
HP 9000 Computers

HP-OX Portability Guide

Flia- HEWLETT
~~ PACKARD

H P-UX Portability Guide
for the HP 9000 Computers

Manual Reorder No. 98680-90046

0) COPYright 1985 Hewlett·Packard Company

This document contains proprietary information which is protected by copyright All rights are reserved. No part
of this document may be photocopied, reproduced or translated to another language without the Prior written
consent of Hewlett-Packard Company The information contained in this document is subject to change without
notice

Restncted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(8) of
the Rights In Technical Data and Software clause in DAR 7·104.9(a)

0) Copyright 1980. Bell Telephone Laboratories, Inc

0) Copyright 1979 1980, The Regents of the University of California

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from the Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History
New editions of this manual will incorporate all material updated since the previolls
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1985 ... Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

ii

Table of Contents
Chapter 1: General Portability Guidelines

Introduction ... 1
The Portable Philosophy .. 3

The Merits of C .. 3
Guidelines ... 4

Chapter 2: Language Portability
Introduction ... 5

Things to be Aware Of .. 5
What's Next ... 6

The C Programming Language ... 7
C Dependencies .. 7
Compiler Command Options .. 12
Calls to Other Languages .. 13

Pascal ... 17
Series 200/300 HP-UX vs. Series 500 HP-UX 18
Series 200 HP-UX vs. Series 200 Workstation 21
Series 200 vs. Series 300 Workstation 23
Calling C Functions From Pascal 23

FORTRAN ... 27
Compiler Options ... 28
Compiler Directives ... 29
Semantic Differences and Extensions 30
Recursion?! .. 31
Calling C Routines From FORTRAN 31

Chapter 3: System Calls and Subroutines
Introduction .. 35
System Calls 36
Subroutines .. 40

iii

Chapter 4: Transporting Files
Introduction .. 43
Moving Between HP-UX Systems 44

U sing Tar .. 44
Trading Files with Other UNIX Systems 45

Using Cpio and Tcio .. 45
Trading Files with Other HP Systems 46

From HP-UX to LIF ... 47
From LIF to HP-UX ... 50

Trading Files with Other Systems 51
Using Datacomm to Move Files ... 52

UNIX to UNIX ... 52

Index , .. 55

iv

General Portability Guidelines 1
Introduction
portable: capable of being carried or moved about.

Portability is a desirable software quality. When you develop a program, you want it to
perform correctly in different environments without major changes. This book presents
guidelines and techniques for maximizing the portability of programs written on and for
HP 9000 computers running the HP-UX Operating System. We will discuss portability
of high level source code (C, Pascal, FORTRAN).

NOTE

This edition of this manual applies to HP-UX Version 5.0 for the
Series 500 and 300, and Version 5.1 for the Series 200 and 300.

NOTE

Porting from previous versions of HP-UX is not covered. Please
refer to the following documents for update information: Series
200 - Updating your HP-UX system to the 5.1 Release which is
sent with your update, and chapter 4 of System Administration
Manual. Series 500 - Updating your HP-UX system to the 5.0
Release which is sent with your update, and chapter 4 of System
Administration Manual.

The portability information is presented on two levels: software compatibility with non
HP systems, and compatibility between Hewlett-Packard's Series 200, Series 300 and
Series 500 computers. Porting to another manufacturer's machine involves unknowns
and is only covered in general terms.

General Portability Guidelines 1

HP-UX Version 5.1 * on the Series 300 is made up of several parts. This manual assumes
you have the complete HP-UX system running on your Series 300. The complete sys
tem consists of the Application Execution Environment, the Programming Environment,
Fortran 77, Pascal, and DGL/ AGP. The Series 200 and 300 are very similar and, unless
otherwise stated, anything available on one is available on the other.

This manual also covers transporting data and source files between commonly used for
mats. It is assumed that you have some programming experience and are familiar with
HP-UX.

This manual is divided into four chapters:

1. Introduction: Gives a brief description of this manual along with some general
portability guidelines.

2. Language Portability: Contains sections for C, Pascal, and FORTRAN that de
scribe areas of concern for portable programming.

3. System Calls and Subroutines: Describes variations in availability and behavior of
system calls and subroutines between Series 200/300 and Series 500 HP-UX.

