
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP-UX Starbase Device Drivers Manual

Volume 1

HP 9000 Series 700 Computers

ABCDE

HP Part No. B2355-90047

Printed in USA April, 1993

Edition 1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
�tness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

Copyright c 1989 - 1993 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFAR 252.227-7013. for DoD
agencies, Computer Software Restricted Rights clause at FAR 52.227-19 for other
agencies.

Use of this manual and exible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright c AT&T, Inc. 1980, 1984

Copyright c The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

April 1993 . . . Edition 1. This manual is valid for HP-UX release 9.0 on all HP
9000 Series 700 Computers. This edition of the manual includes new HP VMX
information as well as manual corrections.

This manual includes some Series 300/400/800 Starbase information; however, for
revision 9.0 Starbase information on Series 300/400/800 computers, you should
read the HP-UX Starbase Device Drivers Manual part number B2355-90019.

iii

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

1. Introduction and Device Comparison
Manual Organization 1-1
Other Useful Documents 1-2
Introduction Chapter 1-3
Product Support Information 1-4
HP-UX Revision Support 1-13
Driver Compatibility with High-Level Starbase 1-17
Formatters and Release Levels 1-19
Series 300 Starbase Device Drivers 1-21
Series 400 Starbase Device Drivers 1-22
Series 700 Supported Graphics Devices 1-23
Series 800 Device Drivers 1-24
Other Supported Device Drivers 1-24
Graphics Libraries Supported Within Windows 1-25

2. Developing a Starbase Application
Overview . 2-1
Section One: Using Xlib in a Sample Application 2-3
Step 1. Opening the X Display and Selecting a Screen 2-7
Step 2. Creating an X Window 2-8
Step 3. Gopening and Mapping the X Window 2-11
Step 4. Inquiring Graphics Device Capabilities 2-14
Step 5. Setting Display Characteristics 2-16
Step 6. Handling X Events 2-21
Step 7. Performing Graphics Rendering 2-28
Section Two: Using Motif in a Sample Application 2-30
Step 1. Initializing the X toolkit and Creating a Widget

Hierarchy . 2-34
Step 2. Creating a Starbase Motif Widget 2-37
Step 3. Realizing the Motif Heirarchy 2-38

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Step 4. Inquiring Graphics Device Capabilities 2-39
Step 5. Setting Display Characteristics 2-39
Step 6. Starting the Toolkit Main Loop and Handling Callbacks 2-40
Step 7. Performing Graphics Rendering 2-44
Section Three: Other Portable Techniques 2-45
Block Operations . 2-45
Determining the Frame Bu�er Depth 2-46
Writing the Pixel Data 2-48

Transparent Overlay Windows 2-53
Creating the Overlay Starbase Widget 2-55
Verifying the Widget 2-56
Allocating an Overlay Color 2-60
Initializing the Starbase Text Characteristics 2-62
Handling the Callback 2-62
Drawing the Overlay Text 2-64

Section Four: Device-Speci�c Features 2-65
Porting from CRX to CRX-24 2-65
CMAP_FULL Mode 2-65
Colormap Sharing 2-66
Starbase Echos . 2-66
Number of Color Planes 2-66

Porting from CRX-24 to CRX-24Z 2-67
Source Incompatibilities 2-67
Backing Store . 2-67
Image Di�erences 2-68

Porting from CRX-24Z to CRX-48Z 2-69
Colormap Sharing 2-69
Starbase Echos . 2-69
Number of Color Planes 2-70
Source Incompatibilities 2-70

Section Five: Starbase Motif Widget Guidelines 2-71
Limitations on Starbase Usage 2-71
Using Starbase Display List to Refresh 2-71
Appearance of Each Rescale Policy 2-71
Using Dynamic Colormap Priorities 2-72

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

3. HP VMX Device Driver
Introduction . 3-1
HP VMX/PowerShade Licensing 3-2
PowerShade . 3-2

HP VMX Support . 3-2
HP VMX Server Support 3-3
HP VMX Client Support 3-3
HP VMX API Support 3-3

For More Information 3-3
Device Description . 3-4
What is HP VMX? 3-4
How Do You Use HP VMX? 3-5
HP VMX Usage Example 3-5

How Does HP VMX Work? 3-6
Overview . 3-6

HP VMX Con�gurations 3-7
HP VMX Device Driver, VM Rendering Utilities, and Overlay

Planes . 3-7
VM Rendering Utilities 3-7
Overlay Planes . 3-8

Performance . 3-8
X Windows . 3-9
To Compile and Link with the Device Driver 3-9
For Shared Libraries 3-9
Examples . 3-9

For Archive Libraries 3-10
Examples . 3-10

To Open and Initialize the Device for Output 3-11
X11 Environment . 3-11
DISPLAY Environment Variable 3-11
xhost Command 3-11
Licensing . 3-11

Syntax Examples . 3-12
C programs . 3-12
FORTRAN 77 programs 3-12
Pascal programs 3-12

Parameters for gopen 3-12
Special Device Characteristics 3-14

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Device Coordinate Addressing 3-14
Device Defaults . 3-14
Dither Default . 3-14
Raster Echo Default 3-15
Semaphore Default 3-15
Line Type Defaults 3-15

Color . 3-16
Default Color Map 3-16

Starbase Functionality 3-17
Calls Not Supported 3-17
Using PowerShade with HP VMX 3-17

Conditional Support of Starbase Calls 3-18
Supported Gescapes 3-20
Additional Gescapes Supported with PowerShade 3-20

Exceptions to Gescape Support 3-21
Di�erences From Other Starbase Device Drivers 3-21
Synchronization . 3-21
Resource Considerations 3-22
Restricted gopens . 3-23

VM Rendering Utilities 3-23
VM Double-Bu�ering on 8-plane devices 3-24
Virtual Memory Double-Bu�ering 3-24
VM Backing Store 3-25

HP VMX: The CRX-family Overlay Plane Driver 3-26
SOX11 vs. HP VMX 3-27
Functionality . 3-27
Performance . 3-28

4. The CRX Family of Device Drivers
High Performance Grayscale and Color Graphics 4-1
hpgcrx Devices For the Series 700 4-1
hpgcrx Devices For the Series 400 4-2
Other Information 4-2

8/8 Double-Bu�ering on the Integrated Displays with
PowerShade . 4-4
Virtual Memory Double-Bu�ering 4-4

PowerShade . 4-5
For More Information 4-6

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Device Descriptions . 4-7
HP Series 700 Integrated Graphics 4-7
High Resolution Grayscale 4-7
High Resolution Color 4-7
Medium Resolution Color 4-7

Grayscale GRX (A1924A) 4-8
Color CRX (A1659A) 4-9
CRX-24 (A1439A) 4-10
CRX-24Z (A1439A and A1454A) 4-11
Optimized 3D Shaded Polygon Performance 4-11

Dual CRX . 4-12
Supported Dual Head Con�gurations 4-13

PowerShade, 3D Surfaces Software 4-13
Interactions with the ITE 4-14
Escape Sequences for Controlling the ITE 4-17

The Frame Bu�er . 4-18
Physical Address Space 4-18
To Access the Frame Bu�er Directly 4-19
Frame Bu�er Address Mapping 4-19
Frame Bu�er Con�gurations 4-22

X Windows . 4-23
Per-Window Double-Bu�ering 4-23
Deeper Overlay Planes 4-23
Color Maps . 4-23
Backing Store . 4-24
Backing Store Exceptions 4-24
Overlay Planes/Image Planes 4-25
Supported X Windows Visuals 4-26
X11 Cursor . 4-26
How to Read the Supported Visuals Table 4-26

Starbase Echos . 4-28
Implementation . 4-28
Exceptions . 4-28
CRX, Dual CRX, GRX 4-28
CRX-24, CRX-24Z 4-29

To Set Up the Device 4-30
To Create Special Device Files (mknod) 4-30
For Series 400 . 4-30

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

For the Series 700 4-30
For Dual CRX . 4-31

To Compile and Link with the Device Driver 4-33
For Shared Libraries 4-33
Examples . 4-33

For Archive Libraries 4-34
Examples . 4-34

To Open and Initialize the Device for Output 4-35
Syntax Examples . 4-35
C programs: . 4-35
FORTRAN77 programs: 4-35
Pascal programs: 4-35

Parameters for gopen 4-35
Special Device Characteristics 4-38
Device Coordinate Addressing 4-38

If You See the Technicolor E�ect 4-40
For generic X Windows 4-40
For HP VUE . 4-40

Color Map Sharing Starbase and X Windows 4-42
TRANSPARENT IN OVERLAY VISUAL (CRX-24, CRX-24Z) 4-45
CMAP_FULL Color Map 4-46
CMAP_FULL Translations 4-47
Block Read and Block Write 4-48
Index Color Attributes 4-48
Plane-oriented Operations 4-48
Cursors . 4-49

Pattern Fills . 4-49
Background and Clear Control 4-49

Translation from Standard to Modi�ed Color Map Indices . . . 4-50
CMAP_FULL Color Map Index Translation 4-51
Starbase Functionality 4-55
Calls not Supported 4-55
PowerShade or CRX-24Z on CRX-24 4-56
Using PowerShade on CRX, Dual CRX or High Resolution

Integrated Graphics Color 4-56
Conditional Support of Starbase Calls 4-57
Supported Gescapes 4-61
Additional Gescapes for the CRX-24 and CRX-24Z 4-61

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Additional Gescapes for the CRX-24Z 4-61
Additional Gescapes Supported with PowerShade 4-61

Exceptions to Gescape Support 4-62

5. CRX-48Z Device Driver
High Performance Grayscale and Color Graphics 5-1
For More Information 5-1
Device Description . 5-2
CRX-48Z (A2091A) 5-2
Overlay Plane Rendering 5-3
Optimized 3D Shaded Polygon Performance 5-4

The ITE and the CRX-48Z 5-5
Frame Bu�er Organization 5-5
The Frame Bu�er . 5-7
Physical Address Space 5-7
To Access the Frame Bu�er Directly 5-8

X Windows . 5-10
Overlay Planes/Image Planes 5-10
Per-Window Double-Bu�ering and Color Maps 5-10
X11 Cursor and Starbase Echos 5-11
Supported X Windows Visuals 5-12
How to Read the Supported Visuals Table 5-12

To Set Up the Device 5-14
To Create Special Device Files (mknod) 5-14

To Compile and Link with the Device Driver 5-15
For Shared Libraries 5-15
Examples . 5-15

For Archive Libraries 5-16
Examples . 5-17

To Open and Initialize for Output 5-18
Syntax Examples . 5-18
C programs: . 5-18
FORTRAN 77 programs: 5-18
Pascal programs: 5-18

Parameters for gopen 5-19
Special Device Characteristics 5-21
Device Coordinate Addressing 5-21
Device Defaults . 5-21

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

Dither Default . 5-21
Raster Echo Default 5-21
Plane Mask Defaults 5-21
Semaphore Default 5-22
Line Type Defaults 5-22

Color . 5-23
Default Color Map 5-23

Starbase Functionality 5-24
Calls not Supported 5-24
Conditional Support of Starbase Calls 5-25
Supported Gescapes 5-28
Exceptions to Gescape Support 5-29

6. The HP Entry Level VRX Device Driver
Device Description . 6-1
Overview of Device Capabilities 6-2
Setting Up the Special Device Files (mknod) 6-2

Linking the Driver . 6-3
Shared Library Examples 6-3
For Archive Libraries 6-4
Examples . 6-4

Initialization . 6-5
Syntax Examples . 6-5
C Programs: . 6-5
FORTRAN 77 Programs: 6-5
Pascal Programs: 6-6

Porting Guide . 6-6
Di�erences from other Starbase Device Drivers 6-6

Gray Scale Con�gurations 6-7
Bu�ering . 6-7
Device Coordinate Addressing 6-8
Direct Frame Bu�er Access 6-8
Device Speci�c Performance Tips 6-9
X Windows . 6-10
Supported X Windows Visuals 6-10
How to Read the Supported Visuals Tables 6-10
X11 Cursors and Starbase Echos 6-11
HP Entry-Level VRX (EVRX) 6-11

Contents-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Starbase Unsupported Commands 6-12
Starbase Conditionally Supported Commands 6-13

Gescapes . 6-14

7. The PersonalVRX Device Driver
Device Description . 7-1
High-Performance Bit-per-pixel Support 7-4
Multiple-plane bit-per-pixel Support 7-4
Bit-per-Pixel Replacement Rule per Plane 7-4

Setting Up the Device On Series 300 and 400 7-5
DIO-II Switch Settings 7-5
Example Program to Reset the PersonalVRX 7-9
Address Space Usage 7-9
Special Device Files (mknod) 7-10

Series 700 System Con�guration 7-11
To Compile and Link with the Device Driver 7-11
For Shared Libraries 7-11
Examples . 7-11

Archive Libraries . 7-12
Examples . 7-12

X Windows . 7-13
Supported X Windows Visuals 7-13
How to Read the Supported Visuals Tables 7-13
X11 Cursors and Starbase Echos 7-15
PersonalVRX Display, 98704 Device Driver 7-15
PersonalVRX Display, 98705 Device Driver 7-16

Usage and Restrictions 7-17
hp98704 . 7-17
hp98705 . 7-17
hp98704 Transparency 7-17
Cursors . 7-18

Device Initialization . 7-20
Parameters for gopen: 7-20
Syntax Examples . 7-22
For C Programs: 7-22
For FORTRAN77 Programs: 7-22
For Pascal Programs: 7-22

Special Device Characteristics 7-22

Contents-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

O�screen Memory Usage 7-22
Fast Alpha and Font Manager Functionality 7-23
Starbase Functionality 7-24
Commands Not Supported 7-24
Number of Light Sources 7-25
Commands Conditionally Supported 7-26

Gescapes . 7-28
Performance Tips . 7-29
hp98704 and hp98705 7-29
hp98704 . 7-29
hp98705 . 7-30
Rendering (hp98705) 7-30
Raster Operations (hp98705) 7-31

Cautions . 7-32
hp98705 . 7-32

8. The SRX Device
Device Description . 8-1
Setting Up the Device On Series 300 8-5
Switch Settings . 8-5
Example Program To Reset the SRX 8-7

Setting Up the Device On Series 800 8-7
Special Device Files (mknod) On Series 300 8-8
Special Device Files (mknod) On Series 800 8-9
Linking the Driver . 8-10
Shared Libraries . 8-10
Examples . 8-10

Archive Libraries . 8-11
Examples . 8-11

Device Initialization . 8-12
Parameters for gopen 8-12
Syntax Examples . 8-14
For C Programs: 8-14
For FORTRAN77 Programs: 8-14
For Pascal Programs: 8-14

Special Device Characteristics 8-14
O�screen Memory Usage 8-14

Device Defaults . 8-15

Contents-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

Number of Color Planes 8-15
Dither Default . 8-15
Raster Echo Default 8-16
Color Planes Defaults 8-16
Semaphore Default 8-16
Line Type Defaults 8-17
Default Color Map 8-17
Red, Green, and Blue 8-19

X Windows . 8-20
Supported X Windows Visuals 8-20
How to Read the Supported Visuals Tables 8-20
X11 Cursors and Starbase Echos 8-22
HP 98720 Display 8-22

Starbase Functionality 8-24
Commands Not Supported 8-24
Commands Conditionally Supported 8-25
Splines . 8-26

Fast Alpha and Font Manager Functionality 8-27
Parameters for gescape 8-27
Performance Tips . 8-28
hp98720 . 8-29
hp98721 . 8-29

Cautions . 8-31

9. The TurboSRX Device
Device Description . 9-1
X Windows . 9-4
Supported X Windows Visuals 9-4
How to Read the Supported Visuals Tables 9-4
X11 Cursors and Starbase Echos 9-6
HP 98730 Display 9-6
HP 98731 Display 9-7

Cursors . 9-8
Overlayed Software Cursors 9-8

The Hardware Cursor 9-10
Z-Bu�er . 9-10
Opening Windows 9-11

Setting Up the Device On Series 300 9-12

Contents-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

DIO-I Switch Settings 9-12
DIO-II Switch Settings 9-14
Example Program to Reset the TurboSRX 9-17

Address Space Usage On Series 300 9-17
Special Device Files (mknod) On Series 300 9-18
Setting Up the Device on the Series 800 9-20
Special Device Files (mknod) On the Series 800 9-20
Linking the Driver . 9-21
Shared Libraries . 9-21
Examples . 9-21

Archive Libraries . 9-22
Examples . 9-22

Usage and Restrictions 9-23
HP 98730 . 9-23
Transparency Index 9-24
HP 98731 . 9-24
X Window System See Thru Color 9-25

Device Initialization . 9-26
Parameters for gopen 9-26
Syntax Examples . 9-28
For C Programs: 9-28
For FORTRAN77 Programs: 9-28
For Pascal Programs: 9-28

Special Device Characteristics 9-28
O�screen Memory Usage 9-28

Device Defaults . 9-29
Number of Color Planes 9-29
Dither Default . 9-29
Raster Echo Default 9-29
Color Planes Defaults 9-30
Semaphore Default 9-30
Line Type Defaults 9-30
Default Color Map 9-31
Red, Green and Blue 9-32

Starbase Functionality 9-34
Commands Not Supported 9-34
Commands Conditionally Supported 9-35
HP 98730 Device Driver 9-35

Contents-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP 98731 Device Driver 9-36
block read, block write (HP 98731) 9-37

Fast Alpha and Font Manager Functionality 9-37
Parameters for gescape 9-39
Performance Tips . 9-41
HP 98730 and HP 98731 Device Drivers 9-41
HP 98730 Device Driver 9-41
HP 98731 Device Driver 9-42
Screen Clears . 9-42
Rendering . 9-43
Raster Operations 9-43

Cautions . 9-44
HP 98731 Device Driver 9-44

10. The TurboVRX Device Driver
Device Description . 10-1
Series 300 and 400 10-2
Series 700 . 10-2

HP 98735 and HP 98765 10-4
Display modes . 10-6
HP 98736 and HP 98766 Advanced Features 10-7
Texture mapping 10-7
Anti-aliasing . 10-8
Contouring . 10-8

Functional Conicts 10-9
High Performance Bit-Per-Pixel Support 10-9
Multiple-Plane Bit-Per-Pixel Support 10-10
Bit-per-Pixel Replacement Rule per Plane 10-10

Setting up the TurboVRX for the Series 300/400 10-10
Example Program to Reset the HP 98736 10-11
DIO-II Switch Settings 10-12
Bus Master Daisy Chain 10-14
System Parameters 10-15

Setting up the TurboVRX on the Series 700 10-15
Example Program to Reset the HP 98766 10-16

Special Device Files (mknod) 10-17
mknod on the Series 300 10-17
mknod on the Series 700 10-18

Contents-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

Linking the Driver . 10-19
Shared Libraries . 10-19
Examples . 10-19

Archive Libraries . 10-19
Examples . 10-20

X Windows . 10-21
Supported X Windows Visuals 10-21
How to Read the Supported Visuals Tables 10-21
X11 Cursors and Starbase Echos 10-23
TurboVRX Display 10-23

Usage and Restrictions 10-24
Transparency Index 10-25
X Window System See Through Color 10-25
HP 98736 and HP 98766 10-25

Cursors . 10-25
Device Initialization . 10-27
Parameters for gopen 10-27
Syntax Example . 10-29
For C Programs: 10-29
For FORTRAN77 Programs: 10-29
For Pascal Programs: 10-29

Special Device Characteristics 10-30
O�screen Memory Usage 10-30
Device Defaults . 10-30
Number of Color Planes 10-30
Dither Default . 10-30
Raster Echo Default 10-31
Color Planes Defaults 10-31
Semaphore Default 10-31
Line Type Default 10-32
Default Color Map 10-32
Red, Green and Blue 10-34

Starbase Functionality 10-36
Commands not Supported on the HP 98735 and HP 98765 . . 10-36
Exceptions to Standard Starbase Support 10-37
HP 98735 and HP 98765 10-37
HP 98736 and HP 98766 10-37

Number of Light Sources 10-39

Contents-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

Fast Alpha and Font Manager 10-39
Gescapes . 10-40
Performance Tips . 10-43
General . 10-43
For the HP 98735 and HP 98765 10-44

Rendering (HP 98736 and HP 98766) 10-46
Raster Operations (HP 98736 and HP 98766) 10-47

Cautions . 10-48

11. The HP 300H Device Driver
Device Description . 11-1
O�screen Memory . 11-2
HP 98549A and HP 319C+ 11-2

Setting Up the Device 11-3
Switch Settings . 11-3
Special Device Files (mknod) 11-3
Linking the Driver 11-4
Shared Libraries 11-4
Examples . 11-4
Archive Libraries 11-4
Examples . 11-5

Initialization . 11-5
Parameters for gopen 11-5
Syntax Examples 11-6
For C Programs: 11-6
For FORTRAN77 Programs: 11-6
For Pascal Programs: 11-7

Special Device Characteristics 11-7
X Windows . 11-7
Supported X Windows Visuals 11-7
How to Read the Supported Visuals Tables 11-7

Starbase Functionality 11-10
Commands Not Supported 11-10
Commands Conditionally Supported 11-10

Fast Alpha and Font Manager Functionality 11-11
Parameters for gescape 11-12
Performance Tips . 11-12
Cautions . 11-12

Contents-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

12. The HP 300L Device Driver
Device Description . 12-1
O�screen Memory . 12-2

Setting Up the Device 12-3
Switch Settings . 12-3
Special Device Files (mknod) 12-3
Linking the Driver 12-3
Shared Libraries 12-3
Examples . 12-4
Archive Libraries 12-4
Examples . 12-4

Initialization . 12-6
Parameters for gopen 12-6
Syntax Examples 12-7
For C Programs: 12-7
For FORTRAN77 Programs: 12-7
For Pascal Programs: 12-7

Special Device Characteristics 12-7
X Windows . 12-7
Supported X Windows Visuals 12-7
How to Read the Supported Visuals Tables 12-8

Starbase Functionality 12-10
Commands Not Supported 12-10
Commands Conditionally Supported 12-10

Fast Alpha and Font Manager Functionality 12-11
Parameters for gescape 12-12
Performance Tips . 12-12
Cautions . 12-13

13. MH, C+, CH, CHX, VRX Color: (Second Generation Wireframe
Graphics)
Overview . 13-1
Device Architecture . 13-3
HP 98548A (MH) . 13-3
HP 98549A (C+) and Model 319C (Integrated Graphics) . . 13-3
HP 98550A (CH) and A1416A (VRX Color) 13-4
HP 98556A . 13-6
Frame Bu�er Organization 13-6

Contents-16

FINAL TRIM SIZE : 7.5 in x 9.0 in

Overlay Transparency 13-7
Hardware Cursor Support 13-7
Double-Bu�er Support 13-7
Multiple-Plane Bit Per Pixel Support 13-8
Pixel Replication . 13-8
Polygon Interior Fill Tiling 13-8
3-Operand Raster Combinations 13-8

System Administration 13-11
Con�guring the Graphics Hardware 13-11
Con�guring the Kernel 13-13
Creating Device Special Files 13-13
Example mknod(1M) Commands 13-13

Starbase Graphics Library 13-15
Starbase Access of the Graphics Hardware 13-15
HP 98549A . 13-15
Frame Bu�er Access 13-15
O�screen Memory Usage 13-19
Multiple-Plane Bit Per Pixel Support 13-19
Pixel Replication 13-19
Polygon Interior Fill Tiling 13-20
3-Operand Raster Combinations 13-20
Overlay Transparency 13-20
Device Coordinate Addressing 13-20
Retained Raster 13-21
Starbase Echoes 13-22

Starbase Device Drivers 13-22
Linking Starbase Programs 13-24
Shared Libraries 13-24
Archive Libraries 13-24

Starbase Initialization via gopen(3G) 13-26
Parameters for gopen 13-26
Example gopen Calls 13-28

Starbase Calls That Are Not Supported 13-29
Starbase Calls That Are Conditionally Supported 13-30
Starbase Gescapes That Are Supported 13-32
Environment Variables 13-33
Support of Other Graphics Libraries 13-33
Fast Alpha / Font Manager 13-33

Contents-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

Graphical Kernel System (GKS) 13-34
Starbase Radiosity and Ray Tracing 13-34

X Window System . 13-35
How X Windows Uses the Graphics Interface 13-35
Accessing Frame Bu�er Memory 13-36
O�screen Memory 13-36
X Cursors (and Starbase Echoes) 13-36
Support for Backing Store and Save Under 13-36

Retained Raster Support 13-37
Transparent Windows 13-38

Supported Server Modes 13-38
Supported Visuals 13-38
How to Read the Supported Visuals Tables 13-38

The Internal Terminal Emulator 13-41
How the ITE Uses the Graphics Interface 13-41
O�screen Memory 13-44

14. The VRX Mono Display
Device Description . 14-1
Interactions with the ITE 14-1
Windows Operation in the Image Plane 14-1
Windows with and without a Backing Store 14-1
Multiple-Plane Bit/Pixel Support 14-2
16�16 Fill Pattern 14-2
Three-Operand Raster Combinations 14-2

Frame Bu�er Access . 14-3
Setting Up the Device 14-4
Switch Settings . 14-4
Special Device Files (mknod) 14-5
Linking the Driver 14-5
Shared Libraries 14-5
Examples . 14-6
Archive Libraries 14-6
Examples . 14-7

Initialization . 14-8
Parameters for gopen 14-8
Syntax Examples 14-9
C programs: . 14-9

Contents-18

FINAL TRIM SIZE : 7.5 in x 9.0 in

FORTRAN77 programs: 14-9
Pascal programs: 14-9

Special Device Characteristics 14-9
Device Coordinate Addressing 14-9

Starbase Functionality 14-10
Commands Not Supported 14-10
Conditionally Supported Procedures 14-11

Fast Alpha and Font Manager Functionality 14-11
Parameters for gescape 14-12
Performance Tips . 14-13

15. The HP 9836A Device Driver
Device Description . 15-1
Setting Up the Device 15-2
Switch Settings . 15-2
Special Device Files (mknod) 15-2
Linking the Driver 15-3
For Archive Libraries 15-4
Examples . 15-4

Initialization . 15-5
Parameters for gopen 15-5
Syntax Examples 15-5
C Syntax Examples 15-5
FORTRAN77 Syntax Examples 15-6
Pascal Syntax Examples 15-6

Special Device Characteristics 15-6
Starbase Functionality 15-7
Exceptions to Standard Starbase Support 15-7
Commands Not Supported 15-8

Index

Contents-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

2-1. portable sb window on a graphics device which can render
solids. 2-3

2-2. portable sb window on a graphics device which cannot render
solids. 2-4

2-3. motif sb1 window on a graphics device which can render solids. 2-30
2-4. Sample Widget Hierarchy 2-34
2-5. motif sb2 window on a graphics device which can render solids. 2-46
2-6. motif sb3 window with solids rendering/no overlay planes. . . 2-54
2-7. motif sb3 window with solids rendering and overlay planes. . 2-54
4-1. Controlling Display (CRX, Dual CRX, GRX, HP 705, HP 710,

HP 715, HP 725) 4-15
4-2. Controlling Display of the CRX-24 and CRX-24Z 4-16
4-3. Physical Address Space 4-18
4-4. Frame Bu�er Mapping in Memory 4-20
4-5. Dual CRX - Dual Monitor Graphics Card 4-32
4-6. Device Coordinates 4-38
5-1. Physical Address Space 5-7
5-2. Frame Bu�er Mapping in Memory 5-9
6-1. 6-2
13-1. HP 98549A Physical Address Space 13-4
13-2. HP 98548A/98550A Physical Address Space 13-5
13-3. E�ects of 3-Operand Replacement Rule 13-10
13-4. HP 98548A Switch Settings for Series 300 13-12
13-5. HP 98549A/98550A Switch Settings for Series 300 13-12
13-6. Frame Bu�er to VM Mapping for HP 98548A/98550A 13-18
13-7. Device Coordinates for the HP 98548A/98550A 13-21
13-8. ITE on the HP 98548A (MH) Display 13-41
13-9. ITE on the HP 98549A (C+) Display 13-42
13-10. ITE on the HP 98550A (CH) Display 13-43
14-1. 14-4

Contents-20

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. Bit-Mapped Displays Product Support Information 1-4
1-1. Bit-Mapped Displays Product Support Information (continued) 1-5
1-2. Bit-Mapped Displays Product Support Information 1-6
1-2. Bit-Mapped Displays Product Support Information (continued) 1-7
1-3. Input Devices Product Support Information 1-8
1-4. Graphics Hardcopy Product Support Information 1-10
1-4. Graphics Hardcopy Product Support Information (continued) 1-11
1-5. Other Output Drivers Product Support Information 1-12
1-6. Bit-Mapped Displays/Memory Drivers HP-UX Revisions . . . 1-13
1-6. Bit-Mapped Displays/Memory Drivers HP-UX Revisions

(continued) . 1-14
1-6. Bit-Mapped Displays/Memory Drivers HP-UX Revisions

(continued) . 1-15
1-7. Input Devices HP-UX Revisions 1-16
1-8. Graphics Hardcopy HP-UX Revisions 1-16
1-9. Other Output Drivers HP-UX Revisions 1-16
1-10. HP-UX Releases and Starbase Revision Levels 1-18
1-11. Series 300 Formatters and Release Levels 1-19
1-12. Series 400 Formatters and Release Levels 1-19
1-13. Series 700 Formatters and Release Levels 1-19
1-14. Series 800 Formatters and Release Levels 1-20
1-15. Bit-Mapped Displays 1-21
1-16. Bit-Mapped Displays 1-22
1-17. Bit-Mapped Displays 1-23
1-18. Bit-Mapped Displays 1-24
1-19. Graphics Libraries Supported in the Di�erent Window Systems 1-25
3-1. Line Type Defaults 3-15
3-2. Starbase Default Color Table 3-16
3-3. Driver Selection at gopen 3-27
4-1. Integrated Graphics Con�gurations for Series 700 Workstations 4-2

Contents-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

4-2. Displays Support by the hpgcrx Driver 4-5
4-3. ITE Escape Sequences 4-17
4-4. Supported Frame Bu�er Con�gurations 4-22
4-5. Supported Visuals 4-27
4-6. HP 705/710/715/725 Default Shared Color Map 4-43
4-7. GRX Default Color Map 4-43
4-8. CRX Default Shared Color Map 4-44
4-9. Translation Table for standard 6j6j6 values to modi�ed 6j6j6

values: . 4-51
4-10. Translation Table for standard 3:3:2 values to modi�ed 3:3:2

values . 4-53
5-1. Bank Selection . 5-6
5-2. CRX-48Z Supported Visuals 5-13
5-3. Default Line Types 5-22
5-4. Default Color Table 5-23
6-1. HP Entry-Level VRX (EVRX) 6-10
6-2. Windows in Image Planes 6-11
6-3. HP Entry-Level VRX (EVRX) 6-11
6-4. Windows in Image Planes 6-11
7-1. PersonalVRX Display Types 7-14
7-2. Windows in Overlay Planes 7-14
7-3. Windows in Image Planes 7-15
8-1. HP 98720 Frame Bu�er Locations 8-5
8-2. Control Space Settings (External I/O) 8-6
8-3. 8-17
8-4. Default Color Table 8-18
8-5. SRX Display Types 8-21
8-6. Windows in Overlay Planes 8-21
8-7. Windows in Image Planes 8-22
9-1. TurboSRX Display Types 9-5
9-2. Windows in Overlay Planes 9-5
9-3. Windows in Image Planes 9-6
9-4. DIO-I Control Space Settings (External I/O) 9-13
9-5. DIO-II Control Space Settings 9-15
9-6. 9-30
9-7. Default Color Table 9-31
10-1. Display Modes Supported (Single Bu�er) 10-6
10-2. Display Modes Supported (Double Bu�er) 10-6

Contents-22

FINAL TRIM SIZE : 7.5 in x 9.0 in

10-3. HP 98735 and HP 98736 Display Types 10-22
10-4. HP 98765 and HP 98766 Display Types 10-22
10-5. Windows in Overlay Planes 10-22
10-6. Windows in Image Planes 10-23
11-1. Display Types . 11-8
11-2. Windows in Image Planes 11-8
11-3. Display Types . 11-8
11-4. Windows in Image Planes 11-8
11-5. Display Types . 11-9
11-6. Windows in Image Planes 11-9
12-1. Display Types . 12-8
12-2. Windows in Image Planes 12-8
12-3. Display Types . 12-9
12-4. Windows in Image Planes 12-9
13-1. The Second Generation Wireframe Family 13-1
13-2. Example 2-Operand Raster Combination 13-9
13-3. Example 3-Operand Raster Combination 13-9
13-4. Switch Settings for the Series 300 13-11
13-5. Starbase Drivers for Second Generation Wireframe 13-23
13-6. Valid driver Name Strings 13-27
13-7. Windows on HP 98548A 13-39
13-8. Windows on HP 98549A (6-Plane Mode Only) 13-39
13-9. Windows in HP 98550A Overlay Planes 13-39
13-10. Windows in HP 98550A Image Planes 13-40
14-1. Switch Settings Supported on Series 300 14-4

Contents-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

Introduction and Device Comparison

This manual documents the Starbase device drivers for the HP 9000 computers.

Manual Organization

This manual contains an introduction section, a section on developing a Starbase
application which provides helpful techniques that are portable and work across
a wide range of devices, and sections for each device driver and formatter
with device-dependent information. The Portable Techniques section covers
application development using either Xlib calls or Motif. The appendix contains
the graphics escape (gescape) calls.

For each device, the following information is provided:

Device Description|Key device features relative to using Starbase.
Setting up the Device|Hardware and software con�guration.
Device Initialization|The device's default parameters, how to open the device
in a program, etc.
Starbase Functionality|How Starbase works on the device, what graphic
escape sequences (gescapes) are provided, etc.

INTRO-COMP 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Other Useful Documents

The manual assumes that you understand the Starbase graphics library and have
access to the following documents:

Introduction to Graphics|This manual is a very low-level introduction to the
most basic of computer graphics concepts. If you have never had experience
with computer graphics, this manual is an excellent ice-breaker.

Beginner's Guide to Using Starbase|This document is for those who know
the basic concepts of computer graphics, but who have had no experience with
Hewlett-Packard's Starbase graphics library.

Starbase Reference|This manual is a small \brick" that covers only Starbase
procedures. Included are syntax, semantics, and a discussion of functionality.

Starbase Pocket References|These manuals, one each for C, FORTRAN, and
Pascal, are pocket-sized references that cover only the procedures' names,
types, and parameters. They are similar in content to the corresponding
sections of the Quick Reference appendix in this manual, except it is in a
convenient pocket-sized format. For a discussion of functionality above and
beyond what the Pocket References have, see the Starbase Reference.

Starbase Display List Programmer's Manual|This manual relates to Starbase
Display List.

Starbase Graphics Techniques|This 3-volume manual contains more in-depth
explanations of Starbase routines and their use.

Manuals provided with your graphics devices.

1-2 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Introduction Chapter

The \Introduction and Device Comparison" has a number of tables to help you
�nd and compare driver information. They contain the following information.

The products that are supported for each device driver.
The software revisions that a�ect each driver.
The revisions that a�ect each formatter.
The drivers supported on each computer.
The graphics libraries that are supported on each window system.

The following tables provide a reference lists of supported products and device
information to be used with them.

Important! You can have fast access to speci�c information about your
graphics device (product name, device driver and capabilities
supported) through the graphinfo utility installed with HP-
UX 9.0 and later revisions. Simply type /usr/bin/graphinfo.
For a detailed description of this utility, see the manpage on
graphinfo(1G) in the Starbase Reference Manual .

INTRO-COMP 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Product Support Information

Table 1-1. Bit-Mapped Displays Product Support Information

Device
Name

Device
Path

Device
Driver

Libraries
Archive or
Shared

hpgcrx Family

HP GRX
HP CRX
HP Dual CRX
HP CRX-24
HP CRX-24Z
Integrated Grayscale1

Integrated Color2

/dev/crt

or
/dev/screen/

<dev name>3

hpgcrx libddgcrx.a

libddgcrx.sl

hpcrx48z

HP CRX-48Z /dev/screen/

<dev name>

hpcrx48z libddcrx48z.a

libddcrx48z.sl

1 Integrated Grayscale includes the integrated graphics of the grayscale version of the Series 705,
710, 715, and 725.

2 Integrated Color includes the integrated graphics of the color version of the Series 705, 710,
715, and 725.

3 CRX and GRX will be supported in raw mode (using device path /dev/crt) until HP-UX 10.0.

1-4 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-1.

Bit-Mapped Displays Product Support Information (continued)

Device
Name

Device
Path

Device
Driver

Libraries
Archive or
Shared

HP Entry-Level VRX

HP EVRX /dev/crt

or
/dev/screen/

<dev name>

hpevrx libddevrx.a

libddevrx.sl

PersonalVRX P1
PersonalVRX P2
PersonalVRX P3

/dev/crt1

or
/dev/screen/

<dev name>

hp98704

hp98705

libdd98704.a

libdd98705.a

libdd98704.sl

libdd98705.sl

1 PersonalVRX will be supported in raw mode (using device path /dev/crt) until HP-UX 10.0.

INTRO-COMP 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-2. Bit-Mapped Displays Product Support Information

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

SRX HP 98720A
HP 98721
HP 319SRX
X11

/dev/crt

or
/dev/screen/

<dev name>

hp98720

hp98721

libdd98720.a

libdd98721.a

libdd98720.sl

libdd98721.sl

TurboSRX HP 98730
HP 98731
X11

/dev/crt

or
/dev/screen/

<dev name>

hp98730

hp98731

libdd98730.a

libdd98731.a

libdd98730.sl

libdd98731.sl

TurboVRX T1
TurboVRX T2
TurboVRX T3

HP 98735A
HP 98736A
HP 98736B

/dev/crt1

or
/dev/screen/

<dev name>

hp98735

hp98736

libdd98735.a

libdd98736.a

libdd98735.sl

libdd98736.sl

TurboVRX T2
TurboVRX T4

HP 98765A
HP 98766A
X11

/dev/crt1

or
/dev/screen/

<dev name>

hp98765

hp98766

libdd98765.a2

libdd98766.a2

libdd98735.sl

libdd98736.sl

libdd98765.sl2

libdd98766.sl2

1 TurboVRX will be supported in raw mode (using device path /dev/crt) until HP-UX 10.0.

2 Available only on Series 700. Can be used interchangeably with the HP 98735/36 drivers on
the Series700.

1-6 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-2.

Bit-Mapped Displays Product Support Information (continued)

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

VRX Mono HP A1096A
X11

/dev/crt

or
/dev/screen/

<dev name>

hpa1096 libdda1096.a

libdda1096.sl

VRX Color HP A1416A
X11

/dev/crt

or
/dev/screen/

<dev name>

hp98550 libdd98550.a

libdd98550.sl

HP 300
Hi-Res
Display

HP 318M
HP 98544B
HP 98545A
HP 98547A
HP 98549A
X11

/dev/crt

or
/dev/screen/

<dev name>

hp300h libdd300h.a

libdd300h.sl

HP 300
Lo-Res
Display

HP 98542A
HP 98543A
HP 310
X11

/dev/crt

or
/dev/screen/

<dev name>

hp300l libdd300l.a

libdd300l.sl

C+
MH
C+
CH

HP 319C+
HP 98548A
HP 98549A
HP 98550A
X11

/dev/crt

or
/dev/screen/

<dev name>

hp98550 libdd98550.a

libdd98550.sl

CHX HP 98556A
HP 98549A
HP 98550A
X11

/dev/crt

or
/dev/screen/

<dev name>

hp98556 libdd98556.a

libdd98556.sl

INTRO-COMP 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-3. Input Devices Product Support Information

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

HP-HIL
Button Box

HP 46086A /dev/hilx

or
/dev/hilx_x

hp-hil libddhil.a

libddhil.sl

HP-HIL
Keyboard

HP 46020A
HP 46021A

/dev/hilx

or
/dev/hilx_x

hp-hil libddhil.a

libddhil.sl

HP-HIL
Knobs

HP 46083A
HP 46084A

/dev/hilx

or
/dev/hilx_x

hp-hil libddhil.a

libddhil.sl

HP-HIL
Mouse

HP 46060A
HP 46060B
HP 46095A
with
HP 46094A

/dev/hilx

or
/dev/hilx_x

hp-hil libddhil.a

libddhil.sl

1-8 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-3. Input Devices Product Support Information (continued)

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

HP-HIL
Tablets

HP 45911A
HP 46087A
HP 46088A

/dev/hilx hp-hil libddhil.a

libddhil.sl

HP-HIL
Trackball

HP 80409A /dev/hilx

or
/dev/hilx_x

hp-hil libddhil.a

libddhil.sl

Keyboards HP 46020A
HP 46021A
HP ASCII
Terminals

/dev/tty kbd and
lkbd

libddkbd.a

libddlkbd.a

libddkbd.sl

libddlkbd.sl

INTRO-COMP 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-4. Graphics Hardcopy Product Support Information

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

HP-GL HP 7440A
HP 7470A
HP 7475A
HP 7550A
HP 7570A
HP 7575A
HP 7576A
HP 7580A/B
HP 7585B
HP 7586B
HP 7595A
HP 7596A
HP 9111A
HP C1600A1

HP C1601A1

/dev/hpgl hpgl2 or
hpgls3

libddhpgl.a

libdvio.a

libddhpgl.sl

HP-GL
CADplt

HP 7510A
HP 7550A
HP 7570A
HP 7575A
HP 7576A
HP 7580B4

HP 7585B4

HP 7586B
HP 7595A
HP 7596A
HP C1600A1

HP C1601A1

/dev/hpgl CADplt libddCADplt.a

libddCADplt.sl

1 Only in emulate mode

2 HP-GL devices with HP-IB interface.

3 HP-GL devices with RS-232 interface.

4 With HP-GL/2 plug-in cartridge.

1-10 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-4.

Graphics Hardcopy Product Support Information (continued)

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

HP-GL/2
CADplt2

HP 7595B
HP 7596B
HP 7599A
HP C1600A
HP C1601A
HP C1602A1

HP C1620A
HP C1625A
HP C1627A
HP C1629A
HP C1631A2

/dev/hpgl2 CADplt2 libddCADplt.a

libddCADplt.sl

1 With HP-GL/2 plug-in cartridge.

2 This product is supported with these conditions: the printer is con�gured for a PCL-5 device,
the only supported paper sizes are A (standard 8.5 x 11 inches) and A4 (the European
equivalent of size A), and there is no gamma or color correction available in the CADplt2
driver for the PJ-XL300 dark hues. Color correction is left to the user.

INTRO-COMP 1-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-5. Other Output Drivers Product Support Information

Device
Name

Supported
Products

Device
Path

Device
Driver

Libraries
Archive or
Shared

HP-CGM hpcgm libddhpcgm.a

libddhpcgm.sl

HP SBV1 hpsbv libddsbv.a

libddsbv.sl

Graphics
Terminals

HP 150A
HP 150 II
HP 2393A
HP 2397A
HP 2623A
HP 2627A
HP 2625A
HP 2628A

/dev/tty hpterm libddhpterm.a

libddhpterm.sl

1 Driver outputs a geometry meta�le.

1-12 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HP-UX Revision Support

Table 1-6.

Bit-Mapped Displays/Memory Drivers HP-UX Revisions

Device
Name

Device
Type

Series
300

Series
400

Series
700

Series
800

hpgcrx Family

GRX HP A1924A | 8.0 - 9.0 8.01 - 9.01 |

CRX HP A1659A | 8.0 - 9.0 8.01 - 9.01 |

Dual CRX HP A2269A | | 8.07 - 9.01 |

CRX-24 HP A1439A | | 8.07 - 9.01 |

CRX-24Z HP A1454A | | 8.07 - 9.01 |

HP 705 Gray HP A2289A | | 9.01 |

HP 705 HiRes HP A2248A | | 9.01 |

HP 705 MedRes HP A2249A | | 9.01 |

HP 715 Gray HP A2610A | | 9.01 |

HP 715 HiRes HP A2613A | | 9.01 |

HP 715 MedRes HP A2612A | | 9.01 |

HP 710 Gray HP A2208A | | 8.07 - 9.01 |

HP 710 HiRes HP A2213A | | 8.07 - 9.01 |

HP 710 MedRes HP A2210A | | 8.07 - 9.01 |

HP 725 HiRes HP A2627A | | 9.01 |

HP 725 MedRes HP A2626A | | 9.01 |

INTRO-COMP 1-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-6.

Bit-Mapped Displays/Memory Drivers HP-UX Revisions

(continued)

Device
Name

Device
Type

Series
300

Series
400

Series
700

Series
800

hpcrx48z

CRX-48Z HP A2091A | | 9.01 |

HP Entry Level VRX

HP EVRX HP 425E
HP 382

| 8.0 - 9.0 | |

PersonalVRX
PersonalVRX

HP 98704
HP 98705

7.03 - 9.0 7.03 - 9.0 8.01 - 9.01 |

SRX HP 98720
HP 98721

5.18 - 9.0 | | 1.1 - 8.0

TurboSRX HP 98730 6.2 - 9.0 | | 3.0 - 8.0

TurboVRX T1
TurboVRX T2
TurboVRX T3

HP 987351

HP 98736A2

HP 98736B2

7.033 7.03 - 9.03 4 |

TurboVRX T2
TurboVRX T4

HP 987651

HP 987662
| | 8.01 - 9.01 |

VRX Mono HP A1096A | 7.03 - 9.0 | |

VRX Color HP A1416A | 7.03 - 9.0 | |

1 Does not make use of accelerator.

2 Makes use of accelerator.

3 Only supported on selected models of Series 300 and Series 400.

4 The HP 98735/36 drivers may be used with the HP 98765A and HP 98766A products. The HP
98735A/36A/B physical devices are not supported on the Series 700.

1-14 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-6.

Bit-Mapped Displays/Memory Drivers HP-UX Revisions

(continued)

Device
Name

Device
Type

Series
300

Series
400

Series
700

Series
800

MH HP 98548A 5.5 - 9.0 | | |

C+ HP 98549A 5.5 - 9.0 | | |

CH HP 98550A 5.5 - 9.0 | | 1.2 - 8.0

CHX HP 98556A 6.0 - 9.0 | | 2.0 - 8.0

HP 300
Hi Res
Display

HP 98544A/B
45A
47A

5.0 - 9.0 | | |

HP 300
Lo Res
Display

HP 98542A
HP 98543A

5.0 - 9.0 | | |

SOX11 Starbase
on X11

6.5 - 9.0 7.03 - 9.0 8.01 - 9.01 3.0 - 9.0

HPVMX HP Virtual
Memory X

| | 9.0 - 9.01 |

INTRO-COMP 1-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-7. Input Devices HP-UX Revisions

Device
Name

Series
300

Series
400

Series
700

Series
800

Keyboards 5.0 - 9.0 7.03 - 9.0 8.01 - 9.01 1.0 - 9.0

Table 1-8. Graphics Hardcopy HP-UX Revisions

Device
Name

Series
300

Series
400

Series
700

Series
800

HP-GL 5.0 - 9.0 7.03 - 9.0 8.01 - 9.01 1.0 - 9.0

HP-GL
CADplt

6.0 - 9.0 7.03 - 9.0 8.01 - 9.01 2.0 - 9.0

HP-GL/2
CADplt2

7.0 - 9.0 7.03 - 9.0 8.01 - 9.01 7.0 - 9.0

Table 1-9. Other Output Drivers HP-UX Revisions

Device
Name

Series
300

Series
400

Series
700

Series
800

HP-CGM 6.2 - 9.0 7.03 - 9.0 8.01 - 9.01 3.0 - 9.0

HP SBV 7.0 - 9.0 7.0 - 9.0 8.01 - 9.01 8.0

HP SBDL 6.2 - 9.0 7.0 - 9.0 8.01 - 9.01 1.0 - 9.0

HP Term 6.2 - 9.0 7.0 -9.0 8.01 - 9.01 1.0 - 9.0

1-16 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Driver Compatibility with High-Level Starbase

Starbase drivers are developed in concert with a particular release of the high-
level Starbase code; thus, compatibility between drivers and the high-level code
is assured. In the future, however, new drivers may be released without re-
releasing the high-level code. To permit determining high-level Starbase and
driver compatibility, the code modules each contain a revision number. The
revision numbers can be found by using the what command. The following is an
example of how this call can be used:

$ what /usr/lib/libsb1.a

/usr/lib/libsb1.a:

STARBASE HP-UX 9.0 A.09.00 921020 libsb1.a $Revision: 500.1.99.1 $

STARBASE HP-UX 9.0 A.09.00 921020 libsga $Revision: 500.1.99.11 $

STARBASE HP-UX 9.0 A.09.00 921020 libddvmx $Revision: 500.1.99.11 $

$ what /usr/lib/libsb2.a

/usr/lib/libsb2.a:

GRM Library HP-UX 8.0 A.01 Protocol PROTO_VER FILE_VERSION

STARBASE HP-UX 9.0 A.09.00 920811 libsb2.a $Revision: 500.1.1.1 $

$ what /usr/lib/libddhil.a

/usr/lib/libddhil.a:

$Revision: 500.1.1.1 $ $Date: 92/06/03 19:47:39 $ libddhil.a

INTRO-COMP 1-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

The following table indicates compatibility between the high level Starbase code
and the Starbase driver code. The Starbase and Driver Revisions correspond to
the following HP-UX Releases:

Note An \x" in the following tables indicates all versions of that
number are applicable. Example: 50.x indicates 50.1, 50.2, etc.

Table 1-10. HP-UX Releases and Starbase Revision Levels

300 400 700 800

Release Revision Release Revision Release Revision Release Revision

5.0 28.1 7.03 350.1.50.x 8.01 400.1.50.x 1.0 48.x

5.1 39.1 7.05 364.1.2.x 8.05 401.1.1x 1.1 80.x

5.18 50.x 8.0 400.1.8.x 8.07 402.1.1x 1.2 83.x

5.2 65.x 9.0 500.1.1.x 9.0 500.1.1.x 2.0,2.1 120.x

5.3 65.1.1.x 9.01 500.1.99.x or 3.0 200.1.10.1

500.1.100.x

5.5 65.1.3.1 3.1 270.1.2.1

6.0 110.1 7.0 300.1.2.1

6.2 150.1.2.1 8.0 400.1.8.x

6.5 250.1.2.1 9.0 402.1.90

7.0 300.1.2.1

7.03 350.1.x .1

7.05 364.1.2.x

8.0 400.1.8.x

9.0 500.1.1.x

1-18 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Formatters and Release Levels

Table 1-11. Series 300 Formatters and Release Levels

Formatter
Section

Libraries
Archive/Shared

HP-UX
Release

Starbase/Formatter
Revision

HP Printer Control
Language (PCL) with
imaging extensions

libfmtpcl.a

libfmtpcl.sl

5.2
5.5
6.0
6.2
7.0
7.03
7.05
8.0
9.0

65.x
65.1.31
110.1
150.1.2.1
300.1.2.1
350.1.50.x
364.1.2.x
400.1.8.x
500.1.1.x

Table 1-12. Series 400 Formatters and Release Levels

Formatter
Section

Libraries
Archive/Shared

HP-UX
Release

Starbase/Formatter
Release

HP Printer Control
Language (PCL) with
imaging extensions

libfmtpcl.a

libfmtpcl.sl

7.03
7.05
8.0
9.0

350.1.50.x
364.1.2.x
400.1.8.x
500.1.1.x

Table 1-13. Series 700 Formatters and Release Levels

Formatter
Section

Libraries
Archive/Shared

HP-UX
Release

Starbase/Formatter
Release

HP Printer Control
Language (PCL) with
imaging extensions

libfmtpcl.a

libfmtpcl.sl

8.01
8.05
8.07
9.0
9.01

400.1.50.x
401.1.1.x
402.1.1.x
500.1.1.x
500.1.99.x or 500.1.100.x

INTRO-COMP 1-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Table 1-14. Series 800 Formatters and Release Levels

Formatter
Section

Libraries
Archive/Shared

HP-UX
Release

Starbase/Formatter
Release

HP Printer Control
Language (PCL) with
imaging extensions

libfmtpcl.a

libfmtpcl.sl

1.1
1.2
2.0,2.1
3.0
7.0
8.0
9.0

80.x
83.x
120.x
200.1.10.1
300.1.2.1
400.1.8.x
500.1.1.x

1-20 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Series 300 Starbase Device Drivers

Table 1-15. Bit-Mapped Displays

Device
Name

Driver
Type

318 319
C+

319
SRX

320 330 340 345 350 360 370 375

CH HP 98550 �
1

� � � � � � � �

CHX HP 98556 �
1

� � � � � � �

HP 300 HP 300H, 300L �
2

� � �
2
� � � � �

HP 9836A � � � � � � �

SRX HP 98720/21 � � � � � � � � �

TurboSRX HP 98730/31 � � � � � �

TurboVRX HP 98735/36
(A/B)

�

VRX Color HP A1416 � � � � � � �

1 HP 98549 only (HP 98556 is not supported.)

2 HP 300H monochrome only.

Note At the 7.0 release and thereafter, Starbase does not support the
Series 310 CPU.

INTRO-COMP 1-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Series 400 Starbase Device Drivers

Table 1-16. Bit-Mapped Displays

Device
Name

Driver
Type

400t 400s 400dl 425dl 425t 425s 433s 425e

CH HP 98550 �
1
�

1
�

1
�

1
�

1
�

1
�

1
�

1

CHX HP 98556

CRX HP A1659A �
2
�

2
� � �

2
�

2
�

2
�

GRX HP A1924A �
2
�

2
� � �

2
�

2
�

2
�

VRX mono HP A1096 � � � � � � �

HP 98550 HPA1416 �
1
�

1
�

1
�

1
�

1
�

1
�

1
�

1

Entry Level VRX HP EVRX �

PersonalVRX HP 98704/705 � � � � �

TurboVRX HP 98735/736 � � �

1 Only with the HP A1416A display card.

2 The Series 400t requires an SGC adapter and the Series 400s should be ordered with the integrated
CRX/GRX option or with the SGC connector option.

1-22 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Series 700 Supported Graphics Devices

Table 1-17. Bit-Mapped Displays

Graphics
Device
Name

Model
705

Model
710

Model
715

33MHz

Model
715/725
50MHz

Model
720

Model
730

Model
735

Model
750

Model
755

CRX � � � � �

Dual CRX � � � � �

CRX-24 � � � � � � �

CRX-24Z � � � � � � �

CRX-48Z � � �

GRX � � �

Integrated
Grayscale1

� � � �

Integrated
Color2

� � � �

PersonalVRX � � � � �

TurboVRX � � � � �

1 Integrated grayscale supported in Series 700 Models 705, 710, 715 and 725.

2 Integrated color supported in both medium resolution (1024x768) and high resolution (1280x1024)
con�gurations of the Series 700 Models 705, 710, 715 and 725.

Series 700 graphics use SGC data buses.

INTRO-COMP 1-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Series 800 Device Drivers

Table 1-18. Bit-Mapped Displays

Device
Driver

Driver
Type

815 825 835 840 850 - 855

SRX HP 98720, -21 � � � �

TurboSRX HP 98730, -31 � � �

VRX color HP 98550,-556 � � �

Other Supported Device Drivers

The following device types are also supported on the Series 300, 400, 700 and 800
models listed. For a list of speci�c product numbers, please refer to the Product
Support tables at the beginning of this chapter.

Computer Graphics Meta�le (CGM)

HP-GL

HP-GL, CADplt

HP-GL/2, CADplt2

HP-HIL

HP-HIL Keyboards

Memory (Virtual Frame Bu�er)

HP Graphics Terminals

1-24 INTRO-COMP

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Graphics Libraries Supported Within Windows

The following table shows which graphics libraries run in di�erent window systems
that are supported on the HP 9000 Series 300, Series 400, Series 700 and Series
800 workstations.

Table 1-19.

Graphics Libraries Supported

in the Different Window Systems

Window
Systems

Starbase
and Starbase
Display List

AGP/
DGL

HP-GKS Xlib
Graphics

HP
PHIGS1

PEXlib2

Raw Mode3 Yes Yes Yes No Yes No

X11 Yes, via the
HPVMX and
SOX-11
drivers or the
Starbase
Display
Drivers

No Yes, via the
SOX-11
driver or the
Starbase
Display
Drivers

Yes Yes Yes

1 HP-PHIGS not supported on Series 800.

2 PEXlib supported on Series 700 only.

3 Raw mode support on Series 700: 9.0 | CRX, PersonalVRX, and TurboVRX and on 10.0 | none

INTRO-COMP 1-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2

Developing a Starbase Application

Overview

This chapter is intended for those who wish to develop a Starbase application
program. Much of the emphasis in this chapter will be on developing Starbase
3D graphics applications. If your application does not require 3D graphics you
may prefer to use Xlib instead of Starbase, but you may still �nd portions of this
chapter helpful.

Note Source code for the applications listed in this chapter can
be found in the /usr/lib/starbase/demos directory on your
system if the STAR-DEMO �leset is installed. Refer to the makefile
in that directory for details on how to compile and link these
applications.

If you are not yet familiar with basic Starbase or X11 Window System concepts,
please refer to the following manuals:

Starbase Graphics Techniques

Starbase Reference

Programming with Xlib

Starbase is a exible and powerful programming library which often o�ers the
developer a variety of techniques to accomplish a particular graphics task.
However, some techniques will work well only on certain types of graphics devices
while other techniques are portable and will work across a wide range of devices.

Portable Techniques 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
In this chapter we will learn about these portable techniques as we develop several
small Starbase applications:

The �rst application, portable_sb.c, will use Xlib calls to create a window
and handle user input and other events.

Next, we will develop a functionally equivalent application, motif_sb1.c, using
Motif instead of direct Xlib calls.

Then, we will build upon the Motif application as we learn about additional
portable techniques, motif_sb2.c and motif_sb3.c .

Finally, we will learn more about di�erences between graphics devices so that
you can make careful use of device-speci�c features if you wish.

Guidelines for using Starbase Motif widgets are supplied at the end of this
chapter.

2-2 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Section One: Using Xlib in a Sample Application

Note The following detailed information is intended for those program-
mers who are used to programming at the Xlib level. If you are
developing a new application and prefer a simpli�ed approach to
programming, turn to Section Two: \Using Motif in a Sample
Application".

Our �rst sample application, portable_sb.c, will be simple but powerful enough
to illustrate a variety of portable techniques. The application will create its own
X window and render a simple 3D multi-colored cube and then allows you to use
the mouse to rotate the cube.

Figure 2-1. portable sb window on a graphics device which can render solids.

Portable Techniques 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Figure 2-2.

portable sb window on a graphics device which cannot render solids.

2-4 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Let's look at the main steps the application must perform:

1. open the X display and select a screen

2. create an X window

3. gopen and map the X window

4. inquire capabilities of the graphics device

5. set display characteristics (shade mode, double bu�ering, etc)

6. handle X events, including user input

7. perform graphics rendering in response to events

8. [repeat steps 6 and 7 until exit]

In the following sections of this chapter, we will examine each step in detail and
include code examples to show how to perform the step. Let's begin developing
our application by showing the �rst several lines of code required to include
header �les and declare functions and variables used in the main function:

Portable Techniques 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
/*

portable_sb.c - This file contains a complete, but simple, Starbase

application. The application creates its own window and then renders a

3D cube which may be rotated by moving the X pointer in the window with

button 1 depressed. To exit the application, click pointer button 3.

*/

#include <starbase.c.h>

#include <stdio.h>

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/XHPlib.h>

#include <math.h>

#include <wsutils.h>

/* Specify some #defines used later in the application */

#define DBUF_CAPABLE 0x01

#define SOLIDS_CAPABLE 0x02

#define WINDOW_NAME "WindowName"

#define ICON_NAME "IconName"

/*

main function

*/

main(argc, argv)

int argc;

char **argv;

{

Window create_window();

int gopen_and_map_window();

int inquire_starbase_capabilities();

void initialize_starbase();

void handle_events();

Display *display;

int screen, width = 500, height = 400, screen_width, screen_height;

int fildes, capabilities;

Window window;

2-6 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 1. Opening the X Display and Selecting a Screen

All HP graphics devices support Starbase in an X window. Older devices also
allow Starbase access in raw mode (running without windows), but some newer
devices do not support raw mode. To maximize portability across the family of
HP graphics devices an application should create and use its own X window.

Before our Starbase application can perform any X Window operations, it must
�rst open the X display. This is a simple operation which generally needs to be
done only once, when the application �rst starts up:

/* Open the X display specified by the DISPLAY environment variable */

display = XOpenDisplay(NULL);

if (display == NULL)

{

if (getenv("DISPLAY") == NULL)

fprintf(stderr,"You need to set the DISPLAY env var\n");

else

fprintf(stderr,"Cannot open DISPLAY %s\n",getenv("DISPLAY"));

exit(-1);

}

An X display will o�er one or more screens but a Starbase application will
generally run on the default screen of the display. There may be special situations
in which an application may need to use other screens. See the Programming with
Xlib manual for details on how to determine which screens are available on an X
display. In this example the default screen of the display is used:

/* Use the default screen for the display */

screen = DefaultScreen(display);

Portable Techniques 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 2. Creating an X Window

After our application has opened the X display and selected a screen, it can
determine the width and height of the screen. Then, our application can proceed
with the process of creating a window. To make the main function easier to
understand, we'll create another function called create_window which will take
the program argument and argument count, X display, X screen, and screen width
and height as input parameters and return the window it creates.

/* Establish the width and height of the screen */

screen_width = DisplayWidth(display, screen);

screen_height = DisplayHeight(display, screen);

/* Create a window on the display and screen */

window = create_window(argc, argv, display, screen,

screen_width, screen_height);

There are several important points to remember when creating a window for a
Starbase application:

1. The application should select the X visual most appropriate for the application.

2. If the application is not using the default visual, it must set at least the window
colormap, background pixel color, and border pixel color attributes.

3. To make it easier to resize the window later, the application should �rst create
the window with the largest possible size; then resize the window after the
gopen but before it is mapped.

4. Some graphics devices do not support backing store. For maximum portability,
the application should be prepared to detect expose events and redisplay all
or part of the window as necessary.

5. Call XSync before gopen-ing the window.

2-8 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
In our sample application we use several utility functions contained in the
wsutils.c �le in the /usr/lib/starbase/demos/SBUTILS directory. These
functions help to simplify our create_window function:

/*

create_window - this function takes an X display and screen and returns

the created window.

*/

Window create_window(argc, argv, display, screen,

screen_width, screen_height)

int argc;

char **argv;

Display *display;

int screen, screen_width, screen_height;

{

int status, transparent_overlay_flag, depth, colormap_free_flag;

int num_total_visuals, num_overlay_visuals, num_image_visuals;

XVisualInfo *total_visuals, **image_visuals, *vis_info_ptr;

OverlayInfo *overlay_visuals;

Visual *visual_to_use;

Colormap colormap;

Window window;

/* Get the list of all image visuals */

if (GetXVisualInfo(display, screen, &transparent_overlay_flag,

&num_total_visuals, &total_visuals,

&num_overlay_visuals, &overlay_visuals,

&num_image_visuals, &image_visuals) != 0)

{

fprintf(stderr,"Unable to find any visuals.\n");

exit(-1);

}

/* Select the most appropriate visual for our application */

if (FindImagePlanesVisual(display, screen,

num_image_visuals, image_visuals,

CMAP_FULL, 24, FLEXIBLE,

&visual_to_use, &depth) != 0)

{

fprintf(stderr,"Unable to find an appropriate visual.\n");

exit(-1);

}

Portable Techniques 2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

/* Create the window (but don't map it yet) */

if (CreateImagePlanesWindow(display, screen,

RootWindow(display,screen),

0, 0, screen_width, screen_height,

depth, visual_to_use, argc, argv,

WINDOW_NAME, ICON_NAME, &window,

&colormap, &colormap_free_flag) != 0)

{

fprintf(stderr,"Unable to create a window.\n");

exit(-1);

}

/* Select several types of events on the window */

XSelectInput(display, window,

ExposureMask|StructureNotifyMask|ButtonPressMask|Button1MotionMask);

/* Sync the create so that we can gopen() the window shortly */

XSync(display, False);

/* Return the created window to the calling function */

return(window);

} /* end of create_window() */

2-10 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 3. Gopening and Mapping the X Window

At this point, our application has opened the X display, selected a screen, and
created a window. We are now ready to gopen the window and map it so that it
will become visible. Once again, we will simplify the main function, this time by
creating another function called gopen_and_map_window which will take several
parameters. This function will perform the window gopen and map operations,
and then return the Starbase �le descriptor to the main function:

/* gopen() the window for Starbase graphics, and map the window */

fildes = gopen_and_map_window(argc, argv, display, window,

width, height);

Notice that we are passing the window width and height to this function. This is
because the window was initially created to be full screen size (in pixels) to allow
Starbase to easily handle resize events later, but before the window is mapped
we want to specify the \real" size.

To ensure portability across the HP graphics device family, there are several
important points to remember about gopen:

1. Link the application with Starbase shared libraries instead of archive libraries
(see the chapter for your device driver in this manual for an explanation of
how to do this).

2. Use the NULL constant as the driver parameter. This will allow Starbase to
automatically choose the appropriate driver for the application.

3. An application should call gopen only once per window. Some devices allow
more than one gopen per window, but using this feature will prevent the
application from working properly on devices which support only one gopen.

Portable Techniques 2-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
With these points in mind, let us take a look at the �rst part of the
gopen_and_map_window function:

/*

gopen_and_map_window - this function takes the application arg count and

arg values, the X display and window, and the intended window width and

height. This function gopens the window, establishes the width and

height, and then returns the Starbase file descriptor.

*/

int gopen_and_map_window(argc, argv, display, window, width, height)

int argc;

char **argv;

Display *display;

Window window;

int width, height;

{

char *device, *list[1];

int fildes;

XSizeHints *size_hints;

XClassHint *class_hint;

XWMHints *wm_hints;

XTextProperty window_name, icon_name;

Atom wm_protocols[2];

/* Create a device string based on the window id. */

device = make_X11_gopen_string(display, window);

/* Perform the gopen. Use of the NULL driver name will allow Starbase to

automatically decide which driver should be used. The gopen flags

are set for 3-D operation. */

fildes = gopen(device, OUTDEV, NULL, INIT|THREE_D|MODEL_XFORM);

if (fildes < 0)

{

/* Could not open the window. */

fprintf(stderr,"Could not gopen window.\n");

exit(-1);

}

Now, we will establish the actual size of the window and set several window
manager hints and protocols required for a \well behaved" X client:

/* Now that the window has been gopened, we can establish the "real"

size of the window. */

XResizeWindow(display, window, width, height);

2-12 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
/* We'll also set various properties used by the window manager. */

list[0] = WINDOW_NAME;

XStringListToTextProperty(list, 1, &window_name);

list[0] = ICON_NAME;

XStringListToTextProperty(list, 1, &icon_name);

size_hints = XAllocSizeHints();

size_hints->flags = USSize;

size_hints->width = width;

size_hints->height = height;

wm_hints = XAllocWMHints();

class_hint = XAllocClassHint();

class_hint->res_name = "portable_sb";

class_hint->res_class = "Portable_sb";

XSetWMProperties(display, window, &window_name, &icon_name,

argv, argc, size_hints, wm_hints, class_hint);

/* Now, establish a list of protocols for communcation with the

window manager. The WM_DELETE_WINDOW protocol will cause the

window manager to issue an event when the user selects "Close"

from the window border menu. The WM_SAVE_YOURSELF protocol will

cause the window or session manager to issue an event when they

plan to shut down. */

wm_protocols[0] = XInternAtom(display, "WM_DELETE_WINDOW", False);

wm_protocols[1] = XInternAtom(display, "WM_SAVE_YOURSELF", False);

XSetWMProtocols(display, window, wm_protocols, 2);

XSetCommand(display, window, argv, argc);

Then, we can map the window and return the �le descriptor to the calling
function:

/* Finally -- we can map the window! We won't actually render anything

to the window until the expose event happens later. */

XMapWindow(display, window);

/* Return the Starbase file descriptor to the calling function */

return(fildes);

} /* end of gopen_and_map_window() */

Portable Techniques 2-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 4. Inquiring Graphics Device Capabilities

idxjinquire_capabilitiesj After calling gopen on the window, an application
may use Starbase inquiry calls to determine the device capabilities and its
con�guration. Through careful use of these inquiry calls an application can
be designed to behave properly across the HP family of graphics devices. The
Starbase Reference manual describes the complete set of inquiry functions.
The inquire_capabilities and inquire_fb_configuration functions are
especially useful for writing portable applications. In our sample application we
will create another function of our own called inquire_starbase_capabilities

and call it from the main function:

/* Inquire the capabilities of the device */

capabilities = inquire_starbase_capabilities(fildes);

A more sophisticated Starbase application might use such a function to check a
variety of capabilities. In our sample application, we will use the function only to
determine whether or not the device can support double bu�ering and rendering
of 3D solids:

/*

inquire_starbase_capabilities - this function takes the Starbase file

descriptor and calls inquire_fb_configuration() and inquire_capabilities()

to determine if the device can support double-buffering and rendering of

solids.

*/

int inquire_starbase_capabilities(fildes)

int fildes;

{

int capabilities = 0;

char sb_flags[SIZE_OF_CAPABILITIES];

int image_banks, image_planes, planes_per_bank, overlay_planes;

/* First, determine if the device and driver can do double-buffering */

inquire_fb_configuration(fildes, &image_banks, &image_planes,

&planes_per_bank, &overlay_planes);

if (image_planes >= 16)

capabilities |= DBUF_CAPABLE;

/* Then, verify that the device supports CMAP_FULL colormap mode and

find out if the device renders solids */

2-14 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
inquire_capabilities(fildes, SIZE_OF_CAPABILITIES, sb_flags);

/* Verify that the device supports CMAP_FULL colormap mode */

if (! (sb_flags[COLOR_1_CAPABILITIES] & IC_CMAP_FULL))

{

fprintf(stderr,"Device does not support CMAP_FULL colormap mode.\n");

exit(-1);

}

/* Find out if the device can render solids */

if ((sb_flags[HLHSR_CAPABILITIES] & (IC_ZBUFFER_16|IC_ZBUFFER_24))

&& (sb_flags[LIGHTING_CAPABILITIES] & IC_LIGHTING)

&& (sb_flags[SHADING_CAPABILITIES] & IC_SHADING))

{

/* We have the necessary capabilities to do 3D solids */

capabilities |= SOLIDS_CAPABLE;

}

/* Return the capabilities flag to the calling function */

return(capabilities);

} /* end of inquire_starbase_capabilities() */

Device-dependent Starbase features are supported through the use of graphics
escapes, or gescapes. By their very nature these gescapes are not portable
and should be avoided in any application which is intended to run across
the family of HP graphics devices. An application can determine whether
some gescapes are supported or not on a device by using the information
returned by inquire_capabilities. For example, the IC_GAMMA_RENDERING

and IC_GAMMA_CMAP bits in the COLOR_1_CAPABILITIES ag indicate what type
of gamma correction, if any, is available on a device. An application could use this
information to determine whether or not to call the GAMMA_CORRECTION gescape.

Portable Techniques 2-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 5. Setting Display Characteristics

After our application has determined the capabilities of the graphics device, we
can set up the display characteristics. These characteristics will determine how
subsequently rendered graphics primitives will appear to the user. Our sample
application may not perform all the setup which your application requires so refer
to the Starbase Graphics Techniques and Starbase Reference manuals for more
information if necessary. We will create a function called initialize_starbase

to do this setup work, and call the function from main:

/* Set up Starbase display characteristics */

initialize_starbase(fildes, width, height, screen_width, screen_height,

capabilities);

Since the function performs a lot of di�erent kinds of initialization tasks, we will
examine the function in stages and explain each stage. The �rst steps are fairly
portable across the family of graphics devices. We will:

set a background color for our Starbase window,

establish the device limits based on the actual window width and height,

push an initial identity matrix on the stack (the matrix will be altered later to
rotate the cube),

specify an initial vertex format for later rendering of polygons. In our sample
application, all polygons have the same coordinate data format so we only need
to specify the vertex format once. If your application deals with polygons of
various formats it can change the vertex format as the need arises.

set up an initial view by calling our own function, initialize_camera. We
will create the initialize_camera function after we have �nished with this
function.

