
HP Pascal/HP-UX Reference Manual

ABCDE

HP Part No. 92431-90005

Printed in U.S.A. August 1992

Fifth Edition

E0892

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing, performance, or use
of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set forth in
FAR 52.227-19(c)(1,2).

Copyright c 1987 - 1992 by Hewlett-Packard Company

Printing History

New editions are complete revisions of the manual. Update packages may be issued between
editions.

The software code printed alongside the date indicates the version level of the software
product at the time the manual was issued. Many product updates and �xes do not require
manual changes and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one-to-one correspondence between product
updates and manual updates.

First Edition March 1987 MPE XL: 31502A.01.01
HP-UX: 92431A.00.03

Update 1 August 1987 MPE XL: 31502A.01.03
HP-UX: 92431A.01.07

Second Edition November 1987 MPE XL: 31502A.01.06
HP-UX: 92431A.01.09

Update 1 January 1988 MPE XL: 31205A.01.06
HP-UX: 92431A.01.12

Third Edition October 1988 MPE XL: 31502A.01.21
HP-UX: 92431A.03.04

Fourth Edition January 1991 MPE XL: 31502A.03.10
HP-UX: 92431A.08.00

Fifth Edition June 1992 MPE/iX: 31502A.04.05
August 1992 HP-UX: 92431A.09.07

iii

iv

Preface

The HP Pascal/HP-UX Reference Manual provides material about HP Pascal and its system
programming extensions. It is intended for experienced Pascal programmers. This manual
covers material for the HP-UX and MPE/iX operating systems.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter references to
MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs
written for MPE XL will run without change under MPE/iX. You can continue to use
MPE XL system documentation, although it may not refer to features added to the operating
system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, the operating system for HP 3000s.
MPE V is not based on the PA-RISC architecture; however, MPE V software can be run on
the PA-RISC (Series 900) HP 3000s in what is known as compatibility mode.

This manual is organized as follows:

Chapter 1 Introduces HP Pascal. A summary of extensions to ANSI/IEEE 770
X3.97-1983 and ISO 7185-1983 standard Pascal is included.

Chapter 2 Describes the language elements in HP Pascal.

Chapter 3 Describes HP Pascal's data types.

Chapter 4 De�nes the expressions used in HP Pascal.

Chapter 5 Describes the parts of the declaration section in HP Pascal.

Chapter 6 Discusses the statements used in HP Pascal.

Chapter 7 Describes the program structure used in HP Pascal.

Chapter 8 De�nes HP Pascal's procedures and functions.

Chapter 9 De�nes the prede�ned routines used in HP Pascal.

Chapter 10 Explains input and output as used in HP Pascal.

Chapter 11 De�nes the system programming extensions to HP Pascal.

Chapter 12 Explains every compiler option used in HP Pascal.

Appendix A Describes the error messages, notes, and warnings in HP Pascal.

Appendix B De�nes the ASCII character set.

Appendix C De�nes the compiler's limits and default values.

If you have suggestions for improving the HP Pascal/iX Reference Manual , please send us the
Reader Comment Card, which is located at the front of this manual.

v

Additional DocumentationAdditional Documentation

Additional information for the HP Pascal programmer can be found in the following
documents:

IEEE Standard Pascal Computer Programming Language, ANSI/IEEE 770 X3.97-1983,
Library of Congress Catalog Number 82-84259. This book de�nes the ANSI standard Pascal
that is the basis for HP Pascal.

HP Pascal/HP-UX Programmer's Guide (92431-90006), This book explains HP Pascal
topics in detail. It describes how statements interact with each other, if necessary. It does
not explain every statement and feature of HP Pascal.

This manual also refers to the following manuals:

HP C Programmer's Guide (92434-90002)

HP Link Editor/XL Reference Manual (32650-90030)

ALLBASE/SQL Pascal Application Programming Guide (36216-90007)

HP System Dictionary/XL General Reference Manual (32256-90004)

HP TOOLSET/XL Reference Manual (36044-90001)

HP-UX Floating-Point Guide (B2355-90024)

HP-UX Reference (B2355-90004)

Introduction to MPE XL for MPE V Programmers (30367-90005)

MPE/iX Commands Reference Manual, Volumes 1 and 2 (32650-90003 and 32650-90364)

MPE/iX Intrinsics Reference Manual (32650-90028)

MPE/iX Symbolic Debugger User's Guide (31508-90003)

MPE/iX System Debug Reference Manual (32650-90013)

PA-RISC 1.1 Architecture and Instruction Set Reference Manual (09740-90039)

Precision Architecture and Instruction Set Reference Manual (09740-90014)

Procedure Calling Conventions Reference Manual (09740-90015)

Trap Handling Programmer's Guide (32650-90026)

TurboIMAGE/XL Reference Manual (30391-90001)

Using VPLUS/V: Introduction to Forms Designs (32209-90004)

vi

Additional Documentation

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either upper or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace FileName with the name of
the �le:

COMMAND FileName

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(FileName):(FileName)

{ } In a syntax statement, braces enclose required elements. When several
elements are stacked within braces, you must select one. In the
following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND FileName [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or Parameter or neither. The elements cannot be repeated.

COMMAND FileName

�
OPTION

Parameter

�

vii

Additional Documentation

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets indicate
that you can repeatedly select the element(s) that appear within the
immediately preceding pair of brackets or braces. In the example
below, you can select Parameter zero or more times. Each instance of
Parameter must be preceded by a comma:

[,Parameter][...]

In the example below, you only use the comma as a delimiter if
Parameter is repeated; no comma is used before the �rst occurrence of
Parameter :

[Parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following example,
you must select A, AB, BA, or B. The elements cannot be repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions of
an example have been omitted.

4 In a syntax statement, the space symbol 4 shows a required blank. In
the following example, Parameter and Parameter must be separated
with a blank:

(Parameter)4(Parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key.

base pre�xes The pre�xes %, #, and $ specify the numerical base of the value that
follows:

%num speci�es an octal number.
#num speci�es a decimal number.
$num speci�es a hexadecimal number.

If no base is speci�ed, decimal is assumed.

viii

Additional Documentation

Pascal Speci�c Conventions

The conventions followed in this manual are summarized below:

For Text:

The term PAC is used for the type PACKED ARRAY OF CHAR with the lower bound equal to 1.

Reserved words and directives are in all uppercase letters.

Examples: BEGIN, REPEAT, FORWARD

Standard identi�ers are in all lowercase letters.

Examples: readln, maxint, text

General information concerning an area of programming (topic) appears as a heading with
initial capitalization. All headings that are not reserved words or standard identi�ers appear
with initial capitalization.

For Syntax Diagrams:

Syntactic entities that are to be replaced by user-supplied entities are represented by
sequences of lowercase letters and embedded underscore characters ().

Example: identifier

Keywords, prede�ned symbolic names and special symbols that must be supplied exactly as
given are shown in apostrophes. Usually, letters may be entered in uppercase or lowercase.

Example: 'IMPORT', ','

The diagrams are in the form of lines with directional arrows, known as \railroad tracks".
Alternative paths are indicated by switches in the tracks.

Example:

Note Some diagrams and tables have a number in the lower left or right corner,
such as the number LG200009 036 in the diagram above. This number is not
part of the diagram or table. It just identi�es the artwork.

ix

Contents

1. Introduction
Extensions to ANSI/IEEE and ISO Pascal 1-2
Type Compatibility . 1-2
CASE Statement . 1-2
Compiler Options . 1-3
Conformant Array Parameters 1-4
Constant Expressions . 1-4
Constructors (Structured Constants) 1-4
Declaration Part . 1-5
Halt Procedure . 1-5
Heap Procedures . 1-5
Identi�ers . 1-5
File Input/Output . 1-5
Function Return . 1-6
Longreal Numbers . 1-6
Minint . 1-6
Formal Parameter Congruency 1-6
Record Variant Declaration . 1-6
String or Character Literals . 1-7
String Type . 1-7
WITH Statement . 1-8
Numeric Conversion Functions 1-8
Modules . 1-8

2. Language Elements
Basic Symbols . 2-1
Reserved Words . 2-3
Identi�ers . 2-5
Scope . 2-6

Numbers . 2-8
Integer Literals . 2-8
Real and Longreal Literals . 2-9

Comments . 2-10
Separators . 2-11
String Literals . 2-12

Contents-1

3. Data Types
Simple Types . 3-3
Ordinal . 3-3
Bit16 . 3-5
Bit32 . 3-6
Bit52 . 3-8
Boolean . 3-9
Char . 3-10
Enumerated . 3-11
Integer . 3-12
Longint . 3-13
Shortint . 3-14
Subrange . 3-15

Real . 3-16
Longreal . 3-17

Structured Types . 3-18
ARRAY . 3-18
Array Declarations . 3-19
Multi-Dimensioned Arrays . 3-20
FILE . 3-21
Standard Text�les . 3-22
text . 3-22
input . 3-23
output . 3-23
Record . 3-24
Field List . 3-24
Fixed Part . 3-25
Variant Part . 3-25
Set . 3-28
PACKED . 3-29
String . 3-30

Pointer Types . 3-32
Pointers . 3-32

Type Compatibility . 3-34
Identical Types . 3-34
Compatible Types . 3-34
Incompatible Types . 3-34

Assignment Compatibility . 3-36
String Assignment Compatibility 3-36

4. Expressions
Operands . 4-4
Operators . 4-5
Operator Precedence . 4-6
Arithmetic Operators . 4-7
Implicit Type Conversion of Operands 4-7
DIV . 4-9
MOD . 4-10
Boolean Operators . 4-10
AND . 4-12
NOT . 4-13

Contents-2

OR . 4-14
Relational Operators . 4-15
Simple Relational Operators . 4-16
Set Relational Operators . 4-17
IN . 4-18

Pointer Relational Operators . 4-19
String Relational Operators . 4-20
Concatenation Operator . 4-22
SET Operators . 4-23
Array Selector . 4-24
Record Selector . 4-25
Set Constructor . 4-26
File Bu�er Selector . 4-28
Pointer dereferencing . 4-29
Function Calls . 4-30

5. The Declaration Section
Constant De�nition . 5-2
CONST . 5-3
false . 5-4
true . 5-5
maxint . 5-6
minint . 5-7
NIL . 5-8
Array Constants and Array Constructors 5-9
Record Constructor . 5-11
Restricted Set Constructor . 5-13
String Constructor . 5-14

Label Declaration . 5-15
Type De�nition . 5-16
TYPE . 5-17

Variable Declaration . 5-18
Global Variables . 5-18
Local Variables . 5-18
Module Variables . 5-18
VAR . 5-19
Side-E�ects . 5-20

6. Statements
Compound Statements . 6-3
BEGIN .. END . 6-4
Empty Statements . 6-5
Assignment . 6-6
CASE . 6-8
IF .. THEN . 6-10
IF .. THEN .. ELSE . 6-10
FOR .. DO . 6-13
REPEAT .. UNTIL . 6-16
WHILE .. DO . 6-18
WITH .. DO . 6-20
GOTO . 6-24

Contents-3

Procedures . 6-26

7. Program Structure
Program Heading . 7-3
Block . 7-4
Declaration Part . 7-5
PROCEDURE . 7-7
FUNCTION . 7-8
MODULE . 7-9
EXPORT . 7-13
IMPORT . 7-15
IMPLEMENT . 7-17

8. Procedures and Functions
Conformance . 8-6
Directives . 8-8
FORWARD Directive . 8-9
Recursion . 8-10
Function Calls . 8-11

9. Standard Routines
Procedures for Allocation and Deallocation 9-2
new . 9-3
dispose . 9-5
mark . 9-7
release . 9-8

String Procedures . 9-9
setstrlen . 9-9
strappend . 9-10
strdelete . 9-11
strinsert . 9-12
strmove . 9-13
strread . 9-14
strwrite . 9-16

String Functions . 9-17
str . 9-17
strlen . 9-18
strltrim . 9-19
strmax . 9-20
strpos . 9-21
strrpt . 9-22
strrtrim . 9-23

Transfer Procedures . 9-24
pack . 9-24
unpack . 9-26

Program Control Procedures . 9-28
halt . 9-28
assert . 9-29

MPE V Migration Routines . 9-30
baddress . 9-30
cmpbytes . 9-32

Contents-4

movebyteswhile . 9-34
scanuntil . 9-36
scanwhile . 9-38
waddress . 9-40

Arithmetic Functions . 9-42
abs . 9-42
arctan . 9-43
cos . 9-44
exp . 9-45
ln . 9-46
sin . 9-47
sqr . 9-48
sqrt . 9-49

Predicate Functions . 9-50
odd . 9-50

Numeric Conversion Functions . 9-51
binary . 9-51
hex . 9-52
octal . 9-53

Transfer Functions . 9-54
round . 9-54
trunc . 9-55

Ordinal Functions . 9-56
chr . 9-56
ord . 9-57
pred . 9-58
succ . 9-59

10. Input and Output
I/O Standard Procedures and Functions 10-4
append . 10-4
associate . 10-6
close . 10-8
disassociate . 10-9
eof . 10-10
eoln . 10-11
get . 10-12
lastpos . 10-14
linepos . 10-15
maxpos . 10-16
open . 10-17
overprint . 10-19
page . 10-20
position . 10-21
prompt . 10-22
put . 10-23
read . 10-24
Implicit Data Conversion . 10-26

readdir . 10-28
readln . 10-30
reset . 10-31

Contents-5

rewrite . 10-33
seek . 10-35
write . 10-36
Formatting of Output to Text�les 10-38
writedir . 10-41
writeln . 10-42

11. System Programming Extensions
ISO . 11-3
HP PASCAL . 11-3
HP MODCAL . 11-5
EXT MODCAL . 11-5

Language Elements . 11-6
Reserved Words . 11-6
Prede�ned Identi�ers . 11-7

Data Types . 11-8
Structured Types . 11-9
CRUNCHED . 11-9

Pointer Types . 11-14
Short and Long Pointers . 11-14
Localanyptr . 11-15
Globalanyptr . 11-16
Anyptr . 11-17

PROCEDURE and FUNCTION Types 11-19
Expressions . 11-22
Type Coercion . 11-22
Ordinal Type Coercion . 11-23
Pointer Type Coercion . 11-24
Other Type Coercion . 11-25

Declaration Section . 11-30
Constant De�nition . 11-30
NIL . 11-30

Statements . 11-31
TRY-RECOVER . 11-31

Procedures and Functions . 11-34
Formal Parameters . 11-34
ANYVAR . 11-34
READONLY . 11-36

Routine Options . 11-38
DEFAULT PARMS . 11-39
EXTENSIBLE . 11-40
INLINE . 11-41
UNCHECKABLE ANYVAR . 11-42
UNRESOLVED . 11-43

Prede�ned Routines . 11-44
Addressing and Pointers . 11-44
Addr . 11-44
Addtopointer . 11-46
Buildpointer . 11-47

Move Routines . 11-48
Move L to R . 11-48

Contents-6

Move R to L . 11-50
Fast Fill . 11-51
Move Fast . 11-52

Error Handling Routines . 11-54
Escape . 11-54
Escapecode . 11-55

Parameter Mechanisms . 11-56
Haveextension . 11-56
Haveoptvarparm . 11-58

Routine Mechanisms . 11-59
Call . 11-59
Fcall . 11-60

Size Functions . 11-61
Bitsizeof . 11-61
Sizeof . 11-63

12. Compiler Options
Introduction . 12-1
System-Independent Options . 12-3
HP Standard Options . 12-5
HP Pascal Options . 12-5
System Programming Options . 12-5

System-Dependent Options . 12-6
MPE/iX Options . 12-6
HP-UX Options . 12-6
Options That Work Di�erently on HP-UX and MPE/iX 12-6

System-wide File . 12-7
Compiler Option Description . 12-7
ALIAS . 12-8
ALIGNMENT . 12-11
ANSI . 12-12
ARG RELOCATION . 12-13
ASSERT HALT . 12-15
ASSUME . 12-16
BUILDINT . 12-22
CALL PRIVILEGE and EXEC PRIVILEGE 12-24
CHECK ACTUAL PARM . 12-26
CHECK FORMAL PARM . 12-28
CODE . 12-30
CODE OFFSETS . 12-31
CONVERT MPE NAMES . 12-33
COPYRIGHT . 12-34
COPYRIGHT DATE . 12-35
ELSE . 12-36
ENDIF . 12-38
EXTERNAL . 12-39
EXTNADDR . 12-40
FONT . 12-41
GLOBAL . 12-42
GPROF . 12-44
HEAP_COMPACT . 12-45

Contents-7

HEAP_DISPOSE . 12-46
HP_DESTINATION . 12-47
HP3000_16 . 12-49
HP3000_32 . 12-50
IF . 12-53
INCLUDE . 12-59
INCLUDE SEARCH . 12-62
INLINE . 12-64
INTR NAME . 12-66
KEEPASMB . 12-67
LINES . 12-69
LIST . 12-71
LIST CODE . 12-75
LISTINTR . 12-76
LITERAL ALIAS . 12-78
LOCALITY . 12-79
LONG CALLS . 12-80
MAPINFO . 12-81
MLIBRARY . 12-82
NLS SOURCE . 12-83
NOTES . 12-84
OPTIMIZE . 12-85
OS . 12-89
OVFLCHECK . 12-91
PAGE . 12-93
PAGEWIDTH . 12-94
PARTIAL EVAL . 12-95
POP . 12-96
PUSH . 12-97
RANGE . 12-98
RLFILE . 12-99
RLINIT . 12-100
S300_EXTNAMES . 12-101
SEARCH . 12-103
SET . 12-105
SHLIB CODE . 12-106
SHLIB VERSION . 12-107
SKIP TEXT . 12-108
SPLINTR . 12-110
STANDARD_LEVEL . 12-111
STATEMENT_NUMBER . 12-113
STDPASCAL WARN . 12-115
STRINGTEMPLIMIT . 12-116
SUBPROGRAM . 12-117
SYMDEBUG . 12-119
SYSINTR . 12-120
SYSPROG . 12-122
TABLES . 12-123
TITLE . 12-127
TYPE COERCION . 12-128
UPPERCASE . 12-130

Contents-8

VERSION . 12-131
VOLATILE . 12-132
WARN . 12-133
WIDTH . 12-134
XREF . 12-135

A. Error Messages
Reading Error Messages . A-1
Finding Undetected Errors . A-2
Using This Appendix . A-4
pc Driver Messages . A-6
Compiler Messages . A-10

B. ASCII Character Codes

C. Compiler Limits and Values

Glossary

Index

Contents-9

Figures

3-1. HP Pascal Data Types . 3-2
11-1. Relationship of STANDARD LEVEL Compiler Option Parameters 11-2
11-2. Extended Data Types . 11-8
11-3. Layout of a Record . 11-10
11-4. Layout of a Crunched Record . 11-10
11-5. Pointer Class Relationship . 11-14
11-6. Copying Order for move l to r . 11-49
11-7. Copying Order for move r to l . 11-50
12-1. Relationship Between HP Pascal and ANSI Standard Pascal 12-3
12-2. Categories of System-Dependent Compiler Options 12-6
12-3. Relationships Between ASSUME Compiler Option Parameters 12-18
12-4. Relationships Between STANDARD LEVEL Compiler Option Parameters . 12-112

Tables

2-1. Special Symbols . 2-1
2-2. Reserved Words . 2-3
3-1. String, PAC, and String Literal Assignment 3-37
4-1. HP Pascal Operands . 4-4
4-2. HP Pascal Operators . 4-5
4-3. Type Comparisons and Results . 4-8
4-4. String, PAC, Char, String Literal Comparison 4-20
6-1. HP Pascal Statements and Purposes 6-1
10-1. File Procedures and Functions . 10-2
10-2. Implicit Data Conversion . 10-27
10-3. Default Field Widths . 10-38
11-1. System Programming Extension Reserved Words 11-6
11-2. System Programming Extension Prede�ned Identi�ers 11-7
11-3. Number of Bits Allocated for Unsigned Subranges 11-11
11-4. Number of Bits Allocated for Signed Subranges 11-12
12-1. Compiler Option Locations and Scopes 12-2
12-2. SPLINTR Format vs SYSINTR Format 12-121
A-1. Error Messages Range and Category A-5
B-1. ASCII Character Codes . B-1

Contents-10

1

Introduction

HP Pascal originates from the Pascal language developed by Nicklaus Wirth in 1968. Wirth's
Pascal is based on the ALGOL 60 programming language. His objective was to introduce
Computer Science students to \good programming practices." Since then, Pascal has
undergone extensions, particularly in its input-output capabilities. This has helped it become
a dominant language not only in the academic world, but also in major commercial software
projects. Commercial attraction for Pascal stems from its structured nature that makes Pascal
programs readable and self documenting. Because maintenance typically forms a large portion
of software costs, the structuring is an attractive feature, particularly for large systems and
subsystems.

Although Pascal di�ers from vendor to vendor, it is easy to program for portability by
conforming to a reasonably large and e�ective subset of Pascal that is standard across several
vendors. The standardization is achieved as a result of the ANSI/IEEE 770 X3.97-1983
and ISO 7185-1983 standards that exist for Pascal today. HP Pascal is a superset of these
standards. It is based on HP's standard for the Pascal language.

The Pascal on the HP Precision Architecture Series of Computer Systems includes system
programming extensions to the HP Pascal standard. These extensions have lead to widespread
use of Pascal within HP for systems level applications. This trend is also expected to be
observed by our customers. In addition to its past usages, Pascal may be used for applications
traditionally written in Assembly or SPL. These applications will have a higher degree of
portability across HP systems in the future.

This chapter is divided into several sections. The �rst section covers the conventions used
in this manual. This is followed by a discussion about the HP Pascal Extensions to the
ANSI/IEEE 770 X3.97-1983 and ISO 7185-1983 standards for Pascal.

Introduction 1-1

Additional Documentation

Extensions to ANSI/IEEE and ISO Pascal

This section describes HP Pascal features that are extensions of ANSI/IEEE 770 X3.97-1983
and ISO 7185-1983 Pascal. For the full description of a feature, refer to the appropriate
keyword or topic in this manual.

Type Compatibility

Note In the ISO 7185-1983 or ANSI/IEEE 770 X3.97-1983 standards for Pascal,
the term \string" refers to any PACKED ARRAY of CHAR with a starting
index of 1. HP Pascal, however, supports the standard type string. To avoid
confusion, the term PAC is used for the type PACKED ARRAY [1..n] of
CHAR with a starting index of 1.

Pascal de�nes a set of compatibility requirements for the operands of each operator,
based both on the operator itself and the types of its operands, and a set of assignment
compatibility rules. HP Pascal extends the operator and assignment compatibility rules as
follows:

If T1 and T2 are PAC variables or string literals they are compatible. The shorter is padded
with blanks for comparison.

If T1 is a PAC variable and T2 is a string literal or PAC variable, then T2 is assignment
compatible with T1 provided that T2 is shorter than or equal to T1. If T2 is shorter than T1,
T2 is padded with blanks.

CASE Statement

In a CASE statement, the reserved word OTHERWISE may precede a list of statements
and the reserved word END. If the case selector evaluates to a value not speci�ed in the
case constant list, the system executes the statements between OTHERWISE and END.
OTHERWISE must follow the last case constant. Also, subranges may appear as case
constants.

1-2 Introduction

Additional Documentation

Compiler Options

Compiler options appear between dollar signs ($). HP Pascal has two categories of
compiler options: system-independent and system-dependent compiler options. The
system-independent category of compiler options are further distinguished by the following
categories: HP Standard Options, HP Pascal Options, and System Programming Options.
The system-dependent either work on only one operating system, or work di�erently on
HP-UX and MPE/iX.

HP Pascal options are not required by the HP Standard, but are available in HP Pascal.
An HP Pascal program containing HP Pascal options must be compiled by the HP Pascal
compiler.

System-Independent Compiler Options:

HP Pascal Options

ALIAS

ALIGNMENT

ARG_RELOCATION

ASSERT_HALT

ASSUME

BUILDINT

CHECK_ACTUAL_PARM

CHECK_FORMAL_PARM

CODE

CODE_OFFSETS

COPYRIGHT

COPYRIGHT_DATE

ELSE

ENDIF

EXTERNAL

EXTNADDR

GLOBAL

HEAP_COMPACT

HEAP_DISPOSE

IF

INLINE

INTR_NAME

KEEPASMB

LIST_CODE

LISTINTR

LITERAL_ALIAS

LOCALITY

LONG_CALLS

MAPINFO

MLIBRARY

NOTES

OPTIMIZE

OS

OVFLCHECK

PAGEWIDTH

POP

PUSH

S300_EXTNAMES

SEARCH

SET

SKIP_TEXT

SPLINTR

STATEMENT_NUMBER

STDPASCAL_WARN

STRINGTEMPLIMIT

SUBPROGRAM

SYSINTR

SYSPROG

TABLES

TITLE

TYPE_COERCION

UPPERCASE

VERSION

VOLATILE

WARN

WIDTH

XREF

Introduction 1-3

Additional Documentation

HP Standard Options

ANSI

LINES

LIST

PAGE

PARTIAL_EVAL

RANGE

STANDARD_LEVEL

System Programming Options

EXTNADDR

TYPE_COERCION

System-Dependent Compiler Options:

MPE/iX Only MPE/iX and HP-UX HP-UX Only

CALL_PRIVILEGE

EXEC_PRIVILEGE

FONT

HP3000_16

HP3000_32

RLFILE

RLINIT

INCLUDE

INCLUDE_SEARCH

NLS_SOURCE

SYMDEBUG

CONVERT_MPE_NAMES

GPROF

HP_DESTINATION

SHLIB_CODE

SHLIB_VERSION

Refer to Chapter 12 for details about these options.

Conformant Array Parameters

The ISO Level 1 Conformant Array Parameter feature is implemented in HP Standard Pascal.
This is the only feature in ISO Pascal that is not in ANSI/IEEE Pascal.

This feature allows the user to pass an array as a parameter, whose bounds are determined
at run time and which conforms to the conformant array parameter speci�cation. The
speci�cation includes the names of the array bounds. The values of the bounds of the actual
array are given when it is passed.

Constant Expressions

The value of a declared constant may be speci�ed with a constant expression. A constant
expression returns an ordinal or real value and can contain only declared constants, literals,
calls to the functions ord, chr, pred, succ, hex, octal, binary, strlen, odd, and the
operators +, -, *, DIV, and MOD. Note that a constant expression can appear anywhere that a
constant can appear.

Constructors (Structured Constants)

The value of a declared constant can be speci�ed with a constructor. A constructor
establishes values for the components of a previously declared structured type. Constructors
can only appear in a CONST section of a declaration part of a block. Set constructors can
appear either in a CONST section or in expressions in executable statements.

1-4 Introduction

Additional Documentation

Declaration Part

In the declaration part of a block, CONST, TYPE, VAR, MODULE, and IMPORT sections
can be repeated and intermixed.

Halt Procedure

The halt procedure causes an abnormal termination of a program.

Heap Procedures

The procedure mark saves the allocation state of the heap. The procedure release restores the
allocation state of the heap to a state previously marked. This has the e�ect of deallocating
all storage allocated by the procedure new since the time mark was called.

Identifiers

The underscore character (_) can appear in identi�ers, but not as the �rst character.

File Input/Output

A �le can be opened for direct access with the procedure open. Direct access �les have a
maximum number of components indicated by the function maxpos and have a current
number of written components, indicated by the function lastpos . The procedure seek places
the current position of a direct access �le at a speci�ed component. Data can be read from a
direct access �le or written to it with the procedures readdir or writedir that are combinations
of seek and the standard procedures read or write. A text�le cannot be used as a direct access
�le.

A �le can be opened in the \write-only" state without altering its contents by using the
procedure append . The current position is set to the end of the �le.

Any �le can be explicitly closed with the procedure close.

To permit interactive input, the system de�nes the primitive �le operation get as \deferred
get." Refer to get in Chapter 10 for more information.

The procedure read accepts any ordinal type as input from text �les. Therefore, it is possible
to read a Boolean or enumerated value from a text �le. It is also possible to read a value that
is of type PAC or string.

The procedure write writes expressions to a text �le. Any ordinal type can be a parameter.
An enumerated constant can be written directly to a text �le. Write also writes expressions of
type string or PAC.

The function position returns the index of the current position for any �le that is not a
text�le.

Introduction 1-5

Additional Documentation

The routines page, overprint , prompt, and linepos operate on text�les. The following lists
what each routine does:

Linepos returns the integer number of characters that the program has read from or written
to a text�le since the last end-of-line marker.

Page causes a page eject when a text �le is printed.

Overprint causes the printer to perform a carriage return without a line feed, e�ectively
overprinting a line.

Prompt displays the output bu�er without writing a line marker. This allows the cursor to
remain on the same screen line when output is directed to a terminal.

The routine associate allows Pascal input/output operations on �les that have been opened by
the operating system. The routine disassociate disallows these operations.

Function Return

A function can return any structured type, except those containing �les. That is, a function
may return an array, record, set, or string .

Longreal Numbers

The type longreal is identical to the type real except that it provides greater precision. The
letter \L" precedes the scale factor in a longreal literal .

Minint

The standard constant minint is de�ned in HP Pascal. The value is implementation
dependent. The type integer is de�ned as a subrange minint . . . maxint . Minint is less than
or equal to maxint.

Formal Parameter Congruency

Two formal parameter lists are congruent if they contain an equal number of parameters and
each parameter in one list is equivalent to the parameter in the same position in the other list.
The formal parameter lists do not need to be syntactically the same.

Record Variant Declaration

The variant part of a record �eld list may have a subrange as a case constant and need not
specify all the case constants for the tag type.

1-6 Introduction

Additional Documentation

String or Character Literals

HP Pascal permits the encoding of control characters or any other single ASCII character
after the sharp symbol (#). For example, the string literal #G represents CTRL-G (or the
bell). A character can also be encoded by specifying its ASCII ordinal value (0..255) after
the sharp symbol. For example, #7 represents CTRL-G. These characters can be included in
string literals by directly appending them in front of or behind a string literal.

String Type

HP Pascal supports the prede�ned type string. A string type is a PACKED ARRAY of
CHAR with a declared maximum length and an actual length that may vary at run time. All
HP Pascal implementations have maximum lengths of at least 255 characters.

A variable of type string can be compared with a similar variable or a string literal or can
be assigned to a variable of type string. A string literal can be assigned to a variable of type
string.

The following standard procedures and functions manipulate strings:

Setstrlen sets the current length of a string without changing its contents.

Str returns a speci�ed portion of a string, such as a substring.

Strappend appends one string to another.

Strdelete deletes a speci�ed number of characters from a string.

Strinsert inserts one string into another.

Strlen returns the current length of a string.

Strltrim and strrtrim trim leading and trailing blanks, respectively, from a string.

Strmax returns the maximum length of a string.

Strmove copies a substring from a source string to a destination string.

Strpos returns the position of the �rst occurrence of a speci�ed string within another string.

Strread reads one or more values from a string.

Strrpt returns a string composed of a designated string repeated a speci�ed number of
times.

Strwrite writes one or more values to a string.

Introduction 1-7

Additional Documentation

WITH Statement

The record designator in a WITH statement can be a call to a function that returns a record
as its result, or a structured constant.

Numeric Conversion Functions

The functions binary, octal, and hex convert a parameter of type string or PAC, or a string
literal, to an integer. These functions interpret the parameter the following ways:

Binary interprets the parameter as a binary value.

Octal interprets the parameter as an octal value.

Hex interprets the parameter as a hexadecimal value.

Modules

HP Pascal supports separately compiled program fragments called modules . Modules can
be used to satisfy the unresolved references of another program or module. Typically, a
module \exports" types, constants, variables, procedures, and functions. A program can then
\import" a module to satisfy its own references.

This mechanism allows commonly used procedures and functions to be compiled separately
and used by more than one program without having to include them in each program.

1-8 Introduction

2

Language Elements

A Pascal program is a sequence of statements that, when executed in a speci�ed order,
processes data to produce desired results. The elements of Pascal include basic symbols,
reserved words, identi�ers, numbers, comments, separators, and literals. The statements are
made up of di�erent elements depending on the needs of the program.

This chapter describes in detail the elements of statements in the HP Pascal language.

Basic Symbols

The basic symbols consist of letters, digits, and special symbols. The letters include A..Z and
a..z. The digits are 0 through 9. Table 2-1 lists the special symbols that are valid in HP
Pascal.

Table 2-1. Special Symbols

Symbol Description

+ Add, set union, concatenate strings, unary plus +.

- Subtract, set di�erence, unary minus -.

* Multiply, set intersection.

/ Divide (real results).

= Equal to, type identi�er.

< Less than.

> Greater than.

() Delimit a parameter list or a expression.

[] Delimit an array or string index, set, or a constructor. May be replaced by
the (. .) pair.

. Select record �eld, decimal point.

, Separate listed identi�ers, values, or variables.

; Separates statements and formal parameters.

Language Elements 2-1

Additional Documentation

Table 2-1. Special Symbols (continued)

Symbol Description

: Denotes a statement label, list of case constants, or variable identi�ers.

^ De�ne or dereference pointers, access �le bu�er. May be replaced by @.

<> Not equal.

<= Less than or equal, subset.

>= Greater than or equal, superset.

:= Assign value to a variable.

.. Delimit a subrange.

{ } Delimit a comment. May be replaced by the (* *) pair.

Encode a control character.

$ Delimit a compiler option.

' Delimit a string literal.

_ May appear within an identi�er.

2-2 Language Elements

Additional Documentation

Reserved Words

Reserved words are symbols that have special meaning to the Pascal language. They are the
names of statements, data types, or operators. A reserved word can be used in a program
only in the context for which it is de�ned. A reserved word cannot be rede�ned for use as an
identi�er. It may, however, be used within comments or string literals.

A list of reserved words recognized by HP Pascal with a brief description of each is given in
Table 2-2. A more detailed description of some of the reserved words follows in this chapter.
In some cases, a detailed description is presented elsewhere in this manual. Table 2-2 provides
the location of these instances by word and chapter.

Note At the ANSI and ISO standard level, OTHERWISE, IMPORT, EXPORT,
IMPLEMENT, and MODULE are not considered reserved words. The
compiler option STANDARD LEVEL controls whether these identi�ers are
recognized as reserved words. Refer to Chapter 12 for more information about
STANDARD LEVEL. If the system programming extensions are enabled,
additional identi�ers may be treated as reserved words.

Table 2-2. Reserved Words

Reserved Word(s) Description Chapter
Reference

AND Boolean conjunction operator. 4

ARRAY, OF A structured type. 3

BEGIN . . . END Delimit a compound statement or BLOCK. 6

CASE . . . OF . . . OTHERWISE . . . END A conditional statement. 6

CONST Begins constant de�nition section. 5

DIV Integer division operator. 4

EXPORT Begins module export section. 7

FILE . . . OF Structured type. 3

FOR . . . TO . . . DOWNTO . . . DO Repetitive statement. 6

FUNCTION Begins a function declaration. 7

GOTO Control transfer statement. 6

IF . . . THEN . . . ELSE Conditional statement. 6

IMPLEMENT Begins module implement section. 7

IMPORT Begins module import section. 7

IN Set inclusion operator. 4

LABEL Begins label de�nition section. 5

MOD Integer modulus operator. 4

Language Elements 2-3

Additional Documentation

Table 2-2. Reserved Words (continued)

Reserved Word(s) Description Chapter
Reference

MODULE Begins a module declaration. 7

NIL Special pointer value. 5

NOT Boolean negation operator. 4

OR Boolean disjunction operator. 4

PACKED Controls allocation for structured type. 3

PROCEDURE Begins a procedure declaration. 7

PROGRAM Program heading. 7

RECORD . . . CASE . . . OF . . . END Structured type. 3

REPEAT . . . UNTIL Repetitive statement. 6

SET . . . OF Structured type. 3

TYPE Begins a type de�nition section. 5

VAR Begins a variable declaration section. 5

WHILE . . . DO Repetitive statement. 6

WITH . . . DO Opens record scopes. 6

2-4 Language Elements

Additional Documentation

Identifiers

An HP Pascal identi�er consists of a letter preceding an optional character sequence of
letters, digits, or the underscore character (_) up to a source line in length with all characters
signi�cant without respect to case.

Identi�ers are used to denote declared constants, types, variables, procedures, functions,
modules, and programs.

A letter may be any of the letters in the subranges A through Z or a through z. The
compiler makes no distinction between upper and lower case in identi�ers. A digit may be
any of the digits 0 through 9. The underscore (_) is an HP Standard Pascal extension of
ANSI/IEEE770X3.97 - 1983 Standard Pascal.

In general, an identi�er must be de�ned before using it. Four exceptions are:

Identi�ers that de�ne pointer types and are themselves de�ned later in the same declaration
part.

Identi�ers that appear as program parameters and are declared subsequently as variables.

Prede�ned identi�ers such as integer and char.

Forward procedures or functions.

An identi�er does not need to be de�ned when it is a program, module, procedure, or function
name, or one of the identi�ers de�ning an enumerated type. Its initial appearance in a
function, procedure, module, or program header is the \de�ning occurrence."

Finally, HP Pascal has a number of standard identi�ers that may be redeclared. These
standard identi�ers include names of standard procedures and functions, standard �le
variables, standard types, standard constants, and procedure or function directives.

Reserved words are language de�ned symbols whose meaning can never change. Therefore, an
identi�er cannot be declared that has the same spelling as a reserved word.

For a list of reserved words recognized by HP Pascal, see Table 2-2.

Syntax

Identifier:

Language Elements 2-5

Additional Documentation

Example

GOOD_TIME_9 { These identifiers }

good_time_9 { are }
gOOd_TIme_9 { equivalent. }

x2_GO

a_long_identifier

Boolean { Standard identifier.}

Scope

The scope of an identi�er is its domain of accessibility or the region of a program in which it
may be used. In general, a user-de�ned identi�er can appear anywhere in a block after its
de�nition. Furthermore, the identi�er can appear in a block nested within the block in which
it is de�ned.

If an identi�er is rede�ned in a nested block, however, this new de�nition takes precedence in
the entire block. The object de�ned at the outer level is no longer accessible from the inner
level. Once de�ned at a particular level, an identi�er may not be rede�ned at the same level,
except for �eld names.

Labels are not identi�ers, and their scope is restricted. They cannot mark statements in
blocks nested within the block where they are declared.

Identi�ers de�ned at the main program level are global . Identi�ers de�ned in a function or
procedure block are local to the function or procedure. The de�nition of an identi�er must
precede its use, with the exception of pointer type identi�ers, program parameters, prede�ned
identi�ers, and forward declared procedures or functions.

For a module, identi�ers declared in the EXPORT section are valid for the entire module.
Identi�ers declared after the IMPLEMENT keyword are valid only within the IMPLEMENT
part of the module.

When a module is imported, the identi�ers in the EXPORT section of the imported module
are placed in the global scope of the program. Because of this, the identi�ers in the EXPORT
section must be unique not only within the module, but also within the global scope of a
program.

2-6 Language Elements

Additional Documentation

Example

PROGRAM show_scope (output);

CONST

asterisk = '*';

VAR

x: char; {global variable}

PROCEDURE writeit;

CONST

x = 'LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT';

BEGIN

write (x)

END; {writeit}

BEGIN { show_scope }

x:= asterisk;

write (x);

writeit;

write (x);

writeln;

END. { show_scope }

RESULTS:

LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT

Language Elements 2-7

Additional Documentation

Numbers

HP Pascal recognizes three kinds of numeric literals: integer, real, and longreal .

Integer Literals

An integer literal consists of a sequence of digits from the subrange 0 through 9. No spaces
may separate the literal, and leading zeroes are not signi�cant. The compiler interprets
unsigned integer literals as positive values.

The maximum unsigned integer literal is equal in value to the standard constant maxint .
The minimum signed integer literal is equal in value to the standard constant minint . The
actual values of minint and maxint are implementation dependent; however, at least 9 decimal
digits are allowed. Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide, depending on your implementation, for more information.

Syntax

Unsigned Integer:

Signed Integer:

Example

100 { unsigned integer }

-100 { signed integer }

2-8 Language Elements

Additional Documentation

Real and Longreal Literals

A real or longreal literal consists of a coe�cient and a scale factor. An E preceding the scale
factor is read as times ten to the power of and speci�es a real literal. An L preceding scale
factor also means times ten to the power of, but speci�es a longreal literal .

Lowercase e and l are legal. At least one digit must precede and follow a decimal point. A
number containing a decimal point and no scale factor is considered a real literal .

Syntax

Unsigned Real:

Signed Real:

Example

0.1 { Real with no scale factor. }

5E-3 { Real with no decimal point. }

3.14159265358979L0 { Longreal. }

87.35e+8 { Real. }

Language Elements 2-9

Additional Documentation

Comments

Comments consist of a sequence of characters that starts with either of the equivalent symbols
{ or (*, and end with either of the equivalent symbols } or *).

Comments are used to document a program. Since a comment is a separator , it may appear
anywhere in a program where a separator may appear. However, nested comments are not
legal. Note that comments do not have to be on lines by themselves and may cross line
boundaries.

Syntax

Comment:

Example

{ comment }

(*comment*)

{ comment*)

{ { { { comment }

{ This comment

occupies more than one line. }

2-10 Language Elements

Additional Documentation

Separators

A separator is a space, a tab, an end-of-line marker, a compiler option, or a comment.
Separators are used to separate reserved words, identi�ers, numbers, strings, and special
symbols. At least one separator must appear between any pair of consecutive identi�ers,
numbers, or reserved words. When one or both elements are special symbols, however, the
separator is optional.

Separators may not appear within special symbols having more than one component (:=, for
example). Certain special symbols have synonyms. In particular, (. and .) may replace the
left and right brackets, [and]. The symbol @ may substitute for the up-arrow ^, also (* and
*) may take the place of the left and right braces, { and }.

Example

IF EOF THEN GOTO 99 { Required separators. }

x := x + 1 { Optional separators. }

x:=x+1 { No separators. }

Language Elements 2-11

Additional Documentation

String Literals

String literals are sequences of characters, enclosed by single quote marks, that may not be
longer than a single line of source code. String literals may consist of any combination of the
following:

A sequence of ASCII characters enclosed in single quote marks.

A sharp symbol (#) followed by a single character.

A sharp symbol (#) followed by up to three digits that represent the ASCII value of a
character.

A letter or symbol after a sharp symbol is equivalent to a control character. For example,
#G or #g encodes CTRL-G, the bell character. The compiler interprets the letter or symbol
according to the expression chr(ord(letter) MOD 32). Therefore, the ordinal value of G is 71;
modulus 32 of 71 is 7; and the ASCII value of 7 is the bell.

In a string literal, if a number is used after a sharp symbol, it may contain up to three digits,
but must be in the range 0 through 255. It directly encodes any printing or nonprinting
ASCII character. For example, the string literal #80#65#83#67#65# 76 is equivalent to the
string literal PASCAL.

Any ASCII character can appear between quote marks. The sharp symbol # is provided to
enable better documentation of nonprinting characters.

A string literal may be type char, PAC, or string. This is dependent on the context in
which it is used. If a single quote is a character in a string literal, it must appear twice,
consecutively.

Two consecutive quote marks ('') are used to specify the null or empty string literal.
Assigning this value to a string variable sets the length of the variable to zero. Assigning this
value to a PAC variable blank-�lls the variable.

2-12 Language Elements

Additional Documentation

Syntax

String_literal:

Example

'Please don''t!' { Single quote character. }

'A'

'' { Null string. }

#F

#243#H

#27'that was an ESC char, and so is this'#[

'this string has five bells'#G#g#g#7#7' in it'

Language Elements 2-13

3

Data Types

One of the most important contributions and fundamental ideas of Pascal is the formalization
of the concept of a data type. A data type is a collection of elements that belong together
because they are all formed in the same way and are treated uniformly.

There are three categories of data types in HP Pascal. They are:

Simple

Structured

Pointer

These data types are used to determine a set of attributes that include:

The set of permissible values that an object of a speci�ed type may assume.

The set of permissible operations that may be performed on an object of a speci�ed type.

The amount of storage that variables of a speci�ed type require.

Figure 3-1 summarizes the various data types in HP Pascal. A detailed discussion of the data
types in each category follows in this chapter. When appropriate, permissible operators,
standard procedures, standard functions, and examples are given.

Note The system programming extensions, if enabled, de�ne additional data types.
See Chapter 11 for more information.

Syntax

Type:

Data Types 3-1

Additional Documentation

Figure 3-1. HP Pascal Data Types

3-2 Data Types

Additional Documentation

Simple Types

The simple data types are made up of ordinal, real, and longreal types. Ordinal types include
the standard types integer , char , and Boolean as well as enumerated , subrange, shortint ,
longint , bit16 , bit32 , and bit52 types.

Syntax

Simple_type:

Ordinal

Ordinal types are types that have a one-to-one correspondence with a subset of natural
numbers. These values are ordered so that each has a unique ordinal value that indicates its
position in a list of all the values of the type.

Ordinal types include bit16 , bit32 , bit52 , Boolean, char , enumerated , integer , shortint ,
longint , and subrange. Enumerated types are declared by enumerating all the possible values
of the type. Subrange types are declared by specifying the minimum and maximum values of
the subrange.

Integral-types include bit16 , bit32 , bit52 , integer , shortint , longint , and subrange of integer .

Sub-integer includes bit16 , shortint , and subrange of integer ; super-integer includes bit52 and
longint . bit32 is a sub-integer when used with a real operand or used in a real function such
as sin; otherwise, bit32 is a super-integer.

Data Types 3-3

Additional Documentation

Syntax

Ordinal_type:

Note For relational tests, the two operands must be compatible types. When
membership tests are performed, the left-operand type must be a single
ordinal value, while the right-operand is of a SET type.

3-4 Data Types

Additional Documentation

Bit16

The prede�ned data type bit16 is a subrange, 0..65535, that is stored in 16 bits. bit16 is a
unique HP Pascal type because arithmetic operations on bit16 data are truncated to modulo
65536 when stored.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

arithmetic +, -, *, /, DIV, MOD

Standard Functions

bit16 argument - abs ln sin

arctan odd sqr

chr ord sqrt

cos pred succ

exp

bit16 return - pred

succ

Standard Procedures

prompt strread
read strwrite

readdir writedir

readln writeln

Example

program bits1 (output);

var q:bit16;

begin

q:=hex('ffff');

q:=q + 1; { q is now 0 }

writeln('wrapped around value = ',q:1);

end.

Output:

wrapped around value = 0

Data Types 3-5

Additional Documentation

Bit32

The prede�ned data type bit32 is a subrange, 0..232-1, that is stored in 32 bits. bit32 is a
unique HP Pascal type because arithmetic operations on bit32 data are performed with
unsigned 32 bit integers.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

arithmetic +, -, *, /, DIV, MOD

Standard Functions

bit32 argument - abs ln sin

arctan odd sqr

chr ord sqrt

cos pred succ

exp

bit32 return - pred

sqr

succ

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Note The multiply operator (*) may cause overow traps. See \OVFLCHECK" in
Chapter 12.

3-6 Data Types

Additional Documentation

Example

$standard_level 'hp_modcal'$

program bits2(output);
var q,r:bit32;

begin

{ one way to get bit32 constants >= 2 ** 31 }

$push; type_coercion 'conversion'; range off$

q:=bit32(hex('ffffffff')) + 1; { q is now 0 }

r:=bit32(hex('7fffffff')) + 1; { r is now > maxint }

pop

writeln('wrapped around value = ',q:1);

writeln('past maxint value = ',r:1);

end.

Output:

wrapped around value = 0

past maxint value = 2147483648

Data Types 3-7

Additional Documentation

Bit52

The prede�ned data type bit52 is a subrange, 0..252-1, that is stored in 64 bits. bit52 is a
unique HP Pascal type because arithmetic operations on bit52 data are performed with
unsigned 64 bit integers.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

arithmetic +, -, *, /, DIV, MOD

Standard Functions

bit52 argument - abs ln sin

arctan odd sqr

chr ord sqrt

cos pred succ

exp

bit52 return - pred

sqr

succ

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

$standard_level 'hp_modcal'$

program bits3(output);

var q:bit52;

begin

{ one way to get bit52 constants >= 2 ** 31 }

$push; type_coercion 'conversion'$

q:=bit52(123456) * 1000000000 + 789012345;

pop

writeln(q);

end.

Output:

123456789012345

3-8 Data Types

Additional Documentation

Boolean

The Boolean type is a prede�ned enumerated type that indicates logical values. The elements
of this data type are two constant identi�ers, true and false, where false is less than true.
HP Pascal de�nes the type Boolean in the following way:

TYPE

Boolean = (false, true);

Permissible Operators

assignment :=

Boolean AND, OR, NOT

relational <, <=, =, <>, >=, >, IN

Standard Functions

Boolean argument - ord

pred

succ

Boolean return - eof

eoln

odd

pred

succ

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

VAR

left_handed: Boolean;

BEGIN

left_handed := false;

END;

Data Types 3-9

Additional Documentation

Char

The char type is a prede�ned ordinal type that is used to represent individual characters in
the 8-bit ASCII character set. A char literal is either a single character surrounded by single
quote marks, or a sharp (#) followed by a number or letter.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

Standard Functions

char argument - ord

pred

succ

char return - chr

pred

succ

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

VAR

do_you: char;

BEGIN

do_you := 'Y';

do_you := #G; { BELL character }

END;

3-10 Data Types

Additional Documentation

Enumerated

An enumerated type is a user-de�ned, ordinal type that de�nes an ordered set of values by
the enumeration of identi�ers in parentheses. The sequence in which the identi�ers appear
determines the ordering. The enumerated identi�ers are de�ned as constants. The ORD of
the �rst has the value zero, and the ORD of the others have successive integer values in order
of their speci�cation. The limit on the maximum number of identi�ers in an enumerated
type is implementation dependent. Refer to the HP Pascal/iX Programmer's Guide or
the HP Pascal/HP-UX Programmer's Guide, depending on your implementation, for more
information.

Syntax

Enumerated id list:

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

Standard Functions

enumerated argument - ord

pred

succ

enumerated return - pred

succ

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

TYPE

days = (monday, tuesday, wednesday, thursday, friday, saturday, sunday);

color = (red, green, blue, yellow, cyan, magenta, white, black);

Data Types 3-11

Additional Documentation

Integer

The integer type is a prede�ned, ordinal type whose possible values are determined by a
subrange of the negative and positive integers. The lower bound of the subrange is the
prede�ned constant minint , and the upper bound is the prede�ned constant maxint . The
integer type represents a signed number of at least nine digits.

Permissible Operators

assignment :=

relational <, <=, =, <>, >, >=, IN

arithmetic +, -, *, /, DIV, MOD

Standard Functions

integer argument - abs exp pred

arctan ln sin

chr odd sqr

cos ord succ

integer return - abs maxpos round strmax

binary octal sqr strpos

hex ord sqrt succ

lastpos position strlen trunc

linepos pred

Standard Procedures

halt strread

prompt strwrite

read writedir

readdir writeln

readln

Example

VAR

wholenum: integer;

i,j,k,l : integer;

3-12 Data Types

Additional Documentation

Longint

The prede�ned data type longint is an integer in the range -263..263-1 that is stored in 64 bits.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

arithmetic +, -, *, /, DIV, MOD

Standard Functions

longint argument - abs ln sin

arctan odd sqr

chr ord sqrt

cos pred succ

exp

longint return - abs

pred

sqr

succ

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

$standard_level 'hp_modcal'$

program prog(output);

var q:longint;

begin

{ one way to get longint constants >= 2 ** 31 or < - 2 ** 31 }

$push; type_coercion 'conversion'$

q:=longint(123456) * 1000000000 + 789012345;

pop

writeln(q);

end.

Output:

123456789012345

Data Types 3-13

Additional Documentation

Shortint

The prede�ned data type shortint is an integer in the range -32768..32767 that is stored in 16
bits. (In contrast, if you declare a variable to be in that range, it is stored in 32 bits.)

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >, IN

arithmetic +, -, *, /, DIV, MOD

Standard Functions

shortint argument - abs ln sin

arctan odd sqr

chr ord sqrt

cos pred succ

exp

shortint return - pred

succ

Standard Procedures

prompt strread

read strwrite
readdir writedir

readln writeln

Example

program short(output);

var q:shortint;

begin

q:=-1;

writeln('size of shortint = ',sizeof(q):1);

end.

Output:

size of shortint = 2

3-14 Data Types

Additional Documentation

Subrange

A subrange type is a user-de�ned, ordinal type that is a sequential subset of a prede�ned or
user-de�ned, ordinal base type. It consists of a lower bound and an upper bound separated by
the special symbol \..". The upper and lower bounds must be constant values or constant
expressions of the same ordinal type. The lower bound cannot be greater than the upper
bound.

Syntax

Subrange_type:

Note A variable of a subrange type possesses all the attributes of the base type of
the subrange, but its values are restricted to the speci�ed closed range. It has
the same set of permissible operators and standard functions as its base type.

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

CONST

maxsize = 10;

TYPE
day_of_year = 1..366;

lowercase = 'a'..'z'; { Base type is char. }

days = (Monday, Tuesday, Wednesday,

Thursday,Friday,Saturday,Sunday);

weekdays = Monday..Friday;

weekend = Saturday..Sunday;

e_type = 1..maxsize - 1; { Upper bound is con- }

{ stant expression. }

{ Maxsize is declared }

{ constant. }

Data Types 3-15

Additional Documentation

Real

The real type is a prede�ned, simple type that represents a subset of the real numbers.
For the range covered by the subset, see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide, depending on your implementation.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >

arithmetic -, +, *, /

Standard Functions

real argument - abs ln sqr

arctan round sqrt

cos sin trunc

exp

real return - abs exp sqr

arctan ln sqrt

cos sin

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

PROGRAM show_realnum(output);

VAR

realnum: real;

BEGIN

realnum := 6.023E+23;

writeln(realnum);
END.

Output:

6.02300E+23

3-16 Data Types

Additional Documentation

Longreal

The longreal type is a prede�ned, simple type that represents a subset of the real numbers.
This type may have more precision and a larger range than the type real . The range the
subset covers is implementation dependent in HP Pascal. For more details see the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending on
your implementation.

Permissible Operators

assignment :=

relational <, <=, =, <>, >=, >

arithmetic -, +, *, /

Standard Functions

longreal argument - abs round

arctan sin

cos sqr

exp sqrt

ln trunc

longreal return - abs ln

arctan sin

cos sqr

exp sqrt

Standard Procedures

prompt strread

read strwrite

readdir writedir

readln writeln

Example

VAR

precisenum: longreal;

BEGIN

precisenum:= 1.1234567891L+04;

.

Data Types 3-17

Additional Documentation

Structured Types

Structured data types are the array, �le, record, set, and string types. These data types can be
preceded by a packing modi�er. The e�ect of the packing modi�er is implementation-de�ned.
Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's
Guide, depending on your implementation, for more information.

Syntax

Structured_type:

Unp_Struc_type:

ARRAY

An array is a structured type consisting of a �xed number of components that are all
of the same type. The maximum number of components is implementation dependent.
Depending on your implementation, refer to the HP Pascal/iX Programmer's Guide or the
HP Pascal/HP-UX Programmer's Guide for more information.

Syntax

Array_type:

3-18 Data Types

Additional Documentation

Array Declarations

An array type de�nition consists of the reserved word ARRAY, an index type in square
brackets, the reserved word OF, and the component type. The reserved word PACKED may
precede ARRAY. It instructs the compiler to optimize storage space for the array components,
possibly at the expense of execution time.

An index that must be an ordinal type speci�es the number of component of an array.
The component type may be any simple, structured, or pointer type, including a �le type.
The symbols (. and .) may replace the left and right square brackets, respectively. The
component of an array may be accessed using the index of the component in a selector.

In the ANSI/IEEE770X3.97 - 1983 Standard Pascal, the term string designates a packed array
of char with a starting index of 1 and an ending index >1. HP Pascal uses the term PAC to
designate a packed array of char with a starting index of 1. HP Pascal also de�nes a standard
type string that is similar to a packed array with a declared maximum length, whose actual
length may vary at run time.

Permissible Operators

assignment :=

relational (PAC only) <, <=, =, <>, >=, >

Standard Functions

strlen**

hex**

octal**

binary**

Standard Procedures

array parameters - pack

prompt**

read*

readdir*

readln**

strmove**

strread**

strwrite**

unpack

write*

writedir*

writeln**

Data Types 3-19

Additional Documentation

Note One asterisk (*) after a routine name indicates that this routine can be used
on all arrays, whereas two asterisks (**) indicates that this routine should be
used with PAC arrays only.

Example

TYPE

name = PACKED ARRAY [1..30] OF char; { PAC type }

list = ARRAY [1..100] OF integer;

strange = ARRAY [Boolean] OF char;

flag = ARRAY [(red, white, blue)] OF 1..50;

files = ARRAY [1..10] OF text;

Multi-Dimensioned Arrays

If an array de�nition speci�es more than one index type or if the components of an array are
themselves arrays, then the array is said to be multi-dimensioned . The maximum number of
array dimensions is implementation dependent.

Example

TYPE

{ equivalent definitions of truth }

truth = ARRAY [1..20] OF

ARRAY [1..5] OF

ARRAY [1..10] OF Boolean;

truth = ARRAY [1..20] OF

ARRAY [1..5, 1..10] OF Boolean;

truth = ARRAY [1..20, 1..5] OF

ARRAY [1..10] OF Boolean;

truth = ARRAY [1..20, 1..5, 1..10] OF Boolean;

3-20 Data Types

Additional Documentation

FILE

This reserved word designates a declared data structure that consists of a sequence of
components all of the same type. Files are usually associated with peripheral storage devices,
and their length is not speci�ed in the program. A �le type consists of the reserved words
FILE OF and a component type that may be prede�ned or user-de�ned. The type text is a
special type of FILE OF CHAR that has additional attributes. For further information about
text�les, refer to the section \Standard Text�les" in this chapter.

A logical �le is a �le variable declared in an HP Pascal program. A physical �le is a �le that
exists in the environment outside the program and is controlled by the operating system.
During program execution, logical �les are associated with physical �les, allowing any
operation performed on the logical �le to be performed on the physical �le. Thus, a program
is allowed to manipulate data in the external environment.

A logical �le may be any type except a �le type or a structured type with a �le type
component. The number of components is not �xed by the �le type de�nition. File
components may be accessed sequentially or directly using a variety of HP Pascal standard
procedures and functions.

It is legal to declare a packed �le. The e�ect on the storage of the �le is implementation
dependent.

Syntax

File_type:

Example

TYPE

person = RECORD

name: PACKED ARRAY [1..30] OF char;

age: 1..100;

END;

person_file = FILE OF person;

bit_vector = PACKED ARRAY [1..100] OF Boolean;

vector_file = FILE OF bit_vector;

data_file = FILE OF integer;

doc_file = text;

Data Types 3-21

Additional Documentation

Standard Textfiles

text

Text type variables are called text�les. The standard �le type text permits ordinary input and
output that is oriented to characters and lines. Text type �les have two important features:

The components are type char .

The �le is subdivided into lines by special end-of-line markers .

Text�les cannot be opened for direct access with the procedure open. Text�les can be
sequentially accessed, however, with the procedures reset, rewrite, or append . All standard
procedures that are legal for sequentially-accessed �les are also legal for text�les.

Certain standard procedures and functions, on the other hand, are only legal for text�les.
These procedures are:

eoln
linepos
overprint
page
prompt
readln
writeln

Text�les permit conversion from the internal form of certain types to an ASCII character
representation and vice versa.

Example

VAR

myfile: text;

i: integer;

r: real;

BEGIN

rewrite(myfile);

writeln(myfile,'integer',i);

writeln(myfile,'real',r);

END.

3-22 Data Types

Additional Documentation

input

When the standard text�le input appears as a program parameter, there are several important
consequences:

Input may not be declared in the global declaration of the source code.

The system automatically associates input with an implementation-dependent physical �le.

The system automatically resets input.

If certain �le operations omit the logical �le name parameter, input is the default �le.
For example, the call read(x) where x is some variable, reads a value from input into x.
Consider:

PROGRAM mute (input);

VAR answer : string[255];

BEGIN

readln(answer);

END.

The program waits for input. Output need not appear.

If an imported module uses input, it must appear as a program parameter for the importing
program, and the module must import the prede�ned module stdinput .

output

When the standard text�le output appears as a program parameter, there are several
important consequences:

Output may not be declared in the global declaration part of the source code.

The system automatically associates output with an implementation dependent, physical
�le. Depending on your implementation, refer to the HP Pascal/iX Programmer's Guide or
the HP Pascal/HP-UX Programmer's Guide for more information.

The system automatically rewrites output.

If certain �le operations omit the logical �le name parameter, output is the default �le. For
example, the call write(x), where x is some variable, writes the value of x onto output.
Consider:

PROGRAM sample (output);

BEGIN

writeln('I like Pascal!');

END.

The program displays the string literal on the default output device. output must appear as a
program parameter; input need not appear if the program does not use it.

If an imported module uses output, it must appear as a program parameter for the importing
program, and the module must import the prede�ned module stdoutput .

Data Types 3-23

Additional Documentation

Record

A record is a structured type consisting of a collection of components that are not necessarily
of the same type. Each component is termed a �eld of the record and has its own identi�er. A
�eld of a record is accessed by using the appropriate �eld selector .

A record type consists of the reserved word RECORD, a �eld list, and the reserved word
END. The reserved word PACKED may precede the reserved word RECORD. If PACKED is
used, it instructs the compiler to optimize storage of the record �elds.

Syntax

Record_type:

Field List

The �eld list has an optional �xed part and an optional variant part. The �eld list may have
any number of �elds, and each �eld is given a unique name called a �eld identi�er .

Syntax

Field_list:

3-24 Data Types

Additional Documentation

Fixed Part

In the �xed part of the �eld list, a �eld de�nition consists of an identi�er , a colon (:), and a
type. Any simple, structured, or pointer type is legal. Several �elds of the same type may be
de�ned by listing the identi�ers separated by commas.

Syntax

Fixed_part:

Variant Part

In the variant part, the reserved word CASE introduces an optional tag �eld identi�er and a
required ordinal type identi�er . The reserved word OF precedes a list of case constants and
alternative �eld lists.

Case constants must be compatible with the tag. See \Type Compatibility" in this chapter
for more information. Several case constants may be associated with a single �eld list. The
various constants appear separated by commas. Subranges are also legal case constants in
HP Pascal. The empty �eld list may be used to indicate that a variant doesn't exist. This is
illustrated in the example in this section. HP Pascal does not require that all possible tag
values be speci�ed.

The OTHERWISE construction may not be used in the variant part of the �eld list.
OTHERWISE is only legal in CASE statements.

Variant parts allow variables of the same record type to exhibit structures that di�er in the
number and type of their component parts. If a record has multiple variants , when a value is
assigned to the tag �eld, any �elds associated with a previous variant cease to exist, and the
new variant's �elds become active with unde�ned values. If there is no tag �eld when a value
is assigned to a �eld of any particular variant, any �elds associated with another variant cease
to exist, and the new variant �elds become active with unde�ned values. An error results
when a reference is made to a �eld of a variant other than the current variant. A �eld of a
record is accessed using the appropriate �eld selector.

Data Types 3-25

Additional Documentation

Syntax

Variant_part:

Permissible Operators

assignment (entire record) :=

�eld selection .

Standard Procedures

read

readdir

write

writedir

3-26 Data Types

Additional Documentation

Example

TYPE

word_type = (int, ch);
word = RECORD { variant part only with tag }

CASE word_tag: word_type OF

int: (number: integer);

ch : (chars : PACKED ARRAY [1..2] of char);

END;

polys = (circle, square, rectangle, triangle);

polygon = RECORD { fixed part and tagless variant part }

poly_color: (red, yellow, blue);

CASE polys OF

circle: (radius: integer);

square: (side: integer);

rectangle: (length, width: integer);

triangle: (base, height: integer);

END;

date_info = PACKED RECORD { fixed part only }

mo: (jan, feb, mar, apr, may, jun,

jul, aug, sep, oct, nov, dec);

da: 1..31;

yr: 1900..2001;

END;

marital_status = (married, separated, divorced, single);

name_string = PACKED ARRAY [1..30] of CHAR;

person_info = RECORD { nested variant parts }

name: name_string;

born: date_info;

CASE status: marital_status of
married..divorced:

(when: date_info;

CASE has_kids: Boolean OF

true: (how_many: 1..50);

false: (); { Empty variant }

)

single: ();

END;

Data Types 3-27

Additional Documentation

Set

A set is a user-de�ned, structured type that is the power set consisting of the set of all subsets
of a base type. A set type consists of the reserved words SET OF and a base type. The base
type may be any ordinal type. The maximum number of elements is implementation de�ned,
but must be at least 256 elements. It is legal to declare a packed set. However, whether this
a�ects the storage is implementation dependent. HP Pascal de�nes \SET OF integer" (or any
other integral-type) as \SET OF 0..255".

Syntax

Set_type:

Permissible Operators

assignment :=

union +

intersection *

di�erence -

subset <=

superset >=

equality =, <>

inclusion IN

Example

TYPE

charset = SET OF char;

fruit = (apple, banana, cherry, peach, pear, pineapple);

somefruit = SET OF apple..cherry;

poets = SET OF (Blake, Frost, Brecht);

some_set = SET OF 1..200;

3-28 Data Types

Additional Documentation

PACKED

This reserved word indicates that the compiler should minimize data storage even if the
access time may be increased. The reserved word PACKED may appear with an ARRAY,
RECORD, SET, or FILE. By declaring a PACKED structured data type, the amount of
memory needed to store an item is generally reduced. The decision to pack a particular data
type depends on many factors including available memory size, processor speed, required
response time, and volume of data. Therefore, a choice that is valid for one environment may
be quite inappropriate for another. It is illegal to pass a component of a packed structure by
reference.

Syntax

Packing:

Example

CONST

wordsize = 20;

VAR

buffer: ARRAY [1..wordsize] OF char;

word: PACKED ARRAY [1..wordsize] OF char;

Data Types 3-29

Additional Documentation

String

In HP Pascal a string type consists of the standard identi�er string and an integer constant
expression in square brackets that speci�es the maximum length. Integer constant expressions
are constant expressions that return an integer value, an unsigned integer being the simple
case. The limit for the maximum length is implementation de�ned, but must be at least 255.
The symbols (. and .) may replace the left and right brackets, respectively.

Characters enclosed in single quotes are string literals. The compiler interprets a string literal
as type PAC, string, or char, depending on the context.

When a formal reference parameter is type string , the maximum length need not be speci�ed.
This allows actual string parameters to have various maximum lengths.

A single component of a string can be accessed by using an integer expression in square
brackets as a selector. The numbering of the characters in the string begins at one. Strings
are initialized by performing an operation that sets the current length, making an assignment
to the entire string or by calling setstrlen.

Syntax

String_type:

A string expression may consist of any of the following:

A string literal.

A string variable.

A string constant.

A function result that is a string.

An expression formed with the concatenation operator.

Note Variables of type string, as well as other Pascal variables, are not initialized.
The current string length contains meaningless information until the string is
initialized.

3-30 Data Types

Additional Documentation

Permissible Operators

assignment :=

concatenation +

relational =, <>, <=, >=, >, <

Standard Functions

string argument - str strpos

strlen strrpt

strltrim strrtrim

strmax

string return - str

strltrim

strrpt

strrtrim

Standard Procedures

string parameter - prompt strinsert

read strmove

readdir strread

readln strwrite

setstrlen write

strappend writedir

strdelete writeln

Example

CONST
maxlength = 100;

TYPE

name = string[30];

remark = string[maxlength * 2];

PROCEDURE proc1 (VAR s: string); EXTERNAL; { Maximum length }

{ not required. }

Data Types 3-31

Additional Documentation

Pointer Types

Pointers

A pointer is a data type that may reference any type, including type FILE. A pointer
references a dynamically allocated variable on the heap. The pointer type consists of the caret
(^) and a type identi�er. The @ symbol may replace the caret.

The type appearing after the caret need not be previously de�ned. This is an exception to the
general rule that HP Pascal identi�ers are �rst de�ned and then used. However, the identi�er
after the caret must be de�ned within the same declaration part.

A type identi�er used in a pointer type declaration in an EXPORT section need not be
de�ned until the IMPLEMENT section. A pointer declared in this manner cannot be
dereferenced in modules that IMPORT the pointer type.

The pointer value NIL belongs to every pointer type. NIL points to no variable on the heap.
For more information, refer to the section on NIL in this chapter.

Syntax

Pointer_type:

Permissible Operators

assignment :=

equality =, <>

Standard Procedures

pointer parameters - new

dispose

mark

release

3-32 Data Types

Additional Documentation

Example

TYPE

ptr1 = ^rec1;
ptr2 = ^rec2;

rec1 = RECORD

f1, f2: integer;

link: ptr2;

END;

rec2 = RECORD

f1, f2: real;

link: ptr1;

END;

Data Types 3-33

Additional Documentation

Type Compatibility

Relative to each other, two HP Pascal types can be identical , type compatible, or incompatible.
The guidelines that determine type compatibility are listed below.

Identical Types

Two types are identical if either of the following is true:

Their types have the same type identi�er.

If A and B are two type identi�ers, and they were made equivalent by a de�nition of the
form:

TYPE A = B

Compatible Types

Two types, T1 and T2, are type compatible if any of the following is true:.

T1 and T2 are identical types.

T1 and T2 are subranges of identical base types, T1 is a subrange of T2, or T2 is a subrange
of T1.

T1 and T2 are set types with compatible base types and both T1 and T2 or neither are
packed or crunched.

T1 and T2 are PAC types.

T1 and T2 are both string types.

T1 and T2 are both real types.

Incompatible Types

Two types are incompatible if they are not identical or type compatible, or assignment
compatible. In the following example all of the variables are type compatible, but v4, v5, and
v6 have identical types. The variables v2 and v3 also have identical types.

Example

TYPE

interval = 0..10;
range = interval;

VAR

v1 : 0..10;

v2, v3: 0..10;

v4 : interval;

v5 : interval;

v6 : range;

Note that two types that are structurally the same are not necessarily compatible. In the
following example, types T1 and T2 are not compatible. Variables v3 and v4 are also not
compatible.

3-34 Data Types

Additional Documentation

PROGRAM t(input,output);

TYPE
T1 = record

a: integer;

b: char;

end;

T2 = record

c: integer;

d: char;

end;

VAR

v1: T1;

v2: T2;

v3: ^T1;

v4: ^T2;

BEGIN

v1:= v2; { This generates a compile-time error }

v3:= v4; { This generates a compile-time error }

END.

Data Types 3-35

Additional Documentation

Assignment Compatibility

A value of type T2 may only be assigned to a variable or function result of type T1 if T2 is
assignment compatible with T1. For T2 to be assignment compatible with T1, any of the
following conditions must be true:

T1 and T2 are type compatible types that are neither �les nor structures that contain �les.

T1 is real or longreal, and T2 is integer or an integer subrange. The compiler converts T2 to
real or longreal prior to assignment.

T1 is longreal and T2 is real. The compiler converts T2 to longreal prior to assignment.

T1 is real and T2 is longreal. The compiler rounds T2 to the precision of T1 prior to
assignment.

Furthermore, a run-time or compile-time error occurs if the following restrictions are not
observed:

If T1 and T2 are type compatible ordinal types, the value of type T2 must be in the closed
interval speci�ed by T1.

If T1 and T2 are type compatible set types, all the members of the value of type T2 must be
in the closed interval speci�ed by the base type of T1.

A special set of restrictions applies to assignment of string literals or variables of type
string, PAC, or char.

Note The pointer constant NIL is both type compatible and assignment compatible
with any pointer type. Likewise, the empty set ([]) is both type
compatible and assignment compatible with any set type.

String Assignment Compatibility

Certain restrictions apply to the assignment of string literals or variables of the type string,
PAC, or char. These restrictions are listed below.

If T1 is a string variable, T2 must be a string variable or a string literal whose length is
equal to or less than the maximum length of T1. T2 cannot be a PAC or char variable.
Assignment sets the current length of T1.

If T1 is a PAC variable, T2 must be a PAC or a string literal whose current length is less
than or equal to the length of T1. T1 is blank �lled if T2 is a string literal or PAC that is
shorter than T1. T2 cannot be a string or a char variable.

If T1 is a char variable, T2 may be a char variable or a string literal with a single character.
T2 cannot be a string or PAC variable.

Table 3-1 summarizes these rules. The standard function strmax(s) returns the maximum
length of the string s. The standard function strlen(s) returns the current length of the string
s or the number of characters in the PACs.

String constants are considered string literals when they appear on the right side of an
assignment statement. Any string operation on two string literals, such as the concatenation
of two string literals, results in a string of type string.

3-36 Data Types

Additional Documentation

Table 3-1. String, PAC, and String Literal Assignment

T1:=T2 string PAC char String Literal

string Only if
strmax(T1)>=

strlen(T2)

Not allowed Not allowed Only if
strmax(T1)>=

strlen(T2)

PAC Not allowed Only if
strlen (T1) >=

strlen (T2)

T1 is padded
with blanks
if necessary

Not allowed Only if
strlen (T1) >=

strlen(T2)

T1 is padded
with blanks
if necessary

char Not allowed Not allowed Yes Only if
strlen(T2)=1

Data Types 3-37

4

Expressions

An expression is a construct composed of operators and operands that represent the
computation of a result of a particular type. In the simplest case, an expression consists of a
single operand with no operator.

The type of an expression is known when the expression is written, and never changes. The
actual value, however, may not be known until the system evaluates the expression at run
time. It may di�er for each evaluation.

Constant expressions are a restricted class of HP Pascal expressions. They must return a
value that is computable at compile time. Consequently, operands in constant expressions
must be integers, reals, longreals, or declared constants. The operators used with constant
expressions must be +, -, *, DIV, or MOD. All other operators are excluded. Furthermore, only
calls to the following standard functions are legal:

abs

binary

chr

hex

octal

odd

ord

pred

strlen

succ

Expressions 4-1

Additional Documentation

Syntax

Expression:

4-2 Expressions

Additional Documentation

Selector:

Example

x:= 19; { Simplest case. "19" is the expression }

{ in the statement: "x := 19". }

100 + x; { Arithmetic operator with literal and }

{ variable operands. }

(A OR B) AND (C OR D) { Boolean operator with Boolean operands. }

x > y { Relational operator with variable }

{ operands. }

setA * setB; { Set operator with variable operands. }

'ice'+'cream' { Concatenation operator with string }

{ literal operands. }

x:= func1(B); { Function call }

Expressions 4-3

Additional Documentation

Operands

An operand denotes the object that operators use in obtaining a value. An operand may be
a literal , a declared constant, a variable access (variable), a set constructor , a dereferenced
pointer , or the value of another expression. Function calls are also operands in the sense that
they return a result that an operator can use to compute another value.

An operand may be acted upon by an operator. Performing an operation on operands of
di�erent types is called mixing data types. In all cases except one, you cannot mix data types.
You can, however, mix reals and integers with an operator that allows two real operators.
Table 4-1 provides a list of operands and tells where they are described in the manual.

Table 4-1. HP Pascal Operands

Operand Chapter

literal 4

constant 4

variable 5

set constructor 4

function call 4,8

dereferenced pointer 4

array selector 4

record selector 4

�le bu�er selector 4

4-4 Expressions

Additional Documentation

Operators

An operator de�nes an action to be performed on one or more operands and produces a value.
An operator may be classi�ed as arithmetic, Boolean, relational, set, or concatenation. A
particular symbol may occur in more than one class of operators. For example, the symbol +
is an arithmetic, set, and concatenation operator representing numeric addition, set union, and
string concatenation, respectively. The class of the operator is determined by the type of the
operands.

Precedence ranking determines the order in which the compiler evaluates a sequence
of operators. For more information about precedence, refer to the section on Operator
Precedence in this chapter.

The value resulting from the action of an operator may in turn serve as an operand for
another operator. Table 4-2 lists each HP Pascal operator together with its actions,
permissible operands, and type of results. In the table, the term real indicates both real and
longreal types and integer indicates any integral-type.

Table 4-2. HP Pascal Operators

Operator Actions Type of Operands Type of Results

+ addition
set union
concatenation

real, integer
any set type
string, string literal

real, integer
set
string

- subtraction
set di�erence

real, integer
any set type

real, integer
set

* multiplication
set intersection

real, integer
any set type

real, integer
set

/ division real, integer real

DIV division with truncation integer integer

MOD modulus integer integer

AND logical 'and' Boolean Boolean

OR logical 'or' Boolean Boolean

NOT logical negation Boolean Boolean

< less than any simple type
string or PAC

Boolean
Boolean

> greater than any simple type
string or PAC

Boolean
Boolean

Expressions 4-5

Additional Documentation

Table 4-2. HP Pascal Operators (continued)

Operator Actions Type of Operands Type of Results

<= less than or
equal,
set subset

any simple type
string or PAC
any set type

Boolean
Boolean
Boolean

>= greater than or
equal,
set superset

any simple type
string or PAC
any set type

Boolean
Boolean
Boolean

= equal to any simple type
string or PAC
any set type
pointer

Boolean
Boolean
Boolean
Boolean

<> not equal to any simple type
string or PAC
any set type
pointer

Boolean
Boolean
Boolean
Boolean

IN set membership left operand:
any ordinal type T
right operand:
set of T

Boolean

Operator Precedence

The precedence ranking of an HP Pascal operator determines the order of its evaluation in an
unparenthesized sequence of operators. The four levels of ranking are:

PRECEDENCE OPERATORS

highest NOT

. *, /, DIV, MOD, AND

. +, -, OR

lowest <, <=, <>, =, >=, >, IN

The compiler evaluates higher precedence operators �rst. For example, since * ranks above +,
it evaluates these expressions identically:

(x + y * z) and (x + (y * z))

When a sequence of operators has equal precedence, the order of evaluation is implementation
dependent. If an operator is commutative, for example, *, the compiler may evaluate the
operands in any order. Note that within a parenthesized expression the compiler evaluates the
operators and operands without regard for any operators outside the parentheses.

4-6 Expressions

Additional Documentation

Arithmetic Operators

Arithmetic operators perform integer and real arithmetic by taking numeric operands and
producing a numeric result . These operators are +, -, *, /, DIV, and MOD.

Most arithmetic operators permit real , longreal , or integral-type operands. However, DIV and
MOD only accept integral-type operands. The type of the result of a unary operator is the
same as the type of its operand. However, if the operand is bit16, the result is an integer type,
and if the operand is bit32 or bit52, the result is a longint. The type of the result of a binary
operator is the same as the data types of its operands, provided that both operands are of the
same type. Special rules apply for division and in cases where operands have di�erent data
types.

Implicit Type Conversion of Operands

The operators +, -, *, and / permit operands with di�erent numeric types. For example, it
is possible to add an integer and a real number. The compiler converts the integer to a real
number, and the result of the addition is real.

This implicit conversion of operands relies on a ranking of numeric types. This is de�ned as
follows:

RANK TYPE

highest longreal

. real, longint, bit52

. integer, bit32

lowest sub-integer

The rank of the value the result of an operation is the same as the highest rank of all the
operands. Operands having types whose ranks are less than the rank of the type of the result
are converted prior to the operation, so that they have a type with a rank equal to that of the
result type.

Expressions 4-7

Additional Documentation

For example, if i is an integer and x is a real in the expression (x + i), then i is converted
to real before the addition. In short, the two operands to an arithmetic operator must be
compatible. For more details, refer to the section \Type Compatibility" in Chapter 3.

Table 4-3. Type Comparisons and Results

Operand A Type Operand B Type Results

sub-integer sub-integer sub-integer

sub-integer integer integer

sub-integer real real

integral-type longreal longreal

integer real real

integer super-integer longint

integral-type longint longint

longint real longreal

real super-integer longreal

real longreal longreal

bit16 bit32 bit32

bit16 bit52 bit52

bit32 bit52 bit52

Real division (/) is an exception to this restriction. If both operands are integer or
sub-integer, the compiler changes both to real numbers prior to the division and the result
is real. If both operands are super-integers, the result is longreal because both operands are
converted to longreal.

4-8 Expressions

Additional Documentation

Example

EXPRESSION RESULT

-(+10) -10 { Unary -. }

5 + 2 7 { Addition with integer operands. }

5 - 2.0 3.0 { Subtraction with implicit conversion. }

5 * 2 10 { Multiplication with integer operands. }

5.0 / 2.0 2.5 { Division with real operands. }

5 / 2 2.5 { Division with integer operands, real }

{ result. }

5.0 / 2 2.5 { Division with implicit conversion. }

5 DIV 2 2 { Division with truncation. }

5 DIV (-2) -2

-5 DIV 2 -2

-5 DIV (-2) 2

5 MOD 3 2 { Modulus. }

5 MOD (-2) error { Right operand must be positive. }

(-5) MOD 3 1 { Result is positive regardless of }

{ sign of left operand, which is }

{ parenthesized since MOD has higher }

{ precedence than -. }

{ See Operator Precedence. }

DIV

This operator returns the integer portion of the quotient of the dividend and the divisor . The
dividend must be an integral-type with no range restriction. The divisor must also be an
integral-type; the divisor cannot be 0.

Example

INPUT RESULT

413 DIV 6 68

-413 DIV 6 -68

Expressions 4-9

Additional Documentation

MOD

This operator returns the modulus of two integers. The dividend must be an integral-type.
The divisor must also be an integral-type. If the divisor is less than or equal to 0, an error
will occur. The result is always positive, regardless of the sign of the left operand. The left
operand must be parenthesized if it is a negative literal. MOD is de�ned as:

(i - k * j) for some integer k

such that

0 <= i MOD j < j, j > 0

Example

INPUT RESULT

4 MOD 3 1

7 MOD 5 2

(-7) MOD 5 3

Boolean Operators

Boolean operators perform logical functions on Boolean type operands and produce Boolean
results. The Boolean operators are NOT, AND, and OR. When both operands are Boolean,
= denotes equivalence, <= implication, and <> exclusive or .

