. At this time, hatching is performed only through software.

CADPLT 22-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Table 22-5. Polygon Vertex Support (continued)

Device # Vertices GM ESC.T

HP C1600A 1500y no no

HP C1601A 1500y no no

HP 7575A 93 yes yes

HP 7576A 93 yes yes

yThe plotter has 16 900 bytes of available memory allocated to the downloadable
character bu�er as needed, the rest goes to the polygon bu�er. For example,
dividing 16 900 by 8 equals 2112.5. If you allow some extra for �ll types, you can
estimate that a polygon with up to 1500 points easily �ts in the polygon bu�er.

Hardware Rectangle Support

All Starbase rectangle interiors are drawn by using the device's hardware support
for polygons. This will normally result in an increase in rendering speed and a
decrease in the size of spooled �les. Rectangle hardware support conforms to
Starbase speci�cations as de�ned in the Starbase Graphics Techniques manual.
Hardware support is provided through the use of the HP-GL commands PM, FP
and EP. You can not turn o� hardware support of rectangles. 3

3 The present exception to this is for polygons drawn with the interior_style

parameter INT_HATCH. At this time, hatching is performed only through software.

22-18 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Hardware Text Support

Starbase text can be drawn by using the device's hardware support for text. This
support is conditional on use of the Starbase procedure text_precision with a
precision parameter of STRING_TEXT. This will normally result in an increase in
rendering speed, a decrease in the size of spooled �les, and an increase in text
quality. Since this support is user selectable, not all of those devices supported
through this device driver support all those features of Starbase text. Di�erences
between device hardware generated text and Starbase software generated text
are listed below:

Table 22-6. Hardware Text Support

Starbase Call Parameter Group 1 Group 2 Group 3

text_precision STRING_TEXT yes yes no

text_path PATH_LEFT no no no

text_path PATH_UP no no no

text_path PATH_DOWN yes no no

text_font_index hindexi = 2 no no no

text_alignment TA_CONTINUOUS_HORIZONTAL no no no

text_alignment TA_CONTINUOUS_VERTICAL no no no

text_alignment TA_CAP no no no

text_alignment TA_BASE no no no

text_line_path (all) no no no

Group 1 = HP7575A, HP 7576A.HP7595A, HP 7596A.
Group 2 = HP7586B, HP 7585B, HP7580B, HP 7550A, HP7510A, HPC1600A,
and HPC1601A.
Group 3 = HP 7570A.

CADPLT 22-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Pen Selection

If a program speci�es a pen number that is larger then the number of pens the
device has, the device driver will perform a \mod" 4calculation to de�ne the
actual pen to be used. If the mod calculation returns a value of zero, then the
largest pen number will be used instead.

If pen number 0 is selected, then a device dependent action will occur and you
should consult your device hardware manual. In general, pen 0 will cause most
devices to not select any pen at all when performing any drawing operation.

Roll Paper, Autoloading and Rasterizing

The device driver will attempt to set the paper size and perform a page feed using
the HP-GL commands PS and PG when the Starbase procedure gclose is called.
This will cause those devices using roll paper or having autoloading capabilities
to feed the current drawing out. For those devices that accept HP-GL commands
and then rasterize the data for output, this will cause the rasterization to occur
and the drawing to be ejected. Devices supporting this functionality are shown
below:

HP 7596A
HP 7586B
HP 7550A
HP 7510A
HP C1600A
HP C1601A

4 The mod function is a remainder function. For example, 8 mod 3 = 2.

22-20 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

New Device Support

This driver uses a subset of the HP-GL command language. When attempting
to use this device driver with unsupported devices, that device should support
those HP-GL commands as required below:

Table 22-7. HP-GL Command Support

CMy DF DIy DSy
DVy EPz ESy FPz
IM IN IP IVy
LBy LOy LTz OE

OF OI OP PAz
Dz PGx PMz PSx
PTz PUz SC SRy
SLy SPz VS

y This command is only required for hardware text. If Starbase software
generated text is used, the device does not need to support this command.

z This command is used for generating polygons, rectangles and lines. The
device must implement this command for correct primitives.

x This command is used for support of roll paper, autoloading and rasterizing
devices.

CADPLT 22-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Exceptions to Standard Starbase Support

Commands Not Supported (no-ops)

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

alpha_transparency display_enable

await_retrace double_buffer

backface_control drawing_mode

background_color file_to_bitmap

background_color_index file_to_dcbitmap

bank_switch file_to_intbitmap

bf_alpha_transparency fill_dither

bf_control hidden_surface

bf_fill_color intbitmap_print

bf_interior_style intbitmap_to_file

bf_perimeter_color intblock_move

bf_perimeter_repeat_length intblock_read

bf_perimeter_type intblock_write

bf_surface_coefficients interior_style (INT_OUTLINE)

bf_surface_model interior_style (INT_POINT)

bf_texture_index intline_width

bitmap_print light_ambient

bitmap_to_file light_attenuation

block_move light_model

block_read light_source

block_write light_switch

clear_control line_endpoint

contour_enable line_filter

dbuffer_switch pattern_define

dcbitmap_print perimeter_filter

dcbitmap_to_file set_capping_planes

dcblock_move set_model_clip_indicator

dcblock_read set_model_clip_volume

dcblock_write shade_mode

define_contour_table shade_range

define_raster_echo surface_coefficients

define_texture surface_model

define_trimming_curve texture_index

deformation_mode texture_viewport

depth_cue texture_window

depth_cue_color viewpoint

depth_cue_range write_enable

depth_cue-range zbuffer_switch

22-22 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Commands Conditionally Supported

The following commands are supported under the listed conditions:

clear_view_surface Indicates a new page on devices with automatic
paper feeders.5

define_color_table updates software color table only (an operator must
physically change the pens).

hatch_spacing care should be taken to specify spacings greater than
or equal to one pen width.

interior_style only the INT_SOLID, INT_HATCH, and INT_HOLLOW

styles are supported.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data will be ignored if not supported by
this device. For example, contouring data will be
ignored if the device does not support it.

vertex_format the husei parameter must be zero, any extra coordi-
nates supplied will be ignored.

5 Some plotters will only eject the paper if it has been plotted on.

CADPLT 22-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

22

Parameters for gescape

The CADplt driver supports the following gescapes. Refer to Appendix A of this
manual for details on gescapes.

HPGL_READ_BUFFER Allows you to read data from the device.

HPGL_SET_PEN_NUM Set plotter number of pens.

HPGL_SET_PEN_SPEED Set plotter pen velocity.

HPGL_SET_PEN_WIDTH Set plotter pen width.

HPGL_WRITE_BUFFER Permits direct communication of HP-GL commands to
supported devices.

22-24 CADPLT

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

23

The CADplt2 Device Driver

Device Description

The driver archive library libddCADplt.a or shared library libddCADplt.sl

contains the CADplt2 Device Driver as well as the CADplt Device Driver. The
command plotter language for the CADplt2 driver is HP-GL/2.

The CADplt2 driver provides hardware support for certain areas of functionality
for Starbase graphics. All standard HP-GL/2 command set devices should work
properly with this driver. Hewlett Packard has tested and supports the following
HP-GL/2 devices with HP-IB and serial RS-232 interfaces.

HP C1600A B/W Electrostatic, D-size (HP 7600 Model 240D)

HP C1601A B/W Electrostatic, E-size (HP 7600 Model 240E)

HP 7595B DraftMaster SX (single sheet)

HP 7596B DraftMaster RX (roll feed)

HP 7599A DraftMaster MX (multi-user, roll or sheet)

HP C1602A PaintJet XL with HP-GL/2 plug in cartridge

HP C1620A Color Electrostatic (HP 7600 Model 355)

HP C1625A B/W Electrostatic, US D-size (HP 7600 Model 250)

HP C1627A B/W Electrostatic, US E-size (HP 7600 Model 255)

HP C1629A B/W Electrostatic, EUROPE A1-size (HP 7600 Model 250)

HP C1631A B/W Electrostatic, EUROPE A0-size (HP 7600 Model 255)

The following table displays the features of the CADplt2 driver.

CADplt2 23-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Table 23-1. CADplt2 Device Driver Features

Feature CADplt2

Supports all HP-GL devices no

Supports input operations no

Hardware polygon support yes

Hardware rectangle support yes

Hardware text support
(FLOAT_XFORM interface only)

yes

Roll paper support yes

Isotropic spooling yes

HP-GL/2 error checking yes

Starbase wide lines yes

Encoded spool �les yes

HP-GL/2, PCL context switching yes

Extended font selections yyes

Single quadrant coodinate system yes

Color map support zyes

y Supported if device contains desired fonts.
z Supported on color electrostatic plotters.

23-2 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Setting Up the Device

Switch Settings

HP-IB Interfacing

The HP-IB address of the device must correspond to the device �le minor number,
see \Special Device Files (mknod)" in this chapter.

Serial RS-232 Interfacing

The serial interface on the device must be set as follows:

8-bit character size
no parity
desired baud rate
one stop bit if baud rate is greater than 110, otherwise two stop bits

The CADplt2 driver will automatically set the Operating System I/O interface
for the serial device to the following con�gurations:

1. device handshaking
XON/XOFF protocol with dc1 and dc3 signals
\;" command terminator
hcarriage returni response terminator|Serial RS-232 interface.
hcarriage returnihline-feedi response terminator|HP-IB interface.

CADplt2 23-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

2. device interface, termio(4)
8-bit character size
XON/XOFF protocol
no parity
disabled INTR and QUIT signals
2400 baud rate if initially 300 1

no postprocessing
canonical processing
unde�ne ERASE and KILL symbols

1 The default baud rate for a serial interface is 300 baud when the device �le is
freshly opened. If the default is still in e�ect, then the device driver will change
the baud rate to 2400 as this is what many serial devices are run at. However, if
you change the baud rate from the default value of 300, then the driver assumes
you have purposely changed it and will not modify it.

23-4 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Note There must not be a getty running on the serial device �le. The
following command will sleep a getty:

sleep 1000000 < /dev/plts &

Note If the device is in SPOOLED mode, the device interface termio(4)
will not be automatically con�gured for you. It is your
responsibility to con�gure the interface correctly as below:

Given a freshly opened device interface with the following
defaults:

300 cs8 cread hupcl

The following commands will correctly con�gure the device
interface:

sleep 1000000 < /dev/plts &

stty hbaudi ixon ignbrk icanon isig clocal < /dev/plts

stty erase ^- kill ^- < /dev/plts

where hbaudi is the baud rate of the device and /dev/plts is the
device �le for the serial device.

CADplt2 23-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) command in
the HP-UX Reference manual for further information. The name of this special
device �le is passed to Starbase in the gopen procedure. Since superuser or root
capabilities are needed to create special device �les, they are normally created by
the system administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le. The following examples will create a special
device �le for this device. Remember that you must be the superuser or root to
use the mknod command.

Series 300 and 400

HP-IB Interface

The mknod parameters should create a character device �le with a major number
of 21 and a minor number of 0xhscihadi00h where hsci is the select code and hadi
is the device's HP-IB address.

mknod /dev/plt c 21 0xhscihadi00

Serial RS-232 Interface

The mknod parameters should create a character device �le with a major number
of 1 and a minor number of 0xhscihadi04 where hsci is the select code and hadi
is the port address.

mknod /dev/plts c 1 0xhscihadi04

23-6 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

For the Series 700

Serial RS-232 Interface

For Serial Port A, the mknod parameters should create a character device �le with
a major number of 1 and a minor number of 0x204004:

mknod /dev/plts c 1 0x204004

For Serial Port B, the mknod parameters should create a character device �le with
a major number of 1 and a minor number of 0x205004:

mknod /dev/plts c 1 0x205004

Centronics Parallel Interface

The mknod parameters should create a character device �le with a major number
of 11 and a minor number of 0x206002:

mknod /dev/plt_parallel c 11 0x206002

Series 800

HP-IB Card Device File

The mknod parameters should create a character device �le with a major number
of 21 and a minor number of 0x00hluihadi where hlui is the hardware logical unit
and hadi is the device's address.

mknod /dev/plt c 21 0x00hluihadi

Serial Interface Card Device File

The mknod parameters should create a character device �le with a major number
of 1 and a minor number of 0x00 hlui hadi where hlui is the hardware logical unit
and hadi is the port address.

mknod /dev/plts c 1 0x00hluihadi

CADplt2 23-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Linking the Driver

Shared Libraries

The shared device driver is the �le named libddCADplt.sl in the /usr/lib
directory. The device driver will be explicitly loaded at run time by compiling
and linking with the starbase shared library /usr/lib/libsb.sl.

Note that use of the library libdvio.a requires the use of -Wl,-E when using
plotter driver shared libraries as shown in the Examples section.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -L/usr/lib/X11R5 -Wl,-E -lddCADplt\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -Wl,-E -lddCADplt\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -Wl,-E -lddCADplt\

-lXwindow -lsb -lXhp11 -lX11 -ldvio -ldld -o example

Upon device initialization the proper driver will be loaded. See the discussion
of the gopen procedure in the Device Initialization section of this chapter for
details.

Archive Libraries

The archive device driver is located in the /usr/lib directory in the library
libddCADplt.a. This device driver may be linked to a program by using the
absolute path name /usr/lib/libddCADplt.a, an appropriate relative path
name, or by using the -l option as in -lddCADplt with the LDOPTS environmental
variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the

23-8 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

If you link in libddCADplt.a, you must also link in libdvio.a as below:

cc example.c -L/usr/lib/X11R5 -lddCADplt -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -lm -o example

or for FORTRAN, use:

F77 example.f -Wl,-L/usr/lib/X11R5 -lddCADplt -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -o example

or for Pascal, use:

pc example.p -Wl,-L/usr/lib/X11R5 -lddCADplt -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -ldvio -o example

CADplt2 23-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, Mode.

Path This is the name of the special device �le created by the mknod

command as speci�ed in the section \Special Device Files" such as
/dev/plt.

Kind This indicates the I/O characteristics of the device. This parameter
may only be OUTDEV.

Driver This is the character representation of the driver type. This must be
CADplt2.

Mode This is the mode control word which consists of several ag bits which
are or ed together. Listed below are the ag bits and their device
dependent actions:

0 open the device but do nothing else

INIT open and initialize the device in a device dependent
manner. For this device driver the INIT mode will
send the HP-GL/2 command DF to the device. This
command will not change the following:

P1 and P2
media type and quality level
90 degree rotation or axis alignment

RESET_DEVICE open and completely initialize the device. For this
device driver the RESET_DEVICE mode will send the
HP-GL/2 command IN to the device. This command
will reset the device's con�guration including P1 and
P2.

SPOOLED open the device for spooled operation.

THREE_D open the device for three-dimensional primitives.

23-10 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Syntax Example

C programs:

fildes = gopen("/dev/plt", OUTDEV, "CADplt2", RESET_DEVICE);

fildes = gopen("spoolfile", OUTDEV, "CADplt2", RESET_DEVICE | SPOOLED);

FORTRAN 77 programs:

fildes = gopen('/dev/plt'//char(0), OUTDEV, 'CADplt2'//char(0), INIT)

fildes = gopen('/dev/plt'//char(0), OUTDEV, 'CADplt2'//char(0), 0)

Pascal programs:

fildes := gopen('/dev/plt', OUTDEV, 'CADplt2', RESET_DEVICE+THREE_D);

fildes := gopen('spoolfile', OUTDEV, 'CADplt2', RESET_DEVICE+SPOOLED);

PCL Context Switching

The CADplt2 driver can be used with devices that support HP-GL/2 and PCL
(Printer Control Language). The driver will context switch the device into HP-
GL/2 mode by sending the escape sequence EC%-IB before sending any HP-GL/2
commands. On devices which do not support PCL (pen plotters) the context
switch command will be ignored.

Encoded Polyline Command (PE)

The CADplt2 driver makes extensive use of the HP-GL/2 command PE. This
command provides move, draw, pen-up, pen-down, and select pen functionality
in an encoded format. Spool�le size is reduced depending on the mix of output
primitives, and disc space is saved.

CADplt2 23-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Device Defaults

Color Table

The HP-GL/2 default color table is the same as the Starbase default color table.
The exception to this is that entry 0 is white (no pen) and entry 1 is black2. To
read the current color table values, use the inquire_color_table procedure.

Color output results may di�er depending on the device used. The color
electrostatic plotter will achieve the truest color reproductions. It can reproduce
a wide spectrum of colors since it has an arbitrary number of de�nable pens.

Black and white electrostatic plotters can only reproduce color map entries 0 for
white and 1 for black. Any other color selection will result in either white or
black.

Pen plotters may produce di�erent results based on the colors the device has
available. Pen plotters have a set number of physical pens. The color map
should be resized and rede�ned to reect the physical number of pens and pen
colors in the following steps.

1. gopen the device.

2. Set the color map size using the gescape HPGL2_SET_CMAP_SIZE (Nine pens,
0 equals no pen, 1-8 are real pens).

3. Set the color map entries with the Starbase routine
define_color_table to the red, green and blue values of the physical pens
of the device.

Note If colors are selected by red, green, and blue values, Starbase will
try to match the actual color map values as closely as possible.

2 Electrostatic plotters can plot white (no pen) over an area already plotted in
another color

23-12 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

The default color map has 64 entries with 17 shown in the following table (entries
18-63 are various color shades de�ned by Starbase).

Table 23-2. Default Color Map

Pen Color

0 white

1 black

2 red

3 yellow

4 green

5 cyan

6 blue

7 magenta

8 10% gray

9 20% gray

10 30% gray

11 40% gray

12 50% gray

13 60% gray

14 70% gray

15 80% gray

16 90% gray

17 white

You can rede�ne the default color map size and contexts using the gescape

HPGL2_SET_CMAP_SIZE and the Starbase routine define_color_table.

De�ning, rede�ning, and sizing the color map will not increase the size of the
spooled �les.

Red, Green, and Blue Values

Functions that take red, green, and blue values as arguments are supported.
Starbase chooses the pen that most closely corresponds in value to the red, green,
and blue values selected using the color map entries and sends the color map index

CADplt2 23-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

to the driver. A \square root of sum of squares" algorithm is used to identify the
pen.

Each Starbase routine that selects color has two variants: (a) one takes a color
map, and (b) the other takes a red, green, and blue triplet. See Starbase Reference
manual for more information on color selection routines.

Device Coordinate System

HP-GL/2 is a single quadrant coordinate system, as opposed to HP-GL which
is a four quadrant system. The default P1, P2 limits for the CADplt2 driver
operating in this coordinate system are P1=0, 0, P2=35376, 24000, equal to the
D-sized paper in a 7600/240D electrostatic plotter. Since plotter-unit size is not
device dependent, these coordinates are correct for any HP-GL/2 plotter with
D-sized paper.

Non-spooled

When opening the device directly (non-spooled), the driver will inquire the
device's P1, P2 limits and use them unmodi�ed. You may use set_p1_p2 to
change the P1, P2 limits.

Spooled Mode

If the device is opened in a spooled mode, the driver will put the plotter into
scaled mode, isotropically scaling the D-sized coordinates into the maximum
plotting area available. Again, clipping will be avoided. However, if you use
set_p1_p2 with the metric option while in spooled mode, the scaling will be
turned o� and clipping may result.

Device ID

If the device is not in SPOOLED mode, the device driver will send the HP-GL/2
command OI and use the returned string as the device ID. If the device is spooled,
the device ID will be CADplt2.

Line Types

All the Starbase line types are supported in the CADplt2 driver. (Index 4,
DASH_DOT_DOT not supported in the CADplt or HP-GL driver, is supported in
the CADplt2 driver.)

23-14 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

The following table shows the default line types CADplt2 supports.

Table 23-3. Line Types

Index Type

0 SOLID

1 DASH

2 DOT

3 DASH_DOT

4 DASH_DOT_DOT

5 LONG_DASH

6 CENTER_DASH

7 CENTER_DASH_DASH

The gescape HPGL2_ADAPTIVE_LINES3 selects either �xed (default) or adaptive
line types. An adaptive line type \�ts" the pattern between endpoints to insure
an integer number of patterns; thus, endpoints always have a line drawn to them.
Fixed line types resemble lines on a raster display, where the pattern is not �tted
but wrapped around the object. In this con�guration, endpoints could show up
in a \move" rather than \draw" region of the pattern.

P1 and P2

The values for P1 and P2 are device dependent and will vary depending on the
gopen mode that was used when accessing the device as below:

INIT or 0 mode

The values of P1 and P2 will be equal to the current values the device is set to.
The device driver will inquire these values and use them unmodi�ed. When a
device is opened in this mode, it is your responsibility to insure that appropriate
P1 and P2 values are currently established.

RESET_DEVICE mode

3 Warning: Adaptive line types may produce solid-looking lines when used with
primitives such as circles, which are rendered by using many small line segments.
The pattern will \adapt" to each small line segment.

CADplt2 23-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

The HP-GL/2 command IN will be sent to the plotter. This will cause the
device to reset P1 and P2 to the hard clip limits to take advantage of the full
size of the paper that is currently loaded. The device driver will then inquire
these values and use them. This mode insures that the current values of P1
and P2 will match the paper size that is loaded.

SPOOLED mode

Since the device driver cannot inquire the P1 and P2 values from the device,
the driver assumes the limits as:

P1 x: 0, P1 y: 0

P2 x: 35376, P2 y: 24000

The limits are the same for HP 7600/240D electrostatic plotter. The device
driver will then put the HP-GL/2 command SC in the spool �le. This will
cause the device to scale the assumed P1 and P2 values to the actual P1
and P2 values in e�ect when the spooled �le is dumped to the device. The
a�ect of the scaling command is to cause the entire drawing to be expanded or
compressed isotropically so that it will �ll the P1 and P2 extent that the device
currently has. In order to turn o� the scaling function, the Starbase procedure
set_p1_p2 with METRIC units must be called.

Note HP-GL/2 devices will scale isotropically, yielding no distortion of
the plot in spooled mode.

Timeouts

An initial timeout of 10 seconds is used when the procedure gopen is called. If
the device is accessed correctly by the gopen call within the timeout, the timeout
is removed completely for all further action. Should the device be taken o� line or
fail after a successful gopen call, the device driver can inde�nitely \hang" during
operation.

23-16 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Starbase Functionality

Hardware Character Sets

The CADplt2 driver supports hardware generated text through the Starbase
designate_character_set subroutine. Check the device hardware manual to
see if the device will support the designated character set. The recognized
character set names appear in the following lists.

Note Hardware character sets are not supported when the device is
gopened with INT_XFORM.

CADplt2 23-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Table 23-4. Hardware Character Sets for CADplt2

ansi_8 hpkana8 iso16_portuguese

apl_bit hpkatakana iso17_spanish

apl_typewriter hpkorean8 iso21_german

arabic hplarge iso25_french

ascii_cyrillic hplatinspanish iso2_irv

cyrillic hplegal iso57_chinese

default hpline iso60_norwegian

denmark_pc8 hpmath7 iso61_norwegian

ecma_latin1 hpmath8 iso69_french

hparabic8 hppi iso84_portuguese

hpblock hproman8 iso85_spanish

hpeurospanish hpromanext iso4_united

hpgerman hpspanish line_draw8

hpgl_download hpthai8 norway_pc8

hpgl_drafting turkish8 ocr-a

hpgl_symbols iso10_swedish ocr-b

hpgreek8 iso11_swedish ocr-m

hphebrew7 iso13_katakana oem_1

hphebrew8 usi14_jisascii us_pc8

hphpl iso15_italian

23-18 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Table 23-5.

Character Set Names Common

to the CADplt and CADplt2 drivers

usascii katakana iso_united

french iso_irv iso_italian

german iso_swedish_1 iso_spanish

spanish iso_swedish_2 iso_portuguesy

special iso_norway_v1 iso_norway_v2

jisascii iso_german iso_french_v2

hproman iso_french_v1 iso_drafting

yThis is not a typographical error. The program recognizes this spelling.

Note The following character set names are not available in the
CADplt2 driver, but are available in the CADplt driver:

9825

scandinavian

kanji_v1

kanji_v2

Typefaces

By using the gescape HPGL2_FONT_TYPEFACE you may select from the following
list of font typespaces supported by HP-GL/2. The number in the left column is
the gescape argument required to select that particular typeface.

CADplt2 23-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Table 23-6. HP-GL/2 Typefaces

Argument Typeface Argument Typeface

00 line_draw 43 itc_papf_chancery

01 pica 44 clarendon

02 elite 45 itc_zapf_dingbats

03 courier 46 cooper

04 helv 47 itc_bookman

05 tmsrmn 48 stick

06 letter_gothic 49 hpgl_drafting

07 script 50 hpgl_arc

08 prestige 51 gil_sans

09 caslon 52 univers

10 orator 53 bodini

11 presentations 54 rockwell

12 helv_condensed 55 melior

13 serifa 56 itc_tiffany

14 futura 57 itc_clearface

15 palatino 58 amelia

16 itc_souvenir 59 park_avenue

17 optima 60 handel_gothic

18 itc_garamond 61 dom_casual

19 cooper_black 62 itc_benguiat

20 ribbon 63 itc_cheltenham

21 broadway 64 century_expanded

22 bauer_bodini_condensed 65 franklin_gothic

23 century_schoolbook 66 franklin_gothic_condensed

24 university_roman 67 franklin_gothic_extra_condensed

25 helv_outline 68 plantin

26 futura_condensed 69 trump_mediaeval

27 itc_korinna 70 (available)

28 naskh 71 itc_american_typewriter

23-20 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Table 23-6. HP-GL/2 Typefaces (continued)

Argument Typeface Argument Typeface

29 cloister_black 72 antique_olive

30 itc_galliard 73 antique_olive_compact

31 itc_avant_garde 74 itc_bauhaus

32 brush 75 century_oldstyle

33 blippo 76 itc_eras

34 hobo 77 friz_quadrata

35 windsor 78 itc_lubalin

36 helv_compressed 79 eurostile

37 helv_extra_compressed 80 eurostile_expanded

38 peignot 81 itc_serif_gothic

39 baskerville 82 signet_roundhand

40 itc_garamond_condensed 83 souvenir_gothic

41 trade_gothic 84 stymie

42 goudy_old_style 85 univers_condensed

Error Reporting and Buffer Mode

The CADplt2 driver implements bu�er mode by sending an output error
command to the device during the make_picture_current driver entrypoint.
If bu�er mode is enabled, upper-level Starbase will automatically call
make_picture_current after every logical set of output primitives, thus,
checking for errors periodically.

Hardware Polygon Support

All Starbase polygon interiors and borders are drawn by using the device's
hardware support for polygons. This will normally result in an increase in
rendering speed and a decrease in the size of spooled �les. Polygon hardware
support conforms to Starbase speci�cations as de�ned in the Starbase Graphics
Techniques manual. Hardware support is provided through the use of the HP-
GL/2 commands PM, FP, and EP.

CADplt2 23-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Consult your device's hardware manual for the actual number of vertices
supported. You cannot turn o� hardware support of polygons.4 However, since
the HP-GL/2 language speci�es that hardware supporting HP-GL/2 must be able
to draw polygons with at least 512 vertices, all polygons with greater than this
number of vertices will be split in software. Once split, polygons of 512 or fewer
vertices will be sent to the hardware to draw. Be aware that this process can be
slow in the worst cases.

Hardware Text Support

Starbase text can be drawn by using the device's hardware support for text. This
support is conditional on use of the Starbase procedure text_precision with a
precision parameter of STRING_TEXT. This will normally result in an increase in
rendering speed, a decrease in the size of spooled �les, and an increase in text
quality. Features supported by device hardware generated text and Starbase
software generated text appear in the following table.

Table 23-7. Hardware Text Support

Starbase Call Parameter CADplt2

text_precision STRING_TEXT yes

text_path PATH_LEFT yyes

text_path PATH_UP yyes

text_path PATH_DOWN yyes

text_font_index hindexi = 1,2,4,6,8 zyes

text_alignment TA_CONTINUOUS_HORIZONTAL no

text_alignment TA_CONTINUOUS_VERTICAL no

text_alignment TA_CAP no

text_alignment TA_BASE no

text_line_path (all) yyes

y See the table: Supported Combinations of test_path and test_line_path.
z See the table: Starbase Support of Font Typeface.

4 The present exception to this is for polygons drawn with the interior_style

parameter INT_HATCH. At this time, hatching is performed only through software.

23-22 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Support of Starbase Font Typefaces

Starbase supports font typeface selection but only in a limited way. Through the
call text_font_index, the index passed to the function indicates the following
combinations of typeface, font spacing, and stroke weight. The CADplt2 driver
supports the Starbase font indices in the following table; however, for a more
extensive font typeface selection, use the gescape provided to access all the HP-
GL/2 typefaces.

Table 23-8. Hardware Support of Text Font Indices

Font Description

1 Stick font, �xed

2 Stick font, proportional

y4 Sans serif, proportional, normal stroke

y6 Sans serif, proportional, bold stroke

y8 Serif, proportional, bold stroke

y The HP-GL/2 language does not have sans serif or serif typefaces. Requesting
sans serif will select Helv and serif will select Tms Rmn.

HP-GL/2 supports proportional fonts if they are present in the device. If a
proportional font is selected, inquire_text_extent will return the bounding
rectangle of a �xed font.

Supported Combinations of

text path, text line path

Other features of Starbase include text_path and text_line_path. Text path
speci�es which way to move the current position after each character. Text line
path speci�es the movement of the current position after a line-feed is encounted.
Each path type has four possible values: up, down, left, and right. The following
table is a quick reference for supported combinations of both text and line path.

CADplt2 23-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Table 23-9.

Supported Combinations of

text path and text line path

text line path

text path path_right path_left path_up path_down

path_right no no yes yes

path_left no no yes yes

path_up yes yes no no

path_down yes yes no no

Pen Selection

See the section called \Color Table" under \Device Defaults" in this chapter for
a detailed discussion about pen selection.

Roll Paper, Autoloading and Rasterizing

The device driver will attempt to set the paper size and perform a page feed
using the HP-GL/2 commands PS and PG when the Starbase procedure gclose

is called. This will cause those devices using roll paper or having autoloading
capabilities to feed the current drawing out. Some devices use the PG command
as a signal to begin rasterization. Devices supporting this functionality are shown
below:

HP C1600A
HP C1601A
HP C1600A B/W Electrostatic, D-size (HP 7600 Model 240D)
HP C1601A B/W Electrostatic, E-size (HP 7600 Model 240E)
HP C1620A Color Electrostatic (HP 7600 Model 355)
HP C1625A B/W Electrostatic, US D-size (HP 7600 Model 250)
HP C1627A B/W Electrostatic, US E-size (HP 7600 Model 255)
HP C1629A B/W Electrostatic, EUROPE A1-size (HP 7600 Model 250)
HP C1631A B/W Electrostatic, EUROPE A0-size (HP 7600 Model 255)

23-24 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

New Device Support

All of the following HP-GL/2 commands are used by the CADplt2 driver. When
attempting to use this device driver with unsupported devices, be sure the device
implements the same commands.

Table 23-10. HP-GL/2 Command Support

AD IN OP RP

CR IP PC SA

DF LB PE SC

DI LO PG SD

DV LT PM SR

EC MT PS SL

EP NP PW SS

ES OE QL VS

FP OI

Note The PE command encapsulates the functionality of the following
commands: PA, PR, PU, PD, and SP; thus, they are no longer
needed.

CADplt2 23-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Exceptions to Standard Starbase Support

Commands Not Supported (no-ops)

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

alpha_transparency display_enable

await_retrace double_buffer

backface_control drawing_mode

background_color file_to_bitmap

background_color_index file_to_dcbitmap

bank_switch file_to_intbitmap

bf_alpha_transparency fill_dither

bf_control hidden_surface

bf_fill_color intbitmap_print

bf_interior_style intbitmap_to_file

bf_perimeter_color intblock_move

bf_perimeter_repeat_length intblock_read

bf_perimeter_type intblock_write

bf_surface_coefficients interior_style (INT_OUTLINE)

bf_surface_model interior_style (INT_POINT)

bf_texture_index intline_width

bitmap_print light_ambient

bitmap_to_file light_attenuation

block_move light_model

block_read light_source

block_write light_switch

clear_control line_endpoint

contour_enable line_filter

dbuffer_switch pattern_define

dcbitmap_print perimeter_filter

dcbitmap_to_file set_capping_planes

dcblock_move set_model_clip_indicator

dcblock_read set_model_clip_volume

dcblock_write shade_mode

define_contour_table shade_range

define_raster_echo surface_coefficients

define_texture surface_model

define_trimming_curve texture_index

deformation_mode texture_viewport

depth_cue texture_window

depth_cue_color viewpoint

depth_cue_range write_enable

depth_cue-range zbuffer_switch

23-26 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Commands Conditionally Supported

The following commands are supported under the listed conditions:

clear_view_surface Indicates a new page on devices with automatic
paper feeders.5

define_color_table Updates software color table only. An operator must
physically change the pens on a pen plotter|color
electrostatic plotters support this fully.

hatch_spacing Care should be taken to specify spacings greater than
or equal to one pen width.

interior_style Only the INT_SOLID, INT_HATCH, and INT_HOLLOW

styles are supported.

vertex_format The husei parameter must be zero, any extra coor-
dinates supplied will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if not
supported by this device. For example, contouring
data will be ignored if the device does not support
it.

5 Some plotters will only eject the paper if it has been plotted on.

CADplt2 23-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

23

Parameters for gescape

The gescape functions are discussed in detail in the appendix of this manual.

The following gescape functions are common to two or more drivers:

HPGL_READ_BUFFER Allows you to read data from the device.

HPGL_SET_PEN_SPEED Allows you to change pen velocity.

HPGL_WRITE_BUFFER Permits direct communication of HP-GL/2
commands to supported devices.

The following gescape functions are unique to this driver:

HPGL2_ADAPTIVE_LINES Determines adaptive or �xed line types.

HPGL2_CUTTER_CONTROL Enable/disable paper cutter.

HPGL2_FONT_POSTURE Indicates upright or italic font posture.

HPGL2_FONT_TYPEFACE Selects typeface.

HPGL2_FONT_WEIGHT Sets the font stroke weight independent of
Starbase.

HPGL2_LOGICAL_PEN_WIDTH Determines the logical pen width.

HPGL2_REPLOT Indicates number of replots for the com-
mand bu�er.

HPGL2_SET_CMAP_SIZE Indicates the size of the color map: num-
ber of pens available.

HPGL2_SET_MEDIA_TYPE Determines the type of media to be used.

HPGL2_SET_QUALITY Indicates the quality level of the output.

23-28 CADplt2

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

24

Printer Command Language Formatter

Overview

This section provides a quick overview of the Printer Command Language (PCL)
formatter. The PCL formatter is used with both monochromatic and color PCL
printers.

In this document, \bitmap" is used to denote a rectangular array of pixels, and
can be either a device's frame bu�er or an image in memory created by the
Starbase Memory Driver. \Starbase bitmap �le" is used to denote a bitmap �le
created by the Starbase procedures bitmap_to_file or dcbitmap_to_file. The
key points are:

1. This formatter permits hard copies from a bitmap or a Starbase bitmap
�le to a color or monocromatic PCL format printer. The entire bitmap or
a subrectangle of the bitmap can be processed and printed. The chapter
\Storing Retrieving, and Printing Images" in the Starbase Graphics Techniques
manual (HP-UX Concepts and Tutorials) should be read prior to reading this
document.

2. The following monochromatic PCL printers are supported:

HP 2225A (ThinkJet)
HP 2235A (SprintJet)
HP 2227A and HP2228A (QuietJet and QuietJet Plus)
HP 2563A, HP2564B, HP2565B, HP2566A, HP2567B
HP 2686A (LaserJet and LaserJet Plus)
HP 2932A, HP2933A, HP2934A
HP 33446A (Laser Jet II)
HP 33447A (Laser Jet IID)
C1200A Asian System Printer
C1202A Asian Serial Printer

PCL 24-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

3. The following color PCL printers are currently supported:

HP 3630A color (PaintJet)
HP C1602A color (PaintJet XL)
HP C1645A (PaintJet XL-300, PCL-5 mode)

4. Prints can be done in gray scale, monochromatic (black & white), primary
(red, green, blue, cyan, yellow, magenta, black, white), or in color.

5. The PCL formatter is not a Starbase driver. In other words, you don't do
moves, draws, etc. to the PCL printer. What you can do is:

Process and print an already existing image on the bitmap to a color or
monochromatic PCL printer with bitmap_print or the HP-UX command
screenpr (see the Starbase Reference manual).
Process and print an existing bitmap image from a Starbase bitmap �le
to a color or monochromatic PCL printer with file_print or the HP-UX
command pcltrans (see the Starbase Reference manual).

6. The color version of this formatter includes the full monochromatic capabili-
ties. The color version of this formatter works only with HP-UX Release 5.5
and later versions (Series 300), HP-UX Release 1.2 and later on the Series 800,
and HP-UX release 8.05 and latter on the Series 700. The monochromatic only
version was available with the HP-UX releases 5.2 and 5.3 (Series 300).

7. Graphics prints can be done in 3 ways:

Use Starbase procedures to print from a bitmap or Starbase bitmap �le
under the control of the program which originally creates the bitmap or �le.
A program other than that which originally creates the bitmap or �le can
be used in one of two ways.
a. Use the Starbase procedure gopen without INIT followed by the Starbase

procedure bitmap_print to print a currently displayed bitmap.
b. Use the Starbase procedure file_print to print a previously created

Starbase bitmap �le.

HP provides an HP-UX command|screenpr|which can be used to print
a currently displayed bitmap.
Use pcltrans, an HP-UX command (see the Starbase Reference manual),
to spool a Starbase bitmap �le to the printer. This is typically used when
the printer is shared, although it can be used on a single-user system to do
graphics prints in background.

24-2 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Printer Configurations

There are two fundamental printer con�gurations of interest, spooled and non-
spooled. The primary di�erence between the two con�gurations is that spooling
uses the system spooler (lp) in the raw (-oraw option) mode. This section gives a
quick overview of these two con�gurations so that you can focus in later sections
on the information you need for your application.

Non-Spooled Operation

In a non-spooled environment, the following Starbase procedures can be used in
your programs:

bitmap_print, dcbitmap_print|do a graphics print from the speci�ed
bitmap. Remember that the bitmap can either be a display or a memory
bu�er created by the Starbase memory driver.

file_print|do a graphics print using a �le created previously by the
bitmap_to_file procedure.

Spooled Operation

In a spooled environment, the HP-UX command pcltrans (see the Starbase
Reference manual) is used as a �lter to process a Starbase bitmap format �le
(created previously using bitmap_to_file), which is then piped to the lp spooler
in raw mode. Spooling can either be done on a single-user computer or the �le
can be sent to another computer if the printer is shared.

Alternatively the spooler can be accessed using bitmap_print or file_print.
With these procedures output can be directed to a special device �le or redirected
through standard out depending upon parameters in the formatter's con�guration
�le. Spooler access can be accomplished by: processing a bitmap or �le (using
bitmap_print or file_print) with the output going to standard out. Then
redirect or pipe the resulting output to the lp spooler in raw mode.

PCL 24-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Spooler Conflicts

Assume that you have a color or monochromatic PCL printer connected to your
system and you (and possibly others) spool graphics prints to it. If you also use
Starbase procedures to do graphics prints, the spooler and Starbase program may
conict, producing interleaved/unusable output. Unusable output may occur in
both spooled text and the graphics prints. Thus, simultaneous usage of spooled
and non-spooled modes should not be used.

If your printer is used for spooling, it is recommended that all graphics prints be
done using spooling.

Software Structure

The following �les are used for graphics prints on color PCL printers:

/usr/lib/starbase/formatters/fmt_table.c

/usr/lib/starbase/formatters/pcl/libfmtpcl.a

/usr/lib/starbase/formatters/pcl/cfg.ctmplt

/usr/bin/screenpr

The following �les are used for graphics prints on monochromatic PCL printers:

/usr/lib/starbase/formatters/fmt_table.c

/usr/lib/starbase/formatters/pcl/libfmtpcl.a

/usr/lib/starbase/formatters/pcl/cfg.template

/usr/bin/screenpr

24-4 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Setting Up the Special Device File

A special device �le is required if you directly access a printer. If the printer has
already been assigned a node as system printer you may use that device �le if
you are on a single user system and you have write permission for that device
�le.

If a special device �le for your printer has not been assigned, the mknod command
must be done before proceeding further. Please refer to the information on how
to create dev �les for printers in the HP-UX manual Installing Peripherals .

The Configuration File

The parameters which control printing are speci�ed in two ways:

1. By parameters in the bitmap_print and file_print procedures. These
parameters contain information about the source, e.g., information on the
size of the bitmap rectangle to process and print. Parameters are apt to
change during program execution. They are discussed in the Starbase Graphics
Techniques manual and are not discussed here.

2. By additional information contained in �les called con�guration �les.

Configuration Files

Con�guration �les store information about the printer. e.g., resolution, page size,
pixel expansion, etc.

Storing printer information in a con�guration �le is done as a convenience so that
you don't need to type in this information each time you use the bitmap_print
or file_print procedures. When you use these procedures, you only need to
provide the pathname of the con�guration �le.

Note All parameters must be present and in the exact order shown. If
parameters are missing or incorrect an error will be issued and
formatter action will be terminated.

PCL 24-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

The parameters in the con�guration �le are :

ENABLE STANDARD

OUT

If TRUE, output goes to standard out regardless of the
printer device �le speci�ed in the next parameter. If
FALSE, output goes to the special device �le or �le
speci�ed in the next parameter.

PRINTER DEVICE

FILE

Speci�es the special device �le for the printer. This
parameter is read but ignored if standard out enable is
TRUE.

PRINT METHOD Speci�es color, color2, primary (red, green, blue, cyan,
magenta, yellow, black, white), gray scale, or monochro-
matic (black and white). This parameter has allowable
values
of \color", \color2", \primary", \gray", \grey",
\mono", and \monochromatic".

If PRINT METHOD is \color", each pixel is converted to
an appropriate color. If print method is \color2", each
pixel is converted to an appropriate color plus a random
noise increment value.

If PRINT METHOD is \primary" then each pixel is con-
verted to the nearest primary color.

If PRINT METHOD is \gray" (or \grey"), each RGB pixel
is converted to an appropriate gray scale value.

If PRINT MODE is \mono" (or \monochromatic"), each
nonzero value RGB pixel is rendered black.

Note Monochromatic only formatters, map \color" to \gray" and
\primary" to \monochromatic". That is, the appropriate
monochromatic mode will automatically be chosen.

PIXEL EXPANSION Indicates the expansion for each pixel on the bitmap and
ranges from 1 to 8. For example, to expand each pixel of
the bitmap to a 3�3 cell, the expansion is set to 3.

RESOLUTION Indicates resolutions in dots/inch. This is printer de-
pendent. For example, the HP 3630A has an available

24-6 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

graphics resolution of 180 dots/inch, while the LaserJet
and LaserJet Plus printers have four resolutions as fol-
lows:

75 dots/inch
100 dots/inch
150 dots/inch
300 dots/inch

Note that this parameter and the subsequent page_width
and page_length parameters are used to determine the
output \page" for clipping purposes.

SEND RESOLUTION If true, speci�es that the graphics resolution escape
sequence will be sent to the output �le (printer). If false,
no graphics resolution escape sequence will be sent. This
parameter should normally be set to true unless special
circumstances exist (such as spooling).

PRINT START

POSITION

If this parameter is \current", raster graphics rows start
at the current text cursor position. If this parameter is
\margin", raster graphics rows start at the left graphics
margin. When this parameter is margin, a formfeed is
sent to the printer at the completion of the graphics data
transfer. If this parameter is current, no formfeed is
sent upon completion of the graphics data transfer. Note
that the current parameter is only useful for printers
(such as the LaserJet or SprintJet) which implement this
capability of PCL.

PAGE WIDTH Speci�es the width of the printable graphics area on the
page in inches.

PAGE LENGTH Speci�es the length of the printable graphics area on the
page in inches.

The symbol \#" in con�guration �les starts a comment and is operative for the
remainder of the line.

PCL 24-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Configuration File Template

A con�guration �le template for color pcl printers is provided as �le:

/usr/lib/starbase/formatters/pcl/cfg.ctmplt

This template contains values appropriate for the HP 3630A printer. A
con�guration �le template for monochromatic pcl printers is provided as �le:

/usr/lib/starbase/formatters/pcl/cfg.template

A following section details parameter values for supported Hewlett-Packard
printers which you may wish to refer to in deciding values for particular �elds
of your con�guration �le. Note that parameters are position sensitive. That is,
each parameter is required to be present in the form and order listed.

24-8 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Example Configuration File

#--

***** Example configuration file for a color PCL printer *****

#--

TRUE

/dev/null

color

2

180

TRUE

current

8.0

10.5

PCL 24-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Printer Parameters

This section provides information on each of the printers. It is meant to
supplement the documentation provided with your printer. The dots/row column
indicates maximum dots per row at maximum density, generally the printer will
truncate data exceeding the maximum dots per row. Refer to the applicable
printer documentation for the most current information and for dots per row at
other than maximum density.

Table 24-1. Printer Resolution Information

Printer Resolution Dots/Row Comments

HP 2225A 96 640 square pixels only

HP 2227A 96, 192 2536 square pixels only

HP 2228A 96, 192 1536 square pixels only

HP 2235B/D 90, 180 2448

HP 2686A 75,100,150,300 y y

HP 256XA/B 70, 140 1848

HP 293XA/B 90 1024

HP 3630A 180 1440

HP C1602A 180 1440/1925z

y With the HP 2686A LaserJet and LaserJet Plus printers, the user can specify
several di�erent print modes. You should be aware of the following:

1. On the LaserJet, graphics memory is limited to approximately 59 Kbytes. As a
result, prints at greater than 75 dots per inch resolution are limited by printer
graphics memory. That is, output prints using higher densities are smaller
than the paper size. Attempts to print larger images than graphics memory
allows will probably cause the printer to display error 20 with unpredictable
print results.

2. On the LaserJet Plus graphics memory size is dependent upon previous actions
such as downloading of fonts.

3. LaserJet Plus printers may not have enough available graphics memory to
handle a full page 300 dots per inch print. See the printer's technical reference

24-10 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

manual for further details. This note does not apply to Laser Jet Plus printers
with 2.0 Mbytes of memory.

4. This printer family can dynamically recon�gure graphics memory.

5. The formatter bases print dimensions on page length, page width, and
resolution. The results of attempting prints that are not supportable by actual
available graphics memory or physical paper size are unde�ned.

z With B-sized paper.

Print Modes

Four print modes are currently supported on color PCL printers. These modes
are color, primary, gray (parameter value \grey" or \gray") and monochrome

(parameter value \mono" or \monochrome"). The four modes are explained below:

Print Mode: color

The formatter enables PCL printers to provide the additive (red, green, blue) and
subtractive (cyan, yellow, magenta) primary colors. Other colors are generated
(by the formatter) by dithering the primary colors. An error di�usion algorithm
is utilized to develop the appropriate color cell. Each pixel on the bitmap is
expanded into a cell whose size is controlled by the PIXEL EXPANSION parameter
in the con�guration �le. Patterns of RGB dots are plotted in the expansion cell
to generate a color that the eye perceives as the desired color. The pattern of
dots within the expansion cell for each of three planes per row is a fairly complex
function of the desired color.

Expansion cell sizes range from 1 to 8. For example, if the size is set to 3, each
bitmap pixel is expanded to a 3�3 cell on the plot.

Color mode plotting can take a considerable amount of time depending on the
following:

size of the image.
number of bitmap planes.
pixel expansion factor.
printer interface type.

PCL 24-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

error di�usion calculations.

Error Diffusion

The actual intensity of each dot in the output print is determined in a complex
manner. The output print is organized into planes (one for each primary additive
color). Each plane contains rows of output cells, with each row containing dots
equal to the number of source pixels times the PIXEL EXPANSION factor (or cell
expansion factor).The number of rows in the output is equal to the number of
source pixel rows times the PIXEL EXPANSION factor. Thus each pixel is expanded
to a larger cell in the output according to the PIXEL EXPANSION factor.

A color map index value is obtained for the source pixel currently being processed.
Residual errors which have accumulated from previously processed output dots
are added to the color map index value to obtain a desired color map index value.
The desired color map index value is then tested against a value equivalent to
half bright. If the desired value is greater than half bright, this output dot will
be turned on; otherwise it will be turned o�. If this output dot is turned on,
a new error value equal to the desired color map index (minus full bright) is
accumulated in adjacent output dots. If the output dot is not turned on, only
the desired value is accumulated in adjacent dots. The result of this process is
that errors in dot intensity are di�used (or accumulated) over adjacent output
dots. This process is repeated for each dot being expanded from the source pixel.
When the source pixel expansion is complete a new color map index value is
obtained for the next source pixel, and the process is repeated.

The error di�usion method works well for most color intensities. Certain color
intensities result in generation of unwanted patterns. This is most noticeable
with gray (R=G=B) in the range of 0.3 to 0.7. Note that this unwanted pattern
problem is discussed in ACM Transaction on Graphics , vol. 6, no. 4, October
1987.

Print Mode: color2

The color2 mode uses the same algorithm as the color mode, with the addition
of random noise to each pixel. This random noise breaks up unwanted patterns
sometimes seen in large areas of gray. One result of the added random noise
is introduction of random (di�erent) color dots, particularly in regions of low
luminosity.

24-12 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Print Mode: primary

While error di�usion is useful for solid images, it is not adequate for line drawings
since lines appear intermittent due to \holes" in the dither pattern. The primary
mode supports direct generation of lines using the primary colors (red, green,
blue, cyan, yellow, magenta, black, and white).