2-16 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
/*

initialize_starbase - this function performs various Starbase initialization

tasks based on the window size and Starbase capabilities.

*/

void initialize_starbase(fildes, width, height, screen_width, screen_height,

capabilities)

int fildes, width, height, screen_width, screen_height, capabilities;

{

void initialize_camera();

float width_fraction, height_fraction;

static float identity_matrix[4][4] = {

1.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0,

0.0, 0.0, 0.0, 1.0 };

/* Establish the background color for window clears */

background_color(fildes, 0.6, 0.8, 1.0);

/* Determine how to set p1 and p2 based on the actual window size

compared to the size of the window at gopen() time */

width_fraction = (float)width / (float)screen_width;

height_fraction = (float)height / (float)screen_height;

set_p1_p2(fildes, FRACTIONAL, 0.0, (1.0-height_fraction), 0.0,

width_fraction, 1.0, 1.0);

/* Push an identity matrix on the stack for later use in rotating the

cube based on user actions */

push_matrix3d(fildes, identity_matrix);

/* Establish an initial vertex format */

vertex_format(fildes, 0, 0, 0, FALSE, CLOCKWISE);

/* Specify an initial view camera */

initialize_camera(fildes);

Portable Techniques 2-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Next we will set the shade mode for our application. The shade mode
establishes how our application will use colors and whether polygons and
other primitives will be shaded or not. Our application will use direct
color (Starbase CMAP_FULL) mode, but shading will be turned on only if the
inquire_starbase_capabilities function reports that the device is capable of
rendering solids. By oring the INIT ag with our CMAP_FULL mode, we ensure
that Starbase will properly initialize the colormap.

/* Now, we need to know about the ability of the device to do solids

and double buffering. */

if (capabilities & SOLIDS_CAPABLE)

shade_mode(fildes, CMAP_FULL|INIT, TRUE);

else

shade_mode(fildes, CMAP_FULL|INIT, FALSE);

If we determined that the device can double bu�er graphics, we will turn it on at
this point. Notice that we will request 24 planes per bu�er, which may be more
than the device can actually support. The double_buffer Starbase function
will automatically adjust this requested value to the actual number of planes
supported for the device.

Applications should generally avoid calling block operations such as block_read
or block_write while double bu�ering is active. However, if this is necessary then
the application can check the return value from the double_buffer function to
determine exactly how many planes are used for double bu�ering. The application
can use this information to reliably do block operations when double bu�ering is
active. To see an example of how this can be done, refer to the \Block Operations"
in the \Other Portable Techniques" section later in this chapter.

We then call the dbuffer_switch function to initialize double bu�ering to a
known state which enables graphics rendering to bu�er 0 and displays bu�er 1.
This allows all graphics devices to perform double bu�ering in a predictable way.

if (capabilities & DBUF_CAPABLE)

{

/* The device can do double buffering */

double_buffer(fildes, TRUE|INIT, 24);

dbuffer_switch(fildes, 0);

}

2-18 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
We complete the initialize_starbase function by looking at whether the
device is capable of rendering solids or not. If the device can render solids, we turn
on hidden surface removal and create a single light source. More sophisticated
applications might use additional light sources, or might turn lights on or o�
interactively. If the device cannot render solids, we will render our polygons in
\wireframe" mode by telling Starbase to make the polygons INT_HOLLOW with
edges turned on.

if (capabilities & SOLIDS_CAPABLE)

{

/* We can do hidden surface removal and lighting and shading */

interior_style(fildes, INT_SOLID, FALSE);

clear_control(fildes, CLEAR_DISPLAY_SURFACE | CLEAR_ZBUFFER) ;

hidden_surface(fildes, TRUE, TRUE);

light_source(fildes, 1, DIRECTIONAL, 1.0, 0.8, 1.0, 0.5, 1.0, 0.5);

light_switch(fildes, 0x2);

}

else

{

/* We'll just draw the edges */

interior_style(fildes, INT_HOLLOW, TRUE);

}

} /* end of initialize_starbase() */

Now that we have �nished creating the initialize_starbase function, we will
examine the initialize_camera function. This function is initially called by
initialize_starbase, and then later whenever our window is resized. Our
function will use the Starbase view_camera function to provide a simple camera
model interface to viewing transformations. In this case, we want to point the
camera at the cube which we'll be rendering later.

Portable Techniques 2-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
/*

initialize_camera - this function is called to set up the Starbase

view_camera() to point at the cube.

*/

void initialize_camera(fildes)

int fildes;

{

camera_arg camera;

/* Specify an initial view camera */

camera.refx = camera.refy = camera.refz = 0.0;

camera.upy = 1.0;

camera.upx = camera.upz = 0.0;

camera.camx = 0.0;

camera.camy = camera.camz = 5.0;

camera.front = camera.back = 0.0;

camera.projection = CAM_PERSPECTIVE;

camera.field_of_view = 50.0;

view_camera(fildes, &camera);

} /* end of initialize_camera() */

2-20 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 6. Handling X Events

Note This step may not be necessary for very simple applications which
do not wish to process user input or handle common X events
such as resize and expose.

Most interactive applications, after initial setup has been completed, operate in a
continuous loop that reads user input and then performs some action in response
to the input. User input may consist of mouse movements, mouse button clicks,
keyboard input, and so on. The application action in response to input might
include rendering 2D or 3D graphics data.

Older Starbase applications which ran in raw mode (without windows) rely on
Starbase input device capabilities and Starbase echos (cursors) to track user
movement of the mouse or other input device. Starbase applications written
to run in an X window, as described in this chapter, should use the X window
input and cursor capabilities instead of Starbase calls.

An application which uses X input capabilities is usually event driven. That is, it
receives an event, processes the event and responds to it, and then waits for the
next event to occur. Events include user input and environment changes, such
as exposing or resizing the window event, which could a�ect the application.
While the application waits for an event, it is essentially dormant and not
consuming system CPU cycles. The system CPU is then available to execute
other applications.

In our sample application, we will deal with X events in a function called
handle_events which will be called from the main function:

/* Handle events and render graphics */

handle_events(argc, argv, display, window, width, height,

screen_width, screen_height, fildes, capabilities);

} /* end of main() */

We speci�ed which X events we want to receive when we created the window
in the create_window function. The handle_events function is responsible for
actually reading events and responding appropriately to each event type. The
function consists of a while loop which contains an XNextEvent call and a switch
to handle the various event cases.

Portable Techniques 2-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Without adding the detail of the switch cases, let's begin de�ning the function:

/*

handle_events - this function takes information about the window and

Starbase capabilities, and processes X events. Starbase graphics

(rendering the cube) is done in response to various events.

The application is exited when the user clicks pointer button 3

in the window.

*/

void handle_events(argc, argv, display, window, width, height,

screen_width, screen_height, fildes, capabilities)

int argc;

char **argv;

Display *display;

Window window;

int width, height, screen_width, screen_height, fildes, capabilities;

{

void draw_cube(), rotate_cube(), initialize_camera();

XEvent event, next_event;

float x_rotation, y_rotation, width_fraction, height_fraction;

static int x_ptr_pos, y_ptr_pos;

while (TRUE)

{

/* Get the next X event. This function will block until an event

is received. */

XNextEvent(display, &event);

switch(event.type)

{

:

:

}

}

} /* end of handle_events() */

2-22 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Inside the switch, our function will handle several types of events. Let's �rst
create the case to handle the Expose event. When the window is exposed, we
�rst want to use the Starbase clear_view_surface function to clear the window.
(This will also clear the Z-bu�er if we are rendering solids). Then we will call
our own draw_cube function to actually render our 3D cube. The draw_cube

function is de�ned in the \Performing Graphics Rendering" section.

/* Expose events occur when the window is mapped, raised,

de-iconified, and after it has been resized. We want

to render the cube in these cases. Unless the "count"

in the structure is 0, there are more expose events

to follow and we might as well ignore this one. */

case Expose:

if (event.xexpose.count == 0)

{

/* We must clear the view surface since the one done

automatically by any previous dbuffer_switch() will

have been lost. */

if (capabilities & DBUF_CAPABLE)

clear_view_surface(fildes);

/* Now, re-draw the cube. */

draw_cube(fildes, capabilities);

}

break;

Portable Techniques 2-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Next, we will create the case to handle ConfigureNotify events. These events
can occur for lots of reasons but in our application we are only interested in
resize events. So, we will �rst compare our \saved" window width and height
to the actual window width and height. If no change has occurred, we'll ignore
the event. If the size has changed, then we need to save the width and height
for later comparisons. We will clamp the size to the initial screen size to avoid
potential Starbase problems. Then, we will compute the ratios of the width and
height of the newly resized window to the width and height of the screen (the
original window size) and use this information in the Starbase set_p1_p2 call.
We must also call our own initialize_camera function after the set_p1_p2 in
order to reset the Starbase viewing characteristics.

/* ConfigureNotify events occur for a variety of reasons but we

really only care about ones caused by a resize of the

window. */

case ConfigureNotify:

if (width != event.xconfigure.width ||

height != event.xconfigure.height)

{

/* If a resize occured, we must take the new width and

height and set_p1_p2() to let Starbase know that the

window size has changed. */

width = event.xconfigure.width;

height = event.xconfigure.height;

if (width > screen_width) width = screen_width;

if (height > screen_height) height = screen_height;

width_fraction = (float)width / (float)screen_width;

height_fraction = (float)height / (float)screen_height;

hidden_surface(fildes, FALSE, FALSE);

set_p1_p2(fildes, FRACTIONAL, 0.0,

(1.0-height_fraction), 0.0,

width_fraction, 1.0, 1.0);

initialize_camera(fildes);

if (capabilities & SOLIDS_CAPABLE)

hidden_surface(fildes, TRUE, TRUE);

}

break;

2-24 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Now, we'll create a case to handle the ButtonPress event. If this event occurs we
will exit the application if button 3 was pressed. Otherwise we'll save the current
pointer position so that we can see how much the position has changed when the
�rst MotionNotify event is received. The di�erence between the positions will
determine how much to rotate the cube.

/* We want to be able to handle button press events for two

reasons:

1) To allow the user to click and hold button 1 and move

the pointer to rotate the cube.

2) To allow the user to click button 3 to exit. */

case ButtonPress:

if (event.xbutton.button == Button3)

{

/* Close Starbase, destroy the window, close the display,

then exit. */

gclose(fildes);

XDestroyWindow(display, window);

XCloseDisplay(display);

exit(0);

}

else

{

/* Remember this initial position so that we can tell how

far the user has moved the pointer when the next event

occurs. */

x_ptr_pos = event.xbutton.x;

y_ptr_pos = event.xbutton.y;

}

break;

Then, we will handle the MotionNotify event. Relatively small mouse movements
by the user can generate lots of MotionNotify events. In fact, MotionNotify
events can be generated more quickly than we can draw the 3D cube. If we don't
account for this fact in our application then the cube rotation and rendering
will appear to \lag behind" the user's mouse movements and give the user the
impression that our application is not very responsive. To avoid this problem, we
will add some code to read and discard all but the last MotionNotify event in
the X event queue. Then we will use the last event as the one of interest. After
receiving the event, we will compute the amount of rotation based on how far the
mouse has moved since the last ButtonPress or MotionNotify event. We will
pass the rotation information to the rotate_cube function. (The rotate_cube

Portable Techniques 2-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
function is not discussed in this chapter but is part of the portable_sb.c source
�le in the /usr/lib/starbase/demos directory.) Then, we will redraw the cube
by calling the draw_cube function. Finally, we will save the current position of
the pointer for our next comparison.

/* MotionNotify events occur when the user clicks and holds

button 1 and moves the pointer. When this happens, we

want to use the pointer motion to apply a rotation to the

cube and then re-render the cube. */

case MotionNotify:

/* We need to get rid of any extra motion notify events which

may have already accumulated. Otherwise, these queued

events will cause latent graphics rendering and give the

user the impression that the application is not very

interactive. */

while (XEventsQueued(display, QueuedAfterReading) > 0)

{

XNextEvent(display, &next_event);

if (next_event.type != MotionNotify)

{

XPutBackEvent(display, next_event);

break;

}

event = next_event;

}

/* Now that we have the event, compute an X and Y rotation to

be applied to the cube. We'll base the rotation on how

far the pointer has moved relative to the overall size of

the window. */

x_rotation = ((event.xbutton.y - y_ptr_pos)*180.0)/height;

y_rotation = ((event.xbutton.x - x_ptr_pos)*180.0)/width;

/* Apply the rotation and re-draw the cube */

rotate_cube(fildes, x_rotation, y_rotation, 0.0);

draw_cube(fildes, capabilities);

/* Remember the pointer position for the next event */

x_ptr_pos = event.xbutton.x;

y_ptr_pos = event.xbutton.y;

break;

2-26 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Finally, we will handle the ClientMessage event. An event of this type can occur
in our application for two possible reasons:

1. The window manager wants to delete (or close) our window. In this case our
application may wish to save current state information to a �le which could
be read the next time the application starts up. The application should then
close Starbase, destroy the window, close the X display, and then exit.

2. The window or session manager plans to shut down and it wants our
application to perform operations needed to save itself so that it can be
restored later. Again, our application may wish to save current state
information in a �le. Our application must also call the XSetCommand function
to let the session manager know that the application has saved its state. The
window should not be destroyed in this case.

/* ClientMessage events will occur when the window manager wants

to communicate a "delete window" or "save yourself" message */

case ClientMessage:

if ((Atom)event.xclient.data.l[0] ==

XInternAtom(display, "WM_DELETE_WINDOW", False))

{

/* We are being asked by the window manager to gracefully

shut down. We'll close Starbase, destroy the window,

and close the display, and then exit. */

gclose(fildes);

XDestroyWindow(display, window);

XCloseDisplay(display);

exit(0);

}

else if ((Atom)event.xclient.data.l[0] ==

XInternAtom(display, "WM_SAVE_YOURSELF", False))

{

/* The window manager has asked us to save ourselves.

This would be a good place to save any state info

in history files, etc. Notice that we should NOT

destroy the window in this case. */

XSetCommand(display, window, argv, argc);

}

break;

Portable Techniques 2-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 7. Performing Graphics Rendering

In the \Handling X Events" section we made several references to our draw_cube
function. In our simple application, this function simply renders a 3D cube. Your
application might use a much more complex function containing all the Starbase
calls needed to render the visual components of the application.

Let's explore several graphics rendering issues as we de�ne our small draw_cube
function. The �rst part of the function de�nes the geometry of the cube which
we wish to render and also declares a static buffer variable and initializes it to
0. This variable will be used in the dbuffer_switch call to specify which double
bu�ering bu�er is being written to.

/*

draw_cube - this function renders a 3D cube, based on the capabilities

of the device.

*/

void draw_cube(fildes, capabilities)

int fildes, capabilities;

{

static float cube_top[4][3] = {

1.0, 1.0,-1.0, -1.0, 1.0,-1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };

static float cube_bottom[4][3] = {

1.0,-1.0, 1.0, -1.0,-1.0, 1.0, -1.0,-1.0,-1.0, 1.0,-1.0,-1.0 };

static float cube_right[4][3] = {

1.0,-1.0,-1.0, 1.0, 1.0,-1.0, 1.0, 1.0, 1.0, 1.0,-1.0, 1.0 };

static float cube_left[4][3] = {

-1.0,-1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0,-1.0, -1.0,-1.0,-1.0 };

static float cube_back[4][3] = {

-1.0,-1.0,-1.0, -1.0, 1.0,-1.0, 1.0, 1.0,-1.0, 1.0,-1.0,-1.0 };

static float cube_front[4][3] = {

1.0,-1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0,-1.0, 1.0 };

static int buffer = 0;

Next, our application will check the DBUF_CAPABLE ag in our capabilities

parameter and explicitly clear the view surface if double bu�ering is not being
used (see the \Inquiring Graphics Device Capabilities" and \Setting Display
Characteristics" sections). If double bu�ering is being used, the view surface
is cleared automatically after each dbuffer_switch call is made and the
clear_view_surface is not necessary at this point.

if (! (capabilities & DBUF_CAPABLE))

clear_view_surface(fildes);

2-28 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Now we can actually draw the cube. Each face of the cube will be a di�erent
color drawn using a fill_color and polygon3d call. In our simple application,
we need to include the fill_color calls to make each face of the cube a di�erent
color. However, to achieve best performance an application should generally
avoid making fill_color or other Starbase calls such as vertex_format unless
the calls are necessary. Note that if our application is running on a device which
is not SOLIDS_CAPABLE (see the \Inquiring Graphics Device Capabilities" and
\Setting Display Characteristics" sections earlier) only the edges of the polygons
will be drawn.

fill_color(fildes, 0.0, 0.0, 1.0);

polygon3d(fildes, cube_top, 4, FALSE);

fill_color(fildes, 0.0, 1.0, 0.0);

polygon3d(fildes, cube_bottom, 4, FALSE);

fill_color(fildes, 0.0, 1.0, 1.0);

polygon3d(fildes, cube_left, 4, FALSE);

fill_color(fildes, 1.0, 0.0, 0.0);

polygon3d(fildes, cube_right, 4, FALSE);

fill_color(fildes, 1.0, 0.0, 1.0);

polygon3d(fildes, cube_front, 4, FALSE);

fill_color(fildes, 1.0, 1.0, 0.0);

polygon3d(fildes, cube_back, 4, FALSE);

After the cube has been drawn, we need to switch bu�ers if double bu�ering is
being used. The buffer variable is �rst toggled and then the dbuffer_switch

call is made to actually change which bu�er is being written to (and which
one is being displayed). We'll �nish o� our draw_cube function by calling
make_picture_current to output all our Starbase calls to the graphics de-
vice and wait for the graphics device to actually �nish rendering. An in-
teractive application such as this sample one generally needs to perform one
make_picture_current call after any rendering done in response to user input
or other events.

if (capabilities & DBUF_CAPABLE)

{

buffer = !buffer;

dbuffer_switch(fildes, buffer);

}

make_picture_current(fildes);

} /* end of draw_cube() */

Note To achieve best performance an application should avoid extra
make_picture_current calls. For example, it would be unnec-
essary and bad practice to insert a make_picture_current call

Portable Techniques 2-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
after each polygon3d call in our draw_cube function. Your ap-
plication performance may be improved by using flush_buffer

instead of make_picture_current.

Section Two: Using Motif in a Sample Application

In this section we will enhance the sample application we developed in the
previous section to use Motif and the X toolkit instead of Xlib for our window
operations. This example, motif_sb1.c, will use the Starbase Motif widget.

Figure 2-3. motif sb1 window on a graphics device which can render solids.

2-30 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The steps performed by our Motif application are fairly similar to the previous
Xlib version:

1. initialize the X toolkit and create a widget hierarchy

2. create a Starbase Motif widget in the hierarchy

3. realize the widget hierarchy

4. inquire capabilities of the graphics device

5. set display characteristics (shade mode, double bu�ering, etc)

6. start the toolkit main loop and handle callbacks

7. perform graphics rendering in response to callbacks

8. [repeat steps 6 and 7 until exit]

In the following sections we will examine each step in detail and include code
examples to show how to perform the step. Let's begin developing our Motif
application by showing the �rst several lines of code required to include header
�les, and declare variables and functions used in the application:

Portable Techniques 2-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
/* motif_sb1.c - This file contains a complete, but simple, Starbase

application. The application uses the X toolkit, Motif, and the Starbase

Motif widget to render a 3D cube which may be rotated by moving the X

pointer in the window with button 1 depressed. To exit the application,

click on the "Quit" button.

*/

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/Form.h>

#include <Xm/PushB.h>

#include <Xm/Frame.h>

#include <Xg/Starbase.h>

#include <starbase.c.h>

#include <math.h>

/* Specify some #defines used later in the application */

#define DBUF_CAPABLE 0x01

#define SOLIDS_CAPABLE 0x02

#define EXPOSE_EVENT 1

#define RESIZE_EVENT 2

#define CLICK_EVENT 3

#define MOTION_EVENT 4

#define QUIT 5

/* Declare a context type variable which will be assigned in the main()

function and used in the callback function. */

XContext context;

/* Create a structure to hold our context information */

typedef struct {

int fildes;

init capabilities;

int x_ptr_pos;

int y_ptr_pos;

} CONTEXT_DATA;

<newpage>

/*

main function

*/

main(argc, argv)

int argc;

char **argv;

{

void callback();

int inquire_starbase_capabilities();

void initialize_starbase();

2-32 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Widget toplevel, form, quit_button, frame, sb;

XtAppContext app_context;

XmString quit_text;

Arg arg[15];

int n, fildes, capabilities;

static CONTEXT_DATA context_data;

Portable Techniques 2-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 1. Initializing the X toolkit and Creating a Widget
Hierarchy

Note For detailed information on Motif, please refer to the following
manuals: Mastering Motif Widgets , and HP OSF/Motif Pro-
grammer's Guide.

The appearance and behavior of a Motif application's graphical user interface
is determined in part by the widget hierarchy created by the application. In
sophisticated applications this hierarchy can consist of many widgets of various
types. Our simple application will create a very simple hierarchy containing a
toplevel, form, pushbutton, frame, and Starbase widget:

Figure 2-4. Sample Widget Hierarchy

2-34 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
A callback is often added to a widget when it is created. When the application
adds a callback it speci�es a function to be called and client data to be passed
to the function when a particular event occurs. Callbacks are the primary
mechanism by which events are handled in a Motif application. An application
can have separate callback functions to handle all the di�erent sorts of callbacks
it must deal with, or it can consolidate all the callback handling into a single
function. Our sample application will use the \single function" approach and use
client data to tell the function which particular callback event is being handled.

Portable Techniques 2-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Let's initialize the X toolkit and create all the components of this hierarchy
except the Starbase widget. We'll add a callback to the \Quit" button so that
our application can respond by exiting when the user clicks the button.

/* Initialize the toolkit and create the toplevel shell widget */

toplevel = XtAppInitialize(&app_context, "Motif", NULL, 0,

&argc, argv, NULL, NULL, 0);

/* Create a form widget to hold the rest of the children */

n = 0;

form = XtCreateManagedWidget(NULL, xmFormWidgetClass, toplevel, arg, n);

/* Create a quit button and add a callback so that our "callback"

function will be invoked when the user clicks on the button. We

will pass a client data value of "QUIT" to the callback. */

n = 0;

XtSetArg(arg[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNtopAttachment, XmATTACH_FORM); n++;

quit_text = XmStringCreate("Quit", XmSTRING_DEFAULT_CHARSET);

XtSetArg(arg[n], XmNlabelString, quit_text); n++;

quit_button = XtCreateManagedWidget("quit", xmPushButtonWidgetClass,

form, arg, n);

XtAddCallback(quit_button, XmNactivateCallback, callback, QUIT);

XmStringFree(quit_text);

/* Create a frame to hold the Starbase widget -- just for decoration. */

n = 0;

XtSetArg(arg[n], XmNtopWidget, quit_button); n++;

XtSetArg(arg[n], XmNtopAttachment, XmATTACH_WIDGET); n++;

XtSetArg(arg[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNbottomAttachment, XmATTACH_FORM); n++;

frame = XtCreateManagedWidget("frame", xmFrameWidgetClass,

form, arg, n);

2-36 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 2. Creating a Starbase Motif Widget

Now that we've created the frame widget, we're ready to create a Starbase
widget. In our application, we want to use the CMAP_FULL shade mode so we
will specify that resource. Although our sample application also speci�es the
width and height of the Starbase widget, these resources should generally not
be speci�ed by the application itself. Instead, the width and height and other
similiar size and position resources should be speci�ed in an application resource
�le in /usr/lib/X11/app-defaults or in user-controlled resources. For details
on how this can be done, see \Creating Default Files" in the Mastering Motif
Widgets manual or the HP OSF/Motif Programmer's Guide.

/* Create the Starbase widget. Use a shade mode of CMAP_FULL. */

n = 0;

XtSetArg(arg[n], XgNshadeMode, XgCMAP_FULL); n++;

XtSetArg(arg[n], XmNwidth, 500); n++;

XtSetArg(arg[n], XmNheight, 400); n++;

sb = XtCreateManagedWidget("Starbase", xgStarbaseWidgetClass,

frame, arg, n);

After creating the widget hierarchy, we need to add callbacks so that the user
can interact with the application. Standard callbacks exist for expose, resize, and
button click events, so we'll use those. Notice that we're passing di�erent client
data values such as EXPOSE_EVENT for each callback. This will enable our single
callback function to distinguish between the various types of callbacks.

/* Add standard callbacks for expose, resize, and input (button click)

so that our callback function will be invoked when these events occur.

We'll pass client data values of EXPOSE_EVENT, RESIZE_EVENT, and

CLICK_EVENT, respectively. */

XtAddCallback(sb, XmNexposeCallback, callback, EXPOSE_EVENT);

XtAddCallback(sb, XmNresizeCallback, callback, RESIZE_EVENT);

XtAddCallback(sb, XmNinputCallback, callback, CLICK_EVENT);

We want to also allow our application to handle motion events so the user can
click and hold the mouse button and move the mouse to rotate our 3D cube. Since
there are not standard callbacks for this event we will use XtAddEventHandler

to add a callback for the motion events:

/* Since there is no standard callback for motion events, we'll use

XtAddEventHandler() to add a callback for those events. */

XtAddEventHandler(sb, Button1MotionMask, FALSE, callback, MOTION_EVENT);

Portable Techniques 2-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 3. Realizing the Motif Heirarchy

After creating the widget hierarchy, we must realize the hierarchy. This step is
somewhat analogous to mapping a window in our previous sample application,
although the actual tasks performed by the toolkit when a hierarchy is realized
are a bit more complicated. Our application can realize the toplevel widget and
the toolkit takes care of realizing all the \children" of the toplevel, including
the Starbase widget. When the Starbase widget is realized it will perform the
Starbase gopen for us.

/* Realize the widgets (will also perform the Starbase gopen() for us).

Note that our callback() function will be invoked when the Starbase

widget is realized, but we will return without doing anything. */

XtRealizeWidget(toplevel);

Now that we have realized the Starbase widget, we can get the Starbase �le
descriptor from the widget. If the widget was unable to open the window, the
�le descriptor will have a value of -1.

/* Now that the Starbase widget has been realized, we can get the

Starbase file descriptor. */

n = 0;

XtSetArg(arg[n], XgNfildes, &fildes); n++;

XtGetValues(sb, arg, n);

if (fildes < 0)

{

/* gopen() was not successful */

fprintf(stderr,"Could not gopen window.\n");

exit(-1);

}

2-38 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 4. Inquiring Graphics Device Capabilities

After realizing the Starbase widget and obtaining the �le descriptor, we can
make several Starbase inquiries to determine what the graphics device is capable
of and how it is con�gured. As we did in the �rst example application, we will
simplify our main function by including these inquiries in another function of our
own called inquire_starbase_capabilities and call it from the main function.
The function itself is identical to the function de�ned in the �rst example.

/* Inquire the capabilities of the device */

capabilities = inquire_starbase_capabilities(fildes);

Step 5. Setting Display Characteristics

After our application has determined the capabilities of the graphics device, we
can set up the display characteristics. Again, we will create a function called
initialize_starbase and call it from main:

/* Set up Starbase display characteristics */

initialize_starbase(fildes, capabilities);

This function is virtually identical to the initialize_starbase function in
the �rst example, although the Starbase set_p1_p2 call is not needed in this
function because this is done automatically by the Starbase widget. Refer to
the motif_sb1.c source �le in /usr/lib/starbase/demos directory for details
of the initialize_starbase function.

Now that the initialization is done, we will create an X context for the window
associated with the Starbase widget. This context will contain information such
as the �le descriptor that is speci�c to the widget. When our callback function
is invoked it can then access this context data and use it to handle various types
of events.

/* We will initialize the contents of a context structure and save the

context with the Starbase window so that this information can later

be obtained when callbacks occur. */

context_data.fildes = fildes;

context_data.capabilities = capabilities;

context = XUniqueContext();

XSaveContext(XtDisplay(sb), XtWindow(sb), context, &context_data);

Portable Techniques 2-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Step 6. Starting the Toolkit Main Loop and Handling
Callbacks

This step is somewhat analogous to the event handling step in the �rst example.
In this case, however, the X toolkit receives the actual X events, does some
internal processing, and then invokes the application's callback functions if
necessary. The toolkit will begin doing this after we start the toolkit main loop:

/* Start the event handling loop */

XtAppMainLoop(app_context);

} /* end of main() */

Now, we need to create our callback function which will be invoked by the toolkit
when events occur. We'll begin by �rst de�ning the function parameters and
declaring the variables used by the function:

/*

callback - this function is invoked by the toolkit when widgets experience

various events. When we added the callbacks in main(), we specified

client_data values for each callback so that we could identify the

callbacks when they occurred. For the CLICK_EVENT and MOTION_EVENT we

are also interested in the call_data which will provide information about

the X event which caused the callback.

*/

void callback(wdg, client_data, call_data)

Widget wdg;

caddr_t client_data;

caddr_t call_data;

{

void rotate_cube(), draw_cube(), initialize_camera();

CONTEXT_DATA *context_data;

XEvent *event;

Dimension width, height;

float x_rotation, y_rotation;

Arg arg[10];

int n;

After the variables have been declared we'll check to see if the callback is being
invoked because the user clicked on the \Quit" button. If so, then we'll exit the
application at this point.

/* First check to see if the user hit the "Quit" button */

if (client_data == QUIT)

exit(0);

2-40 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
If the callback was not invoked because of the \Quit" button, then it was invoked
because of a Starbase widget event. In order to handle these events we need to
�nd the context information we previously saved on the window associated with
the Starbase widget. If the context has not yet been saved then we're not ready
to handle the events and so our function will just return to the toolkit without
doing anything.

/* Attempt to find the window context data. If it does not exist

then our Starbase initialization has not been done and we don't want

to do anything yet. */

if (XFindContext(XtDisplay(wdg), XtWindow(wdg),

context, &context_data) != 0)

return;

After we have successfully found the context information, we can use a switch

with di�erent cases for each possible client_data value passed to the callback.
Back in the main function we speci�ed a di�erent client data value for each
callback added to the Starbase widget, so we can use the client data to determine
exactly which callback event occurred. Let's �rst create the switch statement
without the cases:

/* The client_data will identify the type of callback which has just

occurred. */

switch((int) client_data)

{

:

:

}

} /* end of callback() */

Now, let's create a case for each possible client_data value. We'll begin with a
case for the EXPOSE_EVENT. If an expose event occurs our callback needs to call
the Starbase clear_view_surface function and then call our own draw_cube

function. The draw_cube function is identical to the function created in our Xlib
example. The �le descriptor and capabilities are obtained from the context data
we found earlier in the callback function.

/* EXPOSE_EVENT occurs when the window is mapped, raised,

de-iconified, and after it has been resized. We want

to render the cube in these cases. */

Portable Techniques 2-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
case EXPOSE_EVENT:

clear_view_surface(context_data->fildes);

draw_cube(context_data->fildes, context_data->capabilities);

break;

Next we'll create a case for the RESIZE_EVENT. The Starbase widget takes care
of much of the work we did in our Xlib example. However, we do need to turn
hidden_surface back on if our device is SOLIDS_CAPABLE because the Starbase
widget's built-in resize handling will turn o� hidden surface removal.

/* RESIZE_EVENT occurs when the user resizes the window. We need to

restore the hidden_surface() since the widget's built-in callback

will have turned it off. */

case RESIZE_EVENT:

initialize_camera(context_data->fildes);

if (context_data->capabilities & SOLIDS_CAPABLE)

hidden_surface(context_data->fildes, TRUE, TRUE);

break;

2-42 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The CLICK_EVENT case is a little di�erent from the previous two cases. We
need to know the pointer position when the event occurred, so we must
get this information from the X event which is included in a structure
(XmDrawingAreaCallbackStruct) which is passed as the callback function's
call_data parameter. The information is saved in the context data structure for
use when the next MOTION_EVENT occurs.

/* CLICK_EVENT occurs when the user clicks a mouse button. We want

to remember the position of the pointer so that we can decide

how much to rotate the cube when the user moves the pointer. */

case CLICK_EVENT:

event = ((XmDrawingAreaCallbackStruct *) call_data)->event;

context_data->x_ptr_pos = event->xbutton.x;

context_data->y_ptr_pos = event->xbutton.y;

break;

The MOTION_EVENT is the case which requires the most work in our example
application. We need to know the current position of the pointer when the event
occured. Since this callback was added using XtAddEventHandler, a pointer to
the X event itself is passed to the callback function as the call_data parameter.
Notice that we don't need to remove any extra motion events from the queue
as we did in our Xlib example. This is because the X toolkit does this task
automatically.

In addition to the current position of the pointer, we need to obtain the current
width and height of the Starbase widget so we can scale our rotations based
on the window size. We'll use the toolkit XtGetValues function to obtain this
information. Then, we'll compute the cube's X and Y rotation based on the
current and previous pointer position and the window size.

Portable Techniques 2-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Next we'll apply the rotation by calling our own rotate_cube function and then
re-render the cube by calling draw_cube. Finally we'll save the pointer position
in the context data structure so that we can use it in the next MOTION_EVENT

callback.

/* MOTION_EVENT occurs when the user clicks and holds

button 1 and moves the pointer. When this happens, we

want to use the pointer motion to apply a rotation to the

cube and then re-render the cube. */

case MOTION_EVENT:

/* The call data is a pointer to the X event */

event = (XEvent *) call_data;

/* Determine the width and height of the widget */

n = 0;

XtSetArg(arg[n], XmNwidth, &width); n++;

XtSetArg(arg[n], XmNheight,&height); n++;

XtGetValues(wdg, arg, n);

/* Compute an X and Y rotation to be applied to the cube.

We'll base the rotation on how far the pointer has moved

relative to the overall size of the window. */

x_rotation =

(event->xbutton.y - context_data->y_ptr_pos)*180.0/height;

y_rotation =

(event->xbutton.x - context_data->x_ptr_pos)*180.0/width;

/* Apply the rotation and re-draw the cube */

rotate_cube(context_data->fildes, x_rotation, y_rotation, 0.0);

draw_cube(context_data->fildes, context_data->capabilities);

/* Remember the pointer position for the next event */

context_data->x_ptr_pos = event->xbutton.x;

context_data->y_ptr_pos = event->xbutton.y;

break;

Step 7. Performing Graphics Rendering

The draw_cube function used in this Motif example is identical to the function
used in the Xlib example. Please refer to that example for details about graphics
rendering.

2-44 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Section Three: Other Portable Techniques

In the previous two sections, we used a pair of example applications to learn some
general concepts for developing Starbase applications which are portable across
a variety of graphics devices. In this section we will build upon those examples
and general concepts to learn about additional techniques which can be used to
develop portable Starbase applications.

Block Operations

Block operations (block_read, block_write, and block_move) allow a Starbase
application to directly access and manipulate the contents of the graphics device
frame bu�er. For general information about these functions refer to the Starbase
Reference manual or the chapter called \Frame Bu�er Control and Raster
Opertions" in the Starbase Graphics Techniques manual.

Here, we will learn how to use one of these functions, block_write, in a portable
way. You can then apply these same portable techniques to the use of the
block_read function in your own application. The block_move function can
be used directly without the need for these portable techniques. We will assume
that our sample application, motif_sb2.c, needs to be able to write \blocks" of
pixel data directly to the frame bu�er. This pixel data will exist in our application
in the form of three 8-bit arrays of red, green, and blue intensities.

Portable Techniques 2-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Figure 2-5. motif sb2 window on a graphics device which can render solids.

Determining the Frame Buffer Depth

To use block operations, your application must know the depth used by Starbase
for frame bu�er operations. If your application is using double bu�ering then the
depth is the return value from the double_buffer call. If double bu�ering is not
used then the depth is the depth of the X window (or Starbase widget).

Let's make some minor changes to our Motif example application to enable the
application to determine the Starbase frame bu�er depth and record the depth
for later use. First, we will de�ne some new symbols, DEPTH_24, DEPTH_12, and
DEPTH_8, along with our existing capabilities ags. These new symbols will be
used to record the depth information in the capabilities ag word:

#define DBUF_CAPABLE 0x01

#define SOLIDS_CAPABLE 0x02

#define DEPTH_8 0x04

#define DEPTH_12 0x08

#define DEPTH_24 0x10

Next, we'll obtain the depth of the Starbase widget at the same time we obtain
the �le descriptor. This depth will be important if our application determines
that the device cannot support double bu�ering.

/* Now that the Starbase widget has been realized, we can get the

2-46 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Starbase file descriptor and widget depth. */

n = 0;

XtSetArg(arg[n], XgNfildes, &fildes); n++;

XtSetArg(arg[n], XmNdepth, &widget_depth); n++;

XtGetValues(sb, arg, n);

In our original example, our inquire_starbase_capabilities function deter-
mined the capabilities ag word contents. Now, we'll augment the capabilities
ag word with depth information from our initialize_starbase function. To
do that, we'll change the initialize_starbase function to type int, and pass
the widget depth as an additional argument to the function. The function will
then determine the actual Starbase frame bu�er depth and return the capabil-
ities ag word with that information recorded via the DEPTH_8, DEPTH_12, or
DEPTH_24 ag.

/* Set up Starbase display characteristics */

capabilities = initialize_starbase(fildes, capabilities, widget_depth);

Now, let's take a look at the changes to the initialize_starbase function.
We've added the depth argument and declared an additional local variable,
starbase_depth:

int initialize_starbase(fildes, capabilities, window_depth)

int fildes, capabilities, window_depth;

{

int starbase_depth;

If our device is capable of double bu�ering, we'll assign the return value from the
double_buffer call to the starbase_depth variable. Otherwise, we'll assign the
window_depth which was passed as an input argument.

if (capabilities & DBUF_CAPABLE)

{

/* The device can do double buffering */

starbase_depth = double_buffer(fildes, TRUE|INIT, 24);

dbuffer_switch(fildes, 0);

}

else

starbase_depth = window_depth;

Then, we'll set either the DEPTH_24, DEPTH_12, or DEPTH_8 ag in the
capabilities ag word, based on the value of the starbase_depth variable.
We'll return the capabilities ag word with this new ag set.

if (starbase_depth == 24)

capabilities |= DEPTH_24;

Portable Techniques 2-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
else if (starbase_depth == 12)

capabilities |= DEPTH_12;

else

capabilities |= DEPTH_8;

:

:

return(capabilities);

At this point, our application has determined the Starbase frame bu�er depth
and has recorded it in the capabilities ag word. This depth information will be
important when our application performs the block_write operation.

Writing the Pixel Data

The colors and intensities of pixels in our Starbase application X window (or
Starbase widget) are determined by the contents of the frame bu�er. The way in
which the pixel appearance and frame bu�er contents are related is determined
by the Starbase colormap mode (set by shade_mode) and frame bu�er depth.
Our example application is using the Starbase CMAP_FULL colormap mode, which
means that the Starbase colormap is initialized to a con�guration which will
provide a direct mapping between frame bu�er contents and pixel colors.

Let's begin de�ning our own function, rgb_block_write, which will use the depth
information contained in the capabilities ag word to determine how to write our
application's red, green, and blue pixel data to the frame bu�er. Our function
will use the Starbase dcblock_write function to actually write the data.

/*

rgb_block_write - this function takes arrays of red, green, and blue data,

converts it into 8-bit or 12-bit format if necessary, and then writes it

to the specified x and y position.

In this example function, the contents of the r, g, b input arrays are

not modified. In a real application it may be possible to use these

input arrays to do the format conversion instead of allocating new

arrays to hold the converted data.

*/

2-48 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
void rgb_block_write(fildes, capabilities, xpos, ypos, width, height,

r, g, b)

int fildes, capabilities, xpos, ypos, width, height;

unsigned char *r, *g, *b;

{

unsigned char *rgb, *r12, *g12, *b12;

int i;

First, we'll disable Starbase clipping so that we can freely block write anywhere
in the X window.

/* We'll turn off clipping so that we can do the block write anywhere in

the X window */

clip_indicator(fildes, CLIP_OFF);

Next, we need to know the frame bu�er depth which was stored in the capabilities
ag. If the frame bu�er depth is 24, then there are three frame bu�er banks: red
(bank 2), green (bank 1), and blue (bank 0). Each bank can be considered an
array of 8-bit data. To establish the color and intensity of a single pixel, the
appropriate value (in the range 0..255) must be written to the corresponding
location in each bank. So, in this case no conversion or modi�cation of our input
red, green, and blue data is necessary:

if (capabilities & DEPTH_24)

{

/* No conversion is needed if we're working with a 24-bit frame

buffer. However, the bank_switch() calls are needed to

let Starbase know which of the 3 frame buffer banks (red, green,

or blue) we wish to write to. Bank 2 is red, bank 1 is green,

and bank 0 is blue. */

bank_switch(fildes, 2, 0);

dcblock_write(fildes, xpos, ypos, width, height, r, FALSE);

bank_switch(fildes, 1, 0);

dcblock_write(fildes, xpos, ypos, width, height, g, FALSE);

bank_switch(fildes, 0, 0);

dcblock_write(fildes, xpos, ypos, width, height, b, FALSE);

}

If the frame bu�er depth is 12, we still have the red, green, and blue banks. Again,
each bank can be considered an array of 8-bit data. In this case, however, there
are only 4 bits of meaningful information per pixel. Whether this information
is contained in the most signi�cant or least signi�cant 4 bits of the 8-bit data
depends upon a variety of factors. So, when preparing an 8-bit value to be
written it is best to ensure that the most signi�cant 4 bits are duplicated in the

Portable Techniques 2-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
least signi�cant 4 bits. When the write occurs Starbase will ensure that only the
appropriate half of the actual frame bu�er data will be modi�ed.

else if (capabilities & DEPTH_12)

{

/* We need to convert to 12-bit values. In order to preserve the

input data, we'll allocate a local buffer to hold the converted

data. */

r12 = (unsigned char *) malloc(width*height);

g12 = (unsigned char *) malloc(width*height);

b12 = (unsigned char *) malloc(width*height);

if (r12 == NULL || g12 == NULL || b12 == NULL)

{

fprintf(stderr,"Cannot allocate memory\n");

return;

}

/* In this case, we will duplicate the most significant nibble

(4 bits) of each red, green, and blue value into the least

significant nibble. */

for (i = 0; i < (width*height); i++)

{

r12[i] = (r[i] & 0xf0) | (r[i] >> 4);

g12[i] = (g[i] & 0xf0) | (g[i] >> 4);

b12[i] = (b[i] & 0xf0) | (b[i] >> 4);

}

/* Now that we have converted the data to 12-bit format, we need to

write it to the window. The bank_switch() calls are needed to

let Starbase know which of the 3 frame buffer banks (red, green,

or blue) we wish to write to. Bank 2 is red, bank 1 is green,

and bank 0 is blue. */

bank_switch(fildes, 2, 0);

dcblock_write(fildes, xpos, ypos, width, height, r12, FALSE);

bank_switch(fildes, 1, 0);

dcblock_write(fildes, xpos, ypos, width, height, g12, FALSE);

bank_switch(fildes, 0, 0);

dcblock_write(fildes, xpos, ypos, width, height, b12, FALSE);

/* Free our local buffers */

free(r12); free(g12); free(b12);

}

2-50 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
If the frame bu�er depth is 8, we have only a single bank of 8-bit data. This
case is a bit more complicated because, for each pixel, we need to \pack"
the 24 bits of red, green, and blue data into a single 8-bit value. If the
SB_X_SHARED_CMAP environment variable is set, we must pack the data using
a 6j6j6 scheme. Otherwise, we must pack the data using a 3:3:2 scheme. See the
\CRX Family of Device Drivers" chapter of this manual for detailed information
about the 6j6j6 and 3:3:2 schemes. In our example, we will de�ne a couple of
macros to simplify conversion to 6j6j6 and 3:3:2.

else if (capabilities & DEPTH_8)

{

/* We need to pack the 24-bit data into 8-bit values. In order to

preserve the input data, we'll allocate a local buffer to hold

the converted data. */

rgb = (unsigned char *) malloc(width*height);

if (rgb == NULL)

{

fprintf(stderr,"Cannot allocate memory\n");

return;

}

/* There are two possible 8-bit formats, commonly known as 3:3:2 and

6|6|6. If the SB_X_SHARED_CMAP environment variable is set, we

will use the 6|6|6 format. Otherwise, we use the 3:3:2 format.

We'll define some macros to make this easier. */

#define RGB_TO_332(r, g, b) ((r & 0xe0) + \

((g >> 3) & 0x1c) + \

((b >> 6) & 0x03))

/* RGB_TO_666_FACTOR is 6.0/256.0, which is needed to quantize a value in

the range 0..255 into a range of 0..5 */

#define RGB_TO_666_FACTOR 0.023438

#define RGB_TO_666(r, g, b) (40 + \

(unsigned char)(r * RGB_TO_666_FACTOR) * 36 + \

(unsigned char)(g * RGB_TO_666_FACTOR) * 6 + \

(unsigned char)(b * RGB_TO_666_FACTOR))

Portable Techniques 2-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

if (getenv("SB_X_SHARED_CMAP"))

{

for (i = 0; i < (width*height); i++)

rgb[i] = RGB_TO_666(r[i], g[i], b[i]);

}

else

{

for (i = 0; i < (width*height); i++)

rgb[i] = RGB_TO_332(r[i], g[i], b[i]);

}

/* Now that the data has been converted, we will write the 8-bit

values into the window. There is no need for a bank_switch()

since we know that the appropriate 8-bit bank is already

enabled for writing. */

dcblock_write(fildes, xpos, ypos, width, height, rgb, FALSE);

/* Free up our local buffer. */

free(rgb);

}

After we have written the data to the frame bu�er, we'll restore the clip indicator
to the default value of CLIP_TO_RECT and return.

/* Restore the clip_indicator() back to its default value */

clip_indicator(fildes, CLIP_TO_RECT);

} /* end of rgb_block_write() */

2-52 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Transparent Overlay Windows

Applications generally perform graphics rendering in the graphics device image
planes. Certain Hewlett-Packard graphics devices provide both image planes and
overlay planes. On these devices, an application may wish to create a window in
the overlay planes and make its background transparent so that a user can \see
through" the overlay window to the image window beneath it.

Graphics rendering to the overlay window will not a�ect the image plane window
contents, so an application can render text and other graphics to the overlay
window without needing to re-render the image window graphics. This is
especially useful if the image window contains very complex graphics which take
a long time to re-render.

There are several important points to consider about the use of windows in overlay
planes:

1. An application needs to be prepared to use an alternate approach on graphics
devices which do not provide overlay planes. (Note that windows in the image
planes cannot be made transparent).

2. Starbase provides reduced functionality in an overlay window. The CMAP_FULL
colormap mode is not supported in an overlay window on all graphics devices,
so an application should use CMAP_NORMAL instead. 3D hidden surface removal,
lighting and shading are generally not supported in an overlay window. Double
bu�ering is possible on some devices but not recommended.

3. An overlay window should use the default X colormap whenever possible. If
this is not done, other X clients such as terminal windows may exhibit \color
ashing" e�ects when the overlay window is focused by the window manager.
Using the default X colormap means that selection of colors may be limited and
colors must be speci�cally allocated to ensure that they will not be changed
by other X clients.

In this section, we will modify our original Motif example to use a transparent
overlay widget to display some text which will appear to sit \on top" of the 3D
cube object in the image planes widget. If the application, motif_sb3.c, can
create the overlay widget, the text will only need to be rendered when expose
and resize events occur|the rotation and re-rendering of the 3D cube will not
a�ect the text. Otherwise, the application will have to re-render the text every
time the cube is re-rendered.

Portable Techniques 2-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Figure 2-6. motif sb3 window with solids rendering/no overlay planes.

Figure 2-7. motif sb3 window with solids rendering and overlay planes.

2-54 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Creating the Overlay Starbase Widget

In our original example in the main function, we created a single Starbase widget
which, by default, is placed in the graphics device image planes. In this example,
we will create a Starbase widget in the overlay planes before we create the image
planes widget. By creating the overlay planes widget �rst, we ensure that it will
sit \on top" of the image planes widget. Notice that we are again creating a
frame widget to hold the Starbase widget, and the frame is attached to its form
widget parent in the same way as the frame for the image planes widget.

/* Create a frame to hold the overlay Starbase widget -- just for

decoration. */

n = 0;

XtSetArg(arg[n], XmNtopWidget, quit_button); n++;

XtSetArg(arg[n], XmNtopAttachment, XmATTACH_WIDGET); n++;

XtSetArg(arg[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNbottomAttachment, XmATTACH_FORM); n++;

frame = XtCreateManagedWidget("frame", xmFrameWidgetClass,

form, arg, n);

To create the overlay widget we must specify several resources. We will use the
XgCMAP_NORMAL shadeMode and set the overlay resource to True. We wish to use
the default X colormap so we must specify an openMode which excludes the gopen
INIT. The wmCmap resource must be set to XgWM_CMAP_LOW_PRIORITY so that the
window manager will properly focus the image widget colormap. Finally, we will
use the sox11 Starbase driver instead of the default device driver. Refer to the
XgStarbase(3X) man page in the Starbase Reference manual for details about
all of these resources.

/* Now create the overlay widget itself */

n = 0;

XtSetArg(arg[n], XgNshadeMode, XgCMAP_NORMAL); n++;

XtSetArg(arg[n], XgNoverlay, True); n++;

XtSetArg(arg[n], XgNopenMode, XgTHREE_D|XgMODEL_XFORM); n++;

XtSetArg(arg[n], XgNwmCmap, XgWM_CMAP_LOW_PRIORITY); n++;

XtSetArg(arg[n], XgNdriver, "sox11"); n++;

XtSetArg(arg[n], XmNwidth, 500); n++;

XtSetArg(arg[n], XmNheight, 400); n++;

sb_overlay = XtCreateManagedWidget("Starbase", xgStarbaseWidgetClass,

frame, arg, n);

Portable Techniques 2-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Verifying the Widget

After we create the overlay plane widget, we will proceed to create the image
plane widget just as we did in our original example.

/* Create a frame to hold the image Starbase widget -- just for

decoration. */

n = 0;

XtSetArg(arg[n], XmNtopWidget, quit_button); n++;

XtSetArg(arg[n], XmNtopAttachment, XmATTACH_WIDGET); n++;

XtSetArg(arg[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNbottomAttachment, XmATTACH_FORM); n++;

frame = XtCreateManagedWidget("frame", xmFrameWidgetClass,

form, arg, n);

/* Now create the image widget itself */

n = 0;

XtSetArg(arg[n], XgNshadeMode, XgCMAP_FULL); n++;

XtSetArg(arg[n], XmNwidth, 500); n++;

XtSetArg(arg[n], XmNheight, 400); n++;

sb = XtCreateManagedWidget("Starbase", xgStarbaseWidgetClass,

frame, arg, n);

Then, we'll add the resize and expose callbacks, but in this example we'll not
add the input or button motion callbacks just yet. Instead, we'll go ahead and
realize the widget heirarchy and then check the image �le descriptor and perform
the inquire_starbase_capabilities and initialize_starbase function calls
just as before.

/* We want to add these callbacks to the image plane widget whether we

were able to create a transparent overlay widget or not. */

XtAddCallback(sb, XmNresizeCallback, callback, RESIZE_EVENT);

XtAddCallback(sb, XmNexposeCallback, callback, EXPOSE_EVENT);

/* Realize the widgets (will also perform the Starbase gopen() for us).

Note that our callback() function will be invoked when the Starbase

widget is realized, but we will return without doing anything. */

XtRealizeWidget(toplevel);

/* Now that the image Starbase widget has been realized, we can get the

Starbase file descriptor. */

n = 0;

XtSetArg(arg[n], XgNfildes, &fildes); n++;

2-56 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
XtGetValues(sb, arg, n);

if (fildes < 0)

{

/* gopen() was not successful */

fprintf(stderr,"Could not gopen window.\n");

exit(-1);

}

/* Inquire the capabilities of the device */

capabilities = inquire_starbase_capabilities(fildes);

/* Set up Starbase display characteristics */

initialize_starbase(fildes, capabilities);

Next, we must get information from the overlay widget which will indicate
whether or not the widget resides in the overlay planes and can be made
transparent. If we were successful, the transparent resource will hold the
colormap index which can be used as a transparent color. Otherwise, the resource
will have a value of -1.

/* Next, we'll see if we were able to create the overlay window

we had hoped for */

n = 0;

XtSetArg(arg[n], XgNfildes, &overlay_fildes); n++;

XtSetArg(arg[n], XgNtransparent, &transparent_index); n++;

XtGetValues(sb_overlay, arg, n);

If the overlay �le descriptor is valid and there is a transparent colormap index,
we can proceed with our plans to use the overlay widget. We will set the
background color of the widget to the transparent_index. Whenever necessary,
the X toolkit will automatically clear the widget background to this color|
no Starbase clear_view_surface will be needed. Next we'll add callbacks for
expose and resize events. Since the overlay widget will always sit \on top" of
the image widget, we must establish the input and button motion callbacks for
the overlay widget. Since we're planning to render Starbase text into the overlay
widget, we will perform some text initialization tasks. We'll create our own
allocate_overlay_color function so that we can allocate a color for the text,
and then set the text color using the Starbase text_color_index call. Then,
we'll create another function called initialize_starbase_text to complete the
text initialization task. Finally, we'll or an OVERLAY ag into the capabilities ag
word to indicate that we did successfully create an overlay widget.

Portable Techniques 2-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
NOTE: The allocate_overlay_color and initialize_starbase_text func-
tions will be de�ned later.

if (overlay_fildes >= 0 && transparent_index >= 0)

{

/* We were able to successfully gopen an overlay window which

supports transparency. Next, we'll establish the background

color of the overlay widget to be transparent. By doing so,

we'll avoid the need to do a Starbase clear_view_surface(). */

XtSetArg(arg[0], XmNbackground, transparent_index);

XtSetValues(sb_overlay, arg, 1);

/* Then, we'll add callbacks to the overlay widget. We need callbacks

for the expose and resize events. And, since our overlay widget

will sit "on top" of the image widget, the overlay widget must

be responsible for handling the user's input events. So we'll

need to set up callbacks for the button click and motion. */

XtAddCallback(sb_overlay, XmNexposeCallback, callback, EXPOSE_EVENT);

XtAddCallback(sb_overlay, XmNresizeCallback, callback, RESIZE_EVENT);

XtAddCallback(sb_overlay, XmNinputCallback, callback, CLICK_EVENT);

XtAddEventHandler(sb_overlay, Button1MotionMask, FALSE, callback,

MOTION_EVENT);

/* Finally, we'll perform some Starbase initialization on the

overlay widget (mainly setting up text characteristics) */

color_index = allocate_overlay_color(sb_overlay, 1.0, 0.0, 0.0);

text_color_index(overlay_fildes, color_index);

initialize_starbase_text(overlay_fildes);

/* Set a flag in capabilities which will indicate that there is an

overlay window present */

capabilities |= OVERLAY;

}

If we were not able to create an overlay widget, we must revert to our alternate
plan to use only the image widget and re-render the text every time the cube is
re-rendered. We must destroy the overlay widget (which is really just another
image planes widget) and its frame parent. Then, since the overlay widget will
not exist to cover the image widget, we must add the input and button motion
callbacks to the image widget. Finally, we'll set the text color and perform the
other text initialization for the image widget. There is no need in this case to
allocate the text color.

2-58 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
else

{

/* Either the overlay gopen() was not successful or we could not

get a transparent color index. In either case, we do not want

to use the overlay window and widget. */

XtDestroyWidget(XtParent(sb_overlay));

/* Since the overlay widget will not exist to receive the user's

input events, we'll establish those callbacks on the image widget

instead. */

XtAddCallback(sb, XmNinputCallback, callback, CLICK_EVENT);

XtAddEventHandler(sb, Button1MotionMask, FALSE, callback,

MOTION_EVENT);

/* Since the text will now have to be rendered into the image

widget instead of the overlay, we'll set up the Starbase text

characteristics for the image widget. */

text_color(fildes, 1.0, 0.0, 0.0);

initialize_starbase_text(fildes);

}

Now, we will establish an X context much as we did in our original example. In
this case, however, the context will also contain the �le descriptor for the overlay
widget. We will save the context on the image planes window and on the overlay
planes window (if it was indeed an overlay window).

/* We will initialize the contents of a context structure and save the

context on the Starbase window so that this information can later

be obtained when callbacks occur. */

context_data.fildes = fildes;

context_data.overlay_fildes = overlay_fildes;

context_data.capabilities = capabilities;

context = XUniqueContext();

XSaveContext(XtDisplay(sb), XtWindow(sb), context, &context_data);

if (capabilities & OVERLAY)

XSaveContext(XtDisplay(sb), XtWindow(sb_overlay),

context, &context_data);

Portable Techniques 2-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Allocating an Overlay Color

If we specify that the overlay widget not use an INIT when it performs the
Starbase gopen, then our overlay widget will use the default X colormap. This
has the advantage of avoiding the \color ashing" e�ect which can be caused when
clients create their own colormaps. However, it also requires our application to
deliberately allocate all colors which it wishes to use in the overlay widget. If
other X clients (the window manager, etc.) have allocated lots of colors of their
own in the default colormap it may not be possible for our application to allocate
one or more of its desired colors. Our application needs to be prepared to use
alternate colors (perhaps only black and white) if necessary.

When we created our main function in the previous section, we called a function
of our own called allocate_overlay_color to allocate a color for Starbase text.
This allocate_overlay_color function will attempt to allocate a requested
color (speci�ed by the oating point r, g, b function parameters) and return the
color index. If it is unsuccessful, it will return the index for the X color \white"
instead. Refer to the Programming with Xlib manual for detailed information
about color allocation and X colormaps.

2-60 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
/*

allocate_overlay_color - this function is needed to allocate a color for

the overlay widget. Since we're using the regular X colormap, allocation

is necessary to avoid having another X client change the color we've

decided to use in Starbase. The function returns the colormap index

of the color which comes closest to the r, g, b color requested.

*/

int allocate_overlay_color(wdg, r, g, b)

Widget wdg;

float r, g, b;

{

Display *display;

Colormap colormap;

XColor x_color;

Status status;

Arg arg[1];

int colormap_index;

/* Fetch the widget X colormap */

XtSetArg(arg[0], XmNcolormap, &colormap);

XtGetValues(wdg, arg, 1);

/* Attempt to allocate the color in the X colormap */

x_color.red = 65535 * r;

x_color.green = 65535 * g;

x_color.blue = 65535 * b;

status = XAllocColor(XtDisplay(wdg), colormap, &x_color);

if (status == 0)

{

/* We could not allocate the color. Use white instead. */

colormap_index = WhitePixelOfScreen(XtScreen(wdg));

}

else

{

/* We did successfully allocate the color. */

colormap_index = x_color.pixel;

}

return(colormap_index);

} /* end of allocate_overlay_color() */

Portable Techniques 2-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Initializing the Starbase Text Characteristics

In our main function we called another function of our own called initial-

ize_starbase_text. This simple function makes several Starbase calls to estab-
lish the appearance of text which our application will later draw.

/*

initialize_starbase_text - this function establishes the characteristics

of text rendering.

*/

void initialize_starbase_text(fildes)

int fildes;

{

/* Make the text centered on position */

text_alignment(fildes, TA_CENTER, TA_HALF, 0.0, 0.0);

/* Make the size of the text equal to 1/20 of the overall window size */

character_width(fildes, 0.05);

character_height(fildes, 0.05);

} /* end initialize_starbase_text() */

Handling the Callback

We need to declare in our callback function a new variable, type Boolean, called
is_overlay. In the callback function, after we have obtained the X context, we
must get the overlay resource from the widget which experienced the callback.
If the resource has a value of \True", then the callback is associated with the
overlay widget, otherwise it is associated with the image widget.

/* Determine if this is the overlay widget */

XtSetArg(arg[0], XgNoverlay, &is_overlay);

XtGetValues(wdg, arg, 1);

Next, we need to handle the various possible callback types. Just as we did in
our original example, we will use a switch statement with cases for the various
callback types. First, we will deal with the EXPOSE_EVENT type. In this case, if
the is_overlay variable is True, we'll call our own draw_text function to re-
draw the text in the overlay planes. We'll draw a text string which says \Overlay
Text". Otherwise, we need to perform a Starbase clear_view_surface and then
call our draw_cube function to re-draw the 3D cube object.

2-62 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Our draw_cube function will check for the OVERLAY ag in the capabilities ag
word. If the ag is not set, then no overlay widget was created and our draw_cube
function will emulate that overlay widget functionality by calling draw_text to
render the text into the image planes widget after it has drawn the cube.

case EXPOSE_EVENT:

if (is_overlay)

{

/* This is an expose of the overlay widget. We need to

only redraw the text. The window clear will already have

been done by the X toolkit. */

draw_text(context_data->overlay_fildes, "Overlay Text");

}

else

{

/* This is an expose of the image widget. We need to clear

the window and z-buffer and re-draw the cube. We will

automatically call draw_text() inside the draw_cube()

function if there is not an overlay window present. */

clear_view_surface(context_data->fildes);

draw_cube(context_data->fildes, context_data->capabilities);

}

break;

Next, we'll handle the RESIZE_EVENT case. The Starbase widget will take care
of most of the work which needs to be done to account for the resize event.
However, if this is an image widget resize event we need to restore the Starbase
viewing state and, if our graphics device is SOLIDS_CAPABLE, we must restore
the hidden_surface removal because the Starbase widget will have turned it o�.
Since the overlay widget uses the default viewing state and does not use hidden
surface removal no extra action is required for it.

case RESIZE_EVENT:

if (!is_overlay)

{

initialize_camera(context_data->fildes);

if (context_data->capabilities & SOLIDS_CAPABLE)

{

/* need to re-establish hidden surface removal for the

image widget */

hidden_surface(context_data->fildes, TRUE, TRUE);

}

}

break;

The CLICK_EVENT and MOTION_EVENT cases are unchanged in the callback

function. If an overlay widget exists, the text does not need to be re-drawn

Portable Techniques 2-63

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
when the cube is rotated and re-drawn. However, if an overlay widget does not
exist, the draw_cube function will render the text into the image planes widget
after it has drawn the cube.

Drawing the Overlay Text

If an overlay widget was created, our draw_text function will be called only when
expose events occur on the overlay widget. However, if an overlay widget was
not created, we want our application to emulate the overlay text functionality by
drawing the text into the image widget instead. In our draw_cube function, after
rendering the 3D cube, we will check for the OVERLAY ag in the capabilities ag
word. If the ag is not set then we will call our draw_text function to draw a
text string which says \Image Text". Notice that this must be done before the
double bu�ers are switched.

if (! (capabilities & OVERLAY))

{

/* There is no overlay widget so we must re-draw the text

into the image widget */

draw_text(fildes, "Image Text");

}

Now, we will create the draw text function itself. Notice that a Starbase
flush_buffer call is made after the text3d call. This is necessary to force
Starbase to render the text right away. Otherwise, there may be a delay before
the text is rendered. Since we are not interactively manipulating the text string,
it is not necessary to use a Starbase make_picture_current call at this point.

/*

draw_text - this function will draw the text string passed as a

parameter and then flush the Starbase buffer to make the string

appear.

*/

void draw_text(fildes, text)

int fildes;

char *text;

{

text3d(fildes, 0.5, 0.5, 0.1, text, VDC_TEXT, FALSE);

flush_buffer(fildes);

} /* end of draw_text() */

2-64 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Section Four: Device-Specific Features

The following section discusses what minor di�erences there are between Starbase
graphics devices. It is best that you �rst consult the chapter for your device driver
in this manual. Once familiar with your Starbase graphics device driver, use the
following device-speci�c features to help assure portability across the family of
devices.

Porting from CRX to CRX-24

This section discusses the hpgcrx driver which supports either unaccelerated
devices (CRX, Dual CRX, CRX-24 or the HP 710) or an accelerated device (CRX-
24Z). If you need to select a speci�c mode, see the gopenman page in the Starbase
Reference Manual for information on how to select either an unaccelerated or
accelerated driver.

CMAP_FULL Mode

When rendering in CMAP_FULL mode on a CRX, the 8 planes can be used in either
3:3:2 or in 6j6j6 mode, depending on whether the SB_X_SHARED_CMAP environment
variable was set or not. In 3:3:2 mode, the 8 planes are divided into three planes
of red, three planes of green, and two planes of blue. In 6j6j6 mode, the colormap
is divided into 40 colors for the window system and then a ramp of 216 colors
with six shades each of red, green and blue. On a CRX-24 and CRX-24Z, there
are 8 planes for each of the three colors. These di�erences should not e�ect your
code unless your application needs to perform block operations. Refer to the
\Block Operations" in the \Other Portable Techniques" section for details. The
number of colors available will e�ect your output (the more colors, the better the
picture quality). The picture quality looks better on the 24-plane devices.

Although it is possible to do CMAP_FULL rendering into 8 planes on CRX-24
(3:3:2 style only), the performance will be lower than when using all 24 planes.
For performance and image quality, we recommend using 24 planes.

Note CRX-24Z performance does not change in CMAP_FULL mode
depending on the visual depth (8- or 24-bit).

Portable Techniques 2-65

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Colormap Sharing

The CRX has one hardware colormap. When di�erent windows have di�erent
logical colormaps, colormap thrashing can occur when moving colormap focus
(usually the cursor) from one window to another. To minimize this problem
the CRX has a colormap sharing mechanism which is turned on by the
SB_X_SHARED_CMAP environment variable. See the section on \Colormap Sharing
Starbase and X Windows" in the CRX Family of Device Drivers chapter of this
manual.

CRX-24 and CRX-24Z do not use this mechanism because they have �ve separate
hardware colormaps (one for overlay, four for image planes) to minimize colormap
thrashing. Three of the four image colormaps are used for CMAP_NORMAL and
CMAP_MONOTONIC modes, and one is used for CMAP_FULL mode. Only when you
run out of hardware colormaps will you see thrashing, when two applications with
di�erent logical colormaps have to share the same hardware colormap.

Starbase Echos

Echos on the CRX are rendered to the image bank not currently being used for
image rendering. Echos on CRX-24 and CRX-24Z are rendered to the overlay
planes. This may sometimes result in a slightly di�erent visual behavior of
echos, such as the color being di�erent. Under most circumstances you will
have no problem. For details on device-dependent X Windows information, see
the chapter on your device in the Starbase Device Drivers manual.

On the CRX-24Z device, a common operation may be to have a window in the
image planes with a transparent child window in the overlay planes. In this
case, the Starbase entry point inquire_capabilities should be used. If the
IC_TRANS_WIN_IMAGE_CURSOR bit is set, put the echo in the image plane window.
If this bit is not set, put the echo in the overlay plane child window. (The bit
will not be set for the CRX-24 device, but may be on other devices.)

Number of Color Planes

The CRX has two banks of 8 color planes each. The Starbase bank_switch

function is used to select bank 0 or 1 for block operations such as block_read,
block_write, and block_move. The CRX-24 has 24 image planes and 8 overlay
planes. The 24 image planes on the CRX-24 are organized as three banks of 8
planes each. If an 8-bit window is opened in the image planes, then the CRX-24
planes are accessed just like the CRX. If a 24-bit window is opened, then the

2-66 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
bank_switch function is used to select bank 0, 1, or 2 for block operations. If
double bu�ering is enabled for the 24-bit window, care must be taken to properly
format data written to or read from each bank. See the \Block Operations"
section earlier in this chapter for information about how to do this.

Porting from CRX-24 to CRX-24Z

The CRX-24Z is an optional accelerator for the CRX-24 device. The CRX-24
and CRX-24Z both use the hpgcrx device driver.

The CRX-24Z accelerated Starbase graphics device is highly compatible with
the CRX and CRX-24 graphics device. This can allow applications written and
delivered for CRX-24 to use the CRX-24Z accelerator without requiring di�erent
executable code. To achieve this compatibility, applications must be linked using
shared libraries. Otherwise, the application can be relinked with the hpgcrx

device driver that is installed with the PowerShade software to support CRX-24
or CRX-24Z.

Note The CRX-24 (with PowerShade) and the CRX-24Z provide
optimal 3D shaded polygon performance. For a comprehensive
listing of features which can be used for optimized performance,
see the CRX Family of Device Drivers chapter in this manual.

Source Incompatibilities

The gescapes available for CRX-24Z are a superset of those available on CRX
and CRX-24 with one exception. CRX-24 supports a fill_pattern of up to
16x16 pixels and because of hardware limitations, CRX-24Z only supports up to
4x4 pixels.

Possible behavioral di�erences between the CRX and CRX-24 and CRX-24Z are
mostly because of hardware di�erences. These behavioral di�erences should not
e�ect the operation of the application and may only be observed when directly
comparing the images between the accelerated and unaccelerated driver. Some
of these di�erences are discussed below.

Backing Store

Backing store is an X11 feature that allocates main memory for obscured regions
of a window. Graphics operations are written to this memory as well as the

Portable Techniques 2-67

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
screen. When the window is unobscured, the screen is updated from this memory.
This feature is supported by the CRX and CRX-24, but not by the CRX-24Z.
Therefore, applications in the X environment should capture and act on expose
events and redraw the image when one is received. Refer to the section \Sample
Application" at the beginning of this chapter for examples of how an application
can do this. X events are documented in the Programming with Xlib manual.

Save under is a X11 feature that saves and restores the obscured region of a
window when covered by a transient window, such as a menu. If any graphics
activity occurs to the obscured window, the save under is voided. This feature is
not supported when the transient window is opened for CRX-24Z acceleration.
This feature is supported for the CRX and CRX-24.

Note Support for both backing store and save under may change in
future releases of the Starbase graphics library.

Image Differences

Because of the di�erent mechanisms used to generate the image when using the
CRX-24Z accelerator, there may be minor visual di�erences between accelerated
and unaccelerated images. These minor di�erences are listed below. For speci�c
information on the di�erences, consult the CRX Family of Device Drivers

chapter of this manual.

Di�erent visibility properties - very small primitives may be invisible, that is,
where the rendering starts and stops on the same pixel, such as the dot on the
letter i. If every pixel is required, see the DRAW_POINTS gescape.

Slight shifts in the image location on the display.

Minor di�erences in color interpolation.

Minor di�erences in pattern alignment or line type segment alignment.

Note These di�erences should be minor and may change in future re-
leases of the Starbase graphics library. For speci�c information on
these di�erences, refer to the CRX Family of Device Drivers

chapter of this manual.

2-68 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Porting from CRX-24Z to CRX-48Z

This section discusses the hpcrx48z driver which supports the CRX-48Z device.
The CRX-48Z is a graphics accelerator for the Series 700 workstations. The
CRX-48Z is highly compatible with the CRX-24Z accelerated Starbase graphics
device.

Colormap Sharing

Like the CRX-24Z, the CRX-48Z has �ve separate hardware colormaps (one for
overlay, four for image planes). However, on the CRX-48Z the four image plane
colormaps may be used for CMAP_NORMAL, CMAP_MONOTONIC, or CMAP_FULL, with
no restriction. (The CRX-24Z has four image plane colormaps, but only one can
be used for 12 or 24 bit CMAP_FULL, the other three are used for CMAP_NORMAL

and/or CMAP_MONOTONIC). Colormap allocation is managed by the X Server, and
on the CRX-48Z, the four colormaps are used in an optimal fashion such that
colormap \thrashing" (if more than four colormaps are needed) is greatly reduced.
The CRX-48Z does not use the SB_X_SHARED_CMAP environment variable, or the
6j6j6 colormap mode (as sometimes used by the CRX device).