4. Transporting Files: Describes methods for moving source or data files between
computer systems.

* Version 5.1 HP-UX may not yet be out. Ask your sales representative about the availability of Version
5.1.

2 General Portability Guidelines

The Portable Philosophy
It takes the right attitude to develop portable software. Throughout the development
process, be aware of things that could hinder porting your program to another environ
ment:

• Non-standard language extensions.

• Assembly code.

• Hardware dependencies.

• Absolute addressing.

• Floating point comparisons.

• Software "tricks" that exploit a particular architecture.

The Merits of C
For ease of porting, we strongly recommend that you program in the C programming
language. There are many advantages to using C on HP-UX and other UNIX 1 systems:

• Most of HP-UX is written in C. The system calls are implemented as C procedures.
Consequently, C code can interface with HP-UX more easily than code written in
other languages.

• C was designed to be portable. Machine dependence is minimized by isolating
dependencies in library routines.

• Low-level operations such as bit manipulation are supported in a portable way.
This reduces the need for assembly routines, but the procedures may still have to
be changed when porting because the meanings of bit positions vary from machine
to machine.

• Most implementations of C are "plain vanilla." There is no need to worry about
using a feature that might not be available on another system.

1 U NIX is a trademark of AT&T Bell Laboratories.

General Portability Guidelines 3

Guidelines
Here are some guidelines for making your code portable:

• Isolate all machine dependent code in libraries. Maintain one for each execution
environment, or use the conditional compilation features (#ifdef) of C.

• Read the section of this manual that describes the anomalies of the language you
are using; these appear in Chapter 2. When writing your code, keep these variations
in mind as potential problems. These sections also discuss adherence to languagc
standards.

• Read the sections on system calls and subroutines in Chapter 3 and note the dif
ferences between Series 200, Series 300 and Series 500. Some variations from other
UNIX systems may be documented here, but the only way to be certain is by
comparing the entries in your HP- UX Reference with your UNIX documentation.

• Don't take the easy way out. It may be simpler initially to usc a language extension
or hardware quirk to achieve your programming goals, but if you want your code
to be portable, avoid shortcuts.

4 General Portability Guidelincs

Language Portability 2
Introduction
Since programming languages define the meaning of a program, they are the primary
concern of portability. Unless the semantics of a language are exactly the same on two
different machines, one cannot assume that a program written in that language will
produce the same results on both machines. Also, an implementation of a language may
support extensions that are not available on other systems. This chapter discusses areas
you should be concerned with when porting programs in three of the languages available
on HP-UX (C, Pascal, and FORTRAN).

Topics addressed are:

• Variations from language standards.

• Differences in HP-UX command line options.

• Variable storage.

• Calls to other languages.

Things to be Aware Of
In addition to semantic differences, you should be alert to variations in the way your sys
tem processes source code. This includes compiler directives and command line options.
If you are using the make utility, you will probably have to alter the compiler options in
your makefiles to reflect system differences.

Compiler directives are a mixed blessing. There are directives available on HP-UX that
generate warnings for non-standard language features. These are very useful and are
covered under each language. On the other hand, there are directives that enable machine
dependent features that dissolve any hope of portability. In any case, the directives will
have to be changed when porting because it is unlikely that the systems you are porting
between support the same directives. You must balance the current usefulness of the
directive against its potential for portability problems.

Language Portability 5

Floating point operations are another fly in the ointment of compatibility. Computer
floating-point numbers are usually only close approximations of real numbers, so when
doing floating point compares, it is best to compare to a range of values instead of a
single value. This technique is known as a "fuzzy compare." For example:

Replace

with

if x = 1.2267 then
y:=y+1;

if (abs(x - 1.2267) < err_margin) then
y:=y+1;

where err_margin is a constant representing the margin of error for comparisons.

What's Next
The rest of this chapter contains sections on C, Pascal, and FORTRAN that detail the
portability aspects of each language.

6 Language Portability

The C Programming Language
C is the most portable programming language available under HP-UX. Carefully written
C programs can be ported to other machines unchanged. This portability and its close ties
to HP-UX make C the language of choice for programming in the HP-UX environment.

Additionally, HP-UX provides the lint utility, which detects type clashes and possible
portability problems in your code. See HP-UX Concepts and Tutorials for details on
using lint.