In primary mode, the user's PIXEL EXPANSION factor dictates the size of a solid
cell for each pixel. PIXEL EXPANSION values of 1 to 8 are supported for primary
mode. For example, if a bitmap line is green and the con�guration �le speci�es
an expansion of 4, then each green bitmap pixel is reproduced by a 4�4 array of
green dots.

Print Mode: gray

Gray mode maps each RGB pixel into a gray intensity value according to the
YIQ color model. The YIQ color model maps Y into the same chromaticity as
luminosity in the CIE color model according to the formula:

0.30 * red + 0.59 * green + 0.11 * blue

This formatter maps gray intensities into an 8�8 ordered dither pattern providing
65 shades of gray.

Dithering in gray Mode (Halftoning)

The actual intensity of each pixel on the output print is determined in a fairly
complex manner. Essentially the output print is organized into 8�8 dither cells
(a grid of rows and columns each eight dots across). Then each input pixel
is converted from RGB to YIQ yielding an index into a table of ordered dither
patterns. Next the input pixel is expanded to a larger cell according to the PIXEL
EXPANSION parameter. Finally, this cell is copied (tiled) from the ordered dither
pattern onto the output page. The actual portion of the 8�8 ordered dither
cell pattern copied is determined by the row and column position of the source
pixel and output print location. In large areas of similar color the actual dither
pattern achieved is 8�8. In areas of rapidly changing color the actual dither
pattern achieved may be some smaller size (minimum size = PIXEL EXPANSION

parameter).

PCL 24-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Disappearing Lines in gray Mode

One result of the dithering method used is that single pixel width lines can
disappear. When the pixel is copied from the ordered dither pattern (as discussed
above) portions of the source pattern are empty (white). With certain conditions
the slope of a single pixel line can be such that it intercepts all black or all white
pixels in the dither cell locations being copied. This results in a disappearing
line. A similar problem results in a line appearing as random size strings of dots.

This mode was designed to be used with solids and polygons rather than with
lines. If the bitmap you desire to print consists of lines you should use monochrome
mode, possibly with no background.

Print Mode: monochrome

The monochrome mode maps each nonzero pixel to black. This mode works well
for line drawings where a constant (black) intensity is desired for each line. This
mode does not work well for solids modeling or �lled polygons as every nonwhite
pixel maps to black.

Print Mode Differences When Printing Single Planes

The two modes, gray and monochrome have quite di�erent e�ects when printing
from a bitmap which consists of monochromatic foreground and background.
Essentially gray mode tries to approximate the actual display as closely as
possible in shades of gray. As a result, a display that consists of white text
on a black background will be printed faithfully using gray mode. That is, the
black background will be printed full black while the white letters will not be
printed (white being the absence of subtractive color). Conversely, monochrome
mode will print the foreground (that is, the letters) in black and not print the
background. The resulting prints will (correctly) appear to be reversed images
of each other.

24-14 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Using the Graphics Print Procedures

The Starbase Graphics Techniques chapter \Storing, Retrieving, and Printing
Images" should be read prior to reading this section. Briey, the graphics print
procedures are:

bitmap_print, dcbitmap_print|print from a bitmap.
file_print|print from a �le created previously using bitmap_to_file or
dcbitmap_to_file.

The user controls the output using parameters of the bitmap_print and
file_print procedures and parameters in the con�guration �le. Except for
the formatter and config parameters, all other parameters are discussed in the
Starbase Graphics Techniques manual.

Specifying the Formatter and Config Parameters

The print procedures require speci�cation of two parameters which are unique to
the PCL formatter:

1. formatter|The name that is used is \pcl".
2. con�g|This should be set to the desired con�guration �le.

Using the bmprint Program

The program bmprint.c has its source in /usr/lib/starbase/formatters/pcl.
You may desire to customize it for your application environment or to make
multiple copies under di�erent names that reference di�erent con�guration �les.
Essentially this program executes the gopen call on a bitmap without initializing
it, allowing all or a portion of the bitmap currently displayed to be printed.

PCL 24-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Run time parameters allow you to specify:

start location (-l option).
size of the rectangle (-s option).
rotation of the output print (-r option).
color map mode full or other (-f option).
print the background (-k option) (see note below).
set foreground and background indices (-c option).
set the bitmap bank to print (-b option).
set the display enable mask (-d).
select a single plane to print (-p).

You should make a copy of the source, modify it as required to reect the
con�guration �le and defaults you desire to use, and then compile and link it
as described in the section of this chapter concerning linking.

The background (-k) option a�ects the resulting print in one of two ways
depending upon whether a single plane is being printed or not. If a single plane
is being printed and no background is selected, the foreground and background
index parameters are active and specify what is to be printed (foreground) and not
printed (background). In all other cases (not single plane), the actual background
color index used by the formatter (the index whose printing will be suppressed) is
obtained from one of two sources. In the case of a non-single plane being printed
from a bitmap opened with the gopen, the formatter uses the current Starbase
background index. In the case of a non-single plane being printed from a Starbase
bitmap �le the background index is obtained from the Starbase bitmap �le being
printed.

A �nal note on background indexes. If you decide to set the Starbase background
color index prior to a bitmap_print operation and the color map's shade mode
is CMAP_FULL with more than eight planes the resulting index is a 24-bit value.
The upper eight bits are used for red, the center eight bits are used for blue, and
the lower eight bits are used for green. You may want to use background_color
rather then background_color_index providing the speci�c (oat) red, green,
and blue values rather than computing the 24-bit index.

index25 = (red_index << 16) + (green_index << 8) + blue_index

24-16 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Direct Access Printing

When using direct access the �rst parameter of the con�guration �le (output goes
to std out parameter) should be set to FALSE. The special device �le parameter
of the con�guration �le should be set to the special device �le of the printer (see
the section on setting up the special device �le). You must have write permission
for the device �le.

The following examples assume that a bitmap has been created containing the
data you desire to print. In the case of bitmap_print and dcbitmap_print calls
fildes is the �le descriptor of the bitmap opened with gopen. In the case of
file_print, myfile.dat is the Starbase bitmap �le previously created. The
con�guration �le is config.prtr.

1. Example of bitmap_print and dc_bitmap_print calls. Refer to the Starbase
Reference manual for parameter descriptions.

bitmap_print(fildes,"pcl","config.prtr",
ALL_PLANES,TRUE 0,0.0,1.0,1.0,FALSE,1,0,TRUE);

dcbitmap_print(fildes,"pcl","config.prtr",

ALL_PLANES,FALSE 0,100,100,FALSE,1,0,TRUE);

2. Example of a file_print call. Refer to the Starbase Reference manual for
parameter descriptions.

file_print(myfile.dat,"pcl","config.prtr",

ALL_PLANES,TRUE, 1,0,TRUE);

Direct Access Using Redirection or Pipes

Access to a non-spooled printer requires an HP-UX environment (in order to use
the \>" and \|" redirection and pipe symbols). The following examples use a
con�guration �le named config.temp which has the output to a �le named temp.
The example special device �le is /dev/rp. The previously prepared Starbase
bitmap �le is myfile.dat.

The HP-UX environment can be obtained from within a program using the
HP-UX Reference, Section 3 procedure system. Similar functionality may be
obtained by invoking the HP-UX Reference, Section 1 procedure pcltrans, or
by running the provided bmprint program.

PCL 24-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

1. Example of a pcltrans call. Refer to the Starbase Reference manual pcltrans
procedure for parameters.

pcltrans myfile.dat hparmsi > /dev/rp

2. Example of redirection using file_print, cat, and system.

file_print(myfile.dat,"pcl","config.temp",

ALL_PLANES,TRUE, 1,0,TRUE);

system("cat temp > /dev/rp");

3. Example of a screenpr call. Refer to the Starbase Reference manual screenpr
procedure for parameters.

screenpr -C <parms> > /dev/rp

Spooling Examples

Spooling can be done using the Starbase Reference procedure pcltrans. Spooling
may also be done utilizing the file_print, dcbitmap_print, and bitmap_print
procedures in conjunction with the Starbase Reference procedure system. Using
the system command, you can spool a �le from within a program.

A possible sequence within a program might be to create a �le using the
bitmap_to_file procedure and then use the system procedure to invoke
the spooler. Alternatively, a program might invoke bitmap_print with a
con�guration �le speci�ed that directs output to standard out in a system
procedure call which also pipes the output to lp in raw mode.

The following examples are given as possible ways to spool raster graphics data
from Starbase bitmaps. You should review the pertinent sections of the Starbase
Reference manual for the correct calling parameters (parms).

24-18 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

1. Spooling from a Starbase environment (assumes the con�guration �le sets out-
put to �le myprint.proc and the Starbase bitmap �le name is myprint.dat)
using file_print.

/* create the Starbase bitmap file */

bitmap_to_file(parms..,myprint.dat.. parms);

/* format the file, output filename is myprint.doc */

file_print(myprint.dat, .. parms);

/* spool the file */

system("lp -oraw myprint.proc");

2. Spooling from a Starbase environment (assumes the con�guration �le sets
output to �le myprint.proc) using bitmap_print.

/* format the file - output filename is myprint.proc */

bitmap_print(parms);

system("lp -oraw myprint.proc");

3. Spooling using the HP-UX command screenpr. The currently displayed
bitmap will be spooled.

screenpr -C | lp -oraw

4. Spooling using the HP-UX command pcltrans. Assumes a Starbase bitmap
�le myprint.dat has been previously created.

pcltrans myprint.dat | lp -oraw

Controlling Print Orientation

The default print orientation is analogous to landscape mode on a LaserJet or
LaserJet Plus printer. That is, width is across the long paper dimension, and
height is across the narrow paper dimension.

PCL 24-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Print Size and Clipping

Print rows that extend beyond the last column on the physical page will generally
be clipped by the printer. However, this action is printer dependent.

Print columns that extend beyond the last row on the physical page will be
printed onto the next (fanfold) page.

This formatter determines the target page size based on information in the
con�guration �le. Speci�cally, page_length, page_width, and resolution

determine the number of dots in the output page. The cell_size parameter
is used to determine the number of input pixels that will �t on the output page
as follows:

output pixels across = page_width * resolution / cell_size

output pixels down = page_length * resolution / cell_size

Prints will be truncated according to the target page size by the formatter. The
following example may help clarify this.

Request to print the entire frame buffer

Source frame buffer width = 1280 pixels

Source frame buffer height = 1024 pixels

Page width = 8.0 in

Page length = 10.5 in

Resolution = 300 dots per inch

cell_size = 2

available output pixels across = 8.0 * 180 / 2 = 720

available output pixels down = 10.5 * 180 / 2 = 945

result -- 720 < 1280 and 945 < 1024 -- truncate in both dimensions

cell size = 1 then
available output pixels across = 8.0 * 180 / 1 = 1400

available output pixels down = 10.5 * 180 / 1 = 1890

result -- 1400 > 1280 and 1890 > 1024 -- no truncation

24-20 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Linking and Running Your Program

The PCL formatter pcl_fmt is located in /usr/lib/starbase/formatters/pcl

with the �le name libfmtpcl.a. The PCL formatter requires fmt_table.o

(which associates the formatter and name) to be present at run time. Hewlett-
Packard provides the source as /usr/lib/starbase/formatters/fmt_table.c.
The Starbase procedures bitmap_print and file_print require a Starbase
environment and a device opened with the Starbase gopen call. The following
example (myprog.c being your program name) uses the -l option for the Starbase
and I/O libraries. This example also uses the -l option for a representative driver
-ldd300l. To compile and link a program using bitmap_print or file_print
along with other Starbase procedures requiring a device opened with the Starbase
call gopen, use:

cc myprog.c /usr/lib/starbase/formatters/fmt_table.c \

/usr/lib/starbase/formatters/pcl/libfmtpcl.a \

-ldd300l -lsb1 -lsb2 -lm -o myprog

fc myprog.f /usr/lib/starbase/formatters/fmt_table.c \

/usr/lib/starbase/formatters/pcl/libfmtpcl.a \

-ldd300l -lsb1 -lsb2 -lm -o myprog

pc myprog.p /usr/lib/starbase/formatters/fmt_table.c \

/usr/lib/starbase/formatters/pcl/libfmtpcl.a \

-ldd300l -lsb1 -lsb2 -lm -o myprog

To compile and link /usr/lib/starbase/formatters/pcl/bmprint.c, the
following sequence can be used. As explained previously, screenpr allows the
user to print a currently displayed bitmap.

cc /usr/lib/starbase/formatters/pcl/bmprint.c \

/usr/lib/starbase/formatters/fmt_table.c \

/usr/lib/starbase/formatters/pcl/libfmtpcl.a \

-ldd300l -lsb1 -lsb2 -ldvio -o bmprint

PCL 24-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Warning and Error Messages

This section discusses warning and error messages provided by the PCL formatter.

Warning Messages

Unrecognized item in config file, line xx

This indicates that a problem existed in the con�guration �le with the parameter
at line xx . This warning will be followed with an error message indicating an
error reading con�guration �le.

Print truncated

This indicates the formatter determined the print too large to �t in the print
space de�ned by resolution, page length, and page width. The formatter then
truncated the print to �t the print space de�ned.

Error Messages

Raster formatter specified is not in table

This indicates that the formatter speci�ed was not found in fmt_table.o.

You should check that /usr/lib/starbase/formatters/fmt_table.c contains
the pcl entry, and that /usr/lib/starbase/formatters/fmt_table.o was
included in your link sequence.

Device is not bitmap

This indicates the bitmap speci�ed in a bitmap_print or dcbitmap_print call
was not a bitmap opened with gopen.

Plane number is out of range

This indicates that the single plane speci�ed for printing was not in the
speci�ed bitmap. This error can occur with bitmap_print, dcbitmap_print
or file_print calls.

Cannot open source file

This indicates that the Starbase bitmap �le speci�ed in a file_print call could
not be opened.

24-22 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Specified source file not bitmap data

This indicates that the �le speci�ed in a file_print call was successfully opened;
however, it was not a Starbase bitmap �le.

Error in closing raster file

This indicates a problem in closing the Starbase bitmap �le.

Unable to open configuration file

This indicates that the con�guration �le speci�ed in a file_print, bitmap_print
or dc_bitmap print could not be opened.

Error while reading configuration file

This indicates a parameter problem in a successfully opened con�guration �le.

Error while opening output file: xxxx

This indicates a problem opening the special device �le or output �le that was
speci�ed in the con�guration �le with output not to standard out.

Unable to allocate input buffer

This indicates a malloc call (to allocate 64K bytes) failed. You will need to provide
more memory for the formatter. In the case of a source bitmap which contains
multiple banks a total of 196K bytes of input bu�er space will be required.

Unable to allocate output buffer

This indicates a malloc call, (to allocate 92K bytes) failed. You will need to
provide more memory for the formatter.

Unable to allocate color table buffer

This indicates a malloc call (to allocate 512 bytes) failed. You will need to provide
more memory for the formatter.

Formatter internal error. All locations except 31

This indicates a problem internal to the formatter code. The most likely cause
is failure of a malloc call (to allocate 64K bytes for processing source data).

Formatter internal error. Location 31

This indicates a single plane bitmap �le was used with a full depth formatter call.
In the case of file_print, print_mode was negative or ALL_PLANES instead of

PCL 24-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

the plane number contained in the �le. In the case of pcltrans, the -pplane

option was not used or was used incorrectly.

Setting Up the Spooler

The steps for setting up the graphics spooler are very similar to the steps for
con�guring the LP spooler system. Refer to the HP-UX System Administrator
Manual (the \System Administrator's Toolbox" section) for details.

1. The LP spooler system needs to use HP-UX 1.1 (for Series 800) or 5.2 or later
(for Series 300) printer models. All Series 700 releases support the LP spooler.

2. Always use the raw mode (-oraw) of the lp spooler.

3. You must have write access.

4. First make sure that the lp spooler works with text. If you have problems
refer to the HP-UX System Administrator Manual .

5. If in a Starbase program environment, you should make the HP-UX Reference,
section 3 procedure call system with the appropriate string containing the
necessary �les, parameters, etc.

6. If you desire to print a currently displayed bitmap you may use a version of
bmprint redirected or piped as required.

24-24 PCL

FINAL TRIM SIZE : 7.5 in x 9.0 in

24

Special Considerations for
Non-Spooled Serial Output

The normal stty settings for an unopened serial device may not correspond
with the desired stty settings. For example, the default baud rate is 300. The
following information for setting up the special device �le and then setting stty

is provided as a starting point for your own requirements.

1. Typical Series 300/400 mknod for an HP 3630A at select code 9

mknod /dev/rlp c 1 0x090004

2. To con�gure the port for normal printing

stty -parenb -ienqak cs8 9600 -cstopb \

-clocal ixon opost onlcr tab3 < /dev/rp

3. To con�gure the port for raster printing, execute the following stty commands
(or equivalent ioctl(2) calls).

stty -onlcr -opost -tabdly < /dev/rp

PCL 24-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

25
Printer Command Language
Imaging Formatter

Overview

The PCL Imaging Formatter is a superset of the PCL Formatter. As such, the
PCL Formatter (see \PCL" chapter) will drive a device that supports the imaging
extensions of PCL (with reduced performance). However, the PCL Imaging
Formatter will not drive a device that supports straight PCL with no imaging
capabilities.

Read the chapter on \Storing Retrieving, and Printer Images" in the Starbase
Graphics Techniques manual before reading this chapter.

The PCL Imaging Formatter permits hard copies from bitmaps or a Starbase
bitmap �le to a color or monochromatic printer that supports the imaging
extension of PCL. If a device supports the imaging extensions of PCL, it is
able to process the raw bitmap and raw color map data internally, creating the
fully processed image without the help of the host computer. Devices that do
not support these capabilities rely on the host computer to perform all the image
processing, treating the printer as a dumb PCL device. These imaging extensions
give an increase in performance, image quality, and image processing options.

You can create hard copies using this formatter in the following ways.

The HP-UX command pcltrans (see the Starbase Reference manual for
options) is used to print a previously created Starbase bitmap �le. Starbase
bitmap �les are created using the Starbase Function bitmap_to_file or
dcbitmap_to_file.

The HP-UX command screenpr (see the Starbase Reference manual for
options) is used to print a currently displayed bitmap. This command reads
only the display's image planes and current hardware color map. Note that in
X windows applications, the overlay planes will not be printed.

PCL-IMAGING 25-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

The screenpr command is supported on displays that use the following
Starbase device drivers:

Series 300: hp300l, hp300h, hp98550, hp98556, hp98704, hp98705, hp98720,
hp98721, hp98730, hp98731. hp98735, hp98736, hpa1096.

Series 800: hp98550, hp98556, hp98720, hp98721, hp98730, hp98731.

Both the pcltrans and screenpr commands are capable of using or not using
the PCL Imaging Formatter. If you wish to use the PCL Imaging Formatter,
as opposed to the PCL Formatter (see PCL Formatter chapter), you must pass
in a special option that states the device you are using supports the imaging
extensions of PCL.

Currently, the PCL Imaging Formatter is not available through the Starbase
functions bitmap_print and file_print. If you invoke either of these functions
while running a Starbase Program, the image will be processed entirely by the
host computer, not by the device's image processing software.

Key Points of the PCL Imaging Formatter

1. The following devices work in conjunction with the PCL Imaging Formatter:

HP C1602A (PaintJet XL).
HP C1645A (PaintJet XL-300 in PCL5 mode).

2. You can print in gray scale, monochromatic (black and white), primary (red,
green, blue, cyan, yellow, magenta, black and white), or in color using the
following color algorithms:

error di�usion
ordered dither

3. Prints can be sized using non-integer pixel scaling. The default size is the
entire size of the paper used in the printer. Print size can also be determined
by specifying destination dimensions in inches.

4. Prints can be gamma-corrected by selecting one of the printer's built-in gamma
correction curves.

5. The PCL Imaging Formatter is not a Starbase driver|you do not do moves,
draws, etc. to the printer. Instead, you process currently displayed bitmaps
or previously created Starbase bitmap �les for output to the printer.

25-2 PCL-IMAGING

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

6. The PCL Imaging Formatter works with HP-UX releases 7.0 and later for
both the Series 300 and Series 800 computers, 8.05 and later for Series 700
computers.

PCL-IMAGING 25-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Printer Configurations

There are two fundamental printer con�gurations of interest, spooled and non-
spooled. The primary di�erence between the two con�gurations is that spooling
uses the system spooler (lp) in the raw (-oraw option) mode. This section gives
an overview of these con�gurations, so you can choose the appropriate method
for your application.

Non-Spooled Operation

The only non-spooled operation currently supported by the PCL Imaging
Formatter is direct access printing in the HP-UX environment. Direct access
printing involves a non-shared printer directly connected to the host system. The
standard output (stdout) from the HP-UX commands pcltrans and screenpr

is \piped" to the printers special device �le (see the section on \Setting Up the
Special Device File" in this chapter). You will need to have write permission for
the special �le.

The HP-UX environment can be obtained from within a program using the
procedure system (described in HP-UX Reference, Section 3).

Direct Access Printing

Examples:

Using a bitmap �le from a Starbase program:

/*Create the starbase bitmap file */

bitmap_to_file(params ... ,myprint.bit, ... params);

/*Process the file in color and send to the printer */

system("pcltrans -I myprint.bit > /dev/rlp");

Print currently displayed bitmap from a program in color:

system("screenpr -I -F/dev/crt > /dev/rlp");

Print currently displayed window from a program in color:

/*Origin=10,10, Width=100, Height=200 */

system("screenpr -I -X10 -Y10 -D100 -H200\

-F/dev/crt > /dev/rlp");

25-4 PCL-IMAGING

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Print color bitmap �le using ordered dither in an HP-UX environment:

pcltrans -I -a3 myprint.bit > /dev/rlp

Print currently displayed bitmap in grayscale, rotated:

screenpr -I -a5 -R -F/dev/crt > /dev/rlp

Spooled Operation

Spooled operation is the best mode if you have a shared printer. The HP-UX
commands pcltrans and screenpr can also be utilized in a spooled environment
(see the Starbase Reference manual for details on pcltrans and screenpr).

pcltrans is used as a �lter to process a Starbase bitmap �le previously created
by the bitmap_to_file procedure. The stdout (standard out) is
then piped to the lp spooler in raw mode. Spooling can be done
locally, or the pcltrans command output can be piped into a �le
and sent to a remote printer on another computer.

screenpr is used to process a currently displayed bitmap. Its output is also
sent to stdout and can be piped to either the lp spooler or a �le
for remote printing.

Spooled Printing

Examples:

Using a bitmap �le from a Starbase program:

/* Create the starbase bitmap file */

bitmap_to_file(params ... ,myprint.bit, ... params);

/* Process the file in color and send to the printer */

system("pcltrans -I myprint.bit | lp -oraw");

Print currently displayed bitmap from a program in color:

system("screenpr -I -F/dev/crt | lp -oraw");

Print currently displayed window from a program in color:

/* Origin=10,10, Width=100, Height=200 */

system("screenpr -I -X10 -Y10 -D100 -H200\

-F/dev/crt | lp -oraw");

PCL-IMAGING 25-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Print color bitmap �le using ordered dither in an HP-UX environment:

pcltrans -I -a3 myprint.bit > myprint.out

lp -oraw myprint.out

or

cat myprint.bit | pcltrans -I -a3 | lp -oraw

Print currently displayed bitmap in grayscale, rotated:

screenpr -I -a5 -R -F/dev/crt | lp -oraw

Spooler Conflicts

In the following scenarios, interleaved/unusable output may be produced.

Direct access output mode is used for a printer which is currently used for
spooling via the lp command.

More than one person is using direct access printing mode on the same device.

In general, if a device is con�gured for spooling with the lp command, all graphics
output should be done using the spooling print mode. Only use non-spooled
(direct access) print mode when a device is not shared. Simultaneous usage of
spooled and non-spooled modes should be avoided.

Software Structure

The following �les are used for color/monochromatic printing on printers that
support the imaging extensions of PCL:

/usr/bin/pcltrans

/usr/bin/screenpr

25-6 PCL-IMAGING

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Setting Up the Special Device File

To directly access a printer, you need a special device �le. If the printer has
already been assigned to a node as a system printer, you may use that device �le
(you must have write permission on that device �le). The 8.07 release and latter
Series 700 releases have the following device �les already created:

/dev/ptr_parallel

/dev/plt_rs232_a

/dev/plt_rs232_b

If a special device �le for your printer has not been assigned, the mknod command
must be performed before proceeding. For this you must be super-user. Enter
the select code in hexadecimal format (for example, a select code of 22 = 16
Hex). Please refer to the information on how to create dev �les for printers in
the HP-UX manual Installing Peripherals .

Configuration Files

The PCL Imaging Formatter currently is unsupported through the Starbase
functions bitmap_print and file_print; therefore, no con�guration �les are
necessary (see the \PCL Formatter" chapter for a description of con�guration
�les).

Printer Parameters

The PCL Imaging Formatter supports the following PCL printers:

PCL-IMAGING 25-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Printer Dots Per Inch Paper Size Starting Release

PaintJet XL
(C1602A)

180 A or B 7.0

PaintJet XL-300
(C1645A,
PCL-5 mode)

300 A 8.07 (Series 700)
8.0 (Series 300/400)

Print Modes

There are seven print algorithms on printers that implement the imaging
extensions of PCL:

Table 25-1. Print Modes

Selection Algorithm

0 no algorithm

1 snap to primaries

2 snap to black and white

3 color ordered dither

4 color error di�usion

5 monochrome ordered dither

6 monochrome error di�usion

They are selected in the pcltrans and screenpr commands by the -a option.
Each mode is explained in the following sections.

Snap to Primaries

While error di�usion is useful for solid images, it is not adequate for line drawings
since lines appear intermittent due to \holes" in the dither pattern. The primary
mode supports direct generation of lines using the primary colors (red, green,
blue, cyan, yellow, magenta, black, and white).

25-8 PCL-IMAGING

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Snap to Black and White

The monochrome mode maps each non-zero pixel to black. This mode works well
for line drawings where a constant (black) intensity is desired for each line. This
mode does not work well for solids modeling or �lled polygons as every non-white
pixel maps to black.

Color Ordered Dither or Monochrome Ordered Dither

In order dither, the intensity of each point (x,y) in a pixel matrix depends on
the desired intensity at that point I(x,y) and an 8�8 dither matrix. The value of
each cell (i,j) in the dither matrix is computed by:

i = x modulo 8

j = y modulo 8

If I(x,y) > D(i,j), the point corresponding to the (x,y) is intensi�ed; otherwise,
it is not.

Color Error Diffusion or Monochrome Error Diffusion

The actual intensity of each dot in the output print is determined in a complex
manner. A color map index value is obtained for the source pixel currently being
processed. Residual errors which have accumulated from previously processed
output dots are added to the color map index value to obtain a desired color
map index value. The desired color map index value is then tested against a
value equivalent to half bright. If the desired value is greater than half bright,
this output dot will be turned on; otherwise it will be turned o�. If this output
dot is turned on, a new error value equal to the desired color map index (minus
full bright) is accumulated in adjacent output dots. If the output dot is not
turned on, only the desired value is accumulated in adjacent dots. The result
of this process is that errors in dot intensity are di�used (or accumulated) over
adjacent output dots. This process is repeated for each dot being expanded from
the source pixel. When the source pixel expansion is complete, a new color map
index value is obtained for the next source pixel, and the process is repeated.

The error di�usion method works well for most color intensities. Certain color
intensities result in generation of unwanted patterns. This is most noticeable
with gray (r=g=b) in the range of 0.3 to 0.7. Note that this unwanted pattern
problem is discussed in ACM Transaction on Graphics , vol. 6, no. 4, October
1987.

PCL-IMAGING 25-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Disappearing Lines in Monochromatic Ordered Dither

One result of the dithering method used is that single pixel width lines can
disappear. When the pixel is copied from the ordered dither pattern (as discussed
above) portions of the source pattern are empty (white). With certain conditions
the slope of a single pixel line can be such that it intercepts all black or all white
pixels in the dither cell locations being copied. This results in a disappearing
line. A similar problem results in a line appearing as random size strings of dots.

This mode was designed to be used with solids and polygons rather than with
lines. If the bitmap you desire to print consists of lines you should use monochrome
mode, possibly with no background.

Differences When Printing Single Planes

The two modes, snap to black and white and monochrome ordered dither,
have quite di�erent e�ects when printing from a bitmap which consists of
monochromatic foreground and background. Essentially monochromatic ordered
dither mode tries to approximate the actual display as closely as possible in shades
of gray. As a result, a display that consists of white text on a black background
will be printed faithfully. That is, the black background will be printed full black,
while the white letters will not be printed (white being the absence of subtractive
color). Conversely, snap to black and white mode will print the foreground (that
is, the letters) in black and not print the background. The resulting prints will
(correctly) appear to be reversed images of each other.

Controlling Print Orientation

The default print orientation is left to right across the length of the paper
(equivalent to the LaserJet landscape mode). You can cause the HP-UX
commands pcltrans and screenpr to orient the print across the width of the
paper by using the -R option.

Print Size and Clipping

By default, the printer will scale the image to the size of the paper used. However,
the user can select the destination size of the image by using the -x, -y, -d, and
-h options of the pcltrans and screenpr HP-UX commands.

Paper size is automatically sensed by the PaintJet XL printer.

25-10 PCL-IMAGING

FINAL TRIM SIZE : 7.5 in x 9.0 in

25

Refer to the Starbase Reference manual for detailed option information on the
pcltrans and screenpr HP-UX commands.

Warning and Error Messages

Refer to the \PCL Formatter" chapter for details on warnings and error messages.

PCL-IMAGING 25-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

26

Computer Graphics Metafile

Introduction

This section describes the CGM driver, which produces an ANSI/ISO standard
Computer Graphics Meta�le (CGM). The CGM is a meta�le for capturing and
storing device independent picture descriptions. It may contain multiple pictures.
For further details and examples about the CGM driver, you may refer to the
Starbase Concepts and Tutorials manual.

There also exists a CGM interpreter that reads a CGM and outputs to graphics
devices. See cgm_to_starbase(3g) in the Starbase Reference. For an overview
of CGM, see the CGM chapter of the Starbase Graphics Techniques.

Functionality and Encodings

The CGM standard de�nes nineteen primitives (lines, markers, text, circles, etc.)
and thirty-�ve primitive attributes (text color, line pattern, interior style, etc.)
for describing the contents of pictures. The CGM standard describes these
capabilities in an abstract manner and de�nes three methods of encoding the
elements. The hpcgm device driver supports the following three encoding methods
(see also \Parameters for gescape," CGMESC_ENCODING later in this driver).

The Binary encoding is reasonably compact and is optimized for CPU e�ciency
in generating and interpreting CGMs, but it is not human readable and may
cause di�culties in some communications environments.

The Clear Text encoding is human readable (for example, CIRCLE (573,721)

95;) and can be produced with a normal text editor. It is good for debugging
and quick demonstrations but is not compact. It is relatively ine�cient for
CPUs to generate and interpret code using this method.

HP CGM 26-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

The Character encoding method codes all data as ASCII characters. It is
compact and good for communications, and probably lies between the Binary
and Clear Text in CPU e�ciency.

More information on CGM may be found in the ANSI X3.122-1986 and ISO
8632/1-4.

Precisions

The CGM de�nes elements for varying the precisions, types, and modes of data
in a meta�le. The hpcgm driver encodes coordinate data as type integer, and
allows selection of low or high precision (16 bits or 32 bits per coordinate) See
\Parameters for gescape," CGMESC_VDC_PREC later in this driver).

Mode

The CGM allows such things as marker size (as well as line width and edge width)
to be expressed in one of two modes: scaled or absolute. Absolute mode means
that size (width) is measured in coordinate units. Scaled mode means that the
given size is a scale factor to be applied to the nominal marker size of the device
upon which the CGM is displayed. CGM only allows one mode per picture. The
hpcgm driver uses scaled mode. Any absolute sizes received from Starbase are
converted to a scale factor.

The CGM standard also allows color to be selected either by index into a table
(and provides a color table de�nition element) or by an RGB (Red, Green, Blue)
triple. The hpcgm driver maps all Starbase color requests into RGB triples.

Picture

A CGM consists of one or more logically independent pictures. A picture consists
of the graphical actions that occur between Starbase clear_view_surface calls.
The hpcgm driver responds to a clear_view_surface call by terminating the
current picture and initiating a new picture.

26-2 HP CGM

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

To Compile and Link with the Device Driver

For Shared Libraries

The compiler driver programs (cc, fc, pc) link with shared libraries by default.
The shared device driver is the �le named libddhpcgm.sl in the /usr/lib

directory. Starbase will explicitly load the device driver at run time when you
compile and link with the Starbase shared library /usr/lib/libsb.sl, or use
the -lsb option. This loading occurs at gopen(3G) time.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11\

-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

HP CGM 26-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

For Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le name
libddhpcgm.a.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libddhpcgm.a

2. an appropriate relative path name

3. the -lddhpcgm option with the LDOPTS environmental variable exported and
set to "-a archive".

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddhpcgm -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddhpcgm -Wl,-L/usr/lib/X11R5 -lXwindow\
-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddhpcgm -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

26-4 HP CGM

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the �le that will be created by Starbase and to which
hpcgm will write the meta�le.

Kind May be OUTMETA or OUTDEV. If OUTDEV, the �le named by path must
already exist unless SPOOLED is speci�ed in Mode.

Driver The character representation of the driver type. This is hpcgm

modi�ed to meet the syntax of the programming language used.
Namely:

"hpcgm" for C.

'hpcgm'//char(0) for Fortran77.

'hpcgm' for Pascal.

Mode The mode control word consisting of several ag bits that can be
or ed together. Listed below are the ag bits which have device
dependent action.

SPOOLED|Allows specifying Kind equal to OUTDEV without having
Path already in existence.
0 (zero)|No ag causes the device to be initialized anyway
(including color map initialization).

Syntax Examples

The following examples open and initialize the hpcgm driver and put the meta�le
into a �le named example.cgm:

For C Programs:

fildes = gopen("example.cgm", OUTMETA, "hpcgm", INIT);

For Fortran77 Programs:

fildes = gopen('example.cgm'//char(0), OUTMETA, 'hpcgm'//char(0), INIT);

HP CGM 26-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

26
For Pascal Programs:

fildes = gopen('example.cgm', OUTMETA, 'hpcgm', INIT);

Driver Default

There are a number of driver options that may be manipulated with the gescape
function. See the \Parameters for gescape" section in this driver for the defaults
and options.

26-6 HP CGM

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

Default Color Map

While the hpcgm driver produces a meta�le with color selection mode direct

(RGB). It also maintains an internal color map to convert indexes to RGB. This
map has 256 entries and is initialized to the default values shown below.

Table 26-1. Default Color Table

Index Color Red Green Blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0

18-255 shaded colors

HP CGM 26-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

26
Selection of TOP mode (see CGMESC_TOP_MODE gescape later in this driver)
changes the value of the default color table.

Table 26-2. Top Mode Default Color Table

Index Color Red Green Blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 green 0.0 1.0 0.0

4 blue 0.0 0.0 1.0

5 yellow 1.0 1.0 0.0

6 magenta 1.0 0.0 1.0

7 cyan 0.0 1.0 1.0

8{255 repeat colorsy

y Index numbers 8 through 255 repeat the colors listed in index 0{7.

When INIT is used in the shade_mode procedure call, the color map initialization
is based on the value of the mode parameter.

CMAP_NORMAL mode Same as the Default Color Table.

CMAP_MONOTONIC mode The color map is initialized as shades of gray.

CMAP_FULL mode The color map is initialized as shades of color with
three bits allocated for red, three bits allocated for
green, and two bits allocated for blue.

26-8 HP CGM

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

Starbase Functionality

Commands Not Supported (no-ops)

The following Starbase commands are not supported and are ignored.

alpha_transparency echo_type

await_retrace echo_update

backface_control fill_dither

bank_switch hidden_surface

bf_alpha_transparency inqiure_pick_depth

bf_control inquire_hit

bf_fill_color inquire_pick_window

bf_interior_style interior_style (INT_OUTLINE)

bf_perimeter_color interior_style (INT_POINT)

bf_perimeter_repeat_length light_ambient

bf_perimeter_type light_attenuation

bf_surface_coefficients light_model

bf_surface_model light_source

bf_texture_index light_switch

block_move line_filter

block_read pattern_define

block_write perimeter_filter

clear_control set_capping_planes

contour_enable set_hit_mode

dbuffer_switch set_model_clip_indicator

dcblock_move set_model_clip_volume

dcblock_read set_pick_depth

dcblock_write set_pick_window

dcecho_type shade_range

dcecho_update surface_coefficients

define_contour_table surface_model

define_raster_echo texture_index

define_texture texture_viewport

define_trimming_curve texture_window

deformation_mode track

depth_cue track_off

depth_cue_color viewpoint

depth_cue_range write_enable

display_enable zbuffer_switch

double_buffer

drawing_mode

HP CGM 26-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

Conditionally Supported

The following Starbase commands are supported under the listed conditions:

clear_view_surface This causes completion of a previous picture and
begins a new picture in meta�le.

shade_mode The color map mode is selected but shading cannot
be turned on.

vertex_format The use parameter must be zero. Any extra coordi-
nates that are supplied are ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if not
supported by this device. For example, contouring
data will be ignored if the device does not support
it.

26-10 HP CGM

FINAL TRIM SIZE : 7.5 in x 9.0 in

26

Parameters for gescape

The hpcgm driver recognizes a number of gescape functions. Following are the
supported functions and de�nition of when they may be invoked.

After gopen, but before any other graphical activity:

CGMESC_ENCODING|Selects CGM encoding.
CGMESC_MET_NAME|De�nes meta�le name.
CGMESC_TOP_MODE|Selects TOP mode for meta�le generation.
CGMESC_VDC_PREC|Selects VDC integer precision.

Anytime after gopen:

CGMESC_APPL_DATA|Generates CGM application data element.
CGMESC_ESCAPE_ELT|Generates CGM escape element.
CGMESC_FONT_IX|Allows application to select fonts.
CGMESC_MESSAGE|Generates CGM message element.
CGMESC_PIC_NAME|De�nes picture name.

The gescape function allows the application program to input or output to a
device in a device dependent manner. The syntax for the gescape function is:

/* gescape_arg is typedef defined in starbase.c.h */...
gescape_arg arg1, arg2;...
gescape (fildes, ESCAPE_OP_CODE, &arg1, &arg2);

A fildes is the �le descriptor of the device to be accessed (returned by the
Starbase call gopen).

The hopi is the opcode that speci�es the action to be performed.

The arg1 and arg2 parameters provide information needed by a gescape.

A detailed discussion on each of the gescape functions can be found in the
appendix of this manual.

HP CGM 26-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

27
The HP Starbase-to-Visualizer Archive Device
Driver

Device Description

This device driver accepts Starbase function calls and encodes acceptable 3-D
display geometry into a special geometry meta�le. This archive �le serves as
an intermediate representation of Starbase data destined to be rendered in the
Personal Visualizer interactive environment. Additional processing by a support
translator must be performed before the information is suitable for the Personal
Visualizer.

Functionality

The HP Starbase-to-Visualizer hpsbv device driver is designed to facilitate data
exportation from existing Starbase applications to the Personal Visualizer or
Advanced Visualizer platform. Graphics code designed to display Starbase
geometry primitives (such as polygons) can be adapted to output this information
as an archive �le which preserves the three dimensional spatial relationships of
the user's database. The information stored in this �le is then converted by
a secondary translator (sbvtrans) to object data importable by the Personal
Visualizer.

The hpsbv device driver functions as a virtual 3-D display device (with the
Personal Visualizer as the actual display). It captures all view-independent
matrix transformations to the archive �le while ignoring calls for view points,
clipping planes, and display-dependent information. Transformations normally
associated with the interactive viewing process are then reserved for use by the
Personal Visualizer.

The Starbase-to-Visualizer pipeline to the Personal Visualizer supports only
geometry (polygons, spline surfaces, ellipses, etc.) and geometric information
(such as vertex normals). Attribute information such as color, surface properties,
and rendering-dependent data are not accessible by the Personal Visualizer.
Using driver speci�c graphics switches (gescape functions), however, data

HP-SBV 27-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

organization in the archive can make color speci�cation in the Personal Visualizer
nearly comparable to rendering in a Starbase application. (See the gescape

SBVESC_OBJ_NAME description later in this chapter for more information about
this approach.)

Object Definitions

The Personal Visualizer deals with data as objects in a 3-D environment. Objects
are composed of one or more polygonal faces. The result of translating an HPSBV
archive �le is one object �le containing all geometry collected by the graphics
driver. The name of this object is derived from the name of the archive unless
another is speci�ed via a graphics escape. (Special gescapes can be used to name
multiple object de�nitions in the same output archive).

27-2 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Linking the Driver

Shared Libraries

The shared HP Starbase-to-Visualizer Archive device driver is the �le named
libddsbv.sl in the /usr/lib directory. The device driver will be explicitly
loaded at run time by compiling and linking with the Starbase Shared Library
/usr/lib/libsb.sl, or by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

HP-SBV 27-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Archive Libraries

The hpsbv device driver is the �le named libddsbv.a in the /usr/lib directory.
This device driver may be linked to a program using the absolute path name
/usr/lib/libddsbv.a, an appropriate relative path name, or by using the -l
option -lddsbv with the LDOPTS environmental variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

This driver also requires the math library to be linked with C programs. All pro-
grams must also be linked with the Starbase graphics libraries /usr/lib/libsb1.a
and /usr/lib/libsb2.a, or use the -l option -lsb1 and -lsb2 . The device
driver needs to precede the graphics libraries when linking, as shown in the ex-
amples below.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddsbv -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddsbv -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddsbv -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

27-4 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path - The name of the archive �le which will be created by Starbase and to
which hpsbv will write the meta�le. It is recommended that pathnames end
with the extension .sbv for easy �le administration.
Kind - Must be OUTDEV, with SPOOLED speci�ed in the Mode argument.
Driver - -The character representation of the driver type. This is hpsbv

modi�ed to meet the syntax of the programming language used. Namely:

"hpsbv" for C

'hpsbv'//char(0) for FORTRAN77

'hpsbv' for Pascal

Mode - The mode control word consists of several ag bits that must be OR'ed
together. Listed below are the ag bits which have device dependent action.
These ags must be present to initialize the hpsbv driver.

SPOOLED Allows specifying Kind equal to OUTDEV without having Path

already in existence.
INIT Open and initialize the device.

Syntax Examples

The following examples open and initialize the hpsbv driver and put the archive
�le into a �le named example.sbv

For C Programs:

fildes = gopen("example.sbv", OUTDEV, "hpsbv", INIT | SPOOLED);

For FORTRAN77 Programs:

fildes = gopen('example.sbv'//char(0), OUTDEV, 'hpsbv'//char(0),

INIT + SPOOLED);

HP-SBV 27-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

For Pascal Programs:

fildes = gopen('example.sbv', OUTDEV, 'hpsbv', INIT + SPOOLED);

Driver Default

There are a number of driver options that may be manipulated with the Starbase
gescape function. See the Gescape section in this chapter for the defaults and
options.

The default action taken without use of the special gescape functions results in
an archive �le containing all the relevant geometry display calls stored as one
usable object for the Personal Visualizer.

27-6 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Starbase Functionality

Commands Supported

The following Starbase commands are supported by the hpsbv device driver:

move3d - (for current point)
arc

ellipse

polygon2d

polygon3d

quadrilateral_mesh

rectangle

triangular_strip

spline_surface

concat_matrix

concat_transformations3d

curve_resolution

flush_matrices

gclose

gerr_control

gescape

gopen

hidden_surface

knot_vectors
make_picture_current

pop_matrix

push_matrix

vertex_format

Commands Not Supported (no-ops)

The Starbase commands not listed above are not supported. They have no e�ect
on the �nal output, however, some may report errors. These reported errors will
not e�ect the archive �le.

HP-SBV 27-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Gescapes

The hpsbv driver recognizes a number of gescape functions. Following are the
supported functions and de�nitions. Details can be found in Appendix A of this
manual.

SBVESC_OBJ_NAME|Name the following data by this name.

SBVESC_BEGIN_ARC|Begin archiving all relevant Starbase calls.

SBVESC_END_ARC|Stop archiving any future Starbase calls.

SBVESC_COMMENT|Embed a user de�ned comment in the archive �le (has no
e�ect on output object data).

SBVESC_LF_COORD|Left handed coordinate data.

SBVESC_RT_COORD|Right handed coordinate data.

Gescape Syntax

The gescape function allows the application program to input or output to a
device in a device dependent manner. The syntax for the gescape function is:

/* gescape_arg is typedef defined in starbase.c.h */

...

gescape_arg arg1, arg2;

...

gescape(fildes, hopi, &arg1, &arg2);

Where fildes is the �le descriptor of the device to be accessed (returned by
Starbase gopen call).

The hopi is the opcode that speci�es the action to be performed. This code is
only relevant to a speci�c driver and is ignored when passed to other devices.

The arg1 and arg2 parameters provide additional data needed by a gescape.

27-8 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Troubleshooting

Table 27-1. Troubleshooting Guide

Problem Probable Solution

Application experiences gopen
errors.

HPSBV may not have been linked in, or the
SPOOLED ag was not OR'ed in with the mode ag.

The archive �le appears
unexpectedly small or empty.

Graphics code may be non-polygonal output (such
as polylines), or the gescape SBVESC_END_ARC was
called.

Objects appear at in the PV
and have no depth to them.

Check code to see if data is created by polygon2d

calls, rather than polygon3d, for example. You
may also have to open the driver with the THREE_D
ag.

Object �le contains multiple
objects I would like to deal with
separately.

Try separating the data with 3-D Edit or use the
gescape SBVESC_OBJ_NAME in your Starbase code.

Objects appear reversed in
orientation when imported into
the PV.

Rotate them about Y by 180 degrees. The driver
attempts to keep positive and negative points
relative to their original coordinate systems when
converting from left-handed to right-handed space.

Objects appear to project
shadows with holes when
rendered in the PV.

Use the -b (create double-sided polygons) option
in the sbvtrans translator. This will create
correct polygons for shadow testing in the PV.

HP-SBV 27-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Table 27-1. Troubleshooting Guide (continued)

Problem Probable Solution

The surface features of an object
appear to be a mixture of smooth
and faceted data.

There can be several reasons for this e�ect. If the
-n (use Starbase normals) option from sbvtrans

was used, then not all of the data had shading
normals per vertex. If total smooth shading is
desired, try using the -s option from sbvtrans.
This will attempt to smooth the object data given
the current epsilon setting (-e option). If this
operation does not work to your satisfaction, try
increasing the epsilon value to consider spaced out
points closer in neighborhood. If only selective
smoothing is desired, try smoothing the
appropriate points through the 3D Edit editor in
the PV.

Objects appear to jump o� the
screen when scaled in the PV.

Your objects require centering when they are �rst
created. Use the centering option (-c) from the
sbvtrans translator. If you have a group of
objects which will remain grouped, use the (-c all)
option to center the entire group in the archive.

sbvtrans complains about
discovering syntax errors in the
archive.

Usually this message appears when sbvtrans has
encounted an unexpected end of �le. The archive
may have been created without properly closing
the �le descriptor with a gclose() call. The �le
may also be truncated due to a �le system
problem. If either of these problems occur, attempt
to create a new archive �le. (sbvtrans will output
any geometry created up to the point of the error.)

27-10 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Table 27-1. Troubleshooting Guide (continued)

Problem Probable Solution

Object faces appear to \pop" on
and o� in the PV while
manipulating the geometry.

This model has been created with the normals (-n)
option of sbvtrans. Certain Starbase normals
may be incompatible with PV's implementation of
vertex normals. Check to see that individual
vertex normals are correct through 3-D Edit in the
PV. If the faces are wrong, �x them there. If they
are correct, try recreating the model without the
(-n) option to determine if a model without
Starbase normals is correct. If all else fails and a
smooth object is desired, try the -s option in
sbvtrans. (Some popping may occur normally
since PV vertex normals are used for backface
rejection.) Also, if facets are non-planar, then PV
assumptions about planar polygons may cause
popping.

Object faces appear to be
missing after using the smoothing
option (-s) of sbvtrans.

Adjoining faces may be creating incompatible
vertex normals for smoothing and backface culling.
Try 3-D Edit in the PV to �x local cases or adjust
vertex points of problem polygons not to be
considered exactly adjacent in their Starbase
database. Recreate the archive from the original
application.

Objects appear white when
imported into the PV.

The HPSBV pipeline does not transfer color
attributes to the PV. The PV is an attribute
driven application, i.e., object elements are
separated by color attributes. Try using the
gescape SBVESC_OBJ_NAME to partition HPSBV
output by color. Import the separate objects into
the PV and apply appropriate attributes.

HP-SBV 27-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Table 27-1. Troubleshooting Guide (continued)

Problem Probable Solution

Objects appear to be
\inside-out".

Check original Starbase code for incorrect use of
gescape SBVESC_RT_COORD. If this is not the
problem, check to see if the correct vertex format
statement is being used for clockwise /
counter-clockwise de�nitions. (Turning on
hidden surface culling during normal Starbase
displaying will usually reveal the problem from
Starbase.)

sbvtrans running out of
memory.

Try running the translator on another machine
where other large applications are not running. It
is not advisable to run the translator and other
large applications (such as the PV) when
extremely large archives are being converted.

PV complains that it cannot run
the IMPORT script.

Set correct search path �rst. Use the command
from the VIEW manager:

set path "/users/name/pathname..."

before attempting to run IMPORT scripts.