The compiler can be directed to perform or not perform partial evaluation of Boolean
operators used in statements. For example:

IF right_time AND right_place THEN ...

By specifying the $PARTIAL_EVAL ON$ compiler directive, if right_time is false, the remaining
operators are not evaluated since execution of the statement depends on the logical AND of
both operators. Both operators have to be true for the logical AND of the operators to be
true.

Similarly, the logical OR of two operators are true even if only one of the operators is true.
Partial evaluation allows expressions like (Ptr <> NIL) AND (Ptr^.F1) to execute without an
error when Ptr is NIL.

4-10 Expressions

Additional Documentation

Example

IF NOT possible THEN forget_it;

WHILE time AND money DO your_thing;

REPEAT...UNTIL tired OR bored;

IF has_rope THEN skip;

IF pain <= heartache THEN try_it;

FUNCTION NAND (A, B : BOOLEAN) : BOOLEAN;

BEGIN

NAND := NOT(A AND B); { NOT AND }

END;

FUNCTION XOR (A, B : BOOLEAN) : BOOLEAN;

BEGIN

XOR := NOT(A AND B) AND (A OR B); { EXCLUSIVE OR }

END;

FUNCTION XOR (A, B : BOOLEAN) : BOOLEAN;

BEGIN

XOR := A <> B;

END;

Expressions 4-11

Additional Documentation

AND

This Boolean operator is used to perform the logical operation on two Boolean operands. The
result is of type Boolean. The following truth table illustrates the operator AND along with
its results.

OPERATOR RESULT

AND The evaluation of two Boolean operands produces a Boolean
result, such that:

(logical and)

a b a AND b

false false false

false true false

true false false

true true true

Example

VAR

bit6, bit7 : Boolean;

counter : integer;

BEGIN

...

IF bit6 AND bit7 THEN counter := 0;

...

IF bit6 AND (counter = 0) THEN bit7 := true;

bit7 := bit6 AND (counter = 0);

END

4-12 Expressions

Additional Documentation

NOT

This Boolean operator complements the value of the Boolean expression following the NOT
operator. The result is of type Boolean. The truth table for NOT is given below.

OPERATOR RESULT

NOT The logical negation of a single Boolean operand, such that:

(logical negation)

a NOT a

false true

true false

Example

PROGRAM show_not(input,output);

VAR

time, money : Boolean;

line : string[255];
test_file : text;

BEGIN

.

.

IF NOT (time AND money) THEN wait;

.

.

WHILE NOT eof(test_file) DO

BEGIN

readln(test_file,line);

writeln(line);

END;

.

.

END.

Expressions 4-13

Additional Documentation

OR

This Boolean operator is used to perform the logical inclusive OR operation on two Boolean
operands. The result is the logical OR of its two factors. The OR operator is shown below in
terms of its truth table.

OPERATOR RESULT

OR The evaluation of two Boolean operands produces a Boolean
result, such that:

(inclusive or)

a b a OR b

false false false

false true true

true false true

true true true

Example

PROGRAM show_or(input,output);

VAR

ch : char;

time : Boolean;

energy : Boolean;

BEGIN

.

.

IF time OR energy THEN do_it;

.

.

IF (ch = 'Y') OR (ch = 'y') THEN ch := 'Y';

.

.

END.

4-14 Expressions

Additional Documentation

Relational Operators

Relational operators compare two operands and return a Boolean result. The relational
operators are <, <=, =, <>, >=, >, and IN. The following lists the relational operators with their
associated meanings:

OPERATOR MEANING

< less than

<= less than or equal to

= equal

<> not equal

>= greater than or equal

> greater than

IN set membership

Depending on the type of its operands, a relational operator may be classi�ed as simple, set,
pointer, or string . For a description of simple, set, pointer, or string relational operators, refer
to the appropriate section in this chapter.

Expressions 4-15

Additional Documentation

Simple Relational Operators

A simple relational operator has operands of any simple type such as integer, Boolean, char,
real, longreal, enumerated, or subrange. All the operators listed above, except IN, may be
simple relational operators. The operands must be type compatible, but the compiler may
implicitly convert numeric types before evaluation. For more information about converting
numeric types, refer to the section \Arithmetic Operators" in this chapter.

For numeric operands, simple relational operators impose the ordinary de�nition of ordering.
For char operands, the ASCII collating sequence de�nes the ordering. For enumerated
operands, the sequence in which the constant identi�ers appear in the type de�nition de�nes
the ordering. If both operands are Boolean, the operator = denotes equivalence, <= denotes
implication, and <> denotes exclusive OR. Therefore, the prede�nition of Boolean as:

TYPE Boolean = (false, true);

means that false < true.

Example

PROGRAM show_simple_relational;

VAR

b: Boolean;

BEGIN

.

.

b := 5 > 2;

b := 5 < (25.OL+1);

END.

4-16 Expressions

Additional Documentation

Set Relational Operators

A set relational operator has set operands. The set relational operators are =, <>, >=, <=, and
IN. The operators = and <> compare two sets for equality or inequality, respectively. The <=
operator denotes the subset operation, while >= indicates the superset operation such that Set
A is a subset of Set B, if every element of A is also a member of B. When this is true, B is said
to be the superset of A.

The IN operator determines if the left operand is a member of the set speci�ed by the right
operand. When the right operand has the type SET OF T, the left operand must be type
compatible with T. To test the negative of the IN operator, the following form must be used:

NOT (element IN set)

Example

PROGRAM show_set_relational; (output)

TYPE

color= (red,yellow,blue);

VAR

b: boolean;

s,t: SET OF color;

col: color;

BEGIN

col:= red;

s:= [red];

t:= [blue];

b:= s <> t;

writeln (b);

b:= s <= t;

writeln (b);

b:= col IN [yellow,blue];

writeln (b);

END.

Output:

TRUE

FALSE

FALSE

Expressions 4-17

Additional Documentation

IN

This operator returns true if the speci�ed element is a member of the speci�ed set. The result
is false if the expression is not a member of the set. Both the element being tested and the
elements in the set must be of compatible types.

Example

PROGRAM show_in(output);

VAR

ch : char;

good : SET OF char;

member : Boolean;

BEGIN

ch := 'y';

good := ['y','Y','n','N'];

IF ch IN good THEN

member := true

ELSE

member := false;

writeln(member);

END.

Output:

TRUE

4-18 Expressions

Additional Documentation

Pointer Relational Operators

The pointer relational operators = and <> can be used to compare two pointers for equality or
inequality, respectively. Two pointers are equal only if they point to exactly the same object
or both contain the value NIL. Only two pointers of identical type or the constant NIL can be
compared.

Example

PROGRAM show_pointer_relational;

VAR

a, b: boolean;

p, q: ^boolean;
x: ^char;

BEGIN

.

.

IF (p = q) AND (p <> NIL) THEN p^:= a = b; { pointer }

b := x <> q; { is an error - x and q are not compatible }

END.

Note No assumptions should be made about the integer values of pointers and their
integer value relations. Such values and relations are unde�ned.

Expressions 4-19

Additional Documentation

String Relational Operators

The string relational operators =, <>, <, <=, >, or >= may be used to compare operands of
type string , PAC , char, or string literals . The system performs the comparison character by
character using the order de�ned by the ASCII collating sequence. Note that it is not possible
to compare a string variable with a PAC or char variable. In general, these guidelines are as
follows:

If one operand is a string expression, the other operand may be a string expression or string
literal. If the operands are not the same length and the two are equal up to the length of
the shorter, the shorter operand is less. For example, if the current value of S1 is abc and
the current value of S2 is ab, then S1 > S2 is true.

If one operand is a PAC expression, the other may be a PAC or string literal of any length.
The shorter is blank-�lled prior to comparison.

If one operand is a char expression, the other may be a char expression or a single-character
string literal.

Table 4-4 summarizes these rules. The standard function strmax(s) returns the maximum
length of the string variable s. The standard function strlen(s) returns the current length of
the string expression s. A string constant is considered a string literal when it appears on
either side of a relational operator.

Table 4-4. String, PAC, Char, String Literal Comparison

A <relop> B string PAC char string literal

string Length of
comparison
based on
smaller strlen

Not allowed Not allowed Length of
comparison
based on
smaller strlen

PAC Not allowed The shorter
of the two
is padded
with blanks

Not allowed The shorter
of the two
is padded
with blanks

char Not allowed Not allowed Yes Only if
strlen(B)=1

string literal Length of
comparison
based on
smaller strlen

The shorter
of the two
is padded
with blanks

Only if
strlen(A)=1

The shorter
of the two
is padded
with blanks

4-20 Expressions

Additional Documentation

Example

PROGRAM show_string_relational (output) ;

VAR

s,t: string[80];

pac: packed array [1..5] of char;

chr: char;

b: boolean;

BEGIN

s:='abc';

t:='ab';

if s > t then b:=true {string to string comparison. this is}

else b:=false; { the same as b:= s > t }

writeln (b);

b:= s > 'ab'; {string to string literal comparison }

writeln (b);

pac:='abc';

b:= pac > 'abc'; {PAC to string literal comparison }

writeln (b);

chr:= 'A';

b:= 'c' > chr; {char to string literal comparison }

writeln (b);

END.

Output:

TRUE

TRUE

FALSE

TRUE

Expressions 4-21

Additional Documentation

Concatenation Operator

The concatenation operator + concatenates two operands that may be string variables, string
literals, function results of a string type, or some combination of these types. The result of the
concatenation is always type string.

Note It is not legal to use the concatenation operator in a constant de�nition.

Example

VAR

s1,s2: string[80];

BEGIN
s1:='abc';

s2:='def';

s1:= s1 + s2; { s1 is now 'abcdef' }

writeln('s1 has: ',s1);

s2:= 'The first six letters are ' + s1;

writeln('s2 has: ',s2);

END.

Output:

s1 has: abcdef

s2 has: the first six letters are abcdef

4-22 Expressions

Additional Documentation

SET Operators

The set operators perform set operations on two set operands . The result is of type set. The
set operators are +, -, and *. Operands used with set operators may be variables, constant
identi�ers, or set constructors . The base types of the set operands must be type compatible
with each other.

OPERATOR RESULT

+ (union) A set whose members are all the elements present in the left set
operand and those in the right, including members present in both
sets.

- (difference) A set whose members are the elements which are members of the left
set but are not members of the right set.

* (intersection) A set whose members are only those elements present in both of the
set operands.

Example

PROGRAM show_setops;

VAR

a, b, c: SET OF 1..10;

x : 1..10;

BEGIN

.

.

a:= [1, 3, 5];

b:= [2, 4];

c:= [1..10];

x:= 9;

a:= a + b; { Union; a is now [1, 2, 3, 4, 5]. }

b:= c - a; { Difference; b is now [6, 7, 8, 9, 10]. }

c:= a * b; { Intersection; c is now []. }

c:= [2, 5] + [x] { Set constructor operands; c is now }

END. { [2, 5, 9]. }

Expressions 4-23

Additional Documentation

Array Selector

An array selector accesses a component of an array. The selector follows an array designator
and consists of an ordinal expression in square brackets. For a string or PAC type, an array
selector accesses a single component; for example, a character.

The ordinal expressions must be assignment compatible with the index types of the array.
An array designator can be any variable with an array type that includes an array selector,
a function call that returns an array, or an array constant. The symbols (. and .) may
replace the left and right brackets, respectively. The list can be used to select a component of
a multiple-dimensioned array.

Syntax

Array_selector:

Example

PROGRAM show_arrayselector;

TYPE

a_type = ARRAY [1..10] OF integer;

VAR

m,n : integer;

s_array : ARRAY [1..3] OF 1..100;

multi_array : ARRAY [1..5,1..10] OF integer;

p : ^a_type;

BEGIN

s_array[2]:= 32;

m:= s_array[2]; { Assigns current value of 2nd }

{ component of s_array to m }

multi_array[2,9]:= m; { These two methods of }

multi_array[2][9]:= m; { assignment are equivalent. }

new(p);

p^[1]:= 1200;

n:= p^[m MOD 10 + 1] * m; { Array in the heap with computed }

END. { selector. }

4-24 Expressions

Additional Documentation

Record Selector

A record selector accesses a �eld of a record. The record selector follows a record designator
and consists of a period and the name of a �eld. A record designator is the variable name of a
record, the selected component of a structure that is a record, or a function call that returns a
record.

The WITH statement \opens the scope" of a record. This makes it unnecessary to specify a
record selector.

Syntax

Record_selector:

Example

PROGRAM show_recordselector;

TYPE

r_type = RECORD

f1: integer;

f2: char;

END;

VAR

a,b : integer;

ch : char;

r : r_type;

rec_array : ARRAY [1..10] OF r_type;

BEGIN

.

a:= r.f1 + b; { Adds the current value of integer field }

. { of r to b and assigns the result to a. }

.

rec_array[a].f2:= ch; { Assigns current value of ch to char }
. { field of the a'th component of rec_array. }

END.

Expressions 4-25

Additional Documentation

Set Constructor

A set constructor designates one or more values as members of a set whose type may or may
not have been previously declared. A set constructor consists of an optional set type identi�er
and one or more ordinal expressions in square brackets. Two expressions may serve as the
lower and upper bound of a subrange.

If the set type identi�er is speci�ed, the values in the brackets must be assignment compatible
with the base type of the set. If no set type identi�er appears, the values must be type
compatible with each other. The symbols (. and .) may replace the left and right brackets,
respectively.

Set constructors may appear as operands in expressions in executable statements. Set
constructors with constant values are legal in the constant declaration sections.

A set constructor of the form [i..j] where i and j are integral-type variables, is defaulted to
a set of integer (set of 0..255). If it appears in an expression and the size of the other operand
is larger than zero to 255, [i..j] is assumed to be the size of the other operand.

Syntax

Set_constructor:

4-26 Expressions

Additional Documentation

Example 1

PROGRAM show_setconstructor;

TYPE

int_set = SET OF 1..100;

cap_set = SET OF 'A'..'Z';

VAR

a,b: 0..255;

s1: SET OF integer;

s2: SET OF char;

BEGIN

.

.

s1:=[b, 7, 10]; { no type identifier }

s1:= int_set[(a MOD 100) + (b MOD 100)];

s2:= cap_set['B'..'T', 'X', 'Z'];

END.

Example 2

VAR

s1 : set of 0..366;

i,j : integer;

BEGIN

s1 := [i..j] * s1; {in this context, [i..j] becomes a set of 0..366.}

.

.

.

END.

Expressions 4-27

Additional Documentation

File Buffer Selector

A �le bu�er selector accesses the contents, if any, of the �le bu�er variable associated with the
current position of a �le. The selector follows a �le designator and consists of the caret symbol
(^).

A �le designator is the name of a �le or the selected component of a structure which is a �le.
The @ symbol may replace the caret. If the �le bu�er variable is not de�ned at the time of
selection, a run-time error occurs.

Syntax

File_selector:

Example

PROGRAM show_file_selector(output);

VAR

f1: FILE OF integer;

BEGIN

rewrite(f1);

f1^:= 5;

put(f1);

reset(f1);

IF f1^ <> 5 THEN

writeln('error')

ELSE

writeln('success');

END.

Output:

success

4-28 Expressions

Additional Documentation

Pointer dereferencing

A pointer variable points to a dynamically allocated variable on the heap. The current value
of this variable may be accessed by dereferencing its pointer value. Pointer dereferencing
occurs when the caret symbol (^) appears after a pointer designator in source code. A
dereferenced pointer can be an operand in an expression.

The pointer designator may be the name of a pointer or selected component of a structured
variable that is a pointer. The @ symbol may replace the caret. It is an error to dereference
NIL or an unde�ned pointer value.

Syntax

Pointer_deref:

Example

PROGRAM show_pointerderef (output);

TYPE

p = ^integer;

VAR

a,b : integer;

p_array : ARRAY [1..10] OF p;

ptr : p;

BEGIN

.

p_array[a]^:= a + b;

.

writeln(ptr^ * 2); { Dereferenced pointer is operand. }

.

END.

Expressions 4-29

Additional Documentation

Function Calls

A function call invokes the block of a standard or user de�ned function and returns a value
to the calling point of the program. An operator can perform some action on this value, and,
for this reason, a function result is an expression. See Chapter 8 for a complete description of
function calls.

Example

PROGRAM show_function_call;

VAR x: integer;

FUNCTION sum (A,B: integer): integer;

BEGIN

sum := A + B;

END;

BEGIN

x:= sum (1,2) + 3;

x:= sum(x,sum(x,sum(0,1)));

END.

4-30 Expressions

5

The Declaration Section

The �rst two parts of an HP Pascal block are the heading and the declaration section. The
heading speci�es the name of the program, module, procedure, or function. The declaration
section contains sections that de�ne constants and user-de�ned types, and sections that
declare labels, variables, procedures, functions, and modules. Each of these sections is
introduced by an appropriate reserved word such as LABEL, CONST, IMPORT, MODULE,
TYPE, VAR, PROCEDURE, or FUNCTION. A block need not include all of these sections.
In HP Pascal, CONST, TYPE, VAR, MODULE, and IMPORT declaration sections can be
intermixed and must follow label declarations and precede function or procedure declarations.

This chapter describes constant de�nitions, label declarations, type de�nitions, and variable
declarations . For information on procedure, function, module, and import declarations, see
Chapter 7.

The Declaration Section 5-1

Additional Documentation

Constant Definition

A constant de�nition establishes an identi�er as a synonym for a constant value. The
identi�er may then be used in place of the value. The value of a symbolic constant may not
be changed by a subsequent constant de�nition in the same scope or by an assignment.

The reserved word CONST precedes one or more constant de�nitions. A constant de�nition
consists of an identi�er, the equal sign, (=) and a constant value. For more information about
CONST, refer to the section \CONST" in this chapter.

The reserved word NIL is a pointer value representing a NIL value for all pointer types.
Predeclared constants include the standard constants maxint and minint , as well as the
standard Boolean constants true and false. These constants are discussed in detail in the
following pages of this chapter.

Constant expressions are a restricted class of HP Pascal expressions. Consequently, operands
in constant expressions must be integers, reals , or ordinal declared constants . Operators must
be +, -, *, /, DIV, or MOD. Note that all other operators are excluded. Furthermore, only calls
to the standard functions abs , binary , chr , hex , octal , odd , ord , pred , strlen , and succ are
legal.

One exception to the restrictions on constant expressions is permitted; the sign of a real or
longreal declared constant may be changed using the negative real unary operator (-). The
positive operator (+) is legal, but has no e�ect.

In HP Pascal, constant de�nitions must follow label declarations and precede function or
procedure declarations. CONST, TYPE, VAR, MODULE, and IMPORT sections may be
intermixed.

Example

CONST

fingers = 10; { Unsigned integer. }

pi = 3.1415; { Unsigned real. }

message = 'Use a fork!'; { String literal. }

nothing = NIL;

delicious = true; { Standard constant. }

neg_pi = -pi; { Real unary operator. }

hands = fingers DIV 5; { Constant expression. }

numforks = pred(hands); { Constant expression with }

{ call to standard function. }

5-2 The Declaration Section

Additional Documentation

CONST

This reserved word indicates the beginning of one or more constant de�nitions that introduces
an identi�er as a synonym for a constant value. The identi�er may then be used in place of
that value.

Constant de�nitions appear after the program header or any LABEL declarations, and before
any procedure or function de�nitions. In HP Pascal, CONST, TYPE, VAR, MODULE, and
IMPORT de�nitions may be intermixed.

Syntax

Const_decl:

Example

PROGRAM show_CONST;

LABEL 1;

TYPE

type1 = integer;

type2 = Boolean;

str1 = string[5];

CONST

const1 = 3.1415; { constant }

const2 = true;

strconst = str1['abcde']; { string_constructor }

VAR

var1 : type1;

BEGIN

END.

For examples of structured constants, see the appropriate sections.

The Declaration Section 5-3

Additional Documentation

false

This prede�ned Boolean constant is equal to the Boolean value false. The ordinal value of
false is 0.

Example

PROGRAM show_false(output);

VAR

what, lie : Boolean;

BEGIN

IF false THEN writeln('Always false, never printed.');
what := false;

lie := NOT true;

IF what = lie THEN writeln('Would I lie?');

END.

Output:

Would I lie?

5-4 The Declaration Section

Additional Documentation

true

This prede�ned Boolean constant is equal to the Boolean value true. The ordinal value of true
is 1.

Example

PROGRAM show_true(output);

VAR

what, truth : boolean;

BEGIN

IF true THEN writeln('Always true, always printed.');
what := true;

truth := NOT false;

IF what = truth THEN writeln('Everything I say is a lie.');

END.

Output:

Always true, always printed.

Everything I say is a lie.

The Declaration Section 5-5

Additional Documentation

maxint

This standard constant returns the upper bound of the integer type. The value is
implementation de�ned, however, it must allow for at least nine decimal digits. For
more information, see the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide, depending on your implementation.

Example

PROGRAM show_maxint(input,output);

VAR

i,j : integer;

r : real;

BEGIN

readln(i,j);

r := i + j;

IF r > maxint THEN writeln('Sum too large for integers.');

END.

5-6 The Declaration Section

Additional Documentation

minint

This standard constant returns the lower bound of the integer type. The value is
implementation de�ned, however, it must allow at least nine decimal digits. In general, the
range of signed integers allows the absolute value of minint to be greater than maxint . For
more information, see the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide, depending on your implementation.

Example

PROGRAM show_minint(input,output);

VAR

i,j : integer;
r : real;

BEGIN

readln(i,j);

r := i - j;

IF r < minint THEN writeln('Difference too large for integers.');

END.

The Declaration Section 5-7

Additional Documentation

NIL

This prede�ned constant is the value of a pointer that designates that the pointer does not
point at anything. NIL is compatible with any pointer type. A NIL pointer or pointer that
has been assigned to NIL does not point to any variable at all. It is an error to dereference a
NIL valued pointer.

NIL pointers are useful in linked list applications where the link pointer points to the next
element of the list. The last element's pointer can be assigned to NIL to indicate that there
are no further elements in the list.

5-8 The Declaration Section

Additional Documentation

Array Constants and Array Constructors

An array constant is a declared constant de�ned with an array constructor that speci�es
values for the components of an array type. The values for all elements of the structured type
must be speci�ed and must have a type identical to the type of the corresponding elements.

An array constructor consists of a previously de�ned array type identi�er and a list of values
in square brackets. Array constructors are only legal in a CONST section of a declaration
part. They cannot appear in other sections or in executable statements. Each component of
the array type must receive a value that is assignment compatible with the component type.
There is a shorthand allowed for PAC and string constants where a string literal may be used
to assign values to multiple components. An array constant may not contain �les.

An array constant may be used to initialize a variable in the executable part of a block.
Individual components of an array constant may also be accessed in the body of a block, but
not in the de�nition of other constants.

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly.
For example, 3 OF 5 assigns the integer value 5 to three successive array components. The
symbols (. and .) may replace the left and right square brackets, respectively.

Syntax

Array_constructor

The Declaration Section 5-9

Additional Documentation

Example

TYPE

Boolean_table = ARRAY [1..5] OF Boolean;
table = ARRAY [1..100] OF integer;

row = ARRAY [1..5] OF integer;

matrix = ARRAY [1..5] OF row;

color = (red, yellow, blue);

color_string = PACKED ARRAY [1..6] OF char;

color_array = ARRAY [color] OF color_string;

CONST

true_values = Boolean_table [5 OF true];

init_values1 = table [100 OF 0];

init_values2 = table [60 OF 0, 40 OF 1];

identity = matrix [row [1, 0, 0, 0, 0],

row [0, 1, 0, 0, 0],

row [0, 0, 1, 0, 0],

row [0, 0, 0, 1, 0],

row [0, 0, 0, 0, 1]];

colors = color_array [color_string ['RED', 3 OF ' '],

color_string ['YELLOW'],

color_string ['BLUE', 2 OF ' ']];

The name of the previously declared constant may be speci�ed within a structured constant.
The previous example can also be written as indicated below. Note that for the special case of
PAC that if all of the components are not speci�ed, as in the example below, the remaining
components are �lled with blanks as assignment compatibility indicates.

CONST

red = 'RED';

yellow = 'YELLOW';

blue = 'BLUE';

colors = color_array [color_string[red];

color_string[yellow];

color_string[blue]];

5-10 The Declaration Section

Additional Documentation

Record Constructor

A record constant is a declared constant de�ned with a record constructor that speci�es values
for the �elds of a record type. A record constant may be used to initialize a variable in the
body of a block. Individual �elds of a record constant in the body of a block may be selected,
but not when de�ning other constants.

A record constructor consists of a previously declared record type identi�er and a list in
square brackets of �elds and values. All �elds of the record type must appear, but not
necessarily in the order of their declaration. Values in the construct or must be assignment
compatible with the �elds. Note that a record constructor is only legal in the CONST section
of a declaration part. It cannot appear in other sections or in an executable statement.

For records with variants, the constructor must specify the tag �eld before any variant �elds.
Then only the variant �elds associated with the value of the tag may appear. For records with
tagless variants, the initial variant �eld selects the variant.

The values may be constant values or constructors. To use a constructor as a value, the �eld
in the record type must be de�ned with a type identi�er. A record constant may not contain a
�le.

Syntax

Record_constructor:

The Declaration Section 5-11

Additional Documentation

Example

TYPE

securtype = (light, medium, heavy);
counter = RECORD

pages: integer;

lines: integer;

characters: integer;

END;

report = RECORD

revision: char;

price: real;

info: counter;

CASE securtag: securtype OF

light: ();

medium: (mcode: integer);

heavy: (hcode: integer;

password: string[10]);

END;

CONST

no_count = counter [pages: 0, characters: 0, lines: 0];

big_report = report [revision: 'B',

price: 19.00,

info: counter [pages: 19,

lines: 25,

characters: 900],

securtag: heavy,

hcode: 999,

password: 'unity'];

no_report = report [revision : ' ';

price : 0.00;

info : no_count;

securtag : light];

5-12 The Declaration Section

Additional Documentation

Restricted Set Constructor

A set constant is a declared constant de�ned with a restricted set constructor that speci�es
set values. A restricted set constructor consists of an optional previously declared set type
identi�er and a list of constant values in square brackets. Subranges may appear in this
list. Restricted set constructors may appear in a CONST section of a declaration part, or in
executable statements and can be used to initialize a set variable in the body block.

The constant must be an ordinal constant value or an ordinal subrange. A constant expression
is legal as a value. The symbols (. and .) may replace the left and right square brackets,
respectively.

Syntax

Restricted_set_constructor:

Example

TYPE

digits = SET OF 0..9;

charset = SET OF char;

CONST

all_digits = digits [0..9]; { Subrange. }

odd_digits = digits [1, 1+2, 5, 7, 9];

letters = charset ['a'..'z', 'A'..'Z'];

no_chars = charset [];

no_iden = [2, 4, 6, 8] { No set identifier. }

The Declaration Section 5-13

Additional Documentation

String Constructor

A string constant is a declared constant de�ned with a string constructor that speci�es values
for a string type. The length of the string constant may not exceed the maximum length of
the string type used in its de�nition. The number of characters in the de�nition determines
the current length of the string constant.

A string constructor consists of a previously de�ned string type identi�er and a list of values
in square brackets. Note that string constructors are only legal in a CONST section of a
declaration part. They cannot appear in other sections or in executable statements.

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly.
For example, 3 OF 'a' assigns the character a to three successive string components. The
symbols (. and .) may replace the left and right square brackets, respectively. String literals
of more than one character may appear as values.

A string constant may be used to initialize a variable in the statement part of a block.
Individual components of a string constant in the body of the block may be accessed, but not
in the de�nition of other declared constants.

Syntax

String_constructor:

Example

TYPE

s = string[80];

CONST

blank = ' ';

greeting = s['Hello!'];

farewell = s['G',2 OF 'o','d','bye'];

blank_string = s[10 OF blank];

5-14 The Declaration Section

Additional Documentation

Label Declaration

A label declaration speci�es integer labels that mark executable statements in the body of
the block. The reserved word LABEL precedes one or more integers separated by commas.
Control is transferred to a labeled statement by a GOTO statement. For more information
about GOTO statements, see Chapter 6.

Integers must be in the range 0 to 9999. Leading zeros are not signi�cant. For example, the
labels 9 and 00009 are identical.

In HP Pascal, label declarations must come �rst in the declaration part of a block.

A label must occur in the block of the procedure, function, or program where the label is
declared. For every label there must be one and only one statement with that label.

Syntax

Label_decl:

Example

LABEL 9, 19, 40;

.

.

.

40 : x:=10;

.

.

GOTO 40;

The Declaration Section 5-15

Additional Documentation

Type Definition

A TYPE section introduces the name and set of values for a user-de�ned type. HP Pascal
requires that a type identi�er be de�ned before its subsequent use in the de�nitions of other
types. In the only exception to this rule, a base type identi�er in a pointer type de�nition is
allowed before the base type is de�ned. However, the base type must be de�ned before the
end of the TYPE section in which it is �rst mentioned.

5-16 The Declaration Section

Additional Documentation

TYPE

This reserved word delimits the start of the type declarations in a program, module,
procedure, or function. A type de�nition establishes an identi�er known as type identi�er as
a synonym for a data type. The identi�er may then appear in subsequent type or constant
de�nitions or in variable declarations.

The reserved word TYPE precedes one or more type de�nitions. A type de�nition consists of
an identi�er, the equals sign (=), and a type.

A data type determines a set of attributes that includes the following:

The set of permissible values.

The set of permissible operations.

The amount of storage required.

The three most general categories of data type are simple, structured , and pointer .

Simple data types are the types ordinal , real , or longreal . Ordinal types include the standard
types integer , char , bit16 , bit32 , bit52 , shortint , longint , and boolean as well as user-de�ned
enumerated and subrange types.

Structured data types are the types array, record, set, and �le . The standard type string is
also a structured data type. The standard type text is a variant of the �le type.

Pointer data types de�ne pointer variables that point to dynamically allocated variables on
the heap. For a detailed description of HP Pascal data types, refer to Chapter 3.

CONST, TYPE, VAR, MODULE, and IMPORT sections may be intermixed.

Syntax

Type_decl:

Example

TYPE

units = (inches,feet,miles); { Simple type }

files = ARRAY [1..10] OF text; { Structured type }

PTR1 = ^units; { Pointer type }

The Declaration Section 5-17

Additional Documentation

Variable Declaration

A variable declaration introduces an identi�er as a variable of a speci�ed type. Each variable
is a statically-declared object that occupies storage and is accessible for the activation and
duration of the program, procedure, or function in which it is declared.

Components of a structured variable may be accessed using an appropriate selector. Pointer
variable dereferencing accesses dynamic variables on the heap. Module variables are accessible
for the duration of the program that imports the module.

Several identi�ers may be combined in the same variable declaration if the variables are of the
same type.

HP Pascal prede�nes two standard variables, input and output, that are text�les. Formally,

VAR

input, output: text;

These standard text�les commonly appear as program parameters and serve as default �les for
various �le operations. For more information on text�les, refer to Chapter 3.

Every declaration of a �le variable F with components of type T implies the additional
declaration of a bu�er variable of type T. The bu�er variable, denoted as F^, may be used to
access the current component of the �le F.

Global Variables

Global variables are declared at the beginning of the outermost block of a program and are
available to all the procedures and functions within that program.

Local Variables

Local variables are variables declared within a particular procedure or function or in the
headings as parameters, and their scope is limited to that procedure or function during the
execution of the procedure or function. When optimization is requested, the compiler will
issue warnings about local variables that are used prior to their initialization.

Module Variables

Module variables are declared in either the EXPORT or IMPLEMENT section of a module.
Variables declared in the EXPORT part are available to all the procedures and functions
within the program which imports the modules. Those declared in the IMPLEMENT section
are only available inside the module.

5-18 The Declaration Section

Additional Documentation

VAR

This reserved word delimits the beginning of variable declarations in an HP Pascal program or
module. A variable declaration associates an identi�er with a type. The identi�er may then
appear as a variable in executable statements.

The reserved word VAR precedes one or more variable declarations. A variable declaration
consists of an identi�er , a colon (:), and a type. Any number of identi�ers may be listed,
separated by commas. These identi�ers are then variables of the same type.

The type may be any simple, structured, or pointer type. The form of the type may be a
standard identi�er, a declared type identi�er, or a data type.

VAR sections may be repeated and intermixed with CONST, TYPE, MODULE, and
IMPORT sections.

Syntax

Variable_decl:

Example

TYPE

answer = (yes, no, maybe);

VAR

pagecount,

linecount,

charcount: integer; { Standard identifier. }

whats_the: answer; { User-declared identifier. }

album : RECORD { Data type. }

speed: (lp, for5, sev8);

price: real;

name : string[20];
END;

The Declaration Section 5-19

Additional Documentation

Side-Effects

A side-e�ect is the modi�cation by a procedure or function of a variable that is global or
nonlocal in scope to the procedure or function. If a local variable is declared using the same
identi�er as a global variable, the local variable may be modi�ed without a�ecting the global
variable.

Example

PROGRAM show_effects(output);

VAR

i,j: integer; { Global variables }

PROCEDURE oops(i : integer); { i is local to the procedure }

BEGIN

IF i > 0 THEN j := j - 1; { j is a global variable }

END;

BEGIN

i := 2;

j := 3;

oops(i);

IF i = j THEN writeln('There was a side effect.');

END.

Output:

There was a side effect.

Note Side e�ect modi�cations may cause an optimizer to be more conservative in its
choices for code improvement, thereby decreasing execution performance.

5-20 The Declaration Section

6

Statements

A statement is a sequence of special symbols , reserved words , and expressions that either
performs a speci�c set of actions on a program's data or controls program ow. Table 6-1 lists
and describes statements.

Table 6-1. HP Pascal Statements and Purposes

Statement Type Purpose

compound Group statements

empty Do nothing

assignment Assign a value to a variable

procedure Invoke a procedure

GOTO Transfer control unconditionally

IF, CASE Conditional selection

WHILE, REPEAT, FOR Iterate a group of statements

WITH Manipulate record �elds

The empty, assignment, procedure, and GOTO statements are commonly called simple
statements. The compound , IF, CASE, WHILE, REPEAT, FOR, and WITH statements are
referred to as structured statements because they themselves may contain other statements.

Statements 6-1

Additional Documentation

Syntax

Statements:

6-2 Statements

Additional Documentation

Compound Statements

A compound statement is a sequence of statements bracketed by the reserved words BEGIN
and END. A semicolon (;) delimits one statement from the next. Certain statements may
alter the ow of execution in order to achieve e�ects such as selection, iteration, or invocation
of another procedure or function. For instance, after the last statement in the body of a
routine has executed, control is returned to the point in the program from which the routine is
called. Note the use of non-local GOTOs voids this statement. The program terminates after
the last statement is executed.

A compound statement has two primary uses. First, it de�nes the statement part of a block
and second, it groups a series of statements into a single statement. A compound statement
may also serve to logically group a series of statements.

Note that compound statements are allowed, but are unnecessary in the following cases:

The statements between REPEAT and UNTIL.

The statements between OTHERWISE and the end of the CASE statement.

Example

PROCEDURE check_min;

BEGIN { This }

IF min > max THEN { compound }

BEGIN { Compound } { statement }

writeln('Min is wrong.'); { statement is } { is }

min := 0; { part of IF } { the }

END; { statement. } { procedure's }

END; { body. }

. . .

BEGIN { Nested compound statements }

IF part_to_start=part_1 THEN

BEGIN { for logically grouping statements. }

start_part_1;

finish_part_1;

{ empty statement here }

END
ELSE

BEGIN

start_part_2;

finish_part_2;

END;

END;

...

Statements 6-3

Additional Documentation

BEGIN .. END

BEGIN and END are reserved words that signify the beginning and ending of a compound
statement or block. BEGIN indicates to the compiler that a compound statement or block has
started, whereas END indicates that a compound statement or block has terminated.

Syntax

Example

PROGRAM show_begin_end(input, output);

VAR

running : Boolean;

i, j : integer;

BEGIN {begin of program block}

i := 0;

j := 1;

running := true;

writeln('See Dick run.');

writeln('Run Dick run.');

IF running then

BEGIN {begin of compound statement}

i := i + 1;
j := j - 1;

END; {end of compound statement}

END. {end of program block}

Output:

See Dick run.

Run Dick run.

6-4 Statements

Additional Documentation

Empty Statements

The empty statement causes only the advancement of program ow to the next statement. It
is often used to indicate that nothing occurs. In the example, no action occurs when i equals
2, 3, 4, 6, 7, 8, 9, or 10.

Example

CASE i OF

0 : start;

1 : proceed;

2..4 : ;

5 : report_error;

6..10: ;
11 : stop;

OTHERWISE fatal_error;

END;

IF i IN [2..4,6..10] THEN

{ do nothing }

ELSE

{ cases }

Note In the following example, the last semicolon is not required. Its presence
means that there is an empty statement before END. If the semicolon were
removed, there would not be an empty statement. Empty statements do not
a�ect the run-time speed of your program.

BEGIN

I:= J + 1;

K:= I + J;

END

Statements 6-5

Additional Documentation

Assignment

An assignment statement assigns a value to a variable access or a function result. The
assignment statement consists of a variable or function identi�er, an optional selector, a
special symbol (:=), and an expression that computes a value. The type of the expression
must be assignment compatible with the type of the receiving element.

The receiving element may be of any type except �le, or a structured type containing a �le
type component. An appropriate selector permits assignment to a component of a structured
variable or structured function result.

Note An implementation may evaluate the variable access and the expression in any
order.

Syntax

Assignment_statement

6-6 Statements

Additional Documentation

Example

PROGRAM show_assign(input,output);

VAR

aaa: integer;

FUNCTION show_assign: integer;

TYPE

rec = RECORD

f: integer;

g: real;

END;

index = 1..3;

table = ARRAY [index] of integer;

CONST

ct = table [10, 20, 30];

cr = rec [f:2, g:3.0];

VAR

s: integer;

a: table;

i: index;

r: rec;

p1,

p: ^integer;

strg: string[10];

BEGIN { show_assign }
s:= 5; i:= 3;

a:= ct;

a [i] := s + 5;

r:= cr;

r.f:= 5;

new (p1);

p:= p1;

p^:= r.f - a [i];

strg:= 'Hi!';

show_assign := p^;

END; {show_assign}

BEGIN

aaa:= show_assign;

END.

Statements 6-7

Additional Documentation

CASE

The CASE statement selects a certain action based upon the value of an ordinal expression. It
consists of the reserved word CASE, a selector, the reserved word OF, a list of case constants
and statements, and the reserved word END. Optionally, the reserved word OTHERWISE and
a list of statements may appear after the last constant and its statement.

The selector must be an ordinal expression in that it must return an ordinal value. A
case constant may be a literal, a constant identi�er, or a constant expression that is type
compatible with the selector. Subranges may also appear as case constants.

A case constant cannot appear more than once in a list of case constants. Subranges used as
case constants may not overlap other constants or subranges. However, several constants may
be associated with a particular statement by listing them separated by commas.

Note that statements between OTHERWISE and END need not be bracketed with
BEGIN..END.

When the system executes a CASE statement, the following occurs:

1. It evaluates the selector.

2. If the value corresponds to a speci�ed case constant, it executes the statement associated
with that constant. Control then passes to the statement following the CASE statement.

3. If the value does not correspond to a speci�ed case constant, it executes the statements
between OTHERWISE and END. Control then passes to the statement after the CASE
statement. The OTHERWISE clause must be present or the selector must match any
CASE label.

Syntax

6-8 Statements

Additional Documentation

Example

PROCEDURE scanner;

BEGIN

get_next_char;

CASE current_char OF

'a'..'z', { Subrange CASE label }

'A'..'Z':

scan_word;

'0'..'9':

scan_number;

OTHERWISE scan_special;

END;

END;

. . . .

FUNCTION octal_digit (d:digit): Boolean; { TYPE digit = 0..9 }

BEGIN

CASE d OF

0..7: octal_digit := true;

8..9: octal_digit := false;

END;

END;

. . . .

FUNCTION op { TYPE operators=(plus,minus,times,divide) }

(operator: operators;

operand1,
operand2: real)

: real;

BEGIN

CASE operator OF

plus: op := operand1 + operand2;

minus: op := operand1 - operand2;

times: op := operand1 * operand2;

divide: op := operand1 / operand2;

END;

END;

Statements 6-9

Additional Documentation

IF .. THEN

IF .. THEN .. ELSE

An IF statement speci�es a statement the system executes, if a particular condition is true.
If the condition is false, then the system doesn't execute that statement, and optionally, it
executes another statement starting after the ELSE.

The IF statement consists of the reserved word IF, a Boolean expression, the reserved word
THEN, a statement, and, optionally, the reserved word ELSE and another statement. The
statements after THEN or ELSE may be any HP Pascal statements, including other IF
statements or compound statements. No semicolon separates the �rst statement and the
reserved word ELSE.

When an IF statement is executed, the Boolean expression is evaluated to either true or false,
and one of the following three actions is performed:

If the value is true, the statement following THEN is executed.

If the value is false and ELSE is speci�ed, the statement following the ELSE is executed.

If the value is false and no ELSE is speci�ed, execution continues with the statement
following the IF statement.

The following IF statements are equivalent:

IF a = b THEN IF a = b THEN

IF c = d THEN BEGIN

a := c IF c = d THEN

ELSE a := c

a := e; ELSE

a := e;

END;

Note ELSE parts are always associated with the nearest preceding unmatched IF
statement.

6-10 Statements

Additional Documentation

A common use of the IF statement is to select an action from several choices. This often
appears in the following form:

IF e1 THEN
...

ELSE IF e2 THEN

...

ELSE IF e3 THEN

...

ELSE

...

This form is particularly useful to test for conditions involving real numbers or string literals
of more than one character, since these types are not legal in CASE labels.

Syntax

If_statement

Statements 6-11

Additional Documentation

Example

PROGRAM show_if (output);

VAR

i,j : integer;

s : PACKED ARRAY [1..5] OF char;

found: Boolean;

BEGIN

.

.

IF i = 0 THEN writeln ('i = 0'); { IF with no ELSE. }

IF found THEN { IF with an ELSE part. }

writeln ('Found it')

ELSE

writeln ('Still looking');

.

.

IF i = j THEN { Select among different }

writeln ('i = j') { Boolean expressions. }

ELSE IF i < j THEN

writeln ('i < j')

ELSE { i > j }

writeln ('i > j');

.

.

IF s = 'RED' THEN { This IF statement }

i := 1 { cannot be rewritten as }

ELSE IF s = 'GREEN' THEN { a CASE statement. }

i := 2

ELSE IF s = 'BLUE' THEN
i := 3;

END.

6-12 Statements

Additional Documentation

FOR .. DO

The FOR statement executes a statement a predetermined number of times. The FOR
statement consists of the reserved word FOR, a control variable initialized by an ordinal
expression known as the initial value, either the reserved word TO indicating an increment or
the reserved word DOWNTO indicating a decrement, another ordinal expression known as the
�nal value, the reserved word DO, and a statement.

The control variable is assigned each value of the range during the corresponding iteration of
the statement. It must be an ordinal variable and may not be a component of a structured
variable or a locally declared procedure or function parameter. The control variable must be
local to the scope in which the FOR loop appears. In the case of the outer block, globals may
appear as control variables. The initial and �nal values are ordinal expressions that must be
assignment compatible with the control variable. After completion of the FOR statement, the
control variable is unde�ned.

Syntax

For_statement:

When the system executes a FOR statement, the following occurs:

1. It evaluates the initial and �nal values and assigns the initial value to the control variable.

2. It executes the statement after DO.

3. It repeatedly tests the current value of the control variable and �nal value for inequality,
increments or decrements the control variable, and executes the statement after DO.

In a FOR..TO construction, the system never executes the statement after DO if the initial
value is greater than the �nal value. In a FOR..DOWNTO construction, the statement is
never executed if the initial value is less than the �nal value.

Statements 6-13

Additional Documentation

The FOR statement:

FOR control_var := initial TO final DO

statement

is equivalent to the statement:

BEGIN

temp1 := initial; {No evaluation order is required }

temp2 := final; {for temp1 and temp2. }

IF temp1 <= temp2 THEN

BEGIN

control_var := temp1;

WHILE control_var <= temp2 DO

BEGIN

statement;

control_var := succ(control_var); { increment }

END;

END

ELSE; { Don't execute the statement at all;}

END; { control_var is now undefined. }

The FOR statement:

FOR control_var := initial DOWNTO final DO

statement

is equivalent to the statement:

BEGIN

temp1 := initial; {No evaluation order is required }

temp2 := final; {for temp1 and temp2. }

IF temp1 >= temp2 THEN
BEGIN

control_var := temp1;

WHILE control_var >= temp2 DO

BEGIN

statement;

control_var := pred(control_var); { decrement }

END;

END

ELSE; { Don't execute the statement at all;}

END; { control_var is now undefined. }

6-14 Statements

Additional Documentation

In the statement after DO, it is an error if assignment is made to the control variable. It
cannot be used on the left-hand side of an assignment statement, passed as a reference
parameter or used as the control variable of a second FOR statement nested within the �rst.
Furthermore, it may not appear as a parameter for the standard procedures read or readln .

The system determines the range of values for the control variable by evaluating the two
ordinal expressions once, and only once, before making any assignment to the control variable.
So the statement sequence:

i := 5;

FOR i := pred(i) TO succ(i) DO writeln('i=',i:1);

writes:

i=4

i=5

i=6

instead of:

i=4

i=5

Example

{ VAR color: (red, green, blue, yellow); }

FOR color := red TO blue DO

writeln ('Color is ', color);

.

.

FOR i := 10 DOWNTO 0 DO

writeln (i);

writeln ('Blast Off');

.

.

FOR i := (a[j] * 15) TO (f(x) DIV 40) DO

IF odd(i) THEN

x[i] := cos(i)

ELSE

x[i] := sin(i);

Statements 6-15

Additional Documentation

REPEAT .. UNTIL

A REPEAT statement executes a statement or group of statements repeatedly until a Boolean
expression is true. It consists of the reserved word REPEAT, one or more statements, the
reserved word UNTIL, and a Boolean expression (the condition). The statements between
REPEAT and UNTIL need not be bracketed with BEGIN..END.

When the system executes a REPEAT statement, the following occurs:

1. It executes the statement sequence, and then evaluates the Boolean expression.

2. If it is false, it executes the statement sequence and evaluates the Boolean expression again.

3. If it is true, control passes to the statement after the REPEAT . . . UNTIL statement.

The statement:

REPEAT

statement;

UNTIL condition

is equivalent to the following:

1: statement;

IF NOT condition THEN GOTO 1;

Usually the statement sequence modi�es data at some point so that the condition becomes
true. Otherwise, the REPEAT statement loops forever.

Syntax

Repeat_statement:

6-16 Statements

Additional Documentation

Example

sum := 0;

count := 0;

REPEAT

writeln('Enter trial value, or "-1" to quit');

read (value);

sum := sum + value;

count := count + 1;

average := sum / count;

writeln ('value = ', value, ' average = ',average)

UNTIL (count >= 10) OR (value = -1);

.

.

REPEAT

writeln (real_array[index]);

index := index + 1;

UNTIL index > limit;

Statements 6-17

Additional Documentation

WHILE .. DO

The WHILE statement executes a statement repeatedly as long as a given condition is true.
The WHILE statement consists of the reserved word WHILE, a Boolean expression (the
condition), the reserved word DO, and a statement.

When the system executes a WHILE statement, the following occurs:

1. It evaluates the condition.

2. If the condition is true, it executes the statement after DO, and then re-evaluates the
condition. When the condition becomes false, execution resumes at the statement after the
WHILE statement.

3. If the condition is false at the beginning, the system never executes the statement after
DO.

The statement:

WHILE condition DO statement

is equivalent to:

1: IF condition THEN

BEGIN

statement;

GOTO 1;

END;

Usually a program modi�es data at some point so that the condition becomes false.
Otherwise, the statement repeats inde�nitely.

Syntax

While_statement

6-18 Statements

Additional Documentation

Example

WHILE index <= limit DO

BEGIN
writeln (real_array[index]);

index := index + 1;

END;

.

.

WHILE NOT eof (f) DO

BEGIN

read (f, ch);

writeln (ch);

END;

Statements 6-19

Additional Documentation

WITH .. DO

A WITH statement allows reference to record �elds by �eld name alone. A WITH statement
consists of the reserved word WITH, one or more record designators, the reserved word DO,
and a statement. A record designator may be a record identi�er, a function call that returns a
record, or a selected record component.

The statement after DO may be a compound statement. In this statement, reference to a
record �eld contained in one of the designated records can be made without mention of the
record to which it belongs. The appearance of a function reference as a record designator is an
invocation of the function. Note that a new value may not be assigned to a �eld of a record
constant or a �eld of a record returned by a function.

When the program executes a WITH statement, the following occurs:

1. References to the record designators are evaluated.

2. The statement after the DO statement is executed.

The following statements are equivalent:

WITH rec DO BEGIN

BEGIN rec.field1 := e1;

field1 := e1; writeln(rec.field1

writeln(field1 * field2); * rec.field2);

END; END;

Because the program evaluates a reference to a record designator once and only once before it
executes the statement, the following statement sequences are equivalent:

f designates a �eld in the example above.

i := 1;

WITH a[i] DO

BEGIN

writeln(f);

i:=2;

writeln(f)

END;

writeln(a[1].f);

writeln(a[1].f); { NOT writeln(a[2].f) }

That is, within the WITH statement, the implied value of a[i] is not a�ected by the change
to i.

Records with identical �eld names may appear in the same WITH statement. The following
interpretation resolves any ambiguity.

6-20 Statements

Additional Documentation

The statement:

WITH record1, record2, ..., recordn DO

BEGIN
statement;

END;

is equivalent to:

WITH record1 DO

BEGIN

WITH record2 DO

BEGIN

...

WITH recordn DO

BEGIN

statement;

END;

...

END;

END;

Therefore, if �eld f is a component of both record1 and record2, the compiler interprets an
unselected reference to f as a reference to record2.f. The synonymous �eld in record1 can
be accessed using normal �eld selection; for example, record1.f.

This interpretation also means that if r and f are records, and f is a �eld of r, the statement:

WITH r DO

BEGIN

WITH r.f DO

BEGIN

statement;

END;
END;

is equivalent to

WITH r,f DO

BEGIN

statement;

END;

If a local or global identi�er has the same name as a �eld of a designated record in a WITH
statement, then the appearance of the identi�er in the statement after DO is always a
reference to the record �eld. The local or global identi�er is inaccessible if it happens to have
the same name as the �eld name in the record.

Statements 6-21

Additional Documentation

Syntax

With_statement

6-22 Statements

Additional Documentation

Example

PROGRAM show_with;

TYPE

status = (married, widowed, divorced, single);

date = RECORD

month : (jan, feb, mar, apr, may, jun,

july, aug, sept, oct, nov, dec);

day : 1..31;

year : integer;

END;

person = RECORD

name : RECORD

first, last: string[10]

END;

ss : integer;

sex : (male, female);

birth : date;

ms : status;

salary : real

END;

VAR

employee : person;

BEGIN {show_with}

.

WITH employee, name, birth DO

BEGIN

last := 'Hacker';

first := 'Harry';
ss := 214748364;

sex := male;

month := feb;

day := 29;

year := 1952;

ms := single;

salary := 32767.00

END;

.

END. {show_with}

Statements 6-23

Additional Documentation

GOTO

A GOTO statement transfers control unconditionally to a statement marked by a label. It
consists of the reserved word GOTO and the speci�ed label.

The scope of labels is restricted. They may only mark statements appearing in the executable
portion of the block where they are declared. They cannot mark statements in inner blocks.
GOTO statements, however, may appear in inner blocks and reference labels in an outer
block. Therefore, it is possible to jump out of a procedure or function, but not into one.

A GOTO statement may not lead into a structured statement from outside that statement
or from another component statement of that statement. For example, it is illegal to branch
to the ELSE part of an IF statement from either the THEN part, or from outside the IF
statement. Note that a GOTO statement that refers to a non-local label declared in an outer
routine, causes any local �les to be closed.

Labels are numeric values in the range 0 through 9999.

Note The use of the non-local label form of GOTO may increase execution time of
the program.

Syntax

Goto_statement

6-24 Statements

Additional Documentation

Example

PROGRAM show_goto (output);

LABEL 500, 501;

TYPE

index = 1..10;

VAR

i: index;

target: integer;

a: ARRAY[index] OF integer;

PROCEDURE check;

VAR

answer: string [10];

BEGIN

.

{ ask user if OK to search }

IF answer= 'no' THEN GOTO 501; { jumping out of procedure }

.

END;

BEGIN { show_goto }

.

check;

.

FOR i := 1 TO 10 DO

IF target = a[i] THEN GOTO 500;
writeln (' Not found');

GOTO 501;

500:

writeln (' Found');

501:

END. { show_goto }

Statements 6-25

Additional Documentation

Procedures

A procedure statement transfers program control to the block of a declared or standard
procedure. After the procedure has executed, control is returned to the statement following
the procedure call. A procedure statement consists of a procedure identi�er and, if required, a
list of actual parameters in parentheses.

The procedure identi�er must be the name of a standard procedure or a procedure declared
in a previous procedure declaration. If a procedure declaration includes a formal parameter
list, the procedure statement must supply the actual parameters. The actual parameters must
match the formal parameters in number, type and order. There are four kinds of parameters:
value, reference, procedural, and functional .

Actual value parameters are expressions that must be assignment compatible with the
formal value parameters or, in the case of value conformant array parameters, conformable
with the conformant array schema. Actual reference parameters are variables that must be
type identical with the formal reference parameters or, in the case of reference conformant
array parameters, conformable with the conformant array schema. Components of a packed
structure cannot appear as actual procedural or functional parameters. Actual procedural
or functional parameters are the names of procedures or functions declared in the program.
Standard procedures or functions cannot be actual parameters to procedures or functions.

If a procedure or function that was passed as an actual parameter accesses any entity
non-locally upon activation, then the entity accessed is one that is accessible to the procedure
or function when it is passed as a parameter. For example, suppose Procedure A uses the
non-local variable x. If A is then passed as an actual parameter to Procedure B, it is still able
to use x, even if x is not otherwise accessible from B.

The formal parameters, if any, of an actual procedural or functional parameter must be
congruent with the formal parameters of the formal procedural or functional parameter.

Syntax

Procedure_statement:

6-26 Statements

Additional Documentation

Example

PROGRAM show_pstate(output);

PROCEDURE wow;

BEGIN

writeln('wow');

END;

PROCEDURE bow;

BEGIN

write('bow-');

wow;

END;

PROCEDURE outer (a: integer;

procedure proc_parm);

PROCEDURE inner;

BEGIN

bow;

END;

BEGIN {outer}

writeln('Hi');

inner;

proc_parm;

END; {outer}

BEGIN { show_pstate }

outer(30, bow);

END. { show_pstate }

Output:

Hi

bow-wow

bow-wow

Statements 6-27

7

Program Structure

An HP Pascal program consists of two major parts: the program heading and the program
block . The program block includes the declaration part which consists of de�nitions of
constants and types, and declarations of labels, variables, procedures, functions, and modules.
This chapter describes in detail the program heading and program block . This includes the
declaration part and module as well as the function and procedure. Below is an example of an
HP Pascal program.

Syntax

Compilation_unit:

Program Structure 7-1

Additional Documentation

Example

PROGRAM minimum; { The minimum program that the HP Pascal }

BEGIN { compiler will process successfully: }

END. { no program parameters. }

PROGRAM show_form1 (output); { Uses the standard textfile output }

BEGIN

writeln ('Greetings!') { and the standard procedure writeln. }

END.

PROGRAM show_form2 (input,output);

VAR

a,b,total: integer;

FUNCTION sum (i,j: integer): integer; { Function declaration }

BEGIN

sum:= i + j

END;

BEGIN

prompt ('Enter two integers: ');

readln (a,b);

total:= sum (a,b);
writeln ('The total is: ', total)

END.

7-2 Program Structure

Additional Documentation

Program Heading

The program heading consists of the reserved word PROGRAM, an identi�er that speci�es the
program name and an optional parameter list. The program block consists of the declaration
part and the statement or statements.

The identi�ers in the parameter list are variables that must be declared in the outer block,
except for the standard text�les input and output .

Input and output are standard �le variables that the system associates by default with system
dependent �les. These �les are opened automatically at the beginning of program execution.
Input or output need only appear as program parameters if some �le operation (for example,
read or write) refers to them explicitly or by default.

Program parameters are usually the names of �le variables. The association between logical
and physical �les is system-dependent. The association between formal and actual program
parameters is also system-dependent.

The program block consists of an optional declaration part and a required statement part.

Syntax

Program_heading:

Program Structure 7-3

Additional Documentation

Block

A block is a syntactically complete section of code. There are two parts to a block; the
declaration part and the executable part. Blocks may be nested . It is important that
all objects appearing in the executable part be de�ned in the declaration part or in the
declaration part of an outer block.

Syntax

block:

Note MODULE declarations and IMPORT lists cannot appear in inner blocks such
as in procedures or functions.

7-4 Program Structure

Additional Documentation

Declaration Part

The declaration part consists of de�nitions of constants and types , and declarations of labels ,
variables , procedures, functions , and modules . The statement part is made up of a compound
statement that may be empty or may contain several simple or structured statements.
The statement part is also termed the body or executable portion of the block. For more
information about statements, refer to Chapter 6.

The reserved word LABEL precedes the declaration of labels. CONST or TYPE precedes the
de�nition of declared constants or types. VAR precedes the declaration of variables. IMPORT
precedes a list of imported module names. MODULE precedes the declaration of a module.
PROCEDURE or FUNCTION precedes the declaration of a procedure or a function.

Within a declaration part, label declarations must come �rst, whereas procedure or function
declarations come last. In HP Pascal, CONST, TYPE, IMPORT, VAR, and MODULE
declarations may be intermixed and repeated. For more information on declarations, refer to
Chapter 5.

Note ANSI/IEEE770X3.97 - 1983 Standard Pascal allows the following reserved
words, LABEL, CONST, TYPE, or VAR to be used only once in that order.

A prede�ned constant, type, variable, procedure, or function may be redeclared in a
declaration part. However, access to the previous de�nition associated with that item is lost
within the scope in which it is rede�ned.

Program Structure 7-5

Additional Documentation

Example

PROGRAM show_declarepart;

LABEL 25;

VAR

birthday: integer;

TYPE

friends = (Joe, Simon, Leslie, Jill);

CONST

maxnuminvitee = 3;

VAR

invitee: friends;

PROCEDURE hello;

BEGIN

writeln('Hi');

END; { End of declaration part. }

BEGIN { Beginning of body. }

.

.

END.

7-6 Program Structure

Additional Documentation

PROCEDURE

A procedure is a block that is invoked with a PROCEDURE statement. A procedure
declaration consists of a procedure heading, a semicolon (;), and a block or a directive
followed by a semicolon.

The procedure heading consists of the reserved word PROCEDURE, an identi�er that
speci�es the procedure name, and optionally, a formal parameter list.

A directive can replace the procedure block to inform the compiler of the location of the
block. FORWARD is one of the directives. Other directives are implementation dependent.
See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation, for information on other directives. A procedure block
consists of an optional declaration part and a compound statement.

Procedure declarations must occur at the end of a declaration part after label, constant, type,
and variable declarations and after the module declarations in the outer block. Note that
procedure and function declarations may be intermixed.

Syntax

Procedure declaration:

Program Structure 7-7

Additional Documentation

FUNCTION

A function is a block that is invoked with a function call and that returns a value. A function
declaration consists of a function heading, a semicolon (;), and a block or a directive followed
by a semicolon (;).

A function heading consists of the reserved word FUNCTION, an identi�er that speci�es a
function name, an optional formal parameter list, and a result type. The result type may be
any type, except a �le type or a structured type containing a �le.

A directive can replace the function block to inform the compiler of the location of the
block; for example, FORWARD. Other directives are implementation dependent. See the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending
on your implementation, for information on other directives. In the body of a function
block there must be at least one statement assigning a value to the function identi�er. This
assignment statement determines the function result. If the function result is a structured
type, a value must be assigned to each of its components using an appropriate selector.

Function declarations may occur at the end of a declaration section after label, constant, type,
variable declarations, and MODULE declarations at the outer level. Function declarations
may be intermixed with procedure declarations.

Syntax

Function_declaration:

7-8 Program Structure

Additional Documentation

MODULE

A module provides a mechanism for separate compilation of program segments. It is a
program fragment with a completely de�ned interface that can be compiled independently
and later used to construct programs. A module usually de�nes some data types , constants ,
variables , and some procedures and functions that operate on this data. Such de�nitions are
made accessible to users of the module by its export declarations. Modules can only access
data or procedures in other modules and then only by importing them.

Any module used by a program, whether appearing in the program's globals or compiled
separately, must be named in an import declaration. The objects that modules export always
belong to the global scope of the importer.

The source text input to a compiler that is the complete unit of compilation may be a
program or a list of modules separated by semicolons (;). An implementation may allow only
a single module to be compiled at a time, thus requiring multiple invocations of the compiler
to process several modules. The input text is terminated by a period.

A module cannot be imported before it has been compiled, either as part of the importing
program or by a previous invocation of the compiler. This prevents construction of
mutually-referring modules. Access to separately compiled modules is discussed below.

Although a module declaration de�nes data and procedures that become globals of any
program importing the module, not everything declared in the module becomes known to the
importer. A module speci�es exactly what is exported to the \outside world" and lists any
other modules on which it is itself dependent.

The export declaration de�nes constants and types, declares variables, and gives the headings
of procedures and functions whose complete speci�cations appear in the implement part of the
module. It is only the items in the export declaration that become accessible to any other
code that subsequently imports the module.

There need not be any procedures or functions in a module if its purpose is solely to declare
types and variables for other modules.

Any constants, types, and variables declared in the implement part are not made known
to importers of the module; they are only known inside the module, and outside it they
are hidden. Variables of the implement part of a module have the same life time as global
program variables, even though they are hidden.

Any procedures or functions whose headings are exported by the module must subsequently
be completely speci�ed in its implement part. In this respect, the headings in the export
declaration are like FORWARD directives, and in fact the parameter list of such procedures
need not be, but may be, repeated in the implement part. Procedures and functions that are
not exported may be declared in the implement part; they are known only within the module
and are hidden from the rest of the program.

Separately compiled modules are called library modules . To use library modules, a program
imports them just as if they had appeared in the program block. Refer to the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending on your
implementation, for further information.

Program Structure 7-9

Additional Documentation

When an import declaration is seen, a module must be found matching each name in the
import declaration. If a module of the required name appears in the compilation unit before
the import declaration, the reference is to that module. Otherwise, external module libraries
must be searched. See \SEARCH" in Chapter 12, and the HP Pascal/iX Programmer's Guide
or the HP Pascal/HP-UX Programmer's Guide , depending on your implementation, for more
information.

In order for a procedure in a module to read from input or write to output (for example,
readln from input or writeln to output), that module must import the standard modules
stdinput or stdoutput, respectively.

On HP-UX the standard modules stdinput , stdoutput , and stderr are contained in the
prede�ned library /usr/lib/paslib. On MPE/iX the standard modules stdinput and
stdoutput are contained in the prede�ned library PASLIB.PUB.SYS.

When a program, either directly or indirectly, imports a module that imports stdinput or
stdoutput, the program must specify input or output, respectively, in the program parameter.
If a program does not specify input or output and a module imports the standard modules,
the program will not link.

On HP-UX only, if a program, either directly or indirectly, imports a module that imports
stderr , the program must specify stderr in the program parameter. If a program does not
specify stderr and a module imports the standard module stderr , the program will not
link. In addition, if a procedure in a module writes to stderr , that module must import the
standard module, stderr .

Syntax

Module_declaration:

7-10 Program Structure

Additional Documentation

Example

This example shows a source �le that contains de�nitions for the modules bit_types and
char_info. MODULE bit_types and MODULE char_info are compiled into an object �le called
mod1.o. Note that mod1.o is referenced in the examples in section \IMPORT".

MODULE bit_types; { Module declaration }

EXPORT { Exported types }

TYPE

bits8 = 0..255; { Exported type }

IMPLEMENT { No implement, part, module }

END; { only provides data types }

MODULE char_info; { Module declaration }

IMPORT

bit_types; { Import other modules needed }

{ to compile this module }

EXPORT { Start of export text }

TYPE

byte = bits8; { Exported type }

VAR

last_byte: byte; { Exported variable }

FUNCTION control (i:byte; flag:BOOLEAN): BOOLEAN; { Exported function }

IMPLEMENT { Start of implementation }

IMPORT stdoutput; { Required for using output }

CONST

error = 'non-ASCII character'; { Non-exported constant }

Program Structure 7-11

Additional Documentation

FUNCTION check (i: byte; flag: BOOLEAN): BOOLEAN; {Non-exported function}

BEGIN

IF i > 127 THEN
BEGIN

check := false;

IF flag THEN writeln (error);

END

ELSE

check := true;

END;

FUNCTION control (i: byte; flag: BOOLEAN): BOOLEAN;{ Exported function }

BEGIN

last_byte := i;

control := check (i,flag) AND (i < 32);

END;

END.

7-12 Program Structure

Additional Documentation

EXPORT

This reserved word precedes the constants, types , variables , procedures , and functions of a
MODULE that can be used or imported by other programs and modules. The EXPORT
section is used to de�ne the constants, types, variables, procedures, and functions that the
module supplies to any program or module that imports it. Procedures and functions are
presented as headings without blocks or directives. The EXPORT section may make use of
things that were exported from modules listed in the IMPORT section. Every module must
have an EXPORT section.

Syntax

Export_declaration:

Program Structure 7-13

Additional Documentation

Example

EXPORT { Start of export text }

TYPE

control_num: 0..255; { Exported type }

VAR

last_num: control_num; { Exported variable }

FUNCTION control (i: control_num; flag : Boolean) : Boolean;{Exported function}

7-14 Program Structure

Additional Documentation

IMPORT

This reserved word indicates which modules are needed to compile a program or module. The
IMPORT section is used to name all other modules upon which the present one depends. One
module, m1, depends on another, m2, if m1 makes use of the objects exported from m2. For
instance, m1 calls procedures in m2, or assigns to m2's variables, or declares variables of a
type exported from m2. There is no IMPORT section if the module is independent of all other
modules.

You must use $SEARCH to import a non-standard module that is not de�ned within the same
compilation unit that contains the import statement. See \SEARCH" in Chapter 12 for more
information.

When you want to export modules, as well as procedures and types, insert the reserved word
EXPORT following the module name.

When EXPORT is used to specify an export of a module, that module is only available to the
program or module importing the current module.

Syntax

Import_declaration:

Example 1

In this example, module bit_types is de�ned in another compilation unit (see example in
section \MODULE"). bit_types is compiled into an object �le called mod1.o. $SEARCH is
used because bit_types is not in the same compilation unit as the main program.

PROGRAM show_import (output);

$SEARCH 'mod1.o'$ { Object file that contains bit_types.}

IMPORT { Import the module bit_types, under }

bit_types; { "Modules", that is needed to }

{ compile this program. }

VAR

A,B: bits8;

BEGIN

A:= 100;
writeln(A);

END.

Program Structure 7-15

Additional Documentation

Example 2

Module show_import_export both imports and exports module bit_types at the same time.
The main program uses type bits8. bits8 is de�ned in bit_types, but is available to the
main program because it imports show_import_export which exports bit_types.

Module show_export is compiled into an object �le called mod2.o and bit_types is compiled
into an object �le called mod1.o (see section \MODULE"). The main program imports
module show_import_export only. However, the $SEARCH statement must include both object
�les mod1.o and mod2.p, even thought the main program does not directly import module
bit_types.

MODULE show_import_export;

$SEARCH 'mod1.o'$ {Object file that contains bit_types.}

IMPORT

bit_types EXPORT;

EXPORT

TYPE

byte_rec = record;

a, b : bits8

end;

IMPLEMENT

END.

PROGRAM show_import_export_prog (output);

$SEARCH 'mod1.o, mod2.o'$ {Object files that contain bit_types}

{and show_import_export. }

IMPORT

show_import_export;

VAR

little_bit : bits8; { bits8 is defined in module bit_types }

little_byte : byte_rec; {byte_rec is defined in module show_import_export}

BEGIN

little_bit := 9;

little_byte := little_bit;

END.

7-16 Program Structure

Additional Documentation

IMPLEMENT

This reserved word indicates the beginning of the internal part of a MODULE. The
IMPLEMENT section may be empty or it may contain declarations of the constants, types,
variables, procedures, and functions that are only used within the module. In addition,
it contains the bodies of the procedures and functions whose headings appeared in the
EXPORT section. A module does not have to export procedures or functions. It may be used
simply to create data or data types. In such a case, there will be nothing between the words
IMPLEMENT and END. That is, every module must have an IMPLEMENT section, but it
may be empty.

Example

MODULE A_module;

EXPORT { Exported Type }

TYPE

byte = 0..255;

FUNCTION check (i:byte):Boolean; { Exported Function }

IMPLEMENT { Start of implement section }

IMPORT stdoutput;

FUNCTION check (i: byte;): Boolean;

BEGIN

IF i > 127 THEN

BEGIN

check := false;

IF flag THEN

writeln (error);

END

ELSE

check := true;

END;

FUNCTION control (i: byte; flag: Boolean):Boolean; {Exported function}

BEGIN

control := check (i,flage) AND (i < 32);

END;

END.

Program Structure 7-17

8

Procedures and Functions

When a procedure or function is declared, the heading may optionally include a list of
parameters . This list is called the formal parameter list . A procedure statement or function
call in the body of a block provides the matching actual parameters that correspond by
their order in the list. The four kinds of formal parameters are value, reference, functional ,
and procedural parameters. Value parameters are identi�ers followed by a colon (:) and a
type identi�er or a conformant array schema. Reference parameters are declared like value
parameters, but are preceded by the reserved word VAR. Functional or procedural parameters
are function or procedure headings.

The four types of formal parameters may be repeated and intermixed. Several identi�ers
may appear separated by commas. These identi�ers then represent formal reference or value
parameters of the same type, even if the type is a conformant array schema.

A formal value parameter appears as a local variable during execution of the procedure or
function. It receives its initial value from the matching actual parameter. Modi�cation of
the formal parameter cannot a�ect the actual parameter which may be an expression. The
actual parameter must be assignment compatible with the formal parameter or, in the case of
a conformant array parameter, must conform with the formal parameter.

A formal reference parameter represents the actual parameter during execution of the
procedure. Any changes in the value of the formal reference parameter alters the value of the
actual parameter, which must be a variable access. The actual parameter must have a type
identical with the formal parameter or conform with the formal parameter, in the case of a
conformant array schema.

When a conformant array schema is speci�ed, the value of the upper bound and the value of
the lower bound identi�ers in the schema vary according to the actual bounds of the array
passed as the actual parameter. They can be accessed as value parameters in the procedure,
except their values cannot be changed. Their names have the same scope as a parameter.
The type of the actual parameters must be conformable with the conformant array schema.
The formal parameters have a type that is distinct from any other type. This means that
the actual parameters are not assignable to any other variable or parameter except those of
the same type. The type cannot be a PAC type since the lower bound cannot be �xed as
one. This makes passing string literals as actual conformant array parameters an error in ISO
Pascal. HP Pascal is extended to allow the passing of string literals as parameters. However, a
conformant array cannot be manipulated as a string.

An actual conformant array parameter can be passed as a reference conformant array
parameter, but not as a value parameter of any kind.

A formal procedural or functional parameter is a synonym for the actual procedure or function
parameter. The parameter lists, if any, of the actual and formal procedural or functional
parameters must be congruent.

Procedures and Functions 8-1

Additional Documentation

Two formal parameter lists are congruent if they contain an equal number of parameters, and
the parameters in corresponding positions are equivalent. Two parameters are equivalent if
any of the following conditions are true:

They are both value parameters of the identical type.

They are both reference parameters of the identical type.

They are both procedural parameters with congruent parameter lists.

They are both functional parameters with congruent parameter lists and identical result
types.

They are both either value conformant array speci�cations or both reference conformant
array speci�cations, and in both cases, the conformant array speci�cations contain the same
number of parameters and equivalent conformant array schemas. Two conformant array
schemas are equivalent if all of the following statements are true:

The ordinal type identi�er in each corresponding index type speci�cation denotes the
same type.

Either the component conformant array schemas of the conformant array schemas are
equivalent, or the type identi�ers of the conformant array schemas denote the same type.

Either both conformant array schemas are packed or both are unpacked.

Syntax

Formal_parameter_list:

8-2 Procedures and Functions

Additional Documentation

Example

PROGRAM show_formparm (input);

VAR

test: boolean;

FUNCTION chek1 (x, y, z: real): Boolean;

BEGIN

{ Perform some type of validity check on x, y, z }

{ and return appropriate value. }

END;

FUNCTION chek2 (x, y, z: real): Boolean;

BEGIN

{ Perform an alternate validity check on x, y, z }

{ and return appropriate value. }

END;

PROCEDURE read_data (FUNCTION check (a, b, c: real): Boolean);

VAR p, q, r: real;

BEGIN

{ read and validate data }

readln (p, q, r);

IF check (p, q, r) THEN ...

END;

BEGIN {show_formparm}
.

IF test THEN read_data (chek1)

ELSE read_data (chek2);

.

END.

Procedures and Functions 8-3

Additional Documentation

PROGRAM show_varparm(output);

VAR
i,j : integer;

PROCEDURE fix(VAR a : integer; b : integer);

BEGIN

a := b; { i is passed by reference; it will return equal to 42.}

b := 0; { j is passed by value; this assignment will }

{ not change the value of j in the main program. }

END;

BEGIN { show_varparm }

i:= 0;

j:= 42;

fix(i,j);

IF i = j THEN writeln('They both = 42');

END.

8-4 Procedures and Functions

Additional Documentation

PROGRAM show_conformantparm;

CONST
First=1;

Last=10;

TYPE

inxtype=1..100;

arr1=ARRAY[First..Last] of Integer;

arr2=ARRAY[First..2*Last] of Integer;

VAR

a1,a2,a3:arr1;

b1,b2,b3:arr2;

PROCEDURE ADD_Array(

VAR Result:ARRAY[L..U:inxtype] OF INTEGER;

P1,P2:ARRAY[L1..U1:inxtype] OF INTEGER

);

VAR

inx:inxtype;

BEGIN { ADD_Array }

IF (L=L1) AND (U=U1) THEN

FOR inx:=L TO U DO

Result[inx]:=P1[inx]+P2[inx]

ELSE

{ handle the error }

END; { Add_Array }

BEGIN { Show_ConformantParm }

{ Initialize values for a1,a2,b1,b2 }

{ ADD_Array can be used for arrays of type arr1 and arr2

because they conform to each other.}

ADD_Array(a3,a1,a2);

ADD_Array(b3,b1,b2);

END. { Show_ConformantParm }

Procedures and Functions 8-5

Additional Documentation

Conformance

A conformable test must be passed to pass an array as an actual conformant array parameter .
Actual conformant array parameters must have a type conformable with the conformant array
form corresponding to the parameter in the procedure declaration.

If T1 is an array type with a single index type, and T2 is the type of the index type
speci�cation of a conformant array form, then T1 is conformable with the conformant array
form if all the following are true:

The index type of T1 is type compatible with T2.

You cannot index a value of T1 that does not lie within the bounds of that speci�ed by T2.

The component type of T1 is identical to the type identi�er of the conformant array
form, or, if the element type of the conformant array form is a conformant array form, is
conformable with the element type conformant array form in the conformant array schema.

Both T1 and the conformant array form are packed or both are unpacked .

Syntax

Conf_Array_Schema:

Conf_Array:

8-6 Procedures and Functions

Additional Documentation

Example

TYPE

inxtype = 0..20;

...

PROCEDURE Proc1 (

P1: ARRAY[L1..H1:inxtype] OF ARRAY[L2..H2:inxtype] OF integer;

P2: PACKED ARRAY[L3..H3:inxtype] OF integer;

P3: ARRAY[L4..H4:inxtype] OF integer;

P4: ARRAY[L5..H5:inxtype;L6..U6:inxtype] OF integer);

...

VAR

V1: PACKED ARRAY[0..10] of integer;

V2: ARRAY [3..5,1..10] OF integer;

V3: ARRAY[1..50] OF integer;

V1 is conformable with P2, but not with P1, P3, and P4. V2 is conformable with P1 and P4,
but not with P2 or P3. V3 is comformable with P3, but not with P1, P2, or P4.

Procedures and Functions 8-7

Additional Documentation

Directives

A directive may replace a block in a procedure or function declaration. In HP Standard
Pascal, the only directive is FORWARD. This directive makes it possible to postpone full
declaration of a procedure or function. Additional directives may be provided by particular
implementations. See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide, depending on your implementation, for information about those
directives. Note that the term FORWARD may appear as an identi�er in source code and, at
the same time, as a directive.

8-8 Procedures and Functions

Additional Documentation

FORWARD Directive

The FORWARD directive permits the full declaration of a procedure or function to appear
after a call to the procedure or function. For example, if procedures A and B are declared on
the same level, you must use the FORWARD directive if A and B will call each other.

Example

PROCEDURE A; FORWARD;

PROCEDURE B;

BEGIN

.

A; { calls A }

.

END;

PROCEDURE A; { full declaration of A }

BEGIN
.

B; { calls B }

.

END;

The body of the function or procedure must be fully declared elsewhere in the same block.
Formal parameters, if any, and the function result type must appear with the FORWARD
declaration. These formal parameters and the result type may be omitted when making the
subsequent full declaration. However, if repeated, they all must be present and identical with
the original formal parameters or result type.

The FORWARD directive may appear with a procedure or function at any level.

Example

FUNCTION exclusive_or (x,y: Boolean): Boolean;

FORWARD;

.

.

FUNCTION exclusive_or; { Parameters not repeated. }

BEGIN

exclusive_or:= (x AND NOT y) OR (NOT x AND y);

END;

Procedures and Functions 8-9

Additional Documentation

Recursion

A recursive procedure or function is a procedure or function that calls itself. It is also legal
for procedure A to call procedure B that in turn calls procedure A. This is indirect recursion
and is often an instance when the FORWARD directive is useful. Note that when a routine is
called recursively, new local variables are created for each invocation of the routine.

Example

FUNCTION factorial (n: integer): integer;

{ Calculates factorial recursively }

BEGIN

IF n = 0 THEN

factorial := 1

ELSE

factorial := n * factorial(n-1);

END;

8-10 Procedures and Functions

Additional Documentation

Function Calls

A function call invokes the block of a standard or declared function and returns a value to the
calling point of the program. Because an operator can perform some action on this value, a
function result is an expression.

A function call consists of a function identi�er and an optional list of actual parameters in
parentheses. The actual parameters must match the formal parameters in number, type,
and order . The function result has the type speci�ed in the function heading. Actual value
parameters are expressions that must be assignment compatible with the formal value
parameters or, in the case of value conformant array parameters, conform with the conformant
array schema.

Actual reference parameters are variables that must be type identical with the formal
variable parameters or, in the case of variable conformant array parameters, conform with
the conformant array schema. Components of a packed structure may not appear as actual
variable parameters.

Actual procedural or functional parameters are the names of declared procedures or functions.
Standard functions or procedures are not legal actual parameters.

The parameter list , if any, of an actual procedural or functional parameter, must be
congruent with the parameter list of the formal procedural or functional parameter. For more
information, see the section on Procedures in this chapter.

Functions may call themselves recursively. Refer to \Recursion" earlier in this chapter for
more details.

If an actual functional or procedural parameter, upon invocation, accesses any entity
non-locally, then the entity accessed is one that is accessible to the function or procedure
when its identi�er is passed. For example, suppose Procedure A uses the non-local variable x.
If A is passed as a parameter to Function B, then it still has access to x, even if x is otherwise
inaccessible in B.

If the function result is a structured type, then the function call may select a particular
component as the result. This requires the use of an appropriate selector.

Procedures and Functions 8-11

Additional Documentation

Example

PROGRAM show_function (input,output);

VAR

n,

coef,

answer: integer;

FUNCTION fact (p: integer) : integer;

BEGIN

IF p > 1 THEN

fact := p * fact (p-1)

ELSE fact := 1

END;

FUNCTION binomial_coef (n, r: integer) : integer;

BEGIN

binomial_coef := fact (n) DIV (fact (r) * fact (n-r))

END;

BEGIN { show_function }

read(n);

FOR coef := 0 TO n DO

writeln (binomial_coef (n, coef));

END. { show_function }

8-12 Procedures and Functions

9

Standard Routines

HP Pascal supplies prede�ned procedures and functions that perform various commonly used
operations. These are listed below, followed by a description of most in the subsequent pages
of this chapter. Any procedure or function that is followed by an asterisk (*) is discussed in
Chapter 10.

Procedures:

append * overprint * setstrlen

assert pack strappend

associate * page * strdelete

close * prompt * strinsert

disassociate * put * strmove

dispose read * strread

get * readdir * strwrite

halt readln * unpack
mark release write *

movebyteswhile reset * writedir *

new rewrite * writeln *

open * seek *

Functions:

abs lastpos * sqr

arctan linepos * sqrt

baddress ln statement_number

binary maxpos * str

chr octal strlen

cmpbytes odd strmax

cos ord strltrim

eof * position * strpos

eoln * pred strrpt

exp round strrtrim

fnum * scanuntil succ

get_alignment scanwhile trunc

hex sin waddress

Standard Routines 9-1

Additional Documentation

Procedures for Allocation and Deallocation

HP Pascal distinguishes two classes of variables . These are static and dynamic.

A static variable is explicitly declared in the declaration part of a block, and may then be
referred to by name in the body. The compiler allocates storage for this variable when the
block is activated. The system does not deallocate this space until the process closes the scope
of the variable.

A dynamic variable is not declared and cannot be referred to by name. Instead, a declared
pointer references this variable. The system allocates and deallocates storage for a dynamic
variable during program execution as a result of calls to the standard procedures new and
dispose. HP Pascal also supports the standard procedures mark and release. The area of
memory reserved for dynamic variables is called the heap.

