
NCS 1.5.1 to DCE RPC
Transition Guide

HP 9000
Series 700/800
Computers

NCS 1.5.1 to DCE RPC Transition Guide

~.,. HEWLETT .:z. PACKARD

Workstation Systems Division
Order No. B3193-90002

Manufacturing No. B3193-90002

©Hewlett-Packard Co. 1993.

First Printing: January 1993

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABil..ITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential damages in connection with
the furnishing, perfonnance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability ofits software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights reseived.
No part of this document may be photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as. set forth in
sub-paragraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(l,2).
10987654321

Pref ace

The OSF Distributed Computing Environment provides several compatibility features that
enable Network Computing System applications to run in a DCB Remote Procedure Call
(RPC) environment. NCS applications can also be migrated to DCERPCto take advantage of
services not available in an NCS environment. We recommend that you migrate to DCE RPC
any NCS applications that you expectto continue using under future releases ofDCE, and that
you use DCB RPC for new development efforts.

The NCS 1.5 .1 to DCE RPC Transition Guide is designed to help you migrate your NCS appli
cations to DCE RPC. It describes the differences between NCS and DCE RPC and shows you
how to change your NCS applications so that they can run as DCE RPC applications. In this
manual we focus specifically on applications written for NCS 1.5 .1. If your applications were
written for NCS 2.0, you will need to make few, if any, changes, because NCS 2.0 is a subset
ofDCBRPC.

The manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Contains a brief overview of DCB and the DCB Remote Procedure
Call Application Programming Interface; Chapter 1 also includes an
overview of this manual.

Describes the major concepts in the DCB RPC API and compares the
DCBRPC API with the NCS 1.5.1 API.

Describes DCB IDL and compares it with NCS NIDL.

Preface iii

Chapter 4

Chapters

Chapter6

Chapter7

Appendix A

Appendix B

Appendix C

Describes how to write DCE interface definitions and how to use the
nidl to idl tool to convert NCS 1.5.1 interface definitions.

Describes how to convert clients and servers and how to use the DCE
Threads exception-returning package.

Describes how to handle multiple managers in DCE.

Contrasts NCS and DCE location services and summarizes the steps
clients and servers must take to use DCE location services.

Summarizes the DCE RPC API.

Contains source code listings for the NCS 1.5.1 programs that are
converted in Chapters 5 and 6.

Summarizes DCE IDL and ACF Attributes.

Related Manuals and Books

This manual is not intended to provide a complete guide to writing DCE RPC applications.
For more infonnation on DCE programming, refer to the following manuals:

• Introduction to OSF DCE

• OSF DCE Application Development Guide

• OSF DCE Application Development Reference

For infonnation about using DCB threads, refer to the following manual:

• Programmer's Notes on HP DCE Threads

For infonnation about the DCB RPC Daemon (rpcd),.refer to the following manual:

• OSF DCE Administration Guide

To order Hewlett-Packard manuals, call 800-227-8164. Outside the USA, please contact
your local sales office.

iv Preface

The following books, which are not available through Hewlett-Packard at this time, may also
prove helpful:

• Shirley, John, Guide to Writing DCE Applications, O'Reilly and Associates, Inc.,
Sebastopol CA, June 1992, ISBN 1-56592-004-X

• Rosenberry, Ward, David Kenney, and Gerry Fisher, Understanding DCE, 0 'Reilly
and Associates, Inc., Sebastopol CA, September 1992, ISBN 1-56592-005-8

Your local bookseller can order these books for you if they are not in stock.

Does This Manual Support Your Software?

This manual was released with the HP DCE Developers' Environment. If you are using a
later version of HP DCE, this manual may not be applicable. Refer to the release docu
ment to ascertain the correct titles and versions of manuals for the release you are using.

Problems, Questions, and Suggestions

If you have any questions or problems with our hardware, software, or documentation,
please contact either your HP Response Center or your local HP representative.

You may also use the Reader's Response Form at the back of this manual to submit com
ments about our documentation.

·Preface v

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

literal values

user-supplied values

sample user input

output/source code

---000---

vi Preface

Bold words or characters in formats and command
descriptions represent commands or keywords that you must
use literally. Pathnames are also in bold. Bold words in text
indicate the first use of a new term.

Italic words or characters in formats and command descrip
tions represent values that you must supply.

In interactive examples, information that the user enters
appears in bold.

Information that the system displays appears in this typeface.

Examples of source code also appear in this typeface.

Vertical ellipsis points mean that irrelevant parts of a figure
or example have been omitted.

This symbol indicates the end of a chapter or part of a manual.

---000---

Chapter 1

1.1
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2
1.3.3
1.3.3.1
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.4
1.4.1
1.4.2

Contents

Overview of DCE

DCB Architecture .- ... 1-1
DCB Components · \ 1-2

DCB Components Present in the HP DCB Developers' Environment 1-2
The RPC Component of the DCB 1-4

Differences between DCB RPC and NCS 1.5.1 1-4
Differences in the APis ~ . 1-4
Differences in the Binding Mechanism 1-5
Differences in the Interface Definition Language 1-5

The DCB Attribute Configuration File 1-5
Differences in Global Location Services . 1-6
Differences in Fault and Signal Handling 1-6
Support for Multiple Threads 1-6
Support for Concurrent Binding Handles 1-7
Differences in UUID Fonnat 1-7

Converting NCS 1.5.1 Programs to DCB 1-8
DCB RPC API Concepts · ; 1-8
DCB IDL Concepts .. 1-8

Contents vii

1.4.3
1.4.4
1.4.5
1.4.6
1.4.7

Chapter2

2.1
2.1.1
2.1.2

. 2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2

. 2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.1.3
2.4.2
2.4.3
2.4.4
2.4.5

How to Write DCE Interface Definitions 1-8
Converting Clients and Seivers . 1-9
Handling Multiple Managers 1-9
Using DCE Location Seivices 1-9
Comparing DCE RPC and NCS 1.5.1 Terminology 1-9

Understanding DCE RPC API Concepts

RPC Communications ... 2-1
Socket Addresses .. : .. 2-1
DCE RJ:>C String Bindings 2-2
DCE RPC Protocol Sequences 2-3

Bindings andHandles ... 2-4
Binding Information .. 2-4
Binding States: Unbound, Bound, and Partially Bound 2-5
Partially Bound Binding Handles 2-6

Overview of the DCE RPC API 2-6
Communication Services 2-7
Endpoint Map Services ... 2-8
Error Seivice ... 2-8
Management Services .. 2-8
String Services .. .- 2-8
UUID Services ... 2-8
Authentication Seivices .. 2-9
Stub Support Services ... 2-9

Changing NCS 1.5.1 Routines to DCE RPC Routines 2-9
Mapping of NCS 1.5 .1 rpc _ $ Calls to DCE RPC Routines 2-9

Client Calls .. 2-10
Seiver Calls ... 2-11
Calls for Clients or Servers" 2-12

Mapping of NCS 1.5 .1 rrpc _ $ Calls to DCE RPC Routines 2-13
Mapping ofNCS 1.5.1 socket_$ Calls to DCE RPC Routines 2-13
Mapping ofNCS 1.5.1 lb_$ Calls to DCE RPC Routines 2-15
Mapping ofNCS 1.5.1 uuid_$ Calls to DCE RPC Routines 2-17

viii Contents

2.4.6
2.4.7

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.6
2.6.1
2.6.2

Chapter 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2~10

3.2.11
3.2.12
3.3
3.4
3.5

Mapping ofNCS 1.5.1 error_$ Calls to DCERPCRoutines 2-17
Replacement of the pfm _ $ Calls with the

DCE Exception-Returning Package 2-18
Mapping ofNCS 1.5.1 Data Types to DCE RPC Data Types 2-18

error $ and status $t Data Types 2-18 - -
lb_$ Data Types ... 2-18
pfm~$ Data Types .. 2-19.
rpc_$ Data Types .. 2-19.
rrpc $ Data Types · 2-20
socket $ Data Types .. 2-20
uuid _ $ Data Types · 2-20

How to Migrate NCS 1.5.1 Applications to DCE RPC 2-21
Complete Conversion ... 2-21
Partial Conversion .. 2-21

Overview of the DCE Interface Definition Language

An Overview of DCE Interface Definitions 3-1
DCE IDL Data Types and Attributes 3-2

Base (Simple) Types ... 3-2
Pipes and Pipe Attributes 3-3
Pointers ... 3-3
Arrays and Array Attributes 3-4
Strings .. 3-5
Customized Handles · 3-6
Context Handles ... 3-6
Enumerations .. 3-7
Unions · 3-7
Structures .. ~ .· ... 3-7
Attributes for Compatibility with NCS 1.5.1 3-7
Sets .. 3-7

Structure of the DCE IDL Interface Definition 3-7
Interface Nam es .. 3-8
Interface Definition Attributes 3-9

Contents ix

3.6
3.7
3.8

3.8.1

3.8.2
3.8.3

3.9
3.10
3.11

3.11.1
3.11.2
3.11.3
3.11.4
3.11.5
3.11.6
3.11.7
3.12

3.13

Chapter 4

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2
4.2.2.1
4.2,.2.2
4.2.2.3
4.2.2.4

Import Declarations ; . 3-11 ·
Constant Declarations ... ·. . . 3-11
'I'ype Declarations ... 3-12

'JYpe Attributes .. 3-12
'JYpe Specifiers .. 3-12
'JYpe Declarators ... 3-13

Operation Declarations ... 3-14
Parameter Declarations ... 3-15
The Attribute Configuration File 3-15

Binding Attributes: auto_handle, explicit_ handle, implicit_handle 3-17
Handling Errors with comm_ status and fault_ status 3-18

Controlling Client Stub Generation with code and nocode 3-18
Controlling the Marshalling of Code with in_Iine and out_of_line 3-19
Controlling Data Representation with represent_as 3-19
Initializing Memory Management Routines with enable_ allocate 3-19
Allocating Objects from the Heap 3-19

Example of an Interface Definition and Attribute Configuration File 3-20
DCB IDL Output Files .. 3-21

Writing DCE Interface Definitions

Using the nidl_to_idl Tool to Convert NCS 1.5.1 Interface Definitions 4-1
The nidl_to_idl Tool for Translating Interface Definitions .. ~ 4-1
Invoking the nidl_to_idl Tool 4-2
IDL Attributes for Compatibility with NCS 1.5.1 ~ 4-4
Creating an Attribute Configuration File 4-6
Converting from the NIDL Pascal Syntax 4-7

Writing New DCB Interface Definitions 4-9
Generating Interface UUIDs 4-9
Writing the Interface Definition 4-10

Naming the Interface · 4-10
Specifying Interface Definition Attributes 4-10
Specifying Import Declarations 4-10
Specifying Constant Declarations 4-10

x Contents

4.2.2.5
4.2.2.6
4.2.3
4.3

Chapter 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.5
5.5.1
5.5.2
5.6
5.7
5.7.1

. 5.7.2
5.8
5.9

Chapter 6

6.1
6.2
6.3
6.4
6.5

Specifying Type Declarations 4-11
Specifying Operation Declarations 4-11

Writing an Attribute Configuration File 4-11
Running the IDL Compiler .. 4-12

Converting Distributed Applications to DCE RPC

Converting the Client Code ... 5-1
Converting the Server Code .. 5-6

Initializing a DCB Server 5-6
The server.c Module · 5-7
The manager.c Module 5-11

Converting the util.c Module 5-11
Building DCB RPC Applications 5-12
Running the binopfw Program 5-13

Starting the Server Program 5-13
Starting the Client Program 5-13

Improving the binopfw server.c Program 5-14
Handling Signals in DCB RPC ·•............. 5-16

Using Exceptions with the DCB Exception-Returning Package 5-17
Handling Asynchronous Signals 5-18

No Replacement for the rpc_$set_fault_mode 5-20
Using NCS 1.5 .1 and DCB RPC UUIDs 5-20

Writing Servers with Multiple Managers

The stacks Interface Definition 6-1
Generating the Object UUIDs in the stackdf.h File 6-2 ·
The stacks Client Module .. 6-4
The stacks Server Module ... 6-9
The stacks util.c Module ... 6-17

Contents xi

Chapter 7 Using DCE Location Services

7 .1 The Endpoint Map Service ... 7-2
7 .1.1 Mapping NCS 1.5 .1 lb_$ Calls to DCB RPC rpc _ ep Routines 1~2
7.1.2 Using rpc_ep Routines in a Client 7-3
7.1.3 Using rpc_ep Routines in a Server 7-3
7.1.4 Using rpc_mgmt_ep Routines in a Manager 7-5
7.2 The Natlle Service .. 7-5
7 .2.1 Mapping of lb_$ Calls to rpc _ ns Routines 7-6
7.3 Client Name Service Routines 7-7
7 .3 .1 Importing Binding Handles, 7-8
7.3.2 Looking up a Set of Binding Handles 7-12
7.4 Server Natlle Service Routines 7-13
7 .5 The lookup Satllple Application 7-18

Appendix A DCE RPC Routines

A.1
A.2
A.2.1
A.2.1.1
A.2.1.2
A.2.1.3
A.2.1.4
A.2.1.5
A.2.1.6
A.2.1.7
A.2.1.8
A.2.2
A.2.3
A.2.4
A.2.5
A.2.5.1

Authentication Services . A-2
Communication Services . A-3

xii · Contents

Binding Routines .. A-4
Create a Binding Handle from a String Binding A-4
Release a Binding Handle . A-4
Copy a Binding Handle A-4
Change a Server Binding . A-4
Convert a Binding Handle- . A-5
Get Binding Infonnation ~ . A-6
Set Binding Infonnation : A-6
Convert a Client. Binding Handle . A-6

Interface Routines ; . A-7
Network Routines . A-7
Object UUID Routines . A-8
Server Routines ·. A-8

Register Protocol Sequences . A-8

A.2.5.2
A.3
A.4
A.5
A.5.1
A.5.2
A.5.2.1
A.5.2.2
A.6
A.6.1
A.6.2
A.6.2.1
A.6.2.2
A.6.2.3
A.6.3
A.6.3.1
A.6.3.2
A.6.3.3
A.6.3.4
A.6.4
A.6.4.1
A.6.4.2
A.6.4.3
A.6.5
A.6.6
A.6.6.1
A.6.6.2
A.6.6.3
A.7
A.8
A.8.1
A.8.1.1
A.8.1.2

A.8.1.3

Other Server Initialization . A-9
Endpoint Map Services . A-11
Error Services . A-13
Management Services ... ·. . A-14

Local Management Routines A-14
Local/Remote Management Routines ~ . . . A-16

Routines Used by All Applications . A-16
Routines Used by Management Applications A-17

Narile Service ... A-18
Export a Server to the Narile Service A-19
Search a Name Service Database for Binding Information A-20

Automatic Binding . A-20
Import Routines . A-20
Lookup Routines .. A-21

Manage Name Service Entries . A-21
Find Entries · A-21
Create and Delete Entries . A-22
View Objects of an Entry . A-22
Get Information from Entries . A-22

Managing Name Service Groups . A-23
Delete a Group . A-23
Add and Remove Group Members . A-23
View Members of a Group . A-24

Managing Name Service Expirations . A-24
Managing Name Service Profiles . A-24

Delete a Profile Attribute . A-25
Add and Remove Profile Elements . A-25
Obtain Profile Elements . A-25

String Services ~ ... A-26
Stub Support Services . A-26

Using the Stub Memory Management Scheme . A-26
Allocate and Free Memory on a Server . A-26
Enable and Disable Allocation by rpc _ ss _allocate A-27
Establish Routines that Free and Allocate Memory A-27

Contents xiii

Change the Current Allocation and Freeing Mechanism A-27
Using Thread Handles in Memory Management A-28
Other Memory Management Routines • . A-28

A.8.1.4
A.8.2
A.8.3
A.9
A.10
A.10.1

UUID Seivices . A-29
DCB RPC Runtime Routine Summary . A-30

DCE RPC Client Runtime Routines . A-30
A.10.1.1
A.10.1.2
A.10.1.3
A.10.1.4
A.10.1.5
A.10.1.6
-A.10.1.7
A.10.1.8
A.10.1.9
A.10.1.10
A.10.1.11
A.10.1.12
A.10.2
A.10.2.1
A.10.2.2
A.10.2.3
A.10.2.4
A.10.2.5
A.10.2.6
A.10.2.7
A.10.2.8
A.10.2.9
A.10.2.10
A.10.2.11
A.10.2.12
A.10.2.13
A.10.2.14
A.10.2.15
A.10.3

xiv Contents

Binding Routines .. A-30
Interface Routines . A-30
Network Routines · A-30
Endpoint Map Seivices ~ A-31
Error Seivices . A-31
Inquire of Protocol Sequences . A-31
Local Management Seivices . A-31
Local/Remote Management Seivices . A-31
String Seivices. A-31
Name Seivice Routines A-31
UUID Seivices . A-33
Stub Support Routines A-33

DCE RPC Seiver Runtime Routines A-33
Binding Routines . A-33
Interface Routines . A-34
Network Routines . A-34
Object UUID Routines A-:-34
Seiver Routines . A-34
Endpoint Map Seivices . A-35
Managing Binding Handles A-35
Error Seivices . A-35
Local Management SeIVices . A-35
Local/Remote Management Seivices . A-35
String Seivices . A-35
Managing the Seiver . A-36
Name Seivice Routines A-36
Stub Support Routines . A-37
UUID SeIVices . A-37

DCE Management Application Runtime Routines A-38

A.10.3.1
A.10.3.2
A.10.3.3
A.10.3.4
A.10.3.5
A.10.3.6
A.10.3.7
A.10.3.8
A.10.3.9

Appendix B

Binding Routines .. A-38
Interface Routines . A-38
Error Services . A-38
Endpoint Map Services A-38
Local Management Services . A-38
Local/Remote Management Services A-38
String Services -. A-39
Nrune Service Routines A-39
UUID Services . A-40

NCS 1.5.1 Client and Server Programs

B.1 NCS l.5.1 binopfw ~rogrrun B-1
B.1.1 Client Code : .. B-1
B.1.2 NCS 1.5.1 util.c ... B-4
B.1.3 NCS 1.5.1 server.c ... B-4
B.1.4 NCS 1.5.1 manager.c ... B-8
B.2 NCS 1.5.1 stacks Progrrun .. B-8
B.2.1 The stacks Interface Definition B-8
B.2.2 The stacksdf.h Header File . B-9
B.2.3 The stacks Client Module . B-10
B .2.4 The stacks Server Module . B-13

Appendix C IDL and ACF Attribute Summary

C.1 DCE IDL Attribute Summary . C-1
C.1.1 IDL Attributes in Interface Definition Headers . C-1
C.1.2 IDL Attributes for Operations . C-3
C.1.3 IDL Attributes for Parruneters . C-3
C.1.4 IDL Attributes for Structures . C-3
C.1.5 IDL Attributes for Unions . C-3
C.1.6 IDL Attributes for Arrays . C-4

Contents · xv

Conformant Array Attributes · C-4
Varying Array Attributes . C-4

IDL Attributes for Pointers . C-4
IDL Attributes for Customized Handles . C-4
IDL Attributes for Context Handles . C-5
IDL Attributes for Type Declarations . C-5
IDL Attributes for Compatibility with NCS 1.5.1 ; C-5

C.1.6.1
C.1.6.2
C.1.7
C.1.8
C.1.9
C.1.10
C.1.11
C.2 DCB ACF Attribute Summary . C-6

Glossary

xvi Contents

Figures

Figure 1-1. Where DCE Resides in a Software Architecture 1-2
Figure 2-1. Comparison of a Socket Address and a DCE String Binding 2-3
Figure 3-1. DCE Interface Definition 3-20
Figure 3-2. DCE Attribute Configuration File 3-20
Figure 4-1. NCS 1.5.1 Interface Definition 4-3
Figure 4-2. DCE Interface Definition Created with nidl _to _}di 4-3
Figure 4-3. NCS 1.5.1 Interface Definition, string.idl 4-5
Figure 4-4. Conversion of string.idl to string_ v2.idl : 4-5
Figure 4-5. NCS 1.5.1 Interface Definition, params.idl 4-6
Figure 4-6. nidl_to_idl Warning .. 4-6
Figure 4-7. Conversion of params.idl to params _ v2.idl 4-7
Figure 4-8. The params _ v2.acf Attribute Configuration File 4-7
Figure 4-9. NCS 1.5.1 Interface Definition in NIDL Pascal Syntax 4-8
Figure 4-10. Conversion of the Pascal Interface Definition to DCB IDL 4-8
Figure 5-1. DCE RPC Version of binopfw/client.c 5-3
Figure 5-2. DCE RPC Version of binopfw/server.c 5-8
Figure 5-3. DCE RPC Version of binopfw/manager.c 5-11
Figure 5-4. DCE RPC Version of binopfw/~til.c 5-11
Figure 5--5. SetverUsing rpc_server_use_all_protseqs 5-15
Figure 5-6. Handling Asynchronous Signals 5-19
Figure 5-7. Comparison of uuid;,_ $t and uuid _ t 5-21

·Figure 5-8. Changing the NCS 1.5.1 UUID C Initialization 5-21
Figure 6-1. The DCE RPC stacks/stacks.idl Interface Definition 6-2
Figure 6-2. The stacks/stacksdf.h Header File 6-3
Figure 6-3. The stacks/client.c Module· 6-5
Figure 6-4. The stacks/server.c Module 6-10
Figure 6-5. The stacks/amanager.c Module 6-15
Figure 6-6. The stacks/lmanager.c Module 6-16
Figure 6-7. The stacks/util.c Module · 6-17
Figure 7-1. Registering and Unregistering with the

Local Endpoint Map Database 7-4

Contents xvii

Figure 7-2. Name Service Routines in thestring_conv/client.c Program 7-9
Figure 7-3. Name Service Routines in the string_conv/server.c Program 7-14
Figure B-1. NCS 1.5.1 Version of binopfw/client.c B-2
Figure·B-2. NCS 1.5.1 Version ofbinopfw/util.c B-4
Figure B-3. NCS 1.5.1 Version of binopfw/server.c . B-5
Figure B-4. NCS 1.5.1 Version of binopfw/manager.c . B-8
Figure B-5. The NCS 1.5.1 stacks.idl Interface Definition B-9
Figure B-6. The NCS 1.5.1 stacksdf.h Header File . B-9
Figure B-7. The NCS 1.5.1 stacks/client.c Module B-10
Figure B-8. The NCS 1.5.1 stacks/server.c Module B-13
Figure B-9. The NCS 1.5.1 stacks/lmanager.c Module B-17
Figure B-10: The NCS 1.5~1 stacks/amanager.c Module B-18

Tables

Table 3-1. Comparison ofIDL and NIDL Interface Attributes : 3-9
Table 3-2. DCB Type Specifiers .. 3-13
Table 3-3. Comparison of IDL and NIDL Operation Attributes 3-14
Table 3-4. NIDL and IDL Output Files 3-21
Table 7-1. RPC Endpoint Map Equivalents to Location Broker Calls 7-3
Table 7-2. RPC Name Service Equivalents to Location Broker Calls 7-6
Table C-1. DCB IDL Attributes . C-2
Table C-2. DCB ACF Attributes . C-6

---000---

xviii Contents

Chapter 1

Overview of DCE

This chapter provides an overview of the OSF Distributed Computing Environment (DCE)
with an emphasis on the.DCB Remote Procedure Call (RPC) facility. This chapter also com
pares the DCE RPC Application Programming Interface (API) and the NCS 1.5.1 API Sub
sequent chapters provide more details on DCE RPC programming features and how they
compare with the corresponding NCS 1.5.1 features.

1.1 DCE Architecture

The OSF Distributed Computing Environment is a set of services that supports the creation,
use, and maintenance of distributed applications in a heterogeneous environment. It provides
the services that allow a distributed application to interact with a collection of computers, op
erating systems, and networks that may be heterogeneous as if they were a single system. For a
more detailed overview ofDCE, see the Introduction to OSF DCE.

From an architectural perspective, DCE is a layer of software that resides above the operating
system and network services. It resides below the distributed applications that rely on the DCE
layer. Figure 1-1 shows where DCE resides in a software architecture.

Overview of DCE 1-1

Distributed Computing Environment (DCE)

Figure 1-1. Where DCE Resides in a Software Architecture

The network on which DCB resides can be a local or wide area network or a combination of
both. DCB can run over different types of network protocol families (such as Internet or OSI)
as long as the hosts share a common set of protocols.

While DCB can be pictured as a single layer of software, it actually consists of several related
components as described below.

1.2 DCE Components

This section contains a brief description of the DCB components that are supported by the HP
DCB Developers' Environment followed by a more detailed description of the DCB Remote
Procedure Call (RPC) component. For more infonnation about DCE, see the Introduction to
OSFDCE.

1.2.1 DCE Components Present in the HP DCE Developers' Environment

The following DCE components are present in the HP DCE Developers' Environment
Release:

Threads

1-2 Overview of DCE

Provides support for creating, managing, and synchronizing
multiple threads of control within a single process. '!bis
package is compliant with draft 4 of Threads Extensions for
Portable Operating Systems proposed by the
PO SIX 1003.4a standards committee. RPC clients and
servers may be threaded programs. For more infonnation

Remote Procedure Call

Security Service

Directory Service

Time Service

Management

about using threads, see Programmer's Notes on HP DCE
Threads.

Provides an application programming interface (API) that
allows programmers to develop distributed applications using
the client/server model. It defines the interface· definition
language (IDL) and provides the IDL compiler, which
generates code that transforms procedure calls into network
messages. It also includes a runtime service which implements
the network protocols by which the client and server sides of
an application communicate.

Provides secure communications and controlled access to
resources in the distributed system.

Serves as the central source for much of the necessary
infonnation in the distributed system. It keeps track of users,
machines, and RPC-based services such as the Time and
Security Services.

The Directory Service actually consists of three components:
the Cell Directory Service (CDS), the Global Directory
Service (GDS), and the Global Directory Agent (GDA). The
CDS keeps track of a group (called a CDS cell) of machines
that are typically located near each other. The GDS keeps track
of a worldwide database of resources by implementing the
ISO X.500 Directory Service specifications. The GDA
manages transactions between cell and global directory
services. HP's DCB product does not support the GDS and,
instead, uses the Domain Name Service (DNS) as the global
directory service. Therefore, in HP's DCB product, the GDA
manages the interaction between the CDS and the DNS.

Provides synchronized time on the computers in a distributed
environment using the UTC, a universal time standard.

Provides tools for managing the various components in a
distributed network. Each DCB service above provides ways
to manage the component over the network.

Overview of DCE 1-3

1.2.2 The RPC Component of the DCE

RPC is the communication mechanism used by all other DCE components. In addition, RPC
provides an application programming interface (API) to other components.

The RPC component provides access to other DCE components. For example, RPC provides
access to the DCE Directory Services through the Name Service Interface (NSI); NSI routines
begin with the rpc _ ns prefix. Similarly, the RPC component provides access to the DCE Se
curity Service with the RPC routines (such as rpc _ binding_inq_ auth _info) that have auth in
the routine name.

Applications written with DCE RPC can support connection-oriented transport services (such
as TCP) and connection-oriented network services (such as X.25), as well as datagram-ori
ented services (such as UDP).

For detailed information about programming in a DCE environment, see the OSF DCE Appli
cation Development Guide and the OSF DCE Application Development Reference.

1.3 Differences between DCE RPC and NCS 1.5.1

In the process of creating a standard, portable RPC implementation for DCE, several changes
were made to NCS 1.5 .1. Some changes represent enhancements to NCS, such as support for
pointers and pipes. Other changes improve the portability of the software; for example, the
API routine names no longer contain the dollar sign ($). Some other changes only affect
names, while the underlying concepts remain the same.

This section highlights some major differences between the NCS 1.5 .1 and DCE RPC APis.

NCS 1.5.1 programs can communicate with DCE RPC programs; for example, an NCS 1.5.1
client can call a DCE server. Within a single client or server, however, you can use routines
from only one API; you cannot call both NCS 1.5.1 and DCE RPC routines from within the
same program.

1.3.1 Differences in the APis

The DCE RPC API replaces the application programming interface that is available with
NCS 1.5.1. The DCE RPC API is designed to better meet the needs of today's RPC systems
and the communication requirements of the DCE environment.

1-4 Overview of DCE

1.3.2 . Differences in the Binding Mechanism

The DCE RPC API does not provide any routines that directly manipulate socket addresses.
Details of addressing are internal and not accessible at the API level. Instead, binding handles
are represented in either string or binary fonnat.

1.3.3 Differences in the Interface Definition Language

The DCE Interface Definition Language (IDL) and compiler are enhanced versions of the
NCS 1.5.1 Network Interface Definition Language (NIDL) and compiler. Features include

• Enhanced support for pointers. DCE IDL supports both reference and full pointers,
and has lifted many of the NCS 1.5.1 restrictions on pointers. A pointer can now
have a NULL value or be an alias. Pointers no longer need to be at the "top level."

• Enhanced support for constants. DCE IDL supports integer, boolean, character,
· string, and null pointer constants. It also supports constant expressions.

• Support for pipes, which provide a mechanism for transferring large quantities of
typed data.

• Enhanced support for open (now called conformant) arrays, which are arrays whose
size is determined at run time.

• Support for-context handles, which provide the ability to maintain state information
across remote procedure calls.

DCE provides a translating tool, nidl_ to _idl, that allows you to automatically convert an
NCS 1.5.1 interface definition into a format appropriate for the DCE IDL compiler. Chapter 4
describes how to use this tool.

The IDL compiler supports only a C-like syntax; it does not support a Pascal-like syntax as in
NCS 1.5.1. However, you can use the nidl_to _idl translator to automatically generate aDCE
interface definition from an N CS 1.5 .1 NIDL file that was created in the Pascal-like syntax.

Another difference between IDL and NIDL is that some information that was previously de
fined in the interface definition now belongs in the Attribute Configuration File (ACF or
.acf file).

1.3.3.1 The DCE Attribute Configuration File

In the DCE programming environment, the attribute configuration file (ACF) allows you to
define attributes that modify the interaction between the application. and stubs without

Overview of DCE 1-5

changing the IDL file. Rather than having all attributes defined in a single file, information is
separated into two files as follows:

Interface definition file Contains any infonnation pertinent to the client/server
contract (that is, the interaction between the client and server
stubs).

Attribute configuration file Contains infonnation pertinent to the local behavior (that is,
the interaction between application code and stub code).

The attribute configuration file (ACF) allows application programmers to customize their
applications more easily without affecting interoperability ("over the wire") of existing DCE
interfaces. Application programs built from the same interface definition file are guaranteed
to interoperate; differences between ACF files are guaranteed to not affect interoperability.

· The client and server sides of an application must be built using the same interface definition,
but they can be built using different attribute configuration files.

For more details on how DCE IDL differs from NCS 1.5.1 NIDL, see Chapters 3 and 4.

1.3.4 Differences in Global Location Services

To enable clients to locate possible servers in a network dynamically, the DCERPC API uses a
name service mechanism rather than the NCS 1.5.1 Global Location Broker service. Clients
can locate servers using either the name service intetface (NSI) or a mechanism such as pass
ing in a host name from the command line.

1.3.5 Differences in Fault and Signal Handling

The DCE RPC API does not use the Process Fault Management (pfm _$)routines for fault and
signal handling. Instead, DCE uses the DCE exception-returning package (sometimes re
ferred to by the macros it contains, TRY /CATCH). This package allows programmers to map
signals to exceptions and then catch the exceptions when petforrning cleanup operations. This
package is made available by the underlying operating system for multi threaded programs.
Chapter 5 provides a programming example illustrating how to use the macros defined in this
exception-returning package. Refer to the OSF DCE Application Development Guide for
more infonnation about the package.

I

1.3.6 Support for Multiple Threads

The NCS RPC runtime does not create multiple threads unless a server specifically requests
that they.be created. An NCS server can request multiple threads of execution by calling

1-6 Overview of DCE

rpc _ $1isten with a number greaterthan one forthemax _calls parameter, which specifies how
many concurrent requests are allowed. This feature is only available on platforms on which
Concurrent Programming Support (CPS) is implemented.

The DCB RPC runtime automatically creates multiple threads, so that all clients and servers
are multi threaded. There are several aspects of multithreaded programming using the DCB
Threads package of which you must be aware. We recommend that you refer to Programmer's
Notes on HP DCE Threads for more infonnation.

1.3. 7 Support for Concurrent Binding Handles

The DCB RPC runtime permits DCB RPC-based applications to use a single binding handle
for making concurrent remote procedure calls. NCS 1.5.1 applications cannot use a single
binding handle for making concurrent remote procedure calls; each thread must create its own
binding handle (via rpc_$bind) and then maintain it.

Still, for both NCS 1.5.1-based and DCB RPC-based multi threaded programs, you must take .
the same precautions to avoid concurrency conflicts when multiple threads try to operate on
the same object simultaneously. For details on writing multithreaded programs, refer to the.
OSF DCE Application Development Guide and Programmer's Notes on HP DCE Threads.

1.3.8 Differences in UUID Format

The DCB RPC UUID format is different from that of NCS 1.5 .1. The DCB RPC uuid tis the
same size as the NCS 1.5 .1 uuid _ $t, but it has a different internal structure. (See Section 5 .9
for a comparison of UUID internal structures.) Because the internal structures are different,
generating UUIDs with C initializations (using uuidgen for a DCB RPC-style UUID and
uuid gen for a NCS 1.5.1-style UUID) produces different output.

In programs that attempt to use both NCS 1.5.1 and DCB RPC UUID routines, a uuid _ t can be
passed where a uuid _ $t is expected and vice versa, but conversion to and from
uuid _$string_ t can lose information.

The uuid _$nil global variable has no replacement in the DCB RPC API. The NCS 1.5.1 API
provides ·a nil UUID as a global variable. With the DCE RPC API, you use the
uuid create nil routine to create a nil UUID. - -

Overview of DCE 1-7

1.4 Converting NCS 1.5.1 Programs to DCE

You may wish to convert NCS 1.5.1 applications to DCB in order to take advantage ofDCE
features not supported by NCS 1.5 .1, or you may wish to convert a working NCS application
to DCB as a learning experience or to evaluate the features and benefits of DCB that are sup
ported by the HP DCB Developers' Environment.

If your NCS 1.5.1 application relies on dynamic binding to locate server hosts, you must re
vise it to use either the DCB name service interlace or to use string bindings to identify server
hosts. As described in Section 1.3.4, applications that use the DCB RPC API cannot access the
Global Location Broker.

The rest of this book describes how to convert existing NCS 1.5.1 applications to the DCB
RPC APL The following sections summarize the topics covered in the rest of this book.

1.4.1 DCE RPC API Concepts

Chapter2 introduces some major concepts that underly the DCB RPC API and explains how it
differs from the NCS 1.5 .1 APL It also describes how the DCB RPC API is structured and how
its routines and data types differ from those of the NCS 1.5.1 API.

1.4.2 DCE IDL Concepts

Chapter 3 provides an overview of how the DCB Interlace Definition Language differs from
the Network Interface Definition Language (NIDL) in NCS 1.5 .1. It introduces the new syn
tax features available with this release.

1.4.3 How to Write DCE Interface Definitions

The first step in developing a distributed application is to define its interlace (or interlaces)
using the DCB Interlace Definition Language (IDL). Chapter4 provides details on the process
of writing interface definitions with some examples.

Also, DCB provides the nidl_to_idl tool to automaticallyconvertNCS 1.5.1 NIDL files into
IDL files. Note that nidl _to _idl takes care of most, but not all of the translation automatically.
See Chapter 4 for a description of how to use this tool and how to invoke the IDL compiler to
create stubs and header files for DCB RPC-based applications.

1-8 Overview of DCE

1.4.4 Converting Clients and Servers

Chapter 5 provides a programming example that shows how to convert an existing NCS 1.5 .1
application (a client and a server) to the DCE RPC API and how to compile, link, and execute
the resulting programs. Chapter 5 also provides an example of using the TRY /CATCH macros
for fault handling.

1.4.5 Handling Multiple Managers

Chapter 6 describes how to handle multiple managers in a DCE RPC-based application by
presenting a DCE RPC version of the stacks application that was provided with NCS 1.5.1.
This sample application is available online as part of the DCE Programmers' Environment.

1.4.6 Using DCE Location Services

Chapter 7 contrasts the NCS location broker service with the DCB endpoint map and name
services, and summarizes the steps that clients and servers must take to access the DCE ser
vices.

1.4.7 Comparing DCE RPC and NCS 1.5.1 Terminology

A glossary highlights the differences in terminology between NCS 1.5.1 and DCE RPC. You
may be able to get a high-level understanding of the differences between these releases by
reading this glossary.

---000---

Overview of DCE 1-9

Chapter 2

Understanding DCE RPC API Concepts

This chapter provides an overview of the DCB RPC application programming interface
(API). It also describes how the DCB RPC API and its underlying concepts differ from those
of NCS 1.5.1. Subsequent chapters describe the differences between the NCS Network Inter
face Definition Language (NIDL) and the DCB RPC Interface Definition Language (IDL)
and then provide programming examples demonstrating these differences.

This chapter discusses the conversion ofNCS 1.5. l calls only. If your program uses any other
non-HP-UX calls (such as Domain/OS calls), you must convert those calls. If your application
is not written in C, you should convert it to C, preferably ANSI C.

2.1 RPC Communications

In DCB RPC, as in NCS, the RPC runtime library is independent of any underlying communi
cations protocol. The destination address of a message automatically determines the protocol
used; both the sending and receiving host must support the protocol.

2.1.1 Socket Addresses

The N CS 1.5 .1 API contains routines requiring socket addresses. These socket addresses are
based on the Berkeley socket abstraction, though the NCS socket address is more generalized
to provide a transport-independent API for interprocess communication.

DCERPC Concepts 2-1

In the NCS 1.5 .1 API, addressing infonnation is represented by strings; these strings are con
verted to socket addresses (the socket_ $addr _ t data type), and the socket addresses are then
converted to binding handles. Some NCS 1.5.1 routines require socket addresses as input pa
rameters.

The socket abstraction is not sufficient to completely represent the addressing needs of the
DCBRPC system. The DCB RPC API enhances the string representation to contain additional
required infonnation. None of the DCE RPC API routines require socket addresses as input
parameters; DCB routines require address infonnation in string fonnat only. These strings are
then converted to binding handles.

2.1.2 DCE RPC String Bindings

The DCB RPC string representation, or string binding, contains the character representation
of a network destination. A string binding contains character strings that represent the
following:

• An object UUID, which specifies the UUID of the object to be operated on by the
remote procedure that is called using this string binding. If this optional field is not
provided, the RPC runtime assumes a nil UUID.

• An RPC protocol sequence identifier, which identifies the RPC, network, and trans
port protocols to use for making remote procedure calls. (The DCB RPC protocol
sequence ID replaces the NCS 1.5.1 protocol family ID.)

• A network address of the host on the network that receives remote procedure calls
made with this string binding. The format and content depend on the protocols
defined in the RPC protocol sequence identifier field. (The fonnats of IP network
addresses are the same in DCB RPC and NCS 1.5.1.)

• An endpoint, which is the address of the specific seiver instance on a host that re
ceives remote procedure calls made with this string binding. (The DCB RPC end
point replaces the NCS 1.5.1 port.)

A string binding is not required to contain all of this information; only the protocol sequence is
always required:

• The UUID is optional

• The protocol sequence is required

• If the seiver is on the client's system, the network address is optional

• The endpoint is optional

2-2 DCE RPC Concepts

For a detailed description of string bindings, see the intro rpc(3) manual page.

Figure 2-1 compares the NCS 1.5.1 and DCE RPC string binding representations.

ProtocoLFamily_ID : Network_Address_of_host [Port]

NCS 1.5.1 Socket Address

Object_UU/D@ RPC_ProtocoLSequence_/D: Network_Address_of_Host [Endpoint]

DCE RPC String Binding

Figure 2-1. Comparison of a Socket Address and a DCE String Binding

A DCE RPC string binding (without an object UUID) looks like the following. See
Section 2.1.3 for an explanation of the protocol sequences.

For ncacn _ ip _ tcp:
For ncadg_ip _ udp:

ncadg_ip_tcp:15.22.145.3[1035]

ncadg_ip_udp:15.22.145.3[3925]

2.1.3 DCE RPC Protocol Sequences

This section describes the DCE protocol sequences supported by the HP DCE Developers'
Environment In the DCE RPC API, a protocol sequence replaces the NCS 1.5.1 address
family for identifying the communications protocols used to establish a relationship between
a client and a server. In NCS 1.5.1, while the address family specifies the network protocol
layer of the communications protocol stack, the transport and RPC layers are defined implicit -
ly. In DCE RPC, the protocol sequence typically specifies a network protocol, a transport pro
tocol, and an RPC protocol that works with them, that is, all the layers of the communications
stack.

DCE RPC Concepts 2-3

The following predefined strings represent protocol sequences supported by the HP DCE De
velopers' Environment:

Protocol Sequence

ncacn _ip _ tcp

ncadg_ip _ udp

2.2 Bindings and Handles

Description

Network Computing Architecture (NCA) Connection for the
RPC protocol layer over· Internet Protocol; Transmission
Control Protocol for the network and transport layers.

NCA Datagram service over the Internet Protocol; User
Datagram Protocol for the RPC, network, and transport
protocol layers respectively.

For both NCS and DCE, the act of creating a relationship between a client and server occurs at
binding. In remote procedure calls, a binding is a relationship between the calling client and a
server. Before a client can initiate remote procedure calls, it must first establish a binding with
a server that can respond to its requests.

2.2.1 Binding Information

Before a client can establish a binding, it must first identify a server that offers the requested
RPC interface and object and that supports the same communications protocols as the client.
A server that meets these criteria is called a compatible server. (NCS 1.5 .1 did not fonnally
define a compatible server, but the requirement existed nonetheless.)

In the DCE RPC API, a client gets binding information for a compatible server from one of the
following

• A string representation of the binding infonnation, which can come from many pos
sible choices, such as an application-specific variable, a file, or the command line.

• A local databa$e on a server's host, ifthe server's host name is specified. This data
base contains a list of servers running on the specific host which have previously reg
istered an interface. A local daemon (rpcd. in DCE RPC, llbd in NCS 1.5.1)
forwards remote procedure calls to the server or returns server endpoint infonnation
to the client. The database is called the endpoint map in DCE RPC and the Local
Location Broker (LLB) database in NCS 1.5.1.

2-4 DCE RPC Concepts

• A name service database. This database contains binding information for servers
that have previously exported their RPC interfaces and bindings as part of their ini
tialization process.