PV complains that it cannot �nd
objects in the IMPORT script.

The objects may have been relocated from the
directories where they were originally created
(along with script.) Do not relocate objects to new
directories after IMPORT scripts are created since
they contain absolute pathnames to all object �les
at the time of creation.

Objects don't appear in the
current viewport after
importation.

You may be required to reorient your scene
cameras or scaling the geometry to a size which is
relevant to the current view extent. Try scaling
the objects very small and using the center object
option in the View manager of the PV. (Note:
This option will only bring the object to the global
origin. It will not re-center the data for scaling
options described in the trouble shooting hint
given in \jump o� the screen" . . . Try centering
your data with the options given in the sbvtrans
translator.)

27-12 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Table 27-1. Troubleshooting Guide (continued)

Problem Probable Solution

Object parts from an archive
appear all at the origin.

If the centering option (-c) in sbvtrans is invoked,
each object data �le is centered independent of the
rest of the objects in an archive. If an archive
consists of an entire group, use the (-c all) option
to center all objects as if one group.

Redundant copies of the object
appear to be created in the same
object.

Check your Starbase code to see that multiple
de�nitions of the object database are not being
output to the archive.

Curved surfaces seem to be
coarsely faceted.

Try tuning the curve resolution() function call
parameters to improve output for spline surface,
arc, and ellipse calls.

Object names imported with the
IMPORT script do not match
those given in the original
gescape calls.

sbvtrans attempted to resolve possible name
conicts in an archive before creating output �les.
If the IMPORT script creates undesirable names,
edit the script to create more useful names. These
names, however, are limited to �ve (5) signi�cant
characters each. For example:

import wave "/data/john/partfile_a.obj" to partA

becomes

import wave "/data/john/partfile_a.obj" to brake

I don't remember the sbvtrans
command I used to translate a
particular archive.

Examine the IMPORT �le created from
translation. It contains a copy of the command
line along with the date the archive was translated.

HP-SBV 27-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Table 27-1. Troubleshooting Guide (continued)

Problem Probable Solution

My data contains concave
polygons . . . will they render
correctly in the PV?

The Personal Visualizer expects planar, convex
polygons to render geometry correctly. If a facet is
concave and/or twisted to be non-planar, try
rede�ning the face in the PV model editor as a
group of triangular facets.

Data imported into the PV does
not appear the same way as it
did in Starbase (view, clipping,
etc . . .)

Data transferred to the PV through the SBV
device driver breaks the display transformation
pipeline before any view transforms take place.
Viewing transforms are applied interactively in the
PV, so it is best to imagine the PV as the
completion of the entire viewing/clipping pipeline
to the SBV driver, i.e., the PV handles the display
tasks normally taken care of by Starbase.

My program makes partial
polygon calls to create holes, but
none show up in the PV.

Partial polygons output data which cannot be
properly rendered by the PV. Use the polygon
\holes" to rede�ne new surrounding polygon
meshes in the model editor if \holes" are necessary.

The tessellation of my spline
surfaces appears uneven.

As a virtual 3-D driver, it makes no sense to use
the screen-based ags DC VALUES,
VDC VALUES, or METRIC for the function
curve resolution() (although they will work). Use
the coordinate type STEP SIZE to create uniform
partitioning over an entire surface in modeling
coordinates.

How long must I keep SBV
archive �les and any of the �les
created by the translator?

After data has been successfully imported into the
PV, it is not necessary to retain any of the archive
or translator �les unless the PV versions need to
be recreated.

27-14 HP-SBV

FINAL TRIM SIZE : 7.5 in x 9.0 in

27

Table 27-1. Troubleshooting Guide (continued)

Problem Probable Solution

I've written a system call to
SBVTrans from my application
and would like to cancel its
output to the console.

From the language C, using the command
system() requires concatenating the following to
your command line.

sprintf(cmd, "sbvtrans %s -n -c all", archive);

strcat(cmd, "-q 1> /dev/null 2> /dev/null");

system(cmd);

HP-SBV 27-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

28

The Terminal Device Driver

Device Description

The hpterm driver supports the following terminals:

HP 2623A
HP 2627A
HP 150A, HP 150-II
HP 2625A, HP 2628A
HP 2393A
HP 2397A

The driver name hp262x can also be used with this driver for backward
compatibility with earlier releases of Starbase.

Setting Up the Device

Switch Settings

To succeed, proper communication must be established with the terminal before
using the terminal driver. The correct settings for the baud rate, parity, etc., must
be made. To do this, consult the terminal manuals supplied with your equipment,
the HP-UX System Administrator Manual and the system administrator for your
system.

Note The IndHndShk(G) and Inh DC2(H) straps are automatically set
to YES before inquiries are made to establish correct handshaking.
The XmitPace and RecvPace �elds in the terminal's datacomm
con�guration menu should be set by hand to Xon/Xoff.

HPTERM 28-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the terminal. See the mknod(1M) information in the
HP-UX Reference for further details. Since superuser capabilities are needed to
create special device �les, they are normally created by the system administrator.

Although special device �les can be made in any directory of the HP-UX File
System, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the name that is suggested for these
devices is ttyxx for a terminal directly connected to your HP-UX System and
ttydxx for a remote terminal (dial-up port) connected to your system with a
modem.

For the Series 300

When the terminal is a typical hardwired port connection, the mknod command
should create a character device �le with major number 1 and minor number
0xhscihadi04, where hsci is the two-digit select code and hadi is the two-digit
port address:

mknod /dev/tty26 c 1 0xhscihadi04

Note that the leading 0x causes the number to be interpreted hexadecimally.

When the terminal is a dialup modem port, the mknod command should create
a character device �le with major number 1 and minor number 0xhscihadi01,
where hsci is the two-digit select code and hadi is the two-digit port address:

mknod /dev/ttyd41 c 1 0xhscihadi01

A getty(1M) process must be active on a port before it can be used to log in.

For the Series 800

When the terminal is a typical hardwired port connection, the mknod command
should create a character device with major number 1 and minor number
0xhluihadi, where hlui is the two-digit hardware logical unit and hadi is the
two-digit mux port address:

mknod /dev/tty3p2 c 1 0x00hluihadi

28-2 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Note that the leading 0x causes the number to be interpreted hexadecimally.

A getty(1M) process must be active on a port before it can be used to log in.

Note When opening a terminal using gopen with the driver as hp262x
or hpterm, the terminal processing for the HP-UX system will
temporarily be set for canonical processing. This is done to
ensure that the device can respond quickly enough to an inquiry
from the driver. Following the inquiry, the previous processing
state is restored. The same action is done for the other inquiries
during gopen.

Linking the Driver

Shared Libraries

The shared driver is the �le named libddhpterm.sl in the /usr/lib directory.
The device driver will be explicitly loaded at run time by compiling and linking
with the starbase shared library /usr/lib/libsb.sl, or by using the -l option
-lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

HPTERM 28-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Archive Libraries

The archive driver is located in the /usr/lib directory under both �le names
libddhpterm.a and libdd262x.a. It may be linked to a program by using the
absolute path name /usr/lib/libddhpterm.a or /usr/lib/libdd262x.a, an
appropriate relative path name, or by using one of the -l options -lddhpterm or
-ldd262x with the LDOPTS environmental variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddhpterm -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddhpterm -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddhpterm -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

28-4 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Device Initialization

Parameters for gopen

The gopen call has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device �le created by the mknod command
(for example, /dev/ttyxx .) For the terminal at which you are logged
in, the pseudo-device /dev/tty can be used and is recommended for
programs intended to plot only on the invoker's terminal.

Kind Parameter which indicates I/O characteristics of the device. This
parameter may be one of the following:

OUTDEV|Output only
INDEV|Input only
OUTINDEV|Input and Output

Driver The functionality of the driver may be speci�ed directly by using a
character string that identi�es the type of Hewlett-Packard terminal
in use, or it may be determined indirectly by allowing the terminal
to identify itself. The following strings may be used to specify the
terminal type directly:

"hp2623"

"hp2627"

"hp150"

"hp2625" or "hp2628" (functionally equivalent)
"hp2393"

"hp2397"

The following two strings may be used to indicate that the terminal
should identify itself. The strings are functionally equivalent, but
should not be used for a spooled output con�guration.

"hpterm"

"hp262x"

HPTERM 28-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

The terminal is expected to respond to a device ID inquiry with a
sequence of characters beginning with one of the following:

2623

2627

_150 (Terminal ID contains a prepended signi�cant blank)
2620 (For HP 2625 and HP 2628 Terminals)
2393

2397

2390 (For HP 2393 or HP 2397)

Characters appended to these base ID numbers are ignored (for
example, 2627A is acceptable). Terminals with variable device IDs
should be con�gured to an appropriate ID from the above list. If
the response from the terminal is not recognized, an error will be
generated and the gopen call will fail.

If the terminal is con�gured with the 2390 ID, a color capability
inquiry is performed to determine whether the terminal is an HP
2393 or an HP 2397.

Mode The mode control word consisting of several ag bits or ed together.
Listed below are those ag bits which have device-dependent actions.
Those ags not discussed below operate as de�ned by the gopen

procedure.

0|open the device, but do nothing else.
INIT|open and initialize the device.
SPOOLED|open the device for spooled operation.

Note Because device inquiries are not possible when output is spooled,
the driver type should be selected directly; an error will result
and the gopen will fail if either "hpterm" or "hp262x" is speci�ed
when SPOOLED is also speci�ed.

28-6 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Syntax Examples

For C Programs:

To open an HP Graphics Terminal:

fildes = gopen("/dev/tty", INDEV, "hpterm", INIT);

fildes = gopen("spool_file", OUTDEV, "hp2623", SPOOLED);

fildes = gopen("/dev/tty", OUTDEV, "hp2627", 0);

For FORTRAN77 Programs:

To open an HP Graphics Terminal:

fildes=gopen('spool_file'//char(0), OUTDEV,

'hp2393'//char(0), SPOOLED)

or

fildes=gopen('/dev/tty'//char(0), INDEV,

'hp2393'//char(0), INIT)

or

fildes=gopen('/dev/tty'//char(0), OUTDEV,

'hp2393'//char(0), INIT)

For Pascal Programs:

To open an HP Graphics Terminal:

fildes := gopen('spool_file', OUTDEV, 'hp2393', SPOOLED);

or

fildes := gopen('/dev/tty', INDEV, 'hp2393', INIT);

or

fildes := gopen('/dev/tty', OUTDEV, 'hp2393', INIT);

HPTERM 28-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Special Device Characteristics

Screen Resolution

Each of the terminals support a screen resolution of 512�390. Additionally,
the HP 2393 and HP 2397 Terminals support a resolution of 640�400 that is
selectable in the global con�g menu. When SPOOLED is not speci�ed at gopen,
a terminal inquiry will be performed for these two terminals to determine its
resolution. It is assumed that this resolution will remain unchanged until after
gclose is called.

The higher resolution can be selected for the HP 2393 and HP 2397 when
SPOOLED is speci�ed with a gescape using hopi HPTERM_640x400. The two
gescape arguments are ignored. Since the determination of the screen resolution
is normally performed during gopen time, the user is required to call set_p1_p2
with appropriate parameters immediately after the call to gescape to reset the
default transformation matrix.

Polygons

Polygons are generated in software for the HP 2623 and are not limited by the
driver in the number of supported vertices. A warning is generated, however, for
polygons containing more than 255 vertices.

The driver supports polygon generation for the other terminals in hardware.
Because of existing hardware limitations, the driver limits the number of
supported vertices. For the HP 2625, HP 2628 and HP 150 terminals the limit is
105 vertices. For the HP 2627, HP 2393 and HP 2397 terminals the limit is 145
vertices. If more vertices are speci�ed than allowed by the limit, the polygon will
be truncated and a warning will be generated.

Device Defaults

Default Color Map

The HP 2623, HP 150, HP 2625, HP 2628 and HP 2393 terminals use a
monochrome software color map.

28-8 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

The HP 2627 terminal uses three bits to de�ne eight colors in a software
color map. (Colors may be changed in the color map with a call to
define_color_table before they are written to the display, but once written
remain �xed.) The default color table contains the �rst eight colors of the
standard Starbase Color Map.

Table 28-1. Default Color Table

Pen Color Red Green Blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

The HP 2397 Terminal also has an 8-color color table (or, \palette 0") that is
initialized to the standard Starbase Color Map when INIT is speci�ed in the
gopen procedure. The pre-existing color map is used when INIT is not speci�ed.
The map, however, uses six bits per color, allowing each of the 8 colors in the
color map to be set to one of 64 possible values. Because the color map is
implemented in hardware, previously written colors may change with calls to
define_color_table.

The RGB colors passed to define_color_table are rounded according to the
color resolution of the terminal. Colors for monochromatic terminals are rounded
to black or white, colors for the HP 2627 are rounded to the closest of 8
possible values and colors for the HP 2397 are rounded to the closest of 64
possible values. The rounding will be reected in the RGB values returned by
inquire_color_table.

Dither Default

Dithering is supported in hardware by two color terminals, HP 2627 and HP 2397,
with dithering mode o� by default. Selecting the number of dither colors to be
2, 4, 8 or 16 selects the terminal's hardware dithering capability to be on when

HPTERM 28-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

direct-�lling polygons with RGB �ll colors. Dithering is turned o� by setting the
number of dither colors to 1 using the fill_dither() procedure.

Dithering on the HP 2397 Terminal assumes that the hardware color map contains
power-on color assignments. Unfortunately, these do not correspond to the
standard Starbase Color Map (assigned to the HP2397 when INIT is speci�ed at
gopen time). To make dithering results accurate on the HP 2397, the color map
needs to be assigned the following values:

Table 28-2. HP 2397 Power-up Color Table

Pen Color Red Green Blue

0 black 0.0 0.0 0.0

1 red 1.0 0.0 0.0

2 green 0.0 1.0 0.0

3 yellow 1.0 1.0 0.0

4 blue 0.0 0.0 1.0

5 magenta 1.0 0.0 1.0

6 cyan 0.0 1.0 1.0

7 white 1.0 1.0 1.0

Note that color map assignments are not important when dithering on an HP
2627 since its hardware pen assignments are always �xed (the color map is in
software and dithering is in hardware). It is recommended that this di�erence
between the HP 2627 and the HP 2397 be accounted for, however, when using
both dithered �lls and indexed color selections in applications intended for both
terminals.

Line Types

Line types are de�ned in Starbase Reference under line_type(3g).

The default line type is line type 0, i.e. solid.
This device driver de�nes line type 7 to be the same as line type 4, and 6 to
be the same as 3.
This device driver de�nes line type �1 as terminal line type 11 (point plotting),
and line type �2 the same as terminal line type 9.

28-10 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Starbase Functionality

Commands Not Supported (no-ops)

The following commands are not supported. An error will not be generated if
any of these commands are called.

alpha_transparency display_enable

await_retrace double_buffer

backface_control drawing_mode

background_color file_to_bitmap

background_color_index file_to_dcbitmap

bank_switch file_to_intbitmap

bf_alpha_transparency fill_dither

bf_control hidden_surface

bf_fill_color intbitmap_print

bf_interior_style intbitmap_to_file

bf_perimeter_color intblock_move

bf_perimeter_repeat_length intblock_read

bf_perimeter_type intblock_write

bf_surface_coefficients intline_width

bf_surface_model light_ambient

bf_texture_index light_attenuation

bitmap_print light_model

bitmap_to_file light_source

block_move light_switch

block_read line_endpoint

block_write line_filter

clear_control pattern_define

contour_enable perimeter_filter

dbuffer_switch set_capping_planes

dcbitmap_print set_model_clip_indicator

dcbitmap_to_file set_model_clip_volume

dcblock_move shade_mode

dcblock_read shade_range

dcblock_write surface_coefficients

define_contour_table surface_model

define_raster_echo texture_index

define_texture texture_viewport

define_trimming_curve texture_window

deformation_mode viewpoint

depth_cue write_enable

depth_cue_color zbuffer_switch

depth_cue_range

depth_cue-range

HPTERM 28-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Conditionally Supported

The following commands are supported under the listed conditions:

define_color_table Except for the HP 2397, only the software color map
may be de�ned.

echo_type Some types are defaulted.

fill_dither Supported only on the HP 2627 and the HP 2397.

interior_style Only the INT_SOLID, INT_HOLLOW, and INT_HATCH

styles are supported.

line_type Some line types are approximated.

set_locator Hewlett-Packard Terminals do not support indepen-
dent echo and locator positions. Therefore, in order
to preserve the echo's position, the set locator call
sets only the Z coordinate of the locator's position.

vertex_format The husei parameter must be zero. Any extra
coordinates will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if not
supported by this device. For example, contouring
data will be ignored if the device does not support
it.

28-12 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Text

Hardware-generated text may be selected by setting the text precision to
STRING_TEXT. One of eight possible character sizes may be selected by specifying
an approximate height or width. The results returned by inquire_text_extent
will be a�ected by the character slant but are not a�ected by special characters
such as a tab, carriage return or line feed. Text alignment default is device
dependent. To alter the alignment for STRING_TEXT, use the gescape functions
HPTERM_PRINT_ESC or HP26_PRINT_ESC to send the control string to the device.
Your terminal reference manual contains the details of the control strings for
altering device dependent alignment.

Raster Operations

This device driver does not support block_read, block_write and
block_move. Starbase calls to perform these operations are treated as no-ops.

Terminal Device Access

Note that only one program can access the terminal driver at a time or the
terminal will get confused. Also note the program can only gopen the terminal
once or the terminal will again get confused.

Input

Tracking from a terminal is not supported. Continuously sampling a terminal
in a loop without signi�cant delay can exceed the terminal's ability to execute
commands; therefore, the terminal should not be continuously sampled. Sampling
during a request or while events are enabled may cause a keypress to be missed.
Therefore, sampling while requesting or while events are enabled is discouraged.

Although requesting events (e.g. key presses) from a terminal is allowed, it is
strongly discouraged to do so while any graphics operations may be occurring.
Because the event queue is discarded prior to graphics rendering, events may be
lost, and the results may be unpredictable.

The same terminal status request is used for device requests or for locator
requests. This causes the graphics cursor to appear while in choice request mode.
The keyboard driver and the terminal driver cannot be used simultaneously for
input from the same device because they interfere with each other's operation.

HPTERM 28-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Echo for the HP 2623

Echo types 0 and 3 are supported. Echo types speci�ed as other values are
mapped into echo type 3.

Echo for Other Terminals

Echo types 0, 3 and 4 are supported. Echo types speci�ed as other values are
mapped into echo type 3.

The terminal graphics cursor is not visible while the terminal is plotting lines.
Consequently, a rapid loop that alternates between drawing and updating the
echo position may cause the cursor to icker or disappear altogether.

Drawing Mode

The driver approximates Starbase drawing modes with those supported by the
terminals. See your terminal's reference manual for further details. Monochro-
matic terminals support �ve drawing modes, NOP, CLEAR, SET, COMPLEMENT and
JAM. Color terminals support eight drawing modes, NOP, CLEAR1, JAM1, COMP1,
JAM2, OR, COMP2 and CLEAR2. The following table shows the mapping from Star-
base drawing modes to terminal drawing modes.

28-14 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Table 28-3. Drawing Mode Replacement Rule

Starbase Replacement
Rule for drawing mode

Command

Monochromatic
Replacement Rule

Color
Replacement Rule

Number Mnemonic Number Mnemonic

0 1 CLEAR 1 CLEAR1

1 4 JAM 7 CLEAR2

2 4 JAM 7 CLEAR2

3 (default) 2 SET 2 JAM1

4 4 JAM 7 CLEAR2

5 0 NOP 0 NOP

6 3 COMPLEMENT 6 COMP2

7 2 SET 5 OR

8 4 JAM 7 CLEAR2

9 3 COMPLEMENT 6 COMP2

10 3 COMPLEMENT 3 COMP1

11 2 SET 5 OR

12 1 CLEAR 1 CLEAR1

13 2 SET 5 OR

14 4 JAM 7 CLEAR2

15 4 JAM 4 JAM2

If the Starbase drawing mode is changed from the default (3) value for
monochromatic terminals, no color attributes changes will be recognized. You
must be in drawing mode 3 to change color attributes, e.g., line_color,
fill_color, etc.

When the drawing mode is set to a complement mode, a condition may
exist where line end-points are drawn twice, resulting in some endpoints
being complemented twice. This condition can occur when performing a non-
line block operation (for example, setting an attribute) between successive
move/draw/polyline operations.

HPTERM 28-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

28

Parameters for gescape

The hpterm driver supports the following gescapes. A detailed discussion on
gescape functions can be found in Appendix A of this manual.

The READ_COLOR_MAP gescape is common to two or more devices. The following
gescape functions are unique for this driver:

HPTERM_640x400|Set high-resolution spooled output
HPTERM_PRINT_ESC or HP26_PRINT_ESC|Send terminal control (escape) strings
READ_COLOR_MAP|Copy the hardware color map to software color map

28-16 HPTERM

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

A

Gescapes

Introduction

This appendix provides information concerning the hopi, arg1 and arg2

parameters used with the gescape functions. Those gescape functions unique
to a speci�c device driver are listed in the appropriate driver section of this
manual and discussed in detail in this appendix.

The gescape function allows the application program to input or output to
a device in a device dependent manner. The term gescape is derived from
\graphics escape" and is analogous similar escape functions supported by other
graphics libraries. The syntax for the gescape function is:

gescape (fildes, op, arg1, arg2)

fildes is the �le descriptor of the device to be accessed (returned by the Starbase
call gopen).

hopi is the \operation code" (opcode) which speci�es the device dependent action
to be performed.

arg1 and arg2 are two parameters (pointers to argument lists) which provide the
information needed by gescape to do the desired job.

GESC A-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op)

hopi Parameter Function

AUTO_RESIZE_DEVICE Automatically scale graphics output when the
window size changes.

BAD_SAMPLE_ON_DIFF_SCREEN Restores the locator and choice sampling of the X11
pointer device.

BLINK_INDEX Alternate Between Hardware Color Maps.

BLINK_PLANES Blink the display using a mask.

BLOCK_WRITE_SKIPCOUNT Speci�es number of bytes to be skipped at the end
of each scanline.

CGMESC_ENCODING Selects CGM encoding.

CGMESC_MET_NAME De�nes meta�le name.

CGMESC_TOP_MODE Selects TOP mode for meta�le generation.

CGMESC_VDC_PREC Selects VDC integer precision.

CGMESC_APPL_DATA Generates CGM application data element.

CGMESC_ESCAPE_ELT Generates CGM escape element.

CGMESC_FONT_IX Allows application to select fonts.

CGMESC_MESSAGE Generates CGM message element.

CGMESC_PIC_NAME De�nes picture name.

CLIP_OVERFLOW Change X Window system hierarchy.

CONTOUR_CONTROL Speci�es alternative methods for interpolation of
contour data.

CUBIC_POLYPOINT specify points to be rendered in a cubic volume
speci�ed in modeling coordinates.

DC_COMPATIBILITY_MODE Controls rendering of DC polygons.

A-2 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op) (continued)

hopi Parameter Function

DC_PIXEL_WRITE Specify points to be rendered along a horizontal
scan line.

DISABLE_ACKNOWLEDGE Disables bell function.

DISABLE_AUTO_PROMPT Disable HP-HIL auto prompt.

DRAW_POINTS Select di�erent modes of rounding for rendered
points.

ENABLE_ACKNOWLEDGE Allows bell character when request/event is
satis�ed.

ENABLE_AUTO_PROMPT Enable HP-HIL auto prompt.

GAMMA_CORRECTION Enable/disable gamma correction.

GCRX_PIXEL_REPLICATE Allows you to pan and zoom a raster image.

GCRX_SW_CMAP_FULL Rede�nes default behavior.

GR2D_CONVEX_POLYGONS Enables convex polygons to be drawn at a higher
speed.

GR2D_DEF_MASK De�nes mask for 3-operand raster operation.

GR2D_FILL_PATTERN De�ne 16�16 dither and �ll pattern.

GR2D_MASK_ENABLE Enables 3-operand raster operation.

GR2D_MASK_RULE Set 3-operand drawing mode.

GR2D_OVERLAY_TRANSPARENT Turns on/o� transparency of 0 pixels.

GR2D_PLANE_MASK Sets multiple plane bit/pixel mask.

GR2D_PLANE_RULE Speci�es rules per plane for frame bu�er bit/pixel
block writes.

GR2D_REPLICATE Allows square pixel replication.

GESC A-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op) (continued)

hopi Parameter Function

HPGL_READ_BUFFER Allows you to read data from the device.

HPGL_SET_PEN_NUM Set plotter number of pens.

HPGL_SET_PEN_SPEED Set plotter pen velocity.

HPGL_SET_PEN_WIDTH Set plotter pen width.

HPGL_WRITE_BUFFER Permits direct communication of HP-GL commands
to supported devices.

HPGL2_ADAPTIVE_LINES Determines adaptive or �xed line types.

HPGL2_CUTTER_CONTROL Enable/disable paper cutter.

HPGL2_FONT_POSTURE Indicates upright or italic font posture.

HPGL2_FONT_TYPEFACE Selects typeface.

HPGL2_FONT_WEIGHT Sets the font stroke weight independent of Starbase.

HPGL2_LOGICAL_PEN_WIDTH Determines the logical pen width.

HPGL2_REPLOT Indicates number of replots for the command bu�er.

HPGL2_SET_CMAP_SIZE Indicates the size of the color map: number of pens
available.

HPGL2_SET_MEDIA_TYPE Determines the type of media to be used.

HPGL2_SET_QUALITY Indicates the quality level of the output.

HPTERM_640x400 Set high-resolution spooled output

HPTERM_PRINT_ESC or
HP26_PRINT_ESC

Send terminal control (escape) strings

IGNORE_PROXIMITY Ignores stylus proximity.

A-4 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op) (continued)

hopi Parameter Function

IGNORE_RELEASE Trigger when button pressed.

ILLUMINATION_ENABLE Specify amount of illumination data per vertex.

IMAGE_BLEND Enable/disable video blending.

INQ_12_BIT_INDEXING Indicates if display mode is 12 bit indexing.

LINEAR_POLYPOINT Specify points to be rendered along a line speci�ed
in modeling coordinates.

LS_OVERFLOW_CONTROL Sets options for light source overow situations.

OLD_SAMPLE_ON_DIFF_SCREEN Inquires the locator and choice sampling of the X11
pointer device.

OVERLAY_BLEND Control blending of overlay plane frame bu�er.

PAN Pixel pan only.

PAN_AND_ZOOM Pixel pan and zoom.

PATTERN_FILL Fills polygon with stored pattern.

PLUG_ACCELERATED_PIPELINE Controls the rendering of the graphics accelerators
into the frame bu�er.

POLYGON_TRANSPARENCY De�ne front facing and backfacing polygon
transparency patterns.

PROMPT_OFF Switch prompt indicator o�.

PROMPT_ON Switch prompt indicator on.

R_BIT_MASK Identi�es the plane(s) to read to or write from.

R_BIT_MODE Changes the raw mode ag.

GESC A-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op) (continued)

hopi Parameter Function

R_DEF_ECHO_TRANS De�ne raster echo transparency.

R_DEF_FILL_PAT De�nes the current 4�4 pixel dither cell.

R_DMA_MODE Changes the de�nition of the raw ag for block
writes.

R_ECHO_CONTROL Control hardware cursor allocation.

R_ECHO_FG_BG_COLORS De�ne color attributes.

R_ECHO_MASK De�ne cursor mask.

R_FULL_FRAME_BUFFER Allows access to the o� screen area of the frame
bu�er.

R_GET_FRAME_BUFFER Reads the frame bu�er and control space addresses.

R_LINE_TYPE De�ne line style and repeat length.

R_LOCK_DEVICE Locks the speci�ed device.

R_OFFSCREEN_ALLOC Allocates o�screen frame bu�er memory.

R_OFFSCREEN_FREE Frees allocated o�screen frame bu�er memory.

R_OV_ECHO_COLORS Select overlay echo colors.

R_OVERLAY_ECHO Select plane to contain cursor.

R_TRANSPARENCY_INDEX Specify transparency index.

R_UNLOCK_DEVICE Unlocks the speci�ed device.

READ_COLOR_MAP Reads the color map.

REPORT_PROXIMITY Reports stylus proximity.

SBVESC_BEGIN_ARC Begin archiving all relevant Starbase calls.

A-6 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op) (continued)

hopi Parameter Function

SBVESC_COMMENT Embed a user de�ned comment in the archive �le
(has no e�ect on output object data).

SBVESC_END_ARC Stop archiving any future Starbase calls.

SBVESC_LF_COORD Left handed coordinate data.

SBVESC_OBJ_NAME Name the following data by this name.

SBVESC_RT_COORD Right handed coordinate data.

SET_ACCELERATION Set acceleration and threshold values.

SET_BANK_CMAP Install frame bu�er bank color maps.

SET_REPLACEMENT_RULE Set replacement rules for bit/pixel writes.

SMD_ALLOCATE_MEMORY Allocate frame bu�er

SMD_DEFINE_DEPTH De�ne memory bu�er depth

SMD_DEFINE_XY De�ne X, Y dimensions

SMD_GET_MEM_REQUIRED Determining memory requirements

SMD_SUPPLY_MEM_BUFF Supply memory bu�er

STEREO Supports stereoscopic display systems.

SWITCH_SEMAPHORE Controls the device access semaphores.

TC_HALF_PIXEL Allows access to half pixels.

TEXTURE_CONTROL Selects texture map �lter.

TEXTURE_DOWNSAMPLE Downsamples de�ned texture into o� screen

TEXTURE_RETRIEVE Retrieves downsampled texture from o� screen.

TOGGLE_2D_COLORMAP Enables/disables 2D colormap.

TRANSPARENCY Allows \screen door" for transparency pattern.

GESC A-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-1. Supported Operation Codes (op) (continued)

hopi Parameter Function

TRIGGER_ON_RELEASE Trigger when button released.

ZBUFFER_ALLOC Allocates frame bu�er memory for Starbase.

ZSTATE_RESTORE Allows creation of 3D cursors in overlay.

ZSTATE_SAVE Allows creation of 3D cursors in overlay.

ZWRITE_ENABLE Allows creation of 3D cursors in overlay.

A-8 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers

hopi Parameter Supported Drivers

AUTO_RESIZE_DEVICE hp98736, hp98766

BAD_SAMPLE_ON_DIFF_SCREEN hp98550, hp98556, hp98704, hp98705, hp98720,
hp98721, hp98730, hp98731, hp98735, hp98736,
hp98765, hp98766, hpcrx48z

BLINK_INDEX hp98704, hp98705, hp98720, hp98721 , hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766

BLINK_PLANES (blink speed 2.4 Hz) hp300l, hp300h, hp98704,
hp98705, hp98720, hp98721, hp98550, hp98556,
hp98730, hp98731, hp98735, hp98736 hp98765,
hp98766

BLOCK_WRITE_SKIPCOUNT hp98735, hp98736, hp98765, hp98766, hpevrx,
hpgcrx, hpcrx48z

CGMESC_ENCODING hpcgm

CGMESC_MET_NAME hpcgm

CGMESC_TOP_MODE hpcgm

CGMESC_VDC_PREC hpcgm

CGMESC_APPL_DATA hpcgm

CGMESC_ESCAPE_ELT hpcgm

CGMESC_FONT_IX hpcgm

CGMESC_MESSAGE hpcgm

CGMESC_PIC_NAME hpcgm

CLIP_OVERFLOW hp98731

CONTOUR_CONTROL hp98736, hp98766, hpcrx48z

CUBIC_POLYPOINT hpgcrx (CRX-24/CRX-24Z only), hpcrx48z

DC_PIXEL_WRITE hpgcrx (CRX-24/CRX-24Z only), hpcrx48z

GESC A-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

DC_COMPATIBILITY_MODE hp98736, hp98766

DISABLE_ACKNOWLEDGE lkbd

DISABLE_AUTO_PROMPT hphil

DRAW_POINTS hp98736, hp98766, hpcrx48z

ENABLE_ACKNOWLEDGE lkbd

ENABLE_AUTO_PROMPT hphil

GAMMA_CORRECTION hp98705,hp98731, hp98735, hp98736,hp98765,
hp98766, hpgcrx (CRX-24 and CRX-24Z only),
hpcrx48z

GCRX_PIXEL_REPLICATE hpgcrx, hpcrx48z

GCRX_SW_CMAP_FULL hpgcrx

GR2D_CONVEX_POLYGONS hp98556

GR2D_DEF_MASK hp98550, hp98556, hp98735, hp98736, hp98765,
hp98766

GR2D_FILL_PATTERN hp98550, hp98556, hp98735, hp98736

GR2D_MASK_ENABLE hp98550, hp98556, hp98735, hp98736, hp98765,
hp98766

GR2D_MASK_RULE hp98550, hp98556, hp98735, hp98736, hp98765,
hp98766

GR2D_OVERLAY_TRANSPARENT hp98550, hp98556, hp98735, hp98736, hp98765,
hp98766

GR2D_PLANE_MASK hp98550, hp98556, hp98704, hp98705, hp98735,
hp98736, hp98765, hp98766

GR2D_PLANE_RULE hp98735, hp98736, hp98765, hp98766

A-10 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

GR2D_REPLICATE hp98550, hp98556, hp98735, hp98736, hp98765,
hp98766

HPGL_READ_BUFFER CADplt, CADplt2

HPGL_SET_PEN_NUM hpgl, CADplt

HPGL_SET_PEN_SPEED hpgl, CADplt

HPGL_SET_PEN_WIDTH hpgl, CADplt

HPGL_WRITE_BUFFER hpgl, CADplt, CADplt2

HPGL2_ADAPTIVE_LINES CADplt2

HPGL2_CUTTER_CONTROL CADplt2

HPGL2_FONT_POSTURE CADplt2

HPGL2_FONT_TYPEFACE CADplt2

HPGL2_FONT_WEIGHT CADplt2

HPGL2_LOGICAL_PEN_WIDTH CADplt2

HPGL2_REPLOT CADplt2

HPGL2_SET_CMAP_SIZE CADplt2

HPGL2_SET_MEDIA_TYPE CADplt2

HPGL2_SET_QUALITY CADplt2

HPTERM_640x400 hpterm

HPTERM_PRINT_ESC or
HP26_PRINT_ESC

hpterm

IGNORE_PROXIMITY hphil

GESC A-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

IGNORE_RELEASE hphil, X11, hpevrx, hpgcrx, hpcrx48z

ILLUMINATION_ENABLE hp98736, hp98766, hpgcrx with Powershade,
hpcrx48z

IMAGE_BLEND hp98730, hp98731

INQ_12_BIT_INDEXING hp98735, hp98736, hp98765, hp98766

LINEAR_POLYPOINT hpgcrx (CRX-24/CRX-24Z only), hpcrx48z

LS_OVERFLOW_CONTROL hp98705, hp98721, hp98731, hp98736, hp98766,
hpgcrx with Powershade, hpcrx48z

OLD_SAMPLE_ON_DIFF_SCREEN hp98550, hp98556, hp98704, hp98705, hp98720,
hp98721, hp98730, hp98731, hp98735, hp98736,
hp98765, hp98766, hpcrx48z

OVERLAY_BLEND hp98730, hp98731

PAN hp98735, hp98736, hp98765, hp98766

PAN_AND_ZOOM hp98730, hp98731

PATTERN_FILL hp98705, hp98721, hp98731, hp98736, hp98766

PLUG_ACCELERATED_PIPELINE hp98735, hp98736, hpcrx48z

POLYGON_TRANSPARENCY hp98731, hp98736, hp98766, hpgcrx with
Powershade, hpcrx48z

PROMPT_OFF hphil

PROMPT_ON hphil

R_BIT_MASK hp300l, hp300h, hp98704, hp98705, hp98720,
hp98721, hp98550, hp98556, h98730, hp98731,
hp98735, hp98736, hp98765, hp98766, hpevrx,
hpgcrx, hpcrx48z

A-12 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

R_BIT_MODE hp300l, hp300h, hp98704, hp98705, hp98720,
hp98721, hp98550, hp98556, hp98730, hp98731,
hp98735, hp98736, hp98765, hp98766, hpevrx,
hpgcrx, hpcrx48z

R_DEF_ECHO_TRANS hp98704, hp98705, hp98720, hp98721, hp98550,
hp98556, hp98730, hp98731, hp98735, hp98736,
hp98765, hp98766,

hpcrx48z

R_DEF_FILL_PAT hp300l, hp300h, hp98704, hp98705, hp98720,
hp98721, hp98550, hp98730, hp98731, hp98735,
hp98736, hp98765, hp98766

R_DMA_MODE hp98730, hp98731 Models 825 and 835 SPUs with
an A10474 interface card

R_ECHO_CONTROL hp98704, hp98705,hp98730, hp98731, hp98735,
hp98736, hp98765, hp98766

R_ECHO_FG_BG_COLORS hp98704, hp98705, hp98730, hp98731, hp98735,
hp98736, hp98765, hp98766, hpcrx48z

R_ECHO_MASK hp98704, hp98705, hp98730, hp98731, hp98735,
hp98736, hp98765, hp98766, hpcrx48z

R_FULL_FRAME_BUFFER hp300l, hp300h, hp9836a, hp98704, hp98705,
hp98720, hp98721, hp98550, hp98556, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766

R_GET_FRAME_BUFFER hp300l, hp300h, hp9836a, hp98704, hp98705,
hp98720, hp98721, hp98550, hp98556, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766,
hpevrx, hpgcrx, hpcrx48z

R_LINE_TYPE hp98704, hp98705, hp98720, hp98721, hp98730,
hp98731, SMD, hp98735, hp98736, hp98765,
hp98766, hpevrx, hpgcrx, hpcrx48z

GESC A-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

R_LOCK_DEVICE hp300l, hp300h, hp98704, hp98705, hp98720,
hp98721, hp98550, hp98556, hp98730, hp98731,
hp98735, hp98736, hp98765, hp98766, hpevrx,
hpgcrx, hpcrx48z

R_OFFSCREEN_ALLOC hp98550, hp98556, hp98704, hp98705, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766

R_OFFSCREEN_FREE hp98550, hp98556, hp98704, hp98705, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766

R_OV_ECHO_COLORS hp98704, hp98705, hp98720, hp98721, hp98730,
hp98731 hp98736, hp98736, hp98765, hp98766

R_OVERLAY_ECHO hp98704, hp98704, hp98720, hp98721, hp98550,
hp98556, hp98730, hp98735, hp98736, hp98765

R_TRANSPARENCY_INDEX hp98704, hp98705, hp98720, hp98721, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766

R_UNLOCK_DEVICE hp300l, hp300h, hp98704, hp98705, hp98720,
hp98721, hp98550, hp98556, hp98730, hp98731,
hp98735, hp98736, hp98765, hp98766, hpevrx,
hpgcrx, hpcrx48z

READ_COLOR_MAP hpterm, hp300l, hp300h, hp98704, hp98705,
hp98720, hp98721, hp98550, hp98556, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766,
hpevrx, hpgcrx, hpcrx48z

REPORT_PROXIMITY hphil

SBVESC_BEGIN_ARC hpsbv

SBVESC_COMMENT hpsbv

A-14 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

SBVESC_END_ARC hpsbv

SBVESC_LF_COORD hpsbv

SBVESC_OBJ_NAME hpsbv

SBVESC_RT_COORD hpsbv

SET_ACCELERATION hphil

SET_BANK_CMAP hp98730, hp98731, hp98735, hp98736

SET_REPLACEMENT_RULE hp98704, hp98705

SMD_ALLOCATE_MEMORY memory

SMD_DEFINE_DEPTH memory

SMD_DEFINE_XY memory

SMD_GET_MEM_REQUIRED memory

SMD_SUPPLY_MEM_BUFF memory

STEREO hp98735, hp98736, hp98765, hp98766,
hpgcrx(CRX-24/CRX-24Z only), hpcrx48z

SWITCH_SEMAPHORE hp300l, hp300h, hp9836a, hp98704, hp98705,
hp98720, hp98721, hp98550, hp98556, hp98730,
hp98731, hp98735, hp98736, hp98765, hp98766,
hpevrx, hpgcrx, hpcrx48z

TC_HALF_PIXEL hp300l

TEXTURE_CONTROL hp98736, hp98766

TEXTURE_DOWNSAMPLE hp98736, hp98766

TEXTURE_RETRIEVE hp98736, hp98766

GESC A-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Table A-2. Supported Device Drivers (continued)

hopi Parameter Supported Drivers

TOGGLE_2D_COLORMAP hp98735, hp98736, hp98766

TRANSPARENCY hp98705, hp98721, hp98731, hp98736, hp98766,
hpgcrx with Powershade

TRIGGER_ON_RELEASE hp-hil, X11, hpevrx, hpgcrx

ZBUFFER_ALLOC hp98721

ZSTATE_RESTOR hp98721

ZSTATE_SAVE hp98721

ZWRITE_ENABLE hp98705, hp98721, hp98731, hp98736, hp98766

A-16 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

AUTO RESIZE DEVICE

The hopi parameter is AUTO_RESIZE_DEVICE.

This gescape will enable or disable automatic device resizing whenever the
window size is changed. Whenever this gescape is enabled and the window size
is changed, all subsequent graphics primitives will be scaled to the new window
size.

An equivalent way to enable AUTO_RESIZE_DEVICE is to set the environment
variable SB_AUTO_RESIZE_DEVICE to a non-null value before starting the graphics
program.

The following attributes are recomputed whenever the AUTO_RESIZE_DEVICE

gescape is enabled and the window is resized:

P1/P2 is reset using the parameters last speci�ed in the last call to set_p1_p2.

Picking window limits are reset for the new device size.

Line repeat length is reset for the new device size.

Polygon perimeter line repeat length is reset for the new device size.

Non-DC marker size is reset for the new device size.

The following attributes are NOT recomputed when the window size is changed:

Attributes that are set using DC coordinates, including dcmarker_size,
dccharacter_height, and dccharacter_width.

The values speci�ed by curve_resolution and hatch_spacing.

Starbase cursors and tracking are NOT a�ected by a window resize. Cursor
and tracking device limits remain the same after a window resize.

This gescape has no e�ect on non-window devices.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=1;

gescape(fildes,AUTO_RESIZE_DEVICE,&arg1,&arg2);

GESC A-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=1

call gescape(fildes,AUTO_RESIZE_DEVICE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 1;

gescape(fildes,AUTO_RESIZE_DEVICE,arg1,arg2);

A-18 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

BAD SAMPLE ON DIFF SCREEN

The hopi parameter is BAD_SAMPLE_ON_DIFF_SCREEN.

This gescape restores the locator and choice sampling of the X11 pointer device.

The X server's locator position can be sampled anytime, and is returned relative
to the window. By default, when the X pointer is on a di�erent screen than
the window, the valid parameter of the sample locator procedure is returned as
FALSE.

When the gescape OLD_SAMPLE_ON_DIFF_SCREEN is used, the valid parameter is
returned as TRUE when the X pointer is on a di�erent screen. In this case,
the pointer position returned by sample locator is either the last value of the X
locator on that screen or the value (0,0) if the pointer has never been on that
screen.

To restore the default (valid set to FALSE) behavior, use the
BAD_SAMPLE_ON_DIFF_SCREEN gescape.

GESC A-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

BLINK INDEX

The hopi parameter is BLINK_INDEX.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

The accelerated devices (devices with transform engines) have two separate
hardware color maps. They alternate between the two color maps every 133
ms (milliseconds). When the color table is changed either by INIT or by
define_color_map both hardware color maps are updated to the same software
color table. This gescape allows you to set a color map value in only one hardware
color map. The color set by the gescape goes directly into one of the hardware
color maps and does not a�ect the Starbase software color table. The e�ect will
be that a single color map index will blink between the color set in the Starbase
color table and the color set by this gescape. The color map value set with this
gescape will be overwritten any time Starbase updates that entry in its software
color table.

The arg1 parameter contains the index number, red value, green value, and blue
value in that order.

The arg2 parameter is ignored.

The example given below will blink index 5 between the color value given in the
Starbase color table and red.

When in CMAP_FULL mode, the index number can contain three index values
simultaneously. The index value for red is in byte 2, the index number for green
is in byte 1, and the index value for blue is in byte 0.

When video blending is enabled on the HP 98730 or HP 98731, color map
index blinking will not be operative. See the description of the gescape

IMAGE_BLEND for more details.

To blink color map planes see the gescape for BLINK_PLANES.

A-20 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.f[0]=5.0;

arg1.f[1]=1.0;

arg1.f[2]=0.0;

arg1.f[3]=0.0;

gescape(fildes,BLINK_INDEX,&arg1,&arg2);

FORTRAN77 Syntax Example

real arg1(64),arg2(64)

arg1(1)=5.0

arg1(2)=1.0

arg1(3)=0.0

arg1(4)=0.0

call gescape(fildes,BLINK_INDEX,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.f[1] := 5.0;

arg1.f[2] := 1.0;

arg1.f[3] := 0.0;

arg1.f[4] := 0.0;

gescape(fildes,BLINK_INDEX,arg1,arg2);

GESC A-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

BLINK PLANES

The hopi parameter is BLINK_PLANES.

This gescape allows you to blink the display. To blink individual color map
indexes refer to the BLINK_INDEX segment of those device driver sections that
allow color map blinking.

The following drivers support a blink speed of 2.4 Hertz:

hp300l hp300h hp98704 hp98705

The following drivers support a blink speed of 3.75 Hertz:

hp98720 hp98721 hp98550 hp98556 hp98730 hp98731

hp98735 hp98736

The arg1 parameter is a mask indicating which planes to blink. The arg1

parameter can be any value from 0{255. For example, if arg1 is 5, planes 0
and 2 of the device will blink.

Devices which support video blending allow individual blink control for all planes
when blending is enabled. In this case arg1 can contain values with more than
eight bits. See the description of the gescape IMAGE_BLEND for more details.

The arg2 parameter is ignored.

A-22 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

BLOCK WRITE SKIPCOUNT

The hopi parameter is BLOCK_WRITE_SKIPCOUNT.

This gescape speci�es the number of bytes to be skipped in the source data at
the end of each scanline during byte/pixel block writes. The default value is 0.
In order for the skipcount to take e�ect, the raw parameter must be set in the
call to block write. This gescape has no e�ect if bit per pixel mode has been
enabled via the R_BIT_MODE gescape.

This gescape should be called with arg1.i[0] containing the number of bytes
to be skipped.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=32;

gescape(fildes,BLOCK_WRITE_SKIPCOUNT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=32

call gescape(fildes,BLOCK_WRITE_SKIPCOUNT,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 32;

gescape(fildes,BLOCK_WRITE_SKIPCOUNT,arg1,arg2);

GESC A-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC APPL DATA

The hopi parameter is CGMESC_APPL_DATA.

This gescape generates CGM application data element.

CGM has an element that has no graphical e�ect at all but can be used to insert
documentation or other private data into the meta�le. With a clear text meta�le
generation, for example, you can use this gescape to insert comments into the
meta�le (as debugging aids). This clari�es the correspondence between high level
Starbase calls and clear text CGM elements.

The CGM application data element has two parameters: an application data ID
and a data record. The ID is a label for the application data element. The data
record contains parameters.

The arg1 parameter contains:

an integer application data ID
one or more blanks
a data record substring (commencing with the �rst non-blank character)

The arg2 parameter is ignored.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_APPL_DATA,

"10 APPLICATION move/draw", &arg2);

FORTRAN77 Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_APPL_DATA,

+ '10 APPLICATION move/draw'//char(0), arg2)

A-24 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c := '10 APPLICATION move/draw'#0;

gescape(fildes, CGMESC_APPL_DATA,arg1, arg2);

GESC A-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC ENCODING

The hopi parameter is CGMESC_ENCODING.

This gescape selects CGM encoding.

CGMs may be encoded in one of three style: binary, character, or clear text (see
\Functionality and Encodings" earlier in this chapter).

The arg1 parameter contains one of the one-letter strings \B", \C", or \T" to
select binary, character, or clear text encodings, respectively.

The arg2 parameter is ignored.

The default encoding is binary.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_ENCODING, "T", &arg2);

FORTRAN Syntax Example

character arg2(255)... call gescape(fildes, CGMESC_ENCODING, 'T'//char(0), arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c[1] := 'T';

gescape(fildes, CGMESC_ENCODING, arg1, arg2);

A-26 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC ESCAPE ELT

The hopi parameter is CGMESC_ESCAPE_ELT.

This gescape generates a CGM escape element.

The CGM contains an escape element that de�nes non-standardized graphical
operations. For example, one could de�ne an escape element that suppressed
the clearing of the view surface when the meta�le is interpreted; hence, pictures
would be overlaid. (This example is a registered escape of the TOP application
pro�le standard.)

Because the CGM escape contents are inherently non-standard, portability of the
resulting meta�les is inherently reduced by using this element.

The CGM escape element has two parameters: an escape ID and an escape data
record. The ID is an opcode, and the data record contains parameters.

The arg1 parameter contains:

an integer opcode.
one or more blanks
an escape data record substring (commencing with the �rst non-blank
character)

The arg2 parameter is ignored.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_ESCAPE_ELT,"-302 1.0 0.0 0.0 0.22" , &arg2);

FORTRAN Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_ESCAPE_ELT,

+ '-302 1.0 0.0 0.0 0.22'//char(0), arg2)

GESC A-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c := '-302 1.0 0.0 0.0 0.22'#0;

gescape(fildes, CGMESC_ESCAPE_ELT,arg1, arg2);

A-28 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC FONT IX

The hopi parameter is CGMESC_FONT_IX.