Starbase Echos

Echos on CRX-24Z are rendered to the overlay planes. On the CRX-48Z device,
echos are rendered in a set of planes separate from the overlay or image planes,
and you may notice slight behavioral di�erences between echos on the two devices.
Under most circumstances these di�erences will pose no problems. For details
on device dependent echo information, see the chapter for your device in in this
manual.

On devices with overlay planes, a common operation may be to have a window
in the image planes with a transparent child window in the overlay planes. In
this case, the Starbase entry point inquire_capabilities should be used. If
the IC_TRANS_WIN_IMAGE_CURSOR bit is set, the echo should be associated with
the fildes for the image plane window. If this bit is not set, the echo should be
associated with the fildes for the overlay plane window. (The bit will be set
for the CRX-48Z device, but may not be on other devices.)

Portable Techniques 2-69

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Number of Color Planes

The CRX-24Z has 24 image planes and 8 overlay planes. The 24 image planes on
the CRX-24Z are organized as three banks of 8 planes each. If an 8-bit window
is opened in the image planes, then the Starbase bank_switch function is used
to select bank 0 or 1 for block operations such as block_read, block_write, and
block_move. If a 24-bit window is opened, then the bank_switch function is
used to select bank 0, 1, or 2 for block operations.

The CRX-48Z has 48 image planes and 8 overlay planes. The 48 image planes are
organized as six banks of 8 planes each. If an 8-bit window is opened in the image
planes, then bank_switch is used to select bank 0 or 1, just as on the CRX-24Z.
If a 24-bit window is opened, then bank_switch is used to select bank 0, 1, 2,
3, 4, or 5. For details on how these banks are organized refer to the \hpcrx48z
Device Driver" chapter in this manual.

Source Incompatibilities

There are very few source incompatibilities between the CRX-24Z and the CRX-
48Z devices. CRX-24Z only supports �ll pattern up to 4x4 patterns. CRX-48Z
supports �ll pattern sizes up to 4x4.

2-70 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Section Five: Starbase Motif Widget Guidelines

Limitations on Starbase Usage

set_p1_p2

hidden_surface

mapping_mode

Using the Starbase widget places some limitations on the use of Starbase
functions. In particular, the default rescale policy causes the widget to use the
Starbase functions set_p1_p2, mapping_mode, and hidden_surface. If you will
be using any rescale policy other than XgRESCALE_NONE, then you should not use
set_p1_p2 or mapping_mode directly. In addition, the resize action will turn o�
hidden_surface, so your resize callback or expose callback will need to restore
hidden_surface if it should be enabled. The set_p1_p2 call that the widget
makes may not update all transformations and geometric attributes. If any such
attributes are meant to be kept from one redraw to the next, they can be set
again in a resize callback to reevaluate them with the new p1-p2 settings.

Using Starbase Display List to Refresh

The Starbase Display List can be very useful for remembering and later redrawing
images when an expose callback is called. A series of Starbase calls can be
recorded in a display list segment. The expose callback function can then use
refresh_segment(3G) to play back the picture.

Appearance of Each Rescale Policy

Possible values of the XgNrescalePolicy resource include XgRESCALE_NONE,
XgRESCALE_DISTORT, XgRESCALE_MINOR, and XgRESCALE_MAJOR.

The XgRESCALE_NONE policy leaves the Starbase p1-p2 limits at the original size
at which the widget's window was created. No changes to p1-p2 or mapping_mode
are made for resize actions. This policy is appropriate if the window size is not
allowed to change. It may also be useful if the application implements its own
rescale in response to the resize callback.

The remaining rescale policies change the Starbase p1-p2 limits and map-

ping_mode. The widget will gopen Starbase with the window set to the MaxWidth

Portable Techniques 2-71

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
and MaxHeight size. The default values for MaxWidth and MaxHeight are the
screen width and height. The rescaling of output can only adapt to an area
as large as MaxWidth and MaxHeight. The size of these limits can a�ect the
amount of resources needed for the window. In particular, the Starbase li-
brary may allocate image bu�ers and Z-bu�ers that use memory in proportion
to MaxWidth*MaxHeight.

The XgRESCALE_DISTORT policy changes the Starbase mapping_mode to distort
the aspect ratio between x and y. It rescales the p1-p2 limits to the full window
width and height, limited by MaxWidth and MaxHeight. This will show all of the
VDC extent, and will use all of the window area. The resulting distortion may
not be acceptable.

The XgRESCALE_MINOR policy changes the Starbase mapping_mode to not distort
the aspect ratio between x and y. It rescales the p1-p2 limits to the full window
width and height, limited by MaxWidth and MaxHeight. If the window's current
aspect ratio does not match the MaxWidth/MaxHeight ratio, there will be unused
parts of the window. This will show all of the VDC extent.

The XgRESCALE_MAJOR policy changes the Starbase mapping_mode to not distort
the aspect ratio between x and y. It may rescale the p1-p2 limits to larger than
the full window width and height. If the window is resized to a di�erent aspect
ratio than the MaxWidth/MaxHeight ratio, the p1-p2 limits will be scaled so the
original aspect ratio is preserved, and the p1-p2 area exactly �ts the larger of the
window width or height. This may not show all of the VDC extent. It will �ll
all of the window.

If using the XgRESCALE_MAJOR rescale behavior, set the XgNmaxWidth and
XgNmaxHeight resources of the Starbase widget to the same aspect ratio as the
vdc_extent to ensure that the vdc_extent is placed against the upper left corner
of the window. When using the XgRESCALE_MAJOR rescale behavior, allowing
these aspect ratios to di�er signi�cantly may cause some or all of the vdc_extent
to be clipped by the Starbase widget even though there is still available white
space within the widget.

Using Dynamic Colormap Priorities

Most X servers can only install one colormap at a time. Only installed colormaps
can control the appearance of a window. The Starbase widget will often have a
di�erent colormap than the other widgets in an application. When this occurs,
only one of the Starbase widgets or the other widgets will look correct at one

2-72 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
time. The application can control what widgets appear correct by changing the
value of the XgNwmCmap resource.

The XgNwmCmap resource can have values of XgWM_CMAP_NONE, XgWM_CMAP_LOW_PRIORITY,
and XgWM_CMAP_HIGH_PRIORITY. The XgWM_CMAP_NONE policy will not arrange
for a Starbase widget to have its colormap installed. This setting is intended for
applications which already have code to manipulate the WM_COLORMAP_WINDOWS

property to communicate colormap needs to a window manager.

The settings XgWM_CMAP_LOW_PRIORITY and XgWM_CMAP_HIGH_PRIORITY can be
used to make the Starbase widget's colormap less important or more important
than the colormaps of other widgets in an application. Whenever the resource
is changed from one value to another, the widget will update the priority of
its colormap. The window manager will then reconsider which colormap or
colormaps to install.

One possible behavior for an application is to make a Starbase widget's colormap
more important when the pointer is inside that widget. The program can watch
for pointer motion into and out of a widget by using the XtAddEventHandler

function to request a callback for EnterWindowMask and LeaveWindowMask. The
callback functions can then update the XgNwmCmap resource value. The following
example program does this.

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/Form.h>

#include <Xm/PushB.h>

#include <Xm/Frame.h>

#include <Xm/DrawingA.h>

#include <Xg/Starbase.h>

void quit(widget, client_data, call_data)

Widget widget;

caddr_t client_data;

caddr_t call_data;

{

exit(0);

}

void expose(widget, client_data, call_data)

Widget widget;

caddr_t client_data;

XmDrawingAreaCallbackStruct *call_data;

{

Arg arg[10];

Portable Techniques 2-73

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
int n;

int fildes;

/* Find the Starbase file descriptor. */

n = 0;

XtSetArg(arg[n], XgNfildes, &fildes); n++;

XtGetValues(widget, arg, n);

if (fildes < 0)

return;

clear_view_surface(fildes);

fill_color(fildes, 0.3, 0.5, 0.2);

ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7);

flush_buffer(fildes);

}

void enter(widget, client_data, event)

Widget widget;

caddr_t client_data;

XEvent *event;

{

Arg arg[10];

int n;

n = 0;

XtSetArg(arg[n], XgNwmCmap, XgWM_CMAP_HIGH_PRIORITY); n++;

XtSetValues(widget, arg, n);

}

void leave(widget, client_data, event)

Widget widget;

caddr_t client_data;

XEvent *event;

{

Arg arg[10];

int n;

n = 0;

XtSetArg(arg[n], XgNwmCmap, XgWM_CMAP_LOW_PRIORITY); n++;

XtSetValues(widget, arg, n);

}

main(argc, argv)

int argc;

char *argv[];

{

2-74 Portable Techniques

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
XtAppContext app_context; /* application context */

Widget toplevel, outer, quit_button, frame, sb;

Arg arg[15];

int n;

toplevel = XtAppInitialize(&app_context, "DRawingArea", NULL, 0,

&argc, argv, NULL, NULL, 0);

n = 0;

outer = XtCreateManagedWidget(NULL, xmFormWidgetClass, toplevel, arg, n);

n = 0;

XtSetArg(arg[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNtopAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNlabelString,

XmStringCreate("Quit", XmSTRING_DEFAULT_CHARSET)); n++;

quit_button = XtCreateManagedWidget("quit", xmPushButtonWidgetClass,

outer, arg, n);

XtAddCallback(quit_button, XmNactivateCallback, quit, NULL);

n = 0;

XtSetArg(arg[n], XmNtopWidget, quit_button); n++;

XtSetArg(arg[n], XmNtopAttachment, XmATTACH_WIDGET); n++;

XtSetArg(arg[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNrightAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNbottomAttachment, XmATTACH_FORM); n++;

XtSetArg(arg[n], XmNshadowThickness, 5); n++;

frame = XtCreateManagedWidget("frame", xmFrameWidgetClass,

outer, arg, n);

n = 0;

XtSetArg(arg[n], XgNshadeMode, XgCMAP_MONOTONIC); n++;

sb = XtCreateManagedWidget("Starbase", xgStarbaseWidgetClass,

frame, arg, n);

XtAddCallback(sb, XmNexposeCallback, expose, NULL);

XtAddEventHandler(sb, EnterWindowMask, False, enter, NULL);

XtAddEventHandler(sb, LeaveWindowMask, False, leave, NULL);

XtRealizeWidget(toplevel);

XtAppMainLoop(app_context);

}

Portable Techniques 2-75

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3

HP VMX Device Driver

Introduction

The hpvmx Starbase driver, or HP VMX, o�ers application developers and end
users an exciting and powerful new tool for enhancing their Starbase graphics
system usage. HP VMX allows you to use any1 X11 graphics window (local or
remote) as a \virtual device" for output of Starbase graphics.

In other words, HP VMX extends the X11 client-server model to include the
3D graphics functionality found in the Starbase graphics library. The HP VMX
driver o�ers you the ability to run Starbase applications to all X11 servers to
which you are able to run other X applications. Furthermore, most applications
can take advantage of this extended capability with little or no modi�cation.

The section \Device Description" will provide you with information to help you
answer questions like:

What is HP VMX?

How do you use HP VMX?

How does HP VMX work?

With this information, you will be able to determine how to utilize the capabilities
of HP VMX. The remaining sections in this chapter provide additional details on
the usage of HP VMX.

Note HP VMX is supported on Starbase, HP-PHIGS, and HP PEXlib
graphics APIs.

1 Refer to the \HP VMX Support" and \HP VMX Con�gurations" sections for
details on o�cial HP support of HP VMX.

hpvmx 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HP VMX/PowerShade Licensing

To take advantage of the remote capabilities of HP VMX and PowerShade, you
must purchase \PowerShade for the HP700/RX X Station." This license allows
you to run PowerShade applications to any remote X11 client; however, this
license is not required to run HP VMX on your local display.

PowerShade

The 3D surfaces software, PowerShade (B2156C), is fully supported on HP VMX.
By combining PowerShade and HP VMX, you have the capability of rendering
high performance 3D graphics including these features:

Lighting and shading

Hidden surface removal via 16-bit software Z-bu�ering

Double bu�ering (8 planes per bu�er)

And you can do this all within the X11 client-server model.

HP VMX Support

There are two sides to the HP VMX support that must be separately addressed:
HP VMX server support and HP VMX client support. The HP VMX server refers
to the machine on which the Starbase application is executing (not necessarily
being displayed) and the HP VMX client refers to the X server on which the
Starbase images are being displayed.

For example, one supported con�guration is to run a Starbase application using
HP VMX on an HP 735 workstation across the network for display on an
HP700/RX X Station. In this example, the HP 735 is the HP VMX server,
and the HP700/RX X Station is the HP VMX client.

3-2 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HP VMX Server Support

On the server side, HP VMX is supported on all HP Series 700 workstations
running HP-UX 9.0 or later.

HP VMX Client Support

On the client side, HP VMX output may be directed to any 8-bit X11 window
on your network, and is supported on all HP X11 servers, including:

HP Series 700 Workstations running X11

HP700/RX X Stations (X terminals)

HP Series 300/400 Workstations running X11

HP VMX API Support

HP VMX is supported on the following graphics APIs:

Starbase
HP-PHIGS
HP PEXlib

For More Information

Information in this chapter is speci�c to HP VMX. For more information on
backing store in X windows and linking shared or archived libraries, read the
following manuals:

Starbase Graphics Techniques | explains backing store in X Windows.

Programming on HP-UX | covers linking shared or archive libraries.

hpvmx 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Device Description

What is HP VMX?

In order to answer the question \What is HP VMX?" let us �rst examine its
name. HP VMX is a shorthand name for the HP Virtual Memory X driver
and is derived from its implementation and usage. Briey, HP VMX o�ers the
capability to render 3D graphics images into Virtual Memory for display in the
X11 Windows client-server environment.

While HP VMX is technically a Starbase \device driver" it di�ers somewhat from
the traditional de�nition. A traditional Starbase device driver implements device-
speci�c code necessary to support the device-independent Starbase graphics
library on a particular graphics device (or family of graphics devices). HP
VMX, on the other hand, implements the code to support the device-independent
Starbase graphics library in an X11 graphics window | independent of the
underlying hardware on which the X window resides. HP VMX accomplishes
this in two steps:

1. HP VMX renders graphics images into virtual memory.
2. HP VMX displays these images in the targeted window using standard X11

protocol.

Because HP VMX uses the X11 protocol to display the images, this targeted
window may be local or remote on: HP or non-HP hardware, a workstation, an
X terminal, or a PC2. The only requirement is that you run to an X11 graphics
window. Note, too, that the application is not responsible for displaying the
images via X11 protocol; this is handled by the HP VMX driver.

You may recognize similarities between HP VMX and the \Starbase-on-X11"
(SOX11) device driver. While the X11-based client-server models are similar,
di�erences do exist in both functionality (HP VMX has a richer set) and
performance (di�ers per functionality). Please see the section \HP VMX vs.
SOX11" for an overview comparing and contrasting the two drivers.

2 Refer to the \HP VMX Support" section for details on o�cial HP support of HP
VMX.

3-4 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

How Do You Use HP VMX?

The following example shows the steps necessary to run an application using
VMX. This example is intended to give you a feel for the kinds of steps necessary
to use VMX, rather than provide a detailed tutorial on all the steps necessary to
explain each step. Refer to the sections throughout this chapter, including, \HP
VMX Licensing", \To Compile and Link with the Device Driver", and \To Open
and Initialize the Device for Output" for details on these steps.

HP VMX Usage Example

In order to run a PowerShade application to an HP700/RX X Station across the
network from an HP 735 (running 9.0 HP-UX or later), you need to:

1. Purchase the \PowerShade for HP700/RX X Stations" license to allow you to
run HP VMX to a remote X11 server.

2. Make sure PowerShade is installed on your server (the HP 735).

3. Execute an xhost command from your X Station to give the HP 735 permission
to access your X Station's local display server. For example,

xhost +hpdspsvr

4. Create an hpterm window and rlogin to the HP 735 from your X Station.

5. Set the DISPLAY environment variable to the X Station's DISPLAY in this HP
735 hpterm window. For example, in ksh:

export DISPLAY=hpxterm:0.0

6. Run your application from this window.

The application is now executing on the HP 735 (hpdspsvr), and displaying X
and Starbase output on the X Station (hpxterm:0.0).

This example illustrates that it is easy to run your Starbase applications across
the network in the X11 client-server model using HP VMX.

Note The application in this example did not need to be re-linked,
nor were any code changes necessary. This assumes that the
application is linked with shared libraries, and the application
uses NULL as the driver parameter to gopen.

hpvmx 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

How Does HP VMX Work?

Now that you have some understanding of what HP VMX is, and how you can
use HP VMX, let us take a look at how HP VMX works.

Overview

Instead of rendering Starbase 3D graphics images to a dedicated graphics display
subsystem, HP VMX is designed to render these Starbase 3D graphics images to
a virtual memory frame bu�er and display these images to an X11 window using
standard X11 protocol.

Here are the basic steps HP VMX performs:

1. VM (Virtual Memory) frame bu�er allocation | At gopen time, the HP
VMX driver allocates virtual memory for use as a frame bu�er. This VM
frame bu�er is allocated using calloc and its size is based upon the size of
the X11 window being gopened.

2. Rendering to the VM frame bu�er | After a successful gopen, HP
VMX renders Starbase output primitives in the allocated VM frame bu�er.
The appropriate primitive attributes and device control are applied during
rendering.

3. Display of the VM frame bu�er | Upon application request, HP VMX
displays the contents of the VM frame bu�er. Application requests come
in the form of one of the following Starbase calls:

make_picture_current

flush_buffer

dbuffer_switch

(See the section \Synchronization" for more details.)

Because HP VMX is always operating in the X11 windows environment, the
display of the VM frame bu�er to the gopened window is handled through the
use of standard X11 protocol.

These basic HP VMX steps are applicable to both single- and double-bu�ering.
(HP VMX supports only 8/8 double bu�ering).

3-6 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HP VMX Configurations

The HP VMX driver supports only 8-bit X11 windows. Attempts to gopen

windows with a depth other than 8 will result in a Starbase error.

The HP VMX driver supports the following con�gurations:

8-bit indexed color (CMAP_NORMAL, CMAP_MONOTONIC), single-bu�ered, or 8/8
double bu�ered

8-bit direct color (CMAP_FULL), single-bu�ered or 8/8 double-bu�ered

HP VMX Device Driver, VM Rendering Utilities, and
Overlay Planes

Before going further, we must clarify some points related to HP VMX. In order
to do so, you need to understand the two basic functions that HP VMX provides:

To render Starbase graphics into a virtual memory frame bu�er.

To then display this VM frame bu�er in the targeted X11 window.

Together, these two functions create what we call \HP VMX".

VM Rendering Utilities

There also exists, as a matter of implementation, a set of internal graphics system
functions which rely on VM rendering, but not on the display of the VM (Virtual
Memory) bu�er in a window. This set of functions is called the VM Rendering
Utilities and includes:

VM Backing Store Retain graphics data rendered to obscured por-
tions of a window.

VM Double-Bu�ering Allow low end systems to take advantage of
double-bu�ering.

Again, these utilities are not included in the de�nition of \HP VMX" but do rely
on some of the same internal implementation.

hpvmx 3-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The majority of this chapter will discuss HP VMX as a \device driver" and is
organized in a manner similar to the other device driver chapters.

The \VM Rendering Utilities" section near the end of the chapter discusses
in more detail each of the VM rendering utilities and explains some of the
implementation details.

Overlay Planes

HP VMX serves as the Starbase driver for all CRX-family \overlay plane"
device opens. Note, that the \hardware device driver" (for example, hpgcrx
or hpcrx48z) is not supported in the overlay planes on these devices. HP VMX
is used as the exclusive Starbase driver for the overlay planes on these devices.

Please see the section \HP VMX: The CRX Family Overlay Plane Driver" for
details on how HP VMX is used in this capacity.

Performance

HP VMX performance is quite good. While HP VMX is generally slower than
a hardware device driver, it provides 3D client-server graphics at an interactive
performance level.

Rather than attempt a full performance characterization of HP VMX, this section
contains some qualitative guidelines to use when assessing the performance of HP
VMX. Performance on HP VMX as a whole is determined by the performance of
the two key portions of HP VMX:

VM (Virtual Memory) rendering | High performance VM rendering is
achieved by taking advantage of HP's high performance SPUs and PowerShade
graphics software.
Display of the VM frame bu�er | Display performance is di�cult to
characterize because it is inuenced by the performance of the X11 servers
and the network throughput.

VM rendering and display performance are both inuenced by the size of the
graphics window. The larger the window, the more data there is to write to
the VM frame bu�er, and the more data there is to display via X11 protocol.

3-8 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HP VMX is optimized to display only the portions of the VM frame bu�er that
have changed since the last display.

X Windows

The HP VMX driver is supported only in the X11 window environment. The HP
VMX driver is not supported in raw mode.

To Compile and Link with the Device Driver

For Shared Libraries

The compiler driver programs (cc, f77, pc) link with shared libraries by default.
The HP VMX shared library device driver is the �le named libddvmx.sl in the
/usr/lib directory. Starbase will explicitly load the device driver at run time
when you compile and link with the Starbase shared library /usr/lib/libsb.sl,
or use the -lsb option. This loading occurs at gopen(3G) time.

Since HP VMX is supported only for X Windows, the window libraries must be
linked in with all programs that use HP VMX.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/X11\

-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN 77 use,

f77 example.f -Wl,L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

hpvmx 3-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section \To Open
and Initialize the Device for Output" in this chapter.

For Archive Libraries

The HP VMX archive library device driver is part of the Starbase archive library
/usr/lib/libsb1.a. Including the HP VMX archive library device driver in
libsb1.a ensures that all archive library applications have access to the HP
VMX capabilities without explicitly including the HP VMX device driver in the
link sequence.

Note that the implementation of the VM Rendering Utilities, and the use of VMX
as the overlay plane device driver on the CRX family of devices necessitates the
existence of HP VMX within the libsb1.a.

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive driver if a shared library was not found. By exporting the LDOPTS
variable, the -l option will refer only to archive drivers.

Examples

Assuming you are using ksh(1), to compile and link a program for use with HP
VMX and the hpgcrx device driver, use:

export LDOPTS='-a archive'

and then:

cc example.c -lddgcrx\

-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN 77, use:

f77 example.f -lddgcrx\
-Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

3-10 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

or for Pascal, use:

pc example.p -lddgcrx\

-Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

Again, note there is no reference to -lddvmx needed since the HP VMX code
resides in /usr/lib/libsb1.a.

To Open and Initialize the Device for Output

X11 Environment

The VMX usage example in the section \How Do You Use HP VMX?" gives
an example of how you might use this X11 environment to run an application
with HP VMX. This section describes in more detail, the X11 environment setup
necessary to run HP VMX remotely.

DISPLAY Environment Variable

The DISPLAY environment variable must be set on the HP VMX server side. The
value of the environment variable is the host, display, and screen of the targeted
VMX client on which the Starbase application is to be displayed. By setting this
environment variable, the application will direct X11 protocol to the HP VMX
client.

xhost Command

The xhost command is used to add or delete a remote host's permission to access
the local display server. This command must be run on the HP VMX client side
to allow the HP VMX server access to the HP VMX client's display server.

Licensing

In order to run a PowerShade application on any remote X11 server, you must
purchase the \PowerShade for HP700/RX X Station" product. Refer to the
section \HP VMX/PowerShade Licensing" for details.

hpvmx 3-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Syntax Examples

Two methods exist to gopen a window using HP VMX. One method for gopening
HP VMX is to specify hpvmx as the driver parameter to gopen(). The second
method is to set the driver parameter to NULL and let Starbase choose the
appropriate device driver. See the gopen(3G) and inquire_device_driver(3g)

man pages for details on device driver selection.

If you specify NULL as the driver parameter, Starbase will choose HP VMX if:

The window is displayed on a remote X11 server, or

The window is displayed in the overlay planes on one of the CRX family of
devices (for example, CRX-24, CRX-24Z, CRX-48Z)

In each of the examples below, assume that the window /dev/screen/remote_window

has been created on a remote X11 server with the following xwcreate command:

xwcreate -display <remote host> -geometry 500x500 remote_window

C programs

fildes = gopen("/dev/screen/remote_window", OUTDEV, NULL, INIT);

FORTRAN 77 programs

fildes = gopen('/dev/screen/remote_window'//char(0), OUTDEV,

char(0), INIT)

Pascal programs

fildes := gopen('/dev/screen/remote_window', OUTDEV, '', INIT);

Parameters for gopen

The gopen procedure has four parameters: path, kind , driver , and mode.

path The name of the device �le created by xwcreate(1) or created with
XCreateWindow(3X11) and returned from make_X11_gopen_string(3G).

kind This parameter should be OUTDEV if the window will be used for
output, INDEV if the window will be used for Starbase input, or

3-12 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

OUTINDEV if the window will be used for both output and Starbase
input.

driver The character representation of the driver type. For portability
across the HP graphics device family, use a NULL parameter. In this
case, Starbase will automatically choose the appropriate driver.

For example,

NULL for C
char(0) for FORTRAN 77
'' for Pascal

A character string may be used to specify the driver. For example,

hpvmx for C
hpvmx//(0) for FORTRAN 77
hpvmx for Pascal

mode The mode control word consists of several ags bits or-ed together.
Listed below are ag bits that have device-dependent actions.
Those ags not discussed below operate as de�ned by the gopen

procedure. See the Starbase Graphics Techniques manual for more
details of gopen actions when in an X Window.

0 (zero) Open the window, but do not perform the
operations associated with INIT below. The
following action is taken:

1. The software color table is initialized from
the X colormap already associated with the
window.

2. The VM bu�er is initialized by reading the
contents of the window.

INIT Open and initialize as follows:

1. The window is cleared to 0s.
2. A new X colormap is created and associated

with this window. The colormap is initial-
ized as CMAP_NORMAL.

RESET_DEVICE This ag is equivalent to INIT.

hpvmx 3-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

SPOOLED Not supported

MODEL_XFORM Opening in MODEL_XFORM mode will a�ect how
matrix stack and transformation routines are
performed. See gopen(3G) for more informa-
tion.

INT_XFORM Only integer and common operations will be
performed. All oating point operations will
cause an error.

INT_XFORM_32 Only integer and common operations will be
performed. All oating point operations will
cause an error.

ACCELERATED This ag is ignored.

UNACCELERATED This ag is ignored.

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
window with X-axis values increasing to the right and Y-axis values increasing
down.

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (x,y) device coordinates.

The maximum x and y coordinates are determined by the size of the window.

Device Defaults

Dither Default

The number of colors allowed in a dither cell is 1, 2, 4, 8 or 16. The default value
is 16. Selecting a color with the fill_color procedure will allow dithering for
�lled areas when desired.

3-14 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Raster Echo Default

The default raster echo is the following 8x8 array:

255 255 255 255 0 0 0 0

255 255 0 0 0 0 0 0

255 0 255 0 0 0 0 0

255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0

0 0 0 0 0 255 0 0

0 0 0 0 0 0 255 0

0 0 0 0 0 0 0 255

The maximum size for a raster echo is 64x64 pixels.

Semaphore Default

Semaphore operations have no e�ect on HP VMX.

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table 3-1. Line Type Defaults

Line Type Pattern

0 1111111111111111

1 1111111100000000

2 1010101010101010

3 1111111111111010

4 1111111111101010

5 1111111111100000

6 1111111111110110

7 1111111110110110

hpvmx 3-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Color

Default Color Map

To initialize the current color map to the default values shown below, set themode
parameter of gopen to INIT when opening a depth 8 window. This is the Starbase
CMAP_NORMAL mode. (To see the rest of the colors, use the inquire_color_map

call to read the Starbase color table).

Table 3-2. Starbase Default Color Table

Index Color Red Green Blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

255 white 1.0 1.0 1.0

3-16 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Starbase Functionality

Calls Not Supported

The hpvmx driver does not support the following Starbase calls if you are using
Starbase without the PowerShade software. When executed, these calls will
produce no result (that is, they are no-ops).

alpha_transparency hidden_surface

backface_control light_ambient

bf_alpha_transparency light_attenuation

bf_control light_model

bf_fill_color light_switch

bf_interior_style line_filter

bf_perimeter_color perimeter_filter

bf_perimeter_repeat_length set_capping_planes

bf_perimeter_type set_model_clip_indicator

bf_surface_coefficients set_model_clip_volume

bf_surface_model surface_coefficients

bf_texture_index surface_model

contour_enable texture_index

define_contour_table texture_viewport

define_texture texture_window

define_trimming_curve viewpoint

deformation_mode zbuffer_switch

Using PowerShade with HP VMX

By using PowerShade with HP VMX, a much wider set of functionality is
supported. The following calls are not supported when using PowerShade with
HP VMX:

alpha_transparency deformation_mode

bf_alpha_transparency line_filter

bf_texture_index perimeter_filter

contour_enable texture_index

define_contour_table texture_viewport

define_texture texture_window

hpvmx 3-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Conditional Support of Starbase Calls

The following Starbase calls are supported with the listed exceptions:

block_read
block_write The raw parameter for the block_read and block_write

commands is used by this driver to do plane-major reads
and writes. It is enabled by the gescape R_BIT_MODE.

The storage supplied by the user as the source or destina-
tion must be organized as follows.

The data from each plane is packed with eight pixels per
byte.

Each row must begin on a byte boundary. Thus the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

The data for the next plane begins on the following byte
boundary.

Clip to the screen limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

When clipping, part of each plane region will not be read
(block_read) or altered (block_write).

A bit mask selects the planes to read or write. The
initial value of this mask is 1 (one) indicating that only
plane 0 is to be accessed. The value of the mask may
be changed using the R_BIT_MASK or GR2D_PLANE_MASK

gescapes. GR2D_PLANE_MASK is discussed in Appendix A
of this manual. The planes selected by the mask are
expected to reside in consecutive plane locations in the
user storage area. This reduces the storage requirements
to exactly what is needed but also presents the potential
for addressing violations or undesirable results.

For example, if the plane mask is changed to specify more
planes between a block_read and a following block_write

3-18 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

from the same location, the block_write will attempt to
access storage for planes that were not read (and perhaps
not allocated). The application program must ensure
consistency in these operations.

double_buffer HP VMX supports only 8/8 double-bu�ering. Attempts
to double-bu�er with less than 8 planes will default to 8/8
double-bu�ering.

pattern_define For HP VMX, the maximum pattern size is 4x4. If a
pattern larger than 4x4 is speci�ed, an error message is
printed and the previous pattern is retained.

shade_mode The colormap mode may be selected. Shading can
be turned on only if using PowerShade. Shading is
not supported on device coordinate primitives even with
PowerShade.

text_precision Only STROKE_TEXT precision is supported.

vertex_format If not using PowerShade software, the use parameter must
be set to zero. Any extra coordinates will be ignored.
If using PowerShade software, vertex_format is fully
functional.

with_data routines

partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with_data

Additional data per vertex will be ignored if not supported
by this device. For example, contouring data will be
ignored since the device does not support contouring.

hpvmx 3-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Supported Gescapes

The hpvmx driver supports the following gescape operations. Refer to Appendix
A of this manual for details on gescapes.

BAD_SAMPLE_ON_DIFF_SCREEN Restore the locator and choice sampling of the
X11 pointer device.

BLOCK_WRITE_SKIP_COUNT Specify byte skip count during block write.

DRAW_POINTS Select di�erent modes of rounding for rendered
points.

IGNORE_RELEASE Trigger only when button is pressed.

OLD_SAMPLE_ON_DIFF_SCREEN Inquire the locator and choice sampling of the X11
pointer device.

R_BIT_MASK De�ne bit mask for bit mode block ops.

R_BIT_MODE Enable/disable bit mode block ops.

R_GET_FRAME_BUFFER Read the address of the device frame bu�er and
control space.

R_LINE_TYPE User-de�ned line style and repeat length.

R_LOCK_DEVICE Lock device.

R_UNLOCK_DEVICE Unlock device.

READ_COLOR_MAP Copy the hardware colormap into the software
color map.

SWITCH_SEMAPHORE Semaphore control.

TRIGGER_ON RELEASE Trigger only when button is released.

Additional Gescapes Supported with PowerShade

ILLUMINATION_ENABLE Turn on/o� illumination bits.

LS_OVERFLOW_CONTROL Set light source overow handling.

POLYGON_TRANSPARENCY Segment control over front/back face \screen
door."

3-20 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

TRANSPARENCY Set screen door transparency mask (front face and
back face)

ZBANK_ACCESS Enable/disable Z-bu�er block operations.

ZWRITE_ENABLE Enable/disable replacement of Z value.

Exceptions to Gescape Support

Note Because the gescape operations are device-dependent, the excep-
tions discussed below may be removed in future drivers.

R_GET_FRAME_BUFFER This gescape is used to return the addresses of both
the frame bu�er and the control space. A zero is
returned for the control space address since HP VMX
has no control space. The frame bu�er address is
returned correctly.

SWITCH_SEMAPHORE,
R_LOCK_DEVICE,
R_UNLOCK_DEVICE

Because HP VMX renders to a virtual memory
frame bu�er, device locking is not necessary. These
gescapes, therefore have no e�ect on HP VMX.

Differences From Other Starbase Device Drivers

Synchronization

Because of the way HP VMX works (rendering to a VM bu�er and then displaying
these images through X11 protocol), the HP VMX driver has some unique
synchronization requirements.

The following Starbase calls copy the contents of the VM frame bu�er to the
window:

make_picture_current

flush_buffer

dbuffer_switch (if double-bu�ering is enabled)

hpvmx 3-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Until one of these calls is made, HP VMX will continue to render graphics to
the VM frame bu�er. Changes are not reected in the X11 window until this
synchronization occurs.

You may use buffer_mode(3G) to disable bu�ering of graphics primitives, and
therefore avoid synchronization problems. Disabling bu�ering with buffer_mode

will degrade performance.

Note that there is no command bu�er associated with the HP VMX driver.
When buffer_mode is turned o�, there is an implicit make_picture_current

which causes an update of the virtual memory bu�er to the destination window.
It is the frequency of these updates (that is, synchronization) that can degrade
rendering performance signi�cantly.

The Starbase Reference and the Starbase Graphics Techniques manuals discuss
buffer_mode for bit-map device drivers. The performance considerations for
those drivers may not apply to HP VMX.

Resource Considerations

Some resource usage implications need to be considered when using the HP VMX
driver. Because no dedicated frame bu�er hardware exists, and therefore the
frame bu�er memory is allocated at gopen time, the use of the HP VMX driver
will consume virtual memory resource.

HP VMX will allocate a virtual memory frame bu�er at gopen time. The VM
frame bu�er is allocated based upon the size of the X11 window being gopened.
Since HP VMX supports only 8-bit X11 windows, the frame bu�er is allocated
on a byte-per-pixel basis.

For example, consider an X11 graphics window which is 750 pixels wide and 600
pixels high. The size of the VM frame bu�er is:

750 pixels * 600 pixels * 1 byte/pixel = 450,000 pixels

450,000 pixels * 1 byte/pixel = 450,000 bytes

So the VM frame bu�er for this window consumes .45 Mbytes of virtual memory.

This resource is returned to the system at gclose() time.

This resource usage is typically not a problem, but should be considered if you
are using the HP VMX driver and:

3-22 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Many windows (especially large windows) are gopen'd simultaneously.

Your system has a small amount of RAM.

In order to alleviate these problems, you may:

Use the hardware device driver whenever possible. For example, if you are
running on a CRX system, specify hpgcrx as the driver parameter to gopen

when running to a local window. Specify hpvmx only when running to a remote
system, or when running to the overlay planes on the CRX family of devices.
(If your driver parameter equals NULL, this happens automatically.)

Reduce the number of simultaneous gopens (gclose some windows before
gopening more of them).

Use smaller windows (the size of the window determines the amount of memory
allocated at gopen time).

Add more memory to your system.

Restricted gopens

As with VM (Virtual Memory) double-bu�ering, multiple gopens of HP VMX to
the same window should not be attempted. The VM frame bu�er allocated by
HP VMX is associated with each gopen rather than with a window. Multiple
gopens, therefore, to the same window will each allocate a new VM bu�er, rather
than \share" one VM bu�er. This will produce results potentially di�erent from
other hardware devices or expectations.

VM Rendering Utilities

It is important to note that this section covers VM Rendering Utilities and not
HP VMX driver functionality.

As mentioned in the section \HP VMX Device Driver, VM Rendering Utilities,
and Overlay Planes" Starbase implements a set of VM Rendering Utilities which
rely on a portion of the HP VMX functionality.

Recall that HP VMX performs two basic functions:

Renders Starbase graphics into a virtual memory frame bu�er.

hpvmx 3-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Displays this VM frame bu�er in the targeted X11 window.

The set of VM rendering utilities exercise only the �rst of these two HP VMX
functions | the rendering of Starbase graphics into a virtual memory frame
bu�er. The method of display is not handled by HP VMX, but by the methods
described in the subsequent sections. This section takes a look at the VM
rendering utilities and briey explains their implementation.

Note, while these utilities are largely internal implementation details, they
are worth discussion here so that you recognize the similarities between their
implementation and the use of HP VMX as a device driver.

VM Double-Buffering on 8-plane devices

Virtual Memory Double-Buffering

4/4 double-bu�ering limitations

Where double-bu�ering on Series 700 models with integrated graphics is possible,
it is limited. As 8-plane devices, these models only allow 4/4 double-bu�ering.
You are limited to 16 colors as rendering is this mode uses four planes at a
time. Also, X11 does not support 4/4 double-bu�ering, so where your graphics
window double-bu�ers as expected, the rest of your windows ash. Note that 4/4
double-bu�ering is not supported in CMAP_FULL.

8/8 double-bu�ering enhanced performance

Virtual memory (VM) 8/8 double-bu�ering is supported by setting the
SB_710_VM_DB environment variable to TRUE. (Note that the environment variable
SB_710_VM_DB applies to the Models 705, 715 and 725 as well). This functionality
allows you to double-bu�er in 8 planes per bu�er, giving you access to 256 colors.
It is also supported by X11 so window ashing is not a problem.

Here's how it works:

The virtual memory bu�er is allocated by the Starbase graphics library to mirror
the window. The VM rendering capabilities of HP VMX are used to render the
Starbase graphics images into the allocated virtual memory bu�er. The Starbase
graphics library then copies the VM bu�er (containing the Starbase graphics
output) to the display frame bu�er at dbuffer_switch time.

3-24 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Be aware of tradeo�s

VM double-bu�ering is not appropriate for all applications. You should �rst
evaluate the performance of your application against the following tradeo�s:

1. Speed | VM rendering uses only software algorithms. As a result, rendering to
the VM bu�er is somewhat slower for many operations and signi�cantly slower
for a few operations such as rendering non-Z-bu�ered, non-shaded vectors.

2. More memory | AVM double-bu�ering application uses more virtual memory
in order to allocate the VM bu�er. The size of this bu�er is proportional to
the size of the window when it was gopened for rendering. The bu�er size
is one byte for each pixel in the window. Note that the bu�er memory is
returned to the system when the application process terminates; it does not
stay allocated with the window. (Most applications do not need to change the
kernel con�guration to use this capability. If your application has problems,
you can increase the kernel's maxdsiz parameter using SAM).

3. Restricted gopens - Multiple output gopens to the same window should not
be attempted. This is because the VM bu�er is associated with each gopen

rather than with the window.

To enable VM double-bu�ering

There are two ways you can enable VM double-bu�ering on the HP Models 705,
710, 715 and 725.

You need to de�ne the SB_710_VM_DB variable in your environment before
starting your application. For example, using ksh syntax, execute the following:

export SB_710_VM_DB=TRUE or

The application can de�ne the environment variable itself before gopening the
window using the putenv(3c) function.

Once VM double-bu�ering is enabled as above, the Starbase double_buffer

function accepts 8 planes to be speci�ed in the planes' parameter. If VM double-
bu�ering is not enabled, the double_buffer function limits you to 4 planes.

VM Backing Store

The Starbase Graphics Techniques manual gives a good explanation of backing
store. Backing store is memory used to retain graphics data rendered to obscured
portions of a window. This memory is allocated by the X server. The VM

hpvmx 3-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

rendering capabilities of HP VMX are used to render the Starbase graphics images
into the allocated backing store memory. The X server is then responsible for
copying this backing store memory to the window upon detection of a window
expose event.

Note HP VMX only supports 8-plane rendering, and therefore is only
used for backing store of 8-plane image windows on the CRX
family.

Refer to the \Backing Store Operation" section of the Starbase Graphics
Techniques manual for more information on backing store.

HP VMX: The CRX-family Overlay Plane Driver

As mentioned in the section \HP VMX Device Driver, VM Rendering Utilities,
and Overlay Planes," HP VMX serves as the Starbase driver for all CRX-family
overlay plane device opens. The \hardware device driver" for these devices (e.g.
hpgcrx or hpcrx48z) is not supported in the overlay planes. HP VMX is used as
the exclusive Starbase driver for the overlay planes on these devices.

If you gopen a window in the overlay planes of a CRX-family device with a
NULL driver parameter, the hpvmx driver will be selected. Alternatively, you
may explicitly ask for the HP VMX driver by specifying hpvmx for the driver
parameter to gopen.

Note that 8/8 double bu�ering is supported in the overlay planes using HP VMX.

3-26 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Table 3-3 details driver selection for the CRX-family of devices at gopen time.
Note, the driver selected is based on whether:

A window is in the image planes or overlay planes.
The hpgcrx, hpcrx48z, hpvmx, or NULL driver is speci�ed.

Table 3-3. Driver Selection at gopen

Type of Window Driver Speci�ed Window Depth Driver Used

Image hpgcrx or
hpcrx48z

8 or 24 hpgcrx or
hpcrx48z

Image hpvmx 8
24

hpvmx

not supported

Image NULL 8 or 24 hpgcrx or
hpcrx48z

Overlay hpgcrx or
hpcrx48z

8 not supported

Overlay hpvmx 8 hpvmx

Overlay NULL 8 hpvmx

SOX11 vs. HP VMX

As mentioned earlier, HP VMX and the Starbase on X11 (SOX11) drivers are
similar in that both provide Starbase functionality in the X11 client-server model.
This section will briey compare and contrast the two drivers.

Functionality

The most signi�cant di�erence between HP VMX and SOX11 is that PowerShade
is supported on HP VMX, but is not supported on SOX11. This results in a much
richer set of Starbase functionality for HP VMX, including lighting, shading, and
hidden surface removal. These features are not supported on SOX11.

hpvmx 3-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Performance

Performance di�erences also exist between HP VMX and SOX11. These
di�erences stem from the di�erences in implementation of the two drivers. HP
VMX renders to a VM frame bu�er and then displays the contents of that bu�er
to an X11 window. SOX11, on the other hand, implements each of the supported
Starbase output commands directly through Xlib. SOX11 does not use a VM
frame bu�er.

Wireframe performance, for example, may be better in some cases on SOX11
than with HP VMX. In this case, SOX11 has less work to do by sending Xlib
calls to render a few vectors, than does HP VMX in displaying the entire VM
frame bu�er into which it has rendered the vectors. In general, simple, sparse
images may be faster with SOX11 since less work is involved in implementing a
few primitives via Xlib than displaying an entire VM frame bu�er.

SOX11 performance is signi�cantly less than HP VMX for many other operations,
and as discussed above, SOX11 supports fewer Starbase features than HP VMX.

3-28 hpvmx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4

The CRX Family of Device Drivers

High Performance Grayscale and Color Graphics

The hpgcrx driver supports a family of similar devices. These devices have
di�erent levels of hardware and SPU support for the following operations:

Generating vectors.
Write-enabling planes.
Writing pixels to the frame bu�er with a given replacement rule.
Moving a block of pixels from one place in the frame bu�er to another.
Using bank-select and double-bu�ering per window.
Filling rectangles (at shading).
Filling shaded polygons.
Performing 3-D transformations.
Clipping.
Dithering.

The hpgcrx device driver supports the high performance graphics devices listed
below.

hpgcrx Devices For the Series 700

The Series 700 workstations have four con�gurations of integrated graphics (see
Table 4-1). Note that each display description given in Table 4-1 has eight planes.

Note Raw-mode graphics support will not be provided on any Series
700 graphics device at the HP-UX 10.0 release. CRX and GRX
will support raw-mode graphics until HP-UX 10.0. If you are an
application developer, you are strongly encouraged to move to
X11. For information on Starbase with X11, read the chapter
\Using Starbase with the X Window System" in the Starbase
Graphics Techniques manual.

hpgcrx 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-1.

Integrated Graphics Configurations for Series 700 Workstations

Display
Description

Series 9000 Model Numbers

705 710 715 725

1024x768 color � � � �

1280x1024 grayscale � �

1280x1024 color �

The hpgcrx device driver also supports:

The GRX (A1924A) is an 8/8-plane, 1280x1024 pixel grayscale device.

The CRX (A1659A) is an 8/8-plane, 1280x1024 pixel color display.

The Dual CRX (A2269A) is a dual-headed 8/8-plane, 1280x1024 pixel color
display. The two CRX devices are on a single board, requiring only one
hardware expansion slot.

The CRX-24 (A1439A) is a 1280x1024 pixel, direct color display with 24 image
planes and 8 overlay planes.

The CRX-24Z is the CRX-24 (A1439A) 24-plane, direct color graphics card
with an accelerator (A1454A), providing high performance 3D solids modeling
and anti-aliasing.

hpgcrx Devices For the Series 400

The GRX (A1924A) is an 8/8-plane, 1280x1024 pixel grayscale device.

The CRX (A1659A) is an 8/8-plane, 1280x1024 pixel color display.

Other Information

The integrated grayscale and integrated color displays have a single-bu�er of 8
planes. The GRX, CRX and Dual CRX have two bu�ers of 8 planes each for
double-bu�ering. The CRX-24 and CRX-24Z have 24 planes single-bu�ered or
12/12 planes double-bu�ered.

4-2 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

In order to reduce ickering, these graphics devices refresh the attached CRT
displays at 72 Hz. The medium resolution HP 710 (A2210A) refreshes the display
at 75 Hz.

hpgcrx 4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

8/8 Double-Buffering on the Integrated Displays
with PowerShade

Virtual Memory Double-Buffering

Virtual memory double-bu�ering information for the following topics can be
found in the section \VM Double-Bu�ering on 8-plane Devices" in the chapter
\HP VMX Device Driver" in this manual:

4/4 double-bu�ering limitations

8/8 double-bu�ering enhanced performance

How it works

Tradeo�s

Enabling VM double-bu�ering

4-4 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

PowerShade

The 3D surfaces software, PowerShade (B2156C), works with all of the Series 700
color devices in the CRX family. PowerShade does not work with the CRX on
the Series 400.

Table 4-2. Displays Support by the hpgcrx Driver

Device Name Device File Names

HP 705 19-inch Grayscale
HP 705 19-inch Color
HP 705 16-inch Color
HP 710 19-inch Grayscale
HP 710 19-inch Color
HP 710 16-inch Color
HP 715 19-inch Grayscale
HP 715 19-inch Color
HP 715 16-inch Color
HP 725 19-inch Gray
HP 725 19-inch Color
HP 725 16-inch Color
GRX
CRX
Dual CRX

CRX-24
CRX-24Z

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>1

/dev/screen/<dev name>1

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

/dev/screen/<dev name>

1 CRX and GRX will be supported in raw mode (using device path /dev/crt) until HP-UX
10.0.

hpgcrx 4-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

For More Information

Information in this chapter is device-speci�c. For more detailed information on
the areas listed below, please refer to the noted documents:

See the Starbase Graphics Techniques manual to read about backing store in
X Windows.

Refer to the Programming on HP-UX manual to read about linking shared or
archive libraries.

See the Fast Alpha/Font Manager Programmer's Manual to read about how
this device driver supports raster text calls from the Fast Alpha and Font
Manager libraries.

4-6 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Device Descriptions

HP Series 700 Integrated Graphics

The HP Series 700 Models 705, 710, 715 and 725 workstations support three
di�erent versions of integrated graphics.

High Resolution Grayscale

These displays have 1280x1024 pixels with a single bank of eight planes for 256
shades of gray. There is no o�screen memory in the frame bu�er. They are 8-
plane single-bu�ered devices. These grayscale devices are similar to the grayscale
GRX, but there is not an extra 8-plane bank for double-bu�ering.

The only X server mode supported is image mode with 8 planes, single-bu�ered.
No special settings are needed in the X0screens �le.

High Resolution Color

This display has 1280x1024 pixels with a single bank of 8 color planes for 256
colors. It has a color map that provides 8 bits per color (for red, green and
blue components). This yields a color palette of over 16 million colors. There
is no o�screen memory in the frame bu�er. The HP 705/710/715/725 color are
8-plane single-bu�ered devices. These color models are very similar to the CRX,
but there is not an extra 8-plane bank for double-bu�ering.

The only X server mode is image mode with 8 planes, single-bu�ered. No special
settings are needed in the X0screens �le.

Medium Resolution Color

This display has a resolution of 1024x768 pixels. In all other respects, it is the
same as the HP 710 color display (A2213A).

hpgcrx 4-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Grayscale GRX (A1924A)

This display has 1280x1024 pixels with two banks of eight planes. Its color map
provides eight bits for a total of 256 values of gray. There is no o�screen memory
in the frame bu�er. This device is supported on both the Series 4001 and the
Series 700 workstations.

The GRX device is an 8-plane, double-bu�ered grayscale version of the CRX.
It provides the same level of performance as the color CRX in a grayscale
con�guration; the GRX only supports a grayscale monitor.

The software to handle grayscale actually resides in the higher level Starbase
code, not the driver. It is designed so that color applications can run without
modi�cation using the closest matching shades of gray. Application optimization
for grayscale is encouraged, but not necessary. All the Starbase color map modes
(CMAP_NORMAL, CMAP_FULL and CMAP_MONOTONIC) are supported on the grayscale
con�gurations.

The only X server mode supported is image mode with eight planes, double-
bu�ered. No special settings are needed in the X0screens �le.

Starbase echos are stored in the opposite bank from the bank being rendered
to. This can cause some anomalies in echo appearance. X runs in one bank and
Starbase single-bu�ered applications run in the other bank.

If the GRX is used primarily for Starbase graphics applications in X, it is
recommended that the SB_X_SHARED_CMAP environment variable is set to true.
(See the Color Map Sharing Starbase and X Windows section). If the primary
usage of the GRX is X applications that do not use Starbase, then do not set the
SB_X_SHARED_CMAP environment variable.

1 The Series 400t requires an SGC adapter and the Series 400s should be ordered
with the integrated CRX/GRX option or with the SGC connector option.

4-8 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Color CRX (A1659A)

This display has 1280x1024 pixels with two banks of eight color planes each for
256 colors. Its color map provides eight bits per color (for red, green and blue
components). This yields a color palette of over 16 million colors. There is no
o�screen memory in the frame bu�er. This device is supported on both the Series
4002 and the Series 700 workstations.

The CRX device supports 8/8 double-bu�ering. It is similar to the PersonalVRX
(HP 98705B) except that the CRX does not have overlay planes, and each window
can display a bank independently of other windows. Another term for this second
feature is per-window double-bu�ering.

The CRX device has some di�erences due to its color map hardware support in
CMAP_FULL mode. See the section on color in this chapter.

The only X server mode supported is image mode with eight planes, double-
bu�ered. No special settings are needed in the X0screens �le.

Starbase echos are stored in the opposite bank from the bank being rendered
to. This can cause some anomalies in echo appearance. X runs in one bank and
Starbase single-bu�ered applications run in the other bank.

If the CRX is used primarily for Starbase graphics applications in X, we
recommend that you set the SB_X_SHARED_CMAP environment variable to true.
(See the Color Map Sharing Starbase and X Windows section). If the primary
usage of the CRX is X applications that do not use Starbase, then do not set the
SB_X_SHARED_CMAP environment variable.

2 The Series 400t requires an SGC adapter and the Series 400s should be ordered
with the integrated CRX/GRX option or with the SGC connector option.

hpgcrx 4-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

CRX-24 (A1439A)

The CRX-24 device has 24-image planes and 8-overlay planes. The screen
resolution is 1280x1024 pixels. There is no o�screen memory in the frame bu�er.
This graphics display board is only supported on the Series 700 workstations.

You can con�gure the image planes in three basic ways:

8-bit indexed color (CMAP_NORMAL, CMAP_MONOTONIC), 8/8 double-bu�ered

12-bit direct color (CMAP_FULL), 12/12 double-bu�ered

24-bit direct color (CMAP_FULL), single-bu�ered

You can select each of the three con�gurations on a per-window basis. The
con�guration selected is a function of the depth of the window created and double-
bu�er mode.

In the 8-bit indexed con�guration, each pixel is used as an index into a 256-entry
color map. Each entry in the color map provides eight bits per color (for red,
green and blue components) providing a color palette of over 16 million colors.
Double-bu�ering is achieved by switching between two banks of 8-bit indexes.
You can perform 3:3:2 direct color emulation in this mode but the driver performs
much slower than either 12-plane direct color or 24-plane direct color mode. The
PowerShade software adds support for dithering, shading and Z-bu�ering.

In the 12-bit direct color con�guration, each pixel is represented by four bits per
color channel to allow for double-bu�ering. One bu�er resides in the upper planes
and the other bu�er resides in the lower planes of each color channel. Dithering
improves the color resolution.

In the 24-bit direct color con�guration, a pixel is represented by eight bits each
per color channel. Double-bu�ering is not possible in this mode.

The overlay planes are mainly for use by the X server, but Starbase can access
them as a separate 8-plane graphics device. Using the overlay planes is similar
to using the image planes in the 8-bit mode. Double-bu�ering and direct color
(CMAP_FULL color map mode) are not supported in the overlay planes.

The X server works only in combined mode. No special settings are needed in
the X0screens �les.

There are four di�erent hardware color maps available for use with the image
planes. This reduces color ashing e�ects that occur when shifting the color map

4-10 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

focus from window to window. This phenomenon is sometimes referred to as
the technicolor e�ect . One of these four color maps will be dedicated for use by
direct color graphics windows. The other three will be shared by all indexed color
graphics processes.

Because the CRX-24 supports multiple color maps, there is less need for color
map sharing between X and Starbase so the SB_X_SHARED_CMAP environment
variable is ignored.

This display does not support graphics rendering to the raw device. Only
rendering to an X window is supported.

CRX-24Z (A1439A and A1454A)

The CRX-24Z is an optional accelerator that attaches to the CRX-24 device to
provide high performance 3D solids modeling and high performance 3D wireframe
with anti-aliasing. The CRX-24Z accelerator has a dedicated 24-bit Z-bu�er.
The CRX-24Z board attaches to the CRX-24 device directly, and does not
require a separate SGC slot. The hpgcrx driver automatically uses the CRX-
24Z accelerator if it is present. The primary use of the CRX-24Z accelerator is
for 3D solids modeling, including drawing Starbase polygons, rectangles, triangle
strips, quadrilateral meshes, and spline surfaces.

The CRX-24Z device is a high-speed scan converter that accelerates rendering
into the CRX-24 frame bu�er. The CRX-24Z accelerator can render to the 24
image planes on the CRX-24 in 8-bit indexed (CMAP_NORMAL), 12-bit direct color
(CMAP_FULL), and 24-bit direct color (CMAP_FULL). The CRX-24Z accelerator does
not support rendering to the CRX-24 overlay planes. If the CRX-24 overlay
planes are speci�ed in a gopen call, the CRX-24Z accelerator will not be enabled.

Optimized 3D Shaded Polygon Performance

The CRX-24 (with PowerShade) and CRX-24Z provide optimal 3D shaded
polygon performance. Shaded polygons on the CRX-24 and CRX-24Z are highly
optimized and very fast in most cases. See /usr/lib/starbase/perf.notes

in the on-line PowerShade performance notes for a detailed list of features and
performance data. This data is subject to change without notice.

hpgcrx 4-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Dual CRX

The Dual CRX device has two color CRX displays on a single board which �ts
into a single expansion slot. Each display has 1280x1024 pixels with two banks
of eight color planes for 256 colors. The Dual CRX is supported on the Series
700 only.

Each of the two devices on a Dual CRX requires its own device special �le to
access it. Mixing a Dual CRX display with any other display in the same SPU
is not supported. Two Dual CRX displays in the same SPU for a total of four
heads are supported.

The only X server mode supported is image mode with 8 planes, double-bu�ered.
No special settings are needed in the X0screens �le.

Each display behaves the same as a single color CRX with the following
exceptions:

Resetting the ITE on one display will reset them both. Any Starbase
application which performs a reset when it is run may cause graphics, including
X windows, on the other display to disappear.

There is no device �le shipped for the second display. The system is originally
shipped with /dev/crt only. You must create the second device �le using the
mknod command.

The /usr/lib/X11/X0screens �le must be modi�ed to run an X server which
uses both displays. By default, the X server will only use the left device.

Running two X servers, one on each display of the Dual CRX, is not supported.
A single keyboard and pointing device are associated with the X server, whether
the server runs on one, two, three or all four displays.

This display does not support graphics rendering to the raw device. Only
rendering to an X window is supported.

4-12 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Dual Head Configurations

The HP-UX 8.07 revision supports the following dual heads on the Series 700:

Model 720 One Dual CRX, provides two CRX heads.

Model 730 One Dual CRX, provides two CRX heads.

Model 750 Two CRX-24 heads, each requires a separate SGC slot.

Model 750 One or two Dual CRX, provides a two or four head CRX
workstation.

PowerShade, 3D Surfaces Software

PowerShade is an optional software package that supports lighting and shading
in graphics design. It has capabilities for both surface rendering and volumetric
rendering, the latter on the CRX-24 only. The PowerShade software is included
with the CRX-24Z bundles (not standalone), and is an option for the CRX, Dual
CRX, CRX-24 and the color versions of the integrated graphics systems (HP
705/710/715/725). It is not supported on the GRX or the grayscale version of
the integrated graphics systems (HP 705/710/715/725).

In order to use the HP VMX driver with PowerShade from any graphics system,
you must install the PowerShade software. For more information on HP VMX,
read the chapter \HP VMX Device Driver."

hpgcrx 4-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Interactions with the ITE

There may be interactions when both the ITE and Starbase are accessing the
display simultaneously. On all displays, a hard ITE reset (�Shift� �CTRL� �Reset�)
will clear all planes in bank 0 and it will also log you out of VUE (reset your X11
server). This hard reset operation will also clear up bad hardware states that
may occur when you prematurely abort a graphics process.

Pressing �CTRL� �Insert char� disables and enables the planes where the ITE displays
text. Pressing �CTRL� �Delete char� disables and enables the remaining planes. Figure
1-1 shows what planes are a�ected by this.

4-14 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Figure 4-1.

Controlling Display (CRX, Dual CRX, GRX, HP 705, HP 710, HP 715, HP 725)

hpgcrx 4-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Figure 4-2. Controlling Display of the CRX-24 and CRX-24Z

4-16 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Escape Sequences for Controlling the ITE

The following escape sequences cause the ITE to modify how it uses the display.
Note that, in Table 4-3, even though the upper- and lower-case characters within
the square brackets perform the same function they are di�erent in that the
upper-case character denotes the last command in an escape sequence.

Table 4-3. ITE Escape Sequences

Escape
Sequence

Function

E
C&v_[p j P] constrain ITE to operate in n

planes (n = 1, 2, or 3)
(The default is n = 1 for monochrome displays,
and n = 3 for color displays.)

E
C*d[a j A] clear graphics display

E
C*d[c j C] enable full graphics display

E
C*d[d j D] disable full graphics display

E
C*d[k j K] enable display of graphics cursor

E
C*d[l j L] disable display of graphics cursor

E
C*d[e j E] enable full alpha (ITE) display

E
C*d[f j F] disable full alpha (ITE) display

E
C*d[q j Q] enable display of alpha (ITE) cursor

E
C*d[r j Rg disable display of alpha (ITE) cursor

hpgcrx 4-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The Frame Buffer

Physical Address Space

The physical frame bu�er is addressed as 2048x1024 bytes. The last 768 bytes of
each line of the address space (those to the right of the screen) are not displayed
and no memory exists in those areas.

Figure 4-3. Physical Address Space

The HP 705, HP 710, HP 715 and HP 725 are addressed the same as above except
that the display memory is only 1024x768 pixels.

4-18 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

To Access the Frame Buffer Directly

When using the R_GET_FRAME_BUFFER gescape for direct user access to the frame
bu�er, correct access can only be assured by using the R_LOCK_DEVICE and
R_UNLOCK_DEVICE gescapes.

1. Use R_LOCK_DEVICE just prior to direct frame bu�er access.

2. Use R_UNLOCK_DEVICE directly after the frame bu�er access and before any
other Starbase commands.

Caution Do not read from or write to the o�screen addresses. Such
operations will cause unexpected errors.

Frame Buffer Address Mapping

The frame bu�er is organized as a single one-dimensional array of pixel values.
The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right-most)
displayable pixel on the top line. The next 768 bytes are not displayable. Byte
2048 is the �rst (left-most) pixel on the second line from the top. The last (lower
right corner) pixel on the screen is byte number 2,096,383 (1023x2048+1279).

hpgcrx 4-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Figure 4-4. Frame Buffer Mapping in Memory

4-20 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The frame bu�er organization is essentially the same for all the devices except for
the number of banks. The integrated graphics systems (HP 705/710/715/725)
have one bank of 8 planes. The GRX, CRX and Dual CRX have two banks of 8
planes (one for each bu�er), and the CRX-24 and CRX-24Z have three banks of
8 planes (one for each color). Only one bank can be accessed at a time. Use the
bank_switch call to select a bank to read or write.

For normal (non-raw) block_read and block_write operations to the image
planes, the data is in all eight bits of each byte. The Z-bu�er for the CRX-24Z
is 24-bits deep. For the integrated graphics systems color, CRX, Dual CRX or
CRX-24 with PowerShade, the Z-bu�er is 16-bits deep. The default for reading
the Z-bu�er is always 32-bits per pixel. The Z-bu�er data is shifted to be either
leftmost 24 or 16 bits within the 32-bit word. The raw parameter to block_read

and block_write must be set to true in order to read or write to the Z-bu�er.
Using bank 3 in the bank_switch command on the CRX-24 and CRX-24Z, or
bank 2 on the other displays, selects the Z-bu�er for reads or writes.

Unlike the frame bu�er, the Z-bu�er data is contiguous. The CRX-24Z Z-bu�er
is always 1280x1024 and word 1280 is the leftmost word of the second scanline.
For either the integrated graphics systems color, CRX, Dual CRX or CRX-24,
the Z-bu�er is the size of the window. For example, if the window is 400x400,
word 400 is the leftmost Z-bu�er value for the second scan line.

hpgcrx 4-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Frame Buffer Configurations

The following table shows which color map modes are supported for di�erent
frame bu�er con�gurations. No entry (i.e. blank) indicates no support.

Table 4-4. Supported Frame Buffer Configurations

Number of
Planes

HP705/705
710/725

GRX,CRX,
Dual CRX

CRX-24,
CRX-24Z

8 CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

8/8 CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

12/12 CMAP_FULL

24 CMAP_FULL

Since Starbase supports double-bu�ering per window, it is better to request
double-bu�ering with a depth of eight on the GRX, CRX, Dual CRX, and CRX-
24, or a depth of 12 when in CMAP_FULL mode on CRX-24. Double-bu�ering
with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported for compatibility
with previous devices, however, it is not recommended. The write_enable and
display_enable masks are used to accomplish double-bu�ering with less than 8
planes. Flashing may occur, however, as this kind of double-bu�ering cannot be
done on a per window basis.

4-22 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

X Windows

To reduce the complexity of multiple X server modes that have been present
in previous devices, the hpgcrx drivers for X and Starbase only support one X
server mode for each device. Several other key features have also been designed to
improve the overall usability of the devices in the X11 windows environment and
to reduce the interactions between the X11 user interface and graphics library
APIs that provide direct hardware access (DHA) such as Starbase.

Per-Window Double-Buffering

The GRX, CRX, Dual CRX, CRX-24 and CRX-24Z all support double bu�ering
on a per-window basis. The GRX, CRX and Dual CRX support up to 8/8
planes double-bu�ered for each of the Starbase color map modes (CMAP_NORMAL,
CMAP_MONOTONIC, CMAP_FULL). In the image planes, the CRX-24 and the CRX-
24Z support the above mentioned modes and also 12/12 planes double-bu�ered
in direct color mode (CMAP_FULL). Overlay plane windows do not support any
double bu�ering. Any X11 library drawing routines will render to the currently
visible bu�er of a window that has double-bu�ering enabled.

Deeper Overlay Planes

To remove the need for running the X server in the image planes, the number
of planes in the overlays has been increased to 8 on CRX-24 and CRX-24Z.
(Previous devices had only 4 planes.)

Color Maps

SB_X_SHARED_CMAP (environment variable) allows for better sharing of the color
map between X11 and Starbase graphics for the low-end (HP 705/710/715/725)
and mid-range (GRX, CRX and Dual CRX) devices. Enabling the environment
variable greatly reduces the technicolor e�ect that occurs between simultaneously
active applications by providing a default color map that is usable by both X and
Starbase. Some cells of the SB_X_SHARED_CMAP can be modi�ed if necessary;
however, this may cause the technicolor e�ect when contention with another
application happens.

On the high-end devices (CRX-24 and CRX-24Z), the technicolor e�ect is less
likely because there are four hardware color maps available (a single 24-plane

hpgcrx 4-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

direct color color map and three other 8-plane PseudoColor color maps). The
environment variable (SB_X_SHARED_CMAP) is ignored on these devices. Overlay
planes use yet another separate color map.

See the section If You See the Technicolor E�ect for more details on the
environment variable.

Backing Store

The devices all support backing-store (also known as retained raster). The
backing-store feature allows a window being rendered to by a DHA client to
be \backed-up" to a virtual frame bu�er whenever any portion of the window
is obscured by another window. In this case, the application is not required to
catch \expose events" from X11 and redraw the picture when occlusion occurs.
In fact, no \expose events" will be generated if backing-store is enabled.

Thus, when a menu is popped on top of a window containing a complete image,the
window system will save the contents of the window before displaying the menu.
Then, when the menu is removed, the earlier contents of the occluded area plus
any new rendering that has occurred in the occluded area during the cover-up
will be restored. Since rendering to the virtual frame bu�er is not as fast as
rendering to the actual frame bu�er in the occluded area, the performance will
su�er, but only while the window is occluded.

Backing Store Exceptions

In general, those Starbase operations that draw to the display are also supported
when drawing to backing store. There are, however, some exceptions to this.
Backing store with 24-plane visuals is not supported. Backing store cannot
be enabled for the CRX-24Z accelerator. Certain gescape operations accessing
device-dependent features don't work with backing store. See the Exceptions to
Gescapes Support section in this chapter for more information. Also, mixing Xlib
rendering with Starbase rendering to an 8/8 window will cause backing store
contents to be lost.

If these limitations on backing store support prove troublesome in your applica-
tion, do not use backing store. Instead, detect window events and repaint the
window when a previously obscured portion of a window is made visible.

4-24 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Overlay Planes/Image Planes

For the high-end devices (CRX-24 and CRX-24Z), both 8 overlay planes and
24-image planes are provided. Generally speaking, the overlay planes can be
thought of as primarily used for the user-interface and the image planes for
graphics (either generated by Starbase or Xlib). The X server uses the overlay
planes. Graphics applications should request image plane visuals. The xwcreate
call creates a depth 8 image plane visual by default. HP VMX is used as the
exclusive Starbase driver for the overlay planes on the CRX-family of devices (see
the section \HP VMX: The CRX-family Overlay Plane Driver" in the chapter
\HP VMX Device Driver").

These two sets of planes exist with little interaction. For example, when a menu
in the overlay planes occludes a window in the image planes, no \expose event"
occurs because the image frame bu�er contents are not a�ected. Only other
windows in the image planes can generate \expose events". This happens less
frequently. Also, when a window in the overlay planes occludes another window
in the image planes, there is no performance degradation caused by the occlusion.

Color map index 255 for the overlay planes is the transparent color on CRX-24.
Any overlay pixels written with this color will not display so you can see through
to the image plane. Attempts to modify the color map for this index will have
no e�ect.

Expect the following side e�ect when rendering to the overlay planes: Since
Starbase echos for image plane windows reside in the overlay planes, another
overlay window will obscure these, even if that window is transparent. If this is
not desirable, you can place the echo in an overlay plane child window instead,
accessing it as a separately gopened device. Stacking will work correctly with
respect to other overlay windows. The X window stacking semantics will give
you the desired e�ect.

Note See the Starbase Graphics Techniques manual section on the
SERVER_OVERLAY_VISUALS property for information on how to
determine the visual(s) (if any) that contain the transparent color
on a device.

hpgcrx 4-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of Starbase Graphics Techniques.

X11 Cursor

The X11 cursor (called the sprite) is maintained by the display hardware and
never interferes with the frame bu�er contents in either the image or overlay
planes. All the devices use the hardware cursor.

How to Read the Supported Visuals Table

The table of Supported Visuals contains information for programmers using either
Xlib graphics or Starbase. The table lists what depths of windows and color map
access modes are supported for a given graphics device. It also indicates whether
or not backing store (aka \retained raster") is available for a given visual. The
table also lists the double-bu�er con�gurations supported by Starbase for this
device driver.

4-26 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-5. Supported Visuals

Device Depth Visual Class Backing Store Starbase
Doublebu�er

Xlib Starbase

705/710/
715 Gray

8 GrayScale � �
1

705/710/
715/725
Color

8 PseudoColor � �
1

GRX 8 GrayScale 2
� 8/81

CRX,
Dual CRX

8 PseudoColor 2
� 8/81

CRX-24,
CRX-24Z
Image
Planes

8
12
24

PseudoColor
DirectColor
DirectColor

2

3

3

�

No
No

8/81

12/12
12/12

1 Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported for compat-
ibility with previous devices, however, it is not recommended. The write_enable and
display_enable masks are used to accomplish double-bu�ering with less than 8 planes.
Flashing may occur, however, as this kind of double-bu�ering cannot be done on a per
window basis.

2 Full support for single-bu�ered windows. The X11 server will not maintain backing
store for an obscured Starbase window if double-bu�ering is turned on and Xlib calls
are made to that window. Whenever backing store is not maintained, normal expose
events are generated. After such a window is made visible and then obscured again,
the X11 server will start to maintain backing store again.

3 Xlib backing store supported except for Direct Hardware Access (DHA) windows.

hpgcrx 4-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Starbase Echos

Implementation

The hpgcrx device driver implements the X cursor in hardware and all Starbase
echo types in software, but utilizes the hardware as best as possible.

The GRX, CRX and Dual CRX devices store Starbase echos in the opposite
bu�er from the one being rendered to. Echo shares the image plane using an XOR

non-destructive replace.

The CRX-24 and CRX-24Z device drivers always XOR the echo into the overlay
planes when rendering to either the image or overlay planes.

The HP 705/710/715/725 displays also XOR the echo into the same planes that
are being rendered to.

Exceptions

CRX, Dual CRX, GRX

Starbase echos have the bene�t of overlay plane functionality even though there
are no overlay planes. The echo automatically resides in the bank where normal
Starbase rendering is not in operation, that is, the bank that is not enabled for
writing. Even when the displayed bank is the same as the write-enabled bank,
this function can be used.

On the CRX, Dual CRX and GRX, there are two situations where this can cause
problems:

1. If there are 2 gopens to the same window, and each is writing to a di�erent
bank.

There is no place to put the echos. One of the gopens will run slower than
normal because of the overhead of removing and replacing the echo around
each rendering operation.

2. XORing the echo into the non-displayed bank.

When the bank being displayed is the same as the bank being written to, the
cursors are put in the non-displayed bank. This is okay since the bank being
displayed can be selected on a per pixel basis. The side e�ect is that the cursor

4-28 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

will be XORed with the image in the non-displayed bank, which could cause
some unexpected color combinations.