In NCS 1.5.1, a client receives binding infonnation from either a string, the Local Location
Broker (LLB), or the Global Location Broker (GLB). The GLB is similar to a name service;
however, it contains a database of UUIDs rather than names. The GLB is part of NCS and is
accessed through lb_$ routines.

A DCE client receives binding information from either an application-specific source or a .
name service. If the client receives a binding in string fonnat, it must use the
rpc _ binding_from _string_ binding routine to obtain a binding handle. A client can use the
name service database to obtain a binding either by using the automatic binding method or by
searching the database for a compatible server. In the automatic method of binding, the client
stub transparently manages the binding. Alternatively, the client can use either the import rou
tines (rpc _ ns _ binding_import _ *) or the lookup routines (rpc _ ns _binding_ lookup_*} to
search for a compatible server and obtain a binding handle.

A binding handle serves as a contract between the client and server and exists for the lifetime
of the application, unless the application explicitly breaks the relationship (by resetting the
binding handle). This is a logical connection that remains active regardless of the underlying
physical network activity.

2.2.2 Binding States: Fully Bound, Partially Bound and Unbound

Another distinction between NCS 1.5 .1 and DCE RPC is how w.ell a client needs to identify a
server when it creates a binding handle.

In NCS 1.5.1, a client could create the binding handle in one of three different states depend
ing on how completely the server location is specified:

fully bound.

partially bound

Contains a complete binding, that is, it identifies a specific
host (network address), and a specific server instance on that
host (an endpoint). Also called bound-to-server in
NCS 1.5.1.

Specifies the address of a specific host, but no particular server
process running on that host (that is, it lacks a port number or

DCE RPC Concepts 2-5

unbound

endpoint). This is also called bound-to-host in NCS 1.5.1. A
partially bound handle becomes fully bound after the RPC
·runtime forwards the handle t0 the compatible seIVer.

Does not specify a specific host. ·

In the DCB RPC API, a client can create only a fully bound or partially bound binding handle.
The DCB RPC API does not allow a client to create an unbound handle. In NCS 1.5.1, if a
client uses an unbound handle to make a remote procedure call, the RPC runtime broadcasts
the request to all hosts on the local network. The only way you can broadcast remote proce
dure calls in · DCE RPC is by explicitly labeling an operation with the broadcast attribute in
the interface definition.

2.2.3 Partially Bound Binding Handles

In both NCS 1.5.1 and DCB RPC, a client often makes its first remote procedure call with a
partially bound handle, and the RPC runtime supplies the specific seivice instance (endpoint)
dynamically. This endpoint is sometimes called a dynamic endpoint because neitherthe cli
ent nor the seiver needs to know the actual value of the endpoint; the RPC runtime takes care
of it.

Dynamic endpoints are registered in a local database on the seIVer 's system. In N CS 1.5 .1, the
local database is called the Local Location Broker (LLB) database, and is maintained by the
Local Location Broker Daemon (llbd). In the DCE RPC API, the local database is called the
local endpoint map, and the RPC daemon (rpcd) maintains this database.

Entries are added to the local endpoint map database each time a seiver starts ~p. That is, when
a server initializes, it registers its endpoint with the local endpoint map. If the seiver does not

.. use a well-known endpoint, endpoints are assigned dynamically by the RPC runtime and can
change each time a seiver starts up.

After the client makes the initial remote procedure. call, the returned binding handle is fully
bound, and the client does not need to use any forwarding mechanism for subsequent calls to
that server. This is the same for DCE RPC and NCS 1.5.1.

2.3 Overview of the DCE RPC API

This section describes how the DCE RPC API is organized. For complete details on the rou
tines in the API, see the OSF DCE Application Development Reference.

2-6 DCE RPC Concepts

The DCB RPC API is composed of the following seivice_s:

• Communication Seivices

• Endpoint Map Seivices

• Error Service .. Management Seivices

• String Seivices

• UUID Seivices

• Authentication Seivices

• Stub Support Seivices

For a listing of the specific routines in each seivice, see Appendix A.

2.3.1 Communication Services

Communication Seivices contain the API routines related to establishing a client/seiver rela
tionship (binding) and inquiring about the binding. The routines are categorized as follows:
binding, interface, network, object, protocol sequence, and seiver.

Binding

Interface

Network

Object

Protocol Sequence

Seiver

Routines that client and seiver applications can use to
manipulate binding handles.

Routines that client, seiver, and management applications can
use to get and release memory for the interface identification
structures.

Routines that client and seiver applications can use to get the
protocol sequences supported by the RPC runtime and
operating system, and to check that a protocol sequence is
valid.

Routines that a server application can use to get the type of an
object, register an object inquiry function, and assign a type to
an object.

A routine that client and seiver applications can use to free
protocol sequences contained in a vector.

Routines that a seiver application can use to initialize a seiver
application and then listen for remote procedure calls.

DCE RPC Concepts 2-7

2.3.2 Endpoint Map Services

The Endpoint Map Services provide routines for manipulating the local endpoint map. The
local endpoint map is a database that resides on each DCE host; it contains a. listing of the end
points on which servers are listening. As part of the server initialization, the seiver application
registers with the RPC daemon (rpcd), which maintains the local endpoint map.

The Endpoint Map Services provide routines that seiver applications can use to add, modify,
or remove infonnation from the local endpoint map database. They also provide a routine for
client and management applications to get a fully bound handle from a partially bound handle.

2.3.3 Error Service

The Error Service provides an error routine to handle status information from DCE RPC
based programs. The error routine is used by client, server, and management applications to
get the message text for a DCE RPC status code.

2.3.4 Management Services

The Management Seivices comprise the following two seivices:

• The local management service provides routines that are called only by an applica
tion to manage itself. For example, applications can get information related to the
value of the binding communications timeout in a binding handle.

• The local/remote management seivice provides routines that are called either by an
application managing itself, or by a remote application (the caller) wanting to man
age the application (the callee). For example, the applications can get information
from and update the local endpoint map database, and get RPC runtime statistics.

2.3.5 String Services

The String Services provide a string routine that client, server, and management applications
use to free the allocated storage for a character string that was previous! y allocated by the RPC
runtime.

2.3.6 UUID Services .

The UUID Seivices provide UUID routines that allow client, server, and management appli
cations to manipulate UUIDs. Routines include: creating new UUIDs, comparing two
UUIDs, creating a hash value for a UUID, and converting UUIDs to strings and vice versa.

2-8 DCE RPC Concepts

2.3. 7 Authentication Services

Authentication S~ivices provide routines that support authenticated communications be
tween clients and servers. Authenticated RPC uses the authentication and authorization ser
vices supplied by the DCE Security Seivices.

2.3.8 Stub Support Services

Stub Support Services provide routines that pennit applications to use the Stub Memory Man
agement Scheme. Since a DCE full pointer can change its value across a call, DCE applica
tions that use full pointers may need to allocate memory for pointed-to nodes, and stubs must
be able to manage this memory.

2.4 Changing NCS 1.5.1 Routines to DCE RPC Routines

This section maps the existing NCS L5.1 routines to the routines that you would use in the
DCE RPC API, if any equivalent exists. It presents the mapping for each NCS 1.5.1 API:

• rpc _ $ routines

• rrpc _ $ routines

• socket_$ routines

• lb_$ routines

• uuid_ $ routines

• error_$ routines

• pfm _ $ routines

For a listing of the routines in the DCE RPC API, see Appendix A.

2.4.1 Mapping of NCS 1.5.1 rpc_$ Calls to DCE RPC Routines

In NCS 1.5.1, the rpc_$ calls constitute the API to the RPC runtime library. Some of these
calls are used only by clients, some only by servers, and some by either clients or servers.

This section lists the routines supported by NCS 1.5 .1 and provides the equivalent routines
available in the DCE RPC API where they exist.

DCE RPC Concepts 2-9

2.4.LJ Client Calls

In NCS 1.5.1, most of the rpc_$clientroutines allowed you to either create ahandle or man
age its binding state.

rpc _ $alloc _handle

rpc _$set_ binding

rpc_$bind

No replacement. NCS 1.5.1 allowed you to use this routine to
get an unbound handle, and then use rpc_$set_binding to
create a fully bound handle from this unbound handle. No
DCE RPC API routines return an unbound handle, they return
only fully bound or partially bound handles.

No replacement. See rpc_$alloc_handle.

Replaced by rpc _binding_ from_ string_ binding, which
returns a binding handle from a string representation of a
binding handle, and rpc _string_ binding_ compose, which
combines the components of a string binding (such as a
protocol sequence and host ID) into a string binding handle.

rpc _$clear_ server_ binding Replaced by rpc _binding_ reset, which resets a binding
handle to a partially bound handle, so that it identifies a
specific host but no longer identifies a specific endpoint on
that host.

rpc _$clear_ binding

rpc _ $dup _handle

2-10 . DCERPC Concepts

No replacement. The DCE RPC API does not support
unbound handles; all remote procedure calls must have at least
a partially bound handle.

No analogous call in the DCE RPC API. That is, DCE .RPC
does riot provide a routine to create a new reference to a single
binding handle. It provides a routine, rpc _binding_ copy,
which creates a new instance of the binding handle.

In NCS 1.5.1 applications, multiple threads manipulating the
same binding handle used rpc _ $dup _handle to create a new
reference to the binding handle and then rpc _$free to free
each reference; rpc _$free did not free the binding handle until

· all references are freed. Since this call created a reference to
the same handle, operations on the handle affected any copies.

If, in a DCE RPC-based multi-threaded application, a thread
wants to maintain its own private binding handle, the

rpc _$free_ handle

rpc_$set_async_ack

rpc _$set_ short_ timeout

2.4.1.2 Server Calls

application can use. rpc _binding_ copy to create a new
instance of the handle. Operations on the two ·handles work
independently from each other. Applications use
rpc _binding_ copy, for example, so that a thread references a
separate instance of the binding handle, thereby avoiding
other concurrency issues.

Replaced by rpc _ binding_free, which releases binding
handle resources.

No replacement. This call is available for those NCS 1.5.1
platfonns that could not support multi-tasking. There is no
DCB RPC analog, since DCB RPC requires a platfonn that
supports threads.

Replaced by rpc_mgmt_set_com_timeout, which changes
the communications timeout value in a server binding handle.

· Most of the NCS 1.5 .1 rpc $server calls are used to initialize the server so that it has a socket
(now an endpoint) on which to listen and is registered with the RPC runtime library on its host.

rpc _$use_ family

rpc _$use_ family_ wk

Replaced by rpc _server_ use _protseq (or by
rpc_server _use_all_protseqs) which registers a specified
protocol sequence (or sequences) with the RPC runtime.
The RPC runtime creates a binding handle with a
dynamically generated endpoint. In NCS 1.5.1 you call
rpc _$use_ family iteratively to listen on each available
family. In DCB RPC, you can register all supported protocol
sequences at once with the rpc _use_ all _protseqs routine.

Replaced by rpc _server_ use _protseq_if (or by
rpc_server_use_all_protseqs_if) which tells theRPC
runtime to use the specified protocol sequence combined
with the specified endpoint infonnation in the interface
specification for receiving remote procedure calls.

DCE RPC Concepts 2-11

rpc _$register

rpc _$register_ mgr

rpc..;,. $register_ object

rpc _$unregister

rpc _$listen

rpc _$shutdown

Replaced by rpc _server _register _if, which registers an
interface and managers with the RPC runtime.

Replaced by rpc _server _register _if, which registers an
interface and managers with the RPC runtime.

Replaced by rpc _object_ set_ type, which assigns the type of
an object.

Replaced by rpc _server_ unregister _if, which unregisters an
interface from the RPC runtime.

Replaced by rpc _server_ listen, which tells the RPC runtime
to listen for remote procedure calls.

Replaced by rpc _ mgmt _stop_ server _listening, which tells
a server to stop lis~ening for remote procedure calls.

rpc _$allow _remote_ shutdown

rpc _$set _fault_ mode

Replaced by rpc _ mgmt _set_ authorization_ fn, which
allows servers to establish an authorization routine to control
remote access to all the server's management routines.

No replacement. NCS 1.5.1 allowed you to set this mode to
help debug server applications. The DCB RPC API does not
provide such a mechanism. You must run your application
with a debugger to attempt to catch faults generated in server
applications. For more details, see Section 5.8.

2.4.1.3 Calls for Clients or Servers

The following NCS 1.5.1 rpc_$ calls are used by either clients or servers.

rpc _ $inq_ binding Replaced by rpc _binding_ to_ string_ binding, which returns
the string representation of a binding handle.

rpc_$inq_object Replaced by rpc_binding_inq_object, which returns the
object UUID from a binding handle.

rpc_$name_to_sockaddr Replaced by rpc_binding_from_string_binding~ which
returns a binding handle from a string representation of a
binding handle.

2-12 DCE RPC Concepts

rpc _ $sockaddr _to_ name Replaced by rpc _binding_ to_ string_ binding, which returns
the string representation of a binding handle.

2.4.2 Mapping of NCS 1.5.1 rrpc_$ Calls to DCE RPC·Routines

In N CS 1.5 .1, the rrpc _$calls enabled a client to request infonnation about a seiver or to shut
down a seiver. In DCE RPC, the rpc _ mgmt routines allow client, seiver, and management
applications to perfonn these tasks.

rrpc_$are_you_there

rrpc _ $inq_ stats

rrpc _ $inq_interfaces

rrpc _$shutdown

Replaced by rpc _ mgmt _is_ server _listening, which checks
whether a seiver is listening for remote procedure calls.

Replaced by rpc _ mgmt _inq_ stats, which applications use to
get statistics about a specified setver.. Most of the seiver
statistics reported by DCE RPC for the DCE RPC API are the
same as in NCS 1.5.1. However, rpc_mgmt_inq_stats does
not provide statistics about fragments as the NCS 1.5.1
rrpc_$inq_stats did.

Replaced by rpc_mgmt_inq_if_ids, which applications use
to get a listing of the interface IDs that a seiver has registered.

Replaced by rpc~mgmt_stop_server_listening, which
directs a seiver to stop listening for remote procedure calls, if
the seiver allows clients to issue this call.

2.4.3 Mapping of NCS 1.5.1 socket_$ Calls to DCE RPC Routines

Many NCS 1.5.1 socket_$ routines are provided for manipulating socket addresses. The
DCE RPC API uses string bindings to represent binding infonnation, so no address manipula
tion is necessary. You can replace many NCS 1.5 .1 socket_$ routines with the DCE RPC rou
tines that manipulate strings. (For more infonnation on the difference between NCS 1.5.1 .
socket addresses and the DCE RPC string bindings, see Section 2.1.)

The following DCE routines manipulate strings:

rpc _binding_ to_ string_ binding
Converts a client or seiver binding handle to its string
representation.

DCERPC Concepts 2-13

rpc _ binding_from _string_ binding
Creates a binding handle from a string representation of a
binding handle.

rpc _string_ binding_parse Parses the binding handle for specific binding infonnation.

rpc _string_ binding_ compose
Composes a binding handle with the specified string
components.

For the remaining socket_$ calls, the equivalent DCB RPC routines are as follows:

socket_$equal No replacement.This call allows you to compare separate
components of the socket address. There is no analogous
routine in the DCB RPC API. If you need to compare
individual components of a DCE RPC string binding, use
whatever library routines are available in the underlying
supported network services. For example, use socket calls to
get IP network address infonnation.

socket_ $to_ name No replacement.

socket_ $family_ to_ name No replacement. The DCE RPC API uses protocol sequences;
they have no integer representation.

socket_ $family_ from_ name No replacement. The protocol sequences supplied in the DCB
RPC routines have no integer representation.

socket_ $valid_ family

socket_ $valid _families

2-14 DCE RPC Concepts

Replaced by rpc _network _is _protseq_ valid, which
determines if a specified protocol sequence can be used for
making remote procedure calls. This routine actually
provides more functionality than socket_ $valid_ family,
which only checks whether the host's operating system
supports the specified family.
rpc _network _is _protseq_ valid tries to detennine if the
specific host supports the specified protocol sequence.

Replaced by rpc _network _inq_protseq, which lists the
protocol sequences supported by both the RPC runtime and
the operating system.

socket _~set_ wk _port

socket_ $inq_ my_ netaddr

No replacement This call is used by the NCS 1.5.1 runtime
only.

No replaceme~t. See the explanation under socket_ $equal.

socket_ $inq_ broad_ addrs No replacement. The DCB RPC API does not support
broadcasts.

socket_ $max _pkt_ size

socket_ $to _local _rep

socket_ $from _local _rep

No replacement This call is used by the NCS 1.5.1 runtime
only.

No replacement. This call is not used on typical NCS 1.5.1
platforms.

No replacement. This call is not used on typical NCS 1.5.1
platforms.

2.4.4 Mapping of NCS 1.5.l lb_$ Calls to DCE RPC Routines

The NCS 1.5.1 API provides the lb_$ calls as the interface to the Location Broker services.
These calls allow clients and servers to look up, register, or unregister entries in Local or
Global Location Broker databases. The lb_$ calls handle registration of both local
(local-host-only) and global (network-wide) entries.

The DCB RPC API provides an interface to the endpoint map database, which resides on each
host. DCB RPC also includes the DCE Name Service database, which allows applications to
do global lookup operations.

Note that while NCS 1.5.1 Local Location Broker and DCB RPC daemons perform similar
functions, the APis for the corresponding routines (lb_$ and rpc _ ep) are not equivalent. The
lb_$ calls support both local and global location services, while rpc _ ep calls support only the
local endpoint map database on a local host. To handle global location services, the DCB RPC
defines a separate Name Services API, the rpc _ ns routines.

lb_ $lookup_ object Replaced by rpc _ ns _entry_ object _inq_ next routine. Before
using this routine, the application must set up the search
context with rpc_ns_entry_object_inq_begin, and after
viewing, the application must remove the context with
rpc _ns _entry_ object _inq_ done.

DCE RPC Concepts 2-15

lb_ $lookup_ type No replacement.

lb_ $lookup _interface For lookups in the local endpoint map, replaced by
rpc _ ep _resolve_ binding. For lookups in the global
database, replaced by the rpc _ ns _;binding_ lookup_ next
routine. Before using rpc_ns_binding_Iookup_next, the
application must set up the search context with
rpc _ ns _ binding_lookup _begin, and after viewing, it must
remove the context with rpc _ ns _ binding_Iookup _done.

lb_ $lookup_ object _local Replaced by the rpc _ mgmt _ ep _ elt _inq_ next routine,
which returns an element from the local or remote endpoint
map database. Before using this routine, the application
must set up the search context with
rpc _ mgmt _ ep _ elt _inq_ begin and after viewing, it must
remove the context with rpc_mgmt_ep_elt_inq_done.
The rpc _ ep _resolve_ binding routine can also provide this
functionality on the local host.

lb_ $lookup _range No replacement.

lb_ $register Servers can publicly offer an interface (and object UUIDs of
resources it offers) with the name-service database for use by
any client application by exporting the interface and objects
with rpc _ ns _binding_ export.

lb_ $unregister

2-16 DCE RPC Concepts

These interfaces are also registered in the local endpoint
map database. If a server created a binding with
rpc _server_ use~ all _protseqs or rpc _server_ use _protseq,
it must register with the local endpoint map database using
either rpc _ ep _register or rpc _ ep _register_ no _replace.

Servers use rpc _ ns _binding_ unexport to remove the
binding handles for an interface and/or object from a
name-service database entry. Servers use
rpc _ ep _unregister to unregister their own entries from the
local host's endpoint map database. Management routines
call rpc _ mgmt _ ep _unregister to remove an interface ID, if
a server is no longer available, or to remove object UUIDs
if a server no longer supports the objects.

2.4.5 Mapping ofNCS 1.5.1 uuid $Calls to DCE RPC Routines

The uuid _ $ calls generate and manipulate Universal Unique Identifiers.

uuid_$gen

uuid _$decode

uuid _$encode

uuid _$from_ uid

uuid _$to_ uid

uuid _$equal

uuid_$hash

uuid_$nil

Replaced by uuid _create, which creates a new UUID.

Replaced by uuid _from_ string, which converts a string
UUID (as generated by the uuidgen program) to a binary
UUID.

Replaced by uuid _to_ string, which converts a binary UUID
to its character-string representation.

No replacement. This routine is useful for Apollo systems
only.

No replacement This routine is useful for Apollo systems
only.

Replaced by uuid _equal, uuid _compare, and uuid _is_ nil.
Use uuid_equal to determine if two UUIDs .are equai. Use
uuid _compare to determine the lexical order of two UUIDs,
and use uuid is nil to determine if a UUID has a nil value.
(NCS 1.5.1 combined all this functionality in one call,
uuid $equal.)

This routine (which was undocumented) is replaced by the
routine uuid _hash, which gen~rates a hash value for a
specified UUID.

This global variable is replaced by the routine
riuid _create_ nil, which crea.tes a nil-valued UUID.

2.4.6 Mapping of NCS 1.5.1 error_$ Calls to DCE RPC Routines

Most of the NCS and DCB RPC calls indicate their completion status via status codes. In
NCS 1.5.1, the error_$ calls converted these status codes into textual error messages. In the
DCB RPC API, the dee_ error_ inq_ text call performs this task. Note that the error_$ calls
returned more information for Domain/OS systems. The dee_ error _inq_ text routine returns
information specific to RPC applications only.

DCERPC Concepts 2-17

error_ $c _get_ text

error_ $c _text

Replaced by dee_ error _inq_ text.

Replaced by dee_ error _inq_ text.

2.4.7 Replacement of the pfm_$ Calls with the DCE Exception-Returning Package

The DCE RPC API does not use pfm _ $ routines for handling UNIX signals. Instead, it uses
the DCE exception-handling package, which accompanies the threads implementation avail
able with the underlying operating system.

For more information on the DCE exception-handling package, see Chapter 5.

2.5 Mapping of NCS 1.5.1 Data Types to DCE RPC Data Types

This section supplies equivalent DCE RPC data types for NCS 1.5.1 data types, if they exist.
For details on the DCE RPC data types, see the intro_rpc(3) manual page of the OSF DCE
Application Development Reference.

2.5.1 error_$ and status_$t Data Types

Each DCE RPC routine returns a status code indicating whether the routine completed suc
cessfully. A return value of rpc _ s _ ok indicates success. The status code argument has a data
type of unsigned32. To translate a status code to a text message, call the dee_ error_ inq_ text
routine.

The DCE RPC API does not support the error_ $t and status_ $t data types.

2.5.2 lb_$ Data Types

NCS 1.5. I lb_$ data types are used for both global location and local location. DCE RPC sup
plies two separate interfaces, the Name Seivice Interface for global naming seivices and the
Endpoint Map Seivices for local forwarding seivices.

See the OSF DCE Application Development Reference for information on the name seivice
handle that contains information that the RPC runtime uses to return data from the name ser
vice database. The routines requiring a name seivice handle show an argument data type of
rpc _ ns _handle_ t.

2-18 DCE RPC Concepts

The endpoint map database contains binding handles. Routines requiring a binding handle as
an argument show a data type of rpc _binding_ handle_ t.

The DCB RPC API does not support the lb $data types lb $entry t, lb $lookup handle t,
. - - - - - -
. and lb_ $server_ flag_ t.

2.5.3 pfm _ $ Data Types

The DCB RPC API does not support the pfm _$cleanup _rec routine for handling faults and
exceptions. It supports the DCB exception-handling package described in Chapter 5 .

2.5.4 rpc _ $ Data Types

The following lists the DCB equivalents of the NCS 1.5.1 rpc_$ data types.

handle t

rpc_$epv_t

rpc _$generic_ evt _ t

rpc_$if_spec_t

rpc_$mgr _ epv _t

rpc_$shut_check_fn_t

_Routines requiring a binding handle show a data type of
rpc _ binding_handle _ t.

The NCS RPC entry point vector is replaced by the interface
handle, which is of type rpc _if _handle_). The IDL compiler
automatically creates an interface specification data structure
from each IDL file and creates a global variable of type
rpc _if_ handle_ t for the interface specification.

This is the DCB RPC data type rpc_if_handle_t.

This is the DCB RPC data type rpc_if_handle_t.

This is the DCB RPC data type rpc _mgr_ epv _ t.

This is the DCB RPC data type
rpc _ mgmt _authorization _fn _ t. (See the
rpc _ mgmt _set_ authorization_ fn(3) manual page for more
information.)

DCE RPC Concepts 2-19

2.5.5 rrpc $Data Types

The following lists the DCB equivalents of the NCS 1.5.1 rrpc_$data types.

rrpc_$interface_vec_t

rrpc _$stat_ vec _ t

2.5.6 socket_$ Data Types

This is the DCE RPC interface identification vector of type
rpc _if _id_ vector_ t.

This is the DCE RPC statistics vector of type.
rpc _stats_ vector_ t.

The DCE RPC API does not allow direct manipulation of the socket address so there are no
equivalent data types for the N CS 1.5 .1 socket_$ types. The binary representation for all ad
dressing infonnation is contained in the RPC binding handle of type rpc _binding_ handle_ t.

2.5.7 uuid_$ Data Types

. The NCS 1.5 .1 uuid _ $t data type is replaced by the DCE uuid _ t data type, which is the same
size but has a different internal structure. Among other differences, one field that was reserved
(all zeros) in NCS 1.5.1 UUIDs is not reserved in DCE UUIDs. Although they differ
internally, uuid _ $t and uuid ~t have the same NOR representation, which means that the
network representations are exactly the same. (This is referred to as "wire interoperability.")

However, since the internal structure is different, the C initializations generated by the
uuidgen and uuid _gen tools are slightly different. For more details, see Section 5.9.

The global variable uuid _$nil is replaced by a DCE RPC routine, uuid _create_ nil, which
creates a nil-valued UUID.

The NCS 1.5.1 uuid_$string_t data type has no replacement. In the DCE RPC API, use the
unsigned_ char_ t type to initialize a string or pass an item of type unsigned_ char_ t * to an
RPC runtime routine that allocates a string.

The UUID string representation has anew fonnat in the DCERPC APL The NCS 1.5.1 UUID
string has 28 digits and 8 periods; the reseived field (which is all zeros) is not represented:

54c2c718f000.0d.OO.Ol.el.e9.00.00.00

2-20 DCE RPC Concepts

The DCE RPC UUID string format has 32 digits and 4 dashes; all fields are represented:

847ec9f0-9203-llca-8e74-08001e01ele9

The DCE RPC runtime routines that accept UUID strings accept either fonnat. However, a
DCERPC UUID cannot be correctly represented by an NCS 1.5.1 UUID string, so conversion
of a DCE RPC UUID to and from an NCS 1.5.1 UUID string will lose infonnation.

2.6 How to Migrate NCS 1.5.1 Applications to DCE RPC

The easiest way to convert an application to DCE RPC is to convert both the client and server
programs. However, it is also possible to convert only the seiver or client portion of an appli
cation, as long as you write the code required to maintain interoperability between the pro
grams.

2.6.1 Complete Conversion

You can choose to convert an entire application (that is, both the client and seiverportions) to
DCE RPC and then bring up all the clients and servers on all hosts at the same time.

The first step in the conversion process is to define the interfaces and create the IDL stub files.
To do this, use the nidl _to_ idl translator to convert your NIDL files to IDL syntax, and then
edit the resulting files, as described in Chapter 4. Note that when you use nidl_ to _idl, the re
sulting interface definition contains attributes provided for compatibility (vi _array,
vi _string, vl _ struct, and vl _ enum). However, if you are converting an entire application to
DCE RPC (that is, all clients and all servers) and do not require interoperability with
NCS 1.5.1-based programs, you should create DCE RPC interface definitions that do not con
tain these attributes. These attributes may not be supported in future releases of DCE.

After you have written the IDL files, convert the client and server programs to use the DCE
RPC API, as described in Chapter 5.

2.6.2 Partial Conversion

You can choose to convert only the client or server portion of an application to DCE RPC, so
that one program uses the NCS 1.5 .1 API and another program uses the DCE RPC APL For
example, you can write a DCE RPC seiver that can support both old NCS 1.5 .1 and new DCE

DCE RPC Concepts 2-21

RPC clients, as long as you do not mix routines from the NCS 1.5 .1 and DCB RPC API in the
same program. This type of conversion is more complicated than converting an entire applica
tion because you need to consider how the NCS 1.5 .1 and DCB RPC programs interoperate. If
part of your application must run on platfonns that do not support DCB (for example, if your
clients must run on Domain/OS), partial conversion may be your only alternative.

Note that if an application uses the NCS L5.1 Global Location Broker (GLB), you cannot
convert only part of the application to DCB RPC. For e~ample, you cannot convert a server to
DCE RPC and expect the server to provide service to NCS 1.5 .1-based clients that continue to
use theGLB.

If you convert only one part of an application to DCB RPC, remember that interoperability
between NCS programs is detennined by the interface definition (.idl file). As long as the net
work representation of the..idl file is the same in NCS 1.5 .1 and DCB RPC, the programs will
interoperate. However, if you are writing a new DCB RPC interface that must service
NCS 1.5 .1 servers or clients, you must not use DCB RPC features that are not supported by
NCS such as full pointers, pipes, or context handles, because NCS 1.5 .1 programs will not be
able to recognize such features. Chapter 3 provides more details on these DCB RPC IDL fea
tures.

In addition, for any data type whose network data representation has changed between
NCS 1.5.1 andDCERPC, yourinterfacedefinitionmustdeclarethatyou wanttheNCS 1.5.1
network data representation of this type. The attributes that specify NCS 1.5 .1 network data
representation are vl_array, vl_string, vl_struct, and vl_enum.

You can designate that you want the NCS 1.5 .1 network data representation by adding the vl _
attribute to the type declarations. However, the simplest way to do this is to use the tool
nidl_to_idl, which makes the necessary changes automatically. Chapter4 describes when
and how to use the nidl to idl translation tool.

---000---

2-22 DCE RPC Concepts

Chapter 3

Overview of the DCE
Interface Definition Language

This chapter provides an overview of the differences between the DCB Interface Definition
Language (IDL) and the NCS 1.5 .1 Network Interface Definition Language (NIDL) and in
troduces the new features available in IDL. Chapter 4 provides examples and details on the
process of writing intetface definitions.

This chapter is intended to highlight the differences between NCS 1.5 .1 NIDL and DCB IDL.
For a complete description of DCB IDL syntax, see the OSF DCE Application Development
Guide.

3.1 An Overview of DCE Interface Definitions

In RPC applications, a network interface is a set of related procedures that can be called across
a network. An interface definition written in the IDL language defines the signatures for each
operation in the interface that can be called via the RPC facility.

An IDL declaration resembles a C header file, except that it contains extra infonnation needed
by the remote procedure call mechanism.

NOTE: Some versions of NCS 1.5.1 support a Pascal-like syntax for
NIDL in addition to the C-like syntax. DCB IDL supports a C-like
syntax only.

DCE IDL Overview· 3-1

Some of the interface definition information that is defined in an NCS 1.5.1 interface defini-
. tionis defined in a DCE attribute configuration file (ACF or .acffile). An attribute configura
tion file is a secondary (and optional) file for declaring attributes that apply to the relationship
between the stubs and the application code. In contrast, the interface definition file is for de
claring any infonnation that applies to the contract between the client and seiver.

The following sections provide more infonnation on the changes in DCE IDL:

• DCE IDL data types, constructed types and attributes

• Structure of the DCE interface definition

• Interface names

• Interface attributes

• Import declarations

• Constant declarations

• Type declarations

• Operation declarations

• Parameter declarations

• The attribute configuration file

• DCE IDL output files

3.2 DCE IDL Data Types and Attributes

DCE IDL supports more data types and attributes than NCS 1.5 .1 NIDL. You use these types
in type declarations and as parameters in operation declarations (which are described later in
this chapter). The following subsections provide more detail about these data types.
Section 3.2.1 describes the simple data types; the remaining sections describe the constructed

. types.

Note that if you use the new DCE data types and attributes in an interface definition file, the
resulting .idl file will not be interoperable with an NCS 1.5.1 version of the interface defini
tion. For details on this, see Section 2.6.

3.2.1 Base (Simple) Types

The following lists the IDL base types and compares them to the NIDL simple types.

3-2 DCE IDL Overview

Integer types

Floating-point types

The character (char) type

The boolean type

The byte type

The void type

The handle type

The error_ status_ t type

3.2.2 Pipes and Pipe Attributes

IDL support is same as NIDL.

IDL support is same as NIDL.

IDL support is same as NIDL.

IDL support is same as NIDL.

IDL support is same as NIDL.

Different IDL support. In both NCS 1.5.1 and DCE RPC, the
void type is used to specify the type of an operation that does
not return a value. In DCE RPC, void is also used to specify
the type of a context handle parameter ornull pointer constant,
both of which must be declared void *.

This handle t is the same as the NIDL handle t. - -
This is a new predefined data type to hold RPC
communications status information. It is analogous to the
NCS 1.5.1 type status_$t.

IDL supports pipes as a mechanism for transferring large quantities of typed data; an IDL pipe
is an open-ended sequence of elements of one type. IDL recognizes three kinds of pipes: an in
pipe for transferring data from a client to a server, an out pipe for transferring data from a serv
er to a client, and an in,out pipe for two-way data transfer between a client and server. When
using pipes, you need to write a set of push and pull routines that are called by the client stub.

3.2.3 Pointers

IDL provides enhanced support for pointers. It supports both reference and "full" pointers.

A reference pointer, designated by the ref attribute, provides the simplest form of pointer
semantics and incurs the least amount of overhead during remote procedure calls. A reference
pointer value never changes during a remote procedure call, it never has a NULL value, and it
cannot be an alias. That is, a reference pointer cannot point to a storage area that is pointed to
by any other pointer used as a parameter of the same operation.

DCE IDL Overview 3-3

A full pointer, designated by the ptr attribute, provides "full" pointer semantics but incurs
the most overhead during remote procedure calls. A full pointer value can change across a
remote procedure call, its value can be NULL, and it can be an alias. That is, a full pointer can
point to a storage area that is pointed to by any other full pointer used in a parameter of the
same operation. If two pointers are aliases of one another, they must both point to the same
range of storage. They cannot point to differing parts of a structure or to overlapping storage
areas.

IDL allows you to apply array attributes to pointer parameters and fields. It supports the C
idiom:

T*p;

where pointer p points to the first element of an array of T's.

The ignore attribute can also be applied to pointers to prevent the pointer from being trans
mitted in a remote procedure call. Using the ignore attribute prevents marshalling code from
dereferencing a pointer, the remote instance has an undefined value. The ignore attribute can
be used to handle problems with aliases.

3.2.4 Arrays and Array Attributes

IDL supports three types of arrays: fixed, confonnant, and varying.

A fixed array is an array whose size is defined in the interface definition and whose storage is
allocated at compile time.

A con formant array (called an open array in NCS 1.5 .1) is an array whose size is detennined
at run time. The size is specified by the value of the parameter referenced in a size _is attribute
(an element count). The size is attribute is analogous to the NCS 1.5.1 max is attribute, but - -
is an element count, rather than an index. Although DCB supports the max _is attribute for
compatibility reasons, it is usually easier to use the size _)s attribute.

The array's type definition detennines whether it is fixed or conformant:

typedef long fixed_array [13];
typedef long conf_array[]; /*Empty brackets imply a conformant array*/

The lower bound of an array must be 0.

3-4 DCE ll)L Overview

A varying array is an array instance whose "interesting part" (the part that must be mar
shalled) is detennined at run time. The size of the marshalled part is determined by values
named in one or more of the following data limit attributes: length is (an element count),
last_is (the maximum index value), and first_is (the minimum index value).

Note that a varying array applies to a particular array instance, not the array type; so a varying
array can be either a fixed or confonnant array.

A varying array is determined by the attributes applied to an array in an operation declaration:

op (... , [in, length_is (len) J conf_array c, ... [in] long (len), ...) ;

A DCB varying array differs slightly from anNCS 1.5.1 varying array. In NCS 1.5.1, you can
declare a varying confonnant array with only a last_is attribute and the NIDL compiler as
sumes that the confonnant array size is the same size as the amount you want marshalled (as
specified in the last _is attribute). In DCB RPC, when you use a varying confonnant array, you
must specify both its size (with size is or max is) and the amount you want marshalled (with - -
length _is or last _is).

3.2.5 Strings

IDL supports strings differently from NIDL. NIDL supports the stringO data type. IDL sup
ports a string attribute that you apply to an array.

While both the NIDL stringO type and the IDL string attribute designate a null-terminated
character array, they differ in how they are specified as the following examples illustrate.

In C syntax, a character string "s" is specified as follows:

char s[8J

In NIDL syntax, a character string "s" is specified as follows:

string0[8] s

In IDL syntax, a character string "s" is specified as follows:

[string] char s(8]

DCE IDL Overview ~5

NIDL and IDL strings also differ in that the NIDL stringO is always a fixed array of charac
ters, but the IDL string attribute can be applied to a broader range of types. An IDL string can
be a varying array of characters, bytes, or structures whose members are bytes.

3.2.6 Customized Handles

The handle attribute is used to specify a customized handle, that is, a user-defined binding
handle of a type that is other than the primitive binding handle type. This enables application
developers to manage additional binding information that cannot be handled by the primitive
binding handle.

The handle attribute exists in N CS 1.5 .1 as well and is used to create a generic handle. The
DCE customized handle is analogous to the NCS 1.5.1 generic handle.

To use a customized handle, you must declare the handle in the interface definition and add
application code that the client stub calls to get a primitive handle from a customized handle
and to release any resources used for the customized handle.

3.2. 7 Context Handles

A context handle, designated by the context_ handle attribute, is an IDL feature that is useful
for distributed applications in which manager code maintains state infonnation for a client
across several remote procedure calls. The client passes the context handle, which points to
the state infonnation, as an input or input/output parameter in each call.

Applicationsthatusecontexthandlesmayhavetosupplyarundownprocedureintheserverto
perform clean-up operations when the client context is no longer needed. A type declaration
for the rundown procedure is declared in the interface definition; this ensures that the stub
knows about the procedure in the server. Without performing such clean-up operations, the
server could eventually consume all the available disk space maintaining infonnation about
non-existent clients. The use of contexthandles and clean-up operations helps prevent such
memory leak.s.

A context handle is specified with the context_ handle attribute on a parameter of type void *,
or on a type that is defined as void *.

~ DCE IDL Overview

3.2.8 Enumerations

IDL supports one enum type for providing names for integers. An enumeration can have up to
32767 identifiers. In contrast, NIDL supports a 32-bit enum and 16-bit short enum.

3.2.9 Unions

IDL and NIDL both support the union type .. A u.nion may hold (at different times) data of
different types and sizes, analogous to a Pascal variant record. The IDL syntax for declaring a
union is similar to the NIDL syntax. However, IDL allows the specification of names that the
IDL compiler uses to construct identifiers in the generated C code.

3.2.10 Structures
~
NIDL and IDL both support the struct type, although the IDL struct type has some additional
features. An IDL struct can contain pointer members, which allows DCE RPC applications to
pass parameters such as linked lists and trees. In contrast, a NIDL struct cannot contain a
pointer unless you apply the transmit_ as type attribute and supply routines to convert the
structure to a transmissible type.

In addition, an IDL struct has an ignore attribute, which allows you to specify that the data
pointed to by a pointer member should not be transmitted in a remote procedure call. The ig
nore attribute can increase efficiency at times when a struct is being passed as an argument,
but the remote procedure call does not need to access the data indicated by a pointer member.

3.2.11 Attributes for Compatibility with NCS 1.5.1

These attributes (vl _array, vl _en um, vl _string, and vl _ struct) are provided for transition
al purposes only, to provide compatibility between NCS 1.5.1 and DCE programs. The
nidl _to_ idl tool adds the appropriate attribute to the declaration of any type constructor
whose DCE network data representation differs from the NCS 1.5.1 representation. These
attributes should not be used in new DCB interface definitions and they may not be supported
in future DCE releases. For more details on these attributes, see Section 4.1.1. See also
Sections 2.6 and C.1.11.

3.2.12 Sets

NIDL supports sets (bitset en urn and short bitset en um) which allow you to define names for
bits in a single integer. DCB provides no analogous data types.

DCE IDL Overview '3-7

3.3 Structure of the DCE IDL Interface Definition

The structure of the IDL interface definition is similar to that of the NIDL interface definition
except that IDL supports only a C-like syntax, so it neither requires nor accep~ the N CS 1.5 .1
syntax identifier (% c or % pascal) in the heading of an interface definition.

The IDL interface definition has the following components:

Interface Heading

Import Declarations

Constant Declarations

Type Declarations

Operation Declarations

Consists of a list of interj ace attributes enclosed in brackets,
followed by the keyword interface, followed by the name of
the interface.

Specifies the names of other IDL interfaces that define types
and constants used by this interface. Import declarations must
precede all other declarations.

Specifies the constants that the interface exports~

Specifies the types that the interface exports.

Specifies the operations that the interface exports.

The list of declarations is enclosed in braces; each declaration is tenninated with a semicolon.
Constant, type, and operation declarations can appear in any order (provided that any constant
or type is defined before it is used).

Subsequent sections of this chapter provide more details on each component.

3.4 Interface Names

By convention, the name of an interface definition file is the same as the name of the interface
it defines, along with the suffix .idl. For example, the definition for a bank interface would
reside in a bank.idl interface definition file. Note that the interface name is not necessarily the
base name of the file that contains the interface definition. Thus, the interface name is not lim
ited by the filename restrictions of any operating system.

The IDL compiler incoiporates the interface name in identifiers it constructs for various data
structures and data types, so the length of an interface name can be at most 17 characters. Most

3-8 . DCE IDL Overview

IDL identifiers have a maximum length of 31 characters, and the IDL compiler issues a warn
ing if an identifier exceeds that length, but does not truncate it. (The NIDL compiler did not
issue a warning.)

3.5 Interface Definition Attributes
Interface attributes appear within brackets in the header of the interface definition, as in
NCS 1.5.1. IDL supports more interface attributes than NIDL. Table 3-1 lists the IDL inter
face definition attributes and compares them to the attributes available in NCS 1.5.1 NIDL.

Table 3-1. Comparison of IDL andNIDL Interface Attributes

IDL Attribute NIDL Attribute Where Used

uuid uuid Interface Definition Headers
version version
endpoint port
local local
pointer_ default Not Supported
ACF Attribute in DCE implicit_handle

The IDL interface attributes are as follows:

• The uuid attribute specifies the Universal Unique Identifier (UUID) assigned to the
interface. It serves the same purpose as in NCS 1.5.1 and is automatically generated
by the uuidgen utility. The fonnat of the DCE UUID string, however, is different.