Dynamic variables permit the creation of temporary bu�er areas in memory. Furthermore,
since a pointer may be a component of a structured dynamic variable, it is possible to write
programs with dynamic data structures such as linked lists or trees.

9-2 Standard Routines

Additional Documentation

new

Usage

new(p)

new(p, t1,...,tn)

Parameters

p Any pointer variable.

t A case constant value representing tag values for the pointer variable p.

Description

The procedure new(p) allocates storage for a dynamic variable on the heap and assigns its
identifying value to the pointer variable p.

If the dynamic variable is a record with variants, then the tag may be used to specify a case
constant. This constant determines the amount of storage allocated. For nested variants, the
values must be listed contiguously and in order of their declaration. The procedure call does
not assign the speci�ed tag values to the tag �elds of the dynamic variable.

If new is called for a record with variants and no case constants are speci�ed, the compiler
determines storage by the size of the �xed part plus the size of the largest variant.

Note You cannot use an entire dynamic record variable allocated with one or more
case constants as an actual parameter, or in an assignment statement.

Note that the pointer variable may be a component of a packed structure. Pointer
dereferencing accesses the actual values stored in a dynamic variable on the heap.

Standard Routines 9-3

Additional Documentation

Example

PROGRAM show_new (output);

TYPE

marital_status = (single, engaged, married, widowed, divorced);

year = 1900..2100;

ptr = ^person_info;

person_info = RECORD

name: string[25];

birdate: year;

next_person: ptr;

CASE status: marital_status OF

married..divorced: (when: year;

CASE has_kids: Boolean OF

true: (how_many: 1..50);

false: ();

);

engaged: (date: year);

single : ();

END;

VAR

p : ptr;

BEGIN { Various legal calls of new. }

.

.

new(p); { Allocates record of the largest size. }

.

.
new(p,engaged); { Allocates record with variant engaged.}

.

.

new(p,married); { Allocates record with variant married.}

.

.

new(p,widowed,false); { Allocates record with variants widowed

. and false.}

.

END.

9-4 Standard Routines

Additional Documentation

dispose

Usage

dispose(p)

dispose(p, t1,...,tn)

Parameters

p A pointer expression that cannot be NIL or unde�ned.

t A case constant value whose value matches the case constant value speci�ed in
new.

Description

This procedure indicates that the storage allocated for the given dynamic variable is no longer
needed. It is an error if the argument to dispose is NIL or unde�ned. After dispose, the
system has closed any �les in the disposed storage and p is unde�ned.

If the case constant values are speci�ed when calling new, it is an error if the identical
constants do not appear as the parameters in the call to dispose. It is also an error if the
pointer argument p references a dynamic variable to which another reference exists. This
would be the case if it is a reference parameter, part of a reference parameter, or another
pointer to it exists elsewhere.

Using dispose may be equivalent to executing an empty statement. For more details, see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending
on your implementation, or the compiler options \HEAP_COMPACT" in Chapter 12 and
\HEAP_DISPOSE" in Chapter 12.

Standard Routines 9-5

Additional Documentation

Example

PROGRAM show_dispose (output);

TYPE

marital_status = (single, engaged, married, widowed, divorced);

year = 1900..2100;

ptr = ^person_info;

person_info = RECORD

name: string[25];

birdate: year;

next_person: ptr;

CASE status: marital_status OF

married..divorced: (when: year;

CASE has_kids: boolean OF

true: (how_many:1..50);

false: ();

);

engaged: (date: year);

single : ();

END;

VAR

p : ptr;

BEGIN

.

.

new(p); { Allocates largest variant. }

.

.
dispose(p); { Deallocates record with largest variant. }

.

.

new(p,engaged); { Allocates record with variant engaged. }

.

.

dispose(p,engaged); { Deallocates record with variant engaged. }

.

.

new(p,married,false); { Allocates record with variants married and false.}

.

dispose(p,married,true); { Error, case constants don't match new. }

.

.

END.

9-6 Standard Routines

Additional Documentation

mark

Usage

mark(p)

Parameter

p A pointer variable.

Description

The procedure mark(p) marks the allocation state of the heap and sets the value of p to
specify that state. In other words, mark saves the allocation state of the heap in p, which
must not subsequently be altered by assignment. If altered, the corresponding release cannot
be performed. mark is used with release.

Example

PROGRAM show_markrelease;

VAR

w,x,y: ^integer;

BEGIN

.

mark(w);

.

release(w); { Returns heap to state marked by w. }

.

mark(x);

.

mark(y);

.

release(x); { Returns heap to state marked by x. The }

. { pointer y no longer marks a heap state. }

END. { Release(y) is now an error. }

Standard Routines 9-7

Additional Documentation

release

Usage

release(p)

Parameter

p A pointer variable that previously appeared as a parameter in a call to mark, and
should not have been previously passed to release or altered by assignment.

Description

The procedure release(p) returns the heap to its allocation state when mark was called with
a parameter that has the value of p. This has the e�ect of deallocating any heap variables
allocated since the program called mark. The system can then reallocate the released space.
The system automatically closes any �les in the released area.

It is an error if p was not passed as a parameter to mark, or if it was previously passed to
release explicitly or implicitly. After release, p is unde�ned.

Example

PROGRAM show_markrelease;

VAR

w,x,y: ^integer;

BEGIN

.

mark(w);

.

release(w); { Returns heap to state marked by w. }

.

mark(x);

.

mark(y);

.

release(x); { Returns heap to state marked by x. The }

. { pointer y no longer marks a heap state. }

END. { Release(y) is now an error. }

9-8 Standard Routines

Additional Documentation

String Procedures

HP Pascal supports a number of string procedures that manipulate string expressions,
variables, or literals. A string expression may consist of a string literal, a string variable,
a string constant, a function result that is a string, or an expression formed with the
concatenation operator.

Note that strings must be initialized just like any other variable. The string procedures are
setstrlen, strappend, strdelete, strinsert, strmove, strread, and strwrite. These
procedures are described in the following pages.

setstrlen

Usage

setstrlen(s, e)

Parameters

s A string variable.

e An integer expression. The value of e must not be greater than the maximum
length of s .

Description

The procedure setstrlen(s, e) sets the current length of s to e without modifying the
contents of s .

If the new length of s is greater than the previous length of s , the extra components become
de�ned, but no value is given to them. No blank �lling occurs. If the new length of s is less
than the previous length of s , previously de�ned components beyond the new length become
unde�ned.

Example

VAR

alpha: string[80];

BEGIN

.

alpha:= 'abcdef'; { strlen(alpha) = 6 }

.

setstrlen(alpha,2*strlen(alpha)); { Doubles current length }

. { of alpha. Alpha[7] }

. { through alpha[12] have }

. { unpredictable values. }

.

setstrlen(alpha,2) { Alpha[3] through }

. { alpha[80] not undefined.}

END.

Standard Routines 9-9

Additional Documentation

strappend

Usage

strappend(s1, s2)

Parameters

s1 A string variable.

s2 A string expression whose length must be less than the di�erence between the
maximum and actual length of the string variable s1 .

Description

The procedure strappend(s1, s2) appends string s2 to s1 . It is an error if the strlen of s2 is
greater than strmax(s1)-strlen(s1). That is, it cannot exceed the number of characters left
to �ll in s1 . The current length of s1 is updated to strlen(s1)+strlen(s2).

Example

VAR

message: string[132];

BEGIN

.

message:= 'Now hear ';

strappend(message,'this!'); { message is 'Now hear this!' }

.

END.

9-10 Standard Routines

Additional Documentation

strdelete

Usage

strdelete(s, p, n)

Parameters

s A string variable.

p An integer expression representing the starting index of the deletion.

n An integer expression representing the number of characters to be deleted.

Description

The procedure strdelete(s, p, n) deletes n characters from s starting at component s [p] ,
and the current length of s is updated to the length of s-n. It is an error if n+p-1 is greater
than the current length of s .

Example

VAR

uncensored, censored: string[80];

BEGIN

.

uncensored:= 'Attack at 6 a.m.!';

strdelete(uncensored,7,strlen(uncensored)-7);

censored:= uncensored; { censored is 'Attack!'. }

.

.

END.

Standard Routines 9-11

Additional Documentation

strinsert

Usage

strinsert(s1, s2, p)

Parameters

s1 A string expression.

s2 A string variable.

p An integer or an integer expression representing the o�set in s2 where insertion
begins.

Description

The procedure strinsert(s1, s2, p) inserts string s1 into s2 starting at s2 [p] . Initially,
s2 must be at least p-1 characters in length, or it is an error. The resulting string may not
exceed strmax(s2). The current length of s2 is updated to strlen(s1)+ strlen(s2).

Example

VAR

remark: string[80];

BEGIN

.

remark:= 'There is missing!';

strinsert(' something',remark,9);{ remark is 'There is something missing! }

.

END.

9-12 Standard Routines

Additional Documentation

strmove

Usage

strmove(n, s1, p1, s2, p2)

Parameters

n An integer expression indicating the number of characters to be copied.

s1 A string expression or PAC variable.

p1 An integer expression indicating the index in s1 from which copying starts.

s2 A string or PAC variable.

p2 An integer expression indicating the index in s2 where copying starts.

Description

The procedure strmove(n, s1, p1, s2, p2) copies n characters from s1 , starting at s1[p1] ,
to s2 , starting at s2[p2] . The string length of s2 is increased, if needed, to (p2+n-1) if
(p2+n-1) > strlen(s2). If p2 equals strlen(s2)+1, strmove is equivalent to appending a
subset of s1 to s2 . It is an error if p2 > strlen(s2)+1. The value (p1+n-1) must not exceed
strlen(s1).

The strmove procedure may be used to convert PAC's to strings and vice versa. It is also a
way of manipulating subsets of PAC's.

Note The strmove procedure should not be used to move data into an uninitialized
variable, regardless of type.

Note The strmove procedure is not appropriate for propagating characters within a
string. Use the strrpt function or the fast_fill procedure instead.

Example

VAR

pac: PACKED ARRAY[1..15] OF char;

s: string[80];

BEGIN

s:= '';

pac:= 'Hewlett-Packard';

strmove(15,pac,1,s,1); { Converts a PAC to a string. }

END.

Standard Routines 9-13

Additional Documentation

strread

Usage

strread(s, p, t, v)

strread(s, p, t, v1,...,vn)

Parameters

s A string expression.

p An integer expression.

t An integer or integer subrange variable.

v A simple, string, or PAC variable. Any number of v parameters may appear
separated by commas.

Description

The procedure strread(s, p, t, v) reads a value from s , starting at s [p] , into the variable v .
After the operation, the value of the variable appearing as the t parameter will be the index of
s immediately after the index of the last component read into v .

S is treated as a single-line text�le. Strread(s, p, t, v) is analogous to read(f, v) when f is
a text�le of one line. Like read, strread implicitly converts a sequence of characters from s
into the types integer, real, longreal, Boolean, enumerated, PAC, or string.

It is an error if strread attempts to read beyond the current length of s .

The call:

strread (s,p,t,v1,...,vn);

is equivalent to:

strread (s,p,t,v1);

strread (s,t,t,v2);

.

.

strread (s,t,t,vn);

9-14 Standard Routines

Additional Documentation

Example

VAR

s: string[80];
p,t: 1..80;

m,n: integer;

BEGIN

.

s:= ' 12 564 ';

.

p:= 1;

strread(s,p,t,m); { The value of m will be 12; }

. { t will be 6. }

.

strread(s,t,t,n); { The value of n will be 564; }

. { t will be 11. }

END.

Standard Routines 9-15

Additional Documentation

strwrite

Usage

strwrite(s, p, t, e)

strwrite(s, p, t, e1,...,en)

Parameters

s A string variable.

p An integer expression.

t An integer or integer subrange variable.

e A simple or string expression, or a PAC variable. Any number of e parameters
may appear separated by commas.

Description

The procedure strwrite(s, p, t, e) writes the value of e on s starting at s [p] . After
the operation, the value of the variable appearing as the t parameter is the index of the
component of s , immediately after the last component of s that strwrite has accessed.

S is treated as a single-line text�le. Strwrite(s, p, t, e) is analogous to write(f, e) when f is
a one-line text�le. As with write, strwrite also permits you to format the value of e as it
is written to s using the formatting conventions. The same default formatting values hold for
strwrite.

Strwrite may write into the middle of a string without a�ecting the original length. It is an
error if strwrite attempts to write beyond the maximum length of s , or if p is greater than
strlen(s)+ 1. The current length of s is updated if the current length is increased.

Example

VAR

s: string[80];

p,t: 1..80;

f,g: integer;

BEGIN

f:= 100;

g:= 99;

p:=1;

s:=''; { empty string }

.

strwrite(s,p,t,f:3); { S is now '100'; t is 4 }

strwrite(s,t,t,' ',g:2); { S is now '100 99'; t is 7. }
.

END.

9-16 Standard Routines

Additional Documentation

String Functions

String functions may be used to manipulate string expressions, variables, or literals. A string
expression may consist of a string literal, a string variable, a string constant, a function result
that is a string, or an expression formed with the concatenation operator.

Note that strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information. The string functions
str, strlen, strltrim, strmax, strpos, strrpt, or strrtrim, are de�ned by HP Pascal
and are described on subsequent pages.

str

Usage

str(s, p, e)

Arguments

s A string expression.

p An integer expression indicating the index of the starting character.

e An integer expression indicating the length of the substring.

Description

The function str(s, p, e) returns the portion of s which starts at s [p] and is of length e.
The result is type string, and may be used as a string expression. It is an error if strlen(s) is
less than p+ (e-1).

Example

VAR

i: integer;

wish_list: string[132];

granted: string[5];

BEGIN

.

i:= 13;

wish_list:= 'wish1 wish2 wish3 wish4 wish5';

granted:= str(wish_list,i,5); { Selects the 3rd wish. }

{ Granted is 'wish3'. }

END.

Standard Routines 9-17

Additional Documentation

strlen

Usage

strlen(s)

Argument

s A string expression.

Description

The function strlen(s) returns the current length of the string or PAC expression s . If s is
not initialized, strlen(s) is unde�ned.

Example

VAR

ars, vita: string[132];

b: boolean;

BEGIN

.

ars:= 'HELLO';

vita:= 'TO YOU';

IF strlen(ars) > strlen(vita) THEN

b:= true

ELSE

b:=false;

.

writeln (strlen(ars):2,strlen(vita):2);

END.

Output:

5 6

9-18 Standard Routines

Additional Documentation

strltrim

Usage

strltrim(s)

Argument

s A string expression.

Description

The function strltrim(s) returns a string consisting of s trimmed of all leading blanks. The
function strrtrim trims trailing blanks.

Example

VAR

s: string[80];

BEGIN

.

s:= ' abc';

s:=strltrim(s); {s is now 'abc'}

. {strlen(s) = 3 }

END.

Standard Routines 9-19

Additional Documentation

strmax

Usage

strmax(s)

Argument

s A string variable.

Description

The function strmax(s) returns the maximum length of s . Strmax is useful for �nding the
maximum length of VAR string parameters whose maximum is not determined until run time.

Example

VAR

s: string[15];

BEGIN

s:= ' ABCDE ';

IF strlen(s) = strmax(s) THEN

BEGIN

s:= strltrim(s);

s:= strrtrim(s);

END;

writeln (s,strmax(s):3);

.

END.

Output:

ABCDE 15

9-20 Standard Routines

Additional Documentation

strpos

Usage

strpos(s1, s2)

Arguments

s1 A string expression.

s2 A string expression.

Description

The function strpos(s1, s2) returns the integer index of the position of the �rst occurrence of
s2 in s1 . If s2 is not found, zero is returned. If the length of s2 is zero, the result is 1.

Note Some HP Pascal implementations have the order of the two parameters
reversed. Also, your implementation may have a compiler option that reverses
the order of parameters.

Example

CONST

separator = ' ';

VAR

i: integer;

names: string[80];

BEGIN

.

names:= 'Jon Jill Ruth Marnie Bob Joan Wendy';

i:= strpos (names,separator); { i = 4 }

IF i <> 0 THEN

strdelete(names,1,i); { deletes first name }

.

i:= (strpos(names,'Ron')); { i = 0 }

END

Standard Routines 9-21

Additional Documentation

strrpt

Usage

strrpt(s, n)

Arguments

s A string expression.

n An integer expression indicating the number of repetitions where n must be
greater than or equal to zero.

Description

The function strrpt(s, n) returns a string composed of s repeated n times. If n is 0, a
zero-length string is returned.

Example

CONST

one = '1';

VAR

b_num: string[12];

BEGIN

.

b_num:= strrpt(one,strmax(b_num)); { b_num is '111111111111' }

b_num:= strrpt ('a',10); { b_num is 'aaaaaaaaaa' }

.

END.

9-22 Standard Routines

Additional Documentation

strrtrim

Usage

strrtrim(s)

Argument

s A string expression.

Description

The function strrtrim(s) returns a string consisting of s trimmed of trailing blanks. Leading
blanks are stripped by the function strltrim.

Example

VAR

s: string[80];

BEGIN

.

s:= 'abc ';

.

s:= strrtrim(s); { s is now 'abc' }

. { strlen(s) = 3 }

END.

Standard Routines 9-23

Additional Documentation

Transfer Procedures

The transfer procedures supported by HP Pascal are pack and unpack . A description of these
procedures follows.

pack

Usage

pack(a, i, z)

Parameters

a Any ARRAY [m..n] of t.

i An expression that is type compatible with the index of the non-packed array.

z Any PACKED ARRAY [u..v] of t.

Description

The standard procedure pack transfers data from unpacked arrays to packed arrays. For
example, assuming that a is an ARRAY[m..n] OF t and z is a PACKED ARRAY[u..v] of t; the
procedure pack(a, i, z) assigns components of the unpacked array a, starting at component i ,
to each component of the packed array z .

Because all the components of z are assigned a value, the normalized value of i must be less
than or equal to the di�erence between the lengths of a and z + 1; for example, i-m+1 <=

(n-m) - (v-u) + 1. Otherwise, it is an error when pack attempts to access a nonexistent
component of a.

The component types of arrays a and z must be type identical. The index types of a and z ,
however, may be incompatible.

The call pack(a, i, z) is equivalent to:

BEGIN

k:= i;

FOR j:= u TO v DO

BEGIN

z[j]:= a[k];

IF j <> v THEN k:= succ(k);

END;

END;

where k and j are variables that are type compatible with the index type of a and the index
type of z , respectively.

9-24 Standard Routines

Additional Documentation

Example

PROGRAM show_pack (input,output);

TYPE

clothes = (hat, glove, shirt, tie, sock);

VAR

dis : ARRAY [1..10] OF clothes;

box : PACKED ARRAY [1..5] of clothes;

index: integer;

.

.

BEGIN

.

.

index:= 1;

pack(dis,index,box); { After pack executes, box contains }

. { the first 5 components of dis. }

.

index:= 8;

pack(dis,index,box); { An error results when pack attempts }

. { to access nonexistent 11th component }

. { of dis. }

END.

Standard Routines 9-25

Additional Documentation

unpack

Usage

unpack(z, a, i)

Parameters

z Any PACKED ARRAY [u..v] of t.

a Any ARRAY [m..n] of t.

i An expression that is type compatible with the index of the non-packed array.

Description

This procedure transfers data from a packed array to an unpacked array. For example,
assuming that a is an ARRAY[m..n] OF t and z is a PACKED ARRAY [u..v] OF t; the
procedure unpack(z,a,i) successively assigns the components of the packed array z, starting at
component u, to the components of the unpacked array a, starting at a [i] .

All the components of z are assigned. Also, the normalized value of i must be less than or
equal to the di�erence between the lengths of a and z + 1; for example, i-m+1 <= (n-m) -

(v-u) + 1. Otherwise, it is an error when unpack attempts to index a beyond its upper
bound.

The index types of a and z need not be compatible. The components of the two arrays,
however, must be type identical.

The call unpack(z,a,i) is equivalent to:

BEGIN

k:= i;

FOR j:= u TO v DO

BEGIN

a[k]:= z[j];

IF j <> v THEN k:= succ(k);

END;

END;

where k and j are variables that are type compatible with the indices of a and z respectively.

9-26 Standard Routines

Additional Documentation

Example

PROGRAM show_unpack (input,output);

TYPE

suit_types = (casual, business, leisure, birthday);

VAR

suit : PACKED ARRAY [1..5] OF suit_types;

kase : ARRAY [1..10] OF suit_types;

i : integer;

.

.

BEGIN

.

.

i := 1;

unpack(suit,kase,i); { After execution, the first 5 }

. { components of kase contain the }

. { value of suit. }

.

i := 7

unpack(suit,kase,i); { An error results because unpack }

. { attempts to assign a component of }

. { suit to a component of kase which }

. { is out of range. }

END.

Standard Routines 9-27

Additional Documentation

Program Control Procedures

The only program control procedures supported by HP Pascal are halt and assert. The
details of these procedures are given below.

halt

Usage

halt(n)

halt

Parameter

n An integer expression that may be omitted.

Description

This procedure terminates the execution of the program. What this means and what is done
with the optional integer expression is implementation de�ned. For more information, see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending
on your implementation.

Example

halt

halt(int_exp)

9-28 Standard Routines

Additional Documentation

assert

The prede�ned procedure assert allows your program to test assumptions, specify invariant
conditions, and check data structure integrity.

Usage

assert (b, i [, p])

Parameters

b A Boolean expression that assert evaluates. If its value is true, the program
executes the statement following the call to assert . If its value is false,
the program's action depends upon whether p is speci�ed and whether the
ASSERT HALT compiler option is OFF or ON (see Figure 11-1).

If the compiler can determine that b is a constant expression whose value is true,
then it does not generate code for the call to assert .

i An integer expression. If the value of b is false and p is speci�ed, procedure p is
called with i as the actual value parameter. If b is false and p is not speci�ed, the
system issues a run-time error message that includes the value of i .

A call to the prede�ned function statement number is a useful integer expression
for i . It returns the statement number (as shown on the compiler listing) for the
statement from which it is called (in this case, the call to assert).

p The name of a procedure whose heading has the syntax

PROCEDURE p (parameter name : integer);

If the value of b is false and p is speci�ed, the system executes the call p(i).

The default for the ASSERT HALT compiler option is OFF (see Chapter 12 for more
information).

Example

PROCEDURE my_assert (value : integer);

BEGIN

writeln('my_assert #', value);

END;

PROCEDURE x (p : ptrtype; n : integer);

BEGIN

assert(p <> nil, 80101, my_assert);

assert(n >= 0, 80102);

END;

Standard Routines 9-29

Additional Documentation

MPE V Migration Routines

baddress

Usage

baddress(v)

Parameters

v A variable, procedure, or function.

Description

The function baddress(v) returns the byte address of v when v is a variable name, and the
entry point when v is a procedure or function name. This variable may not be type �le or
a �le type component of a structured variable. Also, v cannot be a component of a packed
structure, except if it is a component of a PAC.

baddress is useful for calling certain intrinsics which require byte addresses for parameters.

baddress returns an integer in the range minint..maxint .

Note baddress does not work correctly with the $OPTIMIZE compiler option for
addresses of variables. Use type coercion and addr instead. Refer to the HP
Pascal/iX Programmer's Guide or to the HP Pascal/HP-UX Programmer's
Guide, depending on your implementation, for more information on optimizer
assumptions.

Example

TYPE

rec_type = RECORD

f1: integer;

f2: boolean;

f3: char;
END;

VAR

n: integer;

r: rec_type;

p: ^rec_type;

a: ARRAY [1..10] of 0..255;

pac: PACKED ARRAY [1..10] OF char;

pab: PACKED ARRAY [1..10] OF boolean;

9-30 Standard Routines

Additional Documentation

Calls

baddress(n)

baddress(r)
baddress(r.f3)

baddress(p)

baddress(p^)

baddress(p^.f3)

baddress(a)

baddress(a[4])

baddress(pac)

baddress(pac[2]) { Legal since component type is char. }

baddress(pab)

baddress(pab[2]) { Error. }

Standard Routines 9-31

Additional Documentation

cmpbytes

Usage

cmpbytes (s1, s2, l)

Parameters

s1 A PAC or string variable that contains a byte string to compare.

s2 A PAC or string variable that contains a byte string to compare.

l A shortint or bit16 expression that indicates the number of bytes to be
compared.

Result

A shortint indicating the result of the comparison:

0 : s1 is less than s2.

1 : s1 is greater than s2.

2 : s1 is equal to s2.

Description

The function cmpbytes compares the s1 and s2 byte strings for l bytes. The result is a
shortint value indicating that the s1 byte string is less than, greater than, or equal to the s2
byte string.

Note This feature requires the compiler option STANDARD_LEVEL 'EXT_MODCAL'.

9-32 Standard Routines

Additional Documentation

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

program asmb005 (output)
type

pac20 = packed array[1..20] of char;

var

pac,pac1 : pac20;

i : integer;

s : shortint;

c,m : char;

b : boolean;

result : shortint;

begin

s := 4;

pac := 'abcd';

pac1 := 'abcd';

result := cmpbytes(pac,pac1,s);

writeln(result); {2}

pac := 'aacd';

pac1 := 'abcd';

result := cmpbytes(pac,pac1,s);

writeln(result); {0}

pac := 'abcd';

pac1 ;= 'aacd';

result := cmpbytes(pac,pac1,s);

writeln(result); {1}

end.

Standard Routines 9-33

Additional Documentation

movebyteswhile

Usage

movebyteswhile (s, t, a, n, u, p)

Parameter

s A PAC or string variable that contains the source string to be copied.

t A PAC or string variable to which the source is to be copied.

a An ordinal constant expression whose ordinal value is 0 or 1, indicating whether
the copy is to continue while the characters are alphabetic (1).

n An ordinal constant expression whose ordinal value is 0 or 1, indicating whether
the copy is to continue while the characters are numeric (1).

u An ordinal constant expression whose ordinal value is 0 or 1, indicating whether
the copied characters remain the same (0), or whether all lowercase characters are
upshifted (1).

p A shortint variable which will indicate the index in the source array where the
test condition, alpha or numeric, failed.

Description

The procedure movebyteswhile moves a byte from the source array to the target array if
the byte meets the test conditions set by a or n. Once the condition fails, the p of the byte
is returned. If u is set, each alphabetic character moved to the target array is upshifted.
Either or both of a and n must evaluate to 1. If neither evaluates to 1, then the results are
unpredictable.

The length �eld of a target string variable is not updated.

Note This feature requires the compiler option STANDARD_LEVEL 'EXT_MODCAL'.

9-34 Standard Routines

Additional Documentation

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

program asmb005(output);
type

pac20 = packed array[1..20] of char;

const

apac = pac20[20 of ' '];

var

pac,pac1 : pac20

s : shortint;

result : shortint;

begin

pac1 := apac;

pac := 'thisoisoaotest56789 ';

movebyteswhile(pac, pac1, true, true, true, s);

writeln (s); {20}

writeln('"',pac1,'"'); {"THISOISOAOTEST56789 ")

pac1 := apac;

movebyteswhile(pac, pac1, #1, true, false, s);

writeln (s); {20}

writeln('"',pac1,'"'); {"thisoisoaotest56789 "}

pac1 := apac;

movebyteswhile(pac, pac1, true, #0, false, s);

writeln (s); {15}

writeln('"',pac1,'"'); {"thisoisoaotest "}

end.

Standard Routines 9-35

Additional Documentation

scanuntil

Usage

scanuntil (s, t1, t2, p)

Parameters

s A PAC or string variable that contains the source string to be scanned.

t1 An expression whose value is of any char type.

t2 An expression whose value is of any char type.

p A shortint variable which will indicate the position in the source byte string
where t1 or t2 was found.

Result A boolean value.

true : indicates t2 was found.

false : indicates t1 was found.

Description

The function scanuntil scans the source byte string until either the t1 or t2 is found. The
position at which the t1 or t2 was found is returned. The result is a Boolean value indicating
whether t2 or t1 was found.

Note This feature requires the compiler option STANDARD_LEVEL 'EXT_MODCAL'.

9-36 Standard Routines

Additional Documentation

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

program asmb005(output);
type

pac20 = packed array[1..20] of char;

var

pac : pac20;

s : shortint;

c,m : char;

b : boolean;

begin

pac := 'thisoisoaotest56789 ';

c := '6';

m := ' ';

b := scanuntil(pac, c, m, s);

writeln (s); {16}

writeln (b); {false}

b := scanuntil(pac, 'x', m, s);

writeln (s); {20}

writeln (b); {true}

b := scanuntil(pac, #101, ' ', s);

writeln (s); {12}

writeln (b); {false}

end.

Standard Routines 9-37

Additional Documentation

scanwhile

Usage

scanwhile (s, t1, t2, p)

Parameters

s A PAC or string variable that contains the source string to be scanned.

t1 An expression whose value is of any char type.

t2 An expression whose value is of any char type.

p A shortint variable into which an index is returned which indicates at which
position in the source array the t2 was found or the t1 was not found.

Result

A boolean value:

true : indicates t2 was found.

false : indicates t1 was not found.

Description

The function scanwhile scans the source byte string until a byte is found that does not
match the t1 . The position where the match failed is returned. The result is a boolean value
indicating whether t2 was found or t1 was not found.

Note This feature requires the compiler option STANDARD_LEVEL 'EXT_MODCAL'.

9-38 Standard Routines

Additional Documentation

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

program asmb005(output);
type

pac20 = packed array[1..20] of char;

var

pac : pac20;

s : shortint;

c,m : char;

b : boolean

begin

pac := 'aaaaaaaaabaaaaaaaaaa';

c := 'a';

m := 'c';

b := scanwhile(pac, c, m, s);

writeln (s); {10}

writeln(b); {false}

b := scanwhile(pac, 'a', m, s);

writeln (s); {10}

writeln(b); {false}

b := scanwhile(pac,#98 ,'a', s);

writeln (s); {1}

writeln(b); {true}

end.

Standard Routines 9-39

Additional Documentation

waddress

Usage

waddress (i)

Parameters

i The name of a variable, procedure, or function.

Description

The function waddress(i) returns the byte address of i when i is a variable name, and the
entry point when it is a procedure or function name. This variable cannot be type �le or a �le
type component of a structured variable. Also, i cannot be a component of a packed structure
as an argument, except when this component is an element of a PAC.

The waddress function is useful for calling copy text from baddress .

waddress returns an integer in the range minint..maxint .

Note waddress does not work correctly with the $OPTIMIZE compiler option for
addresses of variables. Use type coercion and addr instead. Refer to the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's
Guide, depending on your implementation, for more information on optimizer
assumption.

TYPE

rec_type = RECORD

f1: integer;

f2: boolean;

END;

VAR

n: integer;

r: rec_type;

p: ^rec_type;

a: ARRAY [1..10] OF integer;

pac: PACKED ARRAY [1..10] OF char;

pab: PACKED ARRAY [1..10] OF boolean;

PROCEDURE pro;

BEGIN

END;
FUNCTION f: integer;

BEGIN

END;

9-40 Standard Routines

Additional Documentation

Calls

waddress(n)

waddress(r)
waddress(r.f2)

waddress(p)

waddress(p^)

waddress(p^.f2)

waddress(a)

waddress(a[4])

waddress(pac)

waddress(pac[3]) { Legal since component type is char. }

waddress(pab)

waddress(pab[3]) { Error. }

waddress(pro)

waddress(f)

Standard Routines 9-41

Additional Documentation

Arithmetic Functions

The eight standard arithmetic functions in HP Pascal are abs, arctan, cos, exp, ln, sin,

sqr, and sqrt. Details about each of these functions are given in the following pages.

abs

Usage

abs(x)

Argument

x A numeric expression.

Description

The abs function computes the absolute value of its argument, which must be an expression
with a numeric type. The type of the result is the same as the type of the numeric expression.
Note that it may be an error to take the absolute value of minint.

Example

Input Result

abs(-13) 13 { integer result }

abs(-7.11) 7.110000E+00

abs (true) error { not a numeric type }

9-42 Standard Routines

Additional Documentation

arctan

Usage

arctan(x)

Argument

x A numeric expression.

Description

The arctan function returns the principal value of the angle that has the tangent equal to
the argument. The result is in radians within the range -pi/2..pi/2. This function returns
a real for sub-integer, integer, or real arguments, and longreal for longreal or super-integer
arguments. The value used for pi is implementation dependent.

Example

Input Result

arctan(num_exp)

arctan(2) 1.107149E+00

arctan(-4.002) -1.32594E+00

Standard Routines 9-43

Additional Documentation

cos

Usage

cos(x)

Argument

x A numeric expression.

Description

The cos function returns the cosine of the angle represented by its argument that is
interpreted in radians. This function returns a real for sub-integer, integer, or real arguments,
and longreal for longreal or super-integer arguments. The range of the returned value is -1.0
through +1.0.

Example

Input Result

cos(x_rad)

cos(1.62) -4.91838E-02

9-44 Standard Routines

Additional Documentation

exp

Usage

exp(x)

Argument

x A numeric expression.

Description

The exp real function raises e to the power of the argument. This function returns a real for
sub-integer, integer, or real arguments, and longreal for longreal or super-integer arguments.
The value used for Naperian e is implementation dependent.

Example

Input Result

exp(3) 2.008554E+01

exp(8.8E-3) 1.008839E+00

exp(8.8L-3) 1.00883883382898L+00

Standard Routines 9-45

Additional Documentation

ln

Usage

ln(x)

Argument

x Any positive numeric expression.

Description

The ln function returns the natural logarithm (base e) of the argument. This function
returns a real for sub-integer, integer, or real arguments, and longreal for longreal or
super-integer arguments. It is an error if x is 0 or less than 0. The value used for Naperian e

is implementation dependent.

Example

Input Result

ln(43) 3.761200E+00

ln(2.121) 7.518877E-01

ln(0) { error }

9-46 Standard Routines

Additional Documentation

sin

Usage

sin(x)

Argument

x A numeric expression.

Description

The sin function returns the sine of the angle interpreted in radians represented by its
argument. This function returns a real for sub-integer, integer, or real arguments, and longreal
for longreal or super-integer arguments. Note that the argument can be any numeric value.

Example

Input Result

sin(rad)

sin(0.024) 2.399769E-02

sin(90) 8.93997E-01

Standard Routines 9-47

Additional Documentation

sqr

Usage

sqr(x)

Argument

x Any numeric expression.

Description

The sqr function computes the square of its argument that must be an expression with a
numeric type. The type of the result is the same as the base type of the numeric expression.

Example

Input Result

sqr(3) 9

sqr(1.198E3) 1.435204E+06.

sqr(-5) 25

sqr(maxint) { error }

9-48 Standard Routines

Additional Documentation

sqrt

Usage

sqrt(x)

Argument

x Any positive numeric expression.

Description

The sqrt function computes the square root of its argument, which must be an expression
with a numeric type. It is an error if the argument is less than 0. This function returns a
real for sub-integer, integer, or real arguments, and longreal for longreal or super-integer
arguments.

Example

Input Result

sqrt(64) 8.000000E+00

sqrt(13.5E12) 3.674235E+06

sqrt(0) 0.000000E+00

sqrt(-5) { error }

Standard Routines 9-49

Additional Documentation

Predicate Functions

There are three predicate functions in HP Pascal. They are odd, eof, and eoln. The
functions eof and eoln are described in Chapter 10 of this manual.

odd

Usage

odd(x)

Argument

x Any integer expression.

Description

This function returns true if the integer expression is odd, and false otherwise.

Example

Input Result

odd(int_var) depends on value of int_var

odd(ord(color)) depends on value of color

odd(2 + 4) false

odd(-32767) true

odd(32768) false

odd(0) false

9-50 Standard Routines

Additional Documentation

Numeric Conversion Functions

binary, hex, and octal are the three numeric conversion functions supported in HP Pascal.

binary, hex, and octal return an integer value. Therefore, all bits must be speci�ed if a
negative result is desired. Alternatively, the positive representation may be negated.

A description of each of these functions follows.

binary

Usage

binary(s)

Argument

s Any string or PAC expression whose range is implementation dependent.

Description

The binary function converts a string or PAC expression that is interpreted as a binary value
to an integer. Leading and trailing blanks are ignored in the argument. It is an error if any
character is not a legal binary digit; for example, 0..1.

Example

Input Result

binary(strng) depends on the value of strng
binary('10011') 19

-binary('10011') -19

Note If your particular implementation uses 32-bit 2's complement notation, the
following example also works:

binary('11111111111111111111111111101101') = -19

Standard Routines 9-51

Additional Documentation

hex

Usage

hex(s)

Argument

s Any string or PAC expression whose range is implementation dependent.

Description

The hex function converts a string or PAC expression, that is interpreted as a hexadecimal
value to an integer. Leading and trailing blanks are ignored. It is an error if any character is
not a legal hex digit; for example, 0..9, 'A'..'F', or 'a'..'f'.

Example

Input Result

hex(strng) depends on the value of strng

hex('FF') 255

-hex('FF') -255

Note If a particular implementation uses 32-bit 2's complement notation, the
following example also works:

hex('FFFFFF01') = -255

9-52 Standard Routines

Additional Documentation

octal

Usage

octal(s)

Argument

s Any string or PAC expression whose range is implementation dependent.

Description

The octal function converts a string or PAC expression that is interpreted as an octal value
to an integer. Leading and trailing blanks in the argument are ignored. It is an error if any
other character is not a legal octal digit; for example, 0..7.

Example

Input Result

octal(strng) depends on the value of strng

octal('77') 63

-octal('77') -63

Note If your particular implementation uses 32-bit 2's complement notation, the
following example also works:

octal('37777777701') -63

Standard Routines 9-53

Additional Documentation

Transfer Functions

Round and trunc are the transfer functions found in HP Pascal. These functions are described
on the next two pages.

round

Usage

round(x)

Argument

x Any real or longreal expression.

Description

The round function returns the argument rounded to the nearest integer. If x is positive or
zero, then round (x) is equivalent to trunc(x + 0.5); otherwise, round (x) is equivalent to
trunc(x - 0.5). It is an error if the result is greater than maxint or less than minint .

Example

Input Result

round(3.1+2.4) 6

round(3.1) 3

round(-6.4) -6

round(-4.6) -5
round(1.5) 2

9-54 Standard Routines

Additional Documentation

trunc

Usage

trunc(x)

Argument

x Any real or longreal expression.

Description

The trunc function returns the integer part of a real or longreal expression that is the integral
part of its argument. The absolute value of the result is not greater than the absolute value of
x . It is an error if the result is greater than maxint or less than minint .

Example

Input Result

trunc(real_exp) depends on the value of real_exp

trunc(5.61) 5

trunc(-3.38) -3

trunc(18.999) 18

Standard Routines 9-55

Additional Documentation

Ordinal Functions

The ordinal functions found in HP Pascal are chr, ord, pred, and succ. Each of these
functions are discussed on the next few pages.

chr

Usage

chr(x)

Argument

x An integer expression in the range 0..255.

Description

The chr function converts an integer numeric value into an ASCII character by returning the
character value, if any, whose ordinal number is equal to the value of its argument. Note that
it is an error if the argument is not within the range 0..255.

Example

Input Result

chr(x) depends on the value of x

chr(63) '?'

chr(82) 'R'

chr(13) (carriage return)

9-56 Standard Routines

Additional Documentation

ord

Usage

ord(x)

Argument

x An ordinal expression.

Description

The function ord(x) returns the integer representing the ordinal associated with the value
of x . If x is an integer, x itself is returned. If x is type char, the result is an integer value
between 0 and 255 determined by the ASCII order sequence. If x is any other ordinal type
(such as a prede�ned or user-de�ned enumerated type), then the result is the ordinal number
determined by mapping the values of the type onto consecutive non-negative integers starting
at zero. For example, since the standard type Boolean is prede�ned as:

TYPE Boolean = (false,true)

The call ord (false) returns 0, and the call ord (true) returns 1.

For any character ch, the following is true:

chr (ord (ch)) = ch

It is an error if the result is greater than maxint or less than minint .

Example

Input Result

ord(ord_exp) depends on the value of ord_exp

ord('a') 97

ord('A') 65

ord(-1) -1

ord(yellow) 2 {TYPE color=(red,blue,yellow)}

ord(red) 0

Note Taking the ORD of short pointer type expressions is permitted at the
Standard Level EXT_MODCAL.

Standard Routines 9-57

Additional Documentation

pred

Usage

pred(n)

Argument

x Any ordinal expression.

Description

The pred function returns the value whose ordinal number is one less than the ordinal number
of the argument. The type of the result is identical to the type of the argument. pred(x)
must exist.

Example

Input Result

pred(ord_var) depends on the value of ord_var

pred(1) 0

pred(-5) -6

pred('B') 'A'

pred(true) false

pred(false) {error}

9-58 Standard Routines

Additional Documentation

succ

succ(x)

Argument

x Any ordinal expression.

Description

The succ function returns the value whose ordinal number is one greater than the ordinal
number of the argument. The type of the result is identical with the type of the argument. It
is an error if succ(x) does not exist.

Example

Input Result

succ(ord('b')) 99
succ(1) 2

succ(-5) -4

succ('a') 'b'

succ(false) true

succ(true) { error }

Standard Routines 9-59

10

Input and Output

Files are the means by which a program receives input and produces output. A �le is a
sequence of components of the same type. This may be any type except a �le type or a
structured type with a �le type component.

Logical �les are �les declared in a Pascal program. Physical �les are �les that exist
independently of a program and are controlled by the operating system. Logical and physical
�les are associated so that a program manipulates data objects external to itself.

The components of a �le are indexed starting at component 1. Each �le has a current
component and a bu�er variable whose contents, if de�ned, are accessible using a �le bu�er
(^) selector. The standard procedure read(f,x) copies the contents of the current component
into x and advances the current position to the next component. The procedure write(f,x)
copies x into the current component and, like read, advances the current position.

The standard procedures reset, rewrite, append, or open are used to open a �le for input
or output. Reset opens a �le in the input state so that writing is prohibited; rewrite and
append open a �le in the output state so that reading is prohibited; and open opens a �le in
the direct state so that both reading and writing are legal.

All �les are automatically closed on exit from the block in which they are declared whether by
a normal exit or a nonlocal GOTO or escape. Files allocated on the heap are automatically
closed when the �le or structure containing the �le is disposed, or the area in which the �le
resides is released. All �les are closed at the end of the program.

Files opened with reset, rewrite, or append are sequential �les . In sequential �les, the
current position advances only one component at a time. Files opened with open are direct
access �les. The current position may be relocated anywhere in the �le using the procedure
seek. Direct access �les have a maximum number of components determinable by the
standard function maxpos. The maximum number of components of a sequential �le, on the
other hand, is not determinable with an HP Pascal function.

Text�les are special prede�ned sequential �les with char type components. End-of-line
markers are used to substructure text�les into lines. The standard procedure writeln creates
these markers. The standard �les input and output are text�les. Text�les cannot be opened
for direct access.

Table 10-1 lists each HP Pascal �le procedure or function together with a brief description of
its action. The third column of the table indicates the permissible categories of �les that a
procedure or function may reference.

Input and Output 10-1

Additional Documentation

Table 10-1. File Procedures and Functions

Procedure or
Function

Action Permissible Files

append Opens �le in output state. Current
position is after last component and
eof is true.

any

associate Associates a logical �le with an open
physical �le.

any

close Closes a �le. any

disassociate Disassociates a logical �le from it's associated open
physical �le.

any

eof Returns true if �le opened in output
state, if no component exists for
sequential input, or if current position
in direct access �le is greater
than lastpos.

any

eoln Returns true if the current position of
a text �le is at a line marker.

input text�les

get Allows assignment of current
component to bu�er and, in some
cases, advances current position.

input or direct �les

lastpos Returns index of highest written
component of direct access �le.

direct access �les

linepos Returns number of characters read
from or written to a text�le since
the last line marker.

text�les

maxpos Returns maxint or the maximum
component possible to read or write.
Check implementation.

direct access �les

open Opens �le in direct access state.
Current position is 1 and eof is false.
Eof is true if �le is empty.

any �le except a
text�le

overprint A form of write which causes the next
line of a text�le to print over the
current line.

output text�les

page Causes skip to top of new page when a
text�le is printed.

output text�les

position Returns integer indicating the current
component of a non-text �le.

any �le except a
text�le

10-2 Input and Output

Additional Documentation

Table 10-1. File Procedures and Functions (continued)

Procedure or
Function

Action Permissible Files

prompt A form of write which assures text�le
bu�ers have been written to the device.
No line marker is written.

output text�les

put Assigns the value of the bu�er variable
to the current component and advances the
current position.

output or direct
access �les

read Copies current component into speci�ed
variable parameter and advances
current position.

input or direct
access �les

readdir Moves current position of a direct
access �le to designated component
and then performs read.

direct access �les

readln Performs read on text�le and then
skips to next line.

input text�les

reset Opens �le in input state. Current
position is 1.

any

rewrite Opens �le in output state. Current
position is 1 and eof is true. Old
components discarded.

any

seek Places current position of direct access
�le at speci�ed component number.

direct access �les

write Assigns parameter value to current �le
component and advances current
position.

output or direct
access �les

writedir Advances current position in direct
access �le to designated component
and performs a write.

direct access �les

writeln Assigns parameter value to current
text�le component, appends a line
marker and advances current position.

output text�les

Input and Output 10-3

Additional Documentation

I/O Standard Procedures and Functions

append

Usage

append(f)

append(f, s)

append(f, s, t)

Parameters

f A variable of type �le. The parameter f may not be omitted.

s The name of a physical �le associated with f. This can be a string or PAC expression
whose range is implementation de�ned.

t A string or PAC expression whose value is implementation dependent. Refer to the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation, for more information. This parameter speci�es
carriage control and �le access.

Description

The procedure append(f) opens �le f in the output state, and places the current position
immediately after the last component. All previous contents of f remain unchanged. The
eof(f) function returns true, and the �le bu�er f^ is unde�ned. Data may now be written on
f .

If f is already open, append closes and then reopens it. If a �le name is speci�ed, the system
closes any physical �le previously associated with f .

When f does not appear as a program parameter and s is not speci�ed, the system maintains
any previous association of a physical �le with f . If there is no such association, it opens a
temporary nameless �le. This �le cannot be saved. It becomes inaccessible after the process
terminates or the physical-to-logical �le association changes. For more information, see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending
on your implementation.

Example

append(file_var)

append(file_var,phy_file_spec)

append(file_var,phy_file_spec,opt_str)

append(fvar,'SHORTFIL')

10-4 Input and Output

Additional Documentation

Illustration

Suppose examp_file is a closed logical �le of char containing three components. In order to
open it and write additional material without disturbing its contents, append is called.

Input and Output 10-5

Additional Documentation

associate

Usage

associate(f, num, option str)

Parameters

f A variable of type �le.

num The system-provided �le number of a previously opened �le.

option str Must be one of the following:

READ associate to sequential access �le with read access.

WRITE associate to sequential access �le with write access.

READ, DIRECT associate to direct access �le with read access.

WRITE, DIRECT associate to direct access �le with write access.

READ, WRITE, DIRECT associate to direct access �le with read/write
access.

DIRECT same as READ, WRITE, DIRECT.

NOREWIND associate to a �le without changing the current �le
position.

Description

The procedure associate(f,num,option str) allows the opened �le num to be used with
Pascal input/output routines through f . The �le must already be open as the result of a
direct call to an operating system routine or as the result of a call to a non-Pascal procedure.
The �le cannot be opened as a result of a Pascal append, associate, open, reset, or
rewrite. Therefore, the Pascal function fnum cannot be used to determine the �le number of
a �le opened by Pascal. The �le must also be open.

One of the above-mentioned combinations must appear in option str . It is also an error
to specify read or write access if the physical �le is not opened for read or write access,
respectively.

Other options legal for opening a �le, such as those in the HP Pascal/iX Programmer's Guide
or the HP Pascal/HP-UX Programmer's Guide , are ignored.

Associate places the current �le position at the �rst component of the �le unless
NOREWIND is speci�ed. The contents of f , if any, are undisturbed, and f is unde�ned. If
the option str parameter speci�es WRITE, then eof(f) returns true, even though the actual
end of �le remains at the end of any previously existing data in the �le. If the option str
parameter speci�es read access for a sequential �le or read or write access for a direct access
�le, eof(f) returns false after the call to associate. If the �le is empty and is associated to
read access, a subsequent read causes an error.

10-6 Input and Output

Additional Documentation

Example

associate(file_var,file_number,option_str)

Illustration

Suppose examp_file is an opened logical �le of char with three components. To read
sequentially from examp_file, we call associate:

Input and Output 10-7

Additional Documentation

close

Usage

close(f)

close(f, t)

Parameters

f A variable of type �le. f may not be omitted.

t Options string that may be a string or PAC expression whose value is implementation
dependent. Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide, depending on your implementation, for more information.

Description

The procedure close(f) closes the �le f so that it is no longer accessible. After being closed,
any references to the �le f , except through one of the �le-open routines, results in an error,
and f is not associated with any physical �le.

When closing a direct access �le, the last component of the �le is the highest-indexed
component ever written to the �le (lastpos(f)). The value of maxpos for the �le, however,
remains unchanged. Once a �le is closed, it may be reopened.

The options string speci�es the disposition of any physical �le associated with the �le. The
value is implementation de�ned. The compiler ignores leading and trailing blanks and
considers upper and lower case equivalent. If no options string is supplied, the �le retains its
previous (original) status.

Example

close(fil_var)

close(fil_var,opt_str)

10-8 Input and Output

Additional Documentation

disassociate

Usage

disassociate(f)

Parameter

f A variable of type �le.

Description

This procedure removes the logical-physical �le association that was previously created with
the associate procedure. Consequently, the �le f is no longer available to Pascal input and
output routines.

Normally a �le is closed upon exit from the block in which it is declared. A �le that has been
disassociated will not be closed upon exit, and must be explicitly closed with a direct call to
the operating system routines.

The disassociate procedure is useful when a �le is passed to a Pascal routine and must
remain open when control returns to the routine that passed the procedure to Pascal.

Example

disassociate (file_var)

Input and Output 10-9

Additional Documentation

eof

Usage

eof(f)

eof

Parameter

f A variable of type �le that must be open. If f is omitted, the system uses the standard
�le input.

Description

This Boolean function returns true if the end of a �le is reached. If the �le f is open, the
Boolean function eof(f) returns true when f is in the output state, when f is in the direct
access state, and its current position is greater than the highest-indexed component ever
written to f , or when no component remains for sequential input. Otherwise, eof(f) returns
false. If false, the next component is placed in the bu�er variable. If f is omitted, the
system uses the standard �le input.

When reading non-character values, such as integers or reals, from a text�le, eof may remain
false even if no other value of that type exists in the �le. This can occur if the remaining
components are blanks; for example, eoln is still false.

Example

eof

eof(file_var)

10-10 Input and Output

Additional Documentation

eoln

Usage

eoln(f)

eoln

Parameter

f A variable of type TEXT opened in the input state. If f is omitted, the system uses the
standard �le input.

Description

This Boolean function returns true when the end of a line is reached in a text�le. This
happens when the current position of text�le f is at an end-of-line marker. The function
references the bu�er variable f ^, possibly causing an input operation to occur. For example,
after readln, a call to eoln places the �rst character of the new line in the bu�er variable. If f
is omitted, the system uses the standard �le input.

Example

eoln

eoln(text_file)

Input and Output 10-11

Additional Documentation

get

Usage

get(f)

get

Parameter

f A variable of type �le opened in input or direct access state. If f is omitted, the system
uses the standard �le input.

Description

The procedure get(f) advances the current �le position and causes a subsequent reference to
the bu�er variable f^ to actually load the bu�er with the current component. This de�nition
of get is known as the deferred get.

It is an error if f is in the output state or if eof(f) is true prior to the call to get.

If a �le is opened with open, a get must be performed to load the bu�er variable with valid
data. However, if a �le is opened with reset, the bu�er variable contains valid data and a get

should not be performed until the second component is accessed. If get is called after read,
one �le component is skipped because read concludes with a get operation.

Example

get(file_var)

10-12 Input and Output

Additional Documentation

Illustration

Suppose examp_file is a logical �le of char with three components which has just been
opened in the direct state. The current position is the �rst component and examp_file^ is
unde�ned. To inspect the �rst component, get is called.

The current position is unchanged. Now, however, a reference to examp_file^ loads the �rst
component into the bu�er. We assign the bu�er to a variable.

Input and Output 10-13

Additional Documentation

lastpos

Usage

lastpos(f)

Parameter

f A variable of type �le opened in the direct access state. f must be speci�ed.

Description

The function lastpos(f) returns the integer index of the last component of f that has been
accessed while the program has been running, or in the life of the �le. It is an error if f is not
opened as a direct access �le.

Example

i:=lastpos(file_var) { File_var is the name of a file type variable }

10-14 Input and Output

Additional Documentation

linepos

Usage

linepos(f)

Parameter

f A text�le variable that must be opened. f may not be omitted. The program must
specify the standard �les input and output by name.

Description

The function linepos(f) returns the integer number of characters read from or written to
the text�le f since the last end-of-line marker. This does not include the character in the
bu�er variable f ^. The result is zero after reading a line marker, or immediately after a call to
readln, writeln, prompt, or overprint.

Example

i:=linepos(text_file)

Input and Output 10-15

Additional Documentation

maxpos

Usage

maxpos(f)

Parameter

f A �le variable that must be opened in the direct access state where f may not be
omitted.

Description

The function maxpos(f) returns the integer index of the last component of f that the program
could possibly access. An error occurs if f is not opened as a direct access �le. Note that the
value returned is implementation de�ned.

On implementations that allow direct access �les to be extended, maxpos returns the value of
maxint or the maximum possible number.

Example

i:=maxpos(file_var) { File_var is the name of a file type variable }

10-16 Input and Output

Additional Documentation

open

Usage

open(f)

open(f, s)

open(f, s, t)

Parameters

f A �le variable that is not a text�le.

s The name of a physical �le that the system associates with f .

t A string or PAC expression whose value is implementation dependent. See the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation, for more details.

Description

The procedure open(f) opens f in the direct state and places the current position at the
beginning of the �le. The function eof returns false, unless the �le is empty. The bu�er
variable f^ is unde�ned.

After a call to open, f is said to be a direct access �le. Data may be read or written using
the procedures read, write, readdir, writedir, get or put. The procedure seek and the
functions lastpos and maxpos are also legal. eof(f) becomes true when the current position
is greater than the highest-indexed component ever written to f .

Direct access �les have a maximum number of components. The function maxpos returns this
number. The lastpos function returns the index of the highest-written component of a direct
access �le.

A text�le cannot be opened for direct access since its format is incompatible with direct access
operations.

When the physical �le speci�er parameter is speci�ed, the system closes any physical �le
previously associated with f .

When f does not appear as a program parameter and s is not speci�ed, the system maintains
any previous association of a physical �le with f . If there is no such association, it opens a
temporary, nameless �le. This �le cannot be saved. It becomes inaccessible after the process
terminates or the physical-to-logical �le association changes. For more information, see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending
on your implementation.

Input and Output 10-17

Additional Documentation

Example

open(file_var)

open(file_var,phys_file_string)
open(file_var,phys_file_string,opt_str)

open(file_var,'TESTFILE')

Illustration

Suppose examp_file is a �le of integer with three components. To perform both input and
output, we call open:

10-18 Input and Output

Additional Documentation

overprint

Usage

overprint(f)

overprint(f, e)

overprint(f, e1, ..., en)

overprint

overprint(e)

overprint(e1, ..., en)

Parameters

f A text�le variable that must be opened. If f is omitted, the system uses the standard �le
output .

e An expression of simple, string, or PAC type, or a string literal. The system writes the
value of e on f according to the formatting conventions described for the procedure
write.

Description

The procedure overprint has the same function as writeln, except that it does not
terminate the line with a line feed. This causes the next write or overprint to overlay the
line written by the original overprint. Several successive overprints all write to the same
line, and printing advances to the next line after the �rst writeln.

Note Some printers do not support the overprint procedure. Refer to the manual
for your particular printer.

After the execution of overprint(f), the bu�er variable f ^ is unde�ned and eoln(f) is false.
The expression parameter, e, behaves exactly like the equivalent parameter for the procedure
write.

If the output device is not a printer, overprint will be ignored.

Examples

overprint(file_var)

overprint(file_var,exp)

overprint(file_var,exp1,...,expn)

overprint(exp)

overprint(exp1,...,expn)

overprint

or

writeln('def');

overprint('___');

def

Input and Output 10-19

Additional Documentation

page

Usage

page(f)

page

Parameter

f A text�le variable that must be open. If f is omitted, the system uses the standard �le
output.

Description

The procedure page(f) writes a special character to the text �le f , which causes the printer
to skip to the top of the form when f is printed. The current position in f advances, and the
bu�er variable f^ is unde�ned.

Example

page(text_file)

page

10-20 Input and Output

Additional Documentation

position

Usage

position(f)

Parameter

f A �le variable that must not be a text�le.

Description

The function position(f) returns the integer index of the current component of f , starting
from 1. Input or output operations references this component. The parameter f must not be
a text�le.

Example

i:=position(file_var)

Input and Output 10-21

Additional Documentation

prompt

Usage

prompt(f)

prompt(f, e)

prompt(f, e1, ..., en)

prompt

prompt(e)

prompt(e1, ..., en)

Parameters

f A text�le variable. The system uses the standard �le output if f is omitted.

e The expression of any simple, string, or PAC type or string literal.

Description

The procedure prompt(f) causes the system to write any bu�ers associated with text�le f to
the device. prompt does not write a line marker on f . The current position is not advanced,
and the bu�er variable f^ becomes unde�ned.

prompt is normally used when directing output to a terminal. prompt causes the cursor to
remain on the same line after output to the screen is complete. The user may then respond
with input on the same line.

The expression parameter, e, behaves exactly like the equivalent parameters in the procedure
write.

Example

prompt(file_var)

prompt(file_var,exp)

prompt(file_var,exp1,...,expn)

prompt(exp)

prompt(exp1,...,expn)

prompt

10-22 Input and Output

Additional Documentation

put

Usage

put(f)

put

Parameter

f A �le variable opened in the output or direct access state. The system uses the standard
�le output if f is omitted.

Description

The procedure put(f) assigns the value of the bu�er variable f^ to the current component and
advances the current position. Following the call, f ^ is unde�ned.

It is an error if f is open in the input state.

Example

put(file_var)

Illustration

Suppose examp_file is a �le of integer with a single component opened in the output state by
append. Furthermore, 9 has been assigned to the bu�er variable examp_file^. To place this
value in the second component, put is called.

Input and Output 10-23

Additional Documentation

read

Usage

read(f,v)

read(f, v1, ..., vn)

read(v)

read(v1, ..., vn)

Parameters

f A �le variable opened in the input or direct access state. If f is omitted, the system uses
the standard �le input.

v The name of a variable or component of a structure whose type is not FILE and does not
contain a component of type FILE.

Description

The procedure read(f, v) assigns the value of the current component of f to the variable
v , according to the rules below, advances the current position, and causes any subsequent
reference to the bu�er variable f ^ to actually load the bu�er with the current component.

If the �le is a text�le, the read variables can be simple, string, or PAC variable. If the �le is
not a text�le, its components must be assignment compatible with the variable.

The following statement:

read(f,v)

is equivalent to accessing the �le variable and establishing a reference to that �le variable for
the remaining execution of the statement (denoted by ff) and then calling get on ff.

v := ff^

get(ff);

For example, the call

read(f,v1,...,vn);

establishes a reference, ff, to the �le variable, f . It is equivalent to:

read(ff,v1);
read(ff,v2);

.

.

.

read(ff,vn);

10-24 Input and Output

Additional Documentation

Example

read(file_var,variable)

read(file,variable1,...,variablen)
read(variable)

read(variable1,...,variablen)

Illustration

Suppose examp_file is a �le of char opened in the input state. The current position is at the
second component. To read the value of this component into char_var, we call read:

Input and Output 10-25

Additional Documentation

Implicit Data Conversion

If f is a text�le, its components are type char. The parameter, v , however, need not be of
type char. It may be any simple, string, or PAC type, which is an HP extension. The read
procedure performs an implicit conversion from the ASCII form that appears in the text�le f
to actual form stored in the variable v .

If v is type real, longreal, integer, or an integer subrange, the read(f,v) operation searches f
for a sequence of characters which satis�es the syntax below for these types. The search skips
preceding blanks or end-of-line markers. If v is longreal, the result is independent of the letter
preceding the scale factor.

It is an error if the read operation �nds no non-blank characters or a faulty sequence of
characters, or if the value is outside the range of v . After read , a subsequent reference to
the bu�er variable f ^ actually loads the bu�er with the character immediately following the
number previously read. Also note that eof is false if a �le has more blanks or line markers,
even though it contains no more numeric values.

If v is a variable of type string or PAC, then read(f, v) �lls v with characters from f up to
the number of elements of v . When v is type PAC and eoln(f) becomes true before v is
�lled, the operation puts blanks in the rest of v . If v is type string and eoln(f) becomes true
before v is �lled to its maximum length, no blank padding occurs. Strlen(v) then returns
the actual number of characters in v . If eoln(f) is true when the call is made, no additional
characters are read from f . The length of a string variable is set to zero, and PAC variables
are �lled with blanks. Readln must be used to proceed to the next line.

If v is a variable of an enumerated type, read(f, v) searches f for a sequence of characters
satisfying the syntax of an HP Pascal identi�er. The search skips preceding blanks and
line markers. Then the operation compares the identi�er from f with the identi�ers which
are values of the type of v , ignoring upper and lower case distinctions. Finally, it assigns
an appropriate value to v . It is an error if the search �nds no non-blank characters, if the
string from f is not a valid HP Pascal identi�er, or if the identi�er does not match one of the
identi�ers of the type of v .

10-26 Input and Output

Additional Documentation

Table 10-2 shows the results of calls to read with various sequences of characters for di�erent
types of v .

Table 10-2. Implicit Data Conversion

Sequence of Characters in f
Following Current Position

Type of v Result Stored in v

(space)(space)1.850 real 1.850

(space)(linemarker)(space)1.850 longreal 1.850

10000(space)10 integer 10000

8135(end-of-line) integer 8135

54(end-of-line)36 integer 54

1.583E7 real 1.583x10(7)

1.583E+7 longreal 1.583x10(7)

(space)Pascal string[5] 'tPasc'

(space)Pas(end-of-line)cal string[9] 'tPas'

(space)Pas(end-of-line)cal PAC flength 9g 'tPasttttt'

(end-of-line)Pascal PAC flength 5g 'ttttt'

(space)Monday(space) enumerated MONDAY

Input and Output 10-27

Additional Documentation

readdir

Usage

readdir(f, k, v)

readdir(f, k, v1, ..., vn)

Parameters

f A �le variable open to read that is not a text�le.

k The index of a component in f .

v The name of a variable or component of a structure whose type is not FILE and does not
contain a component of type FILE.

Description

The procedure readdir(f, k, v) places the current position at component k , and then reads
the value of that component into v . The index, k , is relative to the beginning of the �le.
Formally, this is equivalent to:

seek(f,k);

read(f,v);

The call get(f) is not required between seek and read because of the de�nition of read. The
procedure readdir can be used only with �les opened for direct access. Therefore, a text�le
cannot appear as a parameter for readdir.

Example

readdir(file_var,indx,variable)

readdir(file_var,indx,variable1,...,variablen)

10-28 Input and Output

Additional Documentation

Illustration

Suppose examp_file is a �le of integer with four components just opened in the direct access
state. The current position is the �rst component. To read the third component into int_var,
readdir is called. After readdir executes, the current position is the fourth component.

Input and Output 10-29

Additional Documentation

readln

Usage

readln(f)

readln(f, v)

readln(f, v1, ..., vn)

readln

readln(v)

readln(v1, ..., vn)

Parameters

f A text�le variable. The system uses the standard �le input if f is omitted.

v The name of a variable or component of a structure whose type is not FILE and does not
contain a component of type FILE.

Description

The procedure readln(f) reads zero or more values from a text�le and then advances the
current position to the beginning of the next line. The operation performs implicit data
conversion if v is not type char, string, or PAC. The call readln(f,v1, . . . ,vn) is equivalent
to:

read(f,v1,...,vn);

readln(f);

If the parameter, v , is omitted, readln simply advances the current position to the beginning
of the next line.

Example

readln(file)

readln(file,variable)

readln(file,variable1,...,variablen)

readln(variable)

readln(variable1,...,variablen)

readln

10-30 Input and Output

Additional Documentation

reset

Usage

reset(f)

reset(f, s)

reset(f, s, t)

Parameters

f A �le variable that may not be omitted.

s The name of a physical �le that the system associates with f . s may be a string or PAC
expression.

t An options string that may be a string or PAC expression whose value is implementation
dependent.

Description

The procedure reset(f) opens the �le f in the input state and places the current position at
the �rst component. The contents of f , if any, are undisturbed. The �le f may then be read
sequentially.

If f is not empty, eof(f) is false, and a subsequent reference to the bu�er variable f^
actually loads the bu�er with the �rst component. The components of f may now be read in
sequence. If f is empty, however, eof(f) is true and f^ is unde�ned, then subsequent calls to
read are errors.

If f is already open at the time reset is called, the system automatically closes and then
reopens it, retaining the contents of the �le. If the parameter s is speci�ed, the system closes
any physical �le previously associated with f .

When f does not appear as a program parameter and s is not speci�ed, the system maintains
any previous association of a physical �le with f . For more information on opening �les,
see the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation.

Example

reset(file_var)

reset(file_var,file_name)

reset(file_var,file_name,opt_str)

Input and Output 10-31

Additional Documentation

Illustration

Suppose examp_file is a closed �le of char with three components. To read sequentially from
examp_file, we call reset:

10-32 Input and Output

Additional Documentation

rewrite

Usage

rewrite(f)

rewrite(f, s)

rewrite(f, s, t)

Parameters

f A �le variable that may not be omitted.

s The name of a physical �le the system associates with f .

t May be a string or PAC expression whose value is implementation dependent.

Description

The procedure rewrite(f) opens the �le f in the output state and places the current position
at the �rst component. The system discards any previously existing components of f . The
function eof(f) returns true and the bu�er variable f ^ is unde�ned. The �le f may now be
written sequentially.

If f is already open at the time rewrite is called, the system closes it automatically, ushes
the bu�ers, and then reopens it, losing the contents of the �le. If s is speci�ed, the system
closes any physical �le previously associated with f and associates s with f .

When f does not appear as a program parameter and s is not speci�ed, the system maintains
any previous association of a physical �le with f . If there is no such association, it opens a
temporary, nameless �le. This �le cannot be saved. It becomes inaccessible after the process
terminates or the physical-to-logical �le association changes. For more information, see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending
on your implementation.

Example

rewrite(file)

rewrite(file,file_name)

rewrite(file,file_name,opt_str)

Input and Output 10-33

Additional Documentation

Illustration

Suppose examp_file is a closed �le of char with three components. To discard these
components and write sequentially to examp_file, rewrite is called.

10-34 Input and Output

Additional Documentation

seek

Usage

seek(f, k)

Parameters

f A �le variable that must be opened in the direct access state. It may not be a text�le.

k The integer index of a component of f . This must be an integer expression >0.

Description

The procedure seek(f, k) places the current position of f at component k . If k is greater than
the index of the highest-indexed component ever written to f , the function eof(f) returns
true, otherwise false. The bu�er variable f ^ is unde�ned following the call to seek. It is an
error if f is not open in the direct access state, or k is greater than maxpos(f). The index, k ,
is relative to the beginning of the �le.

Example

seek(file_var,indx)

Illustration

Suppose examp_file is a �le of char with four components opened for direct access. The
current position is the second component. To change it to the fourth component, seek is
called.

Input and Output 10-35

Additional Documentation

write

Usage

write(f, e)

write(f, e1, ..., en)

write(e)

write(e1, ..., en)

Parameters

f A �le variable that must be open in the output or direct access state.

e A variable or expression whose type is not FILE and which does not contain a
component of type FILE.

Description

The procedure write(f, e) assigns the value of e to the current component of f and then
advances the current position. After the call to write, the bu�er variable f ^ is unde�ned. It
is an error if f is not open in the output or direct access state. It is also an error if the current
position of a direct access �le is greater than maxpos (f).

If f is not a text�le, e must be an expression whose result type is assignment compatible with
the components of f . If f is a text�le, e may be an expression whose result type is any simple,
string, or PAC type. Also, the value of e may be formatted as it is written to a text�le as
described later in this chapter.

The call write(f, e) is equivalent to accessing the �le variable, f , and establishing a reference
to that �le variable for the remaining execution of the statement denoted by � .

The call write(f,e1, . . . en) is equivalent to:

write(ff,e1);

write(ff,e2);

.

.

write(ff,en);

Example

write(file_var,exp:5)
write(file_var,exp1,...,expn)

write(exp)

write(exp1,...,expn)

10-36 Input and Output

Additional Documentation

Illustration

Suppose examp_file is a �le of integer opened in the output state, and that one number has
been written to it. To write another number, write is called again:

Input and Output 10-37

Additional Documentation

Formatting of Output to Textfiles

When f is a text�le, the result type of e need not be char. It may be any simple, string, or
PAC type, or a string literal. The value of e may be formatted as it is written to f using the
integer �eld-width parameters m and, for real or longreal values, n. If m and n are omitted,
the system uses default formatting values. Therefore, three forms of e are possible:

e {default formatting}

e:m {when e is any type}

e:m:n {when e is real or longreal}

Table 10-3 shows the system default values for m.

Table 10-3. Default Field Widths

Type of e Default Field Width (m)

char 1

integer 12

real 12

longreal 20

bit16 12

bit32 12

bit52 12

longint 12

shortint 12

boolean 5 *

enumerated length of identi�er

string current length of string

PAC length of PAC

string literal length of string literal

* If $STANDARD_LEVEL$ is not ANSI or ISO, then the default width of TRUE is 4.

Note If e is Boolean or an enumerated type, the case of the letters written is
implementation de�ned.

10-38 Input and Output

Additional Documentation

When m is speci�ed and the value of e requires less than m characters for its representation,
the operation writes e on f preceded by an appropriate number of blanks. If the value of e is
longer than m, it is written on f without loss of signi�cance; such that m is defeated, provided
that e is a numeric type. Otherwise, the operation writes only the leftmost m characters. m
may be 0 if e is not a numeric type.

When e is type real or longreal, you may specify n as well as m. In this case, the operation
writes e in �xed-point format with n digits after the decimal point. If n is 0, the decimal
point and subsequent digits are omitted. If n is not speci�ed, the operation writes e in
oating-point format consisting of a coe�cient and a scale factor. In no case is it possible to
write more signi�cant digits than the internal representation contains. This means write may
change a �xed-point format to a oating-point format in certain circumstances.

Input and Output 10-39

Additional Documentation

Example

PROGRAM show_formats (output);

VAR
x: real;

lr: longreal;

george: boolean;

list: (yes, no, maybe);

BEGIN

writeln(999); {default formatting}

writeln(999:1); {format defeated}

writeln('abc');

writeln('abc':2); {string literal truncated}

x:= 10.999;

writeln(x); {default formatting}

writeln(x:25);

writeln(x:25:5);

writeln(x:25:1);

writeln(x:25:0);

lr:= 19.1111;

writeln(lr);

george:= true;

writeln(george); {default format}

writeln(george:2);

list:= maybe;

writeln(list); {default formatting}

END.

Output:

999
999

abc

ab

1.099900E+01

1.099900E+01

10.99900

11.0

11

1.9111099243164L+01

TRUE

TR

MAYBE

10-40 Input and Output

Additional Documentation

writedir

Usage

writedir(f, k, e)

writedir(f, k, e1, ..., en)

Parameter

f A �le variable opened in direct access state.

k The integer index of a component of f .

e An expression whose result type must be assignment compatible with the components of
f .

Description

The procedure writedir(f, k, e) places the current position at the component of f speci�ed
by k , and then writes the value of e to that component. It is equivalent to:

seek(f,k);

write(f,e)

An error occurs if f has not been opened in the direct-access state or if k is greater than
maxpos(f). After writedir executes, the bu�er variable f ^ is unde�ned, and the current
position is k+ n, where n is from en.

Example

writedir(fil_var,indx,exp)

writedir(fil_var,indx,exp1,....,expn)

Illustration

Suppose �le examp_file is a �le of integer opened for direct access. The current position is
the third component. To write a number to the �rst component, we call writedir:

Input and Output 10-41

Additional Documentation

writeln

Usage

writeln(f)

writeln(f, e)

writeln(f, e1, ..., en)

writeln

writeln(e)

writeln(e1, ..., en)

Parameters

f A �le variable for a text �le opened in the output state. The system uses the standard
�le output if f is omitted.

e A variable or expression whose type is not FILE and does not contain a component of
type FILE.

Description

The procedure writeln(f, e) writes the value of the expression e to the text�le f , appends
an end-of-line marker, and places the current position immediately after this marker. After
execution, the �le bu�er f^ is unde�ned, and eof(f) is true. You may write the value of e
with the formatting conventions described for the procedure write.

The call writeln(f, e1, . . . , en) is equivalent to

write(f,e1);
write(f,e2);

.

.

.

write(f,en);

writeln(f)

The call writeln without the �le or expression parameters e�ectively inserts an end-of-line
marker in the standard �le output.

Example

writeln(fil_var)

writeln(fil_var,exp:4)

writeln(fil_var,exp1,...,expn)

writeln(exp)

writeln(exp1,...,expn)

writeln

10-42 Input and Output

11

System Programming Extensions

This chapter describes extensions to HP Pascal for systems programming. The following
subjects are covered:

pointers
type coercion
error handling
parameter mechanisms
crunched packing
routine mechanisms
prede�ned routine

Some HP implementations of Pascal do not support all of these features. Any implementation
that has system programming extensions support the following:

anyptr type
the form of sizeof that accepts variables
type coercion
ANYVAR parameters
TRY-RECOVER statement
PROCEDURE and FUNCTION variables
the prede�ned function addr

The motivations for providing the system programming extensions are:

Pascal is very strict with regard to type checking. Although this eases the burden on the
user by permitting the compiler to check the validity of an operation, it is sometimes
necessary to bypass this strict type checking.

Pascal was originally designed as a language for teaching programming. Because of this,
serious attention is not paid to such issues as recovery from run-time errors and the creation
and maintenance of large software systems.

Pascal was not originally de�ned to be an e�cient systems programming language.

This chapter covers the HP MODCAL and EXT MODCAL standard levels.

System Programming Extensions 11-1

Additional Documentation

Figure 11-1 illustrates the relationship between the STANDARD LEVEL parameters.

Figure 11-1. Relationship of STANDARD LEVEL Compiler Option Parameters

The STANDARD LEVEL compiler option allows the user to choose one of �ve options which
speci�es what features or extensions are to be allowed in a given program. The �ve options
correspond to sets which have the relationship depicted in Figure 11-1 above.

If a STANDARD LEVEL option is not speci�ed, the default feature set is HP PASCAL. At
this level, the compiler does not recognize system programming extension reserved words,
and will issue warnings about standard level violations whenever a prede�ned identi�er is
encountered.

The list on the following pages delineates the language features that are available for a given
STANDARD LEVEL. ANSI is taken as the base set.

11-2 System Programming Extensions

Additional Documentation

ISO

Conformant Arrays

HP PASCAL

Blank padding of PACs and string literals.

Compiler Directives:

EXTERNAL INTRINSIC

Command line parameter handling.

Compiler Options:

ALIAS

ALIGNMENT

ANSI *

ARG_RELOCATION

ASSERT_HALT

ASSUME

BUILDINT

CALL_PRIVILEGE y z
CHECK_ACTUAL_PARM

CHECK_FORMAL_PARM

CODE

CODE_OFFSETS

CONVERT_MPE_NAMES z
COPYRIGHT

COPYRIGHT_DATE

ELSE

ENDIF

EXEC_PRIVILEGE y z
EXTERNAL

EXTNADDR

FONT y
GLOBAL

GPROF z
HEAP_COMPACT

HEAP_DISPOSE

HP3000_16 y
HP3000_32 y

HP_DESTINATION z
IF

INCLUDE y z
INCLUDE_SEARCH y z
INLINE

INTR_NAME

KEEPASMB

LINES *

LIST *

LIST_CODE

LISTINTR

LITERAL_ALIAS

LOCALITY

MAPINFO

LONG_CALLS

MLIBRARY y z
NLS_SOURCE y z
NOTES

OPTIMIZE

OS

OVFLCHECK

PAGE *

PAGEWIDTH

PARTIAL_EVAL *

POP

PUSH

RANGE *

RLFILE y
RLINIT y
S300_EXTNAMES

SEARCH *

SET

SHLIB_CODE y z
SHLIB_VERSION y z
SKIP_TEXT

SPLINTR

STANDARD_LEVEL *

STATEMENT_NUMBER y z
STDPASCAL_WARN

STRINGTEMPLIMIT

SUBPROGRAM

SYMDEBUG y z
SYSINTR y z
SYSPROG

TABLES

TITLE

TYPE_COERCION

UPPERCASE

VERSION

VOLATILE

WARN

WIDTH

XREF

* Feature is part of standard HP Pascal.

y Feature is MPE/iX system dependent.

z Feature is HP-UX system dependent.

System Programming Extensions 11-3

Additional Documentation

HP PASCAL (continued)

Constant expressions.

Enumerated type, string, PAC I/O. *

File attribute options to:

append close open reset rewrite

Functions and procedures returning structured types. *

Libraries.

Literal control characters delimited by #. *

Modules. *

OTHERWISE in CASE statement. *

Prede�ned I/O functions and procedures: *

append lastpos linepos maxpos overprint

position prompt readdir seek writedir

Prede�ned string functions and procedures: *

setstrlen str strappend strdelete strinsert

strlen strltrim strmax strmove strpos

strread strrpt strrtrim strwrite

Ranges in case constants in CASE and variant records. *

Relaxation in order of declaration section. *

Special functions and procedures:

assert associate baddress binary*

disassociate getheap halt* hex* mark*

octal* release* rtnheap sizeof waddress

HP-UX:

argc argn argv

MPE/iX, HP-UX:

ccode fnum get_alignment p_getheap p_rtnheap

MPE/iX:

setconvert strconvert

Structured Constants. *

Types:

anyptr bit16 bit32 bit52

globalanyptr localanyptr longint

longreal* shortint string*

11-4 System Programming Extensions

Additional Documentation

HP MODCAL

ANYVAR parameters.

Compiler Options:

TYPE COERCION (MPE/iX,HP-UX)

Error handling with:

escape escapecode TRY-RECOVER

Procedure and Function Types and Variables.

Special Prede�ned Routines:

addr call fcall statement_number

EXT MODCAL

CRUNCHED packing.

Prede�ned functions and procedures:

addtopointer bitsizeof buildpointer cmpbytes
fast_fill haveextension haveoptvarparm movebyteswhile

move_fast move_l_to_r move_r_to_l scanuntil scanwhile

Routine Options:

DEFAULT_PARMS EXTENSIBLE INLINE UNCHECKABLE_ANYVAR UNRESOLVED

READONLY parameters.

System Programming Extensions 11-5

Additional Documentation

Language Elements

Reserved Words

The following words are added to the HP Pascal list of reserved words when the system
programming extensions are enabled:

Table 11-1. System Programming Extension Reserved Words

Reserved Word Description

ANYVAR Routine formal parameter.

CRUNCHED Structure packing type parameter.

READONLY Routine formal parameter.

RECOVER Error recovery statement keyword.

TRY Error recovery statement keyword.

OPTION Routine option attribute header.

Note that with the STANDARD LEVEL set below HP MODCAL, these identi�ers are not
reserved and can be de�ned by the user.

11-6 System Programming Extensions

Additional Documentation

Predefined Identifiers

The system programming extensions add the following identi�ers to the HP Pascal list of
prede�ned identi�ers. The compiler issues warning messages if it encounters these identi�ers
and the standard level is too low.

Like any prede�ned identi�ers, these identi�ers may be rede�ned by the user.

Table 11-2. System Programming Extension Predefined Identifiers

Prede�ned
Identi�ers

Description

addtopointer Address arithmetic

anyptr Prede�ned pointer type

bitsizeof Prede�ned size function

buildpointer Address arithmetic

call Procedure variables

escape Error recovery

escapecode Error handling

fcall Function variables

fast_fill Prede�ned move procedure

globalanyptr Prede�ned pointer type

haveextension Parameter mechanism

haveoptvarparm Parameter mechanism

localanyptr Prede�ned pointer type

move_fast Prede�ned move procedure

move_l_to_r Prede�ned move procedure

move_r_to_l Prede�ned move procedure

sizeof Prede�ned size function

System Programming Extensions 11-7

Additional Documentation

Data Types

Figure 11-2 summarizes the types that are supplied by the system programming extensions.
A detailed discussion of the data types follows in this chapter. This �gure augments the HP
Pascal data types summarized in Figure 11-1. Note that the HP Pascal prede�ned data types
are highlighted.

Figure 11-2. Extended Data Types

11-8 System Programming Extensions

Additional Documentation

Structured Types

CRUNCHED

In Pascal, a structure (array, record, or set) can be unpacked or packed. Packed structures are
declared by specifying the reserved word PACKED at the start of a structured type declaration.

The system programming extensions de�ne a third type of packing in addition to unpacked
and packed, namely CRUNCHED.

The reserved word CRUNCHED indicates that the components of a structured type (array,
record, or set) are allocated contiguously, �rst to last, in a bit-aligned fashion with no
intervening unused bits. Syntactically, the word CRUNCHED may be substituted for the word
PACKED.

The primary purpose of crunched packing is to provide a map from data item type to data
representation that is independent of the implementation and the packing algorithm. For
that reason, machine dependent types such as real, longreal, and file are not allowed in
crunched structures.