CRX-24, CRX-24Z

The CRX-24 device driver, when rendering to the image planes, stores Starbase
echos in the overlay planes for the CRX-24 so they are never in the way when
rendering to the image planes. Visually, they are combined with the image by
obscuring it, rather than by an XOR operation.

On the CRX-24 and CRX-24Z, there are some side e�ects that can cause
problems:

Windows in the overlay planes can cause the echo to be obscured, even if the
window contains transparent color.

A common operation may be to have a window in the image planes with a
transparent child window in the overlay planes. In this case, put the echo in
the overlay-plane child window rather than the image-plane parent window.
For device-independent behavior in this situation, use the
inquire_capabilities() Starbase entry point. If the
IC_TRANS_WIN_IMAGE_CURSOR bit of the CONTROL_CAPABILITIES byte is set,
put the echo in the image-plane window. If that bit is not set (on the CRX-24
and CRX-24Z the bit will not be set), put the echo in the overlay-plane child
window.

hpgcrx 4-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

To Set Up the Device

The mknod command (see mknod(8) in the HP-UX Reference manual), creates
a device special �le that is used to communicate between the computer and the
display device. The name of this device special �le is passed to Starbase in the
gopen procedure. Since superuser capabilities are needed to create device special
�les, they are normally created by the system administrator.

Although device special �les may be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the device special �le, however the name that is suggested for the
default device is /dev/crt for the image planes and /dev/ocrt for the overlay
planes.

To Create Special Device Files (mknod)

For Series 400

For an SPU with one SGC interface slot, a sample mknod entry would be:

/etc/mknod /dev/crt c 12 0x010300

For the Series 700

For an SPU with only one SGC interface slot, a sample mknod entry for the image
planes would be:

/etc/mknod /dev/crt c 12 0x100000

For an SPU with two SGC interface slots, a sample mknod entry for the image
planes on the device in the second slot would be:

/etc/mknod /dev/crt1 c 12 0x000000

To access the overlay planes on CRX-24, the least signi�cant bit of the minor
number should be 1. A sample mknod entry would be:

/etc/mknod /dev/ocrt c 12 0x100001

Note No separate device special �le is necessary for CRX-24Z since the
accelerator shares the SGC slot with the CRX-24.

4-30 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

For Dual CRX

When using the Dual CRX, examples of mknod entries for the single slot would
be:

/etc/mknod /dev/crt0 c 12 0x100000

/etc/mknod /dev/crt1 c 12 0x100004

When using a second Dual CRX, you can use the following for the second slot:

/etc/mknod /dev/crt2 c 12 0x000000

/etc/mknod /dev/crt3 c 12 0x000004

To con�gure the devices in the /dev directory, refer to the following sample
entries:

Sample for ONE Dual CRX card in an HP 720 or 730:

/etc/mknod /dev/crt0 c 12 0x100000

/etc/mknod /dev/crt1 c 12 0x100004

Sample for TWO Dual CRX cards in an HP 750:

/etc/mknod /dev/crt0 c 12 0x100000 Slot 0

/etc/mknod /dev/crt1 c 12 0x100004

/etc/mknod /dev/crt2 c 12 0x000000 Slot 1

/ect/mknod /dev/crt3 c 12 0x000004

Note For physical locations of the above slots, refer to the Dual CRX
Installation Notes or the Series 700 CE Hardware Manual.

hpgcrx 4-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Figure 4-5. Dual CRX - Dual Monitor Graphics Card

4-32 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

To Compile and Link with the Device Driver

For Shared Libraries

The compiler driver programs (cc, fc, pc) link with shared libraries by default.
The shared device driver is the �le named libddgcrx.sl in the /usr/lib

directory. The same device driver is used for all of these devices. Starbase
will explicitly load the device driver at run time when you compile and link with
the Starbase shared library /usr/lib/libsb.sl, or use the -lsb option. This
loading occurs at gopen(3G) time.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter for details.

hpgcrx 4-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

For Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le name
libddgcrx.a. The same device driver is used for all these devices.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libddgcrx.a

2. an appropriate relative path name

3. the -lddgcrx option with the LDOPTS environmental variable exported and
set to -a archive.

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddgcrx -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddgcrx -Wl,-L/usr/lib/X11R5 -lXwindow\
-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for Pascal, use:

pc example.p -lddgcrx -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

4-34 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

To Open and Initialize the Device for Output

Syntax Examples

C programs:

fildes = gopen("/dev/screen/window", OUTDEV, NULL, INIT);

FORTRAN77 programs:

fildes = gopen('/dev/screen/window'//char(0), OUTDEV,\

char(0), INIT)

Pascal programs:

fildes := gopen('/dev/screen/window', OUTDEV, '', INIT);

Parameters for gopen

The gopen procedure has four parameters:Path, Kind , Driver , and Mode.

Path - This is the name of the special device �le created by the mknod command
as speci�ed in the last section. For example, /dev/screen/window.
Kind - This parameter must be OUTDEV, unless used for a graphics window, in
which case OUTINDEV may be used.
Driver - The character representation of the driver type. This parameter
may be set to NULL for linking shared or archive libraries; gopen will inquire
the device and use the appropriate driver. Where there are both accelerated
and unaccelerated versions of the driver, the default is to load the accelerated
version.

hpgcrx 4-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

For example:

NULL for C.

char(0) for FORTRAN 77.

" for Pascal.

Or, a character string may be used to specify a driver. For example:

"hpgcrx" for C.

'hpgcrx'//char(0) for FORTRAN 77.

'hpgcrx' for Pascal.

Note The name used does not a�ect the operation of the driver.
Other accepted names are: CRX, crx, hpA1659A, hpa1659a,
GRX, hpA1924A, hpa1924a, crx24, hpA1439A, hpa1439a, crx24z,
hpA1454A, hpa1454a, hp710.

Mode - The mode control word consists of several ag bits OR ed together.
Listed below are ag bits that have device-dependent actions. Those ags not
discussed below operate as de�ned by the gopen procedure. See the Starbase
Graphics Techniques manual for a description of gopen actions when accessing
an X Window.
0 (zero) - Open the device, but do nothing else. The software color table is
initialized from the current state of the hardware color map.
INIT - Open and initialize the device as follows:
1. Frame bu�er is cleared to 0s.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.
4. Clear the Z-bu�er (for CRX-24 with PowerShade and CRX-24Z)
RESET_DEVICE - Same as INIT. In addition, hardware is reset.
SPOOLED - Not supported; raster devices cannot be spooled.
MODEL_XFORM - Opening in MODEL_XFORM mode will a�ect how matrix stack
and transformation routines are performed. Shading is supported only
through PowerShade for the hpgcrx devices.
INT_XFORM - Only integer and common operations will be performed. All
oating point operations will cause an error.
INT_XFORM_32 - Only integer and common operations will be performed. All
oating point operations will cause an error.

4-36 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

This mode is provided for compatibility of integer precision with previous
devices. INT_XFORM will use a faster transformation pipeline with slightly less
precision. It is recommended to use INT_XFORM unless maximum precision
is required. If maximum precision is required, even at the expense of
performance, use INT_XFORM_32.
UNACCELERATED - Force the hpgcrx driver to disable the CRX-24Z accelera-
tor.
ACCELERATED - Force the driver to enable the CRX-24Z accelerator if present
(default).

Note SPOOLED and MODEL_XFORM ag bits have no device-dependent
e�ects.

hpgcrx 4-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (1279, 1023).

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (x,y) device coordinates.

Figure 4-6. Device Coordinates

4-38 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The HP 705, HP 710, 715 and HP 725 layouts are similar to the above except
that the device coordinates for the corners are di�erent because of the di�erence
between the 1280x1024 and 1024x768 resolutions.

hpgcrx 4-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

If You See the Technicolor Effect

You can reduce the visual e�ects of color map thrashing, also called the technicolor
or kaleidescope e�ect , and thus reduce distractions due to color map changes. Set
the environment variable SB_X_SHARED_CMAP to true to use a shared color map
between Starbase and X.

The Starbase device driver and the X server for the GRX, CRX, dual CRX and
HP 705/710/715/725 devices support the environment variable which indicates
the use of a shared or cooperative color map de�nition. The environment variable
allows sharing of the color map resource by Starbase applications with other X
clients. It eliminates the creation and installation of di�erent color maps for each
di�erent Starbase application being run.

For generic X Windows

If you are using x11start, make sure you have the environment variable
SB_X_SHARED_CMAP set before you execute x11start:

export SB_X_SHARED_CMAP=true

The best way to do this is to include it in your $HOME/.profile.

For HP VUE

If you are using HP VUE (Visual User Environment) add the following line to
the end of your /usr/vue/config/Xconfig �le:

Vuelogin*environment:SB_X_SHARED_CMAP=true

The Xconfig �le may contain commented out entries for some of the more
popular resources, including \environment". Simply �nd the line containing
\environment", add the appropriate value and uncomment the line.

When using HP VUE with SB_X_SHARED_CMAP set, there is one other resource of
interest. The HP VUE *colorUse resource in

/usr/vue/config/sys.resources

can be set to use less colors if it is desired that HP VUE not use up all the
unallocated color map cells. The default value on GRX and CRX is HIGH_COLOR.

4-40 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Other values are MEDIUM_COLOR and LOW_COLOR. The full range of accepted values
for this resource can be found in HP VUE documentation.

Please note that changing the /usr/vue/config/sys.resources �le will only
a�ect users who are created after the change.

To change this setting for an existing user, you can simple change the *colorUse
setting via a dialog in the HP VUE Style Manager:

log in to VUE

select the Style Manager icon from the front panel

select Color

select \HP VUE Color Use"

select the desired color use (High, Medium, Low, B/W, Default)

select OK

hpgcrx 4-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Color Map Sharing Starbase and X Windows

On HP 705/710/715/725, CRX, and Dual CRX applications, you need to use ei-
ther CMAP_NORMAL without modifying the color map (e.g. define_color_table)
or CMAP_FULL to avoid the technicolor e�ect. On the GRX, applications can note
that the device is grayscale (use inquire_capabilities) and make use of only
CMAP_MONOTONIC.

For Starbase applications, the SB_X_SHARED_CMAP environment variable enables
use of the initial eight entries of the Starbase default CMAP_NORMAL color map. It
also provides for CMAP_FULL on the CRX or CMAP_MONOTONIC on the GRX, as well
as reserving some color map entries for \X" clients to use. If an X client inquires
the default color map for the root window, this shared color map is returned.

When the SB_X_SHARED_CMAP environment variable is set on a grayscale device,
the default color map mode is CMAP_MONOTONIC (when gopen mode is INIT) since
this is the only mode that can be shared.

When SB_X_SHARED_CMAP is set, double_buffer will return eight planes regard-
less of the number requested since only 8/8 double-bu�ering is allowed when
SB_X_SHARED_CMAP is set.

If the the behavior with SB_X_SHARED_CMAP is unacceptable for a speci�c
application, unset the environment variable prior to invoking the application
or calling gopen. See putenv(3C). This will allow the normal color map
functionality, but the technicolor e�ect will be visible whenever windows used
by this application have the color map focus.

The following tables describe the default color map for color devices when
SB_X_SHARED_CMAP is set and color map mode is CMAP_NORMAL or CMAP_FULL.

4-42 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-6. HP 705/710/715/725 Default Shared Color Map

Index Type of Cell Comments

0 . . . 7 Read-Only same as default Starbase color map

8 . . . 39 Read/Write allocated dynamically by X server

40 . . . 255 Read-Only1 standard 6j6j6 (ramps of six levels each of
red, green, blue) XA_RGB_DEFAULT_MAP
property de�ned.

1 Can be made writable by setting SB_X_SHARED_CMAP=READ_ONLY_PRIMARIES.

The following is the GRX default color map when SB_X_SHARED_CMAP is set and
the grayscale color map mode is set to CMAP_MONOTONIC.

Table 4-7. GRX Default Color Map

Index Type of Cell Comments

0 . . . 255 Read-Only grayscale ramp Starbase
CMAP_MONOTONIC StaticGray
visual class in X
XA_RGB_DEFAULT_MAP property
de�ned

hpgcrx 4-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-8. CRX Default Shared Color Map

Index Type of Cell Comments

0 . . . 7 Read-Only same as default Starbase color map

8 . . . 39 Read/Write allocated dynamically by X server

40 . . . 255 Read-Only1 modi�ed 6j6j62

(ramps of 6 levels each of red, green,
blue arranged to support special

shading hardware)

1 Can be made writable by setting SB_X_SHARED_CMAP=READ_ONLY_PRIMARIES.

2 Can be set to standard 6j6j6 color ramp by setting SB_X_SHARED_CMAP = XA_RGB_DEFAULT (read-
only).

Two notes on the X server's use of the SB_X_SHARED_CMAP environment variable:

These tables apply to the default color map of the root visual. Other color
maps in the root visual will be entirely read/write, initialized with a copy of
the default color map's current values.

The X server sets the XA_RGB_DEFAULT_MAP only if a standard read-only ramp
is de�ned in entries 40-255. A Xlib program can read a description of the
ramp and the ID of the default color map implementing the same by calling
XGetStandardColormap.

The SB_X_SHARED_CMAP environment variable is not supported on the CRX-24
or CRX-24Z. It is not needed because there are three PseudoColor color maps in
the image planes. Use of these three color maps on CRX-24 is encouraged in two
ways:

1. xwcreate - depth 8 (or no depth speci�cation) by default creates a window in
the image planes. (To force a window into the overly, use
xwcreate_overlay.)

2. With Xlib programmatic access, the image plane depth 8 visual will be the
�rst depth 8 visual returned by XGetVisualInfo().

4-44 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

TRANSPARENT IN OVERLAY VISUAL (CRX-24,
CRX-24Z)

The default number of entries in the visual for the CRX-24's overlay planes is
255. Entry 255 is excluded because its value is hard-coded to transparent (that
is, show the image planes).

While this is the most correct choice, it does have two consequences for clients
running the the CRX-24's overlay planes (the default visual):

Clients attempting to allocate 256 entires will not have their request granted.

Clients requesting (via XAllocNamedColor) the rgb.txt value of \Transpar-
ent" will not be returned entry 255.

If you are using x11start, you can change this behavior by setting the
CRX24_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL environment variable to TRUE.

The example below works if you are running ksh:

export CRX24_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL=TRUE

If you are using HP VUE (Visual User Environment), add the following (as one
line) to the end of your usr/vue/config/Xconfig:

Vuelogin*environment:\

CRX24_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL=TRUE

With this variable set, the X server will:

Specify that the overlay visual has 256 entries. (On a call to XGetVisual-

Info(), this overlay visual is listed after the 8-plane PseudoColor visual in the
image planes.)

Create the default color map with entry 255 pre-allocated to \Transparent". A
client calling XAllocNamedColor for entry \Transparent" in the default color
map will be returned entry 255.

For all other color maps, return all 256 entries as allocable, but issue a warning
message:\Warning: XCreateColormap is creating 256 entry cmaps in overlay
visual. Though allocable, entry 255 is hard-coded to transparency." This
warning is issued once per server execution.

hpgcrx 4-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

CMAP_FULL Color Map

When the entire color map is available, Starbase uses standard 3:3:2 direct color
(CMAP_FULL mode) in 8-plane visuals. With the SB_X_SHARED_CMAP set, only 216
entries of the color map are available for direct color support.

Starbase de�nes these entries as follows:

The standard 3:3:2 indicates that three bits are set aside for red, three for green
and two for blue. This is the same color map that is used on other 8-plane devices.

The standard 6j6j6 means that the color map contains all combinations of six
levels of red, green and blue. This yields a total of 6x6x6 = 216 colors. Color
levels are evenly spaced from black (i.e. zero intensity) to white (i.e. full intensity)
using the following values: f 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 g.

The entries between 40 and 255, inclusive, are used for the direct color map
with SB_X_SHARED_CMAP enabled. They are de�ned according to the following
algorithm:

int index;

CMAP shared_color_map[256];

float red_level,

green_level,

blue_level;

. . .

index = 40;

for (red_level = 0.0; red_level <= 1.0; red_level += 0.2)

for (green_level = 0.0; green_level <= 1.0; green_level += 0.2)

for (blue_level = 0.0; blue_level <= 1.0; blue_level += 0.2)

{

shared_color_map [index].red_component = red_level;

shared_color_map [index].green_component = green_level;

shared_color_map [index].blue_component = blue_level;

index++;

}

This is known as the standard 6j6j6 organization for the color map.

4-46 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The CRX, Dual CRX and integrated graphics systems (HP 705/710/715/725)
color devices provide support for both the 3:3:2 and 6j6j6 CMAP_FULL color maps.
The standard 3:3:2 color map is supported in raw mode and in X11 windows
when the SB_X_SHARED_CMAP mode is o�. The 6j6j6 color map mode is available
in X11 Windows when the SB_X_SHARED_CMAP mode is on.

Note The hpgcrx driver supports CMAP_FULL mode in depth 24
windows on the CRX-24. It also supports CMAP_FULL mode in
depth 8 windows on the same device for compatibility with other
devices. Performance is better with depth 24 windows. We
strongly discourage use of CMAP_FULL in depth 8 windows on the
CRX-24.

CMAP_FULL Translations

Some devices supported by the hpgcrx driver use a special color map organization
internally to support hardware dithering. The modi�ed color map is used on the
GRX, CRX and Dual CRX. This hardware color map organization is known
as modi�ed 3:3:2 or modi�ed 6j6j6 corresponding to the standard organizations
described above. Under normal circumstances, this internal modi�ed color map
is transparent to the user.

The CRX-24, the CRX-24Z and the integrated graphics systems color con�gura-
tions use the standard color maps.

On those devices that use the modi�ed color maps in hardware, there are
compatibility issues for some applications. These potential issues e�ect Starbase
only in CMAP_FULL mode.

In most cases, Starbase hides the modi�ed organization of the color map from
the applications. However, there are some exceptions to this.

Starbase hides the color map organization by implementing a translation layer
(SW_CMAP_FULL translation), where necessary, to convert from the standard 3:3:2
to modi�ed 3:3:2, or from a standard 6j6j6 to the modi�ed 6j6j6 on GRX/CRX.
This translation layer is enabled or disabled with the GCRX_SW_CMAP_FULL gescape
or when the raw parameter passed into block_write(3G) and block_read is set
to TRUE . The default at the time of gopen is to enable translation.

hpgcrx 4-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The following sections describe the e�ects of this translation layer on the Starbase
semantics.

Block Read and Block Write

The block_read and block_write calls hide the color map organization when
enabling GCRX_SW_CMAP_FULL translation. The performance implications of
GCRX_SW_CMAP_FULL translation mainly apply to these two routines. If perfor-
mance is critical in this area, disable the translation with the GCRX_SW_CMAP_FULL
gescape or the raw parameter, and use the modi�ed color map organization.

Index Color Attributes

Entry points which take a color attribute as a color map index value hide the color
map organization if GCRX_SW_CMAP_FULL translation is enabled. This includes the
define_color_table(3G) call as well as the following:

background_color_index
bf_fill_color_index

bf_perimeter_color_index

depth_cue_color_index

fill_color_index

highlight_color_index

inquire_color_table

line_color_index

marker_color_index

perimeter_color_index

text_color_index

Plane-oriented Operations

The standard 3:3:2 organization is plane-oriented, and as such, Starbase functions
that operate on frame bu�er planes are more predictable with the standard
3:3:2 organization than either the CRX modi�ed 3:3:2 or any 6j6j6 color
map organization. Examples of such Starbase functions are drawing_mode,
write_enable, and display_enable Starbase echos which use XOR.

These display control functions (via display_enable, write_enable and
drawing_mode) do not hide the reorganized CRX color map organization.

4-48 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

If you need display control functionality, turn o� the translation with the
GCRX_SW_CMAP_FULL gescape and work with the modi�ed color map organization.

Cursors

The define_raster_echo(3G) call hides the modi�ed CRX color map organi-
zation when SW_CMAP_FULL translation is enabled. Vector cursors do not hide
the color map organization. (There is minimal impact to the resulting cursor
display.)

Pattern Fills

The pattern_define call and the pattern-de�ning gescapes (GR2D_FILL_PATTERN
and R_DEF_FILL_PAT) hide the modi�ed color map organization when the
GCRX_SW_CMAP_FULL translation is in e�ect.

Background and Clear Control

When switching to or from CMAP_FULL using shade_mode(3G) with INIT, the
CRX/GRX devices clear the entire display. The frame bu�er is cleared to all
zeros at gopen time when INIT is speci�ed. After gopen, if the application
changes the clear control to something less than the full display, and switches
into CMAP_FULL with the modi�ed 3:3:2 de�nition, the areas outside of the clear
control will turn white since index 0 of the modi�ed 3:3:2 color map is de�ned as
red=green=blue=255.

When gopen is called with INIT, the default is to clear the display if shade_mode
is called with INIT. When gopen is called without INIT, the default is to leave the
frame bu�er as is. Clearing the display when switching to and from CMAP_FULL

with INIT is controlled with the GCRX_SW_CMAP_FULL gescape.

hpgcrx 4-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Translation from Standard to Modified Color Map Indices

For applications that need to bypass the Starbase color map translation layer,
the translation required is a simple table look-up of the standard 3:3:2 value to
get the modi�ed 3:3:2 value. The same is true for translation from standard 6j6j6
to modi�ed 6j6j6.

The following tables show this mapping of color map indices.

4-50 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

CMAP_FULL Color Map Index Translation

Table 4-9.

Translation Table for standard 6j6j6 values to modified 6j6j6

values:

Index 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

10 10 11 12 13 14 15 16 17 18 19

20 20 21 22 23 24 25 26 27 28 29

30 30 31 32 33 34 35 36 37 38 39

40 255 251 191 187 127 123 253 249 189 185

50 125 121 239 235 175 171 111 107 237 233

60 173 169 109 105 223 219 159 155 95 91

70 221 217 157 153 93 89 254 250 190 186

80 126 122 252 248 188 184 124 120 238 234

90 174 170 110 106 236 232 172 168 108 104

100 222 218 158 154 94 90 220 216 156 152

110 92 88 247 243 183 179 119 115 245 241

120 181 177 117 113 231 227 167 163 103 99

130 229 225 165 161 101 97 215 211 151 147

hpgcrx 4-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-9.

Translation Table for standard 6j6j6 values to modified 6j6j6

values: (continued)

Index 0 1 2 3 4 5 6 7 8 9

140 87 83 213 209 149 145 85 81 246 242

150 182 178 118 114 244 240 180 176 116 112

160 230 226 166 162 102 98 228 224 164 160

170 100 96 214 210 150 146 86 82 212 208

180 148 144 84 80 207 203 143 139 79 75

190 205 201 141 137 77 73 199 195 135 131

200 71 67 197 193 133 129 69 65 63 59

210 55 51 47 43 61 57 53 49 45 41

220 206 202 142 138 78 74 204 200 140 136

230 76 72 198 194 134 130 70 66 196 192

240 132 128 68 64 62 58 54 50 46 42

250 60 56 52 48 44 40

Code example:

To create an array initialized to the above values:

unsigned char mod_666_table[256] = /*values from above table*/;

Access the table as follows:

std_666_index = floor(float_red*5)*36

+ floor(float_green*5)*6

+ floor(float_blue*5)

+ 40;

mod_666_index = mod_666_table[std_666_index];

4-52 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-10.

Translation Table for standard 3:3:2 values to modified 3:3:2

values

Index 0 1 2 3 4 5 6 7 8 9

0 255 251 223 219 253 249 221 217 239 235

10 207 203 237 233 205 201 127 123 95 91

20 125 121 93 89 111 107 79 75 109 105

30 77 73 254 250 222 218 252 248 220 216

40 238 234 206 202 236 232 204 200 126 122

50 94 90 124 120 92 88 110 106 78 74

60 108 104 76 72 247 243 215 211 245 241

70 213 209 231 227 199 195 229 225 197 193

80 119 115 87 83 117 113 85 81 103 99

90 71 67 101 97 69 65 246 242 214 210

100 244 240 212 208 230 226 198 194 228 224

110 196 192 118 114 86 82 116 112 84 80

120 102 98 70 66 100 96 68 64 191 187

130 159 155 189 185 157 153 175 171 143 139

140 173 169 141 137 63 59 31 27 61 57

150 29 25 47 43 15 11 45 41 13 9

160 190 186 158 154 188 184 156 152 174 170

170 142 138 172 168 140 136 62 58 30 26

180 60 56 28 24 46 42 14 10 44 40

hpgcrx 4-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-10.

Translation Table for standard 3:3:2 values to modified 3:3:2

values (continued)

Index 0 1 2 3 4 5 6 7 8 9

190 12 8 183 179 151 147 181 177 149 145

200 167 163 135 131 165 161 133 129 55 51

210 23 19 53 49 21 17 39 35 7 3

220 37 33 5 1 182 178 150 146 180 176

230 148 144 166 162 134 130 164 160 132 128

240 54 50 22 18 52 48 20 16 38 34

250 6 2 36 32 4 0

Code example:

To create an array initialized to the above values:

unsigned char mod_332_table[256] = /*values from above table*/;

Access the table as follows:

std_332 index = (float_red*7)<<5

+ (float_green*7)<<2

+ (float_blue*3);

mod_332_index = mod_332_table[std_332_index];

4-54 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Starbase Functionality

Calls not Supported

The hpgcrx driver does not support the following Starbase calls if you are using
Starbase without the PowerShade software. When executed, these calls will
produce no result (i.e. they are no-ops).

alpha_transparency hidden_surface

backface_control light_ambient

bf_alpha_transparency light_attenuation

bf_control light_model

bf_fill_color light_switch

bf_interior_style line_filter

bf_perimeter_color perimeter_filter

bf_perimeter_repeat_length set_capping_planes

bf_perimeter_type set_model_clip_indicator

bf_surface_coefficients set_model_clip_volume

bf_surface_model surface_coefficients

bf_texture_index surface_model

contour_enable texture_index

define_contour_table texture_viewport

define_texture texture_window

define_trimming_curve viewpoint

deformation_mode zbuffer_switch

hpgcrx 4-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

PowerShade or CRX-24Z on CRX-24

The following calls are not supported when using the CRX-24Z or PowerShade
3D Surfaces Software with CRX-24:

bf_texture_index

contour_enable

define_contour_table

define_texture

deformation_mode

texture_index

texture_viewport

texture_window

In addition, line-filter and perimeter_filter are not supported on the CRX-
24.

Using PowerShade on CRX, Dual CRX or

High Resolution Integrated Graphics Color

The following calls are not supported when using PowerShade on the CRX, Dual
CRX or High Resolution Integrated Graphics (HP 705/710/715/725) Color:

alpha_transparency

bf_alpha_transparency

bf_texture_index
contour_enable

define_contour_table

define_texture

deformation_mode

line_filter

perimeter_filter

texture_index

texture_viewport

texture_window

Note PowerShade is not supported on the Series 400 or on the grayscale
con�gurations.

4-56 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Conditional Support of Starbase Calls

The following calls are supported with the listed exceptions:

alpha_transparency Alpha transparency is supported only on the
CRX-24Z. Alpha only applies to �lled areas
such as polygons, quadrilateral meshes, trian-
gular strips, and spline surfaces. Alpha per
vertex is not supported. Vector primitives are
not rendered with alpha transparency. The al-
pha transparency feature is limited to CMAP_FULL
in the 12/12 or 24-plane con�gurations. Only the
oating point version of these primitives will be
rendered with alpha transparency; device coordi-
nate primitives do NOT use alpha. The CRX-24Z
does not support alpha transparency with atten-
uation. (See the manpage on alpha transparency
for parameters in the Starbase Reference Man-
ual).

block_read, block_write The raw parameter for the block_read and
block_write commands is used by this driver to
do plane-major reads and writes. It is enabled by
the gescape R_BIT_MODE.

The storage supplied by the user as the source or
destination must be organized as follows.

The data from each plane is packed with eight
pixels per byte.

Each row must begin on a byte boundary.
Thus the size of the rectangle as speci�ed by
the hlength xi and hlength yi parameters must
correspond to an integral number of bytes.

The data for the next plane begins on the
following byte boundary.

Clip to the screen limits.

hpgcrx 4-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The �rst pixel in the source rectangle is placed
in the high-order bit of the �rst byte in each
plane region.

When clipping, part of each plane region will
not be read (block_read) or altered
(block_write).

A bit mask selects the planes to read or write.
The initial value of this mask is 1 (one) in-
dicating that only plane 0 is to be accessed.
The value of the mask may be changed using
the R_BIT_MASK or GR2D_PLANE_MASK gescapes.
GR2D_PLANE_MASK is discussed in the appendix of
this manual. The planes selected by the mask are
expected to reside in consecutive plane locations
in the user storage area. This reduces the storage
requirements to exactly what is needed but also
presents the potential for addressing violations or
undesirable results.

For example, if the plane mask is changed to
specify more planes between a block_read and
a following block_write from the same location,
the block_write will attempt to access storage
for planes that were not read (and perhaps not
allocated). The application program must ensure
consistency in these operations.

line_filter
perimeter_filter Antialiasing is supported only on the CRX-24Z.

Antialiasing for this device applies only to oating
point vectors. Device coordinate primitives do
not use antialiasing. The antialiasing features are
also limited to the CMAP_FULL color map mode in
the 12/12 or 24-plane con�gurations.

The CRX-24Z has two antialiasing modes that
may be speci�ed with the line_filter and
perimeter_filter procedures. The index values
are assigned as follows:

4-58 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

0 Anti-aliasing disabled, all vectors have one
pixel wide output.

1 Anti-aliasing enabled, all vectors have three
pixel wide output. Pixel values are multiplied
by the alpha value and blended with the
background according the the formula:

pixel color= (new pixel � �) + (old pixel �
(1 - �));

2 Anti-aliasing enabled, all vectors have three
pixel wide output. Pixel values are multiplied
by the alpha value, but are NOT blended
with the background.

pixel color = (new pixel � �);

pattern_define For the CRX-24Z, the maximum pattern size is
4x4. If a pattern larger than 4x4 is speci�ed, an
error message is printed and the previous pattern
is retained.

screenpr Because of per-window double-bu�ering and mul-
tiple color maps, this utility is only supported for
printing one window at a time. Attempts to print
pixels outside this one window may result in a
wrong color or pixels from the wrong bu�er being
printed.

shade_mode The color map mode may be selected. Shading
can be turned on only if using PowerShade.
Shading is not supported on device coordinate
primitives even with PowerShade.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The husei parameter must be zero. Any extra co-
ordinate info will be ignored. If using PowerShade
software, vertex_format is fully functional.

hpgcrx 4-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with_data

Additional data per vertex will be ignored if
not supported by this device. For example,
contouring data will be ignored if the device does
not support it.

write_enable Due to hardware limitations on the CRX-24,
certain write_enable masks are not supported.
Only those masks whose bits 0-3 are the same as
bits 4-7 are supported.

4-60 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Gescapes

The hpgcrx driver supports the following gescape operations. Refer to Appendix
A of this manual for details on gescapes.

BLOCK_WRITE_SKIPCOUNT|Specify byte skip count during block write.
GCRX_PIXEL_REPLICATE|Pan and zoom a raster image.
GCRX_SW_CMAP_FULL|Control CMAP_FULL color map translation. (0-OFF-ON
3-ON and CLEAR DISPLAY)
IGNORE_RELEASE|Trigger only when button pressed.
R_BIT_MASK|Bit mask.
R_BIT_MODE|Bit mode.
R_DEF_ECHO_TRANS|De�ne transparency mask for raster echo.
R_ECHO_MASK|Turns on echo transparency mask.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_LINE_TYPE|User de�ned line style and repeat length.
R_LOCK_DEVICE|Lock device.
R_UNLOCK_DEVICE|Unlock device.
READ_COLOR_MAP|Read Color Map.
SWITCH_SEMAPHORE|Semaphore Control.
TRIGGER_ON_RELEASE|Trigger only when button is released.

Additional Gescapes for the CRX-24 and CRX-24Z

CUBIC_POLYPOINT|Specify points to be rendered in a cubic volume speci�ed
in modeling coordinates.
DC_PIXEL_WRITE|Specify points to be rendered along a horizontal scan line.
GAMMA_CORRECTION|Enable/disable gamma correction.
LINEAR_POLYPOINT|Specify points to be rendered along a line speci�ed in
modeling coordinates.
STEREO|Activate stereo output mode.

Additional Gescapes for the CRX-24Z

DRAW_POINTS|Select di�erent modes of rounding for rendered points.

Additional Gescapes Supported with PowerShade

ILLUMINATION_ENABLE|Turn on/o� illumination bits.
LS_OVERFLOW_CONTROL|Set light source overow handling.

hpgcrx 4-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

POLYGON_TRANSPARENCY|Segment control over front/back face screen.
TRANSPARENCY|Set screen door transparency mask (front face and back face).

Exceptions to Gescape Support

Note Because the gescape operations are device-dependent, the excep-
tions discussed below may be removed in future drivers.

GAMMA_CORRECTION Gamma correction is implemented di�erently on hpgcrx

than on older devices. It is now implemented in the color
map rather than in the frame bu�er. For information on
the gescape GAMMA_CORRECTION, refer to Appendix A.

When the gescape operations listed below are used with a backing store graphics
window, they will have the desired e�ect for the visible portion of the window, but
may cause the backing store for obscured parts to be altered in inconsistent ways.
The features involved (along with the names of the a�ected gescape operations)
are listed below. For more details on the gescape operations, refer to
Appendix A.

R_BIT_MASK The gescape operation R_BIT_MASK de�nes a plane mask
to the driver that is used for bit/pixel access to a single
plane in the frame bu�er. As with other device drivers,
only the plane corresponding to the highest bit set in
the mask is transferred. This gescape is supported for
backing store; i.e. the correct data is returned from the
retained raster for those parts of the window that are
obscured.

R_BIT_MODE When block_read or block_write are used with the
raw parameter set to TRUE, and raw mode is enabled,
the driver supports bit/pixel frame bu�er access to single
planes.

4-62 hpgcrx

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5

CRX-48Z Device Driver

High Performance Grayscale and Color Graphics

The hpcrx48z driver supports the CRX-48Z graphics accelerator on Series 700
Workstations. Features of the CRX-48Z include:

48 image planes
24 Z-planes
8 overlay planes
5 hardware color maps
Hardware support for generating at and smooth shaded vectors and polygons
used in 3D solids modeling
Hardware support for rendering anti-aliased vectors
72Hz 1280x1024 pixel 19-inch color monitor

The 3D surfaces software, PowerShade (B2156A), is used by the hpcrx48z driver
to transform and clip graphics primitives. Powershade is also used to convert
complex primitives such as spline surfaces and polygons with many vertices into
simple primitives which can be rendered by the CRX-48Z hardware. PowerShade
is included in all CRX-48Z product bundles.

For More Information

Information in this chapter is device-speci�c. For more detailed information on
the areas listed below, please refer to the noted documents:

See the Starbase Graphics Techniques manual to read about backing store in
X Windows.

Refer to the Programming on HP-UX manual to read about linking shared or
archive libraries.

CRX-48Z 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Device Description

CRX-48Z (A2091A)

The CRX-48Z device has 48-image planes consisting of two bu�ers of 24 planes
each, and 8-overlay planes. The screen resolution is 1280x1024 pixels. There is
no o�screen memory in the frame bu�er.

Note The hpcrx48z driver can only be used in windows created via
the X Window System | the hpcrx48z driver does not support
raw mode access to the device.

The hpcrx48z driver supports the following frame bu�er con�gurations:

8-bit indexed color (CMAP_NORMAL, CMAP_MONOTONIC), single-bu�ered or 8/8
double-bu�ered

8-bit direct color (CMAP_FULL), single-bu�ered or 8/8 double-bu�ered

24-bit direct color (CMAP_FULL), single-bu�ered or 24/24 double-bu�ered.
Please note that although the CRX-48Z has 48-image planes, it can only display
or render to 24-image planes at a time.

You can select each of the above con�gurations on a per-window basis. The
con�guration selected is a function of the depth of the window created and
whether the window is in the overlay or image planes.

In the 8-bit indexed con�gurations, each pixel is used as an index into a 256-entry
color map. Each entry in the color map provides eight bits per color (for red,
green and blue components) providing a color palette of over 16 million colors.
Double-bu�ering is achieved by switching between two banks of 8 planes.

In the 24-bit direct color con�guration, each pixel is represented by eight bits
per color channel. Double-bu�ering is achieved by dividing the 48 planes into
two bu�ers of 24 planes. Double bu�ering of more than 8 planes is promoted to
24/24 double-bu�ering.

Dithering is used in depth 24 direct color visuals to improve color resolution.

Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2,/1/1) is supported for
compatibility with previous devices, however, it is not recommended. The

5-2 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

write_enable and display_enable masks are used to accomplish double-
bu�ering with less than 8 planes.

There are �ve di�erent hardware color maps available on the CRX-48Z, which
the X Server manages and allocates on a per-window basis. One of the color
maps is shared by all overlay windows, and the remaining four are used by image
windows.

Overlay Plane Rendering

Because of hardware restrictions, the hpcrx48z device driver cannot render to
the overlay planes. If Starbase rendering to the overlay planes is required, the
hpvmx driver may be used instead. For more information on Starbase rendering to
the overlay planes, read the section \HP VMX: The CRX-family Overlay Plane
Driver" in the chapter \HP VMX Device Driver."

Although the hpvmx driver is a fully functional PowerShade driver, only
CMAP_NORMAL rendering is supported in the overlay planes of the CRX-48Z device.
See below for comments about how the hpvmx driver is supported in CRX-48Z
image planes. 8/8 double-bu�ering is also supported in the overlay planes using
the hpvmx driver.

Note Color map index 255 is the overlay planes is the transparent
index. Any pixels written with index 255 will display the image
plane value at that location.

If an overlay plane window is gopened with a driver name of NULL, the hpvmx

driver will be used. See Table 3-3, \Driver Selection at gopen" in the chapter
\HP VMX Device Driver," for details.

Since the CRX-48Z device has only one color map for the overlay planes, the
color map used by Starbase in an overlay window could potentially clash with
the window system's color map. To avoid color map contention with the X
Window System, overlay plane windows could be gopened WITHOUT doing an
INIT or RESET_DEVICE (see gopen(3G) for details). Then, color map entries could
be allocated from the X Server like an X client. See the \Developing a Starbase
Application" chapter of this manual for an example of how to do this.

In the image planes of the CRX-48Z device, the hpvmx driver is a fully functional
PowerShade device driver, and supports CMAP_NORMAL, CMAP_MONOTONIC, and

CRX-48Z 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

CMAP_FULL rendering, and well as double-bu�ering. However, the hpvmx driver
is limited to depth 8 windows (it cannot render to depth 24 windows). The
hpcrx48z driver does not support backing store. The hpvmx driver supports
backing store only in the overlay planes.

While the hpvmx driver will work in the image planes of the CRX-48Z device,
it is not recommended since the hpcrx48z device driver has signi�cantly better
performance in the image planes.

Optimized 3D Shaded Polygon Performance

The CRX-48Z provides optimized 3D shaded polygon performance. Shaded
polygons on the CRX-48Z are highly optimized and very fast in most cases. See
the �le /usr/lib/starbase/perf.notes for on-line PowerShade performance
notes on features and performance data. This data is subject to change without
notice.

In order to use VMX with PowerShade from a CRX-24Z or CRX-48Z graphics
system, you must install the PowerShade software.

5-4 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The ITE and the CRX-48Z

Since the CRX-48Z is not supported in a non-window environment, ITE keyboard
and escape sequences to control the display of ITE text and image graphics are
not supported.

Frame Buffer Organization

The image planes on the CRX-48Z consist of two bu�ers with 24 planes each.
Each bu�er consists of three banks, one each for red, green, and blue. Each of
the 4 image color maps on the CRX-48Z consists of three color tables | one each
for red, green, and blue. Regardless of which color map mode is currently being
used, the data in each of the banks is used as an index into a color table for that
color of bank. For example, the pixel value in the red bank is used as an index
into the red color table to determine the intensity of red that should be displayed
for that pixel.

As a result of this color map organization, frame bu�er con�gurations that are
of depth 8 require that the 8 bits of pixel data be written to all three banks in
order for the correct RGB values to be displayed.

A bank_switch in depth 8 (CMAP_NORMAL) frame bu�er con�gurations se-
lects which of the two 24-plane bu�ers will be accessed for block_read and
block_write.

Using a bank number of 0 selects the �rst of the two bu�ers. This �rst
bu�er is the bank currently enabled for writing as selected by the dou-

ble_buffer/dbuffer_switch.Using a bank number of 1 selects the second bu�er.

block_write duplicates the pixel value to the three banks of the current bu�er.
block_read returns values in the red bank (which should be the same as the
values in the green and blue banks).

bank_switch in depth 24 (CMAP_FULL) frame bu�er con�gurations selects which
one of the six 8-plane banks will be accessed for block_write and block_read.

CRX-48Z 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Please note: In the following table, \current writeable bu�er" is de�ned as the
bu�er selected by double_buffer/dbuffer_switch.

Table 5-1. Bank Selection

wbank bank selected

0 red bank, current writeable bu�er

1 green bank, current writeable bu�er

2 blue bank, current writeable bu�er

3 red bank, non-writeable bu�er

4 green bank, non-writeable bu�er

5 blue bank, non-writeable bu�er

6 Z-bu�er1

1 Must use the ZBANK ACCESS gescape.

5-6 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The Frame Buffer

Physical Address Space

The physical frame bu�er is addressed as 2048x1024 bytes. The last 768 bytes of
each line of the address space (those to the right of the screen) are not displayed
and no memory exists in those areas.

Figure 5-1. Physical Address Space

CRX-48Z 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

To Access the Frame Buffer Directly

Programs that use direct frame bu�er access need to follow the protocol listed
below:

1. Use the R_LOCK_DEVICE gescape to gain exclusive access to the device.

2. Flush any bu�ered primitives by calling make_picture_current().

3. Use the PLUG_ACCELERATED_PIPELINE gescape with an argument of 1 to allow
access to the frame bu�er.

4. Access the frame bu�er directly.

5. Use the PLUG_ACCELERATED_PIPELINE gescape with an argument of 0 to re-
enable Starbase commands.

6. Use the R_UNLOCK_DEVICE gescape to allow other processes to now access the
device.

Do not attempt to read from or write to the o�screen addresses. Such operations
will cause unexpected errors.

The frame bu�er is organized as a single one-dimensional array of pixel values.
The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right-most)
displayable pixel on the top line. The next 768 bytes are not displayable. Byte
2048 is the �rst (left-most) pixel on the second line from the top. The last (lower
right corner) pixel on the screen is byte number 2,096,383 (1023x2048+1279).

Only one bank (8 bits) of the CRX-48Z can be accessed at a time. Use the
bank_switch call to select a bank to read or write. The bank selected will be
the same as the bank selected for block_read and block_write. If the current
rendering mode is 8 planes (CMAP_NORMAL, CMAP_MONOTONIC, or CMAP_FULL 3:3:2),
direct frame bu�er writes will write the same information to each of the three
banks in the appropriate bu�er.

5-8 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Figure 5-2. Frame Buffer Mapping in Memory

CRX-48Z 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

X Windows

The hpcrx48z is supported only with X Windows. There is no raw device
support. The only X server mode supported is combined mode. For more
information on X11, please refer to \Using Starbase with the X Window System"
in the Starbase Graphics Techniques manual.

Overlay Planes/Image Planes

The CRX-48Z has 8 overlay planes and 48 image planes. Generally speaking,
the overlay planes can be thought of as primarily used for the user-interface and
the image planes for graphics (either generated by Starbase or Xlib). X window
managers use the default visual, which is an 8 plane overlay visual. Graphics
applications should request image plane visuals. The xwcreate command creates
a depth 8 image plane visual by default. HP VMX is used as the exclusive
Starbase driver for the overlay planes on the CRX-family of devices. Double-
bu�ering, backing store and the CMAP_NORMAL color map modes are supported
for overlay windows. CMAP_FULL and CMAP_MONOTONIC color map modes are not
supported in overlay plane windows. For more information on Starbase overlay
planes, read the section \HP VMX: The CRX-family Overlay Plane Driver" in
the chapter \HP VMX Device Driver."

These two sets of planes exist with little interaction. For example, when a menu
in the overlay planes occludes a window in the image planes, no expose event is
generated when the menu is removed because the image frame bu�er contents
are not a�ected. Only other windows in the image planes generate expose events
for image plane windows.

Color map index 255 for the overlay planes is the transparent color on the CRX-
48Z. Any overlay pixels containing this index will force the image planes to be
displayed.

Per-Window Double-Buffering and Color Maps

The CRX-48Z supports double-bu�ering on a per-window basis. The CRX-48Z
supports 8/8 planes double-bu�ered for each of the Starbase color map modes
(CMAP_NORMAL, CMAP_MONOTONIC, CMAP_FULL), and 24/24 planes double bu�ered
for CMAP_FULL.

5-10 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

X11 always renders to the currently visible bu�er when a window has double-
bu�ering enabled.

Pixels in the image planes are not displayed unless the corresponding pixel in the
overlay planes is set to 255.

X11 Cursor and Starbase Echos

On previous devices, Starbase echos were either a hardware cursor, or were
software echos rendered in the overlay or image planes. The CRX-48Z device
has a hardware cursor (similar to many other devices), but this cursor is always
used by the X server, and is not available to Starbase programs. All Starbase
echos are rendered in special cursor planes (these planes are available ONLY for
Starbase echos). These special cursor planes are separate from the image and
overlay planes, and do not interfere with the graphics in those planes.

The following list describes the behavior of Starbase echos on the CRX-48Z
device, and decribes some di�erences from other devices.

Since the echos are not rendered in the image or overlay planes, they are
\combined" with the image plane graphics simply by obscuring them, rather
than by an XOR operation.

Although there may be multiple Starbase echos on the CRX-48Z device, there
is only a single set of color registers (foreground and background) for those
echos. All echos are displayed using those same color registers, so at any given
time, all echos on the screen will be the same color. This may cause color
\ickering" if multiple echos are de�ned with di�erent colors. The color will
be that of the echo most recently updated (moved).

Since there are only two color registers, full depth (i.e. 256 colors) Starbase
raster echos are not available on the CRX-48Z device. When de�ning a
raster echo (see define_raster_echo() in the Starbase Reference Manual),
all source values of 0 will be treated as background, and all other values will
be treated as foreground. (To change the default background value, see the
R_ECHO_FG_BG_COLOR gescape). A transparency mask may be speci�ed for
Starbase echos as per the R_ECHO_MASK gescape.

Non-transparent graphics in the overlay planes (such as overlay plane windows,
X applications, etc.) can obscure the Starbase echo (if the image plane window

CRX-48Z 5-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

is obscured). However, transparent sections of overlay windows will NOT
obscure the Starbase echo.

A common operation may be to have a window in the image planes with a
transparent child window in the overlay planes. In this case, the Starbase
echo should be associated with the image-plane �le descriptor, rather than
the overlay-plane child window. For device independent behavior in this
situation, use the inquire_capabilities() Starbase entry point. If the
IC_TRANS_WIN_IMAGE_CURSOR bit of the CONTROL_CAPABILITIES byte is set,
put the echo in the image plane window. If this bit is not set, the echo should
be rendered using the overlay plane window's �le descriptor. For the CRX-48Z
device, this bit will be set.

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter in the Starbase Graphics Techniques manual.

It is possible to allocate an 8-plane pseudocolor visual in either the overlay planes
or image planes of this device. For details on how to select one or the other, see
the example code in the �le /usr/lib/starbase/demos/SBUTILS/wsutils.c.
The X11 SERVER_OVERLAY_VISUALS property indicates whether a given visual is
in the overlay planes or not.

How to Read the Supported Visuals Table

The table of Supported Visuals contains information for programmers using either
Xlib graphics or Starbase. The table lists what depths of windows and color map
access modes are supported for the CRX-48Z. It also indicates whether or not
backing store is available for a given visual. The table also lists the double-bu�er
con�gurations supported by Starbase for this device driver.

5-12 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Table 5-2. CRX-48Z Supported Visuals

Device Depth Visual Class Backing Store Starbase
Doublebu�er

Xlib Starbase

CRX-48Z
Overlay
Planes1

8 PseudoColor Yes Yes2 8/8 3

CRX-48Z
Image
Planes

8
24

PseudoColor
DirectColor

Yes
Yes 4

Yes2

No
8/8 3

24/24

1 There are only 255 overlay colors (0 - 254). Color index 255 is reserved for
transparency.

2 Backing store is supported in depth 8 visuals only via the hpvmx driver.

3 Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported for
compatibility with previous devices, however, it is not recommended.

4 Xlib backing store supported except for Starbase gopened windows.

CRX-48Z 5-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

To Set Up the Device

The mknod command (see mknod(1m) in the HP-UX Reference manual) creates
a device special �le that is used to communicate between the computer and the
display device. The name of this device special �le should be in the X*screens �le
to specify to the X Server which device to use. HP-UX will usually automatically
create the device �le for the primary graphics display on the system. For the
CRX-48Z, only the device special �le name is needed in the X*screens �le.

If the need ever arises to create a device special �le for the CRX-48Z, by
convention, it should be created in the /dev directory. Any name may be used for
the device special �le, however the name that is suggested for the default device
is /dev/crt.

To Create Special Device Files (mknod)

For an SPU with only one SGC interface slot, a sample mknod entry would be:

/etc/mknod /dev/crt c 12 0x100000

For an SPU with two SGC interface slots, a sample mknod entry for a device in
the second slot would be:

/etc/mknod /dev/crt1 c 12 0x000000

5-14 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

To Compile and Link with the Device Driver

For Shared Libraries

The compiler driver programs (cc, fc, pc) link with shared libraries by default.
The shared device driver is the �le named libddcrx48z.sl in the /usr/lib

directory. Starbase will explicitly load the device driver at run time when you
compile and link with the Starbase shared library /usr/lib/libsb.sl, or use
the -lsb option. This loading occurs at gopen(3G) time.

The window libraries must be linked with all programs that use the CRX-48Z.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11\

-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

CRX-48Z 5-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

For Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le name
libddcrx48z.a.

Note Although the hpvmx driver is used to render Starbase Graphics
to the CRX-48Z overlay planes, it does NOT need to be included
in the link sequence.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libddcrx48z.a

2. an appropriate relative path name

3. the -lddcrx48z option with the LDOPTS environmental variable exported and
set to "-a archive".

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

5-16 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddcrx48z\

-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddcrx48z\

-Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for Pascal, use:

pc example.p -lddcrx48z\

-Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

CRX-48Z 5-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

To Open and Initialize for Output

Syntax Examples

C programs:

fildes = gopen("/dev/screen/window", OUTDEV, NULL, INIT);

FORTRAN 77 programs:

fildes = gopen('/dev/screen/window'//char(0), OUTDEV,

char(0), INIT)

Pascal programs:

fildes := gopen('/dev/screen/window', OUTDEV, '', INIT);

5-18 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Parameters for gopen

The gopen procedure has four parameters:path, kind , driver , and mode.

path - This is the name of the device �le created by xwcreate(1) or created
with XCreateWindow(3X11) and returned from make_X11_gopen_string(3G).
kind - This parameter should be OUTDEV if the window will be used for output,
INDEV if the window will be be used for Starbase input, or OUTINDEV if the
window will be used for both output and Starbase input.
driver - The character representation of the driver type. For portability across
the HP graphics device family, use a NULL parameter. In this case, Starbase
will automatically choose the appropriate driver.

For example:

NULL for C

char(0) for FORTRAN 77

" for Pascal

A character string may be used to specify the driver. For example:

"hpcrx48z" for C

'hpcrx48z'//char(0) for FORTRAN 77

'hpcrx48z' for Pascal

mode - The mode control word consists of several ag bits or- ed together.
Listed below are ag bits that have device-dependent actions. Those ags not
discussed below operate as de�ned by the gopen procedure. See the Starbase
Graphics Techniques manual for more details of gopen actions when accessing
an X Window.
0 (zero) - Open the window, but do nothing else. The software color table is
initialized from the current state of the hardware color map for that window.
INIT - Open and initialize the device as follows:
1. The window is cleared to 0s. For overlay windows, only the overlay planes

are cleared. For image windows, the 48 image planes are cleared.
2. The color map is reset to its default values. For depth 8 windows, the

color map is initialized as CMAP_NORMAL. For depth 24 windows, the color
map is initialized as CMAP_FULL.

3. Clear the Z-bu�er.
RESET_DEVICE - This ag is equivalent to INIT.
SPOOLED - Not supported.

CRX-48Z 5-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

MODEL_XFORM - Opening in MODEL_XFORM mode will a�ect how matrix
stack and transformation routines are performed. See gopen(3G) for more
information.
INT_XFORM - Only integer and common operations will be performed. All
oating point operations will cause an error.
INT_XFORM_32 - Only integer and common operations will be performed. All
oating point operations will cause an error.

This mode is provided for compatibility of integer precision with previous
devices. INT_XFORM will use a faster transformation pipeline with slightly less
precision. It is recommended to use INT_XFORM unless maximum precision
is required. If maximum precision is required, even at the expense of
performance, use INT_XFORM_32.
UNACCELERATED - This ag is ignored.
ACCELERATED - This ag is ignored.

A table located in the section \HP VMX: The CRX-family Overlay Plane Driver"
in the \HP VMX Device Driver" chapter in this manual lists which driver will
be selected at gopen based on whether:

A window is in the image planes or overlay planes.

The window has backing store or not.

The hpcrx48z, hpvmx, or NULL driver is speci�ed.

5-20 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
window with X-axis values increasing to the right and Y-axis values increasing
down.

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (x,y) device coordinates.

Device Defaults

Dither Default

The number of colors allowed in a dither cell is 1, 2, 4, 8 or 16. The default value
is 16. Selecting a color with the fill_color procedure will allow dithering for
�lled areas when desired.

Raster Echo Default

The default raster echo is the following 8x8 array:

255 255 255 255 0 0 0 0

255 255 0 0 0 0 0 0

255 0 255 0 0 0 0 0

255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0

0 0 0 0 0 255 0 0

0 0 0 0 0 0 255 0

0 0 0 0 0 0 0 255

The maximum size for a raster echo is 64x64 pixels.

Plane Mask Defaults

All accessible planes are enabled for display and writing.

CRX-48Z 5-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the dash lists shown below. The Starbase
default line type is SOLID, line type 0. See the following table.

Table 5-3. Default Line Types

Line Type Dash Count Dash List

0 1 1

1 2 8 8

2 2 1 1

3 4 13 1 1 1

4 6 11 1 1 1 1 1

5 2 11 5

6 4 12 1 2 1

7 6 9 1 2 1 2 1

Each number in the above table represents a single dash in the pattern. The
�rst number is the number of dashes in the list. The rest of the numbers are
the length of each dash, alternating on and o�, with the �rst dash being on. For
example, line type 6 has 4 dashes, 12 pixels on, then 1 o�, then 2 on, then 1 o�.
This pattern repeats for the length of the line.

5-22 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Color

Default Color Map

To initialize the current color map to the default values shown below, set themode
parameter of gopen to INIT when opening a depth 8 window. This is the Starbase
CMAP_NORMAL mode. (To see the rest of the colors, use the inquire_color_map

call to read the Starbase color table).

Table 5-4. Default Color Table

Index Color Red Green Blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

255 white 1.0 1.0 1.0

CRX-48Z 5-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Starbase Functionality

Calls not Supported

The following calls are not supported when using the CRX-48Z. When executed,
these calls will produce no result (i.e. they are no-ops).

bf_texture_index

define_texture

texture_index

texture_viewport

texture_window

5-24 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Conditional Support of Starbase Calls

The following calls are supported with the listed exceptions:

alpha_transparency Alpha only applies to �lled areas such as polygons,
quadrilateral meshes, triangular strips, and spline sur-
faces. Alpha per vertex is supported. Vector primitives
are not rendered with alpha_transparency.

The alpha transparency feature is limited to
CMAP_FULL in the 24-plane con�gurations. Only the
oating point version of these primitives will be ren-
dered with alpha transparency; device coordinate prim-
itives do NOT use alpha. The CRX-48Z does not sup-
port alpha transparency with attenuation. (See the
Reference page for alpha_transparency for parame-
ters in the Starbase Reference Manual).

block_read
block_write The raw parameter for the block_read and

block_write commands is used by this driver to do
plane-major reads and writes. It is enabled by the
gescape R_BIT_MODE.

The storage supplied by the user as the source or
destination must be organized as follows.

The data from each plane is packed with eight pixels
per byte.

Each row must begin on a byte boundary. Thus the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

The data for the next plane begins on the following
byte boundary.

Clip to the screen limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

CRX-48Z 5-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

When clipping, part of each plane region will not be
displayed (block_read) or altered (block_write).

A bit mask selects the planes to read or write. The
initial value of this mask is 1 (one) indicating that
only plane 0 is to be accessed. The value of the mask
may be changed using the R_BIT_MASK gescape. The
planes selected by the mask are expected to reside in
consecutive plane locations in the user storage area.
This reduces the storage requirements to exactly what
is needed but also presents the potential for addressing
violations or undesirable results.

For example, if the plane mask is changed to specify
more planes between a block_read and a following
block_write from the same location, the block_write
will attempt to access storage for planes that were
not read (and perhaps not allocated). The application
program must ensure consistency in these operations.

define_raster_echo The hpcrx48z driver interprets pixel values of 0 in the
raster echo de�nition to be the cursor background color.
It interprets all non-zero pixel values to foreground
color.

line_filter
perimeter_filter The antialiasing features are only available with the

CMAP_FULL color map mode in the 24-plane con�gura-
tions.

The CRX-48Z has two antialiasing modes that may be
speci�ed with the line_filter and
perimeter_filter procedures. The index values are
assigned as follows:

0 Anti-aliasing disabled, all vectors have one pixel
wide output.

1 Anti-aliasing enabled, all vectors have three pixel
wide output. Pixel values are multiplied by the
alpha value and blended with the background
according to the formula:

5-26 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

pixel color= (new pixel � �)+(old pixel � (1-�));

2 Anti-aliasing enabled, all vectors have three pixel
wide output. Pixel values are multiplied by the
alpha value, and blended with the background
according to the formula:

pixel color = (new pixel � �) + old pixel ;

pattern_define The maximum pattern size is 4x4. If a pattern larger
than 4x4 is speci�ed, an error message is printed and
the previous pattern is retained.

screenpr(1) Because of per-window double-bu�ering and multiple
color maps, this utility is only supported for printing
one window at a time. Attempts to print pixels outside
this one window may result in a wrong color or pixels
from the wrong bu�er being printed.

shade_mode Shading is not supported on device coordinate primi-
tives.

text_precision Only STROKE_TEXT precision is supported.

CRX-48Z 5-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Supported Gescapes

The hpcrx48z driver supports the following gescape operations. Refer to
Appendix A of this manual for details on gescapes.

BAD_SAMPLE_ON_DIFF_SCREEN|Restore the locator and choice sampling of the
X11 pointer device.
BLOCK_WRITE_SKIPCOUNT|Specify byte skip count during block write.
CONTOUR_CONTROL|Specify alternative methods for interpolation of contour
data.
CUBIC_POLYPOINT|Specify points to be rendered in a cubic volume speci�ed
in modeling coordinates.
DC_PIXEL_WRITE|Specify points to be rendered along a horizontal scan line.
DRAW_POINTS|Select di�erent modes of rounding for rendered points.
GAMMA_CORRECTION|Enable/disable gamma correction.
GCRX_PIXEL_REPLICATE|Pan and zoom a raster image.
GR2D_PLANE_MASK|Overrides the bit mode mask.
IGNORE_RELEASE|Trigger only when button pressed.
ILLUMINATION_ENABLE|Turn on/o� illumination bits.
LINEAR_POLYPOINT|Specify points to be rendered along a line speci�ed in
modeling coordinates.
LS_OVERFLOW_CONTROL|Set light source overow handling.
OLD_SAMPLE_ON_DIFF_SCREEN|Inquire the locator and choice sampling of the
X11 pointer device.
PLUG_ACCELERATED_PIPELINE|Controls the rendering of the graphics acceler-
ators into the frame bu�er.
POLYGON_TRANSPARENCY|Segment control over front/back face \screen door".
R_BIT_MASK|Select plane for reading and writing bit blocks.
R_BIT_MODE|Specify data format for bit/pixel block transfer operations..
R_DEF_ECHO_TRANS|De�ne transparency mask for raster echo.
R_ECHO_FG_BG_COLORS|De�ne color attributes.
R_ECHO_MASK|Turns on echo transparency mask.
R_GET_FRAME_BUFFER|Read the frame bu�er and control space addresses.
R_LINE_TYPE|User de�ned line style and repeat length.
R_LOCK_DEVICE|Lock device.
R_UNLOCK_DEVICE|Unlock device.
READ_COLOR_MAP|Read color map.
STEREO|Activate stereo output mode.
SWITCH_SEMAPHORE|Semaphore Control.

5-28 CRX-48Z

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

TRANSPARENCY|Set screen door transparency mask (front face and back face).
TRIGGER_ON_RELEASE|Trigger only when button is released.
ZBANK_ACCESS|Enable/disable the Z-bu�er bank for reading and writing.
ZWRITE_ENABLE|Enable/disable replacement of Z value.

Exceptions to Gescape Support

Note Because the gescape operations are device-dependent, the excep-
tions discussed below may be removed in future drivers.

GAMMA CORRECTION - Enable/disable gamma correction. Gamma
correction is implemented di�erently on the hpcrx48z than on older devices.
It is implemented in the color map rather than in the frame bu�er. For
information on the gescape GAMMA_CORRECTION, refer to Appendix A.

R ECHO CONTROL - Regardless of what cursor is requested, hardware or
software, the CRX-48Z will always return the arg2[0] value of 1 which indicates
the hardware cursor is being used.

CRX-48Z 5-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

6

The HP Entry Level VRX Device Driver

Device Description

The HP Entry Level VRX (EVRX) device driver supports a family of HP
workstation products with built-in graphics hardware. The internal graphics
hardware consists of an 8 image plane dumb frame bu�er which is tightly
coupled to the host SPU via the SGC bus. This architecture yields competitive
performance and low cost due to the simpli�ed graphics hardware design.

The HP Entry Level VRX is supported on the HP 425E workstation in the
following con�gurations:

1280x1024 color graphics option

1280x1024 gray scale graphics option

1024x768 color graphics option

The HP Entry Level VRX is also supported on the HP 382 computer system in
the following con�gurations:

1024x768 color graphics

640x480 color graphics

640x480 grayscale graphics

The 8 image planes are organized as an array of bytes, with each byte representing
a pixel (a bit-mapped display). To produce a color on the screen, each 8-bit
pixel value is treated as an index into a 256 entry color table. This allows
the simultaneous display of 256 individual colors from a palette of 16 million
colors. On the grayscale con�gurations, 256 shades of gray can simultaneously
be displayed.

EVRX 6-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Overview of Device Capabilities

The HP Entry Level VRX device driver supports 2D and wireframe 3D graphics.
It does not support more advanced features such as lighting, shading, depth
cueing, texture mapping, or Z bu�ering. A detailed list of unsupported Starbase
calls is included at the end of this chapter.

The HP Entry Level VRX device driver supports raster text calls from the
fast alpha and font manager libraries. See the Fast Alpha/Font Manager
Programmer's Manual for more information.

In general, the HP Entry Level VRX device driver is very similar in capabilities
to the HP 98550 device driver.

Setting Up the Special Device Files (mknod)

The special device �le for the internal Entry Level VRX graphics hardware should
already be setup correctly as /dev/crt by the system boot code. If /dev/crt
does not exist, is deleted for some reason, or does not allow the device driver
access to the hardware, use the information below to create a new /dev/crt.

The mknod(1M) command creates a special device �le which is used to communi-
cate between the SPU and the internal graphics. Superuser capability (the root
login) is required to setup special device �les. See the HP-UX Reference manual
for more information on the mknod(1M) command.

The correct mknod command syntax to create an SGC bus special device �le for
the internal Entry Level VRX graphics hardware is:

Figure 6-1.

6-2 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Note When using the mknod command to create a special device �le
for the HP 382, the correct minor number is 0x840300 instead of
0x000300.

Linking the Driver

The HP Entry Level VRX device driver is located in the /usr/lib directory with
the �le name libddevrx.a. The shared library version of the driver is named
libddevrx.sl This device driver can be directly linked with the application
program (archive option) or dynamically loaded at run-time (shared option). The
shared library option reduces executable disk space requirements at the expense
of a slight performance penalty.

Shared Library Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11\

-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

The dynamic loader is -ldld. The math library, -lm, is needed for some
applications.

EVRX 6-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

For Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le name
libddevrx.a.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libddevrx.a

2. an appropriate relative path name

3. the -lddevrx option with the LDOPTS environmental variable exported and
set to "-a archive".

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -lddevrx -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -lddevrx -Wl,-L/usr/lib/X11R5 -lXwindow\
-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -lddevrx -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

6-4 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Initialization

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path This is the name of the special device �le created with the mknod

command, e.g. /dev/crt.

Kind This parameter must be OUTDEV, unless used for an X11 window, in
which case OUTINDEV may be used.

Driver The character representation of the driver type, namely:

"hpevrx" for C.

'hpevrx'//char(0) for FORTRAN 77.

'hpevrx' for Pascal.

This parameter can be NULL or 0, in which case, the gopen command
will automatically determine the correct driver. This feature is
highly recommended for device independence.

Mode The mode consists of several ag bits or'ed together. The most
common mode is INIT. See the Starbase Reference manual for
complete details on the gopen mode bits.

Syntax Examples

Examples to open and initialize the HP Entry Level VRX driver for output:

C Programs:

Explicit device driver:

fildes = gopen("/dev/crt",OUTDEV,"hpevrx",INIT);

Automatically determine the device driver:

fildes = gopen("/dev/crt",OUTDEV,NULL,INIT);

FORTRAN 77 Programs:

Explicit device driver:

fildes = gopen('/dev/crt'//char(0),OUTDEV,'hpevrx'//char(0),INIT)

EVRX 6-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Automatically determine the device driver:

fildes = gopen('/dev/crt'//char(0),OUTDEV,char(0),INIT)

Pascal Programs:

Explicit device driver:

fildes := gopen('/dev/crt',OUTDEV,'hpevrx',INIT);

Automatically determine the device driver:

fildes := gopen('/dev/crt',OUTDEV,0,INIT);

Porting Guide

Differences from other Starbase Device Drivers

The HP Entry Level VRX graphics driver does not support the
SB_DISPLAY_ADDR environment variable. The HP-UX kernel will always pick
the best virtual address to map in the graphics hardware.

ALL rendering operations are performed correctly to the screen as well as
backing store (retained raster) for applications running in an X11 window.

There is no physical \o�screen" memory on the Entry Level VRX graphics
device. Applications which either use R_FULL_FRAME bu�er or try to write to
o�screen memory will not work.

Application which use the gescapes GR2D_FILL_PATTERN or R_DEF_FILL_PAT
should use the Starbase call pattern_define to de�ne �ll patterns.

Gray scale con�gurations will run color applications by approximating the
colors with the closest shade of gray. Application tuning for gray scale is
encouraged, but not necessary.

It is not necessary to link in the libddbyte.a and libddbit.a libraries into
the application for Starbase to work correctly in an X11 window with backing
store enabled (retained raster).

6-6 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Gray Scale Configurations

The software to handle gray scale actually resides in the higher level Starbase
code, not the driver. It has been designed so that color applications can run
without modi�cation using the closest matching shades of gray. Application
optimization for gray scale is encouraged, but not necessary.

All the Starbase color map modes: CMAP_NORMAL, CMAP_FULL, and
CMAP_MONOTONIC are supported on the gray scale con�gurations of the Entry
Level VRX graphics hardware.

Conceptually, when the color map is initialized or rede�ned, it is treated in the
same way as if the device were color. Then, as a last step, the color map is put
through one more transformation to convert the color red, green, and blue values
into an equivalent intensity of gray. The formula used to convert from color to
gray scale is:

Intensity = (0.30 * Red) + (0.59 * Green) + (0.11 * Blue)

Buffering

The HP Entry Level VRX driver is a bu�ered driver. A bu�ered driver
queues graphics requests in a memory bu�er, rather than executing them
immediately. When the bu�er is full, or, when the application calls the Starbase
make_picture_current procedure, the bu�er is traversed and the graphics
requests executed. This is referred to as a bu�er ush.

Bu�ering can be a performance enhancing feature because the driver can perform
some of the overhead associated with rendering once, rather than for each
individual graphics request.

The size of the bu�er can a�ect application performance. Too large of a bu�er
can reduce interactivity. Too small of a bu�er negates the overhead advantages
of bu�ering and can reduce performance of an application that typically requests
large amounts of data to be rendered at once - such as a 1000 vector polyline
requests.

EVRX 6-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

See Device Speci�c Performance Tips in this chapter for a way to tune the HP
Entry Level VRX driver's bu�er size for your application.

Device Coordinate Addressing

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The coordinates of the lower-right corner of the screen can be obtained
by taking the width and height of your display (dependent on the particular
con�guration) and subtracting one from these numbers. For example, the lower-
right corner of the screen for the 1280 by 1024 resolution is location (1279,1023).

Direct Frame Buffer Access

If you have the base address of the frame bu�er from the gescape
R_GET_FRAME_BUFFER, you can access pixel (X,Y) by adding the o�set (X + Y *

2048) to the base address and performing a byte access. Four consecutive pixels
can be accessed by doing a long word (32-bit) access. Even though each scanline
takes up 2048 bytes worth of address space, there is no o�screen memory. Writing
to non-existent o�screen memory may cause you application to crash.

If you are directly accessing the frame bu�er please use the R_LOCK_DEVICE

gescape just prior to direct frame bu�er access and R_UNLOCK_DEVICE imme-
diately after you are done accessing the frame bu�er.

6-8 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Device Specific Performance Tips

1. The gescape SET BUFFER SIZE can be used to dynamically tune the bu�er
size inside the application. The bu�er can range from a minimal size of 512
bytes (the default) to a maximum size of 4096 bytes. Values outside this range
will be clipped.

2. Since the hardware does not have support for replacement rules (drawing
modes), source replacement rule is much faster than non-trivial replacement
rules, such as exclusive-or.

3. With a fast SPU and a high bandwidth bus to the frame bu�er, block_write
and block_read will perform signi�cantly faster than graphics devices which
utilized DIO and DIO-II as their path to the frame bu�er.

4. Rendering to an X11 window will be signi�cantly slower if that window has
backing store. However, if the graphics in that window are complex enough,
backing store could be a performance win when it comes to refreshing the
regions of the window that were obscured.

5. If you are using the Starbase device coordinate entrypoints to do your
rendering (e.g. dcpolyline2d), you can increase performance slightly by
opening the device with the mode ags INIT or'ed with INT XFORM, rather
that merely opening with INIT.

6. The Entry Level VRX graphics hardware does have some support for bit/pixel
frame bu�er access. This hardware is used when the R BIT MODE gescape
is used and block_write is called with the raw ag TRUE.

EVRX 6-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

X Windows

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes . The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

Table 6-1. HP Entry-Level VRX (EVRX)

Model 425E Integrated Graphics High-Res Color

Model 425E Integrated Graphics Medium-Res Color

The supported server mode is Image mode.

6-10 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-2. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No PseudoColor � �

Yes (4/4) PseudoColor � �

Table 6-3. HP Entry-Level VRX (EVRX)

Model 425E Integrated Graphics High-Res Grayscale

The supported server mode is Image mode.

Table 6-4. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No Grayscale � �

Yes (4/4) Grayscale � �

X11 Cursors and Starbase Echos

The following list shows default positions where the Starbase echo and X11 cursor
(called echo and cursor, respectively) reside for each of the X11 server operating
modes.

HP Entry-Level VRX (EVRX)

Image Mode

X11 cursor uses hardware cursor. Starbase echos are in the image planes.