• The version attribute supports major and minor version numbers (NIDL supports
only a single integer version number).

Version numbers are used to control interoperability between clients and servers.
Clients and servers must use an interface with the same major version number, and
the minor version number of the client must be less than or equal to the minor version
number of the server. You must increase themajorversionnumberwhenmak.ing any
incompatible changes to an interface definition.

Interface versions are considered compatible if they satisfy these conditions:

You add new operations to an interface only after all existing operation declara
tions.

DCE IDL Overview 3-9

You add new type and constant declarations that are used only by operations
added at the same time or later.

You cannot change the signatures of existing operation declarations.

• The DCE endpoint attribute replaces the NCS.1.5.1 port attribute as the way to
specify a well-known endpoint.

The following example, excerpted from the ep.idl interlace definition, specifies the
well-known endpoints on which rpcd listens:

endpoint (".ncadg_ip_udp: [135] ", "ncadg_dds: [12] ",
"ncacn_ip_tcp: [135] ", "ncacn_dnet_nsp: [#69] ")

IDL recognizes and .accepts more protocol sequences than are typically supported
by any single implementation of the DCE runtime software, so that one IDL defini
tion can be used on several DCE platforms supporting different sets of protocol se
quences.

The runtime software in the HP DCE Developers' Environment supports two proto
col sequences, ncadg_ip _ udp and ncacn _ip _tcp~

• The local attribute indicates that the interface definition does not declare any remote
operations and the IDL compiler should generate only header files, not stubs. This
is the same as the NCS 1.5.1 local attribute.

• The pointer_ default attribute is available because DCE RPC handles both refer
ence and full pointers. This attribute allows you to specify a default behavior of the
pointers in the interface definition that are not specifically labeled with the ptr or
ref attribute. This default behavior is overridden when you apply either attribute to
a specific pointer declaration.

The pointer_ default attribute affects pointers that appear in the declaration of a
structure or union member or that are at any other level besides the "top level" of an
operation parameter declared with more than one pointer operator. Note that
pointer_ default does not apply to a pointer in the return value of an operation, since
this return value is always a full pointer.

• The implicit_ handle attribute is not part of the DCE interlace definition language
syntax. It is part of the DCE attribute configuration language syntax.

3-10 DCE IDL Overview

3.6 Import Declarations

You specify import declarations in DCE RPC in the same way as you do in NCS 1.5.1. The
IDL import declaration specifies another interface definition whose types and constants are
used by the importing interface.

DCE import declarations work in the same way as in NCS 1.5 .1; the resulting #include direc
tives (in the C code generated by IDL) enclose file names in double quotation marks (" '').

By default, the IDL compiler resolves relative pathnames of imported files by looking first in
the current working directory and then in the system IDL directory. Use the -I IDL compiler
option (which is the same as the-idir option in NCS 1.5.1) to specify a directory from which
the compiler will resolve the pathnames of imported files. Using -I lets you avoid putting ab
solute pathnames in your interface definitions.

3. 7 Constant Declarations

The DCE IDL constant declaration, which provides a way for getting #define statements into
derived .h files, supports more types than N CS 1.5 .1 does. In N CS 1.5 .1, the constant declara
tion, const, supports only integer and character constants. DCE supports integer, boolean,
character, string, and null pointer constants, and constant expressions. In addition, DCE per
mits declaring String constants as char *.

The following are examples of DCE IDL const declarations:

const unsigned short int SCORE = 20;
const unsigned short int FOUR_SCORE_AND_SEVEN = 4*SCORE+7;
const boolean VRAI = TRUE;
const char H = 'h';
const char *JSB = "Johann Sebastian Bach"
canst void .*NULLSVILLE = NULL;

DCEIDL Overview 3-11

3.8 Type Declarations

The IDL syntax for the type declaration, typedef, is the same as the NIDL type declaration.

3.8.1 Type Attributes

NIDL supports only two type attributes: handle and transmit_ as. IDL supports the following
type attributes:

handle

context handle

transmit as

ref

ptr

string

Th~ type being declared is a user-defined, customized handle
type. (See Section 3.2.6.)

The type being declared is a context handle type. (See
Section 3.2.7.)

The type being declared is a "presented type" which, when
passed in remote procedure calls, is converted to a specified
"transmitted type."

IDL, like NIDL, supports the transmit_ as attribute to pass
complex data types for which the IDL compiler cannot
generate marshalling and unmarshalling code, and to pass data
more efficiently.

The type being declared is a reference pointer, it cannot be null
and cannot be an alias.

The type being declared is a full pointer, it can be null and can
be an alias.

The array type being declared is a string type.

IDL also supports the type declarations vl _array, vl _string, vl _ struct, and vl _ enum for
compatibility with NCS 1.5.1 applications. These types are not intended to be used in new
applications. For details, see Section 2.6 and for an example, see Section 4.1.3.

3.8.2 Type Specifiers

IDL supports different type specifiers from NIDL, as shown in Table 3-2. The IDL base speci
fiers are similar to NIDL's simple types: integers, floating-point numbers, characters, bool
eans, a byte type, a void type, and a primitive handle type, handle_ t.

3-12 DCB IDL Overview

IDL does not support the NIDL constructed types bitset, short bitset, short enum, and
stringO. IDL additionally supports pipe.

The IDL compiler imports nbase.idl, which predefines some types as shown in Table 3-2.
The type macros emitted by the IDL compiler are the same as the NIDL macros, except that
ndr _ $ is replaced by idl _(for example, ndr _$char is now idl_ char).

Table 3-2. DCE Type Specifiers

IDL Type Specifier Size Type Macro

sign size type emitted by IDL

small int 8 bits idl small int - -
short int 16 bits idl short int - -
long int 32 bits idl_Iong_int
hyper int 64 bits idl_ hyper _int'

unsigned small int 8 bits idl usmall int - -
unsigned short int 16 bits idl ushort int - -
unsigned long int 32 bits idl _ ulong_ int
unsigned hyper int 64 bits idl_ uhyper _int

float 32 bits idl short float - -
double 64 bits idl_long_ float
char 8 bits idl char
boolean 8 bits idl boolean
byte 8 bits idl_byte
void - idl_ void _p _J
handle t - -

3.8.3 Type Declarators

An IDL type declarator can be either a simple declarator or a complex declarator. A simple
declarator is just an identifier. A complex declarator is an identifier that specifies an array, a
function pointer, ora pointer. (A function pointer can only be used in interface definitions with
the local attribute; the IDL compiler generates an error if you try to use a function pointer in
remote procedure calls.)

DCE IDL Overview 3-13

3.9 Operation Declarations

In DCB RPC, parameter attributes precede the type specifier rather than the declarator.

· · For example, an NCS 1.5 .1 NIDL operation might be declared as follows:

void ms_show(

) ;

ms_string_t [in] to_name,
ms_string_t [in] from_name,
ms_string_t [in] message

A similar DCE IDL operation is declared as follows:

void ms_show(

) ;

[in] ms_string_t to_name,
[in] ms_string_t from_name,
[in] ms_string_t message

Table 3-3 lists the attributes associated with operation declarations.

Table 3-3. Comparison of/DL and NIDL Operation Attributes

IDL Attribute NIDL Attribute Where Used

broadcast broadcast Operations
maybe maybe .
idempotent idempotent
ptr Not Supported
context handle Not Supported
string Not Supported
ACF Attribute in DCE comm status

IDL supports different operation attributes from NIDL. Both IDL and NIDL support idem
potent, broadcast, and maybe. IDL does not support comm_ status. (comm_ status is de
clared in the attribute configuration file.)

3-14 DCE IDL Overview

Note that the broadcast operation attribute is the only way that a DCB-based program can
implement broadcasting; broadcasting is not supported by the RPC API. We recommend that
you broadcast operations sparingly.

3.10 Parameter Declarations

IDL syntax for declaring parameters of an operation is the same as in NIDL.

IDL supports different attributes from NIDL. While both support in and out parameters, IDL
does not support comm_ status. comm_ status is declared in the DCE attribute configuration
file (ACF). IDL supports the following attributes that NIDL does not support:

ref

ptr

string

context handle

The parameter is a reference pointer; it cannot be null and
cannot be an alias.

The parameter is a full pointer; it can be null and can be an
alias.

The parameter is a string.

The parameter is a context handle.

IDL and NIDL both support array attributes that specify the characteristics of arrays. NIDL
and IDL both support the max _is and last _is array attributes. In addition, IDL supports
size _is, first_ is, and length_ is array attributes.

IDL also supports the parameter declarations vl _array, vl _string, vl _ struct, and vl _ enum
for DCB migration. These declarations are not intended for use in new applications. For de
tails, see Section 2.6.

3.11 The Attribute Configuration File

While all attributes relating to an interface are in one file in NCS 1.5.1, DCB RPC interface
definitions are designed so that the attributes are in two files. The interface definition contains
any attributes that affect the interoperability between a client and server. The attribute
configuration file (ACF) is a secondary (and optional) file that contains attributes that apply to
the relationship between the generated stub code and the local application code. The ACF

DCE IDL Overview 3-15

allows application programmers to customize their applications more easily without affecting
the interoperability of existing interfaces. Application programs built from the same interface
definition are guaranteed to interoperate; differences between ACFs are guaranteed to not
affect interoperability.

Client and server sides of an interface must be built using the same interface definition (.idl)
file, but they can be built using different .acf files. Clients may use .acf files, for example, to
omit unnecessary operations from the client stub (thereby reducing the size of the client stub),
to represent a network data type as a local data type, to define how a client establishes a bind
ing, or to specify how arguments of nonscalar data types are marshalled and unmarshalled.

When you invoke the IDL compiler, specifying an interface definition, the compiler automat
ically checks for a related attribute configuration file. It looks for a file with the same name as
the interface definition, with the suffix .acfinstead of .idl . The compiler searches the current
directory and then any directories specified via-I options on the idl command line. If an ACF
exists, it's compiled with the IDL file.

The attributes that you can declare in an ACF are as follows. Subsequent sections describe
these attributes in gr~ater detail:

• auto_ handle, explicit_ handle, implicit_ handle

• comm_ status, fault_ status

• code, nocode

• in _line, out_ of _line

• represent_ as

• · enable allocate

• heap

The attribute configuration file also supports the include statement. The include statement
specifies any additional header files that you want included in the generated stub code. Use
include whenever you use the represent as or implicit h~ndle attributes and the specified

. - -
type is not defined or imported in the IDL files~

3-16 DCE IDL Overview

3.11.1 Binding Attributes: auto_ handle, explicit_ handle, implicit_ handle

The auto_handle, explicit_ handle, and implicit_ handle attributes relate to the methods a
DCB application uses to manage bindings before making remote procedure calls. These
attributes allow the application to define at compile time which method of binding to use for
the entire interface.

The auto_handle attribute causes the client stub and the RPC runtime to manage the binding
to the server by using a name service. Any operation in the interface that has no parameter
containing binding information is bound automatically by client stub code to a server so that
the client application code does not have to specify the server on which an operation executes.

The explicit_ handle attribute allows the application program to manage the binding to the
server. This attribute indicates that a binding handle is passed to the runtime as an operation
parameter.

The implicit_ handle attribute allows the application program to manage the binding to the
server. You specify the data type and name of a handle variable as part of the implicit_ handle
attribute. This attribute infonns the compiler of the name and type of the global variable
through which the binding handle is implicitly passed to the client stub. The client stub code
declares a variable of the type and name specified in the implicit_ handle attribute; the appli
cation must initialize the variable before making a call to the interface.

If an ACF file defines the auto_ handle binding attribute for an interface, an individual opera
tion can still use an explicit binding by declaring a binding handle or a context handle parame
ter for the operation. The following is an example of an operation declaration with an explicit
handle as the first parameter of the operation declaration:

void expl_op(
[in] handle_t h,
[in] long a,
[out] long *b);

DCE IDL Overview 3-17

3.11~2 Handling Errors with comm_ status and fault_ status

The IDL comm _status and fault_status attributes cause the status code of any communica
tion failure or server run-time failure that occurs in a remote procedure call to be stored in a
parameter or returned as an operation result, instead of being raised to the client code as an
exception.

The. IDL comm_status attribute is similar to the corresponding NIDL attribute. Use the
comm_ status attribute to report communication errors that may occur when executing re
mote procedure calls.

DCB IDL also supports the fault_ status attribute, which you use to report errors in the execu
tion of an operation in the application.

Use the comm_status attribute if a call to an operation has a recovery action to perfonn
when communications failures occur (for example, rpc _ s _comm_ failure or
rpc _ s _no_ more_ bindings).

Use the fault_ status attribute when a calling application has a recovery action to perfonn
depending on how server faults occur (for example, rpc _ s _fault_ invalid_ tag,
rpc _ s _fault _pipe_ comm_ error, rpc _ s _fault _int_ overflow, or
rpc _ s _fault _reniote _no_ memory).

3.U.3 Controlling Client Stub Generation with code and nocode

The code and nocode attributes specify whether the IDL compiler will generate client stub
code for the associated interface or operation. Specifying either code or nocode as an
interface attribute establishes the default behavior for all operations in the interface. A code or
nocode operation attribute on an individual operation can override the default behavior.

At least one operation in the interface must have the code attribute. If you do not specify any
attribute, code is assumed, and the IDL compiler generates client stub code for all operations
in the interface.

3-18 DCE IDL Overview

3.11.4 Controlling the Marshalling of Code with in _line and out_ of _line

The in_ line and out_ of _line attributes control whether the marshalling and urunarshalling of
data are perfonned by in-line code or by out-of-line code through a subroutine call. These can
be either interface or operation attributes. The interface attribute establishes the default
behavior of all operations in the interface. The operation attribute can override the default
interface behavior, it defines the behavior for a single operation.

In-line code executes faster than out-of-line code, but the executable files are larger.

3.11.5 Controlling Data Representation with represent_as

The represent_ as attribute is used to associate a local data type that your application uses with
a data type defined in the IDL file. If you use the represent_ as attribute, conversions between
the local (language) representation and network (IDL) data representation occur during the
marshalling and unmarshalling conversions. The DCE represent_ as attribute is similar to the
NCS 1.5.1 transmit_as attribute, except that the interface is slightly different. Both require
you to supply data conversion routines.

3.11.6 Initializing Memory Management Routines with enable_ allocate

The enable_ allocate attribute· on an operation forces the server stub to initialize the
rpc _ ss _allocate routine, which perfonns memory management. It has no effect if the opera
tion uses full pointers (ptr) or a type with the represent_ as attribute, either of which causes
the server stub to enable rpc_ss_allocate automatically.

3.11.7 Allocating Objects from the Heap

The heap attribute specifies that the server stub's copy of a parameter (or all parameters) be
allocated in heap memory rather than on the stack. heap can be a type attribute or~ parameter
attribute. When used with a parameter, heap· affects only the associated parameter. As a type
attribute, heap affects all parameters of that type. The heap attribute is useful to prevent large
objects from exhausting available stack space.

DCE IDL Overview 3-19

3.12 Example of an Interface Definition and Attribute
Configuration File

Figure 3-1 is an example of a DCB interface definition. Figure 3-2 is an example of an attrib
ute configuration file that might accompany this interface definition.

uuid(810a7d99-956c-13ca-859f-08001e022936),
version (1.0)
l
interface rny_interface
{

typedef long T[lOJ i

void first_op{
[in] handle_t h,
[in] error_status_t st

) i

void next_op{
[in] handle_t h,
[out] error_status_t *st

) i

Figure 3-1. DCE Interface Definition

[in_line, nocode] interface my_interface
{

include "some_types";
typedef [out_of_line, heap] T;
[code] first_op();
next_op([comm_status] st);

Figure 3-2. DCE Attribute Configuration File

3-20 DCE IDL Overview

3.13 DCE IDLOutput Files

The IDL compiler uses the infonnation in an interface definition to generate header files, cli
ent stub files, and server stub files. The IDL compiler produces header files in C and can pro
duce stubs either as C source files or as object files. The NCS 1.5.1 NIDL compiler creates
only source files.

When generating its client and server stub files, the DCE IDL compiler uses a naming conven
tion similar to that used by the NIDL compiler. The names of interface definition files end
with the suffix .idl. The idl compiler replaces the .idl with other extensions as shown in
Table 3-4.

Table 3-4. NIDL and IDL Output Files

File NCS 1.5.1 Output File DCE Output File

Header files .h .h
Client stub files cstub.c cstub.c
Server stub files sstub.c sstub.c
Client switch files cswtch.c NIA
Client auxiliary files NIA caux.c
Server auxiliary files NIA saux.c -

Note that the IDL compiler does not generate client switch files.

The DCE IDL compiler generates additional client and server auxiliary files when necessary.
An auxiliary file contains auxiliary routines that the IDL compiler generates when out-of-line
marshalling is requested or when pipes or certain kinds of pointer-based structures are used.

---000---

DCE IDL Overview 3-21

Chapter4

Writing DCE Interface Definitions

The first step in developing a distributed application is to define its interface or interfaces in
the DCE Interface Definition Language (IDL). This chapter describes the processes of con
verting existing interface definitions using a translator tool and of creating a new DCE IDL
interface definition.

After writing an interface definition, you must write the client and server programs and build a
DCE application. Chapter 5 describes how.

Before reading this chapter, you may wantto become familiar with the DCE IDL functionality
and how it compares to NCS 1.5.1 NIDL. Chapter 3 covers this information.

4.1 Using the nidl_to_idl Tool to Convert NCS 1.5.1
Interface Definitions

When you are converting an application from NCS 1.5.1 to DCE RPC, you do not have to
rewrite the N CS 1.5 .1 interface definition. DCE supplies a conversion tool that generates an
IDL file using the DCE syntax. This tool, nidl _to _idl, converts both the C and Pascal syntaxes
of NCS 1.5.1 NIDL into the DCE IDL syntax.

4.1.1 The nidl _to _idl Tool for Translating Interface Definitions

The nidl_to _idl tool helps automate the process of converting an NCS 1.5.1 interface
definition to DCE. DCB applications built from the resulting DCE interface definition can

Writing Interface Definiticms 4-1

interoperate with NCS programs built from the original NIDL interface definition because the
tool guarantees that the network data representation for the interface definition is Unchanged.

The nidl_ to _idl tool accepts the following input:

• An interface definition file that compiled successfully under the NCS Version 1
NIDL compiler

• .Arguments to indicate either special actions to be performed by the translator or
special properties of the input or output files

The tool translates the NCS 1.5 .1 interface definition into a DCE IDL interface definition. It
also creates an attribute configuration file if one is required. Once the translation is complete,
you must compile the translated output file using the DCE IDL compiler. See the
nidl_to_idl(lrpc) man page for complete infonnation on the nidl_to_idl tool.

The nidl_ to _idl translator takes care of most of the translation automatically. In some cases,
particularly if the original interface definition contained complex type definitions,
nidl_to _idl may not recognize the intended construct. In this case, it generates a v2.idl file but
it issues a warning. You must then edit the v2.idl file manually to correct the problem. Often,
you need only copy the construct from your NCS 1.5.1 interface definition and make minor
edits.

4.1.2 Invoking the nidl_to_idl Tool

You invoke the nidl to idl tool, specifying your NCS 1.5.1 interface definition, as follows:

% nidl to idl name.idl

If it succeeds, the tool creates a new file called name_ v2.idl. If your N CS 1.5 .1 interface
definition contained infonnation that now belongs in the attribute configuration file, it also
generates a name_ v2.acf.

Figure 4--1 contains an NCS 1.5.1 interface definition called binopfw.idl. Figure 4-2 shows
the interface definition created by nidl _to_ idl, called binopfw _ v2.idl. This figure also shows
two minor changes that were made by hand. The arrows (<= and 11) point to the changes that
were made by hand, as described in the following paragraphs.

4-2 Writing lnteiface Definitions

%c
[uuid(4448ee491000.0d.OO.OO.fe.da.00.00.00), version(l)]

interface binopfw
{

[idempotent J
void binopfw$add(handle_t [in] h,

long [in] a, long [in] b, long .[out] *c);

Figure 4-1. NCS 1.5.1 Interface Definition

/* Vl format UUID: 4448ee491000.0d.OO.OO.fe.da.OO.OO.OO */
uuid(4448EE49-1000-0000-0DOO-OOFEDA000000),
version(2) J ¢::

interface binopfw
{

[idempotent J void binopfw_add

' n [in] handle_t h,
[in] long a,
[in] long b,
[out] long *c

) i

Figure 4-2. DCE Interface Definition Created with nidl_to _idl

In NCS 1.5.1 interface definitions, the version number specified by the version attribute is
always an integer. In DCE RPC interface definitions, the version number can be either a single
integer or a pair of integers called the major and minor version numbers. A client and seiver
can communicate only if the interface imported by the client has the same major version
number as the interface exported by the server, and the interface imported by the client has a
minorversionnumberlessthanorequaltotheminorversionnumberoftheinterfaceexported
by the seiver.

The nidl_ to_ idl translator retains version 1 as the version of the interface definition. If you
are making changes to the interface definition, you must change either the major or minor
version number of the interface. ·

Writing lnteiface Definitions 4-3

• If the changes are incompatible, you must increase the major version number.

• If the changes are compatible, you must increase either the major or the minor ver
sion number.

. • If you need interoperability between new clients and existing servers, you should not
make any changes in the interface definition, and you should not change the version
number.

In Figure 4-2, we increased the version number from 1to2 because we have changed some of
the operation names. See the OSF DCE Application Development Guide for more information
about version numbers and compatible changes.

The nidl_to_idl tool preserves the operation names as they were originally declared. So, if
you used the dollar sign($) in operation names according to the NCS 1.5.1 convention, we
recommend that you replace the $ with an underscore U to comply with ANSI C standards,
unless you need to preserve interoperability between new clients and existing servers. You can
continue to use the $in operation names when you compile in ANSI C mode if you specify the
+e C compiler flag. Figure 4-2 illustrates the ANSI-compliant interface definition.

4.1.3 IDL Attributes for Compatibility with NCS 1.5.1

To provide interoperability with NCS 1.5.1 programs, the nidl_to_idl tool directs the IDL
compiler to generate the NCS 1.5.1 representation for those type constructors whose network
data representation has changed at DCB. It does so by adding a special attribute to the declara
tion of any of the changed type constructors: arrays, structures, strings, or enumerations.
These attributes, vl_array, vl_struct, vl_string, and vl_enum, tell the IDL compiler to
generate code that marshalls and unmarshalls the N CS 1.5 .1 network data representation for
these type constructors.

Using the nidl _to _idl tool is a good way to begin migrating your applications to DCB because
it offers interoperability with NCS 1.5.1 programs. Once you begin adding DCB functionality
to your interfaces, you should create DCB interface definitions that do not contain the attrib
utes provided for compatibility with NCS 1.5.1 because they may not be supported in later
versions of DCE.

Figure 4-3 shows an NCS 1.5.1 interface definition which declares a string operation using
the NIDL C-style null-terminated string, stringO. Figure 4--4 shows the command line used to
invoke the nidl_to_idl tool. It also

1

shows the output file with the_ v2.idl extension that
nidl_to_idl generated. The tool inserts vl_ attributes in the type declarations to handle the
NCS 1.5.1 stringO type, which is not supported in DCB IDL syntax.

4-4 Writing Interface Definitions

%c

uuid(4lc460b7a000.0d.OO.OO.c3.66.00.00.00),

version(l)

l
interface stringOtest

typedef stringO[lOO] string0test$tl;

void string0test$opl(

handle_t [in]h,

string0test$tl [in] i,

string0test$tl [out] o

) i

Figure 4-3. NCS 1.5.1 Interface Definition, string.id/

% nidl_to_idl string.idl
% cat string_ v2.idl

/* Vl format UUID: 41c460b7a000.0d.OO.OO.c3.66.00.00.00 */

uuid(41C460B7-A000-0000-0DOO-OOC366000000),

version(l) l
interface stringOtest
{

typedef [vl_array, vl_string] char string0test$t1[100] i

void string0test$op1
(

) i

[in] handle_t h,

[in] string0test$tl i,

[out] string0test$tl o

Figure 4-4-. Conversion of string.id/ to string. v2.idl

Writing Interface Definitions 4-5

4.1.4 Creating an Attribute Configuration File

The nidl _to_ idl tool creates a separate .acf file for those attributes that belong in this file.
Given the NIDL interface definition in the file params.idl shown in Figure 4-5, the
nidl_to _idl tool generates a warning, as shown in Figure 4-6, that it has created the .acf file
params _ v2.acf, in addition to the iriterface definition in file params _ v2.idl.

%c

uuid(41248b269000.0d.OO.OO.c3.66.00.00.00),
version(l)
]

interface pattrtest

void pattrtest$opl(
handle_t [in) h,
status_$t [in, out, comrn_status] *st
) j

void pattrtest$op2(
handle_t [in) h,
status_$t [in) st_in,
status_$t [out, cornm_status] *st_out
) j

Figure 4-5. NCS 1.5.1 Interface Definition, params.idl

% nidl_to_idl params.idl
***Warning: Parameter 'st' in operation 'pattrtest$opl':

[comm_status) requires .acf file

***Warning: Parameter 'st_out' in operation 'pattrtest$op2':

[comm_status) requires .acf file

Figure 4-6. nidl _to _idl Warning

4-6 Writing Interface Definitions

Figure 4-7 shows the interface definition, params_ v2.idl, and Figure 4-8 shows the addi
tional .acf file, params _ v2.acf, created from the params.idl interface definition.

/* Vl format UUID: 41248b269000.0d.OO.OO.c3.66.00.00.00 */

uuid(41248B26-9000-0000-0DOO-OOC366000000),
version(l) J

interface pattrtest
{

void pattrtest$opl
(

[in] handle_t h,

[in, out] error_status_t *st

) i

void pattrtest$op2

(

) i

[in] handle_t h,

[in] error_status_t st_1n,
[out] error_status_t *st_out

Figure 4-7. Conversion ofparams.idl to params_v2.idl

interface pattrtest
{

pattrtest$opl ([comm_status] st);

pattrtest$op2 ([cornrn_status] st~out);

Figure 4-8. The params_v2.acf Attribute Configuration File

4.1.5 Converting from the NIDL Pascal Syntax

The nidl_ to _idl tool creates a C-like IDL file when given a file written in NIDL's Pascal-like
syntax. Figure 4-9 shows an NCS 1.5.1 interface definition written in Pascal syntax.
Figure 4-10 shows what the· resulting DCE IDL interface definition looks like.

Writing Interface Definitions 4-7

%pascal

uuid(41248b185000.0d.00.00.c3.66.00.00.00),
version(1)

{* Another Interface Definition *}

interface tattrtest;

type tattrtest$tl = [handle] integer32;
) i

function tattrtest$opl (
in h: handle_t;
out msg: stringO[lOOJ

) : boolean;
end;

Figure 4-9. NCS 1.5.1 Interface Definition in NIDL Pascal Syntax

/* Vl format UUID: 41248b185000.0d.OO.OO.c3.66.00.00.00 */

uuid(41248B18-5000-0000-0DOO-OOC366000000),
version(l) J

interface tattrtest

/* * Another Interface Definition * */

typedef [handle] long tattrtest$tl;

boolean tattrtest$opl

[in] handle_t h,
[out, v1_array, vl_string] char msg[0 .. 99]

) i

Figure 4-10. Conversion of the Pascal Interface Definition to DCE IDL

After converting your NCS 1.5.1 interface definition files to DCE versions, you must now
compile the file or files with the DCE IDL compiler to generate the stub and header files as
described in Section 4.3.

4-8 Writing Interface Definitions

4.2 Writing New DCE Interface Definitions

The DCE process for writing interface definitions and generating stubs is similar to the same
process for NCS. You must:

1. Generate an interface UUID by running uuidgen. (This is the DCE analog to the
NCS 1.5.1 uuid _gen tool.)

2. Write an interface definition in IDL. (Refer to the IDL syntax description in the OSF
DCE Application Development Guide.)

3. Write an attribute configuration file (ACF), if necessary, to define attributes that
modify the interac~on between the application code and stubs. (Refer to the ACF
syntax description in the OSF DCE Application Development Guide.)

4. Compile the interface definition using the IDL compiler.

4.2.1 Generating Interface UUIDs

If you are creating a new DCB interface definition, run uuidgen with the-i option to generate
a UUID and create an IDL file template that includes the generated UUID string in the tem
plate; for example:

% uuidgen -i > bino.idl

% cat bino.idl

uuid(202c81a8-5663-llca-bbf1-08001e01b30d),
version(l.0}
]

interface INTERFACENAME

For more infonnation about uuidgen, see the OSF DCE Application Development Guide and
the uuidgen(l) manual page.

Writing Interface Definitions 4-9

4.2.2 Writing the Interface Definition

After generating the interface definition template, you must edit it to supply the interface
name, attributes, and operations.

4.2.2.1 Naming the Interface

To name the interface, follow the same conventions as for NCS 1.5.1. (The interlace name
must be at most seventeen characters long and a valid IDL identifier, see the OSF DCE Appli
cation Development Guide.)

After you have used uuidgen -i to generate a skeletal interface definition, replace the dummy
string "INTERFACBNAMB" with the name of yourinterface. By convention, the name of an
interface d·efinition file is the same as the name of the interface it defines, along with the suffix
.idl. For example, the definition for a bank interface would reside in a bank.idl interface defi
nition file.

4.2.2.2 Specifying Interface Definition Attributes

You specify interface attributes within brackets in the header of the interface definition as in
NCS 1.5.1. For a list of the possible interface attributes, see Section 3.5.

The following is an example of an interface definition using uuid and version attributes:

[uuid (df961f80-2d24-llc9-be74-008002b0ecef1), version (1.1)]
interface my_interface

4.2.2.3 Specifying Import Declarations

YouspecifyimportdeclarationsinDCBIDLinthesamewayasyoudoinNCS 1.5.1. TheIDL
import declaration specifies another interface definition whose types and constants are used
by the importing interface.

4.2.2.4 Specifying Constant Declarations

The DCB IDL constant declaration, which provides a way for getting #define statements into
derived .h files, supports more data types that the NCS 1.5.1 constant declaration. In
NCS 1.5.1, the constant declaration supports only integer and character constants. The DCB

4-10 Writing Interface Definitions

IDL constant declaration supports integer, boolean, character, string, and null pointer con
stants, and constant expressions. In addition, string constants can be declared as char *. For
examples, see Section 3.7.

4.2.2.5 Specifying Type Declarations

IDL, like NIDL, provides a variety of data types, including

• ·Simple types, such as integers, floating-point numbers, characters, booleans, and the
primitive binding handle type (handle t).

• Constructed types, such as pipes, pointers, arrays, strings, structures, and unions.

These type declarations and data types are described in detail in Section 3.2.

Note that if you use the new DCE data types and attributes in an interface definition file, the
resulting .idl file will not be interoperable with an NCS 1.5.1 version of the interface ~efini
tion.

4.2.2.6 Specifying Operation Declarations

Operation declarations specify the signature of each operation in the interface, including the
operation name, the type of data returned (if any), and the types of all parameters passed in a
call. They also specify various field, parameter, and operation attributes. For a list of possible
operation declarations, see Section 3.9.

4.2.3 Writing an Attribute Configuration File

Write an attribute configuration file (ACF) if you want to define attributes that tailor how the
RPC interface appears to the application code. These attributes affect the interface between
the application code and stubs; they do not affect the interoperability of stubs with other stubs.

When you invoke the IDL compiler, it checks for an attribute configuration file related to the
interface definition you specify. The compiler looks for a file with the same name as the inter-:
face definition, with the .acfinstead of the .idl extension. The IDL compiler searches the cur
rent directory and then any directories specified via-I options on the idl command line. If an
ACF exists, it is compiled with the IDL file.

For a list of possible attributes that you can declare in an ACF, see Section 3.11.

Writing Interface Definitions 4-11

4.3 Running the IDL Compiler

After you have written an interface definition or converted an existing interface definition
with nidl _to_ idl, run the IDL compiler to generate stub and header files as follows:

% idlfilename [options]

where filename is the pathname of the interface definition file and options specifies any num
ber of possible compiler options. See the idl(lrpc) man page in the OSF DCE Application
Development Reference for complete information on running the IDL compiler.

A typical idl command line for a newly converted NCS 1.5.1 interface generates the files in
the same manner as for NIDL. For example, the following line compiles binopfw _ v2.idl,
which is shown in Figure 4--2.

% idl binopfw v2.idl-I/dce/latest/usr/include-no cpp-keep c source - - -

The-I option is similar to the NIDL-idir option; it indicates the directory that contains im
ported interface definitions.

The -no_ cpp option suppresses preprocessing of .idl and .acf files by the C preprocessor. The
-keep c _source option tells the compiler to save the C source modules when running. By de
fault, the IDL compiler runs the C compiler on the generated stubs. The NCS 1.5.1 NIDL
compiler does not automatically invoke the C compiler.

Note that you do not need to specify a -m or -s option to specify whether to support multiple
managers or multiple interface versions. DCB IDL always provides this support.

You can also use the -no_ mepv option if you are supplying manager code with operation
names that differ from the operation names in the IDL file. Otherwise, the IDL compiler gen
erates a manager EPV in the server stub using the names of the operations in the IDL file.

4-12 Writing Interface Definitions

On UNIX systems, the IDL compiler generates the following binopfw files:

binopfw _ v2.h
binopfw _ v2 _sstub.c
binopfw _ v2 _ cstub.c

If the IDL compiler generates auxiliary files (with the_ caux.c and _saux.c extensions), you
must link them with the client and server programs, just as you do the_ sstub.c and_ cstub.c
files.

---000---

Writing Interface Definitions 4-13

Chapter 5

Converting Distributed Applications
to DCERPC

This chapter describes how to convert your NCS 1.5 .1 client and server applications to use the
DCE RPC API and then rebuild your distributed applications. This chapter also includes
examples of using the DCE exception-returning package, which replaces the pfm _ $
exception-handling routines. Before converting your application, you must convert your
interface definition as described in Chapter 4.

To illustrate the conversion from NCS 1.5.1 to DCE RPC, we converted the binop forwarding
program, binopfw, that was shipped as a programming example in NCS 1.5.1. This chapter
describes the DCE RPC version of binopfw. Appendix B lists the NCS 1.5 .1 code so that you
can compare the changes made here. ·

You may also wish to refer to the stacks application, which is described in Chapter 5 and is
available online as part of the HP DCE Application Development Tools.

5.1 Converting the Client Code

This section lists some of the major things you need to -do to convert an existing N CS 1.5 .1
client module to a DCE RPC client module.

This example illustrates locating a server by passing the server's host name on the command
line, one of the two ways for clients to locate servers. (Clients can also use the Name Service
Interface (NSI) to locate servers.)

Converting NCS Applications 5-1

The binopfw client is built from the following source code modules:

• client.c

• util.c

• binopfw _ v2 _ cstub.c

The stub module, binopfw _ v2 _ cstub.c, is generated by the IDL compiler from the interface
definition, binopfw.idl. Section 5.3 describes how to convert the util.c module, which is
~sed by both the client and the seiver to generate error messages.

Figure 5-1 contains the C source code for the DCB RPC version of client.c. Comments in the
code highlight the changes made from the NCS 1.5.1 version. The program takes two argu
ments: the host name (or network address) of the seiver that is running and the number of
passes to execute. This program does not require the endpoint of the seiver; the rpcd_ process
on the seiver's system forwards the call to the seiver.

Some of the changes made to the DCB RPC version of client.c include:

• Different include files are required. The binopfw _ v2.h file tool contains a#include
directive for rpc.h. The order in which the include files are listed is important, as
some later include files rely on declarations contained in previous include files.

• Ratherthan calling pfm $init to handle faults via the Process Fault Manager (PFM),
this module uses the DCB exception-returning package to handle exceptions. (For
details on the package, see Section 5.7 and the OSF DCE Application Development
Guide.)

• The client code no longer references a uuid _$nil global variable. Calls that
previously required uuid _$nil will typically accept NULL.

• To understand how to replace the NCS 1.5.l routines, refer to the information on
mapping NCS 1.5.1 to DCB RPC calls in Chapter2.

• Since we do not specify an endpoint, the rpc_binding_from_string_binding call
generates a partial! y bound handle. The first time the client calls the remote
procedure binopfw _add, the call is sent to the rpcd process at the seiver's system,
and then rpcd forwards the call to the seiver. On return, the handle is fully bound,
so that all subsequent calls are sent directly to the seiver endpoint. After each pass,
the client prints the real elapsed time per call and the fully bound handle. After the
last pass, the program exits.

5-2 Converting NCS Applications ,

• In this example, there is no need to build a binding handle from the supplied argu
ments (with rpc..:.. string_ binding_ compose) as the user supplies the string binding
on the command line. The object UUID is nil because binopfw does not operate on
any particular object.

See Appendix B for the NCS 1.5.1 version of client.c.

#include <stdio.h>
#include <signal.h>
#include <dce/pthread_exc.h>
#include <dce/dce_error.h>
#include <dce/rpcexc.h>
#include "binopfw_v2.h"
#define CALLS_PER_PASS 100

ndr_char nils[] = "";
extern char *error_text(); /*New error call in util.c */

int
{

main (int argc, char *argv [J)

rpc_binding_handle_t handle;
sigset_ t sigset;
pthread_t thread;
ndr_char *string_binding;
unsigned32 st;
int k;
int passes;
ndr_long_int i, n;
long start_time,

if (argc != 3)
{

fprint f (stderr,

stop_time;

/* ANSI c function */

/* Was handle_t */

/* New string binding */
/* Was status_$t */

/* Was ndr_$long_int *!

"Usage: %s ProtocolSequence:HostID passes\n", argv[OJ);
exit(l);

}

passes= atoi(argv(2J);

/* Map SIGINT and SIGHUP to cancels to catch asynch signals */
sigemptyset(&sigset);
sigaddset (&sigset, SIGINT);
sigaddset(&sigset, SIGHUP);
thread= pthread_self ();
pthread_signal_to_cancel~np(&sigset, &thread);

Figwe 5-1. DCE RPC Version of binopfwlclient.c

Converting NCS Applications 5-3

/* Create binding from string binding passed from command line */
rpc_binding_from_string_binding(

(unsigned_char_t *) argv[l], &handle, &st);
if (st != rpc_s_ok)
{

fprintf (stderr,
"Cannot convert name \"%s\" to binding - %s\n",
argv[1], error_text(st));

exit (1);

/* Convert binding handle to string representation to print name */
rpc_binding_to~string_binding(handle, &string_binding, &st);
if (st != rpc_s_ok)
{

fprintf (stderr,
"Cannot get string binding - %s\n",error_text(st));

exit (1);

printf("Bound to %s\n\n", (char *)string_binding);

/* Free string when done */
rpc_string_free(&string_binding, &st);
if (st != rpc_s_ok)
{

fprintf (stderr,
"Cannot free string binding %s - ~s\n",
string_binding, error_text(st));

exit (1);

for (k = 1; k <= passes; k++)
{

start_time = time(NULL);
for (i = l; i <= CALLS_PER_PASS; i++)
{

/*Enclose rpc with exception-returning macros */
TRY
{

binopfw_add(handle, i, i, &n);
if (n ! = i+i)

printf ("Two times %ld is NOT %ld\n", i, n);

Figure 5-1. DCE RPC Version of binopfwlclient.c (Continued)

5-4 Converting NCS Applications

CATCH (rpc_x_cornrn_failure)
{

printf ("Call failed: comm failure\n");
exit (1);

CATCH_ALL
{

printf (" Call failed for unknown reason\n");
exit (1);

}

ENDTRY
} /* for i loop */
stop_time = time(NULL);

/* Added this call to print the endpoint after each pass */
rpc_binding_to_string~binding(handle,

&string_binding, &st);
if (st != rpc_s_ok)
{

fprintf (stderr,
"Cannot get string binding - %s\n",error_text(st));
exit(l);

printf ("Pass %3d; Real/Call: %2ld ms\n"~
k, ((stop_time - start_time) * 1000) I CALLS_PER_PASS);

printf("Bound to %s\n\n", (char *)string_binding);
I* for k 1 oop *I

/* main */

Figure 5-1. DCE RPC Version of binopfwl client.c (Continued)

Converting NCS Applications 5-5

5.2 Converting the Server Code

The binopfw server is built from the following four source code modules:

•
•
•
•

server.c

manage_r.c

util.c

binopfw _ v2 _sstub.c

The server.c module perfonns the server initialization. The manager.c module contains the
binopfw _add routine that executes the addition operations. The stub module is generated by
the IDL compiler from the interface definition (as described in Chapter 4).

5.2.1 Initializing a DCE Server

A DCB server includes initialization code that prepares the server to receive remote calls. The
initialization code typically includes these steps:

1. Register the interface with the DCB runtime·Iibrary.

2. Specify which protocol sequences the server will use.

3. Obtain a list of binding handles.

4. Register endpoints in the local endpoint map~

5. Export binding information to an entry (or entries) in the Name Service database.

6. .Finally, listen for client requests.

The converted code in the server.c module performs all of these steps except Step 5, which
isn't needed because the user of the client program specifies a server host on the command
line.

5-6 Converting NCS Applications

5.2.2 The server.c Module

Figure 5-2 shows the DCB RPC version of server.c; code comments highlight the changes
from the previous version. The server.c program takes as an argument the textual name of the
protocol sequence that you are using. To compare this code with the NCS 1.5.1 version, see
Appendix B.

Some of the changes between the NCS 1.5.1 and DCB RPC versions of server.c include:

• Different header files to declare. The order in which the include files are listed is im
portant, as some later include files rely on declarations contained in previous include
files.

• The global variables are similar to NCS 1.5.1; however, the names support DCB
RPC major and minor version numbers.

• To understand how to replace the NCS 1.5.1 routines, refer to the infonnation on
mapping NCS 1.5.1 to DCB RPC routines in Chapter 2.

• Rather than calling pfm _ $init to handle faults, this module uses the DCB
exception-returning macros to handle exceptions. (For details on the macros, see
Section 5. 7 and Appendix C).

• The second parameter of the DCB RPC rpc_server_use_protseq routine requires·
you to specify the maximum number of concurrent remote procedure call requests
that the server wants to handle. The RPC runtime guarantees that the server can ac
cept at least this number of concurrent call requests. Use the predefined constant
rpc_c_protseq_max_reqs_default to specify the default value.

• The server code no longer references a global variable such as uuid _$nil. Calls
which previously required uuid _$nil will typically accept NULL.