Example

TYPE

rec = RECORD

a : type_a;

b : type_b;

c : type_c;

END;

crec = CRUNCHED RECORD

a : type_a;

b : type_b;

c : type_c;

END;

In a crunched structure, each component is allocated the minimum number of bits required to
represent that type, and each component is aligned in such a way that there are no unused
bits between it and the previous component.

System Programming Extensions 11-9

Additional Documentation

The �rst declaration for rec in the previous example may lead to the following storage
allocation for an arbitrary processor:

Figure 11-3. Layout of a Record

Note that there are unused bits between the �elds a and b, and between the �elds b and c.

The crunched record declaration for crec, that is identical to the uncrunched record rec with
the addition of the reserved word CRUNCHED, would lead to the following storage allocation:

Figure 11-4. Layout of a Crunched Record

Note that there are no wasted bits between �elds in the crunched record.

The number of bits used to represent each component of a crunched structured type is the
minimum needed to represent the values associated with that component. The calculation of
the minimum number of bits for various types is:

Record, Array Types.

The sum of the minimum number of bits required to represent each component. If the
record has variants, consider the size of the largest variant.

Set Types (of the form set of low .. high).

The ordinal value of high minus the ordinal value of low plus one:

ord(high) - ord(low) + 1

Char and Enumeration Based Types (of the form low .. high).

The next larger integer (the ceiling) of the logarithm base 2 of the successor of the ordinal
value of the upper bound, or one, whichever is greater:

max(ceil [log2(ord(high) + 1)], 1)

Integer Based Types (of the form low .. high)

The next larger integer (the ceiling) of the logarithm base 2 of the maximum of the
absolute value of the ordinal value of the lower bound, and the successor of the absolute
value of the ordinal value of the upper bound, or one, whichever is greater:

max(ceil [log2(max(|low|, |high| + 1))], 1)

If the type is signed (the lower bound is less than zero), then add one to the size.

11-10 System Programming Extensions

Additional Documentation

Table 11-3 shows the lower and upper bound ranges and number of bits allocated for unsigned
subranges. Table 11-4 gives the same information for signed subranges.

Table 11-3. Number of Bits Allocated for Unsigned Subranges

Lower Bound Range Upper Bound Range # Bits Allocated

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

>= 0

0..1

2..3

4..7

8..15

16..31

32..63

64..127

128..255

256..511

512..1023

1024..2047

2048..4095

4096..8191

8192..16383

16384..32767

32768..65535

65536..131071

131072..262143

262144..524287

524288..1048575

1048576..2097151

2097152..4194303

4194304..8388607

8388608..16777215

16777216..33554431

33554432..67108863

67108864..134217727

134217728..268435455

268435456..536870911

536870912..1073741823

1073741824..2147483647

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

System Programming Extensions 11-11

Additional Documentation

Table 11-4. Number of Bits Allocated for Signed Subranges

Lower Bound Range Upper Bound Range #Bits Allocated

-1

-2

-4..-3

-8..-5

-16..-9

-32..-17

-64..-33

-128..-65

-256..-129

-512..-257

-1024..-513

-2048..-1025

-4096..-2049

-8192..-4097

-16384..-8193

-32768..-16385

-65536..-32769

-131072..-65537

-262144..-131073

-524288..-262145

-1048576..-524289

-2097152..-1048577

-4194304..-2097153

-8388608..-4194305

-16777216..-8388609

-33554432..-16777217

-67108864..-33554433

-134217728..-67108865

-268435456..-134217729

-536870912..-268435457

-1073741824..-536870913

-2147483648..-1073741825

0

1

2..3

4..7

8..15

16..31

32..63

64..127

128..255

256..511

512..1023

1024..2047

2048..4095

4096..8191

8192..16383

16384..32767

32768..65535

65536..131071

131072..262143

262144..524287

524288..1048575

1048576..2097151

2097152..4194303

4194304..8388607

8388608..16777215

16777216..33554431

33554432..67108863

67108864..134217727

134217728..268435455

268435456..536870911

536870912..1073741823

1073741824..2147483647

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

11-12 System Programming Extensions

Additional Documentation

Example

TYPE

cr1_t = CRUNCHED RECORD
f1 : 0..15; { takes 4 bits }

f2 : -1..15; { takes 5 bits }

f3 : -16..15; { takes 5 bits }

f4 : 13..15; { takes 4 bits }

END; { total: 18 bits }

cr2_t = CRUNCHED RECORD

f1 : CRUNCHED set of 0..15; { takes 16 bits }

f2 : CRUNCHED set of 13..15; { takes 3 bits }

f3 : CRUNCHED set of -5..5; { takes 11 bits }

END; { total: 30 bits }

cr3_t = CRUNCHED RECORD

f1 : integer; { takes 32 bits }

CASE tag : Boolean OF { takes 1 bit }

true: (v1 : cr1_t); { takes 18 bits }

false:(v2 : cr2_t); { takes 30 bits }

END; { total: 63 bits }

The restrictions that apply to packed types also apply to crunched types. In particular, it is
illegal:

To pass a component of a crunched structure as a reference parameter.

To take the address of a component of a crunched structure.

In addition:

File types cannot be crunched.

Structured types that contain �le, real, longreal, string, or pointer types cannot be
crunched.

All structured types contained in a crunched structured type must also be crunched.

All integer based types and enumeration based types are represented with the most
signi�cant bit �rst through least signi�cant bit last. Byte swapping is not permitted.

System Programming Extensions 11-13

Additional Documentation

Pointer Types

In HP Pascal, pointers are designators that point only to a speci�c class of objects , namely
objects on the heap.

When using the system programming extensions, pointers can point to any data; that is,
objects on the heap, as well as global and local variables. In this sense pointers truly are
addresses.

In HP Pascal, the only way to create a pointer is by calling the prede�ned procedure NEW or
the intrinsic p_getheap to dynamically allocate a heap object. In order to create pointers,
the system programming extensions de�ne the addr function that returns the address of
its argument, and the functions buildpointer and addtopointer that perform address
arithmetic.

There are three prede�ned pointer types de�ned in the system programming extensions that
allow relaxed type checking of pointers. These are anyptr, localanyptr, and globalanyptr.

Short and Long Pointers

The system programming extensions de�ne two classes of pointers: short and long pointers.

Long pointers can point to any addressable object on the system (in this sense addressable in
terms of the representability of an address, as opposed to allowed access rights).

Short pointers can point to a subset of the objects addressable by long pointers. A subset of
the object addressable by short pointers are objects in the heap. By default, all user declared
pointers are short pointers.

The following diagram explains the relationship between these classes of pointers.

Figure 11-5. Pointer Class Relationship

Note that in some implementations, long and short pointers may be identical; in other words,
the collection of objects that long and short pointers can point to may be the same.

The compiler option EXTNADDR can be used to specify that a given user de�ned pointer type is
to be a long pointer.

11-14 System Programming Extensions

Additional Documentation

Localanyptr

The prede�ned type localanyptr is a pointer type that is assignment compatible with any
other pointer type. It can be used to defeat type checking on pointers.

A pointer of any type can be assigned to a pointer of type localanyptr, and a pointer of
type localanyptr can be assigned to any pointer type. However, since pointers of type
localanyptr are not bound to a base type, they cannot be dereferenced. (In order to
dereference a pointer of type localanyptr, it must �rst be type coerced or assigned to a
proper pointer type).

localanyptr takes the form of a short pointer. It may only be able to represent a subset of
the addresses on a machine. On implementations where short and long pointers are not the
same, localanyptr is more e�cient than globalanyptr.

Permissible Operators

assignment :=

relational =, <>

Example

VAR

ptr1 : pointer_type_1;

ptr2 : pointer_type_2;

anyp : localanyptr;

BEGIN

...

anyp := ptr1;

anyp := ptr2;

...

ptr1 := anyp;

...

END;

System Programming Extensions 11-15

Additional Documentation

Globalanyptr

The prede�ned type globalanyptr is a pointer type that is assignment compatible with any
other pointer type. It can be used to defeat type checking on pointers.

A pointer of any type can be assigned to a pointer of type globalanyptr, and a pointer
of type globalanyptr can be assigned to any pointer type. However, since pointers of type
globalanyptr are not bound to a base type, they cannot be dereferenced. (In order to
dereference a pointer of type globalanyptr, it must �rst be type coerced or assigned to a
proper pointer type.)

Globalanyptr takes the form of a long pointer . It can represent any address on the machine.
A more e�cient type of pointer called localanyptr can be used in a program that has no
need for long pointers.

Permissible Operators

assignment :=

relational =, <>

Example

VAR

ptr1 : pointer_type_1;

ptr2 : pointer_type_2;

anyp : globalanyptr;

BEGIN

...

anyp := ptr1;

anyp := ptr2;

...

ptr1 := anyp;

...

END;

11-16 System Programming Extensions

Additional Documentation

Anyptr

The prede�ned type anyptr is a pointer type that is assignment compatible with any other
pointer type. It can be used to defeat type checking on pointers.

A pointer of any type can be assigned to a pointer of type anyptr, and a pointer of type
anyptr can be assigned to any pointer type. However, since pointers of type anyptr are not
bound to a base type, they cannot be dereferenced. In order to dereference a pointer of type
anyptr, it must �rst be type coerced or assigned to a proper pointer type.

Anyptr takes the form of a long pointer . It can represent any address on the machine. A more
e�cient type of pointer called localanyptr can be used in a program that has no need for
long pointers.

Anyptr is equivalent to globalanyptr; however, globalanyptr and localanyptr are the
recommended types to use.

Permissible Operators

assignment :=

relational =, <>

Example

VAR

ptr1 : pointer_type_1;

ptr2 : pointer_type_2;

anyp : anyptr;

BEGIN

...

anyp := ptr1;

anyp := ptr2;

...

ptr1 := anyp;

...

END;

The above example illustrates that a variable of type anyptr is assignment compatible with
any other pointer type.

System Programming Extensions 11-17

Additional Documentation

Example

VAR

ptr1 : pointer_type_1;
ptr2 : pointer_type_2;

PROCEDURE proc(ptr : anyptr);

BEGIN

...

END;

BEGIN

proc(ptr1);

proc(ptr2);

END;

In the above example, the routine proc can accept any pointer as an actual parameter
because the type of the formal parameter is anyptr. anyptr is assignment compatible with
any pointer type.

Example

TYPE

pointer_type = ^record_type;

record_type = RECORD

int : integer;

END;

VAR

i : integer;

anyp : anyptr;

BEGIN

i := pointer_type(anyptr)^.int;

END;

In the above example, the pointer anyp is dereferenced to access a �eld in a record. Since an
anyptr is not bound to a base type, the pointer must �rst be type-coerced to a pointer type
corresponding to the structure to which anyp is pointing.

11-18 System Programming Extensions

Additional Documentation

PROCEDURE and FUNCTION Types

In Pascal, PROCEDURE and FUNCTION parameters allow dynamic reference to procedures
and functions where the exact instance of the procedure or function is not known until
run-time. The system programming extensions extend this concept to allow variables as well
as parameters that refer to procedures and functions.

Syntax

A parallel can be drawn between pointers and PROCEDURE/FUNCTION variables. While pointers
are variables that reference data, PROCEDURE/FUNCTION variables reference code.

Variables of PROCEDURE/FUNCTION types may be assigned procedures and functions that have
congruent parameter lists, as de�ned in HP Pascal. See chapter 8 for more information on
parameters. To assign a procedure or function to a PROCEDURE/FUNCTION variable, the routine
name is used as a parameter to the addr function. See the section on prede�ned routines in
this chapter for more information on addr.

Any procedure or function assigned must have the same or wider scope than the variable
or value parameter to which it is assigned. Any PROCEDURE/FUNCTION variable passed as a
reference parameter must have the same or wider scope than the formal parameter to which it
is bound.

A PROCEDURE/FUNCTION variable can be assigned NIL.

The procedure or function referenced by a PROCEDURE/FUNCTION variable, may be invoked
by calling the prede�ned procedure call for a PROCEDURE variable or the prede�ned function
fcall for a FUNCTION variable. See the section on prede�ned routines in this chapter for more
information on call and fcall.

System Programming Extensions 11-19

Additional Documentation

Permissible Operators

assignment :=

relational =, <>

Standard Procedures

argument CALL

Standard Functions

argument FCALL

return ADDR

Example

TYPE

proc_0_type = PROCEDURE;

func_0_type = FUNCTION: integer;

proc_1_type = PROCEDURE(ANYVAR i : integer);

func_2_type = FUNCTION(VAR s : string;

i : integer): boolean;

VAR

proc_0 : proc_0_type;

func_0 : func_0_type;
proc_1 : proc_1_type;

func_2 : func_2_type;

PROCEDURE p1; external;

PROCEDURE p2(n : shortint); external;

PROCEDURE p3(VAR i : integer); external;

BEGIN

func_0 := nil; { initialized to nil }

func_2 := nil; { initialized to nil }

proc_0 := addr(p1); { proc_0 now 'points to' p1 }

proc_1 := addr(p2); { illegal: parameters don't match }

proc_1 := addr(p3); { illegal: parameters don't match }

func_0 := addr(p1); { illegal: must be a function }

END.

11-20 System Programming Extensions

Additional Documentation

Example

TYPE

proc_type = PROCEDURE;

VAR

proc_var_0 : proc_type;

PROCEDURE proc_1;

VAR

proc_var_1 : proc_type;

PROCEDURE proc_2;

BEGIN {PROCEDURE proc_2}

...

END; {PROCEDURE proc_2}

BEGIN {PROCEDURE proc_1}

proc_var_0 := addr(proc_1);

proc_var_1 := addr(proc_1);

proc_var_0 := addr(proc_2); { illegal: scoping violation }

proc_var_1 := addr(proc_2);

END; {PROCEDURE proc_1}

System Programming Extensions 11-21

Additional Documentation

Expressions

Type Coercion

Pascal is very strict with respect to type checking. In any operation such as assignment,
binary operations, passing parameter, or indexing, relevant types must be compatible
according to the HP Pascal rules of compatible types. Refer to \Type Compatibility" in
Chapter 3 for more information.

Type coercion allows the user to selectively circumvent the normally strong type checking.
The system programming extensions support several forms of type coercion including ANYVAR,
reference, and value. ANYVAR type coercion (using the formal parameter mechanism ANYVAR) is
described in this chapter under \Procedures and Functions".

Reference type coercion consists of type coercion of an actual parameter that is being passed
to a reference formal parameter, or type coercing a pointer to a di�erent pointer type before a
dereference.

Value type coercion consists of type coercion of a constant, variable, function result, or
expression to a di�erent type.

The syntax for type coercion looks like the application of a function to an expression, where
the name of the function is the name of the target type of the coercion.

Syntax

Expression:

The expression being coerced may be a constant, variable, function result, or expression
involving unary and binary operators.

Syntactically, value type coercion is allowed:

In an expression.

On the right-hand side of an assignment statement.

On an actual parameter.

By default, the compiler does not allow value type coercion. The compiler option
TYPE_COERCION allows the user to enable a certain level of type coercion. There are three
classes of type coercion based on the source and target types: ordinal, pointer, and free union
type coercion. Ordinal and pointer type coercions are enabled by specifying the conversion
level of type coercion. Instances of free union type coercion are enabled by specifying one of
structural , representation , storage, or noncompatible type coercion.

11-22 System Programming Extensions

Additional Documentation

Ordinal Type Coercion

The ordinal types are viewed as di�erent sets of names for the points on the integer number
line. Given this view of ordinals, value type coercion of one ordinal type to another is simply
a renaming operation.

A type coercion expression is considered an ordinal coercion, if both the source expression
(expression being coerced) and the target type (type to which the expression is being coerced)
are any of the following types:

The prede�ned types integer, shortint, char, Boolean, bit16, bit32, bit52, and longint.

A user-declared enumerated type.

A user-declared subrange type.

If the value of the source expression is out of range with respect to the allowed values of the
target type, a subrange violation occurs. If range checking is on, this causes a run-time error.

Example

TYPE

color_t = (red,orange,yellow,green,chartreuse,blue,indigo,violet);

VAR

i : integer;

color : color_t;

BEGIN
...

color := chartreuse;

i := integer(color); { i has the value 4 }

i := 3;

color := color_t(i); { color has the value green }

i := 12;

color := color_t(i); { will cause a run-time error }

...

END;

System Programming Extensions 11-23

Additional Documentation

Pointer Type Coercion

The pointer types are viewed as virtual addresses. Given this view, value type coercion from
one pointer type to another is a mapping from one virtual address to another.

On implementations that have alignment restrictions, it is an error if the alignment of the
type that the source expression points to is smaller than the alignment of the type that
the target type points to. If range checking is on, this causes a run-time error. See the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide, depending on
your implementation, for more information on alignment.

Coercion from long-to-long and short-to-short pointers is a one-to-one mapping and involves
no actual run-time conversion operations.

Coercion from a short to a long pointer, in implementations where long pointers point to a
wider class of objects than short pointers, may involve amending the value of the short pointer
with additional address information that a long pointer requires.

Coercion from a long to a short pointer, in implementations where long pointers point to
a wider class of objects than short pointers, may involve truncating the value of the long
pointer. If this occurs, the short pointer may not be able to address the original object
pointed to by the long pointer because of the short pointer's limited addressing. This is an
error. If range checking is on, this causes a run-time error.

Example

TYPE

integer_pointer = ^ integer;

real_pointer = ^ real;

VAR

ip : integer_pointer;

rp : real_pointer;

BEGIN
...

ip := integer_pointer(rp);

...

END;

11-24 System Programming Extensions

Additional Documentation

Other Type Coercion

All type coercions that do not fall under the categories of ordinal and pointer type coercion
can be viewed as the use of a free union, or tagless variant record, where the implementation
overlays the record variants onto the same storage area.

The model for value type coercion:

type_1(expression)

is equivalent to the function call:

f_type_1(expression)

where f_type_1 is de�ned as:

FUNCTION f_type_1 (e: type_of_expression):type_1 ;

VAR

coerce_record : RECORD CASE Boolean OF

true: (source_variant : type_of_expression);

false: (target_variant : type_1);

END;

BEGIN

coerce_record.source_variant := e;

f_type_1 := coerce_record.target_variant;

END;

The model for reference type coercion:

target_type (source);

is equivalent to:

pointer_to_target_type (addr (source))

Whereas both ordinal and pointer type coercions may cause run-time errors if the source
values are not representable in the target type, the free union form of type coercion never
causes run-time errors.

Depending upon the source and target types, free union type coercion consists of the following
levels, listed in increasing order of freedom:

Structural

Representation

Storage

Noncompatible

System Programming Extensions 11-25

Additional Documentation

Structural. A type coercion expression is considered to be structural if the following are true:

The bitsizes of the source and target types are the same.

The alignment of the source and target types are the same.

The source and target types are compatible.

If the source and target are structured, then the corresponding component in the two
structures obey the above three rules of bitsizes, alignment and compatibility.

Structural type coercions are enabled by specifying 'STRUCTURAL' in the compiler option
TYPE_COERCION.

Structural type coercion is essentially a renaming of the components of a structure. Because
the component types are guaranteed to be the same, the storage allocated for the source and
target types is also the same, and reinterpreting the storage of the source as if it was of the
target type will produce correct results.

Example

$TYPE_COERCION 'STRUCTURAL'$

...

TYPE

source_t = RECORD

i : integer;
b : false..true;

end;

target_t = RECORD

j : minint..maxint;

c : Boolean;

END;

VAR

source : source_t;

target : target_t;

...

BEGIN

...

target := target_t(source);

...

END;

In the above example, the two record types are the same: their bitsizes are identical and their
corresponding components are the same.

11-26 System Programming Extensions

Additional Documentation

Representation. A type coercion expression is considered to be representation type coercion if
the bitsizes of the source and target types are the same. The internal structure of structured
types for either the source or target does not matter.

Representation type coercions are enabled by specifying 'REPRESENTATION' in the compiler
option TYPE_COERCION.

Example

$STANDARD_LEVEL 'HP_MODCAL'$

PROCEDURE write_hex(n : integer);

TYPE

nibble_array = PACKED ARRAY[0..7] OF 0..15;

hex_digit_t = array [0..15] OF char;

CONST

hex_digit = hex_digit_t['0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'];

VAR

i : 0..7;

BEGIN

FOR i := 0 to 7 DO

$PUSH, TYPE_COERCION 'REPRESENTATION'$

WRITE(hex_digit[nibble_array(n)[i]]);

POP

END;

In the above example, the integer n is treated as an array of nibbles in order to extract each
nibble sequentially and write out its value in hexadecimal. Since representation type coercion
guarantees that the source and target types are identical in size, the compiler can guarantee
that the entire integer is covered by the nibble array: there are no bits missed.

System Programming Extensions 11-27

Additional Documentation

Storage. A type coercion expression is considered to be storage type coercion, if the size of the
storage allocated for the source is greater than the size of the storage allocated for the target
type.

Storage type coercion guarantees that no nonexistent memory is accessed and that no
unde�ned bits are accessed.

The following illustrates storage type coercion. The compiler guarantees that PROC never
accesses a part of its formal parameter that is not actually part of the actual parameter. This
is because the actual parameter is guaranteed to be larger than or the same size as the formal
parameter.

Example

TYPE

string_1 = STRING [255];

string_2 = STRING [80]

VAR

s1 : string_1;

s2 : string_2;

...

PROCEDURE PROC (VAR S : STRING_2);

BEGIN

...

END;

...

$PUSH, TYPE_COERCION 'STORAGE'$

PROC (string_2 (s1));

POP

11-28 System Programming Extensions

Additional Documentation

Noncompatible. Noncompatible type coercion permits anything to be coerced to anything.
There is no guarantee that the accessed storage exists, nor that there is any accessible storage.

Example

FUNCTION non_protected_space: integer;

TYPE

big_index = 0..max_array_size-1;

big_array = array[big_index] of integer;

VAR

idx : big_index;

int : integer;

BEGIN

idx := 0;

TRY

WHILE (idx <= max_array_size-1) DO BEGIN

$PUSH, TYPE_COERCION 'NONCOMPATIBLE'$

int := big_array(int)[idx];

POP

idx := idx + 1;

end;

non_protected_space := max_array_size-1;

RECOVER

non_protected_space := idx - 1;

END;

The previous example coerces an integer to an array of integers and keeps accessing farther
out into the array until it cannot access any further. Note that this code assumes that:

TRY-RECOVER traps the error condition that occurs when the array access grows beyond the
limits of the available space.

The value of the variable idx is updated correctly when execution is transferred to the
RECOVER statement.

System Programming Extensions 11-29

Additional Documentation

Declaration Section

Constant Definition

NIL

The de�nition of the prede�ned constant NIL is expanded for the system programming
extensions.

The prede�ned constant NIL is compatible with any long or short pointer type. When NIL is
used in a comparison or assignment, it assumes the pointer class (short or long) of the pointer
with which it is being compared, or to which it is being assigned.

The prede�ned constant NIL is compatible with any PROCEDURE/FUNCTION type. A
PROCEDURE/FUNCTION variable that has been assigned the value NIL refers to no procedure or
function.

11-30 System Programming Extensions

Additional Documentation

Statements

TRY-RECOVER

A Pascal program that encounters a run-time error is aborted. Because this is not always
acceptable, the system programming extensions de�ne the TRY-RECOVER structured statement
that allows the user to trap all run-time errors.

The prede�ned procedure escape allows the user to cause a run-time error to occur, and
the prede�ned function escapecode allows the user to determine the last type of error that
occurred. See the section \Error Handling Routines" for more information on escape and
escapecode.

Syntax

The statement following the reserved word RECOVER may have a statement label. One can
jump to such a label only from within the RECOVER statement itself.

The types of errors that are trapped by TRY-RECOVER are:

All Pascal run-time errors (de�ned in Appendix A).

An implementation de�ned set of hardware errors.

An implementation de�ned set of operating system detected errors.

All user-generated error conditions (generated by calling escape).

Upon detecting an error in the execution of the body of a TRY-RECOVER statement (the
statements between the reserved words TRY and RECOVER, as well as any procedures and
functions called from such statements), the following sequence of events occurs:

The escape code, indicating the type of error that occurred, is saved for later retrieval by
the prede�ned function escapecode.

The run-time environment is restored to the environment of the most recent TRY-RECOVER
statement. This may involve prematurely exiting any nested procedure and function calls
and closing any open �les local to those routines.

Execution is transferred to the statement following the reserved word RECOVER.

If no errors are detected within the body of the TRY-RECOVER statement, the recover statement
is skipped, and execution continues at the �rst statement following the TRY-RECOVER
statement.

The TRY-RECOVER statement does not trap errors in its recover part (the statement following
the reserved word RECOVER). If an error occurs in the execution of the recover part, execution
is transferred to the recover part of an enclosing TRY-RECOVER statement. If there is no
enclosing TRY-RECOVER statement the program aborts.

System Programming Extensions 11-31

Additional Documentation

The semantics of the TRY-RECOVER statement do not guarantee that the e�ects of any
statements executed in the body of the TRY are valid when executing the RECOVER statement.
Certain implementations, however, may guarantee that the e�ects of any executed statements
are valid. Certain other implementations may provide the user with a method of indicating
that certain variables preserve their value. See the HP Pascal/iX Programmer's Guide or the
HP Pascal/HP-UX Programmer's Guide, depending on your implementation, for more details.
Also see the compiler option \VOLATILE" in Chapter 12.

Note that when execution is transferred to the RECOVER statement, the environment in which
the error occurred no longer exists. If that environment is required to perform error handling,
then trap handlers are required. See the chapter on Error Recovery in the HP Pascal/iX
Programmer's Guide or in the HP Pascal/HP-UX Programmer's Guide, depending on your
implementation, for more information.

Example

TRY

open(f, 'filename');

RECOVER BEGIN

writeln('open failed');

...

END;

The above code fragment prevents a program from aborting if a �le cannot be opened.

Example

PROCEDURE proc1;

BEGIN

... { errors will be trapped in try 0 }

TRY {try 1}

... { errors will be trapped here in try 1 }
RECOVER BEGIN

... { errors will be trapped in try 0 }

END;

... { errors will be trapped in try 0 }

END;

...

BEGIN

... { errors will abort the program }

TRY {try 0}

... { errors will be trapped here in try 0 }

proc1;

... { errors will be trapped here in try 0 }

RECOVER BEGIN

... { errors will abort the program }

END;

... { errors will abort the program }

END.

11-32 System Programming Extensions

Additional Documentation

In the previous example, any errors occurring in the TRY-RECOVER in proc1 cause execution
to be transferred to the recover part of the try statement in proc1. Any errors occurring
in the TRY-RECOVER in the outer block, in the recover statement in proc1, and outside of
the TRY-RECOVER in proc1 cause execution to be transferred to the recover part of the try
statement in the outer block. Any error occurring in the recover statement in the outer block
and outside of the TRY-RECOVER statement in outer block, aborts the program because there is
no TRY-RECOVER to catch the error.

Example

VAR

int : integer;

...

int := 0;

TRY

...

int := 1;

...

int := 2;

...

int := 3;

...

RECOVER BEGIN

...

END;

If execution is transferred to the recover statement, there is no guarantee that the variable int
has a value other than zero for the following reasons:

The error could have occurred anywhere within the try body. The �rst assignment to int

may not have been executed yet.

Even if an assignment statement was executed, the semantics do not guarantee that the
actual location of int was updated. If the new value of int was stored in a location other
than its memory location, then the transfer of execution to the RECOVER statement does not
update the memory location of int.

System Programming Extensions 11-33

Additional Documentation

Procedures and Functions

The system programming extensions de�ne two new formal parameter mechanisms in addition
to Pascal value and VAR formal parameters. These mechanisms are ANYVAR and READONLY.

The system programming extensions also de�ne an extension to the procedure and function
header syntax for specifying additional attributes of a procedure or function. This extension is
routine options .

Formal Parameters

The reserved words ANYVAR and READONLY can syntactically replace the reserved word VAR in a
formal parameter list speci�cation.

ANYVAR

This formal parameter mechanism implicitly type coerces the actual parameter to the type of
the formal parameter.

A formal ANYVAR parameter represents the actual parameter during execution of the
procedure. Any changes in the value of the formal ANYVAR parameter alters the value of the
actual parameter. Therefore, it must be a variable-access parameter. The actual parameter
may have any type. The formal-ANYVAR parameter, however, is treated within the body of the
procedure as a variable of the type speci�ed in its de�nition.

An additional hidden parameter is passed along with each actual parameter passed to
a formal ANYVAR parameter. This hidden parameter is the length in bytes of the actual
parameter. This size value can be accessed through the use of the prede�ned functions
sizeof and bitsizeof. This additional size parameter is not passed when the routine option
UNCHECKABLE_ANYVAR is used.

This implicit reference type coercion is independent of the level of type coercion selected when
the actual parameter is used.

11-34 System Programming Extensions

Additional Documentation

Example

TYPE

byte = 0..255;
byte_array = PACKED ARRAY [1..max_bound] OF byte;

VAR

int : integer;

rec : record_type;

PROCEDURE zero_bytes(ANYVAR arr : byte_array);

VAR

i : 0..max_bound;

limit : 1..max_bound;

BEGIN

IF (sizeof(arr) > max_bound) THEN

limit := max_bound

ELSE

limit := sizeof(arr);

FOR i := 1 TO limit DO

arr[i] := 0;

END;

BEGIN

zero_bytes(int);

zero_bytes(rec);

END;

System Programming Extensions 11-35

Additional Documentation

READONLY

This formal parameter mechanism protects the actual parameter from modi�cation within the
procedure or function.

A formal READONLY parameter may not be:

The target of an assignment statement.

Passed as an argument to a VAR or ANYVAR parameter.

Passed as an argument to the addr prede�ned function.

Passed as an argument to any prede�ned routine that modi�es that argument.

In this way, modi�cation of a variable passed as a READONLY parameter is an error between
the call to and return from the procedure or function by modifying the formal parameter
itself.

The actual parameter is passed by reference. If the actual parameter is an expression or a
constant, then a reference to a copy of the value is passed.

Example

PROCEDURE proc(READONLY parm : integer);

VAR

pint : ^ integer;

PROCEDURE procx(VAR i : integer);

external;

BEGIN

...

parm := 0; { illegal : cannot assign to a READONLY }

procx(parm); { illegal : cannot pass to a VAR parameter }

pint := addr(parm); { illegal : cannot take its address }

...

END;

The above example creates detected errors.

Note The mechanism does not detect a modi�cation of a READONLY parameter
by another reference parameter or an uplevel reference. The results of such a
modi�cation are unpredictable.

11-36 System Programming Extensions

Additional Documentation

Example

PROCEDURE proc1;

VAR

j : integer;

PROCEDURE proc2 (READONLY j : integer

VAR m : integer);

BEGIN

j := 0; { modification by an uplevel reference }

m := 0; { modification by another reference parameter }

END;

BEGIN

proc2 (j,j);

END;

The above example creates undetected errors.

System Programming Extensions 11-37

Additional Documentation

Routine Options

The routine options specify additional attributes of a procedure or function. The routine
options follow the parameter list in the declaration of a procedure or function header.
$STANDARD_LEVEL 'EXT_MODCAL'$ must be speci�ed when using routine options.

Syntax

The option-speci�cation for each option is described in the following pages.

For forward and external declarations of routines, the options speci�ed on the forward or
external routine declaration must match the options on the formal declaration.

11-38 System Programming Extensions

Additional Documentation

DEFAULT PARMS

Normally, all parameters appearing in a formal parameter list must be present in every
corresponding actual parameter list.

The routine option DEFAULT_PARMS allows parameters to be omitted from the actual
parameter list. The option speci�es which parameters may be omitted, and the default values
that the omitted parameters will assume.

Syntax

The expression supplied in the DEFAULT_PARMS option must be assignment compatible with
the corresponding formal parameter type. The expression must also be a constant expression.
The only default value permitted for VAR, ANYVAR, and PROCEDURE/FUNCTION parameters is
NIL.

Because defaulted reference parameters (VAR, ANYVAR, PROCEDURE/ FUNCTION parameters)
cannot be examined (their value is NIL, which cannot be 'dereferenced'), the prede�ned
function haveoptvarparm can be used to determine if a reference parameter was supplied by
the caller. See the section \Prede�ned Routines" for more information.

Example

PROCEDURE proc(i : integer)

OPTION DEFAULT_PARMS(i := -1);

BEGIN

...

END;

...

proc(1); { value of parameter is 1 }

proc(); { value of parameter defaulted to -1 }

proc; { value of parameter defaulted to -1 }

See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation, for more details on OPTION DEFAULT_PARMS.

System Programming Extensions 11-39

Additional Documentation

EXTENSIBLE

Normally, all parameters appearing in a formal parameter list must be present in a
corresponding actual parameter list.

The routine option EXTENSIBLE allows parameters to be omitted from the end of an actual
parameter list. The option speci�es the number of non-extension parameters (those that must
be supplied) in the actual parameter list. The remaining trailing parameters may be omitted.

Syntax

Note that if a particular extension parameter is supplied in an actual parameter list, then all
EXTENSIBLE (and non-defaulted) parameters to the left of the supplied parameter must also
be supplied.

It is an error to access a formal parameter whose corresponding actual parameter was
not passed. An EXTENSIBLE parameter list, therefore, is always passed with a hidden
parameter describing the number of parameters actually passed. The prede�ned function
haveextension can be used to determine if an EXTENSIBLE parameter is present. See the
section \Prede�ned Routines" for more details.

Example

PROCEDURE proc(i,j : integer)

OPTION EXTENSIBLE 0;

BEGIN

...

END;

...

proc; { both parameters not supplied }

proc(1); { second parameter not supplied }

proc(1,2); { both parameters passed }

proc(); { illegal: implies a defaulted parameter }

proc(,2); { illegal: only trailing parameters can be omitted }

proc(1,); { illegal: implies a defaulted second parameter }

Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's
Guide, depending on your implementation, for more information on OPTION EXTENSIBLE.

11-40 System Programming Extensions

Additional Documentation

INLINE

The option INLINE speci�es that the code for a procedure or function be expanded in line
wherever it is invoked. This expansion removes most procedure call overhead and increases
the amount of object code generated. Value parameters work the same with INLINE, that
is, an assignment to a value parameter inside an inlined routine does not result in the
modi�cation of the actual parameter.

INLINE procedures and functions cannot invoke themselves or any other mutually recursive
inline procedures or functions. The body of a procedure or function must be supplied when
INLINE is used.

Syntax

Example

PROCEDURE proc(x,y : integer) OPTION INLINE;

...

BEGIN

...

END;

For more information about INLINE, refer to the HP Pascal/iX Programmer's Guide or the
HP Pascal/HP-UX Programmer's Guide, depending on your implementation.

System Programming Extensions 11-41

Additional Documentation

UNCHECKABLE ANYVAR

By default, every ANYVAR parameter is accompanied by a hidden size parameter that indicates
the size of the actual parameter. The purpose of this parameter is to allow the routine with
the formal ANYVAR parameter to verify that a reference to the formal parameter is within the
bounds of the actual parameter by prede�ned size functions such as sizeof.

Syntax

The option UNCHECKABLE_ANYVAR speci�es that the hidden size parameter is not passed by
the caller and is not expected by the callee. Its primary use is to interface with non-Pascal
procedures and functions that do not support the hidden size parameter.

A routine with the option UNCHECKABLE_ANYVAR must have at least one ANYVAR parameter in
its formal parameter list.

Calling the prede�ned size functions sizeof or bitsizeof for a formal ANYVAR parameter
with option UNCHECKABLE_ANYVAR, returns the size of the formal parameter as opposed to the
size of the actual parameter.

Example

PROCEDURE proc(ANYVAR arr : array_type)

OPTION UNCHECKABLE_ANYVAR;

BEGIN

END;

The routine above can be called from languages that do not support the hidden size
parameter because it has been declared with the option UNCHECKABLE_ANYVAR.

11-42 System Programming Extensions

Additional Documentation

UNRESOLVED

Procedure option UNRESOLVED denotes a procedure or function that is left unresolved by both
the linker and the loader. The resolution of the symbolic name to its reference part is delayed
until the procedure or function is used.

The suggested way to use this kind of procedure or function is to use the prede�ned function
addr to determine if it can be resolved. NIL is returned if it cannot. This procedure option
can be speci�ed only on level one procedures or functions.

Note On implementations that do not support dynamic loading, taking the address
of an unresolved routine always produces NIL, while calling an unresolved
routine is an error.

A procedure or function declared with option UNRESOLVED must not have a body, and must be
declared with the directive EXTERNAL.

Syntax

Example

PROCEDURE product_x

OPTION UNRESOLVED; external;

BEGIN

...

IF (addr(product_x) <> nil) THEN { }

...

END;

The code above performs a check at run time for the existence of a hypothetical product that
provides the entry point product_x. If the product does not exist at run time, and, therefore,
does not have any of its entry points installed, then the prede�ned function addr returns NIL.

System Programming Extensions 11-43

Additional Documentation

Predefined Routines

The system programming extensions de�ne the following additional prede�ned procedures and
functions.

Addressing and Pointers

Addr

The prede�ned function addr allows the user to create references to routines or data.

Usage

addr(variable)

addr(variable,o�set)

addr(routine-name)

Parameters

variable A variable or reference parameter, or a component of an unpacked structured
variable or reference parameter. You can take the address of a component of
a packed or crunched structure, if the component begins on a byte-aligned
boundary.

o�set A signed integer expression.

routine-name The name of a procedure or function.

Description

The prede�ned function addr returns a pointer value that is the address of the argument. The
type of the pointer returned by addr is assignment compatible with any pointer type. Addr
returns a short or long pointer depending on the context in which it is called, the context
being the type of the target variable of an assignment, the type of a formal parameter, or the
target type of a type coercion.

If the type coercion target type is not a pointer type, addr returns a globalanypointer.

If an integer argument is supplied, the pointer returned is o�set by the integer number of
bytes from the original variable whose address was taken.

It is illegal to take the address of a formal value or READONLY parameter.

It is illegal to take the address of a component of a PACKED or CRUNCHED structure, if the
component does not begin on a byte-aligned boundary.

If addr is called with the name of a procedure or function, the value returned is a reference
to that procedure or function. The function result type is assignment compatible with a
PROCEDURE or FUNCTION type whose parameter list is congruent with the parameter list of the
routine passed to addr.

If the name passed to addr cannot be resolved, the value NIL is returned.

11-44 System Programming Extensions

Additional Documentation

Example

$STANDARD_LEVEL 'HP_MODCAL', TYPE_COERCION 'CONVERSION'$

TYPE
p_to_p_type = ^ p_to_p_type;

VAR

p_to_p : p_to_p_type;

BEGIN

p_to_p := addr(p_to_p);

p_to_p := p_to_p_type(addr(p_to_p^, sizeof(p_to_p^)))^;

END

The �rst assignment points the pointer p_to_p to itself. The second assignment takes the
address of the data referenced by p_to_p (which is itself), o�set by the size of the data that
p_to_p points to, treats the value at that location as a pointer, and assigns the value pointed
to by that pointer back to p_to_p.

System Programming Extensions 11-45

Additional Documentation

Addtopointer

The prede�ned function addtopointer allows the user to perform address arithmetic with
pointers.

Usage

addtopointer(pointer, delta)

Parameters

pointer A pointer expression.

delta A signed integer expression whose range restriction is implementation
dependent.

Description

Addtopointer returns a pointer value that points delta bytes away from where the argument
pointer pointed. The type of the pointer returned by addtopointer is the same as the type of
the parameter pointer .

The results of an overow are implementation dependent.

Example

TYPE

intptr = ^integer;

VAR

ptr1: intptr;

ptr2: intptr;
i: integer;

BEGIN

ptr2 := addtopointer (ptr1, i);

ptr1 := addtopointer (ptr1, sizeof(integer));

END

11-46 System Programming Extensions

Additional Documentation

Buildpointer

The prede�ned function buildpointer allows the user to construct pointer values.

Usage

buildpointer(space,o�set)

Parameters

space A space identi�er whose range restriction and semantics are implementation
dependent.

o�set A bit32 expression whose range restriction is implementation dependent.

Description

buildpointer returns a pointer of type globalanyptr whose value is the address o�set bytes
into space.

Example

CONST

Global_Known_Space = 4916;

VAR

Ptr1 : GlobalAnyPtr;

Ptr2 : GlobalAnyPtr;

SID : Integer;

Off : Integer;

BEGIN
Ptr1 := BuildPointer (Global_Known_Space, 0);

off := 4;

Ptr2 := BuildPointer (SID, Off);

END.

In the above example, the constant Global_Known_Space represents the value of a known
space.

The �rst use of buildpointer creates a pointer to the location with an o�set of zero in the
space whose space id is Global_Known_Space.

The second use of buildpointer creates a pointer to the location four bytes from the
beginning of the space whose space has been assigned to the variable SID.

System Programming Extensions 11-47

Additional Documentation

Move Routines

The system programming extensions provide the prede�ned procedures move_l_to_r,
move_r_to_l, fast_fill, and move_fast for generalized and e�cient data copying.

Move L to R

The prede�ned procedure move_l_to_r provides a generalized array copying mechanism.

Usage

move_l_to_r(count,source,source index,target,target index)

Parameters

count A positive integer expression whose value is the number of elements to move.

source The source array from where elements will be moved.

source index An integer expression whose value is the index into the source array of the
leftmost element to be moved. The value must be greater than or equal to the
index of the �rst element in the source array, and less than or equal to the
index of the last element in the source array minus the move count.

target The target array to where elements are moved.

target index An integer expression whose value is the index into the target array to where
the move begins. The value must be greater than or equal to the index of the
�rst element in the target array, and less than or equal to the index of the last
element in the target array minus the move count.

Description

The syntax of the procedure is identical to the syntax of the prede�ned procedure strmove.

move_l_to_r moves elements from left to right. In a left to right move, the �rst element to
be moved is the left-most (lowest indexed) element, and the last element to be moved is the
right-most (highest indexed) element.

Even if the elements of the array to be moved are arrays themselves, the array will be moved
as a single item.

11-48 System Programming Extensions

Additional Documentation

The following diagram shows the order of copying elements for move_l_to_r.

Figure 11-6. Copying Order for move l to r

Example

TYPE

Index_Type_1 = 0..20;

Index_Type_2 = -3..17;

Array_Type_1 = PACKED ARRAY [Index_Type_1] of SHORTINT;

Array_Type_2 = ARRAY [Index_Type_2] of SHORTINT;

VAR

Array_1 = Array_Type_1;

Array_2 = Array_Type_2;
Index = Integer;

BEGIN

Move_L_to_R (5, Array_1, 3, Array_2, -3)

{ is equivalent to: }

FOR Index := 0 TO 4 DO

Array_2[Index-3] := Array_1[3+Index]

{ is equivalent to: }

Array_2[-3] := Array_1[3]

Array_2[-2] := Array_1[4]

Array_2[-1] := Array_1[5]

Array_2[0] := Array_1[6]

Array_2[1] := Array_1[7]

System Programming Extensions 11-49

Additional Documentation

Move R to L

The prede�ned procedure move_r_to_l provides a generalized array copying mechanism.

Usage

move_r_to_l(count,source,source index,target,target index)

Parameters

count A positive integer expression whose value is the number of elements to move.

source The source array from where elements will be moved.

source index An integer expression whose value is the index into the source array from
where the move will begin. The value must be greater than or equal to the
index of the �rst element in the source array, and less than or equal to the
index of the last element in the source array minus the move count.

target The target array to where elements will be moved.

target index An integer expression whose value is the index into the target array to where
the move will begin. The value must be greater than or equal to the index of
the �rst element in the target array, and less than or equal to the index of the
last element in the target array minus the move count.

Description

The syntax of the procedure is identical to the syntax of the prede�ned procedure strmove.

move_r_to_l moves the elements from right to left. In a right to left move, the �rst element
to be moved is the right-most (highest indexed) element, and the last element to be moved is
the left-most (lowest indexed) element.

Even if the elements of the array to be moved are arrays themselves, the array will be moved
as a single item.

The following diagram shows the order of copying for move_r_to_l.

Figure 11-7. Copying Order for move r to l

11-50 System Programming Extensions

Additional Documentation

Fast Fill

The prede�ned procedure fast_fill provides a generalized method of initializing an array to
a single 8 bit constant.

Usage

fast_fill (ptr,�ll char,count);

Parameters

ptr A pointer expression.

�ll char A constant expression.

count A positive integer expression that contains the number of bytes to �ll with
�ll char .

Description

fast_fill provides a fast alternative to for loops or assignment statements for initializing
each element of a structure or an array to the same 8 bit value.

fill_char and ptr should of compatible types. fill_char must also satisfy the following
requirement:

0 <= ord(fill_char) <=255

Example

$standard_level 'ext_modcal'$
program fill;

var p100 : packed array [1..100] of char;

var i1000 : packed array [1..1000] of integer;

type heap_p = array [0..9] of integer;

var p : ^heap_p;

begin

fast_fill(addr(p100),' ',sizeof(p100)); {fill a string array}

{with spaces.}

fast_fill(addr(i1000),0,sizeof(i1000)); {fill an integer array}

{with 0s. }

new(p);

fast_fill(p,hex('ff'),sizeof(p^)); {fill an array in the }

{heap to -1 (all bits on).}

end.

System Programming Extensions 11-51

Additional Documentation

Move Fast

The prede�ned procedure move_fast provides another generalized array copying mechanism.

Usage

move_fast(count,source,source index,target,target index)

Parameters

count A positive integer expression whose value is the number of elements to move.

source The source array from where elements will be moved.

source index An integer expression whose value is the index into the source array of the
leftmost element to be moved. The value must be greater than or equal to the
index of the �rst element in the source array, and less than or equal to the
index of the last element in the source array minus the move count.

target The target array to where elements will be moved.

target index An integer expression whose value is the index into the target array to where
the move begins. The value must be greater than or equal to the index of the
�rst element in the target array, and less than or equal to the index of the last
element in the target array minus the move count.

Description

The syntax of the procedure is also identical to the syntax of the prede�ned procedure,
strmove.

Move_fast provides an alternative to move_l_to_r or move_r_to_l for generating simpler and
faster code when certain restrictions are met by the parameters.

These restrictions are:

The source and target arrays must not overlap.

The source and the target must have elements with the same sizes. The size of each element
must be greater than or equal to one byte.

If the source or the target array is packed, then the packing should be such that the wasted
space per word; for example, space left between elements, should be the same for both
arrays.

Both the source and the target arrays must be aligned on byte boundaries. Therefore, one
of the following must be true:

All elements of the source and the target arrays must each be aligned on byte boundaries.

The leftmost source and target element must be aligned on byte boundaries, and the total
size of the elements to be moved must be an integral multiple of one byte.

11-52 System Programming Extensions

Additional Documentation

Example

f This example assumes certain packing which may not apply to your implementation. g

TYPE

IxType1 = 0..20;

IxType2 = -3..17;

Array1 = PACKED ARRAY [IxType1] of SHORTINT;

Array2 = ARRAY [IxType2] of SHORTINT;

Array3 = PACKED ARRAY [1..20] of -256..255;

Array4 = CRUNCHED ARRAY [1..20] of -256..255;

VAR

Avar1 : Array1;

Avar2 : Array2;

Avar3 : Array3;

Avar4 : Array4;

Ix : Integer;

BEGIN

Move_Fast (5, AVar2, -3, AVar1, 3); { legal }

FOR Ix := 0 TO 4 DO { equivalent FOR loop }

AVar1[Ix+3] := AVar2[Ix-3];

Move_Fast (5, AVar3, 2, AVar4, 9);

{ illegal, because }

{ - AVar4 does not have byte-aligned elements }

{ - AVar4[9] starts on the 27th bit of a word }

{ (also not byte-aligned) }

{ besides, the number of bits to be moved is not a }

{ multiple of eight, anyway }

Move_Fast (8, AVar4, 1, AVar4, 9)

{ legal, because }

{ - even though the individual elements of AVar4 are }

{ not byte-aligned, }

{ - AVar4[1] and AVar4[9] are each byte-aligned, and }

{ - The total size of the elements to be moved is an }

{ integral multiple of eight. }

END;

System Programming Extensions 11-53

Additional Documentation

Error Handling Routines

Escape

Usage

escape(escape value)

Parameters

escape value An integer expression whose value will be available through the prede�ned
function escapecode.

Description

Calling this prede�ned procedure indicates that a software error has been detected.
Execution passes to the statement following the reserved word RECOVER of the �rst enclosing
TRY-RECOVER statement.

The parameter is evaluated before control is passed and, its value is available to the
escapecode function.

If escape is called with no surrounding TRY-RECOVER the program aborts.

Example

PROCEDURE proc;

...

BEGIN

...

IF ({something has gone wrong}) THEN

ESCAPE(0);

...

END;

...

BEGIN

TRY

...

proc;

...

RECOVER

WRITELN('fatal error. program terminates');

END.

11-54 System Programming Extensions

Additional Documentation

Escapecode

The prede�ned function escapecode returns the last execution error number.

Usage

escapecode

The function returns the value passed to the last implicit or explicit call to the prede�ned
procedure escape.

An explicit call to escape is a call that was made by the user. In this case escapecode
returns the value of the escape code passed by the user.

An implicit call to escape is a call that was made by a subsystem on the user's behalf or
by the run-time library. In this case, escapecode returns a prede�ned value based on the
type of error detected. See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide, depending on your implementation, for more details about the escape
code values.

If escape has never been called (implicitly or explicitly), the value returned by escapecode

is unde�ned. If escapecode is called outside of the recover part of a TRY-RECOVER statement,
the value returned is unde�ned.

Example

TRY

...

{ perform normal processing }

RECOVER

CASE escapecode OF

...

{ fix-up after an error that can be handled }

OTHERWISE

{ send errors that cannot be handled }

escape(escapecode);

END;

The example above shows a possible control structure for trapping software errors. Within
the recover section of the TRY-RECOVER statement, escapecode is used to recover information
about the nature of the error that caused the trap to the recover section. Note the use of
escapecode to pass certain errors on to a next enclosing TRY statement with an explicit call to
escape.

System Programming Extensions 11-55

Additional Documentation

Parameter Mechanisms

Haveextension

The prede�ned Boolean function haveextension determines if an extension parameter is
accessible.

Usage

haveextension(parameter name)

Parameters

parameter name The name of a formal parameter in the current scope or a containing
scope that is EXTENSIBLE.

In a routine with extension parameters it may be necessary to check a formal parameter to
ensure that an actual parameter was supplied, as a result of a parameter being passed by
the user or being defaulted. The prede�ned function haveextension indicates, for a formal
extension parameter name, whether that parameter exists and can be accessed.

Example

PROCEDURE proc_with_opt_parms(parm1 : type1;

VAR parm2 : type2;

parm3 : type3;

VAR parm4 : type4)

OPTION EXTENSIBLE 2;

BEGIN

...

IF (haveextension(parm4)) THEN

{ implies that parm4 and parm3 have values }

...

IF (haveextension(parm3)) THEN

{ implies that parm3 has values }

...

...

END;

proc_with_opt_parms(var1, var2);

...

proc_with_opt_parms(var1, var2, var3);

In the previous example, haveextension is used to determine whether either or both of the
EXTENSIBLE parameters are passed in the call to the procedure. Note that if parm4 is
present, then by de�nition parm3 must also be present. See the description of routine OPTION
EXTENSIBLE for more information.

11-56 System Programming Extensions

Additional Documentation

In the �rst call to proc_with_opt_parms, both calls to haveextension return false because
none of the extension parameters are passed. In the second call, haveextension returns true
for the third parameter only.

PROCEDURE proc_with_opt_parms(parm1 : type1;

VAR parm2 : type2;

parm3 : type3;

VAR parm4 : type4)

OPTION EXTENSIBLE 2

DEFAULT_PARMS (parm3 := 0,

parm4 := nil);

BEGIN

...

IF (haveextension(parm3)) THEN

...

IF (haveextension(parm4)) THEN

...

...

END;

In the above example, haveextension(parm4) returns true only if the fourth parameter was
actually supplied by the user. If it was not supplied, then the default value is ignored, and the
parameter is not passed.

Haveextension(parm3) is true if either of the following conditions are true:

The third or fourth parameters are supplied by the user.

The fourth parameter is supplied and the third is defaulted. Because the fourth parameter
is EXTENSIBLE, and, therefore, by de�nition all parameters to its left must be passed, the
default value for the third parameter is passed even though it was not supplied by the user.

System Programming Extensions 11-57

Additional Documentation

Haveoptvarparm

The prede�ned Boolean function haveoptvarparm determines if a default reference parameter
is accessible.

Usage

haveoptvarparm(parameter name)

Parameters

parameter name The name of a default formal parameter of this or a containing scope.

In a routine with default reference parameters, it may be necessary to check a formal
parameter to ensure that its actual parameter was supplied by the user. The prede�ned
function haveoptvarparm indicates for a formal reference parameter name whether the
corresponding actual parameter was supplied by the user.

The argument to haveoptvarparm must be the name of a formal parameter that:

Is a VAR, ANYVAR, or PROCEDURE/FUNCTION parameter.

Speci�es a default value of NIL. See the routine OPTION DEFAULT_PARMS.

Example

PROCEDURE proc_with_opt_parms(VAR parm1 : type1;

VAR parm2 : type2;

VAR parm3 : type3)

OPTION DEFAULT_PARMS(parm2 := nil,
parm3 := nil);

BEGIN

...

IF (haveoptvarparm(parm2)) THEN { ok to use parm2 }

...

IF (haveoptvarparm(parm3)) THEN { ok to use parm3 }

...

END;

The procedure proc_with_opt_parms in the previous example has three VAR parameters, two
of which are optional. Before using one of the two parameters within proc_with_opt_parms,
a check is made to ensure that the parameters were supplied by the user. This check is
accomplished by calling haveoptvarparm with the name of the parameter in question as its
argument.

11-58 System Programming Extensions

Additional Documentation

Routine Mechanisms

Call

The prede�ned procedure call invokes a procedure.

Usage

call(procedure expression)

call(procedure expression,parameter ...)

Parameters

procedure expression An expression whose value is a reference to a procedure whose
formal parameter list is congruent with the parameters speci�ed in
the call.

parameter An actual parameter that is compatible with the
corresponding formal parameter of the PROCEDURE type of
procedure_expression, that is passed to the invoked procedure.

Description

The prede�ned procedure call causes the indicated procedure to be called with the indicated
parameters.

If, during the execution of the procedure, call accesses any non-local variables, the variables
accessed are the variables that were accessible at the time the reference to the procedure was
made, when it was passed as an argument to the prede�ned function, addr. It is an error if
the procedure expression has the value NIL or is unde�ned. It may not be possible to detect
an unde�ned procedure reference.

Example

TYPE

procedure_type = PROCEDURE(i : integer);

VAR

int : integer;

proc_var : procedure_type;

PROCEDURE proc(int : integer);

BEGIN

...

END;

BEGIN

proc(int);

proc_var := addr(proc);
call(proc_var, int);

END;

In the above example, the two calls to the routine proc are e�ectively identical.

System Programming Extensions 11-59

Additional Documentation

Fcall

The prede�ned function fcall invokes a function.

Usage

fcall(function expression)

fcall(function expression, parameter ...)

Parameters

function expression An expression whose value is a reference to a function whose
formal parameter list is congruent with the parameters speci�ed in
the call.

parameter An actual parameter that is compatible with the corresponding
formal parameter of the FUNCTION type of function expression ,
that is passed to the invoked function.

The prede�ned function fcall causes the function referenced by the �rst FUNCTION variable
parameter to be invoked with the supplied parameters.

The type returned by fcall is the same as the type returned by the FUNCTION expression.

See the description of call for more information.

11-60 System Programming Extensions

Additional Documentation

Size Functions

Bitsizeof

The prede�ned function bitsizeof returns an integer representing the size of its argument in
bits.

Usage

bitsizeof(variable)

bitsizeof(record variable,tag value ...)

bitsizeof(type name)

bitsizeof(record type name,tag value ...)

bitsizeof(struc constant)

bitsizeof(string literal)

Parameters

variable The name of a variable.

record variable The name of a record variable with variants.

tag value The name of a case constant in the variant part of a record
declaration. Case constants for nested variants may appear separated
by commas.

type name The name of a type.

record type name The name of a record type with variants.

struc constant The name of an array, record, set, or string constructor.

string literal A string literal.

The bitsizeof function returns the number of bits needed to represent the data value part of
a data item of the given type, or the actual allocated size of a variable. If the �rst parameter
is a record type or variable with variants, a variant may be selected by specifying a case
constant with the subsequent parameters. Otherwise, the size with the largest variant is used.

bitsizeof(type) returns the minimum number of bits of storage for the type, and
bitsizeof(variable) returns the number of bits of storage for the variable.

For an ANYVAR parameter, two cases exist: If an additional hidden size parameter is passed
along with the ANYVAR parameter, bitsizeof gives the number of bits in the number of bytes
allocated to represent the actual parameter. If the hidden length parameter is not passed,
bitsizeof gives the number of bits required to represent the formal parameter as a given
type.

System Programming Extensions 11-61

Additional Documentation

Example

TYPE

int_type = integer;
rec_type = RECORD

int : integer;

CASE flag: Boolean OF

true: (r : real);

false:(lr : longreal);

end;

VAR

int : int_type;

rec : rec_type;

size : integer;

BEGIN

...

size := bitsizeof(int);

size := bitsizeof(int_type);

size := bitsizeof(rec, true);

...

END;

Note bitsizeof is allowed in CONST declarations except for ANYVAR, VAR string, and
conformant array parameters.

11-62 System Programming Extensions

Additional Documentation

Sizeof

The prede�ned function sizeof returns an integer representing the size of its argument in
bytes.

Usage

sizeof(variable)

sizeof(record variable,tag value ...)

sizeof(type name)

sizeof(record type name,tag value ...)

sizeof(struct constant)

sizeof(string literal)

Parameters

variable The name of a variable.

record variable The name of a record variable with variants.

tag value The name of a case constant in the variant part of a record
declaration. Case constants for nested variants may appear separated
by commas.

type name The name of a type.

record type name The name of a record type with variants.

struct constant The name of an array, record, set, or string constructor.

string literal A string literal.

The prede�ned function sizeof returns the number of bytes of storage required to represent
the data value part of a data item of the given type, or the actual allocated size of a variable.
If the �rst parameter is a record type or variable with variants, a variant may be selected
by specifying a case constant with the subsequent parameters. sizeof(type) returns the
minimum number of bytes for the type. sizeof(variable) returns the number of bytes of
storage for the variable. Otherwise, the size of the largest variant is returned.

For a variable of a simple data type, the number returned by sizeof is equivalent to the
storage required for the variable in the unpacked context. For example, if the variable is type
char or Boolean, sizeof returns 1.

For an ANYVAR parameter, two cases exist: If an additional hidden size parameter is passed
along with the ANYVAR parameter, sizeof gives the actual number of bytes allocated to
represent the actual parameter. If the hidden length parameter is not passed, sizeof gives
the number of bytes required to represent the formal parameter.

For conformant array parameters, the function sizeof is the actual size of the parameter.

System Programming Extensions 11-63

Additional Documentation

Example

TYPE

byte = 0..255;
big_record = RECORD CASE Boolean OF

true: (arr : array [1..200] of byte):

false: (f1 : integer;

...

f99 : char);

BEGIN

...

IF (sizeof(big_record,true) <> sizeof(big_record,false)) THEN

BEGIN

writeln ('variant size mismatch by',

abs(sizeof(big_record,true)-sizeof(big_record,false)):1,

'bytes');

HALT (1);

END;

...

END.

Note sizeof is allowed in CONST sections except for ANYVAR, VAR s, and conformant
array parameters.

11-64 System Programming Extensions

12

Compiler Options

Introduction

This chapter explains every HP Pascal compiler option. Compiler options fall into two
categories: system-independent and system-dependent. System-independent options work the
same way whether HP Pascal is running on the MPE/iX operating system or the HP-UX
operating system. System-dependent options either work on only one operating system, or
they work di�erently on HP-UX and MPE/iX. The following table categorizes the compiler
options.

System-Independent Options System-Dependent Options

ALIAS

ALIGNMENT

ANSI

ARG_RELOCATION

ASSERT_HALT

ASSUME

BUILDINT

CHECK_ACTUAL_PARM

CHECK_FORMAL_PARM

CODE

CODE_OFFSETS

COPYRIGHT

COPYRIGHT_DATE

ELSE

ENDIF

EXTERNAL

EXTNADDR

GLOBAL

HEAP_COMPACT

HEAP_DISPOSE

IF

INLINE

INTR_NAME

KEEPASMB

LINES

LIST

LIST_CODE

LISTINTR

LITERAL_ALIAS

LOCALITY

LONG_CALLS

MAPINFO

MLIBRARY

NOTES

OPTIMIZE

OS

OVFLCHECK

PAGE

PAGEWIDTH

PARTIAL_EVAL

POP

PUSH

RANGE

S300_EXTNAMES

SEARCH

SET

SKIP_TEXT

SPLINTR

STANDARD_LEVEL

STATEMENT_NUMBER

STDPASCAL_WARN

STRINGTEMPLIMIT

SUBPROGRAM

SYSINTR

SYSPROG

TABLES

TITLE

TYPE_COERCION

UPPERCASE

VERSION

VOLATILE

WARN

WIDTH

XREF

CONVERT_MPE_NAMES

CALL_PRIVILEGE

EXEC_PRIVILEGE

FONT

GPROF

HP3000_16

HP3000_32

HP_DESTINATION

INCLUDE

INCLUDE_SEARCH

NLS_SOURCE

RLFILE

RLINIT

SHLIB_CODE

SHLIB_VERSION

SYMDEBUG

Compiler Options 12-1

Additional Documentation

Each compiler option entry in this chapter gives the option's default value (if any) and
location. Table 12-1 de�nes the terms that describe option location (in terms of both option
location and scope).

Table 12-1. Compiler Option Locations and Scopes

Location Term Option Location Option Scope

Anywhere. Anywhere in the program. Depends upon the option.

At front. Before PROGRAM or MODULE
in the source �le.

Applies to the entire source �le.

Not in body. Not between BEGIN and END.
(preferably immediately before
BEGIN or the procedure heading).

Applies to the routine that
contains it.

Statement. Anywhere in the program. Applies to the statements
following it.

Heading. In a routine heading, after
PROCEDURE or FUNCTION,
but before the body or directive.

Applies to the routine that
contains it.

A compiler option list begins with a dollar sign ($), contains one or more compiler options,
and ends with a dollar sign. It must �t on a single line.

Syntax

$ option

��
,

;

�
option

�
. . . $

Parameter

option Any compiler option described in this chapter; however, options with
incompatible locations cannot appear in the same list.

Example

$LIST OFF$

$ANSI OFF, LIST ON$

$PARTIAL_EVAL ON, ASSUME 'PASCAL_FEATURES', LINES 50$

Note Unrecognized compiler options do not cause compilation errors.

12-2 Compiler Options

Additional Documentation

System-Independent Options

System-independent options work the same way whether HP Pascal is running on the
MPE/iX operating system or the HP-UX operating system. These options fall into the
following three categories:

Category Associated With

HP Standard options HP Standard Pascal
HP Pascal options HP Pascal
System programming options System programming extensions

Figure 12-1 shows the relationship between ANSI Standard Pascal and HP Pascal (with and
without system programming extensions).

Figure 12-1. Relationship Between HP Pascal and ANSI Standard Pascal

Compiler Options 12-3

Additional Documentation

The following table categorizes the system-independent compiler options.

HP Pascal Options

ALIAS

ALIGNMENT

ARG_RELOCATION

ASSERT_HALT

ASSUME

BUILDINT

CHECK_ACTUAL_PARM

CHECK_FORMAL_PARM

CODE

CODE_OFFSETS

COPYRIGHT

COPYRIGHT_DATE

ELSE

ENDIF

EXTERNAL

EXTNADDR

GLOBAL

HEAP_COMPACT

HEAP_DISPOSE

IF

INLINE

INTR_NAME

KEEPASMB

LIST_CODE

LISTINTR

LITERAL_ALIAS

LOCALITY

LONG_CALLS

MAPINFO

MLIBRARY

NOTES

OPTIMIZE

OS

OVFLCHECK

PAGEWIDTH

POP

PUSH

S300_EXTNAMES

SEARCH

SET

SKIP_TEXT

SPLINTR

STATEMENT_NUMBER

STDPASCAL_WARN

STRINGTEMPLIMIT

SUBPROGRAM

SYSINTR

SYSPROG

TABLES

TITLE

TYPE_COERCION

UPPERCASE

VERSION

VOLATILE

WARN

WIDTH

XREF

HP Standard Options

ANSI

LINES

LIST

PAGE

PARTIAL_EVAL

RANGE

STANDARD_LEVEL

System Programming Options

EXTNADDR

TYPE_COERCION

Note File name parameters have di�erent syntax on the HP-UX and MPE/iX
operating systems. See the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide.

12-4 Compiler Options

Additional Documentation

HP Standard Options

HP Standard compiler options are available on all versions of Pascal that run on HP
computers. They are part of the HP Standard. An HP Pascal program containing only HP
Standard options can be compiled by any Pascal compiler that runs on an HP computer.

HP Pascal Options

HP Pascal compiler options are not required by the HP Standard, but are available in HP
Pascal. An HP Pascal program containing HP Pascal options must be compiled by the HP
Pascal compiler.

System Programming Options

System programming compiler options are only available if the compiler speci�es
$STANDARD_LEVEL 'EXT_MODCAL'$ or $STANDARD_LEVEL 'HP_MODCAL'$ (see
\STANDARD_LEVEL" compiler option for more information).

Compiler Options 12-5

Additional Documentation

System-Dependent Options

System-dependent options either work on only one operating system, or they work di�erently
on HP-UX and MPE/iX. Figure 12-2 diagrams the three categories of system-dependent
options.

Figure 12-2. Categories of System-Dependent Compiler Options

The system-dependent options are:

MPE/iX Only MPE/iX and HP-UX HP-UX Only

CALL_PRIVILEGE

EXEC_PRIVILEGE

FONT

HP3000_16

HP3000_32

RLFILE

RLINIT

INCLUDE

INCLUDE_SEARCH

NLS_SOURCE

SYMDEBUG

CONVERT_MPE_NAMES

GPROF

HP_DESTINATION 'ARCHITECTURE

HP_DESTINATION 'SCHEDULER

SHLIB_CODE

SHLIB_VERSION

MPE/iX Options

MPE/iX compiler options are available only in HP Pascal running on the MPE/iX operating
system. See the $OS compiler option later in this chapter.

HP-UX Options

HP-UX compiler options are available only in HP Pascal running on the HP-UX operating
system. See the $OS compiler option later in this chapter.

Options That Work Differently on HP-UX and MPE/iX

The compiler options that this section explains are available in HP Pascal running on either
the MPE/iX or HP-UX operating system; however, the options work di�erently on the two
systems. A program that contains these options can be compiled by a program that speci�es
either $OS 'MPEXL'$ or $OS 'HPUX'$.

12-6 Compiler Options

Additional Documentation

System-wide File

The compiler looks for a system-wide �le called PASCNTL.PUB.SYS on MPE/iX or
/usr/lib/pasopts on HP-UX. If the �le exists and is not empty, the compiler opens and
reads the �le. The �le should contain only compiler options and comments. If there is
anything else in the �le, the compiler emits an error message.

On MPE/iX the message is:

ONLY COMMENTS AND COMPILER OPTIONS ARE ALLOWED IN `PASCNTL.PUB.SYS' (045)

On HP-UX the message is:

ONLY COMMENTS AND COMPILER OPTIONS ARE ALLOWED IN /usr/lib/pasopts (045)

The �le is shipped empty and does not need to contain anything. If the �le is empty, the
compiler does not attempt to open it.

However, if compiler options have been added to the �le, the compiler processes these options
before anything else, even the info string. Therefore, you can override the options in the �le
because later options take precedence over earlier options.

Compiler Option Description

This section contains the descriptions of each of the HP PASCAL compiler options. Each
description contains the syntax, location, and default value of the option. They are arranged
alphabetically.

Compiler Options 12-7

ALIAS

ALIAS is an HP Pascal Option.

The ALIAS compiler option speci�es an external name for a procedure, function, or global
variable.

Syntax

$ALIAS 'string'$

Parameter

string The external name. The compiler does not distinguish between uppercase
and lowercase letters. By default, the external name is downshifted. The
LITERAL ALIAS compiler option allows the external name to remain as it is.
The UPPERCASE compiler option upshifts the external name.

Default The internal name, downshifted (or upshifted if UPPERCASE is ON).

Location Routine: Heading.

Global variable: Immediately after the variable name in the variable
declaration.

When a routine has both internal and external names, the program recognizes its internal
name and the operating system recognizes its external name.

Note For global variables, the HP Pascal options EXTERNAL or GLOBAL must be
included or the ALIAS option is ignored.

Also, routines must be level 1 or the ALIAS option is ignored.

The reasons to use the ALIAS option are:

To de�ne multiple internal names for a single external procedure.

To access a library or system routine that has an illegal (external) name, by giving it a legal
internal name.

Example 1

$GLOBAL$

PROGRAM p (input,output);

VAR

global_var $ALIAS 'gvar'$: integer; {global variable}

PROCEDURE $ALIAS 'write'$ Writefile; EXTERNAL; {procedure}

FUNCTION $ALIAS 'read'$ Readfile : char; EXTERNAL; {function}

BEGIN

.

.

.

END.

12-8 Compiler Options

ALIAS

Example 2

PROGRAM show_alias;

.

.

PROCEDURE $ALIAS 'intrinname'$ A; INTRINSIC; {One intrinsic }

PROCEDURE $ALIAS 'intrinname'$ B; INTRINSIC; {has two internal}

{names, A and B }

.

.

PROCEDURE $ALIAS 'x''x'$ xx; INTRINSIC; {The intrinsic name}

{x'x is illegal in Pascal}

.

.

PROCEDURE proc1;

FUNCTION $ALIAS 'D1'$ do_it (n : INTEGER): BOOLEAN;

BEGIN {do_it}

.

.

END; {do_it}

BEGIN {proc1}

.

.

END; {proc1}

PROCEDURE proc2;

FUNCTION $ALIAS 'D2'$ do_it (a,b : INTEGER): INTEGER;

BEGIN {do_it}

.

.

END; {do_it}

BEGIN {proc2}
.

.

END; {proc2}

BEGIN {show_alias}

.

.

END. {show_alias}

Compiler Options 12-9

ALIAS

Example 3

PROGRAM show_alias;

FUNCTION $ALIAS 'f'$ f1 (p1 : integer); EXTERNAL;

FUNCTION $ALIAS 'f'$ f2 (p1,p2 : integer); EXTERNAL;

BEGIN

.

.

.

END.

Notice that the function f1 declares one parameter of the function f, while the function f2

declares two.

12-10 Compiler Options

ALIGNMENT

ALIGNMENT

ALIGNMENT is an HP Pascal Option.

The ALIGNMENT compiler option speci�es the alignment requirements for a type (for the
de�nition of alignment see Chapter 5). It cannot be used with string or �le types. The
alignment of a record or array must be at least as large as its largest �eld or element.

ALIGNMENT does not support alignments greater than 8 bytes for variables. Only �elds are
aligned greater than 8 bytes. However, you can align a record or array with more than 8 bytes
through a call to P GETHEAP with the appropriate alignment parameter.

Syntax

$ALIGNMENT integer$

Parameter

integer In the range 1..2048. The following values for integer specify the alignments
indicated. Other values are illegal.

Default Depends upon packing algorithm.

Location After the symbol = in a type de�nition.

Example

TYPE

Rec = $ALIGNMENT 16$

RECORD

F1 : Integer;

F2 : ShortInt;

F3 : Real;

END;

Integer_ = $ALIGNMENT 2$ Integer;

Ptr = ^Integer_;

Compiler Options 12-11

ANSI

ANSI is an HP Standard Option.

When the ANSI compiler option is ON, the compiler issues an error whenever it encounters a
feature in the source code that is illegal in ANSI Standard Pascal. The compiler compiles the
illegal feature if possible; otherwise it is a syntax error. The error appears in the listing.

The command line option -A also speci�es this option.

Syntax

$ANSI

�
ON

OFF

�
$

Default OFF

Location Anywhere.

The options $ANSI ON$ and $STANDARD_LEVEL 'ANSI'$ are equivalent.

Example

PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

0 1.000 0 $ANSI ON, OS 'MPEXL'$

0 2.000 0 PROGRAM t;

0 3.000 0

0 4.000 0 BEGIN

0 5.000 0 assert(false,0);

0 6.000 0 ^

**** ERROR # 1 THIS FEATURE REQUIRES $STANDARD_LEVEL "HP_PASCAL" (539)

1 7.000 0 END.

12-12 Compiler Options

ARG RELOCATION

ARG RELOCATION

ARG RELOCATION is an HP Pascal Option.

The ARG RELOCATION option can be used to suppress parameter relocation information
for all procedure or function de�nitions and calls. This option is only useful for REAL and
LONGREAL data types.

Syntax

$ARG_RELOCATION

�
ON

OFF

�
$

Parameters

ON Relocation information is generated for parameters and function returns.
For dynamic calls (FCALL, CALL and calls to procedural and functional
parameters), REAL and LONGREAL parameters and function results are put
into or assumed to be in general registers.

OFF Relocation information is suppressed. Additionally, for dynamic calls, REAL
and LONGREAL parameters and function returns are put into or assumed to
be in oating point registers.

Default ON

Location At front.

Parameter relocation information is used by the linker to make sure the arguments and the
function return are in the correct register type. (General versus oating point.)

ARG_RELOCATION OFF might be useful for performance if the called procedure is in a shared
library (HP-UX) or executable library (MPE/iX), or if dynamic calls are used with REAL or
LONGREAL parameters or function returns.

When ARG_RELOCATION ON is used, linker-supplied stubs copy oating point registers to
general registers and then back again in the library. The same thing is done for the function
return.

When ARG_RELOCATION OFF is used, the linker assumes that everything is in the correct
register and generates no extra stubs. For a dynamic call, the compiler puts oating point
parameters in oating point registers.

See Procedure Calling Conventions Reference Manual for more details on parameter relocation
stubs.

Compiler Options 12-13

ARG RELOCATION

Example

$ARG_RELOCATION OFF$

program args;
procedure p_r(x : real); external;

begin

p_r(1.5);

end.

Caution If the ARG RELOCATION is used improperly, unexpected results may occur.
Refer to the Procedure Calling Conventions Reference Manual for detailed
information on how to use this option.

12-14 Compiler Options

ASSERT HALT

ASSERT HALT

ASSERT HALT is an HP Pascal Option.

The ASSERT HALT compiler option works with the prede�ned function assert . IF an assert
fails (that is, if its Boolean expression is false), and ASSERT HALT is ON, the program
terminates. If ASSERT HALT is OFF, the program continues to execute. See the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide.

Syntax

$ASSERT_HALT

�
ON

OFF

�
$

Default OFF

Location Anywhere.

Example

This program stops if i is greater than 10.

$ASSERT_HALT ON$

$OS 'MPE/iX'$

PROGRAM show_asserthalt (input,output);

VAR

i: integer;

BEGIN

write('Please enter an integer: ');

prompt;

read(i);

assert(i<10,99);

writeln('Good show! You didn''t abort the program.');

END.

Compiler Options 12-15

ASSUME

ASSUME is an HP Pascal Option.

The ASSUME compiler option speci�es optimizer assumptions beyond those implied by the
STANDARD LEVEL compiler option. It determines what the optimizer does, but it does not
determine what the compiler accepts. If your program violates its optimizer assumptions, you
can compile it with or without optimization; however, the optimized version may fail.

Syntax

$ASSUME '

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

NOTHING

PASCAL_FEATURES

PASCAL_POINTERS

NO_PARM_ADDRESSED

PARM_TYPES_MATCH

NO_PARMS_OVERLAP

LOCAL_GOTOS_ONLY

LOCAL_ACCESSES_ONLY

NO_SIDE_EFFECTS

NO_HEAP_CHANGES

NORMAL_RETURN

LOCAL_ESCAPES_ONLY

FLOAT_TRAPS_ON

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

'$

Parameters

NOTHING The optimizer assumes nothing, overriding any previous
assumptions.

PASCAL_FEATURES The optimizer assumes that routines are de�ned and
called with Pascal features only. PASCAL_FEATURES implies
PASCAL_POINTERS, PARM_TYPES_MATCH, NO_PARM_ADDRESSED,
and LOCAL_ESCAPES_ONLY.

PASCAL_POINTERS The optimizer assumes that no operation except the function
new creates a pointer, and no operation except an assignment
statement modi�es its value. This precludes the functions
addr , addtopointer , and buildpointer , type coercing to a
pointer type, and reference parameters and function return
values that violate the assumption. PASCAL_POINTERS implies
NO_PARM_ADDRESSED.

NO_PARM_ADDRESSED The optimizer assumes that no reference parameter is passed
to the function addr .

PARM_TYPES_MATCH The optimizer assumes that every formal reference parameter
and its corresponding actual parameter are of the same type;
that is, no actual parameter is type-coerced (except in the case
of ANYVAR parameters).

12-16 Compiler Options

ASSUME

NO_PARMS_OVERLAP The optimizer assumes that the actual parameters passed to
the formal reference parameters do not overlap; that is, two
formal parameters do not get the same actual parameter or
the same �eld of a record. (This is always true if the scope
de�nes only one reference parameter.) NO_PARMS_OVERLAP has
no e�ect without LOCAL_ACCESSES_ONLY.

LOCAL_GOTOS_ONLY The optimizer assumes that no routine jumps to a label in a
surrounding scope.

LOCAL_ACCESSES_ONLY The optimizer assumes that only parameters and local
variables are accessed or modi�ed (directly or indirectly).
Input, output, and global and nonlocal variables are not
accessed or modi�ed. LOCAL_ACCESSES_ONLY implies
NO_SIDE_EFFECTS.

NO_SIDE_EFFECTS The optimizer assumes that only parameters and local
variables are modi�ed (directly or indirectly). Input, output,
and global and nonlocal variables are not modi�ed (but they
can be accessed). NO_SIDE_EFFECTS implies NO_HEAP_CHANGES.

NO_HEAP_CHANGES The optimizer assumes that no item currently on the heap is
modi�ed (but it can be accessed).

NORMAL_RETURN The optimizer assumes that routines are exited only in the
normal way. NORMAL_RETURN implies LOCAL_GOTOS_ONLY and
LOCAL_ESCAPES_ONLY.

LOCAL_ESCAPES_ONLY The optimizer assumes that no routine escapes to a calling
routine; that is, all calls to the prede�ned procedure escape are
within TRY-RECOVER constructs.

FLOAT_TRAPS_ON The optimizer assumes that the IEEE oating point traps are
on and does not move loop invariant expressions (that are
conditioned by an IF) out of loops. This parameter can be
used in conjunction with any of the other parameters. Refer
to the +FP compiler option in the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation, as well as the PA-RISC 1.1
Architecture and Instruction Set Reference Manual .

Default NOTHING (assuming that FLOAT_TRAPS_ON is not speci�ed).

Location Anywhere, but in order to be e�ective, it must appear before the place in the
code where label declarations or directives can appear. If FLOAT_TRAPS_ON is
speci�ed, the location must be at the front.

Scope All following source code, until overridden by another ASSUME option.

Compiler Options 12-17

ASSUME

Figure 12-3 shows how the parameters of the ASSUME compiler option are related.

Figure 12-3. Relationships Between ASSUME Compiler Option Parameters

* NO PARMS OVERLAP is ine�ective without LOCAL ACCESSES.

After compiling a routine, the compiler knows what it accesses and modi�es, so the
optimizer can derive the appropriate assumptions. Only exported, forward, and external
routines require that you specify LOCAL GOTOS ONLY, LOCAL ACCESSES ONLY,
NO SIDE EFFECTS, or NO HEAP CHANGES. These assumptions are valid for intrinsic
functions and procedures, but you must specify them in the routine.

12-18 Compiler Options

ASSUME

Example 1

The following program skeleton demonstrates how to nest ASSUME options, using the PUSH
and POP compiler options.

$ASSUME 'PASCAL_FEATURES'$

PROGRAM prog ;

LABEL

999 ; { Possible target for nonlocal GOTO }

$PUSH$

$ASSUME 'NO_SIDE_EFFECTS'$

PROCEDURE extnl ; EXTERNAL ;

{ Optimizer assumes:

{ PASCAL_FEATURES (inherited)

{ NO_SIDE_EFFECTS (specified)

}

POP

$PUSH$

$ASSUME 'LOCAL_ACCESSES'$

$ASSUME 'LOCAL_GOTOS_ONLY'$

PROCEDURE intnl ;

$PUSH$

$ASSUME 'NOTHING'$

{ Optimizer assumes nothing.

{ This overrides inherited assumptions.

}

$ASSUME 'PARM_TYPES_MATCH'$

PROCEDURE nested ;

VAR
i : integer ;

$PUSH$

$ASSUME 'NO_SIDE_EFFECTS'$

$ASSUME 'NO_PARMS_OVERLAP'$

PROCEDURE furthernested ;

(Example is continued on next page)

Compiler Options 12-19

ASSUME

BEGIN {furthernested}

{ Modifying i violates NO_SIDE_EFFECTS }

{ Optimizer assumes:

{ PARM_TYPES_MATCH (inherited),

{ NO_SIDE_EFFECTS (specified)

{ NO_PARMS_OVERLAP (specified)

{ LOCAL_GOTOS_ONLY (known after compilation)

}

END ; {furthernested}

POP

BEGIN {nested}

{ Optimizer assumes:

{ PARM_TYPES_MATCH (specified)

{ LOCAL_GOTOS_ONLY (known after compilation)

}

furthernested ;

END ; {nested}

POP

BEGIN {intnl}

{ Optimizer assumes:

{ PASCAL_POINTERS (inherited)

{ PARM_TYPES_MATCH (inherited)

{ LOCAL_GOTOS_ONLY (specified)

{ NO_SIDE_EFFECTS (known after compilation)

}

nested ;

END ; {intnl}

POP

BEGIN { main program }

{ Optimizer assumes:

{ PASCAL_POINTERS (implied)

{ PARM_TYPES_MATCH (implied)

}

intnl ;

999:

END .