EVRX 6-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Starbase Unsupported Commands

The following commands are not supported for use with this driver. Calls to
these procedures will have no e�ect:

alpha_transparency depth_cue_range

backface_control depth_cue-range

bank_switch hidden_surface

bf_alpha_transparency interior_style (INT_OUTLINE)

bf_control interior_style (INT_POINT)

bf_fill_color light_ambient

bf_interior_style light_attenuation

bf_perimeter_color light_model

bf_perimeter_repeat_length light_source

bf_perimeter_type light_switch

bf_surface_coefficients line_filter

bf_surface_model perimeter_filter

bf_texture_index set_capping_planes

contour_enable set_model_clip_indicator

define_contour_table set_model_clip_volume

define_texture shade_range

define_trimming_curve surface_coefficients

deformation_mode surface_model

depth_cue texture_index

depth_cue_color texture_viewport

texture_window

viewpoint

zbuffer_switch

6-12 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Starbase Conditionally Supported Commands

block_read,block_write The raw parameter is normally ignored unless the
following gescapes have been used:
BLOCK_WRITE_SKIPCOUNT or R_BIT_MODE.

shade_mode The color map mode may be selected but shading
can not be turned on.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The husei parameter must be zero, any extra
coordinate information will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if
not supported by this device. For example,
contouring data will be ignored if the device does
not support it.

EVRX 6-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Gescapes

The following gescape functions are supported by the HP Entry Level VRX
device driver. Detailed information about these functions can be found in
appendix A of this manual.

SWITCH_SEMAPHORE|Enable or disable locking.
READ_COLOR_MAP|Read hardware color map.
IGNORE_RELEASE|X11: Events triggered on button press only.
TRIGGER_ON_RELEASE|X11: Events triggered on button press and release.
R_BIT_MASK|Set plane mask for bit/pixel block reads/writes.
R_BIT_MODE|Enable bit/pixel block operations when raw ag TRUE.
R_GET_FRAME_BUFFER|Get device control space and framebu�er addresses.
R_LOCK_DEVICE|Lock the device..
R_UNLOCK_DEVICE|Unlock the device.
R_LINE_TYPE|De�ne a 16-bit line pattern.
BLOCK_WRITE_SKIPCOUNT|For byte/pixel block writes when raw ag TRUE.
SET_BUFFER_SIZE|Dynamically tune driver bu�er size.

6-14 EVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

7

The PersonalVRX Device Driver

Device Description

The PersonalVRX Graphics Display Station is a graphics subsystem which
interfaces with the host SPU, utilizing a high-resolution (1280�1024) color
display (purchased separately). See the Introduction section of this manual for
systems supporting these controllers.

The PersonalVRX Graphics Display Station is available in the following con�g-
urations:

HP 98705A and HP 98705C
8 image planes (frame bu�er).

HP 98705B
16 image planes (frame bu�er).
16 planes Z-bu�er.

Two device drivers are provided to access the PersonalVRX Display:

hp98704|The HP 98704 Device Driver is used to access the graphics display,
without using the graphics accelerator, in raw mode or X11 windows.
hp98705|The HP 98705 Device Driver is used to access the graphics display,
utilizing the graphics accelerator, in raw mode or X11 windows.

This section covers the hp98704 and hp98705 device drivers.

The display produces a resolution of 1280x1024 pixels. The standard color display
system (HP 98705A or HP 98705C) has eight planes of frame bu�er to provide 256
simultaneous colors, plus four overlay planes for non-destructive alpha, cursors,
or graphics. A fully con�gured system (HP 98705B) includes two banks of frame
bu�er memory, four overlay planes, and a dedicated board for full 16 bit Z-bu�er
capability.

An eight-plane con�guration allows 256 colors to be displayed simultaneously
from a palette of 16 million. A 16-plane con�guration may be treated as two

PersonalVRX 7-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

8-plane frame bu�ers where only one bu�er is displayed at a given moment in
time. This con�guration is useful for double bu�ering. The 8-plane system can
also be con�gured to display 3 bits red, 3 bits green and 2 bits blue per pixel
in CMAP_FULL mode. Double bu�ering can be done in CMAP_FULL mode with the
16-plane con�guration.

The display system is a memory-mapped device with special hardware for:

Write enable/disable individual planes.
Video enable/disable individual planes.
Frame bu�er writes with speci�ed replacement rule (see drawing mode).
Arbitrary sized rectangular frame bu�er to frame bu�er copies.
Bit per pixel block reads and writes.
Raster and crosshair cursors.
Video blinking of individual planes.
Video blinking of individual color map locations.

The accelerated hp98705 device driver also features:

Write enable/disable of pixels in a 4x4 cell for \screen door" transparency.

An Intel i860 processor with hardware oating-point processing for high-speed
3D operations.

NMOS III scan converter with six axis interpolation for Gouraud-shaded, Z-
bu�ered vectors and polygons.

Pixel clipping for full speed graphics to obscured windows.

Dedicated 2K by 1K 16-bit Z-bu�er (HP 98705B only).

The display is organized as an array of bytes, with each byte representing a pixel
on the display. Since there are eight planes of frame bu�er memory, color map
indices range from 0-255. The color map is a RAM table that has 256 addressable
locations and is 24 bits wide (8 bits each for red, green, and blue). Thus, the
pixel value in the frame bu�er addresses the color map, generating the color
programmed at that location.

In addition to the frame bu�er banks of eight planes each, four overlay planes
are provided. These overlay planes have their own unique color map, separate
from the color map used for the image planes. This overlay color map consists of
sixteen 24-bit entries, allowing the user to select 16 colors from the full palette
of over 16 million choices In addition, each entry in the overlay color map may

7-2 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

be made dominant (opaque) or non-dominant (transparent). A dominant entry
causes all pixels in the overlays set to that value to display the color in the overlay
map, regardless of values in the image planes \below".

A non-dominant (or transparent) entry causes pixels with that value to display
the color in the image planes \below". By default, the hp98705 device
driver sets all overlay color map entries to be dominant when opened to the
overlays. Entries may be set to be non-dominant with the Starbase gescape,

R_TRANSPARENCY_INDEX.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, when the HP 98705 is used as system console, the Internal Terminal
Emulator (ITE) uses three of the overlay planes for alpha information. By doing
so, there is no interaction between ITE text and images in the graphics planes. To
produce graphical images in the overlay planes, the hp98704 or hp98705 device
driver may be opened directly to the overlay planes, as if they were a separate
device. (Refer to the section Setting up the Device for more information.)

Typically, an application does not need to directly read or write pixels in the frame
bu�er. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame bu�er (this gescape is discussed
in the appendix of this manual). Frame bu�er locations are subsequently accessed
based upon their o�set from this returned address. The �rst byte of the frame
bu�er (byte 0) represents the upper left corner pixel of the screen. Byte 1 is
immediately to its right, Byte 1279 is the right-most pixel on the top scan line.
The next 768 bytes of the frame bu�er are not displayable. Byte 2048 is the
left-most pixel on the second scan line from the top. The lowest right corner
pixel on the screen is byte number 2,096,383. If more than one frame bu�er bank
is installed then bank switching must be used to access the additional memory.
A number of Starbase calls may set the bank register so it is advisable to call
bank_switch just prior to making accesses to the frame bu�er pointer to ensure
the desired results.

The o�-screen portion of the frame bu�er may be accessed via the gescape

procedure R_FULL_FRAME_BUFFER, documented in the appendix of this manual.
Care should be exercised with this gescape, as Starbase, X Windows, and other
processes make use of the frame bu�er o�-screen memory.

PersonalVRX 7-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

High-Performance Bit-per-pixel Support

The PersonalVRX provides hardware support for high speed bit-per-pixel block
reads and writes. Bit-per-pixel mode is set by using the gescape, R_BIT_MODE.
When in this mode, one byte of data represents data for eight pixels. See the
description of the R_BIT_MODE gescape, located in the appendix of this manual,
for more details.

Multiple-plane bit-per-pixel Support

The gescape, GR2D_PLANE_MASK, de�nes a mask that allows multiple planes to
be read or written.

The de�nition of GR2D_PLANE_MASK requires data array space for each plane that
will be read or written, and each is done individually For example, if the mask is
01101 then the user's data array must look like:

Plane 0 Data

Plane 2 Data

Plane 3 Data

See the gescape, GR2D_PLANE_MASK, for more details.

Bit-per-Pixel Replacement Rule per Plane

The PersonalVRX supports a replacement rule per plane while doing bit-per-pixel
block writes. This allows a replacement rule to be set individually for each plane.
These replacement rules could be used, typically, to provide fast two color bit-per-
pixel block writes. See the description of the gescape, SET_REPLACEMENT_RULE,
for more details. Performing block writes using the per/plane replacement rule
may work twice as fast in the overlay planes as it does in the image planes,
depending on the rules used.

7-4 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Setting Up the Device On Series 300 and 400

The hp98704 and hp98705 device drivers can be used with the graphics display
con�gured only in DIO-II address space. Refer to the Con�guration Reference
Manual for a description of DIO-II address space.

Note If the PersonalVRX is con�gured as an external display, then
there will not be an Internal Terminal Emulator (ITE) for that
device. Since it is the ITE that normally initializes the display,
external devices must be reset after power-up by running a simple
Starbase program with a mode of RESET_DEVICE in the gopen

call. It may also be necessary to run this program after running
an application which manipulated the overlay color map, such
as a windows application program. An example program which
could be called from /etc/rc during power-up is given at the
end of this section. For more details concerning the e�ects of
RESET_DEVICE, see the Device Initialization information in this
section.

The Graphics Interface card may be installed in any DIO II slot in the computer's
backplane or in any I/O slot of the expander.

DIO-II Switch Settings

The graphics interface card has a single 5-bit address select switch. The switches
are labeled (left to right) from 0 to 4. The leftmost switches represent the most
signi�cant bits, hence, switch 0 is the most signi�cant bit of the address, and
switch 4 is the least signi�cant. Select the address space by setting the switches
either to open or not open. Switches in the open position represent 0's while
switches not in the open position represent 1's. See the address table below for
the switch-setting/address-mapping relationship.

The PersonalVRX can only be used in DIO-II address space. In this mode, the
�ve switches determine the DIO-II select codes to be used. A PersonalVRX will
use three DIO-II select codes. Both the frame bu�er and control space reside in
the select code areas.

PersonalVRX 7-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

The control space requires 4 Mbytes of space, starting at CTL_BASE. The �ve
switches described above determine the address of CTL_BASE. The frame bu�er
requires 8 Mbytes of space, starting at FB_BASE.

7-6 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

PersonalVRX DIO-II Control Space Settings

Switch Setting
MSB to LSB

CTL_BASE DIO-II
Select Code

FB_BASE

00001 $01400000 133 $01800000

00010 $02400000 137 $02800000

00011 $03400000 141 $03800000

00100 $04400000 145 $04800000

00101 $05400000 149 $05800000

00110 $06400000 153 $06800000

00111 $07400000 157 $07800000

01000 $08400000 161 $08800000

01001 $09400000 165 $09800000

01010 $0A400000 169 $0A800000

01011 $0B400000 173 $0B800000

01100 $0C400000 177 $0C800000

01101 $0D400000 181 $0D800000

01110 $0E400000 185 $0E800000

01111 $0F400000 189 $0F800000

10000 $10400000 193 $10800000

10001 $11400000 197 $11800000

10010 $12400000 201 $12800000

10011 $13400000 205 $13800000

10100 $14400000 209 $14800000

10101 $15400000 213 $15800000

10110 $16400000 217 $16800000

10111 $17400000 221 $17800000

11000 $18400000 225 $18800000

11001 $19400000 229 $19800000

11010 $1A400000 233 $1A800000

11011 $1B400000 237 $1B800000

11100 $1C400000 241 $1C800000

11101 $1D400000 245 $1D800000

11110 $1E400000 249 $1E800000

11111 $1F400000 253 $1F800000

PersonalVRX 7-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

A DIO-II display may be used as the system console or as an external display. In
order to use the display as the system console, it must be con�gured as the �rst
DIO-II display in the system, and there must be no DIO-I console, or remote
terminals. Being the �rst DIO-II device means that it has the lowest DIO-II
select code in the system. In order to use a PersonalVRX as a DIO-II system
console, select code 133 is recommended.

Note It is necessary to increase some of the HP-UX tunable system
parameters due to the size of the DIO-II mapping of a Person-
alVRX. For details on how to recon�gure your kernel, refer to the
HP-UX System Administrators Manual (particularly the \Con-
�guring HP-UX" section in \The System Administrators Tool-
box" and the \System Parameters" appendix.

It is essential that you consult the above referenced HP-UX
documentation before you attempt to recon�gure your system.
It is possible to adversely a�ect your HP-UX system if a mistake
is made. Ensure you have an understanding of these procedures
before proceeding.

7-8 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Example Program to Reset the PersonalVRX

The following example uses the hp98705 device driver. The hp98704 device driver
can be substituted.

/*

* Starbase program: reset98705.c

* Compile: cc -o reset98705 reset98705.c -ldd98705 -lsb1 -lsb2 -lm

* Destination: /usr/bin

* Execute: add line to the /etc/rc -

* "/usr/bin/reset98705 /dev/crt"

*

* Example program to be put in /etc/rc for resetting

* an external PersonalVRX device during power-up.

*/

#include <starbase>

main(argc,argv)

int argc; char *argv[];

{

int fildes;

if ((fildes = gopen(argv[1],OUTDEV,"hp98705",INIT|RESET_DEVICE))<0)

printf("External PersonalVRX %s initialization failed.\\n",argv[1]);

else {

printf("External PersonalVRX %s initialization succeeded.\\n",argv[1]);

gclose(fildes);

}

}

Address Space Usage

The PersonalVRX is memory mapped into a processes virtual address space,
starting at the value speci�ed by the environment variable SB_DISPLAY_ADDR. If
this variable is not set, then mapping defaults to 0xB00000. The control space
starts at this address and grows towards larger address values. After the control
space comes the frame bu�er, then shared memory mapped for Starbase drivers.
In DIO-II, control space is 4 Mbytes and the frame bu�er is 8 Mbytes. The size
of the hp98704/hp98705 drivers' shared memory is slightly less than 300 Kbytes.

If your application maps memory pages to speci�c addresses, or needs a large
stack, then you may need to adjust SB_DISPLAY_ADDR to avoid conicts.

PersonalVRX 7-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further information. The name of this special device
�le is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the name that is suggested for these
devices is crt.

The following examples will create a special device �le for this device. Remember
that you must be superuser (the root login) to use the mknod command.

Since the device is in DIO-II address space, (refer to the \Switch settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of 0xSc0200 where Sc is the external select
code in hexadecimal notation.

mknod /dev/crt c 12 0xSc0200

The PersonalVRX may also be used for the overlay planes in graphics mode.
The minor number may be set to cause Starbase drivers to use either three or
four overlay planes. When running to three planes, one plane is still reserved for
cursors. When running to all four overlays, only the hardware cursor is available
for Starbase graphics echoes. If more than one echo is requested, or if another
process is using the cursor, then the request for another echo will fail. Note that
since the terminal emulator and window system operate in the overlay planes
also, there will be interactions with these processes if a graphics driver is opened
in this manner while these processes are present. To open the PersonalVRX to
three overlay planes instead of the graphics planes, the last byte of the minor
number must be one. To run to all four overlays, the last byte of the minor
number must be three.

Thus, to create a device �le that will allow the PersonalVRX to use only three
overlay planes, the following command should be used:

mknod /dev/ocrt c 12 0xSc0201

7-10 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

where SC is the external select code in hexadecimal notation.

To create a device �le that uses all four overlay planes, the following command
should be used:

mknod /dev/o4crt c 12 0xSc0203

Series 700 System Configuration

Following are some examples of using the mknod entry for the HP-UX Operating
System.

For an SPU with only one SGC interface slot, a sample mknod entry would be:

/etc/mknod /dev/crt c 12 0x100000

For an SPU with two SGC interface slots, a sample mknod entry for the other
slot would be:

/etc/mknod /dev/crt c 12 0x000000

To Compile and Link with the Device Driver

For Shared Libraries

The shared hp98704 device driver is the �le named libdd98704.sl in the
/usr/lib// directory. The shared hp98705 device driver is the �le named
libdd98705.sl in the /usr/lib directory.

The device driver will be explicitly loaded at run time by compiling and linking
with the starbase shared library /usr/lib/libsb.sl, or by using the -l option
-lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

PersonalVRX 7-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The archive hp98704 device driver is the �le named libdd98704.a in the
/usr/lib directory. The archive hp98705 device driver is the �le named
libdd98705.a in the /usr/lib directory.

As an example, the hp98705 device driver may be linked to a program using
the absolute path name /usr/lib/libdd98705.a, an appropriate relative path
name, or by using the -l option as in -ldd98705 with the LDOPTS environmental
variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

This driver also requires the math library to be linked with C programs.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldd98705 -L/usr/lib/X11R5 -lXwindow\

7-12 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldd98705 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd98705 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

X Windows

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes. The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the

PersonalVRX 7-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

Table 7-1. PersonalVRX Display Types

PersonalVRX [P1] HP 98705C High-Res Color

PersonalVRX [P2] HP 98705A High-Res Color

PersonalVRX [P3] HP 98705B High-Res Color

The supported server modes are Combined and Overlay.

Table 7-2. Windows in Overlay Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

3 No PseudoColor � � one color reserved for
transparency

4 No PseudoColor � � one color reserved for
transparency

The supported server modes are Combined and Image.

7-14 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Table 7-3. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No PseudoColor � �

Yes (4/4) PseudoColor � �

16 No Not supported

Yes (8/8) PseudoColor � only on P3 model

X11 Cursors and Starbase Echos

The following list shows default positions where the Starbase echo and X11 cursor
(called echo and cursor, respectively) reside for each of the X11 server operating
modes.

PersonalVRX Display, 98704 Device Driver

Overlay Mode

If overlay-plane X11 window is opened, echo shares three or four overlay planes.

If image planes are opened and X11 uses three overlay planes, vector echo
resides in cursor plane.

If image planes are opened and X11 uses four overlay planes, vector echo redies
in image planes.

X11 cursor uses hardware cursor.
Image Mode

If image-plane X11 window is opened, raster echo resides in image planes and
vector echo resides in cursor plane.
Stacked Screen Mode

Not supported.
Combined Mode

If overlay-plane X11 window is opened, echo shares three or four overlay planes.

PersonalVRX 7-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

If image-plane X11 window is opened, raster echo resides in image planes.

If image-plane X11 window is opened and X11 uses three overlay planes, vector
echo resides in cursor plane.

If image-plane X11 window is opened and X11 uses four overlay planes, vector
echo shares overlay planes.

X11 cursor uses hardware cursor.

PersonalVRX Display, 98705 Device Driver

Overlay Mode

The 98705 driver is not supported to overlay planes.

X11 cursor uses hardware cursor.
Image Mode

If image-plane X11 window is opened, echoes reside in the cursor plane and
X11 cursor uses hardware cursor.
Stacked Screen Mode

Not supported.
Combined Mode

If an image-plane X11 window is opened and X11 uses three overlay planes:
Vector echoes reside in the overlay planes.
Raster echoes are not supported.

X11 cursor uses hardware cursor.

7-16 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Usage and Restrictions

hp98704

In no case does the hp98704 driver support:

Z-bu�ering.
Shading.
The transform engine.

Use the hp98705 driver to access these features.

When a raw gopen of the overlay planes is done, the hp98704 driver does not
support:

Bank switching.
Double-bu�ering when using three planes. (Double bu�ering is supported when
using four planes.)

When a gopen is done of an X window in the overlay planes, the driver does not
support:

Bank switching.
Double-bu�ering.

hp98705

When a device �le for the overlay planes is speci�ed at the gopen call, bank
switching, shading, and depth queuing are not supported.

Up to sixteen unique gopen calls, using the hp98705 driver, may be executed on
the same device simultaneously, from any combination of one or more processes.

hp98704 Transparency

By default, the hp98704 device driver sets all overlay color map entries to be
dominant when opened to a raw device, except for the entry speci�ed by envi-
ronment variable SB_OV_SEE_THRU_INDEX, which is set to be transparent. This
applies to the overlay planes with INIT or RESET_DEVICE, and to the image planes
when RESET_DEVICE is used. The default value for SB_OV_SEE_THRU_INDEX is 3,
however, it can be set to -1 to prevent any entry from being made transparent

PersonalVRX 7-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

during initialization. Entries may also be made non-dominant after initialization
with the Starbase gescape, R_TRANSPARENCY_INDEX.

In X windows Combined mode, the X server reserves the highest color map entry
for transparency (7 or 15, depending on whether three or four overlay planes
have been opened). When an X window is opened by a Starbase program, the
environment variable is ignored, and the driver uses the same transparency index
that the X server is using.

In X windows Overlay mode, the X server does not set a default a transparent
color. The hp98704 driver, in an Overlay mode window, sets all entries dominant
when the gopen call is executed.

In raw and in X windows Overlay mode, an explicit call to define_color_table,
or use of the INIT ag in a call to shade_mode or double_buffer, will cause
transparent entries to be set back to dominant. When running in Combined
mode, the server's transparent entry cannot be made dominant.

Cursors

The hp98704 and hp98705 device drivers implement cursors using a combination
of the hardware cursor and software cursors. If no processes have opened all four
overlay planes, then the fourth overlay plane is used for software cursors.

The hardware cursor always appears \over" data in any of the frame bu�er planes.

You can think of the fourth overlay plane used for cursors as a separate \cursor
plane". Any data in the cursor plane will be displayed \over" data in the graphics
planes. Data in the other three overlay planes will be displayed \over" data in the
graphics planes and the cursor plane. For example, suppose a graphics application
is running in the graphics planes while the window manager is running in three of
the overlay planes. If the application has a Starbase cursor in the overlay cursor
plane, then the cursor will always be visible inside regions of see-thru because
the cursor has display priority over the graphics. If the cursor is moved outside
of regions of see-thru then it is not visible since the non-see-thru regions in the
overlay planes have display priority over the cursor plane.

The PersonalVRX supports a hardware cursor that is su�cient for all Starbase
echo types except rubber-band lines and rectangles. (Rubber-band cursors are
supported in software.) Only one hardware cursor is available. Usage of the
hardware cursor is de�ned as follows:

7-18 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

1. If an application is running in a Starbase environment only (ie. X windows
are not running), then the hardware cursor is given to the �rst process that
attempts to use a cursor type appropriate to the hardware.

2. By default, if X windows are running, then the window system gets usage of
the hardware cursor.

3. The user can control the usage of the hardware cursor via the gescape opcode
R_ECHO_CONTROL. (Refer to the gescape appendix in this manual.)

If the hardware cursor is already being used by another process, then overlayed
software cursors are used by the hp98704 driver for vector cursors, and the opened
planes are used for raster cursors. If the fourth overlay plane is not available for
cursors, then the opened planes are used for all cursor types. Note that the
hardware cursor can only support two-color raster cursors; if full-color cursors
are needed, the R_ECHO_CONTROL gescape must be employed to enforce the use
of the opened planes for raster cursors.

The hp98705 driver uses the overlayed software cursors if the hardware cursor is
already being used by another process. If the fourth overlay plane is not available
for cursors, then an error will be generated when any attempts are made to turn
on the cursors.

If a process is using the hardware cursor and it switches to rubber-band cursors, it
retains control of the hardware cursor, but the cursor is drawn in the frame bu�er
(either the fourth overlay plane or the opened planes) using software routines.
When the process switches to an appropriate type of cursor, it will again use the
hardware cursor. If a user's application never uses hardware-type cursors, then
the driver will never attempt to allocate the hardware cursor. However, once the
driver has allocated the hardware cursor, the driver does not relinquish control
of the hardware cursor until gclose is executed. While it is not being used, it
simply remains inactive, but no other process can use the hardware cursor once
it has been assigned to a process.

If allocation of the hardware cursor is not successful, or the gescape is used to
force software cursors, then resources for the software cursors are allocated (eg.,
o�screen areas for raster echo de�nitions).

The following functions will cause the driver to attempt to allocate cursor
resources (that is, either the hardware cursor or software cursor resources):

echo_type or define_raster_echo.

PersonalVRX 7-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Any of the gescapes:
R_DEF_ECHO_TRANS

R_ECHO_MASK

R_ECHO_FG_BG_COLORS

R_OV_ECHO_COLORS

R_OVERLAY_ECHO

Device Initialization

Parameters for gopen:

Path - This is the name of the special device �le created by themknod command
as speci�ed in the device setup section (for example, /dev/crt).

Kind - This indicates the I/O characteristics of the device, which may be one
of the following types:

INDEV Input only.
OUTDEV Output only
OUTINDEV Input and Output.

Input mode is only possible when the driver is opened to an X window.

Driver - The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire the device
and by default load the accelerated driver (if applicable). For example:

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver. In this case
the UNACCELERATED/ACCELERATED ag is ignored. For example, for the hp98705
device driver use:

7-20 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

"hp98705" for C
'hp98705'//char(0) for FORTRAN77
'hp98705' for Pascal

Mode - The mode control word consists of several ag bits ORed together.
Listed below are those ag bits which have device-dependent actions. Those
ags not discussed below operate as de�ned by the gopen procedure.

SPOOLED - Cannot be used on raster devices, therefore this ag has no e�ect
with this driver.

MODEL_XFORM - Shading is not supported for this driver. However, opening in
MODEL_XFORM mode will a�ect how matrix stack and transformation routines
are performed.

0 - Open the device without clearing the screen. This will set the color map
mode to CMAP_NORMAL, but will not initialize the color map itself. In an X
window, the color map that was associated with the window before gopen

will be used by Starbase, without initialization.

INIT - Open and initialize the device as follows:

1. Clear frame bu�er to zeros.

2. Reset the color map to its default values.

3. Enable the display for reading and writing.

4. In an X window, a new color map is created and initialized.

5. hp98705 only- Download (if necessary) and initialize microcode for the
transform engine.

RESET_DEVICE - Open and reset the device as follows:

1. Clear image and overlay planes to zeros.

2. Reset the image and overlay color maps to their default values.

3. If opening the image planes, clear the overlay planes to the transparent
color.

4. hp98705 only - Download and initialize microcode for the transform
engine.

5. Enable the display for reading and writing.

PersonalVRX 7-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Note The RESET_DEVICE ag bit should be used with caution, as it
may adversely a�ect any other processes using the device. This
ag bit is intended to reset a device completely and should only
be necessary for devices in an unknown state, such as a device
powered up in an external I/O space. Most programs should not
use this ag bit. Programs opening X windows should never use
this ag bit.

Syntax Examples

To open and initialize a PersonalVRX for output using the hp98704 or hp98705
drivers:

For C Programs:

fildes = gopen("/dev/crt",OUTDEV,NULL,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(0),OUTDEV,char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'',INIT);

Special Device Characteristics

For device coordinate (dc) operations, location (0,0) is the upper-left corner of
the screen with x-axis values increasing to the right and y-axis values increasing
down. The lower-right corner of the visible display is therefore (1279,1023).

Offscreen Memory Usage

O�screen memory is managed by a global resource manager to insure that
multiple processes do not encounter conict. O�screen memory is used by the
device driver for:

polygon �ll patterns
raster echo de�nitions (if software cursors are used)
optimized raster fonts

7-22 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

X Window system (if active, uses o�screen memory extensively)

Refer to the gescape R_OFFSCREEN_ALLOC for information on using the o�screen
areas for application use.

Fast Alpha and Font Manager Functionality

The hp98704 device driver supports raster text calls from the fast alpha and font
manager libraries. These calls may be made while running in the overlay or image
planes. Because raster fonts consist of one byte per pixel, image plane raster text
is written only to the currently selected bank. This is similar to the operation of
other raster functions, such as block_write. Fast alpha and font manager fonts
can be optimized. See the Fast Alpha/Font Manager Programmer's Manual for
further information.

The hp98705 device driver does not support raster test calls from the fast alpha
and font manager library.

PersonalVRX 7-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Starbase Functionality

Commands Not Supported

The following commands are ignored on the hp98704 device driver:

alpha_transparency light_model

backface_control light_source

bf_alpha_transparency light_switch

bf_control line_filter

bf_fill_color perimeter_filter

bf_interior_style set_capping_planes

bf_perimeter_color set_model_clip_indicator

bf_perimeter_repeat_length set_model_clip_volume

bf_perimeter_type shade_range

bf_surface_coefficients surface_coefficients

bf_surface_model surface_model

bf_texture_index texture_index

contour_enable texture_viewport

define_contour_table texture_window

define_texture viewpoint

define_trimming_curve zbuffer_switch

deformation_mode

depth_cue

depth_cue_color

depth_cue_range

hidden_surface
light_ambient

light_attenuation

7-24 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

The following commands are not supported on the hp98705 device driver:

alpha_transparency

bf_alpha_transparency

bf_texture_index

define_texture

line_filter

perimeter_filter

texture_index

texture_viewport

texture_window

Number of Light Sources

The hp98705 device driver supports up to 15 light sources.

PersonalVRX 7-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Commands Conditionally Supported

The following commands are supported on the hp98704 device driver under the
listed conditions:

block_read,block_write The raw parameter for the block_read and
block_write procedures is normally ignored by the
hp98704 device driver. To use the raw mode, you
must call the R_BIT_MODE gescape discussed in this
manual.

pattern_define 4x4 is the largest supported pattern.

shade_mode The color map mode may be selected but shad-
ing can not be turned on text_precision. Only
STROKE TEXT precision is supported.

vertex_format The use parameter must be zero, any extra coordi-
nates supplied will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if not supported by this device. For
example, contouring data will be ignored if the device does not support it.

The following commands are supported on the hp98705 device driver under the
listed conditions:

block_read,block_write The raw parameter for the block_read and
block_write procedures is normally ignored
by the hp98705 device driver. To use the raw
mode, you must call the R_BIT_MODE gescape

discussed in this manual.

7-26 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

inquire_fb_configuration An HP 98705 device running the hp98705 de-
vice driver will report four image_banks, if 16
planes and dedicated Z-bu�er are con�gured.

Note When the Z-bu�er is installed in this way, Z-bu�er access is
possible through block_write, block_read, and block_move.
The Z-bu�er may be selected for read/write using bank_switch.
The Z-bu�er may not be displayed. The graphics accelerator
cannot render to the Z-bu�er.

interior_style If the polygon �ll type is INT_HATCH then the
following functionality will not work correctly:

Hidden surface removal.
Shading and lighting.
Depth cueing.
Back-facing attributes and culling.
Splines, quadratic meshes, and triangle strips
will not be hatched.

Note Performance is degraded in this mode.

text_precision Only STROKE_TEXT precision is supported.

PersonalVRX 7-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Gescapes

The hp98704 and hp98705 device drivers support the following gescape opera-
tions. Refer to Appendix A of this manual for details on gescapes.

BLINK_INDEX|Blink an individual colormap index
BLINK_PLANES|Blink the display (Blink rate is 375 Hz for this device)
GR2D_PLANE_MASK|Enable multi-plane bit-per-pixel block reads and writes
R_BIT_MASK|Bit mask
R_BIT_MODE|Bit mode
R_DEF_ECHO_TRANS|De�ne Raster Echo Transparency
R_DEF_FILL_PAT|De�ne �ll pattern
R_ECHO_CONTROL|Control hardware cursor allocation
R_ECHO_FG_BG_COLORS|De�ne cursor color attributes
R_ECHO_MASK|De�ne a raster echo mask pattern
R_FULL_FRAME_BUFFER|Full frame bu�er
R_GET_FRAME_BUFFER|Read frame bu�er address
R_LINE_TYPE|De�ne Line Style and Repeat Length
R_LOCK_DEVICE|Lock device
R_OFFSCREEN_ALLOC|Allocates o�screen frame bu�er memory
R_OFFSCREEN_FREE|Frees allocated o�screen frame bu�er memory
R_OV_ECHO_COLORS|Select Overlay Echo Colors
R_OVERLAY_ECHO|Select Plane to Contain Cursor
R_TRANSPARENCY_INDEX|Specify Transparency Index
R_UNLOCK_DEVICE|Unlock device
READ_COLOR_MAP|Read color map
SET_REPLACEMENT_RULE|Set per-plane replacement rules
SWITCH_SEMAPHORE|Semaphore control

The hp98705 device driver also supports the following gescape operations:

GAMMA_CORRECTION - Enable/disable gamma correction
LS_OVERFLOW_CONTROL - Sets options for lighting overow situations
PATTERN_FILL - Fill polygon with stored pattern
POLYGON_TRANSPARENCY - De�ne front facing and backfacing transparency
TRANSPARENCY - Allows screen door for transparency pattern

7-28 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Performance Tips

hp98704 and hp98705

1. If only one process is accessing the graphics display, then it is safe to turn o�
the semaphore operations (see the SWITCH_SEMAPHORE gescape). This may
result in a 10 to 20 percent speedup. If a tracking process is initiated, then
semaphores will automatically be turned on. Semaphores should never be o�
in a window environment, as there is always at least one additional process
(the window server) trying to access the device.

2. The driver is able perform bu�ering to enhance performance. Performance
may be degraded if buffer_mode is turned o�, or if there are an inordinate
number of calls to make_picture_current.

3. Performance optimizations have been made so that sequential calls of the same
output primitive with no intervening attribute changes or di�erent primitive
calls perform faster. For example, the sequence of calls- line_color poly-

line polyline is optimized to perform faster than- line_color polyline

line_color polyline. Grouping by primitive and subgrouping primitives by
attribute can provide some performance improvements.

hp98704

1. If Starbase echos are overlayed (ie. in the fourth overlay plane), or hardware
cursors are used, then graphics performance is signi�cantly better since it is
not necessary to \pick up" the cursor each time the frame bu�er is updated.

2. Polygons are �lled faster when the drawing mode is SOURCE, NOT_SOURCE,
ZERO, or ONE.

3. Horizontal and vertical lines are often faster than diagonal lines on this device
since the hardware block mover is used to generate pixels. The procedure
block_move is faster than block_read or block_write since the hardware
block mover can be used.

4. Performance of block_read and block_write is signi�cantly better if both
the source and destination begin on the same byte boundary, since data can
be transferred 32 bits at a time rather than one byte at a time. For example,
one way to ensure this condition is to de�ne pixel arrays as type short (16-

PersonalVRX 7-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

bit integer) and then start block_read and block_write on even pixels only.
This method can more than double performance

5. When the R_BIT_MODE gescape is called and the raw parameter is TRUE, each
byte in a block read or write is interpreted as information for eight pixels,
rather than just one. On some other HP displays, this mode runs no faster
than sending a byte of information for each pixel. On the HP 98705 device,
however, this bit-per-pixel mode runs signi�cantly faster than byte-per-pixel
block write. In this mode, only one bit of information is available for each pixel.
By default, only one plane is written to during a bit-per-pixel transfer, speci�ed
by the gescape R_BIT_MASK. However, all opened planes can be written, each
with their own replacement rule, if the gescape SET_REPLACEMENT_RULE has
been properly called.

hp98705

1. Typically, the HP 98705 rendering engine renders primitives from its internal
bu�er in parallel with host CPU activity. Substantial performance enhance-
ment can be realized by utilizing the parallel properties of the system. How-
ever, certain operations will cause the CPU to wait for the HP 98705 to �nish
emptying its bu�er, for example, the make_picture_current operation. I/O
intensive operations where the host is reading information from the HP 98705
may also cause this wait to occur.

2. For programs which use Z-bu�er hidden surface removal with the dedicated
Z-bu�er, it is much faster to clear the Z-bu�er simultaneously with screen
clears than to do the clears sequentially. This is accomplished by calling
clear_control with CLEAR_ZBUFFER ORed into the mode word. When this
is done, subsequent calls to clear_view_surface and dbuffer_switch will
clear the Z-bu�er

Rendering (hp98705)

When doing shaded polygons, the fewer the features, the faster the polygon
generation. Positional viewpoint and light sources can degrade performance.

With shading and Z-bu�ering o�, the HP 98705 rendering engine runs at full
speed, when rendering at shaded polygons. Performance is noticeably slower
when either or both rendering functions are enabled, especially when rendering
large polygons.

7-30 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Using the pattern gescape or replacement rules that require extra reads of
the frame bu�er, for example, source OR destination, may also degrade
performance.

Rendering mode commands such as hidden_surface, shade_mode, and
double_buffer can be slow. These should not be unnecessarily called. For
example, it is not necessary to repeatedly call hidden_surface from an
animation loop. These routines should be called to initialize a rendering mode
and subsequently called again only to change the mode.

Raster Operations (hp98705)

The procedure block_move is faster than block_read or block_write since
the hardware frame bu�er block mover can be used.

The performance of block_read and block_write is signi�cantly better if both
the source and destination begin on the same byte boundary, since data can
be transferred 32 bits at a time rather than one byte at a time. For example,
one way to ensure this condition is to de�ne pixel arrays as type short (16-bit
integers) and then start block read and block write actions on even pixels only.
This can more than double performance.

When the R_BIT_MODE gescape is called and the raw parameter is TRUE, each
byte in a block read or write is interpreted as information for eight pixels,
rather than just one. On some other HP displays, this mode runs no faster
than sending a byte of information for each pixel. On the HP 98705 device,
however, this bit-per-pixel mode runs signi�cantly faster than byte-per-pixel
block write. In this mode, only one bit of information is available for each pixel.
By default, only one plane is written to during a bit-per-pixel transfer, speci�ed
by the gescape R_BIT_MASK. However, all opened planes can be written, each
with their own replacement rule, if the gescape SET_REPLACEMENT_RULE has
been properly called.

PersonalVRX 7-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Cautions

The following cautions are provided regarding use of the hp98704 or hp98705

driver:

1. As mentioned previously, accessing the o�-screen portion of the frame bu�er
(using gescape calls) should be done with care, since other processes may
use this region. See the gescape appendix entries on o�screen usage for
details. The overlay o�-screen contains the ITE font (which is regenerated
when control-shift-reset is done on the ITE keyboard) and may contain any
number of window systems fonts depending on the current window usage.

2. For the hp98705, polygons of up to 255 vertices (after clipping) are supported.
If a polygon has more than 255 vertices, only the �rst 255 vertices are
displayed.

3. Certain gescapes should be used with caution since they bypass protection
mechanisms used to prevent multiple processes from conicting with each
other. For example, since the hardware resources can only be physically
utilized by one graphics process at a time, the driver activates a semaphore
and locks the device before doing any output. This ensures, for example, that
process A will not change the replacement rule while process B is in the middle
of �lling a polygon. It also prevents the console (ITE) driver from overwriting
any graphics processes that are outputting to the device. The driver unlocks
the device when done processing output. Some of the gescapes listed in this
chapter allow the user to change this locking mechanism and should be used
with great caution. In a windows environment, semaphores should not be
turned o�, and use of the locking mechanism can cause client timeouts or a
system hang.

hp98705

1. Vertex color or intensity values should range between 0 to 32,767 when used
in calls using DC values (e.g. dcpolygon).

2. If you are attempting to access the hardware directly while other processes are
also using it (such as Starbase programs or window systems) then you must
obey semaphore protocols and save/restore any hardware registers you alter.
See the description of the LOCK_DEVICE gescape for details on semaphore

7-32 PersonalVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

protocol. Use caution when manipulating protection mechanisms. Use of the
locking mechanism in windows can cause client time outs or a system hang.

3. When using the HP 98705 device driver with a graphics accelerator it is
possible for illegal operations to cause the transform engine or scan converter
hardware to enter an unknown state. If this happens, Starbase will report an
error the next time it tries to use the hardware. The user will see this as a
transform engine timed out or hardware/scan converter time out error. These
are Starbase errors 14 and 52 respectively. If the HP 98705 device driver is
being used, then this is a fatal error. When this error is discovered, Starbase
reports the error and aborts execution.

PersonalVRX 7-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

8

The SRX Device

Device Description

The graphics display station includes a high resolution 19 inch color display, an
HP 98720A Display Controller, and an optional graphics accelerator. The HP
98721A is an optional graphics accelerator for the HP 98720A controller. The
display controller plugs into an I/O slot of the SPUs. See the \Introduction"
section of this manual for systems supporting this controller.

Two device drivers are provided to access the HP 98720 display:

HP 98720|used to access graphics windows with the X Window system or the
graphics display without using the optional graphics accelerator.

HP 98721|used to access the graphics display using only the optional graphics
accelerator.

This section covers the HP 98720 and HP 98721 Device Drivers.

The display has a resolution of 1280 by 1024 pixels. The standard color display
system has four planes of frame bu�er to provide 16 simultaneous colors. You can
add optional memory in banks of eight planes each. A fully con�gured system
consists of three banks of frame bu�er for 24 bit-per-pixel color, one bank for
full Z-bu�er capability (with graphics accelerator), and three overlay planes for
non-destructive alpha, cursors, or graphics.

In order to use the HP 98721 Device Driver, the system must be con�gured with
a graphics accelerator and at least one bank of eight planes. Four-plane systems
are not supported with the graphics accelerator.

An 8-plane con�guration allows 256 colors to be displayed simultaneously from a
palette of 16 million. A 16-plane system is like two 8-plane frame bu�ers where
only one 8-plane bu�er is displayed at any time. This con�guration is useful for
double bu�ering. When three banks of frame bu�er are installed, the system may
be con�gured to display eight bits red, eight bits green, and eight bits blue per

SRX 8-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

pixel. Double bu�ering may also be achieved at a resolution of four bits red, four
bits green, and four bits blue.

The display system is a bit-mapped device with special hardware for:

Write enable/disable individual planes.
Video enable/disable individual planes.
Memory writes with speci�ed replacement rule. (see drawing_mode in the
Starbase Reference manual)
Video blinking of individual planes.
Video blinking of individual color map locations.
Arbitrary sized rectangular memory to memory copies.

The HP 98721 also provides:

Write enable/disable of pixels in 4�4 cell for \screen door" transparency.
Bit-slice processor with hardware oating point for high speed three-dimensional
transformations.
NMOS III scan converter with six axis interpolation for Gouraud shaded, Z-
bu�ered vectors and polygons.

The display is organized as an array of bytes, with each byte representing a pixel
on the display. With four planes installed, the four least signi�cant bits of each
byte determine the color, providing color map indices from 0 to 15. When eight
planes are installed, color map indices range from 0 to 255. The color map is a
RAM table that has 16 or 256 addressable locations and is 24 bits wide (8 bits
each for red, green, and blue). Thus, the pixel value in the frame bu�er addresses
the color map, generating the color programmed at that location.

If you add optional banks of frame bu�er memory to the minimal system, the four
standard image planes function as overlay planes. These overlay planes have their
own unique color map, separate from the color map used for the newly installed
image planes. This color map consists of sixteen 4-bit entries. These four bits
correspond to transparent, red, green, and blue (in order of Most Signi�cant Bit
(MSB) to Least Signi�cant Bit (LSB). If the transparent bit (the MSB) is set to
zero, the pixel color will be the color of the image planes \behind" the overlay
planes. If the transparent bit is set to one, the pixel color is forced to the color
speci�ed by the red, green, and blue bits in the color map entry. Thus pixels in
the overlay planes can be any combination of the primary colors or transparent.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, when the HP 98720 is used on the system console, the Internal Terminal

8-2 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Emulator (ITE) uses three of the overlay planes for alpha information. This way
there is no interaction between ITE text and images in the graphics planes. The
XWindow system runs in con�gurations involving both image and overlay planes.
See the Starbase Graphics Techniques for more information. To do graphics in
the overlay planes, the HP 98720 or HP 98721 Device Driver may be opened
directly to the overlay planes as if they were a separate device. Refer to the
segment \Setting up the Device" in this section for more information.

One overlay plane is reserved for graphic cursors. When Starbase cursors are in
the overlay plane performance is enhanced, since it it not necessary to \pick up"
the cursor each time the frame bu�er is updated. You can think of the overlay
plane used for cursors as a separate cursor plane. Any data in the cursor plane
will be displayed over data in the graphics planes. Data in the other three overlay
planes will be displayed over data in the graphics planes and the cursor plane.
For example, suppose a graphics application is running in the graphics planes
while the window manager is running. If the application has a Starbase cursor
in the overlay cursor plane, the cursor will always be visible inside regions of
see-thru because the cursor has display priority over the graphics. If the cursor is
moved outside the graphics window boundary, it is not visible since the window
desktop environment is drawn to the overlay planes, which have display priority
over the cursor plane.

Typically, the user does not need to directly read or write pixels in the frame
bu�er. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame bu�er. This gescape is discussed
in the appendix of this manual. Frame bu�er locations are then addressed relative
to the returned address. The �rst byte of the frame bu�er (byte 0) represents
the upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame bu�er are not displayable. Byte 2048 is the �rst (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

If more than one bank of optional frame bu�er is installed, bank switching must
be used to access the additional memory. A number of Starbase calls may set the
bank register so it is advisable to call bank_switch just prior to making accesses
to the frame bu�er pointer to ensure desired results.

SRX 8-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

The o�-screen portion of the frame bu�er may be accessed via the gescape

function R_FULL_FRAME_BUFFER. Use this gescape carefully since other processes
and Starbase access the frame bu�er o�-screen memory.

Series 800 On the Series 800 computers, a write to I/O space must be on the
word boundaries. The frame bu�er is mapped as an integer (32
bits) per pixel. Therefore, when you write directly to the frame
bu�er on the HP 98720 Graphics Display Station, each pixel is
written with an integer access.

If writing to the HP 98720 image bu�er and not in CMAP_FULL

color map mode, only one bank can be written at a time. The
bank to be written must be established by a call to bank_switch.
Then, to write to bank n, place the pixel value to be written into
byte n of the interger, where n can be 0, 1, or 2, and the LSB is
byte 0.

All three banks for one pixel can be written simultaneously by
packing all three bank values for the pixel into the integer value
and having the color map mode as CMAP_FULL before writing.

8-4 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Setting Up the Device On Series 300

The HP 98720 or HP 98721 Device Drivers can be used if the display is con�gured
in either internal or external address space. Refer to the Con�guration Reference
Manual for a description of internal and external address space.

Note If the HP 98720 is con�gured as an external display, there will
not be an Internal Terminal Emulator (ITE) for that device.
Since it is the ITE that normally initializes the display, external
devices must be reset after power-up by running a simple Starbase
program with a mode of RESET_DEVICE in the gopen call. It
may also be necessary to run this program after running an
application which manipulated the overlay color map, such as
windows. An example program, which could be called from
/etc/rc during power-up, is given at the end of this section.
For more details concerning the e�ects of RESET_DEVICE, see the
\Device Initialization" segment of this section.

For the HP 98721, the Graphics Interface card may be installed in any DIO slot
in the computer's backplane or in any I/O slot of the expander.

Switch Settings

The Graphics Interface card has a single 6-bit address select switch. One bit,
labeled FB, determines the frame bu�er location, while the other �ve switch bits,
labeled CS, determine the location within the DIO memory map of the HP 98720
control space. Silkscreening on the printed circuit board indicates the meaning
of the bits.

The frame bu�er consumes twoMbytes of I/O address space, starting at FB_BASE.
The switch bit labeled FB determines the address of FB_BASE as shown below.

Table 8-1. HP 98720 Frame Buffer Locations

FB FB BASE (hex)

0 $200000

1 $800000

SRX 8-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Typical systems will map the frame bu�er to $200000. However, some systems
which have multiple displays may map the frame bu�er address to $800000.
When the frame bu�er address is set to $800000, the HP Series 300 Model 320
SPU memory limit is reduced from 7.50 Mbytes to 5.75 Mbytes. This occurs
since the frame bu�er is mapped into the upper two Mbytes of memory address
space.

The control space requires 128 Kbytes starting at CTL_BASE. The �ve switch bits
labelled CS, determine the address of CTL_BASE. The HP 98720 may be con�gured
as an external or internal display. Since only 64 Kbytes are normally allotted for
external I/O select codes, two consecutive select codes will be consumed if the
device is con�gured as an external display. The control space may be located
at any of 32 positions. Sixteen positions are reserved in internal I/O space and
sixteen are in external I/O space (with �ve reserved). The table below lists the
binary switch setting with the corresponding values of CTL_BASE for external I/O
settings, as well as the select code spaces consumed.

Table 8-2. Control Space Settings (External I/O)

CS Setting CTL BASE (hex) Select Codes

01011 $560000

10101 $6A0000 10-11

10110 $6C0000 12-13

10111 $6E0000 14-15

11000 $700000 16-17

11001 $720000 18-19

11010 $740000 20-21

11011 $760000 22-23

11100 $780000 24-25

11101 $7A0000 26-27

11110 $7C0000 28-29

11111 $7E0000 30-31

If the HP 98720 is con�gured as the system console, CTL_BASE needs to be placed
at $560000, which is an internal I/O setting. If the device is not used as the
system console, the control space should not be placed in internal I/O space,
since it is likely to overlap the address space of other system hardware. In this

8-6 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

case, an external I/O space setting should be selected with two consecutive select
codes which are unused by the system.

Example Program To Reset the SRX

The following example uses the HP 98720 device driver. You can substitute the
HP 98721 device driver.

/*

* Starbase program: reset98720.c

* Compile: cc -o reset98720 reset98720.c -ldd98720 -lsb1 -lsb2 -lm

* Destination: /usr/bin

* Execute: add line to the /etc/rc - "/usr/bin/reset98720 /dev/crt.external"

*

* Example program to be put in /etc/rc for resetting an external HP 98720

* device during power-up.

*/

#include <starbase.c.h>

main(argc,argv)

int argc; char *argv[];

{

int fildes;

if ((fildes = gopen(argv[1],OUTDEV,"hp98720",INIT|RESET_DEVICE)) < 0)

printf("External HP 98720 %s initialization failed.\n",argv[1]);

else

printf("External HP 98720 %s initialization succeeded.\n",argv[1]);

gclose(fildes);

}

}

Setting Up the Device On Series 800

Up to four HP 98720 or four HP 98721 devices can be connected to a Series 800
Model 825 or 835 SPU. However, it is recommended that only two HP 98720 of
HP 98721 devices have the Internal Terminal Emulator (ITE) or window systems
running on them.

Only one HP 98720 device or HP 98721 can be connected to a Series 800 Model
840.

SRX 8-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Special Device Files (mknod) On Series 300

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further details. The name of this special device �le
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the name that is suggested for the
devices is crt.

The following examples will create a special device �le for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When the device is at the internal address (refer to the \Switch Settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of 0. Note that the leading Ox causes the
number to interpreted hexidecimally.

mknod /dev/crt c 12 0x000000

When the device is at an external address (refer to the \Switch Settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of 0xhsci200 where Sc is the two-digit external
select code. Note that the leading 0x causes the number to be interpreted
hexidecimally.

mknod /dev/crt c 12 0xhsci0200

The HP 98720 Device Driver may also be opened to the overlay planes in graphics
mode if they are present. Since one plane is still reserved for cursors, the graphics
device will look like a three plane device in this mode. Since the terminal emulator
and window system operate in the overlay planes also, there will be interactions
with these processes if a graphics driver is opened in this manner while these
processes are present. To open the HP 98720 or HP 98721 Device Driver to the
overlay planes instead of the graphics planes, the last byte of the minor number
must be 1.

8-8 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

For example, when the device is at an internal address, the mknod parameters for
the overlay device should create a character special device with a major number
of 12 and a minor number of 1.

mknod /dev/ocrt c 12 0x00001

When the device is at an external address (refer to the section on \Switch
Settings") the mknod parameters for the overlay device should create a character
special device with a major number of 12 and a minor number of 0xhsci0201
where hsci is the two-digit external select code.

mknod /dev/ocrt c 12 0xhsci0201

Special Device Files (mknod) On Series 800

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
the HP-UX Reference for further details. The name of this special device �le
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the names that are suggested for the
devices are crt, crt0, crt1, or crt2.

The following examples will create a special device �le for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When creating the device �le the mknod parameters should create a character
special device with a major number of 14 and a minor number of the format
below (where hlui is the two digit hardware logical unit number). Note that the
leading 0x causes the number to be interpreted hexadecimally.

mknod /dev/crtx c 14 0x00hlui00

The HP 98720 or HP 98721 Device Driver may also be opened to the overlay
planes in graphics mode if they are present. Since one plane is still reserved

SRX 8-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

for cursors, the graphics device will look like a three plane device in this mode.
Since the terminal emulator and window system operate in the overlay planes
also, there will be interactions with these processes if a graphics driver is opened
in this manner while these processes are present. To open the HP 98720 or HP
98721 Device Driver to the overlay planes instead of the graphics planes, the last
byte of the minor number must be 1.

For example, the mknod parameters for the overlay device should create a
character special device with a major number of 14 and a minor number of
the format indicated below (where hlui is the two digit hardware logical unit
number):

mknod /dev/ocrtx c 14 0x00hlui01

Linking the Driver

Shared Libraries

The shared HP 98720 Device Driver is the �le named libdd98720.sl in the
/usr/lib directory. The shared HP 98721 Device Driver is the �le named
libdd98721.sl in the /usr/lib directory. The device driver will be explicitly
loaded at run time by compiling and linking with the starbase shared library
/usr/lib/libsb.sl, or by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

8-10 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

-lXhp11 -lX11 -ldld -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Upon device initialization the proper driver will be loaded. See the discussion
of the gopen procedure in the Device Initialization section of this chapter for
details.

Archive Libraries

The archive HP 98720 Device Driver is the �le libdd98720.a in the /usr/lib

directory. The archive HP 98721 Device Driver is the �le libdd98721.a in

the /usr/lib directory. The device driver may be linked to a program using
the absolute path name, for example, /usr/lib/libdd98720.a, an appropriate
relative path name, or by using the -l option as in -ldd98720 with the LDOPTS
environmental variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
the HP 98720 driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldd98720 -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldd98720 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd98720 -Wl,-L/usr/lib/X11R5 -lXwindow\

SRX 8-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

-lsb1 -lsb2 -lXhp11 -lX11 -o example

Device Initialization

Parameters for gopen

Note Because the transform engine is not multi-tasking, only one HP
98721 driver may be opened to a device �le. Other HP 98720
drivers may be opened to that device �le if multiple Starbase
drivers are needed.

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the special device �le created by the mknod command
as speci�ed in the last section (for example, /dev/crt.)

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver unless a window is being opened, in which
case it may be OUTINDEV.

Driver The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire
the device and by default load the accelerated driver (if applicable).
For example:

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver.
In this case the UNACCELERATED/ACCELERATED ag is ignored. For
example:

"hp98720" for C.

'hp98720'//char(0) for FORTRAN77.

'hp98720' for Pascal.

8-12 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Mode The mode control word consisting of several ag bits which are
or ed together. Listed below are those ag bits which have
device-dependent actions. Those ags not discussed below operate
as de�ned by the gopen procedure. See the Starbase Graphics
Techniques for a description of the gopen function of an X window.

SPOOLED|cannot spool raster devices.

MODEL_XFORM|HP 98720 only|Shading is not supported for this
device. However, opening in MODEL_XFORM mode will a�ect how
matrix stack and transformation routines are performed.

0|open the device, but do nothing else. The software color map
is initialized on monochrome monitors.

INIT|open and initialize the device as follows:

1. Clear frame bu�er to 0s.
2. Reset the color map to its default values.
3. Enable the display for reading and writing.
4. HP 98721|Download the fransform engine's microcode.

SRX 8-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

RESET_DEVICE|open and reset the device as follows:

1. Clear frame bu�er and overlays to 0s.
2. Reset the color map to its default values.
3. Clear the overlay color map.
4. Enable the display for reading and writing.
5. Reset the graphics accelerator.

Note that the RESET_DEVICE ag bit should be used with caution:
it will adversely a�ect any other processes using the device. This
ag bit is intended to reset a device completely. This should only
be necessary for devices in an unknown state such as a device
powered up in an external I/O space. Most programs should not
use this ag bit.

Syntax Examples

To open and initialize an HP 98720 or HP 98721 device for output:

For C Programs:

fildes = gopen("/dev/crt",OUTDEV,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(0), OUTDEV,char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,,INIT);

Special Device Characteristics

For Device Coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1279, 1023).

Offscreen Memory Usage

Each time the HP 98720 Device Driver is opened it allocates a portion of o�screen
memory. This is used for �ll pattern storage, raster echo de�nitions, and other

8-14 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

functions. The size of the areas used are 64�192 pixels and 32�4 pixels. If the
driver has been opened to the overlay planes, the o�screen area used is in the
overlay planes; otherwise the area used is in the image planes. Up to ten of these
o�screen areas may be allocated. One is reserved for the HP 98721 Device Driver
and the other nine are for HP 98720 Device Drivers. This means that no more
than one HP 98721 Device Driver and nine HP 98720 Device Drivers may be
opened to a device at the same time. If nine HP 98720 Device Drivers are opened
to the image planes, another nine may be opened to the overlay planes. However,
only one HP 98721 Device Driver may be opened to a device at any time to either
image or overlay planes. The X11 server uses a similar cursor area and also uses
o�screen for client pixmaps. Accessing o�screen memory while the X11 server is
running is not recommended.

See the HP 98721 Device Driver section for more information on o�screen memory
usage.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 (for the overlay planes) or
4, 8, 16, or 24 (for the image planes). The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16. For devices having 24 or more
planes in CMAP_FULL mode (see shade_mode) dithering is not supported since full
24-bit color is available. If you are double bu�ering with 12 planes per bu�er
then the number of colors allowed in a dither cell is 1, 2, or 4.

SRX 8-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Raster Echo Default

The default raster echo is the 8�8 array:

255 255 255 255 0 0 0 0

255 255 0 0 0 0 0 0

255 0 255 0 0 0 0 0

255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0

0 0 0 0 0 255 0 0

0 0 0 0 0 0 255 0

0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64�64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

By default the raster echo is written to the graphics planes. All other echo types
are written to an overlay plane. The location of raster and non-raster echoes can
be changed using the gescape function R_OVERLAY_ECHO.

Color Planes Defaults

The default con�guration is a 4- or 8-plane color mapped system regardless of
the number of frame bu�er banks installed.

All planes in the �rst bank are display enabled and write enabled.

Semaphore Default

Semaphore operations are enabled.

8-16 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table 8-3.

Line Type Pattern

0 1111111111111111

1 1111111100000000

2 1010101010101010

3 1111111111111010

4 1111111111101010

5 1111111111100000

6 1111111111110110

7 1111111110110110

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays.

SRX 8-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values shown below.

Table 8-4. Default Color Table

Index Color red green blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0

Use the inquire_color_map procedure to see the rest of the 255 colors.

When INIT is used in the shade_mode procedure call the color map initialization
is based on the value of the mode parameter and the number of frame bu�er banks
installed.

CMAP_NORMAL Only one bank of the �rst two can be displayed at a time. If
a third bank is installed it can not be displayed in this mode.

8-18 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

CMAP_MONOTONIC The color map will be initialized as:

for (i=0; i<256; i++) {

cmap[i].red = cmap[i].green = cmap[i].blue = i/255.0;

}

Only one bank of the �rst two can be displayed at a time. If
a third bank is installed it can not be displayed in this mode.

CMAP_FULL With less than three banks installed the color map will be
initialized as three bits red, three bits green and two bits
blue. The three most signi�cant bits are red and the two
least signi�cant bits are blue. Only one bank of the �rst two
can be displayed at a time.

With three or more banks installed the color map will be
initialized as the CMAP_MONOTONIC case above but now the
�rst bank of eight will go through the blue portion of the
color map, the second bank goes through the green portion,
and the third bank goes through the red portion. In this
mode the color map is transparent and the eight bits from
each bank drives the appropriate video color level. The color
map could be subsequently modi�ed in this mode to perform
functions like gamma correction or double bu�ering of four
bits per color.

Red, Green, and Blue

Each �le descriptor opened as an output device has a color table associated with
it. If multiple �le descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another �le descriptor path.

For Starbase procedures that have parameters for red, green, and blue, the way
the actual color is chosen depends on the current shade_mode setting.

CMAP_NORMAL The color map is searched for the color that is closest in RGB
space to the one requested. That color map index is written to
the frame bu�er for subsequent output primitives. It is more
e�cient to select a color with an index rather than specifying
a color with red, blue, and green values in this mode because

SRX 8-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

it takes extra time to �gure out which index in the color table
most closely matches the speci�ed color.

CMAP_MONOTONIC The red, green, and blue value is converted to an intensity
value using the equation:

0.30*red+0.59*green+0.11*blue

This intensity is converted to an index value by mapping
intensity 0.0 to the minimum index set by shade_range, and
intensity 1.0 to the maximum index set by shade_range.
This mode is useful for displaying a high-quality monochrome
picture on an 8-plane system from data that produces a high
quality color picture on a 24-plane system.

CMAP_FULL The color values will be mapped directly to an index with the
assumption the color map is initialized to a prede�ned full
color state.

X Windows

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in

8-20 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes. The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

Table 8-5. SRX Display Types

SRX [FB0]1 HP 98720 High-Res Color

SRX [FB1] HP 98720 High-Res Color

SRX [FB2] HP 98720 High-Res Color

SRX [FB3] HP 98720 High-Res Color

1 This system comes standard with four planes, with optional banks of
eight planes each. The four standard planes become the overlay planes
if any additional banks are loaded.

The supported server modes are Overlay and Stacked Screen.

Table 8-6. Windows in Overlay Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

3 No PseudoColor � � one color reserved for
transparency in
combined mode

The supported server modes are Image and Stacked Screen.

SRX 8-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Table 8-7. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No PseudoColor � �

Yes (4/4) PseudoColor � �

16 No Not supported

Yes (8/8) PseudoColor � only on FB2, FB3

24 No DirectColor � only on FB3

Yes (12/12) DirectColor � only on FB3

X11 Cursors and Starbase Echos

The following list shows default positions where the Starbase echo and X11 cursor
(called echo and cursor, respectively) reside for each of the X11 server operating
modes.

HP 98720 Display

Overlay Mode

If X11 window overlay-plane is opened, echo shares three overlay planes.

If image-planes are opened, raster echo resides in image planes.

If image-planes are opened in raw mode, vector echo resides in cursor plane.

Cursor shares three overlay planes.

Image Mode

If X11 window overlay-plane is opened:

raster echo resides in image planes.

vector echo resides in cursor planes.

Cursor shares image planes.

8-22 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Stacked Screen Mode

If overlay-plane in X11 windows is opened, echo shares three overlay planes.

If image-plane in X11 windows is opened:

raster echo resides in image planes.

vector cursor resides in cursor plane.

Cursor:

shares image plane for image-plane window.

shares overlay plane for overlay-plane window.

SRX 8-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Starbase Functionality

Commands Not Supported

The following commands are not supported on the HP 98720 nor HP 98721. If
one of these commands is used by mistake, it will be ignored and not cause an
error.

alpha_transparency light_attenuation

bf_alpha_transparency line_filter

bf_control perimeter_filter

bf_fill_color set_capping_planes

bf_interior_style set_model_clip_indicator

bf_perimeter_color set_model_clip_volume

bf_perimeter_repeat_length surface_coefficients

bf_perimeter_type texture_index

bf_surface_model texture_viewport

bf_texture_index texture_window

contour_enable

define_contour_table

define_texture

deformation_mode

depth_cue_color

depth_cue_range

hidden_surface

interior_style (INT_OUTLINE)

interior_style (INT_POINT)

In addition, the HP 98720 does not support the following commands:

backface_control

bf_coefficients

define_trimming_curve

depth_cue

hidden_surface

light_ambient

light_attenuation

light_model

8-24 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

light_source

light_switch

shade_range

surface_model

viewpoint

zbuffer_switch

Commands Conditionally Supported

The following commands are supported on the HP 98720 and HP 98721 under
the listed conditions:

bank_switch Only Bank 0 and Bank 1 can be selected for
the hdbank i parameter.

block_read, block_write The \raw" parameter for the block_read

and block_write commands is normally ig-
nored by this device driver. To use the raw
mode, you must call the gescape function
R_BIT_MODE discussed in the appendix of this
manual.

pattern_define 4�4 is the largest supported pattern.

shade_mode The color map mode may be selected but
shading can not be turned on.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The use parameter must be zero, any extra
coordinates supplied will be ignored.

The following commands are supported on the HP 98721 under the listed
conditions:

backface_control Backface color is supported only if shading is on as
set by shade_mode. Also, backface_color does not
work correctly for spline surfaces when VERTEX_FORMAT

speci�es normal per vertex.

interior_style If the polygon �ll is INT_HATCH, the following functional-
ity will not work correctly.

SRX 8-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Hidden surface removal.
Shading and lighting.
Depth cueing.
Backfacing attributes and culling.
Splines, quadralateral meshes, and triangle strips, will
not be hatched.

Performance is also degraded in this mode.

light_model

light_source

light_switch

Supports nine light sources;
one ambient and eight positional or directional.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if not sup-
ported by this device. For example, contouring data will
be ignored if the device does not support it.

Splines

QUARTIC and QUINTIC splines (i.e., �fth- and sixth-order splines) are not
supported on the HP 98721 driver.

The commands that are a�ected are spline_curve2d, spline_curve3d, and
spline_surface.

8-26 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Fast Alpha and Font Manager Functionality

The HP 98720 Device Driver supports raster text calls from the fast alpha and
font manager libraries. These calls may be made while running in the overlay
or image planes. See the Fast Alpha/Font Manager Programmer's Manual for
further information.

The HP 98721 Device Driver does not support raster text calls from the fast
alpha and font manager library.

Parameters for gescape

The HP 98720 and HP 98721 support the following gescape operations. Refer to
Appendix A of this manual for details on gescapes.

BLINK_INDEX|Alternate between HP 98720 hardware color maps.
BLINK_PLANES|Blink display (blink rate is 3.75 Hz for this device).
R_BIT_MASK|Bit mask.
R_BIT_MODE|Bit mode.
R_DEF_ECHO_TRANS|De�ne raster echo transparency.
R_DEF_FILL_PAT|De�ne �ll pattern.
R_FULL_FRAME_BUFFER|Full frame bu�er.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_LINE_TYPE|De�ne line style and repeat length.
R_LOCK_DEVICE|Lock device.
R_OV_ECHO_COLORS|Select overlay echo colors.
R_OVERLAY_ECHO|Select plane to contain cursor.
R_TRANSPARENCY_INDEX|Specify HP 98720 transparency index.
R_UNLOCK_DEVICE|Unlock device.
READ_COLOR_MAP|Read color map.
SWITCH_SEMAPHORE|Semaphore control.

The HP 98721 also supports the following gescape operations:

LS_OVERFLOW_CONTROL|Sets options for overow situations.
PATTERN_FILL|Fill polygon with stored pattern.
TRANSPARENCY|Allow \screen door" for transparency pattern.
ZBUFFER_ALLOC|Allocates frame bu�er memory for Starbase.

SRX 8-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

ZSTATE_RESTOR|Allows creation of 3D cursors in overlay.
ZSTATE_SAVE|Allows creation of 3D cursors in overlay.
ZWRITE_ENABLE|Allows creation of 3D cursors in overlay.

Performance Tips

1. As with any driver, bu�ering is done to enhance performance. Performance
can be degraded substantially if buffer_mode is turned o� or an inordinate
amount of make_picture_current calls are done.

2. Performance optimizations have been made so that sequential calls of the same
output primitive with no intervening attribute changes or di�erent primitive
calls go faster. For example, the sequence polygon, polygon, polyline,

polyline is faster then polygon, polyline, polygon, polyline. Also
line_color, polyline, polyline is faster than line_color, polyline,

line_color, polyline. So grouping by primitive and subgrouping primitives
by attribute can give some performance improvements.

3. If Starbase echoes are in the overlay plane, graphics performance is signi�-
cantly better since it is not necessary to \pick up" the cursor each time the
frame bu�er is updated.

4. Screen clears will be signi�cantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128-pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc to
convert the bounds of the clear rectangle to device coordinates. Screen clears
to the default vdc_extent will be aligned. Screen clears are also much faster
when the background color index is zero. Screen clears with a non-zero index
require two passes resulting in slower performance.

5. The procedure block_move is faster than block_read or block_write since
the hardware frame bu�er block mover can be used.

6. Performance of block_read and block_write is signi�cantly better if both
the source and destination begin on the same byte boundary (since data can
be transferred 32 bits at a time rather than one byte at a time). For example,
one way to ensure this condition is to de�ne pixel arrays as type short (16-bit
integers) and then start block_read and block_write on even pixels only.
This can more than double performance.

8-28 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

hp98720

1. If only one process is accessing the graphics display, it is safe to turn o�
the semaphore operations. See the SWITCH_SEMAPHORE gescape. With
semaphores turned o� you can increase your program's speed 10 to 20 percent.
If a tracking process is initiated, semaphores will automatically be turned on.
See \Cautions" below for more information.

2. Polygons are �lled faster when the drawing mode is hsourcei, hnot sourcei,
ZERO, or ONE.

3. Horizontal and vertical lines are faster than diagonal lines on this device since
the hardware block mover is used to generate the pixels.

hp98721

1. If only the HP 98721 driver and the ITE are accessing the graphics device
it is safe to turn o� the semaphore operations. This can result in a 10 to
20 percent speed increase. If a tracking process is initiated, semaphores will
automatically be turned on. While in most cases the system will work with
the tracking process running and semaphores turned o�, there is a chance that
continuous movement of the cursor could halt the graphics accelerator for a
signi�cant period of time. If this is not a problem, semaphores may be turned
o� after tracking is initiated.

2. When drawing shaded polygons, the fewer the features, the faster the polygon
generation. Positional viewpoint and light sources can signi�cantly degrade
performance.

3. With dithering, shading, and Z-bu�ering o�, the SRX rendering engine runs
at full speed while rendering at shaded polygons. These three rendering
techniques slow the rendering of polygons on the SRX. This is especially
noticeable on large polygons. Turning on any one of the three could noticeably
lower the rendering performance.

When using the full 24 planes, dithering is turned o� by default, and 12/12
double bu�ering will turn dithering on by default. To turn dithering o� again,
use fill_dither (fildes, 1).

SRX 8-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Using the PATTERN_FILL gescape or replacement rules that require extra
reads of the frame bu�er (e.g. hsourcei or hdestinationi) will also degrade
performance. It takes time to do the extra reads.

4. Typically, the SRX rendering engine renders primitives from its internal bu�er
as the system CPU is doing other things. Substantial performance bene�ts
can be realized from this parallel processing.

However, certain operations will cause the CPU to wait for the SRX to �nish
emptying its bu�er. An example of this wait is the
make_picture_current operation. Also, any operation that reads information
from the SRX will cause this wait to occur. Following are some typical
operations that read values from the SRX:

a. Many two-dimensional primitives used in three-dimensional mode read the
Z value from the SRX. The following primitives are examples: text2d,
polymarker2d, arc, ellipse, and spline_curve2d. The solution is to
always use three-dimensional primitives when in three-dimensional mode.

b. Two operations read the matrix values from the SRX:
pop_matrix2d and pop_matrix3d. If the values in the popped matrix are
not needed, use pop_matrix, which does not cause any information to be
read from the SRX.

8-30 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

Cautions

The following cautions are provided in using the hp98720 and hp98721 drivers:

1. As mentioned previously, accessing the o�-screen portion of the frame bu�er
(using the gescape functions) should be done with care since other processes
access this region. The HP 98720 and HP 98721 drivers use a 128�1024 strip of
o�-screen memory that begins at (1920, 0). The HP 98721 driver in particular
uses the rectangular area of 64�196 located at (1984, 828). This area is used
to store the �ll pattern when in CMAP_NORMAL mode and three 64�64 areas for
storing the raster cursor, raster cursor transparency pattern, and the saved
raster. If the HP 98721 driver is not being used in CMAP_NORMAL mode, raster
cursors are not being used in the image planes and no HP 98720 drivers are
opened to the image planes, the area can be safely used for more Z-bu�er or
other purposes. If the HP 98721 driver is opened to the overlay planes, it
is not recommended that any of the overlay o�-screen be used. The overlay
o�-screen contains the ITE font (which is regenerated when control-shift-reset
is done on the ITE keyboard) and may contain any number of window system
fonts depending on the current window usage.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures, for
example, that process A will not change the replacement rule while process B
is in the middle of �lling a polygon. It also prevents the terminal (tty) driver
from overwriting any graphics processes that are outputting to the device. The
driver unlocks the device when done processing output. Some of the gescape
functions listed in the appendix for this manual allow the user to change this
locking mechanism and should be used with great caution. Semaphores should
never be turned o� when operating in a window environment.