Another nice portability feature of C is #include files. Machine dependent code and
declarations can be segregated in separate files, so that to port the code, you need only
change some #include statements and supply the appropriate files to include.

C also has conditional compilation directives like #ifdef and #ifndef that can control
compilation of machine dependent code sections.

C Dependencies
There are still some things that you need to be concerned with when writing portable
programs in C. These include data sizes, parameter passing conventions, and the exact
specification of some operations. In order to avoid subtle errors, you should be certain
that the machine you are moving your programs to behaves the way that your programs
expect. The following is a list of areas where the HP-UX implementation of C may
deviate from other C compilers (including differences between Series 200/300 and 500).
Each section is marked as to whether it applies to the Series 500, Series 200/300, or both.

Data Type Sizes (200, 300 and 500)
This table shows the sizes of the six C data types:

Table 1: C Data Types

Type Size

char 8 bits

short 16 bits

int 32 bits

long 32 bits

float 32 bits

double 64 bits

Language Portability 7

The typedef facility is the easiest way to write a program to be used on machines with
different data type sizes. Simply define your own type equivalent to a provided type that
has the size you wish to use.

Example: Suppose Machine A implements int as 16 bits and long as 32 bits. Machine B
implements int as 32 bits and long as 64 bits. You want to use 32 bit integers. Simply
declare all your integers as type MYINT, and insert the appropriate typedef. This would
be

typedef long MYINT

in code for machine A, and

typedef int MYINT

in code for machine B. #include files are useful for isolating the machine dependent code
like these type definitions. For instance, if your type definitions were in a file mytypes. h,
to account for all the data size differences when porting from machine A to machine B,
you'd only have to change the contents of file mytypes. h.

Char Data Type (200, 300 and 500)
The char data type defaults to signed. If a char is assigned to an int, sign extension
takes place. A char may be declared unsigned to override this default. The line

unsigned char ch;

declares one byte of unsigned storage named ch. On some systems, char variables are
unsigned by default.

Register Data Type (200/300)
The register data type is supported on Series 200/300 HP-UX, and if properly used,
will reduce execution time. Using this type should not hinder portability, however, its
usefulness on other machines will vary, since some ignore it.

Register Data Type (500)
Because the Series 500 computers are stack machines, the register specification is harm
lessly ignored.

8 Language Portability

Identifiers (200/300 and 500)
Identifiers can be as long as you want, but they have 255 significant characters. For
universally portable code, use considerably less than this. Eight significant characters
for internal identifiers and seven for external identifiers (identifiers that are defined in
another source file) is safe. Although identifiers in HP-UX C are case sensitive, you should
avoid identifiers that are unique by case only (ie. Numl vs. numl). Typical C programming
practice is to name variables with all lower-case letters, and #define constants with all
upper case.

Shift Operators (200/300 and 500)
On left shifts, vacated positions are filled with O. On right shifts of signed operands,
vacated positions are filled with 1 (arithmetic shift). Right shifts of unsigned operands
fill vacated bit positions with 0 (logical shift). Integer constants are treated as signed
unless cast to unsigned.

Bit Fields (200/300 and 500)
Bit fields are assigned left to right and are unsigned.

Division by Zero (200/300 and 500)
Division by zero gives the run-time error message Floating exception.

Integer Overflow (200/300 and 500)
As in nearly every other implementation of C, integer overflow does not generate an
error. The overflowed number is "rolled over" into whatever bit pattern the operation
happens to produce.

Null Pointers (200/300 and 500)
Some versions of C peTmit references to null pointers. In the HP-UX implementation
of C, referencing a null pointer causes a run-time error. Since some programs written
on other UNIX systems rely on being able to reference null pointers, you may have to
change code to check for a null pointer. For instance, change

to

if «ch_ptr != NULL) && (*ch_ptr != "\0"))

Language Portability 9

Parameter Lists (200/300)
On the Series 200/300, parameter lists grow towards higher addresses; to use a pointer
to step through a parameter list, increment the pointer. Example:

parprint (a,b,c)
int a,b,c;

{

int i, *ptr;

ptr = &a; 1* SET POINTER TO ADD. OF FIRST PAR AM *1
for (i = 1; i <= 3; i++) 1* PRINT EACH PARAM *1

{

printfC"\n %d",*ptr);
++ptr;
}

} 1* END parprint *1

Calling this function would print its three parameters in order.