12-20 Compiler Options

ASSUME

Example 2

The following example turns on the IEEE oating-point traps. (On HP-UX, the +FPZ option
can be used instead of the call to HPENBLTRAP). This program would have aborted on the
divide by 0 if the loop invariant expression was moved out of the loop.

$ASSUME 'FLOAT_TRAPS_ON'$ $OPTIMIZE ON$

program trap;

var

r,s : real;

i : integer;

oldmask : integer;

procedure hpenbltrap; intrinsic;

begin

hpenbltrap(hex('ffffffff'),oldmask);

s := 0.0;

r := 0.0;

for i := 0 to 10 do

begin

if r <> 0.0 then

s := 1.0 / r; { divide by zero? }

s := s + 1.0;

end;

end.

See the Pascal/iX Programmer's Guide or the Pascal/HP-UX Programmer's Guide, depending
on your implementation, for more information on +FP. See the Trap Handling Programmer's
Guide for more information on HPENBLTRAP. See the PA-RISC 1.1 Architecture and Instruction
Set Reference Manual for more information on IEEE oating point instructions and traps.

Compiler Options 12-21

BUILDINT

BUILDINT is an HP Pascal Option.

The BUILDINT compiler option causes the compiler to build an intrinsic �le.

Syntax

$BUILDINT 'string'$

Parameter

string Speci�es the name of the intrinsic �le that the compiler builds. If the speci�ed
�le exists and is an intrinsic �le, entries are added to it. If it exists, but is not
an intrinsic �le, it is an error. If the �le does not exist, it is created (see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's
Guide).

Default System intrinsic �le.

Location At front.

The compiler adds an entry to the intrinsic �le for each routine declaration in the compilation
unit. If the compilation unit declares a routine with the same name as a routine that is
already in the intrinsic �le, the new routine declaration replaces the old one.

The compilation unit can contain constant, type, and variable declarations and procedure and
function headings, but not routine bodies or a nonempty outer block. Each routine must be
designated external (with the EXTERNAL directive). The compiler does not generate code
for the compilation unit.

Note The pc option +C on HP-UX a�ects the BUILDINT compiler option (see the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's
Guide).

12-22 Compiler Options

BUILDINT

Example

$BUILDINT 'MYINTR'$

PROGRAM Show_Buildint;

TYPE

Smallint = -32768..32767;

ByteArray = PACKED ARRAY [1..80] OF CHAR;

RecType = RECORD

F1 : Integer;

F2 : ByteArray;

END;

PROCEDURE Proc1 (P1 : Smallint;

P2 : Integer;

VAR P3 : ByteArray;

VAR P4 : RecType;

P5 : Real

);

EXTERNAL;

FUNCTION Func1 (P1 : Real) : Integer;

EXTERNAL;

BEGIN

{Empty outer block}

END.

The BUILDINT compiler option is used with the LISTINTR and SYSINTR compiler options.
See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide,
depending on your implementation, for details.

Compiler Options 12-23

CALL PRIVILEGE and EXEC PRIVILEGE

CALL PRIVILEGE and EXEC PRIVILEGE are System-Dependent MPE/iX Options.

The CALL_PRIVILEGE and EXEC_PRIVILEGE compiler options allow routines to call
and execute privileged mode routines. To use these compiler options, the option
STANDARD_LEVEL 'EXT_MODCAL' is required.

The CALL_PRIVILEGE option speci�es, for a given routine, the minimum privilege level that
other routines must have to call the speci�ed routine. The EXEC_PRIVILEGE option speci�es
the privilege level at which a routine will execute.

Caution Routines not speci�ed by the CALL_PRIVILEGE or EXEC_PRIVILEGE compiler
options are given the lowest privilege level by default. If you specify a routine
to have a higher calling or executing privilege level, the routine is allowed to
override safety features in the MPE/iX operating system. Therefore, exercise
caution when using CALL_PRIVILEGE and EXEC_PRIVILEGE because misuse can
destroy your operating system.

Syntax

$CALL_PRIVILEGE integer$

$EXEC_PRIVILEGE integer$

Parameter

integer An integer in the range 0 . . 3, with 0 being the most privileged level and 3
the least.

Default Privilege level 3.

Location Before the body of the routine, but after the reserved words PROCEDURE or
FUNCTION.

12-24 Compiler Options

CALL PRIVILEGE and EXEC PRIVILEGE

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM p;

PROCEDURE proc1 $CALL_PRIVILEGE 1$ (

VAR i : integer);

BEGIN

END;

PROCEDURE proc2 $EXEC_PRIVILEGE 2$ (

VAR i : integer);

BEGIN

END;

PROCEDURE proc3 $CALL_PRIVILEGE 1$

$EXEC_PRIVILEGE 0$ (

VAR i: integer);

BEGIN

END;

BEGIN

END.

Any routine calling procedure proc1 must execute at privilege level 1 or level 0. By default,
proc1 executes at privilege level 3. Procedure proc2 executes at level 2; a routine calling
proc2 may be executing at any level. Procedure proc3 executes at privilege level 0; any
routine calling proc3 must be executing at level 1 or higher.

Compiler Options 12-25

CHECK ACTUAL PARM

CHECK ACTUAL PARM is an HP Pascal Option.

The CHECK ACTUAL PARM compiler option determines how closely the actual parameters
of routines must match their formal parameters in separately compiled sources. If the actual
and formal parameters are incompatible, the linker does not link the program.

Syntax

$CHECK_ACTUAL_PARM integer$

Parameter

integer In the range 0..3. Determines how the linker checks actual parameters against
formal parameters, as follows:

Value The linker checks:

0 Nothing.

1 Function result type.

2 Function result type,
number of routine parameters.

3 Function result type,
number of routine parameters,
type of each parameter.

Default 3

Location Anywhere.

CHECK ACTUAL PARM a�ects every routine call that follows it (until superseded by
another CHECK ACTUAL PARM). However, its practical use is to lower the type checking
for a particular routine call. (Compare CHECK FORMAL PARM, which is intended to lower
the type checking for every call to a speci�c routine.) If both CHECK ACTUAL PARM and
CHECK FORMAL PARM apply to a routine, the linker uses the lower type-checking value.

The type-checking for an external routine is compatible with that of the language in which it
is written. (An external routine is identi�ed as such with the EXTERNAL directive.)

12-26 Compiler Options

CHECK ACTUAL PARM

Example

PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

0 1.000 0

0 2.000 0

0 3.000 0 PROGRAM t;

0 4.000 0

0 5.000 0 TYPE

0 6.000 0 int_ptr_type = ^integer;

1 7.000 0 char_ptr_type = ^char;

2 8.000 0

2 9.000 0 VAR

2 10.000 0 int_ptr : int_ptr_type;

3 11.000 0 char_ptr : char_ptr_type;

4 12.000 0

0 13.000 0 PROCEDURE proc (ip : int_ptr_type);

0 14.000 0 EXTERNAL;

0 15.000 0

0 16.000 0 PROCEDURE $ALIAS 'proc'$ proc_c (cp : char_ptr_type);

2 17.000 0 EXTERNAL;

0 18.000 0

0 19.000 0

0 20.000 0 {Renaming the procedure gets around HP Pascal's}

0 21.000 0 {parameter type checking}

0 22.000 0

4 23.000 1 BEGIN

4 24.000 1

4 24.000 1 proc(int_ptr);

5 25.000 1

5 26.000 1 $CHECK_ACTUAL_PARM 2$

5 27.000 1 proc_c(char_ptr);
6 28.000 1

6 29.000 1 {Using CHECK_ACTUAL_PARM gets around the linker's}

6 30.000 1 {parameter type checking}

6 31.000 1

6 32.000 1 END.

Compiler Options 12-27

CHECK FORMAL PARM

CHECK FORMAL PARM is an HP Pascal Option.

The CHECK FORMAL PARM compiler option determines how closely the formal
parameters of a routine must match its actual parameters. If the formal and actual
parameters are incompatible, the linker does not link the program.

Syntax

$CHECK_FORMAL_PARM integer$

Parameter

integer In the range 0..3. Determines how the linker checks actual parameters against
formal parameters, as follows:

Value The linker checks:

0 Nothing.
1 Function result type.
2 Function result type,

number of routine parameters.
3 Function result type,

number of routine parameters,
type of each parameter.

Default 3

Location Anywhere.

CHECK FORMAL PARM a�ects every routine call that follows it (until superseded
by another CHECK FORMAL PARM). It lowers the type checking for every call to
these routines. (Compare CHECK ACTUAL PARM, which is intended to lower the
type checking for a particular routine call.) If both CHECK FORMAL PARM and
CHECK ACTUAL PARM apply to a routine, the linker uses the lower type-checking value.

The type-checking for an external routine is compatible with that of the language in which it
is written. (An external routine is identi�ed as such with the EXTERNAL directive.)

When you call an HP Pascal routine from a non-Pascal program, you must compile the HP
Pascal routine with $CHECK_FORMAL_PARM 0$ to turn parameter checking o�. Otherwise, HP
Pascal generates type-checking information that the non-Pascal program cannot match.

The compiler does not generate type-checking code for intrinsic routines. (An intrinsic routine
is identi�ed as such with the INTRINSIC directive. See the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide.)

12-28 Compiler Options

CHECK FORMAL PARM

Example

PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

0 1.000 0

0 2.000 0

0 3.000 0 $SUBPROGRAM$

0 4.000 0 PROGRAM t;

0 5.000 0

0 6.000 0 $CHECK_FORMAL_PARM 0$

0 7.000 0

0 8.000 0 {CHECK_FORMAL_PARM prevents the linker from

0 9.000 0 complaining if this procedure is called with

0 10.000 0 fewer than seven actual parameters}

0 11.000 0

0 12.000 0 PROCEDURE proc (parm_count : integer;

2 13.000 0 parm1,

3 14.000 0 parm2,

4 15.000 0 parm3,

5 16.000 0 parm4,

6 17.000 0 parm5,

7 18.000 0 parm6 : integer);

8 19.000 1 BEGIN

8 20.000 1 END;

8 21.000 0

0 22.000 1 BEGIN

0 23.000 1 END.

Compiler Options 12-29

CODE

CODE is an HP Pascal Option.

When the CODE compiler option is ON, the compiler generates object code after parsing a
compilation block.

The command line option -C also speci�es this option.

Syntax

$CODE

�
ON

OFF

�
$

Default ON

Location Anywhere, but it a�ects only the procedure, function, or outer block that
contains it.

The CODE option a�ects an entire procedure, function, or outer block. To suppress the
object code for smaller portions of source code, use the SKIP TEXT option, or enclose that
portion of source code in comment symbols.

Example

The compiler generates no object code for proc2. Although $CODE OFF$ is in the middle of
proc2, it a�ects the entire procedure.

PROGRAM show_code;

PROCEDURE proc1;

BEGIN

:

END;

PROCEDURE proc2;

BEGIN

:

$CODE OFF$

:

END;

$CODE ON$

BEGIN

:
END.

12-30 Compiler Options

CODE OFFSETS

CODE OFFSETS

CODE OFFSETS is an HP Pascal Option.

When the CODE OFFSETS compiler option is ON (and the LIST compiler option is ON),
the compiler prints a table that contains the statement number and o�set of each executable
statement that it lists.

Syntax

$CODE_OFFSETS

�
ON

OFF

�
$

Default OFF

Location Anywhere.

The o�set is the address of the �rst machine instruction generated for the statement, relative
to the start of the routine or outer block. It is in hexadecimal.

The table appears at the end of the compiler listing.

Example

0 1.000 0 $LIST ON, CODE_OFFSETS ON$

0 2.000 0 $STANDARD_LEVEL 'HP_MODCAL'$

0 3.000 0 PROGRAM x (output);

2 4.000 0 import arg;

0 5.000 0 VAR

0 6.000 0 x : integer;

1 7.000 0 y : argarrayptr;

2 8.000 0 s : string[40];

5 9.000 1 BEGIN

5 10.000 1 x := argc;

6 11.000 1 writeln('There were ',x:1,' argv elements');

7 12.000 1 writeln('Argv test');

8 13.000 1 y := argv;

9 14.000 1 FOR x := 1 TO argc-1 DO

10 15.000 2 BEGIN

10 16.000 2 setstrlen(s,0);

11 17.000 2 strmove(strmax(s), y^[x]^, 1, s, 1);

12 18.000 2 setstrlen(s, strpos(s,#0)-1);
13 19.000 2 writeln('Arg ',x:1,' = >',s,'<');

14 20.000 2 END;

14 21.000 1 writeln('Argn test');

15 22.000 1 FOR x := 0 TO argc-1 DO

16 23.000 1 writeln('Arg ',x:1,' = >',argn(x), '<');

17 24.000 1 END.

Compiler Options 12-31

CODE OFFSETS

C O D E O F F S E T S

PROGRAM

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET

5 70 6 80 7 128 8 174 9 184

10 1B0 11 1B8 12 21C 13 274 14 390

15 3DC 16 404

Example

PROCEDURE outer;

PROCEDURE inner;

BEGIN

.

.

.

END;

BEGIN

.

.

.

END;

C O D E O F F S E T S

outer4inner

STMT OFFSET STMT OFFSET
1 20 2 30

outer

STMT OFFSET STMT OFFSET

1 10 2 2C

Outer4inner is the procedure label for the level two procedure, inner, contained in the
level one procedure outer. Statement one of inner is o�set 20 (hexadecimal) bytes from the
address of inner.

Note This feature is intended for use with an assembly-level debugger. See the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide
for information on the debuggers.

If you use optimization with this option, the o�sets will not be correct.

12-32 Compiler Options

CONVERT MPE NAMES

CONVERT MPE NAMES

CONVERT MPE NAMES is a System-Dependent HP-UX Option.

The CONVERT MPE NAMES compiler option converts �le names in the BUILDINT,
INCLUDE, LISTINTR, and SYSINTR compiler options from MPE format to HP-UX format.

The command line option +C also speci�es this option.

Syntax

$CONVERT_MPE_NAMES$

Default None.

Location Anywhere.

Fully quali�ed HP-UX-format �le names (those that begin with slash, like '/mnt/srf/file')
are not converted.

This option assumes an HP-UX directory structure that is modeled after the MPE/iX
accounting structure, in which all �les reside in group-level directories and groups are
subdirectories of accounts. This option converts MPE/iX-format �le names to lowercase
letters.

For example, assume the HP-UX directory structure account/group, where group is a
directory containing the �le f. If a Pascal source program contains the statement

$INCLUDE 'F.Group.Account'$

then the compiler pre�xes the appropriate path information to f, and searches for the
resulting name (for example, if the compilation is performed in the group-level directory, then
the compiler includes the �le ../../account/group/f).

Compiler Options 12-33

COPYRIGHT

COPYRIGHT is an HP Pascal Option.

The COPYRIGHT compiler option puts a copyright notice in the relocatable object �le and
the program �le.

Syntax

$COPYRIGHT 'string'$

Parameter

string The name of the copyright owner, to appear in the copyright notice. The
compiler distinguishes between uppercase and lowercase letters.

Default None.

Location At front.

The copyright notice is:

(C) Copyright date string by string.

All rights reserved. No part of this program may be

photocopied, reproduced, or transmitted without prior

written consent of string.

The default date string is the current year (see the COPYRIGHT DATE compiler option).

Example

$COPYRIGHT 'Blaise Pascal'$

PROGRAM show_copyright;

BEGIN

:
END.

The preceding program produces the following copyright notice:

(C) Copyright 1986 by Blaise Pascal. All rights reserved.

No part of this program may be photocopied, reproduced, or

transmitted without prior written consent of Blaise Pascal.

12-34 Compiler Options

COPYRIGHT DATE

COPYRIGHT DATE

COPYRIGHT DATE is an HP Pascal Option.

The COPYRIGHT DATE compiler option speci�es the date that appears in the copyright
notice.

Syntax

$COPYRIGHT_DATE 'date string'$

Parameter

date string Speci�es the date string to appear in the copyright notice, as follows:

(C) Copyright date string by string.

All rights reserved. No part of this program may be

photocopied, reproduced, or transmitted without prior

written consent of string.

(The COPYRIGHT option sets string .)

Default Current year.

Location At front.

The COPYRIGHT DATE compiler option has no e�ect if the program does not contain the
COPYRIGHT compiler option, which puts the copyright notice into the relocatable object
and program �les.

Example

$COPYRIGHT 'Blaise Pascal'$

$COPYRIGHT_DATE '1682,1683,1684,1685,1686'$

PROGRAM show_copyright;
BEGIN

END.

The copyright notice for the preceding program is:

(C) Copyright 1682,1683,1684,1685,1686 by Blaise Pascal.

All rights reserved. No part of this program may be

photocopied, reproduced, or transmitted without prior

written consent of Blaise Pascal.

Compiler Options 12-35

ELSE

ELSE is an HP Pascal Option.

The ELSE compiler option speci�es the code to be compiled when the Boolean expression in
the IF compiler option has the value FALSE. See the IF option for more information.

Syntax

$ELSE$

Default Not applicable.

Location Anywhere.

Example 1

$SET 'group1=FALSE'$

.

.

.

$IF 'group1'$

2
664
source line

.

.

.

3
775

$ELSE$

2
664
source line

.

.

.

3
775

$ENDIF$

In this example, the code following $ELSE is compiled because group1 is set to FALSE.

12-36 Compiler Options

ELSE

Example 2

$SET 'group3=true,group2=false;group1=false'$

.

.

.

$IF 'group1'$

2
664
source line

.

.

.

3
775
�
group1

	

$ELSE$

$IF 'group2'$

2
664
source line

.

.

.

3
775
�
group2

	

$ELSE$

$IF 'group3'$

2
664
source line

.

.

.

3
775
�
group3

	

$ENDIF$

$ENDIF$

$ENDIF$

In this example, only group3 is compiled because it is set to true and group1 and group2 are
set to false.

Compiler Options 12-37

ENDIF

ENDIF is an HP Pascal Option.

The ENDIF compiler option ends the code to be conditionally compiled. See the IF compiler
option for more information.

Syntax

$ENDIF$

Default Not applicable.

Location Anywhere.

Example

$SET 'group1=true, group2=false'$

.

.

.

$IF 'group1 AND (NOT group2)'$

2
664
source line

.

.

.

3
775

$ENDIF$

12-38 Compiler Options

EXTERNAL

EXTERNAL

EXTERNAL is an HP Pascal Option.

The EXTERNAL compiler option causes the compiler to generate code for routines, but
not for statements in the outer block. It also generates symbolic information about global
variables, allowing them to be matched (by external name) to their counterparts in the
compilation unit compiled with the GLOBAL compiler option. (The EXTERNAL compiler
option is used in compilation units compiled with the SUBPROGRAM compiler option.)

Syntax

$EXTERNAL

�
'

�
PASCAL

NONE

�
'

�
$

Parameters

PASCAL Causes the compiler to include type-checking information in the object �le so
that the global variables can be compared to those in a compilation unit that
was compiled with $GLOBAL 'PASCAL'$.

NONE Prevents the compiler from including type-checking information for global
variables in the object �le.

No parameter Same as PASCAL.

Default PASCAL.

Location At front.

The EXTERNAL option, in conjunction with the GLOBAL option, enables you to compile
one program as two or more compilation units. Specify the GLOBAL option in the
compilation unit that declares the global variables and contains the main program. Specify
the EXTERNAL option in each of the other compilation units that declare routines, and in
each of the global variables that those routines use. A compilation unit cannot contain both
the EXTERNAL option and the GLOBAL option.

A compilation unit with the EXTERNAL option does not need to declare all of the global
variables. It only needs to declare the ones that it uses, and they can be in any order. See the
example for the GLOBAL compiler option.

Note Do not confuse the EXTERNAL compiler option with the EXTERNAL
directive. Refer to the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide, depending on your implementation, for
information on the EXTERNAL directive.

Compiler Options 12-39

EXTNADDR

EXTNADDR is a System Programming Option.

The EXTNADDR compiler option speci�es that a pointer type or pointer variable is a long
pointer, and a reference parameter is a long address.

Syntax

$EXTNADDR$

Default Not applicable.

Location In a pointer type or variable declaration, between ^ or @ and the type name,
or in a parameter list, between VAR, ANYVAR, or READONLY and the
following parameter name.

Example

TYPE

RecType = RECORD

F1 : INTEGER;

F2 : CHAR;

END;

ExtRecType = ^$EXTNADDR$ RecType;

IntPtrType = ^INTEGER;

ExtPtrType = ^$EXTNADDR$ integer;

VAR

ExtVar : ^$EXTNADDR$ integer; {cannot be a parameter to new}

ExtP1,

ExtP2 : ExtPtrType;

IntP : IntPtrType;

RecP : ExtRecType;

PROCEDURE ExtProc (VAR $EXTNADDR$ Parm1,Parm2 : IntPtrType);

PROCEDURE ExtProc2 (VAR $EXTNADDR$ Parm3 : INTEGER;

VAR Parm4 : INTEGER;

Parm5 : INTEGER);

12-40 Compiler Options

FONT

FONT

FONT is a System-Dependent MPE/iX Option.

The FONT compiler option speci�es primary and secondary character sets to be used in the
title and comments in the listing (provided that the printer supports multiple fonts, as the
HP268x laser printers do.)

Syntax

$FONT 'string'$

Parameter

string Is of the form:

primary font,secondary font

Where:

primary font Is an unsigned integer that sets the number for the primary
font.

secondary font Is an unsigned integer that sets the number for the secondary
font.

Default Not applicable.

Location Anywhere.

To change fonts within the string parameter of the TITLE option, or within a comment, shift
to the secondary character set with �CONTROL� N. Shift back to the primary character set with
�CONTROL� O.

Example

Assume that font 5 is this font in the environment �le.

$

FONT '0,5'$

$TITLE 'Dptcore. �CONTROL�NPort Data Definitions�CONTROL�O'$
.

.

.

PROCEDURE Proc1; {This is the �CONTROL�Nfirst�CONTROL�O procedure}

.

.

.

The listing prints the title and comment shown above this way:

Dptcore. Port Data De�nitions

{This is the �rst procedure}

Compiler Options 12-41

GLOBAL

GLOBAL is an HP Pascal Option.

The GLOBAL compiler option causes the compiler to generate code for the entire compilation
unit (including the outer block) and symbolic information about global variables that
allows them to be matched with their counterparts in compilation units compiled with
the EXTERNAL compiler option. See the HP Pascal/iX Programmer's Guide or the
HP Pascal/HP-UX Programmer's Guide, depending on your implementation, for more
information.

Syntax

$GLOBAL

�
'

�
PASCAL

NONE

�
'

�
$

Parameters

PASCAL Causes the compiler to include type-checking information in the object �le so
that its global variables can be compared to those in a compilation unit that
was compiled with $EXTERNAL 'PASCAL'$ (or its equivalent, $EXTERNAL$).

NONE Prevents the compiler from emitting type-checking information for global
variables.

Default PASCAL.

Location At front.

The GLOBAL option, in conjunction with the EXTERNAL option, enables you to compile
one program as two or more compilation units. Specify the GLOBAL option in the
compilation unit that declares all of the global variables and contains the main program.
Specify the EXTERNAL option in each of the other compilation units (which declare routines
and the global variables that those routines use). A compilation unit cannot contain both the
GLOBAL option and the EXTERNAL option.

Example

One compilation unit:

$GLOBAL$

PROGRAM show_global (input,output);

VAR

a,b,c,d : integer;

state : Boolean;

PROCEDURE proc1; EXTERNAL;

BEGIN {Main program}

.

.

.

END.

12-42 Compiler Options

GLOBAL

Another compilation unit:

$EXTERNAL$

PROGRAM show_external (input,output);

VAR

state : Boolean; {Matches variable in show_global's outer block}

{a,b,c,d need not be declared here because this

compilation unit does not use them.}

PROCEDURE proc1;

BEGIN

.

.

.

END;

BEGIN

{Empty outer block}

END.

Compiler Options 12-43

GPROF

GPROF is a System-Dependent HP-UX Option.

The compiler option GPROF causes the compiler to produce code that pro�les itself as it
runs. You can analyze the pro�les with the HP-UX utility gprof.

Syntax

$GPROF

�
ON

OFF

�
$

Default OFF.

Location Anywhere before the keyword PROGRAM (illegal in modules).

Example

$GPROF ON$

PROGRAM a;

PROCEDURE b;

BEGIN

END;

BEGIN

b;

END;

Note A program containing the GPROF compiler option must be linked with the pc
option -G.

12-44 Compiler Options

HEAP_COMPACT

HEAP_COMPACT

HEAP COMPACT is an HP Pascal Option.

When the HEAP COMPACT compiler option is ON (and the HEAP DISPOSE option is also
ON), free space in the heap is concatenated when the prede�ned procedure dispose is called.

Syntax

$HEAP_COMPACT

�
ON

OFF

�
$

Default OFF.

Location At front.

The HEAP COMPACT option is recommended for programs that manipulate many dynamic
record variables of di�erent sizes via calls to the prede�ned procedures new and dispose. It
allows free space to be merged and reused.

Example

$HEAP_COMPACT ON; HEAP_DISPOSE ON$

PROGRAM show_compact;

TYPE

big_rec = RECORD

f1 : ARRAY [1..4] OF integer;

END;

small_rec = PACKED RECORD

f1 : integer;

f2 : integer;

END;

VAR

p1,p2 : ^mall_rec;

p3 : ^big_rec;

BEGIN

new(p1);

new(p2);

dispose(p1);
dispose(p2);

new(p3); {p3 is allocated in the space previously

occupied by p1 and p2}

END.

Compiler Options 12-45

HEAP_DISPOSE

HEAP DISPOSE is an HP Pascal Option.

When the HEAP DISPOSE compiler option is ON, the prede�ned procedure dispose frees
space in the heap so that the prede�ned procedure new can reallocate it. By default, such
disposed space cannot be reused.

Syntax

$HEAP_DISPOSE

�
ON

OFF

�
$

Default OFF

Location At front.

Example

$HEAP DISPOSE ON$

PROGRAM show_heap;

TYPE

big_array = ARRAY [1..1000] OF longreal;

VAR

ptr : ^big_array;

i : integer;

BEGIN

FOR i := 1 TO maxint DO {If HEAP_DISPOSE were OFF, the heap}

BEGIN {would overflow and an error would occur}

new(ptr);

.

.

.

dispose(ptr);

END;

END.

12-46 Compiler Options

HP_DESTINATION

HP_DESTINATION

HP DESTINATION is a System-Dependent HP-UX Option.

Syntax

$HP_DESTINATION '

�
ARCHITECTURE PAmodel

SCHEDULER PAmodel

�
'$

Where:

ARCHITECTURE PA Speci�es the desired destination architecture.

model Can be a model number, such as 750 or 870, or one of the
following architecture speci�cations:

1.0 Generates object code for PA-RISC 1.0 architecture or
higher.

1.1 Generates object code for PA-RISC 1.1 architecture.

See the �le /usr/lib/sched.models for model numbers and their
architectures. Use the command uname -m to determine the model number
of your system.

Default 1.0 for Series 800 models; 1.1 for Series 700 models.

Location The beginning of the source �le.

SCHEDULER PA Speci�es the desired instruction scheduling algorithm.

model Can be a model number, such as 750 or 870, or one of the
following architecture speci�cations:

1.0 Performs instruction scheduling tuned to one
implementation of PA-RISC 1.0.

1.1 Performs instruction scheduling tuned to one
implementation of PA-RISC 1.1.

See the �le /usr/lib/sched.models for model numbers and their
architectures. Use the command uname -m to determine the model number
of your system.

Default The model number of the machine the program is being compiled on.

Location The beginning of the source �le.

Compiler Options 12-47

HP_DESTINATION

HP_DESTINATION 'ARCHITECTURE' Option

The HP DESTINATION 'ARCHITECTURE' option generates object code for a particular
version of the PA-RISC architecture. Specifying a destination architecture ensures that the
compiler generates appropriate object code for the destination architecture.

The �rst occurrence of the HP DESTINATION 'ARCHITECTURE' option takes precedence
over later occurrences of the same option.

If you specify an architecture other than the native architecture of your machine, your
compiled program may not run on your machine. Speci�cally, code compiled with
HP_DESTINATION 'ARCHITECTURE PA1.1' will not run on a PA-RISC 1.0 machine.

Note A program containing the HP DESTINATION 'ARCHITECTURE' compiler
option must be linked with the pc command line option +DAmodel . This is
because +DAmodel does more than specify the destination architecture. It also
speci�es which math libraries the program is to be linked with: PA-RISC 1.0
or PA-RISC 1.1. See the HP-UX Floating-Point Guide for more information
about using math libraries.

Examples

Following are examples for specifying the desired destination hardware:

$HP_DESTINATION 'ARCHITECTURE PA1.0'$ generates object code for PA-RISC 1.0 architecture

$HP_DESTINATION 'ARCHITECTURE PA750'$ generates object code for a model 750 (PA-

RISC 1.1 architecture)

HP_DESTINATION 'SCHEDULER' Option

The HP DESTINATION 'SCHEDULER' option performs instructions scheduling tuned for a
particular implementation of the PA-RISC architecture. The instruction scheduling can be for
a PA-RISC architecture other than the one you are compiling on.

The �rst occurrence of the HP DESTINATION 'SCHEDULER' option takes precedence over
later occurrences of the same option.

Note that the command line option +DSmodel also speci�es this option.

This option can be used with the HP DESTINATION 'ARCHITECTURE' option. For
example, if you want your program to run on both a PA-RISC 1.0 architecture machine
and a PA-RISC 1.1 architecture machine, you can use HP_DESTINATION 'ARCHITECTURE

PA1.0' to specify PA-RISC 1.0 architecture. Because the PA-RISC 1.1 instruction set is a
superset of the PA-RISC 1.0 instruction set, the code will run on both machines. If you use
HP_DESTINATION 'SCHEDULER PA1.1', your program will run on both architectures, but will
run as fast as possible on PA-RISC 1.1 architecture machines.

Examples

Following are examples for specifying the desired instruction scheduling:

$HP_DESTINATION 'SCHEDULER PA1.1'$ instruction scheduling tuned to implementation
on PA RISC 1.1

$HP_DESTINATION 'SCHEDULER PA730'$ instruction scheduling tuned to implementation

on a model 730

12-48 Compiler Options

HP3000_16

HP3000_16

HP3000 16 is a System-Dependent MPE/iX Option.

The HP3000 16 compiler option speci�es the Pascal/V packing algorithm for the allocation
and alignment of all data structures.

Syntax

$HP3000_16$

Default HP Pascal optimized data structures (see the HP3000 32 compiler option).

Location At front.

The HP3000 16 compiler option causes all data types (except �les and pointers) to be
allocated and aligned according to the Pascal/V packing algorithm. A structure compiled by
the HP Pascal compiler with HP3000 16 looks exactly like the same structure compiled by the
Pascal/V compiler. This is useful for reading data �les generated by Pascal/V.

HP3000 16 does not a�ect �le and pointer types. The allocation and alignment of �le
variables is system-dependent, and HP Pascal does not allow the creation of �les that contain
�les.

The allocation and alignment of pointers is also system dependent, so pointers are not
portable. A pointer declared in an HP Pascal program can be used only with HP Pascal (not
Pascal/V).

Real numbers declared in an HP3000 16 program are represented in MPE V oating-point
representation. Operations performed with these numbers emulate MPE V oating-point
operations.

All constants declared in an HP3000 16 program are Pascal/V constants.

Example

See the example for the HP3000 32 compiler option.

Note A program that contains the HP3000 16 compiler option cannot call the
PAUSE intrinsic directly. The work-around is to declare PAUSE this way,
instead of declaring it as an intrinsic:

PROCEDURE pause $ALIAS 'em_pause'$ (VAR r : real);

EXTERNAL;

Compiler Options 12-49

HP3000_32

HP3000 32 is a System-Dependent MPE/iX Option.

The HP3000 32 compiler option speci�es that a given type in an HP3000 16 program is to be
allocated and aligned according to the HP Pascal packing algorithm.

Syntax

$HP3000_32$

Default HP3000 32 is the default when HP3000 16 is not used.

Location After the symbol = in a type de�nition.

If a program does not specify HP3000 16, then HP3000 32 has no e�ect, and the compiler
issues a warning.

A user-de�ned type that is within a structure declared with HP3000 32 must also be declared
with HP3000 32.

A user-de�ned type that is within a structure declared without HP3000 32 must also be
declared without HP3000 32.

HP3000 32 is illegal with these types:

Boolean

Char

Integer

Text

String, set, and real operations are illegal on HP3000 32 strings, sets, and real numbers.
HP3000 32 strings, sets, and real numbers are not assignment compatible with HP3000 16
strings, sets, and real numbers. Use the prede�ned procedures strconvert and setconvert
and the intrinsic HPFPconvert to convert HP3000 32 strings, sets, and real numbers to
HP3000 16 strings, sets, and real numbers.

Example

$HP3000_16$

PROGRAM show_packing_algorithms;

TYPE
t_pac = PACKED ARRAY [1..10] OF char;

s_pac = $HP3000_32$

PACKED ARRAY [1..10] OF char;

t_starray = ARRAY [1..5] OF string[10];

s_starray = $HP3000_32$

ARRAY [1..5] OF string[10];

12-50 Compiler Options

HP3000_32

t_rec = RECORD

f1 : -32768..32767; {16 bits allocated}

f2 : real; {HP 3000 real number}
f3 : string[10]; {16 bits allocated}

f4 : t_pac;

f5 : s_pac; {error}

f6 : t_starray;

f7 : s_starray; {error}

f8 : s_starray; {error}

END;

s_rec = $HP3000_32$ RECORD

f1 : -32768..32767; {32 bits allocated}

f2 : real; {IEEE real number}

f3 : string[10]; {32 bits allocated}

f4 : t_pac; {error}

f5 : s_pac;

f6 : t_starray; {error}

f7 : s_starray; {error}

END;

t_array = ARRAY [1..5] OF t_rec;

t_array1 = ARRAY [1..5] OF s_rec; {error}

s_array = $HP3000_32$

ARRAY [1..5] OF s_rec;

s_array1 = $HP3000_32$

ARRAY [1..5] OF t_rec; {error}

t_file = FILE OF t_rec;
t_file1 = FILE OF s_rec; {error}

s_file = $HP3000_32$

FILE OF s_rec;

s_file1 = $HP3000_32$

FILE OF t_rec; {error}

t_array2 = ARRAY [1..5] OF RECORD

f1 : -32768..32767; {16 bits allocated}

f2 : real; {HP 3000 real number}

f3 : string[10]; {16 bits allocated}

END;

s_array = $HP3000_32$

ARRAY [1..5] OF RECORD

f1 : -32768..32767; {32 bits allocated}

f2 : real; {IEEE real number}

f3 : string[10]; {32 bits allocated}

END;

Compiler Options 12-51

HP3000_32

VAR

v_file1 : t_file;

v_file2 : s_file;
v_file3 : FILE OF t_rec;

v_file4 : FILE OF s_rec; {error}

BEGIN

END.

12-52 Compiler Options

IF

IF

IF is an HP Pascal Option.

The IF compiler option speci�es code to be compiled conditionally, depending on the value of
a Boolean expression.

Syntax

$IF 'Boolean expression'$

Parameter

Boolean expression Any constant Boolean expression containing the operators AND,
OR, NOT, or DEFINED and optional parentheses. On MPE/iX,
the SET compiler option must assign the value TRUE or FALSE
to each identi�er before it appears in Boolean expression . On
HP-UX, you can use the SET compiler option or you can use the pc
command-line option -Dname=bool. (For more information on the
-Dname=bool command-line option, refer to the pc command in the
HP Pascal/HP-UX Programmer's Guide.) The identi�er operands
cannot have the spellings of Boolean operators (NOT, AND, OR,
DEFINED). The operators are evaluated in the order dictated by HP
Pascal operator precedence.

Default Not applicable.

Location Anywhere.

The IF option must have a matching ENDIF option, and can be used with the ELSE or SET
options, as follows:

$SET 'identi�er = Boolean

��
,

;

�
identi�er = Boolean

�
'$

$IF 'Boolean expression'$

2
664
source code

to be compiled

if Boolean expression

is TRUE

3
775

$ELSE$

2
664
source code

to be compiled

if Boolean expression

is FALSE

3
775

$ENDIF$

IF options can be nested; that is, the source code to be compiled conditionally can contain IF
options. The maximum nesting level is 16.

Because the IF, ENDIF, ELSE, and SET options (together) allow conditional compilation,
several programmers with di�erent needs can use them to customize a single compilation unit.

Compiler Options 12-53

IF

The DEFINED operator returns TRUE if its operand has been set to either TRUE or FALSE
using the $SET option (or by using the -Dname=bool command-line option on HP-UX).
Otherwise, the DEFINED operator returns FALSE.

The DEFINED operator is useful in situations where many mutually exclusive alternatives
exist. Rather than tediously set all but one identi�er to FALSE, use the DEFINED operator
to test for the one identi�er which has been set (usually to TRUE).

$SET 'HP = TRUE'$

$IF 'defined HP'$

.

.

.

$ENDIF$

$IF 'defined DEC'$

.

.

.

$ENDIF$

$IF 'defined SUN'$

.

.

.

$ENDIF$

$IF 'defined IBM'$

.

.

.

$ENDIF$

12-54 Compiler Options

IF

Example 1

The following two program fragments are equivalent because, in both fragments, the block of
code protected by the $IF options are compiled.

{Fragment 1}

$SET 'group1=true, group2=false'$

.

.

.

$IF 'group1 AND (NOT group2)'$

2
664
source line

.

.

.

3
775

$ENDIF$

{Fragment 2}

$SET 'group1 = true'$

$SET 'group2 = false'$

.

.

.
$IF 'group1'$

$IF 'NOT group2'$

2
664
source line

.

.

.

3
775

$ENDIF$

$ENDIF$

Compiler Options 12-55

IF

Example 2

In the following example, because group1 has been set to FALSE, the code following $IF

'group1'$ is not compiled; the code following $ELSE$ is compiled instead.

$SET 'group1=FALSE'$

.

.

.

$IF 'group1'$

2
664
source line

.

.

.

3
775

$ELSE$

2
664
source line

.

.

.

3
775

$ENDIF$

12-56 Compiler Options

IF

Example 3

In the following example, even though group2 is true, that fragment is not compiled because
it is nested within the $ELSE$ clause of the first $IF option, whose Boolean expression
evaluates to TRUE.

$SET 'group1=true,group2=true;group3=false'$

.

.

.

$IF 'group1'$

2
664
source line

.

.

.

3
775
�
group1

	

$ELSE$

$IF 'group2'$

2
664
source line

.

.

.

3
775
�
group2

	

$ELSE$

$IF 'group3'$

2
664
source line

.

.

.

3
775
�
group3

	

$ENDIF$

$ENDIF$

$ENDIF$

Compiler Options 12-57

IF

Example 4

In this example, if group1 has been set to TRUE or FALSE, the block of code following will
be compiled; if group1 has not been set, the block of code will not be compiled.

$IF 'defined group1'$

2
664
source line

.

.

.

3
775

$ENDIF$

12-58 Compiler Options

INCLUDE

INCLUDE

INCLUDE is a System-Dependent MPE/iX and HP-UX Option.

The INCLUDE compiler option includes text from a speci�ed �le in the source code being
compiled.

Syntax

$INCLUDE 'string'$

Parameter

string Speci�es the name of the �le to be included at the current position in the
program. The �le speci�cation depends upon the operating system.

Default None.

Location Anywhere.

The �le that contains the INCLUDE option is the including �le, and the �le speci�ed by
string is the included �le.

When the compiler encounters the INCLUDE option, it processes text from the included
�le, as if the text were part of the including �le. When the included �le ends, the compiler
continues processing the including �le, resuming with the line that follows the INCLUDE
option; therefore, ignoring options and source code that follow INCLUDE on the same line).

An included �le can contain an INCLUDE option; that is, included �les can be nested. The
maximum nesting level is the maximum number of �les that the operating system allows to be
open simultaneously.

On the HP-UX operating system, if the �le to be included cannot be found or opened, and its
name is not an absolute path name (that is, it does not start with the character \/"), then the
compiler looks for the �le in the following places (this is called the search path).

The directory that contains the .p �le being compiled (the main source �le).

The current working directory.

The directory /usr/include.

If the �le still cannot be found or opened, the compiler issues an error message and the
compile aborts.

Note The pc option +C on HP-UX a�ects the INCLUDE compiler option (see the
HP Pascal/HP-UX Programmer's Guide).

Compiler Options 12-59

INCLUDE

Example 1

This example applies only to HP-UX.

PROGRAM show_include;

VAR

$INCLUDE '/users/pascal/prog1/global'$

BEGIN

i := 3;

j := 1.55;

END.

If the �le /users/pascal/prog1/global is:

i : INTEGER;

j : REAL;

Then the preceding program is equivalent to:

PROGRAM show_include;

VAR

i : INTEGER;

j : REAL;

BEGIN

i := 3;

j := 1.55;

END.

12-60 Compiler Options

INCLUDE

Example 2

This example applies only to MPE/iX.

PROGRAM show_include;

VAR

$INCLUDE 'global.prog1.pascal'$

BEGIN

i := 3;

j := 1.55;

END.

If the �le global.prog1.pascal is:

i : INTEGER;

j : REAL;

Then the preceding program is equivalent to:

PROGRAM show_include;

VAR

i : INTEGER;

j : REAL;

BEGIN

i := 3;

j := 1.55;

END.

Compiler Options 12-61

INCLUDE SEARCH

INCLUDE SEARCH is a System-Dependent MPE/iX and HP-UX Option.

You can use the INCLUDE_SEARCH compiler option to set or modify the search path used by
the compiler. This search path speci�es the order of directories a compiler searches to �nd
�les speci�ed in the INCLUDE directive. The search stops on t he �rst successful attempt to
open a �le. Files speci�ed in the INCLUDE directive are called included �les.

The command line option -I include-search path also speci�es this option. You can specify
multiple paths by repeating the command line option -I for each path.

syntax

$INCLUDE_SEARCH '
�
+
��
&
�
string

�
, string

�
. . . '$

Parameter

Default None.

Location Anywhere.

The string parameter speci�es a path for the compiler to search for an included �le. This
path is called the include-search path. The + parameter, if speci�ed, appends this new
include-search path to the end of the existing include-search path. If the + parameter is
omitted, the new include-search path replaces the existing one.

Although there is no default search path for INCLUDE on the MPE/iX operating system,
you can de�ne one with the INCLUDE SEARCH option. You can modify the name of the
included �le by appending each component of the include path to the search path. Using the
& symbol, you can indicate that the compiler should search for the unmodi�ed �le name. Note
that the unmodi�ed �le name is not searched �rst by default. In fact, it will not be searched
at all if the & is omitted from the INCLUDE SEARCH list. If an INCLUDE SEARCH list is
speci�ed, the compiler will search only the locations speci�ed in the include-search path.

The search order is:

1. The directory of the immediate including �le.

2. The include-search path.

3. The user's current working directory.

4. The system standard location /usr/include.

12-62 Compiler Options

INCLUDE SEARCH

MPE/iX Example

PROGRAM show_include;

$INCLUDE_SEARCH '&, .exp, .official, .official:indy'$
$INCLUDE 'globals.foo'$

BEGIN

END.

The compiler will attempt to �nd the included �le globals.foo by looking successively for it
under each �lename modi�cation speci�ed by the include path. In this example, the compiler
will search successively for the following �les:

globals.foo

globals.foo.exp

globals.foo.official

globals.foo.official:indy

Note that the compiler attempts to open the unmodi�ed �lename globals.foo only because
the �rst element of the include path is \&". The search will stop on the �rst successful
attempt to open one of these �les.

HP-UX Example

The following program is in a �le called /tmp/test.p, and the current working directory is
/users/myself/work.

PROGRAM show_include;

$INCLUDE_SEARCH '../experimental, ../official, /c/official'$

$INCLUDE 'globals'$

BEGIN

END.

The compiler will attempt to �nd the included �le globals by searching successively in each
location speci�ed by the search path. In this example, the compiler will look for the �les listed
below in the following order.

1. In the directory of the including �le: /tmp/globals

2. In each element of the include-search path:

/users/myself/experimental/globals

/users/myself/official/globals

/c/official/globals

3. In the current working directory: /users/myself/work/globals

4. In the system standard directory: /usr/include/globals

The search will stop at the �rst successful attempt to open one of these �les.

If set with INCLUDE SEARCH, the include-search path becomes part of the search path
used by INCLUDE. Each path speci�ed in the INCLUDE SEARCH option denotes a
directory in which the compiler will look, in turn, for an included �le. The search stops after
the �rst successful attempt to open the �le.

Compiler Options 12-63

INLINE

INLINE is an HP Pascal Option.

The INLINE compiler option causes the code for a certain routine to be duplicated in-line
wherever it is called.

Syntax

$INLINE$

Default None.

Location Heading.

The advantage of duplicating routine code in-line is that it eliminates the overhead of routine
calls. Unlike macro expansion, it preserves call-by-reference parameters as such and allows
local parameters. The disadvantages are that it increases the amount of object code and
prevents recursion: a routine whose code is duplicated in-line cannot call itself or any other
routine that calls it.

Example

PROCEDURE Proc1 (X,Y: Integer) $INLINE$;

.

.

.

PROCEDURE Proc2 $INLINE$

(X,Y: Integer);

.

.

.

In each compilation unit where you want to duplicate the code of a speci�c routine in-line,
you must specify the entire routine de�nition. If you use the same routine in-line in more than
one compilation unit, put them in a separate �le and use the INCLUDE compiler option to
include that �le in each compilation unit.

(Example follows on next page.)

12-64 Compiler Options

INLINE

Example

The �le procfile contains this procedure, which other compilation units use in-line:

PROCEDURE x (a,b : integer; VAR c : char) $INLINE$;

BEGIN

c := chr(a+b);

END;

The following compilation unit uses the procedure x in-line:

PROGRAM prog;

BEGIN

.

.

.

$INCLUDE 'procfile'$

.

.

.

END.

The INLINE compiler option is equivalent to the INLINE procedure option. The procedure
option requires STANDARD LEVEL 'EXT MODCAL'; the compiler option does not.

You cannot debug inline routines with a symbolic debugger. You can debug routines that call
inline routines, but the inlined code is treated as a single statement and skipped. Breakpoints
can only be set before and after the inlined code.

Compiler Options 12-65

INTR NAME

INTR NAME is an HP Pascal Option.

The INTR NAME compiler option speci�es the name to be returned for an intrinsic. It is
only valid when used in conjunction with the BUILDINT compiler option.

Syntax

$INTR_NAME 'string'$

Parameter

string Speci�es the return name of the intrinsic to be entered in the intrinsic �le.
Lowercase and uppercase are signi�cant.

Default None.

Location Heading.

If an entry in the intrinsic �le speci�es INTR NAME when it is added to the intrinsic �le,
the name string is returned by the intrinsic �le search mechanism, and is used in calls to the
intrinsic routine.

Actually, the intrinsic search mechanism searches for the intrinsic name (other than speci�ed
by INTR NAME) or the alias (if speci�ed by the ALIAS compiler option), but it returns the
name speci�ed by INTR NAME.

Example

$BUILDINT 'MYINTR'$

PROGRAM Show_Buildint;

PROCEDURE Proc2 (p1 : Boolean;

p2 : integer;

p3 : real

);

$ALIAS 'proc2alias'$

$INTR_NAME 'proc2returnname'$

EXTERNAL;

BEGIN

END.

The intrinsic �le search mechanism searches for proc2alias, but returns proc2returnname.

12-66 Compiler Options

KEEPASMB

KEEPASMB

KEEPASMB is an HP Pascal Option.

The KEEPASMB compiler option causes the compiler to leave behind an assembler source �le
containing the code for the entire compilation unit. This �le can usually be run through the
assembler to produce the same object �le that the compiler produces directly.

On MPE/iX, the KEEPASMB option produces a �le with the formal designator PASASSM,
which is a temporary �le by default. You are recommended to �le-equate this name. You
must �le-equate it if the current group contains more than one compilation unit, or if the
resultant assembler source is too big. For information on �le equations, refer to the MPE/iX
Commands Reference Manual .

On HP-UX, the KEEPASMB option produces a �le with the same name as the source �le,
except that its su�x is .s instead of .p.

The command line option -S also speci�es this option.

Syntax

$KEEPASMB

�
ON

OFF

�
$

Default OFF

Location At front.

When you use the LIST CODE option with KEEPASMB, LIST CODE turns KEEPASMB
on.

Example

$KEEPASMB ON$

PROGRAM x;

BEGIN

END.

The program above produces the following assembly �le:

.SPACE $TEXT$

.SUBSPA LIT,QUAD=0,ALIGN=8,ACCESS=44

.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY

PROGRAM
_start

.PROC

.CALLINFO CALLER,FRAME=0,SAVE_SP,SAVE_RP

.ENTRY

STW 2,-20(0,30) ;offset 0x0

LDO 48(30),30 ;offset 0x4

STW 0,-4(0,30) ;offset 0x8

.CALL ;

Compiler Options 12-67

KEEPASMB

BL P_INIT_ARGS,2 ;offset 0xc

NOP ;offset 0x10

.CALL ;
BL U_INIT_TRAPS,2 ;offset 0x14

NOP ;offset 0x18

$00002711

.CALL

BL P_TERMINATE,2 ;offset 0x1c

NOP ;offset 0x20

NOP ;offset 0x24

.CALL

BL U_EXIT,2 ;offset 0x28

NOP ;offset 0x2c

LDW -68(0,30),2 ;offset 0x30

BV 0(2) ;offset 0x34

.EXIT

LDO -48(30),30 ;offset 0x38

.PROCEND ;ln=24,25,26;

.SUBSPA $UNWIND$,QUAD=0,ALIGN=8,ACCESS=44

.WORD PROGRAM

.WORD PROGRAM+56 ; = 0x38

.WORD 24 ; = 0x18

.WORD 6 ; = 0x6

.SUBSPA $RECOVER$,QUAD=0,ALIGN=4,ACCESS=44

.SPACE $PRIVATE$

.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31

.SUBSPA $GLOBAL$,QUAD=1,ALIGN=8,ACCESS=31

M$1

.ALIGN 8

.BLOCKZ 8

.SPACE $TEXT$

.SUBSPA $CODE$

.EXPORT PROGRAM,PRIV_LEV=3

.EXPORT _start,PRIV_LEV=3

.IMPORT P_INIT_ARGS,CODE

.IMPORT U_INIT_TRAPS,CODE

.IMPORT P_TERMINATE,CODE

.IMPORT U_EXIT,CODE

.END

12-68 Compiler Options

LINES

LINES

LINES is an HP Standard Option.

The LINES compiler option speci�es the number of lines per page of the listing.

The command line option -P also speci�es this option.

Syntax

$LINES integer$

Parameters

integer Positive integer not less than 20.

Default 59

Location Anywhere.

Example

PROGRAM show_lines (output);

VAR

i : shortint;

BEGIN

writeln('line 5');

writeln('line 6');

.

.

.

writeln('line 58');

$LINES 20$

writeln('line 60');

writeln('line 61');

.

.

.

writeln('line 79');

writeln('line 80');

END.

Compiler Options 12-69

LINES

The listing (simpli�ed) looks like this:

12-70 Compiler Options

LIST

LIST

LIST is an HP Standard Option.

When the LIST compiler option is ON, the compiler produces a listing of the source code.

The command line option -L also speci�es this option.

Syntax

$LIST

�
ON

OFF

�
$

Default ON.

Location Anywhere.

The �rst column of the listing shows the source statement number. This number appears in
the code o�set table, is used by the symbolic debugger, and is returned by the prede�ned
function statement number .

The second column of the listing shows a line number. The line number is provided by the
editor if the source �le is numbered; by the compiler if the source �le is unnumbered. If the
compiler numbers the lines, the lines are numbered consecutively, starting with 1. Included
�les are numbered separately (see the second example below, and the paragraph above it).

The third column of the listing shows the source statement nesting level (if the line is part of
a structured statement). If the line was not compiled (because it is a comment or is a�ected
by the SKIP TEXT option), then ** replaces the number.

The end of the listing shows the processor time, elapsed time, the number of lines compiled,
the number of lines compiled per minute, and the number of notes, warnings, and errors
issued during the compilation. Sample listings in this manual omit this information (except
where the example requires it). Times and rates vary, depending on the operating system, the
memory con�guration, system load, and the number of source lines.

If the compiler issues a message for a source line, it appears beneath that line in the listing in
this form:

**** {NOTE}

{WARNING}

{ERROR} #ord num [message] (message num)

If the compiler can pinpoint the item in the source line that caused the note, warning, or
error, the listing indicates that item with a caret (^).

The ord num is the ordinal number of the note, warning, or error (it is the ord numth note,
warning, or error in the compilation). The message num is the number that identi�es the
message, and message is the text that explains it.

Error and warning messages on multipage listings are chained; that is, the �rst such message
on a page gives the page number of the previous such message. If the listing has no error or
warning messages, its last page states this.

If LIST is OFF, and the compiler issues a message, it prints both the name of the include �le
that contains the line, and a copy of the line before issuing the message.

The LIST option must be ON for other options that a�ect the listing to have any e�ect.

Compiler Options 12-71

LIST

Example

PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

0 1.000 0

0 2.000 0

0 3.000 0 PROGRAM sort (infile,outfile,output);

0 4.000 0

0 5.000 0 VAR

0 6.000 0 infile : text;

1 7.000 0 outfile : text;

2 8.000 0

** 8.100 0 (* This line and the next three are not compiled:

** 8.200 0 CONST

** 8.300 0 max_array_size = 20000;

** 8.400 0 *)

2 9.000 0 CONST

2 10.000 0 max_array_size := 4000;

^

**** ERROR # 1 FOUND UNEXPECTED ":=" (025)

3 11.000 0 TYPE

3 12.000 0 data_type = integer;

4 13.000 0

4 14.000 0 VAR

4 15.000 0 data_array = array [1..max_array_size] OF data_type;

^

**** ERROR #2 FOUND UNEXPECTED "=" (025)

5 16.000 0

5 17.000 0 array_size : 0..max_array_size;

6 18.000 0

6 19.000 0 $PAGE$

PAGE 2 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

0 20.000 0 PROCEDURE read_data;

1 21.000 1 BEGIN

1 22.000 1 reset(infile);

2 23.000 1 array_size := 0;

3 24.000 1

3 25.000 1 WHILE ((NOT eof(infile))

4 26.000 1 AND

4 27.000 2 (array_size < max_array_size)) DO BEGIN

4 28.000 2

4 29.000 2 array_size := array_size + 1;

5 30.000 2 readln(infile,data_array[array_size]);

6 31.000 2 END;

6 32.000 1

6 33.000 2 IF (NOT eof(infile)) THEN BEGIN

7 34.000 2 writeln('Too many data points for sort program.');

8 35.000 2 writeln('Sorting partial list only.');

9 36.000 2 END;

9 37.000 1

9 38.000 1 close(infile);

10 39.000 1 END;

12-72 Compiler Options

LIST

10 40.000 0

0 41.000 0 $PAGE$

PAGE 3 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

0 42.000 0 PROCEDURE write_data;

1 43.000 0 VAR

1 44.000 0 index : 0..max_array_size;

2 45.000 1 BEGIN

2 46.000 1 rewrite(outfile);

3 47.000 1

3 48.000 1 FOR index := 1 TO array_size DO

4 49.000 1 writeln(outfile,'data_array[index]);

5 50.000 1

5 51.000 1 close(outfile);

6 52.000 1 END;

6 53.000 0

0 54.000 0 $PAGE$

PAGE 4 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

6 55.000 1 BEGIN

6 56.000 1 writeln('starting sort');

7 57.000 1

7 58.000 1 read_data;

8 59.000 1 sort_data;

^

PREVIOUS ERROR ON PAGE 1

**** ERROR # 3 IDENTIFIER NOT DEFINED (014)

9 60.000 1 write_data;

10 61.000 1

10 62.000 1 writeln('sort done');

11 63.000 1 END.

NUMBER OF ERRORS = 3 NUMBER OF WARNINGS = 0

PROCESSOR TIME 0: 0: 0 ELAPSED TIME 0: 0: 0

NUMBER OF LINES = 63 LINES/MINUTE = 0.0

NUMBER OF NOTES = 0

Compiler Options 12-73

LIST

Line numbers for statements in included �les are independent of line numbers for the �les that
include them.

Example

12-74 Compiler Options

LIST CODE

LIST CODE

LIST CODE is an HP Pascal Option.

When the LIST CODE compiler option is ON (and the LIST option is also ON), the compiler
produces a mnemonic listing of the object code of each procedure in the program. The
mnemonic listing appears at the end of the source listing of the compilation unit.

Syntax

$LIST_CODE

�
ON

OFF

�
$

Default OFF.

Location Anywhere.

Scope Applies to the entire compilation unit that contains it. The e�ective value is
the last value before the compilation unit's END statement.

Example

PAGE 1 HEWLETT-PACKARD ...

0 1.000 0 $LIST_CODE ON$

0 2.000 0 $STANDARD_LEVEL 'HP_MODCAL'$

0 3.000 0 $OS 'HPUX'$

0 4.000 0 PROGRAM x;

0 5.000 0 VAR

0 6.000 0 lp : globalanyptr;

1 7.000 0 bigarr : PACKED ARRAY [1.10] OF char;

2 8.000 0 i,j : integer;

4 9.000 1 BEGIN

4 10.000 1 i := 5; j := 10;

6 11.000 1 lp := addr(bigarr, i+j);

7 12.000 1 END.

PROGRAM

0 STW 2,-20(0,30) 38 LDW 28(0,27),22

4 LDO 48(30),30 3C ADD0 21,22,1

8 STW 0,-4(0,30) 40 ADD 19,1,31

C BL P_INIT_ARGS,2 44 STW 20,8(0,27)

10 NOP 48 STW 31,12(0,27)

14 BL U_INIT_TRAPS,2 00002711

18 NOP 4C BL P_TERMINATE,2

1C LDI 5,1 50 NOP

20 STW 1,32(0,27) 54 NOP

24 LDI 10,31 58 BL U_EXIT,2

28 STW 31,28(0,27) 5C NOP

2C LDO 16(27),19 60 LDW -68(0,30),2

30 LDSID (0,19),20 64 BV 0(2)

34 LDW 32(0,27),21 68 LDO -48(30),30

Compiler Options 12-75

LISTINTR

LISTINTR is an HP Pascal Option.

The LISTINTR compiler option lists to a speci�ed �le the contents of an intrinsic �le. The
intrinsic �le is that speci�ed by the BUILDINT or SYSINTR compiler option. If neither
BUILDINT nor SYSINTR is speci�ed, the system intrinsic �le is accessed.

Syntax

$LISTINTR 'string'$

Parameter

string Speci�es the name of the �le into which the compiler lists the contents of the
intrinsic �le that BUILDINT speci�es.

Default 'PASLIST'.

Location Anywhere.

On MPE the default size is 1023 records. If this record limit is too small, the LISTINTR
operation will not complete. You can use the :BUILD command or a :FILE equation to
specify a larger �le. For more information on :BUILD and :FILE, see the MPE/iX Commands
Reference Manual .

Note The pc option +C on HP-UX a�ects the LISTINTR compiler option (see the
HP Pascal/HP-UX Programmer's Guide).

Example

Intrinsic File Listing

Display of SYSINTR.PUB.SYS

(TUE, OCT 7, 1986, 4:33 PM)

fopen (FOPEN) :

LANGUAGE is HP PASCAL

FUNCTION [SHORTINT(16) at OFFSET 0] with 13 PARAMETERS

PARM # 1: STRUCTURE(65536) at OFFSET 0 by UNCHECKABLE ANYVAR;

SHORT ADDR, 8-BIT ALIGNED

DefaultValue = NIL

PARM # 2: SHORTNNINT(16) at OFFSET 32 by VALUE

DefaultValue = NIL

PARM # 3: SHORTNNINT(16) at OFFSET 48 by VALUE

DefaultValue = NIL

PARM # 4: SHORTINT(16) at OFFSET 64 by VALUE

DefaultValue = 0

PARM # 5: STRUCTURE(65536) at OFFSET 80 by UNCHECKABLE ANYVAR;

SHORT ADDR, 8-BIT ALIGNED

DefaultValue = NIL

PARM # 6: STRUCTURE(65536) at OFFSET 112 by UNCHECKABLE ANYVAR;

SHORT ADDR, 8-BIT ALIGNED

DefaultValue = NIL

12-76 Compiler Options

LISTINTR

PARM # 7: SHORTINT(16) at OFFSET 144 by VALUE

DefaultValue = 0

PARM # 8: SHORTINT(16) at OFFSET 160 by VALUE

DefaultValue = 0

PARM # 9: SHORTINT(16) at OFFSET 176 by VALUE

DefaultValue = 0

PARM # 10: INTEGER(32) at OFFSET 192 by VALUE

DefaultValue = 0

PARM # 11: INTEGER(16) at OFFSET 224 by VALUE

DefaultValue = 0

PARM # 12: INTEGER(16) at OFFSET 240 by VALUE

DefaultValue = 0

PARM # 13: INTEGER(16) at OFFSET 256 by VALUE

DefaultValue = 0

fread (FREAD) :

LANGUAGE is HP PASCAL

FUNCTION [SHORTINT(16) at OFFSET 0] with 3 PARAMETERS

PARM # 1: INTEGER(16) at OFFSET 0 by VALUE

PARM # 2: INTEGER(65536) at OFFSET 16 by UNCHECKABLE ANYVAR;

LONG ADDR, 8-BIT ALIGNED

PARM # 3: SHORTINT(16) at OFFSET 80 by VALUE

Compiler Options 12-77

LITERAL ALIAS

LITERAL ALIAS is an HP Pascal Option.

When the LITERAL ALIAS compiler option is ON, the compiler takes aliases literally
(exactly as they are spelled, di�erentiating between uppercase and lowercase letters). When
LITERAL ALIAS is OFF, the compiler downshifts aliases (or upshifts them if the compiler
option UPPERCASE is ON).

Syntax

$LITERAL_ALIAS

�
ON

OFF

�
$

Default OFF

Location Anywhere.

The LITERAL ALIAS compiler option overrides the UPPERCASE compiler option.

Example

$LITERAL_ALIAS ON$

PROCEDURE $ALIAS 'PRoc1Name'$ PROC1; {External name is PRoc1Name}

$LITERAL_ALIAS OFF$

PROCEDURE $ALIAS 'PRoc2Name'$ PROC2; {External name is proc2name}

12-78 Compiler Options

LOCALITY

LOCALITY

LOCALITY is an HP Pascal Option.

The LOCALITY compiler option speci�es a locality name to be associated with the code for
all subsequent routines until the next LOCALITY option. The compiler puts the locality
name in the object �le.

Syntax

$LOCALITY 'string'$

Parameter

string Speci�es a locality name for the object code. The compiler does not
distinguish between uppercase and lowercase letters in string .

Default The nameless locality.

Location Anywhere.

Using locality names can improve the performance of a program in cases where calling a
routine in the same locality can require fewer instructions and fewer page faults than calling
a routine in a di�erent locality. If you use $LOCALITY and want to go back to using default
locality, use $LOCALITY `CODE'$. Refer to LINKEDITOR manuals for details.

Example

$LOCALITY 'Sample'$

PROGRAM show_locality;

PROCEDURE proc1;

BEGIN

.

.

END;

BEGIN

.

.

proc1;

.

.

END.

Compiler Options 12-79

LONG CALLS

LONG CALLS is an HP Pascal option.

The LONG CALLS option can be used to change the type of branches that are generated for
calls or millicode calls.

Syntax

$LONG_CALLS

8<
:
integer

ON

OFF

9=
;$

Parameters

0 or OFF Regular short calls are generated.

1 or ON Long calls are generated for regular calls and millicode calls.

2 Millicode calls are long and regular calls are short.

3 Millicode calls are short and regular calls are long.

Default MPE/iX 0

On HP-UX 0 if any one of the following options are used:

-O +O +z +Z

3 if none of the above options are used.

Location Anywhere, but in order to be e�ective, it must appear before a place in the
code where label declarations or directives can appear.

Normally, for small programs, the branches generated reach their targets. If the branch does
not reach, the linker generates Long Branch stubs. These stubs take longer to execute and
may change the program's locality. These stubs are shared within a subspace, with one or
more procedures.

By using the LONG CALLS options, the compiler can generate a di�erent and longer code
sequence that always reach the branch. The disadvantage of using the longer call sequence is
that the longer call sequence is done on calls that do reach the branch. This causes a code
expansion for every call.

For HP-UX, millicode calls usually reach in program �les, so options 1 and 2 are not needed.
Also, they are not needed when compiling with +z or +Z (or SHLIB CODE).

See the Procedure Calling Conventions Reference Manual and the Precision Architecture
Instruction Set Reference Manual for more information on stubs and branches.

Example

$LONG_CALLS 1$

program call;

procedure p_r(x:real); external;

begin

p_r(1.5);

end.

12-80 Compiler Options

MAPINFO

MAPINFO

MAPINFO is an HP Pascal Option.

The compiler option MAPINFO prints information for array and record types.

Syntax

$MAPINFO

�
ON

OFF

�
$

Default OFF

Location Anywhere.

The information printed with the MAPINFO option is the same as that printed with the
TABLES option set to ON (see \TABLES" in this chapter.) However, MAPINFO prints this
information at the same time the type is declared instead of at the end of the scope in which
the type is declared. In addition, MAPINFO prints the minimum alignment of the structured
type.

Example

The example below shows a listing of PROGRAM p created with the MAPINFO option.

$MAPINFO ON$

PROGRAM p;

TYPE

rec = RECORD

f1 : integer;

f2 : integer;

END;

REC MAX RECORD SIZE = x8 bytes

F1 x0.0 @ 4.0

F2 x4.0 @ 4.0

MIN ALIGNMENT = x4 byte

BEGIN

END;

In the example above, the x indicates hexadecimal notation is being used. The table below
further explains how to interpret the information generated by MAPINFO.

Relative Starting Position Storage Size

x bytes.bits @ bytes.bits

Compiler Options 12-81

MLIBRARY

MLIBRARY is an HP Pascal Option.

The MLIBRARY compiler option speci�es the �le into which the compiler puts a compiled
module de�nition, instead of putting it in the object �le. The �le speci�ed here can then be
used in a SEARCH option (see \SEARCH"). Program comments must not be written on the
same line as $MLIBRARY.

Syntax

$MLIBRARY 'string'$

Parameter

string Speci�es the name of the �le into which the compiler writes the module
de�nition.

If the �le exists, it must be an external library (otherwise, it is an error). If
the �le is an external library, the compiler updates the module de�nition in
the �le.

If the �le does not exist, the compiler creates a new �le with the speci�ed
name.

Default Compiled module de�nition goes into the object �le.

Location Anywhere.

Example

$MLIBRARY 'xmodule'$

MODULE x;

EXPORT

.

.

.

IMPLEMENT

.

.

.

END.

12-82 Compiler Options

NLS SOURCE

NLS SOURCE

NLS SOURCE is a System-Dependent MPE/iX and HP-UX Option.

When the NLS SOURCE compiler option is ON, the compiler supports the parsing of
two-byte characters within string literals and comments.

The command line option -Y also speci�es this option.

Syntax

$NLS_SOURCE

�
ON

OFF

�
$

Default OFF.

Location Anywhere.

NLS SOURCE ON enables the compiler to parse 16-bit characters within literal strings and
comments. (Note that eight-bit characters are always parsed correctly.)

NLS SOURCE OFF speci�es that 16-bit characters are not supported.

Example

$NLS_SOURCE ON$

{Native Mode language source code can appear here.}

.

.

.

CONST

s = "some string literal";

$NLS_SOURCE OFF$

{Native Mode language source code cannot appear here.}

Note On MPE/iX, a warning occurs if the NLUSERLANG JCW is not set before
compiling a program that turns the NLS SOURCE compiler option ON.

On HP-UX, a warning occurs if the LANG environment variable is not set
before compiling a program that turns the NLS SOURCE compiler option
ON.

Compiler Options 12-83

NOTES

NOTES is an HP Pascal Option.

When the NOTES compiler option is ON, the compiler prints notes, which give you
information that can help you correct possible run-time errors or make your program more
e�cient.

Syntax

$NOTES

�
ON

OFF

�
$

Default ON.

Location Anywhere.

Example

PAGE 1 HEWLETT-PACKARD ...

0 1.000 0 PROGRAM Note_Example;

0 2.000 0

0 3.000 0 VAR

0 4.000 0 Ptr1 : LocalAnyPtr;

1 5.000 0 Ptr2 : ^Integer;

2 6.000 0

2 7.000 1 BEGIN

2 8.000 1 Ptr1 := NIL;

3 9.000 1 Ptr2 := Ptr1;

**** NOTE # 1 CODE GENERATED TO VERIFY CORRECT POINTER ALIGNMENT (377)

4 10.000 1 $NOTES OFF$

4 11.000 1 Ptr2 := Ptr1;

5 12.000 1 END.

12-84 Compiler Options

OPTIMIZE

OPTIMIZE

OPTIMIZE is an HP Pascal Option.

The OPTIMIZE compiler option speci�es level one, level two, or no optimization for
the program being compiled Refer to the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide, depending on your implementation, for more information
on the optimizer.

The command line options +O1, +O2, and -O also specify this option.

Syntax

$OPTIMIZE

8>>>>>><
>>>>>>:

'LEVEL1'

'LEVEL2'

'BASIC_BLOCKS num'

'BASIC_BLOCKS_FENCE num'

ON

OFF

9>>>>>>=
>>>>>>;
$

Parameters

LEVEL1 The compiler compiles the program with level one
optimization.

LEVEL2 The compiler compiles the program with level two
optimization.

BASIC BLOCKS num The compiler compiles the program with level two
optimization, but drops down to level one for those
procedures with more than num basic blocks.

BASIC BLOCKS FENCE num No optimization is requested but when it is, the number of
basic blocks at which the compiler drops to level one is
num.

ON The compiler compiles the program with level two
optimization.

OFF The compiler compiles the program without optimization.

Default OFF.

Location Anywhere, but in order to be e�ective, it must be before the place in the code
where label declarations or directives can appear.

Scope All following source code, until overridden by another OPTIMIZE option.

Compiler Options 12-85

OPTIMIZE

Basic Blocks

A basic block is a sequence of code with a single entry point and a single exit point. A basic
block has no internal branches. Optimizing procedures with a large number of basic blocks
can take a long time and use a large amount of virtual memory. Therefore, the compiler
behaves di�erently on large procedures, when optimizing at Level 2. Any procedure containing
more than 500 basic blocks causes the optimizer to drop down to Level 1 optimization for that
procedure. A warning is emitted that states the name of the procedure and the number of
basic blocks it contains:

Optdriver: <num> basic blocks; dropping to level 1 optimization for <proc>. (6059)

OPTIMIZE 'BASIC BLOCKS num' Compiler Option

This option allows you to request Level 2 optimization and change the number of basic blocks
at which the optimizer drops down to Level 1 optimization.

Syntax

$OPTIMIZE 'BASIC_BLOCKS num'$

where num is the number of basic blocks a procedure can have before the optimizer drops
down to Level 1 optimization.

Note To get the \old" behavior of -O, (for example, to disable completely the basic
blocks feature), you can use the following form of the option:

$OPTIMIZE 'BASIC_BLOCKS 0'$

Notice that 0 has a special meaning here; it does not mean zero basic blocks.

On HP-UX, the +Obbnum command-line option can be speci�ed instead of the
$OPTIMIZE 'BASIC_BLOCKS num'$ compiler option.

12-86 Compiler Options

OPTIMIZE

OPTIMIZE 'BASIC BLOCK FENCE num' Compiler Option

This option allows you to change the default level of basic blocks (500) at which the optimizer
drops down to Level 1 optimization.

Syntax

$OPTIMIZE 'BASIC_BLOCK_FENCE num'$

where num is the number of basic blocks at which the optimizer drops down to Level 1
optimization.

This option does not request optimization; it only says that when Level 2 optimization is
requested, to change the default level at which the optimizer drops down to Level 1.

Note To disable completely the basic blocks feature (for example, to disable the
dropping from Level 2 to Level 1), you can use the following form of the
option:

$OPTIMIZE 'BASIC_BLOCK_FENCE 0'$

When this form of the option is speci�ed Level 2 is requested, the \old" level 2
will be available; that is, no dropping from Level 2 to Level 1.

Notice that 0 has a special meaning here; it does not mean zero basic blocks.

Compiler Options 12-87

OPTIMIZE

Example

$OPTIMIZE 'LEVEL1'$

PROGRAM x;
PROCEDURE y $OPTIMIZE 'LEVEL2'$; {Compiled with level two optimization}

BEGIN {y}

.

.

.

END; {y}

PROCEDURE z; {Compiled with level two optimization}

BEGIN {z}

.

.

.

END; {z}

PROCEDURE a $OPTIMIZE OFF$; {Compiled with no optimization}

PROCEDURE b; {Compiled with no optimization}

BEGIN {b};

.

.

.

END; {b};

BEGIN {a}

.

.

.

END; {a}

BEGIN {x} {Compiled with no optimization}
.

.

.

END. {x}

12-88 Compiler Options

OS

OS

OS is an HP Pascal Option.

The OS compiler option speci�es the operating system on which the program is intended
to run (not to be confused with the operating system on which it is compiled). Then, the
compiler identi�es language features that are not available on that operating system.

Syntax

$OS '

8>>>>><
>>>>>:

NONE

HPUX

MPE/XL

MPEXL

MPE

9>>>>>=
>>>>>;
'$

Parameters

NONE The compiler identi�es language features that are unavailable on the HP-UX
operating system or the MPE/iX and MPE V operating systems.

Available features are:

All ANSI Pascal features.
All HP Standard Pascal features.
All HP Pascal prede�ned routines.

HPUX The compiler recognizes language features that are available on the HP-UX
operating system.

Available features are:

All ANSI Pascal features.
All HP Standard Pascal features.
All HP Pascal prede�ned routines.
Prede�ned procedure assert .
Prede�ned function baddress .
Prede�ned function bitsizeof .
Prede�ned function fnum.
Prede�ned function sizeof .
Prede�ned function waddress .
Standard program parameter stderr .

MPE/XL or
MPEXL

The compiler recognizes language features that are available on the MPE/iX
operating system.

Available features are:

All ANSI Pascal features.
All HP Standard Pascal features.
All HP Pascal prede�ned routines.
Prede�ned procedure assert .
Prede�ned function baddress .
Prede�ned function bitsizeof .
Prede�ned function fnum.
Prede�ned function sizeof .
Prede�ned function waddress .

Compiler Options 12-89

OS

Prede�ned function ccode.
RUN command parameter INFO.
RUN command parameter PARM.

MPE The compiler recognizes language features that are available on the MPE V
operating system.

Available features are the same as for MPE/iX.

Default Operating system on which the compiler is running.

Location Anywhere.

If the compiler encounters a language feature that is unavailable on the intended operating
system, it issues an error.

If you are writing a program on one operating system and intend to run it on another
operating system, use the OS option to recognize language features that are available on the
intended system.

Example

PROGRAM prog;

VAR

condcode : 0..2;

.

.

.

BEGIN

$OS 'MPE'$

condcode := ccode; {this is legal}

.

.

.

$OS 'NONE'$

condcode := ccode; {this is a compile-time error}

END.

12-90 Compiler Options

OVFLCHECK

OVFLCHECK

OVFLCHECK is an HP Pascal Option.

When the OVFLCHECK compiler option is ON, the compiler generates overow checking
code for all integer arithmetic operations. Overow-checking code stops the program and
issues an error message if an arithmetic operation results in an integer overow.

Syntax

$OVFLCHECK

�
ON

OFF

�
$

Default ON.

Location Anywhere, but it a�ects an entire statement at a time. If OVFLCHECK is
ON when the compiler processes a statement terminator, then all arithmetic
operations in the statement are checked for overow at run time. The
OVFLCHECK option stays ON or OFF until another OVFLCHECK option
overrides it.

When OVFLCHECK is OFF, integer overows are not detected. One use for this is in a
random number generator, when overows are expected and are to be ignored.

Note This option can be used to turn o� overow for bit32 multiplication; this
option has no e�ect on bit52 or longint multiplication.

Example

PROGRAM t (output);

MODULE rand;

EXPORT

FUNCTION random : integer;

PROCEDURE init_random (seed,

range : integer);

IMPLEMENT

CONST

multiplier = 31415821;

VAR

rand_seed,

rand_range : integer;

PROCEDURE init_random (seed,

range : integer);

BEGIN

rand_seed := seed;

rand_range := range;

END;

Compiler Options 12-91

OVFLCHECK

FUNCTION random : integer;

BEGIN

$PUSH, OVFLCHECK OFF$
rand_seed := (rand_seed * multiplier +1) MOD rand_range;

POP

random := rand_seed;

END;

END;

IMPORT rand;

BEGIN

init_random(1234567,1000);

writeln(random);

writeln(random);

writeln(random);

END.

12-92 Compiler Options

PAGE

PAGE

PAGE is an HP Standard Option.

The PAGE compiler option starts a new page of the listing if the LIST option is ON.

Syntax

$PAGE$

Default Not applicable.

Location Anywhere.

Example

PROGRAM show_page (output);

BEGIN

writeln('First page');

$PAGE$

writeln('Second page');

END.

The listing (simpli�ed) looks like this:

Compiler Options 12-93

PAGEWIDTH

PAGEWIDTH is an HP Pascal Option.

The PAGEWIDTH compiler option speci�es the width of the compiler listing.

Syntax

$PAGEWIDTH integer$

Parameter

integer An integer in the range 80..132, the number of characters per line in the
compiler listing.

Default 120.

Location Anywhere.

Example

$PAGEWIDTH 80$

12-94 Compiler Options

PARTIAL EVAL

PARTIAL EVAL

PARTIAL EVAL is an HP Standard Option.

When the PARTIAL EVAL compiler option is ON, the compiler produces code that
determines the value of each Boolean expression by evaluating the minimum number of
operands, from left to right. When the PARTIAL EVAL option is OFF, the compiler
produces code that evaluates every operand of each Boolean expression in an implementation
dependent order.

Syntax

$PARTIAL_EVAL

�
ON

OFF

�
$

Default ON.

Location Statement.

The advantages of partial evaluation are more readable source code and more e�cient object
code.

Examples

$PARTIAL_EVAL OFF$

IF (index IN [lower..upper]) AND

(ptr_array[index] <> NIL) AND

(ptr_array[index]^ = 5) THEN ...

In this �rst example, if index is out of range, then ptr_array[index] causes a run-time error.
If index is valid but ptr_array[index] is nil, then ptr_array[index]^ causes a run-time
error.

$PARTIAL_EVAL ON$

IF (index IN [lower..upper]) AND

(ptr_array[index] <> NIL) AND

(ptr_array^ = 5) THEN ...

In this second example, if index is out of range, then (ptr_array[index] <> nil) is not
evaluated. If ptr_array[index] is nil then (ptr_array^ = 5) is not evaluated.

$PARTIAL_EVAL OFF$

IF (index IN [lower..upper] THEN

IF (ptr_array[index] <> NIL) THEN

IF (ptr_array[index]^ = s) THEN ...

This third example is equivalent to the second example.

Compiler Options 12-95

POP

POP is an HP Pascal Option.

The POP compiler option restores the compiler option settings that the last PUSH option
saved (with the exceptions listed below.)

Syntax

POP

Default Not applicable.

Location Anywhere.

Compiler options with the location \At front" are not a�ected by POP. The following
compiler options are not a�ected by POP either:

ALIAS

COPYRIGHT

ELSE

ENDIF

EXTERNAL

FONT

GLOBAL

IF

INCLUDE

LOCALITY

PAGE

POP

PUSH

SKIP_TEXT

SUBPROGRAM

SYSINTR

TITLE

Example

{Include file for supporting types.}

$PUSH, LIST OFF$

{Do not list the supporting types.

To preserve the LIST state (ON or OFF) that this program set,

save it first}

TYPE

bit1 = 0..1;

bit2 = 0..2;

bit3 = 0..7;

.

.

.

bit16 = 0..32767;

POP

TYPE

posshortint = bit16;

.

.

.

12-96 Compiler Options

PUSH

PUSH

PUSH is an HP Pascal Option.

The PUSH compiler option saves the current compiler option settings.

Syntax

$PUSH$

Default Not applicable.

Location Anywhere.

The PUSH option can execute 15 times before the POP option must execute.

Example

{Include file for supporting types.}

$PUSH, LIST OFF$

{Do not list the supporting types.

To preserve the LIST state (ON or OFF) that this program set,

save it first}

TYPE

bit1 = 0..1;

bit2 = 0..2;

bit3 = 0..7;

.

.

.

bit16 = 0..32767;

POP

TYPE

posshortint = bit16;

.

.

.

Compiler Options 12-97

RANGE

RANGE is an HP Standard Option.

When the RANGE compiler option is ON, the compiler generates range-checking code
for assignments, array indices, parameter passing, extensible parameters, pointers, CASE
statements, and set operations. If a range check fails, an error message is issued and the
program aborts (or causes an escape to be executed if a TRY-RECOVER construct is active).

The command line option +R also speci�es this option.

Syntax

$RANGE

�
ON

OFF

�
$

Default ON.

Location Statement.

Note Even when RANGE is ON, the compiler generates as little range-checking
code as possible. If it can determine that a value can never be out of range at
run time, it does not generate range-checking code for that variable.

12-98 Compiler Options

RLFILE

RLFILE

RLFILE is a System-Dependent MPE/iX Option.

When the RLFILE compiler option is ON, every level-one routine goes into its own object
module in the RL �le. (Routines nested within level-one routines go into the same object
module as the level-one routine in which they are nested.)

Syntax

$RLFILE

�
ON

OFF

�
$

Default OFF.