3. When using the HP 98720 device with a graphics accelerator it is possible for
illegal operations to cause the transform engine or scan converter hardware
to enter an unknown state. If this happens, Starbase will report an error the
next time it tries to use the hardware. The user will see this as a Transform

engine timed out or Hardware/scan_converter time out error. These are
Starbase errors 14 and 52 respectively. This is a very serious error condition.

SRX 8-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

8

If the HP 98721 device driver is being used, then this is a fatal error. When
this error is discovered, Starbase reports the error and aborts execution.

If an application needs to take some emergency action before an untimely
termination, (such as saving valuable data) the application should check for
these error conditions and take appropriate measures. Errors may be caught
by an application using the gerr_control procedure described in the Starbase
Reference manual.

It is also possible to avoid the termination completely if the application's
error handler does not return control to Starbase. It is impossible, however,
to proceed with any graphics e�orts using the accelerator.

If the HP 98720 driver is being used to access the hardware and if it detects
such an error; it will report the error condition, reset the transform engine,
and continue (since it does not use the accelerator hardware).

4. If a single device is opened with each of these two devices, HP 98720 and HP
98721, the cursor may not be fully erased between updates.

8-32 SRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

9

The TurboSRX Device

Device Description

This graphics display station includes an HP 98730A Graphics Controller, a
high resolution 16 or 19 inch color display (purchased separately), an optional
accelerator and Z-bu�er, and optionally 8, 16, or 24 planes of frame bu�er
memory. The HP 98731A is the optional graphics accelerator and Z-bu�er for the
HP 98730A Display Controller. The graphics controller plugs into an I/O slot of
the SPUs. See the \Introduction" section of this manual for systems supporting
this controller.

Two device drivers are provided to access the TurboSRX display:

HP 98730|The HP 98730 Device Driver is used to access the graphics display
without using the optional graphics accelerator. Access can be with or without
the X Window System.

HP 98731|The HP 98731 Device Driver is used to access the graphics display
using only the optional graphics accelerator, with or without the X Window
System.

This section covers the HP 98730 and HP 98731 Device Drivers.

The display has a resolution of 1280�1024 pixels. The standard color display
system has eight planes of frame bu�er to provide 256 simultaneous colors. You
can add optional memory in banks of eight planes each. A fully con�gured system
consists of three banks of frame bu�er for full 24 bit per pixel color, dedicated
boards for full 16 bit Z-bu�er capability with graphics acceleration, and four
overlay planes for non-destructive alpha, cursors, or graphics.

An 8-plane con�guration allows 256 colors to be displayed simultaneously from
a pallet of 16 million. A 16-plane system is like two 8-plane frame bu�ers where
only one 8-plane bu�er is displayed at any time. This con�guration is useful for
double bu�ering. When three banks of frame bu�er are installed, the system may

TurboSRX 9-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

be con�gured to display eight bits red, eight bits green and eight bits blue per
pixel. Double bu�ering may also be achieved at a resolution of four bits red, four
bits green and four bits blue.

The display system is a bit-mapped device with special hardware for:

Write enable/disable individual planes.
Video enable/disable individual planes.
Memory writes with speci�ed replacement rule (see drawing_mode in Starbase
Reference manual).
Video blinking of individual planes.
Video blinking of individual color map locations.
Arbitrary sized rectangular memory to memory copies.
Pixel pan and zoom.
Analog blending of frame bu�er outputs.
Raster and vector cursors.

The HP 98731 also provides the following features:

Write enable/disable of pixels in 4�4 cell for \screen door" transparency.
Up to three VLSI NMOS III processors with hardware oating point for high
speed three-dimensional transformations.
NMOS III scan converter with six axis interpolation for Gouraud shaded, Z-
bu�ered vectors and polygons.
Pixel clipping for full speed graphics to obscured windows.
Dedicated 2K by 1K 16-bit zbu�er.

The display is organized as an array of bytes, with each byte representing a pixel
on the display. (On Series 800 systems the display can be accessed on a 32-bit
word/pixel basis.) When eight planes are installed, color map indexes range from
0{255. The color map is a RAM table that has 16 or 256 addressable locations
and is 24 bits wide (eight bits each for red, green and blue). Thus, the pixel value
in the frame bu�er addresses the color map, generating the color programmed at
that location.

In addition to the frame bu�er banks of eight planes each, four overlay planes
are provided. These overlay planes have their own unique color map, separate
from the color map used for the image planes. This color map consists of sixteen
24-bit entries, allowing you to select sixteen colors from the full pallette of over
16 million choices. In addition, each entry in the overlay color map may be set
to be dominant, non-dominant, or blended with the image planes.

9-2 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

A dominant entry causes all pixels in the overlays set to that value to display the
color in the overlay map, regardless of values in the image planes \below" it.

A non-dominant entry causes pixels with that value to display the color in the
image planes \below".

A blended entry will cause the analog color output from the overlays to be
summed with the analog output from the image planes. Color values are set to
a maximum value of 1.0 if the sum would exceed this saturation value.

By default, the HP 98731 Device Driver sets all overlay color map entries to be
dominant when opened to the overlays. Entries may be set to be non-dominant
with the Starbase gescape R_TRANSPARENCY_INDEX. Entries may be set to blend
with the image planes by using the Starbase gescape OVERLAY_BLEND. See the
descriptions of these gescape functions for more details.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, on displays that run it, the Internal Terminal Emulator (ITE) uses
three of the overlay planes for alpha information. This way there is no interaction
between ITE text and images in the graphics planes. The X Window system uses
both the overlay and image planes. To draw in the overlay planes the HP 98730
Device Driver or HP 98731 Device Driver may be opened directly to the overlay
planes as if they were a separate device (refer to \Setting up the Device" in this
chapter for more information).

The TurboSRX provides one hardware cursor which supports all Starbase echo
types. If more than one cursor is needed, one overlay plane can be used for
graphic cursors.

Typically, you do not need to directly read or write pixels in the frame bu�er.
However, for those applications which require direct access, Starbase does provide
the gescape function R_GET_FRAME_BUFFER, which returns the virtual memory
address of the beginning of the frame bu�er (this gescape is discussed in the
appendix of this manual). Frame bu�er locations are then addressed relative to
the returned address. The �rst byte of the frame bu�er (byte 0) represents the
upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame bu�er are not displayable. Byte 2048 is the �rst (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

TurboSRX 9-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

If more than one bank of optional frame bu�er is installed then bank switching
must be used to access the additional memory. A number of Starbase calls may
set the bank register so it is advisable to call bank_switch just prior to making
accesses to the frame bu�er pointer to ensure desired results.

If you are attempting to access the hardware directly while other processes are
also using it (such as Starbase programs or window systems), you must obey
semaphore protocols and save/restore any hardware registers you alter. See the
description of the LOCK_DEVICE gescape for details on semaphore protocol.

The o�-screen portion of the frame bu�er may be accessed via the gescape

function R_FULL_FRAME_BUFFER also documented in the appendix. Care should
be taken when using this gescape since other processes, Starbase, and the window
system access the frame bu�er o�-screen memory.

X Windows

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.

9-4 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Otherwise, look up Yes. The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

Table 9-1. TurboSRX Display Types

TurboSRX [FB1]1 HP 98730 High-Res Color

TurboSRX [FB2] HP 98730 High-Res Color

TurboSRX [FB3] HP 98730 High-Res Color

1 This system comes standard with four overlay planes and one bank of
eight image planes, with optional banks of eight planes each.

The supported server modes are Combined, Overlay, Stacked Screen.

Table 9-2. Windows in Overlay Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

3 No PseudoColor � � one color reserved for
transparency in
combined mode

4 No PseudoColor � � one color reserved for
transparency in
combined mode

The supported server modes are Combined, Image and Stacked Screen.

TurboSRX 9-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Table 9-3. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No PseudoColor � �

Yes (4/4) PseudoColor � �

16 No Not supported

Yes (8/8) PseudoColor � only on FB2, FB3

24 No DirectColor � only on FB3

Yes (12/12) DirectColor � only on FB3

X11 Cursors and Starbase Echos

The following list shows default positions where the Starbase echo and X11 cursor
(called echo and cursor, respectively) reside for each of the X11 server operating
modes.

HP 98730 Display

Overlay Mode

If overlay-plane X11 window is opened, echo shares three or four overlay planes.

If image planes are opened and X11 uses three overlay planes, vector echo
resides in cursor plane.

If image planes are opened and X11 uses four overlay planes, vector echo resides
in image planes.

X11 cursor uses hardware cursor.

Image Mode

If image-plane X11 window is opened, raster echo resides in image planes and
vector echo resides in cursor plane.

X11 cursor uses hardware cursor.

9-6 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Stacked Screen Mode

If image-plane X11 window is opened, echo shares three or four overlay planes.

If image-plane X11 window is opened, raster echo resides in image planes.

If X11 uses three overlay planes and image planes are opened, vector echo
resides in cursor plane.

If X11 uses four overlay planes and image planes are opened, vector echo resides
in image planes.

X11 cursor uses hardware cursor.

Combined Mode

If overlay-plane X11 window is opened, echo shares three or four overlay planes.

If image-plane X11 window is opened, raster echo resides in image planes.

If image-plane X11 window is opened and X11 uses three overlay planes, vector
echo resides in cursor plane.

If image-plane X11 window is opened and X11 uses four overlay planes, vector
echo resides in overlay planes.

X11 cursor uses hardware cursor.

HP 98731 Display

The hp98731 driver cannot open an X11 overlay-plane window.

Overlay Mode

If image planes are opened and X11 uses three overlay planes, echo resides in
cursor plane.

If image planes are opened and X11 uses four overlay planes, echo is not
supported.

X11 cursor uses hardware cursor.

Image Mode

If image-plane X11 window is opened, echo resides in cursor plane.

X11 cursor uses hardware cursor.

TurboSRX 9-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Stacked Screen Mode

If image-planes are opened and X11 uses three overlay planes, echo resides in
cursor plane.

If image-planes are opened and X11 uses four overlay planes, echo is not
supported.

X11 cursor uses hardware cursor.

Combined Mode

If image-plane X11 window is opened and X11 uses three overlay planes, echo
resides in cursor plane.

If image-plane X11 window is opened and X11 uses four overlay planes, echo
resides in overlay planes.

Raster echo is not supported.

X11 cursor uses hardware cursor.

Cursors

The HP 98731 Device Driver implements cursors using either the hardware cursor
or overlayed software cursors.

Overlayed Software Cursors

If no processes have opened all four overlay planes, then the fourth overlay plane is
used for overlayed software cursors either by the HP 98730 or the HP 98731 drivers
running in the image planes. The HP 98730 driver running in the overlay planes
never uses the fourth overlay plane for cursors. Instead, either the hardware
cursor or all three (four) overlay planes are used for cursors.

You can think of the fourth overlay plane used for cursors as a separate \cursor
plane". Any data in the cursor plane will be displayed over data in the image
planes. Data in the other three overlay planes will be displayed over data in the
image planes and the cursor plane. For example, suppose a graphics application
is running in the image planes while the window manager is running in three of
the overlay planes. If the application has a Starbase cursor in the overlay cursor
plane, the cursor will always be visible inside regions of see-thru color because
the cursor has display priority over the graphics. If the cursor is moved outside

9-8 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

of regions of see-thru color, it is not visible since the non-see-thru regions in the
overlay planes have display priority over the cursor plane.

The TurboSRX also supports a hardware cursor that supports all Starbase echo
types. The hardware cursor is drawn to a �fth and sixth overlay plane accessible
only by the hardware cursor. There is only one hardware cursor available. Usage
of the hardware cursor is de�ned as follows:

1. If an application is running in a Starbase environment only (that is, the X
Window system is not running), the hardware cursor is given to the �rst
process that attempts to use cursors.

2. The X Window system sprite always uses the hardware cursor.

3. Via the gescape R_ECHO_CONTROL, there is a mechanism for you to control
usage of the hardware cursor. This gescape is discussed in the appendix.

If the hardware cursor is already being used by another process, then software
cursors are used by the HP 98730 or HP 98731 drivers.

If the fourth overlay plane is not available for cursors, an error will be generated
when any attempts are made to turn on the cursors. In an X window, cursors may
be available even when the fourth overlay plane is not. See Starbase Graphics
Techniques for more information.

You can control if the software cursors are overlayed in the fourth overlay plane
or reside in the same planes currently being used for graphics by the gescape

R_OVERLAY_ECHO. Refer to the appendix for a discussion of this gescape.

If your application never uses cursors, the driver will never attempt to allocate
the hardware cursor. However, once the driver has allocated the hardware cursor,
the driver does not relinquish usage of the hardware cursor until gclose time.

If allocation of the hardware cursor was not successful, resources for the software
cursor area are allocated (that is, o�screen areas for raster echo de�nitions). Once
resources for software cursors have been allocated, the driver always uses software
cursors and never again attempts to use the hardware cursor.

The following functions will cause the driver to attempt to allocate cursor
resources (that is, either the hardware cursor or software cursor resources):

echo_type or define_raster_echo.
any of the gescapes R_DEF_ECHO_TRANS, R_ECHO_MASK, R_ECHO_FG_BG_COLORS,
and R_OV_ECHO_COLORS.

TurboSRX 9-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

The Hardware Cursor

The HP 98731 color map supports a single, independent hardware raster or vector
cursor. The hardware cursor is a 64�64�2 bit raster pattern that is conceptually
in front of the overlay planes. It is de�ned with a 64�64 bit/pixel color pattern
and a 64�64 bit/pixel transparency pattern. When the X11 server is started, it
uses the hardware cursor for the window cursor.

As with the overlay planes, one of the colors is a transparency color used to see
through to the overlay and image planes. This means that a raster cursor can
have no more then two signi�cant colors (one additional color is used for the
transparency pattern). The two colors used by the cursor are based on 24-bit
RGB values and are independent of the other color maps.

When the X11 server is using the hardware cursor and a program de�nes a
Starbase echo in an image window, the echo is placed by default in the cursor
plane. When a cursor plane is not available, the HP 98730 driver renders the
cursor in the image planes. The echo colors will be chosen from the color map
associated with that window. When it is an image plane window, the X standard
color map is used. This means that when an image plane window is the focused
window, the X standard color map will be loaded into the overlay plane hardware
color map.

Z-Buffer

For graphics operations that require a Z-bu�er such as hidden-surface removal, a
dedicated Z-bu�er board must be installed in the HP 98731. When the Z-bu�er
board is installed and an accelerated image-plane X11 window is opened, the X11
server also associates a corresponding portion of the Z-bu�er with the window.
This Z-bu�er allocation is automatically moved and resized as the window is
moved and resized. It is also obscured by other windows in the image planes.

9-10 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Opening Windows

The HP 98731 accelerated driver can open a number of windows in the image
planes. The limits placed on these windows are:

1. The HP 98731 driver supports up to 31 accelerated windows operating
simultaneously. Furthermore, it permits an accelerated window to be obscured
by, at most, 31 other rectangles (for example, corners of windows).

2. When an image plane window is rendered to by the accelerator and is obscured
by more than 31 rectangles, rendering is halted until that window has moved
up enough in the window stack to be obscured by fewer than 31 rectangles.
It is possible for a program to detect when this occurs by passing a procedure
address to the Starbase gescape procedure with opcode CLIP_OVERFLOW. This
procedure is then called whenever the clip list overows.

3. When a window is about to become obscured by more than 31 windows and the
accelerator hardware is currently rendering to that window, the window system
is locked until the accelerator is �nished with the current set of primitives. The
calling process will become blocked and the CLIP_OVERFLOW procedure will be
called by Starbase.

The above guidelines only apply to windows in the image planes. For example, in
combined mode, overlay plane windows which overlap image plane windows do
not count against the limit of 31 obscuring rectangles. The limit only applies to
image-plane windows which overlap other image-plane windows. We recommend
that non-graphical windows (for example, terminal emulator windows) and
graphical windows that don't need to use the graphics accelerator be placed
in the overlay planes.

Note that accelerated overlay windows are not supported with the HP 98731
driver.

TurboSRX 9-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Setting Up the Device On Series 300

The HP 98730 and HP 98731 Device Drivers can be used with the graphics display
con�gured in either internal or external DIO-I address space, or in DIO-II address
space. Refer to the Con�guration Reference Manual for a description of internal
and external DIO-I address space and DIO-II address space.

Note If the HP 98730 is con�gured as an external display, there will
not be an Internal Terminal Emulator (ITE) for that device.
Since it is the ITE that normally initializes the display, external
devices must be reset after power-up by running a simple Starbase
program with a mode of RESET_DEVICE in the gopen call. It may
also be necessary to run this program after running an application
which manipulated the overlay color map, such as a windows
application program. An example program which could be called
from /etc/rc during power-up is given at the end of this section.
For more details concerning the e�ects of RESET_DEVICE, see the
\Device Initialization" information in this section.

The Graphics Interface card may be installed in any DIO slot in the computer's
backplane or in any I/O slot of the expander.

DIO-I Switch Settings

The graphics interface card has a single 8-bit address select switch. Looking
at the switches so that the dot is in the lower left corner, the leftmost switch
is labeled DIO1 to the bottom (0), and DIO2 to the top (1). To con�gure the
system in DIO-I space, this switch must be set to the DIO1 (0) position. The next
switch to the right is labeled INT and determines if the HP 98730 workstation is
con�gured as an internal or external display. In addition, the next six switches
to the right are labeled for select code determination (�ve of the six switches are
actually used for the select code). There is also a jumper labeled JP1.

9-12 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

The frame bu�er uses two megabytes of I/O address space, starting at FB_BASE.
The jumper (JP1) determines the address of FB_BASE.

JP1 is set to $200K FB_BASE address is $200 000

JP1 is set to $800K FB_BASE address is $800 000

Systems which use the HP 98730 display as a DIO-I system console will map the
frame bu�er to $200 000; systems which use the display as an external DIO-I
device will map the frame bu�er to $800 000.

The control space requires 128 Kbytes of space, starting at CTL_BASE. The six
switches labeled SC determines the address of CTL_BASE. The HP 98730 may be
con�gured as an external display or as an internal display. Since only 64 Kbytes
of space is normally allotted for external I/O select codes, two consecutive select
codes will be used when con�guring the device as an external display.

The following table lists the binary switch settings with the corresponding values
of CTL_BASE for external I/O settings. The table also lists the select codes that
are used for each setting.

Table 9-4. DIO-I Control Space Settings (External I/O)

Switch Setting
MSB to LSB

CTL BASE DIO-I
Select Code

01101010 $6A0000 10{11

01101100 $6C0000 12{13

01101110 $6E0000 14{15

01110000 $700000 16{17

01110010 $720000 18{19

01110100 $740000 20{21

01110110 $760000 22{23

01111000 $780000 24{25

01111010 $7A0000 26{27

01111100 $7C0000 28{29

01111110 $7E0000 30{31

For a system console (internal) the switch setting is 01010110 and the CTL_BASE
is $560 000.

TurboSRX 9-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

If the HP 98730 is con�gured as the system console, the CTL_BASE needs to be
placed at $560 000 and the JP1 must be open (no jumper|or jumper is on one
pin), which is an interal I/O setting. If the device is not used as the system
console, then the control space should not be placed in internal I/O space. It
is likely to overlap the address space of other system hardware. In this case, an
external I/O space setting should be selected with two consecutive select codes
which are not used by the system.

DIO-II Switch Settings

If the left-most switch is set to DIO2 (1), the HP 98730 device can be used in
DIO-II address space. In this mode, the next seven switches determine the DIO-
II select codes to be used. An HP 98730 device will use three DIO-II select codes.
Both the frame bu�er and control space reside in the select code areas, so the
jumper JP1 is ignored.

The control space requires 4 Mbytes of space, starting at CTL_BASE. The seven
switches labeled \SC" at the top of the select switch determine the address of
CTL_BASE. The frame bu�er requires 8 Mbytes of space, starting at FB_BASE.

9-14 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Table 9-5. DIO-II Control Space Settings

Switch Setting
MSB to LSB

CTL BASE DIO-II
Select Code

FB BASE

10000101 $01400000 133 $01800000

10001001 $02400000 137 $02800000

10001101 $03400000 141 $03800000

10010001 $04400000 145 $04800000

10010101 $05400000 149 $05800000

10011001 $06400000 153 $06800000

10011101 $07400000 157 $07800000

10100001 $08400000 161 $08800000

10100101 $09400000 165 $09800000

10101001 $0A400000 169 $0A800000

10101101 $0B400000 173 $0B800000

10110001 $0C400000 177 $0C800000

10110101 $0D400000 181 $0D800000

10111001 $0E400000 185 $0E800000

10111101 $0F400000 189 $0F800000

11000001 $10400000 193 $10800000

11000101 $11400000 197 $11800000

11001001 $12400000 201 $12800000

11001101 $13400000 205 $13800000

11010001 $14400000 209 $14800000

11010101 $15400000 213 $15800000

11011001 $16400000 217 $16800000

11011101 $17400000 221 $17800000

11100001 $18400000 225 $18800000

11100101 $19400000 229 $19800000

11101001 $1A400000 233 $1A800000

11101101 $1B400000 237 $1B800000

11110001 $1C400000 241 $1C800000

11110101 $1D400000 245 $1D800000

11111001 $1E400000 249 $1E800000

11111101 $1F400000 253 $1F800000

TurboSRX 9-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

DIO-II displays may be used as the system console or as external displays. In
order to use the display as system console, it must be con�gured as the �rst
DIO-II display in the system, and there must be no DIO-I console, or remote
terminals. Being the �rst DIO-II device means that it has the lowest DIO-II
select code in the system. In order to use a HP 98730 device as a DIO-II system
console, select code 133 is recommended.

Note It is necessary to increase some of the HP-UX tunable system
parameters due to the size of the DIO-II mapping of an HP
98730 device. For details on how to recon�gure your kernel, refer
to the HP-UX System Administrator Manual (particularly the
\Con�guring HP-UX" section in \The System Administrators
Toolbox" and the \System Parameters" appendixes.

It is essential that you consult the above referenced HP-UX
documentation before you attempt to recon�gure your system.
It is possible to adversely a�ect your HP-UX system if a mistake
is made. Ensure you have an understanding of these procedures
before proceding.

9-16 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Example Program to Reset the TurboSRX

The following example uses the HP 98730 device driver. The HP 98731 device
driver can be substituted.

/*

* Starbase program: reset98730.c

* Compile: cc -o reset98730 reset98730.c -ldd98730 -lsb1 -lsb2 -lm

* Destination: /usr/bin

* Execute: add line to the /etc/rc - "/usr/bin/reset98730 /dev/crt.external"

*

* Example program to be put in /etc/rc for resetting an external HP 98730

* device during power-up.

*/

#include <starbase.c.h>

main(argc,argv)

int argc; char *argv[];

{

int fildes;

if ((fildes = gopen(argv[1],OUTDEV,"hp98730",INIT|RESET_DEVICE)) < 0)

printf("External HP 98730 %s initialization failed.\n",argv[1]);

else {

printf("External HP 98730 %s initialization succeeded.\n",argv[1]);

gclose(fildes);

}

}

Address Space Usage On Series 300

The TurboSRX is memory mapped into a processes virtual address space, starting
at the value speci�ed by the environment variable SB_DISPLAY_ADDR. If this
variable is not set, then mapping defaults to 0xB00000. The control space starts
at this address and grows towards larger address values. After the control space
comes the frame bu�er, then shared memory mapped for Starbase drivers. The
size of the address space used for control space and the frame bu�er depends on
whether the device is used in DIO-I or DIO-II. In DIO-I, control space consumes
128 Kbytes and the frame bu�er uses 2 Mbytes. In DIO-II, control space is 4
Mbytes and the frame bu�er is 8 Mbytes. The size of the Starbase drivers' shared
memory is always the same, and is slightly less than 300 Kbytes.

TurboSRX 9-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

If your application maps memory pages to speci�c addresses, or needs a large
stack, then you may need to adjust SB_DISPLAY_ADDR to avoid conicts.

Special Device Files (mknod) On Series 300

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further information. The name of this special device
�le is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the name that is suggested for these
devices is crt.

The following examples will create a special device �le for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When the device is at the internal DIO-I address (refer to the \Switch Settings"
section) the mknodh parameters should create a character special device with a
major number of 12 and a minor number of 0. Note that the leading 0x causes
the number to be interpreted hexadecimally.

mknod /dev/crt c 12 0x000000

When the device is at an external DIO-I or any DIO-II address (refer to the
\Switch Settings" section) the mknod parameters should create a character special
device with a major number of 12 and a minor number of 0xhsci0200 where hsci
is the two-digit external select code in hexadecimal notation.

mknod /dev/crt c 12 0xhsci0200

The HP 98730 and HP 98731 Device Drivers may also be used for the overlay
planes in graphics mode. The minor number may be set to cause Starbase drivers
to use either three or four overlay planes. When running to three planes, one
plane is still reserved for cursors. When running to all four overlays, only the
hardware cursor is available for Starbase graphics echoes. If more than one echo

9-18 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

is requested, or if another process is using the cursor, the request for another echo
will fail. Note that since the terminal emulator and window system operate in the
overlay planes also, there will be interactions with these processes if a graphics
driver is opened in this manner while these processes are present. To open either
the HP 98730 or HP 98731 Device Drivers to three overlay planes instead of the
graphics planes, the last byte of the minor number must be one. To run to all
four overlays, the last byte of the minor number must be three.

For example, when the device is at an internal DIO-I address, the mknod

parameters for the overlay device, with one plane reserved for cursors, should
create a character special device with a major number of 12 and a minor number
of 1.

mknod /dev/ocrt c 12 0x000001

To create a device �le for all four overlays, the command would be:

mknod /dev/o4crt c 12 0x000003

When the device is at an external DIO-I address or any DIO-II address (refer
to the section on \Switch Settings") the mknod parameters for the same device
should create a character special device with a major number of 12 and a minor
number of 0xhsci0201 or 0xhsci0203 where hsci is the two-digit select code.

mknod /dev/o3crt c 12 0xhsci0201

or

mknod/dev/o4crt c 12 0xhsci0203

TurboSRX 9-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Setting Up the Device on the Series 800

Up to four HP 98730 or HP 98731 devices can be connected to a Series 800 SPU
using four A1017A interface cards. However, it is recommended that only two HP
98730 devices or HP 98731 devices have the Internal Terminal Emulator (ITE) or
window systems running on them. With the A1047A interface, only two devices
can be connected, both of which may run an ITE.

The Series 800 ITE supports power-fail recovery on the HP 98730 device or HP
98731 device, but Starbase does not support this feature. If you want to support
power fail, you must catch the power-fail signal and save any Starbase state
needed. Then, gclose the device and gopen the device again when the power
turns on.

Special Device Files (mknod) On the Series 800

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further details. Since superuser capabilities are
needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however, the names that are suggested for the
devices are crt, crt0, crt1, or crt2.

The following examples will create a special device �le for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When creating the device �le the mknod parameters should create a character
special device with a major number of 14 and a minor number of the format
below (where hlui is the two-digit hardware logical unit number):

mknod /dev/crtx c 14 0x00hlui00

The HP 98730 Device Driver may also be opened to the overlay planes in graphics
mode. If the last byte of the minor number is one, 3-overlay planes are used for
graphics (and the fourth plane is reserved for cursors for processes running in the

9-20 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

image planes). If the last byte of the minor number is three, 4-overlay planes
are used for graphics. Since the ITE and window system operate in the overlay
planes also, there will be interactions with these processes if a graphics driver is
open in this manner while these processes are present.

To open all 4-overlay planes when the device is at the internal address, the mknod
parameters should create a character special device with a major number of 14
and a minor number of three.

mknod /dev/o4crt c 14 0x00hlui03

To open three overlay planes when the device is at the internal address, the mknod
parameters should create a character special device with a major number of 14
and a minor number of one.

For example, the mknod parameters for a 3-plane overlay device should create
a character special device with a major number of the format indicated below
(where hlui is the hardware logical unit number):

mknod /dev/o3crt c 14 0x00hlui01

Linking the Driver

Shared Libraries

The shared HP 98730 Device Driver is the �le named libdd98730.sl in the
/usr/lib directory. The shared HP 98731 Device Driver is the �le named
libdd98731.sl in the /usr/lib directory. The device driver will be explicitly
loaded at run time by compiling and linking with the starbase shared library
/usr/lib/libsb.sl, or by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

TurboSRX 9-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Upon device initialization the proper driver will be loaded. See the discussion
of the gopen procedure in the Device Initialization section of this chapter for
details.

Archive Libraries

The HP 98730 Device Driver is located in the /usr/lib directory with the �le
name libdd98730.a. The HP 98731 Device Driver is located in the /usr/lib

directory with the �le name libdd98731.a. The device driver may be linked to
a program using the absolute path name, for example /usr/lib/libdd98730.a,
or an appropriate relative path name, or by using the -l option as in -ldd98730

with the LDOPTS environmental variable set to -a archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
the HP 98730 driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldd98730 -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

9-22 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

F77 example.f -ldd98730 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd98730 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

Usage and Restrictions

HP 98730

For the HP 98730 device driver, when a device �le for the overlay planes is used
at gopen time, bank switching is not supported.

Graphics applications that want to talk to a graphics window may use this device
driver. If the graphics window is in the overlay planes, this device driver does
not support:

Bank switching.
Z-bu�ering.
Double bu�ering when using three overlay planes. (Double bu�ering in a
window in the overlay planes is supported to 4-overlay planes).
Shading.
The transform engine.

If the graphics window is in the image planes, this device driver does not support:

Z-bu�ering.
Shading.
The transform engine.

Graphics applications that want to talk to a local X window can use this device
driver. If the window is in the overlay planes, this device driver does not support:

Bank switching.
Z-bu�ering.
Double bu�ering.
Shading.
The transform engine.

TurboSRX 9-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

If the graphics window is in the image planes, this device driver does not support:

Z-bu�ering.
Shading.
The transform engine.

Transparency Index

There are four overlay planes in the TurboSRX. Even though these planes can
display 16 colors simultaneously, only 15 are available because one color is
reserved for the transparency color. By default, this color is index 7 or 15,
depending on the overlay depth. When the transparency color's index is written
into the overlay planes, the observed color is that of the image planes. The
transparency color is set when the X11 server is started and cannot be changed
until the server is shut down.

The see-thru facility allows you to create a transparent window.

By default index 3 (yellow) is reserved as see-thru. The HP 98730 Device
Driver recognizes the Starbase environment variable SB_OV_SEE_THRU_INDEX that
will allow you to set the see-thru color map index to some other value. This
environment variable will only have e�ect when running the program on the raw
device.

When running the raw device, an explicit call to define_color_table will cause
see-thru entries to be set back to dominant. When running to an overlay graphics
window, an explicit call to define_color_table will preserve the see-thru entry
currently de�ned to the window system.

HP 98731

When a device �le for the overlay planes is used at gopen time, bank switching,
shading, and depth cueing are not supported.

Graphics applications that want to open a local X window may use this driver if
the window is in the image planes.

Up to 32 HP 98731 device drivers may be opened to the same device
simultaneously from any combination of one or more processes.

9-24 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

X Window System See Thru Color

The X Window system always uses color 7 (15 for 4-plane devices) as the see-thru
color. This cannot be changed.

TurboSRX 9-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the special device �le created by the mknod command
as speci�ed in the last section, e.g. /dev/crt.

Kind Indicates the I/O characteristics of the device. This parameter may
be one of the following:

INDEV, Input only.
OUTDEV, Output only.
OUTINDEV, Input and Output.

Input may be done with this driver only when opened to an X
Window system window.

Driver The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire
the device and by default load the accelerated driver (if applicable).
For example:

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver.
In this case the UNACCELERATED/ACCELERATED ag is ignored. For
example:

"hp98730" for C.

'hp98730'//char(0) for Fortran77.

'hp98730' for Pascal.

Mode The mode control word consisting of several ag bits or ed together.
Listed below are those ag bits which have device-dependent actions.
Those ags not discussed below operate as de�ned by the gopen

procedure.

9-26 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

SPOOLED, cannot spool raster devices.

MODEL_XFORM|Shading is not supported for the HP 98730 device.
However, opening in MODEL_XFORM mode will a�ect how matrix
stack and transformation routines are performed.

0|Open the device without clearing the screen. This will set the
color map mode to CMAP_NORMAL, but will not initialize the color
map itself. This will also disable blending if it was left enabled.
This mode will not a�ect pixel panning and zooming.

In an X Window the color map mode is initialized consistent with
the X color map.

INIT|open and initialize the device as follows:

1. Clear frame bu�er to 0s.
2. Reset the color map to its default values.
3. Enable the display for reading and writing.
4. HP 98731 - Initialize the transform engine's microcode.
5. HP 98731 - Download the transform engine's microcode (if it

has not already been done).
6. Restore pixel pan and zoom hardware for normal viewing, if

opened to the image planes.
7. In an X Window a new color map is created and the color map

mode is initialized to be consistent with the X color map.

RESET_DEVICE|open and reset the device as follows:

1. Clear frame bu�er and overlays to 0s.
2. Reset the color map to its default values.
3. Clear the overlay color map.
4. Enable the display for reading and writing.
5. HP 98731 - Download the transform engine's microcode.
6. HP 98731 - Initialize the transform engine's microcode.
7. Restore pixel pan and zoom hardware for normal viewing, if

opened to the image planes.
8. HP 98731 - In an X window, a new color map is created, and

the color map mode is initialized to be consistent with the X
color map.

9. Reset the graphics accelerator.

TurboSRX 9-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Note that the RESET_DEVICE ag bit should be used with caution:
it will adversely a�ect any other processes using the device. This
ag bit is intended to reset a device completely: this should only
be necessary for devices in an unknown state, such as a device
powered up in an external I/O space. Most programs should not
use this ag bit.

Syntax Examples

To open and initialize a TurboSRX for output:

For C Programs:

fildes = gopen("/dev/crt",OUTDEV,NULL,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(0),OUTDEV,char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'',INIT);

Special Device Characteristics

For Device Coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1279, 1023).

Offscreen Memory Usage

O�screen memory is managed by a global resource manager to insure that
multiple processes do not step on each other when using the o�screen. O�screen
is used by the device driver for:

polygon �ll patterns
raster fonts
raster echo de�nitions (if software cursors are used)

The o�screen memory is not allocated for any of the above functions unless the
function is used. Therefore, if an application never does �lled polygons, never

9-28 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

uses software cursors, and never uses raster fonts; the driver does not use the
o�screen memory. Refer to the gescape R_OFFSCREEN_ALLOC for information on
using the o�screen areas for personal use.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 or 4 (if running to the
overlay planes), 8, 16, or 24. The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16. For devices having 24 or more
planes in CMAP_FULL mode (see shade_mode) dithering is not supported since full
24-bit color is available. If you are double bu�ering with 12 planes per bu�er
then the number of colors allowed in a dither cell is 1, 2, or 4.

Raster Echo Default

The default raster echo is the 8�8 array:

255 255 255 255 0 0 0 0

255 255 0 0 0 0 0 0

255 0 255 0 0 0 0 0

255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0

0 0 0 0 0 255 0 0

0 0 0 0 0 0 255 0

0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64�64 pixels. The default drawing
mode for the raster echo is 7 (or).

If the driver does not have access to the hardware cursor, by default the raster
echo is written to the same planes currently being used for graphics. For example,
if the HP 98730 driver was opened to the image planes, the image planes are used
for raster cursors. If the HP 98730 driver was opened to three overlay planes, the
those three overlay planes are used for raster cursors. The location of software

TurboSRX 9-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

raster and software non-raster cursors can be changed using the gescape function
R_OVERLAY_ECHO.

Color Planes Defaults

In a raw display, the default con�guration is an 8-plane color mapped system
regardless of the number of frame bu�er banks installed. In an X Window the
color plane de�nition is consistent with the X color map.

All planes in �rst bank are display enabled. All planes in �rst bank are write
enabled.

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table 9-6.

Line Type Pattern

0 1111111111111111

1 1111111100000000

2 1010101010101010

3 1111111111111010

4 1111111111101010

5 1111111111100000

6 1111111111110110

7 1111111110110110

9-30 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on raw color displays. On X Windows the window's current color map is used.

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values shown in the following table.

Table 9-7. Default Color Table

Index Color red green blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0

Use the inquire_color_map procedure to see the rest of the 255 colors.

When INIT is used in the shade_mode procedure call the color map will be
initialized dependent on the mode parameter and the number of frame bu�er
banks installed.

CMAP_NORMAL Only one bank of the three banks can be displayed at a time,
unless video blending is enabled.

TurboSRX 9-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

CMAP_MONOTONIC The color map will be initialized as:

for (i=0; i<256; i++) {

cmap[i].red = cmap[i].green = cmap[i].blue = i/255.0;

}

Only one bank of the three banks can be displayed at a time,
unless video blending is enabled.

CMAP_FULL With less than three banks installed the color map will be
initialized as three bits red, three bits green and two bits
blue. The three most signi�cant bits are red and the two
least signi�cant bits are blue. Only one bank of the three
banks can be displayed at a time.

With three or more banks installed the color map will be
initialized as the CMAP_MONOTONIC case above, the �rst bank
of eight will go through the blue portion of the color map,
the second bank goes through the green portion and the third
bank goes through the red portion. In this mode the color
map is transparent and the eight bits from each bank drives
the appropriate DAC. The color map could be subsequently
modi�ed in this mode to do things like gamma correction or
double bu�ering of four bits per color.

Red, Green and Blue

Each �le descriptor opened as an output device has a color table associated with
it. If multiple �le descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another �le descriptor path.

For Starbase procedures that have parameters for red, green and blue, the way
the actual color is chosen depends on the current shade_mode setting.

CMAP_NORMAL The color map is searched for the color that is closest in
RGB space to the one requested, and that color map index is
written to the frame bu�er for subsequent output primitives.
It is more e�cient to select a color with an index rather than
specifying a color with red, blue and green values in this mode

9-32 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

due to the time it takes to �gure out which index in the color
table most closely matches the speci�ed color.

CMAP_MONOTONIC The red, green and blue value is converted to an intensity
value using the equation:

0.30*red+0.59*green+0.11*blue

This intensity is converted to an index value by mapping
intensity 0.0 to the minimum index set by shade_range and
intensity 1.0 to the maximum index set by shade_range.
This mode is useful for displaying a high quality monochrome
picture on an 8-plane system from data that produces a high
quality color picture on a 24-plane system.

CMAP_FULL The color values will be mapped directly to an index with the
assumption the color map is setup to a prede�ned full color
state.

Note Multiple gopen parameters of an X Window will share a single
color map de�nition. See the Starbase Graphics Techniques for
more information.

TurboSRX 9-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Starbase Functionality

Commands Not Supported

The following commands are not supported by the HP 98730 and HP 98731 device
drivers. If one of these commands is used by mistake, it will be ignored and not
cause an error.

alpha_transparency line_filter

bf_alpha_transparency perimeter_filter

bf_texture-index set_capping_planes

contour_enable set_model_clip_indicator

define_contour_table texture_index

define_texture texture_viewport

deformantion_mode tecture_window

The following commands are not supported by the HP 98730 device driver:

backface_control light_ambient

bf_control light_attenuation

bf_fill_color light_model

bf_interior_style light_source

bf_perimeter_color light_switch

bf_perimeter_repeat_length set_model_clip_volume

bf_perimeter_type shade_range

bf_surface_coefficients surface_coefficients

bf_surface_model surface_model

define_trimming_curve viewpoint
depth_cue zbuffer_switch

depth_cue_color

depth_cue_range

hidden_surface

9-34 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Commands Conditionally Supported

HP 98730 Device Driver

The following commands are supported on the HP 98730 device driver under the
listed conditions:

block_read, block write The raw parameter for the block_read and
block_write commands is normally ignored by
this driver. To use the raw mode, you must
call the R_BIT_MODE gescape discussed in the
appendix of this manual.

pattern_define 4�4 is the largest supported pattern.

shade_mode The color map mode may be selected but shading
can not be turned on.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The use parameter must be zero, any extra
coordinates supplied will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if
not supported by this device. For example,
contouring data will be ignored if the device does
not support it.

TurboSRX 9-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

HP 98731 Device Driver

The following commands are supported on the HP 98731 device driver under the
listed conditions:

inquire_fb_configuration An HP 98730 device running the HP 98731
Device Driver will report image_banks as
5 if the system has 24 display planes and
the dedicated Z-bu�er. If the dedicated Z-
bu�er is installed in this way, it is possible to
access it with block_write, block_read, and
block_move. The Z-bu�er may be selected for
read/write using bank_switch. The Z-bu�er
may not be displayed. The Z-bu�er cannot
be rendered to by the graphics accelerator. If
less than 24 planes are installed, the presence
of a Z-bu�er will not be reported.

interior_style If the polygon �ll type is INT_HATCH then
the following functionality will not work cor-
rectly:

hidden surface removal
shading and lighting
depth cueing
backfacing attributes and culling
splines, quadrilateral meshes, and triangle
strips will not be hatched.

Performance is also degraded in this mode.

text_precision Only STROKE_TEXT precision is supported.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

9-36 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

triangle_strip_with-data

Additional data per vertex will be ignored if
not supported by this device. For example,
contouring data will be ignored if the device
does not support it.

block read, block write (HP 98731)

The raw parameter for the block_read and block_write commands is normally
ignored by this device driver. To use the raw mode, you must call the R_BIT_MODE
or R_DMA_MODE gescapes discussed in the appendix of this manual. If the raw

parameter is TRUE, then no clipping will be done.

When running to a window, the window o�sets from the upper left hand corner
of the screen will be added to block_write and block_read start locations. If
you do not want this o�set added, you should subtract the o�sets from your
start point. These o�sets can be computed by calling the gescape functions
R_GET_FRAME_BUFFER and R_GET_WINDOW_INFO. Using the frame bu�er pointers
returned by these routines, the window o�sets are:

y_offset=(window_ptr-fb_ptr)/2048

x_offset=(window_ptr-fb_ptr)-(y_offset*2048)

This would be useful, for example, if you wished to write a polygon �ll pattern
o�screen to a frame bu�er absolute address while running in a window.

Fast Alpha and Font Manager Functionality

The HP 98730 Device Driver supports raster text calls from the fast alpha and
font manager libraries. These calls may be made while running in the overlay or
image planes. Since raster fonts consist of one byte per pixel, image plane raster
text is written only to the currently selected bank. This is similar to the operation
of other raster functions such as block_write. Fast alpha and font manager fonts
can be optimized. See the Fast Alpha/Font Manager Programmer's Manual for
further information.

TurboSRX 9-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

The HP 98731 Device Driver does not support raster text calls from the fast
alpha and font manager library.

9-38 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Parameters for gescape

The HP 98730 and HP 98731 support the following gescape operations. Refer to
Appendix A of this manual for details on gescapes.

BLINK_INDEX|alternate between HP 98730 hardware color maps. This
gescape is not supported while image blending is active. Refer to the
IMAGE_BLEND gescape.
BLINK_PLANES|blink the display (blink rate is 3.75 Hz for this device)
IMAGE_BLEND|control analog blending of image plane frame bu�er output
OVERLAY_BLEND|control analog blending of overlay plane frame bu�er output
PAN_AND_ZOOM|do pixel panning and zooming
R_BIT_MASK|bit mask
R_BIT_MODE|bit mode
R_DEF_ECHO_TRANS|de�ne raster echo transparency
R_DEF_FILL_PAT|de�ne �ll pattern
R_DMA_MODE|changes de�nition of raw for block writes
R_ECHO_CONTROL|control hardware cursor allocation
R_ECHO_FG_BG_COLORS|de�ne cursor color attributes
R_ECHO_MASK|de�ne a raster echo mask pattern
R_FULL_FRAME_BUFFER|full frame bu�er
R_GET_FRAME_BUFFER|read frame bu�er address
R_GET_WINDOW_INFO|returns frame bu�er address of window
R_LINE_TYPE|de�ne line style and repeat Length
R_LOCK_DEVICE|lock device
R_OFFSCREEN_ALLOC|allocates o�screen frame bu�er memory
R_OFFSCREEN_FREE|frees allocated o�screen frame bu�er memory
R_OV_ECHO_COLORS|select overlay echo colors
R_OVERLAY_ECHO|select plane to contain cursor
R_TRANSPARENCY_INDEX|specify HP 98730 transparency index
R_UNLOCK_DEVICE|unlock device
READ_COLOR_MAP|read color map
SET_BANK_CMAP|de�ne bank color map to be used for image blending
SWITCH_SEMAPHORE|semaphore control

The HP 98730 also supports the following gescape:

R_OVERLAY_ECHO|select plane to contain cursor.

TurboSRX 9-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

The HP 98731 also supports the following gescapes:

CLIP_OVERFLOW|Change X Window system hierarchy.

GAMMA_CORRECTION|Enable/disable gamma correction.

PAN_AND_ZOOM|Pixel pan and zoom.

PATTERN_FILL|Fill polygon with stored pattern.

POLYGON_TRANSPARENCY|De�ne front facing and backfacing polygon trans-
parency patterns.

TRANSPARENCY|Allows \screen door" for transparency pattern.

ZWRITE_ENABLE|Allows creation of 3D cursors in overlay.

9-40 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Performance Tips

HP 98730 and HP 98731 Device Drivers

1. As with any driver, bu�ering is done to enhance performance. Performance
can be degraded if buffer_mode is turned o� or an inordinate amount of
make_picture_current calls are done.

2. Performance optimizations have been made so that sequential calls of the same
output primitive, with no intervening attribute changes or di�erent primitive
calls, go faster. For example the sequence line_color, polyline, polyline
is faster than line_color, polyline, line_color, polyline. So grouping by
primitive and subgrouping primitives by attribute can give some performance
improvements.

HP 98730 Device Driver

1. If only one process is accessing the graphics display, it is safe to turn o� the
semaphore operations (see the SWITCH_SEMAPHORE gescape), and a 10 to 20
percent speed improvement can be obtained. If a tracking process is initiated,
then semaphores will automatically be turned on.

2. If Starbase echos are overlayed (i.e. in the fourth overlay plane), or hardware
cursors are used, graphics performance is signi�cantly better since it is not
necessary to \pick up" the cursor each time the frame bu�er is updated.

3. Screen clears will be signi�cantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128-pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc to
convert the bounds of the clear rectangle to device coordinates. Screen clears
to the default vdc_extent will be aligned. Screen clears are also much faster
when the background color index is zero. Screen clears with a non-zero index
require two pases, which result in slower performance.

4. Polygons are �lled faster when the drawing mode is hSOURCEi,
NOT_SOURCE, ZERO, or ONE.

5. Horizontal and vertical lines are faster than diagonal lines on this device since
the hardware block mover is used to generate pixels.

TurboSRX 9-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

6. The procedure block_move is faster than block_read or block_write since
the hardware frame bu�er block mover can be used.

7. Performance of block_read and block_write is signi�cantly better if both
the source and destination begin on the same byte boundary (since data can
be transferred 32 bits at a time rather than one byte at a time). For example,
one way to ensure this condition is to de�ne pixel arrays as type short (16-bit
integer), and start block_read and block_write on even pixels only. This
can more than double performance.

8. block_write on Series 800 machines with the A1047A interface can go faster
by using DMA. See R_DMA_MODE gescape.

HP 98731 Device Driver

1. Typically, the HP 98731 rendering engine renders primitives from its internal
bu�er as the system CPU is doing other things. Substantial performance
bene�ts can be realized from this parallel processing.

However, certain operations will cause the CPU to wait for the HP 98731 to
�nish emptying its bu�er. An example of this wait is the
make_picture_current operation. Also, any operation that reads information
from the HP 98731 may cause this wait to occur. Two operations read the
matrix values from the HP 98731: pop_matrix2d and pop_matrix3d. If the
values in the popped matrix are not needed, use pop_matrix, which does not
cause any information to be read from the HP 98731. Also, block_read and
block_write will also cause the driver to use it.

Screen Clears

1. Screen clears will be signi�cantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128 pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc to
convert the bounds of the clear rectangle to device coordinates. Screen clears
to the default vdc_extent will be aligned.

2. For programs which use hidden surface removal with the dedicated Z-bu�er,
it is much faster to clear the Z-bu�er simultaneously with screen clears than
to do the clears sequentially. This is accomplished by calling clear_control

with CLEAR_ZBUFFER or ed into the mode word. When this is done, subsequent

9-42 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

calls to clear_view_surface and dbuffer_switch will cause the zbu�er to
be cleared also. See the manual page for clear_control for more details.

Rendering

1. When drawing shaded polygons, the fewer the features, the faster the polygon
generation. Positional viewpoint and light sources can signi�cantly degrade
performance.

2. With shading, and Z-bu�ering o�, the HP 98731 rendering engine runs at full
speed, when rendering at shaded polygons. These two rendering techniques
slow the rendering of polygons on the HP 98731. This is especially noticeable
on large polygons. Turning on any one of these could noticeably lower the
rendering performance.

Using the pattern gescape or replacement rules that require extra reads of
the frame bu�er (e.g. source or destination) will also degrade performance. It
takes time to do the extra reads.

3. Rendering mode commands such as hidden_surface, shade_mode, and

double_buffer can be slow. These should not be unnecessarily called. For
example, it is not necessary to repeatedly call hidden_surface from an
animation loop; it is intended that these routines be called to initialize a
rendering mode and are only called again to change it.

Raster Operations

1. The procedure block_move is faster than block_read or block_write since
the hardware frame bu�er block mover can be used.

2. The performance of block_read and block_write is signi�cantly better if
both the source and destination begin on the same byte boundary, since data
can be transferred 32-bits at a time rather than one byte at a time. For
example, one way to ensure this condition is to de�ne pixel arrays as type
short (16-bit integers) and then start block_read and block_write actions
on even pixels only. This can more than double performance. Note that the
byte boundaries are relative to the screen address, not the window address.

3. block_write on Series 800 machines with the A1047A interface can go faster
by using DMA. See R_DMA_MODE gescape.

TurboSRX 9-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

Cautions

The following caution is provided in using either the HP 98730 or HP 98731
device drivers:

1. As mentioned previously, accessing the o�-screen portion of the frame bu�er
(using gescape functions) should be done with care, since other processes
access this region. The overlay o�-screen contains the ITE font (which is
regenerated when control-shift-reset is done on the ITE keyboard) and may
contain any number of window systems fonts depending on the current window
usage.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interferring
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures, for
example, that process A will not change the replacement rule while process B
is in the middle of �lling a polygon. It also prevents the terminal (tty) driver
from overwriting any graphics processes that are outputting to the device. The
driver unlocks the device when done processing output. Some of the gescapes
listed in this chapter allow you to change this locking mechanism and should
be used with great caution.

HP 98731 Device Driver

The following cautions are provided in using the HP 98731 device driver:

1. Polygons of up to 255 vertices (after clipping) are supported. If a polygon has
more than 255 vertices, only the �rst 255 vertices are displayed.

2. When using the TurboSRX with a graphics accelerator it is possible for illegal
operations to cause the transform engine or scan converter hardware to enter
an unknown state. If this happens, Starbase will report an error the next time
it tries to use the hardware. You will see this as a Transform engine timed

out or Hardware/scan_converter time out error. These are Starbase errors
14 and 52 respectively. This is a very serious error condition. If the HP 98731
Device Driver is being used, this is a fatal error. When this error is discovered,
Starbase reports the error and aborts execution.

9-44 TurboSRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

9

If an application needs to take some emergency action before an untimely
termination, such as saving valuable data, the application should check for
these error conditions and take appropriate measures. Errors may be caught
by an application using the gerr_control procedure described in the Starbase
Reference manual.

It is also possible to avoid the termination completely if the application's
error handler does not return control to Starbase. It is, however, impossible
to proceed with any graphics e�orts using the accelerator until it is reset.

3. The HP 98731 driver does not support rendering o� the left-hand or top edge of
the display. Therefore, in X11, avoid moving an accelerated starbase window
o� these edges. In raw mode, make sure that the clip rectangle is set to prevent
rendering o� the top or left-hand edges.

TurboSRX 9-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

10

The TurboVRX Device Driver

Device Description

The TurboVRX Graphics Display Station is a graphics subsystem which
interfaces with a host SPU, utilizing a high-resolution 16 or 19 inch (1280�1024)
color display (purchased separately). The HP 98736 and HP 98766 Display
Controllers include a graphics accelerator. The TurboVRX supports the X
Window System and Starbase graphics libraries, and can also be used as a system
console. The host interface plugs into an I/O slot on the SPU, with a connecting
cable to the Display Controller. See the Introduction section of this manual for
systems supporting this controller and accelerator.

The TurboVRX Graphics Display Station is available in the following con�gura-
tions:

HP 98735A 24 image plane (frame bu�er).
24 planes Z-bu�er.
1 Transform Engine.

HP 98736A 24 image plane (frame bu�er).
24 planes Z-bu�er.
2 Transform Engines.

HP 98736B 24 image plane (frame bu�er).
24 planes Z-bu�er.
3 Transform Engines.

HP 98765A 24 image plane (frame bu�er).
24 planes Z-bu�er.
2 Transform Engines.

HP 98766A 24 image plane (frame bu�er).
24 planes Z-bu�er.
4 Transform Engines.

TurboVRX 10-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Double bu�ering can be enabled for up to 12-bits per bu�er. Dithering allows
the device to maintain image quality even when double bu�ering. The 24 bit
Z-bu�er provides one-pass hidden surface removal.

Series 300 and 400

Two Device Drivers are provided to access the TurboVRX Display Controller
which is supported on the Series 300 and Series 400:

hp98735|The HP 98735 Device Driver is used to access the graphics display
without using the graphics accelerator.

hp98736|The HP 98736 Device Driver is used to access the graphics display
using only the graphics accelerator.

Series 700

Two Device Drivers are provided to access the TurboVRX Display Controller
which is supported on the Series 700:

hp98765|The HP 98765 Device Driver is used to access the graphics display
without using the graphics accelerator.

hp98766|The HP 98766 Device Driver is used to access the graphics display
using only the graphics accelerator.

Note On the Series 700, you may use the hp98735 and hp98736 drivers
with the TurboVRX Display Controller. These will function the
same as the hp98765 and hp98766 drivers.

The HP 98736 and HP 98766 display systems are designed to provide accelerated
Starbase graphics within the XWindow System environment. The display system
supports the X Window System by providing window clipping, multiple color
maps, and multiple display modes.

10-2 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

The frame bu�er subsystem is a bit-mapped device organized as an array of
words, with each word representing a pixel on the display. The frame bu�er has
special hardware for:

Write enable/disable individual planes.
Video enable/disable individual planes.
Memory writes with speci�ed replacement rule.
Video blinking of individual planes.
Video blinking of individual color map locations.
Arbitrary sized rectangular memory to memory copies.

On the HP 98736 and HP 98766 accelerated display stations, the scan conversion
subsystem is implemented with custom VLSI to allow high-performance rendering
of vectors and polygons, in addition to the following features:

Gouraud Shading
Anti-aliasing
Texture Mapping
Alpha Transparency

The transform engine subsystem is implemented with parallel oating point
processors, each with local storage for instructions and data. The number of
engines varies with the con�guration, from a minimum of one to a maximum
of four transform engines. The transform engines help accelerate a variety of
functions:

Matrix Transformations
Shading Calculations
Spline Tesselation
Model Clipping
Capping
Contouring

Refer to the Starbase Reference Manual for detailed descriptions of these features.

TurboVRX 10-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

HP 98735 and HP 98765

Each display is organized as an array of integers, with each integer representing a
pixel on the display. In single bank mode, color map indices range from 0 to 255.
The color map is a RAM table that has 16, 256, or 4096 addressable locations
and is 24 bits wide. Thus, the pixel value in the frame bu�er addresses the color
map, generating the color programmed at that location.

In addition to the three frame bu�er banks of eight planes each, four overlay
planes are provided. These overlay planes have their own unique color map,
separate from the color map used for the image planes. This color map consists
of sixteen 24 bit entries, allowing the user to select sixteen colors from the full
palette of over 16 million choices. In addition, each entry in the overlay color
map may be set to be dominant or non-dominant.

When operating with the X window system, the hardware provides 15 separate
overlay/image color-map pairs. This allows up to 15 unique software color maps
to be simultaneously displayed in their respective windows. This is done using
a method that is transparent to the user. For more information on this feature,
see the \X Windows" chapter of the Starbase Graphics Techniques.

A dominant entry causes all pixels in the overlays set to that value to display the
color in the overlay map, regardless of values in the image planes below. A non-
dominant entry causes pixels with that value to display the color in the image
planes below.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, when the hp98735 driver is used on the system console, the Internal
Terminal Emulator (ITE) uses three of the overlay planes for alpha information.
This way there is no interaction between ITE text and images in the graphics
planes. To do graphics in the overlay planes the hp98735 device driver may be
opened directly to the overlay planes as if they were a separate device. Refer to
the section Setting up the Device in this chapter for more information.

Typically, you do not need to directly read or write pixels in the frame bu�er.
However, for those applications which require direct access, Starbase does provide
the gescape R_GET_FRAME_BUFFER, which returns the virtual memory address of
the beginning of the frame bu�er (this gescape is discussed in the appendix of
this manual). Frame bu�er locations are then addressed relative to the returned
address. The �rst word of the frame bu�er (word 0) represents the upper left
corner pixel of the screen. Word 1 is immediately to its right. Word 1279 is the

10-4 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

last (right-most) pixel on the top line. The next 768 words of the frame bu�er
are not displayable. Word 2048 is the �rst (left-most) pixel on the second line
from the top. The last (lower right corner) pixel on the screen is word number
2,096,383.

If writing to the HP 98735 or HP 98765 image bu�er and not in CMAP_FULL color
map mode, only one bank can be written at a time. The bank to be written must
be established by a call to bank_switch. When writing the pixel value, the byte
position of the value to be written must be appropriate for each bank:

When writing to bank 0, the pixel value is in the least signi�cant byte of the
integer value (byte position 0).

When writing to bank 1, the pixel value is in byte position 1 of the integer
value.

When writing to bank 2, the pixel value is in byte position 2 of the integer
value.

All three banks for one pixel can be written simultaneously by packing all three
bank values for the pixel into the integer value and having the color map mode
as CMAP_FULL before writing.

The o�-screen portion of the frame bu�er may be accessed via the gescape,
R_FULL_FRAME_BUFFER. See the Gescape section in this chapter. Care should be
taken when using this gescape since other processes, Starbase, and the window
system access the frame bu�er o�-screen memory.

TurboVRX 10-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Display modes

The following two tables summarize the supported display modes with the
hp98735, hp98765, hp98736 and hp98766 device drivers:

Table 10-1. Display Modes Supported (Single Buffer)

Shade Mode Display Mode Color Map Used

CMAP NORMAL 8 Bit 256 Entry

CMAP MONOTONIC 8 Bit 256 Entry

CMAP FULL 8:8:8 3�256 Entry

Table 10-2. Display Modes Supported (Double Buffer)

Shade Mode Plane/Bu�er Color Map Used

CMAP NORMAL 1,2,3,4 256 Entry

CMAP NORMAL 6,8 256 Entry

CMAP NORMAL 12 4096 Entry

CMAP MONOTONIC 1,2,3,4 256 Entry

CMAP MONOTONIC 6,8 256 Entry

CMAP MONOTONIC 12 4096 Entry

CMAP FULL 8 (3:3:2) 3�256

CMAP FULL 12 (4:4:4) 3�256

Aside from support of display modes used on previous devices, a new display
mode is supported:

12-bit double-bu�ered indexing in CMAP_MONOTONIC and CMAP_NORMAL shade
modes. (In a single-bu�ered, image- or combined-mode X server, this display
mode is available as a single-bu�ered mode.)

Note This new display mode is discussed in the Starbase Graphics
Techniques manual.

10-6 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

HP 98736 and HP 98766 Advanced Features

Texture mapping

There are two restrictions in using texture maps on the devices.

The texture map used by the device must have a size which is a power of two
in both directions (the s size and t size need not be equal) and not larger than
512. If a texture map is speci�ed with (de�ne texture) whose axis size is not
a power of two and is less than 512, then that axis is \up sampled" to a size
which is a power of two. If the non power of two size is larger than 512, then
it is \down sampled" to 512.

The texture map must reside in contiguous o� screen memory to be utilized.
Every attempt is made to place the user's texture map into o� screen memory
as it was speci�ed. If su�cient memory cannot be obtained, the texture map
is down sampled until su�cient memory can be allocated. This down sampling
is agged by a non-unary return from the texture_map or bf_texture_map

procedure. The value returned is one more than the number of down samplings
that were required. If no memory is available, then an error is generated and
the default texture map is used.

There are three types of texture mapping on the HP 98736 or HP 98766 devices:

point sampled (POINT)
rectangular image pyramid (RIP) mapping
environment mapping

These are selectable via the TEXTURE_CONTROL gescape. The tradeo�s between
the �rst two types are picture quality and amount of o�screen memory required.

Environment mapping provides a means of mapping a 3-dimensional environment
onto a 3-dimensional surface as if that surface was contained in that environment.

Note This new texture mapping mode is discussed in the Starbase
Graphics Techniques Concepts and Tutorials manual.

The simplest method is to point sample the texture. This is done by computing
(s ,t) at the center of each pixel. The (s ,t) values are then used to �nd a single
point in the texture map. When adjacent pixels take large steps in texture space,
aliasing of texture maps becomes a problem.

TurboVRX 10-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

The aliasing problem is reduced by �ltering the texture map. This �ltering
is accomplished by the rectangular image pyramid method and is paid for by
increased use of o� screen memory.

An image pyramid map is created by recursively �ltering the original texture
map along each axis independently. This technique is referred to as a rectangular
image pyramid (RIP) map. This method has the advantage that the area covered
by a pixel in the texture space will be approximated by a rectangle instead of
a square. The disadvantage of this approach is that four times the o� screen
memory is required to store the texture map, this limits the maximum size of
your de�ned texture map to 256x256.

The TEXTURE_CONTROL gescape allows you to specify a pre-�ltered RIP map so
that the application can use its own �ltering algorithm. Texture maps can also be
explicitly downsampled by the application, by calling the TEXTURE_DOWNSAMPLE

gescape, and can be retrieved from o� screen by the TEXTURE_RETRIEVE

gescape.

Anti-aliasing

There are two anti-aliasing modes on the devices that may be accessed from the
line_filter and perimeter_filter procedures. The following index values
activate the �lters in described manner:

0 One-pixel-wide output. That is, anti-aliasing is turned o�.

1 Three-pixel-wide output. This mode produces three pixels for each major
axis increment. A blending value (�) is calculated for each pixel to
be drawn and the pixel color is blended with the frame bu�er color by:
��pixel color+(1��)�frame bu�er color .

2 Three-pixel-wide output. This mode produces three pixels for each major
axis increment. A blending value (�) is calculated for each pixel to
be drawn and the pixel color is blended with the frame bu�er color by:
��pixel color+frame bu�er color .

Contouring

There are two restrictions to using contouring on the hp98736 or hp98766 drivers:

The only primitives that support contouring are polyhedron_with_data and
polygon_with_data3d in the form of triangular and/or quadrilateral facets.

10-8 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

The maximum number of entries supported in the contour table is 64. For the
interpolated contour table case, if more than 64 entries are attempted to be
de�ned, only the �rst 64 will be recognized and the linear interpolation will be
over those �rst 64 entries. For the de�ned contour table case, if more than 64
entries are attempted to be de�ned, only the �rst 64 will be recognized and
the scalar contour transitions values for those �rst 64 entries will be used for
contouring.

Since contoured primitives are processed di�erently from non-contoured primi-
tives, the performance for rendering contoured primitives will di�er from non-
contoured primitives.

Functional Conflicts

Some functional conicts exist between the various advanced features supported
by the HP 98736 and HP 98766 device drivers. Alpha blending and texture
mapping use the same hardware, therefore the two features cannot be enabled
simultaneously. When alpha blending is enabled, the device driver will
automatically change the interior_style from INT_TEXTURE to INT_SOLID.
When texture mapping is enabled, alpha transparency will be disabled by the
device driver. Texture mapping and shading can be enabled concurrently, as
can alpha transparency and shading. Certain restrictions are necessary for anti-
aliased primitives, which are allowed only in CMAP_FULL and CMAP_MONOTONIC

modes. At least eight planes are required for anti-aliasing in CMAP_MONOTONIC,
and twelve planes for CMAP_FULL. Changing to CMAP_NORMAL will turn o� anti-
aliasing, and enabling anti- aliasing in CMAP_NORMAL is not allowed. Contouring,
deformation, model clipping and capping are all completely independent features
which can be combined in any order.

High Performance Bit-Per-Pixel Support

The TurboVRX provides device support for high speed bit-per-pixel block reads
and writes. Bit-per-pixel mode is set by using the R_BIT_MODE gescape. When
in this mode, one byte of data represents data for eight pixels. See the description
of this gescape for more details.

TurboVRX 10-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Multiple-Plane Bit-Per-Pixel Support

The gescape GR2D_PLANE_MASK de�nes a mask that allows multiple planes to be
read or written. The de�nition of GR2D_PLANE_MASK requires data array space
for each plane that will be read or written, and each is done individually. See the
GR2D_PLANE_MASK de�nition for more details.

Bit-per-Pixel Replacement Rule per Plane

The TurboVRX supports a replacement rule per plane while doing bit-per-pixel
block writes. This allows a replacement rule to be set individually for each plane.
See the description of the gescape GR2D_PLANE_RULE for more details.

Setting up the TurboVRX for the Series 300/400

The hp98735 and hp98736 device drivers can be used with the graphics display
con�gured only in DIO-II address space. Refer to the Graphics Devices section
of the Installing Peripherals Manual for a description of DIO-II address space.
The graphics interface card may be installed in any DIO II slot in the computer's
backplane or in any I/O slot of the expander.

If the TurboVRX is con�gured as an external display, then there will not be
an Internal Terminal Emulator (ITE) for that device. Since it is the ITE that
normally initializes the display, external devices must be reset after power-up by
running a simple Starbase program with a mode of RESET_DEVICE in the gopen
call. It may also be necessary to run this program after running an application
which manipulated the overlay color map, such as a windows application program.
An example program which could be called from /etc/rc during power-up is
given at the end of this section. For more details concerning the e�ects of
RESET_DEVICE, see the Device Initialization information in this section.

10-10 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Example Program to Reset the HP 98736

/*

* Starbase program: reset98736.c

* Compile: cc -o reset98736 reset98736.c -ldd98736 -lsb1 -lsb2 -lm

* Destination: /usr/bin

* Execute: add line to the /etc/rc -

* /usr/bin/reset98736 /dev/crt.external

*

* Example program to be put in /etc/rc for resetting

* an external HP 98736 device during power-up.

*/

#include hstarbase.c.hi

main(argc,argv)

int argc; char *argv[];

{

int fildes;

if ((fildes = gopen(argv[1],OUTDEV,hp98736,INIT|RESET_DEVICE))< 0)

printf("External HP 98736 %s initialization failed.\\n", argv[1]);

else {

printf("External HP 98736 %s initialization succeeded.\\n",argv[1]);

gclose(fildes);

}

}

TurboVRX 10-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

DIO-II Switch Settings

The graphics interface card has a single 8-bit address select switch. The switches
are labeled (left to right) from MSB to LSB. The leftmost switches represent the
most signi�cant bits, hence, switch 1 is the most signi�cant bit of the address, and
switch 8 is the least signi�cant. Switches in the open position represent 0's while
switches not in the open position represent 1's. See the address table following
for the switch-setting to address mapping.

The TurboVRX can only be used in DIO-II address space. In this mode, the eight
switches determine the DIO-II select codes to be used. A TurboVRX device will
use three DIO-II select codes. Both the frame bu�er and control space reside in
the select code areas. The control space requires 8 Mbytes of space, starting at
CTL_BASE. The eight switches described above determine the address of CTL_BASE.
The frame bu�er also requires 8 Mbytes of space, starting at FB_BASE.

10-12 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Table TurboVRX-3. DIO-II Control Space Settings

Switch Setting
MSB to LSB

CTL_BASE FB_BASE DIO-II
Select Code

Device File
Minor Number

1000 0100 $0100 0000 $0180 0000 132 $840200

1000 1000 $0200 0000 $0280 0000 136 $880200

1000 1100 $0300 0000 $0380 0000 140 $8c0200

1001 0000 $0400 0000 $0480 0000 144 $900200

1001 0100 $0500 0000 $0580 0000 148 $940200

1001 1000 $0600 0000 $0680 0000 152 $980200

1001 1100 $0700 0000 $0780 0000 156 $9c0200

1010 0000 $0800 0000 $0880 0000 160 $a00200

1010 0100 $0900 0000 $0980 0000 164 $a40200

1010 1000 $0a00 0000 $0a80 0000 168 $a80200

1010 1100 $0b00 0000 $0b80 0000 172 $ac0200

1011 0000 $0c00 0000 $0c80 0000 176 $b00200

1011 0100 $0d00 0000 $0d80 0000 180 $b40200

1011 1000 $0e00 0000 $0e80 0000 184 $b80200

1011 1100 $0f00 0000 $0f80 0000 188 $bc0200

1100 0000 $1000 0000 $1080 0000 192 $c00200

1100 0100 $1100 0000 $1180 0000 196 $c40200

1100 1000 $1200 0000 $1280 0000 200 $c80200

1100 1100 $1300 0000 $1380 0000 204 $cc0200

1101 0000 $1400 0000 $1480 0000 208 $d00200

1101 0100 $1500 0000 $1580 0000 212 $d40200

1101 1000 $1600 0000 $1680 0000 216 $d80200

1101 1100 $1700 0000 $1780 0000 220 $dc0200

1110 0000 $1800 0000 $1880 0000 224 $e00200

1110 0100 $1900 0000 $1980 0000 228 $e40200

1110 1000 $1a00 0000 $1a80 0000 232 $e80200

1110 1100 $1b00 0000 $1b80 0000 236 $ec0200

1111 0000 $1c00 0000 $1c80 0000 240 $f00200

1111 0100 $1d00 0000 $1d80 0000 244 $f40200

1111 1000 $1e00 0000 $1e80 0000 248 $f80200

1111 1100 $1f00 0000 $1f80 0000 252 $fc0200

TurboVRX 10-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

A DIO-II display may be used as the system console or as an external display.
In order to use the display as the system console, it must be con�gured as the
�rst DIO-II display in the system, and there must be no DIO-I console, or remote
terminals. Being the �rst DIO-II device means that it has the lowest DIO-II select
code in the system. In order to use a TurboVRX as a DIO-II system console,
select code 132 is recommended.

Bus Master Daisy Chain

The Graphics Interface card for the TurboVRX supports DMA transfers. This
capability requires the interface card to be inserted into the bus master daisy
chain. The daisy chain position is controlled on the interface card by the set of
jumpers closest to the DIO-II connector. The jumper position selects one of the
following positions: A, B, C, D, E, and F. The CPU card also has bus master
daisy chain jumpers, which can be set to MC, A, B, and C. The card must always
be the highest position in the daisy chain, and no intervening unused positions
in the chain are allowed. The table below shows the suggested positions for the
master bus daisy chain. The CPU DMA controller card resides at position D,
so that position should not be used for the Graphics Interface. If your system is
utilizing DOS or VME controllers, check the respective documentation for daisy
chain position requirements.

Table TurboVRX-4. DIO-II Control Space Settings

Interfaces Interface 1
Position

Interface 2
Position

Interface 3
Position

2 D E |||

3 D E F

Caution Failure to select the daisy chain positions can cause the system
to panic or halt unexpectedly!