Parameter Lists (500)
On the Series 500, parameter lists are stacked towards decreasing addresses (though the
stack itself grows towards higher addresses). To step through a parameter list, decrement
the pointer. Example:

parprint (a,b,c)

{
int a,b,c;

int i, *ptr;

ptr &a; 1* SET POINTER TO ADD. OF FIRST PARAM *1
for (i = 1; i <= 3; i++) 1* PRINT EACH PARAM *1

{

printf("\n %d",*ptr);
--ptr;
}

} 1* END PARPRINT *1

Calling this function will print its three parameters in order. Note that the only differ
ence between this function and the similar one for Series 200/300 HP-UX is that ptr is
decremented instead of incremented.

10 Language Portability

Memory Organization (200/300 and 500)
On both the Series 200/300 and Series 500 computers, the most significant byte of a
datum has the lowest address. This is the address used to access the datum.

Address

7 0
000103 ~ Least Significant Byte

15 8
000102

23 16
000101

31 24
000100 ~ Most Significant Byte

1 Byte

Figure 1: Memory Organization

Expression Evaluation
The order of evaluation for some expressions will differ between Series 200/300 and Series
500 computers. This does not mean that operator precedence is different. For instance,
in the expression xi = f (x) + g (x) * 5;, f may be evaluated before or after g, but g (x)

will always be multiplied by 5 before it is added to f (x). It is good programming practice
to disambiguate all expressions with parentheses. Since there is no C standard for order
of evaluation of expressions, avoid using functions with side effects and function calls as
actual parameters. Use temporary variables if your program relies upon a certain order
of evaluation.

Variable Initialization
Due to the Series 500 hardware local variables are initialized to O. This is not the case
on Series 200/300, and is most likely not the case on any other UNIX system. Don't
depend on the system initializing your variables; it is not good programming practice in
general, and makes for unportable code.

Parent and Self Directory Entries
On Series 500 HP-UX, directories do not contain entries for. and .. (current and parent
directories). Any program that relies on those entries being present will not work.

Language Portability 11

Compiler Command Options
There are some minor differences between Series 200/300 and Series 500 C compiler
options. If you are using make, you may have to change the compile lines in your makefiles
when porting your code. Here is a list of the variant options. See the HP-UX Reference
for more details.

Table 2: Differences in C Compiler Command Line Options

Option Effect Difference

-p Enable profiling Not supported on Series 500.

-w Pass options to subprocesses Series 200/300 and 500, but on Series 200/300
four additional options (b,f,N, and YE) can
be sent to the subprocess ccom

-w Supress warning messages Not supported on either Series 500 or
200/300.

-z Allow dereferencing of null Not supported on Series 500, has no effect on
pointers Series 200/300.

-z Allow runtime detection of null Not supported on Series 200/300, has no ef-
pointers fect on Series 500.

Series 200/300 Floating Point Options
If your programs will be run on Series 200/300 computers with optional floating point
hardware, you must use one of two compiler options to take advantage of its faster
processing .

• -b causes the compiler to generate code for floating point operations that will use
the special hardware if it is present at run-time .

• -f causes the compiler to generate code to use the special hardware. The code will
not run on a machine without the floating point hardware.

The -b option is the preferred form if you are not concerned with the extra space or time
the code will take to decide whether there is a floating point card present. If you use of,
then the code can only be used on machines with the optional floating point hardware.

12 Language Portability

Calls to Other Languages
It is possible to call a function written in another language from a C program, but you
should have a good reason for doing so. Using more than one language in a program
that you plan to port to another machine will complicate the process. In any case, make
sure that the program is thoroughly tested in any new environment.

If you do call another language from C, you will have the other language's anomalies to
consider plus possible variances in parameter passing. Since all HP-UX system routines
are C programs, not calling programs in other languages should not be a hardship. But if
you choose to do so, remember that C passes all parameters by value. The ramifications
of this depend on the language of the called function:

Pascal
Pascal gives you the choice of passing parameters by value or by reference (var parame
ters). C passes all parameters by value, but allows passing pointers to simulate pass by
reference. If the Pascal function does not use var parameters, then you may pass values
just as you would to a C function. Actual parameters in the call from the C program
corresponding to formal var parameters in the definition of the Pascal function should
be pointers.