Location At front.

When RLFILE is OFF (the default), the entire compilation unit goes into one object �le. If
the object �le is an existing RL �le, the entire compilation is placed into it. If the object �le is
an existing NMOBJ �le, the object �le is rewritten. If the object �le is neither an RL nor an
NMOBJ �le, an error occurs. If the object �le does not exist, the system creates an NMOBJ
�le with the speci�ed name.

When RLFILE is ON, the compilation unit goes into an RL �le procedure by procedure.
This allows procedural-level manipulation similar to that on MPE V. An error occurs if the
object �le exists, but is not an RL �le (that is, if it is an NMOBJ �le). If the object �le is an
existing RL �le, object modules replace existing modules in the RL �le. If the object �le does
not exist, an RL �le is created with the speci�ed name.

When RLFILE is ON, the RL �le can be signi�cantly larger than if the program were
compiled into an NMOBJ �le, due to the duplicate information in each level-one object
module. If SYMDEBUG is also ON, the RL �le is even larger, because debug information is
duplicated in each level-one object module if a local variable is declared using a global type.

Example

$RLFILE ON$

PROGRAM prog;

.

.

.

Note If you use Pascal modules, all procedures and data in a particular module are
put into one object module.

Compiler Options 12-99

RLINIT

RLINIT is a System-Dependent MPE/iX Option.

The RLINIT compiler option initializes an RL �le to empty.

Syntax

$RLINIT$

Default None.

Location At front.

The RLINIT compiler option initializes an RL �le to empty before placing any object code
in it. If RLINIT is not used, the compiler appends the new object code to any code that
is already in the RL �le. If $OLDPASS is used, or no �le with the speci�ed name exists, the
system creates an RL �le. If the speci�ed object �le is not an RL �le (that is, if it is an
NMOBJ �le), an error occurs.

12-100 Compiler Options

S300_EXTNAMES

S300_EXTNAMES

S300 EXTNAMES is an HP Pascal Option.

The S300 EXTNAMES compiler option speci�es that the external names of procedures in
modules are of the form modulename procedurename.

Syntax

$S300_EXTNAMES

�
ON

OFF

�
$

Default OFF.

Location Before the EXPORT part of a module.

The S300 EXTNAMES option tells the linker to use the external name
modulename procedurename instead of procedurename when linking a program. The
name modulename procedurename is in lowercase letters (as far as the linker is concerned)
unless the procedure was compiled with the compiler option UPPERCASE ON.

The S300 EXTNAMES option applies to the entire module, but not to other modules in the
same compilation unit. If a compilation unit contains several such modules, each one must
contain the S300 EXTNAMES option.

The purpose of this option is to allow non-Pascal source code that calls external procedures
that are in a Pascal module to be ported from, or be common with, HP9000 Series 300 source
code, without changing the source code. The HP9000 Series 300 pre�xes modulename to
procedurename in forming the link name; HP Pascal does not.

Compiler Options 12-101

S300_EXTNAMES

Example

MODULE M1;

$S300_EXTNAMES ON$
EXPORT

VAR

V1 : INTEGER;

PROCEDURE P1 (P : CHAR);

IMPLEMENT

.

.

.

END;

MODULE M2;

EXPORT

VAR

V2 : INTEGER;

PROCEDURE P2 (P : INTEGER);

IMPLEMENT

.

.

.

END;

The external names for V1, P1, V2, and P2 are M1_V1, M1_P1, V2, and P2, respectively.

12-102 Compiler Options

SEARCH

SEARCH

SEARCH is an HP Pascal Option.

The SEARCH compiler option speci�es one or more �les for the compiler to search for module
de�nitions. The �les can be:

Created with the MLIBRARY compiler option.

Object �les into which the modules were compiled (without the MLIBRARY compiler
option).

Archives (.a �les) of such object �les. On MPE/iX, these are RL �les created by the Link
Editor using such object �les.

You must use the SEARCH option when a module being imported is not de�ned within the
same compilation unit as the IMPORT statement.

Syntax

$SEARCH 'string [, string]...'$

Parameter

string Has value of the form:

[+]�le name[, �le name] . . .

The compiler searches the �le names (in the order speci�ed) for module
de�nitions. If + is speci�ed, the compiler concatenates this list of �le names
to the existing list (which was created by previous SEARCH options). If + is
not speci�ed, this list of �le names replaces the existing list. (Note that + can
only appear before the �rst string.)

An empty string resets the search list to the default.

Default On MPE/iX: PASLIB.PUB.SYS
On HP-UX: /usr/lib/paslib
Module de�nitions for prede�ned modules are kept in the system default
module library (paslib), so you do not need to specify the search options for
these modules.

Location Anywhere before the import statement.

Compiler Options 12-103

SEARCH

Pascal requires that lower level modules be included in the $SEARCH path, even if the higher
level modules do not use them. For example:

module a $search 'a.o'$ $search 'a.o, b.o'$
export module b module c

. import a import b

. export export

. . .

end. . .

. .

end. end.

Example 1

$SEARCH 'file1,file2','file3'$ {The search list contains file1, file2, file3.}

$SEARCH '+file4'$ {Adds file4 to the search list.}

IMPORT {The search list now contains file4.}

MOD1,MOD2,MOD3;

.

.

.

$SEARCH 'file5,file6', {Replaces old search list.}

'file7,file8'$ {Can span more than one line.}

IMPORT MOD4; {The search list now contains only file5,}

. {file6, file7, file8.}

.

.

The SEARCH compiler option tells the compiler which �les to search for module de�nitions.
It does not indicate to the linker which �les should be linked with the main program. All
object �les, or archives and object �les that appear in any search options in the main program
must be explicitly speci�ed to the linker at link time.

Example 2

Program main(input,output);

$SEARCH 'a.o,b.o,c.o'$ {All object files for lower level}

{modules must be included. }

import c;
.

.

.

end.

The object �les a.o, b.o, and c.o must be speci�ed to the linker for the example program to
be successfully linked.

12-104 Compiler Options

SET

SET

SET is an HP Pascal Option.

The SET compiler option assigns a Boolean value (TRUE or FALSE) to each of one or more
identi�ers that appear in subsequent IF options.

Syntax

$SET 'identi�er=Boolean

��
,

;

�
identi�er=Boolean

�
'$

Parameters

identi�er Appears in an IF option later in the program. The identi�er cannot be AND,
OR, or NOT.

Boolean The value TRUE or FALSE (the compiler is not case-sensitive).

Default Not applicable.

Location Anywhere.

Example

The following two program fragments are equivalent:

{Fragment 1}

$SET 'group1=true, group2=false'$

.

.

.

$IF 'group1 AND (NOT group2)'$

2
664
source line

.

.

.

3
775

$ENDIF$

{Fragment 2}

$SET 'group1 = true'$

$SET 'group2 = false'$

.

.

.

$IF 'group1'$

$IF 'NOT group2'$

2
664
source line

.

.

.

3
775

$ENDIF$

$ENDIF$

Compiler Options 12-105

SHLIB CODE

SHLIB CODE is a System Dependent HP-UX Option.

The compiler option SHLIB CODE causes the compiler to generate position independent code
(PIC) for use in shared libraries.

The command line options +Z and +z also specify this option.

Syntax

$SHLIB_CODE

8<
:
integer

ON

OFF

9=
;$

Parameters

integer Must be in the range 0..2.

Value Compiler generates:

0 Position dependent code.

1 Short load sequence PIC.

2 Long load sequence PIC.

ON Compiler generates short load sequence PIC.

OFF Compiler generates position dependent code.

Default OFF (Position dependent code).

Location At front.

Command Line Option +z or +Z

Programs that have been linked to shared libraries (.sl) use less disk space than those linked
to archive libraries (.a). Also, programs linked to shared libraries get automatic updates when
a new version of the shared library is installed.

When compiling for a shared library use $SHLIB_CODE ON$ or $SHLIB_CODE 1$. However, if
the number of external references in the resulting shared library exceeds a system-dependent
limit, use $SHLIB_CODE 2$. The linker will indicate when the limit has been exceeded.

SHLIB CODE is valid only when the target operating system is HP-UX (see \OS"). The
resulting object �le will link only HP-UX.

For more information about shared libraries and PIC, refer to Programming on HP-UX .

12-106 Compiler Options

SHLIB VERSION

SHLIB VERSION

SHLIB Version is a System-Dependent HP-UX Option.

The compiler option SHLIB VERSION causes the compiler to place a shared library version
string into the resulting object �le.

$SHLIB_VERSION 'string'$

Parameters

String Speci�es the date stamp to be used by the linker for shared library version
control. Must be in the form: mm/yy or mm/yyyy.

Default '01/1990'.

Location At front.

Example

$OS 'HPUX'$

$SHLIB_CODE ON$

$SHLIB_VERSION '04/1990'$

SHLIB VERSION is designed to be used with the SHLIB CODE compiler option. For more
information about shared library version control, refer to Programming on HP-UX .

Compiler Options 12-107

SKIP TEXT

SKIP TEXT is an HP Pascal Option.

The compiler ignores everything between $SKIP_TEXT ON$ and $SKIP_TEXT OFF$.

Syntax

$SKIP_TEXT

�
ON

OFF

�
$

Default OFF

Location Anywhere.

Example

PROGRAM show_skiptext (output);

BEGIN

writeln('This will print.');

$SKIP_TEXT ON$

writeln('This won''t print.');

$SKIP_TEXT OFF$

writeln('This will print.');

END.

The preceding program prints:

This will print.

This will print.

12-108 Compiler Options

SKIP TEXT

There is one exception to how SKIP-TEXT works. Symbols that begin a comment ({ or (*)
are recognized and cause text to be commented out until a closing comment symbol (} or *))
is encountered.

Example

0 1.000 0 PROGRAM show_skiptext_exception (output);

0 2.000 1 BEGIN

0 3.000 1 writeln('This will print.');

1 4.000 1 $SKIP_TEXT ON$

** 5.000 1 (* This unclosed comment causes the following option

** 6.000 1 to be considered part of the comment:

** 7.000 1 $SKIP_TEXT OFF$

** 8.000 1 writeln('This will not print because the ');

** 9.000 1 writeln('"skip_text off" option was commented out.');

** 10.000 1 Comment is closed on the next line.

** 11.000 1 *)

1 12.000 1 $SKIP_TEXT OFF$

1 13.000 1 writeln('This also will print.');

2 14.000 1 END.

Output:

This will print.

This also will print.

Compiler Options 12-109

SPLINTR

SPLINTR is an HP Pascal Option.

The SPLINTR compiler option speci�es the intrinsic �le that the compiler searches for
information on intrinsic routines. It is the same as the SYSINTR compiler option and is
provided only for backward compatibility with Pascal/V.

Syntax

$SPLINTR 'string'$

Parameter

string Speci�es the name of the intrinsic �le that the compiler must search for
information about intrinsic routines. This intrinsic �le must be in SYSINTR
format, not SPLINTR format (see Table 12-2 in \SYSINTR").

Default System intrinsic �le (see the HP Pascal/iX Programmer's Guide or the the
HP Pascal/HP-UX Programmer's Guide , depending on your implementation).

Location Anywhere.

Example

See the example for the SYSINTR compiler option.

Note The pc option +C on HP-UX a�ects the SPLINTR compiler option (see the
HP Pascal/HP-UX Programmer's Guide).

12-110 Compiler Options

STANDARD_LEVEL

STANDARD_LEVEL

STANDARD LEVEL is an HP Standard Option.

The STANDARD LEVEL compiler option speci�es the level of syntax that the compiler
routinely processes. The compiler issues a warning if it encounters a language feature that
is illegal at that level. The compiler compiles the illegal feature if possible; otherwise, it is a
syntax error.

Syntax

$STANDARD_LEVEL '

8>>>>><
>>>>>:

ANSI

ISO

HP_PASCAL

HP_MODCAL

EXT_MODCAL

9>>>>>=
>>>>>;
'$

Parameters

ANSI Allows only ANSI Pascal.

ISO Allows only ISO Pascal (and ANSI Pascal).

HP_PASCAL Allows only HP Pascal (and ISO Pascal).

HP_MODCAL Allows HP Pascal and some system programming extensions.

EXT_MODCAL Allows HP Pascal and all system programming extensions.

Default HP_PASCAL.

Location Anywhere.

The HP Standard speci�es the STANDARD LEVEL compiler option only with the standard
levels ANSI, ISO, and HP PASCAL. HP Pascal accepts the additional standard levels
HP MODCAL and EXT MODCAL.

A standard level violation (use of a language feature that is not available at the current
standard level) causes the compiler to issue a warning, except if the violation involves a
reserved word, in which case it is an error.

Note The STANDARD LEVEL compiler option also accepts the Pascal/V standard
levels 'HP' and 'HP3000', which it treats like 'HP_PASCAL'.

Compiler Options 12-111

STANDARD_LEVEL

Example

$STANDARD_LEVEL 'ANSI'$ {equivalent to $ANSI ON$}

$OS 'MPE'$
PROGRAM show_level (output);

PROCEDURE proc1;

VAR

i : integer;

b : Boolean;

BEGIN

assert(b,i);

^

**** WARNING #1 THIS FEATURE REQUIRES $STANDARD_LEVEL 'HP_PASCAL'$ (539)

i := 0;

b := true;

END;

BEGIN

END.

Figure 12-4 illustrates the relationship between the STANDARD LEVEL parameters.

Figure 12-4.

Relationships Between STANDARD LEVEL Compiler Option Parameters

12-112 Compiler Options

STATEMENT_NUMBER

STATEMENT_NUMBER

STATEMENT NUMBER is an HP Pascal Option.

When the STATEMENT NUMBER compiler option is ON, the compiler generates a special
instruction to identify a code sequence with its corresponding Pascal statement.

Syntax

$STATEMENT_NUMBER

�
ON

OFF

�
$

Default OFF

Location Anywhere.

The special instruction that the compiler generates is a LoaD Immediate Left (LDIL)
instruction with destination register R0. It is equivalent to a No OPeration (NOP)
instruction. The immediate �eld contains the statement number. When the debugger displays
the mnemonic for the instruction, it shows the statement number instead of the LDIL
instruction.

Note The STATEMENT NUMBER compiler option is ignored when optimization is
in e�ect.

Example

$STATEMENT_NUMBER ON$

$LIST_CODE ON$

PROGRAM a (output);

BEGIN

writeln('Hi, mom!');

END.

Compiler Options 12-113

STATEMENT_NUMBER

The listing for the preceding program is:

0 1.000 0 $statement_number on$
0 2.000 0 $list_code on$

0 3.000 0 program x;

0 4.000 0 var

0 5.000 0 i,j,k : integer;

3 6.000 1 begin

3 7.000 1 i := 0;

4 8.000 1 j := i;

5 9.000 1 k := j + i;

6 10.000 1 end.

PROGRAM

0 STW 2,_20(0,30) 34 LDW 12(0,27),31

4 LDO 48(30),30 38 LDW 16(0,27),19

8 STW 0,-4(0,30) 3C ADDO 31,19,20

C BL P_INIT_ARGS,2 40 STW 20,8(0,27)

10 NOP 00002711

14 BL U_INIT_TRAPS,2 44 BL P_TERMINATE,2

18 NOP 48 NOP

1C *** Stmt 3 4C NOP

20 STW 0,16(0,27) 50 BL U_EXIT,2

24 *** Stmt 4 54 NOP

28 LDW 16(0,27),1 58 LDW -68(O,30),2

2C STW 1,12 (0,27) 5C BV 0(2)

30 *** Stmt 5 60 LDO -48(30),30

12-114 Compiler Options

STDPASCAL WARN

STDPASCAL WARN

STDPASCAL WARN is an HP Pascal Option.

The STDPASCAL_WARN compiler option allows you to compile and execute syntax, which
otherwise would have been issued an error message due to non-conformity with the ANSI/ISO
standard.

A new error message can now be issued for syntax in HP Pascal that does not conform
to the ANSI/ISO standard. This message may be issued only when one of the following
compiler options is speci�ed: ANSI ON, STANDARD_LEVEL 'ANSI', or STANDARD_LEVEL 'ISO'.
In order to have a warning issued rather than this error message, specify the compiler option
STDPASCAL_WARN.

Syntax

$STDPASCAL_WARN

�
ON

OFF

�
$

Location Anywhere.

Default OFF.

Examples

$STANDARD_LEVEL 'ANSI'$

PROGRAM p;

VAR

lr : longreal;

^

**** ERROR #1 THIS FEATURE DOES NOT CONFORM WITH THE ANSI/ISO STANDARD (044)

BEGIN

END.

In this example, an error message is issued because PROGRAM p does not conform to ANSI/ISO
standard Pascal.

$STDPASCAL_WARN ON$

$STANDARD_LEVEL 'ANSI'$

PROGRAM p;

VAR

lr : longreal;

^

**** WARNING # 1 THIS FEATURE REQUIRES $STANDARD_LEVEL 'HP_PASCAL' (539)

BEGIN

END.

In this example, STDPASCAL_WARN is speci�ed so a warning is issued instead of an error
message.

Compiler Options 12-115

STRINGTEMPLIMIT

STRINGTEMPLIMIT is an HP Pascal Option.

The STRINGTEMPLIMIT option causes all temporary strings of unknown size to be
allocated a �xed maximum size. Instead of being allocated in the heap, the temporary string
is allocated in the stack.

Syntax

$STRINGTEMPLIMIT integer$

Parameters

integer Maximum size in bytes of any string temporary that the compiler can not
calculate at compile time.

Note This value must include the length word of the string and any padding.

Default 0 (each request is allocated from the heap with the exact size required).

Location Heading.

Example

The following example shows two cases where the compiler can not determine the size of a
string at compile time. For performance reasons, the temporary string is allocated in the stack
at a �xed maximum of 400 bytes.

$STRINGTEMPLIMIT 400$

program strings;

type

str80 = string[80];

var

s1 : str80;

n : integer;

function f(var x : string) : str80;

begin

f := x + ':'; { size of x is unknown }

end;

begin

n := 40;

s1 := strrpt('*',n); { value of n is unknown }

s1 := f(s1);

end.

12-116 Compiler Options

SUBPROGRAM

SUBPROGRAM

SUBPROGRAM is an HP Pascal Option.

The SUBPROGRAM compiler option causes the compiler to emit code for speci�ed level-one
routines only. This includes routines nested within those routines, but not the outer block.

Syntax

$SUBPROGRAM ['pfname[*] [,pfname[*]]...']$

Parameters

pfname Name of a level-one routine. The compiler emits code for pfname and the
routines nested within it, but not for the outer block. If no pfnames are
speci�ed, or they are entirely blank, the compiler compiles every routine, but
not the outer block.

* Causes the compiler to compile the immediately preceding pfname with the
LIST, CODE, and TABLES options ON. (Subsequent LIST, CODE, and
TABLES options override *.)

Default All level-one routines.

Location At front.

A compilation unit can contain more than one SUBPROGRAM option. The following are
equivalent:

$SUBPROGRAM 'Proc1,Proc2'$

and

$SUBPROGRAM 'Proc1'$

$SUBPROGRAM 'Proc2'$

The SUBPROGRAM option enables you to compile selected routines of a program. The
compiler checks the syntax and semantics of the entire program, but generates object code for
the selected routines only.

Compiler Options 12-117

SUBPROGRAM

Example

0 1.000 0

0 2.000 0
0 3.000 0 $SUBPROGRAM 'proc2#, proc3#'$

0 4.000 0 PROGRAM show_subprogram (output);

0 5.000 0

0 6.000 0 PROCEDURE proc1 (p : integer);

2 7.000 1 BEGIN

2 8.000 1 writeln(p);

3 9.000 1 END;

3 10.000 0

0 11.000 0 PROCEDURE proc2 (p : integer);

2 12.000 1 BEGIN

2 13.000 1 writeln(p);

3 14.000 1 END;

3 15.000 0

I D E N T I F I E R M A P

IDENTIFIER CLASS TYPE ADDRESS/VALUE

P PARAMETER INTEGER PSP-24.0 (4.0)

LOCAL STORAGE USED = 0.0 TEMPORARY STORAGE USED = 0.0

PARAMETER STORAGE USED = 4.0 CONSTANT STORAGE USED = 0.0

0 17.000 0 PROCEDURE proc3 (p : integer);

2 18.000 1 BEGIN

2 19.000 1 writeln(p);

3 20.000 1 END;

3 21.000 0

I D E N T I F I E R M A P

IDENTIFIER CLASS TYPE ADDRESS/VALUE

P PARAMETER INTEGER PSP-24.0 (4.0)

LOCAL STORAGE USED = 0.0 TEMPORARY STORAGE USED = 0.0

PARAMETER STORAGE USED = 4.0 CONSTANT STORAGE USED = 0.0

0 22.000 1 BEGIN

0 23.000 1 END.

12-118 Compiler Options

SYMDEBUG

SYMDEBUG

SYMDEBUG is a System-Dependent MPE/iX and HP-UX Option.

The SYMDEBUG compiler option emits symbolic debugging information for use with the HP
TOOLSET/XL debugger or the HP Symbolic Debugger (see the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide , depending on your implementation, for
more information). You cannot use the optimizer if you use the SYMDEBUG option.

The command line option g also speci�es this option.

Syntax

$SYMDEBUG

�
'XDB'

'TOOLSET'

�
$

Parameters

None The HP Symbolic Debugger for the HP-UX operating system; HP
TOOLSET/XL for the MPE/iX operating system.

XDB Emits information for the HP Symbolic Debugger, for either the HP-UX or
MPE/iX operating system.

TOOLSET Emits information for the HP TOOLSET/XL debugger. (Only the MPE/iX
operating system allows HP TOOLSET/XL.)

Default None.

Location At front.

Example

$SYMDEBUG 'XDB'$

PROGRAM any_program;

BEGIN

.

.

.

END.

Note A program containing the SYMDEBUG compiler option must be linked with
the pc option -g.

Compiler Options 12-119

SYSINTR

SYSINTR is an HP Pascal Option.

The SYSINTR compiler option speci�es the intrinsic �le that the compiler searches for
information on intrinsic routines.

Syntax

$SYSINTR 'string'$

Parameter

string Speci�es the name of the intrinsic �le that the compiler must search for
information about intrinsic routines.

Default System intrinsic �le (see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide.)

Location Anywhere.

Note The pc option +C on HP-UX a�ects the SYSINTR compiler option (see the
HP Pascal/HP-UX Programmer's Guide.)

Example

PROGRAM Show_Intrinsic (Input,Output);

TYPE

LogArray = ARRAY [1..80] OF shortint;

PROCEDURE FCheck;
INTRINSIC; {FCheck comes from the system intrinsic file}

$SYSINTR 'MYINTR'$

PROCEDURE FWrite;

INTRINSIC; {FWrite comes from MYINTR}

$SYSINTR$

FUNCTION FRead (FileNum : shortint;

VAR Target : LogArray;

TCount : shortint) : shortint;

INTRINSIC; {This FRead description is compared to the one

in the system intrinsic file.}

12-120 Compiler Options

SYSINTR

Table 12-2 compares SPLINTR (SPL) and SYSINTR (HP Pascal) formats. Neither format
can be converted to the other automatically. For instructions on conversion by hand, see the
HP Pascal/iX Migration Guide or the HP Pascal/HPUX Migration Guide.

Table 12-2. SPLINTR Format vs SYSINTR Format

Pascal/V HP Pascal in Native Mode

Creation BUILDINT utility (independent
of Pascal/V)

BUILDINT compiler option
(in HP Pascal)

Result SPLINTR (SPL) format �le SYSINTR (HP Pascal) format �le

Access $SPLINTR '�le'$, where �le is
in SPLINTR (SPL) format

$SYSINTR '�le'$, where �le is
in SYSINTR (HP Pascal) format

Compiler Options 12-121

SYSPROG

SYSPROG is an HP Pascal Option.

The SYSPROG compiler option is equivalent to $STANDARD_LEVEL 'EXT_MODCAL'$ (see
\STANDARD_LEVEL" in this chapter). It provides compatibility with Pascal on the
HP 9000 Series 300 and 400 machines.

Syntax

$SYSPROG

�
ON

OFF

�
$

Default OFF.

Location Heading.

Example

$SYSPROG ON$

PROGRAM machine_dependent;

.

.

.

12-122 Compiler Options

TABLES

TABLES

TABLES is an HP Pascal Option.

When the TABLES compiler option is ON (and the LIST option is also ON), the listing
includes an identi�er map for each compilation block.

Syntax

$TABLES

�
ON

OFF

�
$

Default OFF.

Location Anywhere.

In order for the listing to contain a table of a speci�c compilation block, the TABLES and
LIST options must be ON when the compiler �nishes parsing that block.

The table for a compilation block shows each identi�er that the block declares and its class,
type, and address or constant value. This information helps you debug your program.

The information in a table is arranged in four columns, as follows:

Col. Content

1 Alphabetical list of the identi�ers accessible to the current compilation block.
If an identi�er is the name of a record type, its �eld names appear beneath it,
indented.

2 The class of the identi�er in column one. The classes of identi�ers are: USER
DEFINED, CONSTANT, VARIABLE, FIELD, FUNCTION, TAG FIELD,
PARAMETER, and PROCEDURE. For nonlocal references, the classes NON
LOC VAR, NON LOC PARM, and NON LOC FUNC are used for nonlocal
variables, nonlocal parameters, and nonlocal function returns, respectively.

3 The type of the identi�er in column one. The types of identi�ers are:
INTEGER, SHORT INTEGER, REAL, BOOLEAN, SUBRANGE,
ENUMERATED, BIT16, LONGREAL, CHAR (character) VALUE, CHAR
ARRAY, STRING LITERAL, ARRAY, RECORD, SET, FILE, and
POINTER.

4 The address or constant value of the identi�er in column one.

Addresses of variables and parameters are of the form REG+o�set , where
o�set has the format byte o�set.bit o�set (both byte o�set and bit o�set are
hexadecimal). REG is one of these four values:

Value Meaning

DP+ for global variables

SP- for local variables

PSP- for parameters

name for global variables whose locations cannot be determined at compile time (for
example, module globals and globals in GLOBAL/EXTERNAL compilation
units). No o�set is printed in this case.

Compiler Options 12-123

TABLES

The meanings of the four REG values are as follows.

Value Meaning

DP+ The o�set is relative to the contents of the DP register (the \Data Pointer,"
register 27). This register points to the base of the global variables. Its value
can be displayed in an assembly-level debugger.

SP- The o�set is a negative o�set from the contents of the SP register (the
\Stack Pointer," register 30). This register points to the top of the activation
record of the currently executing routine. Its value can be displayed in an
assembly-level debugger.

PSP- The o�set is a negative o�set from the contents of the Stack Pointer (SP
register) for the caller's frame (the \Previous Stack Pointer"). Its value can
be displayed by stopping the program at the �rst instruction of the current
routine and examining the contents of the SP register before it is incremented
to accommodate the frame of the current routine.

name The compiler cannot determine the location of the variable at compile time.
Instead, it generates a symbol in the object �le for the variable, and the link
editor resolves the references at link time.

On HP-UX, you can display the actual location of such a variable with the
assembly-level debugger adb, which allows you to specify the variable by name
(rather than by address.)

On MPE/iX, request that the link editor produce a symbol map of the
program �le with the command

listprog program�le; data

Function return values are indicated by the class FUNCTION and the
\address" RETURN.

Nonlocal (neither local nor global) variables, parameters (of enclosing
routines), and function returns (of enclosing functions) are indicated by
the address LEVEL n, where n is the level of the routine that contains the
declaration of the variable or parameter in question.

The address of a FIELD or TAG FIELD is in the format o�set @ length,
where o�set is in the format byte o�set.bit o�set , and length is in the format
byte length.bit length. The values byte o�set, bit o�set, byte length, and
bit length are hexadecimal.

The ADDRESS/VALUE column that TABLES ON produces provides packing information.

12-124 Compiler Options

TABLES

Example

0 1.000 0 $TABLES ON$

0 2.000 0 PROGRAM show_map (input,output);

0 3.000 0 CONST

0 4.000 0 realnum = 19.9;

1 5.000 0 maxsize = 100;

2 6.000 0 title = 'Customer list';

3 7.000 0 TYPE

3 8.000 0 answer = (yes,no);

4 9.000 0 rec = RECORD

5 10.000 0 ch : char;

6 11.000 0 CASE tag : answer OF

7 12.000 0 yes : (message : PACKED ARRAY [1..20] OF char);

8 13.000 0 no : (i : integer);

9 14.000 0 END;

9 15.000 0 VAR

9 16.000 0 customer : rec;

10 17.000 0

0 18.000 0 PROCEDURE proc1 (VAR num : real);

2 19.000 0 VAR

2 20.000 0 debt : Boolean;

3 21.000 0

3 22.000 0 PROCEDURE subproc1;

4 23.000 1 BEGIN

4 24.000 1 IF debt THEN writeln;

6 25.000 1 END;

I D E N T I F I E R M A P

IDENTIFIER CLASS TYPE ADDRESS/VALUE

DEBT NON LOC VAR BOOLEAN LEVEL 1

LOCAL STORAGE USED = 0 TEMPORARY STORAGE USED = 0

PARAMETER STORAGE USED = 0 CONSTANT STORAGE USED = 0

6 26.000 1 BEGIN

6 27.000 1 END;

**** WARNING # 1 "DEBT" ACCESSED, BUT NOT INITIALIZED (535)

I D E N T I F I E R M A P

IDENTIFIER CLASS TYPE ADDRESS/VALUE

DEBT VARIABLE BOOLEAN SP- 28.0 (1.0)

NUM PARAMETER REAL PSP- 24.0 (4.0)

SUBPROC1 PROCEDURE

LOCAL STORAGE USED = 1 TEMPORARY STORAGE USED = 0

PARAMETER STORAGE USED = 4 CONSTANT STORAGE USED = 0

0 28.000 0 FUNCTION func1 : integer; EXTERNAL;

0 29.000 0

Compiler Options 12-125

TABLES

10 30.000 1 BEGIN

10 31.000 1 END.

I D E N T I F I E R M A P

IDENTIFIER CLASS TYPE ADDRESS/VALUE

ANSWER USER DEFINED ENUMERATED

CUSTOMER VARIABLE RECORD DP+ 8.0 (18.0)

FUNC1 FUNCTION

INPUT PARAMETER FILE input (248.0)

MAXSIZE CONSTANT INTEGER 100

NO CONSTANT ENUMERATED 1

OUTPUT PARAMETER FILE output (248.0)

PROC1 PROCEDURE

REALNUM CONSTANT REAL 1.99000E+01

REC USER DEFINED RECORD MAX RECORD SIZE = C0 BITS

CH FIELD CHAR VALUE 0.0 @ 1.0

TAG TAG FIELD ENUMERATED 1.0 @ 1.0

MESSAGE FIELD ARRAY 4.0 @ 14.0

I FIELD INTEGER 4.0 @ 4.0

TITLE CONSTANT STRING LITERAL 'Customer list'

YES CONSTANT ENUMERATED 0

GLOBAL STORAGE USED = 18 TEMPORARY STORAGE USED = 0

PARAMETER STORAGE USED = 0 CONSTANT STORAGE USED = 0

12-126 Compiler Options

TITLE

TITLE

TITLE is an HP Pascal Option.

The TITLE compiler option speci�es the title to appear on subsequent pages of the listing.
(The title appears next to the page number in the top left-hand corner of the page.)

Syntax

$TITLE 'string'$

Parameter

string Exact title (the compiler distinguishes between uppercase and lowercase
letters.) The empty string ('') restores the default title. The string literal ' '

speci�es a blank title.

Default

{iX}

HP PASCAL/{UX} HP product number.v.uu.� COPYRIGHT HEWLETT-PACKARD

CO. year date time

where product number is 31502 for MPE/iX and 92431 for HP-UX.

Location Anywhere.

Example

PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. ...

0 1.000 0 $TITLE 'Payroll Program'$

0 2.000 0 $PAGE$

PAGE 2 Payroll Program

0 3.000 0 PROGRAM show_title (output);

0 4.000 0

0 5.000 1 BEGIN

0 6.000 1 END.

Compiler Options 12-127

TYPE COERCION

TYPE COERCION is a System Programming Option.

The TYPE COERCION compiler option determines the level of value type coercion that the
compiler allows.

Syntax

$TYPE_COERCION '

8>>>>>>><
>>>>>>>:

NONE

CONVERSION

STRUCTURAL

REPRESENTATION

STORAGE

NONCOMPATIBLE

9>>>>>>>=
>>>>>>>;
'$

Parameters

NONE Prevents type coercion.

CONVERSION Permits value type coercion of ordinal and pointer types. This is the most
useful and transportable form of type coercion.

STRUCTURAL Permits coercion of any data type to any structurally compatible
data type. (This is equivalent to renaming components. It is fully
transportable.)

REPRESENTATION Permits coercion of any data type to any representation-size compatible
data type. Representation-size compatible types have identical BitSizeof
values.

STORAGE Permits any type coercion that does not extend the amount of storage
accessed. The data type being coerced must have a Sizeof value less than
or equal to the Sizeof value of the data type to which it is being coerced.

NONCOMPATIBLE Permits coercion of any data item to any data type. This coercion can be
dangerous, and errors cannot be detected.

Default NONE.

Location Anywhere.

See Chapter 11 for more information on type coercion.

12-128 Compiler Options

TYPE COERCION

Example

0 1.000 0 $STANDARD_LEVEL 'HP_MODCAL'$
0 2.000 0 PROGRAM show_type_coercion;

0 3.000 0

0 4.000 0 TYPE

0 5.000 0 Rec1 = RECORD

1 6.000 0 F1 : integer;

2 7.000 0 F2 : integer;

3 8.000 0 END;

3 9.000 0 Arr1 = PACKED ARRAY [1..8] OF char;

4 10.000 0

4 11.000 0 VAR

4 12.000 0 R : Rec1;

5 13.000 0 A : Arr1;

6 14.000 0

6 15.000 1 BEGIN

6 16.000 1

6 17.000 1 R.F1 := 101; R.F2 := 280;

8 18.000 1

8 19.000 1 $TYPE_COERCION 'Structural'$

8 20.000 1

8 21.000 1 A := Arr1(R); {illegal, not structurally compatible}

^

**** ERROR # 1 COERCION REQUIRES $TYPE_COERCION 'REPRESENTATION'$ (809)

9 22.000 1

9 23.000 1 $TYPE_COERCION 'Representation'$

9 24.000 1

9 25.000 1 A := Arr1(R);

10 26.000 1

10 27.000 1 END.

Compiler Options 12-129

UPPERCASE

UPPERCASE is an HP Pascal Option.

When the UPPERCASE compiler option is ON, the compiler upshifts all external names
(names of routines and global variables), including aliases. When UPPERCASE is OFF,
the compiler downshifts these names. The LITERAL ALIAS compiler option overrides the
UPPERCASE compiler option in aliases.

Syntax

$UPPERCASE

�
ON

OFF

�
$

Default OFF.

Location Anywhere, but if you want the compiler to upshift the program parameter
names, then UPPERCASE must precede the program header.

Scope All subsequent external names. If program parameter names are to be
upshifted, then UPPERCASE must precede the program header.

Example

$UPPERCASE ON$

PROCEDURE proc1; {External name is "PROC1".}

PROCEDURE $ALIAS 'Proc2Name'$ proc2; {External name is "PROC2NAME".}

$UPPERCASE OFF$

PROCEDURE proc3; {External name is "proc3".}

PROCEDURE $ALIAS 'Proc4Name'$ proc4; {External name is "proc4name".}

12-130 Compiler Options

VERSION

VERSION

VERSION is an HP Pascal Option.

The VERSION compiler option speci�es a string for the compiler to put in the version
identi�cation area of the current object module. The purpose of VERSION is to allow you to
include the version number of your code in this area.

Syntax

$VERSION 'string'$

Parameter

string Any string of characters (including unprintable characters).

Default Not applicable.

Location Anywhere.

Example

PROGRAM prog;

$VERSION 'A.00.00'$

BEGIN

.

.

.

END.

The compiler puts the string A.00.00 in the version identi�cation area of the object module
that contains the program prog.

A compilation unit can have multiple VERSION compiler options.

Compiler Options 12-131

VOLATILE

VOLATILE is an HP Pascal Option.

You can apply the VOLATILE compiler option to a variable to specify that the memory
location associated with the variable may be modi�ed by other processes. Using VOLATILE
signals the optimizer that a speci�ed variable must not reside in a register, but must always
be updated.

Syntax

$VOLATILE$

Location The VOLATILE compiler option is allowed after the \:" in a VAR
declaration. It is also allowed after a \^" in a pointer type or variable
declaration.

Example

TYPE

ptrtype = ^$VOLATILE$ rectype;

VAR

intptrr : ^$VOLATILE$ integer;

recvar : $VOLATILE$ rectype;

12-132 Compiler Options

WARN

WARN

WARN is an HP Pascal Option.

The WARN compiler option suppresses warning messages and notes.

The command line option -w also speci�es this option.

Syntax

$WARN

�
ON

OFF

�
$

Default ON.

Location Anywhere.

If neither ON nor OFF is speci�ed, ON is assumed, and warning messages and notes are
issued.

Warning messages may indicate program bugs or faulty processing. Turning them o� may
cause these potential problems to go unreported.

Example

$WARN OFF$

Compiler Options 12-133

WIDTH

WIDTH is an HP Pascal Option.

The WIDTH compiler option sets the number of columns of each source line that the compiler
will read.

Syntax

$WIDTH integer$

Parameter

integer In the range 10..132.

Default 132.

Location Anywhere.

The WIDTH option allows the compiler to ignore text beyond a speci�ed column.

The WIDTH option applies only to the �le that contains it, and not to �les that it includes
(see the INCLUDE option). If File1 with width n includes File2, the width while File2 is
being included is speci�ed by File2 (if File2 does not contain a WIDTH option, the width
defaults to 132.) At the end of File2, the width returns to n.

Example

1 2 3 4

1234567890123456789012345678901234567890 <--- Column number guide

$WIDTH 30$

PROGRAM show_width (output); The compiler ignores this text

BEGIN since it is beyond column 30.

writeln('The width is 30');

$INCLUDE 'File2'$

writeln('The width is 30');

END.

File2:

$WIDTH 40$

writeln('The width is 40'); This text (31-40) is not ignored.

$WIDTH 20$

writeln('Hi'); This text (beyond 20) is ignored.

12-134 Compiler Options

XREF

XREF

XREF is an HP Pascal Option.

When the XREF compiler option is ON (and the LIST option is also ON), the listing includes
a cross reference for each function, procedure, and outer block.

Syntax

$XREF

�
ON

OFF

�
$

Default OFF.

Location Anywhere.

A cross reference lists each identi�er that is accessible to the block. For each �le that
references the identi�er, the cross reference shows the �le name and gives the numbers of the
lines on which the identi�er is referenced. The symbol @ after a line number means that the
identi�er is declared on that line. The symbol * after a line number means that the value of
the identi�er is (or could be) changed on that line.

The line numbers are assigned by the editor (if the source �le is numbered) or by the compiler
(if the source �le is unnumbered.) Lines from included �les (see the INCLUDE option) are
numbered independently (see the second example for the LIST option).

Although the XREF option is legal anywhere in the source code, it a�ects only the code that
follows it. Therefore, its most practical location is the beginning of the source code.

Example

0 1.000 0 $XREF ON$

0 2.000 0 $TITLE 'Show_xref'$

0 3.000 0 PROGRAM show_xref (input,output);

0 4.000 0 $INCLUDE 'const'$

0 1.000 0 CONST

0 2.000 0 k = 100;

1 5.000 0 VAR

1 6.000 0 n : integer;

2 7.000 0 t : Boolean;

0 8.000 0 PROCEDURE check (VAR b : Boolean);

2 9.000 1 BEGIN
2 10.000 1 IF n > k THEN b := true

4 11.000 1 ELSE b := false;

5 12.000 1 END;

Compiler Options 12-135

XREF

C R O S S R E F E R E N C E

--------- -----------------

Page Line # Page Line # Page Line # Page Line #

B

PXA32.EXAMPLES.ATFTEST

1 00008.000@ 1 00010.000* 1 00011.000*

BOOLEAN global scope

PXA32.EXAMPLES.ATFTEST

1 00008.000

CHECK global scope

PXA32.EXAMPLES.ATFTEST

1 00008.000

FALSE global scope

PXA32.EXAMPLES.ATFTEST

1 00011.000

K global scope

PXA32.EXAMPLE.ATFTEST

1 00010.000

N global scope

PXA32.EXAMPLES.ATFTEST

1 00010.000

TRUE global scope

PXA32.EXAMPLES.ATFTEST

1 00010.000

3 13.000 1 BEGIN

3 14.000 1 readln(n);

4 15.000 1 check(t);

5 16.000 1 IF t THEN writeln ('Too big!')

7 17.000 1 ELSE writeln ('No Problem');

8 18.000 1 END.

12-136 Compiler Options

XREF

PAGE 2 Show_xref

C R O S S R E F E R E N C E

--------- -----------------

Page Line # Page Line # Page Line # Page Line #

BOOLEAN

PXA32.EXAMPLES.ATFTEST

1 00007.000 1 0008.000

CHECK

PXA32.EXAMPLES.ATFTEST

1 00008.000 1 0015.000

FALSE

PXA32.EXAMPLES.ATFTEST

1 00011.000

INPUT

PXA32.EXAMPLES.ATFTEST

1 00003.000

INTEGER

PXA32.EXAMPLES.ATFTEST

1 00006.000

K

PXA32.EXAMPLES.ATFTEST

1 00010.000
const

1 00002.000

N

PXA32.EXAMPLES.ATFTEST

1 00006.000@ 1 00010.000 1 00014.000*

Compiler Options 12-137

XREF

OUTPUT

PXA32.EXAMPLES.ATFTEST

1 00003.000

READLN

PXA32.EXAMPLES.ATFTEST

1 00014.000

SHOW_XREF

PXA32.EXAMPLES.ATFTEST

1 00003.000

T

PXA32.EXAMPLES.ATFTEST

1 00007.000 1 00015.000* 1 00016.000

12-138 Compiler Options

XREF

PAGE 3 Show_xref

C R O S S R E F E R E N C E

--------- -----------------

Page Line # Page Line # Page Line # Page Line #

TRUE

PXA32.EXAMPLES.ATFTEST

1 00010.000

WRITELN

PXA32.EXAMPLES.ATFTEST

1 00016.000 1 0017.000

Compiler Options 12-139

A

Error Messages

Reading Error Messages

On HP-UX, error messages and their explanatory text are in the �le named /usr/lib/paserrs .
To list this �le, use the command:

cat usr/lib/paserrs

On MPE/iX, error messages and their explanatory text are in the �le named
PASXLCAT.PUB.SYS . To list this �le, use the command:

:PRINT PASXLCAT.PUB.SYS

In reading the error messages, note that:

A dollar sign ($) in the left margin indicates a comment line containing explanatory text.

An exclamation mark (!) indicates that an item is variable. The compiler substitutes a
speci�c item for the exclamation mark when it issues the message.

Example

043 THIS FEATURE REQUIRES $OS ! (043)

$ 1. This feature is not available under the current OS level

060 OPERAND NOT OF TYPE BOOLEAN (060)

$ 1. A non-Boolean operand appears with the operator NOT, OR,

$ or AND.

When the compiler issues error message 43, it will substitute an OS level for the exclamation
mark; for example:

THIS FEATURE REQUIRES $OS 'HPUX'$

Error Messages A-1

Additional Documentation

Finding Undetected Errors

The following errors are currently undetected by the compiler at compile time or by the
system at run time. In any future release, an undetected error may become a detected error.

Errors that are only detected when the ANSI option is ON, or when STANDARD LEVEL is
set to ANSI, do not appear on this list.

There is no signi�cance to the order in which errors are listed here.

1. Each component of a structured function result must be assigned a value in the body of
the function.

2. If assignment to a function result is conditional, it must occur at run time.

3. A control variable in a FOR statement cannot be changed in the statement after DO by
calling a procedure or function with a nonlocal reference to the variable.

4. A parameter of dispose cannot be an actual variable parameter, an element of a record
variable list of a WITH statement, or both. Similarly, a dynamic variable in a region of
the heap deallocated by release cannot fall in one of these categories.

5. When the tag �eld of a record with variants is changed, all previous variants become
unde�ned.

6. For records with tagless variants, reference to a �eld for a particular variant means that
other previous variants become unde�ned.

7. All possible record variants must be speci�ed in a record declaration.

8. When a value is established for the tag �eld of a record with variants, it is illegal to use a
�eld in another variant.

9. The compiler does not always detect uninitialized variables, especially in these cases:

a. The path to use a variable cannot include the initializing statement. Suppose:

PROCEDURE proc_a;

VAR

x,y : integer;

BEGIN

IF condition THEN x := 10 ELSE y := x;

.

.

.

END;

The assignment after ELSE does not cause a compile-time error, even if x has not been
initialized outside the IF statement. (The compiler counts the assignment after THEN
as initialization.)

b. Not all the components of a record or array have been assigned values. (The compiler
counts the assignment to a single component as initialization of the entire variable.)

c. An uninitialized global variable appears in a program compiled with GLOBAL or
EXTERNAL options, or in a program that contains procedures or functions declared
with the EXTERNAL directive. (The compiler cannot check outside the current source
code.)

A-2 Error Messages

Additional Documentation

d. An uninitialized dynamic variable on the heap. (The compiler cannot detect this at
run time.)

e. Strwrite into an uninitialized string variable.

However, some of the above errors are detected when the compiler option OPTIMIZE is
ON.

10. An actual reference parameter cannot be an expression consisting of a single variable in
parentheses.

11. Case constant labels cannot be constant expressions.

12. Range checking code is suppressed when the type of logical �le is identical to the type of a
variable to which a �le component is assigned. However, a physical �le associated with the
logical �le can have values out of range and the consequent errors are undetected.

13. Applying put to an unde�ned �le bu�er variable.

14. The control variable of a FOR statement is unde�ned after the execution of the FOR
statement.

15. Dereferencing an unde�ned pointer is not always detected, especially for pointers that
have never been explicitly disposed.

16. Using a variable created with the long form of new as an actual parameter.

17. Using a variable created with the long form of new in a assignment statement.

18. Using a variable created with the long form of new in a factor (for example, as an operand
in an expression).

19. Altering the value of the record variable of a WITH statement within the scope of the
WITH statement.

20. Using put, dispose, or release to make an actual variable parameter to a procedure
unde�ned within the body of the procedure.

Error Messages A-3

Additional Documentation

Using This Appendix

This appendix describes the errors, notes, and warnings that can be detected during the
compilation or execution of an HP Pascal program. These errors are listed in two groups, each
in numeric order.

The �rst group consists of messages from the pc driver. These messages are concerned with
the appearance of the command-line options and arguments to pc. The message number is in
the form pcnn , where nn is the message number.

The second (and larger) group of messages are emitted by the compiler (pascomp or
PASCALXL). These messages are emitted in response to the contents of your source �les. The
message number is in the form nnn , where nnn is the message number.

The text of each message is followed by a brief explanation of the situation, the CAUSE.
When it is necessary for the user to do something, there is an ACTION following the
particular CAUSE. In some cases there may only be one action for several causes. Messages in
the warnings and notes categories usually do not require actions.

Each message contains a code under its message number in the left column. This code
indicates whether the message is a note (N), a warning (W), a compile-time error (or pc
driver error) (CT), run-time error (RT), or an internal (or pc driver fatal error) (I). An
exclamation point , "!", in the messages reproduced here is replaced in the actual message
with appropriate text.

Table A-1 shows the range and category for all error messages.

A-4 Error Messages

Additional Documentation

Table A-1. Error Messages Range and Category

Number Range Category

pc Driver Messages

pc01 - pc20 W - pc driver warnings

pc21 - pc40 CT - pc driver errors

pc41 - pc99 I - pc driver fatal errors

Pascal Messages

000 - 299 CT - Compile-time errors

300 - 399 N - Notes

400 - 499 CT - Compile-time errors

500 - 599 W - Warnings

600 - 799 RT - Run-time errors

800 - 899 CT - Compile-time errors

900 - 999 RT - Run-time errors

Code Generation Messages

5000 - 5099 W - Warnings

5100 - 5199 I - Internal errors

5200 - 5399 CT - Compile-time errors

5400 - 5999 I - Internal errors

Optimizer Messages

6000 - 6099 W - Warnings

6100 - 6199 I - Internal errors

6200 - 6399 CT - Compile-time errors

6400 - 6999 I - Internal errors

Code Generation Messages

7000 - 7099 W - Warnings

7100 - 7199 I - Internal errors

7200 - 7399 CT - Compile-time errors

7400 - 7999 I - Internal errors

If there are previous syntax errors, the compiler will sometimes produce internal errors.
Should this occur, correct the syntax errors and recompile. If you still receive internal errors,
submit a service request.

Note When an error message says \contact Hewlett-Packard," please submit a
service request (SR) and the appropriate source and object �les. This allows
Hewlett-Packard to duplicate the problem you are reporting.

Error Messages A-5

Additional Documentation

pc Driver Messages

pc01 MESSAGE Warning: '!' and '!' are incompatible: '!' ignored (pc01)

W CAUSE These two command-line options are incompatible with each other; the �rst
option in the message will be ignored, regardless of the relative position of
the options on the command-line.

ACTION Remove the incompatible option from the command-line.

pc02 MESSAGE Warning: Option not recognized: '!' (pc02)

W CAUSE This command-line option is invalid.

ACTION Consult the list of valid -W and + command-line options.

pc03 MESSAGE Warning: Use '!' instead of '!' (pc03)

W CAUSE You have speci�ed an obsoleted form of a command-line option.

ACTION Although pc will honor your request, change to the new, preferred form of
the command-line option.

pc04 MESSAGE Warning: LANG unde�ned: '-Y' ignored (pc04)

W CAUSE The -Y option (to enable 16-bit NLS support in comments and string
literals) is not accepted unless the LANG environment variable has been
set.

ACTION Either leave o� the -Y command-line option or set the LANG environment
variable to the appropriate language.

pc05 MESSAGE Warning: Series 300-only option ignored: '!' (pc05)

W CAUSE You have speci�ed a command-line option intended for the Series 300 pc

command. The Series 700/800 pc command does not recognize Series
300-speci�c options.

ACTION Remove the Series 300-speci�c options from the command-line.

pc06 MESSAGE Warning: Unrecognized option: '!' (pc06)

W CAUSE You have speci�ed a + command-line option incorrectly. Some options have
multiple letters, while others have single letters.

ACTION Verify that the + option you speci�ed is followed by the proper number of
letters.

pc07 MESSAGE Warning: Optimization and debug are mutually exclusive: '!' ignored
(pc07)

W CAUSE HP Pascal does not currently allow the debugging of optimized code.
Therefore, specifying -g or -y with optimization options is not allowed.
Note that pc always accepts the �rst of the conicting options; the second
conicting option is ignored.

ACTION If debugging is desired, remove the optimization option; if some level of
optimization is needed, remove the debug option.

A-6 Error Messages

Additional Documentation

pc08 MESSAGE Warning: The +D option takes only 'A' and 'S' as arguments (pc08)

W CAUSE You have speci�ed +Dx , where x is a letter other than A or S.

ACTION Replace +Dx with +DA or +DS, or remove +Dx from the command-line.

pc09 MESSAGE Warning: Previous '!' option overridden by '!' option (pc09)

W CAUSE You have speci�ed more than one +DA or +DS option (which conicts with
an earlier one). The last option seen will take e�ect.

ACTION Remove unwanted +DA or +DS options on the command-line, leaving a
maximum of one of each.

pc10 MESSAGE Warning: +O is obsolete; use -O or +O2 instead. (+O is ignored) (pc10)

W CAUSE You have speci�ed the old-style +O option. This option is no longer valid;
pc ignores it.

ACTION Use +O2 or -O for level 2 optimization.

pc21 MESSAGE Error: Cannot read �le '!' (pc21)

CT CAUSE The indicated source or object �le on pc's command-line is unreadable by
the pc driver.

ACTION Check the read permission on the indicated source or object �le.

pc22 MESSAGE Error: Illegal output �le '!' (pc22)

CT CAUSE The output �le speci�ed with the -o command-line option ends in .p, .P,
or .o.

ACTION To avoid possibly overwriting a source or object �le, rename the output �le
speci�ed with the -o command-line option.

pc23 MESSAGE Error: Illegal type for �le '!' (pc23)

CT CAUSE The �le type (as returned by stat(2)) is incorrect for the source, object, or
output �le.

ACTION Verify that the �le is not a device �le, a directory, or a special �le.

pc24 MESSAGE Error: Too many arguments (pc24)

CT CAUSE More than 200 arguments were speci�ed to pc, exceeding pc's internal limit.

ACTION Reduce the number of arguments to pc, to less than 200.

pc25 MESSAGE Error: Too many ags (pc25)

CT CAUSE More than 200 ags were speci�ed to pc, exceeding pc's internal limit.

ACTION Reduce the number of ags to pc, to be less than 200.

pc27 MESSAGE Signal ! (!) while compiling '!' (pc27)

CT CAUSE A signal was caught while compiling the source �le.

ACTION Read the description, make necessary adjustments, and recompile.

Error Messages A-7

Additional Documentation

pc28 MESSAGE Signal ! (!) while linking '!' (pc28)

CT CAUSE A signal was caught while linking the executable.

ACTION Read the description, make necessary adjustments, and relink.

pc41 MESSAGE Error: Out of memory while compiling '!' (pc41)

I CAUSE The pc driver was unable to allocate dynamic memory.

ACTION See CT message 6200.

pc42 MESSAGE Error: Cannot execute compiler '!' while compiling '!' (pc42)

I CAUSE The compiler proper (pascomp) will not execute.

ACTION Check the permissions on the compiler (especially the execute bits). Also,
check that the name is properly speci�ed if using the -t command-line
option.

pc43 MESSAGE Error: Cannot execute linker '!' while linking '!' (pc43)

I CAUSE The linker (ld) will not execute.

ACTION Check the permissions on the linker (especially the execute bits). Also,
check that the name is properly speci�ed if using the -t command-line
option.

pc44 MESSAGE Error: Cannot execute archiver '!' while archiving '!' (pc44)

I CAUSE The archiver (ar) will not execute.

ACTION Check the permissions on the archiver (especially the execute bits).

pc45 MESSAGE Error: Bad syntax: '!' (pc45)

I CAUSE The argument to the -W, -t, or +Q command-line options is missing.

ACTION Supply the missing argument:

-W takes d, c, 0, or l.

-t takes c, 0, or l.

+Q takes a �lename.

pc46 MESSAGE Error: Cannot �nd subprocess '!' (pc46)

I CAUSE The name speci�ed as the subprocess is a �le that does not exist.

ACTION Check the spelling of the subprocess.

pc47 MESSAGE Error: File name too long: '!' (pc47)

I CAUSE The length of the �lename on the command-line exceeds the length allowed
by HP-UX.

ACTION Shorten the �lename.

pc48 MESSAGE Error: Missing �le name (pc48)

I CAUSE The -o command-line option requires a �lename following it on the
command-line.

ACTION Supply the -o option with a �lename.

A-8 Error Messages

Additional Documentation

pc49 MESSAGE Error: This subprocess is not allowed with -t: '!' (pc49)

I CAUSE You incorrectly speci�ed the d subprocess to the -t command-line option.

ACTION Because there is no d subprocess, use either c, 0, or l with the -t
command-line option.

pc50 MESSAGE Error: This subprocess speci�ed more than once: '!' (pc50)

I CAUSE More than one -tc or -tl command-line option was speci�ed.

ACTION Remove the extra -tc or -tl command-line options.

pc51 MESSAGE Error: This subprocess name is too long: ! (pc51)

I CAUSE The length of the subprocess name exceeds 200 characters.

ACTION Either move or link the subprocess �le to a location where the new
subprocess name is less than 200 characters.

pc52 MESSAGE Error: Too many source �les (pc52)

I CAUSE More than 200 source �les were speci�ed to pc, exceeding pc's internal
limit.

ACTION Invoke pc several times, on groups of source �les numbering less than 200.

Error Messages A-9

Additional Documentation

Compiler Messages

001 MESSAGE FLOATING POINT OVERFLOW (001)

CT CAUSE The absolute value of a real number is too large.

ACTION Check the permitted range of real/longreal values.

002 MESSAGE FLOATING POINT UNDERFLOW (002)

CT CAUSE The absolute value of a real number is non-zero and too small.

ACTION Check the permitted range of real/longreal values.

003 MESSAGE ERROR IN FLOATING POINT NUMBER REPRESENTATION (003)

CT CAUSE The real or longreal number must have a digit after the decimal point.

ACTION Correct the constant to specify a fractional part.

004 MESSAGE AN EXPONENT IS REQUIRED HERE (004)

CT CAUSE The exponent for a real or longreal number is missing. A number is
required after the 'E' or 'L'.

ACTION Correct the constant to specify an exponent.

005 MESSAGE ILLEGAL CONTROL CHARACTER CONSTANT (005)

CT CAUSE The value of the constant following the sharp (#) is greater than 255.

ACTION Check nonprinting character formation rules.

CAUSE The only nonnumeric characters that can follow a sharp (#) are a letter,
@, [,], jj, ^, or .

ACTION Check the permitted range of character values.

006 MESSAGE A QUOTE IS EXPECTED HERE (006)

CT CAUSE The end of line was found before the terminating quote. String literals
cannot span source lines.

ACTION Check string constant for missing closing quote or shorten constant.

007 MESSAGE INTEGER OVERFLOW (007)

CT CAUSE The absolute value of the integer is greater than maxint.

ACTION Check the permitted range of integer values.

008 MESSAGE END OF FILE FOUND BEFORE EXPECTED (008)

CT CAUSE The compiler expects more source code. There may be an unmatched
BEGIN-END or an unclosed comment.

ACTION Check for missing END, semicolon, period, or incomplete statement. Also
check for an unclosed comment or $SKIP TEXT ON$.

009 MESSAGE UNRECOGNIZED CHARACTER (009)

CT CAUSE An illegal character was found in the source.

ACTION Check for unprintable characters and character validity in context.

A-10 Error Messages

Additional Documentation

010 MESSAGE 100 ERRORS|PROGRAM TERMINATED (010)

CT CAUSE Only 100 errors are allowed before the compiler stops.

ACTION Correct earlier errors so that compilation can continue.

011 MESSAGE A COMMA IS REQUIRED HERE (011)

CT CAUSE A comma is needed to separate procedure/function names in the
SUBPROGRAM compiler option.

ACTION Check syntax and insert a comma where necessary.

012 MESSAGE VARIABLE SPECIFICATION NOT ALLOWED HERE (012)

CT CAUSE Only SPL procedures are allowed to have a variable number of parameters.

ACTION Remove the keyword VARIABLE or declare the routine SPL VARIABLE.

013 MESSAGE IDENTIFIER DOUBLY DEFINED (013)

CT CAUSE An identi�er in a parameter list is a duplicate of another identi�er.

The procedure/function name is de�ned earlier and is not a FORWARD
procedure/function.

The �eld name of a record is already declared.

The identi�er is already declared in the current scope.

ACTION Delete duplicate declaration.

014 MESSAGE IDENTIFIER NOT DEFINED (014)

CT CAUSE The identi�er is an undeclared variable, constant, procedure, or function.

The type identi�er is undeclared.

ACTION Add identi�er to the declaration section.

015 MESSAGE INVALID VARIABLE USE (015)

CT CAUSE The control variable of a FOR loop is being modi�ed in the statement
component of the FOR loop. For example:

It is the control variable of a nested FOR loop.

It appears on the left side of an assignment statement.

It is being passed by reference to a user-de�ned or standard procedure.

ACTION Remove assignment to loop control or conformant bound variable. Do not
pass this variable as a VAR, ANYVAR, or READONLY parameter.

CAUSE The variable appears in the variable list of a WITH statement but is not a
record type.

ACTION Remove the variable from the WITH list.

CAUSE The identi�er appears with subscripts, but it is not an array or string.

ACTION Correct the array expression or remove the subscript.

Error Messages A-11

Additional Documentation

016 MESSAGE TYPE IDENTIFIER REQUIRED HERE (016)

CT CAUSE A constant or variable identi�er has been used where a type identi�er is
required.

ACTION Replace the constant or variable identi�er with a type identi�er.

017 MESSAGE INVALID TYPE IDENTIFIER USE (017)

CT CAUSE A type identi�er has been used where a constant or variable identi�er is
required.

The construct in which the identi�er occurs is not legal in this context.
This is often an array or record in executable code.

ACTION Replace the type identi�er with a constant or variable identi�er.

018 MESSAGE A CONSTANT EXPRESSION IS REQUIRED HERE (018)

CT CAUSE A variable occurs where a constant is required.

An expression with variables occurs where a constant expression is required.

The expression contains an operator or a standard procedure or function
that is not legal in a constant expression.

The expression contains constant operands that are not legal; for example,
set or Boolean values.

ACTION Check the constant expression for a variable, or illegal type of operand.

019 MESSAGE INVALID FORWARD TYPE IDENTIFIER DEFINITION (019)

CT CAUSE The identi�er appeared in a forward pointer type de�nition and is now
being declared as something other than a type.

ACTION Check the FORWARD de�nition.

020 MESSAGE BOOLEAN EXPRESSION IS REQUIRED HERE (020)

CT CAUSE An expression with a Boolean result is required here.

ACTION Check the source and correct the expression.

021 MESSAGE AN ORDINAL EXPRESSION IS REQUIRED HERE (021)

CT CAUSE An expression with an ordinal result is required here.

ACTION Check the source and correct the expression.

022 MESSAGE INCOMPATIBLE SUBRANGE BOUNDS (022)

CT CAUSE The type of the lower bound is not compatible with the type of the upper
bound in a subrange.

ACTION Check the type of the lower and upper bounds and make them the same.

023 MESSAGE AN INTEGER EXPRESSION IS REQUIRED HERE (023)

CT CAUSE An expression with an integer result is required for the repeat factor in the
'OF' construct in an array constructor.

ACTION Check the source code and correct the expression.

A-12 Error Messages

Additional Documentation

024 MESSAGE LOWER BOUND OF SUBRANGE IS GREATER THAN UPPER
BOUND (024)

CT CAUSE The lower bound is greater than the upper bound in a subrange type
declaration.

ACTION Increase the upper bound, or decrease the lower bound.

025 MESSAGE FOUND UNEXPECTED \! " (025)

CT CAUSE The compiler was not expecting this token and it has been discarded. The
token is illegal here or a previous undetectable error has caused the
compiler to issue this message; for example, a semicolon (;) before ELSE.

ACTION Remove \! " or correct earlier error.

026 MESSAGE MISSING \! " (026)

CT CAUSE The compiler expected this token, but it was omitted or misspelled. The
correct token was inserted.

ACTION Insert \! "

027 MESSAGE \! " FOUND BEFORE EXPECTED. SOURCE MISSING. (027)

CT CAUSE The compiler found this token before it was expected. The compiler was
able to accept it by inserting dummy tokens.

ACTION Correct the syntax error and recompile.

028 MESSAGE MISUNDERSTOOD SOURCE BEFORE \! " (028)

CT CAUSE The compiler has discarded some previously accepted source code
preceding this token. Either the token is inappropriate, but the compiler
has been able to accept it by ignoring previous code, or the token is correct
and code must now be discarded.

ACTION Check the source code and �x the syntax.

029 MESSAGE " NOT ALLOWED AS A STRING LITERAL DELIMITER (029)

CT CAUSE A double quote cannot delimit a string literal.

ACTION Replace " with expected '.

030 MESSAGE OPEN FAILED ON FILE \! " (030)

CT CAUSE The compiler could not open the source �le.

The compiler could not open the INCLUDE �le.

The compiler could not open the SYSINTR or SPLINTR �le.

ACTION Check for the correct �le name spelling, �le existence, and any �le
equations.

031 MESSAGE READ FAILED ON SOURCE FILE (031)

CT CAUSE The compiler could not read the source �le.

The compiler could not read the INCLUDE �le.

ACTION Correct the condition causing the read to fail, such as a corrupted �le or
any internal compiler errors.

Error Messages A-13

Additional Documentation

032 MESSAGE EMPTY SOURCE FILE (032)

CT CAUSE The source �le is empty.

ACTION Check the �le name.

033 MESSAGE MISSPELLED RESERVED WORD: \! " (033)

CT CAUSE The reserved word is misspelled.

ACTION Correct the spelling of the reserved word.

034 MESSAGE FORWARD TYPE \! " NOT FOUND (034)

CT CAUSE The identi�er occurs in a pointer type de�nition but is not subsequently
de�ned.

ACTION De�ne the identi�er.

035 MESSAGE FORWARD PROCEDURE \! " NOT DECLARED (035)

CT CAUSE A procedure declared with the FORWARD directive is not subsequently
de�ned. The de�nition may be missing, or the name appearing in the
de�nition may be misspelled.

ACTION Declare the procedure.

036 MESSAGE VIOLATION OF PASCAL SCOPING RULES (036)

CT CAUSE The scope of an HP Pascal identi�er is the entire block in which it is
declared. It is not possible to use an identi�er from an enclosing level and
then to rede�ne it at the new level.

ACTION Use a separate identi�er in this text.

037 MESSAGE INVALID USE OF \! " IN POINTER DEFINITION (037)

CT CAUSE A non-type identi�er de�ned on a previous level was used in a pointer type
de�nition.

ACTION Replace the non-type identi�er with a type identi�er.

038 MESSAGE ILLEGAL PASCAL CONSTRUCT (038)

CT CAUSE The use of the FOR construct within strings is illegal.

ACTION Use another looping construct with strings.

039 MESSAGE \! " ACCESSED, BUT NOT INITIALIZED (039)

CT CAUSE A simple variable appears in an expression, as a value parameter, or in
some other accessing reference and it has never appeared in an assigning
reference, such as a reference parameter, or on the left side of an
assignment statement.

Some component of a structured variable appears in an accessing reference
but no component of that variable has yet appeared in an assigning
reference.

ACTION Initialize the variable before it is used.

A-14 Error Messages

Additional Documentation

040 MESSAGE INVALID STRING TYPE USE (040)

CT CAUSE The standard type identi�er string is not used to de�ne a string type.

ACTION Use the standard identi�er string to de�ne this type.

041 MESSAGE MISSING SEPARATOR BETWEEN NUMBER AND IDENTIFIER (041)

CT CAUSE A character was detected immediately following a number. HP Pascal
requires a separator, such as a space, comment, or end-of-line between a
number and an identi�er or reserved word.

ACTION Insert a separator between the number and the identi�er.

042 MESSAGE ^STRING IS NOT ALLOWED IN TYPE DECLARATIONS (042)

CT CAUSE ^STRING was used in a pointer type declaration. A user de�nition for
STRING did not follow so an error was produced when the compiler
checked for unresolved forward pointer declarations. The generic type
STRING is only allowed for VAR parameters.

ACTION Remove use of string in type declaration.

043 MESSAGE THIS FEATURE REQUIRES $OS ! (043)

CT CAUSE This feature is not available under the current OS level.

044 MESSAGE THIS FEATURE DOES NOT CONFORM WITH THE ANSI/ISO
STANDARD (044)

CT CAUSE This feature is not available under the current STANDARD LEVEL.

ACTION Remove this feature if ANSI/ISO conformance is desired.

Remove STANDARD LEVEL compiler option if this feature is desired.

Use the compiler option STDPASCAL WARN if a warning message rather
than an error message is desired with the current STANDARD LEVEL
that is set.

045 MESSAGE ONLY COMMENTS AND COMPILER OPTIONS ARE ALLOWED IN
'!' (045)

CT CAUSE Text which is neither a comment nor a compiler option was detected in the
system-wide option �le.

ACTION Remove any text which is neither a comment nor a compiler option from
the system-wide option �le. Because this �le is write-protected, your
system administrator should be noti�ed.

060 MESSAGE OPERAND NOT OF TYPE BOOLEAN (060)

CT CAUSE A non-Boolean operand appears with the operator NOT, OR, or AND.

ACTION Change the operator to a Boolean type.

061 MESSAGE WRONG TYPE OF OPERAND FOR ARITHMETIC OPERATOR (061)

CT CAUSE A nonnumeric operand appears with an arithmetic operator.

ACTION Check and correct the operand or operator.

Error Messages A-15

Additional Documentation

062 MESSAGE TYPE OF OPERAND NOT ALLOWED WITH OPERATOR (062)

CT CAUSE An operand of this type cannot be used with this operator.

ACTION Check and correct the operand or operator.

063 MESSAGE BASE TYPE OF OPERAND AND SET DO NOT AGREE (063)

CT CAUSE The operand on the left of an IN operator is not type compatible with the
set on the right.

ACTION Check the operands to ensure compatible types.

064 MESSAGE TYPES OF OPERANDS DO NOT AGREE (064)

CT CAUSE The operands can be used separately but not with the operator. For
example, <Boolean> = <integer>.

ACTION Check and correct one of the two operands.

065 MESSAGE ASSIGNMENTS CANNOT BE MADE TO FILES (065)

CT CAUSE An assignment cannot be made to a �le or a structured variable with a �le
type component.

Structured constants cannot contain �les. Building a structured constant
with a type that contains a �le is illegal.

Variables which contain �les cannot be passed as value parameters.

ACTION Remove the �le assignment.

066 MESSAGE ASSIGNMENT TYPE CONFLICT (066)

CT CAUSE The expression on the right side of an assignment statement is not
assignment compatible with the receiving entity on the left.

A constant in a constructor is not assignment compatible with the
component to which it is being assigned. The subrange type of the
expression being assigned does not intersect the type of the receiving entity.

ACTION Check the assignment compatibility rules.

067 MESSAGE TYPE OF EXPRESSION NOT ALLOWED IN SUBRANGE (067)

CT CAUSE The expression de�ning a subrange bound is not an ordinal expression.

ACTION Replace the expression with an ordinal expression.

068 MESSAGE ILLEGAL ASSIGNMENT TARGET (068)

CT CAUSE An assignment was made to an identi�er that is not a non-�le variable or a
function result; for example, a declared constant, a set, or string type
identi�er.

ACTION Correct the left-hand side of the assignment.

069 MESSAGE INVALID CONSTANT EXPRESSION (069)

CT CAUSE This expression is not legal in a CONST declaration. It is not a constant
expression, or it is a constant expression and the results of the arithmetic
would be out of range of minint..maxint.

ACTION Correct the expression.

A-16 Error Messages

Additional Documentation

070 MESSAGE ILLEGAL TO ASSIGN TO (070)

CT CAUSE The identi�er denotes an entity that cannot appear on the right side of an
assignment statement; for example, a set or string type identi�er.

ACTION Correct the right-hand side of the assignment.

072 MESSAGE REAL CONSTANT FOLDING NOT AVAILABLE IN $HP3000 16$ (072)

CT CAUSE Temporary restriction on real constant folding in $HP3000 16$. This is
transparent, except when an integer value is speci�ed for a real �eld in a
structured constant declaration. This also occurs if a real constant is
speci�ed for a longreal constant .

ACTION Change the integer constant to a real one by appending \.0", or add \L0"
to the real number.

080 MESSAGE ARRAY INDEX TYPES NOT COMPATIBLE (080)

CT CAUSE The subscript in an array reference is not compatible with the type of the
index in the array declaration.

ACTION Change the array subscript to be compatible with the type of the index.

081 MESSAGE ARRAY ELEMENT TYPES NOT EQUIVALENT (081)

CT CAUSE PACK and UNPACK array parameters must have identical component
types.

ACTION Use identical component types.

082 MESSAGE INVALID ARRAY SIZE (082)

CT CAUSE The size of the array is too big for the compiler.

In PACK or UNPACK the destination array is not large enough.

ACTION Use a smaller array size.

083 MESSAGE WRONG NUMBER OF ELEMENTS FOR ARRAY OR STRING
CONSTANT (083)

CT CAUSE While building an array or string constant, more components were speci�ed
than declared.

Not all the components were speci�ed while building an array constant.

ACTION Use the correct number of components that need to be speci�ed.

084 MESSAGE INVALID INDEX TYPE (084)

CT CAUSE Index type is not an ordinal type.

ACTION Use an ordinal type.

085 MESSAGE REFERENCE TYPE MUST BE STRING OR ARRAY (085)

CT CAUSE Tried to index a structure that is not an array or string.

ACTION Use an array or string in this context.

Error Messages A-17

Additional Documentation

086 MESSAGE MAXIMUM STRING LENGTH MUST BE BETWEEN 1 AND ! (086)

CT CAUSE Tried to declare string with a maximum length < 1 or > the limit
mentioned in the message.

ACTION Correct the string maximum length speci�cation so it is in the permitted
range.

087 MESSAGE EXPRESSION FOR MAXIMUM LENGTH MUST BE TYPE INTEGER
(087)

CT CAUSE Tried to declare a string with a noninteger constant expression for the
maximum length.

ACTION Use an integer constant in this context.

088 MESSAGE INCORRECT NUMBER OF INDICES FOR STRING DECLARATION
(088)

CT CAUSE A string can only have one index in a declaration.

No index was supplied in a string declaration.

ACTION Use only one index in a string declaration.

089 MESSAGE TOO MANY SUBSCRIPTS IN STRING OR ARRAY REFERENCE (089)

CT CAUSE The number of subscripts in the reference exceeds the number of subscripts
in the declaration of the array or string.

ACTION Correct the number of subscripts.

090 MESSAGE ILLEGAL CONSTRUCT FOR AN ARRAY OR STRING INDEX (090)

CT CAUSE A subrange construct was used as an array or string index.

ACTION Correct the subrange construct.

100 MESSAGE INVALID RECORD REFERENCE (100)

CT CAUSE Record �eld referenced without specifying a record variable, constant, or
function call that returns a record.

ACTION Qualify the name completely (i.e., specify which record variable this is a
�eld of).

101 MESSAGE INVALID FIELD IDENTIFIER (101)

CT CAUSE The identi�er is not one of the �elds of the record used in the reference.

ACTION Check the �eld name and the record type de�nition.

102 MESSAGE INVALID TAG TYPE (102)

CT CAUSE The tag in a NEW or DISPOSE procedure call is not a tag value of the
speci�ed record.

ACTION Correct or remove the non-tag value.

103 MESSAGE POINTER OR FILE REQUIRED FOR DEREFERENCE (103)

CT CAUSE A pointer or �le is required in a dereference.

ACTION Remove up-arrow or change preceding expression to be of type pointer or
�le.

A-18 Error Messages

Additional Documentation

104 MESSAGE POINTER VARIABLE IS REQUIRED HERE (104)

CT CAUSE NEW, DISPOSE, MARK, and RELEASE all require a pointer variable as
the �rst parameter.

ACTION Declare and supply a pointer variable.

106 MESSAGE MISSING TAG VALUES FOR TAG TYPE (106)

CT CAUSE Not all tag values for a tag type in the record are speci�ed.

ACTION Add empty variant declarations for the missing tag values.

120 MESSAGE INVALID BASE TYPE FOR SET (120)

CT CAUSE The base type of a set is not an ordinal type.

ACTION Check usage in the source program.

121 MESSAGE ITEM NOT A LEGAL SET ELEMENT (121)

CT CAUSE Element of a set is not an ordinal type.

ACTION Replace item with a valid element for this set.

122 MESSAGE OPERAND NOT A SET (122)

CT CAUSE Right operand for an IN operator is not a set.

ACTION Change expression to set type.

123 MESSAGE SET ELEMENTS NOT TYPE COMPATIBLE WITH EACH OTHER
(123)

CT CAUSE In an untyped set constructor, this element is not compatible with the �rst
element in the set.

ACTION Change types so they are compatible.

124 MESSAGE SET ELEMENT NOT COMPATIBLE WITH SET TYPE (124)

CT CAUSE In a typed set constructor, the set element is not assignment compatible
with the base type of the set.

ACTION Replace element with a valid element for this set.

125 MESSAGE SET OF THIS SIZE CANNOT BE CONSTRUCTED (125)

CT CAUSE To construct this set would require more bytes than can be speci�ed for
this implementation.

ACTION De�ne/declare set to have fewer elements.

140 MESSAGE BUILDING OF STRUCTURED CONSTANTS NOT ALLOWED HERE
(140)

CT CAUSE A constructor that is not a set constructor occurs outside of a CONST
declaration section.

ACTION Create a named constant in the CONST section and use its name here.

CAUSE A constructor occurs as an element of a set or string constructor.

ACTION Remove the constructor from the set or string.

Error Messages A-19

Additional Documentation

141 MESSAGE RECORD CONSTANT HAS MISSING FIELD(S) (141)

CT CAUSE One or more �elds missing in a record constructor.

The name of a �eld is misspelled.

ACTION Correct erroneous �eld name. Add the missing �elds.

142 MESSAGE DUPLICATE FIELD NAME (142)

CT CAUSE This �eld has already been de�ned in the constructor.

ACTION Delete the duplicate declaration.

143 MESSAGE FIELD NAME DESIGNATOR NOT ALLOWED HERE (143)

CT CAUSE The constructor is not a record constructor.

This construction <�eld name>:<expression> appears outside of a record
constructor.

ACTION Remove the �eld name designator from the code.

144 MESSAGE MISSING FIELD NAME DESIGNATOR (144)

CT CAUSE The construction <�eld name>:<expression> is required in a record
constructor.

ACTION Add a �eld name designator to the code.

145 MESSAGE TYPE IDENTIFIER REQUIRED HERE (145)

CT CAUSE The identi�er preceding the left square bracket of a constructor is not a
type identi�er.

ACTION Check the syntax of structured constants.

CAUSE The identi�er in the bounds construct of a conformant array parameter is
not a type identi�er.

ACTION Change either the declaration or the usage of the identi�er to make sure
they are consistent.

146 MESSAGE CONSTRUCT ONLY ALLOWED FOR ARRAYS AND STRINGS (146)

CT CAUSE <Count> OF <expression> occurs when the constructor is not an array or
string constructor.

ACTION List each element individually and specify its value.

147 MESSAGE CONSTRUCT ONLY ALLOWED IN CONSTRUCTORS (147)

CT CAUSE <Count> OF <expression> is used outside of a constructor.

ACTION Remove the <count> OF <expression> from the code.

148 MESSAGE SUBRANGE CONSTRUCT ILLEGAL EXCEPT IN SET
CONSTRUCTORS (148)

CT CAUSE A subrange construct was used in a string declaration or a non set
structured constant.

ACTION Remove the subrange construct from the code.

A-20 Error Messages

Additional Documentation

149 MESSAGE TOO BIG STRUCTURED CONSTANT (149)

CT CAUSE The compiler's structured constant table has overowed.

ACTION If there are one or more structured constants larger than the table size,
break them up into smaller constants, if possible.

If the total size of all the structured constants exceeds the limit, break your
compilation unit into smaller pieces and spread the constants over them.

Note: The �rst action may cause the second condition to arise!

150 MESSAGE EXPANDED STRING LITERAL IS TOO BIG (150)

CT CAUSE The compiler's identi�er table has overowed.

ACTION Break your compilation unit into smaller pieces and spread your string
literals over them.

Read in the string literals from a message catalog.

If the same quoted string is used over and over in the code, declare it as a
constant in one place and use the named constant instead.

151 MESSAGE TYPE OF CONFORMANT ARRAY BOUNDS MUST BE SCALAR (151)

CT CAUSE The type identi�er in the index speci�cation for a conformant array
parameter does not designate a scalar type.

ACTION Change index to scalar or subrange.

152 MESSAGE PARAMETER DOUBLY DEFINED (152)

CT CAUSE In the index speci�cation of a conformant array parameter the upper
bound identi�er has the same spelling as the lower bound identi�er.

In an index speci�cation of a conformant array parameter a bounds
identi�er has the same spelling as another parameter or as another bounds
identi�er in the parameter list of the current procedure header.

ACTION Rename one of the duplicate identi�ers.

153 MESSAGE NOT ALLOWED AS AN ANYVAR PARAMETER (153)

CT CAUSE A parameter can not be an AnyVar parameter and a conformant array
parameter.

ACTION Change the formal parameter speci�er to VAR or omit it.

154 MESSAGE NON CONFORMANT BASE TYPE (154)

CT CAUSE The base type of an array being passed as an actual conformant array
parameter must be identical to the base type of the formal conformant
array parameter.

ACTION Change either the actual array's index type or the formal conformant
array's index type so the two are compatible.

Error Messages A-21

Additional Documentation

155 MESSAGE NON CONFORMANT ACTUAL PARAMETER (155)

CT CAUSE The parameter being passed as an actual conformant array parameter does
not have an array type.

ACTION Check the parameter and make sure it has an array type.

CAUSE The parameter being passed as an actual conformant array parameter does
not have the same packing as the formal parameter.

ACTION Check that the packing of both parameters are the same and correct if
necessary.

156 MESSAGE NON CONFORMANT ARRAY INDEX (156)

CT CAUSE The index type of the actual conformant array parameter is out of range of
the type of the index type of the formal parameter.

ACTION Change either the actual array's bounds or the formal conformant array's
bounds so the actual bounds lie within the formal bounds.

157 MESSAGE NON IDENTICAL TYPE FOR PARAMETER IN CONFORMANT
PARAMETER LIST (157)

CT CAUSE In a parameter declaration of the form:

p1, p2 . . . pn: <conformant array declaration>, the actual parameters
passed must have identical types.

ACTION Check the type declarations of the actual parameters, and ensure that they
have the same type.

Break up the formal parameter speci�cations i.e., make separate and
complete declarations of each of p1, p2 . . . pn.

158 MESSAGE CRUNCHED CONFORMANT ARRAYS ARE NOT ALLOWED (158)

CT CAUSE Conformant array parameters cannot be CRUNCHED.

ACTION Remove CRUNCHED, or change to PACKED.

159 MESSAGE NO PACKED CONFORMANT ARRAYS OF CONFORMANT ARRAYS
(159)

CT CAUSE Packed conformant arrays cannot have, as their elements, conformant
arrays.

ACTION Add PACKED to the inner type. Remove PACKED from the outer type.