10-14 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

System Parameters

It is necessary to increase some of the HP-UX tunable system parameters due to
the size of the DIO-II mapping of a TurboVRX. For details on how to recon�gure
your kernel, refer to the HP-UX System Administrators Manual (particularly
the Con�guring HP-UX section in The System Administrators Toolbox and the
System Parameters Appendix .

It is essential that you consult the above referenced HP-UX documentation before
you attempt to recon�gure your system. It is possible to adversely a�ect your
HP-UX system if a mistake is made. Make sure you have an understanding of
these procedures before proceeding.

Setting up the TurboVRX on the Series 700

The HP98765A/HP98766A graphics interface card may be installed in any SGC
slot in the computer's backplane or in any I/O slot of the expander. There are
no user adjustable settings on this interface card.

If the HP 98766 is con�gured as an external display, then there will not be
an Internal Terminal Emulator (ITE) for that device. Since it is the ITE that
normally initializes the display, external devices must be reset after power-up by
running a simple Starbase program with a mode of RESET_DEVICE in the gopen
call. It may also be necessary to run this program after running an application
which manipulated the overlay color map, such as a windows application program.
An example program which could be called from /etc/rc during power-up is
given at the end of this section. For more details concerning the e�ects of
RESET_DEVICE, see the Device Initialization information in this section.

TurboVRX 10-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Example Program to Reset the HP 98766

/*

* Starbase program: reset98766.c

* Compile: cc -o reset98766 reset98766.c -ldd98766 -lsb1 -lsb2 -lm

* Destination: /usr/bin

* Execute: add line to the /etc/rc -

* /usr/bin/reset98766 /dev/crt.external

*

* Example program to be put in /etc/rc for resetting

* an external HP 98766 device during power-up.

*/

#include hstarbase.c.hi

main(argc,argv)

int argc; char *argv[];

{

int fildes;

if ((fildes = gopen(argv[1],OUTDEV,hp98766,INIT|RESET_DEVICE))< 0)

printf("External HP 98766 %s initialization failed.\\n",argv[1]);

else {

printf("External HP 98766 %s initialization succeeded.\\n",argv[1]);

gclose(fildes);

}

}

Note A SGC display may be used as the system console or as an
external display.

10-16 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further information. The name of this special device
�le is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device �les, they are normally created by the system
administrator.

Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory.

Any name may be used for the special device �le, however the name that is
suggested for these devices is crt. The following examples will create a special
device �le for this device. Remember that you must be superuser (the root login)
to use the mknod command.

mknod on the Series 300

Since the device is in DIO-II address space, (refer to the Switch settings section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of 0xSc0200 where Sc is the external select
code in hexadecimal notation.

mknod /dev/crt c 12 0xSc0200

The hp98736 device driver may also be used for the overlay planes in graphics
mode. The minor number may be set to cause Starbase drivers to use either three
or four overlay planes. Note that since the terminal emulator and the window
system operate in the overlay planes also, there will be interactions with these
processes if a graphics driver is opened in this manner while these processes are
present.

To create a device �le that will allow the HP 98736 device to use only three
overlay planes, the following command should be used:

mknod /dev/ocrt c 12 0xSc0201

To create a device �le that will allow the HP 98736 device to use all four overlay
planes, the following command should be used:

mknod /dev/o4crt c 12 0xSc0203

TurboVRX 10-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

The Sc in all of these example is determined by the switch settings on the host
interface, as previously described in the DIO-II Control Space table.

mknod on the Series 700

Following are some examples of using the mknod entry for the HP-UX Operating
System.

For an SPU with only one SGC interface slot (e.g. Model 720), a sample mknod
entry would be:

/etc/mknod /dev/crt c 12 0x100000

For an SPU with two SGC interface slots, a sample mknod entry for the other
slot would be:

/etc/mknod /dev/crt c 12 0x000000

10-18 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Linking the Driver

Shared Libraries

The /usr/lib directory contains the shared device driver �les named: libdd98735.sl,
libdd98736.sl, libdd98765.sl and libdd98766.sl.

The device driver will be explicitly loaded at run time by compiling and linking
with the starbase shared library /usr/lib/libsb.sl, or by using the -l option
-lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le names:
libdd98735.a, libdd98736.a libdd98765.a, or libdd98766.a.

You can link the device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libdd<device driver> * an appropriate

relative path name * the -ldd<device driver> option with the LDOPTS

environmental variable exported and set to -a archive.

TurboVRX 10-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

This driver also requires the math library to be linked with C programs. All pro-
grams must also be linked with the Starbase graphics libraries /usr/lib/libsb1.a
and /usr/lib/libsb2.a, or use the -l option -lsb1 and -lsb2 . The device
driver needs to precede the graphics libraries when linking, as shown in the ex-
amples below.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldd<device driver> -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldd<device driver> -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd<device driver> -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

The parameters to gopen determine which device driver and display device are
actually used.

10-20 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

X Windows

These display systems are designed to provide accelerated Starbase graphics
within the X Window System environment. The display systems support the X
Window System by providing window clipping, multiple color maps, and multiple
display modes.

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes. The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

TurboVRX 10-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Table 10-3. HP 98735 and HP 98736 Display Types

Series 300/400 TurboVRX [T1] HP 98735A High-Res Color

Series 300/400 TurboVRX [T2] HP 98736A High-Res Color

Series 300/400 TurboVRX [T3] HP 98736B High-Res Color

Table 10-4. HP 98765 and HP 98766 Display Types

Series 700 TurboVRX [T2] HP 98765A High-Res Color

Series 700 TurboVRX [T4] HP 98766A High-Res Color

The supported server modes are Combined and Overlay.

Table 10-5. Windows in Overlay Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

3 No PseudoColor � � one color reserved for
transparency in
combined mode

4 No PseudoColor � � one color reserved for
transparency in
combined mode

The supported server modes are Combined and Image.

10-22 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Table 10-6. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No PseudoColor � �

Yes (4/4) PseudoColor � �

16 No Not supported

Yes (8/8) PseudoColor �

24 No DirectColor �

Yes (12/12) PseudoColor � 12-bit indexing

DirectColor �

X11 Cursors and Starbase Echos

The following list shows default positions where the Starbase echo and X11 cursor
(called echo and cursor, respectively) reside for each of the X11 server operating
modes.

TurboVRX Display

Overlay Mode

If overlay-plane X11 window is opened, echo shares three or four overlay planes.

If image planes are opened and X11 uses three overlay planes, vector echo
resides in cursor plane.

If image planes are opened and X11 uses four overlay planes, vector echo resides
in image planes.

X11 cursor uses hardware cursor.

Image Mode

If image-plane X11 window is opened, raster echo resides in image planes and
vector echo resides in cursor plane.

TurboVRX 10-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

X11 cursor uses hardware cursor.

Stacked Screen Mode

Not supported.

Combined Mode

If overlay-plane X11 window is opened, echo shares three or four overlay planes.

If image-plane X11 window is opened, raster echo resides in image planes.

If image-plane X11 window is opened and X11 uses three overlay planes, vector
echo resides in cursor plane.

If image-plane X11 window is opened and X11 uses four overlay planes, vector
echo resides in overlay planes.

X11 cursor uses hardware cursor.

Usage and Restrictions

The HP 98735 and HP 98765 Device Drivers do not support:

Z-bu�ering
Shading
The transform engine(s)
Texture mapping
Contouring
Deformation
Anti-aliasing
Model clipping
Capping

If the device is opened to the overlay planes, these device drivers also do not
support:

Bank switching.
Double bu�ering when using three overlay planes. (Double bu�ering in the
overlay planes is supported to four overlay planes).

10-24 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Transparency Index

There are four overlay planes in the HP 98735 and HP 98765 displays. Even
though these planes can display 16 colors simultaneously, only 15 are available
because one color is reserved for the transparency color. By default, this color is
index 7 or 15, depending on the overlay depth. When the transparency color's
index is written into the overlay planes, the observed color is that of the image
planes.

X Window System See Through Color

The X Window system always uses color 7 (15 for 4-plane devices) as the see-
through color. This cannot be changed.

HP 98736 and HP 98766

When a device �le for the overlay planes is used at gopen time, many Starbase
features will be unavailable because of the small number of frame bu�er planes.
These include shading, anti-aliasing, texture mapping, depth cueing, and bank
switching.

A maximum of 32 distinct gopen calls may be initiated simultaneously using
the hp98736 or hp98766 device drivers from any combination of one or more
processes. Additional processes may use the unaccelerated device via the device
driver, which has no limit on the number of gopens.

Cursors

The hp98736 and hp98766 device drivers implement cursors using either the
hardware cursor or overlayed software cursors. If no processes have opened all
four overlay planes, then the fourth overlay plane is used for overlayed software
cursors.

You can think of the fourth overlay plane used for cursors as a separate cursor
plane. Any data in the cursor plane will be displayed over data in the graphics
planes. Data in the other three overlay planes will be displayed over data in the
graphics planes and the cursor plane. For example, suppose a graphics application
is running in the graphics planes while the window manager is running in three of
the overlay planes. If the application has a Starbase cursor in the overlay cursor
plane, then the cursor will always be visible inside regions of see-thru because

TurboVRX 10-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

the cursor has display priority over the graphics. If the cursor is moved outside
of regions of see-thru then it is not visible since the non-see-thru regions in the
overlay planes have display priority over the cursor plane.

The HP 98736 and HP 98766 Display Stations have a hardware cursor that
supports all cursor types except rubber-band line and rubber-band box. There
is only one hardware cursor available. Usage of the hardware cursor is de�ned as
follows:

If an application is running in a Starbase environment only (i.e. X Windows
are not running), then the hardware cursor is given to the �rst process that
attempts to use a raster or full screen crosshair cursor.

By default, if the X Window system is running, then the window system gets
usage of the hardware cursor.

There is a mechanism for the user to control usage of the hardware cursor via
the gescape, R_ECHO_CONTROL. This gescape is discussed in the appendix of
this manual.

If the hardware cursor is already being used by another process, then overlayed
software cursors are used by the hp98736 or hp98766 driver. If the fourth overlay
plane is not available for cursors, then an error will be generated when any
attempts are made to turn on the cursors.

If a process is using the hardware cursor and it switches to using a non-raster
cursor, it retains control of the hardware cursor, but the cursor is drawn in the
fourth overlay plane using software. If the fourth overlay plane is not available
for cursors, an error is generated and non-raster cursors cannot be used. When
the process switches back to a raster cursor, it will again use the hardware cursor.

If an application never uses cursors or uses non-raster cursors exclusively, the
driver will never attempt to allocate the hardware cursor. However, once the
driver has allocated the hardware cursor, the driver does not relinquish control
of the hardware cursor until gclose time. While it is not being used, it simply
remains inactive, no other process can use the hardware cursor once it has been
assigned to a process.

10-26 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

If allocation of the hardware cursor was not successful, then resources for
the software cursor area are allocated (that is, o�screen areas for raster echo
de�nitions). The following functions will cause the driver to attempt to allocate
either the hardware cursor or software cursor resources:

echo_type

define_raster_echo

R_DEF_ECHO_TRANS

R_ECHO_MASK

R_ECHO_FG_BG_COLORS

R_OV_ECHO_COLORS

Once and application has used a rubber-band echo type, it will thereafter use
only software cursors, even if the echo type is switched back to a non-rubber-
band type.

Device Initialization

Parameters for gopen

Path - This is the name of the special device �le created by the mknod command
as speci�ed in the device setup section (for example, /dev/crt.)
Kind - This indicates the I/O characteristics of the device, which may be one
of the following types:

INDEV Input only.
OUTDEV Output only
OUTINDEV Input and Output.

Input mode is only possible when the driver is opened to an X window.
Driver - The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire the device
and by default load the accelerated driver. For example:

TurboVRX 10-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver. In this case
the UNACCELERATED/ACCELERATED ag is ignored. For example:

For the Series 300

"hp98736" for C
'hp98736'//char(0) for FORTRAN77
'hp98736' for Pascal

For the Series 700

"hp98766" for C
'hp98766'//char(0) for FORTRAN77
'hp98766' for Pascal

Mode - The mode control word consists of several ag bits ORed together.
Listed below are those ag bits which have device-dependent actions. Those
ags not discussed below operate as de�ned by the gopen procedure.
SPOOLED - Cannot be used on raster devices, therefore this ag has no e�ect
with this driver.
0 - Open the device without clearing the screen. This will set the color map
mode to CMAP_NORMAL, but will not initialize the color map itself. In an X
window, the color map that was associated with the window before gopen

will be used by Starbase, without initialization.
INIT - Open and initialize the device as follows:
1. Clear overlay planes if opened to overlay planes.
2. Clear image planes if opened to image planes.
3. Reset the color map to its default values (opening to the image planes

does not a�ect the overlay color map).
4. Enable the display for reading and writing.
5. In an X window, a new color map is created and initialized.
6. If opening the image planes, set the overlay plane background color (pixel

value 0) to be transparent.
RESET_DEVICE - Open and reset the device as follows:

10-28 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

1. Reset the graphics device hardware.
2. Clear overlay planes if opened to overlay planes.
3. Clear image planes if opened to image planes.
4. Make all color map entries for overlay planes transparent if opened to

image planes.
5. Reset the color map to its default values.
6. Enable the display for reading and writing.
7. In an X window, a new color map is created and initialized.

Note The RESET_DEVICE ag bit should be used with caution, as it
may adversely a�ect any other processes using the device. This
ag bit is intended to reset a device completely and should only
be necessary for devices in an unknown state, such as a device
powered up in an external I/O space. Most programs should not
use this ag bit.

Syntax Example

To open and initialize a TurboVRX device for output:

For C Programs:

fildes = gopen("/dev/crt",OUTDEV,NULL,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(0),OUTDEV,char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'',INIT);

TurboVRX 10-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Special Device Characteristics

For Device Coordinate operations, location (0,0) is the upper-left corner of the
screen or window with x-axis values increasing to the right and y-axis values
increasing down. The lower-right corner of the full-screen visible display is
therefore (1279,1023).

Offscreen Memory Usage

O�screen memory is managed by a global resource manager to insure that
multiple processes do not step on each other when using the o�screen. O�screen
is used by the device driver for:

polygon �ll patterns
texture maps
raster echo de�nitions
raster character fonts
texture maps
X Window system (This uses o�screen memory extensively)

Refer to the gescape manual pages R_OFFSCREEN_ALLOC and R_OFFSCREEN_FREE

for information on using the o�screen areas for application use.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 or 4 overlay planes, or 24
image planes. The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

10-30 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Raster Echo Default

The default raster echo is the 8x8 array:

255 255 255 255 0 0 0 0

255 255 0 0 0 0 0 0

255 0 255 0 0 0 0 0

255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0

0 0 0 0 0 255 0 0

0 0 0 0 0 0 255 0

0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64�64 pixels. The default drawing
mode for the raster echo is 7 (or).

Color Planes Defaults

For a Starbase gopen to the image planes, the default con�guration is an 8-plane
color mapped system. By default, all planes in the �rst bank are display enabled
as well as write enabled. For a Starbase gopen to the overlay planes, the default
is a 3-plane or 4-plane system, with the opened planes write and display-enabled.

For an X window, the default is consistent with the Visual type of the window
being opened.

Semaphore Default

Semaphore operations are enabled.

TurboVRX 10-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Line Type Default

The default line types are created with the bit patterns shown below:

Line Type Pattern Hexadecimal Pattern
0 11111111 11111111 $FFFF

1 11111111 00000000 $FF00

2 10101010 10101010 $AAAA

3 11111111 11111010 $FFFA

4 11111111 11101010 $FFEA

5 11111111 11100000 $FFE0

6 11111111 11110110 $FFF6

7 11111111 10110110 $FFB6

Default Color Map

For Starbase gopen calls, if the fourth gopen parameter is zero (0) then the
current hardware color map is used. For X window gopen calls, the currently
associated color map is used.

10-32 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

If the fourth gopen parameter is INIT, then the color map is initialized to the
default values shown below:

Table HP98736-66-5. Default Color Table

Index Color red green blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0

Use the inquire_color_map procedure to see the rest of the 255 colors.

When INIT is used in the shade_mode procedure call, the color map initialization
is based on the value of the mode parameter:

CMAP_NORMAL Same as the table above. Only one bank can be displayed at
a time.

TurboVRX 10-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

CMAP_MONOTONIC The color map will be initialized as:

for (i=0; i<256; i++) {

cmap[i]red =

cmap[i]green =

cmap[i]blue = i/255.0;

}

Only one bank can be displayed at a time.

CMAP_FULL The color map will be initialized as 8 bits red, 8 bits green, and
8 bits blue. All three banks of eight planes will be displayed.

Red, Green and Blue

Each �le descriptor opened as an output device has a color table associated with
it. If multiple �le descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed via another �le descriptor path.

For Starbase procedures that have parameters for red, green and blue, the way
the actual color is chosen depends on the current shade_mode setting.

CMAP_NORMAL The color map is searched for the color that is closest in RGB
space to the one requested. That color map index is written to
the frame bu�er for subsequent output primitives. It is more
e�cient to select a color with an index rather than specifying
a color with red, blue, and green values in this mode because
it takes extra time to �gure out which index in the color table
most closely matches the speci�ed color. In the case of a
call to fill_color, a dither cell will be computed that most
closely approximates the requested RGB combination, using
the number of color indexes permitted by fill_dither.

CMAP_MONOTONIC The red, green, and blue value is converted to an intensity
value using the equation:

0.30*red+0.59*green+0.11*blue

This intensity is converted to an index value by mapping
intensity 0.0 to the minimum index set be shade_range and
intensity 1.0 to the maximum index set by

10-34 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

shade_range. This mode is useful for displaying a high
quality monochrome picture on an 8-plane system from data
that produces a high quality color picture on a 24-plane
system.

CMAP_FULL The color is converted to a color map index by the equation:

index=(round(red*32767)>>7) & 0xE0 |

(round(green*32767)>>10) & 0x1C |

(round(blue*32767)>>13)

This equation will be used in this mode regardless of whether
the user has modi�ed the color map.

Note Multiple gopen calls of an X window with the mode parameter
set to zero will share the same X color map resource.

TurboVRX 10-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Starbase Functionality

Commands not Supported on the HP 98735 and HP 98765

alpha_transparency

backface_control
bf_alpha_transparency

bf_control

bf_texture_index

contour_enable

define_contour_table

define_texture

deformation_mode

depth_cue

hidden_surface

light_ambient

light_model

light_source

light_switch

line_filter

perimeter_filter

set_capping_planes

set_model_clip_indicator

set_model_clip_volume

shade_range

surface_model

texture_index

texture_viewport

texture_window

viewpoint

zbuffer_switch

10-36 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Exceptions to Standard Starbase Support

HP 98735 and HP 98765

The following commands are supported under the listed conditions:

block_read, block_write The raw parameter for the block_read and
block_write commands is used to enable the
use of the bit per pixel mode speci�ed via the
R_BIT_MODE gescape. The raw parameter for the
block_write command is used to enable the use
of the skipcount speci�ed via the
BLOCK_WRITE_SKIPCOUNT gescape.

pattern_define 4�4 is the largest supported pattern.

shade_mode The color map mode may be selected, but shading
cannot be turned on. Dithering is available through
the hp98735 or hp98765 driver for 12-bit indexing
mode.

text_precision Only STROKE TEXT precision is supported.

vertex_format The use parameter must be zero, any extra coordi-
nates supplied will be ignored.

HP 98736 and HP 98766

The following commands are supported under the listed conditions:

block_read, block_write The raw parameter for these commands is used
to enable the use of the bit per pixel mode
speci�ed via the R_BIT_MODE gescape. The raw
parameter for block_write can also be used to
enable use of the skipcount speci�ed via the
BLOCK_WRITE_SKIPCOUNT gescape.

If bank_switch is used to select bank 3 (the Z-
bank), all subsequent block writes and block reads
will be done using word per pixel mode. This
means that block_write and block_read will
assume that the data is organized in 32 bit words,

TurboVRX 10-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

and (w * h) words will be transfered between
the Z-bu�er and system memory. The bu�er
address should be point to a word boundary.
Words that are read from the the Z-bu�er will
contain the Z-bu�er data in the 3 most signi�cant
bytes of each word, with the least signi�cant byte
unde�ned. Similarly, data being written to the
Z-bu�er should contain the data to be written in
the three most signi�cant bytes of each word.

inquire_fb_configuration An HP 98736 device running the HP 98736 device
driver, or an HP 98766 device running the HP
98766 device driver, will report himage banksi as
four, since the system has 24 display planes and
24 Z-bu�er planes (the Z-bu�er behaves as one
bank even though it is 24 planes deep). The dedi-
cated Z-bu�er can be accessed with block_write,
block_read, and block_move. The Z-bu�er may
also be selected for read/write using bank_switch.
The Z-bu�er may not be displayed. The graph-
ics accelerator cannot render to the Z-bu�er, for
example, polygons or other drawing primitives.

inquire_current_position When rendering lines of width greater than 0,
the current position is not valid. Set line_width
to zero (0) and perform a move2d to ensure the
current position is valid.

interior_style If the polygon �ll type is INT HATCH then the
following functionality will not work correctly:

Hidden surface removal.
Shading and lighting.
Depth cueing.
Backfacing attributes and culling.
Texture Mapping

Splines, polyhedra, quadrilateral meshes, and tri-
angular strips will not be hatched. Performance
is also degraded in this mode.

10-38 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

shade_mode Dithering is not available in CMAP_MONOTONIC 12
bit indexing mode. Attempting to dither with
more than one color in this mode will yield
the same results as dithering with one color.
Dithering is available through the hp98735 or
hp98765 drivers for 12 bit indexing mode.

text_precision Only STROKE TEXT precision is supported.

Number of Light Sources

The hp98736 and hp98766 device drivers support up to �fteen point light sources,
plus one ambient light source.

Fast Alpha and Font Manager

The hp98735 and hp98765 device drivers support raster text calls from the fast
alpha and font manager libraries. These calls may be made while running in the
overlay or image planes. Since raster fonts consist of one byte per pixel, image
plane raster text is written only to the currently selected bank. This is similar
to the operation of other raster functions, such as block_write. Fast alpha
and font manager fonts can be optimized. See the Fast Alpha/Font Manager's
Programmer's Manual for further information.

Th HP 98736 and HP 98766 device drivers do not support raster text calls from
the Fast Alpha and Font Manager library.

TurboVRX 10-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Gescapes

The following gescape functions are supported by the TurboVRX device
drivers:hp98735, hp98736, hp98765 and hp98766. Detailed information about
these functions can be found in the appendix of this manual.

BLINK_INDEX|Blink an individual colormap index
BLINK_PLANES|Blink selected image planes (Blink rate is 3.75 Hz)
BLOCK_WRITE_SKIPCOUNT - Specify byte skip count during block write
GR2D_DEF_MASK|De�ne mask for three operand replacement rule
GR2D_MASK_ENABLE|Enables three operand replacement rule and current mask
GR2D_MASK_RULE|De�ne three operand replacement rule
GR2D_OVERLAY_TRANSPARENT|Turns on/o� transparency of zero valued pixels
GR2D_PLANE_MASK|Enable multi-plane bit/pixel block read/writes
GR2D_PLANE_RULE|De�ne an independent replacement rule per plane
GR2D_REPLICATE|Allows pixel replication during block moves
INQ_12_BIT_INDEXING|Indicates if display mode is 12 bit indexing
PAN|Places display in 1024�1024 mode and shifts upper left corner 1024 pixels
to the right in frame bu�er.
PLUG_ACCELERATED_PIPELINE|Controls the rendering of the graphics acceler-
ators into the frame bu�er.
R_BIT_MASK|De�nes a bit mask for bit per pixel operations
R_BIT_MODE|Enables and disables bit per pixel mode
R_DEF_ECHO_TRANS|De�ne raster echo transparency
R_DEF_FILL_PAT|De�ne �ll pattern
R_ECHO_CONTROL|Control hardware cursor allocation
R_ECHO_FG_BG_COLORS|De�ne cursor attributes
R_ECHO_MASK|De�ne cursor mask
R_FULL_FRAME_BUFFER|Allow access to full frame bu�er
R_GET_FRAME_BUFFER|Read frame bu�er address
R_GET_WINDOW_INFO|Return frame bu�er address of X window
R_LINE_TYPE|De�ne line style and repeat length
R_LOCK_DEVICE|Lock device
R_OFFSCREEN_ALLOC|Allocates o�screen frame bu�er memory
R_OFFSCREEN_FREE|Frees allocated o�screen frame bu�er memory
R_OV_ECHO_COLORS|Select overlay echo colors
R_TRANSPARENCY_INDEX|Specify transparency index
R_UNLOCK_DEVICE|Unlock device
READ_COLOR_MAP|Read color map

10-40 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

STEREO|Supports stereoscopic display systems.
SWITCH_SEMAPHORE|Semaphore control

The following gescape functions are unique to the HP 98736 and HP 98766
drivers. Detailed information on these gescapes can be found in Appendix A of
this manual.

CONTOUR_CONTROL|Selects interpretation of scalar data for contouring.
DC_COMPATIBILITY_MODE|Control compatibility mode for device coordinate
primitives.
DRAW_POINTS|Select di�erent modes of rounding for rendered points.
ILLUMINATION_ENABLE|Enable or disable illumination data.
TEXTURE_CONTROL|Select texture map �lter type.
TEXTURE_DOWNSAMPLE|Controls texture map downsampling.
TEXTURE_RETRIEVE|Read back o�screen �ltered texture maps.
TOGGLE_2D_COLORMAP|Enable or disable 2D colormap mode.

The following gescape functions are supported by the HP 98736 and HP 98766
drivers and work on other accelerated drivers as well. Detailed information on
these gescapes can be found in Appendix A of this manual.

AUTO_RESIZE_DEVICE|Automatically scale graphics output when the window
size changes.

BLOCK_WRITE_SKIPCOUNT|Specify skip count for block writes.

GAMMA_CORRECTION|Enable/disable gamma correction

LS_OVERFLOW_CONTROL|Sets options for lighting overow situations

PATTERN_FILL|Fill polygon with stored pattern.

POLYGON_TRANSPARENCY|De�ne front and backfacing polygon transparency
patterns

RESIZE_DEVICE|Scale graphics output for the current window size.

TRANSPARENCY|Allows \screen door" for transparency pattern

Z_WRITE_ENABLE|Allows creation of 3D cursors in overlay

TurboVRX 10-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

The following gescape functions were available on the hp98731 device driver, but
will not be supported on the either the hp98736 nor hp98766 device drivers:

IMAGE_BLEND|Enable/disable video blending.
OVERLAY_BLEND |Control blending of overlay plane frame bu�er.
PAN_AND_ZOOM|Pixel pan and zoom.
R_DMA_MODE|Changes the de�nition of the raw ag for block writes.
SET_BANK_CMAP|Instell frame bu�er bank colormaps.

10-42 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Performance Tips

General

1. These drivers are tuned for maximum performance on polyline and polygon
primitives. If these primitives are sent through the Starbase procedural
interface, a performance penalty occurs because of subroutine overhead.
For this reason, user macros have been provided to allow the application
programmer to obtain full device performance. Fast macros are supported on
the HP 98736 and HP 98766 devices for move2d, draw2d, move3d, draw3d,

polyline2d, polyline3d, polygon2d, and polygon3d. These macros are
included in the standard Starbase header �le /usr/include/starbase.c.h.
To enable use of the fast macros, insert the following line above the include
statement for the Starbase header �le:

#define _HP_FAST_MACROS 1

Detailed instructions concerning use of the fast macros is presented in the
Output Primitives section of the Starbase Graphics Techniques Concepts and
Tutorials manual. The use of macros in encouraged, since performance is
signi�cantly better for all primitives that support fast macros. Including fast
macros into your application program will signi�cantly increase code size, so
it is desirable to minimize primitive calls when fast macros are enabled.

2. As with any driver, bu�ering is done to enhance performance. This means
that graphics commands and primitives are batched before being sent to the
device. The buffer_mode call defaults to bu�ering enabled, which provides the
best performance. Calling buffer_mode to disable bu�ering will signi�cantly
degrade performance by turning o� batching. An excessive number of
make_picture_current or flush_buffer calls will also reduce performance
substantially. The make_picture_current call is especially expensive since
the driver will wait until the device has drawn all graphics primitives and
interpreted all graphics commands. The flush_buffer is much faster because
it simply sends all pending commands and data to the device, then returns
immediately.

3. Performance optimizations have been made so that sequential calls of the same
output primitive with no intervening attribute changes or di�erent primitive
calls goes faster. For example, the sequence polygon, polygon, polyline,

polyline is faster than polygon, polyline, polygon, polyline. Also

TurboVRX 10-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

line_color, polyline, polyline is faster than line_color, polyline,

line_color, polyline. So grouping by primitive and subgrouping primitives
by attribute can give substantial performance improvements.

4. Typically, the rendering engine of either the HP 98736 or HP 98766 renders
primitives from its internal bu�er as the system CPU is doing other things.
Substantial performance bene�ts can be realized from this parallel processing.

However, certain operations will cause the CPU to wait for the HP 98736
or HP 98766 to �nish emptying its bu�er. An example of this wait is
the make_picture_current operation. Also, any operation that inquires
information from the HP 98736 may cause this wait to occur. Examples of
inquiries are picking and extent testing.

5. For programs which use Z-bu�er hidden surface removal with the dedicated
Z-bu�er, it is much faster to clear the Z-bu�er simultaneously with screen
clears than to do the clears sequentially. This is accomplished by calling
clear_control with CLEAR_ZBUFFER ag set in the mode word. This ensures
that subsequent calls to clear_view_surface and
dbuffer_switch will also clear the Z-bu�er. See the manual page for
clear_control for more details.

6. Performance for 12-bit indexing is poorer if dithering is enabled since a much
larger color map is searched to obtain the dither colors than on previous
devices. The best performance for 12 bit indexing is obtained by not dithering
and by specifying colors by index rather than their R,G,B values.

For the HP 98735 and HP 98765

1. If Starbase echos are overlayed (i.e. in the fourth overlay plane), or hardware
cursors are used, then graphics performance is is signi�cantly better since it
is not necessary to pick up the cursor each time the frame bu�er is updated.

2. Polygons are �lled faster when the drawing mode is SOURCE, NOT_SOURCE, or
ONE.

3. Horizontal and vertical lines are faster than diagonal lines on this device since
the hardware block mover is used to generate pixels.

4. The procedure block_move is faster than block_read or block_write since
the hardware frame bu�er block mover can be used.

10-44 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

5. The performance of block_read and block_write is signi�cantly better if the
width in bytes plus any skipcount speci�ed via
BLOCK_WRITE_SKIPCOUNT is a multiple of 4.

6. The hp98735 and hp98736 drivers automatically use VDMA capabilities
for block_read and block_write, providing up to a 6x improvement
in performance. VDMA is used only for byte per pixel block_read

and block_write if the width in bytes plus any skipcount speci�ed via
BLOCK_WRITE_SKIPCOUNT is a multiple of 4, and the data to be transferred
is at least 1024 bytes.VDMA is not supported on the Series 700.

TurboVRX 10-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Rendering (HP 98736 and HP 98766)

1. When doing shaded polygons, the fewer the features, the faster the polygon
generation. Positional viewpoint and light sources can degrade performance.

2. The HP 98736 or HP 98766 rendering engine runs at full speed when rendering
at shaded polygons. Other techniques slow the rendering of polygons
on either the HP 98736 or HP 98766. The major features which reduce
performance are clipping, depth cueing, hidden surface removal, Gouraud
shading, texture mapping, and anti-aliasing. The performance degradation
is especially noticeable on large polygons and vectors. Turning on any one of
these features can noticeably lower the rendering performance.

3. Using the pattern gescape or replacement rules that require extra reads of
the frame bu�er (for example, source OR destination) may also degrade
performance.

4. Rendering mode commands such as hidden_surface, shade_mode, and
double_buffer can be slow. These commands should not be unnecessarily
called. For example, it is not necessary to repeatedly call hidden_surface
from an animation loop. It is intended that these routines be called to initialize
a rendering mode and called again only when the mode needs to change.

5. Due to the subpixel resolution on both the HP 98736 and HP 98766,
attempting to render points by moving and drawing from a point to itself will
not appear unless the point is rendered on the pixel center. The gescape

opcode DRAW_POINTS has been provided to center such primitives so that
points are rendered on pixel centers. Alternatively, the environment variable
HP98736_POINT_COMPATIBILITY_MODE or
HP98766_POINT_COMPATIBILITY_MODE can be set to center rendered points so
that the application need not be recoded using the DRAW_POINTS gescape.

10-46 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Raster Operations (HP 98736 and HP 98766)

The procedure block_move is faster than block_read or block_write since
the hardware frame bu�er block mover can be used.

The performance of block_read and block_write is signi�cantly better if the
width in bytes plus any skipcount speci�ed via BLOCK_WRITE_SKIPCOUNT is a
multiple of 4.

The hp98736 driver automatically uses the VDMA capabilities for block_read
and block_write, providing up to a 6x improvement in performance. DMA
is used only for byte per pixel block_read and block_write if the width in
bytes plus any skipcount speci�ed via BLOCK_WRITE_SKIPCOUNT is a multiple
of 4, and the data to be transferred is at least 1024 bytes. The ``hp98766''
driver does not utilize a VDMA mode, but achieves superior performance via
the Series 700's SGC bus.

If bank_switch is used to select bank 3 (the Z bank), all subsequent block
writes and block reads will be done using word per pixel mode. This means that
block_write and block_read will assume that the data is organized in 32-bit
words, and (w * h) words will be transferred between the Z bu�er and system
memory. The bu�er address should be pointed to a word boundary. Words that
are read from the Z bu�er will contain the data in the three most signi�cant
bytes of each word, with the least signi�cant byte unde�ned. Similarly, data
being written to the Z bu�er should be contained in the three most signi�cant
bytes of each word.

TurboVRX 10-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

Cautions

As mentioned previously, accessing the o�-screen portion of the frame bu�er
(using gescape calls) should be done with care, since other processes access
this region.

Certain gescape calls should be used with caution since they bypass protection
mechanisms used to prevent multiple processes from interfering with each other.
For example, since the device resources can only be rationally used by one
graphics process at a time, the driver activates a semaphore and locks the
device before doing any output. This ensures, for example, that one process
will not change the replacement rule while another process is in the middle
of �lling a polygon. It also prevents the terminal driver from overwriting any
graphics processes that are outputting to the device. The driver unlocks the
device when done processing output. Some of the gescape listed in this chapter
allow the user to change this locking mechanism and should be used with great
caution.

The following cautions are provided in using the HP 98736 or HP 98766
accelerated drivers:

Vertex color or intensity values should range between 0 to 32,767 when used in
calls using DC values (e.g. dcpolygon).

The overlay o�-screen contains the ITE font (which is regenerated when control-
shift-reset is done on the ITE keyboard) and may contain any number of
window systems fonts depending on the current window usage.

Polygons of up to 255 vertices (after clipping) are supported. If a polygon has
more than 255 vertices, only the �rst 255 vertices are displayed.

This driver's implementation of the set_capping_planes procedure requires
exclusive access to the accelerated device during a capping sequence. It will
lock out any other accelerated �le descriptor from accessing the device during
such a sequence. Programs making use of the set_capping_planes procedure
with this driver should limit their Starbase (and X) activities during a capping
sequence to Starbase calls to the �le descriptor currently capping. These call
should be limited to graphics primitives (e.g., polygon3d, polyline3d, etc.),
and rendering attribute changes (e.g., fill_color, perimeter_color, etc.).

When using either the HP 98736 device or HP 98766 device with a graphics
accelerator it is possible for illegal operations to cause the transform engine or

10-48 TurboVRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

10

scan converter hardware to enter an unknown state. If this happens, Starbase
will report an error the next time it tries to use the hardware. The user will
see this as a Transform engine timed out or Hardware/scan converter time out
error. These are Starbase errors 14 and 52 respectively. If the hp98736 device
driver is being used, then this is a fatal error. When this error is discovered,
Starbase reports the error and aborts execution.

If an application needs to take some emergency action before an untimely
termination, such as saving valuable data, then the application should check
for these error conditions and take appropriate measures. Errors may be caught
by an application using the gerr_control procedure described in the Starbase
Reference manual.

It is also possible to avoid the termination completely if the application's error
handler does not return control to Starbase. However, it may be impossible
to proceed with any graphics e�orts using the accelerator until it is reset.
Information regarding the state of other gopen calls to the accelerated device
(for example, the current �ll color) may be lost, and other gopen calls may
abort as well.

When de�ning texture maps inside a display list segment, it is critical that the
desired shade mode be established outside of the segment. The shade mode
is used at texture map de�nition time to determine the depth of the map.
Changing the shade mode inside a display list segment will have no e�ect on
the depth determination of a texture map de�ned within that segment.

TurboVRX 10-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

11

11

The HP 300H Device Driver

Device Description

This device driver is used with Hewlett-Packard Series 300 high-resolution display
systems. See the table in the introduction for supported con�gurations.

The video board for each of these display systems �ts in a SPU system slot.
These display systems have a resolution of 1024�768 pixels. The monochrome
display system has a single plane of frame bu�er. The HP98545A Color Display
System has four planes of frame bu�er to provide 16 simultaneous colors. The
HP 98547A, HP 98549A, and HP319C+ Color Display Systems have six planes
for 64 colors. A color map provides 8 bits per color (for red, green and blue),
providing a color palette of over 16 million colors.

These display systems are bit-mapped devices with special hardware for:

Write enabling planes.
Displaying planes.
Writing pixels to the frame bu�er with a given replacement rule (see
drawing_mode).
Blinking planes.
Moving a block of pixels from one place in the frame bu�er to another.

The monochrome and color displays are organized as an array of bytes, with each
byte representing a pixel on the display. For the monochrome display, the Least
Signi�cant Bit (LSB) of each byte controls the display with 0 for black (pixel o�)
and 1 for white (pixel on).

For the color displays, the 6 (4 for HP 98545A) LSBs of each byte determine the
color, providing color values from 0-63 (0-15 for HP 98545A). These values are
used to address the color map. The color map is a RAM table that has 64 (16 for
HP 98545A) addressable locations and is 24 bits wide (8 bits each for red, green
and blue). Thus, the pixel value in the frame bu�er addresses the color map,
generating the color programmed at that location.

HP 300H 11-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
Typically, you do not need to read or write pixels directly into the frame bu�er.
However, for those applications which require direct access, Starbase provides
the gescape function R_GET_FRAME_BUFFER which returns the virtual memory
address of the beginning of the frame bu�er. This gescape is discussed in the
appendix. Frame bu�er locations are then addressed relative to the returned
address. The �rst byte of the frame bu�er (byte 0) represents the upper left
corner pixel of the screen. Byte 1 is immediately to its right. Byte 1023 is the
last (right-most) pixel on the top line. Byte 1024 is the �rst (left-most) pixel on
the second line from the top. The last (lower right corner) pixel on the screen is
byte number 786,431 (767�1024+1023).

Offscreen Memory

The frame bu�er is 1024�1024 bytes. The last 256 lines of the frame bu�er are
not displayed and are referred to as o�screen memory. O�screen memory may
be accessed via the gescape function R_FULL_FRAME_BUFFER documented in the
appendix. Care should be taken when using this gescape since other processes,
Starbase and window systems, access the frame bu�er o�screen memory.

The HP300H Device Driver allocates a portion of o�screen memory for �ll
patterns and echo storage. In a raw environment, the �rst 16 lines are reserved
for Starbase �ll patterns and each raster echo will use a 64�192 pixel rectangle.
In general, the remaining portions of o�screen are allocated from top to bottom.

X11 uses o�screen for its sprite, fonts, pixmaps and window backing store
(retained rasters). In general, X11 uses o�screen memory intensively; therefore,
usage of o�screen memory while running X11 is not recommended.

Refer to the Starbase Graphics Techniques for information on how this device
driver can be used with X11.

HP 98549A and HP 319C+

The HP98549A and HP 319C+ display may also be accessed using the HP 98550
driver. It has higher performance than the HP 300H driver. Applications using
the HP300H driver should not be run simultaneously with applications using the
HP98550 driver on the same display nor should the HP300H driver be used in
an X11 window. The drivers manage o�screen frame bu�er memory di�erently
and will interfere with each other. This also applies to the X11 server which will
(by default) use the HP 98550 driver. The X11 server cannot be told to use the

11-2 HP 300H

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
HP300H driver. Note also that the HP98549A and HP 319C+ display is only
supported by the HP 300H driver when it is con�gured as the internal display.

Setting Up the Device

Switch Settings

There are no switches to set on the video boards for these devices. However,
when these video boards are used with the HP310 Processor Board, the display
disable switch on the processor board must be set. Look at the four switch group
near the back plate. If the third switch from the back plate is set such that the
dot closest to the display board's edge is down, the internal display is disabled.
Refer to the Upgrade Video Output Board Installation Note (HPPart Number
98547-90600) for more details.

Special Device Files (mknod)

The mknod command creates a special device �le which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP-UX Reference for further details. The name of this special device �le
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device �les, they are normally created by the system
administrator.

The mknod parameters are character device with a major number of 12 and a
minor number of 0. Although special device �les can be made in any directory
of the HP-UX �le system, the convention is to create them in the /dev directory.
Any name may be used for the special device �le, however the name that is
suggested for these devices is crt. The following example will create a special
device �le for this device. Remember that you must be superuser or root to
use the mknod command. Note that the leading 0x causes the number to be
interpreted hexadecimally.

mknod /dev/crt c 12 0x000000

HP 300H 11-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

11

Linking the Driver

Shared Libraries

The shared HP300H Device Driver is the �le named libdd300h.sl in the
/usr/lib directory. The device driver will be explicitly loaded at run time by
compiling and linking with the starbase shared library /usr/lib/libsb.sl, or
by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The archive HP300H Device Driver is located in the /usr/lib directory with
the �le name libdd300h.a.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libdd300h.a

2. an appropriate relative path name

3. the -ldd300h option with the LDOPTS environmental variable exported and
set to -a archive.

11-4 HP 300H

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldd300h -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldd300h -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd300h -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device �le created by the mknod command
as speci�ed in the last section, e.g. /dev/crt.

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

Driver The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire

HP 300H 11-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
the device and by default load the accelerated driver (if applicable).
For example:

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver.
In this case the UNACCELERATED/ACCELERATED ag is ignored. For
example:

"hp300h" for C.

'hp300h'//char(0) for FORTRAN77.

'hp300h' for Pascal.

Mode The mode control word consisting of several ag bits which are
or ed together. Listed below are those ag bits which have device-
dependent actions. Those ags not discussed below operate as
de�ned by the gopen procedure.

SPOOLED|Cannot spool raster devices.
0 (zero)|Open the device, but do nothing else. The software color
map is initialized on monochrome monitors.
INIT|Open and initialize the device as follows:
1. Frame bu�er is cleared to zeros.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 300H device for output:

For C Programs:

fildes = gopen("/dev/crt",OUTDEV, NULL,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(0),OUTDEV,char(0),INIT)

11-6 HP 300H

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'',INIT);

Special Device Characteristics

For device coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (1023, 767).

X Windows

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes. The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the

HP 300H 11-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

Table 11-1. Display Types

Series 300 MR Mono HP 98544A/B Medium-Res Monochrome

Model 318M

Model 340M

The supported server mode is Image.

Table 11-2. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

1 No StaticGray � �

Table 11-3. Display Types

Series 300 MR Color HP 98545A Medium-Res Color

The supported server mode is Image.

Table 11-4. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

4 No PseudoColor � �

Yes (2/2) PseudoColor � �

11-8 HP 300H

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
Table 11-5. Display Types

Series 300 MR Color 6-plane Color HP 98547A Medium-Res Color

The supported server mode is Image.

Table 11-6. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

6 No PseudoColor � �

Yes (3/3) PseudoColor � �

HP 300H 11-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

11

Starbase Functionality

Commands Not Supported

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

alpha_transparency light_source

backface_control light_switch

bank_switch line_filter

bf_alpha_transparency perimeter_filter

bf_control set_capping_planes

bf_fill_color set_model_clip_indicator

bf_interior_style set_model_clip_volume

bf_perimeter_color shade_range

bf_perimeter_repeat_length surface_coefficients

bf_perimeter_type surface_model

bf_surface_coefficients texture_index

bf_surface_model texture_viewport

bf_texture_index texture_window

contour_enable viewpoint

define_contour_table zbuffer_switch

define_texture

define_trimming_curve

deformation_mode

depth_cue

depth_cue_color

depth_cue_range

hidden_surface

light_ambient

light_attenuation

light_model

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read, block_write Note: When using raw mode, be careful not to do
a block_read or block_write outside the device
limits.

When using rawmode without using the R_BIT_MODE
gescape, no clipping is performed. See the
R_BIT_MODE gescape in the appendix of this man-
ual for more information.

11-10 HP 300H

FINAL TRIM SIZE : 7.5 in x 9.0 in

11

define_color_table On black and white devices, this command de�nes
a software color map, since there is no hardware
color map.

inquire_color_table On black and white devices, this command re-
turns the software color map values.

interior_style INT_OUTLINE and INT_POINT not supported.

shade_mode The color map mode may be selected but shading
can not be turned on.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The use parameter must be zero; any extra
coordinates supplied will be ignored.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if
not supported by this device. For example,
contouring data will be ignored if the device does
not support it.

Fast Alpha and Font Manager Functionality

This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager Programmer's Manual for further
information.

HP 300H 11-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

11

Parameters for gescape

The hp300h driver supports the following gescapes. Detailed information about
these functions can be found in Appendix A.

SWITCH_SEMAPHORE|Semaphore control.
READ_COLOR_MAP|Read color map.
BLINK_PLANES|Blink display (blink rate is 2.4 Hz for this device). Not
supported in an X11 window.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_GET_WINDOW_INFO|Returns frame bu�er address of Windows/9000 window.
R_FULL_FRAME_BUFFER|Full frame bu�er.
R_LOCK_DEVICE|Lock device.
R_UNLOCK_DEVICE|Unlock device.
R_BIT_MODE|Bit mode.
R_BIT_MASK|Bit mask.
R_DEF_FILL_PAT|De�ne �ll pattern.

Performance Tips

Drawing horizontal and vertical lines is faster than drawing diagonal lines on
these devices since the hardware block-mover generates the pixels. The procedure
block_move is faster then block_read or block_write since the hardware frame
bu�er block mover can be used.

Cautions

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the o�-screen portion of the frame bu�er
(using gescape) should be done with care, since other processes access this
region.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be

11-12 HP 300H

FINAL TRIM SIZE : 7.5 in x 9.0 in

11
rationally used by one graphics process at a time, the driver sets a semaphore
and locks the device before doing any output. This ensures, for example, that
process A will not change the replacement rule while process B is in the middle
of �lling a polygon. It also prevents the terminal (tty) driver from overwriting
any graphics processes that are outputting to the device. The driver unlocks
the device when done processing output. Some of the gescape functions listed
in this chapter allow you to change this locking mechanism and should be used
with great caution.

HP 300H 11-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

12

The HP 300L Device Driver

Device Description

This device driver is used with Hewlett-Packard Series 300 medium-resolution
display systems. See the table in the introduction for supported con�gurations.

The HP 310 processor board has a built-in medium-resolution monochrome
display system. The HP 98542A and HP 98543A video boards �t in an SPU
system slot. The monochrome display systems have a single plane of frame
bu�er. The color display system has four planes of frame bu�er to provide 16
simultaneous colors. A color map provides eight bits per color (for red, green and
blue), providing a color palette of over 16 million colors.

All three systems have a resolution of 1024�400 pixels; however, this driver treats
the display systems as having a resolution of 512�400 pixels since each pixel in the
frame bu�er has an aspect ratio of 2 to 1. By writing two pixels for every dot to
be displayed, square pixels are produced. Some applications or subsystems may
use the higher resolution. The gescape function TC_HALF_PIXEL, documented
later in this section, can be used to allow block_read and block_write access
to the full resolution.

These display systems are bit-mapped devices with special hardware for:

Write enabling planes.
Displaying planes.
Writing pixels to the frame bu�er with a given replacement rule (see
drawing_mode).
Blinking planes.
Moving a block of pixels from one place in the frame bu�er to another.

Both the monochrome and color displays are organized as an array of bytes, with
each byte representing a pixel on the display. For the monochrome display, the
Least Signi�cant Bit (LSB) of each byte controls the display, with 0 for black
(pixel o�) and 1 for white (pixel on).

HP300L 12-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

For the color display, the four LSBs of each byte determine the color, providing
color values from 0-15. These values are used to address the color map. The
color map is basically a RAM table that has 16 addressable locations and is 24
bits wide (eight bits each for red, green and blue). Thus, the pixel value in the
frame bu�er addresses the color map, generating the color programmed at that
location.

Typically, the user does not need to directly read or write pixels in the frame
bu�er. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame bu�er. This gescape is discussed in
the appendix. Frame bu�er locations are then addressed relative to the returned
address. The �rst byte of the frame bu�er (byte 0) represents the upper left
corner pixel of the screen. Byte 1 is immediately to its right. Byte 1023 is the
last (right-most) pixel on the top line. Byte 1024 is the �rst (left-most) pixel on
the second line from the top. The last (lower right corner) pixel on the screen is
therefore byte number 409599 (399�1024+1023).

Offscreen Memory

The frame bu�er is 1024�512 bytes. The last 112 lines of the frame bu�er are
not displayed and are referred to as o�screen memory. O�screen memory may
be accessed via the gescape function R_FULL_FRAME_BUFFER documented in the
appendix. Care should be taken when using this gescape since other processes,
Starbase and window systems, access the frame bu�er o�screen memory.

The HP 300L Device Driver allocates a portion of o�screen memory for �ll
patterns and echo storage. In a raw environment, the �rst 16 lines are reserved
for Starbase �ll patterns, and each raster echo will use a 64�384 byte rectangle
(64�192 square pixels). The last 16 lines are reserved for Starbase �ll patterns.
In general, the remaining portions of o�screen are allocated from top to bottom.
Fast Alpha and Font Manager also allocate o�screen memory for font storage.

X11 uses o�screen for its sprite, fonts, pixmaps and window backing store
(retained rasters). In general, X11 uses o�screen memory very intensively;
therefore, usage of o�screen memory while running X11 is not recommended.

12-2 HP300L

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

Setting Up the Device

Switch Settings

There are no switches to set on the video boards for these devices. However, when
the HP 98542A or HP 98543A video boards are used with the HP 310 processor
board, the display disable switch on the processor must be set. Look at the four
switch group near the back plate. If the third switch from the back plate is set
such that the dot closest to the display board's edge is down, the internal display
is disabled. Refer to the Upgrade Video Output Board Installation Note (HP Part
Number 5958-4342) for more details.

Special Device Files (mknod)

The mknod command (see mknod(1M) man page), creates a special device �le
which is used to communicate between the computer and the peripheral device.
The name of this special device �le is passed to Starbase in the gopen procedure.
Since superuser capabilities are needed to create special device �les, they are
normally created by the system administrator.

The mknod parameters are character device with a major number of 12 and a
minor number of 0. Although special device �les can be made in any directory
of the HP-UX �le system, the convention is to create them in the /dev directory.
Any name may be used for the special device �le; however, the name that is
suggested for these devices is crt. The following example will create a special
device �le for this device. Remember that you must be superuser or root to
use the mknod command. Note that the leading 0x causes the number to be
interpreted hexadecimally.

mknod /dev/crt c 12 0x000000

Linking the Driver

Shared Libraries

The shared HP 300L Device Driver is the �le named libdd300l.sl in the
/usr/lib directory. The device driver will be explicitly loaded at run time by

HP300L 12-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

compiling and linking with the starbase shared library /usr/lib/libsb.sl, or
by using the -l option -lsb.

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The HP 300L Device Driver is located in the /usr/lib directory with the �le
name libdd300l.a. This device driver may be linked to a program using the
absolute path name /usr/lib/libdd300l.a, an appropriate relative path name,
or the �l option �ldd300l with the LDOPTS environmental variable set to -a

archive.

The reason for using the LDOPTS environmental variable is that the -l option
will look for a shared library driver �rst and then look for the archive driver if
shared was not found. By exporting the LDOPTS variable as speci�ed above, the
-l option will only look for archive drivers. For more information, refer to the
Programming on HP-UX manual on linking shared or archive libraries.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

12-4 HP300L

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

and then:

cc example.c -ldd300l -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldd300l -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd300l -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

HP300L 12-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device �le created by the mknod command
as speci�ed in the last section, e.g., /dev/crt.

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

Driver The character representation of the driver type. This parameter may
be NULL for linking shared or archive libraries - gopen will inquire
the device and by default load the accelerated driver (if applicable).
For example:

NULL for C
char(0) for FORTRAN77
'' for Pascal

Alternatively, a character string may be used to specify a driver. In
this case the UNACCELERATED/ACCELERATED ag is overidden. For
example:

"hp300l" for C.

'hp300l'//char(0) for FORTRAN77.

'hp300l' for Pascal.

Mode The mode control word consisting of several ag bits or ed together.
Listed below are those ag bits which have device-dependent actions.
Those ags not discussed below operate as de�ned by the gopen

procedure.

SPOOLED|cannot spool raster devices.

0|open the device, but do nothing else. The software color map
is initialized on monochrome monitors.

INIT|open and initialize the device as follows:

1. Frame bu�er is cleared to 0s.

12-6 HP300L

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

2. The color map is reset to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 300L device for output:

For C Programs:

fildes = gopen("/dev/crt",OUTDEV,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(0), OUTDEV,char(0),INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'',INIT);

Special Device Characteristics

For device coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (511, 399).

X Windows

Supported X Windows Visuals

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of the Starbase Graphics Techniques manual.

HP300L 12-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes . The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth=" speci�cation as
the �rst entry in that row of the table.

Table 12-1. Display Types

Series 300 LR Mono HP 98542A Low-Res Monochrome

Model 310 Integrated Graphics Low-Res Monochrome

The supported server mode is Image.

Table 12-2. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

1 No StaticGray � �

Yes (3/3) PseudoColor � �

12-8 HP300L

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

Table 12-3. Display Types

Series 300 LR Color HP 98543A Low-Res Color

The supported server mode is Image.

Table 12-4. Windows in Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

4 No PseudoColor � �

Yes (2/2) PseudoColor � �

HP300L 12-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

Starbase Functionality

Commands Not Supported

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

backface_control depth_cue_range

bank_switch hidden_surface

bf_control interior_style (INT_OUTLINE)

bf_fill_color interior_style (INT_POINT)

bf_interior_style light_ambient

bf_perimeter_color light_attenuation

bf_perimeter_repeat_length light_model

bf_perimeter_type light_source

bf_surface_coefficients light_switch

bf_surface_model shade_range

define_trimming_curve surface_model

depth_cue surface_coefficients

depth_cue_color viewpoint

zbuffer_switch

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read,

block_write

Note: When using raw mode, be careful not to do
a block_read or block_write outside the device's
limits.

When using raw mode without the R_BIT_MODE

gescape, no clipping is performed. See the
R_BIT_MODE gescape in the appendix of this manual
for more information.

define_color_table Since there is no hardware color map on black and
white devices, this command de�nes a software color
map.

12-10 HP300L

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

inquire_color_table On black and white devices, this command returns
the software color map values.

text_precision Only STROKE_TEXT precision is supported.

shade_mode The color map mode may be selected, but shading
can not be turned on.

vertex_format The use parameter must be zero; any extra coordi-
nates supplied will be ignored.

Fast Alpha and Font Manager Functionality

This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager Programmer's Manual for further
information.

HP300L 12-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

Parameters for gescape

The hp300l driver supports the following gescapes. Detailed information about
these functions can be found in the Appendix A.

SWITCH_SEMAPHORE|Semaphore control.
READ_COLOR_MAP|Read color map.
BLINK_PLANES|Blink display (blink rate is 2.4 Hz for this device.) Not
supported in an X11 window.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_GET_WINDOW_INFO|Returns frame bu�er address of Window/9000 window.
R_FULL_FRAME_BUFFER|Full frame bu�er.
R_LOCK_DEVICE|Lock device
R_UNLOCK_DEVICE|Unlock device.
R_BIT_MODE|Bit mode.
R_BIT_MASK|Bit mask.
R_DEF_FILL_PAT|De�ne �ll pattern.

The gescape function TC_HALF_PIXEL is unique to this driver. Detailed
information can be found in the appendix.

Performance Tips

Horizontal and vertical lines are faster then diagonal lines on these devices
since the hardware block mover is used to generate the pixels. The procedure
block_move is faster then block_read or block_write since the hardware frame
bu�er block mover can be used.

12-12 HP300L

FINAL TRIM SIZE : 7.5 in x 9.0 in

12

Cautions

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the o�-screen portion of the frame bu�er
(using the gescape function) should be done with care since other processes
access this region.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures, for
example, that process A will not change the replacement rule while process B
is in the middle of �lling a polygon. It also prevents the terminal (tty) driver
from overwriting any graphics processes that are outputting to the device.
The driver unlocks the device when �nished processing output. Some of the
gescape functions listed in the appendix allow the user to change this locking
mechanism but should be used with great caution.

HP300L 12-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

13
MH, C+, CH, CHX, VRX Color:
(Second Generation Wireframe Graphics)

Overview

This chapter describes the second generation of Hewlett-Packard's bit-mapped
wireframe graphics devices. These graphics interfaces are supported on Series 300,
400, and 800 systems as described below. (Note that none of these subsystems
are supported on the Series 600 or 700 computers.) All devices in this family
operate at a refresh rate of 60 Hz. They do not support advanced rendering
features such as hidden surface removal (via Z-bu�er), smooth shading, modeling
light sources, or surface property modeling.

Table 13-1. The Second Generation Wireframe Family

Device Name Product Number Resolution Comments

Monochrome High Res (MH) HP 98548A 1280�1024

Medium Res Color (C+) HP 98549A 1024�768 also on Model 319C

High Res Color (CH) HP 98550A 1280�1024

VRX Color HP A1416A 1280�1024 same as HP 98550A

Integer Accelerator (CHX) HP 98556A n/a accelerator for

HP 98549A and 98550A

The second generation wireframe family includes special hardware support for
the following operations:

Copying blocks of pixels within the frame bu�er.
Area �ll of polygons.
Independent write-enable and display-enable of frame bu�er planes.
Pixel replication.

2nd Generation Wireframe 13-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Blinking planes.
3-operand raster combinations with 16�16 pixel tiling mask.
Bit per pixel block transfers.
Line, rectangle, and circle drawing.

13-2 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Device Architecture

HP 98548A (MH)

The HP 98548A is a monochrome display subsystem supported on some Series
300 systems. (It is not supported on Series 400 or 800 systems.)

The frame bu�er consists of a single (image) plane. (There is no overlay.) There
is a 2-entry hardware color map associated with the image plane. This color
map is writeable; each cell can hold an 8-bit grayscale value. (Note: some
graphics libraries may not support altering the contents of this color map. See
the appropriate subsections on device-dependencies later in this chapter.)

The screen resolution is 1280�1024 pixels. The entire frame bu�er is 2048�1024
pixels. O�screen memory is to the right of the displayed pixels.

There is no special hardware support for cursors (tracking echoes).

HP 98549A (C+) and Model 319C (Integrated Graphics)

The HP 98549A is a color graphics interface supported on some Series 300
systems. (It is not supported on Series 400 or 800 systems.) The HP 319C
workstation includes the HP 98549A graphics subsystem integrated with the
system processing unit (SPU).

The default con�guration of the C+ is a 6-plane (color) device (i.e. all image
planes, no overlay). This is known as 6-plane mode. It is possible to soft-con�gure
this interface as 4 image planes and 2 overlay planes, also known as 4+2 mode.
(The minor number of the device special �le used to access the C+ determines
which con�guration is in e�ect.)

There are two hardware color maps. Each color map entry is 24 bits wide (8 bits
each for red, green, and blue components). There is a 64-entry color map for the
image planes. (Only 16 entries are available with the 4+2 con�guration.) There
is a separate 4-entry color map for the overlay planes.

This device does support overlay transparency (in the 4+2 mode). See the
subsection below for more information.

The screen resolution is 1024�768 pixels. The entire frame bu�er is 1024�1024
pixels. O�screen memory is below the displayed pixels.

2nd Generation Wireframe 13-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Figure 13-1. HP 98549A Physical Address Space

HP 98550A (CH) and A1416A (VRX Color)

The HP 98550A (CH) and HP A1416A (VRX Color) are graphics interfaces
supported on Series 300, 400, and 800 systems.

There are 8 image planes and 2 independent overlay planes. As with the HP
98549A, there are two hardware color maps and each color map entry is 24 bits
wide. There is a 256-entry color map for the image planes, and a 4-entry color
map for the overlay planes.

13-4 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

The screen resolution is 1280�1024 pixels. The entire frame bu�er is 2048�1024
pixels. O�screen memory is to the right of the displayed pixels.

Figure 13-2. HP 98548A/98550A Physical Address Space

This device also supports overlay transparency. See the subsection below for more
information. As with the 4+2 mode on the C+, it is possible to draw cursors
(echoes) in the overlay planes so that they do not interfere with graphics drawn
in the image planes.

2nd Generation Wireframe 13-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

HP 98556A

The HP 98556A is an optional hardware accelerator that attaches to either the
HP 98549A or the HP 98550A (CHX) graphics interfaces. It supports graphics
at the resolution of either of these display cards: 1024�768 for the HP 98549A
and 1280�1024 for the HP 98550A. It does not attach to the VRX Color board
(A1416A). It is supported on the Series 300 and Series 800.

This add-on board includes hardware and microcode support for 2-D oating
point transformations, integer transformations, clipping (to rectangular bound-
aries), and drawing circle primitives. On HP-UX systems, the microcode for the
accelerator resides in the �le: /usr/lib/starbase/hp98556/gpuall.x .

Frame Buffer Organization

Typically, the user does not need direct access to pixels in the frame bu�er.
However, some users may require direct frame bu�er access rather than using
an existing high-level graphics application programming interface (API) such as
Starbase.

The frame bu�er is addressed as an array of bytes, one byte for each pixel, even
when there are fewer than 8 planes in the system. The least signi�cant bits (LSB)
of each pixel byte are used as indices into the corresponding color map.

For the monochrome HP 98548A, the pixel data is in the least signi�cant bit of
each byte. For the HP 98549A image planes, the pixel data is in the 6 LSBs
(default, 6-plane mode) or 4 LSBs (4+2 mode) of each byte. For the HP 98550A
(and VRX Color) image planes, all 8 bits of each byte are used as an index into
the color map.

For the overlay planes on the HP 98550A or 98549A (in 4+2 mode), the 2 LSBs
are used.

Series 800 For frame bu�er access on Series 800 systems, when writing to
I/O space, accesses must be on word (32-bit) boundaries. The
frame bu�er is mapped as one word per pixel. The pixel value is
in the least signi�cant byte of the word.

13-6 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Overlay Transparency

The overlay planes index an independent 4-entry color map. Denote the four
entries as colors 0, 1, 2, and 3. Colors 1, 2 and 3 are dominant and are always
displayed for the corresponding pixels, no matter what value is stored at that
location in the image planes. Color 0, however, may be made transparent, thus
allowing the image plane pixel values to show through the overlay.

Overlay transparency a�ects the meaning of entry 0 in the overlay color map.
If both overlay planes are display-enabled, only entry 0 of the color map is
potentially transparent.

Another way to make one or more overlay planes transparent is to mask out
the planes using the display-enable mask. This is equivalent to putting a zero
in the corresponding bit position of the pixel data. For example, if the least-
signi�cant overlay plane is display-disabled, only entries 0 and 2 in the color map
are accessed.

H-P recommends against use of this feature when accessing the graphics interface
in a windowing environment. This overlay transparency feature a�ects the entire
frame bu�er, not individual pixels or windows. Therefore, it would be di�cult to
simulate in a general way the e�ect of a transparent window using this capability.

Hardware Cursor Support

There is no special hardware support for drawing cursors on second generation
wireframe displays. However, it is possible to draw cursors in the overlay planes,
when using a device with overlays. This techniques ensures that the cursor does
not interfere with graphical objects drawn in the image planes. By using pixel
value 0 as the background color index for the overlay planes and using the overlay
transparency feature, the image plane graphics will \show through" the overlay
planes, except for the cursor foreground pixels.

Double-Buffer Support

There is no special hardware, such as an extra bank of planes in the frame bu�er,
for double-bu�ering. The low-level display-enable and write-enable masks provide
a mechanism for dividing the frame bu�er into two (or more) bu�ers for software
double-bu�ering. In that event, it is also necessary to initialize the color map so

2nd Generation Wireframe 13-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

that it reects the smaller number of planes in each bu�er. (Note: the Starbase
Graphics Library implements double-bu�ering using this technique.)

Multiple-Plane Bit Per Pixel Support

The supported displays provide hardware support for frame bu�er access in both
pixel-major and plane-major order. Pixel-major access views the frame bu�er as
an array of bytes, one byte per pixel, with n signi�cant bits used in each byte.

Plane-major access views the frame bu�er as a set of n planes, each consisting
of a packed array of bits, one bit per pixel. This access mode allows users to
transfer data quickly from one plane to another or from a data array to a single
plane. (This does not alter the organization of the frame bu�er, only the logical
view of that organization.)

Pixel Replication

The hardware supports pixel replication in the frame bu�er, using the hardware
block mover capabilities.

Polygon Interior Fill Tiling

There is special hardware support for tiling �ll areas with a 16�16 �ll pattern.

3-Operand Raster Combinations

The supported devices include hardware support for raster operations involving
di�erent replacement rules (also known as drawing modes). These rules are,
in essence, truth tables showing the results of combining two or more logical
operands. They de�ne the results of combining a source bit and a target bit.
The result becomes the new value in the frame bu�er.

When �lling or copying an area of the frame bu�er, a source region is combined
with a target region according to the current replacement rule. This means that
each bit of every pixel in the source region is combined with the corresponding
bit of the target pixel according to the replacement rule.

For example, the most often used 2-operand rule is SOURCE, that is, the value of
the source bit dominates, and is de�ned by the following truth table. (The term

13-8 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

target refers to the current pixel value in the frame bu�er and result refers to the
�nal pixel value in the frame bu�er.)

Table 13-2. Example 2-Operand Raster Combination

Source Target Result

0 0 0

0 1 0

1 0 1

1 1 1

There are also 3-operand replacement rules. For these, three logical operands can
be combined; thus there are 256 di�erent 3-operand rules. The third operand is
referred to as the mask operand. Although it need not be considered as a logical
mask, it is often used that way in common applications. (Some literature refers
to the third operand as a pattern operand. We will not use this terminology to
avoid confusion with the terms dither pattern or �ll pattern which refers to the
source operand used during polygon �ll operations.)

Shown below is the truth table for the rule \if hmaski = 1, use hsourcei else keep
htargeti".

Table 13-3. Example 3-Operand Raster Combination

Mask Source Target Result

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

The supported displays restrict the mask operand. It is de�ned as a 16�16-pixel
rectangle that is repeated across the entire raster in both X and Y, starting at the
upper left corner. (I.e. the mask tiles the raster display.) This hardware tiling

2nd Generation Wireframe 13-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

is tied to device coordinates, so drawing the same primitive to di�erent locations
on the screen may produce di�erent results.

This restriction (on mask size and placement) precludes the use of the mask
operand for trimming the edges of a large irregular �gure, but it is convenient for
imposing a pattern on the source during a block_move or block_write operation.

For example, suppose a raster rectangle is to be copied to another area on the
screen using block_move. With the typical two-operand replacement rule, the
source data is applied (unchanged) to the target area according to the current
two-operand drawing mode. With the 3-operand rule, however, the mask operand
could be de�ned as a checkerboard that actually masks the source, producing a
checkerboard e�ect in combining source and target.

The following �gure shows how this might appear, using the 3-operand rule
illustrated above.

Figure 13-3. Effects of 3-Operand Replacement Rule

13-10 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

System Administration

Configuring the Graphics Hardware

Most of these interfaces include a bank of eight addressing switches on the board.
(The HP 319C graphics system does not have any such switches.)

For use on Series 300 and 400 systems, the default switch setting con�gures the
interface as the internal display (in the 24-bit DIO-I address space). The HP
319C graphics subsystem is �xed at the internal select code (0).

Setting the most signi�cant bit of this address bank will con�gure the graphics
interface in the 32-bit DIO-II address space. (This is not supported on the Model
320 computer.) The �rst four addresses in the 32-bit space are not supported.

Table 13-4. Switch Settings for the Series 300

Switch
Settings

Select Code Comments

Dec Hex

00000001 0 00x Internal (Default)

00000010 | | Not Supported
...

...
...

...

01111111 | | Not Supported

10000000 | | Not Supported

10000001 | | Not Supported

10000010 | | Not Supported

10000011 | | Not Supported

10000100 132 84x External - Supported

10000101 133 85x External - Supported
...

...
...

...

11111111 255 FFx External - Supported

On some Series 800 systems the HP 98550A display board �ts into an external
bus convertor (HP A1020A). For the Series 800 there is only one supported switch
setting for the HP 98550A: binary 1000 0100 (hex 84).

2nd Generation Wireframe 13-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Figure 13-4. HP 98548A Switch Settings for Series 300

Figure 13-5. HP 98549A/98550A Switch Settings for Series 300

In order to access the HP 98556 accelerator, you must con�gure the HP 98549A
or HP 98550A graphics interface in the external (DIO-II) address space. There
are no address switches on the HP 98556 board.

13-12 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Configuring the Kernel

There is no special kernel con�guration required to access these devices on the
Series 300 and 400.

On the Series 800, the graph0 driver must be part of the kernel. (Consult the
appropriate systems administration documentation for instructions on how to do
this.)

Creating Device Special Files

The major number of a device special �le identi�es the kernel device driver used
to access the associated physical device. Starbase and X Window System device
drivers are not part of the HP-UX kernel. By convention, these are character
mode devices. The major number is 12 for the Series 300 and 400. The major
number is 14 for the Series 800.

The minor number speci�es the address (select code for Series 300/400, or logical
unit number for Series 800). When the last digit is two (2), it speci�es access to
the image planes. When the last digit is one (1), it speci�es access to the overlay
planes. For the monochrome HP 98548A, Starbase ignores the last digit of the
minor number.

For the HP 98549A (and 319C built-in graphics), if the last digit of the minor
number is zero (0), Starbase accesses the graphics card as a single 6-plane device.
If the last digit is one (1) or two (2), it accesses the card as if it consisted of 4
image planes and 2 overlay planes (the 4+2 mode).

There is no special information in the minor number for accessing the HP 98556A
integer accelerator.

Example mknod(1M) Commands

The following example creates a device special �le for the monochrome HP
98548A on a Series 300 (at the internal address). The resulting device special �le
is also used to access the HP 98549A as a single 6-plane device.

mknod /dev/crt c 12 0x000000

If the interface is at an external address (select code) on the Series 300, create
the device �le as follows.

2nd Generation Wireframe 13-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

mknod /dev/crt c 12 0xhsci0200

The next examples create device special �les for accessing the HP 98549A in 4+2
mode (i.e. as a device with both 4 image planes and 2 overlay planes), again at
the internal address (select code 0). Note the deviation from the conventional
name for an image-plane device �le.

mknod /dev/i4crt c 12 0x000002 image planes

mknod /dev/o2crt c 12 0x000001 overlay planes

The Series 300 device �les for the HP 98550A at the internal address are
similar to those above. (However, the names /dev/crt and /dev/ocrt are more
appropriate.)

The next examples create device �les for 4+2 mode of the HP 98549A when the
board is at an external address.

mknod /dev/i4crt c 12 0xhsci0202 image planes

mknod /dev/o2crt c 12 0xhsci0201 overlay planes

As before, the Series 300 device �les for the HP 98550A at an external address
are similar to those for 4+2 mode on the HP 98549A.