The CGM contains an element to set the current font index. This is an index
into the interpreter font table which allows selection of the font to be used for
subsequent text display. There is no way to directly de�ne this font index in
Starbase. Hence, this gescape allows the application to select di�erent fonts in
the meta�le.

The arg1 parameter contains the integer index encoded as a string.

The arg2 parameter is ignored.

The default font index is 1.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_FONT_IX, "12", &arg2);

FORTRAN Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_FONT_IX, '12'//char(0), arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c := '12'#0;

gescape(fildes, CGMESC_FONT_IX,arg1, arg2);

GESC A-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC MESSAGE

The hopi parameter is CGMESC_MESSAGE. This gescape generates a CGM message
element. The CGM contains an element to pass a message to an operator at the
other end, i.e., at the interpretation process. Such a message might inform the
operator that a certain kind of paper is required in the plotter for the next
pictures. This gescape allows the application to generate a CGM message
element.

The arg1 parameter contains the string that comprises the message.

Note The CGM element has an action ag as a parameter. This
gescape always generates message elements with the value
no_action for this ag.

The arg2 parameter is ignored.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_MESSAGE,"Next is the move/draw polygon", &arg2);

FORTRAN Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_MESSAGE,

+ 'Next is the move/draw polygon'//char(0), arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c := 'Next is the move/draw polygon'#0;

gescape(fildes, CGMESC_MESSAGE,arg1, arg2);

A-30 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC MET NAME

The hopi parameter is CGMESC_MET_NAME.

This gescape de�nes a meta�le name.

Each CGM begins with an element BEGIN METAFILE having an ID string as a
parameter. This gescape de�nes the name that appears in the meta�le ID string.

The arg1 parameter contains the ID string that is used.

The arg2 parameter is ignored.

The default value is the null string.

C Syntax Example

gescape_arg arg2;...
gescape(fildes,CGMESC_MET_NAME, "HP-CGM metafile name",&arg2);

FORTRAN Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_MET_NAME,

+ 'HP-CGM metafile name'//char(0), arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c := 'HP-CGM metafile name'#0;

gescape(fildes,CGMESC_MET_NAME,arg1,arg2);

GESC A-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC PIC NAME

The hopi parameter is CGMESC_PIC_NAME.

This gescape de�nes the picture name.

In the CGM each picture begins with a BEGIN PICTURE element that contains an
ID string to name the picture. This gescape de�nes the name that appears in
the picture ID string for the next picture to be started in the meta�le.

The arg1 parameter contains the picture ID string that is used.

The arg2 parameter is ignored.

The default value is the null string.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_PIC_NAME, "Picture name", &arg2);

FORTRAN Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_PIC_NAME,

+ 'Picture name'//char(0), arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
arg1.c := 'Picture name'#0;

gescape(fildes, CGMESC_PIC_NAME, arg1, arg2);

A-32 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC TOP MODE

The hopi parameter is CGMESC_TOP_MODE.

This gescape selects the TOP mode for meta�le generation.

The resulting meta�le will conform to the MAP/TOP V3.0 Application Pro�le
(AP) of CGM. This is a speci�cation which limits the ranges of attributes to a
predictable set, changes the default color map, and limits the lengths of primitives
to 1024 points. The purpose of the AP is to promote predictable interchange of
CGM by removing some ambiguities that exist in the CGM standard itself.

The default color map, starting at index 2, is rede�ned to red, green, blue, yellow,
magenta, cyan, black, and white. This pattern of colors is repeated until the entire
256-element color map is �lled. Indexes 0 and 1 are not rede�ned; hence, they
are black and white.

There are no parameters for this gescape.

The arg1 and arg2 parameters are ignored.

The default mode is non-TOP.

C Syntax Example

gescape_arg arg1,arg2;...
gescape(fildes, CGMESC_TOP_MODE, &arg1, &arg2);

FORTRAN Syntax Example

character arg1(255), arg2(255)...
call gescape(fildes, CGMESC_TOP_MODE, arg1, arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;...
gescape(fildes, CGMESC_TOP_MODE, arg1, arg2);

GESC A-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGMESC VDC PREC

The hopi parameter is CGMESC_VDC_PREC.

This gescape selects the VDC integer precision.

Coordinate data in a CGMmay be either high or low precision (see \Precisions").

The parameter arg1 contains one of the one-letter strings \H" or \L" to select
high or low precision coordinates for graphical primitives and attributes. In low
precision, coordinates range from zero to +32,767. In high precision, coordinates
range from zero to +1,000,000,000.

The parameter arg2 is ignored.

The default precision is low.

C Syntax Example

gescape_arg arg2;...
gescape(fildes, CGMESC_VDC_PREC, "L", &arg2);

FORTRAN Syntax Example

character arg2(255)...
call gescape(fildes, CGMESC_VDC_PREC, 'L'//char(0), arg2)

Pascal Syntax Example

var arg1, arg2: gescape_arg;... arg1.c[1] := 'L';

gescape(fildes, CGMESC_VDC_PREC, arg1, arg2);

A-34 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CGM Elements Produced by the HP CGM Driver

Delimiter Elements

Every CGM created by hpcgm contains the following delimeter elements.

BEGIN METAFILE The meta�le ID can be speci�ed by a gescape.
(hopi parameter set to CGMESC_MET_NAME)

BEGIN PICTURE The picture ID can be speci�ed by a gescape.
(hopi parameter set to CGMESC_PIC_NAME)

BEGIN PICTURE BODY

END METAFILE

END PICTURE

Metafile Descriptor, Picture Descriptor, Control Elements

Unconditionally Included

The following Meta�le Descriptor, Picture Descriptor, and Control Elements are
included in all hpcgm meta�les. The descriptions of some of the precisions refer
to the encoding-dependent nature of the parameters (binary, character, or clear
text).

BACKGROUND COLOR Value according to most recent applica-
tion request to Starbase, or 0, 0, 0 if no
requests have been made.

CHARACTER CODING ANNOUNCER Always basic 7-bit.
COLOR INDEX PRECISION Always 8-bit (or closest equivalent sup-

ported by the selected encoding).
COLOR PRECISION Always 8-bit (or closest equivalent sup-

ported by the selected encoding).
COLOR SELECTION MODE Always \direct".
COLOR VALUE EXTENT Always (0,0,0), (255,255,255).
INDEX PRECISION Always 16-bit (or closest equivalent sup-

ported by the selected encoding).
INTEGER PRECISION Always 16-bit (or closest equivalent sup-

ported by the selected encoding).
LINE WIDTH SPECIFICATION MODE Always \scaled".
MARKER SIZE SPECIFICATION MODE Always \scaled".

GESC A-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

MAXIMUM COLOR INDEX Always 255.
METAFILE DEFAULTS REPLACEMENT Unconditionally sets the proper VDC in-

teger precision (to 16-bit or 32-bit, or clos-
est equivalent supported by the encod-
ing).

METAFILE DESCRIPTION Always contains the substring Hewlett-

Packard CGM (HP-CGM) 1987.
METAFILE ELEMENT LIST Contains drawing set.
METAFILE VERSION Version �xed at 1.
REAL PRECISION Always 32-bit (or closest equivalent sup-

ported by the selected encoding). Fixed
point is used.

SCALING MODE Always \abstract"
VDC TYPE Always an integer.

Unconditionally Excluded

The following descriptor and control elements never appear in a hpcgm meta�le.

AUXILIARY COLOR

CHARACTER SET LIST

CLIP INDICATOR

CLIP RECTANGLE

EDGE WIDTH SPECIFICATION MODE

FONT LIST

TRANSPARENCY

VDC EXTENT

VDC INTEGER PRECISION

VDC REAL PRECISION

A-36 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Graphical Primitives

Included

The following CGM graphical primitives may be generated as a result of user
Starbase calls. Polylines may reect such things as stroke precision text which
will be simulated by Starbase.

POLYGON

POLYGON SET

POLYLINE

TEXT

Excluded

The following CGM graphical primitives will never be generated by the hpcgm

driver.

APPEND TEXT

CELL ARRAY

CIRCLE

CIRCULAR ARC CENTRE

CIRCULAR ARC CENTRE CLOSE

CIRCULAR ARC 3 POINT

CIRCULAR ARC 3 POINT CLOSE

DISJOINT POLYLINE

ELLIPSE

ELLIPTICAL ARC

ELLIPTICAL ARC CLOSE

POLYMARKER

RECTANGLE
RESTRICTED TEXT

GESC A-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Primitive Attributes

Included

The hpcgm driver may put the following CGM primitive attribute elements into
a meta�le as a result of application calls to Starbase functions.

CHARACTER EXPANSION FACTOR

CHARACTER HEIGHT

CHARACTER ORIENTATION

CHARACTER SPACING

FILL COLOR

INTERIOR STYLE Hollow or solid may be output.
LINE COLOR

LINE TYPE Starbase 0 . . . 4 are mapped to CGM
1 . . . 5. Starbase values greater than 4
are mapped to CGM -(value+1).

TEXT ALIGNMENT Continuous alignment is always used.
TEXT COLOR

TEXT FONT INDEX May be included as a result of gescape.
(The op parameter is set to
CGMESC_FONT_IX.)

TEXT PATH

Excluded

The following CGM primitive attribute elements will never be output by the
hpcgm driver.

ALTERNATE CHARACTER SET INDEX

ASPECT SOURCE FLAGS
CHARACTER SET INDEX

COLOR TABLE

EDGE BUNDLE INDEX

EDGE COLOR

EDGE TYPE

EDGE VISIBILITY

EDGE WIDTH

FILL BUNDLE INDEX

FILL REFERENCE POINT

A-38 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HATCH INDEX
LINE BUNDLE INDEX

LINE WIDTH

MARKER BUNDLE INDEX

MARKER COLOR

MARKER SIZE

MARKER TYPE

PATTERN INDEX

PATTERN SIZE

PATTERN TABLE

TEXT BUNDLE INDEX

TEXT PRECISION

External and Escape Elements

The CGM external and escape elements may be output by hpcgm by gescape

calls to Starbase.

APPLICATION DATA (hopi parameter is set to CGMESC_APPL_DATA)
ESCAPE (hopi parameter is set to CGMESC_ESCAPE_ELT)
MESSAGE Only available with hnoactioni. (hopi parameter

is set to CGMESC_MESSAGE)

GESC A-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CLIP OVERFLOW

The hopi parameter is CLIP_OVERFLOW.

This gescape allows you to provide the hp98731 driver a routine to change the
X Window system window hierarchy when the window that the hp98731 driver
is using becomes too obscured by other windows. It takes a single parameter,
which is the address of the routine to call.

The arg1 parameter points to the address.

The arg2 parameter is ignored.

The hp98730 transform engine has the ability to clip against a limited number of
obscuring rectangles. When too many rectangles obscure a window, by default,
the hp98731 driver prints a Starbase warning and waits for the situation to
change. It will continue to print warnings until the number of obscuring rectangles
is fewer than 31.

With the CLIP_OVERFLOW gescape, it is possible for you to provide the driver a
routine to call instead of printing the warning. This will allow the application to
�x the problem immediately. To put the driver back in the default state (printing
warnings), call CLIP_OVERFLOW with a null address.

When calling the user routine, the hp98731 driver will pass in two parameters:
the display the window is on, and the window the driver is writing to. It is
possible to use these parameters in X Window system calls. The user routine
should not call any Starbase routines.

Here is an example of how to use the CLIP_OVERFLOW gescape:

A-40 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

void fixit(display,window)

Display *display;

Window window;

{

/* This routine will try to raise the window to the top if possible. */

XRaiseWindow(display,window);

}

main()

{

int fildes;

gescape_arg arg1,arg2;

fildes = gopen(...,OUTDEV,"hp98731",0);

arg1.i[0] = (int) fixit;

gescape(fildes,CLIP_OVERFLOW,&arg1,&arg2);

Do drawing

gclose(fildes);

}

FORTRAN77 and Pascal Syntax

Since FORTRAN77 and Pascal cannot get the address of a procedure, this
gescape does not directly support those languages.

GESC A-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CONTOUR CONTROL

The hopi parameter is CONTOUR_CONTROL.

This gescape speci�es alternative methods for interpolating the scalar data
provided for contoured primitives. This gescape takes 3 oating point numbers
in arg1 to set the option. Two global contouring values can be speci�ed through
arg1.f[1] and arg1.f[2]. These oating point numbers are treated respectively
as the real and imaginary parts of a complex number. The default value for both
of these numbers is 1.0. The alternative modes treat each of the two per vertex
contour scalar values as complex numbers as well, with the �rst contour value
being the real part and the second contour value being the imaginary part. With
these alternative modes, it is possible couple deformation and contouring such
that contoured deformed primitives can vary the contours as the deformation
varies. The contouring mode is selected through arg1.f[0] and can be either:

SCALAR_FRONT_BACK This is the default option. Front facing contours are
computed as the product of the value of arg1.f[1]
and the �rst contour value per vertex. Back facing
contours are computed as the product of the value of
arg1.f[2] and the second contour value per vertex.

To get this option the gescape should be called with:
arg1.f[0]=SCALAR_FRONT_BACK

SCALAR_REAL This option contours with the real part of the complex
product of the global and per vertex contour values.

To get this option the gescape should be called with:
arg1.f[0]=SCALAR_REAL

SCALAR_IMAG This option contours with the imaginary part of the
complex product of the global and per vertex contour
values.

To get this option the gescape should be called with:
arg1.f[0]=SCALAR_IMAG

The following examples select a SCALAR_REAL contouring interpolation method
using a non default global contouring complex number.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

A-42 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

gescape_arg arg1, arg2;.
.
.

arg1.f[0] = SCALAR_REAL;

arg1.f[1] = 2.0; /* global contouring number real component */

arg1.f[2] = 5.5; /* global contouring number imaginary component */

gescape(fildes,CONTOUR_CONTROL,&arg1,&arg2);

FORTRAN77 Syntax Example

real arg1(64),arg2(64)

arg1(1) = SCALAR_REAL

arg1(2) = 2.0 /* global contouring number real component */

arg1(3) = 5.5 /* global contouring number imaginary component */

call gescape(fildes,CONTOUR_CONTROL,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;.
.
.

begin

arg1.f[1] := 1.0;

arg1.f[1] := SCALAR_REAL;

arg1.f[2] := 2.0; /* global contouring number real component */

arg1.f[3]) := 5.5; /* global contouring number imaginary component */

gescape(fildes,CONTOUR_CONTROL,arg1,arg2);

GESC A-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

CUBIC POLYPOINT

The CUBIC_POLYPOINT gescape provides a means to specify points to be rendered
in a cubic volume speci�ed in modeling coordinates. For each point speci�ed by
a data value, one pixel will be rendered (see AUTO_FILL_VOXEL below).

The data may be provided in any orientation relative to the device coordinate
(DC) space. This entrypoint sorts the data so as to always render the points
from back to front in the DC Z axis. The data speci�ed is composited with the
current contents of the framebu�er.

The compositing function is of the form:

new value = (alpha * source) + ((1 - alpha) * destination)

where source is the supplied value and destination is the current frame bu�er
contents. Compositing is performed separately for the red, green, and blue banks.
This primitive assumes a 24-bit CMAP_FULL shade-mode (or 12/12 CMAP_FULL

double-bu�er).

This gescape does not support perspective transformations.

The arg2 parameter is ignored.

Input Parameters:

\ORIGIN: Start of the 1st scanline in the 1st slice"

arg1.f[0] X value in Modeling coordinates

arg1.f[1] Y value in Modeling coordinates

arg1.f[2] Z value in Modeling coordinates

\End of the 1st scanline in the 1st slice"

arg1.f[3] X value in Modeling coordinates

arg1.f[4] Y value in Modeling coordinates

arg1.f[5] Z value in Modeling coordinates

\Start of the last scanline in the 1st slice"

arg1.f[6] X value in Modeling coordinates

arg1.f[7] Y value in Modeling coordinates

A-44 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1.f[8] Z value in Modeling coordinates

\Start of the 1st scanline in the last slice"

arg1.f[9] X value in Modeling coordinates

arg1.f[10] Y value in Modeling coordinates

arg1.f[11] Z value in Modeling coordinates

arg1.i[12] Number of points per scanline to render

arg1.i[13] Number of scanlines per slice to render

arg1.i[14] Number of slices to render

arg1.i[15] Number of voxels (data values) per point to skip

arg1.i[16] Number of points per scanline to skip (at the end of each
line)

arg1.i[17] Number of lines per slice to skip at end of each slice

arg1.i[18] Vertex format ags

arg1.i[19] Pointer to the data values (long words, packed bytes, or
packed shorts)

arg1.i[20] Pointer to the data mapping table scalar(byte) -> al-
pha,r,g,b (this parameter applies only to the INDIRECT
vertex formats)

The allowed values for the vertex format ag are:

NULL Standard format is a pack word per voxel. Each word
contains an byte of: (alpha, red, green, blue) with each
byte scaled in the range of 0-255.

INDIRECT_DATA Indicates that the vertex format is a packed byte array of
monotonic intensities which map into a 256 entry (alpha,
red, green, blue) lookup table supplied via a pointer in
arg1.i[20].

INDIRECT_DATA16 Indicates that the vertex format is a packed short (16 bit)
array of intensity which maps into a 65,536 entry (alpha,
red, green, blue) lookup table supplied via a pointer in
arg1.i[20].

GESC A-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PRE_SCALED_ALPHA Indicates that the vertex format is per the CRX-24/24Z's
fast path (1-alpha, alpha*r, alpha*g, alpha*b). The
CRX-24 will operate most e�ciently (quickly) if the
direct data or indirect table is pre-scaled as described
here. This pre-scaling will avoid having the gescape scale
the data per voxel (for the DIRECT case) or per gescape
(for the INDIRECT case).

Note that the CRX-48Z can directly handle alpha, red,
green, and blue. For the CRX-48Z this option is slower
and should not be used, although it will still work.

AUTO_FILL_VOXEL This ag enables a �lling algorithm which will render a
rectangle for each voxel. The rectangle encloses the voxel
cube projection and allows the DC image to be enlarged
without rarifying the appearance of the rendered volume.
If this ag is not present, a single pixel is modi�ed per
data point, regardless of the DC spacing between data
points.

A-46 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

DC COMPATIBILITY MODE

The hopi parameter is DC_COMPATIBILITY_MODE.

The DC COMPATIBILITY MODE gescape controls the rendering of DC
polygons when using the HP 98736 device driver. By default, the HP 98736
device driver will draw dc polygons inclusive of both the top and bottom scanlines
in the de�nition. It does so at the expense of speed and will, in the case of some
partial dc polygons, draw some scanlines twice. Invoking this gescape will cause
the top scanline of all dc polygons to not be drawn, however dc polygon speed
will increase and no scanlines of the polygon will be drawn more than once. This
mode is recommended for applications which require dc polygon speed or which
are using dc polygons in anti-aliasing, destination dependent drawing modes,
alpha blending, or any sort of compositing.

This gescape is needed only with the HP 98736 device driver.

Setting arg1.i[0]=0 will cause dc polygons to be drawn without their top
scanline and will increase their speed. Setting arg1.i[0]=1 will cause dc
polygons to be drawn completely, sometimes drawing scanlines more than once.

C Syntax Example

gescape_arg arg1,arg2;...
arg1.i[0]=0;

gescape(fildes,DC_COMPATIBILITY_MODE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=0

call gescape(fildes,DC_COMPATIBILITY_MODE,arg1,arg2)

GESC A-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 0;

gescape(fildes,DC_COMPATIBILITY_MODE,arg1,arg2);

A-48 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

DC PIXEL WRITE

The DC_PIXEL_WRITE gescape provides the means to specify points to be rendered
along a horizontal scan line. Successive pixels along the scan line are rendered in
a left to right manner.

The data speci�ed is composited with the current contents of the frame bu�er.

The compositing function is of the form:

new value = (alpha * source) + ((1 - alpha) * destination)

where source is the supplied value and destination is the current frame bu�er
contents. Compositing is performed separately for the red, green and blue banks.
This primitive assumes a 24-bit CMAP_FULL shade-mode (or 12/12 CMAP_FULL

double-bu�er).

The arg2 parameter is ignored.

Input Parameters:

arg1.i[0] X starting value in device coordinates

arg1.i[1] Y starting value in device coordinates

arg1.i[2] Number of points to render

arg1.i[3] Vertex format ags

arg1.i[4] pointer to the data values (long words, packed bytes, or
packed shorts)

arg1.i[5] pointer to the data mapping table scalar(byte) -> al-
pha,r,g,b (this parameter applies only to the INDIRECT
vertex formats)

The allowed values for the vertex format ag are:

NULL Standard format is a pack word per voxel. Each word
contains an byte of: (alpha, red, green, blue) with each
byte scaled in the range of 0-255.

INDIRECT_DATA indicates that the vertex format is a packed byte array of
monotonic intensity which maps into a 256 entry (alpha,
red, green, blue) lookup table supplied via a pointer in
arg1.i[20].

GESC A-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

INDIRECT_DATA16 indicates that the vertex format is a packed short (16 bit)
array of intensity which maps into a 65,536 entry (alpha,
red, green, blue) lookup table supplied via a pointer in
arg1.i[20].

PRE_SCALED_ALPHA indicates that the vertex format is per the CRX-24/24Z's
fast path (1-alpha, alpha*r, alpha*g, alpha*b). The
CRX-24 will operate most e�ciently (quickly) if the
direct data or indirect table is pre-scaled as described
here. This pre-scaling will avoid having the gescape scale
the data per voxel (for the DIRECT case) or per gescape
(for the INDIRECT case).

Note that the CRX-48Z can directly handle alpha, red,
green, and blue. For the CRX-48Z this option is slower
and should not be used, although it will still work.

A-50 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

DISABLE ACKNOWLEDGE

The hopi parameter is DISABLE_ACKNOWLEDGE.

This gescape disables the acknowledge function described under gescape

ENABLE_ACKNOWLEDGE.

The default condition is acknowledge disabled.

arg1 and arg2 are ignored.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
gescape(fildes,DISABLE_ACKNOWLEDGE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,DISABLE_ACKNOWLEDGE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

gescape(fildes,DISABLE_ACKNOWLEDGE,arg1, arg2);

GESC A-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

DISABLE AUTO PROMPT

The hopi parameter is DISABLE_AUTO_PROMPT.

This gescape disables the auto prompt facility enabled by the previously
discussed procedure. The prompt indicator will not be activated automatically
after this gescape is executed. You can manually turn the prompt indicator on
and o� with the PROMPT_ON and PROMPT_OFF escape codes described next.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,DISABLE_AUTO_PROMPT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,DISABLE_AUTO_PROMPT,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,DISABLE_AUTO_PROMPT,arg1,arg2);

A-52 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

DRAW POINTS

The hopi parameter is DRAW_POINTS.

This gescape allows you to select di�erent modes of rounding for rendered points.
A move and draw to the same point or a polyline to the same point will not
necessarily appear on HP 98736 nor CRX-24Z as it did on previous devices. This
is because HP 98736 and CRX-24Z have subpixel resolution and only those points
that end up on pixel centers are drawn. This gescape is used to provide point
drawing compatibility with images rendered on previous devices. The gescape

takes 1 integer number in arg1 to set the type of rounding that will occur. These
options are:

NATIVE

MODE

This is the native mode for HP 98736 and CRX-24Z. No rounding
of points will occur.

To get this option the gescape should be called with: arg1.i[0]=0

CENTER

VECTORS

This mode forces all vector primitives to round x,y positions to
pixel center locations. This mode should be chosen to provide
compatibility with previous devices for vector primitives.

To get this option the gescape should be called with: arg1.i[0]=1

CENTER

TEXT

This is the default mode for the HP 98736 and the only mode for
the CRX-24Z. It forces only rendered text to round x,y positions to
pixel center locations.

To get this option the gescape should be called with: arg1.i[0]=2

One can chose to have both CENTER VECTORS and CENTER TEXT by setting
arg1.i[0]=3.

The following examples select CENTER VECTORS and CENTER TEXT.

GESC A-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=3;

gescape(fildes,DRAW_POINTS,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=3

call gescape(fildes,DRAW_POINTS,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 3;
gescape(fildes,DRAW_POINTS,arg1,arg2);

A-54 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ENABLE ACKNOWLEDGE

The hopi parameter is ENABLE_ACKNOWLEDGE.

Most keyboards have associated with them a tone generator (bell) that can be
used to indicate to the operator that an input has been received. This gescape
causes the driver to write a bell character (7) to the device whenever a request
or event is satis�ed.

The default condition is acknowledge disabled.

arg1 and arg2 are ignored.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
gescape(fildes,ENABLE_ACKNOWLEDGE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,ENABLE_ACKNOWLEDGE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

gescape(fildes,ENABLE_ACKNOWLEDGE,arg1, arg2);

GESC A-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ENABLE AUTO PROMPT

The hopi parameter is ENABLE_AUTO_PROMPT.

Some HP-HIL devices have an indicator to inform the operator that the device
is being accessed. This gescape enables this indicator whenever a request starts
or events are enabled. If a speci�c device does not have such an indicator, this
procedure is ignored. This is the default condition.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,ENABLE_AUTO_PROMPT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,ENABLE_AUTO_PROMPT,arg1,arg2)

Pascale Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,ENABLE_AUTO_PROMPT,arg1,arg2);

A-56 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GAMMA CORRECTION

The hopi parameter is GAMMA_CORRECTION.

This gescape allows you to enable or disable gamma correction in the HP 98730,
98731, 98735, 98736, 98765, and 98766 hardware.

See the end of this section for information on how gamma correction works on
the hpgcrx CRX-24 and CRX-24Z and the hpcrx48Z CRX-48Z.

You pass in a ag which is set to 1 to enable gamma correction, or 0 to disable
gamma correction.

The arg1 parameter points to the ag.

The arg2 parameter is ignored.

When enabled with this gescape, gamma correction will be performed in
the hardware on subsequent primitives rendered in CMAP_FULL mode (see
shade_mode) when using the following display modes:

8-planes single bu�ered with dithering (three bits red, three bits green, three
bits blue)
16-planes double bu�ered (eight planes per bu�er) with dithering (three bits
red, three bits green, two bits blue)
24-planes single bu�ered (eight bits red, eight bits green, eight bits blue)
24-planes double bu�ered (12 planes per bu�er) with dithering (four bits red,
four bits green, four bits blue)

If the color map or display modes are not in the above set, primitives will be
rendered as normal. If the modes are later changed into one of the above cases,
gamma correction will be automatically engaged. Therefore, it is possible to
enable gamma correction with one call to this gescape and switch in and out of
modes which will use it.

The gamma correction hardware is actually a pre-computed, look-up table which
accepts 10-bit intensity inputs for each color from the scan conversion hardware
and outputs 8-bit gamma corrected values. This means that the actual values
written to the frame bu�er are modi�ed. The color map is unchanged, so
previously rendered primitives are una�ected. Also, raster operations such as
block_write are una�ected by gamma correction.

gamma correction has no e�ect on performance.

GESC A-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The following example shows how to use Starbase to enter and exit the gamma
correction mode.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0] = 1; /* enable gamma correction */

gescape(fildes,GAMMA_CORRECTION,&arg1,&arg2);...
Render gamma corrected primtives here. Be sure to set the

correct color map and display modes (see shade_mode,

double_buffer, and fill_dither.)...
arg1.i[0] = 0; /* disable gamma correction */

gescape(fildes,GAMMA_CORRECTION,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(4),arg2(1)

arg1(1)=1
call gescape(fildes,GAMMA_CORRECTION,arg1,arg2)...
Render gamma corrected primtives here. Be sure to set the

correct color map and display modes (see shade_mode,

double_buffer, and fill_dither.)...
arg1(1)=0

call gescape(fildes,GAMMA_CORRECTION,arg1,arg2)

A-58 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 1;

gescape(fildes,GAMMA_CORRECTION,arg1,arg2);...
Render gamma corrected primtives here. Be sure to set the

correct color map and display modes (see shade_mode,

double_buffer, and fill_dither.)...
arg1.i[1] := 0;

gescape(fildes,GAMMA_CORRECTION,arg1,arg2);

GAMMA CORRECTION for the CRX-24, CRX-24Z, and CRX-48Z

On the CRX-24, CRX-24Z and CRX-48Z displays, gamma correction is imple-
mented di�erently. It is done by modifying the CMAP_FULL color map. It is not
done during rendering, as was the case on the above devices. This means that
when gamma correction turned on, everything rendered up to this point will be
gamma corrected.

When enabled with this gescape, gamma correction on the CRX-24 and the CRX-
24Z works only in the following CMAP_FULL display modes:

24 planes single bu�ered

24 planes double bu�ered (12 planes per bu�er)

Since this technique of gamma correction is di�erent, a di�erent gescape value is
used to turn it on:

arg1[0] = 0 Turn o� gamma correction

arg1[0] = 2 Turn on gamma correction in color map (on CRX-24,
CRX-24Z or CRX-48Z)

GESC A-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1[0] = 1 Does nothing on CRX-24, CRX-24Z or CRX-48Z

If you want to turn on gamma correction regardless of what device you are on,
using whichever technique the device supports, use the value:

arg1[0] = 3 Turn on gamma correction on any device that supports
it.

A-60 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GCRX PIXEL REPLICATE

The hopi parameter is GCRX_PIXEL_REPLICATE.

This gescape allows you to pan and zoom a raster image on any of the hpgcrx

and hpcrx48z displays. It works on both a raw display and in an X11 window.
It does not support backing store. You pass in a location to write the image to,
the size of the image, the zoom factor, and a pointer to the image. The values of
these parameters are similar to dcblock write.

arg1.i[0] = zoom factor (must be integer >=1).

arg1.i[1] = x location in dc units to write the upper left corner.

arg1.i[2] = y location in dc units to write the upper left corner.

arg1.i[3] = width of the raster image in pixels.

arg1.i[4] = height of the raster image in pixels.

arg1.i[5] = pointer to a byte per pixel raster image.

C Syntax

gescape_arg arg1 arg2;

unsigned char pixel_data[width*height];

arg1.i[0]=5; /* zoom factor */

arg1.i[1]=0; /* x */

arg1.i[2]=0; /* y */

arg1.i[3]=width; /* width */

arg1.i[4]=height; /* height */

arg1.i[5]=pixel_data; /* image */

gescape(fildes,GCRX_PIXEL_REPLICATE,&arg1,&arg2);

GESC A-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax

integer*4 arg1(6), arg2(6)

integer*1 pixel_data(width*height)

arg1(1)=5

arg1(2)=0

arg1(3)=0

arg1(4)=width

arg1(5)=height

arg1(6)=pixel_data

call gescape(fildes,GCRX_PIXEL_REPLICATE,arg1,arg2)

Pascal Syntax

var

arg1, arg2 : gescape_arg;

pixel_data : array [1..width*height] of char;

arg1.i[1]:=5; { zoom factor }

arg1.i[2]:=0; { x }

arg1.i[3]:=0; { y }

arg1.i[4]:=width; { width }

arg1.i[5]:=height; { height }

arg1.i[6]:=pixel_data; { image }

gescape(fildes,GCRX_PIXEL_REPLICATE,arg1,arg2);

When using a zoom factor > 1, the frame bu�er area to be written must contain
zeros for this gescape to work properly. This can be done either implicitly by
doing a dbu�er switch call when double bu�ering, or explicitly by using the
clear view surface routine.

Example:

gescape_arg arg1 arg2;

unsigned char pixel_data[width*height];

background_color_index(fildes,0);

A-62 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

dbuffer_switch(fildes, 0);

arg1.i[0]=5; /* zoom factor */

arg1.i[1]=0; /* x */

arg1.i[2]=0; /* y */

arg1.i[3]=width; /* width */

arg1.i[4]=height; /* height */

arg1.i[5]=pixel_data; /* image */

gescape(fildes,GCRX_PIXEL_REPLICATE,&arg1,&arg2);

dbuffer_switch(fildes, 1);

This gescape does not do any CMAP FULL translation when the modi�ed
colormap is in use. The pixel data to be written must be untranslated (i.e.
exactly how it appears in the frame bu�er). This is di�erent from block read and
block write calls which normally do use translation when necessary. The modi�ed
colormap (and CMAP FULL translation) is used on the GRX, CRX, and the
Dual CRX displays in CMAP FULL mode (see the CMAP FULL Translations
section in the hpgcrx chapter of the Starbase Device Driver's Manual).

To obtain the untranslated data from the frame bu�er, turn translation o� before
doing block read by using the GCRX SW CMAP FULL gescape (see example
below). If you are creating your data some other way, use the translation
tables in the hpgcrx chapter of the Starbase Device Drivers Manual (See the
CMAP FULL Colormap Index Translation section).

Example:

gescape_arg arg1 arg2;

unsigned char pixel_data[width*height];

/* The GCRX_SW_CMAP_FULL gescape is used to turn off

translation. It is only needed when modified

colormap is used.

*/

arg1.i[0] = 0;

gescape(fildes,GCRX_SW_CMAP_FULL,&arg1,&arg2);

/* Read the data from the frame buffer without translation. */

dcblock_read(fildes,0,0,width,height,pixel_data,FALSE);

GESC A-63

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

/* Clear frame buffer to zeros. Translation is off for this also.*/

background_color_index(fildes,0);

clear_view_surface(fildes);

/* Write data back with a zoom factor. No translation is used. */

arg1.i[0]=5; /* zoom factor */

arg1.i[1]=0; /* x */

arg1.i[2]=0; /* y */

arg1.i[3]=width; /* width */

arg1.i[4]=height; /* height */

arg1.i[5]=pixel_data; /* image */

gescape(fildes,GCRX_PIXEL_REPLICATE,&arg1,&arg2);

A-64 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GCRX SW CMAP FULL

The hopi parameter is GCRX_SW_CMAP_FULL.

This gescape allows you to rede�ne default behavior of the SW_CMAP_FULL

translation for CMAP_FULL color map mode on hpgcrx devices.

You pass in a value where 0 means to disable the SW_CMAP_FULL translation,
1 means to enable the SW_CMAP_FULL translation without changing the enabled
value for clearing of the display surface when switching in and out of CMAP_FULL
color map mode, and 3 means to enable the SW_CMAP_FULL translation and the
clearing of the display surface when switching in and out of CMAP_FULL color map
mode.

The arg1[0] parameter contains the value as described above.

The arg2 parameter is ignored.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0] = 3;

gescape(fildes,GCRX_SW_CMAP_FULL,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(4),arg2(1)

arg1(1)=3

call gescape(fildes,GCRX_SW_CMAP_FULL,arg1,arg2)

GESC A-65

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 3;

gescape(fildes,GCRX_SW_CMAP_FULL,arg1,arg2);

A-66 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D CONVEX POLYGONS

The hopi parameter is GR2D_CONVEX_POLYGONS.

This gescape enables convex polygons to be drawn at a higher speed than they
would normally be with the gescape not enabled. This extra speed is achieved
at the expense of not being able to draw non-convex polygons when this gescape
is enabled. If an application attempts to render non-convex polygons while this
gescape is enabled, they will be �lled incorrectly.

The default mode is that the convex polygons mode is not enabled.

The arg1 parameter enables (if TRUE (1)) and disables (if FALSE (0)) the
convex polygon mode.

The arg2 parameter is ignored.

The following examples enable the convex polygons mode.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=TRUE;

gescape(fildes,GR2D_CONVEX_POLYGONS,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=TRUE;

call gescape(fildes,GR2D_CONVEX_POLYGONS,arg1,arg2)

GESC A-67

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

arg1.i[1]:=TRUE;

gescape(fildes,GR2D_CONVEX_POLYGONS,arg1,arg2);

A-68 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D DEF MASK

The hopi parameter is GR2D_DEF_MASK.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices have hardware capability for three-operand raster combinations:
that is, operations that use a tiling mask and a replacement rule that specify
the combination of the source, mask, and destination. When enabled, the mask
rule and current mask are used for block_write and block_move operations.
When disabled, the normal replacement rule (see drawing_mode) is used and the
current mask is ignored.

The hardware only allows a mask size of 16�16 pixels. This mask repeats over
the entire screen area. The mask is full-depth (that is, it is speci�ed as a byte
per pixel, and as many low-order bits are signi�cant as there are color planes
in the display being accessed). Each plane of the mask is applied only to the
corresponding source and destination planes.

Related gescape functions are GR2D_MASK_RULE and GR2D_MASK_ENABLE.

This gescape allows you to de�ne the mask to be used. The arg1 parameter
contains 256 bytes in row-major order, representing the mask (16 pixels wide by
16 pixels high).

The arg2 parameter is ignored.

This mask remains in e�ect for three-operand combinations until this gescape is
used again to set another mask. The default mask is all ones.

The following example sets the mask to a checkerboard of 8x8 squares in the �rst
plane.

GESC A-69

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

int row;...
for (row=0; row<8; row++)

{

arg1.i[row*4] = 0x01010101;

arg1.i[row*4+1] = 0x01010101;

arg1.i[row*4+2] = 0;

arg1.i[row*4+3] = 0;

}

for (row=8; row<16; row++)

{

arg1.i[row*4] = 0;

arg1.i[row*4+1] = 0;

arg1.i[row*4+2] = 0x01010101;

arg1.i[row*4+3] = 0x01010101;

}

gescape(fildes,GR2D_DEF_MASK,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(1), row

do 100 row=0,7

arg1(row*4+1) = Z'01010101';

arg1(row*4+2) = Z'01010101';

arg1(row*4+3) = 0;

arg1(row*4+4) = 0;

100 continue

do 200 row=8,15

arg1(row*4+1) = 0;

arg1(row*4+2) = 0;

arg1(row*4+3) = Z'01010101';

arg1(row*4+4) = Z'01010101';

A-70 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

200 continue

call gescape(fildes,GR2D_DEF_MASK,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

row: integer;...
begin

for row := 0 to 7 do begin

arg1.i[row*4+1] := hex('01010101');

arg1.i[row*4+2] := hex('01010101');

arg1.i[row*4+3] := 0;

arg1.i[row*4+4] := 0;

end;

for row := 8 to 15 do begin

arg1.i[row*4+1] := 0;

arg1.i[row*4+2] := 0;

arg1.i[row*4+3] := hex('01010101');
arg1.i[row*4+4] := hex('01010101');

end;

gescape(fildes,GR2D_DEF_MASK,arg1,arg2);

GESC A-71

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D FILL PATTERN

The hopi parameter is GR2D_FILL_PATTERN.

This gescape allows you to de�ne a 16�16 dither or �ll pattern that will be used
as the source �ll for polygons and rectangles. The bytes de�ning the pattern are
passed to the driver through arg1. The 256 bytes are placed in the �ll pattern cell
in row major order. After gescape is called the polygon and rectangle primitives
will be �lled with the user-de�ned pattern until another pattern is de�ned with
gescape or until the �ll is rede�ned using interior_style and pattern_define.

This gescape is provided for compatibility with older device drivers. It is
suggested that the INT_PATTERN interior style be used instead of this gescape.

The arg2 parameter is ignored.

The following example de�nes a checkerboard �ll pattern.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

int row;...
for (row=0; row<8; row++)

{

arg1.i[row*4] = 0x01010101;

arg1.i[row*4+1] = 0x01010101;

arg1.i[row*4+2] = 0;

arg1.i[row*4+3] = 0;

}

for (row=8; row<16; row++)

{

arg1.i[row*4] = 0;

arg1.i[row*4+1] = 0;

arg1.i[row*4+2] = 0x01010101;

arg1.i[row*4+3] = 0x01010101;

}

gescape(fildes,GR2D_FILL_PATTERN,&arg1,&arg2);

A-72 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(1), row

do 100 row=0,7

arg1(row*4+1) = Z'01010101';

arg1(row*4+2) = Z'01010101';

arg1(row*4+3) = 0;

arg1(row*4+4) = 0;

100 continue

do 200 row=8,15

arg1(row*4+1) = 0;

arg1(row*4+2) = 0;

arg1(row*4+3) = Z'01010101';

arg1(row*4+4) = Z'01010101';

200 continue

call gescape(fildes,GR2D_FILL_PATTERN,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

row: integer;...
begin

for row := 0 to 7 do begin

arg1.i[row*4+1] := hex('01010101');

arg1.i[row*4+2] := hex('01010101');

arg1.i[row*4+3] := 0;

arg1.i[row*4+4] := 0;

end;

for row := 8 to 15 do begin

arg1.i[row*4+1] := 0;

arg1.i[row*4+2] := 0;

GESC A-73

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1.i[row*4+3] := hex('01010101');

arg1.i[row*4+4] := hex('01010101');

end;

gescape(fildes,GR2D_FILL_PATTERN,arg1,arg2);

A-74 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D MASK ENABLE

The hopi parameter is GR2D_MASK_ENABLE.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices have hardware capability for 3-operand raster combination: that
is, operations that use a tiling mask and a replacement rule that specify the
combination of the source, mask, and destination. When enabled, the mask rule
and current mask are used for block_write and block_move operations. When
disabled, the normal replacement rule (see drawing_mode) is used and the current
mask is ignored.

Related gescapes are GR2D_MASK_RULE and GR2D_DEF_MASK.

This gescape allows you to enable or disable the use of the mask. The arg1

parameter contains one ag. If arg1[0] is 0, 3-operand mode is disabled. If
arg1[0] is 1, 3-operand mode is enabled for block_write and block_move. If
arg1[0] is 2, 3-operand mode is enabled for block_write, block_move and raster
text using the font manager or fast alpha libraries.

The arg2 parameter is ignored.

This is a hardware-dependent feature not supported in window retained rasters.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...>

arg1.i[0]=TRUE;

gescape(fildes,GR2D_MASK_ENABLE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=TRUE

call gescape(fildes,GR2D_MASK_ENABLE,arg1,arg2)

GESC A-75

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 1;

gescape(fildes,GR2D_MASK_ENABLE,arg1,arg2);

A-76 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D MASK RULE

The hopi parameter is GR2D_MASK_RULE.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices have hardware capability for three-operand raster combination:
that is, operations that use a tiling mask and a replacement rule (drawing
mode) that specify the combination of the source, mask, and destination. For
more information, review the \Three-operand Raster Operations" section of the
appropriate device driver chapter.

Related gescapes are GR2D_MASK_ENABLE and GR2D_DEF_MASK.

This gescape allows you to set the 3-operand drawing mode. The arg1 parameter
contains one integer, specifying the new replacement rule. The replacement rule
is generated from the desired results by reading the eight result bits as a number.
The default rule is hsourcei, rule number 0xCC.

Table A-3.

Mask Source Destination Result

0 0 0 r0

0 0 1 r1

0 1 0 r2

0 1 1 r3

1 0 0 r4

1 0 1 r5

1 1 0 r6

1 1 1 r7

Table A-4.

bit! 7 6 5 4 3 2 1 0

rule! r7 r6 r5 r4 r3 r2 r1 r0

For example, to derive the commonly used rule (if hmaski then hsourcei else
hdestinationi), rule number 0xCA, the following table de�nes the rule. The rule

GESC A-77

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

number is determined by reading the result column as an integer (from bottom
to top, r7 being the most signi�cant bit and r0 the least signi�cant).

Table A-5.

Mask Source Destination Result

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

The arg2 parameter is ignored.

The following program fragment shows the use of this gescape and example rule.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=0xCA;

gescape(fildes,GR2D_MASK_RULE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=Z'CA'

call gescape(fildes,GR2D_MASK_RULE,arg1,arg2)

A-78 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := hex('CA');

gescape(fildes,GR2D_MASK_RULE,arg1,arg2);

GESC A-79

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D OVERLAY TRANSPARENT

The hopi parameter is GR2D_OVERLAY_TRANSPARENT.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices may be opened in con�gurations that provide 2-overlay planes, in
addition to the 4- or-8 image planes. Images created in the overlay planes do
not a�ect images in the graphics planes. However, pixels of value zero in the
overlay planes may be made either transparent (allowing the graphics planes to
be displayed) or opaque (obscuring the graphics planes).

This gescape allows the transparency of zero pixels to be turned on or o� (the
default is that zero pixels are transparent). The arg1 parameter contains a single
ag: if TRUE, zero pixels are transparent; if FALSE, zero pixels are opaque and the
color found in entry 0 of the overlay color map is displayed for those pixels.

The arg2 parameter is ignored.

This gescape should not be used with the HP 98548A monochrome display.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=TRUE;

gescape(fildes,GR2D_OVERLAY_TRANSPARENT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=TRUE

call gescape(fildes,GR2D_OVERLAY_TRANSPARENT,arg1,arg2)

A-80 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 1;

gescape(fildes,GR2D_OVERLAY_TRANSPARENT,arg1,arg2);

GESC A-81

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D PLANE MASK

The hopi parameter is GR2D_PLANE_MASK.

This gescape de�nes a mask indicating the frame bu�er planes read or written
during bit/pixel block transfers. The mask is relevant when R_BIT_MODE

has enabled bit/pixel mode and raw mode is used in block_read() and
block_write(). The mask may de�ne any number of planes up to the total
number of planes opened. Extra bits are ignored. The least-signi�cant bit in the
mask corresponds to the least-signi�cant accessible plane. For example, mask 5
allows reads and writes to both plane 0 and plane 2. The storage expected is
that needed for the number of planes speci�ed. For this example, storage for two
planes is needed. Both planes are transferred on a single call to block_read or
block_write. See the documentation on using block_read and block_write

with raw mode for more information.

This gescape overrides the mask set by gescape R_BIT_MASK. If this gescape

is called after R_BIT_MASK, transfers to obscured regions of a retained raster (if
supported) will be according to the most signi�cant set bit in the mask value (i.e.,
only a single plane), and transfers to the visible regions will be according to the
entire mask value. The R_BIT_MASK gescape must be used to ensure consistency
in retained raster operations.

The arg1 parameter is the mask to be used.

The arg2 parameter is ignored.

The default mask is 0x01 (plane 0 only).

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0] = 5;

gescape(fildes,GR2D_PLANE_MASK,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1.i(1) = 5

A-82 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

call gescape(fildes,GR2D_PLANE_MASK,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;...
begin

arg1.i(1) := 5;

gescape(fildes,GR2D_PLANE_MASK,arg1,arg2);

GESC A-83

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D PLANE RULE

The hopi parameter is GR2D_PLANE_RULE.

This gescape speci�es independent replacement rules per frame bu�er plane
for bit/pixel block writes. Source, destination, and pattern values provide
the three operands for the replacement rule. The per plane replacement rules
are relevant when R_BIT_MODE has enabled bit/pixel mode and hrawi mode
is used in block_write. The gescape takes two integers. arg1.i[0] is the
8 bit replacement rule, see PATTERN_FILL for a replacement rule truth table.
arg1.i[1] is an 8 bit mask indicating which frame bu�er plane(s) should use
this replacement rule. The default replacement rule is SOURCE (rule 0x33) for all
frame bu�er planes.

The per plane replacement rules are used until a call to GR2D_MASK_RULE is made.

This gescape can be called multiple times to de�ne di�erent replacement rules
for di�erent frame bu�er planes.

The following examples enable the SOURCE replacement rule for planes 0,1,2,3 and
DESTINATION replacement rule for planes 4,5,6,7.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=0x33;

arg1.i[1]=0x0f;

gescape(fildes,GR2D_PLANE_RULE,&arg1,&arg2);

arg1.i[0]=0x55;

arg1.i[1]=0xf0;

gescape(fildes,GR2D_PLANE_RULE,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)

arg1(1)=51

arg1(2)=15

call gescape(fildes,GR2D_PLANE_RULE,arg1,arg2)

A-84 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1(1)=85

arg1(2)=240

call gescape(fildes,GR2D_PLANE_RULE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 51;

arg1.i[2] := 15;

gescape(fildes,GR2D_PLANE_RULE,arg1,arg2);

arg1.i[1] := 85;

arg1.i[2] := 240;

gescape(fildes,GR2D_PLANE_RULE,arg1,arg2);

GESC A-85

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

GR2D REPLICATE

The hopi parameter is GR2D_REPLICATE.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices have hardware support for pixel replication in the Y direction. This
gescape combines driver management of replication in the X direction with the
hardware support to provide square pixel replication, and speci�es the replication
factor to be used. The X replication needs a workspace, that must be speci�ed
in the call, along with the source and destination rectangles and the destination
size. Only replication factors of 2, 4, 8, and 16 are supported.

The arg1 parameter speci�es the many parameters needed for the operation to
take place:

arg1[0] speci�es replication factor. A value other than 2, 4, 8, or 16 is a
no-op.

arg1[1] speci�es the source rectangle upper left X device coordinate.

arg1[2] speci�es the source rectangle upper left Y device coordinate.

arg1[3] speci�es the destination rectangle upper left X device coordinate.

arg1[4] speci�es the destination rectangle upper left Y device coordinate.

arg1[5] speci�es the destination rectangle X size in pixels.

arg1[6] speci�es the destination rectangle Y size in pixels.

arg1[7] speci�es the workspace upper left X device coordinate.

arg1[8] speci�es the workspace upper left Y device coordinate.

arg1[9] speci�es the workspace X size in pixels.

arg1[10] speci�es the workspace Y size in pixels.

arg1[11] speci�es whether the workspace position has been speci�ed in
window device coordinates or raw device coordinates: (0 =
window coordinates, 1 = raw coordinates)

The arg2 parameter is ignored.

A-86 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

When arg1 is an allowed value, replication is done as follows:

The number of source pixels to be replicated is computed based on the source,
workspace, and destination sizes (one of them being the limiting factor).

The workspace is cleared to zeroes.

The X-replication is done in the workspace.

The driver waits for a vertical retrace.

The �nal Y-replication is done to the destination rectangle.

Some notes on the use of this gescape:

For the workspace not to be the limiting component in either the X or Y
dimension, it must be as wide as the destination in X, and as high as the
source in Y.