• The DCB RPC code makes calls that are analogous to the N CS 1.5 .1 calls to get the
name of the protocol sequence, get an endpoint on which to listen, register the man
ager with the RPC runtime library, register the server with rpcd so that rpcd can for
ward requests to the server, and listen for requests.

Converting NCS Applications 5-7

/* New include files */
#include <stdio.h>
#include <signal.h>
#include <dce/pthread_exc.h>
#include <dce/dce_error.h>
#include "binopfw_v2.h"
/* Change globalref to extern */
extern binopfw_v2_0_epv_t binopfw_v2_0_manager_epv;
extern char *error_text();
int main(int argc, char *argv[]) /*ANSI C function*/
{

unsigned32
sigset_t
pthread_t
rpc_binding_vector_t
unsigned_char_t
int
unsigned32
if (argc != 2)
{

fprintf (stderr,

st;
sigset;
thread;
bh_vector; / New vector of handles */
string_binding; / New string binding */
i;
MAX_CALLS=5;

"Usage: %s Protocol Sequence (ncadg_ip_udp I ncacn_ip_tcp)\n",
argv[O]);

exit (1);

/* Map SIGINT and SIGHUP to cancels to catch asynch signals */
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigaddset(&sigset, SIGHUP);
thread= pthread_self ();
pthread_signal_to_cancel_np(&sigset, &thread);

/* Get protocol sequence */
rpc_server_use_protseq((ndr_char *)argv[l],

rpc_c_protseq_max_reqs_default, &st);
if (st != rpc_s_ok)
{

fprintf (stderr, "Cannot use protocol sequence: %s\n",
argv[l], error_text(st));

exit(l);

Figure 5-2. DCE RPC Version of binopfwlserver.c

5-8 Converting NCS Applications

}/* Register interface with RPC runtime */

rpc_server_register_if (binopfw_v2_0_s_ifspec, NULL,
(rpc_mgr_epv_t)&binopfw_v2_0_manager_epv, &st) i

if (st != rpc_s_ok) {
fprintf (stderr, "Cannot register interface: %s\n",

error_text(st)) i

exit (1) i ,

/* Get vector binding handles */
rpc_server_inq_bindings(&bh_vector, &st) i

if (st != rpc_s_ok) {
fprintf (stderr, "Cannot inquire about binding vectors:%s\n",

error_text(st))i
exit(l) i

/* Print bindings */
printf("Bindings:\n");
for (i = O; i < bh_vector->count; i++) {

rpc_binding_to_string_binding(bh_vector->binding_h[i),
&string_binding, &st)i

if (st != rpc_s_ok) {
fprintf (stderr, "Cannot get string binding - %s\n",

error_text(st)) i

exit (1) i

printf ("%s\n", (char *) string_binding);
rpc_string_free(&string_binding, &st);
if (st != rpc_s_ok) {

fprintf (stderr, "Cannot free string binding %s - %s\n",
string_binding, error_text (st))i
exit (1);

/* for */
!* Register interface with endpoint map database */

rpc_ep_register(binopfw_v2_0_s_ifspec, bh_vector,
(uuid_vector_t *) NULL,
(unsigned_char_t *) "binop version 2.0 server", &st);

if (st != rpc_s_ok)
{

fprintf (stderr,
"Cannot register interface with endpoint map: %s\n",

error_text(st));
exit (1) i

Figure 5-2. DCE RPC Version of binopfwlserver.c (Continued)

Converting NCS Applications 5-9

/* Set up exception returning before listening on endpoint *./
TRY

{
printf("Listening ... \n");
rpc_server_listen(MAX_CALLS, &st);
if (st != rpc_s_ok)

fprintf(stderr, "Error: %s\n",error_text(st));
} /* try *I
FINALLY
{

/* Do same clean-up operation in normal and exception exit */
printf("Unregistering interface\n");
rpc_server_unregister_if (binopfw_v2_0_s_ifspec,

NULL, &st);
if (st != rpc_s_ok)
{

fprintf (stderr,
"Cannot unregister interface: %s\n",error_text(st));
exit (1);

printf("Unregistering endpoint\n");
rpc_ep_unregister(binopfw_v2_0_s_ifspec, bh_vector,

(uuid_vector_p_t) NULL, &st);

if (st != rpc_s_ok)
{

fprintf(stderr, "Cannot unregister endpoint: %s\n",
error_text (st)) ;
exit(l);

}

exit(O);
} /* finally */
ENDTRY;

/* main */

Figure 5-2. DCE RPC Version of binopfw!server.c (Continued)

5-10 Converting NCS Applications

5.2.3 The manager.c Module

The manager.c module is similar in both NCS 1.5 .1 and DCE RPC. The manager makes no
DCE calls, so it includes only the binopfw _ v2.h header file, which defines
binopfw - v2 _ o _ epv _ t and declares the binopfw - add operation.

#include "binopfw_v2.h" /*Use version created by idl compiler*/

static void binopfw_add(/* Use same name as in interface definition file */
handle_t h,
ndr_long_int a,
ndr_long_int b,
ndr_long_int *c)

*c = a + bi

extern binopfw_v2_0_epv_t binopfw_v2_0_manager_epv = {binopfw_add};

Figure 5-3. DCE RPC Version of binopfwlmanager.c

5.3 Converting the util.c Module

Both NCS 1.5.1 and DCE RPC versions of this application define an additional module,
util.c, which the client and server code use to generate the text of error messages. Figure 5-4
shows the DCE RPC version of util.c, which uses the DCE RPC dee_ error _inq_ text call.
Appendix B shows the NCS 1.5 .1 version.

#include <dce/dce_error.h>
#include "binopfw_v2.h"

char *error_text (st)

unsigned32 st;

static dce_error_string_t error_string;
int inq_st;

dce_error_inq_text (st, error_string, &inq_st);
return ((char*) error_string);

Figure 5-4. DCE RPC Version of binopfw/util.c

Converting NCS Applications 5-11

5.4 Building DCE RPC Applications

The following steps list the typical procedure for building a DCB RPC-based application. Re
fer to the Makefiles installed in the example directory to see how we build the programming
examples supplied with DCB RPC.

1. For each interface, run the idl command to generate a header file and to generate
source code for the server stub, client stub, and any auxiliary files. If you are convert
ing an existing N CS 1.5 .1 application and you want to ensure that this interface will
interoperate with existing NCS 1.5.1 applications, convert the NCS 1.5.1 interface
definition with the nidl_to _idl tool before running the idl cornma:hd.

2. For each interface, use the C compiler to generate object modules for the server stub,
client stub, and any auxiliary files.

3. For each interface, compile any routines that perform automatic binding or data type
conversion.

4. Compile the client application code.

5. Compile the server initialization code and managers.

6. Link the client application object modules, client stubs, any automatic binding rou
tines, and any type conversion routines to make the executable client.

7. Link the server and manager object modules, server stubs, and any type conversion
routines to make the executable server.

5-12 Converting NCS Applications

5.5 Running the binopfw Program

To run the binopfw distributed application, you first start the server program and then the cli
ent program. Before starting the server program, be sure that the rpcd daemon is running on
the server host. For details on how to start up rpcd, see the OSF DCE Administration Guide.

5.5.1 Starting the Server Program

The following is an example of starting the server program:

%)server ncadg_ip_udp

Bindings:
ncadg_ip_udp:15.22.136.147[1032J
Listening ...

5.5.2 Starting the Client Program

The following is an example of starting the client program:

% client ncadg_ip _ udp:my _node 3

Bound to ncadg_ip_udp:15.22.136.147[J

Pass 1; Real/Call: 40 ms
Bound to ncadg_ip_udp:15.22.136.147[1032J

Pass 2; Real/Call: 50 ms
Bound to ncadg_ip_udp:15.22.136.147[1032J

Pass 3; Real/Call: 40 ms
Bound to ncadg_ip_udp:15.22.136.147[1032J

Converting NCS Applications 5-13

5.6 Improving the binopfw server.c Program

The previous server.c in Figure 5-2 uses the DCE RPC analog for each NCS 1.5 .1 routine in
the original NCS 1.5 .1 server.c program. However, we could improve this program using oth
er routines provided in the DCE RPC API.

For example, in the previous program, the server program expects the user to invoke the
program specifying the protocol sequence to use. Alternatively, the server can be designed
to support all protocol sequences available on a given host by using the DCE call
rpc _server_ use_ all_protseqs. (rpc _server_ use_ all_protseqs is a general-purpose call
and is typically used more frequently than rpc_server_use_protseq.) Using
· rpc _server_ use_ all_protseqs changes the first part of the server.c program as Figure 5-5
illustrates.

To run this new version of server.c, invoke the server as follows:

% }server

When the server starts up, itprints out all the protocol sequences it supports:

Bindings:
ncadg_ip_udp:lS.22.136.147[1036]
ncacn_ip_tcp:15.22.136.147[1084]
Listening ...

5-14 Converting NCS Applications

/* New include files */
#include <stdio.h>
#include <signal.h>
#include <dce/pthread_exc.h>
#include <dce/dce_error.h>
#include "binopfw_v2.h"
/* Change globalref to extern */
extern binopfw_v2_0_epv_t binopfw_v2_0_manager_epv;
extern char *error_text();
int main ()
{

unsigned32
sigset_t
pthread_t
rpc_binding_vector_t
unsigned_char_t
int
unsigned32

st;
sigset;
thread;
bh_vector; / New vector of handles */
string_binding; / New string binding */
i;
MAX_CALLS=5;

/* Map SIGINT and SIGHUP to cancels to catch asynch signals */
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigaddset(&sigset, SIGHUP);
thread= pthread_self();
pthread_signal_to_cancel_np(&sigset, &thread);

/* Use all supported protocol .sequences */
rpc_server_use_all_protseqs(MAX_CALLS, &st);
if (st ! = rpc_s_ok)
{

fprintf (stderr, "Cannot support any protocol sequence: \n",
error_text(st));

exit(1);

/* Rest of program same as in Figure 5-2 */

Figure 5-5. Server Using rpc_server _use_all_yrotseqs

Converting NCS Applications 5-15

5. 7 Handling Signals in DCE RPC

NCS 1.5.1 uses the Domain Process Fault Manager (PFM) to catch all UNIX signals
(synchronous and asynchronous*) and converted them into faults. For NCS 1.5.1 programs
running on the Domain/OS system, the PFM subsystem catches the faults automatically.
NCS 1.5.1 programs running on other platforms use the pfm_$init routine to enable the
Portable PFM (PPFM) subsystem.

The PPFM subsystem is not available with the DCE RPC API. Instead, the DCE RPC API
uses the DCE exception-returning package. The DCE exception-returning package is not part
of the. DCE RPC component, but it accompanies the DCE Threads implementation. The
exception-returning package can be used in any threaded application, which includes all DCE
RPC programs since the DCE RPC product relies on the underlying threads implementation.
(DCE Threads are described in Part 2 of the OSF DCE Application Development Guide and in
Programmer's Notes on HP DCE Threads; the exception-returning package is described in
the OSF DCE Application Development Guide.)

DCE Threads supports the POSIX sigwait(2) service to allow threads to perform activities
similar to signal handling without having to deal with signals directly. DCE Threads also
provides a jacket for sigaction(2) to allow each thread to have its own handler for synchro
nous signals. For more infonnation about sigwait and sigaction, see the OSF DCE Applica
tion Development Guide and the sigwait(2) and sigaction(2) manuaI pages.

To handle synchronous UNIX signals on a per-thread basis, DCE Threads uses a thread can
cellation mechanism. When one thread cancels another thread, it is requesting that the target
thread tenninate as soon as possible. One thread cancels another thread (or itself) by calling
pthread_cancel with the target thread as the (only) argument. The target thread can control
how quickly it terminates by controlling its general cancelability and its asynchronous cancel
ability. The DCE exception-returnin_g package is integrated with this pthread cancel mecha
nism. Whenever a thread perfonns an instruction that induces a UNIX synchronous signal, the
DCE exception-returning package maps the signal into a corresponding exception.

*Synchronous signals are hardware, operating system, or program errors that occur within the process of an executing
program. Asynchronous signals are generated outside the running process; typically they are in response to a user
action (such as a CTRL/c). The UNIX signals SIGSEGV and SIGFPE are synchronous signals. SIGINT, SIGTERM,
SIGHUP, and SIGQUITare asynchronous signals.

5-16 Converting NCS Applications

DCB Threads supports two ways to obtain information about the status of a threads routine:

• The routine returns a status value to a thread by setting the external variable errno
to an error code and returning a function value of -1.

• The routine raises an exception using the facilities of the DCB Threads
exception-returning interface.

A multi threaded program can use either of these methods but cannot use both methods in the
same code module.

The threads manual pages describe returning status using errno; this mechanism is the one
described in the POSIX P1003.4a proposed standard.

The DCB Threads exception-returning package automatically sets up handlers on each thread
for the UNIX synchronous signals and maps these signals to the corresponding exceptions.
The package does not map UNIX asynchronous signals automatically, but you can map any
asynchronous signals into a cancel exception (pthread _cancel_ e). This is described in
Section 5. 7 .2. ·

5.7.1 Using Exceptions with the DCE Exception-Returning Package

The DCB exception-returning package defines a set of macros for manipulating exceptions.
For example, the EXCEPTION macro allows you to define exceptions that you want to
handle; the TRY macro defines a block wherein exceptions may be caught; and the CATCH
macro allows you to perform a specific action based on the exception caught.

When a program includes TRY /CATCH macros, an exception automatically propagates
through any nested function calls until it is caught. Any function along the way can catch it,
eitherby specifying it byname (with the CATCH macro) or by catching all exceptions (with
the CATCH_ ALL macro). Intermediate functions that don't need to release resources can
ignore the exception.

When an exception is ignored, that is, if no signal handler exists for the signal, the thread is
terminated with a message describing the error condition.

Converting NCS Applications 5-17

The DCB exception-returning package allows you to

• Declare and initialize exceptions objects

• Raise and catch exceptions

• Handle synchronous signals, which are predefined exceptions

• Handle cancels using the cancel exception

• Handle asynchronous signals by converting the signal into a cancel exception

For examples of the TRY /CATCH macros, see the previous programming examples (Figures
5-1 and 5-2). See the OSF DCE Application Development Guide for more information on the
specific macros defined in the DCB exception-returning package.

To use the exception-returning macros, your program includes the dce/exc _ handling.h
header file. (This file is included automatically when you include pthread _ exc.h.) Then you
declare a block of code where the exceptions are to be caught with the TRY macro. Within this
block (called the exception scope), you can define a block of code to process a specific
exception or all exceptions with the CATCH or CATCH_ALL macros, respectively.

5. 7 .2 Handling Asynchronous Signals

By default, if a process receives an asynchronous signal for which no signal handler has been
established, the process (with all its threads) simply terminates. If any thread has a signal han
dler for the asynchronous signal, the signal handler runs in the context of that thread.

You can handle asynchronous signals with the DCB exception-returning package by
converting the asynchronous signal into a pthread _cancel, which in tum raises the
pthread_ cancel_ e exception. Server programs will want to catch asynchronous signals to
perform cleanup operations before exiting. The application can map these signals to a
pthread cancel by using either a combination of the pthread sigwait and pthread _cancel
routines orthe pthread _signal_to _cancel_ np routine.

A client program may want to catch asynchronous signals while making a remote procedure
call so that a server processing the remote procedure call can be informed that it is going away.

Figure 5-6 is a portion of a program that maps the UNIX signals using a
pthread _signal_ to_ cancel_ np routine. To use this routine, you must include the pthread.h
header file.

5-18 Converting NCS Applications

/* New include files */

#include <pthread.h>

int main ()

pthread_t
sigset_t

thread;
sigset;

/* Map SIGINT and SIGHUP to cancels */

sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigaddset(&sigset, SIGHUP);
thread= pthread_self();
pthread_signal_to_cancel_np(&sigset, &thread);

Figure 5-6. Handling Asynchronous Signals

When handling asynchronous signals you need to be aware of when the specified asynchro
nous signals are caught. The corresponding NCS 1.5.1 routine pfm_$inhibit returns the sig
nal immediately. However, the DCE Threads cancel mechanism delivers a cancel only at well
defined cancellation points in a program, for example when a call to pthread _ cond _wait is
made.

While this default behavior of DCE Threads is considered safer in most cases, you need to be
aware of the difference in behavior. In some cases, not responding to cancels immediately can
cause unexpected behavior. That is, the initial thread may not call a function that can be can
celled in a timely fashion when it catches an asynchronous cancel. This would happen if your
program goes into an infinite loop which doesn't contain a call to a function that can be can
celled.

The DCE RPC runtime automatically looks for threads cancels that are posted against a client
thread while the thread is perfonning a remote procedure call. If a pending cancel is detected,

Converting NCS Applications 5-19

the client runtime forwards the cancel to the server runtime and the server runtime posts the
cancel against the executing server call execution thread. The server threa<;l detects the pend
ing cancel if it calls an operation that can be cancelled. If the server calls such an operation, the
remote procedure call terminates with a cancel exception and RPC processing continues as it
does for all exceptions. If the server completes without handling the pending cancel, the re
mote procedure call completes successfully; the client continues (after the remote procedure
call) with the cancel still pending.

5.8 No Replacement for rpc_$set_fault_mode

NCS 1.5.1 provided the rpc_$set_fault_mode routine to help debug server code. this rou
tine allowed you to change the default fault-handling behavior of the NCS runtime so that the
server would exit when it received a signal rather than propagating the signal to the client.

DCB does not provide a mechanism that allows you to change default fault-handling behavior.

For the HP DCB Developers' Environment release, the DCB library has been built so that if a
synchronous terminating signal is generated, the entire process is terminated and a core dump
produced. This has been done to aid application development and debugging. If you do not
want this behavior, you can establish a signal handler to handle synchronous terminating sig
nals. Refer to Programmer's Notes on HP DCE Threads fof more details. Werecommendthat
you do not rely on this behavior, as future releases of HP DCB may not handle synchronous
tenninating signals in the same manner.

5.9 Using ~CS 1.5.1 and DCE RPC UUIDs

While the UUID data structure remains the same size in the DCB RPC API, its internal struc
ture has changed, as Figure 5-7 illustrates.

You need to be aware of these differences in programs that use both uuid _ $t and uuid _ t data
types. If you want your program to preserve the UUID created in the NCS 1.5 .1 format and use
it in a DCB RPC-based program, you can. A program might do this, for example, if a DCB
RPC-based server must service requests from NCS 1.5.1-based clients or if an object can be
accessed by both NCS 1.5.1 and DCB RPC-based servers.

5-20 Converting NCS Applications

NCS 1.5.1 uuid_$t

struct uuid_$t {
ndr_$ulong_int time_high;
ndr_$ushort_int time_low;
ndr_$ushort_int reserved;
ndr_$byte family;
ndr_$byte host[7];
} i

DCE RPC uuid_t

typedef struct
unsigned32 time_low;
unsigned16 time_mid;
unsigned16 time_hi_and_version;
unsigned8 clock_seq_hi_and_reserved;
unsigned8 clock_seq_low;
idl_byte node[6J;
} uuid_t;

Figure 5-7. Comparison of uuid_$t and uuid_t

To preserve the UUID that you used to initialize a variable of the NCS 1.5 .1 type uuid _ $t in a
C program, you must change its format. You can easily make this change by moving a brace
one field to the right. The last seyen bytes of an N CS 1.5 .1 uuid _ $t initialization are enclosed
in braces, whereas only the last six bytes of a DCE RPC uuid _ t initialization are enclosed in
braces. For example, Figure 5-8 shows how you would reformat an NCS · 1.5.1 uuid _ $t ini
tialization to initialize a DCB RPC uuid t. The arrows indicate the brace that is moved.

NCS 1.5.1 initialization:

Ox5c6da328, OxaOOO, OxOOOO, OxOd, \
{OxOO, Ox04, Ox9e, Ox88, OxOO, OxOO, OxOO} }

JI
DCE RPC initialization:

Ox5c6da328, OxaOOO, OxOOOO, OxOd, OxOO, \
{Ox04, Ox9e, Ox88, OxOO, OxOO, OxOO} }

/I

Figure 5-S. Changing the NCS 1.5.1 UUID C Initialization

Another solution is to convert the NCS 1.5.1 UUID to a string representation (using
uuid _$encode) and pass that string to uuid _from_ string to generate the same UUID in the
DCE RPC fonnat. .

Converting NCS Applications 5-21

You may have programs that must use UUIDs in both NCS 1.5.1 and DCE RPC format. In
programs attempting to use both uuid_$t and uuid_t, a DCE RPC uuid_t can be passed
where an NCS 1.5 .1 uuid _ $t is expected and vice versa.

However, using an NCS 1.5.1 uuid_$string_t in a DCB RPC routine can lose information.
This is because the string representation of an NCS 1.5.1 UUID does not represent all the
fields that are represented in the DCB RPC UUID string format.

Specifically,.the NCS 1.5.1 UUID string has 28 hexadecimal characters and 8 periods; the re
served field (which is all Os) is not represented:

54c2c718f000.0d.00.01.e1.e9.00.00.00

The DCB RPC UUID string format has 32 hexadecimal characters and 4 dashes; all fields are
represented:

847ec9f0-9203-11ca-8e74-08001e01ele9

DCE RPC runtime routines accept UUID strings in either format.

--000--

5-22 Converting NCS Applications

Chapter 6

Writing Servers with Multiple Managers

DCE and NCS both allow you to write distributed applications that handle different types of
objects. One server can implement an interface for several object types. You provide a separate
manager implementation for each combination of interface and object type, and identify each
manager with an object type UUID.

What you choose to be an object depends on your application. In DCE and NCS, an object is
simply something that is identified by a UUID and that can be acted on through one or more sets
of operations, called interfaces. Every object has a type, also identified by a UUID. All objects
of a given type can be acted on through the same sets of interfaces. The application code that .
implements an interface for a particular object type is called a manager.

Writing servers with multiple managers in DCE RPC is similar to writing them in NCS 1.5 .1.
To illustrate, this chapter describes the DCE RPC version of the NCS 1.5.1 stacks program, in
which a server manages two types of stacks, one based on lists and one based on arrays.
Appendix B shows the N CS ·1.5 .1 version of the stacks example, and both the NCS 1.5 .1 and
DCE RPC versions are available online as part of the HP DCE Application Development
Tools.

6.1 The stacks Interface Definition

Figure 6-1 shows the stacks.idl interface definition file. We created it by making minor
changes to the stacks_v2.idl file generated by the nidl_to_idl tool from the NCS 1.5.1
stacks.idl file. (Chapter 4 describes the nidl to idl tool.)

Multiple Managers 6-1

[uuid(4438675B-FOOO-OOOO-ODOO-OOFEDA000000), version(2)]
interface stacks
{

[idempotent]
void stacks$init([in] handle_t h);

/* stack functions return non-zero on error, zero otherwise */

long stacks$push ([in] l).andle_t h, [in] long value);

long stacks$pop{[in] handle_t h, [out) long *value);

Figure 6-1. The DCE RPC stacks/stacks.id! Interface Definition

The Makefile provided with the sample application specifies the +e C compiler flag, which
allows the use of$ (the dollar sign) as a valid identifier character when compiling in ANSI C
mode. This feature was used to minimize changes to the NCS 1.5.1 versions of the programs.

The stacks interface definition defines the operations that each manager will implement. Each
operation has the same signature, but different implementations, in the two managers. All
implementation details are in the managermodule for each type, "hidden" from the interface.

When registering multiple managers, you must compile your interface definition with the IDL
-no_ mepv compiler option. The -no_ mepv switch tells the IDL compilernot to create a man
ager EPV for the specified interface definition. You are supplying your own manager EPVs.
(By default, the IDL compiler automatically generates a manager EPV in the stub file using the
names of the operations in the IDL file.) ·

6.2 Generating the Object UUIDs in the stackdf.h File

Each manager must be associated with an object type UUID. We could have preserved our ex
isting NCS 1.5 .1 UUIDs, as described in Section 5 .9, but in this case we chose to generate new
UUIDs in the DCE UUID fonnat. We use the uuidgen program with the -s option to generate
anewUUID.

6-2 Multiple Managers

% uuidgen-s
= { /* 6d42cd38-8bad-11ca-b45b-08001e00d2f3 */

Ox6d42cd38,
Ox8bad,
Oxllca,
Oxb4,
Ox5b,
{Ox08, OxOO, Oxle, OxOO, Oxd2, Oxf3}

As in the NCS 1.5.1 version of this program, we define macros forthe C initializations of the
UUIDs for the two kinds of stack objects and their types in the stacksdf.h header file, shown in
Figure 6-2. The major difference between the two stacksdf.h header files is in the format of the
UUID initializations. DCE RPC UUIDs have the last six bytes. rather than the last seven bytes,
enclosed in braces.

/* the two stack objects and their types */

/* the array-based object */
/* v2.o UUID -- 6d42cd38-8bad-11ca-b45b-08001eOOd2f3 */
#define ASTACK {Ox6d42cd38, Ox8bad, Oxllca, Oxb4, Ox5b, \

{Ox08, OxOO, Oxle, OxOO, Oxd2, Oxf3}}

/* V2.0 UUID -- f82f30d0-8bac-11ca-b8cl-08001e00d2f3 */
#define ASTACKT {Oxf82f30d0, Ox8bac, Oxllca, Oxb8, Oxcl, \

{Ox08, OxOO, Oxle, OxOO, Oxd2, Oxf3}}

/* the list-based object */
/* V2.0 UUID -- lfccea88-8bae-llca-bb38-08001e00d2f3 */
#define LSTACK {0xlfccea88, Ox8bae, Oxllca, Oxbb, Ox38, \

{Ox08, OxOO, Oxle, OxOO, Oxd2, Oxf3}}

/* V2.0 UUID -- 362669f8-8bae-11ca-alc4-08001e-00d2f3 */
#define LSTACKT {Ox362669f8, Ox8bae, Oxllca, Oxal, Oxc4, \

{Ox08, OxOO, Oxle, OxOO, Oxd2, Oxf3}}

Figure 6-2. The stackslstacksdfh Header File

Multiple Managers 6-3

6.3 The stacks Client Module

The. stacks client is built from client.c, util.c (used to generate the text of error messages), and
the client stub generated by the IDL compiler, stacks_ cstub.c. The DCB RPC version of the
util.c module is shown in Section 6.5.

The client.c program, shown in Figure 6-3, lets the user access both types of stacks within one
session; it maintains a separate binding handle for each stack. Both the binding handles and
UUIDs for the stack types are kept in arrays.

When the client program attempts to make a remote procedure call, the object UUID in the
binding handle determines the stack to be accessed. In this example we use a partially bound
handle to initiate the remote procedure calls. Since the server has previously registered its ob
ject UUIDs in the local endpoint map database, the rpcd forwarding mechanism uses the ob
ject identifier in a partial I y bound handle, together with the interface UUID, to route the packet
to the server.

In the DCE RPC version of this program, NCS 1.5.1 socket_$ calls have been replaced with
. DCE RPC string binding manipulation routines, and the client uses a command-line argument

to provide the protocol sequence and host ID of the server, instead of the Location Broker rou
tines used in the NCS 1.5.1 version. The program also illustrates the use of the TRY /CATCH
exception-handling mechanisms.

6-4 Multiple Managers

#include <stdio.h>
#include <dce/dce_error.h>
#include <dce/pthread_exc.h>
#include <dce/rpcexc.h>
#include <dce/uuid.h>
#include "stacks.h"
#include "stackdf .h"

#define NUM_UUIDS 2 /* Number of object UUIDs */

ndr_char nils [J = '"';
extern char *error_text();

void main(int argc, char *argv[J)
{

/* Get host from command 1ine */

/* array of uuids
·*I
static uuid_t
static unsigned_char_t
rpc_binding_handle_t
ndr_char
unsigned32
ndr_long_int
char
int

objects[2] = {ASTACK, LSTACK};
*obj_strs[2J;
handle(2];
*string_binding;
st;
val;

/* binding handle */
/* New string binding */

cornrnand[lOOJ, which[lOOJ, value[lOOJ;
i I s i

if (argc ! = 3)
{

/* Get command line args */

fprintf (stderr, "Usage: %s ProtocolSequence HostID \n", argv[OJ);
exit (1);

for (i=O; i<2; i++) /* While less than number of objects */

/* Convert object UUID to .its string representation */

uuid_to_string (&objects[i], &obj_strs[i], &st);
if (st != uuid_s_ok) {

fprintf(stderr, "Cannot compose uuid string %s\n", error_text(st));
exit (1);

Figure 6-3. The stackslclient.c Module

Multiple Managers 6-5

/*Build string binding from command line input */

rpc_string_binding_compose(

) i

obj_strs[i], (ndr_char *)argv[l], (ndr_char *)argv[2J,
nils, nils, &string_binding, &st

if (st != rpc_s_ok)
fprintf(stderr, "Cannot compose string binding %s\n", error_text(st)};
exit (1);

/* Create binding handle from string */

rpc_binding_from_string_binding(string_binding, &handle[i], &st);
if (st !=·rpc_s_ok) {

}

fprintf (
stderr, "Cannot convert name \"%s\" to binding - %s\n",
string_binding, error_text(st)

) i

exit(l);

printf("%d-th binding is %s\n", i, string_binding);
/* for loop *I

/*.Free string binding when done */

rpc_string_free(&string_binding, &st);
if (st != rpc_s_ok) {

fprintf (

) i

stderr, "Cannot free string binding %s - %s\n",
string_binding, error_text(st)

exit (1);

/* Free uuid strings */

for (i=O; i<2; i++) { /* While less than number of objects */
rpc_string_free(&obj_strs[i], &st);
if (st != rpc_s_ok) {

fprintf (
stderr~ "Cannot free string binding %s - %s\n",
string_binding, error_text(st)

) i

exit(l);

6-6 Multiple Managers

Figure 6-3. The stackslclient.c Module (Continued)

printf("Initialize stack objects (y/n)? ");
gets (command);

if (*command ! = 'n' && *command ! = 'N') {
TRY {

do

}

stacks$init(handle[O]);
stacks$init(handle[1]);

CATCH (rpc_x_cornrn_failure) {
fprintf (stderr, "Call failed: communication failure\n");
exit(1);

}

CATCH_ALL {
fprintf (stderr, "Call failed\n");
exit (l);

}

ENDTRY;

printf ("push, pop, or quit: ") ;
gets (command);

if (! strcmp (command, "quit"))
break;

printf("astack or lstack: ");
gets (which);

if (! strcmp (which, "astack"))
s O;

else
s 1;

if (! strcmp (command, "push")) {
printf("value: ");
gets (value) ;
val = (ndr_long_int)atoi(value);
printf("Pushing %d onto %s ... ",val, s?"lstack":"astack");
TRY {

if (stacks$push(handle[s], val))
printf("stack full!\n");

else
printf("successful\n");

Figure 6-3. The stackslclient.c Module (Continued)

Multiple Managers 6-7

CATCH (rpc_x_comm_failure) {

}

fprintf (stderr, "Call failed: communication failure\n");
exit (1);

CATCH_ALL {
fprintf (stderr, "Call failed\n");
exit(l);

}

ENDTRY;
/* push */

else if (! strcmp (command, "pop")) {
printf("Popping off of %s ... ", s?"lstack":"astack");
TRY {

}

if (stacks$pop(handle[s], &val))
printf("nothing on stack!\n");

else
printf("value is %d\n", val);

CATCH (rpc_x_comm_failure) {
fprintf (stderr, "Call failed: communication failure\n");
exit (1);

}

CATCH_ALL {
fprintf(stderr, "Call failed\n");
exit(l);

}

ENDTRY;
!* pop */

while (strcmp (command, "quit"));

Figure 6-3. The stackslclient.c Module (Continued)

6-8 Multiple Managers

6.4 The stacks Server Module

The server.c program, shown in Figure 6-4, declares two manager EPVs as external vari
ables. EachEPV is defined in its own manager module.The stacks seiveris built from server.c,
util.c, stacks_sstub.c (the server stub), and the two manager modules, amanager.c and
lmanager.c.

In the NCS 1.5.1 version of stacks, we use the rpc_$register_mgr routine to register each
manager with the RPC runtime library and the rpc _$register_ object routine to tell the runtime
library what the type of each object supported by the server is.

In the DCB version of stacks, we use the rpc _server _register _if routine to register each man
ager with the RPC runtime library. The second and third arguments to this routine are the type
UUID of the object and the unique manager entry point vector (EPV) for that type. By default,
rpc_server _register _if assumes you are registering a single implementation of the interface,
and both these arguments are NULL. If you want to create multiple managers for an interface
(as in this example), the server program must call rpc _server_ register _if once for each man
ager, passing in a unique object type identifier and manager EPV. The server must also call
rpc_object_set_type once for each object to associate the object UUID of the object with a
single type UUID.

Before using rpc _ ep _register to register the interface and the object UUIDs with the local
endpoint map, the program constructs_ an object UUID vector of type uuid _vector_ t. This data ·
structure contains a count member followed by an array of pointers to UUIDs. Initially, the
pointer array contains one element. The program must allocate more memory to hold pointers
to subsequent UUIDs.

Finally, the server sets up exception-returning mechanisms to handle cleanup operations and
listens for requests using rpc _server _listen.

Multiple Managers 6-9

#include <stdio.h>
#include <signal.h>
#include <dce/pthread_exc.h>
#include <dce/dce_error.h>
#include "stackdf .h"
#include "stacks.h"

#define NUM~UUIDS 2 /* Number of object UUIDs */
#define MAX_CALLS 5

/* Each manager EPV defined in its own manager module */

extern stacks_v2_0_epv_t stacks_v2_0_amanager_epv;
extern stacks_v2_0_epv_t stacks_v2_0_lmanager_epv;
char *error_text(unsigned st);

void main ()
{

unsigned32
rpc_binding_vector_t
uuid_vector_t
unsigned_char_t
unsigned_char_t
int
sigset_t
pthread_t
static uuid_t
static uuid_t

as tack
ls tack

st;
*bh_vector;
*obj_uuid_vector;
*string_binding;
*uuid_string;
ii
sigset;
thread;

ASTACK, astackt
= LSTACK, lstackt

ASTACKT;
LSTACKT;

/* Map asynch SIGINT and SIGHUP signals to cancels to get an exception */
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigaddset(&sigset, SIGHUP);

thread= pthread_self();
pthread_signal_to_cancel_np(&sigset, &thread);

/* Start up server on all supported protocol sequences */

rpc_server_use_all_protseqs(MAX_CALLS, &st);
if (st != rpc_s_ok) {

fprintf(stderr, "Cannot use protocol sequence: %s\n", error_text(st)
) i

exit(l);

Figure 6-4. The stackslserver.c Module

6-10 Multiple Managers

/* Register manager and object type for array_;based stack object ... *!

rpc_server_register_if (

) i

stacks_v2_0_s_ifspec, &astackt,
{rpc_mgr_epv_t)&stacks_v2_0_amanager_epv, &st

if (st != rpc_s_ok)
fprintf (stderr, "Can't register array stack manager: %s\n", error_text{st)
) i

exit (1);

rpc_object_set_type(&astack, &astackt, &st);
if (st != rpc_s_ok) {

fprintf (stderr, "Can't register array stack object: %s\n", error_text(st)
) i
exit (1);

/* Register interface manager and object type of list-based stack object */

rpc_server_register_if (

) i

stacks_v2_0_s_ifspec, &lstackt,
(rpc_mgr_epv_t)&stacks_v2_0_lmanager_epv, &st

if (st != rpc_s_ok)
fprintf (stderr, "Can't register list stack manager: %s\n", error_text(st)
) i

exit(l);

rpc_object_set_type(&lstack, &lstackt, &st);
if (st != rpc_s_ok) {

fprintf (stderr, "Can't register list stack object: %s\n", error_text(st)
) i

exit{l);

/* Get binding handle to register with the local endpoint database */
rpc_server_inq_bindings(&bh_vector, &st);
if (st != rpc_s_ok) {

fprintf {stderr, "Cannot inquire about binding vectors: %s\n",
error_text (st)

) i

exit(l);
}

printf("Bindings:\n");

Figure 6-4. The stackslserver.c Module (Continued)

Multiple Managers 6-11

for (i = O; i < bh_vector->count; i++) {
rpc~binding_to~string_binding(

bh_vector->binding_h[i], &string_binding, &st
) ;
if (st != rpc_s_ok)

fprintf(stderr, "Cannot get string binding - %s\n",error_text(st));
exit (1); ..

printf ("%s\n", (char *) string_binding);

rpc_string_free(&string_binding, &st);
if (st != rpc_s_ok) {

/*

*
*/

fprintf (
stderr, "Cannot free string binding %s - %s\n",
string_binding, error_text (st)

) i

exit(l);

Allocate memory for the size of the vector plus pointers
to additional UUIDs --minus the initial pointer.

obj_uuid_vector = (uuid_vector_p_t)malloc(
sizeof(uuid_vector~t) + ((sizeof(uuid_p_t)) * (NUM_UUIDS - 1))

) ;

if (!obj_uuid_vector) {
fprintf (stderr, "Can't get memory for object UUIDs. \n");
exit (1);

obj_uuid_vector->uuid[OJ = &astack;
obj_uuid_vector->uuid[l] = &lstack;
obj_uuid_vector->count = NUM_UUIDS;

!* Process the UUIDs and convert UUID to string */

for (i = O; i < obj_uuid_vector->count; i++) {
uuid_to_string(obj_uuid_vector->uuid[i], &uuid_string, &st);
if (st != uuid_s_ok) {

fprintf(stderr, "Cannot get object UUID - %s\n",error_text(st));
exit(l);

printf ("%s\n", (char *)uuid_string);

Figure 6-4. The stackslserver.c Module (Continued)

6-12 Multiple Managers

/* Register interface and objects with endpoint database */

rpc_ep_register(

) i

stacks_v2_0_s_ifspec, bh_vector, obj_uuid_vector,
(unsigned_char_t *)"stack managers", &st

if (st != rpc_s_ok) {

TRY

fprintf(stderr, "Cannot register interface with endpoint map: %s\n",
error_text(st)

) i

exit(1);

/* listen */
printf("Listening ... \n");
rpc_server_listen(MAX_CALLS, &st);
if (st != rpc_s_ok)

fprintf (stderr, "Error: %s\n", error_text(st));
/* try *I

CATCH (pthread_cancel_e)
printf("Caught a cancel exception\n");

}

FINALLY {
/* unregister */
printf("Unregistering interface ... \n");
rpc_server_unregister_if (stacks_v2_0_s_ifspec, &astackt, &st);
if (st != rpc_s_ok) {

fprintf (
stderr, "Can't unregister array manager/interface: %s\n",
error_text(st)

) i

exit (1);

rpc_server_unregister_if(stacks_v2_0_s_ifspec, &lstackt, &st);
if (st != rpc_s_ok) {

fprintf (
stderr, "Can't unregister list manager/interface: %s\n",
error_text(st)

) i

exit(1);

Figure 6-4. The stackslserver.c Module (Continued)

Multiple Managers 6-13

printf ("Unregistering·endpoint\n");
rpc_ep_unregister(

stacks_v2_0_s_ifspec, bh_vector, obj_uuid_vector, &st
) i

if (st != rpc_s_ok) {
fprintf (

stderr, "Can't unregister endpoint: %s\n", error_text(st)
) i
exit (1) ;

}

exit (0);
/* finally */

ENDTRY;

/* main */

Figure 6-4. The stackslserver.c Module (Continued)

A separate manager module implements the stacks interface for each type of stack. The
amanager.c module, shown in Figure 6-5, manages stacks based on arrays, and the
lmanager.c module, shown in Figure 6-6, manages stacks based on linked lists. Each manager
defines a manager EPV, which specifies the names under which the stacks operations are im
plemented. Since we are linking both managers together in one server, the two implementa
tions of each operation have different names.

6-14 Multiple Managers

#include "stacks.h"

void stacks$astack_init();
ndr_long_int stacks$astack_push(), stacks$astack_pop();

extern stacks_v2_0_epv_t stacks_v2_0_amanager_epv =
{stacks$astack_init, stacks$astack_push, stacks$astack_pop};

#define STACKSIZE 1000

static struct
{

int head;
ndr_long_int. values[STACKSIZE];

the_stack;

void stacks$astack_init(h)
handle_t h;
{

the_stack.head STACKSIZE;

ndr_long_int stacks$astack_push(h, value)
handle_t h;
ndr_long_int value;
{

if (the_stack.head == 0) return -1; /* stack is full */

the_stack.values[--the_stack.head] value;

return O;

ndr_long_int stacks$astack_pop(h, value)
handle_t h;
ndr_long_int *value;
{

if (the_stack.head == STACKSIZE) return -1;

*value= the_stack.values[the_stack.head++J;

return O;

/* stack is empty */

Figure 6-5. The stacks/amanager.c Module

Multiple Managers 6-15

#include "stacks.h"

void stacks$lstack_init();
ndr_long_int stacks$lstack_push(), stacks$lstack_pop();

extern stacks_v2_0_epv_t stacks_v2_0_lmanager_epv =
{stacks$lstack_init, stacks$lstack_push, stacks$lstack_pop};

#define NULL (struct node *)0
extern struct node *malloc();

static struct node{
ndr_long_int value;
struct node *next;

the_stack;

void stacks$lstack_init(h)
handle_t h;
{

the_stack.next NULL;

ndr_long_int stacks$lstack_push(h, value)
handle_t h;
ndr_long_int value;
{

struct node *head= malloc(sizeof(struct
if (head == NULL) return -1;
head->value = value;
head->next = the_stack.next;
the_stack.next = head;
return O;

ndr_long_int stacks$lstack_pop(h, value)
handle_t h;
ndr_long_int *value;
{

struct node *head = the_stack.next;
if (head == NULL) return -1;
*value = head->value;
the_stack.next = head->next;
free (head);
return 0;

node));
/* stack is full */

/* stack is empty */

Figure 6-6. The stacksllmanager.c Module

6-16 Multiple Managers

6.5 The stacks util.c Module

The stacks client and seiver both use the util.c module to generate the text of error messages.
Figure 6-7 shows the DCE RPC version of the util.c module.

#include "stacks.h"
#include <dce/dce_error.h>

char *error_text(st)
unsigned st;·
{

static dce_error_string_t error_string;
int inq_st;

dce_error_inq_text (st, error_string, &inq_st);
return ((char*) error_string);

Figure 6-7. The stacks/util.c Module

--000--

Multiple Managers 6-17

Chapter 7

Using DCE Location Services

NCS 1.5 .1 includes Location Broker services that provide clients with infonnation about the
locations of objects and interfaces. The Local Location Broker is a server that maintains a da
tabase of information about objects and interfaces residing on the local host. The Global Lo
cation Broker maintains information about objects and interfaces throughout the network or
internet. The DCE analogs to the Local Location Broker and the Global Location Broker are
the interfaces to the DCE endpoint map service and the name service.