Finally, here are examples for creating device special �les for the HP 98550A on
the Series 800. Rather than a select code, you must specify a logical unit number
(determined when you con�gure the kernel) for the graphics interface.

mknod /dev/crt c 14 0x00hlui02 image planes

mknod /dev/ocrt c 14 0x00hlui01 overlay planes

13-14 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Starbase Graphics Library

Starbase Access of the Graphics Hardware

HP 98549A

Do not open the HP 98549A simultaneously in both 6-plane mode and 4+2-plane
mode. Doing so will cause indeterminate results. You may simultaneously open
the 2 overlay planes and the 4 image planes using two di�erent �le descriptors. If
drawing into the overlay planes, do not use the gescape R_OVERLAY_ECHO to move
the cursor from the image planes into the overlay planes. This will interfere with
the graphics operations in the overlay planes.

Frame Buffer Access

For applications that require direct access to the frame bu�er, Starbase provides
the R_GET_FRAME_BUFFER gescape that returns the virtual memory address of the
start of the frame bu�er in the process logical address space. (Read Appendix
A for speci�c information about this gescape.) Frame bu�er locations are then
addressed relative to the returned address, in byte-per-pixel mode.

On Series 800 systems, to ensure valid direct frame bu�er access, the user must
precede the R_GET_FRAME_BUFFER gescape with the R_LOCK_DEVICE gescape.
After completing the frame bu�er access and prior to any other Starbase
commands, the user must call the R_UNLOCK_DEVICE gescape.

The supported displays provide hardware support for frame bu�er access in both
plane-major and pixel-major modes. Pixel-major access views the frame bu�er as
an array of bytes, one byte per pixel, with n signi�cant bits each byte. The normal
operation of Starbase procedures block_read and block_write is to access the
frame bu�er in pixel-major mode.

Plane-major mode addresses the frame bu�er as a set of n planes, each consisting
of a packed array of bits, one bit per pixel. This may be used, for example,
to transfer data quickly from one plane to another or from a data array to a
plane. In this driver, plane-major access may be made with the block_read and
block_write procedure by setting the raw parameter to TRUE and enabling raw
mode using the R_BIT_MODE gescape. (Not all drivers provide this capability.) See

2nd Generation Wireframe 13-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

the subsection of this chapter entitled \Starbase Calls That Are Conditionally
Supported" for more information about plane-major access.

In plane-major mode, the programmer must provide pixel data storage (target
for block_read, source for block_write) that is organized as follows. Data from
each plane will be packed, eight pixels per byte. Each row will begin on a byte
boundary (implying that the end of each row may be padded with unused bits).

The following equation shows the size (in bytes) of the rectangle speci�ed by the
length x and length y parameters.

plane storage = length x+7
8 � length y

Data for the next plane begins on the following byte boundary.

When reading into or writing from the packed pixel data array, Starbase will
clip to the screen limits. For block_read, the �rst pixel of the source rectangle
is placed in the high-order bit of the �rst byte for each plane region. If the
clip_rectangle area intersects the source region (in the frame bu�er), Starbase
will not read the entire region indicated by the input parameters. Starbase
performs analogous unpacking and clipping operations for block_write.

The R_BIT_MASK and GR2D_PLANE_MASK gescapes de�ne a bit mask that selects
the planes to read or write. The default (i.e. initial) value of this mask is (binary)
0000 0001, indicating access to only the low-order plane. See the Appendix for
details on how to use these gescapes.

The plane-selection mask de�nes a set of planes to be stored as consecutive packed
plane regions in the pixel data array. This ensures e�cient use of storage for
the data, but also presents the potential for addressing violations or unexpected
results.

For example, if the plane mask is changed to specify more planes between a
block_read (from) and a following block_write (to) the same location, the
block_writewill attempt to access storage for planes that were not read (perhaps
not even allocated). It is the responsibility of the application programmer to
ensure consistency in these operations.

HP 98549A Caution is necessary if the HP 98549 is opened in the 4+2-
plane mode, because the frame bu�er address returned for the
4 image planes is the same as the address for the 2 overlay
planes. To ensure that you only access the planes opened,

13-16 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

the R_LOCK_DEVICE gescape (using the �le descriptor for the
appropriate planes) should be used to lock the device before
reading or changing the frame bu�er.

Note that your program must shift each data byte to the left
by four bits in order to write it to the overlay planes. Use the
R_LOCK_DEVICE gescape to unlock the device after the access.

The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel
of the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right-
most) pixel on the top line. The next 768 bytes are not displayable. Byte 2048 is
the �rst (left-most) pixel on the second line from the top. The last (lower right
corner) pixel on the screen is byte number 2,096,383 (1023�2048+1279).

2nd Generation Wireframe 13-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Figure 13-6. Frame Buffer to VM Mapping for HP 98548A/98550A

13-18 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Offscreen Memory Usage

Both the hp98550 and hp98556 drivers allocate a portion of o�screen memory
for each gopen to hold �ll patterns and raster echo de�nitions.

The �rst 32 lines of o�screen frame bu�er memory are reserved. The remainder
of o�screen memory is available for raster font bitmaps, or Starbase raster echo
storage.

These drivers allocate 64 lines of o�screen memory each time it needs space for
a raster echo. The storage needed by font optimization varies with the font size.
In general, o�screen frame bu�er memory is allocated by the system from top to
bottom (i.e., from low o�sets to high). Review the descriptions of the gescapes
R_OFFSCREEN_ALLOC and R_OFFSCREEN_FREE in the Appendix to this manual.

Hewlett-Packard advises against the use of o�screen memory while the XWindow
System is running.

Multiple-Plane Bit Per Pixel Support

When block_read or block_write is used with the raw parameter TRUE, and
raw mode is enabled by the R_BIT_MODE gescape, the driver supports bit per
pixel frame bu�er access to single planes.

The gescape R_BIT_MASK de�nes a plane mask to the driver and is used for bit
per pixel access. As in other device drivers, only the plane corresponding to the
highest bit set in the mask is transferred. This gescape is supported for retained
rasters; i.e. the correct data is returned from the retained raster for those parts
of the window that are obscured.

The gescape GR2D_PLANE_MASK de�nes a mask that allows multiple planes to be
read or written. This gescape is not supported in retained rasters. It returns the
correct data from the visible portions, but not from the obscured portions.

Pixel Replication

GR2D_REPLICATE triggers operations to do pixel replication in the frame bu�er.
This is a complicated operation involving multiple hardware block_move opera-
tions; the retained raster will not be a�ected.

2nd Generation Wireframe 13-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Polygon Interior Fill Tiling

GR2D_FILL_PATTERN sets a 16�16 �ll pattern used by the driver as a source to
�ll polygons until the �ll pattern is rede�ned, either by a call to fill_color or
fill_color_index or to the gescapes R_DEF_FILL_PAT or GR2D_FILL_PATTERN.
The retained raster only supports the R_DEF_FILL_PAT 4�4 pattern. The
pattern_define routine for Starbase is recommended instead of this gescape.

3-Operand Raster Combinations

Access to the hardware capability is provided through three gescape operations:

GR2D_DEF_MASK de�nes the 16�16 mask operand
GR2D_MASK_RULE de�nes the 3-operand rule
GR2D_MASK_ENABLE enables or disables the 3-operand combination

When the feature is disabled, the current 2-operand rule is in e�ect. When
enabled, the mask operand and 3-operand rule may be applied to block_write

and block_move operations, or to these plus raster text operations.

Since these gescapes alter the rule and pattern used for block_write and
block_move, the retained raster will be a�ected during later raster operations
and the results will not be consistent with what appears on the screen.

Note For a discussion of replacement rules, review the \Drawing
Modes" section of the \Frame Bu�er Control and Raster Op-
erations" chapter of the Starbase Graphics Techniques manual.

Overlay Transparency

There is a Starbase gescape, GR2D_OVERLAY_TRANSPARENT, to mark overlay color
index 0 as dominant. This ensures that all overlay plane colors will be displayed,
thus entirely obscuring the image planes. The default mode is for overlay color
index 0 to be transparent.

Device Coordinate Addressing

For device coordinate operations, the upper-left corner of the screen is location
(0, 0). X-axis values increase from left to right and Y-axis values increase from
top to bottom of the screen. The lower-right corner of the display is (1279, 1023)

13-20 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

for the high resolution display cards (MH, CH, VRX Color) and (1023, 767) for
the medium resolution cards (C+, HP 319C).

Figure 13-7. Device Coordinates for the HP 98548A/98550A

Retained Raster

The HP 98556 driver does not support retained windows. Output to obscured
parts of a retained window will not a�ect the retained raster. In order to be
compatible with older applications that require retained rasters, the HP 98556
driver behaves as follows when it is used to gopen a retained window:

1. If the HP 98550 driver is also linked into the user program, Starbase will sub-
stitute the HP 98550 driver for the HP 98556 driver during gopen. A Starbase
warning of \Driver name substituted on gopen" will be generated during
the gopen.

2nd Generation Wireframe 13-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

2. If the HP 98550 driver is not linked into the user program, Starbase will
use the HP 98556 driver. A Starbase warning of \Driver doesn't support

retained rasters" will be generated during the gopen. The gopen will
succeed, but remember that output to the obscured parts of a window will
not be saved in the retained raster.

Starbase Echoes

Only one Starbase echo is supported in a window by the hp98556 driver. When a
window is opened multiple times by the hp98556 driver, only one of these opens
should specify a Starbase echo because the hp98556 driver can \pick up" only
one Starbase echo and one X11 cursor.

When a window is opened twice by the hp98556 driver and each open speci�es
a Starbase echo, the �rst invocation of the driver will not be able to pick up the
echo generated by the second invocation of the driver.

The maximum size allowed for a raster echo is 64�64 pixels. The default drawing
mode for the raster echo is 7 (logical OR). By default, all echo types are written
to the open planes. The location of raster and non-raster echoes may be changed
by using the R_OVERLAY_ECHO gescape.

Starbase echoes may reside in either the overlay or the image planes. The two
logical devices may be opened simultaneously, but moving the image planes cursor
into the overlay planes may interfere with other graphics drawn in those planes.

Starbase Device Drivers

There are two device drivers especially designed for use with the second generation
wireframe family. the hp300h driver (intended for �rst generation wireframe
devices) also works with the HP 98549A, but there are limitations in terms of
functionality and performance. The table below describes the supported drivers.

13-22 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Table 13-5. Starbase Drivers for Second Generation Wireframe

Driver Name Driver File Names Comments

hp98550 libdd98550.a unaccelerated driver

libdd98550.sl

hp98556 libdd98556.a accelerated driver

libdd98556.sl

hp300h libdd300h.a for use with

libdd300h.sl HP 98549A only

You can use the hp300h driver with the HP 98549A display board and HP 319C
display, but only if the graphics interface is con�gured as the internal display (i.e.
at select code 0). The hp300h driver accesses the HP 98549A as if it were the
HP 98547A graphics card (part of the 1st generation wireframe family). In most
cases the hp300h driver will be slower at drawing than the hp98550 driver.

Caution: do not use the hp300h and hp98550 drivers simultaneously to access
the same HP 98549A card. This includes di�erent applications running at the
same time (each using a di�erent driver) and also any of the windowing systems
supported on this device. These drivers manage o�screen frame bu�er memory
in di�erent ways and so will interfere with each other.

The HP 98556 device driver is used to interface the Starbase Graphics Library
with the HP 98556A accelerator when attached to the HP 98549A or the HP
98550A. This con�guration allows for use of multiple high speed windows using
either HP Windows/9000 or the X11 Window system.

The HP 98556 driver should be used when speed is very important and integer
or DC graphics operations are performed. When speed in graphics operation
performance is not as important, the HP 98550 driver should be used. The HP
98556 driver only supports 31 simultaneous gopens. Any additional gopens must
be to the HP 98550 driver.

2nd Generation Wireframe 13-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Linking Starbase Programs

Shared Libraries

By default, the HP-UX link editor ld(1) will link with the Starbase shared library
version of the device drivers. The driver(s) will be dynamically loaded at run time.

What follows is an example of how to link a Starbase graphics program to display
output in an X11 window. This example compiles and then links a C program
with the shared library driver:

$ cc -I/usr/include/X11R5/x11 -L /usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -lm -ldld\

example.c -o example

or with FORTRAN 77 use,

$ f77 -Wl,-L/usr/lib/X11R5 -lXwindow -lsb -lXhp11\

-lX11 -lm -ldld -o example example.f

or with Pascal use,

$ pc -Wl,-L/usr/lib/X11R5 -lXwindow -lsb -lXhp11\

-lX11 -lm -ldld -o example example.p

Here is another example, one that shows how to link a program that accesses the
graphics device in raw mode:

$ cc example.c -lsb -lm -ldld -o example

$ f77 example.f -lsb -ldld -o example

$ pc example.p -lsb -ldld -o example

Upon device initialization the proper driver will be loaded. Refer to the \Starbase
Initialization" subsection of this chapter for details.

Archive Libraries

It is possible to link with archive versions of the Starbase libraries by either
referencing the library by the absolute path name /usr/lib/libdd98550.a or an
appropriate relative path name. Alternatively, use the -l option as in -ldd98550

with the LDOPTS environment variable set to -a archive.

13-24 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

The reason for using the LDOPTS environment variable is that the -l option will
look for a shared library driver �rst and then look for the archive driver if no
shared version was found. By exporting the LDOPTS variable as speci�ed above,
the -l option will only look for archive drivers. For more information about
linking with shared or archive libraries, refer to the Programming on HP-UX
manual.

For example: to compile and link a program that will access the display in the
X Window System, use the following commands. (We assume that the reader is
using ksh(1).)

$ export LDOPTS="-a archive"

For C, this is followed by:

$ cc -I/usr/include/X11R5/x11 -L /usr/lib/X11R5\

-ldd98550 -lXwindow -lsb -lXhp11 -lX11 -lm\

-ldld -o example example.c

Or, for FORTRAN 77, use:

$ f77 -Wl,-L/usr/lib/X11R5 -ldd98550 -lXwindow\

-lsb -lXhp11 -lX11 -lm -ldld -o example example.f

And for Pascal programs, use this:

$ pc -Wl,-L/usr/lib/X11R5 -ldd98550 -lXwindow -lsb -lXhp11\
-lX11 -lm -ldld -o example example.p

Another example shows how to compile and link a program that uses raw-mode
access to the unaccelerated HP 98550A device:

$ cc example.c -ldd98550 -lsb1 -lsb2 -o example

$ f77 example.f -ldd98550 -lsb1 -lsb2 -o example

$ pc example.p -ldd98550 -lsb1 -lsb2 -o example

2nd Generation Wireframe 13-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Starbase Initialization via gopen(3G)

Parameters for gopen

The gopen call requires four input arguments: path, kind , driver , and mode.

path This is the name of a device special �le created by the mknod command
as speci�ed in the System Administration section of this chapter,
e.g. /dev/crt. It can also be the name of a pseudo-TTY device �le
created by the xwcreate(1X) command, or a special gopen string
returned by the Starbase make_X11_gopen_string(3G) call.

kind This argument indicates the type of I/O access | input only, output
only, or both input and output | via this gopen �le descriptor. For
raw mode device access, kind must be the constant OUTDEV (de�ned
in the starbase*.h header �les). For a graphics window, it may be
either OUTDEV or OUTINDEV.

driver This is the device driver name, speci�ed as a C-style string.

The driver name may be the constant NULL (i.e. a null string), in
which case Starbase will inquire the device type at run-time and
determine the appropriate device driver. To specify this use the
following syntax for various programming languages:

NULL for C (de�ned in stdio.h)
char(0) for FORTRAN 77
'' for Pascal

In this case, if the application is linked to use Starbase shared
libraries, Starbase will use the dynamic loader (-ldld) to link to
the appropriate driver at run-time.

By default, Starbase selects the accelerated driver for a device. You
can override this selection by including either the ACCELERATED or the
UNACCELERATED ag in the mode argument to gopen.

Alternatively, the driver argument may be a character string indicat-
ing the device name. This overrides the ACCELERATED and UNACCEL-

ERATED ags. The Starbase device drivers for this family of devices
accept the following driver names:

13-26 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Table 13-6. Valid driver Name Strings

driver String Selected Driver

hp98548 unaccelerated driver

hp98549

hp98550

hp98556 accelerated driver

hp300h hp300h driver (unaccelerated)

The driver will correctly open any of the supported displays if one of
these strings is used as the driver name. Call the inquire_id(3G)
routine to determine which speci�c display model was identi�ed.

mode This argument consists of several ag bits or-ed together. The
following list describes ag bits and their e�ects with these drivers.
Other ag bits operate as de�ned on the gopen(3G) page of the
Starbase Reference manual. For a description of gopen actions when
accessing an X window, refer to Starbase Graphics Techniques.

0 (zero) 1. Open the device, but do not alter its state in
any way.

2. Initialize the software color table with the cur-
rent hardware color map values. (The minor
number of the device special �le indicates the
number of planes, and thus the number of color
map entries, to read.)

INIT Open the device and initialize it as follows:

1. Clear the frame bu�er (image planes or overlay
planes, depending on the path argument) by
setting all pixels to the default background
color index (zero).

2. Reset the color map to the Starbase defaults.
3. Enable all planes in the frame bu�er for reading

(display) and writing.
4. If opening the image planes, con�gure the over-

lay planes so that zero values are transparent.

RESET_DEVICE Open the device and initialize it as follows:

2nd Generation Wireframe 13-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

1. Reset the hardware to its boot-up state.
2. Clear the image planes. (I.e. set all pixels to

zero.)
3. Reset the image plane color map to the Star-

base defaults.
4. Clear the overlay planes.
5. Reset the overlay plane color map to the

Starbase defaults.
6. Enable all planes in the frame bu�er for reading

(display) and writing.
7. If opening the image planes, con�gure the over-

lay planes so that zero values are transparent.
8. (For the HP 98556A only) Download mi-

crocode for the accelerator.

SPOOLED These devices do not support spooled output.
(This is true for all HP bit-map raster devices.)

MODEL_XFORM These devices do not support smooth shading.
However, this ag, modi�es the way that Starbase
performs matrix stack and transformation opera-
tions.

Example gopen Calls

The following examples show how to open and initialize the HP 98550A (or
VRX Color) device for output. Note that most of the examples use the
NULL device driver speci�cation. This method provides greater portability of
Starbase applications from one graphics interface to another. (See the chapter
on \Developing a Starbase Application" for more information on this subject.)

For C programs:

sb_display = gopen("/dev/crt", OUTDEV, NULL,

UNACCELERATED|INIT);

or (with explicit naming of the device driver):

sb_display = gopen("/dev/crt", OUTDEV, "hp98550", INIT);

For FORTRAN 77 programs:

DEVICE = '/dev/crt'//char(0)

13-28 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

SB_DSP = gopen(DEVICE, OUTDEV, char(0), INIT)

For Pascal programs:

sb_display := gopen('/dev/crt', OUTDEV, '', INIT);

Starbase Calls That Are Not Supported

The following Starbase procedures are not supported by either the unaccelerated
(hp98550) or the accelerated (hp98556) driver. Calling any of these procedures
will have no e�ect (i.e. they are no-ops).

frame bu�er control bank_switch

color map manipulation shade_range

polygon attributes backface_control (obsolete)
bf_control

bf_fill_color

bf_interior_style

bf_perimeter_color

bf_perimeter_repeat_length

bf_perimeter_type

spline curves/surfaces define_trimming_curve

model clipping/capping set_capping_planes

set_model_clip_indicator

set_model_clip_volume

depth cueing depth_cue

depth_cue_color

depth_cue_range

hidden surface removal hidden_surface

zbuffer_switch

2nd Generation Wireframe 13-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

light/surface modeling bf_surface_coefficients

bf_surface_model

light_ambient

light_attenuation

light_model

light_source

light_switch

surface_coefficients

surface_model

viewpoint

anti-aliasing line_filter

perimeter_filter

alpha transparency alpha_transparency

bf_alpha_transparency

texture mapping bf_texture_index

define_texture

texture_index

texture_viewport

texture_window

contouring contour_enable

define_contour_table

deformation animation deformation_mode

Starbase Calls That Are Conditionally Supported

The following Starbase procedures are conditionally supported by both the
unaccelerated (hp98550) and the accelerated (hp98556) driver, as described
below.

block_read,
block_write

The default storage organization for raster transfer opera-
tions is pixel-major order. If the raw parameter is TRUE,
the driver will perform block_read and block_write oper-
ations as plane-major reads and writes. This is enabled by
the R_BIT_MODE gescape.

interior_style The INT_OUTLINE and INT_POINT area �ll styles are not
supported.

13-30 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

shade_mode This routine will set the color map mode (CMAP_NORMAL,
CMAP_MONOTONIC, CMAP_FULL), but neither device driver for
this family supports smooth shading.

text_precision Only STROKE_TEXT precision is supported. (Use the FA/FM
libraries or X11 text calls for an alternative text mode:
raster text.)

vertex_format The husei parameter indicates whether there is additional
data per vertex (which is used in color calculations). This
argument must be zero; Starbase will ignore the extra
coordinate data.

_with_data The following calls designate that there is additional data
per vertex used for special functionality:

partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

The second generation wireframe drivers do not support
contouring.

The following Starbase procedures are conditionally supported by the accelerated
(hp98556) driver, as described below. These limitations do not apply to the
unaccelerated (hp98550) driver.

arc,
circle, ellipse

Starbase renders these primitives by approximating them
with multi-sided polygons or polylines. These polygons in
turn are limited to 255 vertices. It may be necessary to
reduce the number of sides in the polygon approximation
using the curve_resolution call.

gopen The HP 98556 hardware supports context information for
up to 31 simultaneous gopen operations. (This limit applies
to all concurrently running processes that access a speci�c
display card.) If you need to gopen a device more than 31

2nd Generation Wireframe 13-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

times, use the unaccelerated (hp98550) driver for operations
that do not require the accelerator.

polygon* Polygons of up to 255 vertices are supported. For polygons
with more than 255 vertices, only the �rst 255 vertices are
displayed.

Starbase Gescapes That Are Supported

Both the unaccelerated (hp98550) and accelerated (hp98556) drivers support
the following gescapes. In a few cases these drivers support a given gescape with
limitations. (See the Appendix for more information about each gescape.)

BLINK_PLANES Blink display planes at hardware-de�ned rate.
GR2D_DEF_MASK De�ne mask for 3-operand replacement rules.
GR2D_FILL_PATTERN De�ne 16�16 dither and �ll pattern.
GR2D_MASK_ENABLE Enable 3-operand replacement rules.
GR2D_MASK_RULE Specify 3-operand replacement rule.
GR2D_OVERLAY_TRANSPARENT Enable/disable transparency of zero-value pix-

els in overlay planes.

The second generation wireframe family does
not support transparency on a per window
basis. Therefore, use of this gescape while
running a windowing system may produce
unexpected (and undesirable) results.

GR2D_PLANE_MASK Select planes to be e�ected by bit per pixel
block transfers.

GR2D_REPLICATE Pixel zoom (with 2�, 4�, 8�, or 16� pixel
expansion factor)

R_BIT_MASK Select plane for reading and writing bit blocks.
R_BIT_MODE Specify data format for bit per pixel block

transfer operations.
R_DEF_ECHO_TRANS De�ne a transparency mask for user-de�ned

raster echoes.

These drivers will accept a mask of up to
16�16 pixels. If the current raster echo is
larger than this size, the gescape will have no
e�ect.

13-32 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

R_DEF_FILL_PAT De�ne 4�4 pixel dither cell for area �ll.
R_FULL_FRAME_BUFFER Enable access to entire frame bu�er, including

o�screen memory.
R_GET_FRAME_BUFFER Read addresses for the frame bu�er and con-

trol space of a graphics interface.
R_LOCK_DEVICE Lock device to prevent access by other pro-

cesses.
R_OFFSCREEN_ALLOC Allocate o�screen frame bu�er memory.
R_OFFSCREEN_FREE Deallocate o�screen frame bu�er memory.
R_OVERLAY_ECHO Specify location of cursors (in overlay or image

planes).
R_UNLOCK_DEVICE Unlock device to allow access by other pro-

cesses.
READ_COLOR_MAP Read the hardware color map associated with

the indicated Starbase �le descriptor.
SWITCH_SEMAPHORE Enable/disable semaphore control of access to

the device.

The following gescape is supported only by the accelerated (hp98556) driver:

GR2D_CONVEX_POLYGONS Increase polygon drawing speed by switching
to algorithm that works only for convex poly-
gons.

Environment Variables

There are no supported environment variables that e�ect the operation of
Starbase on these devices.

However, there are certain environment variables that a�ect Starbase in general.
Consult the Starbase Graphics Techniques for information on the GRM_SIZE and
SB_DISPLAY_ADDR environment variables.

Support of Other Graphics Libraries

Fast Alpha / Font Manager

Both device drivers (hp98550 , hp98556) support raster text calls from the Fast
Alpha (FA) and Font Manager (FM) libraries. (Note that this is the only case

2nd Generation Wireframe 13-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

where an accelerated driver supports FA/FM. See the Fast Alpha/Font Manager
Programmer's Manual for additional information about these libraries.

To ensure portability of applications that display raster text, use the X Window
System text calls. (See the Programming with Xlib manual for information on
how these features.)

Graphical Kernel System (GKS)

The (obsolete, now in support life) HP GKS product uses the Starbase
programming library and device drivers to access graphics hardware. HP GKS is
supported with both drivers (hp98550 , hp98556). For more information on the
use of HP GKS with these devices, consult the HP GKS Device Drivers Manual .

Starbase Radiosity and Ray Tracing

The Starbase Radiosity and Ray Tracing (SBRR) library is not supported on
these devices. The hardware does not support the necessary advanced rendering
capabilities.

13-34 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

X Window System

The X Window System is supported in various con�gurations and modes on the
devices supported by the HP 98550 driver. See the Starbase Graphics Techniques
for a complete discussion of X Window support.

How X Windows Uses the Graphics Interface

The X Window System automatically accesses the HP 98549A in a way
compatible with the hp98550 driver, not with the hp300h driver. X will only
use the HP 98549A as a 6-plane device. (There is no support for the 4+2 mode.)

The HP 98556A driver supports hardware accelerated windows. Clip information
for each window that is gopened with the HP 98556 driver is downloaded to the
HP 98556A accelerator by the window manager or server. This enables the HP
98556A to clip output to the visible parts of the window. The clip information
for each window consists of a list of visible rectangles. Performance of output to
an obscured window will degrade linearly as a function of the number of visible
rectangles.

The HP 98556 driver imposes a limit of 32 simultaneous gopen's of the HP 98556
device. This limit also applies to the window system. The window manager will
gopen the HP 98556A, allowing up to 31 windows to use the HP 98556 driver.
Once a window is gopened with the HP 98556 driver, it counts against this 31
window limit until the window is closed.

If an open of the HP 98556A is performed when 31 open commands of the HP
98556A are currently active, a Starbase error is generated and the open command
will fail. When one of the previous HP 98556A opens is closed, the �rst open
command can be tried again.

When the window manager or X server uses the HP 98556 driver, graphics
windows can be gopened with both the HP 98550 and HP 98556 drivers. Windows
that are gopened with the HP 98550 driver are not counted against the limit of
31 accelerated windows. (The terminal emulator windows do not access the HP
98556A accelerator even when it is present.)

When a graphics image is drawn to the obscured portion of the window, only the
visible parts of the window are drawn to; the obscured parts are ignored. In the
X Windows System, the application should handle exposure events.

2nd Generation Wireframe 13-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

The following subsections describe how Starbase utilizes the underlying graphics
hardware in the second generation wireframe family.

The following subsections describe how the Hewlett-Packard implementation of
the X Window System (Version 11) uses the underlying graphics hardware for
the second generation wireframe devices.

Accessing Frame Buffer Memory

Offscreen Memory

The �rst 32 lines of o�screen frame bu�er memory are reserved for use by the X
display server.

The X Window System uses o�screen for temporary and client pixmaps.

X Cursors (and Starbase Echoes)

The following list shows default positions where the X11 cursor and Starbase
echo (called cursor and echo, respectively) reside for each of the supported X11
server modes.

Overlay Mode

Echo placed in opened image or overlay planes. Cursor resides in overlay plane.

Image Mode

Echo and cursor share the image planes.

Stacked Screen Mode

If overlay-plane window is opened, echo and cursor share overlay planes. If
image-plane window is opened, echo and cursor share image planes.

Support for Backing Store and Save Under

Consider a graphics window that is partially obscured by another window. What
happens when you try to draw graphics to the part of the window that is
obscured? There are two options:

Draw only to the visible parts of the window and ignore any parts that are
obscured. In X Windows System, an application will receive and handle
exposure events.

13-36 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

For those parts of the window that are obscured, draw the image to memory
instead of the frame bu�er. When the a�ected portion of the window is
made visible (unobscured), the window system updates the display with the
appropriate graphical data from memory. Graphical data stored (retained) in
memory is called a retained raster or backing store.

The X Window System supports both options. Support for retained rasters
is provided by /usr/lib/libddbyte.a (called the byte driver). The graphics
window must be created with a retained raster. Linking the byte driver allows
Starbase to draw images to memory for obscured parts of the window and allows
the window system to update the screen from memory if previously obscured
parts of the window are made visible. See the Starbase Graphics Techniques for
more information on retained rasters in X Windows.

The /usr/lib/libddbit.a (bit driver) is supported only on the HP 98548A.

Retained Raster Support

In general, those Starbase operations that draw to the display are also supported
as a retained raster by the byte driver (/usr/lib/libddbyte.a). There are,
however, some exceptions to this. These exceptions all involve use of a gescape
to access device-dependent features.

When the gescapes listed below are used with a retained graphics window, they
will have the desired e�ect for the visible portion of the window but may cause the
retained raster for obscured parts to be altered in inconsistent ways. The features
involved (along with the names of the a�ected gescapes) are listed below. For
more details on the gescapes, refer to the section of this chapter entitled \Starbase
Gescapes That Are Supported".

Note Because the gescapes are device-dependent, the exceptions dis-
cussed below may be removed in future drivers. Also, if the
exceptions to retained raster support discussed below prove trou-
blesome in your application, Hewlett-Packard recommendds that
you consider not using retained rasters but instead detect win-
dow events and repaint the window when a previously obscured
portion of a window is made visible.

2nd Generation Wireframe 13-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Transparent Windows

The HP implementation of the X Window System does not support combined
mode servers on any of the second generation wireframe devices. Therefore it
is not possible to implement oating text windows in the overlay planes. Since
the overlay transparency mechanism a�ects the entire frame bu�er, it would be
di�cult to simulate this feature in any event.

Supported Server Modes

Supported Visuals

This section contains device speci�c information about the X Window System.
If you need a general, device-independent explanation of using Starbase in X11
windows, refer to the chapter \Using Starbase with the X Window System" in
the Starbase Graphics Techniques manual.

How to Read the Supported Visuals Tables

The tables of Supported \X" Windows Visuals contain information for program-
mers using either Xlib graphics or Starbase. These tables list what depths of
windows and colormap access modes are supported for a given graphics device.
They also indicate whether or not backing store (aka \retained raster") is avail-
able for a given visual.

You can use these tables to decipher the contents of the X*screens �le on your
system. The �rst two columns in the table show information that may be in
the X*screens �le. Look up the depth= speci�cation in the �rst column. If
there is no doublebu�er keyword in the �le, look up No in the second column.
Otherwise, look up Yes . The other entries in that row will tell you information
about supported visual classes and backing store support.

You can also use the tables to determine what to put in the X*screens �le in order
to make a given visual available. For example, suppose that you want 8-plane
windows with two bu�ers for double-bu�ering in Starbase. Look for \8/8" in the
table to see if this type of visual is supported. If it is, then you will need to specify
\doublebu�er" in the X*screens �le. You will �nd the \depth" speci�cation as
the �rst entry in that row of the table.

13-38 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

The supported X11 server modes are: Overlay, Image, and Stacked Screen. (The
availability of overlay and stacked screens modes, of course, depends on whether
or not there are overlay planes on the hardware in question.)

Table 13-7. Windows on HP 98548A

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

1 No GrayScale � �

Table 13-8. Windows on HP 98549A (6-Plane Mode Only)

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

6 No PseudoColor � �

Yes (3/3) PseudoColor � �

Table 13-9. Windows in HP 98550A Overlay Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

2 No StaticGray � � one color reserved for
transparency

2nd Generation Wireframe 13-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Table 13-10. Windows in HP 98550A Image Planes

Contents of
X0screens

Visual Class Backing
Store

Comments

depth doublebu�er? Xlib Xlib SGL

8 No PseudoColor � �

Yes (4/4) PseudoColor � �

13-40 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

The Internal Terminal Emulator

How the ITE Uses the Graphics Interface

On the HP 98548A, the Internal Terminal Emulator (ITE) operates in the single-
plane frame bu�er. Use of color text escape sequences will have no e�ect on this
graphics interface.

Figure 13-8. ITE on the HP 98548A (MH) Display

On the HP 98549A (and HP 319C), the ITE accesses the frame bu�er as a single
6-plane device. On the HP 98550A, the ITE accesses the image planes. On these
devices the ITE uses three planes thus supporting eight di�erent colors of text.
The ITE uses the low-order planes (i.e. those planes corresponding to the least
signi�cant bits of each pixel) in the frame bu�er.

2nd Generation Wireframe 13-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Figure 13-9. ITE on the HP 98549A (C+) Display

13-42 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Figure 13-10. ITE on the HP 98550A (CH) Display

The HP 98556A integer accelerator increases the speed of graphics operations.
The ITE does not use the accelerator.

For all devices, there may be interactions (i.e. unexpected and/or unpredictable
output on the display) if graphics and the ITE are simultaneously accessing
the same planes. The ITE and Starbase use a semaphore to mediate access
to the frame bu�er. The gescapes SWITCH_SEMAPHORE, R_LOCK_DEVICE, and
R_UNLOCK_DEVICE enable and disable this semaphore.

2nd Generation Wireframe 13-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

13

Offscreen Memory

The ITE does not use the o�screen frame bu�er memory on any of these devices.

On all displays, a hard ITE reset will clear all planes. (This results from
pressing the following keys simultaneously: �Shift� �CTRL� �Reset�. This hard reset
operation will also clear up any bad hardware states that may occur as a result
of prematurely aborting a graphics process.

13-44 2nd Generation Wireframe

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

14

The VRX Mono Display

Device Description

The HP A1096A display board �ts into a system slot on supported Series
400 SPUs. See the table in the Introduction of this manual for supported
con�gurations. The display has a resolution of 1280�1024 pixels with a single
frame bu�er plane.

Interactions with the ITE

The Internal Terminal Emulator (ITE) operates in the image plane. There may
be interactions if graphics and the ITE are active simultaneously in the image
plane.

A hard ITE reset (shift-control-reset) will clear the image plane. This hard reset
operation will also clear up any bad hardware states that may occur if a graphics
process is aborted.

Windows Operation in the Image Plane

The X Window System is supported by the HP A1096A driver. See the Starbase
Graphics Techniques for a complete discussion of X Window support.

Windows with and without a Backing Store

Consider a graphics window that is partially obscured by another window. What
happens when you try to draw graphics to the part of the window that is
obscured? There are two options:

Draw only to the visible parts of the window and ignore any parts that are
obscured. An application must receive and handle the exposure events.

HP A1096A 14-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

For those parts of the window that are obscured, draw the image to memory
instead of the frame bu�er. When the a�ected portion of the window is
made visible (unobscured), the window system updates the display with the
appropriate graphical data from memory. Graphical data stored (retained) in
memory is called a backing store.

The X Window System supports both options. See the Starbase Graphics
Techniques for more information on backing store in X Windows.

Multiple-Plane Bit/Pixel Support

When block_read or block_write is used with the raw parameter TRUE, and
raw mode is enabled by the R_BIT_MODE gescape, the driver supports bit/pixel
frame bu�er access to a single plane.

The gescape operation GR2D_PLANE_MASK de�nes a mask that allows reads or
writes directly from or to the image plane. It returns the correct data from the
visible portions, but not from the obscured portions.

16�16 Fill Pattern

GR2D_FILL_PATTERN sets a 16�16 �ll pattern used by the driver as a source to
�ll polygons until the �ll pattern is rede�ned, either by a call to fill_color or
fill_color_index or to the gescape R_DEF_FILL_PAT or GR2D_FILL_PATTERN.
The retained raster only supports the R_DEF_FILL_PAT 4�4 pattern. The
pattern_define routine for Starbase is recommended instead of this gescape.

Three-Operand Raster Combinations

For a discussion of replacement rules, review the \Drawing Modes" section of the
\Frame Bu�er Control & Raster Operations" chapter of the Starbase Graphics
Techniques manual.

14-2 HP A1096A

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Frame Buffer Access

The supported displays provide hardware support for frame bu�er access in both
plane-major and pixel-major modes. Pixel-major access views the frame bu�er as
an array of bytes, one byte per pixel, with 1 signi�cant bit per byte. The normal
operation of Starbase procedure block_read and block_write treat the frame
bu�er in pixel-major mode. Plane-major mode addresses the frame bu�er as a
single plane, consisting of a packed array of bits, one bit per pixel. This may be
used, for example, to transfer data quickly from a data array to a plane. In this
driver, plane-major access may be made with the block_read and block_write

procedure by setting the raw parameter to TRUE and enabling raw mode using
the R_BIT_MODE gescape. (Not all drivers provide this capability.) Details of this
form of access are provided below in the section entitled \Starbase Functionality."

The HP A1096A display board produces a resolution of 1280�1024 pixels and
provides 1-image plane. There are no overlay planes.

Creation of a special device �le is discussed in the next section.

The physical frame bu�er is 2048�1024 bytes. The last 768 bytes of each line of
the frame bu�er (to the \right" of the screen) are not displayed.

The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the (right-most) pixel
on the top line. The next 768 bytes are not displayable. Byte 2048 is the �rst
(left-most) pixel on the second line from the top. The last (lower right corner)
pixel on the screen is byte number 2,096,383 (1023�2048+1279).

For normal block_read and block_write operations, the data is in the least
signi�cant bit of each byte.

HP A1096A 14-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Setting Up the Device

Switch Settings

The HP A1096A has two jumper switches. The default switch settings (0,0)
con�gure the display as the internal (console) display.

Table 14-1. Switch Settings Supported on Series 300

Jumper 1 Jumper 2 Select Code
0 0 132
1 0 133
0 1 134
1 1 135

Figure 14-1.

14-4 HP A1096A

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Note The �gure shows the 0 and 1 positions for reference, they are not
silkscreened on the board.

Special Device Files (mknod)

The mknod command (see mknod(8) in the HP-UX Reference manual), creates
a special device �le that is used to communicate between the computer and the
display device. The name of this special device �le is passed to Starbase in the
gopen procedure. Since superuser capabilities are needed to create special device
�les, they are normally created by the system administrator.

The Series 300 mknod parameters are:

Character device with a major number equal to 12 and a minor number equal to
0x000000 (internal) or 0xhsci0200 (externally).

Although special device �les may be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le, however the name that is suggested for the
default device is crt.

The following example will create a special device �le for the Series 400 internal
display. Remember that you must be superuser or root to use the mknod

command.

mknod /dev/crt c 12 0x000000

The next example creates a device �le for an external con�guration:

mknod /dev/crt c 12 0xhsci0200

Linking the Driver

Shared Libraries

The shared HP A1096A Device Driver is the �le named libdda1096.sl in the
/usr/lib directory. The device driver will be explicitly loaded at run time by
compiling and linking with the starbase shared library /usr/lib/libsb.sl, or
by using the -l option -lsb.

HP A1096A 14-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Examples

To compile and link a C program for use with the shared library driver, use:

cc example.c -I/usr/include/X11R5/x11 -L/usr/lib/X11R5\

-lXwindow -lsb -lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

Archive Libraries

The HP A1096A Device Driver is located in the /usr/lib directory with the
�le name libdda1096.a. This device driver may be linked to a program using
the absolute path name /usr/lib/libdda1096.a or an appropriate relative path
name, or by using the -l option -ldda1096.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libdda1096.a

2. an appropriate relative path name

3. the -ldda1096 option with the LDOPTS environmental variable exported and
set to -a archive.

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

14-6 HP A1096A

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldda1096 -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldda1096 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldda1096 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

HP A1096A 14-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path This is the name of the special device �le created by the mknod

command as speci�ed in the last section, e.g. /dev/crt.

Kind This parameter must be OUTDEV, unless used for a graphics window,
in which case OUTINDEV may be used.

Driver The character representation of the driver type. This is hpa1096

modi�ed to meet the syntax of the programming language used,
namely:

"hpa1096" for C.

'hpa1096'//char(0) for FORTRAN77.

'hpa1096' for Pascal.

Mode The mode control word consists of several ag bits or ed together.
Listed below are ag bits that have device-dependent actions. Those
ags not discussed below operate as de�ned by the gopen procedure.
See Starbase Graphics Techniques for a description of gopen actions
when accessing an X Window.

SPOOLED Raster devices cannot be spooled.

MODEL_XFORM Shading is not supported for this device. However,
opening in MODEL_XFORM mode will a�ect how
matrix stack and transformation routines are
performed.

0 (zero) Open the device, but do nothing else. The
software color table is initialized from the current
state of the hardware color map.

INIT Open and initialize the device as follows:

1. Frame bu�er is cleared to 0s.
2. The display is enabled for reading and writing.

RESET_DEVICE Open and initialize the device as follows:

14-8 HP A1096A

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

1. The hardware state is reinitialized to its boot-
up state.

2. Frame bu�er is cleared to 0s.
3. The display is enabled for reading and writing.

Note SPOOLED and MODEL_XFORM ag bits have no device dependent
e�ects.

Syntax Examples

To open and initialize an HP A1096A device for output:

C programs:

fildes = gopen("/dev/crt",OUTDEV,"hpa1096",INIT);

FORTRAN77 programs:

fildes = gopen('/dev/crt'//char(0),OUTDEV,'hpa1096'//char(0),INIT)

Pascal programs:

fildes := gopen('/dev/crt',OUTDEV,'hpa1096',INIT);

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (1279, 1023).

HP A1096A 14-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Starbase Functionality

Commands Not Supported

The following commands are not supported. If one of these commands is used
by mistake, it will be ignored and not cause an error.

alpha_transparency hidden_surface

backface_control light_ambient

bank_switch light_attenuation

bf_alpha_transparency light_model

bf_control light_source

bf_fill_color light_switch

bf_interior_style line_filter

bf_perimeter_color perimeter_filter

bf_perimeter_repeat_length set_capping_planes

bf_perimeter_type set_model_clip_indicator

bf_surface_coefficients set_model_clip_volume

bf_surface_model shade_range

bf_texture_index surface_coefficients

contour_enable surface_model

define_color_table texture_index

define_contour_table texture_viewport

define_texture texture_window

define_trimming_curve viewpoint

deformation_mode zbuffer_switch

depth_cue
depth_cue_color

depth_cue_range

14-10 HP A1096A

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Conditionally Supported Procedures

The following procedures are supported under the listed conditions:

block_read,
block_write

When the raw parameter is set to TRUE, data is arranged in
the form of 8 pixels per byte (bit = pixel). Reads and writes
must be performed on byte or word boundaries. Clipping is
not performed in raw mode.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if not supported
by this device. For example, contouring data will be ignored
if the device does not support it.

Fast Alpha and Font Manager Functionality

This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager Programmer's Manual for further
information.

HP A1096A 14-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Parameters for gescape

The hpa1096 driver supports the following gescapes. Detailed information about
these functions can be found in Appendix A.

GR2D_FILL_PATTERN|De�ne 16�16 dither and �ll pattern.
GR2D_PLANE_MASK|Overrides the mask.
R_BIT_MODE|Bit mode.
R_DEF_FILL_PAT|De�ne �ll pattern.
R_FULL_FRAME_BUFFER|Full frame bu�er.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_LOCK_DEVICE|Lock device.
R_UNLOCK_DEVICE|unlock device
SWITCH_SEMAPHORE|semaphore control

14-12 HP A1096A

FINAL TRIM SIZE : 7.5 in x 9.0 in

14

Performance Tips

Certain two-operand drawing modes may be done faster than others. The
absolute modes (ZERO (0) and ONE (15)) are the fastest. Rules dependent only
on one operand (e.g., hsourcei (3) or not hdesti (10)) are somewhat slower.
Rules dependent on both operands (e.g., xor (6)) are the slowest.

Bu�ering of graphics operations is done in this driver to enhance performance.
If buffer_mode is turned o� or many calls are made to make_picture_current
then performance may decrease.

Performance optimizations have been made so that sequential calls of the
same output primitive with no intervening attribute change or call to a dif-
ferent primitive are processed faster. For example, the sequence polygon,

polygon, polyline, polyline is faster than polygon, polyline, poly-

gon, polyline. The line_color, polyline, polyline calls are faster than
line_color, polyline, line_color, polyline.

For the best performance when using bit/pixel block write (raw mode TRUE,
R_BIT_MODE enabled), the following conditions must be met:

1. Source rows should be an even number of whole bytes (that is, dx should be
a multiple of 16).

2. Destination rows should be aligned on 8-pixel boundaries (that is, x should
be a multiple of 8).

3. Source rows should be aligned.

Note When drawing in a graphics window, drawing and �lling perfor-
mance will be signi�cantly lower if the window raster extends
more than 1024 device coordinates outside the screen in any di-
rection, either because of its size or its current position on the
screen. There is a signi�cant additional performance cost associ-
ated with drawing to a retained rather than an unretained raster.

HP A1096A 14-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

15

The HP 9836A Device Driver

Device Description

This device driver is used to provide graphics output on the Series 300 HP 98546A
Display Card. This display is a bit-mapped device which has a resolution of
512�390 pixels with a single plane of frame bu�er. A separate non-bit mapped
alpha plane allows text and graphics to be manipulated independently.

This display card provides compatibility with programs written for HP 9836A
Series 200 models and for HP 98204B displays.

The interface for this device plugs into an I/O slot of supported SPUs. See table
1-8 in the introduction of this manual for the SPUs which support this device.

The display is organized as an array of bytes, with each byte representing 8 pixels
on the display. Typically, the user does not need to directly read or write pixels
in the frame bu�er. However, for those applications which require direct access,
Starbase provides the gescape R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame bu�er (this gescape is discussed
in the appendix).

Frame bu�er locations are addressed relative to the returned address. The �rst
byte of the frame bu�er (byte 0) represents eight pixels in the upper left corner
of the screen. The Most Signi�cant Bit (MSB) of that byte holds the pixel in
the upper left corner of the display. The Least Signi�cant Bit (LSB) of the �rst
byte holds the right-most pixel in the byte (that is, pixel number 8). Byte 1 is
immediately to its right. Byte 63 holds the last 8 pixels on the top line. Byte 64
hold the 8 pixels below the �rst line. The last (lower right corner) set of 8 pixels
on the screen is in byte number 24,959 (389�64+63).

This display does not support the Windows/9000 nor the X Windows system.

HP 9836A 15-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

Setting Up the Device

Switch Settings

For normal operation of this device, there are no switches to set.

Special Device Files (mknod)

The mknod command (see mknod in the man pages), creates a special device �le
which is used to communicate between the computer and the peripheral device.
The name of this special device �le is passed to Starbase in the gopen procedure.
Since superuser capabilities are needed to create special device �les, they are
normally created by the system administrator.

The mknod parameters are the character device with a major number of 12 and
a minor number of 0. Although special device �les can be made in any directory
of the HP-UX �le system, the convention is to create them in the /dev directory.
Any name may be used for the special device �le; however, the name that is
suggested for these devices is crt. The following example will create a special
device �le for this device. Remember that you must be superuser or root to use
the mknod command.

mknod /dev/crt c 12 0x000000

15-2 HP 9836A

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

Linking the Driver

The HP 9836A Device Driver is located in the /usr/lib directory with the �le
name libdd9836a.a. This device driver may be linked to a program using the
absolute path name /usr/lib/libdd9836a.a, an appropriate relative path name,
or the -l option -ldd9836a. To compile and link a C program for use with the
shared library driver, use:

cc example.c -I/usr/include/X11R5/x11\

-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with FORTRAN use,

F77 example.f -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

or with Pascal use,

pc example.p -Wl,-L/usr/lib/X11R5 -lXwindow -lsb\

-lXhp11 -lX11 -ldld -lm -o example

For details, see the discussion of the gopen procedure in the section To Open and
Initialize the Device in this chapter.

HP 9836A 15-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

For Archive Libraries

The archive device driver is located in the /usr/lib directory with the �le name
libdd9836.a.

You can link this device driver to a program by using any one of the following:

1. the absolute path name /usr/lib/libdd9836.a

2. an appropriate relative path name

3. the -ldd9836 option with the LDOPTS environmental variable exported and
set to "-a archive".

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use:

export LDOPTS="-a archive"

and then:

cc example.c -ldd9836 -L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -lm -o example

or for FORTRAN, use:

F77 example.f -ldd9836 -Wl,-L/usr/lib/X11R5 -lXwindow\
-lsb1 -lsb2 -lXhp11 -lX11 -o example

or for Pascal, use:

pc example.p -ldd9836 -Wl,-L/usr/lib/X11R5 -lXwindow\

-lsb1 -lsb2 -lXhp11 -lX11 -o example

15-4 HP 9836A

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the special device �le created by the mknod command
as speci�ed in the last section, e.g. /dev/crt.

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

Driver The character representation of the driver type. This is hp9836a,
hp98546a, or hp98204b modi�ed to meet the syntax of the
programming language used, namely:

"hp9836a" for C.

'hp9836a'//char(0) for Fortran77.

'hp9836a' for Pascal.

Mode The mode control word consisting of several ag bits which are or ed
together. Listed below are those those ag bits which have device-
dependent actions. SPOOLED ag bits have no a�ect for this driver.
Those ags not discussed below operate as de�ned by the gopen

procedure.

SPOOLED|cannot spool raster devices.

0|open the device and initialize the software color map

INIT|open and initialize the device as follows:

1. Frame bu�er is cleared to 0s.
2. The color map is set to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 9836A device for output:

C Syntax Examples

fildes = gopen("/dev/crt",OUTDEV,"hp9836a",INIT);

HP 9836A 15-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

FORTRAN77 Syntax Examples

fildes = gopen('/dev/crt'//char(0), OUTDEV,'hp9836a'//char(0),INIT)

Pascal Syntax Examples

fildes = gopen('/dev/crt',OUTDEV,'hp9836a',INIT);

Special Device Characteristics

For device coordinate operations, location (0, 0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (511, 389).

15-6 HP 9836A

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

Starbase Functionality

Exceptions to Standard Starbase Support

The following commands are supported under the listed conditions:

await_retrace This routine has no e�ect on this display.

block_read, block_write When the raw parameter is set to TRUE, it in-
dicates that DATA is arranged with 8 pixels/byte.
The data rounds to a pixel in the X-axis direction
that aligns with a byte or word boundary. Clip-
ping of the data is not performed in raw mode.

define_color_table Since there is no hardware color map, this com-
mand de�nes a software color map on black and
white devices.

inquire_color_table This command returns the software color map
values on black and white devices.

interior_style Only the INT_SOLID, INT_HATCH, and INT_HOLLOW
styles are supported.

text_precision Only STROKE_TEXT precision is supported.

with_data partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with-data

Additional data per vertex will be ignored if
not supported by this device. For example,
contouring data will be ignored if the device does
not support it.

HP 9836A 15-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

15

Commands Not Supported

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

alpha_transparency depth_cue_range
backface_control hidden_surface

bank_switch light_ambient

bf_alpha_transparency light_attenuation

bf_control light_model

bf_fill_color light_source

bf_interior_style light_switch

bf_perimeter_color line_filter

bf_perimeter_repeat_length perimeter_filter

bf_perimeter_type set_capping_planes

bf_surface_coefficients set_model_clip_indicator

bf_surface_model set_model_clip_volume

bf_texture_index shade_range

contour_enable surface_coefficients

define_contour_table surface_model

define_texture texture_index

define_trimming_curve texture_viewport

deformation_mode texture_window

depth_cue viewpoint

depth_cue_color zbuffer_switch

15-8 HP 9836A

Index

Index

3

3D graphics applications, 2-1
3D shaded polygons, 5-4

8

8/8 double-bu�ering, 4-4

A

A1439A, 4-10
A1454A, 4-11
A1659A, 4-9
A1924A, 4-8
A2091A, 5-2
application development, 2-1
archive libraries
CADplt, 22-7
CADplt2, 23-8
CRX-48Z, 5-16
EVRX, 6-4
HP 300H, 11-4
HP 300L, 12-4
HP 9836A, 15-4
HP 98550, 13-24
hp98704, 7-12
hp98705, 7-12
hpcrx48z, 5-16
hpgcrx, 4-34
HP-GL, 21-6
HP-HIL, 18-4
HP Keyboard, 19-2
HP SBV, 27-4
HP Terminals, 28-4

locator keyboard, 20-3
PersonalVRX, 7-12
SMD, 16-3
SOX11, 17-3
SRX, 8-11
TurboSRX, 9-22
TurboVRX, 10-19
VRX Mono, 14-6

archive libraries, HP VMX, 3-10

B

B2156A, 5-1
backing store, virtual memory, 3-7, 3-25
bit-mapped displays, 1-4
block read, 4-48
block write, 4-48

C

C+, 13-3
CADplt, 22-1
archive libraries, 22-7
character sets, 22-14
commands not supported, 22-22
description, 22-1
error reporting, 22-16
features, 22-2
gescapes, 22-24
gopen, 22-9
HP-GL devices, 22-1
HP-IB interface, 22-3
HP-IB interface devices, 22-1
mknod, 22-5

Index-1

parallel interface, 22-6
polygon support, 22-17
rectangle support, 22-18
RS-232 interface, 22-3
RS-232 interface devices, 22-1
shared libraries, 22-6
switch settings, 22-3
text support, 22-19
vertex support, 22-17

CADplt2, 23-1
archive libraries, 23-8
description, 23-1
features, 23-1
gopen, 23-10
HP-GL/2, 23-1
HP-GL/2 devices, 23-1
HP-IB interface, 23-3
initialization, 23-10
parallel interface, 23-7
RS-232 interface, 23-3
shared libraries, 23-8
switch settings, 23-3

CGMESC_ENCODING, 26-1
CGMESC_VDC_PREC, 26-2
CH, 13-4
character sets, 22-14
choice input device, 20-1
CHX, 13-6
client support, HP VMX, 3-3
CMAP FULL
translations, 4-47

color map
CMAP FULL, 4-46

color maps
CRX-48Z, 5-3
hpgcrx, 4-22

color map thrashing, 4-40
commands not supported
CADplt, 22-22
EVRX, 6-12
HP 300H, 11-10

HP 300L, 12-10
HP 9836A, 15-8
hp98704, 7-24
hp98705, 7-25
HP-GL, 21-14
HP Terminals, 28-11
PersonalVRX, 7-24
SMD, 16-7
SOX11, 17-10
SRX, 8-24
TurboSRX, 9-34
TurboVRX, 10-36
VRX Mono, 14-10

compile and link with HP CGM device
driver, 26-3

computer graphics meta�le, 26-1
con�gurations, HP VMX, 3-7
CRX
gescapes, 4-61

CRX-24, 4-10
gescapes, 4-61

CRX-24Z, 4-11
calls not supported, 4-56
gescapes, 4-61

CRX-48Z, 5-2
address space, 5-5
archive libraries, 5-16
calls not supported, 5-24
color maps, 5-3
device coordinates, 5-21
device description, 5-2
double-bu�ering, 5-10
features, 5-1
frame bu�er, 5-5, 5-7
gescapes, 5-28
gopen, 5-19
hpvmx driver, 5-3
image planes, 5-10
initialization, 5-18
internal terminal emulator, 5-5
ITE, 5-5

Index-2

Index

mknod, 5-14
overlay plane rendering, 5-3
overlay planes, 5-10
PowerShade, 5-1, 5-4
shared libraries, 5-15
X11, 5-11
X Windows, 5-10
X Windows visuals, 5-12

CRX, color, 4-9
CRX Family
features, 4-1

cursors
EVRX, 6-11
hp98704, 7-18
hp98705, 7-18
PersonalVRX, 7-15
SRX, 8-22
TurboSRX, 9-6
TurboVRX, 10-25

D

device coordinates
CRX-48Z, 5-21
hpcrx48z, 5-21

device defaults
hpcrx48z, 5-21

device description
CRX-48Z, 5-2

device driver, HP VMX, 3-1
DISPLAY environment variable, HP VMX,

3-11
double-bu�ering
CRX-48Z, 5-10

double-bu�ering, virtual memory, 3-7
Dual CRX, 4-12

E

Entry Level VRX, 6-1
environment variable, 4-40
environment variable, DISPLAY for HP

VMX, 3-11

EVRX, 6-1
archive libraries, 6-4
commands not supported, 6-12
cursors, 6-11
gescapes, 6-14
gopen, 6-5
shared libraries, 6-3
Starbase echos, 6-11
X Windows, 6-10

F

Fast Alpha and Font Manager
HP 300H, 11-11
SMD, 16-10
SRX, 8-27
TurboSRX, 9-37
VRX Mono, 14-11

frame bu�er
CRX-48Z, 5-5, 5-7

G

gescapes
CADplt, 22-24
CRX, 4-61
CRX-24, 4-61
CRX-24Z, 4-61
CRX-48Z, 5-28
EVRX, 6-14
HP 300H, 11-12
hp98550, 13-32
hp98556, 13-32
hp98704, 7-28
hp98705, 7-28
HP 98736, 10-41
HP 98766, 10-41
hpcrx48z, 5-28
hpgcrx, 4-61
HP SBV, 27-8
HP Terminals, 28-16
PersonalVRX, 7-28
PowerShade, 4-61

Index-3

SMD, 16-12
SRX, 8-27
TurboSRX, 9-39
TurboVRX, 10-40
VRX Mono, 14-12

gopen, 2-11
CADplt, 22-9
CADplt2, 23-10
CRX-48Z, 5-19
EVRX, 6-5
HP 300H, 11-5
HP 300L, 12-6
HP 9836A, 15-5
HP 98550, 13-26
hpcrx48z, 5-19
hpgcrx, 4-35
HP-GL, 21-7
HP-HIL, 18-5
HP Keyboard, 19-3
HP SBV, 27-5
HP Terminals, 28-5
locator keyboard, 20-6
PersonalVRX, 7-22
SMD, 16-4
SOX11, 17-4
SRX, 8-12
TurboSRX, 9-26
TurboVRX, 10-27
VRX Mono, 14-8

graphics hardcopy, 1-10
graphics input devices, 18-1
graphics tablet, 21-13
GRX, 4-8

H

Hewlett-Packard Graphics Language,
21-1

Hewlett-Packard Human Interface Link,
18-1

HP 300H, 11-1
archive libraries, 11-4

commands not supported, 11-10
Fast Alpha and Font Manager, 11-11
gescapes, 11-12
gopen, 11-5
mknod, 11-3
shared libraries, 11-4
X Windows, 11-7

HP 300L, 12-1
archive libraries, 12-4
commands not supported, 12-10
gopen, 12-6
mknod, 12-3
shared libraries, 12-3
switch settings, 12-3
X Windows, 12-7

HP700/RX X station, 3-2
HP 9111A/T, 21-13
HP 9836A, 15-1
archive libraries, 15-4
commands not supported, 15-8
gopen, 15-5
mknod, 15-2
shared libraries, 15-3

HP 98546A, 15-1
HP 98548A, 13-3
HP 98549A, 13-3
hp98550
gescapes, 13-32

HP 98550
archive libraries, 13-24
gopen, 13-26
shared libraries, 13-24
X Windows, 13-35

HP 98550A, 13-4
hp98556
gescapes, 13-32

HP 98556
X Windows, 13-35

HP 98556A, 13-6
hp98704, 7-1
archive libraries, 7-12

Index-4

Index

commands not supported, 7-24
cursors, 7-18
gescapes, 7-28
shared libraries, 7-11

hp98705, 7-1
archive libraries, 7-12
commands not supported, 7-25
cursors, 7-18
gescapes, 7-28
raster operations, 7-31
rendering, 7-30
shared libraries, 7-11

HP 98705, 7-1
HP 98720, 8-1
HP98720
o�screen memory, 8-14

HP 98721, 8-1
hp98730

archive libraries, 9-22
shared libraries, 9-21

HP 98730, 9-1
hp98731

archive libraries, 9-22
shared libraries, 9-21

HP 98731, 9-1
hardware cursor, 9-10
software cursors, 9-8

HP 98735, 10-1
HP 98736, 10-1
gescapes, 10-41

HP 98766
gescapes, 10-41

HP A1096A, 14-1
HP A1416A, 13-4
HP CGM
archive libraries, 26-4
CGMESC_ENCODING, 26-1
CGMESC_VDC_PREC, 26-2
compile and link with device driver,

26-3
default color map, 26-7

encodings, 26-1
examples, 26-4
functionality, 26-1
modes, 26-2
parameters for gescape, 26-11
parameters for gopen, 26-5
picture, 26-2
precisions, 26-2
shared libraries, 26-3
Starbase commands conditionally

supported, 26-10
Starbase commands not supported,

26-9
hpcrx48z
A2091A, 5-2
archive libraries, 5-16
CRX-48Z, 5-2
default color map, 5-23
device coordinates, 5-21
device defaults, 5-21
gescapes, 5-28
gopen, 5-19
shared libraries, 5-15
Starbase echos, 5-11
X11 cursor, 5-11
X Windows, 5-10
X Windows visuals, 5-12

hpgcrx
3D shaded polygons, 4-11
A1439A, 4-10
A1454A, 4-11
A1659A, 4-9
address mapping, 4-19
address space, 4-18
archive libraries, 4-34
backing store, 4-24
block-read, 4-48
block write, 4-48
calls not supported, 4-55
CMAP FULL, 4-46
CMAP FULL color map, 4-46

Index-5

CMAP FULL translations, 4-47
color map modes, 4-22
color maps, 4-23
color map sharing, 4-42
color map translations, 4-51
CRX, 4-9
CRX-24, 4-10
CRX-24Z, 4-11
CRX, color, 4-9
CRX default color map, 4-44
double-bu�ering, 4-23
Dual CRX, 4-12
environment variable, 4-23, 4-40
features, 4-1
frame bu�er, 4-18
gescapes, 4-61
gopen, 4-35
grayscale, 4-8
GRX, 4-8
GRX default color map, 4-43
HP 710 default color map, 4-43
initialization, 4-35, 5-18
internal terminal emulator, 4-14
ITE, 4-14
mknod, 4-30
multiple heads, 4-13
PowerShade, 4-5, 4-13
retained raster, 4-24
R GET FRAME BUFFER, 4-19
R LOCK DEVICE, 4-19
R UNLOCK DEVICE, 4-19
Series 400, 4-2
Series 700, 4-1
shared libraries, 4-33
technicolor e�ect, 4-23, 4-40
X Windows, 4-23
Z-bu�er, 4-21

HP-GL, 21-1
archive libraries, 21-6
commands not supported, 21-14
gopen, 21-7

mknod, 21-3
shared libraries, 21-5
switch settings, 21-2

HP-GL/2, 23-1
HP-GL/2 devices, 23-1
HP-GL driver, 22-1
HP-GL plotters, 21-1
HP-HIL, 18-1
archive libraries, 18-4
gopen, 18-5
locator devices, 18-8
mknod, 18-2
shared libraries, 18-3

HP-HIL input devices, 18-1
HP KBD, 19-1
HP Keyboard, 19-1
archive libraries, 19-2
gopen, 19-3
shared libraries, 19-1

HP Locator Keyboard, 20-1
HP-SBV, 27-1
hpsbv, 27-1
HP SBV
archive libraries, 27-4
commands supported, 27-7
gescapes, 27-8
gopen, 27-5
shared libraries, 27-3
troubleshooting, 27-9

HP Starbase to Visualizer, 27-1
HP Terminals, 28-1
archive libraries, 28-4
commands not supported, 28-11
gescapes, 28-16
gopen, 28-5
mknod, 28-2
shared libraries, 28-3
switch settings, 28-1

hpvmx, 3-1
HP VMX
API support, 3-3

Index-6

Index

archive libraries, 3-10
client support, 3-3
con�gurations, 3-7
CRX-family overlay plane driver,

3-26
default color map, 3-16
description, 3-4
device coordinate addressing, 3-14
device driver, 3-1, 3-7
DISPLAY environment variable, 3-11
dither default, 3-14
example, 3-5
exceptions to gescape support, 3-21
how it works, 3-6
how to use it, 3-5
licensing, 3-2
line type defaults, 3-15
open and initialize device for output,

3-11
performance, 3-8
raster echo default, 3-15
resource considerations, 3-22
restricted gopens, 3-23
semaphore default, 3-15
server support, 3-3
shared library, 3-9
special device characteristics, 3-14
Starbase functionality, 3-17
support, 3-2
supported gescapes, 3-20
synchronization, 3-21
versus SOX11, 3-27
X11 environment, 3-11
xhost command, 3-11
X windows, 3-9

hpvmx driver, 5-3

I

image planes
CRX-48Z, 5-10

initialization

CADplt2, 23-10
CRX-48Z, 5-18
hpgcrx, 4-35, 5-18
PersonalVRX, 7-20
SRX, 8-12

input devices, 1-8
integrated graphics, 4-1

K

keyboard, 20-1
keyboard device driver, 19-1

L

licensing
HP VMX, 3-2
PowerShade, 3-2

LKBD, 20-1
locator keyboard, 20-1
archive libraries, 20-3
gopen, 20-6
mknod, 20-1
shared libraries, 20-2

M

meta�le, computer graphics, 26-1
MH, 13-3
mknod
CADplt, 22-5
CRX-48Z, 5-14
HP 300H, 11-3
HP 300L, 12-3
HP 9836A, 15-2
hpgcrx, 4-30
HP-GL, 21-3
HP-HIL, 18-2
HP Terminals, 28-2
locator keyboard, 20-1
PersonalVRX, 7-10
SRX, 8-8
TurboVRX, 10-17
VRX Mono, 14-5

Index-7

Model 705, 4-1
Model 710, 4-1
Model 715, 4-1
Model 725, 4-1
modes, HP CGM, 26-2
Motif, 2-30
Motif Widget
colormaps, 2-72
display list, 2-71
guidelines, 2-71
rescale, 2-71

multiple heads, 4-13

O

overlay plane driver, 3-26
overlay plane rendering
CRX-48Z, 5-3

overlay planes, 3-7, 3-8
CRX-48Z, 5-10

P

PCL, 24-1
color printers, 24-1
monochromatic printers, 24-1

PCL-IMAGING, 25-1
PCL Imaging Formatter, 25-1
Personal Visualizer, 27-1
PersonalVRX, 7-1
address space, 7-9
archive libraries, 7-12
commands not supported, 7-24
cursors, 7-15
DIO-II switch settings, 7-5
gescapes, 7-28
gopen, 7-20, 7-22
mknod, 7-10
shared libraries, 7-11
Starbase echos, 7-15
X Windows, 7-13

picture, HP CGM, 26-2
plotters, 21-1

Portable Techniques, 2-1, 2-45
block operations, 2-45
callback, 2-62
draw text, 2-64
frame bu�er depth, 2-46
overlay color, 2-60
overlay Stabase widget, 2-55
pixel data, 2-48
text, 2-62
transparent overlay windows, 2-53
widget veri�cation, 2-56

PowerShade, 3-2, 4-5, 4-13, 5-1, 5-4
calls not supported, 4-56
CRX, 4-56
Dual CRX, 4-56
gescapes, 4-61
HP 710, 4-56
hpgcrx, 4-5

PowerShade licensing, 3-2
Printer Command Language Formatter,

24-1
product support
bit-mapped displays, 1-4
graphics hardcopy, 1-10
input devices, 1-8
Series 300, 1-21
Series 400, 1-22
Series 700, 1-23
Series 800, 1-24

R

rendering utilities, virtual memory, 3-7,
3-7

rendering utilities, virtual memory (VM),
3-23

S

SB X SHARED CMAP, 4-23
Series 400
hpgcrx, 4-2

Series 700

Index-8

Index

hpgcrx, 4-1
server support, HP VMX, 3-3
shared libraries
CADplt, 22-6
CADplt2, 23-8
CRX-48Z, 5-15
EVRX, 6-3
HP 300H, 11-4
HP 300L, 12-3
HP 9836A, 15-3
HP 98550, 13-24
hp98704, 7-11
hp98705, 7-11
hpcrx48z, 5-15
hpgcrx, 4-33
HP-GL, 21-5
HP-HIL, 18-3
HP Keyboard, 19-1
HP SBV, 27-3
HP Terminals, 28-3
locator keyboard, 20-2
PersonalVRX, 7-11
SMD, 16-2
SOX11, 17-2
SRX, 8-10
TurboSRX, 9-21
TurboVRX, 10-19
VRX Mono, 14-5

shared library, HP VMX, 3-9
SMD, 16-1
archive libraries, 16-3
commands not supported, 16-7
errors, 16-10
Fast Alpha and Font Manager, 16-10
gescapes, 16-12
gopen, 16-4
shared libraries, 16-2

source code, 2-1
motif sb1.c, 2-30
motif sb2.c, 2-45
motif sb3.c, 2-53

portable sb.c, 2-3, 2-25
wsutils.c, 2-9

SOX11, 17-1
archive libraries, 17-3
commands not supported, 17-10
gopen, 17-4
shared libraries, 17-2

SOX11 versus HP VMX, 3-27
SRX, 8-1
archive libraries, 8-11
commands not supported, 8-24
cursors, 8-22
Fast Alpha and Font Manager, 8-27
gescapes, 8-27
gopen, 8-12
initialization, 8-12
mknod, 8-8
o�screen memory, 8-14
shared libraries, 8-10
Starbase echos, 8-22
switch settings, 8-5
X Windows, 8-20

Starbase echos
EVRX, 6-11
PersonalVRX, 7-15
SRX, 8-22
TurboSRX, 9-6

Starbase Memory Driver, 16-1
support, HP VMX, 3-2
switch settings
CADplt, 22-3
CADplt2, 23-3
HP 300L, 12-3
HP-GL, 21-2
HP Terminals, 28-1
PersonalVRX, 7-5
SRX, 8-5
TurboVRX, 10-12
VRX Mono, 14-4

Index-9

T

Terminal Device Driver, 28-1
terminals, 28-1
TurboSRX, 9-1
address space, 9-17
archive libraries, 9-22
commands not supported, 9-34
cursors, 9-6
Fast Alpha and Font Manager, 9-37
gescapes, 9-39
gopen, 9-26
shared libraries, 9-21
Starbase echos, 9-6
switch settings, 9-12
X Windows, 9-4
Z-bu�er, 9-10

TurboVRX, 10-1
archive libraries, 10-19
commands not supported, 10-36
cursors, 10-25
gescapes, 10-40
gopen, 10-27
mknod, 10-17
shared libraries, 10-19
switch settings, 10-12
X Windows, 10-21

V

virtual memory backing store, 3-25
virtual memory double-bu�ering, 3-24
virtual memory rendering utilities, 3-7
virtual memory (VM) rendering utilities,

3-23
VM backing store, 3-7

VM double-bu�ering, 3-7
VM rendering utilities, 3-7, 3-7
VRX Color, 13-4
VRX Mono, 14-1
archive libraries, 14-6
commands not supported, 14-10
Fast Alpha and Font Manager, 14-11
gescapes, 14-12
gopen, 14-8
mknod, 14-5
shared libraries, 14-5
switch settings, 14-4

X

X11
hpcrx48z, 5-11

Xlib, 2-3
X Windows
CRX-48Z, 5-10
EVRX, 6-10
HP 300H, 11-7
HP 300L, 12-7
HP 98550, 13-35
HP 98556, 13-35
hpcrx48z, 5-10
hpgcrx, 4-23
PersonalVRX, 7-13
SRX, 8-20
TurboSRX, 9-4
TurboVRX, 10-21

Z

Z-bu�er

hpgcrx, 4-21

Index-10