The workspace may overlap the destination rectangle only at the bottom of the
destination.

If the workspace is on-screen and visible, visually displeasing e�ects may
occur during the X-replication. Usually, it is desirable to either use an
o�screen workspace (acquired with the gescapes R_OFFSCREEN_ALLOC or
R_FULL_FRAME_BUFFER), or to blank out the workspace by obscuring it with a
mask in another image plane or an overlay plane.

Large destination areas may appear to \tear" during the replication because
a video refresh occurs during the �nal replication operation. The largest
destination that may safely be used without risk of tearing is 512�512 pixels.

This is a hardware-dependent feature and is not supported in window retained
rasters.

The following example replicates a 100�100 source at X=0,Y=0 into a 400�400
destination at X=512,y=0 using a on-screen workspace of minimum size at
X=512,Y=512.

GESC A-87

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=4;

arg1.i[1]=0;

arg1.i[2]=0;

arg1.i[3]=512;

arg1.i[4]=0;

arg1.i[5]=400;

arg1.i[6]=400;

arg1.i[7]=512;

arg1.i[8]=512;

arg1.i[9]=400;

arg1.i[10]=100;

arg1.i[11]=0;

gescape(fildes, GR2D_REPLICATE, &arg1, &arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=4;
arg1(2)=0;

arg1(3)=0;

arg1(4)=512;

arg1(5)=0;

arg1(6)=400;

arg1(7)=400;

arg1(8)=512;

arg1(9)=512;

arg1(10)=400;

arg1(11)=100;

arg1(12)=0;

call gescape(fildes, GR2D_REPLICATE, arg1, arg2)

A-88 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 4;

arg1.i[2] := 0;

arg1.i[3] := 0;

arg1.i[4] := 512;

arg1.i[5] := 0;

arg1.i[6] := 400;

arg1.i[7] := 400;

arg1.i[8] := 512;

arg1.i[9] := 512;

arg1.i[10] := 400;

arg1.i[11] := 100;

arg1.i[12] := 0;

gescape(fildes, GR2D_REPLICATE, arg1, arg2);

GESC A-89

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL READ BUFFER

The hopi parameter is HPGL_READ_BUFFER.

This gescape allows you to read data from the device. The arg1 parameter is a
character bu�er that the device string will be returned in. The arg2 parameter
is the length of the string in bytes.

This gescape assumes your program has sent an output command to the device
previous to this call, possibly using the HPGL_WRITE_BUFFER gescape. The
device driver will ush the current output bu�er, send a serial trigger to the
device if necessary, and then read in the device's reply.

Caution If your program has not sent an HP-GL output command
O* before this gescape, the application program will wait
inde�nitely for a reply when no timeout is set.

C Syntax Example

/* gescape_arg is a type defined in starbase.c.h */
gescape_arg arg1, arg2;

/* First we send the HP-GL output command for its ID */

strcpy(arg1.c, "OI;");

arg2.i[0] = 3;

gescape(fildes, HPGL_WRITE_BUFFER, &arg1, &arg2);

/* Now we read back in the device's ID */

gescape(fildes, HPGL_READ_BUFFER, &arg1, &arg2);

printf("The ID is %s and has %d letters in it", arg1.c, arg2.i[0]);

A-90 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

C

CHARACTER ARG1C(255)

INTEGER ARG2I(64)

C

C FIRST WE SEND THE HP-GL OUTPUT COMMAND FOR ITS ID

C

ARG1C(1) = 'O'

ARG1C(2) = 'I'

ARG1C(3) = ';'

ARG2I(1) = 3

CALL GESCAPE(FILDES, HPGL_WRITE_BUFFER, ARG1C, ARG2I)

C

C NOW WE READ BACK IN THE DEVICE'S ID

C

CALL GESCAPE(FILDES, HPGL_READ_BUFFER, ARG1C, ARG2I)

PRINT*, 'THE ID IS ', ARG1C, 'AND HAS ', ARG2I(1),

'LETTERS IN IT'

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

{ First we send the HP-GL output command for its ID }

arg1.c := 'OI;';

arg2.i[1] := 3;

gescape(fildes, HPGL_WRITE_BUFFER, arg1, arg2);

gescape(fildes, HPGL_READ_BUFFER, arg1, arg2);

writeln('The ID is ', arg1.c, 'and has ',

arg2.i[1], 'letters in it');

GESC A-91

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL SET PEN NUM

The hopi parameter is HPGL_SET_PEN_NUM.

This gescape allows you to explicitly state the number of pens.

The arg1 parameter is the number of pens.

The arg2 parameter is ignored.

The following examples change the number of pens to 6.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0] = 6;

gescape(fildes, HPGL_SET_PEN_NUM, &arg1, &arg2);

FORTRAN77 Syntax Example

integer arg1i(64), arg2i(64)
arg1i(1) = 6

call gescape(fildes, HPGL_SET_PEN_NUM, arg1i, arg2i)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

arg1.i[1] := 6;

gescape(fildes, HPGL_SET_PEN_NUM, arg1, arg2);

end.

When you change the number of pens, a new color map of the appropriate size
is created and initialized to the Starbase default color map entries. The size is
number_of_pens+1 (the extra one is for pen up).

A-92 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL SET PEN SPEED

The hopi parameter is HPGL_SET_PEN_SPEED.

This gescape allows you to change pen velocity.

The arg1 parameter is the desired pen velocity. Pen velocity is speci�ed in
centimeters per second.

The arg2 parameter may be 0 (zero) to specify the new velocity for all pens or
set to the speci�c pen number to have that pen's velocity changed. If the desired
velocity is out of range for the device, the result is device dependent. If the pen
number is out of range, the result is also device dependent.

The following example will set the the velocity to 30 centimeters per second for
all pens.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0] = 30;
arg2.i[0] = 0;

gescape(fildes, HPGL_SET_PEN_SPEED, &arg1, &arg2);

FORTRAN77 Syntax Example

integer arg1i(64), arg2i(64)

arg1i(1) = 30

arg2i(1) = 0

call gescape(fildes, HPGL_SET_PEN_SPEED, arg1i, arg2i)

GESC A-93

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

arg1.i[1] := 30;

arg2.i[1] := 0;

gescape(fildes, HPGL_SET_PEN_SPEED, arg1, arg2);

end.

A-94 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL SET PEN WIDTH

The hopi parameter is HPGL_SET_PEN_WIDTH.

This gescape allows a change in pen width. The arg1 parameter is the desired
pen width. Pen width is speci�ed in millimeters (mm). The arg2 parameter is
the distance between �ll lines in millimeters.

The following example sets the pen width to 0.4 millimeters and the distance
between �ll lines to 0.6 millimeters. Pen width is used in calculating the distance
between lines when performing area �ll.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.f[0] = 0.4;

arg2.f[0] = 0.6;

gescape(fildes, HPGL_SET_PEN_WIDTH, &arg1, &arg2);

FORTRAN77 Syntax Example

real arg1f(64), arg2f(64)

arg1f(1) = 0.4

arg2f(1) = 0.6

call gescape(fildes, HPGL_SET_PEN_WIDTH, arg1f, arg2f)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

arg1.f[1] := 0.4;

arg2.f[1] := 0.6;

gescape(fildes, HPGL_SET_PEN_WIDTH, arg1, arg2);

end.

GESC A-95

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL WRITE BUFFER

The hopi parameter is HPGL_WRITE_BUFFER.

This gescape permits direct communication of HP-GL commands to supported
devices. The commands are sent directly to the device without alteration. Invalid
commands will cause unpredictable results. The full HP-GL command syntax
must be observed, including proper placement of punctuation.

The arg1 parameter is an ASCII bu�er of HP-GL commands with a maximum
length of 255 bytes.

The arg2 parameter is the command bu�er's length in bytes.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

strcpy (arg1.c,"PU;");

arg2.i[0] = 3;

gescape(fildes, HPGL_WRITE_BUFFER, &arg1, &arg2);

FORTRAN77 Syntax Example

character arg1c(255)

integer arg2i(64)

arg1c(1) = 'P'

arg1c(2) = 'U'

arg1c(3) = ';'

arg2i(1) = 3

call gescape(fildes, HPGL_WRITE_BUFFER, arg1c, arg2i)

A-96 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

arg1.c[1] := 'P';

arg1.c[2] := 'U';

arg1.c[3] := ';';

arg2.i[1] := 3;

gescape(fildes, HPGL_WRITE_BUFFER, arg1, arg2);

end.

GESC A-97

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 ADAPTIVE LINES

The hopi parameter is HPGL2_ADAPTIVE_LINES.

The arg1 parameter contains a single ag. If TRUE, adaptive line types are
enabled; if False, adaptive lines are disabled.

The arg2 parameter is ignored.

Adaptive line types scale the repeat pattern �tting an integer number of patterns
between line segment endpoints. Adaptive line types are more suited to drafting
standards because the endpoints are seen.

Fixed line types \wrap" the repeat pattern around the sides of a polygon without
scaling. Fixed line types may not draw the endpoints because the pattern is in
the \move" rather than the \draw" region.

Note Arcs, circles, etc. drawn by Starbase using many tiny line
segments will look like solid lines rather than the selected line
type when adaptive line types are enabled. Therefore, a thorough
understanding of your application and enable/disable adaptive
line types is suggested.

C Syntax Example

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Enable adaptive line types */

arg1.i[0] = TRUE;

gescape(fildes,HPGL2_ADAPTIVE_LINES,&arg1,&arg2);

A-98 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Enable adaptive line types

C

arg1i(1) = 1

call gescape(fildes,HPGL2_ADAPTIVE_LINES,arg1i,arg2i)

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Enable adaptive line types }

arg1.i[1] := 1;

gescape(fildes,HPGL2_ADAPTIVE_LINES,arg1,arg2);

GESC A-99

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 CUTTER CONTROL

The hopi parameter is HPGL2_CUTTER_CONTROL.

This gescape will enable/disable the paper cutter.1

The arg1 parameter contains a single ag. If TRUE, the cutter is enabled; if
False, the cutter is disabled.

The arg2 parameter is ignored.

C Syntax Example

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Enable cutter */

arg1.i[0] = TRUE;

gescape(fildes,HPGL2_CUTTER_CONTROL,&arg1,&arg2);

FORTRAN77 Syntax Example Example

integer*4 arg1i(64), arg2i(64)

C

C Enable cutter

C

arg1i(1) = 1

call gescape(fildes,HPGL2_CUTTER_CONTROL,arg1i,arg2i)

1 Some devices may not have a paper cutter. Consult the device's reference manual.

A-100 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Enable cutter }

arg1.i[1] := 1;

gescape(fildes,HPGL2_CUTTER_CONTROL,arg1,arg2);

GESC A-101

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 FONT POSTURE

The hopi parameter is HPGL2_FONT_POSTURE.

The single integer argument in arg1 indicates the desired font posture. In HP-
GL/2 there are two choices:

0|Upright (default)

1|Italic

The font posture is independent of Starbase.

The arg2 parameter is ignored.

C Syntax Example

#define NORMAL_POSTURE 0
#define ITALIC_POSTURE 1

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Select italic posture */

arg1.i[0] = ITALIC_POSTURE;

gescape(fildes,HPGL2_FONT_POSTURE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Select italic posture

C

arg1i(1) = 1

call gescape(fildes,HPGL2_FONT_POSTURE,arg1i,arg2i)

A-102 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Select italic posture }

arg1.i[1] := 1;

gescape(fildes,HPGL2_FONT_POSTURE,arg1,arg2);

GESC A-103

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 FONT TYPEFACE

The hopi parameter is HPGL2_FONT_TYPEFACE.

This gescape allows a selection from more than 80 font typefaces supported by
HP-GL/2; however, this function is dependent on which typefaces are present in
the device via soft fonts or cartridge. The font must be present in order to select
it.

The arg1 parameter contains the integer coresponding to the desired typeface.2

The arg2 parameter is ignored.

C Syntax Example

#define PRESENTATIONS 11

/* gescape_arg is defined in starbase.c.h. */

/* Select presentations typeface */

arg1.i[0] = PRESENTATIONS;

gescape(fildes,HPGL2_FONT_TYPEFACE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Select presentation typeface

C

arg1i(1) = 11

call gescape(fildes,HPGL2_FONT_TYPEFACE,arg1i,arg2i)

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

2 See the table \Typefaces" earlier in this chapter for recognized typefaces for
HP-GL/2.

A-104 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

var

arg1, arg2 : gescape_arg;

begin

{ Select presentations typeface }

arg1.i[1] := 11;

gescape(fildes,HPGL2_FONT_TYPEFACE,arg1,arg2);

GESC A-105

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 FONT WEIGHT

The hopi parameter is HPGL2_FONT_WEIGHT.

This gescape enables the font stroke weight to be set independent of Starbase.

The arg1 parameter indicates the single integer argument for the weight number
as de�ned in the HP-GL/2 language. Weight numbers range from �7 (very
light) to 0 (normal) to +7 (very bold). Using 9999 when the stick font typeface
is selected will cause the current pen width to be used.

The arg2 parameter is ignored.

C Syntax Example

#define MEDIUM_BOLD 3

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Select medium bold weight */

arg1.i[0] = MEDIUM_BOLD;

gescape(fildes,HPGL2_FONT_WEIGHT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Select medium bold weight

C

arg1i(1) = 3

call gescape(fildes,HPGL2_FONT_WEIGHT,arg1i,arg2i)

A-106 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Select medium bold weight }

arg1.i[1] := 3;

gescape(fildes,HPGL2_FONT_WEIGHT,arg1,arg2);

GESC A-107

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 LOGICAL PEN WIDTH

The hopi parameter is HPGL2_LOGICAL_PEN_WIDTH.

Note Logical pen width provides a wideline capability separate from
Starbase widelines.

The arg1 parameter is the pen number or color map entry.3

The arg2 parameter indicates the width in millimeters.

Each pen can be set to a di�erent logical width. If the pen number parameter
in arg1 is -1, all the pens are set to that width. The device will determine the
physical pen width and make the appropriate number of strokes to emulate the
logical pen width.

C Syntax Example

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Set pen #3 to stroke out 6.0 mm lines */

arg1.i[0] = 6.0;

arg2.i[0] = 3;

gescape(fildes,HPGL2_LOGICAL_PEN_WIDTH,&arg1,&arg2);

3 Whether arg1 represents a physical pen number or a color map entry depends
on the device. Electrostatic plotters have no physical pens.

A-108 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

real arg1f(64)

integer*4 arg2i(64)

C

C Set pen #3 to stroke out 6.0 mm lines

C

arg1f(1) = 6.0

arg2i(1) = 3

call gescape(fildes,HPGL2_LOGICAL_PEN_WIDTH,arg1i,arg2i)

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Set pen #3 to stroke out 6.0 mm lines }

arg1.f[1] := 6.0;

arg1.i[1] := 3;

gescape(fildes,HPGL2_LOGICAL_PEN_WIDTH,arg1,arg2);

GESC A-109

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 REPLOT

The hopi parameter is HPGL2_REPLOT.

This gescape allows you to replot the command bu�er, eliminating the need to
re-transmit data for each copy.

The arg1 parameter contains the number of replots (copies) desired.

The arg2 parameter is ignored.

C Syntax Example

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Make 2 copies of the plot */

arg1.i[0] = 2;

gescape(fildes,HPGL2_REPLOT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Make 2 copies of the plot

C

arg1i(1) = 2

call gescape(fildes,HPGL2_REPLOT,arg1i,arg2i)

A-110 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Make 2 copies of the plot }

arg1.i[1] := 2;

gescape(fildes,HPGL2_REPLOT,arg1,arg2);

GESC A-111

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 SET CMAP SIZE

The hopi parameter is HPGL2_SET_CMAP_SIZE.

This gescape allows you to resize the default color map. It can be used as
many times as needed for electrostatic plotters; however, for pen plotters, use
this gescape once at the beginning of the application to set the color map to the
number of physical pens in the carousel.

The arg1 parameter contains the color map size.

The arg2 parameter is ignored.

Resizing the color map will de-allocate the current color map. Therefore, all
changes to the color map entries made by the Starbase call define_color_table
will be lost. The color map entries are re-initialized to their default values.

C Syntax Example

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* My pen plotter only has 8 pens + 1 (no pen) = 9 */

arg1.i[0] = 9;

gescape(fildes,HPGL2_SET_CMAP_SIZE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C My pen plotter only has 8 pens + 1 (no pen) = 9

C

arg1i(1) = 9

call gescape(fildes,HPGL2_SET_CMAP_SIZE,arg1i,arg2i)

A-112 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ My pen only has 8 pens +1 (no pen) = 9 }

arg1.i[1] := 9;

gescape(fildes,HPGL2_SET_CMAP_SIZE,arg1,arg2);

GESC A-113

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 SET MEDIA TYPE

The hopi parameter is HPGL2_SET_MEDIA_TYPE.

This gescape allows you to choose from various types of media. The plotter will
optimize plotting speed and force based on the media selected.

The arg1 parameter can contains the following integers:

0|paper
1|transparency
2|velum
3|polyester �lm
4|translucent paper
5|special paper

The arg2 parameter is ignored.

C Syntax Example

#define PAPER 0

#define TRANSPARENCY 1

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Set to plot on a transparency */

arg1.i[0] = TRANSPARENCY;

gescape(fildes,HPGL2_SET_MEDIA_TYPE,&arg1,&arg2);

A-114 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Set to plot on a transparency

C

arg1i(1) = 1

call gescape(fildes,HPGL2_SET_MEDIA_TYPE,arg1i,arg2i)

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Set to plot a transparency }

arg1.i[1] := 1;

gescape(fildes,HPGL2_SET_MEDIA_TYPE,arg1,arg2);

GESC A-115

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPGL2 SET QUALITY

The hopi parameter is HPGL2_SET_QUALITY.

This gescape uses a single integer parameter in arg1 between 0 and 100. The
integer indicates the desired quality level of the output. The primary e�ect is on
pen velocity.

The arg2 parameter is ignored.

Note This gescape should only be invoked once per plot|after a
rasterizing command (PG or RP) of the previous plot and before
the �rst command that causes marks on the media for the current
plot. Use of this gescape during the plot body will result in an
error.

C Syntax Example

#define DRAFT_COPY 0

#define MEETING_COPY 50

#define FINAL_COPY 100

/* gescape_arg is defined in starbase.c.h. */

gescape_arg arg1, arg2;

/* Need a pretty good copy to present */

arg1.i[0] = MEETING_COPY;

gescape(fildes,HPGL2_SET_QUALITY,&arg1,&arg2);

A-116 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1i(64), arg2i(64)

C

C Need a pretty good copy to present

C

arg1i(1) = 50

call gescape(fildes,HPGL2_SET_QUALITY,arg1i,arg2i)

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

{ Need a pretty good copy to present }

arg1.i[1] := 50;

gescape(fildes,HPGL2_SET_QUALITY,arg1,arg2);

GESC A-117

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPTERM 640x400

The hopi parameter is HPTERM_640x400.

The graphics display resolution for the HP 2393 and the HP 2397 is normally
determined at gopen time with a terminal inquiry. However, such an inquiry is
impossible when the output is spooled. In this case, a resolution of 512�390 is
assumed. This gescape is provided to change the transformation matrix to use
the 640�400 resolution possible with these two terminals.

The gescape call should immediately follow the call to gopen and should be
followed by an appropriate call to set_p1_p2 to reset the transformation matrix.

Both arg1 and arg2 are ignored.

C Syntax Example

/* gescape_arg is defined in starbase.c.h */

int fildes;

fildes = gopen("/dev/tty", OUTDEV, "hp2393", INIT | SPOOLED);

gescape(fildes, HPTERM_640x400, 0, 0);

set_p1_p2(fildes, FRACTIONAL, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0);

FORTRAN77 Syntax Example

integer*4 fildes,arg1(4),arg2(4)

fildes = gopen("/dev/tty"//char(0), OUTDEV, "hp2393"//char(0),

INIT | SPOOLED)

call gescape(fildes,HPTERM_640x400,arg1,arg2)

set_p1_p2(fildes,FRACTIONAL,0.0,0.0,0.0,1.0,1.0.1.0)

A-118 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

fildes:integer;

arg1,arg2:gescape_arg

begin

fildes := gopen("/dev/tty", OUTDEV, "hp2393", INIT | SPOOLED);

gescape(fildes, HPTERM_640x400, 0, 0);

set_p1_p2(fildes, FRACTIONAL, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0);

GESC A-119

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

HPTERM PRINT ESC

The hopi parameter is HPTERM_PRINT_ESC or HP26_PRINT_ESC.

NULL-terminated strings (those which end with a char(0)) containing terminal
escape sequences can be sent to the terminal using this gescape.

The ar g1 parameter is the string you wish to send.

The arg2 parameter is ignored.

The following examples show one way to clear the alpha display.

C Syntax Example

#include <starbase.c.h>

main()

{

int fildes, status;

gescape_arg arg2, sequence;

/* gescape_arg from starbase.c.h */

strcpy(sequence.c, "\033h\033J");
fildes = gopen("/dev/tty", OUTDEV, "hpterm", INIT);

gescape(fildes, HPTERM_PRINT_ESC, &sequence, &arg2);

status = gclose(fildes);

}

FORTRAN77 Syntax Example

include '/usr/include/starbase.f1.h'

program gesc

integer*4 fildes, status

include '/usr/include/starbase.f2.h'

fildes = gopen('/dev/tty'//char(0),

OUTDEV, 'hpterm'//char(0), INIT)

call gescape(fildes, HPTERM_PRINT_ESC,

+ char(27)//'h'//char(27)//'J'//char(0), ' ')

status = gclose(fildes)

end

A-120 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

program gesc;

$include '/usr/include/starbase.p1.h'$

var

fildes, status: integer;

arg2, sequence: gescape_arg;

$include '/usr/include/starbase.p2.h'$

begin

fildes := gopen('/dev/tty', OUTDEV, 'hpterm', INIT);

sequence.c[1] := chr(27);

sequence.c[2] := 'h';

sequence.c[3] := chr(27);

sequence.c[4] := 'J';

sequence.c[5] := chr(0);

gescape(fildes, HPTERM_PRINT_ESC, sequence, arg2);

status := gclose(fildes);

end.

GESC A-121

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

IGNORE PROXIMITY

The hopi parameter is IGNORE_PROXIMITY.

This gescape causes the device not to generate a choice input and a locator input
when the device's stylus is close enough to the device to register input activities.
This is the default state.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape (fildes, IGNORE_PROXIMITY, &arg1, &arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64), arg2(64)

call gescape (fildes, IGNORE_PROXIMITY, arg1, arg2);

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, agr2: gescape_arg;

begin

gescape (fildes, IGNORE_PROXIMITY, arg1, arg2);

A-122 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

IGNORE RELEASE

The hopi parameter is IGNORE_RELEASE.

This gescape causes the event trigger to start only when a button is pressed.
This reverses the condition created by TRIGGER_ON_RELEASE.

This is the default condition.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,IGNORE_RELEASE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,IGNORE_RELEASE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,IGNORE_RELEASE,arg1,arg2);

GESC A-123

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ILLUMINATION ENABLE

This gescape allows you to specify the amount of data that is present per vertex
when ILLUMINATION is speci�ed as extra data for the \with data" primitives.
The default number of words to use is two (2). It is also used to specify if the
illumination data is to be used.

arg1.i[0] is set to the number of words per vertex to use for illumination data.
arg1.i[1] is set to TRUE or FALSE specifying whether the illumination data should
be used.

C Syntax Example

gescape_arg arg1, arg2;...
arg1.i[0]=2;

arg1.i[1]=TRUE;

gescape(fildes,ILLUMINATION_ENABLE,&arg1,&arg2);

}

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)...
arg1.i[0]=2

arg1.i[1]=TRUE

call gescape(fildes,ILLUMINATION_ENABLE,arg1,arg2)

A-124 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{type gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin ...
arg1.i[0] := 2;

arg1.i[1] := TRUE;

gescape(fildes,ILLUMINATION_ENABLE,arg1,arg2);

GESC A-125

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

IMAGE BLEND

The hopi parameter is IMAGE_BLEND.

The HP 98730 and HP 98731 Device Drivers support video blending hardware.

This gescape allows you to enable or disable video blending of frame bu�er banks.

The arg1 points to a ag which enables blending if equal to one and disables
blending if zero. When this gescape is called, the program must be gopened to
the image planes, and double bu�ering must be turned o�. Double bu�ering may
be turned on after blending is enabled.

The arg2 is ignored.

This gescape command will override any previous display modes set by
shade_mode or double_buffering. Subsequent calls to bank_switch can be used
to alter the frame bu�er banks being written and displayed, and shade_mode can
be used to initialize the color table and set the color map mode within the banks.

When blending is enabled, the hardware con�guration is altered in the following
way:

While blending is enabled, bank_switchmay be used to select single or multiple
banks to be displayed. During blending, the dbank parameter is used as a mask
with bit 0 corresponding to bank 0, bit one corresponding to bank 1, and so
forth. Only one bank at a time may be selected for writing.

Any combination of the three available frame bu�er banks may be displayed
simultaneously. Each frame bu�er bank of 8 display planes has its own 256
entry color map. These color maps may be individually set using calls to the
SET_BANK_CMAP gescape and define_color_table. See the SET_BANK_CMAP

documentation for details. By default all three color maps contain the same
entries, which were speci�ed with the last define_color_table or shade_mode
call. When multiple frame bu�ers are turned on, the intensities out of the
separate color maps are summed and displayed. if the sum for any red, green,
or blue color exceeds the maximum allowable intensity of 1.0, it is clamped.

A-126 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

display_enable and write_enable become 24-bit quantities, with one bit for
each of the 24 display planes which can be installed. (See display_enable and
write_enable.) When blending is turned on, the lower byte of the plane is
duplicated into the next two upper bytes to get 24- bit quantities. Subsequent
calls to display_enable and write_enable will treat the enable value as 24
bit quantities.

Since each display bank has its own 256-entry color map, 24-bit color is not
available when blending. If the color map mode is set to CMAP_FULL while
blending is enabled, eight planes will be used, with three bits for red, three bits
for green, and two bits for blue.

The blink mask given to the gescape BLINK_PLANES becomes a 24-bit quantity,
with one bit for each of the 24 display planes which can be installed. (See
BLINK_PLANES.) If blinking of planes is currently enabled when blending is
turned on, the byte blink mask speci�ed previously by you is duplicated into
the next two upper bytes to obtain a 24-bit blink planes mask.

Since all the hardware color maps are used for blending when it is enabled,
blinking color map entries are not supported simultaneously with blending.
This means that calls to gescape with an hopi parameter of BLINK_INDEX will
have no e�ect (although BLINK_PLANES still works|see above).

The following examples demonstrate how to use this function.

GESC A-127

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0] = 1;

gescape(fildes,IMAGE_BLEND,&arg1,&arg2);

bank_switch(fildes,0,7); /* enable blending of all three banks */...
arg1.i =0; /* disable blending */

gescape(fildes,IMAGE_BLEND,&arg1,&arg2);

bank_switch(fildes,0,0); /* return to normal operation */

FORTRAN77 Syntax Example

integer*4 arg1(4),arg2(1)

arg1(1)=1

call gescape(fildes,IMAGE_BLEND,arg1,arg2)

call bank_switch(fildes,0,7)...
arg1(1)=0
call gescape(fildes,IMAGE_BLEND,arg1,arg2)

call bank_switch(fildes,0,0)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1]:= 1;

gescape(fildes,IMAGE_BLEND,arg1,arg2);

bank_switch(fildes,0,0);

A-128 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

...
arg1.i[1]:= 0;

gescape(fildes,IMAGE_BLEND,arg1,arg2);

bank_switch(fildes,0,0);

end

GESC A-129

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

INQ 12BIT INDEXING

The hopi parameter is INQ_12BIT_INDEXING.

This gescape takes no input parameters and returns in arg2.i[0] a 1 if the
current display mode is 12 bit indexing and a 0 otherwise.

The following examples determine whether or not 12 bit indexing is the current
display mode.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
gescape(fildes,INQ_12BIT_INDEXING,&arg1,&arg2);

if (arg2.i[0] == TRUE)

{

printf("12 bit indexing is on.");

}
else

{

printf("12 bit indexing is off.");

}

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,INQ_12BIT_INDEXING,arg1,arg2)

if (arg2[1] .eq. 1) then

write(6,*)'12 bit indexing is on.'

else

write(6,*)'12 bit indexing is off.'

endif

A-130 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

gescape(fildes,INQ_12BIT_INDEXING,arg1,arg2);

if (arg2.i[1] = 1) then

write('12 bit indexing is on.')

else

write('12 bit indexing is off.');

GESC A-131

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

LINEAR POLYPOINT

The LINEAR_POLYPOINT gescape provides the means to specify points to be
rendered along a line speci�ed in modeling coordinates. For each point speci�ed
by a data value, one pixel will be rendered.

The data may be provided in any orientation relative to the device coordinate
(DC) space. This entry point sorts the data so as to always render the points
from back to front in the DC Z axis. The data speci�ed is composited with the
current contents of the frame bu�er.

This primitive assumes as 24-bit CMAP_FULL shade-mode (or 12/12 CMAP_FULL

double-bu�er).

The compositing function is of the form:

new value = (alpha * source) + ((1 - alpha) * destination)

where source is the supplied value and destination is the current frame bu�er
contents. Compositing is performed separately for the red, green, and blue banks.

This gescape does not support perspective transformations.

The arg2 parameter is ignored.

Input Parameters:

Start of the line

arg1.f[0] X value in Modeling coordinates

arg1.f[1] Y value in Modeling coordinates

arg1.f[2] Z value in Modeling coordinates

End of the line

arg1.f[3] X value in Modeling coordinates

arg1.f[4] Y value in Modeling coordinates

arg1.f[5] Z value in Modeling coordinates

arg1.i[6] Number of points to render

arg1.i[7] Number of voxels (data values) per point to skip

A-132 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1.i[8] Vertex format ags

arg1.i[9] pointer to the data values (long words, packed bytes, or
packed shorts)

arg1.i[10] pointer to the data mapping table scalar(byte) -> al-
pha,r,g,b (this parameter applies only to the INDIRECT
vertex formats)

The allowed values for the vertex format ag are:

NULL Standard format is a pack word per voxel. Each word
contains an byte of: (alpha, red, green, blue) with each
byte scaled in the range of 0-255.

INDIRECT_DATA Indicates that the vertex format is a packed byte array of
monotonic intensities which map into a 256 entry (alpha,
red, green, blue) lookup table supplied via a pointer in
arg1.i[20].

INDIRECT_DATA16 Indicates that the vertex format is a packed short (16 bit)
array of intensity which maps into a 65,536 entry (alpha,
red, green, blue) lookup table supplied via a pointer in
arg1.i[20].

PRE_SCALED_ALPHA Indicates that the vertex format is per the CRX-24/24Z's
fast path (1-alpha, alpha*r, alpha*g, alpha*b). The
CRX-24 will operate most e�ciently (quickly) if the
direct data or indirect table is pre-scaled as described
here. This pre-scaling will avoid having the gescape scale
the data per voxel (for the DIRECT case) or per gescape
(for the INDIRECT case).

Note that the CRX-48Z can directly handle alpha, red,
green, and blue. For the CRX-48Z this option is slower
and should not be used, although it will still work.

GESC A-133

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

LS OVERFLOW CONTROL

The hopi parameter is LS_OVERFLOW_CONTROL.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

Four options are provided to you to address overow situations that may occur
with light source calculations. This gescape takes up to 4 oating point numbers
in arg1 to set the option.

CLIPPED This is the default option and will be the fastest case. The red,
green, and blue values are calculated, and if any color value exceeds
1.0 it is truncated to 1.0. (r=min(r,1.0,), etc.)

To get this option the gescape should be called with: arg1.f[0]=0.0

SCALED When an overow occurs, this option maintains the proper hue. If
any color exceeds 1.0, the maximum of the red, green, and blue values
is used to divide each of the color values with. (r=r/max(r,g,b),
etc.)

To get this option the gescape should be called with: arg1.f[0]=1.0

DEBUG This option allows you to quickly determine where the light source
equations are overowing. You select a color and then if any overow
occurs the overow color is used instead of the calculated color.

To get this option, the gescape should be called with:
arg1.f[0]=3.0,
arg1.f[1]=hred overow componenti,
arg1.f[2]=hgreen overow componenti,
arg1.f[3]=hblue overow componenti.

HP 98721 Only

HYBRID This option scales the di�use and specular terms separately, then
multiplies the di�use term by a fractional value and adds it to the
specular term. This new color is clipped if necessary.

(r=min((rd/max(rd,gd,bd))*diff+rs/max(rs,gs,bs),1.0), etc)

This option allows you to limit the di�use term to some fraction of
the full color and the specular contribution will bring it to full color.

A-134 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The assurance that the di�use is in a certain region and the specular
is in another region is useful for two reasons. When in CMAP_FULL

mode it guarantees that the specular reections can be seen. When
in CMAP_MONOTONIC mode the color map can be set up in such a way
to have the di�use color in one region and the specular color in the
next region of the color map.

To get this option the gescape should be called with:
arg1.f[0]=2.0,
arg1[1]=hdi�use fractioni
The value of hdi�use fractioni is 0.0 to 1.0.

Similar functionality to the HYBRID option is available on other devices with
surface_coefficients.

The following examples select a scaled model.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.f[0]=1.0;

gescape(fildes,LS_OVERFLOW_CONTROL,&arg1,&arg2);

FORTRAN77 Syntax Example

real arg1(64),arg2(64)

arg1(1)=1.0

call gescape(fildes,LS_OVERFLOW_CONTROL,arg1,arg2)

GESC A-135

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.f[1] := 1.0;

gescape(fildes,LS_OVERFLOW_CONTROL,arg1,arg2);

A-136 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

OLD SAMPLE ON DIFF SCREEN

The hopi parameter is OLD_SAMPLE_ON_DIFF_SCREEN.

This gescape inquires the locator and choice sampling of the X11 pointer device.

The X server's locator position can be sampled anytime, and is returned relative
to the window. By default, when the X pointer is on a di�erent screen than
the window, the valid parameter of the sample locator procedure is returned as
FALSE.

When the gescape OLD_SAMPLE_ON_DIFF_SCREEN is used, the valid parameter is
returned as TRUE when the X pointer is on a di�erent screen. In this case,
the pointer position returned by sample locator is either the last value of the X
locator on that screen or the value (0,0) if the pointer has never been on that
screen.

To restore the default (valid set to FALSE) behavior, use the
BAD_SAMPLE_ON_DIFF_SCREEN gescape.

GESC A-137

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

OVERLAY BLEND

The hopi parameter is OVERLAY_BLEND.

The HP 98730 and HP 98731 overlay color map de�nes a transparency bit
associated with a color map entry. If the transparency bit for a pixel is set
to one, the pixel color is forced to the red, green, and blue values in the overlay
color map. If the transparency bit is set to zero, the red, green, and blue values
in the overlay planes are blended with the red, green, and blue values in the
graphics planes behind the overlay planes. If the red, green, and blue values
for the selected entry are all zero, then black will be blended with the graphics
planes. Blending black is exactly the same as de�ning an entry to be transparent.

This gescape lets you control the blending of overlay color map transparent
entries.

arg1[0] is an index value in the range of 0{15 (only 0{7 if the overlay planes
were opened with a 3-plane device �le) de�ning which color map entry for which
the transparency mode is being de�ned. If the value is not in the range of 0{15
a mod function is performed.

If arg1[1] is TRUE, writing a pixel with the speci�ed index value results in
blending the color de�ned for that entry in the overlay planes with the graphics
planes.

If arg1[1] is FALSE, writing a pixel with the speci�ed index value results in black
being blended with the graphics planes.

For processes in the image planes using the fourth overlay plane for cursors
(see the R_OVERLAY_ECHO gescape), the cursor will not be visible in regions of
transparency where black is not being blended with the image planes.

The arg2 parameter is ignored.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=3;

arg1.i[1]=FALSE;

gescape(fildes,OVERLAY_BLEND,&arg1,&arg2);

A-138 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64), arg2(64)

arg1(1)=3

arg1(2)=0

call gescape(fildes,OVERLAY_BLEND,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 3;

arg1.i[2] := FALSE;

gescape(fildes,OVERLAY_BLEND,arg1,arg2);

GESC A-139

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PAN

The hopi parameter is PAN.

The PAN gescape is only supported in the image planes.

Pan is a function that places the video display in a 1024 x 1024 output mode and
allows the upper left corner of the video scan to be either at address 0, 0 in the
frame bu�er or address 1024, 0.

That is, the video output of the display can be made to show the contents of
either the left or right half of the 2048x1024 frame bu�er.

This gescape can be used with the HP 98735 and HP 98736 device drivers to
control the display hardware.

To activate the 1024 x 1024 display mode the gescape should be called with:
arg1.i[0]=1.

To display the left half of the frame bu�er (address 0,0 in the upper left corner) the
gescape should be called with: arg1.i[1]=0. To display the right half (address
1024,0 in the upper left corner) the gescape should be called with: arg1.i[1]=1.

Setting arg1.i[0]=0 will deactivate the 1024 x 1024 display mode and return
the upper left corner to it normal position.

The following examples activates the pan function to the left side of the frame
bu�er with the �rst gescape call and then shifts it to the right side of the frame
bu�er with the second gescape call.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=1;

arg1.i[1]=0;

gescape(fildes,PAN,&arg1,&arg2); /* left */

arg1.i[1]=1;

gescape(fildes,PAN,&arg1,&arg2); /* right */

FORTRAN77 Syntax Example

A-140 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

integer*4 arg1(64),arg2(64)

arg1(1)=1

arg1(2)=0

call gescape(fildes,PAN,arg1,arg2)

arg1(2)=1

call gescape(fildes,PAN,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 1;

arg1.i[2] := 0;

gescape(fildes,PAN,arg1,arg2); { left }

arg1.i[2] := 1;

gescape(fildes,PAN,arg1,arg2); { right }

GESC A-141

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PAN AND ZOOM

The hopi parameter is PAN_AND_ZOOM.

The PAN_AND_ZOOM gescape is only supported in image planes.

Pixel panning is a function that readdresses the start of the video scan to arbitrary
X, Y pixels.

Pixel zooming is a function most commonly used with pixel panning to inspect
pixels in an image by enlarging the image. Zooming is a replication of pixels.

For example: a 2X zoom replicates each pixel four times, twice in the X direction,
and twice in the Y direction.

Pixel pan and zoom can be done relative to the upper left of the screen, or relative
to the center of the screen.

This gescape can be used with the HP 98730 and HP 98731 device drivers to
control pixel pan and zoom hardware.

If arg1[0] is TRUE (1) then arg1[1] is the X location (call it PANX), and arg1[2]
is the Y location (call it PANY), of the frame bu�er pixel to be at the center of
the screen.

If arg1[0] is FALSE (0) then arg1[1] is the X location (call it PANX), and
arg1[2] is the Y location (call it PANY), of the frame bu�er pixel to be at the
upper left-most position of the screen.

Resolution in PANX is limited to four pixel boundaries. This means that the
lower two bits of the value passed in for PANX are masked o�.

arg1[3] is the zoom factor for pixel replication. Legal values are values from
1{16. A zoom factor of one or zero implies no pixel replication.

arg1[4] is either TRUE (1) or FALSE (0). Setting this parameter to TRUE allows
PANX values such that pixels beyond 2047 are displayed on the screen. Setting
this parameter to FALSE results in PANX values being adjusted so that no wrap
around is attempted.

Wrap around can occur in the Y direction. Wrap around cannot occur in the X
direction. Therefore, pixels beyond 2047 are unde�ned.

If PANX or PANY are negative values, then they are converted to positive values
by adding either 2048 or 1024 respectively, until the value becomes positive.

A-142 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Setting arg1[0] to FALSE (0), arg1[1] and arg1[2] to 0, and arg1[3] to 1 will
obtain normal displaying, where pixel 0, 0 is the upper-left screen origin and no
pixel replication is done.

At gopen time the pixel pan and zoom hardware is reset to obtain normal display
if the Mode word contains INIT or RESET_DEVICE. Otherwise, the pixel pan and
zoom hardware is left in its current state.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;.
.
.

arg1.i[0]=1; /* Request PANX,PANY represent pixel to become center*/

/* of the screen */

arg1.i[1]=128;

arg1.i[2]=512;

arg1.i[3]=1; /* Do not do any pixel replication */

arg1.i[4]=0;

gescape(fildes,PAN_AND_ZOOM,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=1

arg1(2)=1280

arg1(3)=512

arg1(4)=1

arg1(5)=0

call gescape(fildes,PAN_AND_ZOOM,arg1,arg2)

GESC A-143

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 1;

arg1.i[2] := 1280;

arg1.i[3] := 512;

arg1.i[4] := 1;

arg1.i[5] := 0;

gescape(fildes,PAN_AND_ZOOM,arg1,arg2);

A-144 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PATTERN FILL

The hopi parameter is PATTERN_FILL.

This gescape allows you to �ll polygons with a pattern stored in o�screen
memory. Shade mode must be CMAP_FULL or CMAP_MONOTONIC for this gescape
to work. To resume non-pattern operations call drawing_mode to change the
replacement rule. Refer to the Starbase Graphics Techniques manual for more
information on replacement rules.

Using this gescape, you specify one of 256 replacement rules that include a
pattern. The new replacement rule is hex number obtained from using a logical
operator on three inputs:

hpatterni op hsourcei op hdestinationi ! hresulti

A hpatterni is a rectangular grid of o�-screen pixels containing a pattern you will
use to \overlay" with the hsourcei and and hdestinationi information. You are
sending the new information, hsourcei, to the pixel. The information currently
in the pixel is hdestinationi.

The replacement rule is used to determine how data is written into the frame
bu�er. Since there are eight possible ways to combine three-operands, in this case
the hsourcei, hdestinationi, and hpatterni, there are eight bits in the replacement
rule. The following table shows the bit from the replacement rule which will be
used for each of the logical combinations.

Table A-6. Replacement Rule Truth Table

Pattern Source Destination Result Bits

0 0 0 r7

0 0 1 r6

0 1 0 r5

0 1 1 r4

1 0 0 r3

1 0 1 r2

1 1 0 r1

1 1 1 r0

GESC A-145

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Note that if you wish to duplicate the e�ect of drawing_mode's replacement rules,
copy the values of r3-r0 into this rule's r7-r4 and r3-r0. This makes the hpatterni
operand a no-op.

The following table shows �ve example replacement rules.

Table A-7. Example Replacement Rules

Rule, and Hex
Representation of the Rule

r7 r6 r5 r4 r3 r2 r1 r0

Zero
0x00

0 0 0 0 0 0 0 0

Source
0x33

0 0 1 1 0 0 1 1

Source OR Destination
0x77

0 1 1 1 0 1 1 1

If pattern=0,then Destination
If pattern=1,then Source
0x53

0 1 0 1 0 0 1 1

Pattern
0x0F

0 0 0 0 1 1 1 1

The �rst three examples are replacements that can also be done using draw-

ing_mode: the upper four bits of the replacement rule are the same as the lower
four bits and match the equivalent drawing_mode rule. The last two examples
are replacement rules that use the hPatterni operand. In the fourth example,
when pattern bit is 0, the result bit remains unchanged; when the pattern bit is
1, the result bit is set equal to the source. In the last example, the result bit is
equal to the pattern bit.

The gescape takes �ve parameters:

The �rst parameter is one of the replacement rules described above.

The second parameter is the X location of the upper left corner of the pattern
rectangle.

A-146 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The third parameter is the Y location of the upper left corner of the pattern
rectangle.

The fourth parameter is the dx size of the pattern rectangle. allowable values
of dx are 16, 32, 64, 128, 256. x mod dx must equal zero.

The �fth parameter is the dy size of the pattern rectangle. Allowable values of
dy are 4, 8, 16, 32, 64, 128, 256. y mod dy must equal zero.

Note For the HP 98736 device, the maximum value for dx and dy is
32. For patterns larger than 32�32, use texture maps.

The following example shows a pattern in the upper right corner of o�-screen
memory. The pattern is 128�128 and is located at (1920, 0). Subsequent polygon
primitives and vector primitives will use the pattern until drawing_mode is called.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

char patt[128][128];...
dcblock_write(fildes,1920,0,128,128,patt,1);

arg1.i[0]=0x0F;

arg1.i[1]=1920;

arg1.i[2]=0;

arg1.i[3]=128;

arg1.i[4]=128;

gescape(fildes,PATTERN_FILL,&arg1,&arg2);

rectangle(fildes,x1,y1,x2,y2);

drawing_mode(fildes,3);

GESC A-147

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer arg1(64),arg2(64)

integer patt(32,32)

call dcblock_write(fildes,1920,0,128,128,patt,1)

arg1(1)=15

arg1(2)=1920

arg1(3)=0

arg1(4)=128

arg1(5)=128

call gescape(fildes,PATTERN_FILL,arg1,arg2)

call rectangle(fildes,x1,y1,x2,y2)

call drawing_mode(fildes,3)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

patt:array [0..127,0..127] of 0..255;...
begin

dcblock_write(fildes,1920,0,128,128,patt,1);

arg1.i[0] :=hex('0F');

arg1.i[1] :=1920;

arg1.i[2] :=0;

arg1.i[3] :=128;

arg1.i[4] :=128;

gescape(fildes,PATTERN_FILL,arg1,arg2);

rectangle(fildes,x1,y1,x2,y2);

drawing_mode(fildes,3);

A-148 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PLUG ACCELERATED PIPELINE

The hopi parameter is PLUG_ACCELERATED_PIPELINE.

The PLUG ACCELERATED PIPELINE gescape controls the rendering of the
graphics accelerators into the frame bu�er. It is necessary to stop the accelerators
from rendering when accessing the frame bu�er directly as memory locations
mapped into a program's address space (see the R GET FRAME BUFFER
gescape). It is necessary to restart the accelerators before making Starbase calls
via the HP 98736 and HP CRX-48Z device drivers.

This gescape is supported by the HP 98736 and HP CRX-48Z device drivers.

Setting arg1.i[0]=1 will stop the accelerators while setting arg1.i[0]=0 will
restart them.

The following example illustrates the intermixing of Starbase calls and direct
frame bu�er access.

GESC A-149

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

#include hstarbase.c.hi

main(argc,argv)

int argc;

char **argv;

{

register int fildes,i;

register unsigned int *frame;

gescape_arg arg1,arg2;

/* Open the device using path and driver name passed on command line */

fildes = gopen(argv[1],OUTDEV,argv[2],INIT);

/* Get address of frame buffer */

gescape(fildes,R_GET_FRAME_BUFFER,&arg1,&arg2);

frame = (unsigned int *) arg2.i[1];

/* Lock the device and plug the accelerators before frame buffer access */

gescape(fildes,R_LOCK_DEVICE,&arg1,&arg2);

arg1.i[0]=1;

gescape(fildes,PLUG_ACCELERATED_PIPELINE,&arg1,&arg2);

/* Draw a vertical line from (x=99,y=5) to (x=99,y=299) */

for (i=5;i<300;i++)

frame[99 + i*2048] = 3;

/* Unplug the accelerators and unlock the device */

arg1.i[0]=0;

gescape(fildes,PLUG_ACCELERATED_PIPELINE,&arg1,&arg2);

gescape(fildes,R_UNLOCK_DEVICE,&arg1,&arg2);

/* Close the device and exit */

gclose(fildes);

}

A-150 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

Since FORTRAN77 has no generalized pointer type, to use the address you must
make the address the base address of an array. This is done by sending the
address as a parameter to a subroutine that thinks the parameter is an array
of the appropriate size. Use the \alias" compiler directive to make the main
program think that the parameter is being sent by value. The \alias" compiler
directive must be inside the main program because if it is outside, the compiler
realizes that you are trying to access a reference parameter as called by value.

include '/usr/include/starbase.f1.h'

program main

$alias doline (%val

integer*4 fildes,error,arg1(10),arg2(10)

include '/usr/include/starbase.f2.h'

C Open device, for driver of interest

fildes = gopen('/dev/crt',OUTDEV,Driver_name,INIT)

C Get frame buffer address

call gescape(fildes,R_GET_FRAME_BUFFER,arg1,arg2)

C Lock the device before accessing frame buffer
call gescape(fildes,R_LOCK_DEVICE,arg1,arg2)

C Plug the accelerators

arg1(0)=1

call gescape(fildes,PLUG_ACCELERATED_PIPELINE,arg1,arg2)

C Pass address to routine which draws a line

call doline(arg2(2))

C Unplug the accelerators

arg1(0)=0

call gescape(fildes,PLUG_ACCELERATED_PIPELINE,arg1,arg2)

C Unlock device

call gescape(fildes,R_UNLOCK_DEVICE,arg1,arg2)

GESC A-151

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Close device and exit

error = gclose(fildes)

END

subroutine doline(frame)

integer*2 frame(1024*2048/2)

integer*4 i

C draw line from (x=99,y=5) to (x=99,y=299)

do 10 i = 5,299,1

10 frame((99+1)/2 + i * 2048/2) = 3

END

A-152 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

program main(output);

$include '/usr/include/starbase.p1.h'$

type

frame_buffer = array [0..maxint] of char;

fb_ptr = ^frame_buffer;

ptrunion = record case integer of

1 :(a : array [1..2] of fb_ptr);

2 :(b : gescape_arg)

end;

var

null:gescape_arg;

pointers:ptrunion;

frame : fb_ptr;

fildes,i:integer;

$include '/usr/include/starbase.p2.h'$

begin

{ Open device from name in driver }

fildes := gopen('/dev/crt',OUTDEV,driver,INIT);

{ Get frame buffer address }

gescape(fildes,R_GET_FRAME_BUFFER,null,pointers.b);

frame := pointers.a[2];

{ Lock device before accessing frame buffer}

gescape(fildes,R_LOCK_DEVICE,null,null);

{ Plug the accelerators}

arg1.i[0]:= 1;

gescape(fildes,PLUG_ACCELERATED_PIPELINE,arg1,arg2);

{ Draw line from (x=99,y=5) to (x=99,y=299) }

for i := 5 to 299 do

frame^[99 + i*2048] := chr(3);

GESC A-153

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

{ Unplug the accelerators}

arg1.i[0]:= 0;

gescape(fildes,PLUG_ACCELERATED_PIPELINE,arg1,arg2);

{ Unlock device }

gescape(fildes,R_UNLOCK_DEVICE,null,null);

{ Close and exit }

error := gclose(fildes);

end.