160 MESSAGE INVALID BASE TYPE FOR FILE (160)

CT CAUSE The component type of a �le may not be a �le or a structure with a �le
type component.

ACTION Remove/change the �le being referenced or the declaration of the �le.

161 MESSAGE TEXTFILE VARIABLE IS REQUIRED HERE (161)

CT CAUSE The prede�ned procedure or function in question may only be used with a
�le of type text.

ACTION Remove/change the �le being referenced or the routine being used.

A-22 Error Messages

Additional Documentation

162 MESSAGE TEXTFILE NOT ALLOWED HERE (162)

CT CAUSE The standard procedure or function in question may not be used with a �le
of type text.

ACTION Remove/change the �le being referenced or the routine being used.

163 MESSAGE INVALID TYPE FOR A PROGRAM PARAMETER (163)

CT CAUSE An identi�er in the program parameter list has not been declared as a �le
variable, or a variable of type PAC, string, or integer.

ACTION Correct the actual declaration to be a �le declaration or remove the
identi�er from the program statement.

164 MESSAGE VARIABLE IS REQUIRED HERE (164)

CT CAUSE A variable is required as the target for reading from a �le or a string.

ACTION Supply a variable in the code.

165 MESSAGE DEFAULT FILE INPUT MUST BE IN PROGRAM PARAMETER LIST
(165)

CT CAUSE The �le variable in a standard procedure or function call was defaulted to
INPUT, but INPUT was not declared in the program parameter list.

ACTION Either add 'INPUT' to the program heading or remove the rede�nition of
'INPUT', if one was made.

166 MESSAGE DEFAULT FILE OUTPUT MUST BE IN PROGRAM PARAMETER
LIST (166)

CT CAUSE The �le variable in a standard procedure or function call was defaulted to
OUTPUT, but OUTPUT did not appear in the program parameter list.

ACTION Add 'OUTPUT' to the program heading or remove the rede�nition of
'OUTPUT', if one was made.

167 MESSAGE FORMAT EXPRESSION ALLOWED ONLY FOR TEXTFILES (167)

CT CAUSE A formatted output expression may only occur when writing to a text�le or
a string.

ACTION Remove the formatted expression from the code.

168 MESSAGE INTEGER VALUE IS REQUIRED HERE (168)

CT CAUSE The expressions specifying the �eld width and the number of decimal digits
for an output expression are not type integer or a subrange of integer.

ACTION Replace with an integer expression.

169 MESSAGE SECOND FORMAT VALUE ALLOWED ONLY FOR REAL OR
LONGREAL (169)

CT CAUSE The format value that speci�es the number of decimal digits in an output
expression is only legal for output values of type real or longreal.

ACTION Check type of parameter or remove decimal position speci�er.

Error Messages A-23

Additional Documentation

190 MESSAGE THIS PROGRAM PARAMETER WAS UNDECLARED: \! " (190)

CT CAUSE The identi�er appeared in the program parameter list but was never
declared.

ACTION Add the identi�er declaration.

191 MESSAGE DUPLICATE PROGRAM PARAMETER (191)

CT CAUSE There is more than one PARM parameter or more than one INFO
parameter in a program parameter list.

ACTION Remove duplicate declarations.

192 MESSAGE PARAMETER \! " DOES NOT MATCH POSSIBLE SPL TYPES (192)

CT CAUSE The HP Pascal type of the parameter does not correspond to an acceptable
SPL type.

ACTION Change the parameter de�nition to a type that will correspond to the SPL
type.

193 MESSAGE PARAMETER \! " DOES NOT MATCH INTRINSIC PARM TYPE (193)

CT CAUSE The HP Pascal type of the parameter does not match the parameter type
required by the INTRINSIC.

ACTION Change the parameter de�nition to a type that will correspond to the
intrinsic type.

194 MESSAGE MISSING FUNCTION RETURN SPECIFICATION (194)

CT CAUSE The return type is not speci�ed in the function heading.

ACTION Insert the result type declaration.

195 MESSAGE INVALID PARAMETER TO HALT (195)

CT CAUSE The optional parameter to HALT is not type integer or an integer subrange.

ACTION Change the parameter to type integer or supply no parameter.

196 MESSAGE THIS INTRINSIC MAY NOT BE USED AS A FUNCTION (196)

CT CAUSE The speci�ed intrinsic does not return a result and cannot be declared as a
function.

ACTION Redeclare the intrinsic as a procedure.

197 MESSAGE ELEMENTS OF PACKED OR CRUNCHED STRUCTURES CANNOT
BE PASSED BY VAR (197)

CT CAUSE Elements of packed arrays or records may not be passed to a routine
expecting a reference parameter.

ACTION Redeclare the intrinsic as a procedure.

198 MESSAGE EMPTY PARAMETER MAY NOT BE USED HERE (198)

CT CAUSE Actual parameters may only be omitted for EXTERNAL SPL VARIABLE
procedures or for intrinsics that are extensible and/or have default
parameters.

ACTION Supply a value for the parameter in question.

A-24 Error Messages

Additional Documentation

199 MESSAGE PROCEDURE NOT DECLARED (199)

CT CAUSE The identi�er used in the procedure call either has not been declared, or it
is not a procedure name.

ACTION Check the spelling of the procedure and make sure it is declared.

200 MESSAGE PARAMETER \! " MUST BE VAR PARAMETER. (200)

CT CAUSE The parameter in the intrinsic declaration was speci�ed as a value
parameter, but the intrinsic requires a reference parameter.

ACTION Change the intrinsic declaration so that it speci�es the parameter in
question as a VAR parameter.

201 MESSAGE PARAMETER \! " MUST BE VALUE PARAMETER (201)

CT CAUSE The parameter in the intrinsic declaration was speci�ed as a reference
parameter, but the intrinsic requires a value parameter.

ACTION Change the intrinsic declaration to specify the parameter in question as a
value parameter.

202 MESSAGE INVALID USE OF PROCEDURE OR FUNCTION IDENTIFIER (202)

CT CAUSE A procedure identi�er appears as a function call.

A function identi�er appears as a procedure call.

A valid identi�er mistakenly appears as a function or procedure identi�er.

ACTION Change either the declaration or the usage of the identi�er to make sure
they are consistent.

203 MESSAGE INCONSISTENT DEFINITION OF FORWARD PROCEDURE OR
FUNCTION (203)

CT CAUSE The de�nition of a procedure declared FORWARD is a function. The
de�nition of a function declared FORWARD is a procedure.

ACTION Change either the declaration or the usage of the identi�er to make sure
they are consistent.

CAUSE The ALIAS in the de�nition di�ers from the ALIAS in the FORWARD
declaration of a procedure or function.

ACTION Make ALIAS names identical or only use ALIAS in the FORWARD
declaration.

CAUSE A FORWARD declaration is already provided for a function or procedure
now declared FORWARD, EXTERNAL, or INTRINSIC.

ACTION Remove all but one of the declarations.

CAUSE The de�nition is missing a routine option or compiler option which was
speci�ed in the FORWARD declaration.

ACTION Make sure all routine options or compiler options are repeated in the
de�nition of the procedure or function.

Error Messages A-25

Additional Documentation

204 MESSAGE INVALID DIRECTIVE (204)

CT CAUSE EXTERNAL, EXTERNAL SPL, EXTERNAL SPL VARIABLE,
EXTERNAL FORTRAN, EXTERNAL FTN77, EXTERNAL C,
EXTERNAL COBOL, FORWARD, and INTRINSIC are the only legal
directives.

ACTION Remove the directive from the code or correct the spelling.

205 MESSAGE INVALID LANGUAGE SPECIFICATION (205)

CT CAUSE The language speci�ed was not FORTRAN, SPL, COBOL, FTN77, or C.

A language cannot be speci�ed with the FORWARD or INTRINSIC
directives.

ACTION Remove or correct the language speci�cation.

206 MESSAGE INCORRECT NUMBER OF PARAMETERS (206)

CT CAUSE The number of actual parameters given is either too few or too many for
the procedure or function.

ACTION Check consistency between the procedure call and procedure declaration.

207 MESSAGE UNMATCHED PARAMETERS IN FORWARD (207)

CT CAUSE Parameters in the de�nition of a procedure or function declared
FORWARD do not match the parameters of the original heading.

ACTION Check whether the FORWARD routine declaration and the routine
declaration are consistent.

208 MESSAGE ACTUAL PARAMETER NOT COMPATIBLE WITH FORMAL
PARAMETER (208)

CT CAUSE This actual reference parameter is not type identical with the formal
reference parameter in a user-de�ned function or procedure.

This actual value parameter is not assignment compatible with the formal
value parameter in a user-de�ned function or procedure.

ACTION Check the types of the actual and formal parameters.

CAUSE This actual reference parameter to a standard function or procedure is not
type identical with the formal reference parameter.

This actual value parameter to a standard function or procedure is not
assignment compatible with the required type.

ACTION Check the types of the actual parameter and the parameter accepted by
the prede�ned routine.

CAUSE This actual parameter is not intrinsic compatible with the intrinsic
parameter.

ACTION Check the types of the actual parameter and the intrinsic parameter.

CAUSE The parameter of the standard SQR function is an integer subrange type
with a lower bound greater than the square root of maxint, or an upper
bound less than the negation of the square root of maxint. In either case,
an integer overow is possible at run time.

ACTION Do not call SQR.

A-26 Error Messages

Additional Documentation

209 MESSAGE NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO
NEW (209)

CT CAUSE The pointer parameter to NEW points to a record that has no additional
nested variant parts.

The pointer parameter to NEW points to a record that does not have a
variant part.

The pointer parameter to NEW points to a structure that is not a record.

ACTION Check the record type de�nition for the correct variant record or remove
the extra variant labels from the call.

210 MESSAGE NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO
DISPOSE (210)

CT CAUSE The pointer parameter to DISPOSE points to a record that has no
additional nested variant parts.

The pointer parameter to DISPOSE points to a record that does not have
a variant part.

The pointer parameter to DISPOSE points to a structure that is not a
record.

ACTION Check the record type de�nition for the correct variant or remove the extra
variant labels from the call.

211 MESSAGE NO FURTHER PARAMETERS ALLOWED TO MARK (211)

CT CAUSE More than one pointer parameter in a call to MARK.

ACTION Remove the extra parameter.

212 MESSAGE NO FURTHER PARAMETERS ALLOWED TO RELEASE (212)

CT CAUSE More than one pointer parameter in a call to RELEASE.

ACTION Remove the extra parameter.

213 MESSAGE VALUE PARAMETER MAY NOT CONTAIN FILE COMPONENT (213)

CT CAUSE This value formal parameter is a �le or a structured type with a �le type
component. This is equivalent to assigning to a �le.

ACTION Remove the �le component from the source code.

214 MESSAGE FUNCTION TYPE MAY NOT CONTAIN FILE COMPONENT (214)

CT CAUSE This function return type is a �le or a structured type that contains a �le
type component. This is equivalent to assigning to a �le.

ACTION Remove the �le component from the source code.

215 MESSAGE COMPILER LEVEL WRONG|PROBABLY UNMATCHED \END"
(215)

CT CAUSE This occurrence of END cannot match a BEGIN because all compound
statements have been terminated. The compiler disregards the extraneous
END.

ACTION Ensure all BEGINs and ENDs match along with ENDs for CASEs. Make
sure a BEGIN has not been commented out or �x any syntax errors.

Error Messages A-27

Additional Documentation

216 MESSAGE BAD CONSTANT PARAMETER (216)

CT CAUSE This string constant parameter to BINARY, OCTAL, or HEX either
contains an invalid character or represents a value outside the range
minint..maxint.

ACTION Fix the character construct.

CAUSE This parameter to SUCC is a constant value equal to the maximum value
of an ordinal type.

This parameter to PRED is a constant value equal to the minimum value
of an ordinal type.

ACTION Fix the constant value.

217 MESSAGE PROCEDURE OR FUNCTION NOT IN INTRINSIC FILE (217)

CT CAUSE An incorrect intrinsic �le was speci�ed prior to the declaration of the
procedure or function.

ACTION Check the name of the SYSINTR �le.

CAUSE The INTRINSIC name di�ers slightly from the procedure or function name
declared INTRINSIC.

ACTION Either use the ALIAS option or correct the spelling of the ALIAS
parameter.

CAUSE The procedure has never been put into the intrinsic �le.

ACTION Either check the spelling or list the intrinsic �le (or rebuild the intrinsic �le
if it is not the standard intrinsic �le.)

218 MESSAGE INTRINSIC FILE NOT CHECKED (218)

CT CAUSE Due to a prior error, the intrinsic �le was never opened. Thus, no attempt
was made to look up this procedure or function.

ACTION Fix the previous error and try again.

219 MESSAGE \STRING" IS NOT ALLOWED AS A VALUE PARAMETER (219)

CT CAUSE A string formal value parameter must have a speci�ed maximum length.

ACTION Make the declaration a VAR parameter or make the type a speci�c string
type.

220 MESSAGE FUNCTION \! " NOT ASSIGNED TO (220)

CT CAUSE A function of a simple type has no assignment to the result in the function
body.

A function of a structured type has no assignment to any component of the
result in the function body.

ACTION Make an assignment to the function result.

221 MESSAGE DECLARED FUNCTION TYPE DOES NOT MATCH INTRINSIC
TYPE (221)

CT CAUSE The HP Pascal type of the return of a function declared INTRINSIC does
not match the type of the value returned by the intrinsic.

ACTION Change the type so it matches the value of the intrinsic type.

A-28 Error Messages

Additional Documentation

222 MESSAGE VARIABLE PARAMETER REQUIRED HERE (222)

CT CAUSE An expression appears as an actual reference parameter instead of a
variable.

A constant appears as an actual reference parameter instead of a variable.

A component of a structured constant appears as an actual reference
parameter instead of a variable.

ACTION Check the parameter; it must be a variable and not an expression or
constant.

223 MESSAGE ILLEGAL PARAMETER FORM (223)

CT CAUSE The integer parameter to a string procedure/function is not compatible
with a 32 bit integer.

The actual parameter is a procedure or function identi�er, but the
corresponding formal parameter is not a procedure or function heading.

The parameters of the actual procedural or functional parameter are not
congruent with the parameters of the formal procedural or functional
parameter.

The parameter of a call to WADDRESS or SIZEOF is a component of a
packed structure.

The parameter of a call to BADDRESS is a component of a packed
structure other than a PAC.

Either the third parameter of a call to ASSERT is not a procedure identi�er
or the parameter of such a procedure is not an integer value parameter.

ACTION Check the types of the actual and formal parameters.

224 MESSAGE SYSTEM ADDRESSING LIMIT EXCEEDED (224)

CT CAUSE The storage limit for variables at run time is exceeded.

ACTION Reduce the number of variables or make the structured variables, such as
arrays or strings, smaller.

225 MESSAGE INCONSISTENT ALIAS IN FORWARD PROCEDURE OR FUNCTION
(225)

CT CAUSE The ALIAS in the de�nition di�ers from the ALIAS in the FORWARD
declaration of a procedure or function.

ACTION Use the same ALIAS in both the declarations.

226 MESSAGE INCONSISTENT OPTIONS IN FORWARD PROCEDURE OR
FUNCTION (226)

CT CAUSE The routine options speci�ed in the de�nition di�ers from the one in the
FORWARD declaration of the procedure or function.

ACTION Use the same routine options in both declarations.

Error Messages A-29

Additional Documentation

227 MESSAGE INCONSISTENT COMPILER OPTIONS IN FORWARD PROCEDURE
OR FUNCTION (227)

CT CAUSE The compiler options speci�ed in the de�nition di�er from the one in the
FORWARD declaration of the procedure or function.

ACTION Use the same compiler options in both declarations.

228 MESSAGE VARIABLE OR EXPRESSION NOT WITHIN STRING LIMITS (228)

CT CAUSE The bounds of a subrange variable used as a string index do not overlap
the bounds of the string type.

ACTION Use a variable of the proper type.

CAUSE The constant expression used as a string index lies outside the bounds of
the string type.

ACTION Use a constant expression within the string bounds.

229 MESSAGE INCONGRUENT FORMAL PARAMETER SECTIONS (229)

CAUSE The formal parameter sections of the actual routine being passed as a
parameter are not congruent with the formal parameter sections of the
procedural or functional parameter of the called routine.

ACTION Alter one of the formal parameter sections so that it is congruent with the
other.

Raise the STANDARD LEVEL to HP PASCAL.

230 MESSAGE INVALID CONTROL VARIABLE IN FOR STATEMENT (230)

CT CAUSE The control variable of the FOR loop is a record �eld.

The control variable of the FOR loop is de�ned in a scope containing the
current scope.

The control variable of the FOR loop is a formal parameter of a procedure
or function containing the FOR statement.

The identi�er used as the control variable of the FOR is not a variable.

ACTION Use a local ordinal variable for the loop control variable.

231 MESSAGE CONTROL VARIABLE NOT AN ORDINAL TYPE (231)

CT CAUSE The control variable of the FOR loop is not an ordinal type.

ACTION Use a local ordinal variable for the loop control variable.

232 MESSAGE EXPRESSION NOT COMPATIBLE WITH CONTROL VARIABLE (232)

CT CAUSE The expressions for the initial and �nal values are not type compatible
with the control variable of a FOR loop.

ACTION Check expressions and make sure the types are compatible.

233 MESSAGE INITIAL AND FINAL EXPRESSIONS NOT COMPATIBLE (233)

CT CAUSE The types of the expressions for the initial and �nal values of the FOR loop
are not type compatible.

ACTION Change the types of the initial and �nal value expressions or of the loop
control variable as appropriate.

A-30 Error Messages

Additional Documentation

240 MESSAGE MULTIPLE MODULE IMPLEMENTATIONS NOT PERMITTED (240)

CT CAUSE Only one MODULE is permitted for each module.

ACTION Remove duplicate MODULE.

241 MESSAGE MISSING EXPORT SECTION FOR THIS MODULE (241)

CT CAUSE Every module must have at least one EXPORT.

ACTION Declare or de�ne at least one 'object' in the EXPORT section.

242 MESSAGE INVALID IMPORT MODULE IDENTIFIER (242)

CT CAUSE The given identi�er is not de�ned.

The given identi�er is not the name of a module in the current $SEARCH$
list.

ACTION Check the name of the IMPORT module identi�er. If the PASLIB �le in
which the module is de�ned is not in the current search list, add the �le to
it.

243 MESSAGE NOT AN IMPORTED MODULE (243)

CT CAUSE The identi�er is not the name of an import module or the module currently
being de�ned

ACTION If the name is misspelled, correct the spelling. Otherwise, import the
module in question.

250 MESSAGE DUPLICATE CASE LABEL (250)

CT CAUSE The CASE label is the same as a CASE label that appeared previously in
the same construct.

The CASE label is contained in a previous CASE label subrange in the
same construct.

The CASE label subrange contains at least one CASE label that appeared
previously in the same construct.

ACTION Remove the duplicate label from the code.

251 MESSAGE CASE LABEL OF INCORRECT TYPE (251)

CT CAUSE The type of the CASE label is not the same as the type of the tag or the
select expression.

ACTION Change the label or selecting expression as appropriate.

252 MESSAGE CASE LABEL TYPE NOT SAME AS PREVIOUS CASE LABEL (252)

CT CAUSE There was a detected error in the tag type or select expression, so the
CASE labels are checked against each other. The type of the current CASE
label does not match the type of previous CASE labels.

ACTION Make sure that all case labels in a CASE statement are of the same type.

270 MESSAGE INVALID LABEL - MUST BE AN INTEGER BETWEEN 0 AND 9999
(270)

CT CAUSE This label is not an integer.

A colon (:) appears or was inserted by the compiler where no label was
desired.

ACTION Check to ensure that the label is an integer between 0 and 9999.

Error Messages A-31

Additional Documentation

271 MESSAGE LABEL HAS NOT BEEN DECLARED (271)

CT CAUSE This label marks a statement, but never appeared in a LABEL declaration
for this block.

ACTION Declare the label.

272 MESSAGE LABEL DECLARED MORE THAN ONCE (272)

CT CAUSE This label already appeared in this LABEL section or in a LABEL section
in an enclosing scope.

ACTION Delete the duplicate label declaration.

273 MESSAGE SAME LABEL NOT ALLOWED ON MORE THAN ONE STATEMENT
(273)

CT CAUSE This label has already marked a statement.

ACTION Remove/correct the duplicate de�nition.

274 MESSAGE LABEL `!` NOT USED (274)

CAUSE The label is referenced in a GOTO statement, but is not used to mark a
statement.

ACTION Mark a target statement with the label.

275 MESSAGE LABEL REFERENCED BY GOTO OUTSIDE STRUCTURED
STATEMENT (275)

CT CAUSE This label appears in a component statement of a structured statement and
was previously referenced by a GOTO statement:

(a) preceding the structured statement.

(b) in a preceding component statement of the same structured statement.

(c) contained in an inner procedure or function.

ACTION Remove either the label or the GOTO from the code.

276 MESSAGE GOTO REFERENCES LABEL INSIDE STRUCTURED STATEMENT
(276)

CT CAUSE The label referenced in a GOTO statement appears in a component
statement of a structured statement and the GOTO statement appears:

(a) after the structured statement.

(b) in a later component statement of the same structured statement.

ACTION Remove either the label or the GOTO from the code.

293 MESSAGE TSAM INTRINSIC ERROR \! " (293)

CT CAUSE An error was encountered when reading a TSAM (toolset format) �le.

ACTION The error number replacing \! " refers to Toolset error messages if 900 or
above. Look them up in a Toolset manual. Please report other numbers to
your local HP representative.

A-32 Error Messages

Additional Documentation

294 MESSAGE $ INCLUDE NOT ALLOWED HERE WHEN SYMBOLIC DEBUG IS
ENABLED (294)

CT CAUSE $INCLUDE of a �le in executable code must be on a Pascal statement
boundary if symbolic debug is enabled.

370 MESSAGE IMPORTED MODULE `!` WAS NOT REFERENCED (370)

N CAUSE The speci�ed module was imported and no references to it were found.

ACTION Either remove the module from the IMPORT statement or cause the
module to be referenced.

371 MESSAGE USE OF AN INLINED ROUTINE (371)

N CAUSE An inlined routine has been expanded in the current statement.

ACTION No action required. This message is for your information only.

373 MESSAGE ASSUME \! " IS VALID, USE $ASSUME$ (373)

N CAUSE The given optimizer assumption is valid, and should be used in the
routine's declaration to get the most out of optimization.

ACTION Use the $ASSUME$ compiler option.

374 MESSAGE BIT32 Type CONVERTED TO LONG INTEGER (374)

N CAUSE Using bit32 requires that it be converted to a long integer.

ACTION Use type coercion to obtain a signed or unsigned 32 bit operation.

377 MESSAGE CODE GENERATED TO VERIFY CORRECT POINTER ALIGNMENT
(377)

N CAUSE Checking code will be generated to ensure that the pointer being coerced
has an alignment that allows it to be used as the coerced pointer type.

ACTION Use $RANGE OFF$ to eliminate the extra code.

378 MESSAGE WHICH IS A COMPONENT OF ' ! '(378)

N CAUSE This message accompanies message #379.

ACTION See message 379.

379 MESSAGE THE FIELD / AN ELEMENT OF ' ! ', CROSSES A WORD
BOUNDARY (379)

N CAUSE Accesses of ordinal data items split across word boundaries are relatively
ine�cient.

ACTION Use $ALIGNMENT$ to start ordinal data items on word boundaries.

380 MESSAGE TYPE COERCION MAY ACCESS INVALID DATA (380)

N CAUSE Informational message - the referenced type-coercion may cause
uninitialized/invalid data to become accessible.

ACTION Ensure that the data referenced is valid.

381 MESSAGE MACHINE DEPENDENT REPRESENTATION USED IS NOT
CONSISTENT WITH PACKING(381)

N CAUSE A real type, such as a real or longreal, is used with $HP3000 16$.

ACTION Don't mix $HP3000 16$ and $HP3000 32$ modes in data declarations.

Error Messages A-33

Additional Documentation

382 MESSAGE SIZE OF MACHINE DEPENDENT TYPE IS NOT CONSISTENT WITH
PACKING (382)

N CAUSE A machine dependent type such as a pointer, string, or �le, is used with
$HP3000 16$.

ACTION Don't mix $HP3000 16$ and $HP3000 32$ modes in data declarations.

383 MESSAGE FEATURE MAY NOT BE SUPPORTED FOR OTHER TARGET
MACHINES (383)

N CAUSE Informational message - the referenced feature may not be supported on
other machines.

ACTION No action is required.

384 MESSAGE MOVE PROCEDURE IN STATEMENT \! " USES A SIMULATED FOR
LOOP (384)

N CAUSE The MOVE prede�ned procedure is implemented with a FOR loop to move
the elements.

ACTION No action is required.

385 MESSAGE POSSIBLE NON-ALIGNED OVERLAPPING SOURCE/TARGET IN
STATEMENT ! (385)

N CAUSE The source and target of the MOVE prede�ned procedure may overlap and
generate scrambled results.

ACTION You may need to use MOVE R TO L or MOVE L TO R.

400 MESSAGE INVALID FILENAME (400)

CT CAUSE The �lename given in the INCLUDE, SYSINTR, or SPLINTR option is
not a legal �lename.

ACTION Correct the �lename to conform to the format required by the operating
system.

401 MESSAGE ILLEGAL NAME IN ALIAS OR SUBPROGRAM OPTION (401)

CT CAUSE The procedure or function name in an ALIAS option is not a valid
identi�er.

The procedure or function name in a SUBPROGRAM option is not a valid
HP Pascal identi�er.

ACTION Make sure the name is a valid HP Pascal identi�er.

402 MESSAGE NOT A LEGAL LOCALITY NAME (402)

CT CAUSE The name for a locality is illegal.

ACTION Check the name and make sure it is legal.

403 MESSAGE IF EXPRESSION CAN NOT BE EVALUATED (403)

CT CAUSE The expression in an IF has a syntax error in it.

ACTION Check the source code and �x the syntax error.

A-34 Error Messages

Additional Documentation

404 MESSAGE UNMATCHED $ENDIF$ FOUND (404)

CT CAUSE An $ENDIF$ compiler option was found without a preceding IF option.
This may happen if either the compiler rejects an IF because it was out
of place, or the IF is not in the code.

ACTION Check for a missing or commented IF.

405 MESSAGE A BOOLEAN EXPRESSION IS REQUIRED INSIDE STRING (405)

CT CAUSE A blank string was found as part of an IF.

ACTION Remove the IF or add a string.

406 MESSAGE EXPECTED TRUE/FALSE AFTER \= " (406)

CT CAUSE Misspelled true/false after \= " in SET

ACTION Correct spelling.

CAUSE Missing true/false after \= " in SET

ACTION Add TRUE or FALSE.

408 MESSAGE UNMATCHED $ENDIF$ OR $ELSE$ FOUND (408)

CT CAUSE $ENDIF$/$ELSE$ compiler option was found without a preceding IF
option. This may happen either if the compiler rejects an IF because it
was out of place, or if the IF is not in the code.

ACTION Check for a missing or misplaced IF.

409 MESSAGE EXCEEDED MAXIMUM NESTING LEVEL FOR IF (409)

CT CAUSE The nesting of IF exceeded the maximum allowable nesting level.

ACTION Remove the o�ending IF from the code.

410 MESSAGE ILLEGAL IDENTIFIER IN SET or IF (410)

CT CAUSE An identi�er is misspelled.

Expected an identi�er and one was not found.

ACTION Provide a legal identi�er or correct the spelling of the identi�er.

411 MESSAGE $PUSH$ NESTING TOO DEEP, OPTIONS NOT SAVED (411)

CT CAUSE Too many $PUSH$ compiler options encountered.

ACTION Remove the o�ending $PUSH$ option.

412 MESSAGE NOTHING TO POP, OPTIONS NOT CHANGED (412)

CT CAUSE Too many POP compiler options for the number of preceding $PUSH$
options.

ACTION Remove POP options so that those remaining have matching $PUSH$
options.

413 MESSAGE INVALID INTRINSIC FILE (413)

CT CAUSE The �le speci�ed in the intrinsic option is not a valid SYSINTR �le.

ACTION Check the name and make sure the �le is an intrinsic �le and has not been
corrupted.

Error Messages A-35

Additional Documentation

414 MESSAGE NLS NOT INSTALLED OR SYSTEM VARIABLE NOT SET (414)

CT CAUSE NLS (Native Language Support) is not installed or the JCW
'GETUSERLANG" is not set (MPE/iX) or the environment variable
'LANG' is not set (HP-UX).

ACTION Determine which of the above applies and correct the situation.

415 MESSAGE $INCLUDE FILENAME IS NULL (415)

CT CAUSE The �le speci�ed in the include option is empty.

ACTION Place a valid �le name in the quotes.

425 MESSAGE COMPILER ERROR \! " COMPILE TERMINATED (425)

CT CAUSE (1..999) A run-time error was detected by the run-time support library
during compiler execution.

(1000..1031) A run-time error was detected in an arithmetic operation
during compiler execution.

(2000..2999) A run-time error was detected by a system intrinsic during
compiler execution.

ACTION Check that there is no previous syntax error. If there is one, �x the error
and recompile. Otherwise, report this as a bug.

(3000..3999) A run-time code trap (an addressing exception or an illegal
instruction, for example) occurred during compiler execution.

(5000..5999) A user or internal code generation error.

(6000..6999) An optimizer error.

(7000..7999) A user or internal code generation error.

426 MESSAGE SYSTEM RESOURCE EXHAUSTED \! " COMPILE TERMINATED
(426)

CT CAUSE The compiler ran out of space in the heap.

ACTION Break the code into smaller compilation units.

CAUSE The compiler ran out of space in one of its data areas or the compiler could
not acquire one of its data areas (especially if the parameter is 2).

ACTION Reduce the size or the number of structured constants or number of
identi�ers or increase the size of data areas. In the following examples, the
parameter is the number of pages:

On MPE/iX:

SETJCW PASXDATA 200

On HP-UX:

export PASXDATA=200 for ksh

PASXDATA=200; export PASXDATA for sh or ksh

setenv PASXDATA 200 for csh

A-36 Error Messages

Additional Documentation

461 MESSAGE PARSER STACK OVERFLOW - TOO MANY NESTED CONSTRUCTS
(461)

CT CAUSE An internal compiler limit on nested structures has been reached. A
common cause is a long list of ELSE-IFs.

ACTION Break up a nested structure. Use a balanced IF-THEN-ELSE structure.

500 MESSAGE OPTION NOT YET IMPLEMENTED (500)

W CAUSE This compiler option is not yet implemented.

ACTION Remove any references to this compiler option from the source code.

501 MESSAGE UNRECOGNIZED COMPILER OPTION (501)

W CAUSE A compiler option with this name is not recognized.

ACTION Check the spelling of this option.

502 MESSAGE THIS OPTION IS NOT ALLOWED HERE (502)

W CAUSE The option appears in an illegal location in the source code. For example,
the GLOBAL option appears anywhere except before the PROGRAM
heading.

ACTION Remove the option from an illegal location in the source code and place it
in a legal location.

503 MESSAGE TEXT AFTER INCLUDE OR SKIP TEXT IGNORED (503)

W CAUSE Anything on the source line after INCLUDE was ignored.

Anything on the source line after a $SKIP TEXT ON$ is treated as a
comment. Anything on the source line after an IF that evaluates to
FALSE is ignored.

ACTION Remove the extra text.

504 MESSAGE INTEGER OUT OF RANGE, VALUE NOT CHANGED (504)

W CAUSE LINES requires an integer greater than 20

WIDTH requires an integer in the range 10..132.

$CHECK ACTUAL PARM$ and $CHECK FORMAL PARM$ require
an integer in the range 0..3.

ACTION Correct the option argument; check the compiler option syntax.

505 MESSAGE STRING PARAMETER IS REQUIRED, OPTION IGNORED (505)

W CAUSE This option requires information in a string literal parameter.

ACTION Check the option argument; check the compiler option syntax.

506 MESSAGE I/O FAILED ON FILE !, ! (506)

CAUSE I/O on a �le failed. The compiler feature that uses that �le has been
disabled for the remainder of the compilation.

ACTION Check the named �le for invalid �le equations, links, size restrictions, and
locking by other processes. Also check for disk space.

Error Messages A-37

Additional Documentation

507 MESSAGE BOTH $GLOBAL$ AND $EXTERNAL$ NOT ALLOWED (507)

W CAUSE The option $GLOBAL$ occurred after the option $EXTERNAL$ was
speci�ed. Since only one is allowed, $GLOBAL$ was ignored.

The option $EXTERNAL$ occurred after the option $GLOBAL$ was
speci�ed. Since only one is allowed, $EXTERNAL$ was ignored.

ACTION Remove $GLOBAL$ or $EXTERNAL$, whichever is appropriate.

508 MESSAGE A \$ " IS REQUIRED HERE - ONE INSERTED (508)

W CAUSE Compiler option doesn't end with a $ on the same line.

ACTION Add a \$ " to the code.

509 MESSAGE EXPRESSION WILL CAUSE A RUN-TIME OVERFLOW (509)

W CAUSE The result of an expression will exceed maxint at run time. This is
detected for:

(a) +, -, * when the types of the operands are such that the expression
overows. For example:

VAR

A: maxint-10..maxint;

Then the expression A + A would never be less than 2 * maxint - 10,
which is greater than maxint.

(b) -minint

(c) the addition, subtraction, or multiplication of two constants resulting in
an overow.

ACTION Correct the expression.

510 MESSAGE EXPRESSION WILL CAUSE A RUN-TIME UNDERFLOW (510)

W CAUSE The result of an expression will be less than minint at run time. This is
detected for:

(a) +, -, * when the types of the operands are such that the expression
underows. For example:

VAR

A: maxint - 10..maxint;

B: minint..minint + 10

Then the expression B - A would be less than minint + 10 - maxint,
which is less than minint.

(b) the addition, subtraction, or multiplication of two constants resulting in
an underow.

ACTION Correct the expression.

511 MESSAGE MOD DIVISOR WILL CAUSE A RUN-TIME ERROR (511)

W CAUSE In an expression A MOD B, B will be <= 0 at run time.

In a constant expression A MOD B, B is <= 0.

ACTION Correct the expression.

A-38 Error Messages

Additional Documentation

512 MESSAGE RUN TIME DIVISION BY ZERO (512)

W CAUSE In an expression A DIV B, B = 0.

In a constant expression A DIV B, B = 0.

ACTION Correct the expression.

513 MESSAGE EMPTY INCLUDE FILE (513)

W CAUSE The INCLUDE �le had no text in it.

ACTION Verify that the �lename is correct.

514 MESSAGE $ NOT ALLOWED IN INFO PARAMETER (514)

W CAUSE The INFO parameter of a :PASXL, :PASXLLK, or :PASXLGO command
is interpreted as a compiler option with the $ assumed as the leading and
trailing character. The $ cannot appear in the INFO string itself.

ACTION Do not supply '$' in the INFO string.

515 MESSAGE NO DISC SPACE FOR XREF (515)

W CAUSE A �le error occurred trying to open the �le needed to do the cross
reference. This could be any �le error, but OUT OF DISK SPACE is the
most likely. A temporary �le with the name PASXRFdd, where d is a
digit, is another possible cause.

ACTION Check for a duplicate �le name and for enough �le disk space.

516 MESSAGE NO VARIANT FOR TAG VALUE (516)

W CAUSE A NEW was called specifying a tag constant that did not appear in the case
list in the variant part. The maximum space for the record is allocated.

ACTION Remove the variant identi�er from the source code or correct its spelling.

519 MESSAGE BOOLEAN EXPRESSION FOLDED TO '!' (519)

W CAUSE The compiler has folded an expression with IN, AND, or OR and constant
operands or, in the case of IN, with a left operand that is a constant
appearing in the set list.

The compiler has folded an expression with =, <>, <=, >=, or > and
operands that are non-set constants.

With $PARTIAL EVAL ON$, the compiler has folded an expression with
OR when TRUE is an operand, or an expression with AND when FALSE is
an operand.

ACTION Check the operands to ensure that they are correct.

520 MESSAGE NON-OVERLAPPING TYPES - EXPRESSION FOLDED (520)

W CAUSE Two sets with ranges that do not overlap were intersected. The compiler
folded the expression to the empty set.

An arithmetic comparison was done with operands of types with ranges
that do not overlap. The compiler folded the expression. For example, if A:
0..3 and B: 5..7, then A = B is folded to false.

ACTION Check the operands to ensure that they are correct.

Error Messages A-39

Additional Documentation

521 MESSAGE BODY OF FOR LOOP WILL NEVER EXECUTE (521)

W CAUSE Values of the initial and �nal expressions will prevent the body of the FOR
loop from ever executing.

Non-overlapping subranges for the types of the initial and �nal expressions
prevent the body of the FOR loop from ever executing.

ACTION Check the values and types for the initial and �nal expressions.

522 MESSAGE CASE LABEL NOT WITHIN TAG OR SELECT EXPRESSION RANGE
(522)

W CAUSE The CASE label value or subrange is not within the range of the tag type
and can never be speci�ed in a call to NEW or assigned to the tag �eld.

The CASE label value or subrange is not within the range of the select
expression and can never be selected.

ACTION Check the possible values of the CASE selection expression and the values
of the CASE labels.

523 MESSAGE INTEGER CONSTANT IS REQUIRED - OPTION IGNORED (523)

W CAUSE This compiler option requires an integer parameter; such as WIDTH. The
compiler has ignored this option.

ACTION Check the syntax and insert an integer where necessary.

524 MESSAGE SUBPROGRAM \! " SPECIFIED, BUT NOT FOUND (524)

W CAUSE A procedure or function name speci�ed in the SUBPROGRAM option was
not found in the source.

ACTION Check the spelling of the procedure or function.

525 MESSAGE ANY EXTERNAL GOTO TO THIS LABEL IS AN ERROR (525)

W CAUSE This label marks a component statement of a structured statement. This
label cannot be referenced by a GOTO statement contained in an external
procedure or function, but that error will not be detected until the
program is prepared or executed.

ACTION Make sure no nonlocal GOTOs branch to this label.

526 MESSAGE EXPRESSION FOLDED TO THE EMPTY SET (526)

W CAUSE The compiler has determined that a set expression results in an empty set
and folded that expression to empty. This warning appears in case the user
expected side e�ects or made some kind of error that caused the folding.
Folding occurs when an intersection is performed with the empty set, the
empty set occurs on the left side of the set di�erence operator, or two
empty sets appear in a set operation.

ACTION Check to see if expression should fold to the empty set.

527 MESSAGE 'ON' OR 'OFF' IS REQUIRED HERE (527)

W CAUSE The word ON or OFF is required after this compiler option name; for
example, $LIST$.

ACTION Correct the option argument and the compiler option syntax.

A-40 Error Messages

Additional Documentation

528 MESSAGE PREVIOUS VERSION OF '!' INACTIVATED (528)

W CAUSE A procedure or function by the same name already exists in the USL �le
and has been inactivated.

CAUSE If PRIVATE PROC was ON, then two level 1 procedure or function names
are not unique within the �rst 15 characters, or a copy from a previous
compilation is being replaced.

CAUSE If PRIVATE PROC was OFF, then either duplicate non-level 1 procedure
or function names exist (they are not unique within 15 characters) or
duplicate procedure or function names have been introduced due to
separate compilation of procedures or functions with names which are
identical within the �rst 15 characters.

530 MESSAGE EXPRESSION WILL CAUSE A RUN-TIME SET RANGE ERROR (530)

W CAUSE Evaluation of a set construction in which an element of the set list will
necessarily fall outside the bounds of the set construction will cause this
error.

ACTION Check the source code and �x the expression.

532 MESSAGE THE SPECIFIED WORKSPACE FOR TOOLSET IS INVALID (532)

W CAUSE The �le is not a valid TSAM root �le or the �le cannot be opened.

ACTION Determine why the �le is invalid.

533 MESSAGE BAD FONT OPTION GIVEN (533)

W CAUSE The call to FDeviceControl returned an error condition.

ACTION Ensure that the font number speci�ed exists in the font �le speci�ed in the
�le equation for PASLIST.

534 MESSAGE CONTROL VARIABLE HAS BEEN ASSIGNED TO NON-LOCALLY
(534)

W CAUSE The control variable may be modi�ed by a non-local reference from a
routine invoked in the body of the FOR loop.

ACTION Make sure that there are no non-local references to the control variable.

535 MESSAGE \! " ACCESSED, BUT NOT INITIALIZED (535)

W CAUSE A simple variable appears in an expression, as a value parameter, or in
some other accessing reference and it has never appeared in an assigning
reference, such as a reference parameter, on the left side of an assignment
statement.

Some component of a structured variable appears in an accessing reference,
but no component of that variable has yet appeared in an assigning
reference.

ACTION Make sure the variable is initialized.

536 MESSAGE LABEL \! " DECLARED, BUT NOT USED TO MARK ANY
STATEMENT (536)

W CAUSE The label appears in a LABEL declaration, but is not used to mark any
statement.

ACTION Remove label from LABEL declaration.

Error Messages A-41

Additional Documentation

537 MESSAGE THIS PREVIOUSLY UNIMPLEMENTED FEATURE IS NOW
IMPLEMENTED (537)

W CAUSE New functionality has been added of which the user should be aware.

ACTION None.

538 MESSAGE THIS FEATURE REQUIRES $OS \! " (538)

W CAUSE The current $OS is not one that allows the feature.

ACTION Use the $OS speci�ed in the message or remove the feature.

539 MESSAGE THIS FEATURE REQUIRES $ STANDARD LEVEL \! " (539)

W CAUSE The current standard level is lower than that required for this feature.

ACTION Use the standard level in the message or remove the feature.

540 MESSAGE THIS FEATURE REQUIRES $STANDARD LEVEL$ \! " AND
$OS \! " (540)

W CAUSE The current standard level is lower than that required for this feature and
the $OS speci�ed is wrong.

ACTION Use the standard level and $OS speci�ed in the message or remove the
feature.

541 MESSAGE FURTHER MESSAGES SUPPRESSED FOR THIS LINE (541)

W CAUSE Only 5 messages will be printed for any single input source line. If more
than 5 messages are issued, then this will be the sixth and last message.

ACTION Remove the causes of the �rst 5 messages on this line, so that the next
message can be printed.

549 MESSAGE MISSING SEPARATOR, TEXT IGNORED UNTIL NEXT SEPARATOR
(549)

W CAUSE When two or more compiler options are on the same line, the options must
be separated by a semicolon or comma.

ACTION Add a separator if there are two or more compiler options.

550 MESSAGE LOWER BOUND GREATER THAN UPPER, FOLDED TO EMPTY
SUBRANGE (550)

W CAUSE Assigning or comparing a constant subrange with the lower bound greater
than the upper bound results in an assignment or comparison of an empty
set.

ACTION Correct the bounds.

551 MESSAGE OBSOLETE !, USE '!' (551)

W CAUSE A feature supported by a previous release is now obsolete.

ACTION Change the source to use the recommended features and recompile.

552 MESSAGE SYSTEMS LANGUAGE VARIABLE NOT SET (552)

W CAUSE JCW 'NLUSERLANG' or environment variable 'LANG' not set.

ACTION Set the system variable to the desired language (-LANG on HP-UX,
NLUSERLANG on MPE/iX.)

A-42 Error Messages

Additional Documentation

553 MESSAGE '!' and '!' ARE INCOMPATIBLE COMPILER OPTIONS (553)

W CAUSE These options are not compatible. The second was ignored.

ACTION Delete one of the options.

CAUSE For the options $SHLIB CODE$ (or pc's +z and +Z) and $GLOBAL$ this
means that an outer block must not be placed in a shared library unless it
is compiled with $GLOBAL$.

ACTION Add the $GLOBAL$ option if the outer block is to be added to a shared
library.

554 MESSAGE DUPLICATE $SET FOR '!'; ITS VALUE IS NOW '!' (554)

W CAUSE This identi�er was previously set by a $SET (or, on HP-UX, a -D on the
command-line). The value last seen takes e�ect.

ACTION Decide which value you want this identi�er to have and remove all other
$SETs (or, on HP-UX, remove the -D option on the-command line if it is in
error).

555 MESSAGE VOLATILE VARIABLE PASSED BY REFERENCE (555)

W CAUSE A variable declared as volatile was used as an actual parameter in a routine
call for which the formal parameter was a reference parameter.

ACTION The compiler cannot guarantee that the parameter will be properly
updated, so you must ensure that it is.

556 MESSAGE DEFAULT PARM VALUES DO NOT MATCH THOSE IN FORWARD
DECLARATION (556)

W CAUSE The values of constants for OPTION DEFAULT PARMS do not match the
corresponding values declared in a previous FORWARD declaration. The
values used are those that were speci�ed in the FORWARD declaration.

ACTION Ensure that the values are the same or leave o� the formal parameter list
from the routine heading when the routine is de�ned.

557 MESSAGE PARAMETER TO PROCEDURE \NEW"MAY CAUSE A RUN-TIME
ERROR (557)

W CAUSE The pointer argument to NEW is not aligned on a four-byte boundary. If
the type of a pointer was de�ned with the ALIGNMENT compiler option
and a component of a structured type contains this pointer type, a variable
declared with this structured type may cause the pointer to be aligned
improperly.

ACTION Create the variable so that the component used as an argument to NEW is
four-byte aligned. This can be done by removing the ALIGNMENT option
from the type declaration for the pointer or by rearranging the �elds of the
record containing the pointer.

558 MESSAGE FILES APPEAR IN THE VARIANT PART OF A RECORD (558)

W CAUSE Fields of a �le type or a structure containing a �le type appear in the
variant part of a record. When this variant becomes inactive, all �elds in
that variant are unde�ned. Furthermore, �les corresponding to such �elds
are not guaranteed to be closed when the variant becomes inactive.

ACTION Make sure that such �les are closed before deactivating the variant.

Error Messages A-43

Additional Documentation

559 MESSAGE INVALID $SHLIB VERSION DATE STRING (559)

W CAUSE The date string passed to the $SHLIB VERSION compiler option is
invalid.

ACTION The date string should be in the form: month/year. The year may be a 2
or 4 digit value. A month/year value representing a date earlier than
January 1990 is invalid.

560 MESSAGE $HP DESTINATION'ARCHITECTURE'$ IGNORED; FIRST SEEN
TAKES EFFECT (560)

W CAUSE The compiler encountered more than one
$HP DESTINATION'ARCHITECTURE' option; only the �rst one seen
will take e�ect.

ACTION Remove extra $HP DESTINATION'ARCHITECTURE'$ options from the
source �le.

ACTION If you are specifying the +DA option to the pc command, remove the
compiler option $HP DESTINATION'ARCHITECTURE'$ from your
source �le.

561 MESSAGE $HP DESTINATION'SCHEDULER'$ IGNORED; FIRST SEEN TAKES
EFFECT (561)

W CAUSE The compiler encountered more than one
$HP DESTINATION'SCHEDULER' option; only the �rst one seen will
take e�ect.

ACTION Remove extra $HP DESTINATION'SCHEDULER'$ options from the
source �le.

ACTION If you are specifying the +DS option to the pc command, remove the
compiler option $HP DESTINATION'SCHEDULER'$ from your source
�le.

562 MESSAGE $OPTIMIZE 'BASIC BLOCKS num'$: num was omitted; using zero.
(562)

W CAUSE You inadvertently omitted the number which speci�es the threshold of
basic blocks in a procedure which you want optimized at level 2. Zero was
inserted by the compiler, which e�ectively disables the basic blocks feature;
every procedure is optimized at level 2.

ACTION Specify the num in the $OPTIMIZE 'BASIC BLOCKS num'$ directive.

ACTION On HP-UX, specify the num on the command-line with +Obbnum.

ACTION On HP-UX, specify 0 as num to guarantee the \old" -0 behavior (that is,
not ever dropping down to level 1 optimization).

568 MESSAGE '+' IS NOT ALLOWED HERE (568)

W CAUSE A '+' was speci�ed as part of a $SEARCH compiler option, but it did not
precede all the �le names in the search list.

ACTION Correct the compiler option.

A-44 Error Messages

Additional Documentation

569 MESSAGE NO ASSEMBLY FILE FOUND. LIST CODE NOT PERFORMED (569)

W CAUSE The compiler could not �nd the �le with the assembly listing (usually
\???.s" on HP-UX or \PASASSM" on MPE/iX). On MPE/XL;, this
usually happens because the PASASSM �le is too small to hold the
assembly output (the default size is 40,000 records). Another possible
reason is that you have hit some �le system limit like total �le space or
number of �les.

ACTION If you have run against a system limit, get around it and recompile.

On MPE/iX, if you can determine that you have not run afoul

of a system limit, try the following �le equation:

FILE PASASSM;DISC=100000

Modify the parameter of the \DISC=" option according to how

big you think your compilation unit is.

570 MESSAGE PARAMETER TYPE NOT SUPPORTED BY EXTERNAL LANGUAGE
(570)

W CAUSE An ANYVAR or READONLY parameter is used with an EXTERNAL C
or EXTERNAL FTN77 directive. These types of parameters are not
supported by these languages.

ACTION Remove parameter or change TYPE to VAR.

571 MESSAGE INCOMPATIBLE COMPILER OPTIONS PFA AND OPTIMIZE (571)

W CAUSE Both OPTIMIZE and PFA options are present. The options are mutually
exclusive.

ACTION (1) If PFA is desired, remove OPTIMIZE.
(2) If OPTIMIZE is desired, remove PFA.

572 MESSAGE INCOMPATIBLE COMPILER OPTIONS OPTIMIZE AND SYMDEBUG
(572)

W CAUSE Both OPTIMIZE and SYMDEBUG 'XDB' options are present. The
options are mutually exclusive.

ACTION (1) If SYMDEBUG 'XDB' is desired, remove OPTIMIZE.
(2) If OPTIMIZE is desired, remove SYMDEBUG 'XDB'.

573 MESSAGE INCOMPATIBLE COMPILER OPTIONS SYMDEBUG AND OPTIMIZE
(572)

W CAUSE Both OPTIMIZE and SYMDEBUG 'TOOLSET' options are present. The
options are mutually exclusive.

ACTION (1) If SYMDEBUG 'TOOLSET' is desired, remove OPTIMIZE.
(2) If OPTIMIZE is desired, remove SYMDEBUG 'TOOLSET'.

Error Messages A-45

Additional Documentation

575 MESSAGE VALUE OF ESCAPECODE IS QUESTIONABLE HERE (575)

W CAUSE The value returned by ESCAPECODE outside a RECOVER construct is
unde�ned.

ACTION Store o� escape code into a local variable from inside the RECOVER
construct, and use the local variable outside it.

576 MESSAGE POINTER FIELD IN OTHER VARIANT NOW UNDEFINED (576)

W CAUSE An integer �eld overlaying a pointer �eld has been assigned to making the
pointer unde�ned.

ACTION None - informational message only.

577 MESSAGE ASSUME \! " IS NOT VALID, REMOVE $ASSUME$ (577)

W CAUSE A construct is used that invalidates the given assumption which the
compiler ignores.

ACTION Remove the $ASSUME$ option that is invalid.

582 MESSAGE $HP3000 32$ NOT RECOGNIZED, OPTION IGNORED (582)

W CAUSE $HP3000 32$ is not recognized because $HP30000 16$ has not been set.

ACTION Remove $HP3000 32$

584 MESSAGE INVALID MODULE LIBRARY NAME SPECIFIED (584)

W CAUSE Speci�ed a module library which cannot be opened by the system.

ACTION Check the name of the module library.

586 MESSAGE INVALID ALIGNMENT VALUE, OPTION IGNORED (586)

W CAUSE The alignment speci�ed was not one of 1, 2, 4, 8, 16, 32, 64, or 2048 bytes.

ACTION Correct the alignment value.

587 MESSAGE UNSUPPORTED VARIABLE ALIGNMENT REQUESTED (587)

W CAUSE The type declaration speci�ed an alignment value that is not supported for
static variables.

ACTION Correct the alignment value.

588 MESSAGE POSSIBLE USE OF UNINITIALIZED FIELD '!' OF '!' (588)

W CAUSE The �eld of the local variable mentioned in the message may be
uninitialized when used in this procedure or function.

ACTION Ensure that the �eld is initialized before use.

590 MESSAGE IDENTIFIER `!' OVERLOADED BY IMPORTED MODULE(S) (590)

W CAUSE An identi�er with the same spelling is exported by an earlier imported
module.

ACTION Rename one of the identi�ers. If you do not rename an identi�er, the
identi�er in the last imported module will be used.

591 MESSAGE COUNT IS NEGATIVE; NO DATA WILL BE MOVED (591)

W CAUSE The move count parameter to a MOVE procedure will always be negative,
thus no data will be moved.

ACTION Make sure that the count is supposed to be negative.

A-46 Error Messages

Additional Documentation

592 MESSAGE LONG TO SHORT POINTER CONVERSION EMITTED IN
STATEMENT \! " (592)

W CAUSE A 64 bit address was converted to a 32 bit address. Only addresses that are
in space registers 4 through 7 can be converted without an error.

ACTION A run-time trap will occur if the address is not valid.

ACTION On MPE/iX, make sure short addresses in SR4 are not passed to an
executable library (XL). They may not trap until dereferenced.

593 MESSAGE TYPE COERCION ALTERS NUMBER OF STORAGE UNITS (593)

W CAUSE Source and target types require a di�erent number of storage units; thus,
code generated as a result of this type coercion may not behave as
expected.

ACTION Remove the type coercion expression or de�ne the TYPE COERCION
level to be 'NONCOMPATIBLE'.

594 MESSAGE IMPLEMENT MISSING FOR MODULE \! " (594)

W CAUSE No IMPLEMENT appeared in the given MODULE.

ACTION Supply an IMPLEMENT section.

595 MESSAGE EXPORT QUALIFICATIONS NOT IMPLEMENTED (595)

W CAUSE EXPORT quali�ers currently have no e�ect.

ACTION No action is required.

596 MESSAGE DUPLICATE IMPORTED MODULE (596)

W CAUSE <IDENT1> ! <IDENT2> is the same as <IDENT2>.

ACTION Rename one of the modules.

597 MESSAGE POSSIBLE USE OF UNINITIALIZED VARIABLE '!' (597)

W CAUSE The local variable mentioned in the message may be uninitialized when
used in this procedure or function.

ACTION Ensure that the variable is initialized before use.

598 MESSAGE RESULTS OF $GLOBAL/$RLFILE/$SUBPROGRAM IS DIFFERENT
ON MPE V (598)

W CAUSE If a compilation has $GLOBAL, $RLFILE, and $SUBPROGRAM set, the
result of the compile will be di�erent than if it was done on MPE V (no
outer block information is output).

ACTION Remove either $GLOBAL or $SUBPROGRAM.

Error Messages A-47

Additional Documentation

599 MESSAGE POSSIBLE PARAMETER ADDRESS ALIGNMENT MISMATCH (599)

W CAUSE A VAR parameter of unknown alignment is being passed as a reference
parameter to an INTRINSIC which has a strict alignment requirement for
that parameter. If the actual parameter has a less restrictive alignment
than that required by the intrinsic, an AD DRESS ALIGNMENT error will
occur.

ACTION Ensure that the actual parameter has the alignment required by the
INTRINSIC.

600 MESSAGE INSUFFICIENT HEAP AREA TO ALLOCATE VARIABLE (PASCERR
600)

RT CAUSE The heap is full.

ACTION Increase the amount of heap space for the program or decrease the storage
used by the program.

601 MESSAGE INVALID DISPOSE PARAMETER (PASCERR 601)

RT CAUSE The pointer parameter to DISPOSE is NIL.

The pointer parameter to DISPOSE does not identify any area allocated
by NEW.

ACTION Initialize the pointer with NEW before disposing.

CAUSE The pointer parameter to DISPOSE identi�es an area previously
deallocated by release.

ACTION Do not DISPOSE a pointer that has been released.

602 MESSAGE REPEATED USE OF DISPOSE ON GIVEN PARAMETER (PASCERR
602)

RT CAUSE The pointer parameter to dispose identi�es an area previously deallocated
by dispose.

ACTION Do not DISPOSE a pointer that has been released.

603 MESSAGE DISPOSE PARAMETER ALLOCATED AS DIFFERENT VARIANT
(PASCERR 603)

RT CAUSE The pointer parameter to dispose identi�es an area allocated by new with a
di�erent sequence of case constants.

CAUSE The pointer parameter to dispose includes case constants, but it identi�es
an area allocated by new without any case constants.

CAUSE The pointer parameter to dispose does not include case constants, but it
identi�es an area allocated by new with case constants.

ACTION Make sure that any tags associated with DISPOSE match the tags on
NEW. Also check for heap corruption.

604 MESSAGE DISPOSE PARAMETER CONTAINS AN OPEN SCOPE (PASCERR
604)

RT CAUSE The pointer parameter to dispose identi�es an area containing an actual
variable parameter, an element of the record variable list of a WITH
statement, or both.

ACTION Make sure that the identi�er does not reference such an area.

A-48 Error Messages

Additional Documentation

605 MESSAGE INVALID RELEASE PARAMETER (PASCERR 605)

RT CAUSE The parameter to RELEASE was not set by a previous call to MARK.

ACTION Initialize the parameter with MARK.

CAUSE The parameter to RELEASE was set by a call to MARK, but a previous
call to RELEASE has been made with this parameter.

ACTION Get rid of one of the uses of MARK.

CAUSE The parameter to RELEASE was set by a call to MARK, but that call to
MARK was preceded by a call to MARK with a di�erent parameter that
has already been used as a parameter to RELEASE.

ACTION Don't use RELEASE on already released space.

606 MESSAGE RELEASE PARAMETER ENCLOSES AN OPEN SCOPE (PASCERR
606)

RT CAUSE The parameter to release identi�es an area containing an actual variable
parameter, an element of the record variable list of a WITH statement, or
both.

ACTION Make sure that the identi�er does not reference such an area.

607 MESSAGE RELEASE PARAMETER ENCLOSES GETHEAP AREA(S) (PASCERR
607)

RT CAUSE The parameter to release identi�es an area containing areas the user
allocated with GETHEAP procedure, but which have not yet been
deallocated with the RTNHEAP procedure.

ACTION RTNHEAP must be used to release areas allocated by GETHEAP.

608 MESSAGE HEAP INTEGRITY LOST / HEAP DATA LOST (PASCERR 608)

RT CAUSE The internal data structures of the heap have become inconsistent. The
most likely causes are:

1. A �eld has been assigned to in a variant di�erent than the one speci�ed
in a call to new.

2. A pointer to a disposed area (for example, a dangling pointer) has been
dereferenced in an assignment.

3. An SPL routine has directly accessed the DL-DB area outside of a
region allocated by the GETHEAP procedure.

4. The DLSIZE intrinsic has been called.

5. The RTNHEAP procedure was unable to return an area.

ACTION Verify that none of the likely causes have occurred.

Error Messages A-49

Additional Documentation

609 MESSAGE BAD ALIGNMENT (PASCERR 609)

RT CAUSE A call to new or dispose passed a bad value for the alignment parameter;
for example, the type to which the pointer points has an alignment which
is not recognized by NEW or DISPOSE. The only legal values for the
alignment are 1, 2, 4, 8, 16, and 2048.

ACTION Ensure that the type to which the pointer points has an alignment which is
one of the above.

CAUSE A call to P GetHeap or P RtnHeap passed a bad value for the alignment
parameter.

ACTION Give a correct alignment value.

610 MESSAGE BAD SIZE (PASCERR 610)

RT CAUSE A call to new or dispose passed a bad value for the size of the area.

ACTION None. Usually an internal error.

CAUSE A call to GetHeap or RtnHeap passed a bad value for the size of the area.

ACTION Change the size parameter.

611 MESSAGE HEAP INTEGRITY LOST / HEAP DATA LOST (PASCERR 608)

RT CAUSE The internal data structures of the heap have become inconsistent. The
most likely causes are:

1. A �eld has been assigned to in a variant di�erent than the one speci�ed
in a call to new.

2. A pointer to a disposed area, such as a dangling pointer, has been
dereferenced in an assignment.

3. There is a mismatch of data types. Check to see that the routine calling
NEW or GETHEAP uses the same declaration for the pointer as the
routine which makes an assignment through it (for separate
compilations).

ACTION According to above causes.

620 MESSAGE VALUE NOT WITHIN SUBRANGE (PASCERR 620)

RT CAUSES The value of an ordinal expression is outside of the subrange of the target
of an assignment statement.

The value of an ordinal expression appearing as an actual parameter is
outside the subrange of the formal value parameter.

The value of an ordinal expression appearing in an array selector is outside
of the subrange of the index type.

ACTION Ensure that the value is within the subrange.

621 MESSAGE NO CASE LABEL FOR SELECTOR VALUE (PASCERR 621)

RT CAUSE The value of the CASE select expression does not match any of the
speci�ed CASE constants and no OTHERWISE clause appears.

ACTION Add a CASE to handle the value that caused the error, or add an
OTHERWISE clause to handle the value, or change the program logic so
the value of the selector corresponds with one of the CASE labels.

A-50 Error Messages

Additional Documentation

622 MESSAGE INVALID POINTER (PASCERR 622)

RT CAUSE A pointer with the value of NIL was dereferenced.

A pointer with an unde�ned value was dereferenced.

A pointer set by MARK was dereferenced.

A pointer identifying an area previously deallocated was dereferenced.

ACTION Correct the program logic.

623 MESSAGE VALUE OF PRED UNDEFINED (PASCERR 623)

RT CAUSE The minimum value of an ordinal type or subrange was the parameter to
PRED. The result is unde�ned.

ACTION Do not call PRED with the lowest value of an ordinal type.

624 MESSAGE VALUE OF SUCC UNDEFINED (PASCERR 624)

RT CAUSE The maximum value of an ordinal type or subrange was the parameter to
SUCC. The result is unde�ned.

ACTION Do not call SUCC with the highest value of an ordinal type.

625 MESSAGE SET RANGE ERROR (PASCERR 625)

RT CAUSE An attempt was made to assign a set to a set variable when the set
contains an element not within the set range of the variable.

An attempt was made to pass a set to a formal parameter when the set
contains an element not within the set range of the parameter.

ACTION Correct the program logic.

626 MESSAGE ATTEMPT TO DO MOD BY A VALUE LESS THAN OR EQUAL TO
ZERO (PASCERR 626)

RT CAUSE An attempt was made to perform the MOD operation when the right
operand is zero or negative.

ACTION Correct the program logic error that has caused the invalid value to be
used. Note that MOD is not the remainder operator.

627 MESSAGE SQRT CALLED WITH NEGATIVE ACTUAL PARAMETER
(PASCERR 627)

RT CAUSE The value passed to the SQRT function is less than zero.

ACTION Only call SQRT with non-negative values.

628 MESSAGE LN CALLED WITH NON-POSITIVE ACTUAL PARAMETER
(PASCERR 628)

RT CAUSE The value passed to the LN function is less than or equal to zero.

ACTION Only call LN with positive values.

640 MESSAGE BAD PROCEDURAL PARAMETER (PASCERR 640)

RT CAUSE A nonlevel 1 procedure or function was passed as a procedural or
functional parameter to an external, non-HP Pascal routine.

ACTION Only level 1 procedures/functions can be passed.

Error Messages A-51

Additional Documentation

650 MESSAGE STRING OVERFLOW (PASCERR 650)

RT CAUSE An attempt was made to index beyond the maximum length of the string.

ACTION Correct the string operation, standard procedure or function call
arguments, or the program logic.

651 MESSAGE STRING INDEX EXCEEDS CURRENT LENGTH (PASCERR 651)

RT CAUSE An attempt was made to index beyond the current length of the string.

ACTION Correct the argument or the program logic.

652 MESSAGE DESIGNATED CHARACTER POSITION(S) OUTSIDE STRING
(PASCERR 652)

RT CAUSE The speci�ed o�set is greater than the current length of the string, or less
than 1.

ACTION Correct either the argument or the program logic.

653 MESSAGE DESIGNATED CHARACTER POSITION(S) OUTSIDE PAC (PASCERR
653)

RT CAUSE The speci�ed o�set is greater than the upper bound of the PAC.

ACTION Correct the program logic that has caused the invalid value to be used;
change the value that has caused the error to a legitimate value. Also check
the type de�nition.

654 MESSAGE ATTEMPT TO READ PAST END OF STRING (PASCERR 654)

RT CAUSE Attempt was made to read beyond the maximum length of the string.

ACTION Correct the problem that is causing the read past the end of the string.

655 MESSAGE INVALID NUMBER OF CHARACTERS SPECIFIED (PASCERR 655)

RT CAUSE The number of characters to be copied, moved, or deleted in the prede�ned
string procedure STRMOVE is less than zero.

ACTION Correct the problem that is generating the negative count.

670 MESSAGE INVALID CHARACTER FOR HEX DIGIT (PASCERR 670)

RT CAUSE The character was not in the set 0..9, A..F, or a..f.

ACTION Correct the argument to the numeric conversion function to contain only
valid characters in the particular base.

671 MESSAGE INVALID CHARACTER FOR OCTAL DIGIT (PASCERR 671)

RT CAUSE The character was not in the set 0..7.

ACTION Correct the argument to the numeric conversion function to contain only
valid characters in the particular base.

672 MESSAGE INVALID CHARACTER FOR BINARY DIGIT (PASCERR 672)

RT CAUSE The character was not in the set 0..1.

ACTION Correct the argument to the numeric conversion function to contain only
valid characters in the particular base.

A-52 Error Messages

Additional Documentation

673 MESSAGE NUMBER OF SIGNIFICANT DIGITS CAUSED OVERFLOW
(PASCERR 673)

RT CAUSE The number of signi�cant digits was more than 32 for the standard
function BINARY, 11 for the function OCTAL, or 8 for the function HEX.

ACTION Correct the argument to the numeric conversion function to be a
representable value.

690 MESSAGE OPEN ERROR: PHYSICAL FILE COULD NOT BE CLOSED
(PASCERR 690)

RT CAUSE An attempt was made to open a �le, but the logical �le was already
associated with a physical �le and this physical �le could not be closed
prior to opening another physical �le.

ACTION Find out why the �le could not be closed.

691 MESSAGE OPEN ERROR: MISMATCH OF LOGICAL/PHYSICAL FILES
(PASCERR 691)

RT CAUSE The characteristics of the logical �le are not compatible with those of the
associated physical �le. For example, a physical �le with variable length
records may not be opened for direct access.

ACTION Check to make sure that the �le characteristics are compatible.

692 MESSAGE FILE OPEN ERROR (PASCERR 692)

RT CAUSE An unsuccessful attempt was made to open a �le. The �le was absent or
exclusively accessed, or you did not have permission to access the �le.

ACTION Check for �le's presence and its access protections, and also the state of the
�le when the open is attempted.

693 MESSAGE ERROR OCCURRED WHILE READING FROM FILE (PASCERR 693)

RT CAUSE File system failure or corrupted Pascal FILE variable.

ACTION Correct the �le system problem, or correct program error that corrupted
Pascal FILE variable, such as array reference out of bounds with RANGE
OFF or dereferencing an invalid pointer.

694 MESSAGE ATTEMPT TO READ PAST EOF (PASCERR 694)

RT CAUSE The current position is past the last component of the �le.

ACTION Correct the program logic to check EOF before reading �le data or
checking EOLN status. For a direct access �le, check that disk record to be
read is not greater than MAXPOS.

695 MESSAGE ERROR OCCURRED WHILE WRITING TO FILE (PASCERR 695)

RT CAUSE A Pascal FILE variable has been corrupted.

ACTION Correct the �le system problem or program error that is corrupting the HP
Pascal �le such as an array out of bounds with RANGE OFF or
dereferencing an invalid pointer.

CAUSE An attempt is made to write past the physical unit of the �le.

ACTION Increase the �le's physical limit.

Error Messages A-53

Additional Documentation

696 MESSAGE WRITE ON READ-ONLY FILE (PASCERR 696)

RT CAUSE An attempt was made to perform an output operation on a �le opened for
input access only.

ACTION Correct the program logic so it doesn't write to the �le or open the �le in a
way that permits writing (such as REWRITE, APPEND, or OPEN.)
Scratch �les can only be created by opening them in a way that permits
writing.

697 MESSAGE OPEN ERROR: UNABLE TO INITIALIZE POSITION (PASCERR 697)

RT CAUSE A request was made to open a logical �le already associated with the
physical �le. However, the �le pointer was unable to be repositioned at the
beginning of the physical �le.

ACTION See if program logic is corrupting the Pascal FILE variable.

698 MESSAGE OPEN ERROR: UNABLE TO EMPTY FILE (PASCERR 698)

RT CAUSE REWRITE was unable to empty the �le of its previous contents.

ACTION Check if program logic is corrupting the Pascal FILE variable. Otherwise,
it is a �le system problem.

699 MESSAGE UNABLE TO CLOSE FILE (PASCERR 699)

RT CAUSE The �le could not be closed as requested.

ACTION Check if you have save permission on your system or make sure you have
used the CLOSE command to close the �le.

700 MESSAGE ERROR OCCURRED DURING DIRECT ACCESS I/O (PASCERR 700)

RT CAUSE An error occurred during a �le operation on a direct access �le.

ACTION Check if you are specifying a record beyond the �le's physical limit.

701 MESSAGE ILLEGAL CHARACTER IN NUMBER (PASCERR 701)

RT CAUSE An attempt was made to read a number from a text �le, but an illegal
character was found before a valid number.

ACTION Correct the input.

702 MESSAGE INPUT VALUE OVERFLOW (PASCERR 702)

RT CAUSE The numeric value read is too large for the type of the variable.

ACTION Correct the input.

703 MESSAGE ATTEMPT TO WRITE PAST PHYSICAL BOUNDS OF FILE
(PASCERR 703)

RT CAUSE The current record position is past the physical limit of the �le.

ACTION Create a larger size �le and re-run the program.

704 MESSAGE READ ATTEMPTED FROM OUTPUT FILE (PASCERR 704)

RT CAUSE An attempt was made to perform an input operation on a �le opened only
for output.

ACTION Correct the program logic so it doesn't read from the �le or open the �le in
a way that permits reading (such as RESET or OPEN.)

A-54 Error Messages

Additional Documentation

705 MESSAGE FILE NOT OPENED FOR DIRECT ACCESS (PASCERR 705)

RT CAUSE An attempt was made to perform a direct access �le operation on a �le not
opened for direct access with the OPEN procedure.

ACTION A nontext �le must be opened for direct access with OPEN to use SEEK,
READDIR, WRITEDIR, or POSITION.

706 MESSAGE FILE NOT OPENED (PASCERR 706)

RT CAUSE An attempt was made to access an unopened �le.

ACTION Correct the program logic so it doesn't read from the �le or open the �le in
a way that permits reading (such as RESET or OPEN.)

707 MESSAGE INVALID OPEN OPTION (PASCERR 707)

RT CAUSE An invalid option was found in the third parameter to one of the �le
opening procedures.

ACTION Correct the option.

708 MESSAGE COULD NOT OPEN FILE FOR APPEND ACCESS (PASCERR 708)

RT CAUSE A �le system failure or corrupted Pascal FILE variable prevented opening a
variable length record �le for append access.

ACTION Either correct the �le system problem or correct the program error that
corrupted the Pascal FILE variable (such as array reference out of bounds
with RANGE OFF or dereferencing an invalid pointer.)

709 MESSAGE FIELD WIDTH LESS THAN ZERO (PASCERR 709)

RT CAUSE The �eld width in a formatted write of a nonnumeric expression was less
than zero.

ACTION Correct the program logic so it doesn't use negative values for the �eld
width or decimal position.

710 MESSAGE FIELD WIDTH LESS THAN 1 (PASCERR 710)

RT CAUSE The �eld width in the formatted write of a numeric expression was less
than 1.

ACTION Correct the width speci�ed.

711 MESSAGE NO DIGITS AFTER DECIMAL POINT (PASCERR 711)

RT CAUSE No digits occur after the decimal point in a formatted write of a real or
longreal expression.

ACTION Correct the input.

712 MESSAGE INPUT VALUE UNDERFLOW (PASCERR 712)

RT CAUSE The value read is too small to be represented in the variable.

ACTION Correct the input.

713 MESSAGE FIELD TOO SMALL TO PRINT NUMBER (PASCERR 713)

RT CAUSE This is an internal HP PASCAL error.

ACTION Contact Hewlett-Packard.

Error Messages A-55

Additional Documentation

714 MESSAGE INVALID CLOSE OPTION (PASCERR 714)

RT CAUSE An invalid disposition option was found in the second parameter to
CLOSE.

ACTION Correct the option.

715 MESSAGE INVALID ENUMERATED IDENTIFIER FOR INPUT (PASCERR 715)

RT CAUSE An attempt was made to read an enumerated identi�er from a text�le, but
either a valid HP Pascal identi�er was not found or the identi�er found was
not an identi�er of that enumerated type.

ACTION Correct the input.

716 MESSAGE CANNOT WRITE ENUMERATED VALUE (PASCERR 716)

RT CAUSE An attempt was made to write an enumerated variable to a text�le, but
the current ordinal value of the variable is not within the range of the
enumerated type.

ACTION Check the program's logic.

717 MESSAGE INVALID BOOLEAN READ (PASCERR 717)

RT CAUSE An attempt was made to read a Boolean value from a text�le, but a
non-boolean value was found.

ACTION Correct the input.

718 MESSAGE INVALID FLOATING POINT NUMBER REPRESENTATION
(PASCERR 718)

RT CAUSE An attempt was made to read a real or longreal number from a text�le, but
an invalid oating point number was found.

ACTION Correct the program's logic to read the real or longreal from the correct
place in the �le or string, verify that the correct �le or string is being
accessed, or correct the corrupted �le or string.

719 MESSAGE INVALID CALL TO EOLN (PASCERR 719)

RT CAUSE The EOLN function was called for a �le positioned at end-of-�le. An
end-of-line marker precedes the end-of-�le in every text �le, but this �nal
end-of-line marker had already been read past.

ACTION Check for end-of-�le before calling EOLN.

720 MESSAGE UNABLE TO LOCK FILE (PASCERR 720)

RT CAUSE An attempt was made to lock a �le without specifying the lock option in
the call to open. This error should never occur since in HP Pascal the only
way to lock a �le is by specifying this lock option.

ACTION None

721 MESSAGE WRITE FIELD WIDTH TOO LARGE (PASCERR 721)

RT CAUSE Either an attempt was made to write a number with a �eld width greater
than 254 characters, or an attempt was made to write a longreal in �xed
point format which would result in an excessive number of digits being
printed.

ACTION Reduce the �eld width if it is greater than 254 characters. Write large
longreals in oating point format.

A-56 Error Messages

Additional Documentation

722 MESSAGE CANNOT \ASSOCIATE" FILE OPENED BY A PASCAL ROUTINE
(PASCERR 722)

RT CAUSE An attempt was made to associate a �le that was not opened with a
system provided open routine. Instead, the �le was opened with a
PASCAL open routine.

ACTION Open the �le with a system provided open routine such as MPE/iX
\FOPEN" or HP-UX \OPEN" before using \associate."

723 MESSAGE MISSING OPTIONS TO \ASSOCIATE" (PASCERR 723)

RT CAUSE The option string passed to the associate routine was empty.

ACTION Pass the appropriate options to the associate routine.

724 MESSAGE INVALID OPTIONS TO \ASSOCIATE" (PASCERR 724)

RT CAUSE An illegal combination of options were passed to \associate."

ACTION Pass a legal set of options to \associate."

725 MESSAGE LOGICAL FILE PREVIOUSLY ASSOCIATED OR OPENED (PASCERR
725)

RT CAUSE An attempt was made to associate a logical �le name to a physical �le
number. However, the �le name is already on the Pascal open �le list. It
was placed on the list during a previous \associate" or \open." If the �le is
not disassociated or close d, any subsequent attempt to associate it will fail.

ACTION Close the �le using the Pascal \close" routine or disassociate the �le using
the Pascal \disassociate" routine.

799 MESSAGE INVALID OPERATING SYSTEM I/O (PASCERR 799)

RT CAUSE An attempt was made to perform some kind of I/O which is illegal on this
Operating System. This error will never occur for normal users.

ACTION Contact Hewlett-Packard.

808 MESSAGE COERCION REQUIRES $TYPE COERCION 'STRUCTURAL'$ (808)

CT CAUSE The current $TYPE COERCION 'string'$ is insu�cient to permit this
type coercion.

ACTION Set the type coercion level to that given in the message.

809 MESSAGE COERCION REQUIRES $TYPE COERCION 'REPRESENTATION'$
(809)

CT CAUSE The current $TYPE COERCION 'string'$ is insu�cient to permit this
type coercion.

ACTION Set the type coercion level to that given in the message.

810 MESSAGE COERCION REQUIRES $TYPE COERCION 'STORAGE'$ (810)

CT CAUSE The current $TYPE COERCION 'string'$ is insu�cient to permit this
type coercion.

ACTION Set the type coercion level to that given in the message.

Error Messages A-57

Additional Documentation

811 MESSAGE COERCION REQUIRES $TYPE COERCION 'NONCOMPATIBLE'$
(811)

CT CAUSE The current $TYPE COERCION 'string'$ is insu�cient to permit this
type coercion.

ACTION Set the type coercion level to that given in the message. This is very
dangerous coding practice.

813 MESSAGE MULTIPLE DEFINITIONS FOR THIS MODULE (813)

CT CAUSE A de�nition for this module identi�er has already been compiled within
this compilation unit.

ACTION Delete extra module de�nition from the compilation unit.

814 MESSAGE MISSING EXPORT SECTION (814)

CT CAUSE A module must have an EXPORT section.

ACTION De�ne an EXPORT section for this module.

816 MESSAGE INVALID IMPORT MODULE SPECIFIED (816)

CT CAUSE The IMPORT module speci�ed could not be found.

ACTION Check $SEARCH path for missing �les or check the module name.

CAUSE The module name is a duplicate of an identi�er previously de�ned.

ACTION Rename either the module name or the identi�er.

817 MESSAGE INVALID MODULE IDENTIFIER (817)

CT CAUSE The identi�er is not a module identi�er.

ACTION Check identi�er for misspellings.

818 MESSAGE NOT EXPORTED BY THE QUALIFYING IMPORTED MODULE (818)

CT CAUSE The identi�er was not exported by the qualifying imported module or
de�ned in the module currently being de�ned.

ACTION Check the identi�er for misspellings.

819 MESSAGE TYPE COERCION PERMITTED FOR DATA ITEMS ONLY (819)

CT CAUSE There was an attempt to type coerce NIL.

There was an attempt to type coerce a procedure name.

ACTION Remove the type coercion.

820 MESSAGE BIAS IS LESS THAN MINIMUM ARRAY INDEX (820)

CT CAUSE The bias parameter to a MOVE procedure will always cause an index range
error before the move is completed.

ACTION Fix the bias parameter or count parameter.

A-58 Error Messages

Additional Documentation

821 MESSAGE BIAS + COUNT IS GREATER THAN MAXIMUM ARRAY INDEX (821)

CT CAUSE The bias and move count parameters to a MOVE procedure will always
cause an index range error before the move is completed.

ACTION Fix the bias parameter or count parameter.

822 MESSAGE BIAS IS NOT ASSIGNMENT COMPATIBLE WITH ARRAY INDEX
TYPE (822)

CT CAUSE A bias parameter of a type that is not assignment compatible to the index
type of an array parameter to a MOVE procedure was speci�ed.

ACTION Fix the bias parameter to be of the same type as the index of the array.

823 MESSAGE TARGET ELEMENT TYPE DOES NOT MATCH SOURCE ELEMENT
TYPE (823)

CT CAUSE Element type of the source and target parameters to a MOVE procedure
must be identical.

ACTION Use a di�erent mechanism to move data.

824 MESSAGE ACTUAL PARAMETER MUST BE AN ARRAY (824)

CT CAUSE The source or target parameter to a MOVE procedure is not an array type,
which it must be.

ACTION Declare the type as an array or coerce the parameter to an array type.

825 MESSAGE A CRUNCHED STRUCTURE IS REQUIRED HERE (825)

CT CAUSE Any structures nested within a crunched structure must also be crunched.

ACTION Declare the inner structure \crunched".

826 MESSAGE INVALID TYPE FOR COMPONENT OF A CRUNCHED STRUCTURE
(826)

CT CAUSE Crunched structures may only have components of certain types.

ACTION For details, consult the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual, depending on your implementation.

828 MESSAGE MISSING DEFAULT VALUE FOR \! " (828)

CT CAUSE This parameter requires a default value to be speci�ed.

ACTION Supply a default value in the \default parms" option.

831 MESSAGE ROUTINE OPTION NOT COMPATIBLE WITH PREVIOUS ONE(S)
(831)

CT CAUSE A routine was declared with two routine options that are incompatible.

ACTION Re-evaluate the requirements for the routine options.

832 MESSAGE PROCEDURE NESTING TOO GREAT FOR THIS ROUTINE OPTION
(832)

CT CAUSE A level 2 or greater routine was declared with a routine option that is
illegal at a level greater than 1.

ACTION Either make the routine level 1 or remove the routine option.

Error Messages A-59

Additional Documentation

833 MESSAGE INVALID ROUTINE OPTION (833)

CT CAUSE A routine option was declared that is not a known routine option.

ACTION Check the spelling.

834 MESSAGE INVALID EXTENSIBLE PARAMETER COUNT (834)

CT CAUSE The count value in an Extensible routine is either less than \0" or greater
than the number of parameters in the routine.

ACTION Provide a legitimate count.

CAUSE Large parameters (greater than eight bytes) can not be passed by value if
they are extensible. Strings and conformant arrays do not have this
restriction.

ACTION Pass large parameters by VAR or READONLY.

835 MESSAGE THIS FORM PERMITTED ONLY IN ROUTINE OPTION (835)

CT CAUSE A keyword value assignment to a formal parameter was used outside of a
de�nition option.

ACTION Remove the keyword assignment and assign by position.