In this chapter we present the major differences between NCS and DCE location services, and
summarize the steps clients and servers must implement to us.e the DCE services. To illustrate
the use of some of the services, we refer to the examples available online as part of the HP DCE
Application Development Tools, specifically the stacks, string_ conv, and lookup applica
tions. For more infonnation about these examples, refer to the READ:ME files accompanying
the examples. For more information about the endpoint map and name services, refer to the
OSF DCE Application Development Guide and the OSF DCE Application Development Ref
erence.

While the services per_fonned by the NCS and DCE location services have much in common,
there is one major difference of which application programmers must be aware. Local and
global location services are provided in NCS 1.5.1 with a single set of calls, the lb_$ calls. In
DCE RPC, there are two sets of calls: the rpc_ep calls provide access to the local endpoint
map database, and the rpc _ns calls provide access to the global name service database.

Location Services 7-1

7.1 The Endpoint Map Service

An endpoint is the address of a specific instance of a seiver executing in a particular address
space on a given host. The endpoint map service maintains the local endpoint map for RPC
servers, looks up endpoints for RPC clients, and forwards messages to servers. These services
are provided by the rpcd daemon. The rpcd daemon replaces the NCS llbd daemon.

Each element in the local endpoint map can contain the following:

• An interface identifier, consisting of an interface UUID and version numbers (major
and minor)

• Binding infonnation

• An optional object UUID

• An optional annotation containing up to 64 characters of user-defined infonnation

Entries in an NCS Location Broker database contain two additional pieces of information: a
flag indicating whether the object is global, and a type UUID that specifies the type of the ob
ject.This type UUID enables an application to locate entries in aGLB database by type. There
is no DCB RPC equivalent for this feature.

7.1.1 Mapping NCS 1.5.l lb_$ Calls to DCE RPC rpc_ep Routines

The NCS 1.5.1 API provides the lb_$ calls as the interface to the Location Broker services.
These calls allow clients and servers to look up, register, or unregister entries in Local or Glob
al Location Broker databases. The lb_$ calls handle registration of both local (local-host-on
ly) and global (network-wide) entries. The DCB RPC rpc _ ep calls only register entries in a
local database.

Table 7-1 shows the rpc _ ep or rpc _ mgmt _ ep calls that have an lb_$ analog, and shows
whether they are used by clients, servers, management code or all of these. As we noted
above, there is no complete correspondence between rpc _and lb_$ routines. Refer to the OSF
DCE Application Development Reference for a complete description of each rpc routine. In
the following sections we shbw how some of these routines can be used in clients, servers, and
management code.

7-2 Location Services

Table 7-1. RPC Endpoint Map Equivalents to Location Broker Calls

DCE RPC Routine NCS Routine Where Used

rpc _ ep _register lb_ $register Server

rpc _ ep _register_ no_ replace None Server

rpc _ ep _resolve_ binding lb_ $lookup _interface All

rpc _ ep _unregister lb_ $unregister Server

rpc _ mgmt _ ep _ elt_inq_ begin lb_ $lookup_ object_ local Management

rpc _ mgmt _ ep _ elt Jnq_ done lb_$1ookup_object_local Management

rpc _ mgmt _ ep _ elt _inq_ next lb_ $lookup_ object _local Management

rpc _ mgmt _ ep _unregister lb_ $unregister Management

7.1.2 Using rpc_ep Routines in a Client

The only rpc _ ep routine used by a client is rpc _ ep _resolve_ binding. Clients can call this
routine to resolve a partially bound setver binding handle into a fully bound handle. The call
can also be used by servers and managers.

7.1.3 Using rpc_ep Routines in a Server

Servers can use all four rpc _ ep routines. The extracts in Figure 7-1 are from the server.c pro
gram in the stacks example shown in Chapter 6. They illustrate how a server registers and
unregisters with the endpoint map database using the rpc_ep_register and
rpc _ ep _unregister routines.

The rpc _ ep _register call can be used to replace an entry in the endpoint map if only one in
stance of the server will run on this host. If multiple instances of a server will run on the same
host, a server should use the rpc _ ep _register _no _replace routine instead of
rpc _ ep _register. If you use rpc _ ep _register_ no _replace, it's particularly important to re
member to call rpc _ ep _unregister to remove each instance of the server before stopping.

Location Services 7-3

rpc_ep_register{

) i

stacks_v2_0_s_ifspec, bh_vector, obj_uuid_vector,
(unsigned_char_t *)"stack managers", &st

if (st != rpc_s_ok) {
fprintf (stderr, "Cannot register interface with endpoint map: %s\n",

error_text (st)
) i

exit (1);

rpc_ep~unregister(

stacks_v2_0_s_ifspec, bh_vector, obj_uuid_vector, &st
) i
if (st != rpc_s_ok) {

fprintf (
stderr, "Can't unregister endpoint: %s\n", error_text(st)

) i

exit(l);

Figure 7-1. Registering and Unregistering with the Local Endpoint Map Database

Servers don't need to call these routines if binding handles are registered by another means.
For example, the endpoint attribute in the client's interface specification may specify a well
known endpoint, and the server may establish a well-known endpoint with
rpc_server_use_all_protseqs_if or rpc_server_use_protseq_if. Refer to the OSF DCE
ApplicationDevelopmentGuideortheotherdocumentslistedintheprefaceformoredetailed
information about these alternatives.

A server should call rpc _ ep _resolve_ binding to resolve a partially bound server binding
handle into a fully bound handle under some circumstances. For example, the server.c pro
gram in the lookup application calls rpc _ ep _resolve_ binding to obtain the fully bound han
dle required by the rpc_mgmt_is_server_listening routine.

7-4 Location Services

7.1.4 Using rpc_mgmt_epRoutines in a Manager

An alternative method of managing an endpoint map is to use the rpc_mgmt_ep_elt_inq_
routines. These routines create, delete, and use an inquiry context that enables application
code to inspect each element in tum in a local or remote endpoint map. An application-specific
routine can then select one or more binding handles according to specific criteria. Manage
ment routines call rpc _mgmt_ ep _ unregisterto remove an interface ID, if aseiveris no long
er available, or to remove object UUIDs if a server no longer supports the object, from local or
remote endpoint maps.

7.2 The Name Service

A name seivice maintains ·and provides access to a database of information about RPC
seivers, interfaces, and objects. The DCB RPC Name Service Interface (NSI) uses the Cell
Directory Seivice (CDS) as its database. This database is maintained by cdsd, the CDS dae
mon, which plays a similar role to that played in NCS by the Global Location Broker daemon,
glbd. There must be at least one cdsd daemon running on the network.

The information stored by the Cell Directory Seivice differs from that stored in the GLB data
base. There are three kinds of name seivice entries:

• Server entries store an interface identifier and binding infonnation for an RPC
seiver. They do not include an endpoint, so that, unlike entries in a Location Broker
database, they are not associated with a specific seiver process.

• Group entries contain one or more group members, each of which is a name
referring to another server or group name service entry. A group usually contains
members offering the same interface or object, so that a client search for a seiver
offering a specific seivice can begin with the name of a group entry representing
several seivers offering that seivice.

• Profile entries contain a collection of profile elements, each of which is a record
containing an interface identifier, a member name referring to a seiver, group, or
profile entry name, a priority value, and an optional annotation string. Profile en
tries enable users or administrators to construct a customized search path for a partic
ular seivice.

You can create group and profile entries manually using the rpccp (RPC control program)
command.

Location Services 7-5

The names you choose for your server, group, and profile entries can be descriptive, but they
must confonn to certain conventions imposed by the CDS name syntax. Refer to the OSF
DCB Application Development Guide for more information about rpccp and CDS.

7.2.1 Mapping of lb_$ Calls to rpc_ns Routines

Table 7-2 shows the rpc _ ns calls that have an lb_$ analog, and shows whether they are used
by clients, seivers, management code or all of these. As we noted above, there is no complete
correspondence between rpc _and lb_$ routines. Refer to the OSF DCE Application Devel
opment Ref ere nee for a complete description of each rpc _ routine. In the following sections
we show how some of the most frequently used routines can be used in clients and servers.

Table 7-2. RPC Name Service Equivalents to Location Broker Calls

DCE RPC Routine NCS Routine Where Used

rpc _ ns _binding_ export lb_ $register Server

rpc _ ns _binding_ import_ begin None Client

rpc _ ns _binding_ import_ done None Client

rpc _ ns _binding_ import_ ne~t None Client

rpc _ ns _binding_ inq_ entry_ name None Client

rpc _ ns _binding_ lookup_ begin lb_ $lookup_ interface Client

rpc _ ns _ binding_lookup _done lb_ $lookup _interface Client

rpc _ns _ binding_lookup _next lb_ $lookup_ interface Client

rpc _ ns _binding_ select None Client

rpc _ ns _binding_:_ unexport lb_ $unregister Server

rpc_ns_entry_expand_n3Dle None All

rpc _ns _entry_ object_ inq_ begin lb_ $lookup_ object All.

rpc _ ns _entry_ object_ inq_ done lb_ $lookup_ object All

rpc_ns_entry_object_inq_next lb_ $lookup_ object All

rpc _ ns _group_ delete None All

rpc_ns_group_mbr_add None All

rpc _ ns _group_ mbr _ inq_ begin None All

rpc_ns_group_mbr_inq_done None All

7-f> Location Services

Table 7-2. RPC Name Service Equivalents to Location Broker Calls (cont.)

DCE RPC Routine NCS Routine Where Used

rpc_ns_group_1nbr_inq_next None All

rpc_ns_group_1nbr_re1nove None All

rpc _ ns _ mg1nt _binding_ unexport None Management

rpc _ ns _ 1ng1nt _entry_ create None Management

rpc _ ns _ 1ng1n t_ entry_ delete None Management

rpc _ ns _ mg1nt_ entry_ inq_ if _ids None All

rpc _ ns _ mg1nt_ handle_ set_ exp_ age None All

rpc _ ns _ mg1nt_inq_ exp_ age None All

rpc _ ns _ mgmt_ set_ exp_ age None All

rpc _ ns _profile_ delete None All

rpc _ ns _profile_ elt _add None All

rpc _ ns _profile_ elt _ inq_ begin None All

rpc _ns _profile_ elt _inq_ done None All

rpc _ ns _profile_ elt_ inq_ next None All

rpc _ ns _profile_ elt _remove None All

rpc_ns_set_authn None All

7.3 Client Name Service Routines

The Name Service Interface provides routines that enable a client to look up binding infonna
tion using any of the name service database entries listed in Section 7.2: server, group, or pro
file entries.

Location Services 7-7

7 .3.1 Importing Binding Handles

A typical client uses three name service routines to obtain bindiJ;J.g information:

• rpc_ns_binding_import_begin

• rpc_ns_binding_import_next

• rpc _ ns _binding_ import_ done

One of the sa,mple applications included in the HP DCE Programmers' Environment, the
string_ conv application, illustrates how these calls are used. We show only the rpc _ ns
routines and the associated rpc _ binding_free call from the client.c program here, in
Figure 7-2. The complete code is available online.

The string conversion client program makes two rpc _ ns _ binding_import _begin calls. The
first call uses an entry name in the local Cell Directory Service as its second parameter. The
client.c program includes code to obtain this name if a local entry exists. If there is no local
server available, the next call to rpc_ns_binding_import_begin has NULL as its second
parameter. This means it will use the default profile element defined in
RPC_DEFAULT_ENTRY to begin the search for a suitable server.

The RPC_DEFAULT _ENTRY environment variable specifies the default name service entry
with which clients begin searches for binding infonnation. Please refer to the OSF DCE
Application Development Guide and OSF DCE Application Development Reference for more
infonnation about environment variables provided by the NSI.

The rpc _ ns _binding_ import_ next call uses the import context obtained by the
rpc _ ns _ binding_import _begin call to obtain, from the name service database, binding in
fonnation for a server that will support the client. For every call a client makes to
rpc _ ns _ binding_import _next, you must provide a call to rpc _binding_ free to release the
memory holding the binding information and set the binding handle to NULL.

~e rpc _ ns _ binding_import _done routine must be called for every
rpc _ ns _binding_ import_ begin call when the client has completed its search in the name
service database. This routine frees the space allocated for the import context by the
corresponding rpc_ns_binding_import_begin call.

7-8 Location Services

/* Get the current DCE host name. This hostname will be relative to the
* root of the cell, so it will be a string "hosts/<hostname>", where
* hostname is your DCE host name. The first parameter is a string that
* is allocated to hold the return value. The application must free
* this string. The second parameter is the ·DCE error status.
*/

dce~cf_get_host_name(&dce_host_name, &st);
if (st ! = rpc_s_ok) {

dce_error_inq_text (st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE, "Cannot get DCE hostname: %s\n",

dce_err_string);
exit(l);

/* Construct a pathname to the local server using the directory entry
*name defined in common.hand the prefix"/.:/" to define this as a
* cell-relative entry name.
*/

sprintf(cds_entry_name, "/. :/%s/%s", dce_host_name, str_conv_cds_entry);

/* Free the dce_host_name string allocated by dce_cf_get_host_name. */

free(dce_host_name);

/* rpc_ns_binding_import_begin()
*
* Contact the directory service to determine the location information
* for the server. This call caches information from the directory
* entry named into a local database. We can then walk through the
* cached information in the following loop. ·
* I

rpc_ns_binding_import_begin(rpc_c_ns_syntax_default, /* name syntax */
(unsigned_char_t *)cds_entry_name,
string_conv_vl_O_c_ifspec,
NULL, /* No object UUID required ·*/
&import_context, /* used by import_next() */
&st); /*error status for this call*/

if (st != rpc_s_ok) {

Figure 7-2. Name Service Routines in the string_convlclient.c Program

Location Services 7-9

#ifdef DEBUG
dce_error_inq_text(st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE, "Could not import bindings from %s:\n\t%s\n",

cds_entry_name, dce_err_string);
#endif /* DEBUG */

/*
* This search was unsuccessful, meaning either there is no
* directory entry here or there are no server bindings located in
* the directory entry. Now look in the default profile element for
* a matching interface UUID.
*/

rpc_ns_binding_import_begin{rpc_c_ns_syntax_default,
NULL, /* Use the RPC_DEFAULT_ENTRY */
string_conv_vl_O_c_ifspec,
NULL, /* No object UUID */
&import_context, /*used by import_next() */
&st); /*error status for this call*/

if (st != rpc_s_ok)

'/ *

/*
* Still no matching entry was found -- we must exit now since
* we cannot locate a suitable server for this client.
*/

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE, "Could not find a server: %s\n",

dce_err_string) ;
exit (1) ;

* Otherwise we have found a directory entry containing information
* about this interface. Now find a suitable binding for this client.
* The following loop will continue until a successful RPC is made
* and the flag "done" is set to true (following the RPC) OR until one
* of the rpc_ns_ routines detects that there are no more bindings and
* decides to break out of the loop.
*/

done = false;
while (done != true) {

Figure 7-2. Name Service Routines in the string_convlclient.c Program (Continued)

7-10 Location Services

/* rpc_ns_binding_import_next() --
*
*Attempt to.import a binding for the server. The first parameter
* is the context returned by the import_begin call above. The
* second parameter is a binding handle data structure that will be
* allocated. This application must free the binding handle after
* we are done with it. The last parameter ~s the DCE error status.
*
* This call will randomly return one of the bindings found in the
* directory (if there are more than one). It returns the status
* rpc_s_no_more_bindings when the bindings have been exhausted.
*/

rpc_ns_binding_import_next(import_context, /* context from begin() */
&bh, /* single handle returned */
&st); /*error status for this call*/

if (st != rpc_s_ok) {
if (st == rpc_s_no_more_bindings)

/*There.are no more possible bindings to choose from. Free
* the binding handle allocated by import_next() and break
* out of the while loop.
*/

PRINT_FUNC(PRINT_HANDLE,"There are no more server bindings\n");
rpc_binding_free(&bh, &_ignore); /*no longer needed*/
break;

else {

/* We did not find a compatible binding handle; instead we
* encountered some other serious error. Print an error
* message and exit this client.
*/

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE, "Could not import a binding: %s\n",

dce_err_string) ;
exit(l);

}

Figure 7-2. Name Service Routines in the string_convlclient.c Program (Continued)

Location Services 7-11

/* Free the binding handle allocated by rpc_ns_binding_import_next()
* above. The RPC has been made so it is no longer needed.
*/

rpc_binding_free(&bh, &_ignore) i

/* We have either exhausted all the server bindings in the
* name service or completed a successful remote
* procedure call to one of them.
*/

/* rpc_ns_binding_import_done()
*
* Close down the association with the name server and free the space
* allocated by DCE for the import context. The first parameter is the
* import contexti the second is the DCE error status.
*/

rpc~ns_binding_import_done(&import_context,

&_ignore)i /*ignore any errors*/

exit (0) i

Figure 7-2. Name Service Routines in the string_convlclient.c Program (Continued)

7.3.2 Looking up a Set of Binding Handles

The Name Service Interface provides four routines that enable clients to obtain a set of bind
ing handles and select one or more seivers from the set that meet specific criteria:

• rpc _ ns _ binding_lookup _begin

• rpc _ ns _ binding_lookup _next

• rpc _ ns _ binding_lookup _done

• rpc _ ns _binding_ select

7-12 Location Services

For example, you could use the set oflookup routines to locate a server in a particular building
or supporting specific printer capabilities. You can then use either rpc _ ns _binding_ select or
an application-specific routine to select the server that meets your needs.

The Name Service Interface supplies routines with inq in theirnames (such as rpc _ ns _bind
ing_inq_ entry_ name) that can be used to obtain more information about the name service
entries or set up inquiry contexts for viewing the contents of an entry.

7.4 Server Name Service Routines

The Name Service Interface provides routines that enable a server to make binding informa
tion available to clients. There are several ways to advertise a server to clients, for example by
storing binding information in a database, or by printing or displaying binding information so
that clients can use it. In this section we focus on the most common way of making binding
information accessible: by exporting binding information and an interface specification to a
name service database.

A typical serveruses at least two calls to the name service database: rpc _ ns _binding_ export
and rpc _ ns _binding_ unexport. These routines are analogous to using lb_ $register and
lb_ $unregister to register and unregister servers with the Global Location Broker. Because
the name service database supports group and profile entries as well as server entries, a server
may also call rpc _ ns _group or rpc _ns _profile routines to add the server entry to a group or
profile and later delete it.

The extracts from the server.c program in the string_ conv sample application in Figure 7-3
illustrate how to use the rpc _ ns _binding_ export and rpc _ ns _binding_ unexport routines to
register and unregister a server in the name service database under a Cell Directory Service
entry name obtained earlier in the program. The extracts also show the code used to add and
later remove the entry from a profile element in the name service database using rpc _ ns _pro
file_ elt _add and rpc_ns_profile_elt_remove. The complete code for this program is avail
able online.

Location Services 7-13

7-14

/*
* Get the current cell-relative DCE host name and construct a CDS entry
*name from it. This is where the server will register its bindings .

. *I

dce_cf_get_host_name(&dce_host_name, &st);
if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err~string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE, "Cannot get DCE hostname: %s\n",

dce_err_string);
exit (1);

sprintf (cds_entry_name, "I. :./%s/%s", dce_host_name, str_conv_cds_entry);
free(dce_host_name);

/* rpc_ns_binding_export()
*
* Export the binding vector and interface specification to the name
* server. Register in the name service under the host-specific entry
* name just computed above. The first parameter is the syntax to use;
* in the first release of DCE there is only one supported syntax. The
* second parameter is the entry name to look under; it was created
* above. The third parameter is the server interface specification,
*with the UUID from the IDL file. The fourth· parameter is used to
* specify an object UUID if the server exports multiple objects; this
* server does not export multiple objects, so NULL is used.
*
* NOTE: If multiple servers export bindings to the same entry name,
* only the last one will be heeded (the first server will become
* unreachable). However, if the first server were to terminate and
* unregister itself, it would unregister the endpoint and CDS
* information for the second server as well, making it now unreachable.
* To avoid this in your applications see the code in the lookup sample.
*/

rpc_ns_binding_export(rpc_c_ns_syntax_default, /*default name syntax*/
(unsigned char *)cds_entry_name, /* created above */
string_conv_vl_O_s_ifspec, /* IDL-generated ifspec */
bvec, /* this server's bindings */
NULL, /* No object UUID */
&st); /* error status for this call */

Figure 7-3. Name Service Routines in the string_convlserver.c Program

Location Services

if (st != rpc_s_ok) {
dce_error_inq_text(st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE,"Cannot export bindings in NSI under %s: %s\n",

cds_entry_name, dce_err_string);
exit (1);

/* rpc_if_inq_id() --
*
* Get the interface identifier for an interface specification. This
* identifier is required by the call to add the server entry above to
* the profile element done below. The first parameter is the server's
* interface specification. The second is a return parameter, the
* interface identifier. The final parameter is the DCE error status.
*/

rpc_if_inq_id(string_conv_vl_O_s_ifspec, /* IDL-generated if spec. */
&if_id, /* fills in the interface ID */
&st); /*error status for this call*/

if (st != rpc_s_ok)
dce_error_inq_text(st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE,"Cannot determine interface id: %s\n",

dce_err_string) ;

/*
* Note: This will leave the server entry in CDS.
*/

exit (1);

/*
* Get the value of the user's RPC_DEFAULT_ENTRY environment variable.
* Use this to determine the default (profile) name to register this
* server with. If the user does not have that variable set, print an
* error message and exit. The RPC_DEFAULT_ENTRY must be set for the
* client to function properly.
*/

cds_prof ile_name = getenv ("RPC_DEFAULT_ENTRY") ;
if (cds_profile_name == NULL) {

PRINT_FUNC(PRINT_HANDLE,
"Error: RPC_DEFAULT_ENTRY not set. Set it and try again\n") i

exit (1);

Figure 7-3. Name Service Routines in the string_convlserver.c Program (Continued)

Location Services 7-15

} else

!*
* Make a copy of the profile name string using malloc. The
* function getenv() may return a pointer to static data -- this
* data is overwritten on each call, so we make sure to save the
* data before calling getenv() again in this application.
*!

cds_profile_name (char *)strdup(cds_profile_name);

/* rpc_ns_profile_elt_add()
*
* Add the entry just exported to the name service as an element of a
* profile. This enables clients to look up this server using either
* t·he entry name unique to this server or just the '-profile name. The
* profile can contain bindings for.multiple instances of this service
* registered under different entries in the name space.
*
* The first parameter is the name syntax to use for the profile element
* (default since there is only one valid syntax). The second parameter
* is the profile name in which to register this server's entry. The
* third parameter is the interface identifier retrieved earlier. The
* fourth parameter is the name syntax to use for the server entry name

·* (default again). The fifth parameter is the actual server entry name
* registered in CDS above. The sixth parameter is a priority value, an
* integer between o~7 that determines in which order bindings will be
* returned in a lookup operation. The seventh parameter is a string
* annotation useful when browsing in the name space (though DCE RPC
* does not use this string during lookup or import operations, or for
* enumerating profile elements). The last parameter is the DCE status.
*/

rpc_ns_p ro f il e_el t_add (rpc_c_ns_syn tax_def au lt , /* syntax of profile name */
!* profile name */

interface id frorn ifspec */
(unsigned char *)cds_profile_name,
&if_id, /*
rpc_c_ns_syntax_default,
(unsigned char *)cds_entry_name,
my_profile_element_priority,

/* syntax of entry name */
I * entry name * I

/* element's priority */
(unsigned char *)str_conv_description,
&st); /*error status for this call*/

Figure 7-3. Name Service Routines in the string_conv/server.c Program (Continued)

7-16 Location Services

if (st != rpc_s_ok) {

!*

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);
PRINT_FUNC(PRINT_HANDLE,"Cannot add entry %s to CDS profile %s: %s\n",

cds_entry_name, cds_prof ile_name, dce_err_string);

* Note: This will leave the server entry in CDS.
*!

exit(l);

I* rpc_ns_prof ile_el t_remove ()
*
* Remove this entry from the profile element we registered it in.
* The parameters are the same as for the profile_elt_add().
*/

rpc_ns_profile_elt_remove(rpc_c_ns_syntax_default, /*profile syntax */
(unsigned char *)cds_profile_name,
&if_id, /* interface id from ifspec */
rpc_c_ns_syntax_default, /* entry syntax */
(unsigned_char_t *)cds_entry_name,
&_ignore); /* ignore any errors *I

/* rpc_ns_binding_unexport()
*
* Unregister this service from the namespace. See binding_export
* for parameter description.
*
* NOTE: If another server is running on this host and is registered
* in the same server entry, this will wipe out that information.
*/

rpc_ns_binding_unexport(rpc_c_ns_syntax_default,
(unsigned char *)cds_entry_name,
string_conv_vl_O_s_ifspec,
NULL,
&_ignore);

/* default syntax */

/* IDL ifspec */
/* No object UUID */

/* ignore any errors */

Figure 7-3. Name Service Routines in the string_convlserver.c Program (Continued)

Location Services 7-17

7.5 The lookup Sample Application

In the sections above we use the string conversion sample application to illustrate how clients
and servers use the Name Service Interface. Another sample application, the lookup applica
tion, incorporates more DCE RPC features, including the client's use of automatic binding to
contact the server.

The lookup application uses the HP Name Service Access (NSA) utilities, a set of routines
that are provided with the sample applications in the .Jns directory. The NSA routines are
used to export and retrieve server bindings from CDS. For example, the server.c program uses
the NSA routine nsa _export_ service to register the server's interface with the RPC runtime
and with CDS, and to register the CDS entry in the appropriate host and cell profiles.

For more infonnation about the lookup application and the Name Service Access routines,
refer to the READ ME files in the lookup and ns subdirectories in the examples directory.

---000---

7-18 Location Services

Appendix A

DCE RPC Routines

This appendix lists the routines defined in each part of the DCE RPC APL Section A. l 0 con
tains lists of the routines according to the kind of program (server, client, management appli
cation) in which they are used. For complete infonnation on these routines, see the OSF DCE

·Application Development Reference.

The DCE RPC API can be grouped into the following services:

Authentication Services Provide routines that support authenticated communication
between clients and servers.

Communications Services Provide all services related to establishing a binding. It further
categorizes its services into those for binding, the interface,
network, object UUIDs, and servers.

Endpoint Map Services Provide routines for registering with and updating the local
endpoint map.

Error Services Provide a routine for handling status information from all
other DCE RPC routines.

Management Services Provide local management routines that an application can use
to manage itself, and local/remote management routines that
can be called by a remote application wanting to manage the
application.

DCE RPC Routines A-1

N rune SeIVices

String SeIVices

Stub Support SeIVices

UUID SeIVices

Provide import routines for adding binding information to a
global name-seIVice database and export routines to lookup
and return binding infonnation to clients.

Provide a string routirie that client, seIVer, and management
applications can use to free a character string allocated by the
DCE RPC runtime.

Provide routines that pennit applications to use the Stub
Memory Management Scheme.

Provide routines that allow client, seIVer, and management
applications to manipulate UUIDs.

Some of the routines in the DCE RPC API depend on other DCE components; for example,
the routines in the authentication seIVices and naming seIVices depend on the DCB Security
and Naming components, respectively.

A.l Authentication Services

DCB RPC supports authenticated communication between clients and seIVers. Authenticated
RPC works with the authentication and authorization seIVices supplied by the DCE Security
component.

Two management routines rpc_rngmt_inq_dflt_protect_level (descrbied in Section
A.5.1) and rpc_rngmt_inq_server_princ_name (described in Section A.5.2.1) are also
associated with authentication.

A server application makes itself available for authenticated communication by calling the
rpc_server _register_ auth _fofo routine, described in Section A.2.5, to register its principal
name and the authentication service that it supports.

A client application must establish the authentication seIVice, protection level, and authoriza
tion seIVice that it wishes to use in its communication with a seIVer. A client application identi
fies the intended seIVer by its principal name.

A-2 DCE RPC Routines

rpc _ binding_inq_ auth _client
A server application uses this routine to return authentication
and authorization infonnation from the binding handle for an
authenticated client

rpc _ binding_inq_ auth _info A client application uses this routine to return authentication
and authorization information from a server binding handle.

rpc _binding_ set_ auth _info A client application uses this routine to set authentication and
authorization information into a server binding handle.

rpc mgmt set authorization fn - - - -

rpc _ ns _set_ authn

A server application uses this routine to establish an
authorization function for processing remote calls to a server's
management routines.

A client, server, or management application uses this routine
to tum authentication on and off for RPC name service
routines.

A.2 Communication Services

This section describes the routines provided by the DCE RPC Communication Services.
These routines are further divided into the following:

• Binding (for string representation of binding handles)

• Interface

• Network

• Object UUID

• Server

DCE RPC Routines A-3

A.2.1 Binding Routines

The routines described in this section permit you to manage bindings.

A.2.1.1 Create a Binding Handle from a String Binding

Use the. following routine to create binding handles from string bindings.

rpc _binding_ from_ string_ binding
Client and server applications use this routine to create a server
binding handle from a string representation of a binding
handle. If the specified binding information does not contain
an endpoint, this routine returns a partially bound handle. If
the specified binding information contains an endpoint, the
routine returns a fully bound handle.

A.2.1.2 Release a Binding Handle

Once you have finished with a binding handle, you release it using either of the following
routines.

rpc_ binding_free Client and server applications use this routine to release
memory used by a server binding handle and the referenced
binding information that was dynamically created.
Applications call this routine when they have finished with a
binding handle.

rpc _binding_ vector_ free Client and server applications use this routine to release
memory used to store a vector of server binding h~dles.

A.2.1.3 Copy a Binding Handle

Use the following routine to create a copy of a binding handle.

rpc _binding_ copy

A-4 DCE RPC Routines

Client and server applications use this routine to copy the
specified server binding information and return a new handle
associated with the copied information. Use this routine to

A.2.1.4

prevent changes made to binding infonnation in a single
thread from affecting other threads.

Change a Server Binding

Use the following routine to change a seiver binding.

rpc _ binding_reset A client calls this routine to disassociate a particular server
instance from the specified server binding handle. This routine
removes the endpoint portion of the server address, but the
host remains unchanged, thus creating a partially-bound
handle. When the client makes the next remote procedure call
using this partially-bound handle, the DCB RPC runtime uses
a well-known endpoint or uses the DCB RPC daemon (rpcd)
to get an endpoint from the endpoint database. Applications
may use this routine, for example, to rebind to a new seiver
instance.

If a server wants to be available to clients who use this reset
routine, it must register its binding handle in the endpoint map.

A.2.1.5 Convert a Binding Handle

Use the following routines to perform conversions on string binding handles.

rpc _binding_ to_ string_ binding
Client and seiver applications use this routine to convert a
client or seiver binding handle to its string representation. To
parse the returned handle, use rpc _string_ binding_parse.

rpc _string_ binding_ compose
Client and server applications use this routine to combine
string binding handle components into a string binding handle.

rpc _string_ binding_parse Client and seiver applications use this routine to parse a string
representation of a binding handle into its component fields
(object UUID, protocol sequence, network address, endpoint,
and network options).

DCE RPC Routines A-5

A.2.1.6 Get Binding Information

Use the following routines to get specific binding infonnation.

rpc _ binding_inq_ object Client and seiver applications use this routine to view the
object UUID associated with a client or seiver binding handle.

rpc _ binding_inq_ auth _client

rpc _ binding_inq_ auth _info

A seiver application calls this routine to obtain the principal
name or privilege attributes . of the authenticated client that
made a remote procedure call.

A client application calls this routine to view the
authentication and authorization information associated with
a seiver binding handle that it previously specified by calling
the rpc_binding_set_auth_info routine.

A.2.1.7 Set Binding Information

Use the following routines to set specific binding infonnation.

rpc _binding_ set_ auth_info A client application calls this routine to set up a server binding
handle for making authenticated remote procedure calls.

rpc _ binding_set _object Client and seiver applications use this routine to associate an
object UUID with a seiver binding handle.

A.2.1.8 Convert a Client Binding Handle

Use the following routine in manager applications to convert a client binding handle to a seiv
er binding handle.

rpc _binding_ server _from_ client

A-6 DCE RPC Routines

A seiver application calls this routine to convert a client
binding handle· to a seiver binding handle. The DCE RPC
runtime creates and provides a client binding handle to a called
seiverprocedure (seivermanagerroutine). If the seiverwants
to respond with a remote procedure call to the client, the called
seiver must first call this routine to get a seiver binding handle.

A.2.2 Interface Routines

Use the following routines for handling interface specifications.

rpc _if _inq_id

rpc _if _id_ vector _free

A.2.3 Network Routines

Client and seiver applications use this routine to obtain a copy
of the interface identification from the provided interface
specification. The returned interface identification consists of
the interface UUID and any interface version numbers
specified in the IDL file.

Client, seiver, and management applications use this routine to
release the memory used to store a vector of interface
identifications. An application obtains a vector of interface
identifications by calling either
rpc _ ns _mgmt _entry _inq_if _ids or rpc _ mgmt _inq_if _ids.

Use the following routines for handling the supported protocol sequences.

rpc _network _inq_protseqs A· seiver application calls this routine to obtain a vector
containing protocol sequences supported by b~th the DCE
RPC runtime and the operating system.

rpc _network _is _protseq_ valid
Client and seiver applications use this routine to determine if
an individual protocol sequence is available for making
remote procedure calls. A protocol sequence is valid if both
the DCE RPC runtime and the operating system support the
specified protocols.

rpc _protseq_ vector_ free A client or seiver application uses this routine to free the
memory used to store a vector of protocol sequences. This
routine frees the memory allocated by a
rpc _network _inq_protseqs routine.

DCE RPC Routines A-7

A.2.4 Object and Type UUID Routines

Use the following routines in servers that support several object types.

rpc _object_ set_ type

rpc _object _inq_ type

rpc _object_ set_inq_fn

A.2.5 Server Routines

A server application calls this routine to assign a type UUID to
an object UUID, when the server application contains multiple
implementations of an interface. It calls this routine once for
each different object UUID that the server supports.

A server application calls this routine to obtain the type UUID
of an object. If the object was previously registered with the
DCE RPC runtime using the rpc_object_set_type routine,
the registered object is returned.

A server application calls ihls routine to specify a function to
determine an object's type. Use this routine if an application
function privately maintains object/type registrations. With
this routine, the specified inquiry function returns the type
UUID of an object. The DCE RPC runtime automatically calls
this function when the application calls rpc _object _inq_ type
and the object of interest was not previously registered with
the rpc_object_set_type routine.

A server application must perform the following initialization steps:

• Register the protocol sequences that it supports with the DCE runtime library.

• Create server binding information.

• Advertise the server location so that clients can find it.

• Register the binding handles with the endpoint map.

• Finally, listen for client requests.

A.2.5.1 Register Protocol Sequences

A server application calls one or more of the rpc _server_ use_* routines to register protocol
sequences with the DCE RPC runtime. To receive remote procedure calls, a server must regis
ter at least one protocol sequence with the DCE RPC runtime.

A-8 DCE RPC Routines

Use one of the following routines to register a server.

rpc _server_ use_ all_protseqs
A server application calls this routine to register all of the
supported protocol sequences with the DCE RPC runtime.
The DCE RPC runtime creates a binding handle (one for each
protocol sequence), with a dynamically generated endpoint.

rpc _server_ use_ all_protseqs _if

rpc_server_use_protseq

rpc _server_ use _protseq_ ep

A server application calls this routine to register with the DCE
RPC runtime all protocol sequences and associated
well-known endpoint address information provided in the IDL
file.

A server application calls this routine to register one protocol
sequence with the DCE RPC runtime. A server application can
call this routine multiple times to register additional protocol
sequences. The DCB RPC runtime creates a binding handle
with a dynamically generated endpoint.

A server application calls this routine to register with the DCB
RPC runtime one protocol sequence with a specified endpoint
address. A server application can call this routine multiple
times to register additional protocol sequences and endpoints.
The binding handle returned contains a well-known endpoint.

rpc _server_ ~se _protseq_if A server application calls this routine to registerwith the DCB
RPC runtime one protocol sequence with an endpoint address
that is provided in the IDL file. A server application can call
this routine multiple times to register additional protocol
sequences for additional interfaces. The binding handle
returned contains a well-known endpoint from the IDL file ..

A.2.5.2 Other Server Initialization

For each protocol sequence registered, the DCE RPC runtime creates a binding through which
the server receives remote procedure requests. This binding contains an endpoint which was
either specified in the routine or dynamically generated by the DCB RPC runtime or operating
system.

DCE RPC Routines A-9

After registering protocol sequences, a seiver typically calls other routines in the following
order:

1. rpc_server _inq_bindings to obtain a vector containing all of the seiver's
binding handles.

2. rpc _server _register _if to register with the DCE RPC runtime those interfaces of
fered by the server.

3. rpc_ep_register or rpc_ep_register_no_replace to register the binding handles
with the endpoint map.

4. rpc _ns~ binding_ export to place the binding handles in the name-setvice database
so that the client can access them. (DCE RPC uses the Cell Directory Setvice (CDS)
as the name setvice component.)

5. rpc _binding_ vector_ free to free the vector of server binding handles.

6. rpc_server_Iisten to begin receiving remote procedure call requests.

Use the following setver routines to get information about the setver binding handles.

rpc _server _inq_ bindings A seiver application calls this routine to obtain a vector of
setver binding handles.

Use the following routines to register seiver interfaces and managers with the DCE RPC run
time.

rpc _server_ register_ if

A-10 DCE RPC Routines

A server application calls this routine to register with the DCE
RPC runtime each implementation of the interface. To register
an interface implementation, the server provides the interface
specification, which was generated by the IDL compiler, and
the manager type UUID and manager entry point vector
(EPV), which detennines which manager routine executes
when a given remote. procedure call executes. (When multiple
managers are registered, the DCE RPC runtime matches the
UUID fot the type of caller's object with a manager's type
UUID.)

L

rpc _server _register_ auth _info
A server application calls this routine to register an
authentication service to use for authenticating remote
procedure calls. A server calls this routine once for each
authentication service and/or principal name the server wants
to register.

rpc _server _inq_if A server application calls this routine to determine the
manager BPV for a registered interface and manager type
UUID.

rpc _server_ unregister _if A server application calls this routine to remove the
association between an interface and a manager EPV. When an
interface is unregistered, the DCB RPC runtime stops
accepting new remote procedure calls for that interface.

Use the following routine to have the server begin listening on the registered protocol se
quences and. endpoints.

rpc _server _listen A server application calls this routine when it is ready to
process remote procedure calls. The DCB RPC runtime allows
a server to simultaneously process multiple calls concurrently.
The server application is responsible for concurrency contrpl
between the server manager routines since each executes in a
separate thread. This routine does not return to the server until
one of the server application's manager routines calls the
rpc _ mgmt _stop_ server _listening routine, or until a client
makes a remote rpc _ mgmt _stop_ server _listening call to the
server.

A.3 Endpoint Map Services

The Endpoint Map Services provide routines that manipulate the local endpoint map, which is
a database that lists endpoints on which servers ruruling on the local host are listening. As part
of the server initialization, the server application registers its binding handles with the DCB
RPC daemon (rpcd), which maintains the local endpoint map.

An endpoint identifies a specific server instance (address space) on a host. In most cases, an
endpoint is dynamically allocated when a server registers a protocol sequence by the DCB

DCE RPC Routines A-11

RPC runtime or operating system and it expires when the server instance stops running. Be
cause these endpoints change frequently (whenever a server instance starts and stops), the ·
server must store the dynamic endpoints with its local endpoint map.

The endpoint map is managed by the DCE RPC daemon (the rpcd process). The rpcd creates
and deletes database entries at the request of server and management routines and periodically
removes entries that contain expired endpoints.

When a client makes a remote procedure call without specifying an endpoint (using a partially
bound handle), the client's DCE RPC runtime queries the rpcd at the server's host for the end
point of a compatible server instance. The server's rpcd attempts to match a client and ser
ver's interface and object UUIDs, and if a match is found, rpcd checks that the server is com
patible. If the rpcd finds a compatible server instance, the endpoint of that instance is inserted
into the partially bound handle, making it fully bound.

The endpoint map object defines operations that server applications can use to add, modify, or
remove infonnation in the local endpoint map database. It. also provides a routine for client
and management applications to get a fully bound handle from a partially bound handle.

rpc _ ep _register

rpc _ ep _register_ no _replace

A-12 DCE RPC Routines

A server application uses this routine to add or replace entries
in the local host's endpoint map database. Servers use this
routine to reduce the likelihood that a client will be given a
"stale" entry, that is, an endpoint to a non-existent server
instance. Servers also use this routine to replace entries when
they are certain that no other server instance will be using the
endpoint map.

Servers that previously registered binding handles using the
client's interface specification (rather than a dynamic
allocation) do not need to call this routine.

A server application uses this routine to add entries to the local
host's· endpoint map database. It does not replace existing
entries. Servers use this routine when multiple instances of a
server will run on the same host. If a server uses this routine, it
must be sure to unregister itself from the database before
stopping to prevent the database from having stale data.

rpc _ ep _resolve_ binding

rpc _ ep _unregister

A.4 Error Services

Servers that previously registered binding handles using the
client's interface specification (rather than a dynamic

. allocation) do not need to call this routine.

Client, server, and management applications use this routine to
resolve a partially bound server binding handle into a fully
bound binding handle. A binding handle is returned if the
incoming interface UUID and object UUID match that of an
endpoint database entry.

Typically, management applications use the rpc _ mgmt
routines, but they can use this routine to avoid using an
rpc_mgmt routine with a partially bound handle.

A server application uses this routine to remove its own entries
from the local host's endpoint map database. The server uses
this routine only if it wants to explicitly remove an endpoint
that it had previously registered. Removing entries from the
endpoint map database makes servers unavailable to client
applications that have not previously communicated with the
server.

The Error Services provides an error routine to handle status information from DCE RPC
based programs. The error routine defines an operation that client, server, and management
applications can use to get the message text for a DCE RPC status code.

dee_ error _inq_ text Client, server, and management applications use this routine to
return the null-terminated character string message for the
specified status . code. Before calling. this routine, the
application must define the environment variable NLSPATH
to specify locations of the DCE message catalog files.