A-154 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

POLYGON TRANSPARENCY

The hopi parameter is POLYGON_TRANSPARENCY.

This gescape allows you to de�ne separate \screen door" transparency patterns
for frontfacing and backfacing polygons. You may de�ne patterns that disable
writes to any pixels within a 4�4 cell. This cell is duplicated over the entire
screen.

You pass in a bit mask where a 1 means the corresponding pixel is write enabled
and a 0 means write disabled. Table 1-5 shows the 2 byte bit pattern that is
passed in by you, and table 1-6 shows how that pattern is turned into a 4�4
dither pattern.

The arg1[0] parameter contains the mask to be used for front facing polygons.

The arg1[1] parameter contains the mask to be used for back facing polygons.

Table A-8.

15 . . . 2 1 0

Table A-9.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The following examples would produce a green square with a 50% transparent
red rectangle in front. Backfacing polygons remain opaque. Remember to set
both of the transparency patterns back to opaque when done.

GESC A-155

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

fill_color(fildes,0.0,1.0,0.0);

rectangle(fildes,0.25,0.25,0.75,0.75);

arg1.i[0] = 0xAAAA;

arg1.i[1] = 0xFFFF;

gescape(fildes,POLYGON_TRANSPARENCY,&arg1,&arg2);

fill_color(fildes,1.0,0.0,0.0);

rectangle(fildes,0.0,0.25,1.0,0.75);

arg1.i[0] = 0xFFFF;

arg1.i[1] = 0xFFFF;

gescape(fildes,POLYGON_TRANSPARENCY,&arg1,&arg2);

A-156 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(4),arg2(1)

fill_color(fildes,0.0,1.0,0.0);

rectangle(fildes,0.25,0.25,0.75,0.75);

arg1(1)=Z'AAAA'

arg1(2)=Z'FFFF'

call gescape(fildes,POLYGON_TRANSPARENCY,arg1,arg2)

fill_color(fildes,1.0,0.0,0.0);

rectangle(fildes,0.0,0.25,1.0,0.75);

arg1(1)=Z'FFFF'

arg1(2)=Z'FFFF'

call gescape(fildes,POLYGON_TRANSPARENCY,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

fill_color(fildes,0.0,1.0,0.0);
rectangle(fildes,0.25,0.25,0.75,0.75);

arg1.i[1] := hex('AAAA');

arg1.i[2] := hex('FFFF');

gescape(fildes,POLYGON_TRANSPARENCY,arg1,arg2);

fill_color(fildes,1.0,0.0,0.0);

rectangle(fildes,0.0,0.25,1.0,0.75);

arg1.i[1] := hex('FFFF');

arg1.i[2] := hex('FFFF');

gescape(fildes,POLYGON_TRANSPARENCY,arg1,arg2);

GESC A-157

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PROMPT OFF

The hopi parameter is PROMPT_OFF.

This gescape manually deactivates the prompt indicator on the speci�ed device
(if the device has one).

The arg1 and arg2 parameters are ignored.

C Syntax Example Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,PROMPT_OFF,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,PROMPT_OFF,arg1,arg2)

Pascale Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,PROMPT_OFF,arg1,arg2);

A-158 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

PROMPT ON

The hopi parameter is PROMPT_ON.

This gescape manually activates the prompt indicator on the speci�ed device (if
the device has one).

The arg1 and arg2 parameters are ignored.

C Syntax Example Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,PROMPT_ON,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,PROMPT_ON,arg1,arg2)

Pascale Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,PROMPT_ON,arg1,arg2);

GESC A-159

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R BIT MASK

The hopi parameter is R_BIT_MASK.

This gescape de�nes a mask. The mask indicates the plane to read bit patterns
from or write bit patterns to. The highest plane indicated by the mask is the
enabled plane. For example, mask 5 allows reads and writes to plane 2.

The arg1 parameter de�nes the mask to be used. The range of values allowed
for this parameter are device dependent. The default mask is 1.

The arg2 parameter is ignored.

Note This gescape should not be used on black and white devices.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0] = 5;

gescape(fildes,R_BIT_MASK,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1) = 5

call gescape(fildes,R_BIT_MASK,arg1,arg2)

A-160 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;...
begin

arg1.i[1] := 5;

gescape(fildes,R_BIT_MASK,arg1,arg2);

GESC A-161

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R BIT MODE

The hopi parameter is R_BIT_MODE.

This gescape changes the de�nition of the raw mode ag for block reads and
writes. When bit_mode is turned on (arg1 is true) and a block read or write is
called with the raw mode ag set (true), then each byte of the source/destination
array contains information about eight pixels, 1-bit per pixel. The plane read
from or written into is set using the gescape R_BIT_MASK. When in \bit mode",
raw reads and writes are clipped. Each row of the bit pattern must be padded
to a byte boundary.

For example: If a block write with a \destination x" of 18 bits is performed, each
row of the bit pattern is three bytes long. The �rst bit (highest order bit) of the
�rst byte of the source bit pattern, will determine the �rst pixel on the destination
device. The second bit of the �rst byte determines the second pixel, and so on
through the �rst two bytes. The 17th pixel is determined by the �rst bit of the
third byte, while the last pixel on the �rst row of the device is determined by the
second bit of the third byte. The next six bits of byte three are ignored. Then
the �rst pixel of the second row is represented by the �rst bit of the fourth byte.

A bit pattern that turns on every third pixel in each row of an 18�2 pixel area
would look like this (each digit represents a single bit and the spaces represent
byte boundaries).

00100100 10010010 01000000

00100100 10010010 01000000

\Bit mode" can be used to reduce the amount of space it takes to store a raster
image.

If arg1 is TRUE (1), raw mode is 1 bit per pixel. If arg1 if FALSE (0), raw mode

is used.

The arg2 parameter is ignored.

A-162 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0] = 1;

gescape(fildes,R_BIT_MODE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1) = 1

call gescape(fildes,R_BIT_MODE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;...
begin

arg1.i[1] := 1;
gescape(fildes,R_BIT_MODE,arg1,arg2);

GESC A-163

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R DEF ECHO TRANS

The hopi parameter is R_DEF_ECHO_TRANS.

This gescape allows you to de�ne a transparency mask for raster cursors. The
transparency mask is used to determine which bits of the raster cursor pattern are
visible over the graphics background. The transparency mask is assumed to have
the same height and width as the current raster cursor. The mask is arranged
in a packed array as one-bit per pixel, so each byte contains information about
eight pixels. If the bit in the mask is set, the corresponding pixel location in the
raster cursor will be visible. If the pattern bit is zero, the corresponding pixel
will be transparent (not drawn).

This gescape provides the same functionality as R_ECHO_MASK, except that input
data to R_ECHO_MASK is byte aligned on row boundaries. Suggestion: On the HP
98705, HP 98730, HP 98731, HP 98735, HP 98736 and HP CRX-48Z devices, use
R_ECHO_MASK for slightly better performance.

With the HP 98704, HP 98730, and the HP 98735 device drivers, echo
transparency patterns cannot be used in graphics windows if the echo currently
being used is not the hardware cursor, or the echos are not overlayed in the fourth
overlay plane.

After this gescape has been called, the transparency mask will be used to
draw the current raster cursor, until another raster cursor is de�ned with a
call to define_raster_echo. If define_raster_echo is called, it is necessary
to follow that call with another call to this gescape to use a transparency
mask. To summarize, calling this gescape turns on transparency, calling
define_raster_echo turns o� transparency.

Note Because of hardware limitations, only a transparency mask size
up to 16�16 pixels is supported by hp98550 and hp98556 device
drivers. If the current raster echo has a larger size, this gescape
will have no e�ect.

The arg1 parameter is assumed to point to the transparency mask.

The arg2 parameter is ignored.

The following program segments show how to de�ne a transparency mask for the
default raster cursor.

A-164 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=0xF0C0A090;

arg1.i[1]=0x08040201;

gescape(fildes,R_DEF_ECHO_TRANS,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=Z'F0C0A090'

arg1(2)=Z'08040201'

call gescape(fildes,R_DEF_ECHO_TRANS,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := hex('F0C0A090');

arg1.i[2] := hex('08040201');

gescape(fildes,R_DEF_ECHO_TRANS,arg1,arg2,null);

GESC A-165

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R DEF FILL PAT

The hopi parameter is R_DEF_FILL_PAT.

This gescape allows you to speci�cally de�ne the current 4�4 pixel dither
cell when in CMAP_NORMAL color map mode. This gescape will not work
in CMAP_MONOTONIC or CMAP_FULL color map modes. See the shade_mode

information in the Starbase Reference. The dither cell is used to �ll polygon
and rectangle primitives. Suggestion: Use the INT_PATTERN interior style instead
of this gescape.

The arg1 parameter speci�es the bytes de�ning the dither cell. The 16 bytes are
placed in the dither cell in row major order. After gescape is called, the polygon
and rectangle primitives will be �lled with the user-de�ned pattern until another
pattern is de�ned with another gescape call or until fill_color is called.

The arg2 parameter is ignored.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.c[0] =1; arg1.c[1] =0; arg1.c[2] =0; arg1.c[3] =0;

arg1.c[4] =0; arg1.c[5] =1; arg1.c[6] =0; arg1.c[7] =0;

arg1.c[8] =0; arg1.c[9] =0; arg1.c[10]=1; arg1.c[11]=0;

arg1.c[12]=0; arg1.c[13]=0; arg1.c[14]=0; arg1.c[15]=1;

gescape(fildes,R_DEF_FILL_PAT,&arg1,&arg2);

A-166 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64),pattern(4)

data arg1/z'01000000',

C z/00010000',

C z/00000100',

C z/00000001'/

call gescape(fildes,R_DEF_FILL_PAT,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...:

begin

arg1.i[1] := hex('01000000');

arg1.i[2] := hex('00010000');

arg1.i[3] := hex('00000100');

arg1.i[4] := hex('00000001');

gescape(fildes,R_DEF_FILL_PAT,arg1,arg2);

GESC A-167

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R DMA MODE

The hopi parameter is R_DMA_MODE.

This gescape changes the de�nition of the raw ag for block writes. When DMA
mode is turned on (arg1 is TRUE) and block_write is called with the raw ag
set (TRUE), the block of bytes to be transferred will be transferred using DMA.
Currently, DMA is only supported on the HP 9000 Models 825 and 835 SPUs
with the A1047A interface card. The gescape will output an error if A1047A
hardware is not present. If the application continues and calls block_write with
the raw ag set, a warning will be generated and a standard block_write will
be performed. There are many constraints on data alignment that are required
by the A1047A hardware. It is your responsibility to properly align your data in
a contiguous block of memory, lock the data in RAM, and ush the data cache.
The following alignment restrictions exist on the parameters to the block_write
call:

x_dest must be on a 16-pixel boundary in the frame bu�er (that is, its address
must be modulo 16).

length_x must be a multiple of 32.

pixel_data must be on a 32-byte boundary in main memory (that is, its main
memory address must be modulo 32).

Do not specify parameters that would result in DMA outside the device
coordinate range (0{1279 in X direction, 0{1023 in Y direction). This will
result in unpredictable behavior.

The use of device coordinates (dcblock_write) is recommended to make it
easier to follow the alignment restrictions.

Note The data alignment restrictions are relative to the screen. When
using an X window the position of the window relative to the
origin of the device must be considered.

The following additional restrictions apply while doing block_write with DMA:

Clipping operations are disabled when using DMA to avoid sending unaligned
data to the hardware. Setting the raw ag insures that clipping is not done,
independent of whether or not Starbase clipping has been enabled.

A-168 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The replacement rule value of three is always used during DMA regardless
of what was selected by drawing_mode. The value selected by drawing_mode

remains unchanged and is used for all other non-DMA operations.

The R_DMA_MODE gescape is only supported for byte per pixel data and is
mutually exclusive with the R_BIT_MODE gescape. If bit mode is turned on and
an attempt is made to do DMA, an error will occur and DMA mode will not
be set. If a call is made to turn on DMA mode and A1047A hardware is not
present, an error will occur and DMA mode will be turned on anyway. When
block_write is called with the raw ag set, a warning will be generated and a
normal block write operation will be performed.

If arg1 is TRUE (1), raw mode is DMA transfer. If arg1 is FALSE (0), normal raw
mode is used.

The arg2 parameter is ignored.

The following presents a method for aligning one's data and performing a DMA
transfer:

C Syntax Example

#include <starbase.c.h>

#include <sys/lock.h>

#define PATTERN_SIZE (320*100)

main(argc,argv)

int argc;

char *argv[];

{

int fildes;

gescape_arg arg1, arg2; /* Gescape arguments */

char *buf, *buf32; /* Initial and aligned data pointers */

fildes = gopen("/dev/crt",OUTDEV,"hp98731",INIT);

arg1.i[0] = 1;

gescape(fildes, R_DMA_MODE, &arg1, &arg2); /* Enable DMA mode */

/* Allocate 32-byte aligned buffer */

allocate_aligned32(&buf, &buf32, PATTERN_SIZE);

GESC A-169

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

/* DMA data must be locked in memory (see framebuf(7) and plock(2)). */

if (plock(DATLOCK)) {

printf("*** Data lock failed.\n");

/* If this fails, make sure you are executing with user id

of root, or have group privileges via setprivgrp. */

exit(1);

}

/* Load your data into buf32 here */

/* Flush the data cache before DMA (see section on data cache

flushing in framebuf(7)) */

/* Write the buffer out to a different part of screen.

Note that x_dest must be a multiple of 16 and length_x

must be a multiple of 32. The raw flag is 1 to indicate

use of DMA. */

dcblock_write(fildes, 48, 0, 320, 100, buf32, 1);

gclose(fildes);

}

/* Allocate a 32-byte alligned buffer. */

/* This routine is also used by the Fortran and Pascal examples below. */

allocate_aligned32(initial,aligned,datasize)

char **initial, **aligned;

int datasize;

{

*initial = (char *)malloc (datasize + 32);

*aligned = (char *)(((int)*initial + 31) & 0xffffffe0);

}

A-170 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

Since FORTRAN77 has no generalized pointer type, to use the aligned address
you must make the address the base of an array. This is done by sending the
address as a parameter to the do_dma subroutine that thinks the parameter is an
array of the appropriate size. Then use the "alias" compiler directive to make
the main program think that the parameter is being sent by value. The "alias"
compiler directive must be inside the main program because if it is outside, the
compiler realizes that you are trying to access a reference parameter as called by
value.

include '/usr/include/starbase.f1.h'

$alias allocate_aligned32 (%ref,%ref,%val)

$alias plock (%val)

program main

$alias do_dma (%ref, %val)

integer*4 fildes, error, arg1(64), arg2(64)

integer*4 buf, buf32

include '/usr/include/starbase.f2.h'

integer*4 plock

fildes = gopen('/dev/crt'//char(0),OUTDEV,

+'hp98731'//char(0),INIT)

C Turn on DMA mode

arg1(1) = 1

call gescape(fildes, R_DMA_MODE, arg1, arg2)

C Allocate 32-byte alligned buffer

call allocate_aligned32(buf, buf32, 32000)

GESC A-171

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C DMA data must be locked in memory (see framebuf(7) and plock(2)).

if (plock(4) .ne. 0) then

print *,"*** Data lock failed."

C If this fails, make sure you are executing with user id

C of root, or have group privileges via setprivgrp.

stop

endif

C Pass address of 32-byte aligned buffer to routine that does DMA

call do_dma(fildes, buf32)

error = gclose(fildes)

END

subroutine do_dma(fildes, buf32)

integer*4 fildes

character buf32(32000)

C Load your data into buf32 here

C Flush the data cache before DMA (see section data cache

C flushing in framebuf(7))

C Write the buffer out to a different part of screen.

C Note that x_dest must be a multiple of 16 and length_x

C must be a multiple of 32. The raw flag is 1 to indicate

C use of DMA.

call dcblock_write(fildes, 48, 0, 320, 100, buf32, 1)

END

A-172 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

$standard_level 'hp_modcal'$

program main (output);

$include '/usr/include/starbase.p1.h'$

const

PATTERN_SIZE = 320*100;

DATLOCK = 4;

type

datatype = packed array [0..(PATTERN_SIZE + 31)] of gbyte;

data_ptr = ^datatype;

var

fildes, error : integer;

arg1, arg2 : gescape_arg; {Gescape arguments}

buf, buf32 : data_ptr; {Initial and aligned data pointers}

$include '/usr/include/starbase.p2.h'$

procedure allocate_aligned32 (var initial, aligned : data_ptr;

datasize : integer); external;

function plock(op : integer) : integer; external;

begin

fildes := gopen('/dev/crt',OUTDEV,'hp98731',INIT);

arg1.i[1] := 1;

gescape(fildes, R_DMA_MODE, arg1, arg2); {Enable DMA mode}

{ Allocate 32-byte alligned buffer }

allocate_aligned32(buf, buf32, PATTERN_SIZE);

GESC A-173

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

{ DMA data must be locked in memory (see framebuf(7) and plock(2)). }

if (plock(DATLOCK)<>0) then

begin

writeln('*** Data lock failed.');

{ If this fails, make sure you are executing with user id

of root, or have group privileges via setprivgrp. }

halt(1);

end;

{ Load your data into buf32 here }

{ Flush the data cache before DMA (see section on data cache

flushing in framebuf(7)) }

{ Write the buffer out to a different part of screen.

Note that x_dest must be a multiple of 16 and length_x

must be a multiple of 32. The raw flag is 1 to indicate

use of DMA. }

dcblock_write(fildes, 48, 0, 320, 100, buf32^, 1);

error := gclose(fildes);

end.

A-174 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R ECHO CONTROL

The hopi parameter is R_ECHO_CONTROL.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices provide both hardware and software cursors. Normally, right before
cursors are used the �rst time, the driver tries to allocate the hardware cursor.
If the hardware cursor is already being used by another process, the driver uses
software cursors. The driver makes only one attempt to use the hardware cursor.
If the driver gets access to the hardware cursor, the hardware cursor is not
relinquished until gclose time. If the driver did not get access to the hardware
cursor, the driver will never try for the hardware cursor again, even if cursors are
turned o� and back on again. Instead it will use software cursors until gclose
time.

When initializing cursor state, the driver will try to allocate the hardware cursor
whenever any routine is called that modi�es cursor state. These routines are:

define_raster_echo, and echo_type.

Any of the gescapes R_DEF_ECHO_TRANS, R_ECHO_MASK,
R_ECHO_FG_BG_COLORS, and R_OV_ECHO_COLORS.

If this gescape is called before the �rst time cursors are used, it can be used to
control whether hardware or software cursors will be used at cursor initialization
time. If this gescape is called after cursors have been used, it can be used to
determine what type of cursors the driver is using.

Input to this gescape is arg1[0] which contains a ag that can have one of the
following three values:

REQUEST_HW_ECHO (value of 1).

If arg1[0] is REQUEST_HW_ECHO and cursors have already been initialized, the
driver will attempt to allocate the hardware cursor for future usage. arg2[0]
is returned 1 if the hardware cursor allocation was successful and hardware
cursors will be used, otherwise it returns 0 if software cursors will be used.

If arg1[0] is REQUEST_HW_ECHO and cursors have already been initialized,
arg2[0] will contain 1 if hardware cursors are being used. Otherwise, arg2[0]

GESC A-175

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

will return 0 if software cursors are being used, and the driver will not attempt
to allocate the hardware cursor.

REQUEST_SW_ECHO (value of 2).

If arg1[0] is REQUEST_SW_ECHO and cursors have not yet been initialized, the
driver will use software cursors and not attempt to allocate the hardware cursor.
If software cursors are being used, arg2[0] will be returned 0.

If arg1[0] is REQUEST_SW_ECHO and cursors have already been initialized,
arg2[0] will contain 1 if hardware cursors are being used, otherwise arg2[0]
will return 0 if software cursors are being used, and the driver will not attempt
to relinquish the hardware cursor if it was being used.

FORCE_HW_ECHO (value of 3).

If arg1[0] is FORCE_HW_ECHO and cursors have not yet been initialized, the
driver will attempt to allocate the hardware cursor for future use. If the
hardware cursor allocation was successful, arg2[0] is returned and 0 if not.
Even if the driver could not successfully allocate the hardware cursor, it will
use the hardware cursor.

If arg1[0] is FORCE_HW_ECHO and cursors have already been initialized,
arg2[0] will contain 1 if hardware cursors are being used, otherwise arg2[0]
will return 0 if software cursors are being used, and the driver will not attempt
to allocate or use the hardware cursor.

Note The FORCE_HW_ECHO is a dangerous mode and should only be used
when you know that other processes will not be attempting to
update the hardware cursor simultaneously. Refer to the driver
section on cursor usage for a more complete discussion of using
this mode.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=REQUEST_HW_ECHO;

gescape(fildes,R_ECHO_CONTROL,&arg1,&arg2);

A-176 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=REQUEST_HW_ECHO

call gescape(fildes,R_ECHO_CONTROL,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := REQUEST_HW_ECHO

gescape(fildes,R_ECHO_CONTROL,arg1,arg2);

GESC A-177

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R ECHO FG BG COLORS

The hopi parameter is R_ECHO_FG_BG_COLORS

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices provide both hardware and software cursors. Hardware cursors give
the best performance because cursors do not have to be \picked up" and \put
down" around every graphics output operation. Software cursors are cursors that
may be written to the same frame bu�er area that graphics are also currently
using. Therefore, they have to be \picked up" and \put down" around graphics
output operations. This lowers performance.

This gescape lets you de�ne color attributes for cursors. The functionality of
this gescape depends on the mode of cursors that is currently active. The three
modes are:

Hardware cursors

Overlayed software cursors are written to the fourth overlay plane. This mode
is only supported if opened to the image planes.

Non-overlayed software cursors are written in the same graphics planes that
graphics is currently being written to.

Refer to the gescape R_OVERLAY_ECHO for more information on the location of
software cursors.

When initializing cursor state, the driver will try to allocate the hardware cursor
whenever any routine is called that modi�es the cursor state. These routines are:

define_raster_echo, and echo_type.

Any of the gescapes R_DEF_ECHO_TRANS, R_ECHO_MASK,
R_ECHO_FG_BG_COLORS, and R_OV_ECHO_COLORS.

For explicit control of allocations of the hardware cursor, refer to the gescape

R_ECHO_CONTROL.

Further discussion of this gescape is categorized by the mode of cursor being
used. Such as: Hardware Cursor, Overlayed Software Cursor, or Non-Overlayed
Software Cursor.

A-178 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Hardware Cursors

If using hardware cursors, then vector cursors only have a foreground color, and
raster cursors have both a foreground color and a background color.

There are two color maps for the hardware cursors which alternate every 133ms.
Therefore, for each of the foreground colors and background colors, two colors can
be speci�ed for each and the cursor will blink between the two speci�ed colors.

As input to this gescape, there is a ag associated with the foreground color and
a ag associated with the background color. If this ag has the value 0, it means
\do not modify the color". If this ag has the value 1, it means \modify the
color". If the ag has the value 2, the foreground (or background) of the raster
cursor should be treated as transparent.

For example: If the ag value for the foreground color is de�ned as transparent,
for every zero value in the raster cursor pattern, the graphics image behind the
cursor will be visible. Even if the foreground color is being de�ned as transparent,
red, green, and blue values should be provided because the foreground colors will
be used when switching back to vector cursors.

The initial state of hardware cursors is a white foreground color, and a transparent
background for raster cursors. If this gescape is used to rede�ne the state
of the foreground or background transparency for hardware raster cursors,
define_raster_echo must be called to ensure proper initialization of the
hardware raster cursor bitmaps.

One �nal piece of information is needed for hardware cursors. This is an
index value to associate with the raster cursor background color. This index
is used when a raster echo pattern is being de�ned to the hardware cursor (see
define_raster_echo). During this de�nition, every value in the raster de�nition
that has the background color index value speci�ed by this gescape will be
de�ned to the hardware as the background color pixel. Every other value found
in the raster pattern will be de�ned as a foreground pixel for the raster cursor.
The default index value de�ned at gopen time is 0.

All the data for this gescape is provided in arg1 and is all in oating point
notation. The order of the data is:

arg1.f[0] Flag for foreground color.
0.0 = Do not alter current foreground color.
1.0 = Alter current foreground color.

GESC A-179

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

2.0 = Foreground is transparent. Even if foreground is trans-
parent, the following red, green, blue values are de�ned to the
hardware cursor to be used with vector cursors.

arg1.f[1] Primary color map red value.

arg1.f[2] Primary color map green value.

arg1.f[3] Primary color map blue value.

arg1.f[4] Unused.

arg1.f[5] Secondary color map red value.

arg1.f[6] Secondary color map green value.

arg1.f[7] Secondary color map blue value.

arg1.f[8] Unused.

arg1.f[9] Flag for background color.
0.0 = Do not alter current background color.
1.0 = Alter current background color.
2.0 = Background is transparent.

arg1.f[10] Primary color map red value.

arg1.f[11] Primary color map green value.

arg1.f[12] Primary color map blue value.

arg1.f[13] Secondary color map red value.

arg1.f[14] Secondary color map green value.

arg1.f[15] Secondary color map blue value.

arg1.f[16] Index to use for background pixels in raster pattern de�nition.

Overlayed Software Cursors

Overlayed software cursors are cursors in the fourth overlay plane. Refer to the
gescape R_OVERLAY_ECHO for more discussion on overlayed cursors. Overlayed
software cursors do not need to be \picked up" and \put down" again around
graphics output, since they are not in the same graphics planes currently being
used by graphics. Therefore, they o�er better performance than non overlayed
software cursors.

A-180 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

For overlayed raster cursors a foreground color and a cursor mask can be de�ned.
For de�ning cursor masks refer to the R_ECHO_MASK or the R_DEF_ECHO_TRANS

gescapes.

For overlayed software cursors there are two color maps which alternate every
133ms. Thus, for the cursor color, two colors can be de�ned and the cursor will
blink between the two colors.

For foreground color de�nition, a transparency value is also given. If the
transparency value is 1.0, the pixel color is forced to the color speci�ed by the
red, green, and blue values provided by the foreground color. If the transparency
value is 0.0, the pixel color will be the color in the graphics planes \behind" the
overlay planes.

Calling this gescape causes the driver to update the overlay color map so that for
all entries that are transparent, the cursor will be seen. Therefore, even though
the cursor is written to the fourth overlay plane, it appears to be in the image
plane behind the overlay planes. If another process opened to the overlay planes
de�nes another transparent entry using the R_TRANSPARENCY_INDEX gescape,
calling this gescape will cause the color map to be updated so that the cursor
will also be seen in this new region of transparency. If this gescape is not called
after de�ning a new transparency entry in the overlay planes, the cursor for the
image planes will not be seen in regions of the new transparency index.

One �nal piece of information is needed for overlayed software cursors. This is
an index value to associate with the raster cursor background color. This index
is used when a raster echo pattern is being de�ned (see define_raster_echo).
During this de�nition, every value in the raster de�nition that has the background
color index value speci�ed by this gescape will be de�ned to the driver as the
background color pixel. Every other value found in the raster pattern will be
de�ned as a foreground pixel for the raster cursor. The default index value
de�ned at gopen time is 0.

All the data for this gescape is provided in arg1 and is all in oating point
notation. The order of the data is:

arg1.f[0] Flag for foreground color.
0.0 = Do not alter current foreground color.
1.0 = Alter current foreground color.
2.0 = Unused.

arg1.f[1] Primary color map red value.

GESC A-181

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1.f[2] Primary color map green value.

arg1.f[3] Primary color map blue value.

arg1.f[4] Transparency bit. 0.0 = Transparent. Force pixel to color in
image planes behind the overlay planes.
1.0 = Not transparent. Force pixel to red, green, blue color.

arg1.f[5] Secondary color map red value.

arg1.f[6] Secondary color map green value.

arg1.f[7] Secondary color map blue value.

arg1.f[8] Transparency bit.
0.0 = Transparent. Force pixel to color in image planes behind
the overlay planes.
1.0 = Not transparent. Force pixel to red, green, blue color.

arg1.f[9] Unused.

arg1.f[10] Unused.

arg1.f[11] Unused.

arg1.f[12] Unused.

arg1.f[13] Unused.

arg1.f[14] Unused.

arg1.f[15] Unused.

arg1.f[16] Index to use for background pixels in raster pattern de�nition.

Non-Overlayed Software Cursors

Non-overlayed software cursors are cursor written to the same planes that
graphics are currently being written to. These cursors need to be \picked up"
before graphics output, and \put down" again after graphics output, thus, they
are slower. Non-overlayed software cursors are not available on all devices. In
order to maximize performance all cursors are overlayed.

This gescape is not supported for non-overlayed software cursors because cursor
colors can not be de�ned. When writing these software cursors to the frame
bu�er, a replacement rule of not-destination is used for vector cursors. For raster
cursors, the raster bitmap for the cursor is written to the graphics planes. Thus,

A-182 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

the raster cursor color depends on the values in the raster cursor bitmap and the
current color table de�nition.

However, for non-overlayed software cursors, a raster echo mask can be de�ned.
Refer to the gescape R_DEF_ECHO_TRANS or R_ECHO_MASK for more discussion of
raster echo masks.

Examples and Syntax

Following are two examples. The �rst example de�nes a foreground color blinking
between red and green and a background color of blue. It assumes that access to
the hardware cursor has been granted.

The second example de�nes a transparent foreground and a background color of
red. It also assumes access to the hardware cursor has been granted.

C Syntax Example Example 1:

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;.
.
.

arg1.f[0]=1.0; /* Set flag indicating define foreground color */

arg1.f[1]=1.0; /* Red value for primary color map */

arg1.f[2]=0.0; /* Green value for primary color map */

arg1.f[3]=0.0; /* Blue value for primary color map */

arg1.f[4]=0.0; /* Transparency flag. Ignored since we are using hardware */

/* cursors. */

arg1.f[5]=0.0; /* Red value for secondary color map */

arg1.f[6]=1.0; /* Green value for secondary color map */

arg1.f[7]=0.0; /* Blue value for secondary color map */

arg1.f[8]=0.0; /* Transparency bit. Ignored since we are using hardware */

/* cursors. */

arg1.f[9]=1.0; /* Set flag indicating define background color */

arg1.f[10]=0.0; /* Red value for primary color map */

arg1.f[11]=0.0; /* Green value for primary color map */

arg1.f[12]=1.0; /* Blue value for primary color map */

arg1.f[13]=0.0; /* Red value for secondary color map */

arg1.f[14]=0.0; /* Green value for secondary color map */

arg1.f[15]=1.0; /* Blue value for secondary color map */

arg1.f[16]=0.0; /* Cursor background color index */

gescape(fildes,R_ECHO_FG_BG_COLORS,&arg1,&arg2);

/* A call to define_raster_echo should follow this since it changed the */

/* background from the default configuration of transparent to a defined */

/* color. */

Example 2:

GESC A-183

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;.
.
.

arg1.f[0]=2.0; /* Set flag indicating transparent foreground */

/* The following rgb values will be used for vector cursors */

arg1.f[1]=1.0; /* Red value for primary color map */

arg1.f[2]=0.0; /* Green value for primary color map */

arg1.f[3]=0.0; /* Blue value for primary color map */

arg1.f[4]=0.0; /* Transparency flag. Ignored since we are using hardware */

/* cursors. */

/* The following rgb values will be used for vector cursors */

arg1.f[5]=1.0; /* Red value for secondary color map */

arg1.f[6]=0.0; /* Green value for secondary color map */

arg1.f[7]=0.0; /* Blue value for secondary color map */

arg1.f[8]=0.0; /* Transparency bit. Ignored since we are using hardware */

/* cursors. */

arg1.f[9]=1.0; /* Set flag indicating define background color */

arg1.f[10]=1.0; /* Red value for primary color map */

arg1.f[11]=0.0; /* Green value for primary color map */

arg1.f[12]=0.0; /* Blue value for primary color map */

arg1.f[13]=1.0; /* Red value for secondary color map */

arg1.f[14]=0.0; /* Green value for secondary color map */

arg1.f[15]=0.0; /* Blue value for secondary color map */

arg1.f[16]=0.0; /* Cursor background color index */

gescape(fildes,R_ECHO_FG_BG_COLORS,&arg1,&arg2);

/* A call to define_raster_echo should follow this since it changed the */

/* foreground to be transparent. */

A-184 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

Example 1:

real arg1(64),arg2(64)

arg1(1)=1.0

arg1(2)=1.0

arg1(3)=0.0

arg1(4)=0.0

arg1(5)=0.0

arg1(6)=0.0

arg1(7)=1.0

arg1(8)=0.0

arg1(9)=0.0

arg1(10)=1.0

arg1(11)=0.0

arg1(12)=0.0

arg1(13)=1.0

arg1(14)=0.0

arg1(15)=0.0

arg1(16)=1.0

arg1(17)=0.0

call gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2)

C A call to define_raster_echo should follow this since it changed the

C background from the default configuration of transparent to a defined

C color.

GESC A-185

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Example 2:

real arg1(64),arg2(64)

arg1(0)=2.0

C the following rgb values will be used for vector cursors

arg1(1)=1.0

arg1(2)=0.0

arg1(3)=0.0

arg1(4)=0.0

C the following rgb values will be used for vector cursors

arg1(5)=1.0

arg1(6)=0.0

arg1(7)=0.0

arg1(8)=0.0

arg1(9)=1.0

arg1(10)=1.0

arg1(11)=0.0

arg1(12)=0.0

arg1(13)=1.0

arg1(14)=0.0

arg1(15)=0.0

arg1(16)=0.0

call gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2)

C A call to define_raster_echo should follow this since it changed the

C foreground to be transparent.

A-186 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

Example 1:

{ gescape_arg is defined in starbase.p1.h }

var arg1, arg2: gescape_arg;.
.
.

arg1.f[0]:=1.0; { Set flag indicating define foreground color }

arg1.f[1]:=1.0; { Red value for primary color map }

arg1.f[2]:=0.0; { Green value for primary color map }

arg1.f[3]:=0.0; { Blue value for primary color map }

arg1.f[4]:=0.0; { Transparency flag. Ignored since we are using hardware }

{ cursors. }

arg1.f[5]:=0.0; { Red value for secondary color map }

arg1.f[6]:=1.0; { Green value for secondary color map }

arg1.f[7]:=0.0; { Blue value for secondary color map }

arg1.f[8]:=0.0; { Transparency bit. Ignored since we are using hardware }

{ cursors. }

arg1.f[9]:=1.0; { Set flag indicating define background color }

arg1.f[10]:=0.0; { Red value for primary color map }

arg1.f[11]:=0.0; { Green value for primary color map }

arg1.f[12]:=1.0; { Blue value for primary color map }

arg1.f[13]:=0.0; { Red value for secondary color map }

arg1.f[14]:=0.0; { Green value for secondary color map }

arg1.f[15]:=1.0; { Blue value for secondary color map }

arg1.f[16]:=0.0; { Define 0 as background index }

gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2);

{ A call to define_raster_echo should follow this since it changed the }

{ background from the default configuration of transparent to a defined }

{ color. }

GESC A-187

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Example 2:

{ gescape_arg is defined in starbase.p1.h }

var arg1, arg2: gescape_arg;.
.
.

arg1.f[0]:=2.0; { Set flag indicating transparent foreground }

{the following rgb values will be used for vector cursors }

arg1.f[1]:=1.0; { Red value for primary color map }

arg1.f[2]:=0.0; { Green value for primary color map }

arg1.f[3]:=0.0; { Blue value for primary color map }

arg1.f[4]:=0.0; { Transparency flag. Ignored since we are using hardware }

{ cursors. }

{ The following rgb values will be used for vector cursors }

arg1.f[5]:=1.0; { Red value for secondary color map }

arg1.f[6]:=0.0; { Green value for secondary color map }

arg1.f[7]:=0.0; { Blue value for secondary color map }

arg1.f[8]:=0.0; { Transparency bit. Ignored since we are using hardware }

{ cursors. }

arg1.f[9]:=1.0; { Set flag indicating define background color }

arg1.f[10]:=1.0; { Red value for primary color map }

arg1.f[11]:=0.0; { Green value for primary color map }

arg1.f[12]:=0.0; { Blue value for primary color map }

arg1.f[13]:=1.0; { Red value for secondary color map }

arg1.f[14]:=0.0; { Green value for secondary color map }

arg1.f[15]:=0.0; { Blue value for secondary color map }

arg1.f[16]:=0.0; { Define 0 as background index }

gescape(fildes,R_ECHO_FG_BG_COLORS,arg1,arg2);

{ A call to define_raster_echo should follow this since it changed the }

{ foreground to be transparent }

A-188 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R ECHO MASK

The hopi parameter is R_ECHO_MASK

This gescape allows you to de�ne a mask for raster cursors. It provides the
same functionality as R_DEF_ECHO_TRANS, except that the input data is byte
aligned on row boundaries. It is suggested that R_ECHO_MASK be used instead
of R_DEF_ECHO_TRANS for slightly better performance. An echo mask is used to
determine which bits of the raster cursor pattern are visible over the graphics
background. The mask is assumed to have the same height and width as the
current raster cursor. The mask is arranged in a packed array as one-bit per
pixel. Each byte represents eight pixels, and row boundaries are byte aligned. If
the bit in the mask is set, the corresponding pixel location in the raster cursor
will be visible. If the mask bit is zero, the corresponding pixel of the raster cursor
will not be applied to the frame bu�er.

After this gescape has been called, the echo mask will be used to draw
the current raster cursor until another raster cursor is de�ned with a call to
define_raster_echo. If define_raster_echo is called, it is necessary to follow
that call with another call to this gescape to use an echo mask.

If de�ning a mask to be used with the hardware cursor on HP 98704, HP 98730
and HP 98735 or HP CRX-48Z devices, this gescape should be used for better
performance.

With the hp98730 and the hp98704 device drivers, echo masks cannot be used
in a graphics window if the echo currently being used is not the hardware cursor
and the echo is not overlayed in the fourth overlay plane.

The arg1 parameter points to the echo mask.

The arg2 parameter is ignored.

The default raster cursor is a 8�8 pattern. The following example de�nes a echo
mask for the default raster cursor that is 10x8 in size. The default raster cursor
and echo mask are justi�ed in the upper left 8�8 square. An extra two pixels
on the right hand side are being included to demonstrate how the data is byte
aligned on row boundaries.

GESC A-189

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0] = 0xF00C00A0;

arg1.i[1] = 0x09000800;

arg1.i[2] = 0x40020010;

gescape(fildes,R_ECHO_MASK,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)= Z'F00C00A0'

arg1(2)= Z'09000800'

arg1(3)= Z'40020010'

call gescape(fildes,R_ECHO_MASK,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

type
mask_def = array [1..2] of integer;

mask_ptr = ^mask_def;

ptrunion = record case integer of

1 :(a : mask_ptr);

2 :(b : gescape_arg)

end;

var

arg1,arg2,null:gescape_arg;

pointers:ptrunion;

mask : mask_def;

begin

mask[1] := hex('F00C00A0');

mask[2] := hex('09000800');

A-190 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

mask[3] := hex('40020010');

pointers.a := ^mask;

gescape(fildes,R_ECHO_MASK,pointers.b,null);

GESC A-191

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R FULL FRAME BUFFER

The hopi parameter is R_FULL_FRAME_BUFFER.

This gescape allows access to the o� screen area of the frame bu�er after the
set_p1_p2 procedure is called.

The arg1 parameter is a ag. When TRUE(1), the physical limits of the device are
set to maximum frame bu�er memory size. When FALSE(0), the physical limits
are set to the visual screen area.

The arg2 parameter is ignored.

Note Care should be taken when using this gescape since other
processes can access the frame bu�er and the driver may use
some o�-screen memory. X11 also uses o�screen for its fonts and
sprite, as well as pixmaps and backing store (retained rasters).
Notice: X11 leaves you with very little extra o�screen memory
to use. Refer to the \Device Description" segment in the device
drivers section for details of frame bu�er sizes and current usage
of o�screen memory by Starbase.

The speci�cation for use of this area by Starbase and X11 may
change for future releases. As a result, more o�screen memory
may be required than is currently used.

Hewlett-Packard does not guarantee that the use of o�screen
frame bu�er memory will remain the same for future releases
of Starbase and X11.

A-192 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0] = 1;

gescape(fildes,R_FULL_FRAME_BUFFER,&arg1,&arg2);

set_p1_p2(fildes,FRACTIONAL,0.0,0.0,0.0,1.0,1.0,1.0);

FORTRAN77 Syntax Example

integer*4 arg1(1)=1

call gescape(fildes,R_FULL_FRAME_BUFFER,arg1,arg2)

call set_p1_p2(fildes,FRACTIONAL,0.0,0.0,0.0,1.0,1.0,1.0);

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;...
begin

arg1.i[1] = 1;

gescape(fildes,R_FULL_FRAME_BUFFER,arg1,arg2);

set_p1_p2(fildes,FRACTIONAL,0.0,0.0,0.0,1.0,1.0,1.0);

GESC A-193

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R GET FRAME BUFFER

The hopi parameter is R_GET_FRAME_BUFFER.

This gescape will read the address of the device's frame bu�er and control space.

The arg1 parameter is ignored.

The arg2[0] parameter will return the address of the device's control space. The
arg2[1] parameter will return the address of the upper-left corner of the device's
frame bu�er.

Note Be careful when using this gescape since other processes can
also access the frame bu�er. You must call the R_LOCK_DEVICE

gescape before attempting to access the frame bu�er in this way.
The R_UNLOCK_DEVICE gescape should be called when �nished
accessing the frame bu�er.

In order to avoid any conict with the current graphics process,
a MAKE_PICTURE_CURRENT call must be done before accessing the
hardware directly. This will ensure all bu�ers are ushed.

See the \Device Description" segment of the appropriate driver section for details
on frame bu�er organization.

The following examples draw a line in the frame bu�er using this gescape. The
bytes-per-row multiplier (2048 in the following example) is device-dependent. See
the appropriate driver section for the correct width of the frame bu�er memory.

Note Be careful when accessing the frame bu�er directly via this
gescape to alter the contents of an X11 window. This gescape
allows access to the entire frame bu�er. Therefore, it is possible
to alter the contents of windows that obscure (i.e. are on top of)
the window of interest.

Also be aware that the window position, size, or stack location
(top, bottom, etc.) may change between the time you determine
these characteristics and the time that you lock the frame bu�er
via the R_LOCK_DEVICE gescape.

A-194 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Device Dependency

These examples are written for the Series 300/400 and 700 computers. On the
Series 800 computers, HP 98735 and HP 98736 devices, the frame bu�er arrays
must be converted to arrays of integers since the I/O Bus is 32 bits wide. In
the C syntax example, the line register unsigned char *frame would become
register unsigned int *frame. The HP 98736 and HP CRX-48Z must halt
accelerators via the PLUG_ACCELERATED_PIPELINE gescape before the frame
bu�er may be accessed.

GESC A-195

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

#include <starbase.c.h>

main(argc,argv)

int argc;

char **argv;

{

register int fildes,i;

register unsigned char *frame;

gescape_arg arg1, arg2;

/* Open device using Path and driver name passed on command line */

fildes = gopen(argv[1],OUTDEV,argv[2],INIT);

/* Get address of frame buffer */

gescape(fildes,R_GET_FRAME_BUFFER,&arg1,&arg2);

frame = (unsigned char *) arg2.i[1];

/* Lock the device before accessing frame buffer */

gescape(fildes, R_LOCK_DEVICE,&arg1,&arg2);

/* Draw a vertical line from (x=99,y=5) to (x=99,y=299) */

for (i=5;i<300;i++)

frame[99 + i*2048] = (char) 3;

/* Unlock device */

gescape(fildes,R_UNLOCK_DEVICE,&arg1,&arg2);

/* Close the device and exit */

gclose(fildes);

}

A-196 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

Since FORTRAN77 has no generalized pointer type, to use the address you must
make the address the base address of an array. This is done by sending the
address as a parameter to a subroutine that thinks the parameter is an array
of the appropriate size. Use the \alias" compiler directive to make the main
program think that the parameter is being sent by value. The \alias" compiler
directive must be inside the main program because if it is outside, the compiler
realizes that you are trying to access a reference parameter as called by value.

include '/usr/include/starbase.f1.h'

program main

$alias doline (%val)

integer*4 fildes,error,arg1(10),arg2(10)

include '/usr/include/starbase.f2.h'

C Open device, for driver of interest

fildes = gopen('/dev/crt',OUTDEV,Driver_name,INIT)

C Get frame buffer address

call gescape(fildes,R_GET_FRAME_BUFFER,arg1,arg2)

C Lock the device before accessing frame buffer
call gescape(fildes,R_LOCK_DEVICE,arg1,arg2)

C Pass address to routine which draws a line

call doline(arg2(2))

C Unlock device

call gescape(fildes,R_UNLOCK_DEVICE,arg1,arg2)

C Close device and exit

error = gclose(fildes)

END

subroutine doline(frame)

GESC A-197

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

integer*2 frame(1024*2048/2)

integer*4 i

C draw line from (x=99,y=5) to (x=99,y=299)

do 10 i = 5,299,1

10 frame((99+1)/2 + i * 2048/2) = 3

END

Pascal Syntax Example

program main(output);

$include '/usr/include/starbase.p1.h'$

type

frame_buffer = array [0..maxint] of char;

fb_ptr = ^frame_buffer;

ptrunion = record case integer of

1 :(a : array [1..2] of fb_ptr);

2 :(b : gescape_arg)

end;

var
null:gescape_arg;

pointers:ptrunion;

frame : fb_ptr;

fildes,i:integer;

$include '/usr/include/starbase.p2.h'$

begin

{ Open device from name in driver }

fildes := gopen('/dev/crt',OUTDEV,driver,INIT);

{ Get frame buffer address }

gescape(fildes,R_GET_FRAME_BUFFER,null,pointers.b);

frame := pointers.a[2];

A-198 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

{ Lock device before accessing frame buffer}

gescape(fildes,R_LOCK_DEVICE,null,null);

{ Draw line from (x=99,y=5) to (x=99,y=299) }

for i := 5 to 299 do

frame^[99 + i*2048] := chr(3);

{ Unlock device }

gescape(fildes,R_UNLOCK_DEVICE,null,null);

{ Close and exit }

error := gclose(fildes);

end.

GESC A-199

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R LINE TYPE

The hopi parameter is R_LINE_TYPE.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

This gescape allows you to speci�cally de�ne the current line style and repeat
length to be used for all subsequent line primitives. A 16-bit repeat pattern is
accepted, as well as the repeat length to be used. This gescape will override the
line style set by line_type and the repeat length set by line_repeat_length.
Further calls to line_type or line_repeat_length will override both values set
with this gescape. See line_type and line_repeat_length in your Starbase
Reference manual.

Both parameters for this gescape are passed in arg1. The �rst (arg1.i[0]) is
a 16-bit pattern which de�nes the repeating pattern for lines. Note that even
though a 32-bit integer is passed to the subroutine, only the least signi�cant 16
bits will be used. The second parameter (arg1.i[1]) is an integer value which
is the repeat length of the line type pattern. The repeat length speci�es how
the pattern is scaled. If the repeat length is one, the 16-bit pattern will be
used for the �rst 16 pixels of the next line that is drawn, and will then begin
repeating for subsequent pixels. If the repeat length is two, the �rst bit in the
repeat pattern will be used for the �rst two pixels in the next line, and so on.
The e�ect is to stretch the pattern. For example, if the pattern were speci�ed
as 0xAAAA (hexadecimal), and the repeat length were 1, lines would be drawn
with alternating pixels on and o� (a very �ne dotted line.) If the repeat length
was 2, and the same pattern were used, lines would be drawn with two pixels on,
followed by two pixels o� (a more coarse dotted line.)

A-200 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=0x1010;

arg1.i[1]=1;

gescape(fildes,R_LINE_TYPE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(4),arg2(1)

arg1(1)=Z'1010'

arg1(2)=1

call gescape(fildes,R_LINE_TYPE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := hex('1010');

arg1.i[2] := 1;

gescape(fildes,R_LINE_TYPE,arg1,arg2);

GESC A-201

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R LOCK DEVICE

The hopi parameter is R_LOCK_DEVICE.

This procedure locks the device associated with the speci�ed �le descriptor
(fildes).

This gescape is useful when semaphores are to be turned o� or the frame bu�er
is to be accessed directly using R_GET_FRAME_BUFFER, and the program needs
exclusive use of the display. Once the device is locked, any program that uses the
semaphore can not access the device until it is unlocked.

Both the arg1 and arg2 parameters are ignored.

The following warnings apply to the time between an R_LOCK_DEVICE gescape

and an R_UNLOCK_DEVICE gescape.

If the device is the Console ITE also, any output to the console (ie. printf to
/dev/console) should not be done.