836 MESSAGE THIS FORM NOT PERMITTED IN ROUTINE OPTION (836)

CT CAUSE An empty parameter was speci�ed in a routine option or the parameter
was an expression.

ACTION Either supply a value or replace the expression with a constant.

837 MESSAGE INVALID FORMAL PARAMETER FOR THIS ROUTINE OPTION (837)

CT CAUSE A routine option speci�ed a formal parameter that was not declared in the
formal parameter list.

ACTION Check the formal parameter list.

838 MESSAGE DUPLICATE FORMAL PARAMETER FOR THIS ROUTINE OPTION
(838)

CT CAUSE A routine option speci�ed a formal parameter twice.

ACTION Remove the duplicate speci�cation.

839 MESSAGE ROUTINE OPTION AND FORMAL PARAMETER ORDERING
MISMATCH (839)

CT CAUSE The order of parameters in a routine option does not match the ordering of
the formal parameters in the formal parameter list.

ACTION Fix the routine option or match the ordering.

841 MESSAGE DEFAULT VALUE FOR VARIABLE FORMAL PARAMETER IS NOT
NIL (841)

CT CAUSE A VAR formal parameter was assigned a default value that is not NIL.

ACTION Assign the value NIL to the VAR parameter.

A-60 Error Messages

Additional Documentation

842 MESSAGE DEFAULT VALUE NOT COMPATIBLE WITH FORMAL PARAMETER
(842)

CT CAUSE A parameter was assigned a default value whose type does not match the
type of the formal parameter.

ACTION Fix the default value.

844 MESSAGE ILLEGAL USE OF READONLY VARIABLE OR PARAMETER (844)

CT CAUSE A READONLY variable or parameter was used as the target of an
assignment statement or was passed as a VAR parameter.

ACTION Remove the o�ending use of the READONLY variable or parameter.

845 MESSAGE INVALID USE OF ROUTINE OPTION (845)

CT CAUSE The routine option is not allowed in this context.

ACTION Remove the routine option.

846 MESSAGE NOT A FORMAL PARAMETER (846)

CT CAUSE A formal parameter speci�ed in a routine option is not declared in the
formal parameter list.

ACTION Check the spelling. Remove the parameter in the routine option. Add the
parameter to the formal parameter list.

847 MESSAGE NOT A VARIABLE DEFAULT FORMAL PARAMETER (847)

CT CAUSE A formal parameter to the Haveoptvarparm function is not a VAR or
ANYVAR parameter.

ACTION Check the formal parameter list. Remove this call to Haveoptvarparm.

848 MESSAGE NOT AN EXTENSION FORMAL PARAMETER (848)

CT CAUSE A formal parameter to the Haveextparm function is not an extensible
parameter.

ACTION Remove this call or check the count on the Extensible routine option.

849 MESSAGE THIS ROUTINE OPTION NOT VALID FOR FUNCTIONS (849)

CT CAUSE The speci�ed routine option is not allowed for a function.

ACTION Remove this routine option.

850 MESSAGE RECURSIVE USE OF INLINE PROCEDURE/FUNCTION NOT
ALLOWED (850)

CT CAUSE A routine declared OPTION INLINE directly or indirectly calls itself
recursively.

ACTION Remove the recursion or remove the OPTION INLINE.

851 MESSAGE THIS DIRECTIVE NOT ALLOWED WITH ROUTINE OPTIONS (851)

CT CAUSE A routine directive was declared for a routine that has de�nition options.

ACTION Remove the directive or the option.

Error Messages A-61

Additional Documentation

852 MESSAGE NOT A DEFAULT FORMAL PARAMETER (852)

CT CAUSE A formal parameter supplied to the Haveoptvarparm function is not a
default parameter.

ACTION Remove this call or check the list of default parameters.

856 MESSAGE AN ADDRESS CAN NOT BE GENERATED FOR THIS VARIABLE
(856)

CT CAUSE The parameter to ADDRESS, BADDRESS, or WADDRESS does not
reside on a storage unit boundary, so a legal address can not be generated
for it.

ACTION Do not take the address of this variable.

858 MESSAGE THIS FEATURE IS NO LONGER VALID (858)

CT CAUSE The designated feature has been removed from the language de�nition.

ACTION Remove the feature from the source code.

859 MESSAGE ANYPTR MAY NOT BE DEREFERENCED (859)

CT CAUSE Pointers of type ANYPTR may not be dereferenced.

ACTION Assign or type coerce the pointer before dereferencing it.

860 MESSAGE ADDRESS ALIGNMENT INCOMPATIBLE WITH DESIRED USE (860)

CT CAUSE The alignment of the value of the pointer being coerced is incompatible
with the alignment implied by the type coercion.

ACTION Ensure that the target type's alignment is smaller than or equal to that of
the source type.

CAUSE The alignment of an actual parameter prohibits its use due to the required
alignment of the VAR or ANYVAR formal parameter.

ACTION Ensure that the actual parameter has an alignment larger than or equal to
that of the formal parameter.

861 MESSAGE INCOMPATIBLE SOURCE AND TARGET TYPES FOR COERCION
(861)

CT CAUSE The subrange of values for the type of the parameter to the type coercion
does not overlap with the subrange of values for the target type of the type
coercion. (ordinal coercion only)

ACTION None: A subrange variable cannot be coerced to another subrange type
that does not have some overlap with its original type.

862 MESSAGE THIS TYPE COERCION NOT PERMITTED AS REFERENCE
PARAMETER (862)

CT CAUSE Ordinal type coercions that require type conversion are not permitted as
reference parameters.

Pointer type coercions that require type conversion such as short-to-long or
long-to-short pointer conversion are not permitted as reference parameters.

ACTION Copy into a variable, and pass that as the reference parameter.

A-62 Error Messages

Additional Documentation

863 MESSAGE THIS FEATURE IS NOT IMPLEMENTED (863)

CT CAUSE The feature in use has not been implemented in the current compiler.

ACTION Remove this feature from the source code.

864 MESSAGE BYTE OFFSET NOT PERMITTED WITH PROCEDURE OR
FUNCTION VAR (864)

CT CAUSE ADDR takes a second parameter only if the �rst parameter is not a
procedure or function variable.

ACTION Remove the second parameter.

866 MESSAGE NO ANYVAR FOUND IN FORMAL PARAMETER LIST (866)

CT CAUSE A procedure or function declared with OPTION UNCHECKABLE
ANYVAR must have an ANYVAR parameter in its formal parameter list.

ACTION Remove the option or supply an ANYVAR.

868 MESSAGE INTRINSIC MECHANISM ERROR \! ". (868)

CT CAUSE An error has occurred in accessing the intrinsic �le.

ACTION Check the status indicator returned from the Intrinsic Mechanism Access
Routines. If the status indicator is one of the following values, correct the
error.

Value Description

1 The given IM could not be opened.

2 The IM could not be closed.

3 An access error occurred in attempting to read from the IM.

4 An access error occurred in attempting to write from the IM.

5 Inadequate space remains in the IM to perform requested action.

14 The �le being accessed is not an intrinsic �le.

If the status indicator is not one of the above values, report the error to
your HP Service Representative.

869 MESSAGE ARRAY ELEMENT SIZE MUST BE >= ONE BYTE. (869)

CT CAUSE Array parameter to Move Fast must have elements with sizes greater than
or equal to one byte.

ACTION Use another mechanism to perform the move.

870 MESSAGE ARRAY MUST BE ALIGNED ON A BYTE BOUNDARY. (870)

CT CAUSE Array parameter to Move Fast must be aligned on a byte boundary.

ACTION Use another mechanism to move the array.

Error Messages A-63

Additional Documentation

871 MESSAGE INVALID ARRAY PARAMETERS TO MOVE FAST. (871)

CT CAUSE Both array parameters to Move Fast must have elements with the same
sizes.

ACTION Use some other mechanism to move the array.

CAUSE If only one of the parameters is crunched, then the elements must be
packed in with no wasted space between elements.

ACTION Check the packing.

872 MESSAGE ARRAY ELEMENTS CANNOT BE CONFORMANT ARRAYS. (872)

CT CAUSE If an array parameter to one of the MOVE routines is a conformant array,
then its elements must not themselves be conformant arrays. The size of
the elements must be known at compile time.

ACTION Use a di�erent mechanism like a FOR or WHILE loop to move the
elements.

873 MESSAGE INVALID MODULE LIBRARY SPECIFIED (873)

CT CAUSE Either the �le that is to be used for the search of a module or the �le that
is the Module Library is not of the Module Library format.

ACTION Ensure that the �le that was previously created is in Module Library
format.

874 MESSAGE INVALID IMPORT MODULE ENVIRONMENT (874)

CT CAUSE Trying to import a module which was compiled under a di�erent
compilation environment.

ACTION Recompile imported module on current machine.

875 MESSAGE INTRINSIC DECLARATION NOT ENTERED INTO INTRINSIC FILE
(875)

CT CAUSE Due to a previous error the intrinsic declaration was not entered into the
intrinsic �le.

ACTION Correct previous errors.

876 MESSAGE INTRINSIC FILE OVERFLOW (876)

CT CAUSE The physical limit of the intrinsic �le has been exceeded.

ACTION Build a larger intrinsic �le using BUILD or a �le equation.

A-64 Error Messages

Additional Documentation

877 MESSAGE INVALID DEREFERENCING OF AN IMPORTED POINTER (877)

CT CAUSE Trying to dereference an imported pointer whose type is not de�ned.

ACTION Import the type that the pointer points to.

Do not dereference the pointer in this module.

878 MESSAGE INVALID USE OF AN INLINED ROUTINE (878)

CT CAUSE The address of an inlined routine is being requested. This happens in the
following cases:

The procedure is passed as a parameter to WAddress, BAddress, Addr or
Assert (as the \assert procedure").

The procedure is passed as the actual parm when the formal parm is a
procedural/functional type.

ACTION Don't use option inline if the procedure is being used in the above contexts.

879 MESSAGE UNIMPLEMENTED USE OF AN INLINED ROUTINE \! " (879)

CT CAUSE An inline function appearing as an actual parameter to itself is an
unimplemented feature.

ACTION Assign the function result to a local variable and pass the local variable as
the parameter.

880 MESSAGE $ALIGNMENT$ CONFLICT (880)

CT CAUSE The $ALIGNMENT$ value on a record or array declaration is less than the
minimum alignment for the record or array (because of the alignments of
its �elds/elements).

ACTION Specify an alignment for the record or array that is at least as large as the
maximum alignment of any of its �elds/elements.

CAUSE The type on the right hand side of a type declaration is a type identi�er
which has already been de�ned with $ALIGNMENT$.

ACTION Remove the conicting $ALIGNMENT$.

CAUSE $ALIGNMENT$ is not allowed on string and �le types.

ACTION Don't use $ALIGNMENT$ on string and �le types.

881 MESSAGE MIXED MODE OPERATIONS NOT ALLOWED (881)

CT CAUSE An expression which mixes $HP3000 16$ and $HP3000 32$ operands is
not allowed.

ACTION Don't mix modes in the expression.

CAUSE String parameters to prede�ned string procedures and functions and
strings used in string expressions require $HP3000 16$.

ACTION Don't use $HP3000 32$ strings as parameters to string prede�nes or in
string expressions.

CAUSE Real parameters to arithmetic functions require $HP3000 16$ reals.

ACTION Don't use $HP3000 32$ reals as parameters to arithmetic prede�nes.

Error Messages A-65

Additional Documentation

882 MESSAGE MIXED MODE PACKING NOT ALLOWED (882)

CT CAUSE Mixing $HP3000 16$ and $HP3000 32$ in data type de�nitions is not
allowed.

ACTION Don't mix modes in data declarations.

883 MESSAGE COERCION REQUIRES $TYPE COERCION 'CONVERSION'$ (883)

CT CAUSE The current $TYPE COERCION$ level is insu�cient to permit this
coercion.

ACTION Set the $TYPE COERCION$ level to that given in the message.

884 MESSAGE INVALID TYPE FOR INTRINSIC FORMAL PARAMETER NUMBER !
(884)

CT CAUSE The data type for the formal parameter speci�ed is not an acceptable type
for an intrinsic declaration (when building an intrinsic �le using
$BUILDINT$).

ACTION Use an appropriate language-independent type for the intrinsic parameter.

885 MESSAGE INVALID TYPE FOR INTRINSIC FUNCTION RETURN (885)

CT CAUSE The data type for the function return speci�ed is not an acceptable type
for an intrinsic declaration.

ACTION Specify the correct type.

886 MESSAGE RECURSIVE INCLUDE OF FILE (886)

CT CAUSE The �le just speci�ed in an $INCLUDE$ directive is currently being
included (thus, this is an in�nite recursion of includes; a fatal error).

ACTION Remove the recursive include.

887 MESSAGE INVALID FORMAL PARAMETER TYPE (887)

CT CAUSE A data type which is a $HP3000 32$ type is not allowed as a formal
parameter when $HP3000 16$ is ON.

ACTION Declare the parameter to be of a $HP3000 16$ type.

888 MESSAGE STATEMENT ! INCOMPATIBLE WITH $ASSUME '!' (888)

CT CAUSE The code generated for the given statement conicts with the given assume
option. The compiler has detected incorrect code generation.

ACTION Use a correct ASSUME option or remove the $ASSUME option.

A-66 Error Messages

Additional Documentation

889 MESSAGE CONFORMANT ARRAYS NOT ALLOWED WITH $HP3000 16$ (889)

CT CAUSE Conformant arrays are not implemented when using $HP3000 16$.

ACTION Do not use this feature with $HP3000 16$.

890 MESSAGE CANNOT EXPORT AN IMPORTED MODULE IN THE OUTER
BLOCK (890)

CT CAUSE The word EXPORT was seen after the module name on an import
statement in the outer block.

ACTION Remove the word EXPORT.

891 MESSAGE LISTINTR FAILED TO COMPLETE SUCCESSFULLY (891)

CT CAUSE The listing of the intrinsic �le terminated unexpectedly. Possible reasons
are that the listing �le could not be opened, or the �le limit on the listing
�le was exceeded.

ACTION Make sure the intrinsic �le is present and spelled correctly. If the �le limit
on the listing �le was exceeded, build a larger �le or use a �le equation to
specify a larger �le.

892 MESSAGE UNABLE TO CLOSE FILE '!' (892)

CT CAUSE The compiler was unable to close the speci�ed �le. Possible reasons are
that system �le space is exhausted, or that an attempt is made to create a
�le across account boundaries (which is not allowed on MPE/iX).

ACTION Create enough system �le space or specify a �le within the account
boundary.

893 MESSAGE I/O MODULE(S) NOT IMPORTED (893)

CT CAUSE A call to a standard procedure such as writeln, readln, write, or read was
made in the implement section of a module that did not import the
appropriate module STDINPUT or STDOUTPUT. As a result, the default
�le symbols input and/or output are unknown to the compilation unit.

ACTION Explicitly IMPORT the appropriate system-de�ned module STDINPUT,
STDOUTPUT, or both.

894 MESSAGE INVALID USE OF MODULE IDENTIFIER (894)

CT CAUSE Module identi�er can only be used with IMPORT.

ACTION Rename the identi�er or remove the module identi�er.

Error Messages A-67

Additional Documentation

900 MESSAGE INCORRECT POINTER ALIGNMENT (900)

RT CAUSE Internal parameter to CHKA.

ACTION No action is required. Internal use only.

905 MESSAGE INVALID PROCEDURAL/FUNCTIONAL VALUE REFERENCED (905)

RT CAUSE The value does not denote any actual procedure or function.

The static nesting level of the value does not correspond to the current
state of the activation stack.

The value is NIL.

The procedure or function is uninitialized or contains a bad value.

ACTION Make sure the procedure or function has been initialized correctly.

908 MESSAGE MOVE PROCEDURE PARAMETERS OUT OF RANGE (908)

RT CAUSE The range of the move for either the source or target exceeds the declared
range of the source or target arrays.

ACTION Check that the expressions de�ning the start, o�set, and count are
producing correct values.

909 MESSAGE ESCAPE PROCEDURE WITH NO ENCLOSING TRY-RECOVER (909)

RT CAUSE Escape was called by the user and no enclosing TRY-RECOVER was
declared.

ACTION Use TRY-RECOVER to catch the escape.

910 MESSAGE ESCAPE EXECUTED WITHOUT AN UNWIND DESCRIPTION FOR
THE FRAME (910)

RT CAUSE An escape was executed, but one or more of the procedures in the program
stack does not have an unwind descriptor.

ACTION Contact Hewlett-Packard.

911 MESSAGE ESCAPE EXECUTED BUT CANNOT UNWIND DESCRIPTOR FOR
THE FRAME (911)

RT CAUSE An Escape was executed, but one or more of the procedures in the program
stack has a frame that is not unwindable.

ACTION Contact Hewlett-Packard.

912 MESSAGE GOTO EXECUTED AND BOTTOM OF FRAME HIT; INTERNAL
ERROR (912)

RT CAUSE Internal error occurred while executing a non-local GOTO statement.

ACTION Contact Hewlett-Packard.

913 MESSAGE GOTO EXECUTED WITHOUT AN UNWIND DESCRIPTOR FOR
THE FRAME (913)

RT CAUSE A non-local GOTO was executed, but one or more of the procedures in the
program stack does not have an unwind descriptor.

ACTION Contact Hewlett-Packard.

A-68 Error Messages

Additional Documentation

914 MESSAGE GOTO EXECUTED BUT CANNOT UNWIND DESCRIPTOR FOR
THE FRAME (914)

RT CAUSE A non-local GOTO was executed, but one or more of the procedures in the
program stack has a frame that is not unwindable.

ACTION Contact Hewlett-Packard.

5001 MESSAGE GOTO OUT OF BLOCK TO MULTIPLE ENTRY PT. (5001)

W CAUSE Goto out of block to procedure with multiple entry points.

ACTION Warning only. No action required.

5002 MESSAGE ! (5002)

W CAUSE FSerr for other messages (see following messages).

ACTION Warning only.

5004 MESSAGE UNINITIALIZED VARIABLE (SYMID = !) !. (5004)

W CAUSE Optimizer detected uninitialized variable, should have been initialized
before its use.

ACTION Warning only.

5080 MESSAGE PREVIOUS VERSION OF ENTRY ! WAS REPLACED (5080)

W CAUSE Code for the entry listed was replaced in the RL (iX only).

ACTION Warning only. No action required.

5104 to
5199

MESSAGE INTERNAL COMPILER ERROR.

W CAUSE The compiler is in error.

ACTION Report error to your HP Service Representative.

5200 MESSAGE INTERNAL REGISTER TABLE OVERFLOW; PROCEDURE TOO BIG
(5200)

CT CAUSE Your procedure is too large for the compiler to handle at once.

ACTION Break your procedure into two or more pieces.

5202 MESSAGE MAXIMUM AMOUNT OF LOCAL DATA ALLOWED EXCEEDED
(5202)

CT CAUSE The maximum amount of local storage allowed has been exceeded.

ACTION Break your procedure into two or more pieces.

5207 MESSAGE MULTIPLE PROGRAM ENTRY POINTS (5207)

CT CAUSE Possible multiple main programs.

ACTION Make sure only one main program exists in the compilation unit.

5208 MESSAGE TOO MANY NESTED TRYS IN PROCEDURE (5208)

CT CAUSE The maximum number of nested TRYs allowed in a procedure is about
thirty.

ACTION Break up your procedure by putting some of the inner TRY blocks into a
nested procedure.

Error Messages A-69

Additional Documentation

5209 MESSAGE CANNOT OPEN OBJECT FILE (5209)

CT CAUSE The compiler cannot open the object �le. This may be because:

(a) You do not have write permission in the group (on MPE/iX) or
directory (on HP-UX) that you are working in.

(b) You have exceeded some physical disk space limit.

ACTION (a) Work in a group or directory in which you have write permission or
get write permission in the current group or directory.

(b) Remove some unnecessary �les to make room for your object �le.

5210 MESSAGE CANNOT CLOSE OBJECT FILE (5210)

CT CAUSE The compiler could not close the object �le. This may be because:

(a) You do not have write permission in the group (on MPE/iX) or
directory (on HP-UX) that you are working in.

(b) You have exceeded some physical disk space limit.

ACTION (a) Work in a group or directory in which you have write permission or
get write permission in the current group or directory.

(b) Remove some unnecessary �les to make room for your object �le.

5211 MESSAGE INVALID FILE CODE FOR OBJECT FILE ! (5211)

CT CAUSE File code for object �le is not NMOBJ or NMRL.

ACTION Change �le code or use di�erent object �le.

5212 MESSAGE DUPLICATE LABELS ARE NOT ALLOWED (5212)

CT CAUSE A duplicate user or internal label exists.

ACTION Check for duplicate labels. If none are found, report this error to your
HP Service Representative.

5213 MESSAGE CANNOT OPEN ASSEMBLY FILE (5213)

CT CAUSE The compiler could not open the assembly �le. This may be because:

(a) You do not have write permission in the group (on MPE/iX) or
directory (on HP-UX) that you are working in.

(b) You have exceeded some physical disk space limit.

ACTION (a) Work in a group or directory in which you have write permission, or
obtain write permission in the current group or directory.

(b) Remove some unnecessary �les to make room for your assembly �le.

A-70 Error Messages

Additional Documentation

5214 MESSAGE CANNOT CLOSE ASSEMBLY FILE (5214)

CT CAUSE The compiler could not close the assembly �le. This may be because:

(a) You do not have write permission in the group (on MPE/iX) or
directory (on HP-UX) that you are working in.

(b) You have exceeded some physical disk space limit.

ACTION (a) Work in a group or directory in which you have write permission or
obtain write permission in the current group or directory.

(b) Remove some unnecessary �les to make room for your assembly �le.

5380 MESSAGE ATTEMPT TO OPEN FILE ! FAILED (5380)

CT CAUSE File could not be opened by compiler.

ACTION Check capabilities, access rights, and permissions of �le in the group
(on MPE/iX) or directory (on HP-UX).

5381 MESSAGE FILE ! HAS INVALID FILE CODE; EXPECTED NMRL (5381)

CT CAUSE File code of object �le should be NMRL.

ACTION Use di�erent �le for object, build �le as NMRL, or do not use RL compile
option.

5382 MESSAGE ATTEMPT TO ADD MODULE(S) BEYOND MODULE LIMIT OF ! IN
FILE ! (5382)

CT CAUSE Module cannot be added to named RL.

ACTION Clean up your RL or use a di�erent �le for the object.

5383 MESSAGE FILE ! HAS AN INVALID RECORD SIZE. EXPECTED 128W
RECORDS. (5383)

CT CAUSE The RL has an invalid record size.

ACTION Build a new RL �le with a correct record size.

5400 to

5999

MESSAGE INTERNAL COMPILER ERROR.

I CAUSE The compiler is in error.

ACTION Report error to your HP Service Representative.

6055 MESSAGE OPTDRIVER: BAD OPTIMIZER OPTION; IGNORED. (6055)

W CAUSE Internal compiler error.

ACTION Report error to your HP Service Representative.

6056 MESSAGE OPTDRIVER: CAN'T OPEN DEBUG FILE FOR OUTPUT; STDOUT
USED. (6056)

W CAUSE Internal compiler error.

ACTION Report error to your HP Service Representative.

Error Messages A-71

Additional Documentation

6057 MESSAGE OPTDRIVER: BAD OPTIMIZATION LEVEL SPECIFIED; DEFAULT
OF 0 USED. (6057)

W CAUSE Internal compiler error.

ACTION Report error to your HP Service Representative.

6058 MESSAGE OPTDRIVER: BAD SCHEDULER ALGORITHM SPECIFIED, USED
DEFAULT. (6058)

W CAUSE Internal compiler error.

ACTION Check argument to +DS, then report error to your HP Service
Representative.

6059 MESSAGE OPTDRIVER: !1 BASIC BLOCKS; DROPPING TO LEVEL 1
OPTIMIZATION FOR !2. (6059)

W CAUSE Procedure !2 contains more that 500 basic blocks and requires an
inordinate amount of compile-time resources. Therefore, the optimizer will
be run at level 1 for !2.

ACTION No action is necessary. However, on HP-UX, if level 2 optimization is
desired in spite of a possibly lengthy compile time, this limit can be
overridden by the use of the +Obbnum option, where num is at least as
large as the number given in this message.

ACTION Use the $OPTIMIZE 'BASIC_BLOCKS num$ compiler option.

6110 to
6199

MESSAGE INTERNAL OPTIMIZER ERROR.

CT CAUSE The compiler is in error.

ACTION Report error to your HP Service Representative.

6200 to
6299

MESSAGE ALIASER: OUT OF MEMORY.

CT CAUSE The optimizer ran out of virtual memory.

ACTION The easiest workaround is to break your compilation unit into two or more
pieces.

On HP-UX, this error may also be produced if the system runs out of swap
space, so another possible work-around is to increase the amount of swap
space available to the system (see your HP-UX system administrator about
this). However, this action should be taken only as a last-resort.

On MPE/iX, the compiler heap space can be increased by running
PASCALXL.PUB.SYS with a larger NMHEAP:

:RUN PASCALXL.PUB.SYS;NMHEAP=120000000 ...

A-72 Error Messages

Additional Documentation

6305 MESSAGE RALLOC: OUT OF GENERAL REGISTERS. (6305)

CT CAUSE Possible overly complex expression.

ACTION Simplify large or complex expression.

6306 MESSAGE RALLOC: OUT OF CALLEE SPACE REGISTERS. (6306)

CT CAUSE Long pointer expression too complex.

ACTION Simplify long pointer expressions.

6307 MESSAGE RALLOC: OUT OF CALLER SPACE REGISTERS. (6307)

CT CAUSE Long pointer expression too complex.

ACTION Simplify long pointer expressions.

6308 MESSAGE RALLOC: OUT OF CALLEE FLOATING POINT REGISTERS. (6308)

CT CAUSE Floating point expression too complex.

ACTION Simplify oating point expressions.

6309 MESSAGE RALLOC: OUT OF CALLER FLOATING POINT REGISTERS. (6309)

CT CAUSE Floating point expression too complex.

ACTION Simplify oating point expressions.

6310 to
6365

MESSAGE OUT OF MEMORY

CT CAUSE The optimizer ran out of virtual memory.

ACTION The easiest workaround is to break your compilation unit into two or more
pieces.

On HP-UX, this error may also be produced if the system runs out of swap
space, so another possible work-around is to increase the amount of swap
space available to the system (see your HP-UX system administrator about
this). However, this action should be taken only as a last-resort.

On MPE/iX, the compiler heap space can be increased by running
PASCALXL.PUB.SYS with a larger NMHEAP:

:RUN PASCALXL.PUB.SYS;NMHEAP=120000000 ...

6400 to
6999

MESSAGE INTERNAL COMPILER ERROR.

I CAUSE The compiler is in error.

ACTION Report error to your HP Service Representative.

Error Messages A-73

Additional Documentation

ON HP-UX, the following warnings are generated if you pass a model number that is not
found in the /usr/lib/sched.models �le.

7000 MESSAGE MODEL NUMBER IS UNKNOWN; WILL DEFAULT TO arch-rev CODE
GENERATION. (7000)

W CAUSE The model number given on a +DA option is not known to the compiler.

ACTION The default code generation is as speci�ed in the warning. If this is not the
desired target architecture revision, the version may be speci�ed using an
architecture revision (such as 1.1) instead of a model number on the +DA
option.

7001 MESSAGE MODEL NUMBER IS UNKNOWN; DEFAULT INSTRUCTION
SCHEDULING IS USED. (7001)

W CAUSE The model number given on a +DS option is not known to the compiler.

ACTION The default instruction scheduling is based on the most recent processor
implementation known to the compiler. If this is not what is desired, an
alternate model number may be speci�ed.

On HP-UX, the following warning will be generated if the �le /usr/lib/sched.models
cannot be found.

7002 MESSAGE CANNOT OPEN /usr/lib/sched.models. (7002)

W CAUSE The �le /usr/lib/sched.models does not exist or cannot be opened for
reading.

ACTION Check protections on /usr/lib/sched.models. If it does not exist, contact
your HP Service Representative.

On HP-UX, the following warning is generated if you pass arguments that do not conform to
the expected format.

7003 MESSAGE IMPROPER ARGUMENT TO +DA OR +DS OPTION. (7003)

W CAUSE An improper argument was given to the +DA or +DS option.

ACTION Check the reference manual for information on the correct form of the
option.

A-74 Error Messages

Additional Documentation

7100 to
7109

MESSAGE INTERNAL COMPILER ERROR.

I CAUSE The compiler is in error.

ACTION Report error to your HP Service Representative.

7110 MESSAGE DEBUG INFORMATION MAY BE CORRUPT; \! " UNRESOLVABLE
REFERENCE(S). (7110)

I CAUSE User errors.

ACTION Correct all user errors or remove -g or $SYMDEBUG options and recompile.

If there are no user errors, report error to your HP Service Representative.

7200 MESSAGE INTERNAL TABLE OVERFLOW (7200)

CT CAUSE Source �le too large.

ACTION Split program up into smaller �les.

7201 MESSAGE NEW SLC BLOCK: OUT OF MEMORY. (7201)

CT CAUSE Compiler ran out of virtual memory.

ACTION See message 6200.

7202 MESSAGE INIT LINK: OUT OF MEMORY. (7202)

CT CAUSE Compiler ran out of virtual memory.

ACTION See message 6200.

7203 MESSAGE ALLOCATE BYTES: OUT OF MEMORY. (7203)

CT CAUSE Compiler ran out of virtual memory.

ACTION See message 6200.

7204 MESSAGE ERROR IN WRITING TO OUTPUT FILE. (7204)

CT CAUSE I/O error writing to object �le.

ACTION Check for full �le system (HP-UX, MPE/iX) or an object �le that too
small (MPE/iX).

7205 MESSAGE UNABLE TO ALLOCATE SPACE FOR OBJECT IN RL. (7205)

CT CAUSE I/O error writing to RL.

ACTION Check for an RL �le that is too small (MPE/iX).

7206 MESSAGE UNABLE TO ADD OBJECT TO RL. (7206)

CT CAUSE I/O error writing to RL.

ACTION Check for an RL �le that is too small, write permission (HP-UX), or
capability (MPE/iX).

Error Messages A-75

Additional Documentation

7207 MESSAGE OBJECT IS TOO BIG TO FIT INTO RL. (7207)

CT CAUSE Object size is too large for the RL requested.

ACTION Check for an RL �le that is too small or split up object (MPE/iX).

7400 to
7999

MESSAGE INTERNAL COMPILER ERROR.

I CAUSE The compiler is in error.

ACTION Report error to your HP Service Representative.

A-76 Error Messages

B

ASCII Character Codes

Table B-1 maps each ASCII character to its decimal and hexadecimal code, its ASCII symbol,
and its name. Each code is stored in eight bits; thus the decimal codes are between 0 and 255,
and the hexadecimal codes are between 0 and FF.

Table B-1. ASCII Character Codes

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

0 00 NUL Null

1 01 SOH Start of heading

2 02 STX Start of text

3 03 EXT End of text

4 04 EOT End of transmission

5 05 ENQ Enquiry

6 06 ACK Acknowledge

7 07 BEL Bell

8 08 BS Backspace

9 09 HT Horizontal tab

10 0A LF Line feed

11 0B VT Vertical tab

12 0C FF Form feed

13 0D CR Carriage return

14 0E SO Shift out

ASCII Character Codes B-1

Additional Documentation

Table B-1. ASCII Character Codes (continued)

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

15 0F SI Shift in

16 10 DLE Data link escape

17 11 DC1 Device control 1

18 12 DC2 Device control 2

19 13 DC3 Device control 3

20 14 DC4 Device control 4

21 15 NAK Negative acknowledgement

22 16 SYN Synchronous idle

23 17 ETB End of transmission block

24 18 CAN Cancel

25 19 EM End of medium

26 1A SUB Substitute

27 1B ESC Escape

28 1C FS File separator

29 1D GS Group separator

30 1E RS Record separator

31 1F US Unit separator

32 20 SP Space

33 21 ! Exclamation mark

34 22 " Quotation mark

35 23 # Number sign

B-2 ASCII Character Codes

Additional Documentation

Table B-1. ASCII Character Codes (continued)

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

36 24 $ Dollar sign

37 25 % Percent sign

38 26 & Ampersand

39 27 ' Apostrophe

40 28 (Left parenthesis

41 29) Right parenthesis

42 2A * Asterisk

43 2B + Plus sign

44 2C , Comma

45 2D - Minus sign

46 2E . Full stop

47 2F / Solidus

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

56 38 8 Eight

ASCII Character Codes B-3

Additional Documentation

Table B-1. ASCII Character Codes (continued)

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

57 39 9 Nine

58 3A : Colon

59 3B ; Semicolon

60 3C < Less-than sign

61 3D = Equal sign

62 3E > Greater-than sign

63 3F ? Question mark

64 40 @ Commercial \at" sign

65 41 A Uppercase A

66 42 B Uppercase B

67 43 C Uppercase C

68 44 D Uppercase D

69 45 E Uppercase E

70 46 F Uppercase F

71 47 G Uppercase G

72 48 H Uppercase H

73 49 I Uppercase I

74 4A J Uppercase J

75 4B K Uppercase K

76 4C L Uppercase L

77 4D M Uppercase M

B-4 ASCII Character Codes

Additional Documentation

Table B-1. ASCII Character Codes (continued)

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

78 4E N Uppercase N

79 4F O Uppercase O

80 50 P Uppercase P

81 51 Q Uppercase Q

82 52 R Uppercase R

83 53 S Uppercase S

84 54 T Uppercase T

85 55 U Uppercase U

86 56 V Uppercase V

87 57 W Uppercase W

88 58 X Uppercase X

89 59 Y Uppercase Y

90 5A Z Uppercase Z

91 5B [Left bracket

92 5C n Reverse solidus

93 5D] Right bracket

94 5E ^ Circumex accent

95 5F Underline

96 60 ` Grave accent

97 61 a Lowercase a

98 62 b Lowercase b

ASCII Character Codes B-5

Additional Documentation

Table B-1. ASCII Character Codes (continued)

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

99 63 c Lowercase c

100 64 d Lowercase d

101 65 e Lowercase e

102 66 f Lowercase f

103 67 g Lowercase g

104 68 h Lowercase h

105 69 i Lowercase i

106 6A j Lowercase j

107 68 k Lowercase k

108 6C l Lowercase l

109 6D m Lowercase m

110 6E n Lowercase n

111 6F o Lowercase o

112 70 p Lowercase p

113 71 q Lowercase q

114 72 r Lowercase r

115 73 s Lowercase s

116 74 t Lowercase t

117 75 u Lowercase u

118 76 v Lowercase v

119 77 w Lowercase w

B-6 ASCII Character Codes

Additional Documentation

Table B-1. ASCII Character Codes (continued)

Decimal
Code

Hexadecimal
Code

ASCII
Symbol

Name

120 78 x Lowercase x

121 79 y Lowercase y

122 7A z Lowercase z

123 7B f Left brace

124 7C j Vertical line

125 7D g Right brace

126 7E ~ Tilde

127 7F DEL Delete

ASCII Character Codes B-7

C

Compiler Limits and Values

These compiler limits are maximum values that you cannot change:

Number of: Maximum Value

Bits per structure 2147483600

Characters per identi�er 132

Characters per source line 132

Characters per string 268435447

Elements per array 268435455

Elements per enumerated type 17367

Elements per set 2147483616

Nested IF options * 12

Nested INCLUDE options * Operating system dependent

Nested PUSH options * 15

Nested TRY-RECOVER constructs 30

* If a program contains one INCLUDE option, the number of nested INCLUDE options is
one. If the included �le contains an INCLUDE option, the number of nested INCLUDE
options is two, and so on. The de�nitions of the number of nested IF options and the
number of nested PUSH options are analogous.

The following values are implementation de�ned:

minint

maxint

e

pi

Compiler Limits and Values C-1

Glossary

actual parameter
An argument that is passed to a procedure, function, or subprogram. Contrast with formal
parameter .

address
An exact location in memory. A program can store or retrieve data from this address.

algorithm
A procedure used to solve a task. It describes the sequence of steps or operations, done in
a �nite number of steps.

allocate
To set up a memory location to hold variable values.

alpha character
A character in the range of A through Z and a through z.

alphanumeric character
A character in the range of A through Z, a through z, and 0 through 9.

argument
A variable or constant whose value is passed to a procedure or function. See actual
parameter , formal parameter , or parameter .

arithmetic expression
An expression that performs arithmetic operations and consists of constants, variables, and
arithmetic operators.

array
A data structure in which consecutive memory locations contain data items of the same
type.

ASCII
American Standard Code for Information Interchange; a seven-bit code representing a
prescribed set of characters.

assembly language
A programming language in which each operation performed by the Central Processing
Unit (CPU) is written as a symbolic instruction. Assembly language is a convenient
means of representing machine language. A program known as an assembler translates
instructions written in assembly language into machine language.

Glossary-1

Additional Documentation

assignment statement
Assigns a value to a variable or function by using the special Pascal symbol \:=".

binary
The method used to represent numbers, alphabetic characters, and symbols in digital
computers. It is a base two numbering system that uses only two digits, 0's and 1's, to
express numeric quantities.

bit
A unit of information with a value of 1 or 0. Usually eight bits equal one byte. A bit is
the smallest unit of information in a digital computer.

block
Blocks contain groups of statements for programs, procedures, and functions, and are
enclosed with the reserved words begin and end .

boolean expression
An expression that evaluates to a value of true or false.

bu�er
The part of a computer or device memory where data is held temporarily until it can
be processed or transmitted elsewhere. A bu�er usually refers to a memory area that is
reserved for I/O operations.

byte
A combination of eight consecutive bits treated as a unit. A byte represents one letter or
number within the computer.

C
A high-level computer programming language that can do low-level manipulations.

COBOL
COmmon Business Oriented Language. A high-level computer language primarily used for
business applications.

collating sequence
The \alphabetical order" of all characters used by a computer. They include digits,
punctuation marks, and special characters. The collating sequence uses the same order of
precedence as the numeric codes for characters, either in ASCII or EBCDIC.

comment
Information in a computer program that is ignored by the compiler, but is included for
documenting the program for human readers.

compile time
The time during which a source program is translated by a compiler to an object program.
Compile time is usually used to indicate things that happen when a program is compiled.

compile-time error
An error that occurs or that is detected at compile time.

Glossary-2

Additional Documentation

compiler
A program that translates source code into machine instructions. The compiler also
diagnoses and reports syntax errors found in the application program.

compound statement
A group of statements enclosed with the reserved words begin and end , and which are
treated as a single statement.

concatenation
The operation of joining two or more character strings together.

constant
A �xed value, as opposed to a variable which is a symbol for a changing value.

construct
A structured constant; a construct speci�es the value of a declared constant.

data
One or more items of information.

debug
To �nd and correct mistakes in a computer program.

decimal
The base 10 numbering system in which the numbers 0 through 9 are used.

default
A value or condition that is assumed by the operating system or compiler if no other value
or condition is speci�ed.

delimiter
A symbol that marks the beginning and end of a syntactic unit in source code.

disk
A circular plate used to store computer data; the disk can be �xed, removable, hard, or
exible.

dynamic variable
A variable which is not declared and cannot be referred to by name. A dynamic variable is
created during execution of a program.

error recovery
The process of writing code that prevents a program from aborting due to run-time errors.
Error recovery code does not catch compile-time errors, warnings, or notes.

executable object
A program or procedure that is ready to be executed.

execute
The act of a computer carrying out a set of instructions given by a program.

Glossary-3

Additional Documentation

expression
A construct composed of operators and operands that represent the computation of a
result of a particular type.

external routine
A routine de�ned in another compilation unit.

�le-equate
To redirect the association of one physical �le to another physical �le, or to specify
additional �le attributes using the MPE XL FILE command.

formal parameter
A parameter which is de�ned in a procedure, function, or subprogram header.

function
A block that is invoked with a function call and returns a value.

function call
A call that invokes the block of a function and returns a value to the calling point of the
program

function heading
Consists of the reserved word FUNCTION, an identi�er that speci�es a function name, an
optional formal parameter list, and a result type.

hexadecimal
The base 16 numbering system in which the numbers 0 through 15 are used. 10 through
15 are represented by the letters A through F.

identi�er
Used to denote declared constants, types, variables, procedures, functions, modules, and
programs, and consists of a letter preceding an optional character sequence of letters,
digits, or the underscore character ().

initialize
To give an initial value to a variable in a program.

intrinsic
An external routine that can be called by a program written in any language that your
operating system supports.

literal
A value in a program that is represented by it's actual value rather than a variable or a
constant.

loop
When a program performs a statement over and over a speci�ed number of times or while
certain conditions are met.

maxint
The maximum value that an integer variable can contain.

Glossary-4

Additional Documentation

minint
The minimum value that an integer can contain.

NLS
An acronym for Native Language Support.

operand
The variables, constants, or literals that are used in an operation.

operator
De�nes the action to be performed on one or more operands.

optimization
The process which the compiler uses to modify your program so that it uses machine
resources more e�ciently.

parameter
The argument used for sending and receiving information to and from functions and
procedures.

parameter list
The location in a program where the parameters and their values are declared.

PIC
An acronym for Position Independent Code.

precedence
Rules that determine the required order of operations.

procedure
A block of statements that are invoked with a procedure call .

procedure call
The call in a program that invokes the procedure block.

real number
Numbers that are whole or fractional. A real number can also have an exponent.

recursion
A programming technique in which a procedure calls itself.

relational operator
An operator that compares two operands and returns a Boolean result.

reserved word
Prede�ned terms that have special meaning to the Pascal language, and which can only be
used for their speci�ed purpose.

run-time error
An error the computer system �nds in a program during run time.

Glossary-5

Additional Documentation

semantic error
An error which is caused by using the wrong wording in a program.

separate compilation
The process of separating the source for a large program into pieces that can be compiled
independently of other pieces.

source code
The input program that is to be translated by the compiler.

Standard Pascal
All of the rules and de�nitions of Pascal as de�ned by the ANSI standard.

statement
Pascal's single unit of activity. Each statement is separated by a semicolon.

static variable
A variable which is declared in the declaration part of a program block.

subprogram
See procedure.

top-down design
The process of breaking a problem into pieces that can be easily solved.

variable
A memory location that holds data values, and which is referenced by a variable name.
Information in this location can be changed.

warning
The compiler produces warnings to indicate a possible source of run-time errors.

word
Four consecutive bytes. Some numeric items are de�ned in terms of words, and many
items must start at a word boundary in memory.

Glossary-6

Index

1

16-bit characters, parsing, 12-83

A

abs function, 9-42
action, selecting an, 6-11
actual parameters, 12-26
addressing routines or data, 11-44
addr prede�ned function, 11-44
addtopointer prede�ned function, 11-46
advancement of program ow, 6-5
algorithm
HP Pascal packing, 12-50
Pascal/V packing, 12-49

ALIAS compiler option, 12-8{10
ALIGNMENT compiler option, 12-11
allocation of storage, 9-2, 9-3
allocation procedures, 9-2
AND operator, 4-12
ANSI compiler option, 12-12
ANSI/IEEE Extensions, 1-2{8
appending
�les, 10-4
strings, 9-10

append procedure, 10-4
arctan function, 9-43
ARG RELOCATION compiler option, 12-13{14
arithmetic functions, 9-42{49
abs, 9-42
arctan, 9-43
cos, 9-44
exp, 9-45
ln, 9-46
sin, 9-47
sqr, 9-48
sqrt, 9-49

arithmetic operators, 4-7
array
alignment requirements, 12-11
constants, 5-9
constructors, 5-9
data type, 3-18
designator, 4-24
multi-dimensioned, 3-20
printing information, 12-81

selector, 4-24
ASCII character code, B-1
ASCII character codes, B-1{7
assembler source �le, 12-67
assert function, 9-29
ASSERT HALT compiler option, 9-29, 12-15
assert procedure, 9-29, 12-15
assigning Boolean values, 12-105
assignment compatibility, 3-36{37
assignment statement, 6-6
associate procedure, 10-6
associating �les, 10-6
ASSUME compiler option, 12-16{21
relationship of parameters, table, 12-18

assumptions, testing, 9-29

B

baddress function, 9-30
base type, 3-28
basic symbols, 2-1
BEGIN..END statement, 6-4
binary function, 9-51
bit16 data type, 3-5, 4-7
bit32 data type, 3-6, 4-7, 11-47
bit52 data type, 3-8, 4-7
bitsizeof prede�ned function, 11-61
block, 7-4
Boolean data types, 3-9
Boolean expressions
partial evaluation, 12-95

Boolean operators, 4-10
Boolean values
assigning, 12-105
false, 5-4
true, 5-5

building an intrinsic �le, 12-22
BUILDINT compiler option, 12-22{23
buildpointer prede�ned function, 11-47
byte address, 9-40
bytes, moving, 9-34
byte string comparison, 9-32

C

call prede�ned procedure, 11-59
CALL PRIVILEGE compiler option, 12-24{25
case constant, 6-8

Index-1

case selection, 6-8
CASE statement, 1-2, 6-8
character codes, ASCII, B-1{7
character literals, 1-7
char data type, 3-10
char literal, 3-10
CHECK ACTUAL PARM compiler option,

12-26{27
CHECK FORMAL PARM compiler option,

12-28{29
chr function, 9-56
close procedure, 10-8
closing �les, 10-1, 10-8
cmpbytes function, 9-32
code
duplication, 12-63
generation for routines, 12-39
range checking, 12-98

CODE compiler option, 12-30
CODE OFFSETS compiler option, 12-31{32
coercion, 11-22
noncompatible type, 11-29
ordinal and pointer data types, 12-128
ordinal type, 11-23
other type, 11-25
pointer type, 11-24
reference type, 11-22
representation type, 11-27
storage type, 11-28
structural type, 11-26
value type, 11-22

column width setting, 12-134
comments, de�nition, 2-10
comparing byte strings, 9-32
compatibility
assignment, 3-36{37
Pascal on the Series 300 machines, 12-122
string assignment, 3-36
types, 3-34{36

compiler directives, 11-3
compiler limits, C-1
compiler option
OPTIMIZE 'BASIC BLOCKS', 12-86
OPTIMIZE 'BASIC BLOCKS FENCE',

12-87
compiler options, 12-1
ALIAS, 12-8
ALIGNMENT, 12-11
ANSI, 12-12
ARG RELOCATION, 12-13
ASSERT HALT, 9-29, 12-15
ASSUME, 12-16, 12-17
BUILDINT, 12-22
CALL PRIVILEGE, 12-24
CHECK ACTUAL PARM, 12-26

CHECK FORMAL PARM, 12-28
CODE, 12-30
CODE OFFSETS, 12-31
CONVERT MPE NAMES, 12-33
COPYRIGHT, 12-34
COPYRIGHT DATE, 12-35
+DA, 12-48
description, 12-7
di�erent on HP-UX and MPE/iX, 12-6
+DS, 12-48
ELSE, 12-36
ENDIF, 12-38
EXEC PRIVILEGE, 12-24
EXTERNAL, 12-39
EXTNADDR, 12-40
FONT, 12-41
GLOBAL, 12-42
GPROF, 12-44
HEAP COMPACT, 12-45
HEAP DISPOSE, 12-46
HP3000 16, 12-49
HP3000 32, 12-50
HP DESTINATION 'ARCHITECTURE',

12-47
HP DESTINATION 'SCHEDULER', 12-47
HP Pascal, 1-3, 12-4, 12-5
HP Standard, 1-3, 12-4
HP-UX, 12-6, 12-106, 12-107
IF, 12-53
INCLUDE, 12-59
INCLUDE SEARCH, 12-62
INLINE, 12-64
INTR NAME, 12-66
KEEPASMB, 12-67
LINES, 12-69
LIST, 12-71
LIST CODE, 12-75
LISTINTR, 12-76
list of, 11-3
LITERAL ALIAS, 12-78
LOCALITY, 12-79
locations, table of, 12-2
LONG CALLS, 12-80
MAPINFO, 12-81
MLIBRARY, 12-82
MPE/iX, 12-6
NLS SOURCE, 12-83
NOTES, 12-84
OPTIMIZE, 9-30, 9-40, 12-85
OS, 12-89
OVFLCHECK, 12-91
PAGE, 12-93
PAGEWIDTH, 12-94
PARTIAL EVAL, 4-10, 12-95
POP, 12-96

Index-2

PUSH, 12-97
RANGE, 12-98
restoring option settings, 12-96
RLFILE, 12-99
RLINIT, 12-100
S300 EXTNAMES, 12-101
saving option settings, 12-97
scopes, table of, 12-2
SEARCH, 12-103
SET, 12-105
SHLIB CODE, 12-106
SHLIB VERSION, 12-107
SKIP TEXT, 12-108
SPLINTR, 12-110, 12-121
standard, 12-5
STANDARD LEVEL, 12-111, 12-112
STATEMENT NUMBER, 12-113
STRINGTEMPLIMIT, 12-116
SUBPROGRAM, 12-117
SYMDEBUG, 12-119
SYSINTR, 12-120, 12-121
SYSPROG, 12-122
system-dependent, 12-1, 12-6
system-independent, 12-1, 12-3{5
system programming, 1-3, 12-4, 12-5
TABLES, 12-123
TITLE, 12-127
TYPE COERCION, 11-22, 12-128
UPPERCASE, 12-130
VERSION, 12-131
VOLATILE, 12-132
WARN, 12-133
WIDTH, 12-134
XREF, 12-135

compiling
conditionally, 12-36, 12-38, 12-53, 12-105
in ANSI standard Pascal, 12-12
selected routines, 12-117
syntax which does not conform to ANSI/ISO

standards, 12-115
compound statements, 6-3
concatenation operator, 4-22
conformance
conformant array parameter, 1-4, 8-6
test, 8-6

constant de�nition, 5-2, 11-30
constant expressions, 1-4, 4-1, 5-2
constructing pointer values, 11-47
constructor, 1-4
record, 5-11
restricted set, 5-13
set, 4-26
string, 5-14

control characters, 2-12
conversion

implicit data, 10-26
implicit data, table of, 10-27

conversion functions
numeric, 1-8

converting �le names, 12-33
CONVERT MPE NAMES compiler option,

12-33
copying characters in strings, 9-13
COPYRIGHT compiler option, 12-34
COPYRIGHT DATE compiler option, 12-35
cos function, 9-44
cross referencing, 12-135
crunched data types, 11-9
CRUNCHED reserved word, 11-9

D

+DA compiler option, 12-48
data conversion, 10-26
data pointer, 12-124
data references, 11-44
data structure
integrity checking, 9-29

data transfer, 9-24{27
data types
allocation and alignment of, 12-49{52
bit16, 3-5
bit32, 3-6
bit52, 3-8
Boolean, 3-9
char, 3-10
chart of, 3-2
crunched, 11-9
de�nition, 3-1
enumerated, 3-11
FUNCTION, 11-19
integer, 3-12
longint, 3-13
longreal, 3-17
mixing, 4-4
pointer, 3-1, 3-32, 5-17
pointers, short and long, 11-14
PROCEDURE, 11-19
real, 3-16
set, 3-28
shortint, 3-14
simple, 3-1, 3-3, 5-17
string, 3-30
structured, 3-1, 3-18, 5-17, 11-9
subrange, 3-15
system programming extensions, 11-8

date, specifying in the copyright, 12-35
deallocation of storage, 9-2, 9-5
deallocation procedures, 9-2
debuggers, 12-119
declaration part, 1-5, 7-5

Index-3

declarations, 5-1
array, 3-19
constant de�nition, 11-30
export, 7-9
import, 7-9
label, 5-15
system programming extensions, 11-30
variable, 5-18

DEFAULT PARMS routine options, 11-39
defaults
�eld widths, table of, 10-38
parameters, 11-39

de�nitions
type, 5-16

deleting characters from a string, 9-11
directives, 7-7
EXTERNAL, 12-39
FORWARD, 7-8, 8-8, 8-9

disassociate procedure, 10-9
dispose procedure, 9-5
disposing of storage, 9-5
DIV operator, 4-9
documenting a program, 2-10
+DS compiler option, 12-48
duplicating code, 12-63
dynamic variable, 9-2

E

elements of Pascal, 2-1
ELSE compiler option, 12-36
empty statement, 6-5
empty string literal, 2-12
ENDIF compiler option, 12-38
enumerated data type, 3-11
eof function, 10-10
eoln function, 10-11
error handling functions
escapecode, 11-55

error handling routines, 11-54
escape, 11-54

error messages, A-1
errors
recovery, 11-31
reected in listing, 12-71
trapping run-time, 11-31
undetected, A-2

escapecode prede�ned function, 11-55
escape prede�ned routine, 11-54
EXEC PRIVILEGE compiler option, 12-24{25
exp function, 9-45
export declaration, 7-13
export declaration modules, 7-9
EXPORT reserved word, 7-15
expressions
constant, 4-1, 5-2

de�nition, 4-1
syntax, 4-2
system programming extensions, 11-22

extensible parameters, 11-40
EXTENSIBLE routine options, 11-40
extensions
default reference parameter accessibility, 11-58
parameter accessibility, 11-56
system programming, 11-1

EXTERNAL compiler option, 12-39
EXTERNAL directive, 12-39
EXTNADDR compiler option, 12-40

F

false, Boolean value, 5-4
fast �ll prede�ned procedure, 11-51
fcall prede�ned procedure, 11-60
�eld identi�er, 3-24
�eld list, 3-24
�xed part, 3-24
variant part, 3-24

�eld widths, table of defaults, 10-38
�le bu�er selector, 4-28
�le designator, 4-28
�le functions, table of, 10-2{3
�le procedures, table of, 10-2{3
�les
appending, 10-4
assembler source, 12-67
associating �les, 10-6
closing, 10-1, 10-8
converting �le names, 12-33
de�nition, 10-1
disassociate, 10-9
eof, 10-10
input/output (I/O), 1-5
intrinsic, 12-110
intrinsic, building, 12-22
intrinsic speci�cation, 12-120
listing, 12-71
logical, 3-21, 10-1
opening, 10-17
overprinting, 10-19
packed, 3-21
physical, 3-21, 10-1
resetting, 10-31
rewriting, 10-33
RL �le initialization, 12-100
sequential, 10-1
text, 3-21
text�les, 10-1
writing, 10-36

�nal value, 6-13
�xed part, 3-25
FONT compiler option, 12-41

Index-4

font speci�cation, 12-41
FOR..DO statement, 6-13
formal parameter, 12-28
formal parameter congruency, 1-6
formal parameter list, 8-1
formal parameters, 11-34
ANYVAR, 11-34
READONLY, 11-36

formats
comparison between SPLINTER (SPL) and

SYSINTR (HP Pascal), 12-121
SPLINTR (SPL), 12-121
SYSINTR(HP Pascal), 12-121

formatting of output, 10-38
FORWARD directive, 7-7, 7-8, 8-8, 8-9
functional parameters, 6-26, 8-1
functions
abs, 9-42
arctan, 9-43
arithmetic, 9-42{49
baddress, 9-30
binary, 9-51
calls, 4-4, 4-30, 8-11
chr, 9-56
cmpbytes, 9-32
conformance, 8-6
cos, 9-44
declaration, 7-8
directives, 8-8
eof, 10-10
eoln, 10-11
exp, 9-45
FORWARD directive, 8-8, 8-9
function calls, 4-4, 4-30, 8-11
function result, 8-11
heading, 7-8
hex, 9-52
input/output (I/O), 10-4
lastpos, 10-14
linepos, 10-15
list of prede�ned, 9-1
ln, 9-46
maxpos, 10-16
numeric conversion, 1-8, 9-51
octal, 9-53
odd, 9-50
ord, 9-56, 9-57
position, 10-21
pred, 9-58
recursion, 8-10
return, 1-6
round, 9-54
scanuntil, 9-36
scanwhile, 9-38
sin, 9-47

sqr, 9-48
sqrt, 9-49
str, 9-17
string, 9-17{23
strlen, 9-18
strltrim, 9-19
strmax, 9-20
strpos, 9-21
strrpt, 9-22
strrtrim, 9-23
succ, 9-59
system programming extensions, 11-34
transfer, 9-54
trunc, 9-55
waddress, 9-40

G

generating code for routines, 12-39
get procedure, 10-12
GLOBAL compiler option, 12-42{43
global variables, 5-18
GOTO
non-local, 6-3, 6-24

GOTO statement, 6-24
GPROF compiler option, 12-44
gprof utility, 12-44

H

halting a program, 9-28
halt procedure, 1-5, 9-28
haveextension prede�ned Boolean function,

11-56
haveoptvarparm prede�ned Boolean function,

11-58
heading of a program, 5-1, 7-3
heap, 1-5
HEAP COMPACT compiler option, 12-45
HEAP DISPOSE compiler option, 12-46
hex function, 9-52
hidden parameters, 11-40
HP3000 16 compiler option, 12-49
HP3000 32 compiler option, 12-50{52
HP DESTINATION 'ARCHITECTURE'

compiler option, 12-47{48
HP DESTINATION 'SCHEDULER compiler

option, 12-47{48
HPFPconvert intrinsic, 12-50
HP Pascal compiler options, 1-3, 12-4, 12-5
HP Pascal Operators, 4-5
HP Pascal packing algorithm, 12-50
HP Standard compiler options, 1-3, 12-4, 12-5
HP Symbolic Debugger, 12-119
HP TOOLSET debugger, 12-119
HP-UX
available language features, 12-89

Index-5

HP-UX compiler options, 12-6

I

identi�er map, 12-123
identi�ers, 1-5
de�nition, 2-5
global, 2-6
local, 2-6
prede�ned, table of, 11-7
scope of, 2-6

IF compiler option, 12-53{58
IF..THEN..ELSE statement, 6-10
IF..THEN statement, 6-10
implicit data conversion, 10-26{27
import declaration modules, 7-9
INCLUDE compiler option, 12-59{61
INCLUDE SEARCH compiler option, 12-62{63
include-search patch, de�nition, 12-62
including text in the source code, 12-59
indirect recursion, 8-10
initializing an RL �le, 12-100
initial value, 6-13
INLINE compiler option, 12-64{65
INLINE routine option, 11-41
IN operator, 4-18
input
standard procedures and functions, 10-4
text�les, 3-23, 7-3

input (I/O)
append, 10-4
associate, 10-6
close, 10-8
disassociate, 10-9
eof, 10-10
eoln, 10-11
formatting to text�les, 10-38
get, 10-12
lastpos, 10-14
linepos, 10-15
maxpos, 10-16
open, 10-17
overprinting, 10-19
page, 10-20
position, 10-21
prompt, 10-22
put, 10-23
read, 10-24
readdir, 10-28
readln, 10-30
reset, 10-31
rewrite, 10-33
seek, 10-35
standard procedures and functions, 10-4
write, 10-36
writedir, 10-41

writeln, 10-42
input text�les, 5-18
inserting characters into strings, 9-12
integer
sub-integer, 3-3
super-integer, 3-3

integer constant expressions, 3-30
integer data type, 3-12, 4-7
integer literals, 2-8
integral-types, 3-3, 3-28, 4-5, 4-7, 4-8, 4-9, 4-10,

4-26
intrinsic �les
building, 12-22
listing the contents of, 12-76
speci�cation, 12-110, 12-120

intrinsics
HPFPconvert, 12-50

INTR NAME compiler option, 12-66
invariant conditions, specifying, 9-29
ISO Pascal Extensions, 1-2{8

K

KEEPASMB compiler option, 12-67{68

L

label declaration, 5-15
language elements, 11-6
system programming extension, 11-6

lastpos function, 10-14
libraries
shared, 12-106, 12-107

library, accessing, 12-8
library modules, 7-9
linepos, 1-6
linepos function, 10-15
LINES compiler option, 12-69{70
lines, specifying number per page, 12-69
LIST CODE compiler option, 12-75
LIST compiler option, 12-71{74
listing
contents of an intrinsic �le, 12-76
mneumonic, 12-75

listing �le, 12-71
LISTINTR compiler option, 12-76{77
LITERAL ALIAS compiler option, 12-78
literals
char, 3-10
character, 1-7
empty string, 2-12
integer, 2-8
longreal, 2-9
numeric, 2-8
real, 2-9
signed integer, 2-8

Index-6

string, 1-7, 2-12
unsigned integer, 2-8

ln function, 9-46
LOCALITY compiler option, 12-79
locality names, 12-79
local variables, 5-18
logical �les, 3-21, 10-1
LONG CALLS compiler option, 12-80
longint data type, 3-13, 4-7
longreal data type, 3-3, 3-17, 4-7
longreal literals, 2-9
longreal numbers, 1-6
lowercase letter di�erentiation, 12-78

M

MAPINFO compiler option, 12-81
marking the allocation state, 9-7
mark procedure, 9-7
math libraries
linking, 12-48

maxint, 5-6
de�nition, 1-6

maxpos function, 10-16
migration routines, 9-30
minint, 5-7
de�nition, 1-6

mixing data types, 4-4
MLIBRARY compiler option, 12-82
mneumonic listing, creation of, 12-75
model numbers
/usr/lib/sched.models, 12-47

modi�cation of variables, 5-20
MOD operator, 4-10
module
de�nition, 1-8

module de�nition, 7-9
�le speci�cation, 12-82

module de�nitions
searching for, 12-103

modules, 3-32
export declaration, 7-9
import declaration, 7-9
library, 7-9
separately compiled, 7-9
variables, 5-18

movebyteswhile procedure, 9-34
move fast prede�ned procedure, 11-52
move L to R prede�ned procedure, 11-48
move procedures
fast �ll, 11-51
move fast, 11-52
moving left to right, 11-48
moving right to left, 11-50

move routines
moving left to right, 11-48

move R to L prede�ned procedure, 11-50
moving bytes, 9-34
MPE
available language features, 12-90

MPE/iX
available language features, 12-89{90

MPE/iX compiler options, 12-6
MPE V migration routines
baddress, 9-30
cmpbytes, 9-32
movebyteswhile, 9-34
scanuntil, 9-36
scanwhile, 9-38
waddress, 9-40

multi-dimensioned arrays, 3-20
multiple variants, 3-25

N

names
accessing a library or system routine, 12-8
de�ning multiple internal names, 12-8
locality speci�cation, 12-79
specifying an external name for a function,

12-8
specifying an external name for a procedure,

12-8
specifying an external name for a variable,

12-8
upshifting, 12-130

nesting blocks, 7-4
new procedure, 9-3
NIL, 3-32, 3-36, 4-19, 5-8, 11-19, 11-39
NLS SOURCE compiler option, 12-83
noncompatible type coercion, 11-29
notes
printing, 12-84

NOTES compiler option, 12-84
NOT operator, 4-13
numeric conversion functions, 1-8, 9-51
binary, 9-51
hex, 9-52
octal, 9-53

numeric literals, 2-8

O

+Obbnum compiler option, 12-86
object code
generation, 12-30
suppression, 12-30

octal function, 9-53
odd function, 9-50
o�set, de�nition, 12-31
opening �les, 10-17
open procedure, 10-17

Index-7

operands, 4-4
implicit conversion of, 4-7
table of, 4-4

operating systems
HP-UX, available language features, 12-89
MPE, available language features, 12-90
MPE/iX, available language features, 12-89{90
speci�cation, 12-89{90

operators, 4-5
AND, 4-12
arithmetic, 4-7
Boolean, 4-10
concatenation, 4-22
DIV, 4-9
dividend or divisor (DIV), 4-9
IN, 4-18
MOD, 4-10
modulus (MOD), 4-10
NOT, 4-13
OR, 4-14
pointer relational, 4-19
precedence, 4-6
relational, 4-15
SET, 4-23
set relational, 4-17
simple relational, 4-16
string relational, 4-20
table of, 4-5{6

optimization level speci�cation, 12-85
OPTIMIZE 'BASIC BLOCKS FENCE num'

compiler option, 12-87
OPTIMIZE 'BASIC BLOCKS num' compiler

option, 12-86
OPTIMIZE compiler option, 9-30, 9-40, 12-85
optimizer assumptions, specifying, 12-16
options
compiler, 12-1
routine, 11-38

ord function, 9-56
ordinal data type coercion, 12-128
ordinal data types, 3-3, 3-4
bit16, 3-5
bit32, 3-6
bit52, 3-8
Boolean, 3-9
char, 3-10
enumerated, 3-11
integer, 3-12
subrange, 3-15

ordinal functions, 9-57
chr, 9-56
ord, 9-57
pred, 9-58
succ, 9-59

ordinal type coercion, 11-23

ordinal type identi�er, 3-25
OR operator, 4-14
OS compiler option, 12-89{90
output
formatting to text�les, 10-38
standard procedures and functions, 10-4
text�les, 3-23, 7-3

output (I/O)
append, 10-4
associate, 10-6
close, 10-8
disassociate, 10-9
eof, 10-10
eoln, 10-11
formatting to text�les, 10-38
get, 10-12
lastpos, 10-14
linepos, 10-15
maxpos, 10-16
open, 10-17
overprinting, 10-19
page, 10-20
position, 10-21
prompt, 10-22
put, 10-23
read, 10-24
readdir, 10-28
readln, 10-30
reset, 10-31
rewrite, 10-33
seek, 10-35
standard procedures and functions, 10-4
write, 10-36
writedir, 10-41
writeln, 10-42

output text�les, 5-18
overow checking, 12-91
overprint, 1-6
overprinting �les, 10-19
overprint procedure, 10-19
overriding the UPPERCASE compiler option,

12-78
OVFLCHECK compiler option, 12-91

P

PAC array de�nition, 1-2
PACK ARRAY de�nition, 1-2
packed array, 9-24{27
packed data types, 3-29
packed �les, 3-21
PACKED reserved word, 11-9
pack procedure, 9-24
page, 1-6
PAGE compiler option, 12-93
page procedure, 10-20

Index-8

PAGEWIDTH compiler option, 12-94
parameters
actual, 12-26
default, 11-38
extensible, 11-40
formal, 11-34, 12-28
FUNCTION, 11-19
functional, 6-26, 8-1, 8-11
hidden, 11-40
list of formal, 8-1
mechanisms, 11-56
procedural, 6-26, 8-1, 8-11
PROCEDURE, 11-19
reference, 6-26, 8-1, 8-11
relationship of standard level compiler option,

11-2
syntax of formal, 8-2
tables, 12-123
value, 6-26, 8-1

parsing 16-bit characters, 12-83
PARTIAL EVAL compiler option, 4-10, 12-95
partial evaluation of Boolean expressions, 12-95
PASASSM, 12-67
Pascal elements, 2-1
Pascal/V packing algorithm, 12-49
physical �les, 3-21, 10-1
pointer
dereferencing, 4-29
designator, 4-29

pointer data type coercion, 12-128
pointer data types, 3-1, 3-32, 5-17, 11-14
anyptr, 11-17
class relationship, 11-14
globalanyptr, 11-16
localanyptr, 11-15
long, 11-14
short, 11-14

pointer relational operators, 4-19
pointers, 3-32, 11-44
address arithmetic, 11-46
constructing values, 11-47
HP3000 16, 12-49

pointer type coercion, 11-24
pointer value
NIL, 3-32

POP compiler option, 12-96
position function, 10-21
position independent code (PIC), 12-106
precedence ranking of operators, 4-6
prede�ne Boolean functions
haveextension, 11-56

prede�ned Boolean functions
haveoptvarparm, 11-58

prede�ned constants
maxint, 3-12

minint, 3-12
NIL, 11-30

prede�ned functions
addr, 11-44
addtopointer, 11-46
bitsizeof, 11-61
buildpointer, 11-47
sizeof, 11-63

prede�ned identi�ers, 11-7
prede�ned procedures
call, 11-59
fcall, 11-60
moving, 11-48, 11-50

prede�ned routines
abs, 9-42
addressing, 11-44
append, 10-4
arctan, 9-43
assert, 9-29
associate, 10-6
baddress, 9-30
binary, 9-51
chr, 9-56
close, 10-8
cmpbytes, 9-32
cos, 9-44
disassociate, 10-9
dispose, 9-5
eof, 10-10
eoln, 10-11
error handling, 11-54
escaping, 11-54
exp, 9-45
get, 10-12
halt, 9-28
hex, 9-52
lastpos, 10-14
linepos, 10-15
ln, 9-46
mark, 9-7
maxpos, 10-16
movebyteswhile, 9-34
moving, 11-48
new, 9-3
octal, 9-53
odd, 9-50
open, 10-17
ord, 9-57
overprint, 10-19
pack, 9-24
page, 10-20
parameter mechanisms, 11-56
position, 10-21
pred, 9-58
prompt, 10-22

Index-9

put, 10-23
read, 10-24
readdir, 10-28
readln, 10-30
release, 9-8
reset, 10-31
rewrite, 10-33
round, 9-54
routine mechanisms, 11-59
scanuntil, 9-36
scanwhile, 9-38
seek, 10-35
setstrlen, 9-9
sin, 9-47
size functions, 11-61{64
sqr, 9-48
sqrt, 9-49
str, 9-17
strappend, 9-10
strdelete, 9-11
strinsert, 9-12
strlen, 9-18
strltrim, 9-19
strmax, 9-20
strmove, 9-13
strpos, 9-21
strread, 9-14
strrpt, 9-22
strrtrim, 9-23
strwrite, 9-16
succ, 9-59
system programming extensions, 11-44
trunc, 9-55
unpack, 9-26
waddress, 9-40
write, 10-36
writedir, 10-41
writeln, 10-42

prede�ne functions
escapecode, 11-55

prede�ne procedures
fast �ll, 11-51
move fast, 11-52
move L to R, 11-48
move R to L, 11-50

prede�ne routines
escape, 11-54

pred function, 9-58
predicate functions, 9-50
odd, 9-50

previous stack pointer, 12-124
printing
array and record type information, 12-81
notes, 12-84
o�sets and statement numbers, 12-31

privileged mode routines, calling and executing,
12-24

procedural parameters, 6-26, 8-1
procedures, 7-7
allocation, 9-2
append, 10-4
assert, 9-29
associate, 10-6
close, 10-8
conformance, 8-6
deallocation, 9-2
declaration, 7-7
directives, 8-8
disassociate, 10-9
dispose, 9-5
FORWARD directive, 8-8, 8-9
function calls, 8-11
get, 10-12
halt, 9-28
identi�er, 6-26
list of prede�ned, 9-1
mark, 9-7
movebyteswhile, 9-34
new, 9-3
open, 10-17
overprint, 10-19
pack, 9-24
page, 10-20
program control, 9-28
prompt, 10-22
put, 10-23
read, 10-24
readdir, 10-28
readln, 10-30
recursion, 8-10
release, 9-8
reset, 10-31
rewrite, 10-33
seek, 10-35
setstrlen, 9-9
statement, 6-26
strappend, 9-10
strdelete, 9-11
string, 9-9{16
strinsert, 9-12
strmove, 9-13
strread, 9-14
strwrite, 9-16
system programming extensions, 11-34
transfer, 9-24{27
unpack, 9-26
write, 10-36
writedir, 10-41
writeln, 10-42

program block, 7-3

Index-10

program control procedures, 9-28
assert, 9-29
halt, 9-28

program heading, 5-1, 7-3
program structure
block, 7-4
declaration part, 7-5
directive, 7-7
example, 7-1
EXPORT, 7-13
function, 7-8
heading, 7-3
IMPLEMENT, 7-17
IMPORT, 7-15
module, 7-9
procedure, 7-7

prompt, 1-6
prompt procedure, 10-22
PUSH compiler option, 12-97
put procedure, 10-23

R

range checking, 12-98
RANGE compiler option, 12-98
readdir procedure, 10-28
reading a value in strings, 9-14
readln procedure, 10-30
read procedure, 10-24
real data type, 3-3, 3-16, 4-7
real literals, 2-9
real numbers
HP3000 16, 12-49
HP3000 32, 12-50

record
alignment requirements, 12-11
constant, 5-11
constructor, 5-11
designator, 4-25
printing information, 12-81
selector, 4-25
WITH, 4-25

record data type, 3-24
record �elds, 6-20, 6-21
record variant declaration, 1-6
recursion, 8-10
reference parameters, 6-26, 8-1, 8-11
reference type coercion, 11-22
referencing
data, 11-44
routines, 11-44

referencing routines or data, 11-44
relational operators, 4-15
release procedure, 9-8
releasing the allocation state, 9-8
renaming components, 12-128

REPEAT..UNTIL statement, 6-16
representation type coercion, 11-27
reserved words, 5-1
ANYVAR, 11-34
ARRAY, 3-19
BEGIN..END, 6-4
CASE, 6-8
CONST, 5-3
CRUNCHED, 11-9
de�nition, 2-3
DO, 6-13
DOWNTO, 6-13
ELSE, 6-10
END, 6-8
EXPORT, 7-13, 7-15
�le, 3-21
GOTO, 6-24
IF, 6-10
IMPLEMENT, 7-17
IMPORT, 7-15
OF, 6-8
OTHERWISE, 1-2
PAC, 3-19
PACKED, 3-19, 3-29, 11-9
READONLY, 11-36
REPEAT, 6-16
SET OF, 3-28
STANDARD LEVEL, 2-3
system programming, 11-6
system programming extension, table of, 11-6
table of, 2-3{4
THEN, 6-10
TO, 6-13
TYPE, 5-17
UNTIL, 6-16
VAR, 5-19
WHILE, 6-18
WITH, 6-20

reset procedure, 10-31
resetting �les, 10-31
restoring compiler option settings, 12-96
restricted set constructor, 5-13
rewrite procedure, 10-33
rewriting �les, 10-33
RLFILE compiler option, 12-99
RL �le initialization, 12-100
RLINIT compiler option, 12-100
round function, 9-54
routine mechanisms
call, 11-59
fcall, 11-60
invoking a function, 11-60
invoking a procedure, 11-59

routine options, 11-38
default parameters, 11-39

Index-11

DEFAULT PARMS, 11-39
EXTENSIBLE, 11-40
extensible parameters, 11-40
INLINE, 11-41
UNCHECKABLE ANYVAR, 11-42
UNRESOLVED, 11-43

routine references, 11-44
routines
prede�ned, 11-44

routine type, 11-19

S

S300 EXTNAMES compiler option, 12-101
saving compiler option settings, 12-97
scanning source byte strings, 9-36{39
scanuntil function, 9-36
scanwhile function, 9-38
SEARCH compiler option, 12-103
searching for module de�nitions, 12-103
search path, 12-59
setting or modifying, 12-62

seek procedure, 10-35
selecting an action, 6-11
selector
array, 4-24
designator, 4-24
�le bu�er, 4-28
record, 4-25

separators, de�nition, 2-11
sequential �les, 10-1
SET compiler option, 12-105
set constructor, 4-26
setconvert procedure, 12-50
set data type, 3-28
set operators, 4-23
set relational operators, 4-17
sets
HP3000 32, 12-50

set size, limitation, 3-28, 4-26
setstrlen procedure, 9-9
setting column width read by the compiler,

12-134
shared libraries, 12-106, 12-107
SHLIB CODE compiler option, 12-106
SHLIB VERSION compiler option, 12-107
shortint data type, 3-14, 4-7
side-e�ects, 5-20
signed integer literal, 2-8
signed subranges, 11-12
simple data types, 3-1, 3-3, 5-17
longreal, 3-3, 3-17
ordinal, 3-3
real, 3-3, 3-16

simple relational operators, 4-16
sin function, 9-47

size functions, 11-61{64
sizeof prede�ned function, 11-63
skipping text, 12-108
SKIP TEXT compiler option, 12-108
source code
generating a list of, 12-71

space
freeing in the heap, 12-46
merging and reuse, 12-45

special symbols, table of, 2-1
SPLINTR compared with SYSINTR, 12-121
SPLINTR compiler option, 12-110, 12-121
sqr function, 9-48
sqrt function, 9-49
stack pointer, 12-124
STANDARD LEVEL compiler option,

12-111{112
standard level compiler option parameters
HP MODCAL, 11-5
HP PASCAL, 11-3
ISO, 11-3

standard level parameters, relationship of, 11-2
standard modules
stderr, 7-10
stdinput, 7-10
stdoutput, 7-10

standard text�les, 3-22, 5-18, 7-3
input, 3-23, 5-18, 7-3
output, 3-23, 5-18, 7-3

starting a new page, 12-93
STATEMENT NUMBER compiler option,

12-113{114
statements
assignment, 6-6
BEGIN..END, 6-4
case, 6-8
compound, 6-3
de�nition of, 6-1
empty, 6-5
FOR..DO, 6-13
GOTO, 6-24
IF..THEN, 6-10
IF..THEN..ELSE, 6-10
procedure, 6-26
REPEAT..UNTIL, 6-16
syntax, 6-2
system programming extensions, 11-31
table of Pascal, 6-1
TRY-RECOVER, 11-31{33
WHILE..DO, 6-18
WITH, 1-8, 4-25
WITH..DO, 6-20

static variable, 9-2
stderr standard module, 7-10
stdinput standard module, 7-10

Index-12

stdoutput standard module, 7-10
STDPASCAL WARN compiler option, 12-115
stopping a program, 9-28
storage
allocation, 9-2, 9-3
deallocation, 9-2, 9-5

storage type coercion, 11-28
strappend procedure, 9-10
strconvert procedure, 12-50
strdelete procedure, 9-11
str function, 9-17
string assignment
compatibility, 3-36
table of rules, 3-36

string constructor, 5-14
string data types, 3-30
string functions, 9-17{23
string literals, 1-7, 2-12, 3-30
string procedures, 9-9{16
string relational operators, 4-20
string routines
setstrlen, 9-9
str, 9-17
strappend, 9-10
strdelete, 9-11
strinsert, 9-12
strlen, 9-18
strltrim, 9-19
strmax, 9-20
strmove, 9-13
strpos, 9-21
strread, 9-14
strrpt, 9-22
strrtrim, 9-23
strwrite, 9-16

strings
ANSI de�nition, 3-19
appending, 9-10
copying characters, 9-13
de�nition, 1-2
deleting characters, 9-11
HP3000 32, 12-50
initialization, 3-30
inserting characters, 9-12
manipulation, 1-7
reading a value, 9-14
setting length, 9-9
type, 1-7
VAR, 9-20
writing values, 9-16

STRINGTEMPLIMIT compiler option, 12-116
strinsert procedure, 9-12
strlen function, 9-18
strltrim function, 9-19
strmax function, 9-20

strmove procedure, 9-13
strpos function, 9-21
strread procedure, 9-14
strrpt function, 9-22
strrtrim function, 9-23
structural type coercion, 11-26
structured constants, 1-4
structured data types, 3-1, 3-18, 5-17
array, 3-18
�le, 3-21
packed, 3-29
record, 3-24
set, 3-28
string, 3-30

strwrite procedure, 9-16
sub-integer, 3-3, 4-7, 9-43{49
SUBPROGRAM compiler option, 12-117{118
subrange data type, 3-15
subranges
signed, 11-12
unsigned, 11-11

succ function, 9-59
super-integer, 9-43{49
suppressing warning messages and notes, 12-133
symbols
basic, 2-1
special, table of, 2-1

SYMDEBUG compiler option, 12-119
syntax
non-conforming to ANSI/ISO standards,

12-115
syntax level speci�cation, 12-111
SYSINTR compared with SPLINTR, 12-121
SYSINTR compiler option, 12-120, 12-121
SYSPROG compiler option, 12-122
system-dependent compiler options, 12-6
HP-UX, 1-4, 12-6
MPE/iX, 1-4, 12-6

system-independent compiler options, 12-1,
12-3{5

system programming compiler options, 1-3,
12-4, 12-5

system programming extensions, 11-1
data types, 11-8

system routine, accessing, 12-8
system-wide �le, 12-7

T

TABLES compiler option, 12-123{126
tag �eld identi�er, 3-25
tag �elds, 5-11
terminating a program, 9-28
text
skipping, 12-108

text�les, 3-21, 10-1

Index-13

formatting of output, 10-38
input, output, 3-23
standard, 3-22

TITLE compiler option, 12-127
title speci�cation, 12-127
transfer functions, 9-54
pred, 9-58
round, 9-54
succ, 9-59
trunc, 9-55

transfer procedures, 9-24{27
pack, 9-24
unpack, 9-26

true, Boolean value, 5-5
trunc function, 9-55
type
text, 3-21

type coercion, 11-22, 11-34
ordinal, 11-23
other, 11-25
pointer, 11-24

TYPE COERCION compiler option, 11-22,
12-128

type compatibility, 1-2, 3-34{36
type de�nition, 5-16, 5-17
type identi�er, 3-32
types
integral-types, 3-3

U

UNCHECKABLE ANYVAR routine option,
11-42

undetected errors, A-2
unpacked array, 9-26
unpack procedure, 9-26
UNRESOLVED routine option, 11-43
unsigned integer literal, 2-8
unsigned subranges, 11-11
UPPERCASE compiler option, 12-130
uppercase letter di�erentiation, 12-78
upshifting external names, 12-130

V

value parameters, 6-26, 8-1
values
�nal, 6-13
initial, 6-13

value type coercion, 11-22
variables
declaration, 5-18
dynamic, 9-2
global, 5-18, 12-123
local, 5-18, 12-123
modi�cation of, 5-20
module, 5-18
nonlocal, 12-124
static, 9-2

variant part, 3-25
variants
records, 5-11
tag �elds, 5-11

variants, multiple, 3-25
VAR string, 9-20
VERSION compiler option, 12-131
version number inclusion, 12-131
VOLATILE compiler option, 12-132

W

waddress function, 9-40
WARN compiler option, 12-133
warning messages and notes suppression, 12-133
warnings
reected in listing, 12-71

WHILE..DO statement, 6-18
WIDTH compiler option, 12-134
width of compiler listing, speci�cation, 12-94
Wirth, Nicklaus, 1-1
WITH..DO statement, 6-20
WITH statement, 1-8, 4-25
writedir procedure, 10-41
writeln procedure, 10-42
write procedure, 10-36
writing �les, 10-36
writing values in strings, 9-16

X

XREF compiler option, 12-135{139

Index-14