Unfortunately, calling Pascal functions from C on the Series 200/300 is different than on
the Series 500.

On the Series 200/300, you must put the Pascal function in a module that exports the
function, compile that file, and then link it with your main C program by including the
name of the Pascal .0 file on the cc command line.

On the Series 500, use the $SUBPROGRAM$ directive in the file containing your Pascal
function instead of putting the function in a module.

Language Portability 13

Example 1:

This example shows the code to call a Pascal function from a C program on the Series
200/300. An example for the Series 500 follows.

main 0
/* CALL A PASCAL FUNCTION */
{

}

int a. b. psubs_changenum();

a -4;
b 3'

printf ("\n Before the call. a = %d". a);
psubs_changenum (&a. b); 1* NOTE THE USE OF & FOR VAR PARAM *1
printf ("\n After the call. a = %d". a);

Source for Main C Program (main. c)

module psubs;

export
function changenum (var numl: integer; num2 integer): integer;

implement

function changenum (var numl: integer; num2 : integer): integer;
{ FUNCTION TO ADD NUMl TO NUM2. IF THE NEW VALUE OF NUMl IS

NEGATIVE THEN 0 IS RETURNED. OTHERWISE 1 IS RETURNED. }

begin
numl:= numl + num2;
if numl < 1 then

changenum:= 0
else

changenum:= 1
end; { CHANGENUM }

end. { MODULE PSUBS }

Pascal Function Source (psubs. p)

14 Language Portability

The commands to compile these files into the executable file a. out are:

pc -c psubs.p
cc main.c psubs.o -lpc

The -lpc tells the C compiler to link any required object files from the Pascal library.

Note that the C program refers to the Pascal function as psubs_changenum. This follows
the general form of <module name> _ <function name>.

If you want to access I/O functions from a Pascal function within a module, you must
declare the files you wish to use (including input and output) in the function.

Language Portability 15

Example 2: This example shows the code to call a Pascal function from a C program on
Series 500 HP-UX.

main 0
/* CALL A PASCAL FUNCTION */
{

}

int a, b, changenum();

a = -4;
b = 3;

printf("\n Before the call, a = %d", a);
changenum (&a, b); /* NOTE THE USE OF & FOR VAR PARAM */
printf("\n After the call, a = %d", a);

Source for Main C Program (main.c)

$subprogram$

program dummy (input ,output) ;

function changenum (var numl : integer; num2 : integer): integer;
{ FUNCTION TO ADD NUMl TO NUM2. IF THE NEW VALUE OF NUMl IS

NEGATIVE THEN 0 IS RETURNED, OTHERWISE 1 IS RETURNED. }

begin
numl:= numl + num2;
if numl < 1 then

changenum:= 0
else

changenum:= 1
end; { CHANGENUM }

{ END COMPILATION UNIT }

Pascal Function Source (psubs. p)

The commands to compile these files into the executable file a. out are:

pc -c psubs.p
cc main.c psubs.o -lpc

The -lpc tells the C compiler to link any required object files from the Pascal library.

16 Language Portability

FORTRAN
No example is given here for calling a FORTRAN function from a C program. The
section on calling C from FORTRAN may be helpful. Remember that in FORTRAN,
all parameters are passed by reference, so actual parameters in a call from C must be
pointers, or variable names preceded by the address-of operator (&).

You can compile FORTRAN functions separately by putting the functions you want into
a file and compiling it with the -c option to produce a .0 file. Then, include the name
of this .0 file on the command line that compiles your C program. The C program can
refer to the FORTRAN functions by the names they are declared by in the FORTRAN
source.

Pascal
The Series 500, Series 300, and 200 HP-UX systems support a version of Pascal known as
Hewlett-Packard Standard Pascal (HP Pascal). HP Pascal is a superset of ANSI Pascal,
and implements many advanced features. A few of the features differ between the Series
200/300 and 500; the differences are covered in this section.