A fork should not be done because child processes get confused as to whether
they own the lock or not.

If a lock is in e�ect, characters typed on the Console ITE may block the ITE
and prevent the break key from interrupting until the lock is released.

The application should not perform any Starbase input (polling, track_on, or
track_off) from a window device or to an output device on the same display
as the lock.

The application should not use any X window system calls that access the X
server.

Signals with signal handlers installed may be masked until the lock is released.
Changing the signal mask may or may not a�ect this masking by the graphics
system. The signal mask may be changed again by unlocking the device. Do
not change the signal mask yourself while the device is locked.

If the hp98735 and hp98736 drivers are opened concurrently, the hp98735 driver
will plug the accelerated pipeline when this gescape is called. As a result, no
hp98736 commands will be processed.

A-202 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,R_LOCK_DEVICE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,R_LOCK_DEVICE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,R_LOCK_DEVICE,arg1,arg2);

GESC A-203

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Example Program

The following program locks the device before disabling semaphores. Locking
the device guarantees that this process has sole access to the device (assuming all
other programs have semaphores turned on - the default). Disabling semaphores
makes the program run slightly faster because an attempt to lock the device is
no longer done before each output (or output bu�er) to the device.

#include <starbase.c.h>

main(argc,argv)

int argc;

char **argv;

{

register int fildes;

gescape_arg arg1, arg2;

/* Open device from path and driver name passed in command line */

fildes = gopen (argv[1],OUTDEV,argv[2],INIT);

/* Lock the device, turn semaphore off */

arg1.i[0] = 0;

gescape (fildes, R_LOCK_DEVICE,&arg1,&arg2); /* Lock */

gescape (fildes, SWITCH_SEMAPHORE,&arg1,&arg2); /* Semaphore off */

Do graphics operation here. Remember, no \printf", no forks to the device . . .

/* Turn on semaphore, unlock the device */

arg1.i[0] = 1;

gescape (fildes, SWITCH_SEMAPHORE,&arg1,&arg2); /* semaphore on */

gescape (fildes, R_UNLOCK_DEVICE,&arg1,&arg2); /* Unlock */

/* Close the device */

gclose(fildes);

}

A-204 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R OFFSCREEN ALLOC

The hopi parameter is R_OFFSCREEN_ALLOC.

This gescape allows you to use o�screen frame bu�er memory in a way that
cooperates with o�screen use by Starbase and X11. Starbase and X11 use
o�screen frame bu�er memory for storage of raster sprites and characters. You
may wish to have a part of o�screen memory allocated for your own personal
use. Using this gescape will allow you to allocate a portion of o�screen memory
for personal usage and will not interfere with Starbase or X11 storage. A related
gescape is R_OFFSCREEN_FREE.

The arg1 parameter contains two integers, specifying the x and y sizes (in pixels)
of the rectangular area needed.

The arg2 parameter returns four integers:

a success ag (TRUE if the allocation was successful and FALSE otherwise).

the raw device coordinates of the allocated rectangle if the allocation was
successful.

the number of pixels to increment from the end of one row in the rectangle to
the beginning of the next.

Raw device coordinates are returned even if the request is via a window device
�le designator. The allocation will fail (return FALSE in arg2[0]) if there is not
a rectangle of the requested size available.

Remember that o�screen memory is used by the driver for raster cursors and �ll
patterns and also by the Windows/9000 system for the window sprite and raster
font optimization. Please read more about the uses of o�screen memory in the
appropriate device driver chapter.

On HP 98705, HP 98730, HP 98735 devices, an alignment factor for x and y can
be speci�ed in arg1[3] and arg1[4] respectively (arg1[2] is reserved for future
use). The e�ect of the alignment factor is such that the location modulo for the
alignment factor is zero. For example: specifying an x alignment factor of 2 and
a y alignment factor of 4, results in an x location on an even boundary (that is,
0, 2, 4, 6,
8, . . .) and a y location on a boundary divisible by four (that is, 0, 4, 8, 16,
32, . . .). Specifying zero for alignment factors results in no alignment being
done.

GESC A-205

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The following example attempts to allocate a 128�64 pixel rectangle in o�screen
frame bu�er memory.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=128;

arg1.i[1]=64;

gescape(fildes,R_OFFSCREEN_ALLOC,&arg1,&arg2);

if (arg2.i[0])

{

/* allocation successful */

printf ("OK. Location is %d %d, skipcount is %d.\n",

arg2.i[1], arg2.i[2], arg2.i[3]);

}

else

{

/* allocation failed */

printf ("Oh, well.\n");

}

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=128

arg1(2)=64

call gescape(fildes,R_OFFSCREEN_ALLOC,arg1,arg2)

if (arg2(1) .eq. TRUE) then

write *, "OK. Location is ",arg2(2), arg2(3),"."

write *, "Skipcount is ",arg2(4)"."

else

write *, "Oh, well."

endif

A-206 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 128;

arg1.i[2] := 64;

gescape(fildes,R_OFFSCREEN_ALLOC,arg1,arg2);

if arg2.i[1] = 1

writeln ('OK. Location is ',arg2.i[2],' ',arg2.i[3],'.')

writeln ('Skipcount is ',arg2.i[4],'.')

else

writeln ('Oh, well.');

GESC A-207

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R OFFSCREEN FREE

The hopi parameter is R_OFFSCREEN_FREE.

This gescape allows you to free o�screen frame bu�er memory that has been
previously allocated by gescape R_OFFSCREEN_ALLOC.

The arg1 parameter contains two integers, specifying the x and y raw device
coordinates of the upper left corner of the rectangular area to be freed.

The arg2 parameter returns one integer; a success ag, TRUE, if the deallocation
was successful, and FALSE if otherwise.

The deallocation will fail if the coordinates given do not specify the corner of
a previously allocated rectangle. Please read more about the uses of o�screen
memory in the appropriate device driver chapter.

The following example deallocates a rectangle in o�screen frame bu�er memory
at x=1280, y=512.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=1280;

arg1.i[1]=512;

gescape(fildes,R_OFFSCREEN_FREE,&arg1,&arg2);

if (arg2.i[0])

{

/* deallocation successful */

printf ("OK. All gone.\n");

}

else

{

/* allocation failed */

printf ("Oh, well.\n");

}

A-208 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=1280

arg1(2)=512

call gescape(fildes,R_OFFSCREEN_FREE,arg1,arg2)

if (arg2(1) .eq. TRUE) then

write *, "OK. All gone."

else

write *, "Oh, well."

endif

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 1280;

arg1.i[2] := 512;

gescape(fildes,R_OFFSCREEN_FREE,arg1,arg2);

if arg2.i[1] = 1

writeln ('OK. All gone.')

else

writeln ('Oh, well.');

GESC A-209

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R OV ECHO COLORS

The hopi parameter is R_OV_ECHO_COLORS.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

These devices are con�gured with 3 or 4 overlay planes of frame bu�er memory
for nondestructive alpha, cursors, or graphics. These overlay planes have their
own unique color map, separate from the color map used for the graphics planes.

HP 98720 and HP 98721

The color map for this system consists of sixteen 4-bit entries. These four bits
correspond to transparent, red, green, and blue (trgb) in order of MSB to LSB.
If the transparent bit (the MSB) is set to zero, the pixel color will be the color of
the graphics planes \behind" the overlay planes. If the transparent bit is set to
one, the pixel color is forced to the color speci�ed by the red, green, and blue bits
in the color map entry. Thus, pixels in the overlay planes can be any combination
of the seven primary colors or transparent.

This gescape allows you to specify the color map entries which are used for
overlay cursors. As with the graphics planes, the overlay planes actually have
two hardware color maps which alternate every 133ms. Therefore, two colors can
be speci�ed causing the cursor to blink between the two.

HP 98704, HP 98705, HP 98730, HP 98731, HP 98735, and HP 98736

The color map for this system consists of 16 entries. Each of these entries contains
eight bits of red, eight bits of green, eight bits of blue, and a transparency bit. If
the transparent bit is set to zero, the pixel color will be the color of the graphics
planes \behind" the overlay planes. If the transparent bit is set to one, the pixel
color is forced to the color speci�ed by the red, green, and blue bits in the color
map entry. Thus, pixels in the overlay planes can be any of the seven primary
colors or transparent.

This gescape is provided for backwards compatibility for applications written for
the HP 98720 product. This gescape allows you to specify the color of cursors
in the fourth overlay plane using only one bit for the red, green, and blue. As
with the graphics planes, the overlay planes actually have two hardware color
maps which alternate every 133ms. Therefore, two colors are speci�ed causing
the cursor to blink between the two. The colors are speci�ed with an 8-bit �eld

A-210 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

passed in arg1. The upper four bits specify trgb for the primary color map, and
the lower four bits specify trgb for the secondary color map.

This gescape causes the color map to be initialized in such a way that the
cursor will only be seen in areas of transparency. Therefore, even though the
cursor is in the fourth overlay plane, it appears to be in the image planes behind
the overlay planes. If another process opened to the overlay planes de�nes
another transparent entry using the R_TRANSPARENCY_INDEX gescape, calling
this gescape will cause the color map to be updated so that the cursor will also
be seen in this new region of transparency. If this gescape is not called, after
de�ning a new transparency entry in the overlay planes, the cursor for the image
planes will not be seen in the regions of the new transparency index.

Refer to the gescape R_ECHO_FG_BG_COLORS for de�ning overlay cursor colors
using the full eight bits of red, green, and blue in the overlay color map.

The arg1 parameter speci�es these colors using an 8-bit. The upper four bits
specify trgb for the primary color map, and the lower four bits specify trgb for
the secondary color map.

The arg2 parameter is ignored.

The program segments below show how to use this gescape to blink overlay
cursors between white and transparent.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=15;

gescape(fildes,R_OV_ECHO_COLORS,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=15

call gescape(fildes,R_OV_ECHO_COLORS,arg1,arg2)

GESC A-211

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 15;

gescape(fildes,R_OV_ECHO_COLORS,arg1,arg2);

A-212 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R OVERLAY ECHO

The hopi parameter is R_OVERLAY_ECHO.

This gescape allows you to select whether graphics cursors will be located in the
graphics or overlay planes. Placing cursors in the overlay planes may signi�cantly
improve driver performance while cursors are turned on because the driver does
not have to \pick up" the cursor to draw. Images created in the overlay planes
do not a�ect images in the graphics planes.

You can specify the location of raster and non-raster cursors separately.

The arg1 parameter contains two ags; the �rst ag speci�es the location of
raster cursors, the second speci�es the location of non-raster cursors. If the ag
is TRUE, the corresponding cursors will be echoed in the overlay plane, if FALSE,
the corresponding cursors will be echoed in the graphics planes.

The arg2 parameter is ignored.

You must call define_raster_echo to actually move the raster echo into the
overlay planes. See the \DEFINE RASTER ECHO(3G)" entry in the Starbase
Reference for more information.

HP 98550 and HP 98556

The HP 319C, HP 98549A, and HP 98550A displays may be opened in
con�gurations that provide 2-overlay planes in addition to 4- or 8-image planes.

If the overlay planes are simultaneously accessed through another gopen, there
is no safeguard to prevent unwanted interactions.

Non-raster and raster cursors may be placed in either the overlay or the image
planes. Both default to the planes speci�ed by the special device �le used with
the gopen procedure.

This gescape has no e�ect when the �ldes used corresponds to gopen of the
overlay planes. Note that an overlay cursor may not appear as expected if the
overlay color map has not been initialized.

This gescape has no e�ect on the HP 98548A display.

HP 98720 and HP 98721

The HP 98720 and HP 98721 can be equipped with four overlay planes of frame
bu�er memory for nondestructive alpha, cursors, or graphics.

GESC A-213

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Only one overlay plane can be used for cursors, so overlay cursors must be
monochrome. Review the R_OV_ECHO_COLORS gescape described in this appendix
for details on overlay cursor colors. Raster cursors in the graphics planes may be
any combination of available colors.

Since there is little advantage to having non-raster cursors in the graphics planes
and performance su�ers, non-raster cursors default to the overlay plane. Since it
may be very desirable to have multi-colored raster cursors, these default to the
graphics planes.

HP 98705, HP 98730, HP 98735

These devices can be equipped with four overlay planes of frame bu�er memory
for nondestructive alpha, cursors, or graphics. This gescape allows you to select
whether graphics cursors will be located in the graphics planes or the fourth
overlay plane (when opened to the graphics planes). Placing cursors in the
fourth overlay plane can signi�cantly improve driver performance while cursors
are turned on. Note that the hp98705, hp98731, and the hp98736 device drivers
always overlay cursors. Only one overlay plane can be used for cursors, so overlay
cursors must be monochrome. Review the R_OV_ECHO_COLORS gescape described
in this appendix for details on overlay cursor colors. Raster cursors in the graphics
planes may be any combination of available colors. Performance will be reduced,
however, since each time the display is altered, it is necessary to \pick up" the
cursor, make the alteration, and put down the cursor.

Since there is little advantage to having non-raster cursors in the graphics planes,
and performance su�ers, non-raster software cursors default to the overlay plane.
Since it may be very desirable to have multi-colored raster cursors, these default
to the graphics planes.

Cursors can only be put in the fourth overlay plane when there is a fourth overlay
plane. If another process opens all overlay planes, this gescape will not allow
placing cursors in the fourth overlay plane. In an X window, overlay plane cursors
may be available even when some other process has all the overlay planes open.
See the X11 chapter for more information.

This gescape is a no-op if the hardware cursor is being used.

A-214 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=TRUE;

arg1.i[1]=TRUE;

gescape(fildes,R_OVERLAY_ECHO,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=TRUE

arg1(2)=TRUE

call gescape(fildes,R_OVERLAY_ECHO,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 1;

arg1.i[2] := 1;

gescape(fildes,R_OVERLAY_ECHO,arg1,arg2);

GESC A-215

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R TRANSPARENCY INDEX

The hopi parameter is R_TRANSPARENCY_INDEX.

Refer to the table, Supported Device Drivers, at the front of this chapter for
devices that support this gescape.

HP 98720 and HP 98721

These devices can be equipped with four overlay planes of frame bu�er memory
for nondestructive alpha, cursors, or graphics. These overlay planes have their
own unique color map, separate from the color map used for the graphics planes.
This color map consists of sixteen 4-bit entries. These four bits correspond
to transparent, red, green, and blue (trgb) in order of MSB to LSB. If the
transparent bit (the MSB) is set to zero, the pixel color will be the color of
the graphics planes \behind" the overlay planes. If the transparent bit is set to
one, the pixel color is forced to the color speci�ed by the red, green, and blue bits
in the color map entry. Thus, pixels in the overlay planes can be any combination
of the seven primary colors or transparent.

If a graphics driver has been opened to the overlay planes, this gescape can be
used to create a transparent color entry in the color map. When the color maps
are initialized, all entries have the transparency bit set to one. This gescape

clears that bit for the speci�ed color index. If the entry is updated, as in a call
to define_color_table, the transparency bit is set back to one.

Note that this gescape will have no e�ect if the graphics driver has been opened
to the graphics planes rather than the overlay planes.

HP 98705, HP 98730, HP 98731, HP 98735, and HP 98736

These devices come equipped with three or four overlay planes of frame bu�er
memory for non-destructive alpha, cursors, or graphics. These overlay planes
have their own unique color map, separate from the color map used for the
graphics planes. This color map consists of sixteen 24-bit color entries and sixteen
transparent entries. Each color map entry has eight bits for red, eight bits for
green, and eight bits for blue. For each color entry there is a transparency bit.
If this bit is zero, the pixel color in the overlay plane is blended with the pixel
color in the graphics planes \behind" the overlay planes. If the transparency bit
is set to one, the pixel color in the overlay plane is forced to the color speci�ed
by the red, green, and blue bits in the overlay color map.

A-216 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

If the graphics driver has been opened to the overlay planes, this gescape can be
used to create a transparent color entry in the overlay color map. When the color
maps are initialized, all entries have their transparency bits set to one. (This is
only true if the environment variable SB_OV_SEE_THRU_INDEX is set to -1. Refer
to the respective driver sections for details.) This gescape can be used to set a
color map entry to transparent (that is, the color for a pixel is the pixel color in
the image planes behind the overlay planes). If the entry is updated, as in a call
to define_color_table, the transparency bit is set back to one.

Note that this gescape will have no e�ect if the graphics driver has been opened
to the graphics planes rather than the overlay planes.

The arg1 parameter contains to the transparency index.

The arg2 parameter is ignored.

The examples below demonstrate setting index 0 to transparent.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=0;

gescape(fildes,R_TRANSPARENCY_INDEX,&arg1,&arg2);

FORTRAN77 Syntax Example

integer arg1(64),arg2(64)

arg1(1)=0

call gescape(fildes,R_TRANSPARENCY_INDEX,arg1,arg2)

GESC A-217

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 0;

gescape(fildes,R_TRANSPARENCY_INDEX,arg1,arg2);

A-218 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

R UNLOCK DEVICE

The hopi parameter is R_UNLOCK_DEVICE.

This procedure unlocks the device associated with the speci�ed �le descriptor
(fildes).

This procedure should be called prior to turning semaphores on if R_LOCK_DEVICE
was used to lock the device. See R_LOCK_DEVICE for an example program.

Both the arg1 and arg2 parameters are ignored.

The syntax of this procedure is the same for both a window device and the raw
device. The lock and unlock gescape functions are useful when semaphores are
turned o�, and the program needs use of the display.

When fildes is associated with a window, arg1.i[0] is signi�cant. If arg1.i[0]
!= 0, the window system sprite will be restored (should one be visible). Many
unlocks can be done in a row as long as the same number of locks have already
been done. Regardless of arg1.i[0], the last unlock always causes the sprite to
be restored on the display.

Note The hp98735 driver will unplug the accelerated pipeline as a
result of this gescape.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,R_UNLOCK_DEVICE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,R_UNLOCK_DEVICE,arg1,arg2)

GESC A-219

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

gescape(fildes,R_UNLOCK_DEVICE,arg1,arg2);

A-220 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

READ COLOR MAP

The hopi parameter is READ_COLOR_MAP.

This gescape copies the device's hardware color map into the software color map
associated with the �le descriptor. The software color map is used by the Starbase
library for dither calculations, color speci�cation, and inquires.

This gescape is ignored when the display is black and white.

This gescape is ignored for terminals other than the HP 2397 and when output
is spooled for terminals.

READ_COLOR_MAP can be used to get the color map de�nition as de�ned by the
hardware. The software color map and hardware color map can di�er when
multiple processes are changing the color table. Another time that this gescape
is useful is when you wish to allow a process to function without changing the
actual color map. To do this, read the current hardware color map state after
opening a graphics device with the gopenmode set without INIT. See the Starbase
Graphics Techniques for information on using this gescape in an X11 window.

Both the arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,READ_COLOR_MAP,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,READ_COLOR_MAP,arg1,arg2)

GESC A-221

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

gescape(fildes,READ_COLOR_MAP,arg1,arg2);

A-222 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

REPORT PROXIMITY

The hopi parameter is REPORT_PROXIMITY.

This gescape causes the device to generate a choice input (with value 8) and a
locator input (the locators current position) when the device's stylus comes close
enough to the device to register input activities. If TRIGGER_ON_RELEASE is set,
the device will also trigger a choice input and a locator input when the device's
stylus goes too far away from the device to register inputs. REPORT_PROXIMITY is
only supported on HIL devices that have the ability to detect proximity (touch
bezels, and some tablets). The default value is for proximity detection to be
ignored.

The arg1 and arg2 parameters are ignored.

C Syntax Example Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape (fildes, REPORT_PROXIMITY, &arg1, &arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64), arg2(64)

call gescape (fildes, REPORT_PROXIMITY, arg1, arg2);

Pascale Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, agr2: gescape_arg;

begin

gescape (fildes, REPORT_PROXIMITY, arg1, arg2);

GESC A-223

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SBVESC BEGIN ARC and SBVESC END ARC

The hopi parameters are SBVESC_BEGIN_ARC or SBVESC_END_ARC.

These gescape functions inform the driver when to begin and end archiving
Starbase calls.

The function pair provides selective control of Starbase geometry going into any
object de�nition in the archive �le. It can be used to \comment out" sections of
display code which should not go to the archive. An example of this might be for
code which generates more than one view of an object. Additional passes would
�ll the archive with redundant database information. By carefully placing a pair
of gescapes around the other passes to ignore those calls, only one copy of the
relevant information is stored in the archive.

By default, the driver is opened with an implied SBVESC_BEGIN_ARC call, that
is, all relevant Starbase calls are to be archived. To disable archiving for a
period of time, a SBVESC_END_ARC gescape should be issued, with a matching
SBVESC_BEGIN_ARC to re-enable archiving when it is desired.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
/* These Starbase calls define "door" object */

gescape(fildes, SBVESC_OBJ_NAME, "door", &arg2);...
/* Ignore all Starbase calls here */

gescape(fildes, SBVESC_END_ARC, &arg1, &arg2);...
/* Continue capturing Starbase calls in "door" object */

gescape(fildes, SBVESC_BEGIN_ARC, &arg1, &arg2);...

A-224 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SBVESC COMMENT

The hopi parameter is SBVESC_COMMENT.

This gescape informs the device driver to embed the given user string inside
the archive �le. Since the archive format is accessible by a standard text editor,
embedding useful comments may assist in terms of debugging or noting useful
information.

The comment information will be ignored by the translator when it is encountered
in the archive �le.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg2;

...

gescape(fildes, SBVESC_COMMENT,

"Doorknob created Mon Jan 1 00:00:00 MST 2001", &arg2);

...

GESC A-225

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SBVESC LF COORD

The hopi parameter is SBVESC_LF_COORD.

This gescape informs the device driver that data passed to the driver is in a
left-handed coordinate system.

This gescape is optional. Normally, Starbase expects data passed to it to be
in a left-handed coordinate system and is thus the default expectation of this
driver. However, it is necessary to use this call if right-handed coordinate data
is intermixed with left-handed coordinate data into the data stream. (Refer to
SBVESC_RT_COORD.) A call of this type to the driver will reset it into a left-handed
output mode.

By default, the driver starts out with an implied SBVESC_LF_COORD (left-handed)
being issued.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

...

gescape(fildes, SBVESC_OBJ_NAME, "doorknob", &arg2);

/* These Starbase calls define "doorknob" object

in a left-handed coordinate system. */

gescape(fildes, SBVESC_LF_COORD, &arg1, &arg2);

...

A-226 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SBVESC OBJ NAME

The hopi parameter is SBVESC_OBJ_NAME.

This gescape generates a new object de�nition within the archive under the
name given by the gescape arguments.

Every time this gescape is made, any previous object de�nitions are completed
before beginning the new de�nition. The name string passed to the gescape will
be used by the external data translator to create a Personal VisualizerTM object
data �le with this name.

This gescape is optional. If no gescape is made, then the external data translator
considers all the data in the archive �le as one complete object. It will translate
the archive's contents into a Personal VisualizerTM compatible �le with the same
root name as the archive �le. Use of this gescape separates data going into the
archive into unique objects.

Object names can be used multiple times and at di�erent locations in the archive.
When processed by the external translator, all information labeled by a common
name will be output as a single object. Using this mechanism, model data can
be separated by color or group attributes for later manipulation in the Personal
VisualizerTM.

The name string passed to the gescapemust use HP-UX legal �lename characters
or an error will result when the �le is processed by the external translator.
Additionally, object names ultimately used by the Personal VisualizerTM are
derived from the �rst 5 letters of the name given in this argument. If these are
not unique, then name conicts may arise when importing this information into
the Personal VisualizerTM.

GESC A-227

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg2;

...

/* These Starbase calls define object "red" */

gescape(fildes, SBVESC_OBJ_NAME, "red", &arg2);

...

/* These Starbase calls define object "blue" */

gescape(fildes, SBVESC_OBJ_NAME, "blue", &arg2);

...

/* These Starbase calls add more data to the final object "red" */

gescape(fildes, SBVESC_OBJ_NAME, "red", &arg2);

...

A-228 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SBVESC RT COORD

The hopi parameter is SBVESC_RT_COORD.

This gescape informs the device driver that data passed to the driver is described
in a right-handed coordinate system.

This gescape is not optional when working with right-handed coordinate system
data. By default, Starbase expects data passed to it to be in a left-handed
coordinate system. However, if right-handed coordinate data is passed to the
driver, additional information must be made available to perform the correct
data encoding for the archive.

SBVESC_RT_COORD expects the �rst argument to contain either a 1.0 or -1.0, de-
pending upon transformation matrices normally speci�ed to the view_matrix()
call. If you normally concatenates an identity matrix with -1.0 in the Z position
to ip from right-handed space to left-handed space (as suggested in the Star-
base Graphics Techniques tutorial), then this value is passed to the SBV driver
as a -1.0. The functionality of view_matrix() is disabled by the hpsbv driver
(since view dependent information is ignored). It is therefore necessary to incor-
porate this -Z operation elsewhere in the driver if data is to remain correct when
converting from the right-handed coordinate system.

To toggle the driver back into left-handed coordinate space, use the SB-

VESC_LF_COORD gescape.

GESC A-229

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

...

/* These Starbase calls define "doorknob" object */

/* in a left-handed coordinate system by default. */

gescape(fildes, SBVESC_OBJ_NAME, "doorknob", &arg2);

...

/* User normally concatenates -Z matrix to view matrix */

arg1.f[0] = -1.0;

...

/* These Starbase calls add data to object

"doorknob" object which originates from a

right-handed coordinate system. */

gescape(fildes, SBVESC_RT_COORD, &arg1, &arg2);

...

/* These Starbase calls define "doorknob" object

back in a left-handed coordinate system. */

gescape(fildes, SBVESC_LF_COORD, &arg1, &arg2);

...

A-230 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SET ACCELERATION

The hopi parameter is SET_ACCELERATION.

This gescape causes motion to be multiplied by the acceleration multiplier when
the movement per sample (in device coordinates) exceeds the threshold value.
The sample rate for HIL is 60 hertz.

arg1.i[0] = The acceleration multiplier.

arg1.i[1] = The threshold value.

The arg2 parameter is ignored.

C Syntax Example Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=2; /* Set acceleration multiplier to 2. */

arg1.i[1]=4; /* Accelerate when the movement exceeds 4

device coordinates per sample. */

gescape(fildes,SET ACCELERATION,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=2

arg2(2)=4

call gescape(fildes,SET_ACCELERATION,arg1,arg2)

Pascale Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

arg1.i[1]:=2;

arg1.i[2]:=4;

gescape(fildes,SET_ACCELERATION,arg1,arg2);

GESC A-231

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SET BANK CMAP

The hopi parameter is SET_BANK_CMAP.

This gescape allows you to select individual color maps for separate frame bu�er
banks. The HP 98730 device supports up to three separate frame bu�er banks
of eight planes each. Each can have its own unique color map. By default, all
color maps are loaded identically. This gescape allows them to be di�erent. This
is primarily intended for use when frame bu�er outputs are being blended (see
the gescape IMAGE_BLEND). When blending, this function allows you to vary the
contribution of each bank with define_color_table. For example, if a given
bank's color map entries were smoothly zeroed out, the displayed image from
that bank would smoothly fade out.

The arg1 parameter points to the argument list for this function. It takes one
argument: an integer specifying which bank is being selected. Allowable values
are zero through two.

The arg2 parameter is ignored.

The bank selected by this gescape will have its color map installed for subsequent
Starbase calls. This means that calls to define_color_table will a�ect only the
installed color map. Also, functions which search the color map will use the newly
installed color map. For example: in CMAP_NORMAL mode fill_color may search
color map entries to form a dither cell or �nd the closest match. The color map
it searches will be the one installed with this gescape.

The examples below demonstrate changing the color map for bank one to the
values in the array \colors".

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

float colors[256][3];

arg1.i[0] = 1; /* choose bank 1 */

gescape(fildes,SET_BANK_CMAP,&arg1,&arg2);

define_color_table(fildes,0,256,colors);

/* Update entire cmap for bank 1 */

A-232 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

int arg1(1),arg2(1)

real colors(3,256)

arg1(1)=1

call gescape(fildes,SET_BANK_CMAP,arg1,arg2)

call define_color_table(fildes,0,256,colors)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

type rgb_color=array[1..3]of real;

var

arg1,arg2:gescape_arg;

colors: array[0..256] of rgb_color;

begin

arg1.i[1]:= 1;

gescape(fildes,SET_BANK_CMAP,arg1,arg2);

define_color_table (fildes,0,256,colors);

end

GESC A-233

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SET BUFFER SIZE

The hopi parameter is SET_BUFFER_SIZE.

This gescape allows the application to dynamically change the device driver's
internal bu�er size. Bu�er size can a�ect application performance. Too large a
bu�er can a�ect interactivity. Too small a bu�er can add additional overhead to
rendering - especially when a Starbase echo (cursor) is active. The ideal bu�er
size ultimately depends on the application.

This gescape will cause the commands currently in the driver's bu�er to be
executed (ushed).

This gescape should be called with arg1.i[0] containing the new bu�er size
in bytes. The device driver will clip this value to its internal minimum and
maximum bu�er size limits.

C Syntax Example

/* gescape_arg is a typedef in starbase.c.h */

gescape_arg arg1, arg2;

/* A large buffer is good for 1000 line polylines */

arg1.i[0] = 4096;

gescape(fildes,SET_BUFFER_SIZE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64), arg2(64)

arg1(1) = 4096

call gescape(fildes,SET_BUFFER_SIZE,arg1,arg2)

A-234 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var

arg1, arg2 : gescape_arg;

begin

arg1.i[1] := 4096;

gescape(fildes,SET_BUFFER_SIZE,arg1,arg2);

GESC A-235

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SET REPLACEMENT RULE

The hopi parameter is SET_REPLACEMENT_RULE.

The HP 98705 device supports a replacement rule for each plane (see draw-

ing_mode for a description of replacement rules). The HP 98705 hardware uses
these replacement rules while doing bit-per-pixel writes. This gescape allows
these replacement rules to be set, and enables or disables their use in bit-per-
pixel block writes.

Source, Destination, and Pattern values provide the three operands for the
replacement rule. The default replacement rule is SOURCE, rule number 0x33.
See the tables in the PATTERN_FILL gescape for a a more detailed description of
three-operand replacement rules.

arg1.i[0] is the three-operand (8-bit) replacement rule.

arg1.i[1] is an integer mask indicating the plane(s) to which this replacement
rule corresponds.

arg1.i[2] is an enable ag indicating whether or not the replacement rules
should be used in bit-per-pixel block writes.

Following are the legal values for arg1.i[2] and their meaning.

arg1.i[2] = 0 Turn replacement rule mode o� (ignores other parameters)

arg1.i[2] = 1 Turn replacement rule mode on (uses other parameters)

arg1.i[2] = 2 Leave replacement rule mode as it is (on or o�) but sets
values based on other parameters.

arg2 is ignored.

This gescape is useful for two color bit-per-pixel block writes. Being able to set a
replacement rule per plane allows you to select any entry in the color table when
all ones or all zeros are written into the planes as a result of a bit-per-pixel write.
(Note that R_BIT_MODE must be called to enable bit mode before bit-per-pixel
mode will work.) Unlike R_BIT_MODE, which will only write to one plane (set
with R_BIT_MASK), the SET_REPLACEMENT_RULE gescape causes a \one" bit in
the source to be expanded into a \one" written to each plane using the rule set
for that plane. The planes actually written will depend on which are enabled.
(see write_enable for details).

A-236 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Note If the overlay planes were opened as as three plane device, setting
a replacement rule for the fourth plane will have no e�ect.

Note that these replacement rules are only used when doing bit-per-pixel block
writes, and when enabled as described above. These replacement rules are entirely
independent of the drawing mode replacement rule.

The following example writes a bit-per-pixel source image in array bitdata to the
frame bu�er with one bits expanding to color index 5, and zero bits expanding
to color 6, using an e�ective rule of SOURCE.

C Syntax Example

#include hstarbase.c.hi

static unsigned int bitdata[]={

0xffffffff,

0xa0000009,

0x88000021,

0x82000081,

0x80800201,

0x80200801,

0x80082001,

0x80028001,

0x80028001,

0x80082001,

0x80200801,

0x80800201,

0x82000081,

0x88000021,

0xa0000009,

0xffffffff

};

/* Type gescape_arg is defined via typedef in starbase.c.h. */

gescape_arg arg1, arg2;

int rr00, rr01, rr10, rr11;

int fg, bg;

/* This call enables bit-per-pixel read and write. */

arg1.i[0] = 1;

gescape(fildes, R_BIT_MODE, &arg1,&arg2);

/*

GESC A-237

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The following four replacement rules presume an effective

rule of SOURCE. Rule rr[m][n] is the rule to use when the

foreground color in a particular plane requires a bit value

of m, and the background color requires a value of n.

*/

rr00 = 0x00;

rr01 = 0xCC;

rr10 = 0x33;

rr11 = 0xff;

fg=5;

bg=6;

arg1.i[2] = 1;

/*

The planes that receive each rule are determined by

the bit-wise intersections of the foreground and background

colors.

*/

arg1.i[0] = rr00;

arg1.i[1] = ~(fg) & ~(bg);

gescape(fildes, SET_REPLACEMENT_RULE, &arg1,&arg2);

arg1.i[0] = rr01;

arg1.i[1] = ~(fg) & bg;

gescape(fildes, SET_REPLACEMENT_RULE, &arg1,&arg2);

arg1.i[0] = rr10;

arg1.i[1] = fg & ~(bg);

gescape(fildes, SET_REPLACEMENT_RULE, &arg1,&arg2);

arg1.i[0] = rr11;

arg1.i[1] = fg & bg;

gescape(fildes, SET_REPLACEMENT_RULE, &arg1,&arg2);

/*

Here is the actual block write to produce the

two-color image.

*/

dcblock_write (fildes, 128, 128, 32, 16, bitdata, TRUE);

A-238 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64), arg2(64)

integer*4 rr00, rr01, rr10, rr11

integer*4 fg, bg

integer*4 bitdata(16)

data bitdata/Z'FFFFFFFF',

+ Z'A0000009',

+ Z'88000021',

+ Z'82000081',

+ Z'80800201',

+ Z'80200801',

+ Z'80082001',

+ Z'80028001',

+ Z'80028001',

+ Z'80082001',

+ Z'80200801',

+ Z'80800201',

+ Z'82000081',

+ Z'88000021',

+ Z'A0000009',

+ Z'FFFFFFFF'/

C This call enables bit-per-pixel read and write.

arg1(1)=1

call gescape(fildes, R_BIT_MODE, arg1,arg2)

C The following four replacement rules presume an effective

C rule of SOURCE. Rule rr[m][n] is the rule to use when the

C foreground color in a particular plane requires a bit value

C of m, and the background color requires a value of n.

rr00=Z'00'

rr01=Z'CC'

rr10=Z'33'

rr11=Z'FF'

fg=5

bg=6

arg1(3)=1

C The planes that receive each rule are determined

C by the bit-wise intersections of the foreground and

C background colors.

arg1(1)=rr00

arg1(2)=(.NOT.(fg)) .AND. (.NOT.(bg))

call gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2)

arg1(1)=rr01

arg1(2)=(.NOT.(fg)) .AND. bg

call gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2)

GESC A-239

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1(1)=rr10

arg1(2)=fg .AND. (.NOT.(bg))

call gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2)

arg1(1)=rr11

arg1(2)=fg .AND. bg

call gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2)

C Here is the actual block write to produce the

C two-color image.

call dcblock_write (fildes, 128, 128, 32, 16, bitdata, TRUE)

Pascal Syntax Example

type

bitarray = record

case integer of

0: (i: packed array [0..15] of integer);

1: (b: packed array [0..63] of gbyte);

end;

var

{ Type gescape_arg is defined via typedef in starbase.p1.h. }

arg1, arg2: gescape_arg;

rr00, rr01, rr10, rr11: integer;

mask00, mask01, mask10, mask11, plane: integer;

fg_plane, bg_plane: boolean;

fg, bg: integer;

bitdata: bitarray;

begin

bitdata.i[0] := hex('FFFFFFFF');

bitdata.i[1] := hex('A0000009');

bitdata.i[2] := hex('88000021');

bitdata.i[3] := hex('82000081');

bitdata.i[4] := hex('80800201');

bitdata.i[5] := hex('80200801');

bitdata.i[6] := hex('80082001');

bitdata.i[7] := hex('80028001');

bitdata.i[8] := hex('80028001');

bitdata.i[9] := hex('80082001');

bitdata.i[10] := hex('80200801');

bitdata.i[11] := hex('80800201');

bitdata.i[12] := hex('82000081');

bitdata.i[13] := hex('88000021');

bitdata.i[14] := hex('A0000009');

bitdata.i[15] := hex('FFFFFFFF');

A-240 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

{ This call enables bit-per-pixel read and write. }

arg1.i[1] := 1;

gescape(fildes, R_BIT_MODE, arg1,arg2);

{

The following four replacement rules presume an effective

rule of SOURCE. Rule rr[m][n] is the rule to use when the

foreground color in a particular plane requires a bit value

of m, and the background color requires a value of n.

}

rr00 := hex('00');

rr01 := hex('CC');

rr10 := hex('33');

rr11 := hex('ff');

fg:=5;

bg:=6;

arg1.i[3] := 1;

{

The planes that receive each rule are determined by the

bit-wise intersections of the foreground and background

colors. Because Pascal does not support bitwise masking

operations, the masks are built up in a loop.

}

mask00 := 0;

mask01 := 0;

mask10 := 0;

mask11 := 0;

plane:=128;

while plane > 0 do

begin

fg_plane := (plane <= fg);

bg_plane := (plane <= bg);

if (not fg_plane) and (not bg_plane)

then mask00 := mask00 + plane

else if (not fg_plane) and bg_plane

then mask01 := mask01 + plane

else if fg_plane and (not bg_plane)

then mask10 := mask10 + plane

else

mask11 := mask11 + plane;

if fg_plane then fg := fg - plane;

if bg_plane then bg := bg - plane;

plane := plane div 2;

GESC A-241

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

end;

arg1.i[1] := rr00;

arg1.i[2] := mask00;

gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2);

arg1.i[1] := rr01;

arg1.i[2] := mask01;

gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2);

arg1.i[1] := rr10;

arg1.i[2] := mask10;

gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2);

arg1.i[1] := rr11;

arg1.i[2] := mask11;

gescape(fildes, SET_REPLACEMENT_RULE, arg1,arg2);

{

Here is the actual block write to produce the

two-color image.

}

dcblock_write (fildes, 128, 32, 16, bitdata.b, 1);

A-242 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SMD ALLOCATE MEMORY

The hopi parameter is SMD_ALLOCATE_MEMORY (supported by all SMD drivers).

This gescape forces allocation of the memory bu�er. The memory bu�er is
allocated according to the current X, Y and depth de�nitions. The gescape

examines the current X, Y dimensions and the current depth to determine the
size of the bu�er allocation. If the memory bu�er has already been allocated,
this gescape determines if a new, larger bu�er is required.

Syntax

gescape(fildes, SMD_ALLOCATE_MEMORY, &arg1, &arg2);

arg2.i contains the following return information:

arg2.i[0] is success or failure. Failure occurs if the memory bu�er cannot be
allocated.
arg2.i[1] is the current pointer to the frame bu�er.
If arg2.i[0] indicates success, arg2.i[2] is the number of bytes allocated for
the memory bu�er. If arg2.i[0] indicates failure, arg2.i[2] is the number
of bytes that are available.

GESC A-243

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SMD DEFINE DEPTH

The hopi parameter is SMD_DEFINE_DEPTH (supported by SMDpixel and SMDplane
only).

This gescape call allows de�nition of the logical depth (number of planes) when
using the SMDpixel (the physical depth always remains 8) packing format and the
physical depth for SMDplane. If you called gopen with SMDpixel driver, the valid
logical depth values are 1, 3, 4, 6, or 8. The physical depth values for SMDplane
are 1, 3, 4, 6, 8, 16, or 24.

Changing the depth of the frame bu�er changes the size of the color table. The
color table size is equal to 2 raised to the number of frame bu�er planes up to
256 entries. For example, 28 = 256. This gescape always causes the color table
to be reinitialized to the Starbase default values.

The SMD treats the color table assuming that the resulting device used to display
the memory bu�er has a hardware color map. This means that when the SMD
gets an index value for the color of a primitive, it uses this index for writing into
the frame bu�er. This is di�erent from drivers for monochromatic displays (the
hp300h and hp300l drivers4).

This gescape call can occur at any time, but if the memory bu�er has not been
allocated, this gescape will not allocate the memory bu�er. The memory bu�er
is allocated in the following situations:

Graphics primitives are done to the memory bu�er,
SMD_ALLOCATE_MEMORY gescape is called, or
R_GET_FRAME_BUFFER is called.

4 The hp300h and hp300l drivers look at the color map de�nition for the index
provided from Starbase and determine if that index represents \color" or \no
color." If it represents color, the driver uses a pen value of one. If it represents
no color, the driver uses a pen value of zero. For example, application drawing
to a monochromatic 300h changes the color table de�nition such that index 0 is
white and index 1 is black. It speci�es line_color_index with index 0. The
driver does not write index 0 values into the frame bu�er. Instead, it determines
that the color at index 0 in the color table is white and writes index value 1 into
the frame bu�er because monochromatic devices do not have a hardware color
map.

A-244 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

If the memory bu�er has already been allocated, the current memory bu�er is
not altered by this gescape; however, subsequent graphics primitives are done
with the new range of color indexes.

Syntax

gescape(fildes, SMD_DEFINE_DEPTH, &arg1, &arg2);

arg1.i[0] contains the number of planes.

arg2.i returns the following information:

arg2.i[0] is success or failure. Failure can occur if you specify an invalid
depth value.
arg2.i[1] is the current frame bu�er pointer.
arg2.i[2] is the number of bytes currently required by the frame bu�er.

If failure is indicated, the application must call inquire_gerror to know the
complete nature of the error. If the error was 6 (IMPROPER_VALUE), you passed
in an improper depth value.

If the depth de�nition was for an invalid depth value,

arg2.i[0] is returned indicating failure,
arg2.i[1] contains the current memory bu�er pointer (this pointer is NULL if
the memory bu�er has not yet been allocated), and
arg2.i[2] is the number of bytes required for the memory bu�er.

GESC A-245

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SMD DEFINE XY

The hopi parameter is SMD_DEFINE_XY (supported by all SDM drivers).

This gescape lets you de�ne the X, Y dimensions of the memory bu�er. The
memory bu�er still uses the packing format indicated in the gopen call. The
rede�nition can occur at any time.

If a memory bu�er is currently de�ned (not a NULL pointer), and the rede�nition
requires a larger bu�er, the current bu�er is deallocated, and a new bu�er is
allocated. Graphics primitives you may have done are not retained. This gescape
works on memory bu�ers supplied by you (see \User-Supplied Memory Bu�ers"),
but you should be aware that if your new X, Y de�nition requires reallocation
of the bu�er, your supplied memory is deallocated and a new memory region is
allocated instead. Thus, the local copy of the pointer to the supplied memory
region is no longer valid.

If the memory bu�er has not yet been allocated or if the memory bu�er is
currently unde�ned, the memory bu�er pointer is NULL. This gescape does not
allocate the memory bu�er. The memory bu�er is allocated in the following
situations:

Graphics primitives are being done to the memory bu�er,
SMD_ALLOCATE_MEMORY gescape is called, or
R_GET_FRAME_BUFFER gescape is called.

The X and Y indexes in a frame bu�er each have to be 215�1 (32,767) or less.
This is because the vector generation algorithms can only handle up to 15 bits of
addressing along each axis.

The maximum size of a frame bu�er is discussed further in \The Starbase Memory
Driver" in the Starbase Graphics Techniques manual.

By rede�ning the size, the Virtual Device Coordinate to Device Coordinate
(VDC-to-DC) mapping is recomputed. The current VDC extent de�nition
remains the same; however, P1 and P2 are set back to FRACTIONAL 0, 0, 0 to 1, 1,
1. Rede�nition of the memory bu�er causes the memory bu�er to be cleared to
the background color if you opened with mode containing INIT or RESET_DEVICE.

Syntax

gescape(fildes, SMD_DEFINE_XY, &arg1, &arg2);

A-246 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

arg1 contains two integer values, maximum X and maximum Y. If you want
a memory bu�er 512�512 pixels in size, arg1.i[0]=512 and arg1.i[1]=512.
Thus, the maximum DC (X, Y) you can reference is 511, 511.

arg2.i contains the following return information:

arg2.i[0] is success or failure. Failure can occur if you specify X or Y range
values that are invalid; or the X, Y rede�nition required a reallocation of the
memory bu�er, and the amount of memory now being requested cannot be
allocated.

arg2.i[1] is the current pointer to the frame bu�er or NULL if no frame bu�er
has been allocated.

arg2.i[2] depends on the nature of the failure.

If the failure was due to the X or Y size exceeding 65,535, arg2.i[2] is the
number of bytes for the frame bu�er (based on the previous de�nitions of X
and Y).

If the failure was due to being unable to allocate the memory based on the
new X, Y size, arg2.i[2] contains the size (in bytes) of the bu�er which
could have been allocated had you requested that size.

The application must do an inquire_gerror if failure is indicated to know the
complete nature of the error. If the error number is 2049, Starbase was unable
to allocate the memory bu�er. If the error number is 6 (IMPROPER_VALUE), then
the X and/or Y values were invalid.

If arg2.i[0] returns indicating failure, a Starbase error is also issued to stderr.

If the device is gopen ed with the INIT or RESET_DEVICE bits set, the memory
bu�er is allocated at this time. If you rede�ne the X, Y size too large to be
allocated,

failure is returned to you in arg2.i[0], and
arg2.i[1] is the NULL pointer.

This happens because the SMD deallocates the �rst bu�er before attempting to
allocate the second, larger one. But since the SMD is unable to allocate the
required amount of memory, arg2.i[1] is returned with the NULL pointer.

GESC A-247

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

If your application then rede�nes the X, Y size to something smaller (since the
current memory bu�er pointer is now NULL), the SMD does not allocate the
memory at the time of that SMD_DEFINE_XY gescape call. SMD returns

success in arg2.i{0}(provided the X and Y dimension values were valid),
a NULL pointer in arg2.i[1], and
the number of bytes required in arg2.i[2].

At this point, you should call gescape with SMD_ALLOCATE_MEMORY to force
allocation of the memory bu�er. This insures that the SMD can allocate
the required memory. You could choose not to allocate the memory through
SMD_ALLOCATE_MEMORY letting the memory bu�er be allocated at the time of the
�rst graphics primitive. However, if the X, Y is still such that the SMD cannot
allocate the memory, a Starbase error is generated at the time of the graphics
primitive, and you have no way of knowing how many bytes are available at
allocation time.

A-248 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SMD GET MEM REQUIRED

The hopi parameter is SMD_GET_MEM_REQUIRED (supported by all SMD drivers).

This gescape determines the amount of memory required for a memory bu�er
based on the current packing format and X, Y dimensions. Use this value to
malloc the memory to be supplied to the SMD in the SMD_SUPPLY_MEM_BUFF

gescape call.

Syntax

gescape(fildes, SMD_GET_MEM_REQUIRED, &arg1, &arg2);

arg2.i[0] is returned with the number of bytes required for the memory bu�er.

GESC A-249

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SMD SUPPLY MEM BUFF

The hopi parameter is SMD_SUPPLY_MEM_BUFFU (supported by all SMD drivers).

This gescape allows you to pass a pointer to a block of memory for the SMD to
use as its memory bu�er.

The SMD, by default, allocates its own memory bu�er at gopen time if you open
with hmodei equal to INIT or RESET_DEVICE. If you open with hmodei=0, the
bu�er is not allocated, and Starbase expects either

allocating the bu�er by supplying a pointer to the bu�er, or
a gescape to force allocation of the bu�er (see \Allocate a Frame Bu�er" or
\Get Frame Bu�er Pointer").

It is your responsibility to understand the format of the memory bu�er and the
amount of memory required. (See \Determining Memory Requirements") If you
do not allocate enough memory, a system error may occur when the SMD tries
to write beyond the memory area.

When supplying a memory bu�er that is not going to use the default X, Y
(dimensions and depth), you should de�ne X, Y dimensions via SMD_DEFINE_XY

and SMD_DEFINE_DEPTH respectively before supplying the memory bu�er to the
SMD. Otherwise, the SMD assumes the frame bu�er X, Y size and depth as the
defaults and set up its VDC-to-DC transformation accordingly.

The user-supplied bu�er is not initialized to the background color by the driver.

A-250 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Syntax

gescape(fildes, SMD_SUPPLY_MEM_BUFF, &arg1, &arg2);

arg1.i[0] contains the pointer to the memory bu�er to be used by the SMD.

arg2.i[0] returns success or failure.

arg2.i[1] returns the current pointer to the memory bu�er.

arg2.i[2] returns the number of bytes currently required by the frame bu�er.

An inquire_gerror call should be made to determine the exact nature of the
error. If the error was 11 (NULL_PTR), you passed in a NULL pointer. If the error
was 6 (IMPROPER_VALUE), you tried to supply a memory bu�er after the memory
bu�er had already been allocated.

GESC A-251

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

STEREO

Important The STEREO gescape switches the HP graphics subsystem to
stereo output mode (described below). You are responsible for
generating output for left and right eye images. Display of stereo
images requires the use of third party hardware. For a list of
vendors of stereo-capable equipment, contact your local HP sales
o�ce.

Note True stereo images can only be created in raw mode. The X
Windows environment does not support stereo output.

The hopi parameter is STEREO.