DCE RPC Routines A-13

A.5 Management Services

DCE Management Services contain two types of routines:

• Local management routines

• Local/remote management routines

Local routines are called only by the application to manage it~elf. Local/remote management
routines are called by the application to manage itself or by a remote application (the caller)
wishing to manage the application (the callee). The remote management routines are avail
able to callers only if the callee has previous! y called the rpc _server _listen routine to begin
accepting remote procedure calls.

A.5.1 Local Management Routines

Local management routines are called only by an application to manage itself. For example,
the applications can get information related to the value of the binding communications time
out in a binding handle.

rpc _ mgmt _inq_ com_ timeout
A client application uses this routine to view the timeout value
in a server binding handle. The timeout value specifies the
relative amount of time that should be spent to establish a
binding to the server before giving up.

rpc _ mgmt _ inq_ dflt _protect _level

A-14 DCE RPC Routines

. Client and server applications use this routine to obtain the
default authentication level for a specified application. If the
level is inappropriate for the client application, the client can
specify a ·different authentication level when calling an
authentication routine (rpc _binding_ set_ au th_ info or
rpc _server _register _auth _info).

Called remote procedures within a server application use this
routine to get the default authentication level for a specified
service to detennine whether the client is authorized before
executing a remote procedure.

rpc _ mgmt _set_ authorization_ fn
A seiver application calls this routine to specify an
authorization function to control remote access to the seiver's
remote management routines rather than having the DCB RPC
runtime use· default authorizations. The, DCB RPC runtime
automatically calls the function specified by this routine to
control the execution of all management routines called by
clients.

rpc _ mgmt _set_ cancel_ timeout
A client application calls this routine to specify the amount of
time for the ·DCB RPC runtime to wait for a seiver to
acknowledge a cancel before orphaning a call. The application
specifies a number of seconds, where a value of 0 means that
the runtime orphans the remote procedure call as soon as it
receives a cancel and returns to the client program
immediately. This timeout value applies to the current thread;
each thread must set its own timeout value explicitly.

rpc _ mgmt _set_ com _ _:iimeout
A client application calls this routine to change the
communication timeout value for a server binding handle.
This value specifies how much time the DCE RPC runtime
should spend in trying to establish a relationship to the seiver
before giving up.

rpc _ mgmt _set_ server_ stack_ size
A seiver application calls this routine to specify the thread
stack size to use when the DCE RPC runtime creates call
threads for executing remote procedure calls. It does so to
ensure that each thread has an adequate stack size for handling
the stack requirements of the manager routines for each
interface implementation. If a seiver calls this routine, it must
do so before calling rpc_server _listen.

rpc _ mgmt _stats_ vector _free
Client, server, or management applications use this routine to
release the memory used to store statistics.

DCE RPC Routines A-15

A.5.2 Local/Remote Management Routines

Local/remote management routines are called either by an application managing itself, or by a
remote application (the caller) wanting to manage the application (the callee). Typically,
applications use these routines to get DCE RPC runtime statistics.

A.5.2.1 Routines Used by All Applications

The following routines can be used by all DCE applications.

rpc _ mgmt _inq_if _ids Client, server and management applications use this routine to
obtain a vector of interface IDs listing the interfaces that a
server has previously registered with. the DCE RPC runtime.
By default, the DCE RPC runtime allows all clients to
remotely call this routine. To restrict remote calls to this
routine, a server application supplies an authorization function
using the
rpc _ mgmt _set_ authorization_ fn routine.

rpc _ mgmt _inq_ server _princ _name

rpc _ mgmt _inq_ stats

Client, server and management applications use this routine to
obtain a principal name that a server ;registered for a specified
authentication service. A client uses this routine to establish
one-way authentication: the server will verify that the client is
who it claims to be, but the client does not care which principal
server receives the remote procedure call request. After
calling this routine, a client calls rpc _binding_ set_ auth _info
to set up one-way authentication.

Client, server and management applications use this routine to
obtain statistics about the specified server from the DCE RPC
runtime. Statistics include the number of remote procedure
calls that a server receives and initiates and the number of
network packets sent and received.

rpc _ mgmt _is_ server _listening

A-16 DCE RPG Routines

Client, server and management applications use this routine to
determine if the specified server is listening for remote
procedure calls. By default, the DCE RPC runtime allows all

clients to remotely call this routine. To restrict remote calls to
this routine, a server application can supply an authorization
function by using the rpc _ mgm(set _authorization_ fn
routine.

rpc _ mgmt _stop_ server _listening
Client, server and management applications use this routine to
direct a server to stop listening for remote procedure calls. On
receiving this request, the DCE RPC runtime stops accepting
new remote procedure calls for all registered interfaces. By
default, the DCE RPC runtime does not allow any client to call
this routine remotely. To allow clients to execute this routine, a
server application can supply an authorization function by
using the rpc _ mgmt _set_ authorization _fn routine.

A.5.2.2 Routines Used by Management Applications

The following routines are used by management applications.

rpc _ mgmt _ ep _ elt _inq_ begin

rpc _ mgmt _ ep _ elt _inq_ next

rpc _mgmt _ ep _ elt _inq_ done

With this routine, the management application specifies which
elements in the database it wants to inquire about before
calling rpc_mgmt_ep_elt_inq_next. It can specify all
elements or those elements with a specified interface ID,
object UUID or both interface ID and object UUID.

Management applications use this routine to view the selected
endpoint map database entries. This routine returns one
element at a time, so the application calls this routine
repeatedly until all entries are received.

Management applications use this routine to free an inquiry
context that was previously created by the
rpc _ mgmt _ elt _inq_ begin routine.

rpc _mgmt _ ep _unregister Management applications use this routine to remove a server
address from an endpoint map database. They call this routine

DCE RPCRoutines A-17

A.6 Name Service

when the server is no longer available or to remove addresses
of servers that support objects that are no longer offered. To
view the elements, the management applications call the
rpc _ mgmt _ ep _ elt routines above.

To locate a server program and establish a relationship with that server, a client program must
know the binding information (which includes network address and protocol infonnation) of
that server. In many cases, a client application will obtain this binding information from the
global name-service database. The DCE RPC Name Service Interface (NSI) provides import
operations, to add binding information of a service to the global name-service database, and
export operations, to look up and return binding information to clients. The NSI also provides
operations to manage DCE RPC data stored in the global name-service database.

The DCE RPC NSI is independent of any name service and supports any name service that is
hierarchical and has multi-valued attributes. Name Services provide routines that operate on
the following objects:

Binding objects

Group objects

Profile objects

Entry objects

A-18 DCE RPC Routines

Allow client or server applications to obtain binding handles
for compatible servers. The binding objects provide import
operations, which return one binding handle at a time to a
client application, and lookup operations, which return
multiple binding handles allowing the client to select the
appropriate handle itself.

Allow client, server, or management applications t.o view, add,
delete, or modify DCE RPC group entries of the name-service
database.

Allow client, server or management applications to view, add,
delete, or modify profile attributes to/from the specified nanie
service entry.

Allow client or server applications to view information from a
named name-service database object. The application
determines whether the entry will be used as a server, object,
DCB RPC group, or profile object or any combination of the
above.

Management objects Allow client, ·server, or management applications to view,
create, delete, or modify name-service database entries.

A group is a collection of servers that usually offer the same interface. A grouppetmits you to
refer to a collection of servers that may reside on different systems by a single name.

A client must start its name service search from a known entry. A profile defines a search list
for finding servers in the name service database. A profile pennits you specify a single,
general entry name for the starting point of all name service database searches; with profiles,
clients do not need to know specific entry names. The DCE RPC-specific environment
variable RPC_DEFAULT_ENTRY is usually set to a profile name. You can create a profile
either manually using rpccp commands or in a program using rpc_ns_profile_ *routines.

Name Service objects are Cell Directory Service objects.

For more information about NSI usage, see the OSF DCE Application Development Guide
and the reference pages for the individual routines.

A.6.1 Export a Server to the Name Service

The NSI enables any RPC server with the necessary name service permissions to create and
maintain its own server entries in a name service database. A server can use as many server ,
entries as necessary to advertise the combinations ofRPC interfaces· and objects that the serv
er provides. Servers use the rpc _ns _binding_ export to create entries, and
rpc _ ns _binding_ unexport to remove bindings.

rpc _ ns _binding_ export A seryer application uses this routine to establish a name
service database entry with binding handles or object UUIDs
for a server.

rpc _ ns _binding_ unexport A server application uses this routine to remove the binding
handles for an interface, or object UUIDs, from an entry in the
name service database.

DCE RPC Routines A-19

A.6.2 Search a Name Service Database for Binding Information

A client can obtain binding information from a name service database in one of the following
ways:

• Use the automatic method of binding ..

• Call the import routines (rpc _ns _binding_ import_*) to obtain a binding handle for
a compatible server.

• Call the lookup routines (rpc _ ns _ binding_lookup _ *) to obtain a list of binding
handles for a compatible server and then select a binding handle.

A.6.2.1 Automatic Binding

In the automatic method of binding management the client stub transparently manages bind
ing information. In this case, the client code does not make any calls to the NSI interface. The
client must, however, specify the starting name service entry by setting the
RPC_DEFAULT_ENTRY environment variable.

A.62.2 Import Routines

To use the import routines, first call rpc _ ns _binding_ import_ begin to create an import con
text, then call rpc_ns_binding_import_next to return the handle, and last of all, call
rpc_ns_binding_input_done to delete the import context.

rpc _ ns _binding_ import_ begin
A client application uses this routine to create an import
context for an interface and an object in the name service
database.

rpc _ ns _binding_ import_ next
A client application uses this routine to return a binding handle
of a compatible server (if one is found) from the name service
database.

rpc _ns _binding_ import_ done

A-20 DCE RPC Routines

A client application uses this routine to delete the import
context for searching the name service database.

A.6.2.3 Lookup Routines

To use the lookup routines, first call rpc _ ns _ binding_lookup _begin to create a lookup con
text, then call rpc _ ns _ binding_lookup _next to obtain a list of binding handles for a compat
ible server. Finally call rpc_ns_binding_lookup_done to delete the lookup context.

rpc _ ns _binding_ lookup_ begin
A client application uses this routine to create a lookup context
for an interface and an object in the name service database.

rpc _ ns _ binding_lookup _next
A client application uses this routine to return a list of binding
handles of one or more compatible servers (if one is found)
from the name service database.

rpc _ ns _ binding_lookup.;.... done
A client application uses this routine to delete the lookup
context for searching the name service database.

Select a binding handle from the list returned by rpc _ ns _ binding_lookup _next usip.g either
rpc _ ns _binding_ select or a user-defined select routine that implements an appropriate selec
tion algorithm.

rpc _ns _binding_ select A client application uses this routine to return a binding handle
from a list of compatible server binding handles.

A.6.3 Manage Name Service Entries

These routines manage name service entries.

A.6.3.1 Find Entries

A client application uses the following routine to find the name of an entry in the name service
database for which the application has the binding handle.

rpc _ ns _binding_ inq_ entry_ name
A client application uses this routine to return the name of an
entry in the name service database from which the server
binding handle came.

DCE RPC Routines A-21

A.6.32 Create and Delete Entries

Management applications use the following routines to create and delete entries in a name ser
vice database.

rpc _ ns _ mgmt _entry_ create A management application uses this routine to create an entry
in the name service database.

rpc _ ns _ mgmt _entry_ delete A management application uses this routine to delete an entry
from the name service database.

A.6.3.3 View Objects of an Entry

Appliq1tions use the following sequence of calls to view the objects of an entry in the name
service database.

rpc _ ns _entry_ object _inq_ begin
A client, server, or management application uses this routine
to create an inquiry context for viewing the objects of an entry
in the name service database.

rpc _ ns _entry_ object_ inq_ next
A client, server, or management application uses this routine
to return one object at a time from an entry in the name service .
database.

rpc _ ns _entry_ object _inq_ done
A client, server, or management application uses this routine
to delete the inquiry context for viewing the objects of an entry
in the name service database.

rpc _ ns _entry_ expand_ name
A client, server, or management application uses this routine
to expand the name of a name service entry.

A.6.3.4 Get Information from Entries

Applications use these routines to get information from entries in the name service database.

A-22 DCE RPC Routines

rpc _ ns _ mgmt _binding_ unexport
A management application uses this routine to remove
multiple binding handles, or object UUIDs, from an entry in
the name service database.

rpc _ ns _ mgmt_ entry _inq_if _ids
A client, server, or management application returns the list of
interfaces exported to an entry in the name service database.

A.6.4 Managing Name Service Groups

A group is aname service entry that corresponds to one or more RPC servers all of which offer
the same RPC interface, type of RPC object, or both. A group can include server entries and
other group entries. The name service run-time routines search the members of a group to find
a server. A group makes it possible to store server entries from many systems under a single
name. You use rpccp commands to create, manage, and view groups. When a server is in
stalled, the installer creates one or more groups for the application .

. A.6.4.1 Delete a Group

The following routine deletes a group.

rpc _ ns _group_ delete A client, server, or management application uses this routine
to delete a group attribute.

A.6.4.2 Add and Remove Group Members

The following two routines add and remove group members.

. rpc _ ns _group_ mbr _add A client, server, or management application uses this routine
· to add an entry name to a group; if the entry does not exist, this
routine creates the entry.

rpc_ns_group_mbr_remove
A client, server, or management application uses this routine
to remove an entry name from a group.

DCE RPC Routines A-23

A.6.4.3 View Members of a Group

A.6.5 Managing Name ·service Expirations

Previously requested name service data are sometimes stored on the system where the request
originated. Such local copies are not automatically updated at each request; the local copy is
updated only when it exceeds its expiration age. These routines permit applications to set the
global expiration age, to set the expiration age for a particular handle, and to inquire about the
expiration age.

rpc _ ns _ mgmt _set_ exp_ age A client, server, or management application uses this routine
to modify the application's global expiration age for local
copies of name seivice data.

rpc _ ns _ mgmt _handle_ set_ exp_ age
A client, seiver, or management application uses this routine
to set a handle's expiration age for local copies of name service
data.

rpc _ ns _ mgmt _inq_ exp_ age A client, server, or management application uses this routine
to return the application's global expiration age for local
copies of name seivice data.

A.6.6 Managing Name Service Profiles

Profiles are tools for managing NSI searches. Profiles are created by name seivice administra
tor or owners of applications. An RPC profile is an entry in the name service database that

A-24 DCE RPC Routines

contains a collection of profile elements. A profile element is a database record that corre
sponds to a single RPC interface; each profile element contains identification information for
the interface and an annotation string that describes the purpose of the profile element. For
detailed information about RPC profiles, see the OSF DCE Application Development Guide
and each routine's manual page.

A.6.6.1 Delete a Profile Attribute

Use this routine to delete a profile attribute.

rpc _ ns _profile_ delete A client, server, or management application uses this routine
to delete a profile attribute.

A.6.6.2 Add and Remove Profile Elements

Applications use rpc_ns_profile_elt_add and rpc_ns_profile_elt_remove to add and re
move profile elements.

rpc _ ns _profile_ elt _add A client, server, or management application uses this routine
to add an element to a profile. If necessary, creates the entry.

rpc _ns _profile_ elt _remove A client, server, or management application uses this routine
to remove an element from a profile.

A.6.6.3 Obtain Profile Elements

Applications use the rpc _ ns _profile_ elt _inq_ * routines to obtain profile elements.

rpc _ ns _profile_ elt _inq_ begin

rpc _ ns _profile_ elt _inq_ next

A client, server, or management application uses this routine
to create an inquiry context for viewing the elements in a
profile.

A client, server, or management application uses this routine
to return one element at a time from a profile.

rpc _ ns _profile_ elt _ inq_ done
A client, server, or management application uses this routine
to delete the inquiry context for a profile.

DCE RPC Routines A-25

A. 7 String Services

All DCE RPC API routines that return large and/or variable-length character strings allocate
the storage for the string from the heap. Applications are obligated to free this storage. The
String Services provide a routine that client, server, and management applications use to free a
character string allocated by the DCE RPC runtime.

rpc _string_ free

A.8 Stub Support Services

Client, server and management applications use this routine to
free the memory containing a null-terminated character string
returned by the DCE RPC runtime. Applications must call this
routine for each character string allocated and returned by
calls to other DCE RPC runtime routines.

Stub Support Services provide routines that permit applications to use the Stub Memory Man
agement Scheme. Since a DCE full pointer can change its value across a call, DCE applica
tions that use full pointers may need to allocate memory for pointed-to data, and stubs must be
able to manage this memory.

A.8.1 Using the Stub Memory Management Scheme

C applications normally use malloc and free to allocate and free memory that pointers refer to.
Using the stub support routines rpc _ ss allocate and rpc _ ss _free to allocate and free memory
on a server permits applications to use the Stub Memory Management Scheme. Detailed rules
for using these routi!1es are described in the OSF DCE Application Development Guide.

A.8.1.1 Allocate and Free Memory on a Server

These routines permit you to allocate and free memory for pointed-to data.

rpc _ ss _allocate

A-26 DCE RPC Routines

This routine is usually used by a server application but may be
used by a client application to allocate memory within the RPC
stub memory management scheme. Memory that is allocated
by this routine is released by the server stub after any output
parameters have been marshalled by the stubs.

rpc _ ss _free This routine is usually used by a server application but may be
used by a client application to free memory allocated by
rpc _ ss _allocate; this routine can also be. used to "release
storage pointed to by a full pointer.

A.8.1.2 Enable and Disable Allocation by rpc_ss_allocate

Client applications use the following routines to enable and disable allocation by rpc _ ss _ allo
cate.

rpc _ ss _enable_ allocate

rpc _ss _disable _allocate

A client application uses this routine to enable the allocation of
memory by rpc _ ss _allocate when not in manager code.

A client application uses this routine to release resources and
allocated memory.

A.8.1.3 Establish Routines that Free and Allocate Memory

Clients use the following routine to establish the routines used in allocating and. freeing
memory.

rpc _ ss _set_ client_ alloc _free
A client application uses this routine to set the memory
allocation and freeing mechanism used by the client stubs,
thereby overriding the default routines the client stub uses to
manage memory for point~d-to nodes.

A.8.1.4 Change the Current Allocation and Freeing Mechanism

The following routine exchanges the current client allocation and freeing mechanism for one
supplied in the routine. This primary purpose of this routine is to simplify writing modular
routine libraries that use RPC calls~

rpc _ ss _swap_ client_ alloc _free
A client application uses this routine to exchange the current
memory allocation and freeing mechanism used by the client
stubs with one supplied by the client:

DCE RPC Routines A-27

A.8.2 Using Thread Handles in Memory Management

There are two situations where the control of memory management requires the use of thread
handles:

• The manager thread spawns additional threads.

• A client application becomes a server application and then reverts to being a client
application.

In both instances, the rpc _ ss _get_ thread handle and rpc _ ss _set_ thread_ handle routines
permit applications to control memory management. See the OSF DCE Application Develop
ment Guide for more infonnation.

rpc _ ss _set_ thread_ handle · This routine is usually used by a server application but may be
used by a client application to set the thread handle for either a
newly created spawned thread or for a server that was formerly
a client and is ready to be a client again.

rpc _ ss _get_ thread_ handle This routine is usually used by a server application but may be
used by ,a_ client application to get a thread handle for the
manager code before it spawns additional threads, or for the
client code when it becomes a server.

A.8.3 Other Memory Management Routines

The following routines perfonn a variety of memory management functions.

rpc_ss _client _free This routine is usually used by a server application but may be
used by a client application to free memory returned from a
client stub.

rpc _ ss _destroy_ client_ context

A-28 DCE RPC Routines

A client application uses this routine to reclaim the_ client
memory resources for a context handle, and sets the context
handle to null.

A.9 UUID Services

The UUID Seivices provide routines that allow client, seiver, and management applications
to manipulate UUIDs. Routines include: creating new UUIDs, comparing two UUIDs, creat
ing a hash value for a UUID, converting UUIDs to strings and vice versa.

uuid create

uuid create nil - -

uuid _compare

uuid_equal

uuid is nil

uuid _to_ string

uuid _from_ string

uuid hash

Client; seiver and management applications use this routine to
create anew UUID. _/

Client, seiver and management applications use this routine to
obtain a nil-valued UUID.

Client, seiver and management applications use this routine to
determine the lexical order of two UUIDs. Applications can
use this routine for sorting data using UUIDs as a key.

Client, seiver and management applications use this routine to
compare two UUIDs and determine if they are equal.

Client, seiver and management applications use this routine to
determine whetherthespecified UUID is a nil-valued UUID.
This routine yields the same result as if an application called
uuid ~create_ nil and then uuid _equal.

Client, seiver and management applications use this routine to
convert a binary UUID to a string UUID.

Client, seiver and management applications use this routine to
convert a string UUID to a binary UUID.

. Client, seiver and managemerlt applications use this routine to
generate a hash value for a specified UUID.

DCE RPC Routines A-29

A.10 DCE RPC Runtime Routine Summary

This section contains lists ofDCE RPC routines' according to which type of application (cli
ent, server, or management) uses them.

A.10.1 DCE RPC Client Runtime Routines

These are the DCE RPC routines used in DCB client applications.

A.10.1.1 Binding Routines

rpc_binding_copy

rpc_binding_free

rpc_binding_from_string_binding

rpc_binding_inq_auth_info

rpc_binding_inq_object

rpc_binding_reset

rpc_binding_set_auth_info

rpc_binding_set_object

rpc_binding_to_string_binding

rpc_binding_vector_free

rpc_string_binding_compose

rpc_string_binding_parse

A.10.1.2 Interface Routines

rpc_if_id_vector_free

rpc_if_inq_id

A.10.1.3 Network Routines

rpc_network_inq_protseqs

rpc_network_is_protseq_valid

rpc_protseq_vector_free

A-30 DCB RPC Routines

A.10.1.4 Endpoint Map Services

rpc_ep_resolve_binding

A.10.1.5 Error Services

dce_error_inq_text

A.10.1.6 Inquire of Protocol Sequences

rpc_network_inq_protseqs

rpc_network_is_protseq_valid

A.10.1.7 Local Management Services

rpc_mgmt_inq_com_timeout

rpc_mgmt_inq_dflt_protect_level

rpc_mgmt_set_cancel_timeout

rpc_mgmt_set_com_timeout

rpc_mgmt_stats_vector_free

A.10.1.8 Local/Remote Management Services

rpc_mgmt_inq_if_ids

rpc_mgmt_inq_server_princ_name

rpc_mgmt_inq_stats

rpc_mgmt_is_server_listening

rpc_mgmt_stop_server_listening

rpc_mgmt_stats_vector_free

A.10.1.9 String Services

rpc_string_free

A.10.1.10 Name Service Routines

Find Servers from a Name Service

rpc_ns_binding_import_begin

rpc_ns_binding_import_done

DCE RPC Routines A-31

rpc_ns_binding_import_next

rpc_ns_binding_inq_entry_name

rpc_ns_binding_lookup_begin

rpc_ns_binding_lookup_done

rpc_ns_binding_lookup_next

rpc_ns_binding_select

Manage Name Service Entries
rpc_ns_entry_expand_name

rpc_ns_entry_object_inq_begin

rpc_ns_entry_object_inq_done

rpc_ns_entry_object_inq_next

rpc_ns_mgmt_entry_inq_if_ids

Manage Name Service Groups

rpc_ns_group_delete

rpc_ns_group_mbr_add

rpc_ns_group_mbr_inq_begin

rpc_ns_group_mbr_inq_done

rpc_ns_group_mbr_inq_next

rpc_ns_group_mbr_remove

Manage Name Service Profiles

rpc_ns_prof ile~delete

rpc_profile_elt_add

rpc_profile_elt_inq_begin

rpc_profile_elt_inq_done

rpc_profile_elt_inq_next

rpc_profile_elt_remove

Manage Name Service Expirations
rpc_ns_mgmt_handle_set_exp_age

rpc_ns_mgmt_inq_exp_age

rpc_ns_rngmt_set_exp_age

A-32 DCE RPC Routines

A.10.1.11 UUID Services

uuid_compare

uuid_create

uuid_create_nil

uuid_equal

uuid_from_string

uuid'--hash

uuid_is_nil

uuid_to_string

A.10.1.12 Stub Support Routines

rpc_ss_allocate

rpc_ss_client_free

rpc_ss_destroy_client_context

rpc_ss_disable_allocate

rpc_ss_enable_allocate

rpc....,.ss_free

rpc_ss_get_thread_handle

rpc_ss_set_client_alloc_f ree

rpc_ss_set_thread_handle

rpc_ss_swap_client_alloc_free

A.10.2 DCE RPC Server Runtime Routines

These are the DCE RPC routines used in DCE server applications.

A.10.2.1 Binding Routines

rpc_binding_copy

rpc_binding_f ree

rpc_binding_from_string_binding

rpc_binding_inq_auth_client

rpc_binding_inq_object

DCE RPC Routines A-33

rpc_binding_server_from_client

rpc_binding_to_string_binding

rpc_binding_vector_free

rpc_string_binding_compose

rpc_string_binding_parse

A.10.2.2 Interface Routines

rpc_if_id_vector_free

rpc_if_inq_id

A.10.2.3 Network Routines

rpc_network_inq_protseqs

rpc_network_is_protseq_valid

rpc_protseq_vector_free

A.10.2.4 Object UUID Routines

rpc_object_inq_type

rpc_object_set_inq_fn

rpc_object_set_type

A.10.2.5 Server Routines

rpc_if_inq_id

rpc_server_inq_bindings

rpc_server_inq_if

rpc_server_listen

rpc_server_register_auth_inf o

rpc_server_register_if

rpc_server_unregister_if

rpc_server_use_all_protseqs

rpc_server_use_all_protseqs_if

rpc_server_use_protseq

rpc_server_use_protseq_ep

rpc_server_use_protseq_if

A-34 DCE RPC Routines

A.10.2.6 Endpoint Map Services

rpc_ep_register

rpc_ep_register_no_replace

rpc_ep_unregister

A.10.2.7 Managing Binding Handles

rpc_binding_to_string_binding

rpc_binding_copy

rpc_binding_f ree

rpc_binding_inq_object

rpc_binding_vector_free

rpc_string_binding_cornpose

rpc_string_binding_parse

A.10.2.8 Error Services

dce_error_inq_text

A.10.2.9 Local Management Services

rpc_rngrnt_inq_dflt_protect_level

rpc_rngmt_set_authorization_fn

rpc_rngrnt_set_server_stack_size

rpc_rngrnt_stats_vector_free

A.10.2.10 Local/Remote Management Services

rpc_rngmt_inq_if_ids

rpc_rngrnt_inq_server_princ_name

rpc_rngmt_inq_stats

rpc_rngmt_is_server_listening

rpc_rngrnt_stats_vector_free

rpc_rngrnt_stop_server_listening

A.10.2.11 String Services

rpc_string_f ree

DCE RPC Routines A-35

A.10.2.12 Managing the Server

uuid_compare

uuid_create

uuid_create_nil

uuid_equal

uuid_hash

uuid_is_nil

uuid_from_string

uuid_to_string

. A.10.2.13 Name Service Routines

Export Servers to Name Service

rpc_ns_binding_export

rpc_ns_binding_unexport

Manage Name Service Expirations

rpc_ns_mgmt_handle_set_exp_age

_rpc_ns_mgmt_inq_exp_age

rpc_ns_mgmt_set_exp_age

Manage N arne Service Entries

rpc_ns_entry_expand_name

rpc_ns_entry_object_inq_begin

rpc_ns_entry_object_inq_done

rpc_ns_entry_object_inq_next

rpc_ns_mgmt_entry_inq_if_ids

A-36 DCE RPC Routines

Manage Name Service Groups

rpc_ns_group_delete

rpc_ns_group_mbr_add

rpc_ns~group_mbr_inq_begin

rpc_ns_group_mbr_inq_done

rpc_ns_group_mbr_inq_next

rpc_ns_group_mbr_remove

Manage Name Service Profiles

rpc_ns_prof ile_delete

rpc_prof ile_elt_add

rpc_prof ile_elt~inq_begin

rpc_prof ile_elt_inq_done

rpc_prof ile_elt_inq_next

rpc_prof ile_elt_remove

A.10.2.14 Stub Support Routines

rpc_ss_allocate

rpc_ss_client_free

rpc_ss_free

rpc_ss_get_thread_handle

rpc_ss_set_client_alloc_free

rpc_ss_set_thread_handle

A.10.2.15 UUID Services

uuid_compare

uuid_create

uuid_create_nil

uuid_equal

uuid_f rom_string

uuid_hash

uuid_is_nil

uuid_to_string

. DCE RPC Routines A-37

A.10.3 DCE Management Application Runtime Routines

These are the DCE RPC routines used in DCE management applications.

A.10.3.1 Binding Routines

rpc_binding_from_string_binding

rpc_binding_reset

rpc_binding_to_string_binding

A.10.3.2 Interface Routines

rpc_if_id_ve~tor_free

A.10.3.3 Error Services

dce_error_inq_text

. A.10.3.4 Endpoint Map Services

rpc_ep_resolve_binding

A.10.3.5 Local Management Services

rpc_mgmt_stats_vector_free

A.10.3.6 Local/Remote Management Services

rpc_mgmt_ep_elt_inq_begin

rpc_mgmt_ep_elt_inq_next

rpc_mgmt_ep_elt_inq_done

rpc_mgmt_ep_unregister

rpc_mgmt_inq_if_ids

rpc_mgmt_inq_is_server_listening

rpc_mgmt_inq_if_ids

rpc_mgmt_inq_server_princ_name

rpc_mgmt_inq_stats

rpc_mgmt_is_server_listening

rpc_mgmt_stats_vector_free

A-38 DCB RPC Routines

A.10.3.7 String Services

rpc_string_free ·

. A.10.3.8 Name Service Routines

Manage Name Service Entries

rpc_ns_entry~expand_narne

rpc_ns_binding_irnport_begin

rpc_ns_binding_irnport_done

rpc_ns_binding_irnport_next

rpc_ns_rngrnt_binding_unexport

rpc_ns_rngrnt_entry_create

rpc_ns_rngrnt_entry_delete

rpc_ns_rngrnt_entry_inq_if_ids

Manage Name Service Expirations

rpc_ns_rngrnt_handle_set_exp_age

rpc_ns_rngrnt_inq_exp_age

rpc_ns_rngrnt_set_exp_age

Manage Name Service Groups

rpc_ns_group_delete

rpc_ns_group_rnbr_add

rpc_ns_group_rnbr_inq_begin

rpc_ns_group_rnbr_inq_done

rpc_ns_group_rnbr_inq_next

rpc_ns_group_rnbr_rernove

Manage Name Service Profiles

rpc_ns_prof ile_delete

rpc_profile_elt_add

rpc_prof ile_elt_inq_begin

rpc_prof ile_elt_inq_done

rpc_prof ile_elt_inq_next

rpc_prof ile_elt_rernove

DCE RPC Routines A-39

A.10.3.9 UUID Services

uuid_compare

uuid_create

uuid_create_nil

uuid_equal

uuid_from_string

uuid_hash

uuid_is_nil

uuid_to_string

A-40 DCB RPC Routines

---000---

Appendix B

NCS 1.5.1 Client and Server Programs

This appendix illustrates the NCS 1.5 .1 versions of the client and server programs that have
been converted to DCE RPC. For the DCE RPC versions, see Chapters 4 and 5 .

. B.1 NCS 1.5.1 binopfw Program

The binopfw program is a simple distributed application. In this program, the client specifies
a server host on the command line, and the server listens on a port that is dynamically allocated
by the RPC runtime. The server registers with the Local Location Broker on its host so that the
LLB can forward calls to the server port.

B.1.1 Client Code

Figure B-1 shows the client module, client.c.

NCS 1.5.1 Programs B-1

#include <stdio.h>
#include "nbase.h"
#include "binopfw.h"
#include "socket.h"
#include <ppfm.h>

#define CALLS_PER_PASS 100

globalref uuid_$t uuid_$nil;
extern long time();
extern char *error_text();

main(argc, argv)
int argc;
char *argv [];
{

handle_t h;
status_$t st;
socket_$addr_t loc;
unsigned long llen;
socket_$string_t name;
unsigned long namelen sizeof (name);
unsigned long port;
ndr_$long_int i, n;
int k, passes;
long start_time, stop_time;

if (argc != 3) {
fprintf(stderr, "usage: client hostname passes\n");
exit(l);
}

passes= atoi(argv[2]);

pfm_$init((long) pfm_$init_signal_handlers);

socket_$from_name((long)socket_$unspec, (ndr_$char *)argv[l],
(long)strlen(argv[l]), (long)socket_$unspec_port, &loc,
&llen, &st);

Figure B-1. NCS 1.5.1 Version of binopfw!client.c

B-2 NCS 15.1 Programs

if (st.all != status_$ok) {
fprintf (stderr, "Can't convert name to sockaddr - %s\n",

error_text(st));
exit (1);
}

h = rpc_$bind(&uuid_$nil, &loc, llen, &st);
if (st. all ! = status_$ok) {

fprintf (stderr, "Can't bind - %s\n", error_text(st));
exit (1);

rpc_$inq_binding{h, &loc, &llen, &st);
if (st.all != status_$ok) {

fprintf (stderr,"Can't inq binding - %s\n",error_text(st));
exit (1);
}

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
if (st.all != status_$ok) {

fprintf (stderr, "Can't convert sockaddr to name - %s\n",
error_text(st));

exit(l);

name[namelen] = O;
printf ("~ound to port %ld at host %s\n", port, name);

for (k = 1; k <= passes; k++) {
start_time = time(NULL);
for (i = 1; i <= CALLS_PER_PASS; i++)

binopfw$add{h, i, i, &n);
if (n ! = i+i)

printf("Two times %ld is NOT %ld\n", i, n);

stop_time = time(NULL);
printf ("pass %3d; real/call: %2ld ms\n",

k, ((stop_time - start_time) * 1000)/CALLS_PER_PASS);

Figure B-1. NCS 1.5.1 Version of binopfw!client.c (Continued)

NCS 1.5 .1 Programs B--3

B.1.2 NCS l.S.1 util.c

Figure B-2 shows the util.c module.

#include "binopfw.h"
char *error_text(st)
sta tus_$t st;

static char buff[200];
extern char *error_$c)text();

return(error_$c_text(st, buff, sizeof buff));

Figure B-2. NCS 1.5.1 Version of binopfwlutil.c

B.1.3 NCS 1.5.1 server.c

Figure B-3 shows the server.c module.

B-4 NCS 15.1 Programs

#include <stdio.h>
#include "nbase.h"
#include "binopfw.h"
#include "lb.h"
#include "socket.h"
#include <ppfm.h>

globalref uuid_$t uuid_$nil;
globalref binopfw_v1$epv_t binopfw_v1$rnanager_epv;
extern char *error_text();

main(argc, argv)
int argc;
char *argv [J;
{

status_$t st;
socket_$addr_t loc;
unsigned long llen;
unsigned long family;
boolean validfamily;
socket_$string_t name;
unsigned long namelen sizeof (narne);
unsigned long port;
lb_$entry_t lb_entry;
pfrn_$cleanup_rec crec;

if (argc ! = 2) {
fprintf (stderr, "usage: server family\n");
exit (1);

pfm_$init (,(long) pfm_$init_signal_handlers);

family= socket_$family_from_narne((ndr_$char *)argv[l],
(long)strlen(argv[l]), &st);

if (st.all != status_$ok) {
fprintf (stderr, "Can't; get family from name - %s\n",

error_text(st));
exit (1) ;
}
validfamily = socket_$valid_family(family, &st);
if (st.all != status_$ok)

fprintf(stderr, "Can't check family - %s\n", error_text(st));
exit (1);

Figure B-3. NCS 1.5.l Version of binopfw!server.c

NCS 1.5.1 Programs B-5

if (! validfamily)
printf("Family %sis not valid\n", argv[l]);
exit (1);

rpc_$use_family(family, &loc, &llen, &st);
if (st.all != status_Sok)

fprintf(stderr, "Can't use family - %s\n", ~rror_text(st));
exit(l);
}

rpc~$register_mgr(&uuid_$nil, &binopfw_v1$if_spec,
binopfw_v1$server_epv,
{rpc_$mgr_epv_t)&binopfw_v1$manager_epv,&st);

if (st.all != 0) {
printf("Can't register manager - %s\n", error_text(st));
exit (1);

lb_$register(&uuid_$nil, &uuid_$nil, &binopfw_v1$if_spec.id,
(long)lb_$server_flag_local,
(ndr_$char *) "binopfw example",
&loc, llen, &lb_entry, &st);

if (st.all != 0) {

}

printf("Can't register - %s\n", error_text(st));
exit (1);

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
if (st.all != status_$ok) {

fprintf (stderr, "Can't convert sockadd:;:- to name - %s\n",
error_text(st));

exit (1);

name[namelen] = O;

printf("Registered: name='%s', port=%ld\n", name, port);

st = pfm_$cleanup(&crec);
if (st. all ! = pfm_$cleanup_set)

status_$t stat;
fprintf(stderr,"Server received signal- %s\n",error_text(st));
lb_$unregister(&lb_entry, &stat);
rpc_$unregister(&binopfw_v1$if_spec, &stat);
pfm_$signal(st);
}

Figure B-3. NCS 1.5.1 Version ofbinopfwlserver.c (Continued)

8-() NCS 15.1 Programs

rpc_$listen((long) 5, &st);
rpc_$use_family(family, &loc, &llen, &st);
if (st .. all != status_$ok) {

fprintf(stderr, "Can't use family - %s\n", error_text(st));
exit (1);
}

rpc_$register_mgr(&uuid_$nil, &binopfw_v1$if_spec,
binopfw_v1$server~epv,

(rpc_$mgr_epv_t)&binopfw_v1$manager_epv,&st);
if (st.all != 0) {

printf("Can't register manager - %s\n", error_text(st));
exit (1) ;

lb_$register(&uuid_$nil, &uuid_$nil, &binopfw_v1$if_spec.id,
(long)lb_$server_flag_local,
(ndr_$char *)"binopfw example",
&loc, llen, &lb_entry, &st);

if (st.all != 0) {
printf("Can't register - %s\n", error_text(st));
exit(l);

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
if (st. all ! = status_$ok) {

fprintf(stderr, "Can't convert sockaddr to name - %s\n",
error_text(st));

exit (1);

name[namelen] = O;

printf("Registered: name='%s', port=%ld\n", name, port);

st= pfm_$cleanup(&crec);
if (st.all != pfm_$cleanup_set)

status_$t stat;
fprintf(stderr,"Server receiv~d signal- %s\n",error_text(st));
lb_$unregister(&lb_entry, &stat);
rpc_$unregister(&binopfw_v1$if_spec, &stat);
pfm_$signal(st);
}

rpc_$listen((long) 5, &st);

Figure B-3. NCS 1.5.1 Version of binopfwlserver.c (Continued)

NCS 1.5.1 Programs B-7

B.1.4 NCS 1.5.1 manager.c

Figure B-4 shows the manager.c module.

#include "binopfw.h"

globaldef binopfw_v1$epv_t
binopfw_v1$manager_epv = {binopfw$add};

void binopfw$add(h, a, b, c)
handle_th;
ndr_$long_int a, b, *c;
{

*c = a + b;

Figure B-4. NCS 1.5.1 Version of binopfw!manager.c

B.2 NCS 1.5.1 stacks Program

The stacks program demonstrates how you can use NCS to implement an interface for several
types of objects. A separate manager implements each combination of interface and type. The
server registers its objects and their types with the RPC runtime and the Location Broker, it
registers its managers with the RPC runtime.

In the stacks program, a server manages two types of stacks, one based on lists and one based
on arrays.

B.2.1 The stacks Interface Definition

Figure B-5 shows stacks.idl, the NIDL definition for the stacks interface. Different object
types require different implementations of operations, but not different signatures.

B-8 NCS 1.5.1 Programs

%c
[uuid(4438675bf000.0d.OO.OO.fe.da.00.00.00), version(l)]
interface stacks
{

[idempotent]
void stacks$init(handle_t [in] h);

/* stack functions return non-zero on error, zero otherwise */

int stacks$push(handle_t [in] h, int [in] value);

int stacks$pop(handle_t [in] h, int [out] *value);

Figure B-5. The NCS 1.5.1 stacks.id[Interface Definition

B.2.2 The stacksdf .h Header File

The stacksdf.h header file, shown in Figure B-6, defines symbolic constants to represent
UUIDs for the two stack objects and their types. The replacement texts for these constants are
C representations of UUIDs, which were generated by invoking uuid _gen with the-C option.

/* the two stack objects and their types */

/* the array-based object */
#define ASTACK {Ox44349d2c, Ox2000, OxOOOO, OxOd, \

{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

#define ASTACKT {Ox44349e25, OxOOOO, OxOOOO, OxOd, \
{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO,. OxOO}}

/* the list-based object */
#define LSTACK {Ox44349e48, Ox2000, OxOOOO, OxOd, \

{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

#define LSTACKT {Ox44349eed, Ox6000, OxOOOO, OxOd, \
{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

Figure B-6. The NCS 1.5.1 stacksdf.h Header File

NCS 1.5.1 Programs B-9

B.2.3 The stacks Client Module

The stacks client module, shown in Figure B-7, works the same way as its DCB RPC counter
part shown in Chapter 6. It lets the user access two types of stacks within one session. When
the client program calls stacks$push or stacks$pop, the object UUID in the handle deter
mines the stack to be accessed.

#include <stdio.h>
#include "nbase.h"
#include "stacks.h"
#include "stackdf .h"
#include "lb.h"
#include ".socket. h"
#include <ppfm.h>
#include "uuid.h"

#define CALLS_PER_PASS
#define MAXENTRIES

extern long time();
extern char *error_text();

main()
{

handle_t handle[2];
status_$t st;

100
5 /* how many LB entries we can handle */

lb_$entry_t entries[MAXENTRIES];
lb_$lookup_handle_t ehandle = lb_$default_lookup_handle;
unsigned long nresults;
socket_$addr_t loc;
unsigned long llen;
socket_$string_t name;
unsigned long namelen = sizeof(name);
unsigned long port;
static uuid_$t types[2] = {ASTACKT, LSTACKT};
int s, t, k, found_if;
ndr_$long_int val;
char cornmand[lOO], which[lOO], value[lOO];

pfrn_$init((long) pfrn_$init_signal~handlers);

Figure B-7. The NCS 1.5.1 stackslclient.c Module

B-lff NCS 15.1 Programs

/* bind handles for each object type */
for (t = O; t < 2; t++) {
/* find lb entries for the type */
lb_$lookup_type(&types[t], &ehandle, MAXENTRIES,

&nresults, entries, &st);
if (st.all != status_$ok) {

}

fprintf (stderr, "Can't lookup type[%d] - %s\n", t,
error_text (st)) ;

exit(l);

if (nresults < 1) {
fprintf (stderr, "Couldn't find interfaces for type[%d]\n", t);
exit(l);

/* check for appropriate interface for the type */
for (k = 0, found_if = O; k < nresults; k++)

} .

if (uuid_$equal(&entries[k] .obj_interface,
&stacks_v1$if_spec.id)

&& socket:.....$val,id_family(entries[k] .saddr.farnily, &st)) {
found_if = 1; /* found appropriate interface */
break;

if (! found_if) {
fprintf(stderr, "Couldn't find appropriate interface\n");
exit(l);

/* bind handle */
handl°e[t) = rpc_$bind(&entries[k) .object, &entries[k].saddr,

entries[k] .saddr_len, &st);
if (st.all != status_$ok) {

fprintf (stderr, "Can't bind handle - %s\n",
error_text(st));

exit(l);

rpc_$inq_binding(handle[t], &loc, &llen, &st);
if (st.all != status_$ok) {

fprintf(stderr, "Can't inq binding - %s\n", error_text(st));
exit(l);

Figure B-7. The NCS 1.5.1 stacks!client.c Module (Continued)

NCS 1.5.l Programs B-11

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
if (st.all != status_$ok) {

fprintf (stderr, "Can't convert sockaddr to name - %s\n",
error_text (st));

exit (1);

name[namelen] = O;
printf ("%s handle bound to port %ld at host %s\n",

t?"lstack":"astack", port, name);

printf("Initialize stack objects (y/n)? ");
gets(command);
if (*command != 'n' && *command!= 'N')

stacks$init(handle[O]);
stacks$init(handle[l]);

do
print f ("push, pop, or quit: ") ;
gets (command) ;
if (! strcmp (command, "quit")) break;
printf("astack or lstack: ");
gets (which) ;

if (!strcmp(which, "astack")) s O;
else s = 1;

if (!strcmp(cornrnand, "push")) {
printf("value: ");
gets(value);

}

val= (ndr_siong_int)atoi(value);
printf("Pusping %d onto %s ... ",val, s?"lstack"~"astack");
if (stacks$push(handle[s], val)) printf("stack full!\n");
else printf ("successful\n");

else if (! strcmp (command, "pop")) {
printf("Popping off of %s ... ", s?"lstack":"astack");
if (stacks$pop(handle[s], &val))

printf("nothing on stack!\n");
else printf ("value is %d\n", val);

while (strcmp (command, "quit"));

Figure B-7. The NCS 1.5.1 stackslclient.c Module (Continued)

B-12 NCS 1.5.1 Programs

B.2.4 The stacks Server Module

The server.c module, shown in Figure B-8, is linked together with two manager modules to
form the stacks server program. The server module declares two manager EPV s as external
variables; each manager EPV is defined in its own manager module.

#include <stdio.h>
#include "nbase.h"
#include "stackdf .h"
#include "stacks.h"
#include "Tb.h"
#include "socket.h"
#include <ppfm.h>

globalref stacks_v1$epv_t stacks_v1$amanager_epv;
globalref stacks_v1$epv_t stacks_v1$lmanager_epv;
extern.char *error_text(};

main(argc, argv}
int argc;
char *argv [];
{

status_$t st;
socket_$addr_t loc;
unsigned long llen;
unsigned long family;
boolean validfamily;
socket_$string_t name;
unsigned long namelen = sizeof (name);
unsigned long port;
lb_$entry_t lb_entry[2];
pfm_$cleanup_rec crec;
static uuid_$t astack ASTACK, astackt
static uuid_$t lstack = LSTACK, lstackt

ASTACKT;
LSTACKT;

if (argc != 2)
fprintf (stderr, "usage: server family\n");
exit(l);

pfm_$init ((long) pfm_$init_signal_handlers};
family= socket_$family_from_name((ndr_$char *)argv[l],

· (long)strlen(argv[l]}, &st);

Figure B-8. The NCS 1.5.1 stackslserver.c Module

NCS 1.5.1 Programs B-13

if (st.all != status_$ok)
fprintf (stderr, "Can't get family from name - %s\n",

error_text(st));
exit (1);

validfamily = socket_$valid_family(family, &st);
·if (st.all != status_$ok) {

}

fprintf {stderr, "Can't check family - %s\n",
error_text (st)) ;

exit (1);

if (!validfamily)
printf("Family %sis not valid\n", argv[l]);
exit (1);

rpc_$use_family(family, &loc, &llen, &st);
if (st.all != status_$ok)

fprintf(stderr, "Can't use family - %s\n", error_text(st));
exit (1);

/*register manager and object for array-based stack object ... */

rpc_$register_mgr(&astackt, &stacks_v1$if_spec,
stacks_v1$server_epv,
{rpc_$mgr_epv_t)&stacks_v1$amanager_epv, &st);

if (st.all != 0)
printf ("Can't register astack manager - %s\n",

error_text(st));
exit(l);

rpc_$register_object(&astack, &astackt, &st);
if (st.all != 0) {

}

printf ("Can't register astack object - %s\n",
error_text(st));

exit (1);

rpc_$register_object(&lstack, &lstackt, &st);
if (st.all != 0) {

printf("Can't register lstack object - %s\n", error_text(st));
exit(l);
}

Figure B-8. The NCS 1.5.1 stackslserver.c Module (Continued)

B-14 NCS 15.1 Programs

/* ... and list-based stack object*
I

rpc_$register_mgr(&lstackt, &stacks_v1$if_spec,
stacks_v1$server_epv,
(rpc_$mgr_epv_t)&stacks_v1$lmanager_epv, &st);

if (st.all != 0) { ·
printf ("Can't register lstack manager - %s\n",

error_text(st));
exit(l);

rpc_$register_object(&lstack, &lstackt, &st);
if (st.all != 0) {

printf ("Can't register lstack object - %s\n",
error_text(st));

exit(l);

/*register array-based stack object/interface with the lb ... */

lb_$register(&astack, &astackt, &stacks_v1$if_spec.id, OL,
(ndr_$char *)"astack example", &loc, llen, &lb_entry[OJ, &st);
if (st:all != 0) {

printf("Can't register astack - %s\n", error_text(st));
exit(l);

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
if (st.all != status_$ok) {

fprintf (stderr, "Can't convert sockaddr to name - %s\n",
error_text(st));

exit (1);

name[narnelen] = O;
printf("astack registered: narne='%s', port=%ld\n", name, port);

/* and list-based stack object/interface */

lb_$register(&lstack, &lstackt, &stacks_v1$if_spec.id, OL,
(ndr_$char *)"ls tack example", &loc, llen, &lb_entry [1], &st);
if (st.all != O)

printf (';Can't register ls tack - %s\n", error_text (st));
exit(l);

Figure B-8. The NCS 1.5.1 stacks/server.c Module (Continued)

NCS 1.5.l Programs B-15

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
if (st.all != status_$ok) {

fprintf(stderr, "Can't convert sockaddr to name - %s\n",
etror_text(st));

exit(l);

name[namelen] = O;
printf("lstack registered: name='%s', port=%ld\n", name, port);
st = pfm_$cleanup(&crec);
if (st.all != pfrn_$cleanup_set) {

status_$t stat;
fprintf (stderr, "Server received signal - %s\n",

error_text(st));
lb_$unregister(&lb_entry[O], &stat);
lb_$unregister(&lb~entry[l], &stat);
rpc_$unregister(&stacks_v1$if_spec, &stat); /*once for each*/
rpc_$unregister(&stacks_v1$if_spec, &stat); /*manager*/
pfm_$signal(st);

rpc_$listen((long)5, &st);

Figure B-8. The NCS 1.5.l stacks/server.c Module (Continued)

The lmanager.c module, shown in Figure B-9, illustrates the stack manager for the list-based
stack.

B-16 NCS 15.1 Programs

/* the list-based stack manager module */
#include "stacks.h"

void stacks$lstack_init();
ndr_$long_int stacks$lstack_push(), stacks$lstack__pop();

globaldef stacks_v1$epv_t stacks_v1$lmanager_epv =
{stacks$lstack_init, stacks$lstack_push, stacks$lstack_p~p};

#define NULL (struct node *)0
extern struct node *malloc();

static struct node {
ndr_$long_int value;
struct node *next;

the_stack;

void stacks$lstack_init(h)
handle_t h;
{

the_stack.next NULL;

ndr_$long_int stacks$lstack_push(h, value)
handle_t h;
ndr_$long~int value;
{

struct node *head= malloc(sizeof(struct node));

}

if (head == NULL) return .-i;
head->value = value;
head->next = the_stack.next;
the_stack.next = head;
ret.urn 0;

ndr_$long_int stacks$lstack_pop(h, value)
handle_t h;
ndr_$long_int *value;
{

struct node *head = the_stack.next;

if (head == NULL) return -1;
*value = head->value;
the_stack.next = head->next;
free (head);

return O;

/* stack is full */

/* stack is empty */

Figure B-9. The NCS 1.5.1 stacksllmanager.c Module

NCS 1.5.1 Programs B-17

The amanager.c module, shown in Figure B-10, illustrates the stack manager for the
array-based stack.

/* the array-based stack manager module */

#include "stacks.h"

void stacks$astack_init();
ndr_$long_int stacks$astack_push(), stacks$astack_pop();

globaldef stacks_v1$epv_t stacks_v1$amanager_epv =
{stacks$astack_init, stacks$astack_push, stacks$astack_pop};

#define STACKSIZE 1000

static struct {
int head;
ndr_$long_int values[STACKSIZEJ;

the_stack;

void stacks$astack_init(h)
handle_t h;
{

the_stack.head STACKSIZE;

ndr_$long_int stacks$astack_push(h, value)
handle_t h;
ndr_$long_int value;
{

if (the_stack.head == 0) return -1; /* stack is full */
the_stack.values[--the_stack.head] value;
return O;

ndr_$long_int stacks$astack_pop(h, value)
handle_t h;
ndr_$long_int *value;
{

if (the_stack.head == STACKSIZE) return -1;/*stack is empty */
*value= the_stack.values[the_stack.head++];

return O;

Figure B-10. The NCS 1.5.1 stackslamanager.c Module

---000-----

B-18 NCS 15.1 Programs

Appendix C

IDL and ACF Attribute Summary

This appendix summarizes IDL and ACF attributes.

C.1 DCE IDL Attribute Summary

Table C-1 contains a list of the DCE IDL attributes and what kinds of definitions they are used
in. The rest of this section gives a brief description of the attributes.

Table C-1. DCE IDL Attributes

Attribute Where Used

uuid Interface definition headers
version
endpoint
pointer default
local

broadcast Operations
maybe
idempotent

in Parameters
out

IDL and ACF Summary C-1

Table C-1. DCE IDL Attributes (Cont.)

Attribute Where Used

ignore Structures

max is Arrays
size is
first is
last is
length_is

string

ptr Pointers
ref

handle Customized handles

context handle Context handles

transmit as Type declarations

vl_array Migration
vl enum
vl_string
vl struct

C.1.1 IDL Attributes in Interface Definition Headers

uuid

version

endpoint

pointer_ default

local

C-2 IDLandACF Summary

Specifies the UUID that is assigned to the interface

Specifies a particular version of a remote interface

Specifies the well-known endpoint or endpoints on which servers
that export the interface listen

Specifies the default semantics for pointers that are declared in the
interface definition; either ref or ptr

Indicates that an interface definition does not declare any remote op
erations and that the IDL compiler should generate a header file but
no stub files

C.1.2 IDL Attributes for Operations

A operation can also have the ptr, string, or context_ handle attribute.

idempotent

broadcast

maybe

Specifies that the operation is idempotent

Specifies that the operation is always to be broadcast

Specifies that the caller of the operation does not require and will not
receive any response

C.1.3 IDL Attributes for Parameters

A parameter can also have any of the array attributes, any of the migration attributes, or the
ref, ptr, string, or context_ handle attribute.

in Specifies that the parameter is an input parameter

out Specifies that the parameter is an output parameter

C.1.4 IDL Attributes for Structures

Structure members can also have any of the array attributes, any of the migratioi;i attributes, or
the ref, ptr, or string attribute.

ignore Specifies that the pointer member being declared is not to be trans
mitted in remote procedure calls

. C.1.5 IDL Attributes for Unions

A union member can have the ptr, string, vl _array, or vl _string attribute.

IDL and ACF Summary C-3

C.1.6 IDL Attributes for Arrays

An array can have the string attribute.

string Specifies that the array has the properties of a string

C.1.6.1 Conformant Array Attributes

A confonnant array can also have the string attribute.

max is

size is

C.1.6.2

Specifies the name of a variable that contains the maximum possible
upper bound for the major dimension of the array

Specifies the name of a variable that contains the maximum possible
element count for the major dimension of the array

Varying Array Attributes

A varying array can also have the string attribute.

last is

first is

length_is

Specifies the name of a variable that contains the highest index value
of the transmitted data

Specifies the name of a variable that contains the lowest index value
of the transmitted data

Specifies the name of a variable that contains the actual number of
elements in the transmitted data

C.1.7 IDL Attributes for Pointers

A pointer can also have the string attribute to indicate that it points to a string.

ptr

ref

Specifies that the pointer is a full pointer

Specifies that the pointer is a reference pointer

C.1.8 IDL Attributes for Customized Handles

handle

C4 IDLandACF Summary

Specifies that the type being declared is a user-defined, non-primitive
handle type, to be used in place of the predefined, primitive handle
type handle_t

C.1.9 IDL Attributes for Context Handles

context handle Identifies a parameter or type that functions as a context handle. The
context handle provides a handle to state infonnation that is main
tained for a client by management code

C.1.10 IDL Attributes for Type Declarations

A type declaration may also specify any of the pointer type attributes or the context _handle
or handle attribute.

transmit as Specifies the "transmitted type" that the stub passes over the network
as differentiated from the "presented type" that clients and servers
manipulate

C.1.11 IDL Attributes for Compatibility with NCS 1.5.1

These attributes, which are intended primarily for use by the nidl _to _idl utility, enable DCB
RPC applications to interoperate with NCS 1.5.1 programs. Each attribute tells the IDL com
piler to generate code that marshal ls and unmarshalls the N CS 1.5 .1 network data representa
tion for a particular data type.

vl_array

vl enum

vl_string

vl struct

Specifies an NCS 1.5 .1 array; can be specified for a type definition or
a parameter or field definition

Specifies an enumeration compatible with the NCS 1.5.1 long enum
data type

Specifies an N CS 1.5 .1 null-terminated array of elements whose type
resolves to char

Specifies an alternate data alignment, compatible with NCS l.5.1, for a
structure

IDL and ACF Summary C-5

C.2 DCE ACF Attribute Summary

Table C-2 summarizes the attributes that can be specified in a DCB attribute configuration
file.

Table C-2. DCE ACF Attributes

Attribute Usage

auto handle Controls binding
explicit_ handle
implicit_ handle

comm status Specifies parameters to hold status conditions
fault status occurring in the call

code Controls which operations in the IDL file
nocode are compiled

in line Controls the marshalling of data
out of line

represent_ as Controls conversion between local and
· netwbrk data types

enable allocate Forces the initialization of the stub memory
management routines

heap Specifies. objects to be allocated from
heap memory

---000---

C~ IDLandACF Summary

ACF

Glossary

This glossary defines tenns for the DCB Remote Procedure Call (RPC) Component and com
pares them to NCS 1.5.1 tenns, noting differences where they exist. Unless otherwise noted,
the term is the same for both NCS 1.5.1 and DCB RPC.

Thjs glossary is restricted to tenns associated with applications programming. For definitions
of other DCB tenns, see the glossary in Introduction to OSF DCE. For a complete NCS 1.5.1
glossary, see the Networking Computing System Tutorial and Network Computing System
Reference Manual.

See attribute configuration file.

active context handle

In DCE RPC applications, a context handle that the remote procedure has set to a
non-null value and passed back to the calling program; the calling program supplies the
active context handle in any future calls to procedures that share the same client con
text.

address family

See network address family.

alias (of a pointer)

Two full pointers used in the same operation are aliases if they point to the same storage
area. See also full pointer and reference pointer.

Glossary GL-1

aliasing

In DCE RPC, aliasing occurs when two pointers of the same operation point at the same
storage.

allocate (a handle)

API

In NCS 1.5.1, to create an RPC handle that identifies an.object but not a location. Such
a handle is said to be "allocated" or "unbound."

DCE RPC does not provide this functionality; you cannot create an unbound handle.

Application programming interface.

application thread

array

In DCE, a thread of execution created and managed by application code. See also client
application thread, local application thread, RPC thread, server application
thread.

See conformant array, varying array.

at-most-once semantics

attribute

A characteristic of a procedure that restricts it to executing once, partially, or not at
all-never more than once. See also idempotent semantics.

(1) An IDL or ACF syntax element, occurring within[] (brackets) and conveying
infonnation about an interface, type, field, parameter, or operation.

(2) An attribute of an entry in a name service database that stores binding, group, object,
or profile infonnation for an RPC application and identifies the entry as an RPC ser\ier
entry; an NSI attribute.

attribute configuration file

An .acf file; an optional companion file to a DCE interface definition (.idl) file that
modifies how the DCE IDL compiler locally interprets the interface definition.

GL-2 Glossary

attribute configuration language

A high-level declarative language that provides syntax for DCE attribute configuration
files. See also attribute configuration file.

automatic binding method

binding

In N CS 1.5.1, this is a binding technique in which the client uses generic handles. Each
time the client makes a remote procedure call, the client stub invokes an autobinding
routine that converts the generic handle to an RPC handle. (In DCE RPC, this technique
is called "binding with customized handles." See also customized binding handle.)

In DCE RPC, automatic binding is the simplest method for a client to manage bindings
for its remote procedure calls. The automatic method completely hides binding man
agement from client application code. If the client makes a series of remote procedure
calls, the stub passes, the same binding handle with each call. The binding management
is all in the client stub.

In NCS 1.5.1, the representation of a server location in a handle. To bind a handle or to
set its binding 'is to establish this representation.

In DCE RPC, a relationship between a client and a server involved in a remote proce
dure call.

See also binding state and handle.

binding handle

A reference to binding information that defines one possible binding. DCE RPC distin
guishes between client binding information and server binding information. (While
the functionality of client and server binding handles exists in NCS 1.5.1, no specific
tenns are defined.)

binding handle vector

In DCE RPC, a data structure that contains an array of binding handles and the size of
the array.

In NCS 1.5.1, application programmers manually create arrays of binding handles when
necessary. There is no predefined type.

Glossary GL-3

binding information

In DCB RPC, information about one or more possible bindings, including an RPC
protocol sequence, a network address, an endpoint, at least one transfer syntax, and an
RPC protocol version number.

binding state

In NCS 1.5.1, a state reflecting the degree to which an RPC handle represents a server
location. The three possible binding states are unbound, bound-to-host, and fully bound.

In DCE RPC, a binding handle can be only partially bound or fully bound.

See also binding, customized binding handle, partially bound binding handle,
primitive binding handle.

bound-to-host handle

In NCS 1.5.1, an RPC handle that identifies an object and a host but not a port.

In DCE RPC, this is known as a partially bound binding handle.

bound-to-server handle

In NCS 1.5.1, an RPC handle that identifies an object, a host, and a port.

In DCB RPC, this is known as a fully bound handle.

broadcast

To send a remote procedure call request to all hosts in a network simultaneously.

broker

call thread

Also, in DCE threads, to wake all threads waiting on a condition variable. See also
signal.

In N CS 1.5 .1, a server that provides information about resources. A location broker is a
broker.

In DCE RPC, a thread created by a server's RPC runtime to execute remote procedures.
When engaged by a remote procedure call, a call thread temporarily forms part of the
RPC thread of the call. See also application thread, RPC thread.

GL-4 Glossary

cancel

In DCE, a mechanism by which a client thread notifies a server thread (the cancelled
thread) to tenninate as soon as possible.

In DCE Threads, a mechanism by which a thread infonns either itself or another thread
to tenninate as soon as possible. If a cancel arrives during an important operation, the
cancelled thread may continue until it can tenninate in a controlled manner.

cleanup handler

client

In NCS 1.5.1, a piece of code that allows a program to terminate gracefully when it
receives an error. The pfm _$cleanup call establishes a cleanup handler. See also
Process Fault Manager.

DCE replaces cleanup handlers with the DCE exception-returning package. The pack
age is sometimes referred to by the names of some of its macros, TRY /CATCH.

The party that initiates a remote procedure call. A given application can act as both a
client and a server. See also server.

client application thread

In DCE, a thread executing client application code_ that makes one or more remote
procedure calls. See also application thread, local application thread, server appli
cation thread.

client binding information

client stub

In DCE RPC, infonnation about a calling client provided by the client runtime to the ·
server runtime, including the address where the call originated, the RPC protocol used
for the call, the requested object UUID, and any client authentication information. See
also server binding information.

The surrogate code for an RPC interface that is linked with and called by the client
application code. In addition to general operations such as marshalling data, a client
stub calls the RPC runtime to perfonn remote procedure calls, and optionally, manage
bindings. See also server stub, stub.

Glossary GL-5

communications link

A network path between an RPC client and server that uses a valid combination of
transport and network protocols that are available to both the client and server RPC
runtimes. See also binding handle.

compatible server

A server that offers the requested RPC interface and RPC object and that is available
over a valid combination of network and transport protocols that are supported by the
client and server RPC runtimes.

Concurrent Programming Support (CPS)

In NCS 1.5.1, a set of calls that create and manage a multitasking environment within a
single process. These calls are especially useful in setvers that simultaneously manage
multiple remote requests. CPS is implemented on only a subset of the systems for which
NCS is available.

In DCE, multitasking support is provided by POSIX threads.

conformant array

In DCE RPC, an array whose size is determined at run time. In NCS 1.5.1, this is called
an "open array." A structure containing a confonnant array as a member is a con for
mant structure. See also varying array.

context handle

In DCE RPC, a reference to client context maintained across calls by a seiver on behalf
of a client. See also server context.

customized binding handle

In DCE RPC, a handle of a user-defined type from which a primitive binding handle
can be derived by user-defined routines in application code. A customized binding
handle enables application programmers to manage additional binding information that
cannot be handled by the primitive binding handle ..

This is called a generic handle in NCS 1.5.1.

GL-6 Glossary

DCE exception-returning package

A package, for use with DCB-based applications, to map signals to exceptions and then
catch them when performing cleanup operations.

The exception-returning package replaces the Process Fault Manager provided in
NCS 1.5.1.

dynamic endpoint

endpoint

In DCE RPC, an endpoint that is generated by the RPC runtime for an RPC server
when the server registers its protocol sequences and that expires when the server stops
running. This is similar functionality to the NCS 1.5.1 opaque port. See also endpoint,
well-known endpoint.

In DCE RPC, an address of a specific server instance on a host This is called a port in
NCS 1.5.1. See also dynamic endpoint, well-known endpoint.

entry point vector (EPV)

EPV

exception

A list of addresses for the entry points of a set of remote procedures that implements the
operations declared in an interface definition. The addresses are listed in the same order
as the corresponding operation declarations.

See entry point vector.

An object that describes an error condition. With the DCE exception-returning pack
age, your program can perform operations on exceptions to report and handle errors.

exception handling

See DCE exception-returning package.

exception scope

A block where one or more exceptions may be caught; that is, functions that may raise
an exception. An exception scope is delimited by the macros TRY and ENDTRY. Any
exceptions raised within the block, or within any functions that are called by the block,
pass through this scope.

Glossary GL-7

explicit binding method

The explicit method of managing the binding for a remote procedure call in which a
remote procedure call passes a binding handle as its first parameter. The binding
handle must be initialized in the application code. See also automatic binding
method, binding handle, implicit binding method.

explicit handle

A handle that is passed as an operation parameter, rather than represented as a global
variable in the client process. See also implicit handle.

export (an interface)

forward

To provide access to an RPC interface. A server exports an interface to a client. See also
import.

To dispatch a remote procedure call request to a server that exports the requested inter
face forthe requested object. In NCS 1.5.1, the Local Location Broker forwards remote
procedure calls that are sent to the LLB forwarding port on a server host. In DCB, the
RPC daemon(rpcd) forwards remote procedure calls.

full pointer

In DCE RPC, a pointer without the restrictions of a reference pointer. A full pointer
value can change during a call, its value can be NULL, and it can be an alias. See also
alias and reference pointer.

fully bound binding handle

In DCE RPC, a server binding handle that contains a complete server address including
an endpoint. See also partially bound binding handle.

generic handle

In N CS 1.5 .1, a handle of a data type other than handle_ t. Generic handles appear in
applications that use NCS 1.5.1 automatic binding (which differs from automatic bind
ing in DCE RPC).

In DCE RPC, a generic handle is called a customized handle.

GL-8 Glossary

Global Location Broker (GLB)

handle

host

host ID

In NCS 1.5.1, a server that maintains a database of location infonnation about NCS
seivers in a network. The glbd maintains this qatabase (also called the GLB database)
as a replicated database, with different glbd daemons running on different machines
throughout an internet. The glbd daemons collaborate to manage multiple copies (called
replicas) of the GLB database.

An opaque reference to infonnation. The possessor of the handle is not able to manipu
late the data inside it and is unaware of its internal structure; however, the handle is
passed to other routines that make use of the references it contains in order to perfonn
tasks requested by the possessor of the handle. See also binding, handle, context
handle.

A computer that is attached to a network.

See also network address.

idempotent semantics

IDL

A characteristic of an RPC procedure in which executing it more than once with identi
cal input produces no undesirable side effects. See also at-most-once semantics.

See interface definition language.

IDL compiler, DCE

A DCB RPC compiler that processes an interface definition language (.idl) file and an
optional attribute configuration (.act) file to generate client and server stubs, header
files, and auxiliary files. See also attribute configuration file, interface definition
language, NIDL compiler.

implement (an interface)

To provide the routines that execute the operations in an interface. A manager imple
ments one interface for one type.

Glossary GL-9

implicit binding method

The implicit method of managing the binding for a remote procedure call in which a
globalvariable in the client application holds a seiver binding handle, which tlie stub
passes to the RPC runtime. See also automatic binding method, binding handle;
explicit binding method.

implicit handle

A handle that is represented as a global variable in the client process, rather than passed
as an operation parameter.

import (an interface)

interface

(1) To incorporate constant, type, and import declarations from one RPC interface
definition into another RPC interface definition by means of the IDL or NIDL import
statement.

(2) To request the operations defined by an interface. A client imports an interface from
a seiver. See also export.

A set of operations. The DCE Network Computing Architecture (NCA) specifies the
Interface Definition Language (IDL) for defining interfaces.The NCS 1.5.1 Network
Computing Architecture (NCA) specifies the Network Interface Definition Language
(NIDL) for defining interfaces.

interface definition

A description of an interface written in the DCE Interface Definition Language (IDL) or
in the Network Interface Definition Language (NIDL).

Interface Definition Language

In DCE, a high-level declarative language that provides ·syntax for interface definition
files. NCS 1.5.1 provides a similar language, the Network Interface Definition Lan
guage (NIDL).

interface UUID

The universal unique identifier (UUID) that identifies a particular interface. Application
programmers generate UUIDs by using the UUID generator (uuidgen in DCE,
uuid gen in NCS 1.5.1).

GL-10 Glossary

local application thread

In DCB RPC, an application thread that executes within the confines of one address
space on a local system and passes control exclusively among local code segments. See
also application thread, client application thread, server application thread.

local endpoint map

In DCB, a database that is located on the local system and maintained by the RPC

daemon (rpcd). It associates binding information of local seivers with their dynamic
endpoints. (In NCS 1.5.1, similar information is called the LLB database and main
tained by the LLB.)

local interface

An interface whose operations cannot be called remotely. A local interface is assigned
the local interface attribute in its interface definition. When compiling this .idl file, no

stubs are generated.

Local Location Broker (LLB)

In N CS 1.5 .1, the seiver that maintains information about objects on the local host. The
LLB also provided the Location Broker forwarding facility. Any host that runs NCS

1.5.1 seivers should run the LLB daemon, llbd.

In DCB, the same functionality is provided by the RPC daemon, rpcd. It too, must run

on every NCS seiver host.

Local Location Broker daemon (llbd)

In NCS 1.5.1, a daemon that implements the Local Location Broker. The llbd also
provides a forwarding facility. All hosts that run NCS 1.5.1 seivers must run llbd.

In DCE,. the same functionality is provided by the RPC daemon, rpcd. It too must run
on all DCB server hosts.

Glossary GL-11

Location Broker

In NCS 1.5.1, a set of software including the Local Location Broker, the Global Loca
tion Broker, and the Location Broker Client Agent. The Location Broker maintains
information about the locations of objects and interfaces.

In DCB, the RPC daemon, rpcd, maintains binding information for both DCB RPC
based and NCS 1.5.1-based servers on the local host. For DCB-based applications,
global naming service is provided by the DCB Directory S'ervice component.

Location Broker Client Agent

manager

In NCS 1.5.l, the part of the RPC runtime library through which programs communi
cate with Global Location Brokers and Local Location Brokers.

A set of remote procedures that implements the operations of an RPC interface for a
given object type. See also interface, object type.

manager entry point vector (EPV)

The run-time code on the server side uses this entry point vector to dispatch incoming
remote procedure calls.

manual binding
In NCS 1.5.1, a binding technique in which the client uses RPC handles (handle_t) to

make RPC run-time calls to create and bind the handle.

In DCB RPC, this technique is referred to as binding with a primitive handle.

marshalling

The process by which an RPC stub converts local arguments into network data and
packages the network data for transmission. See also unmarshalling.

multi-threaded server

A server implemented on a multi-threading system to respond to multiple RPC requests
concurrent! y.

In NCS 1.5.1, on systems that support multi-threading, the RPC runtime starts a new
thread of execution for each incoming RPC request.

GL-12 Glossary

In DCE RPC, the RPC runtime requires that the operating system support multi
threading and every server is assumed to be multi-threaded.

multi-threading

Supporting multiple threads of execution sharing an address space within a single
process. NCS 1.5.1 supports, but does not require, a multi-threading system.

DCB RPC requires threads. Multi-threading raises issues of re-entrancy and synchroni
zation that are beyond the scope of this book. For more infonnation, see the documenta
tion for the threads software the DCB uses on your operating system.

name service interface (NSI)

NCA

NDR

A part of the application programming interface of the DCB RPC runtime. NSI routines
access a name service, such as CDS, for RPC applications.

See Network Computing Architecture.

See Network Data Representation.

network address

An address that identifies a specific RPC host on a network.

In NCS 1.5.1, a network address is represented in a socket address, in binary fonnat, or
as a char~cter string. In DCB RPC, it is represented in a binding handle or a string
binding.

network address family

A set of identifiers and address follilats that correspond to the communications proto
cols of a particular network architecture; for example, the Internet network address
family corresponds to the TCP/IP and UDP/IP protocols. The network address families
supported by DCB or NCS depend on the platfonn. See also protocol family.

Glossary GL-13

Network Computing Architecture (NCA)

An architecture for distributing software applications across heterogeneous collections
of networks, computers, and programming environments. NCA specifies the DCE
remote procedure call architecture. Early versions of NCA specified the NCS remote
procedure call architecture.

Network Computing Kernel (NCK)

The runtime components of the Network Computing System. These components in
clude the Remote Procedure Call runtime library, the RPC daemon, and the Location
Broker (for programs using NCS 1.5.1). NCK contains all the software needed to sup
port a distributed application.

Network Computing System (NCS)

A set of software components, developed by Hewlett-Packard, that conforms to the
Network Computing Architecture. These components include the RPC runtime library,
the IDL compiler, the Local and Global Location Brokers and the NIDL compiler.

Network Data Representation (NDR)

A transfer syntax defined by the Network Computing Architecture.

Network Interface Definition Language (NIDL)

NIDL

In N CS 1.5 .1, a declarative language for defining interfaces. For DCE RPC, a similar
Interface Definition Language replaces NIDL.

See Network Interface Definition Language.

NIDL compiler

NSI

In NCS 1.5.1, a compiler that takes an interface definition written in NIDL as input and
generates as output C source code modules, including client and server stubs. DCE
provides the IDL compiler for similar functionality.

See name service interface.

GL-14 Glossary

object

For RPC applications, an object can be anything· that an RPC server defines and identi
fies to its clients (using an object UUID). Often, an RPC.object is a physical computing
resource such as a database, directory, device, or processor. Alternatively, an RPC
object can be an abstraction that is meaningful to an application.

object type

A class of objects that is accessible through one or more interfaces.

object type UUID

A universal unique identifier (UUID) that identifies a particular type of object. Every
object has a type.

object UUID

A universal unique identifier (UUID) that identifies a particular RPC object. A server
specifies a distinct object UUID for each of its RPC objects; to access a particular RPC
object, a client uses the object UUID to find the server that offers the object.· See also
object, Universal Unique Identifier.

opaque port

In NCS 1.5.1, a port that is dynamically assigned to a server by the RPC runtime library.
The port number is said to be opaque because there is no need for either clients or
servers to know the number. In DCE RPC, this is called a dynamic endpoint.

open array

operation

In NCS 1.5.1, an array whose declaration does not specify an explicit fixed length. The
length of an open array is not detennined until an operation that uses it is called.

In DCE RPC, this is called a conformant array.

The task performed by a given RPC function or procedure.

partially bound binding handle

In DCE RPC, a server binding handle that contains an incomplete server address lack
ing an endpoint. In NCS 1.5.1, this is called a bound-to-host binding handle.

Glossary GL-15

pointer

port

See reference pointer and fuHpointer.

In NCS 1.5.1, a specific communications endpoint within a given host. A port is identi
fied by a port number. In DCE RPC, this is called an endpoint.

port number

In N CS 1.5 .1, the part of a socket address that identifies a port within a host. In DCE
RPC, this is called an endpoint.

presented type

For RPC data types with the NIDL or IDL transmit_ as attribute, the data type that
clients and servers manipulate. Stubs invoke conversion routines to convert the pres
ented type to a transmitted type, which is passed over the network.

primitive binding handle

The DCE uses this term to refer to a binding handle whose data type in IDL is handle_ t
and in application code is rpc_binding_handle_t. The NCS 1.5.1 analog to this is the
RPC handle. See also customized binding handle.

Process Fault Manager (PFM) ·

In NCS 1.5.1, a set of calls that allows programs to manage signals, faults, and excep
tions by establishing cleanup handlers. The pfm_$ calls provided with NCS 1.5.1 are a
portable subset of the Apollo Domain/OS pfm _ $ calls.

In DCE RPC, the PFM calls are replaced by the DCE exception-returning package.

protocol family

A set of communications protocols such as the Internet Protocol. All members of a
protocol family use a common addressing mechanism to identify endpoints. We use the
terms "protocol family" and "address family" synonymously.

protocol sequence

See RPC protocol sequence.

GL-16 Glossary

protocol sequence vector

A data structure that contains an array-size count and an array of pointers to RPC
protocol-sequence strings. See also RPC protocol sequence.

reference pointer

A non-null pointer whose value is invariant during a remote procedure call and cannot
be an alias. See also alias and full pointer.

register (an interface with the RPC runtime library)

To list an RPC interface with the RPC runtime. In the DCB RPC API, servers use the
rpc _server _register _)f routine to register interfaces, which specifies the manager that
implements a particular interface for a particular type.

register (an object and an interface with the local endpoint map)

To place server-addressing information into the endpoint map. In the DCB RPC API,
servers use the rpc _ ep _register routine to register objects with the local endpoint map.

register (an object with the RPC runtime library)

In the DCE RPC API, servers use the rpc _object_ set_ type routine to register objects;
this call specifies an object and its type.

remote procedure call (RPC)

A procedure call executed by a procedure located in a separate address space from the
calling code.

RPC Communication Services

A service of the RPC runtime. It provides a set of routines that control each type of
network operation, regardless of what RPC protocol handles a remote procedure call.
See also RPC protocol.

RPC control program (rpccp)

An interactive management facility for managing name service entries and endpoint
maps for RPC applications.

RPC daemon (rpcd)

The process that provides the endpoint map service for a system. The rpcd daemon
provides the same functionality as the Local Location Broker daemon in NCS 1.5 .1.

Glossary GL-17

RPC handle

In NCS 1.5.1, a handle of the data type handle_ t. RPC handles appear in applications
that use manual binding.

DCE RPC calls this a primitive binding handle.

RPC interface

A logical grouping of operation, data type, and constant declarations that serves as a
network contract for calling a set of remote procedures. See also interface definition.

RPC Management Services

A set of services of the RPC runtime. The Management Service provides a set of rou
tines for basic management operations such as monitoring and stopping servers.

RPC Naming Services

A set of services of the RPC runtime. The Naming Service provides a set of routines
that use a name service to perfonn operations on RPC entries in a namespace. Naming
Service operations export information about RPC servers, interfaces, and objects;
import information about servers that offer a specific interface (and, optionally, object);
and manage RPC entries.

RPC protocol

An RPC-specific communications protocol that supports the semantics of DCE RPC ·
· and runs over either connectionless (datagram) or connection-oriented communications
protocols. The RPC protocol is specified in the first part of the RPC protocol
sequence, ncadg for datagram service, and ncacn for connection-oriented service.

RPC protocol sequence

A valid combination of communications protocols represented by a character string.
Each protocol sequence typically includes three protocols: a network protocol, a trans
port protocol, and an RPC protocol that works with those network and transport proto
cols.

RPC runtir:ne

A set of operations that manages communications, provides access to the name service
database, and perfonns other tasks, such as managing servers and accessing security
infonnation, for RPC applications.

GL-18 Glossary

RPC runtime library

Routines of the RPC runtime that support the RPC application on a system. The runtime
library provides a public interface to application programmers, the application program
ming interface (API), and a private interface to stubs the Stub Programming Interface
(SPI).

RPC thread

rpccp

rpcd

server

In DCE RPC, a logical thread within which a remote procedure call executes. See also
call thread, thread.

See RPC control program.

See RPC daemon.

The party that receives remote procedure calls. A given application can act as both an
RPC server and an RPC client. See also client.

server address
lnfonnation that indicates one way to access an RPC server over the network. The
server address includes an RPC protocol sequence, network address, and endpoint. A
server can have several server addresses and can use a separate binding handle to refer
to each address. See also binding handle, endpoint, network address, RPC protocol
sequence.

server application thread

In the DCE RPC API, a thread executing the server application code that initializes the
server and listens for incoming calls. See also application thread, client application
thread, local application thread.

server binding information

Binding infonnation for a particular DCE RPC server. See also client binding informa
tion.

Glossary GL-19

server context

State in a seiver's address space generated by a set of remote procedures (manager) and
maintained across a set of calls on behalf of a particular client

server stub

service

The surrogate calling code for an RPC interface that is linked with server application
code containing one or more sets of remote procedures (managers) that implement the
interface. See also client stub, manager, stub.

An integral set of RPC interfaces offered together by a seiver to meet a specific goal.

set (a binding)

signal

signature

To set the representation of a seiver location in an RPC handle.

In DCE Threads, to wake only one thread waiting on a condition variable. See also
broadcast.

The syntax of an operation, that is, its name, the data type it returns, and the order and
types of its parameters. The definition of an operation specifies only its signature, not its
implementation.

socket address

In NCS 1.5.1, a data structure that uniquely identifies a socket A socket address con
sists of an address family identifier, a network address, and a port number.

In DCE RPC, the socket address is an internal data structure that is no longer
manipulated directly by programmers using the API.

status parameter

A parameter with the comm_ status or fault_ status attribute. If an operation has a
comm_ status status parameter, communications errors that occur during execution of
the operation are passed to the client in this parameter. If an operation has a
fault_ status status parameter, certain errors in the remote application code are passed to
the client in this parameter.

GL-20 Glossary

stub ·

switch

task

thread

A code module specific to an RPC interface that is generated by the DCE IDL compil
er to support remote procedure calls for the interface. RPC stubs are linked with client
and server applications and hide the intricacies of remote procedure calls from the
application code.

In NCS 1.5.1, the NIDL compiler generates client and server stub code from an inter
face definition.

In NCS 1.5.1, a module in client programs used to eliminate naming conflicts. DCB
programs do not use such a module.

In N CS 1.5 .1, one of several threads of execution within a single process. Concurrent
Programming Support provides calls that create and manage a multitasking environ
ment. DCB RPC depends on a POSIX threads implementation for multitasking. See also
thread.

In DCB, a single sequential flow of control within a process.

transfer syntax
A set of encoding rules used for transmitting data over a network and for converting
application data to and from different local data representations.

transmitted type
For .data types with the NIDL or IDL transmit_ as attribute, the data type that stubs pass
over the network. Stubs.invoke conversion routines to convert the transmitted type to a
presented type, which is manipulated by clients and servers.

transport independence
The capability, without changing application code, to use any transport protocol that

both the client and server systems support, while guaranteeing the same call semantics.

transport protocol
A communications protocol from the transport layer of the OSI network architecture,
such as the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP).

Glossary GL-21

transport service

type

A network service that provides end-to-end communications between two parties, while
hiding the details of the communication network.

A class of object. All objects of a specific type can be accessed though the same inter
face or interfaces.

typeUUID

The universal unique identifier that identifies the particular type of object and the
associated manager.

unbound handle

In NCS 1.5.1, anRPC handle that identifies an object but not a location. This tennis
synonymous with "allocated handle."

DCE RPC does not support unbound handles.

Universal Unique Identifier (UUID)

An identifier that is immutable and unique across time and space. A UUID can
uniquely identify an entity such as an RPC interface or object.

unrnarshalling

The process by which an RPC stub disassembles incoming network data and converts it
into local data in the appropriate local data representation. See also marshalling.

varying array

An array whose elements do not all need to be transmitted during a remote procedure
call.

well-known endJ?Oint

In DCE RPC, a preassigned endpoint that a server uses every time it runs. Well-known
endpoints typically are assigned by a central authority responsible for a transport proto
col. An application declares a well-known endpoint either as an attribute in an RPC
interface header or as a variable in the server application code. In NCS 1.5. l, this is a
well-known port. See also dynamic endpoint, endpoint.

GL-22 Glossary

well-known port

In N CS 1.5 .1, a port whose port number is part of the definition of an interface. Clients
of the interface always send to that port; servers always listen on that port. In DCB
RPC, this is called a well-known endpoint. See also opaque port.