This function is provided to support the use of a stereoscopic display system.
It requires the use of a third party, external display mechanism (monitor and
active shutter) to provide a time-multiplexed stereoscopic display. In order to
support synchronization of the external shutter with the video cycle, a timing
signal output is provided on the display board (on a BNC connector next to the
RGB output).

The STEREO function places the video display in a 1280 x 512 (120 Hz) output
mode. In this mode the displayed frame is alternately sourced from the upper-left
and the lower-left 1280 x 512 areas of the frame bu�er.

These two areas constitute the stereo-pair, with the upper bu�er providing the
left image and the lower bu�er providing the right image.

In this mode the vertical retrace of each frame is setup to the full vertical sweep
of the monitor. As a result the 1280 x 512 frame �lls the entire monitor area.
This means that each frame bu�er pixel is displayed at a 1 to 2 aspect ratio,
being twice as tall as wide.

This gescape can be used with the HP 98735, HP 98736, HP 98765, HP 98766,
CRX-24 and CRX-48Z device drivers to control the display hardware.

To activate the stereo display mode the gescape should be called with:
arg1.i[0]=1.

A-252 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Setting arg1.i[0]=0 will deactivate the stereo display mode and return the
display to its normal 1280x1024 mode.

The following examples activate the stereo function with the �rst gescape call
and then deactivate it with the second gescape call.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;.
.
.

arg1.i[0]=1;

gescape(fildes,STEREO,&arg1,&arg2); /* ON */

arg1.i[0]=0;

gescape(fildes,STEREO,&arg1,&arg2); /* OFF */

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=1

call gescape(fildes,STEREO,arg1,arg2)

arg1(1)=0

call gescape(fildes,STEREO,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

>
.
.
.

begin

arg1.i[1] := 1;

gescape(fildes,STEREO,arg1,arg2); { ON }

arg1.i[1] := 0;

gescape(fildes,STEREO,arg1,arg2); { OFF }

GESC A-253

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

SWITCH SEMAPHORE

The hopi parameter is SWITCH_SEMAPHORE.

Semaphore operations prevent interference between multiple processes accessing
the same device. Semaphore operations are normally on. See R_LOCK_DEVICE for
an example of how this control is used for multiple processes accessing the same
device.

If only a single process is accessing a device, you can signi�cantly increase speed
by turning the semaphore operations o�.

The TRACK procedure will also turn the semaphore operations on. Do not turn the
semaphore operations o� when the output device has an asynchronous process
tracking to it.

The arg1 parameter switches the semaphore operations on (if TRUE (1)) and o�
(if FALSE (0)).

The arg2 parameter is ignored.

If you want to hold the display for a long time and run with the speed
improvement of not checking the semaphore, the following process is suggested:

1. Lock down device to guarantee that the process is the sole owner of the display.
See the gescape function R_LOCK_DEVICE.

2. If the device is a window, you must insure that the window is unobscured.
See the gescape function R_GET_WINDOW_INFO|this gescape will also work
to the raw device; in this case it always says it's \unobscured". If the
window is obscured, you must unlock the device. See the gescape function
R_UNLOCK_DEVICE and try again later.

3. Do the semaphore switch to improve performance slightly.

4. Do whatever Starbase operations are desired, for as long as desired.

5. Do the semaphore switch to re-enable lock/unlock operations with semaphores.
If the device is a window, this also re-enables output to obscured windows.

A-254 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

6. Unlock the device using the gescape function R_UNLOCK_DEVICE to allow other
processes to access the display.

See the R_GET_WINDOW_INFO gescape for a C program example.

The following examples switch semaphore operations on.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=TRUE;

gescape(fildes,SWITCH_SEMAPHORE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=TRUE

call gescape(fildes,SWITCH_SEMAPHORE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2 : gescape_arg;

begin

arg1.i[1]:=1;

gescape(fildes,SWITCH_SEMAPHORE,arg1,arg2);

GESC A-255

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TC HALF PIXEL

The hopi parameter is TC_HALF_PIXEL.

This gescape allows access to half pixels during block_read and block_write

procedures. Each time it is called, the de�nition is changed to the other
possibility. Initially, it is 1 byte per pixel. After the �rst call, it is 2 bytes
per pixel. The second call returns it to 1 byte per pixel, etc.

This gescape will allow more detailed raster operations. When 2-bytes per pixel
is enabled, a block_read or block_write call must pass a pointer to a storage
area su�cient for the operation. Each row will occupy 2*dx bytes. So the storage
required is dy*2*dx bytes.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,TC_HALF_PIXEL,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,TC_HALF_PIXEL,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,TC_HALF_PIXEL,arg1,arg2);

A-256 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TEXTURE CONTROL

The hopi parameter is TEXTURE_CONTROL.

This gescape allows the selection of one of three texture map �lters and o�set
values to be used for RIP �ltered maps. The gescape takes 3 oating point
numbers.

The o�set values used in s and t respectively are speci�ed in arg1.f[1] and
arg2.f[2] and are used exclusively for RIP maps. These values are used as �ne
controls for adjusting when Starbase switches from one map to the next RIP
map in s or t. These are base 2 numbers, so values should be chosen of the form
2.0, 4.0, 8.0, . . . , 1024. Values larger than 1.0 force the switch between maps
to happen earlier, values less than 1.0 will slow the switch between maps. The
use of these parameters is particularly e�ective for animated texture maps that
consist of high frequency data.

The �lters available are speci�ed through arg1.i[0] and are:

POINT MAPS This texture mapping method is done by computing (s,t)
values at the center of each pixel. The (s,t) values are
then used to �nd a single point in the texture map. When
adjacent pixels take large steps in texture space, aliasing of
texture maps becomes a problem in this mode.

To get this option the gescape should be called with:
arg1.f[0]=0.0

RIP MAPS This is the default method. The aliasing problem men-
tioned in the above texture mapping method is reduced by
�ltering the texture map in s and t. The �ltering is done
by a image pyramid scheme where the original texture map
is recursively �ltered along each axis independently. This
technique is referred to as a RIP map and takes up four
times the o� screen memory as do POINT MAPS.

To get this option the gescape should be called with:
arg1.f[0]=1.0

PRE-FILTERED RIP This option allows you to de�ne a RIP texture map that
has been pre�ltered. With this mode, you can use your own
�ltering algorithm to make the RIP map, or in conjunction

GESC A-257

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

with the TEXTURE_RETRIEVE gescape, load a texture map
into o� screen that has already been previously �ltered
by Starbase. This mode can be used to improve the
performance of texture mapping. For this mode, you must
specify the s and t size in define_texture as the physical
size of the RIP map (twice the original size in s and t).

To get this option the gescape should be called with:
arg1.f[0]=2.0

A change in the texture mapping mode will remove all textures from o� screen
and reset the current texture index and back facing texture index to 0.

The following examples select RIP texture mapping and cause switching between
RIP maps to happen earlier than normal.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.f[0]=1.0;

arg1.f[1]=2.0;

arg1.f[2]=2.0;

gescape(fildes,TEXTURE_CONTROL,&arg1,&arg2);

FORTRAN77 Syntax Example

real arg1(64),arg2(64)

arg1(1)=1.0

arg1(2)=2.0

arg1(3)=2.0

call gescape(fildes,TEXTURE_CONTROL,arg1,arg2)

A-258 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.f[1] := 1.0;

arg1.f[2] := 2.0;

arg1.f[3] := 2.0;

gescape(fildes,TEXTURE_CONTROL,arg1,arg2);

GESC A-259

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TEXTURE DOWNSAMPLE

The hopi parameter is TEXTURE_DOWNSAMPLE.

This gescape provides a means for explicitly down sampling a texture map. The
gescape takes 3 integers as parameters. arg1.i[0] is the index of the texture to
be down sampled. The texture should already be de�ned via define_texture,
if it is not an error is returned. arg1.i[1] is the factor by which the texture
map should be down sampled. A value of 1 for this parameter means no down
sampling should be done, a value of 2 means that the original texture should
be down sampled once, a value of 3 should down sample twice, etc. Finally,
arg1.i[2] indicates whether this is to be a front facing texture map (0) or a
back facing texture map(1).

arg2.i[0] returns the factor by which the texture was down sampled. This is
the same behavior as the value returned by texture_index. The texture may
be down sampled more times than you request if not enough o� screen memory
exists to ful�ll your original request.

The following examples request the texture at index 3 to be down sampled once
as a back face texture map. It is assumed that the texture for this index is already
de�ned.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=3;

arg1.i[1]=2;

arg1.i[2]=1;

gescape(fildes,TEXTURE_DOWNSAMPLE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=3

arg1(2)=2

arg1(3)=1

call gescape(fildes,TEXTURE_DOWNSAMPLE,arg1,arg2)

A-260 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 3;

arg1.i[1] := 2;

arg1.i[1] := 1;

gescape(fildes,TEXTURE_DOWNSAMPLE,arg1,arg2);

GESC A-261

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TEXTURE RETRIEVE

The hopi parameter is TEXTURE_RETRIEVE.

This gescape allows you to retrieve down sampled and �ltered texture maps
from o� screen. In conjunction with the PRE-FILTERED RIP mode of the
TEXTURE_CONTROL gescape, this gescape provides a means of quickly writing
textures to o� screen by eliminating the down sampling and �ltering steps. The
gescape also provides a means of determining the size of the o� screen texture
area used so that you may allocate su�cient memory to the hold the returned
map. The gescape takes 3 integers as parameters.

`arg1.i[0]'' is the index of the texture to be retrieved. The texture should already
be in o� screen, if it is not an error is returned.

arg1.i[1] has a value of 1 if a texture is to be retrieved from o� screen. In this
case, arg1.i[2] is an integer pointer to memory allocated by you to hold the o�
screen texture. If arg1.i[1] is 0, then no retrieval of the texture map occurs
and only the o� screen s and t sizes of the texture area are returned. In this case,
you can determine the size of the o� screen area used by the texture so that the
correct amount of memory can be allocated to retrieve the texture.

The returned value in arg2.i[0] is the o� screen s size and the o� screen t size is
returned in arg2.i[1]. The memory pointed to by the character pointer passed
in via arg1.i[2] holds the retrieved texture when arg2.i[1] is 1.

The following examples place the o� screen texture at index 64 into the array
texture. It is assumed that the array texture is previously declared to be of
su�cient size to hold the o� screen texture.

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=64;

arg1.i[1]=1;

arg1.i[2]=(int)texture;

gescape(fildes,LS_OVERFLOW_CONTROL,&arg1,&arg2);

A-262 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=64

arg1(2)=1

arg1(3)=texture

call gescape(fildes,LS_OVERFLOW_CONTROL,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 64;

arg1.i[2] := 1;

arg1.i[3] := texture;

gescape(fildes,LS_OVERFLOW_CONTROL,arg1,arg2);

GESC A-263

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TOGGLE 2D COLORMAP

The hopi parameter is TOGGLE_2D_COLORMAP.

This gescape enables or disables a display mode which interprets the color map
as a two dimensional color map. This display modes provides the capability to
interpolate two individual 6 bit indices at one time. This display mode uses the
4096 entry color map which is assumed to be initialized by you. To allow for
double bu�ering and the correct data manipulation, you must have entered 12
bit indexing in CMAP MONOTONIC shade mode prior to enabling this two
dimensional color map gescape.

If enabled, this mode interpolates the red and green values of all primitives over
6 bits each. The blue values are ignored. The resulting two 6 bit indices are then
combined to result in a 12 bit index by adding the 6 bit red index multiplied by
64 to the 6 bit green index. This 12 bit index is used to look up an rgb color in
the 4096 entry color map.

In this mode, the color map can be visualized as two dimensional in that it is
broken up into 64 color buckets with each bucket having 64 color entries. With
this viewpoint, the red data selects the color bucket and the green data selects
the color within that bucket.

arg1.i[0] is used to enable (1) or disable (0) the two dimensional color map
mode.

arg1.i[1] is used to enable (1) or disable (0) processing �lled polygons through
light source equations. This mode can not be turned on unless the device is in
MODEL_XFORM mode.

If the two dimensional color map mode is enabled, arg2.i[0] returns 1, otherwise
it returns 0.

If the current display mode is not 12 bit indexing in CMAP MONOTONIC shade
mode then an error is returned and the two dimensional color map mode is not
enabled.

The following examples enable the two dimensional color map mode. It is
assumed that the device is already in 12 bit indexing CMAP MONOTONIC
shade mode. Processing �lled polygons is not turned on.

A-264 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/*gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;...
arg1.i[0]=1;

arg1.i[1]=0;

gescape(fildes,TOGGLE_2D_COLORMAP,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=1

arg1(2)=0

call gescape(fildes,TOGGLE_2D_COLORMAP,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;...
begin

arg1.i[1] := 1;

arg1.i[2] := 0;

gescape(fildes,TOGGLE_2D_COLORMAP,arg1,arg2);

GESC A-265

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TRANSPARENCY

The hopi parameter is TRANSPARENCY

This gescape allows you to de�ne a \screen door" transparency pattern for use
with polygon rendering. You may de�ne a pattern that disables writes to any
pixels within a 4�4 cell. This cell is duplicated over the entire screen.

Pass in a bit mask where a \1" means the corresponding pixel is write enabled
and a \0" is write disabled. Table A-8 shows the 2 byte pattern passed in, and
table A-9 shows how that pattern is turned into a 4�4 dither cell.

This gescape will set the same pattern for both front and back facing polygons.
To de�ne di�erent patterns for front facing polygons and back facing polygons,
use the POLYGON_TRANSPARENCY gescape.

The arg1 parameter contains the mask.

The arg2 parameter is ignored.

Table A-10.

15 . . . 2 1 0

Table A-11.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The examples will produce a green square with a 50 percent transparent red
rectangle in front. Remember to reset the transparency to opaque when done.

A-266 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

gescape_arg arg1, arg2; /*typedef defined in starbase.c.h */

fill_color(fildes,0.0,1.0,0.0);

rectangle(fildes,0.25,0.25,0.75,0.75);

arg1.i[0] = 0xAAAA;

gescape(fildes,TRANSPARENCY,&arg1,&arg2);

fill_color(fildes,1.0,0.0,0.0);

rectangle(fildes,0.0,0.25,1.0,0.75);

arg1.i[0] = 0xFFFF;

gescape(fildes,TRANSPARENCY,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64),pattern(2)

data pattern/z'0A0A0A0A',

C z'0F0F0F0F'/

fill_color(fildes,0.0,1.0,0.0);

rectangle(fildes,0.25,0.25,0.75,0.75);

arg1(1)=pattern(1)

call gescape(fildes,TRANSPARENCY,arg1,arg2)

fill_color(fildes,1.0,0.0,0.0);

rectangle(fildes,0.0,0.25,1.0,0.75);
arg1(1)=pattern(2)

call gescape(fildes,TRANSPARENCY,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

fill_color(fildes,0.0,1.0,0.0);

rectangle(fildes,0.25,0.25,0.75,0.75);

arg1.i[1] :=hex('AAAA');

GESC A-267

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

gescape(fildes,TRANSPARENCY,arg1,arg2);

fill_color(fildes,1.0,0.0,0.0);

rectangle(fildes,0.0,0.25,1.0,0.75);

arg1.i[1] := hex('FFFF');

gescape(fildes,TRANSPARENCY,arg1,arg2);

A-268 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

TRIGGER ON RELEASE

The hopi parameter is TRIGGER_ON_RELEASE.

The default trigger is started when a button is pressed. This allows events to be
triggered when a button is released.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,TRIGGER_ON_RELEASE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,TRIGGER_ON_RELEASE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2 : gescape_arg;

begin

gescape(fildes,TRIGGER_ON_RELEASE,arg1,arg2);

GESC A-269

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ZBANK ACCESS

The hopi parameter is ZBANK_ACCESS.

This gescape controls access to the Z-bu�er through the block_read and
block_write functions. If arg1.i[0] == TRUE, Z-bu�er access is enabled. If
arg1.i[0] == FALSE, Z-bu�er access is disabled.

When Z-bu�er access is enabled, bank_switch will allow you to select the Z-
bu�er bank for reading and writing. The inquire_fb_configuration function
will include the Z-bu�er in the image_banks parameter.

When Z-bu�er access is disabled, bank_switch will report an error when trying
to select the Z-bu�er. The inquire_fb_configuration function will not include
the Z-bu�er in the image_banks parameter.

The default is to have Z-bu�er access disabled on those devices that implement
this gescape.

A-270 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1;

arg1.i[0] = TRUE; /* Enable Z-buffer access. */

gescape(fildes, ZBANK_ACCESS, arg1, NULL);

FORTRAN 77 Syntax

integer*4 arg1(1), arg2(1)

arg1(1) = TRUE

call gescape(fildes, ZBANK_ACCESS, arg1, arg2)

Pascal Syntax

var

arg1, arg2 : gescape_arg;

begin

arg1.i[1] := 1;

gescape(fildes, ZBANK_ACCESS, arg1, arg2);

GESC A-271

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ZBUFFER ALLOC

The hopi parameter is ZBUFFER_ALLOC.

The HP 98721 device uses o�screen frame bu�er memory for Z-bu�ering. This
gescape controls o�screen Z-bu�er usage so it is only valid to use on systems
which do not have dedicated Z-bu�ers.

Starbase uses o�-screen memory to keep data to make various primitives go as
fast as possible. When the HP 98721 driver in opened with the gopen command,
a strip 128 bytes wide and 1024 lines high in the right-most part of the frame
bu�er is allocated for Starbase storage. The strip between the left edge of the
undisplayed region and the left edge of Starbase storage in each of the frame
bu�ers and any undisplayable banks is allocated to Z-bu�er area.

The following table shows the maximum number of pixels that can be rendered
in one pass in the default case:

Table A-12. Default Off-Screen Buffer Allocation

Con�guration Resolution Comments

8 planes 320�1024 pixels

16 planes 1280�1024pixels 8 planes, single bu�er

16 planes 640�1024 pixels 8 planes, double bu�er

24 planes 1280�1024 pixels 8 planes, single bu�er

24 planes 1280�1024 pixels 8 planes, double bu�er

24 planes 960�1024 pixels 24 planes, single bu�er

32 planes 1280�1024 pixels 24 planes, single bu�er

For con�gurations shown in the table that occupy less than the full screen, the
actual number of pixels that can be rendered in one pass may be less than what is
shown in the table. It depends on the actual physical limits of the viewport area.
If Z-bu�er memory is smaller than the amount needed to render the area within
the viewport limits, the primitive data must be sent to Starbase more than once.

This gescape also allows you to allocate o�-screen memory for other uses or to
use the Starbase storage area for Z-bu�er.

A-272 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

Pass in arg1 the number of 128 byte by 1024 line strips in the displayable banks
to be used for Z-bu�ering. The minimum number is 1, the maximum number is
6, and the default is 5.

The arg2 parameter is ignored.

The following example allocates all of the o�-screen memory for Z-bu�er (this
will wipe out any graphics raster cursors and other raster storage used by this or
other drivers).

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=6;

gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg2);

FORTRAN77 Syntax Example

real arg1(64),arg2(64)

arg1(1)=6

call gescape(fildes,ZBUFFER_ALLOC,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1] := 6;

gescape(fildes,ZBUFFER_ALLOC,arg1,arg2);

Exceptions

The HP 98721 driver uses o� screen memory for storing raster cursor information
and FILL_COLOR in CMAP_NORMAL mode. See \Cautions" section of the device

GESC A-273

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

driver for more information. Do not use the storage area if either of these
functions are used. Other drivers may use this area as well. See the appropriate
driver manual.

A-274 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ZSTATE RESTORE

The hopi parameter is ZSTATE_RESTORE.

The HP 98721 device uses o�screen frame bu�er memory for Z-bu�ering. On
devices which have a dedicated Z-bu�er, o�screen frame bu�er memory is not
used for Z-bu�ering. Therefore, this gescape is not needed and will have no
e�ect.

The way o�-screen memory is allocated depends on:

the cmap mode parameter of shade mode
whether double bu�ering is on or o�.
how many banks of memory are installed.
viewport area.
the ZBUFFER_ALLOC gescape setting.

This gescape was designed speci�cally to allow the creation of three-dimensional
cursors in the overlay planes. To accomplish this objective, you need to draw a
primitive in the overlay planes to use the same Z-bu�er used to draw the object
in the image planes. When the HP 98721 driver is opened to the overlay planes
and hidden-surface is turned, on the driver will use only the memory in the o�-
screen part of bank 0 by default. This gescape allows you to save a couple of
internal variables that specify the current Z-bu�er allocation in the image planes
then restore that allocation in the overlay planes. Of course this method will
only work if there is enough o�-screen memory to support a one pass Z-bu�er.

To get a three-dimensional cursor e�ect, this gescapemust be used in conjunction
with another gescape. The gescape ZWRITE_ENABLE allows the primitives to be
drawn using the Z-bu�er, but they do not modify the Z-bu�er.

GESC A-275

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

The following sequence must be observed for the overlay cursors to work properly:

/* open driver in image planes */

fildes=gopen("/dev/crt",OUTDEV,"hp9872l",INIT|THREE_D|MODEL_XFORM);

/* setup commands that affect zbuffer allocation */

view_port(fildes,x1,y1,x2,y2); /* if desired */

shade_mode(fildes,mode,shade); /* if desired */

double_buffer(fildes,on,planes); /* if desired */

gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg1); /* if desired */

pass=hidden_surface(fildes,1,cull); /* pass must be 1 */

/* zbuffer now setup. Save state */

gescape(fildes,ZSTATE_SAVE,&arg1,&arg2); /* arg2 has info */

/* don't forget to clear zbuffer */

zbuffer_switch(fildes,1);

draw_complex_object();

gclose(fildes);

/* open driver in overlay planes */

fildes=gopen("/dev/overlay",OUTDEV,"hp98721",INIT|THREE_D|MODEL_XFORM);

/* Setup commands that effect zbuffer allocation */

view_port(fi1des,x1,y1,x2,y2); /* exactly as above */

gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg1); /* exactly as above */

/* use following for double bffered cursors, otherwise not necessary */

double_buffer(fildes,TRUE|INIT,1);

/* set the bactground to see thru to image planes */

/* must happen after double buffer for correct effect */

arg1[0]=0;

gescape(fildes,R_TRANSPARENCY_INDEX,&arg1,&arg1);

hidden_surface(fildes,1,cull);

A-276 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

/* zbuffer now setup. Now restore state */

/* must come after hidden surface turned on */

gescape(fildes,ZSTATE_RESTORE,&arg2,&arg2); /* arg2 has info */

/* disable zbuffer writes. */

arg1[0]=0;

gescape(fildes,ZWRITE_ENABLE,&arg1,&arg1);

draw_cursor();

gclose(fildes);

The gescape ZSTATE_SAVE must occur after hidden_surface is turned on. After
the call, arg2 contains two integers: arg2[0] contains a bit mask of the banks
used in the primary Z-bu�er, and arg2[1] contains the bit mask for the secondary
Z-bu�er.

The gescape ZSTATE_RESTORE must occur after hidden_surface is turned on.
The arg1 parameter should contain the two integers that were returned in arg2

of the ZSTATE_SAVE gescape.

GESC A-277

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,ZSTATE_SAVE,&arg1,&arg2);

arg1.i[0]=arg2.i[0];

arg1.i[1]=arg2.i[1];

gescape(fildes,ZSTATE_RESTORE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,ZSTATE_SAVE,arg1,arg2)

arg1(1)=arg2(1)

arg1(2)=arg2(2)

call gescape(fildes,ZSTATE_RESTORE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

gescape(fildes,ZSTATE_SAVE,arg1,arg2);

arg1.i[1]:=arg2.i[1];

arg1.i[2]:=arg2.i[2];

gescape(fildes,ZSTATE_RESTORE,arg1,arg2);

A-278 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ZSTATE SAVE

The hopi parameter is ZSTATE_SAVE.

The HP 98721 device uses o�screen frame bu�er memory for Z-bu�ering. On
devices which have a dedicated Z-bu�er, o�screen frame bu�er memory is not
used for Z-bu�ering. Therefore, this gescape is not needed and will have no
e�ect.

The way o�-screen memory is allocated depends on:

the cmap mode parameter of shade_mode.
whether double bu�ering is on or o�.
how many banks of memory are installed.
viewport area.
the ZBUFFER_ALLOC gescape setting.

This gescape was designed speci�cally to allow the creation of three-dimensional
cursors in the overlay planes. To accomplish this objective, one needs to get a
primitive drawn in the overlay planes to use the same Z-bu�er used to draw the
object in the image planes. When the HP 98721 driver is opened to the overlay
planes and hidden_surface is turned on, the driver will use only the memory in
o�-screen part of bank 0 by default. This gescape allows you to save a couple of
internal variables that specify the current Z-bu�er allocation in the image planes
then restore that allocation in the overlay planes. Of course this method will
only work if there is enough o�-screen memory to support a one pass Z-bu�er.

To get a three-dimensional cursor e�ect, this gescapemust be used in conjunction
with another gescape. The gescape ZWRITE_ENABLE allows the primitives to be
drawn using the Z-bu�er but, they do not modify the Z-bu�er.

The following sequence must be observed for the overlay cursors to work properly:

/* open driver in image planes */

fildes=gopen("/dev/crt",OUTDEV,"hp9872l",INIT|THREE_D|MODEL_XFORM);

/* setup commands that affect zbuffer allocation */

view_port(fildes,x1,y1,x2,y2); /* if desired */

shade_mode(fildes,mode,shade); /* if desired */

double_buffer(fildes,on,planes); /* if desired */

gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg1); /* if desired */

pass=hidden_surface(fildes,1,cull); /* pass must be 1 */

/* zbuffer now setup. Save state */

gescape(fildes,ZSTATE_SAVE,&arg1,&arg2); /* arg2 has info */

GESC A-279

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

/* don't forget to clear zbuffer */

zbuffer_switch(fildes,1);

draw_complex_object();

gclose(fildes);

/* open driver in overlay planes */

fildes=gopen("/dev/overlay",OUTDEV,"hp98721",INIT|THREE_D|MODEL_XFORM);

/* Setup commands that effect zbuffer allocation */

view_port(fi1des,x1,y1,x2,y2); /* exactly as above */

gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg1); /* exactly as above */

/* use following for double bffered cursors, otherwise not necessary */

double_buffer(fildes,TRUE|INIT,1);

/* set the bactground to see thru to image planes */

/* must happen after double buffer for correct effect */

arg1[0]=0;

gescape(fildes,R_TRANSPARENCY_INDEX,&arg1,&arg1);

hidden_surface(fildes,1,cull);

/* zbuffer now setup. Now restore state */

/* must come after hidden surface turned on */

gescape(fildes,ZSTATE_RESTORE,&arg2,&arg2); /* arg2 has info */

/* disable zbuffer writes. */

arg1[0]=0;

gescape(fildes,ZWRITE_ENABLE,&arg1,&arg1);

draw_cursor();

gclose(fildes);

The gescape ZSTATE_SAVE must occur after hidden-surface is turned on. After
the call, arg2 contains two integers: arg2[0] contains a bit mask of the banks
used in the primary Z-bu�er, and arg2[1] contains the bit mask for the secondary
Z-bu�er.

The gescape ZSTATE_RESTORE must occur after hidden_surface is turned on,
and arg1 should contain the two integers that were returned in arg2 or the
ZSTATE_SAVE gescape.

A-280 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,ZSTATE_SAVE,&arg1,&arg2);

arg1.i[0]=arg2.i[0];

arg1.i[1]=arg2.i[1];

gescape(fildes,ZSTATE_RESTORE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

call gescape(fildes,ZSTATE_SAVE,arg1,arg2)

arg1(1)=arg2(1)

arg1(2)=arg2(2)

call gescape(fildes,ZSTATE_RESTORE,arg1,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

gescape(fildes,ZSTATE_SAVE,arg1,arg2);

arg1.i[1]:=arg2.i[1];

arg1.i[2]:=arg2.i[2];

gescape(fildes,ZSTATE_RESTORE,arg1,arg2);

GESC A-281

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

ZWRITE ENABLE

This gescape was designed speci�cally to allow the creation of three-dimensional
cursors in the overlay planes. To accomplish this objective, you need to draw a
primitive in the overlay planes to use the same Z-bu�er used to draw the object
in the image planes. To get a three-dimensional cursor e�ect, this gescape allows
primitives to be rendered using the Z-bu�er information, but the primitives do
not modify the Z-bu�er in any way. This gescape may be used in conjunction
with the ZSTATE_SAVE and ZSTATE_RESTORE gescapes to accomplish three-
dimensional cursors in the overlay planes.

Devices with dedicated Z-bu�ers do not need to use ZSTATE_SAVE and ZS-

TATE_RESTORE. However, if they are used, they will have no detrimental e�ects.

Devices which support analog blending of frame bu�er outputs can be used to
achieve three-dimensional cursor e�ects without using the overlay planes, because
di�erent frame bu�er banks may be used for the cursors and the image. See the
IMAGE_BLEND gescape for more information on blending.

The gescape ZWRITE_ENABLE looks at arg1(0] to determine whether to enable
(arg1[0]!=0) or disable (arg1[0]=0) the Z-bu�er for primitive modi�cation.
This has no e�ect on zbuffer_switch which will clear the Z-bu�er.

The examples below will disable the zbu�er from primitive modi�cation.

C Syntax Example

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0]=0;

gescape(fildes,ZWRITE_ENABLE,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64),arg2(64)

arg1(1)=0

call gescape(fildes,ZWRITE_ENABLE,arg1,arg2)

Pascal Syntax Example

A-282 GESC

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

{gescape_arg is defined in starbase.p1.h}

var

arg1,arg2:gescape_arg;

begin

arg1.i[1]:=0

gescape(fildes,ZWRITE_ENABLE,arg1,arg2);

GESC A-283

FINAL TRIM SIZE : 7.5 in x 9.0 in

Index

Index

3

3D graphics applications, 2-1
3D shaded polygons, 5-4

8

8/8 double-bu�ering, 4-4

A

A1439A, 4-10
A1454A, 4-11
A1659A, 4-9
A1924A, 4-8
A2091A, 5-2
application development, 2-1
archive libraries
CADplt, 22-7
CADplt2, 23-8
CRX-48Z, 5-16
EVRX, 6-4
HP 300H, 11-4
HP 300L, 12-4
HP 9836A, 15-4
HP 98550, 13-24
hp98704, 7-12
hp98705, 7-12
hpcrx48z, 5-16
hpgcrx, 4-34
HP-GL, 21-6
HP-HIL, 18-4
HP Keyboard, 19-2
HP SBV, 27-4
HP Terminals, 28-4

locator keyboard, 20-3
PersonalVRX, 7-12
SMD, 16-3
SOX11, 17-3
SRX, 8-11
TurboSRX, 9-22
TurboVRX, 10-19
VRX Mono, 14-6

archive libraries, HP VMX, 3-10

B

B2156A, 5-1
backing store, virtual memory, 3-7, 3-25
bit-mapped displays, 1-4
block read, 4-48
block write, 4-48

C

C+, 13-3
CADplt, 22-1
archive libraries, 22-7
character sets, 22-14
commands not supported, 22-22
description, 22-1
error reporting, 22-16
features, 22-2
gescapes, 22-24
gopen, 22-9
HP-GL devices, 22-1
HP-IB interface, 22-3
HP-IB interface devices, 22-1
mknod, 22-5

Index-1

parallel interface, 22-6
polygon support, 22-17
rectangle support, 22-18
RS-232 interface, 22-3
RS-232 interface devices, 22-1
shared libraries, 22-6
switch settings, 22-3
text support, 22-19
vertex support, 22-17

CADplt2, 23-1
archive libraries, 23-8
description, 23-1
features, 23-1
gopen, 23-10
HP-GL/2, 23-1
HP-GL/2 devices, 23-1
HP-IB interface, 23-3
initialization, 23-10
parallel interface, 23-7
RS-232 interface, 23-3
shared libraries, 23-8
switch settings, 23-3

CGMESC_ENCODING, 26-1
CGMESC_VDC_PREC, 26-2
CH, 13-4
character sets, 22-14
choice input device, 20-1
CHX, 13-6
client support, HP VMX, 3-3
CMAP FULL
translations, 4-47

color map
CMAP FULL, 4-46

color maps
CRX-48Z, 5-3
hpgcrx, 4-22

color map thrashing, 4-40
commands not supported
CADplt, 22-22
EVRX, 6-12
HP 300H, 11-10

HP 300L, 12-10
HP 9836A, 15-8
hp98704, 7-24
hp98705, 7-25
HP-GL, 21-14
HP Terminals, 28-11
PersonalVRX, 7-24
SMD, 16-7
SOX11, 17-10
SRX, 8-24
TurboSRX, 9-34
TurboVRX, 10-36
VRX Mono, 14-10

compile and link with HP CGM device
driver, 26-3

computer graphics meta�le, 26-1
con�gurations, HP VMX, 3-7
CRX
gescapes, 4-61

CRX-24, 4-10
gescapes, 4-61

CRX-24Z, 4-11
calls not supported, 4-56
gescapes, 4-61

CRX-48Z, 5-2
address space, 5-5
archive libraries, 5-16
calls not supported, 5-24
color maps, 5-3
device coordinates, 5-21
device description, 5-2
double-bu�ering, 5-10
features, 5-1
frame bu�er, 5-5, 5-7
gescapes, 5-28
gopen, 5-19
hpvmx driver, 5-3
image planes, 5-10
initialization, 5-18
internal terminal emulator, 5-5
ITE, 5-5

Index-2

Index

mknod, 5-14
overlay plane rendering, 5-3
overlay planes, 5-10
PowerShade, 5-1, 5-4
shared libraries, 5-15
X11, 5-11
X Windows, 5-10
X Windows visuals, 5-12

CRX, color, 4-9
CRX Family
features, 4-1

cursors
EVRX, 6-11
hp98704, 7-18
hp98705, 7-18
PersonalVRX, 7-15
SRX, 8-22
TurboSRX, 9-6
TurboVRX, 10-25

D

device coordinates
CRX-48Z, 5-21
hpcrx48z, 5-21

device defaults
hpcrx48z, 5-21

device description
CRX-48Z, 5-2

device driver, HP VMX, 3-1
DISPLAY environment variable, HP VMX,

3-11
double-bu�ering
CRX-48Z, 5-10

double-bu�ering, virtual memory, 3-7
Dual CRX, 4-12

E

Entry Level VRX, 6-1
environment variable, 4-40
environment variable, DISPLAY for HP

VMX, 3-11

EVRX, 6-1
archive libraries, 6-4
commands not supported, 6-12
cursors, 6-11
gescapes, 6-14
gopen, 6-5
shared libraries, 6-3
Starbase echos, 6-11
X Windows, 6-10

F

Fast Alpha and Font Manager
HP 300H, 11-11
SMD, 16-10
SRX, 8-27
TurboSRX, 9-37
VRX Mono, 14-11

frame bu�er
CRX-48Z, 5-5, 5-7

G

gescapes
CADplt, 22-24
CRX, 4-61
CRX-24, 4-61
CRX-24Z, 4-61
CRX-48Z, 5-28
EVRX, 6-14
HP 300H, 11-12
hp98550, 13-32
hp98556, 13-32
hp98704, 7-28
hp98705, 7-28
HP 98736, 10-41
HP 98766, 10-41
hpcrx48z, 5-28
hpgcrx, 4-61
HP SBV, 27-8
HP Terminals, 28-16
PersonalVRX, 7-28
PowerShade, 4-61

Index-3

SMD, 16-12
SRX, 8-27
TurboSRX, 9-39
TurboVRX, 10-40
VRX Mono, 14-12

gopen, 2-11
CADplt, 22-9
CADplt2, 23-10
CRX-48Z, 5-19
EVRX, 6-5
HP 300H, 11-5
HP 300L, 12-6
HP 9836A, 15-5
HP 98550, 13-26
hpcrx48z, 5-19
hpgcrx, 4-35
HP-GL, 21-7
HP-HIL, 18-5
HP Keyboard, 19-3
HP SBV, 27-5
HP Terminals, 28-5
locator keyboard, 20-6
PersonalVRX, 7-22
SMD, 16-4
SOX11, 17-4
SRX, 8-12
TurboSRX, 9-26
TurboVRX, 10-27
VRX Mono, 14-8

graphics hardcopy, 1-10
graphics input devices, 18-1
graphics tablet, 21-13
GRX, 4-8

H

Hewlett-Packard Graphics Language,
21-1

Hewlett-Packard Human Interface Link,
18-1

HP 300H, 11-1
archive libraries, 11-4

commands not supported, 11-10
Fast Alpha and Font Manager, 11-11
gescapes, 11-12
gopen, 11-5
mknod, 11-3
shared libraries, 11-4
X Windows, 11-7

HP 300L, 12-1
archive libraries, 12-4
commands not supported, 12-10
gopen, 12-6
mknod, 12-3
shared libraries, 12-3
switch settings, 12-3
X Windows, 12-7

HP700/RX X station, 3-2
HP 9111A/T, 21-13
HP 9836A, 15-1
archive libraries, 15-4
commands not supported, 15-8
gopen, 15-5
mknod, 15-2
shared libraries, 15-3

HP 98546A, 15-1
HP 98548A, 13-3
HP 98549A, 13-3
hp98550
gescapes, 13-32

HP 98550
archive libraries, 13-24
gopen, 13-26
shared libraries, 13-24
X Windows, 13-35

HP 98550A, 13-4
hp98556
gescapes, 13-32

HP 98556
X Windows, 13-35

HP 98556A, 13-6
hp98704, 7-1
archive libraries, 7-12

Index-4

Index

commands not supported, 7-24
cursors, 7-18
gescapes, 7-28
shared libraries, 7-11

hp98705, 7-1
archive libraries, 7-12
commands not supported, 7-25
cursors, 7-18
gescapes, 7-28
raster operations, 7-31
rendering, 7-30
shared libraries, 7-11

HP 98705, 7-1
HP 98720, 8-1
HP98720
o�screen memory, 8-14

HP 98721, 8-1
hp98730

archive libraries, 9-22
shared libraries, 9-21

HP 98730, 9-1
hp98731

archive libraries, 9-22
shared libraries, 9-21

HP 98731, 9-1
hardware cursor, 9-10
software cursors, 9-8

HP 98735, 10-1
HP 98736, 10-1
gescapes, 10-41

HP 98766
gescapes, 10-41

HP A1096A, 14-1
HP A1416A, 13-4
HP CGM
archive libraries, 26-4
CGMESC_ENCODING, 26-1
CGMESC_VDC_PREC, 26-2
compile and link with device driver,

26-3
default color map, 26-7

encodings, 26-1
examples, 26-4
functionality, 26-1
modes, 26-2
parameters for gescape, 26-11
parameters for gopen, 26-5
picture, 26-2
precisions, 26-2
shared libraries, 26-3
Starbase commands conditionally

supported, 26-10
Starbase commands not supported,

26-9
hpcrx48z
A2091A, 5-2
archive libraries, 5-16
CRX-48Z, 5-2
default color map, 5-23
device coordinates, 5-21
device defaults, 5-21
gescapes, 5-28
gopen, 5-19
shared libraries, 5-15
Starbase echos, 5-11
X11 cursor, 5-11
X Windows, 5-10
X Windows visuals, 5-12

hpgcrx
3D shaded polygons, 4-11
A1439A, 4-10
A1454A, 4-11
A1659A, 4-9
address mapping, 4-19
address space, 4-18
archive libraries, 4-34
backing store, 4-24
block-read, 4-48
block write, 4-48
calls not supported, 4-55
CMAP FULL, 4-46
CMAP FULL color map, 4-46

Index-5

CMAP FULL translations, 4-47
color map modes, 4-22
color maps, 4-23
color map sharing, 4-42
color map translations, 4-51
CRX, 4-9
CRX-24, 4-10
CRX-24Z, 4-11
CRX, color, 4-9
CRX default color map, 4-44
double-bu�ering, 4-23
Dual CRX, 4-12
environment variable, 4-23, 4-40
features, 4-1
frame bu�er, 4-18
gescapes, 4-61
gopen, 4-35
grayscale, 4-8
GRX, 4-8
GRX default color map, 4-43
HP 710 default color map, 4-43
initialization, 4-35, 5-18
internal terminal emulator, 4-14
ITE, 4-14
mknod, 4-30
multiple heads, 4-13
PowerShade, 4-5, 4-13
retained raster, 4-24
R GET FRAME BUFFER, 4-19
R LOCK DEVICE, 4-19
R UNLOCK DEVICE, 4-19
Series 400, 4-2
Series 700, 4-1
shared libraries, 4-33
technicolor e�ect, 4-23, 4-40
X Windows, 4-23
Z-bu�er, 4-21

HP-GL, 21-1
archive libraries, 21-6
commands not supported, 21-14
gopen, 21-7

mknod, 21-3
shared libraries, 21-5
switch settings, 21-2

HP-GL/2, 23-1
HP-GL/2 devices, 23-1
HP-GL driver, 22-1
HP-GL plotters, 21-1
HP-HIL, 18-1
archive libraries, 18-4
gopen, 18-5
locator devices, 18-8
mknod, 18-2
shared libraries, 18-3

HP-HIL input devices, 18-1
HP KBD, 19-1
HP Keyboard, 19-1
archive libraries, 19-2
gopen, 19-3
shared libraries, 19-1

HP Locator Keyboard, 20-1
HP-SBV, 27-1
hpsbv, 27-1
HP SBV
archive libraries, 27-4
commands supported, 27-7
gescapes, 27-8
gopen, 27-5
shared libraries, 27-3
troubleshooting, 27-9

HP Starbase to Visualizer, 27-1
HP Terminals, 28-1
archive libraries, 28-4
commands not supported, 28-11
gescapes, 28-16
gopen, 28-5
mknod, 28-2
shared libraries, 28-3
switch settings, 28-1

hpvmx, 3-1
HP VMX
API support, 3-3

Index-6

Index

archive libraries, 3-10
client support, 3-3
con�gurations, 3-7
CRX-family overlay plane driver,

3-26
default color map, 3-16
description, 3-4
device coordinate addressing, 3-14
device driver, 3-1, 3-7
DISPLAY environment variable, 3-11
dither default, 3-14
example, 3-5
exceptions to gescape support, 3-21
how it works, 3-6
how to use it, 3-5
licensing, 3-2
line type defaults, 3-15
open and initialize device for output,

3-11
performance, 3-8
raster echo default, 3-15
resource considerations, 3-22
restricted gopens, 3-23
semaphore default, 3-15
server support, 3-3
shared library, 3-9
special device characteristics, 3-14
Starbase functionality, 3-17
support, 3-2
supported gescapes, 3-20
synchronization, 3-21
versus SOX11, 3-27
X11 environment, 3-11
xhost command, 3-11
X windows, 3-9

hpvmx driver, 5-3

I

image planes
CRX-48Z, 5-10

initialization

CADplt2, 23-10
CRX-48Z, 5-18
hpgcrx, 4-35, 5-18
PersonalVRX, 7-20
SRX, 8-12

input devices, 1-8
integrated graphics, 4-1

K

keyboard, 20-1
keyboard device driver, 19-1

L

licensing
HP VMX, 3-2
PowerShade, 3-2

LKBD, 20-1
locator keyboard, 20-1
archive libraries, 20-3
gopen, 20-6
mknod, 20-1
shared libraries, 20-2

M

meta�le, computer graphics, 26-1
MH, 13-3
mknod
CADplt, 22-5
CRX-48Z, 5-14
HP 300H, 11-3
HP 300L, 12-3
HP 9836A, 15-2
hpgcrx, 4-30
HP-GL, 21-3
HP-HIL, 18-2
HP Terminals, 28-2
locator keyboard, 20-1
PersonalVRX, 7-10
SRX, 8-8
TurboVRX, 10-17
VRX Mono, 14-5

Index-7

Model 705, 4-1
Model 710, 4-1
Model 715, 4-1
Model 725, 4-1
modes, HP CGM, 26-2
Motif, 2-30
Motif Widget
colormaps, 2-72
display list, 2-71
guidelines, 2-71
rescale, 2-71

multiple heads, 4-13

O

overlay plane driver, 3-26
overlay plane rendering
CRX-48Z, 5-3

overlay planes, 3-7, 3-8
CRX-48Z, 5-10

P

PCL, 24-1
color printers, 24-1
monochromatic printers, 24-1

PCL-IMAGING, 25-1
PCL Imaging Formatter, 25-1
Personal Visualizer, 27-1
PersonalVRX, 7-1
address space, 7-9
archive libraries, 7-12
commands not supported, 7-24
cursors, 7-15
DIO-II switch settings, 7-5
gescapes, 7-28
gopen, 7-20, 7-22
mknod, 7-10
shared libraries, 7-11
Starbase echos, 7-15
X Windows, 7-13

picture, HP CGM, 26-2
plotters, 21-1

Portable Techniques, 2-1, 2-45
block operations, 2-45
callback, 2-62
draw text, 2-64
frame bu�er depth, 2-46
overlay color, 2-60
overlay Stabase widget, 2-55
pixel data, 2-48
text, 2-62
transparent overlay windows, 2-53
widget veri�cation, 2-56

PowerShade, 3-2, 4-5, 4-13, 5-1, 5-4
calls not supported, 4-56
CRX, 4-56
Dual CRX, 4-56
gescapes, 4-61
HP 710, 4-56
hpgcrx, 4-5

PowerShade licensing, 3-2
Printer Command Language Formatter,

24-1
product support
bit-mapped displays, 1-4
graphics hardcopy, 1-10
input devices, 1-8
Series 300, 1-21
Series 400, 1-22
Series 700, 1-23
Series 800, 1-24

R

rendering utilities, virtual memory, 3-7,
3-7

rendering utilities, virtual memory (VM),
3-23

S

SB X SHARED CMAP, 4-23
Series 400
hpgcrx, 4-2

Series 700

Index-8

Index

hpgcrx, 4-1
server support, HP VMX, 3-3
shared libraries
CADplt, 22-6
CADplt2, 23-8
CRX-48Z, 5-15
EVRX, 6-3
HP 300H, 11-4
HP 300L, 12-3
HP 9836A, 15-3
HP 98550, 13-24
hp98704, 7-11
hp98705, 7-11
hpcrx48z, 5-15
hpgcrx, 4-33
HP-GL, 21-5
HP-HIL, 18-3
HP Keyboard, 19-1
HP SBV, 27-3
HP Terminals, 28-3
locator keyboard, 20-2
PersonalVRX, 7-11
SMD, 16-2
SOX11, 17-2
SRX, 8-10
TurboSRX, 9-21
TurboVRX, 10-19
VRX Mono, 14-5

shared library, HP VMX, 3-9
SMD, 16-1
archive libraries, 16-3
commands not supported, 16-7
errors, 16-10
Fast Alpha and Font Manager, 16-10
gescapes, 16-12
gopen, 16-4
shared libraries, 16-2

source code, 2-1
motif sb1.c, 2-30
motif sb2.c, 2-45
motif sb3.c, 2-53

portable sb.c, 2-3, 2-25
wsutils.c, 2-9

SOX11, 17-1
archive libraries, 17-3
commands not supported, 17-10
gopen, 17-4
shared libraries, 17-2

SOX11 versus HP VMX, 3-27
SRX, 8-1
archive libraries, 8-11
commands not supported, 8-24
cursors, 8-22
Fast Alpha and Font Manager, 8-27
gescapes, 8-27
gopen, 8-12
initialization, 8-12
mknod, 8-8
o�screen memory, 8-14
shared libraries, 8-10
Starbase echos, 8-22
switch settings, 8-5
X Windows, 8-20

Starbase echos
EVRX, 6-11
PersonalVRX, 7-15
SRX, 8-22
TurboSRX, 9-6

Starbase Memory Driver, 16-1
support, HP VMX, 3-2
switch settings
CADplt, 22-3
CADplt2, 23-3
HP 300L, 12-3
HP-GL, 21-2
HP Terminals, 28-1
PersonalVRX, 7-5
SRX, 8-5
TurboVRX, 10-12
VRX Mono, 14-4

Index-9

T

Terminal Device Driver, 28-1
terminals, 28-1
TurboSRX, 9-1
address space, 9-17
archive libraries, 9-22
commands not supported, 9-34
cursors, 9-6
Fast Alpha and Font Manager, 9-37
gescapes, 9-39
gopen, 9-26
shared libraries, 9-21
Starbase echos, 9-6
switch settings, 9-12
X Windows, 9-4
Z-bu�er, 9-10

TurboVRX, 10-1
archive libraries, 10-19
commands not supported, 10-36
cursors, 10-25
gescapes, 10-40
gopen, 10-27
mknod, 10-17
shared libraries, 10-19
switch settings, 10-12
X Windows, 10-21

V

virtual memory backing store, 3-25
virtual memory double-bu�ering, 3-24
virtual memory rendering utilities, 3-7
virtual memory (VM) rendering utilities,

3-23
VM backing store, 3-7

VM double-bu�ering, 3-7
VM rendering utilities, 3-7, 3-7
VRX Color, 13-4
VRX Mono, 14-1
archive libraries, 14-6
commands not supported, 14-10
Fast Alpha and Font Manager, 14-11
gescapes, 14-12
gopen, 14-8
mknod, 14-5
shared libraries, 14-5
switch settings, 14-4

X

X11
hpcrx48z, 5-11

Xlib, 2-3
X Windows
CRX-48Z, 5-10
EVRX, 6-10
HP 300H, 11-7
HP 300L, 12-7
HP 98550, 13-35
HP 98556, 13-35
hpcrx48z, 5-10
hpgcrx, 4-23
PersonalVRX, 7-13
SRX, 8-20
TurboSRX, 9-4
TurboVRX, 10-21

Z

Z-bu�er

hpgcrx, 4-21

Index-10