---000---

Glossary GL-23

Symbols

#define, replacement in IDL, 4-11

$ (dollar sign), ANSI C compliance, 4-4, 6-2

+e, C compiler flag, 6-2

-i, uuidgen option, 4-9

-1, idl option, 3-11, 4-12

-idir, NIDL option, 3-11, 4-12

-keep c _source, idl option, 4-12

-m, NIDL option, 4-12

-no_ cpp, idl option, 4-12

-no_ mepv, idl option, 4-12, 6-2

-s, uuidgen option, 6-2

-s, NIDL option, 4-12

_ v2.acf extension, 4-6

_ v2.idl extension, 4-4

A

absolute pathnames, avoiding, 3-11

ACF. See attribute configuration file

active context handle, GL-1

address
family, GL-13

Index

specifying in DCE RPC, 2-3
network, 2-2, GL-13
of server instance, 2-2
server, GL-19
socket, GL-20

alias, 3-4, GL-1

allocating, a handle, GL-2

allocating memory
with enable_allocate, 3-19
from the heap, 3-19
for object UUID vector, 6-9

ANSI C compliance, 4-4, 6-2

API,GL-2
concepts, 2-1 to 2-22
DCE RPC routines, A-1 to A-40
differences, 1-4
overview of DCE RPC, 2-6 to 2-9

application programming interface. See API

application thread, GL-2
client, GL-5
local, GL-11
server, GL-19

Index 1

arrays, GL-2
and attributes, 3-4 to 3-5
confonnant, GL-6
fixed, confonnant, varying, 3-4 to 3-5
marshalling, 3-5
DCE RPC, GL-3
open, GL-6, GL-15
arid pointers, 3-4
str~g attribute, 3-5
support in DCE, 1-5
varying, GL-22

asynchronous signals, handling, 5-18 to 5-22

at-most-once semantics, GL-2

attribute configuration file, l-5 to 1-6, GL-2
attributes, 3-16, C-6
example, 3-20, 4-2
generated by nidl_to_idl, 4-6
using different, 3-16
writing, 3-15 to 3-19, 4-11

attribute configuration language, GL-3

attributes, GL-2
DCE IDL, 3-2 to 3-7

attributes for compatibility, 2-21, 3-7, 3-12, 3-15
when not to use, 4-4

authentication services, 2-9

authorization routines, 1-4

auto _handle attribute, 3-17, C-6

automatic binding, GL-3

auxiliary file, IDL generated, 3-21

B

basic types, 3-2

Berkeley socket abstraction, 2-1 to 2-2

2 Index

binding, GL-3
attributes, 3-17
automatic, GL-3
client routine summary, A-30
DCE routines for, A-4 to A-6
for multiple objects, example, 6-1
information, GL-4

obtaining, 2-4
manager routine swnmary, A-38
manual, GL-12
method

automatic, GL-3
explicit, GL-8
implicit, GL-10

NCS 1.5.1, GL-3
server routine summary, A-33
setting, GL-20
states, GL-4

binding handle, 1-5, 2-4 to 2-6, GL-3
client, GL-5
concurrent, 1-7
customized, 3-6, GL-6
importing, 7-8
looking up a set, 7-12
for multiple threads, 2-10
NCS 1.5.1 states, 2-5 to 2-6
primitive, GL-16
resetting, 2-10
routine for creating binding, 2-10
server, GL-19
server routine summary, A-35
unbound, bound, partially bound, 2-5 to 2-6
usfng partially bound, 2-6 to 2-7
vector, GL-3
See also handle

bindings, managing, 3-17

binopfw example, 5-1 to 5-7
binopfw.idl, 4-2
binopfw _add, 5-2
client.c, 5-1 to 5-5
executing, 5-13
manager.c, 5-11
NCS 1.5.1 version, B-1 to B-8
server.c, 5-6 to 5-11
use_all_protseqs example, 5-14 to 5-15
util.c, 5-11

bitset, 3-13

bitset enum, 3-7

boolean type, 3-3

bound-to-host handle, 2-6, G~

bound-to-server handle, 2-5, GL-4

broadcast, 3-14, G~
operations, 3-10

broadcast attribute, 2-6, C-3

broadcasting RPCs, in DCE RPC, 2-6

brokers, GL-4

building DCE applications, 5-12

byte type, 3-3

c
call thread, GL-4

cancel, GL-5
pending, 5-20

) cancellable function, 5-19

cancellation points, for delivering asynchronous
signals, 5-19

CATCH macro, 5-17

CATCH_ALL macro, 5-17

_ caux.c extension, 3-21

CDS. See Cell Directory Service

cdsd,7-5

Cell Directory Service, 1-3, 7-5

Cell Directory Service daemon, 7-5

character type, 3-3

clean-up operations, context handles, 3-6

cleanup handlers, GL-5

client, GL-5
application thread, GL-5
binding handle, GL-5
converting to DCE RPC, 5-1to5-5
endpoint map service routines, 7-3
name service routines, 7-7 to 7-13
NCS 1.5.1 binopfw, B-1 to B-3
NCS 1.5 .1 stacks, B-10
stacks example, 6-4 to 6-17
stub, controlling size with nocode, 3-18
switches, GL-21
using rpc_ep routines, 7-3
using rpc _ ns routines, 7-7 to 7-13

client stubs, GL-5

code attribute, 3-18, C-6

comm_status attribute 3-14, 3-18, C-6

communication failures, handling, 3-18

communication services
API routines, 2-7, A-3 to A-11
RPC,GL-17

communications link, GL-6

compatibility, and version attributes.
See interoperability

compatible server, GL-6

complex declarators, 3-13

concurrent binding handle, 1-7

Concurrent Programming Support, GL-6

Index 3

conformant array, 1-5, 3-4, GL-6

const, 3-11

constant declarations, 3-11 to 3-12, 4-10 to 4-11

constants, 1-5

constructed types, DCE IDL, 3-2 to 3-7

context handle, 1-5, 3-6, GL-6
active, GL-1

context_ handle attribute, 3-6, 3-15, C-5

context_ handle, type attribute, 3-12

control program, RPC, GL-17

conventions
interface names, 3-8 to 3-9, 3-21

converting programs
to DCE, 1-8 to 1-9, 2-21to2-22
using nidl_to_idl, 4-1to4-8

CPS (Concurrent Programming Support), GL-6

creating, endpoints dynamically, 2-6

_cstub.c extension, 3-21, 4-13

_cswtch.c extension, 3-21

customized handles. 3-6, GL-6

customizing, applications with an ACF, 3-15 to
3-19

D

daemon
CDS, 7-5
cdsd,7-5
GLB,GL-9
LLB,GL-11
llbd, 2-4, 2-6
RPC,GL-17
rpcd,2-4,2-6,5-2

data, transferring with pipes, 3-3

4 Index

data representation, controlling with
represent_as,3-19

data types
compatible network representations, 2-22
DCE IDL, 3-2 to 3-7

DCE
API, 1-3
architecture, 1-1 to 1-2
components of, 1-2
converting programs to, 1-8 to 1-9
IDL features, 3-1 to 3-21
overview, 1-1 to 1-9
writing interface definitions, 4-1 to 4-13

DCE ACF, See attribute configuration file

DCE client routine summary, A-30

DCE management routine summary, A-38

DCERPC
API routines, A-1 to A-40
bindings and handles, 2-4 to 2-6
building applications, 5-12
concepts, 2-1to2-22
handling signals, 5...;..16 to 5-20
migrating to, 2-21to2-22
overview of API, 2-6 to 2-9
replacement for socket address, 2-1 to 2-3
UUID string representation, 2-20

DCE RPC summary, A-30
client routines, A-30
management routines, A-38
server routines, A-33

DCE server routine summary, A-33

DCE Threads, 1-6
thread status, 5-17
See also threads

dce/exc_bandling.b, 5-18

DCE/NCS, differences, 1-4 to 1-7

dce_error_inq_text, 2-18, 5-11, A-13

debugging seIVer applications, with
rpc_$set_fault_mode, 2-12

directory seIVice, component of DCE, 1-3

distributed applications, converting, 5-1 to 5-22

DNS (Domain Name Service), 1-3

documentation, related, iv

$(dollar sign), ANSI C compliance, 4-4, 6-2

Domain Name Service (DNS), 1-3

dynamic endpoint, 2--6, GL-7

E

+e, C compiler flag, 6-2

enable_allocate attribute, 3-19, C--6

endpoint, 2-2, 3-10, GL-7
attribute, C-2
dynamic, 2-6, GL-7
forwarding example, 5-1to5-5
well-known, 3-10, GL-22

endpoint map, 2-4, GL-11
adding entries to, 2-6
DCE routines for, A-11 to A-13
entries, 7-2
manager routine summary, A-38
registering and unregistering with, 7-4
routines for, 2-15, 7-2
server routine summary, A-35
services, API routines for, 2-8

endpoint map routines, compared with location
broker calls, 7-3

endpoint map service, 2-8, 7-2 to 7-5, A-11 to
A-13

enpoint map, client routine summary, A-31

entry point vectors, GL-7

enum,3-7

enumerations, in DCE IDL, 3-7

EPVs,GL-7
generating. See managerEPVs

error_$,datatypes,2-18

error_$ routines, 2-17 to 2-22

error_$c_get_text,2-18

error_$c_text,2-18

error_status~t,3-3

errors
client routine summary, A-31
DCE routine for,A-13
error service, 2-8
handling, 3-18
manager routine summary, A-38
server routine summary, A-35

example. See program example

·examples
binopfw, 5-1 to 5-5
binopfw, NCS 1.5.1 version, B-1 to B-8
lookup, 7-18
stacks, 6-1 to 6-17
stacks, NCS 1.5.1 version, B-8 to B-18
string_conv, 7-9 to 7-13
using nidl_to_idl, 4-3 to 4-8

exception, 5-16, GL-7
handling comm errors, 3-18
scope, 5-18, GL-7
See also exception handling

EXCEPTION macro, 5-17

exception-returning, DCE package, 1--6, 2-18,,
5-16 to 5-20, GL-7
program example, 5-2, 5-7
using, 5-17 to 5-18

executing, binopfw program, 5-13

Index S

explicit binding method, GL-8

explicit handle, GL-8
example, 3-17

explicit_ handle attribute, 3-17, C-6

export
an interface, GL-8
operations, A-18

extensions

F

IDL, 3-21
nidl_to_idl, 4-4, 4-6

fault handling, 1-6

fault_ status attribute, 3-18, C-6

faults
handling, 3-18
handling in DCE, 5-16 to 5-20
no replacement for rpc _$set _fault_ mode,

5-20

first_ is attribute, C-4

fixed arrays, 3-4 to 3-5

floating-point types, 3-3

forwarding endpoints, 2-6

forwarding RPCs, GL-8

full pointer, 3-4, GL-8

fully bound handle, 2-5, GL-8

function pointers, 3-13

G

GDA (Global Directory Agent), 1-3

GDS (Global Directory Service), 1-3

6 Index

generating, objectUUIDs, 6-2 to 6-17

generating stubs, controlling, 3-18

generic handle, 3-6, GL-8
analogous to DCE customized handle, 3-6

GLB,
See Global Location Broker

GLB database, CDS differences, 7-5

Global Directory Agent (GDA), 1-3

Global Directory Service (GDS), 1-3

Global Location Broker, 1-6, 2~5. GL-9
andNSI, 7-1

group, name service entry, A-19
See also name service

H

handle, 3-6, GL-9
bound-to-host, GL-4
bound-to-server, GL-4
context, 3-6
customized, 3-6, GL-6
explicit, GL-8
fully bound, GL-8
generic, GL-8
implicit, GL-10
partially boilnd, GL-15
primitive, GL-16
RPC,GL-18
unbound, GL-22

handle attribute, C-4

handle, type attribute, 3-12

handle_t, 2-19, 3-3, 4-11

heap attribute, 3-19, C-6

host IDs, GL-9

hosts, GL-9

l

-i, uuidgen option, 4-9

-I, idl option, 3-11, 4-12

idempotent attribute, 3-~4, C-3

idempotent semantics, GL-9

-idir, NIDL option, 3-:11, 4-12

IDL,GL-9
attribute configuration file, 1-5 to 1-6
auxiliary file, 3-21 ,
compiler, GL-9
compiler options, 4-12 to 4-13
component of DCE RPC, 1-3
data types, constructed types, attributes, 3-2

to 3-7
differences, 1-5 to 1-6
extensions generated, 3-21, 4-13
generated files, 3-21, 4-13
header files, 3-21
output files, 3-21
overview of DCE features, 3-1to3-21
running compiler, 4-12 to 4-13
stub files, 3-21
warning, 3-9

IDL attributes, C-1, C-2
broadcast, C-3
context_ handle, C-5
endpoint, C-2
first_ is, C-4
for arrays, C-4
for context handles, C-5
for customized handles, C-4
for interface definition headers, C-2
forNCS compatibility, C-5
for operations, C-3
forparameters, C-3

for pointers, C-4
for structures, C-3
for type declarations, C-5
for unions, C-3
handle, C-4
idempotent, C-3
ignore, C-3
in,C-3
last_ is, C-4
length _is, C-4
local, C-2
max_is, C-4
maybe,C-3
out,C-3
pointer_ default, C-2
ptr, C-4
ref, C-4
size _is, C-4
string, C-4
transmit_ as, C-5
uuid, C-2
vl_array, C-5
vl_enum, C-5
v 1 _string, C-5
vl _struct, C-5
version, C-2
See also attribute names

idl_char, 3-13

ignore attribute, 3-4, C-3

implementing, an interface, GL-9

implicit binding method, GL-10

implicit handle, GL-10

implicit_handle attribute, 3-10, 3-17, C-6

import
declarations, 3-11, 4-10
interface attribute, 4-10
operations, A-18

importing, interfaces, GL-10

Index 7

importing binding handles, 7-8

in attribute, 3-3, C-3

in_ line attribute~ 3-19, C-6

include files
DCE exception returning, 5-18
for DCE RPC programs, 5-2
pthreads, 5-18
reqt,1ired for DCE, 5-7

initializing, server, program example, 5-7

initializing memory, with enable_allocate, 3-19

integer types, 3-3

interface, GL-10
attributes, 3-9 to 3-12, 4-10 to 4-11
client routine sumtnary, A-30
DCE routines for, A-7
implementing, GL-9
manager routine summary, A-38
routine for registering, 2-12
RPC,GL-18
server routine summary, A-34
unregistering, 2-12

interface definition
and attribute configuration file, 1-5 to 1-6
attributes, 3-9 to 3-10
constant declarations, 3-11to3-12, 4-10 to

4-11
converting to DCE, 4-1 to 4-8
differences, 1-5
example,3-20,4-2
generating skeletal, 4-9
import declarations, 3-11 to -3-12, 4-1 O to

4-11
interface attributes, 3-9 to 3-12, 4-10 to 4-11
interoperability with NCS 1.5.1, 2-22
language, GL-10
local attribute, 3-10
naming, 3-8 to 3-12, 4-10 to 4-11
NCS 1.5.1 stacks, B-8
operation declarations, 3-14 to 3-16, 4-11

8 Index

overview, 3-1 to 3-2
procedure for writing, 4-9 to 4-11
replacing $s,4-4
skeletal, generating, 4-9 to 4-13
stacks example, 6-1 to 6-17
structure of, 3-8
translating to DCE, 4-1 to 4-8
type declarations, 3-12, 4-11
versioning, 3-9
writing, 4-1to4-13

interface definition language. See IDL

interface UUIDs, GL-10
generating, 4-9 to 4-13

Internet Protocol, 2-4

interoperability ..

K

and attribute configuration file, 1-5 to 1-6,
3-16

controlling with version numbers, 3-9
guaranteeing with nidl to idl, 4-4
see also attributes for compatibility

-keep c _source, idl option, 4-12

L

last_is attribute, 3-5, C-4

lb_$, data types, 2-18 to 2-19

lb_$ routines, 2-5, 2-15 to 2-22, 7-2
and rpc_ep routines, 7-2 to 7-18
and rpc_ns routines, 7-6 to 7-7

lb_$entry_t, 2-19

lb_ $lookup_ handle_ t, 2-19

lb_ $lookup_ interface, 2-16

lb_$lookup_object, 2-15

lb_ $lookup_ object _local, 2-16

lb_$1ookup_range, 2-16

lb_$1ookup_type, 2-16

lb _$register, 2-16

lb_ $server_ flag_ t, 2-19

lb_ $unregister, 2-16

lengtb_is attribute, 3-5, C-4

LLB,GL-11
routines, 2-15, 7-2

llbd,2-4,2-6

llbd daemon, replaced by rpcd daemon, 7-2

local
and function pointers, 3-13
interface attribute, 3-10

local application thread, GL-11

local attribute, C-2

local database.
See endpoint map, Location Broker database

local endpoint map, GL-11

Local Location Broker, GL-11
.and endpoint map, 7-1

local management
client routine summary, A-31
manager routine summary, A-38
server routine summary, A-35

local/remote management
client routine summary, A-31
manager routine summary, A-38
server routine summary, A-35

locating a specific server, 7-13

Location Broker, GL-12
Global, 7-1
Local, 7-1
routines, 2-15 to 2-22, 7-2 to 7-18

Location Broker Client Agent, GL-11, GL-12

Location Broker database, 2-4
compared with endpoint map, 7-2

Location Broker routines, compared with name
service routines, 7-6

lookup calls, name service, 7-12

lookup example, 7-18

M

-m, NIDL option, 4-12

macros, TRY/CATCH, 1-6
See also CATCH, CATCH ALL,

EXCEPTION, TRY -

major version number, 3-9
See also version attribute

Makefile, for DCE RPC programs, 5-12

management
component of DCE, 1-3
DCE routines for, A-14 to A-18
server routine summary, A-36

management services, GL-18
API routines for, 2-8
local, 2-8
remote,2-8

manager, GL-12
EPV,GL-12
EPVs,6-2

program example, 6-9
NCS 1.5.1 binopfw, B-8
routine for registering, 2-12
using rpc _ ep routines, 7-5
writing multiple, 6-1

managing, distributed applications with context
handles, 3-6

managing bindings, 3-17

Index 9

manual binding,GL-12

marshalling, 3-21, GL-12
arrays, 3-5
code,3-19

max_is attribute, 3-4, C-4

maybe attribut~ 3-:1.4, C-3

memory
allocating from the heap, 3-19
allocating UUID vectors, 6-9
initializing, 3-19
management routines, 3-19

memory leaks, and context handles, 3-6

memory management, in stub support services,
2-9

migrating to DCE, 2-21 to 2-22

migration attributes,
See attributes for compatibility

minor version number, 3-9
See also version attribute

monitoring clients, with context handles, 3-6

multi-threaded server, GL-12

multiple threads

N

support for, 1-6 to 1-9
See also threads

name service, 1-4, A-18 to A-25, GL-18
client routine summary, A-31
client routines, 7-7 to 7-13
component of DCE, 1-3
database, 2-5
DCE routines for, A-18 to A-25
group entries, 7-5, A-19
inquiries, 7-13
interface, 1-6, GL-13
lookup calls, 7-12

10 Index

manager routine summary, A-39
objects, A-18
profile entries, 7-5, A-19
routines, 2-15 to 2-16
server entries, 7-5, A-19
server routine summary, A-36
serverroutines, 7-13

Name Service Access utilities, 7-18

Name Service Interface. See name service

names
IDL extensions, 3-21
of interface definition files, 3-21
interface maximum length, 3-9
nidl _to_ idl generated extensions, 4-4

naming the interface, 3-8 to 3-12, 4-10 to 4-11

nbase.idl, 3-13

NCA, GL-13, GL-14
connection protocol, 2-4
datagram service, 2-4

ncacn _ip _ tcp, 2-4

ncadg_ip _ udp, 2-4

NCK,GL-14

NCS,GL-14

NCS 1.5.1
changing routines to DCE RPC, 2-9 to 2-18
converting to DCE, 1-8 to 1-9
data types, 2-18 to 2-21
program examples, B-1 to B-18
UUID string representation, 2-20

NDR,GL-14
See also network data representation

ndr _$char, 3-13

network
address family, GL-13
addresses, 2-2, GL-13
client routine summary, A-:.-30

DCE routines for, A-7
server routine summary, A-34

Network Computing Architecture, GL-14

Network Computing Kernel, GL-14

Network Computing System, GL-14

network data representation, GL-14
associating local representation, 3-19
guaranteeing same, 4-4
See also attributes for compatibility

Network Interface Definition Language. See
NIDL

NIDL,GL-14
changes to compiler options, 4-12
differences with IDL, 1-5

NIDL Compiler, GL-14

nidl_to_idl, 1-5, 1-8, 2-21, 2-22, 4-1to4-8
ACF example, 4-6
converting Pascal example, 4-7
invoking~ 4-1 to 4-8
_ v2.acf extension, 4-6
_ v2.idl extension, 4-4
warnings, 4-2

nococle attribute, 3-18, C-6

-no_cpp, idl option,4-12

-no_mepv, idl option, 4-12, 6-2

APl,GL-2

NSA (Name Service Access), 7-18

NSI, (Name Service Interface). A-18, GL-14
See also name service

null-terminated strings, 3-5

0

object, GL-15
assigning type to, 2-12

type, GL-15
type UUIDs, GL-15

object UUIDs, 2-2, GL-15
creating vector, 6-9
DCE routines, A-8
preserving, 6-2
server routine summary, A-34

obtaining binding information, 2-4

opaque ports, GL-15

open arrays, GL-6, GL-15
See also conformant array

operation, GL-15
declarations, 4-11

changes in IDL, 3-14 to 3-15
IDL example, 3-14
NCS 1.5.1example,3-14
parameters, 3-15 to 3-16
returning pointers, 3-10

out attribute, 3-3, C-3

out_of_line attribute, 3-19, 3-21, C-6

p

parameters, 3-15 to 3-16
ACF example, 4-7
IDL example, 4-6, 4-7
status, GL-20

partially bound handle, 2-6, GL-15
program example, 6-4
using, 2-6 to 2-7

partially bound server binding handles, resolving,
7-3

Pascal, interface example, 4-7

pathnames, avoiding listing absolute, 3-11

PFM.
See Process Fault Manager

Index 11

pfm_$ data types, 2-19

pfm_$ routines, 2-18 to 2-22
replacement for, 1-6

pfm_$cleanup_rec, 2-19

pfm $init, 5-19
replacement for, 5-2, 5~7, 5-16

pipes, 1-5, 3-13
and attributes, 3-3

pointer, alias, 3-4, GL-1

pointer_ default attrbute, 3-10, C-2

pointers, 3-3 to 3-4
alias, 3-4, GL-1
and arrays, 3-4
fultGL-8
function, 3-13
ignore attribute, 3-4
inDCE, 1-5
parameters, 3-4
ptr attribute, 3-4
ref attribute, 3-3, 3-4
reference, GL-17
return value, 3-10
setting default behavior, 3-10

port, 2-2, 3-10, GL-16
numbers, GL-16
opaque, GL-15
well-known, GL-23

presented types, GL-16

primitive binding handle, GL-16

procedure
for building DCE applications, 5-12
for writing interface definitions, 4-9

Process Fault Manager, 5-16, GL-16
routines, 2-18 to 2-22
See also pfm _ $ routines

profile, name service entry, A-19
See also name service

12 Index

program examples
generating object types and UUIDs, 6-2
multiple managers, 6-14 to 6-16
NCS 1.5.1, B-1 to B-18
See also examples

.protocol families, GL-16

protocol sequence, GL-18
checking valid, 2-14
endpoint attribute, 3-10
as part of a string binding, 2-2
registering, 2-11
replaces address family, 2-3
using all, program example, 5-14 to 5-15
vector, GL-17

protocol sequences, client routine summary, A-31

protocols
RPC,GL-18
supported DCE, 1-2
transport, GL-21

pthread_cancel, 5-16, 5-18

pthread_cancel_e, 5-17, 5-18

pthread _ cond _wait, 5-19

pthread _signal_ to_ cancel _p, 5-18

pthreads.Seethreads

ptr attribute, 3-4, 3-10, 3-15, C-4

ptr, type attribute, 3-12

R
·ref attribute, 3-3, 3-10, 3-15, C-4

ref, ·type attribute, 3-12

reference pointer, 3-3, GL-17

registering
with the endpoint map, 7-4, GL-17
an interface, GL-17

the interface and managers, 2-12
multiple managers, 6-2
an object, GL-17

related manuals, iv

remote procedure call, GL-17
binding occurs, 2-4 to 2-6
broadcasting, 2-6
forwarding endpoints, 2-6
See also "RPC

represent_ as attribute, 3-19, C-6

resolving a partially bound server binding, with
rpc_ep_resolve_binding, 7-4

"RPC
Communication Services, GL-17
component of DCE, 1-3
control program, GL-17
daemon, 2-4, GL-17
handle, GL-18
interface, GL-18
management services, GL-18
name service, GL-18
protocol sequence, GL-18
protocols, GL-18
routines, diffeneces in APls, 2-6
runtime, defined, GL-18
runtime library, GL-19
threads, GL-19

"RPC API, concepts, 2-1

RPC communications, 2-1 to 2-4
setting timeout value, 2-11

RPC routines, API differences, 1-4

RPCruntime
listening for rpcs, 2...,..12
registering endpoint information, 2-11
registering protocol sequences with, 2-11
stopping server from listening, 2-12

rpc_$, data types, 2-19

rpc _ $ routines

changing to DCE "RPC, 2-9 to 2-13
client calls, 2-10, 2-12
server calls, 2-11, 2-12

rpc_$alloc_handle,2-10

rpc _:$allow_ remote_ shutdown, 2-12

rpc_$are_you_there,2-13

rpc_$bind, 1-7, 2-10

rpc _$clear_ binding, 2-10

rpc _$clear _server_ bin ding, 2-10

rpc_$dup_handle,2-10

rpc_$epv_t, 2-19

rpc _$free_ handle, 2-11

rpc _$generic_ ept _ t, 2-19

rpc_$if_spec_t,2-19

rpc _ $inq_ binding, 2-12

rpc_$inq_interfaces, 2-13

rpc_$inq_object, 2-12

rpc _ $inq_ stats, .2-13

rpc _$listen, 2-12

rpc_$IDgr_epv_t,2-19

rpc_$name_to~sockaddr,2-12

rpc _$register, 2-12

rpc_$register_mgr,2-12,6-9

rpc _$register_ object, 2-12

rpc_$set_asyc_ack,2-11

rpc_$set_binding, 2-10

rpc_$set_fault_IDode, 2-12
no replacement for, 5-20

rpc...;..$set_sbort_tiIDeout, 2-11

rpc_$shut_check_fn_t,2-19

rpc_$shutdown,2-12,2-13

Index 13

rpc _ $sockaddr _to_ name, 2-13

rpc_$unregister, 2-12

rpc_$use_family, 2-11

rpc_$use_family_wk, 2-11

rpc_binding_copy, 2-10, A-5

rpc_binding_free, 2-11, 7-8, A-4

rpc _ binding_from _string_ binding, 2-10, 2-12,
2-14, A:.4
program example, 5-2

rpc_binding_handle_t, 2-19, 2-20

rpc ~binding_ inq_auth _client, A-6

rpc _binding_ inq_ auth _info, A-6

rpc_binding_inq_object, 2-12, A-6

rpc_binding_reset, 2-10, A-5

rpc _binding_ server _from_ client, A-6

rpc _binding_ set_ auth _info, A-6

rpc _binding_ set_ object, A-6

rpc_binding_to_string_binding, 2-12, 2-13,
A-5

rpc _binding_ vector _free, A-4

rpc _ c _protseq_ max _reqs _default, 5-7

RPC_DEFAULT_ENTRY, 7-8

rpc _ ep routines
using in a client, 7-3
using in a server, 7-3

rpc_ep_register, 2-16, 7-3, A-12

rpc _ ep _register_ no _replace, 2-16, 7-3, A-12

rpc_ep_resolve_binding, 2-16, 7-3, A-13

rpc_ep_unregister, 2-16, 7-3, A-13

rpc_if_handle_t, 2-19

rpc _if _id_ vector_ free, A-7

14 Index

rpc_if_id_vector_t, 2-20

rpc_if_in~_id, A-7

rpc _ mgmt_ authorization _fn _ t, 2-19

rpc_mgmt_ep routines, using in a manager, 7-5

rpc_mgmt_ep_elt_inq_begin, 2-16, A-17

rpc_mgmt_ep_elt_inq_done, 2-16, A-17

rpc_mgmt_ep_elt_inq_next, 2-16, A-17

rpc_mgmt_ep_unregister, 2-16, A-18
using in a manager, 7-5

rpc _ mgmt_inq_ com_ timeout, A-14

rpc_mgmt_inq_dfltj>rotect_level, A-14

rpc_mgmt_inq_if _ids, 2-13, A-16

rpc _ mgmt _ inq_ is_ server_ listening, 2-13, A-17

rpc _ mgmt _inq_server _princ _name, A-16

rpc _ mgmt_inq_ stats, 2-13, A-16

rpc _ mgmt _inq_ stop_ server _listening, A-17

rpc _ mgmt _set_ authorization _fn, 2-12; A-15

rpc_mgmt_set_cancel_timeout, A-15

rpc _ mgmt_ set_ com_ timeout, 2-11, A-15

rpc _ mgmt _set_ server_ stack_ size, A-15

rpc _ mgmt _stats_ vector _free, A-15

rpc_mgmt_stop_server_listening, 2-12, 2-13

rpc_mgr_epv_t, 2-19

rpc_network_inq_protseq,2-14

rpc _network_ inq_protseqs, A-7

rpc_network_is_protseq_valid, 2-14, A-7

rpc ns routines, compared
- with lb_$ routines, 7-6

rpc_ns_binding_export, 2-16, 7-13

rpc _ ns _binding_ import_ begin, 7-8

rpc _ ns _binding_ import_ done, 7-8

rpc_ns_binding_import_next, 7-8

rpc_ns_binding_lookup_begin, 2-16, 7-12

rpc_ns_binding_lookup_done, 2-16, 7-12

rpc_ns_binding_lookup_next, 2-16, 7-12

rpc_ns_binding_select, 7-12, 7-13

rpc_ns_binding_unexport, 2-16, 7-13

rpc _ ns _entry_ object _inq_ begin, 2-15

rpc_ns_entry_object_inq_done, 2-15

rpc _ ns _entry_ object_inq_ next, 2-15

rpc_ns_group, 7-13

rpc _ns _group_ delete, A-23

rpc _ ns _group_ mbr _add, A-23

rpc_ns_group_mbr_inq_begin, A-24

.rpc _ ns _group_ mbr _inq_ done, A-24

rpc _ ns _group_ mbr _inq_ next, A-24

rpc _ ns _group_ mbr _remove, A-23

rpc_ns_handle_t, 2-18

rpc _ ns _ mgmt _handle _set_ exp_ age, A-24

rpc _ ns _ mgmt _inq_ exp _age, A-24

rpc _ ns _ mgmt_ set_ exp_ age, A-24

rpc_ns_profile, 7-13

rpc _ ns _profile_ delete, A-25

rpc_ns_profile_elt_add, 7-13, A-25

rpc _ ns _profile_ elt_ inq_ begin, A-25

rpc_ns_profile_elt_inq_done, A-25

rpc _ ns _profile_ elt _ inq_ next, A-25

rpc _ ns _profile_ elt _remove, 7-13, A-25

rpc_object_inq_type,A-8

rpc _object_ set_ inq_fn, A-8

rpc_object_set_type, 2-12, 6-9, A-8

rpc _protseq_ vector _free, A-7

rpc_s_ok,2-18

rpc _server_ inq_ bindings, A-10

rpc _server_ inq_ if, A-11

rpc_server_listen,2-12,A-11

rpc_server_register,6-9

rpc _server_ register_ auth _info, A-11

rpc_server_register_if, 2-12, 6-9, A-10

rpc_server_unregister_if, 2-12, A-11

rpc_server_use_all_protseqs, 2-11, 2-16, A-9
program example, 5-14 to 5-15

rpc _server_ use_ all _protseqs _if, 2-11, A-9

rpc_server_use_protseq, 2-11, 2-16, A-9
program example, 5-7

rpc _server_ use _protseq_ ep, A-9

rpc_server_use_protseq_if, 2-11, A-9

rpc _ ss _allocate, A-26

rpc _ ss _ client_free, A-28

rpc _ ss _destroy_ client_ context, A-28

rpc _ ss _disable_ allocate, A-27

rpc _ss _enable_ allocate, A-27

rpc_ss_free, A-27

rpc _ ss _get_ thread_ handle, A-28

rpc _ ss _set_ client_ alloc _free, A-27

rpc _ ss _set_ thread_ handle, A-28

rpc _ ss _swap_ client _alloc _free, A-27

rpc_stats_ vector _t, 2-20

rpc_string_binding_compose, 2-10, 2-14, A-5
program example, 5-3

Index 15

rpc _string_ binding_parse, 2-14, A-5

rpc_string_free, A-26

rpccp (RPC control program), 7-5, GL-17

rpcd, 2-4, 2-6, 5-7, A-11 to A-12, GL-17,
GL-19

rpcd daemon, 5-2, 7-2

rrpc_$,datatypes,2-20

rrpc_$ calls, 2-13 to 2-22

rrpc_$interface_vec_t,2-20

rrpc_$stat_vec_t,2-20

rundown procedure, with context handles, 3-6

runtime, GL-18

runtime library, GL-19

s
-s, uuidgen option, 6-2

-s, NIDL option, 4-12

sample applications. See examples

_ saux.c extension, 3-21

security service, 1-3

server, GL-19
address, GL-19
application thread, GL-19
binding handle, GL-19
binopfw program example, 5-6 to 5-11
compatible, 2-4, GL-6
context, GL-20
DCE routines for, A-8 to A-14
DCE routines for initializing, A-10
endpoint map service routines,.7-3
initializing, 5-6
locating, 7-13
name service routines, 7-13
NCS 1.5.lbinopfw,B-4to B-7

16 Index

NCS 1.5 .1 stacks, B-13
registering with the endpoint map, 7-4
server routine summary, A-34
stub, GL-20
using rpc_ep routines, 7-3
writing multiple managers, 6-1

server routines, name service, 7-13

service, GL-20
transport, GL-22

set of binding handles, looking up, 7-12

sets, 3-7

short bitset, 3-13

short bitset enum, 3-7

shortenum,3-7,3-13

signals, GL-20
asynchronous,5-16

delivery at cancellation points, 5-19
handling, 5-18 to 5-22

handling, 1-6, 5-16 to 5-20
no replacement for rpc_$set_fault_mode,

5-20
synchronous,5-16

signatures, GL-20

sigwait, 5-18

simple declarators, 3-13

simple types. Sec data types

size_is attribute, 3-4, C-4

skeletal interface definitions, generating, 4-9 to
4-13

socket
address, 2-1to2-2, GL-20

differences, 1-5
replaced by protocol sequence, 2-3 to 2-4

family ID, 2-2

socket_$,datatypes,2-20

socket_$ calls, 2'-13 to 2-22
replacing, 6-4

socket_$equal, 2-14

socket_ $family _from_ name, 2-14

socket_ $family_ to_ name, 2-14

socket_ $from _local_ rep, 2-15

socket_ $inq_ broad_ addrs, 2-15

socket_$inq_my_netaddr, 2-15

socket_$max_pkt_size, 2-15

so_cket _$set_ wk _port, 2-15

socket_$to_Iocal_rep, 2-15

socket_$to_naDle,2-14

socket_ $valid_ families, 2-14

socket_ $valid_ family, 2-14

specifying binding information, DCE, 2-13 to
2-22

_sstub.c extension, 3-21, 4-13

stacks example, 6-1 to 6-17
amanager.c, 6-14 to 6-15
client.c, 6-4
lmanager.c, 6-16
NCS 1.5.1 version, B-8 to B-18
server.c, 6-9 to 6-17
stacksdf.h header file, 6-3
util.c, 6-17

state infonnation, maintaining with context
handles, 1-5, 3-6

status parameters, GL-20

status_ $t, 3-3
data type, 2-18

string, 3-5 to 3-6
attribute, 3-15, C-4
client routine summary, A-31
DCE routine for, A-26
IDL and NIDL examples, 4-4

type attribute, 3-12

string binding, 2-4
comparison ofNCS 1.5.1 and DCE RPC, 2-3
creating, A-4 to A-6
definition, 2-2 to 2-3

· example of, 2-3
and handle, 2-4 to 2-6

string services, API routines for, 2-8

string_ conv example
client.c, 7-9 to 7-13
server.c, 7-14 to 7-17, 7-14 to 7-17

stringO, 3-13
NCS data type, 3-5
NIDL example, 4-4

strings
manager routine summary, A-39
server routine summary, A-35

struct, 3-7

structures, in DCE IDL, 3-7

stub, GL-21
client, GL-5
controlling generation of, 3-18
files generaged by IDL, 3-21
server, GL-20

stub memory management, A-26

stub support
client routine summary, A-33
server routine summary, A-37

stub support· services, 2-9

switches, GL-21

syntax, transfer, GL-21

T

tasks, GL-21

threads, 1-2, 1-6, 2-11, GL-19, GL-21

Index 17

call thread, GL-4
cancellation mechanism, 5-16
concurrent binding handles, 1-7
local application, GL-11
manipulating multiple, 2;_10
multithreading, GL-13
and signals, 5-16

time service, DCE component, 1-3

timeouts, setting communication, 2-11

transfer syntax, GL-21

transferring large quantities of data, with pipes,
3-3

transmit_ as attribute, 3-19 C-5, GL-21

transmit_ as, type attribute, 3-12

transmitted types, GL-21

transport
independence, GL-21
protocols, GL-21
service, GL--22

TRY macro, 1-6, 5-17

TRY/CATCH macros, 1-6

type, GL-22
attributes, 3-12
basic, 3-2
data, transferring with pipes, 3-3
declarations, 3-12 to 3-13, 4-11
presented, GL-16
specifiers, 3-12 to 3-13
transmitted, GL-21
UUIDs, GL-22

type UUIDs, generating, 6-2

typedef, type declaration, 3-12

types, declarators, 3-13 to 3-21

typographic conventions, vi

18 Index

u
urns, routines, 2-17 to 2.::...22

unbound handle, 2-6, 2-10, GL-22

union, 3-7

unions, in DCE IDL, 3-7

Universal Unique Identifiers. See UUIDs

UNIX signals. See signals

unmarshalling, GL-22

user-defined handles, 3-6

using exceptions, with DCE exception package,
5-17 to 5-18

uuid attribute, 3-9, C-2

uuid_$, data types, 2-20 to 2-21

uuid _ $ routines, 2-17 to 2-22

uuid _$create_ nil, 2-17

uuid_$decode,2-17

uuid_$encode,2-17,5-21

uuid _$equal, 2-17

uuid _$from_ string, 2-17

uuid _$gen, 2-17

uuid _$hash, 2-17

uuid $nil, 1-7, 2-17, 5-7
program example, 5-2

uuid_$string_t, 1-7, 2-20, 5-22

uuid $t, 1-7, 2-20
data structure, 5-20

uuid _$to_ uid, 2-17

uuid_compare, 2-17, A-29

uuid _create, 2-17, A-29

uuid_create_nil, 1-7, 2-20, A-29

uuid _equal, 2-17, A-29

uuid_from_string, 2-17, A-29

uuid _gen, 2-20

uuid _hash, 2-17, A-29

uuid_is_nil, 2-~ 7, A-29

uuid_t, 1-7, 2-20
data structure, 5-20

uuid _to _string, 2-17, A-29

uuid _vector_ t, initializing, 6-9

uuidgen,2-17,2-20~4-9

-i option, 4-9
-s option, 6-2

UUIDs, GL-22
client routine summary, A-33
comparison ofNCS 1.5.1 and DCE, 5-20 to

5-22
converting NCS 1.5.1, 5-21
DCE routines for, A-29
differences, 1-7 to 1-8
generating object, 6-2 to 6-17
as global variable, 1-7
initializing vector, 6-9
interface, GL-10
interface attribute, 3-9, 4-10
manager routine summary, A-4
NCS 1.5.1 string representation, 2-20
object, generating, 6-2
pr~serving NCS 1.5.1, 5-21

v

routines, 2-17 to 2-22
server routine summary, A-37
services, 2-8
string representation, 5-22
using DCE, 5-20

vl~array attribute, 4--4, C-5

vl_enum attribute, 4--4, C-5

vl_string attribute, 4-4, C-5

vl _struct attribute, 4-4, C-5

_ v2.acf extension, 4-6

_ v2.idl extension, 4-4

varying arrays, 3-5, GL-22

vectors, creating, 6-9

version attribute, 3-9, 4-10, C-2
and compatibility, 3-9

versioning interface definitions, 3-9

void type, 3-3

void*, 3-6

w
well-known endpoints, GL-22

well-known ports, GL-23

writing multiple managers, example, 6-1to6-17

---000---

Index 19

WIN AN HP CALCULATOR!

Your comments help us determine how well we meet your needs. Returning this card
with your name and address enters you in a quarterly drawing for an HP calculator*.

NCS 1.5. 1 to DCE RPC Transition Guide
83193-90002 E0293

What operating system and hardware do you use? (Type: uname -rvm and write
the displayed information on the following line.)

How much have you used this manual?
___ Extensively ___ Often· ___ Occasionally ___ Not at all

----fold here--fold here----

Complete this section only if you have used this manual. Use the column labeled
"NC" if you have no comment or opinion regarding that topic.

The manual is well organized.
It is easy to find information in the manual.
It tells me clearly what I need to know.
It is easy to perform step-by-step procedures.
Overall, the manual meets my expectations.

Agree

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Disagree

0 0
0 0
0 0
0 0
0 0

NC
0
0
0
0
0

Please take the time to describe any problems you've had or any suggestions that
would improve our product/manual. Use additional pages if needed. The more
specific your comments, the more useful they are to us. Thank you.
Connnents:

----fold here--fold here----

O Check here if you would like a reply. * Offer expires 02/01/95.

i i
Please tape here Please print/type the following information Please tape here

Name: _________ Telephone: -----------

Company: ------------------------

Address: ------------------------

City: ------- State: __ Zip Code/Country: -----

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Learning Products HP-UX
Hewlett-Packard Company
3404 East Harmony Road
Fort Collins co 80525-9988

11 •• 1.11 •••• 1.1 ••• 1.1.1.1.1.1 .. 1.1 .. 1 •• 1.1 •• 1 •• 11 .. 1

NCS 1.5.1 to DCE RPC Transition Guide
83193-90002 E0293

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

Manual Part No.
B3193-90002

F//-p9 HEWLETT
~al PACKARD

Copyright @1993
Hewlett-Packard Company
Printed in USA E0293

Manufacturing
Part No.
B3193-90002

83193-90002