The extensions of HP Pascal are a blessing and a curse. If you plan only to run your
programs on HP computers (better yet, only HP 9000 computers), then it won't take
much work to move them, and the extra features will make your programming much
easier. However, if you should decide to port those programs to another manufacturer's
computer, the effort to do so will be proportional to the use of non-standard Pascal
extensions. Even if the system you are moving the programs to has extensions, it is
doubtful that they have the same form as HP Pascal. Before deciding to use a non-ANSI
feature, ask yourself some questions:

• Am I ever going to port this program to a non-HP machine?

• How much hardship does avoiding the extension cause?

• Will another machine have a similar feature?

If your answers are "probably not," "a heck of a lot," and "I sure hope so," then go
ahead and use the extension.

Language Portability 17

How can you know whether any of the language features you are using are likely to be
supported on another machine? Series 200/300 and Series 500 Pascal have an option that
causes the compiler to emit warnings for uses of features not included in ANSI Standard
Pascal. On either machine, include the line

$ANSI ON$

at the beginning of your source file. You will have to use the -L option with pc and
look at a listing of your program (on the screen or hardcopy) to see where the warnings
occurred.

Series 200/300 HP-UX vs. Series 500 HP-UX
The pc Command
There are some minor differences in the Pascal compiler (pc) between Series 200/300 and
Series 500 HP-UX.

The Series 500 has a few options not available on Series 200/300:

+E Link with /lib/libpcesc.a.

+F Produce information for program analysis.

+H Display or set a program's maximum heap size.

+Q Read a file of compiler options.

+U Make external names uppercase.

+ W Display or set a program's working set size.

The Series 200/300 Pascal compiler produces .a files, while the Series 500 Pascal compiler
produces .0 files. For instance:

pc main.p util.p

would produce the files main.a, util.a, and a.out on Series 200/300 HP-UX and the files
main.o, util. 0, and a. out on the Series 500. This means that any make files or shell
scripts that depend on the code file suffix will have to be changed to port them between
the two series.

18 Language Portability

Compiler Option Differences
Series 200/300 and Series 500 HP-UX Pascal support different (although intersecting)
sets of compiler options. Additionally, some common options have different semantics,
and a slightly different syntax. For portable code, keep compiler options to a minimum.
Especially avoid ones that affect the semantics of the language or enable system level
programming extensions, like $PARTIAL_EVAL$ and $SYSPROG$ on the Series 200/300.

On the Series 500, more than one option can appear between a pair of dollar signs. The
200/300 allows only one.

Here is a list of the variant options:

ALIAS

ALLOW _PACKED

AUTOPAGE

CODE

DEBUG

FLOAT_HDW

IDSIZE

IF

LINE_INFO

LINENUM

LINESIZE

OVFLCHECK

PAGEWIDTH

RANGE

Available on both machines, but Series 500 prep ends an under
score to the name and Series 200/300 leaves the name unaltered.

Series 200/300 only. Allows VAR parameter passing of fields in
packed records and arrays.

Series 500 only. Controls pagination of listing.

Series 200/300 only.'Selects whether a code file is generated.

Available on both machines, but prepares more information on
Series 500.

Series 200/300 only. Controls generation of code for floating
point hardware.

Series 500 only. Specifies number of significant characters in
identifiers.

Available on both machines but the Series 500 conforms to the
HP3000 IF in that you cn't look at program objects.

Series 500 only. Listing option.

Series 200/300 only. Specifies source line number.

Series 500 only. Controls line buffering for TEXT files.

Series 200/300 only. Switches overflow checking on or off.

Series 200/300 only. Controls width of source listing. See
WIDTH for Series 500.

Available on both machines but due to the method of stoing
sets the Series 500 always checks ranges in the set expressions
while the Series 200/300 doesn't.

Language Portability 19

SAVE_CONST

SEARCH

Series 200/300 only. Controls scope of structured constants.

Available on both machines but the Series 500 syntax uses a
single string with a list of module names and the Series 200/300
syntax uses a list of strings, each containing a single module
name.

SEARCH_SIZE Series 200/300 only. Changes number of external files that can
be searched.

SKIP _ TEXT Series 500 only. Skips source text.

STANDARD_LEVEL Series 500 only. Sets level of extensions that can be used without
triggering a warning. Series 200/300 uses ANSI and SYSPROG.

STATS Series 500 only. Display compiler options.

SUBPROGRAM Series 500 only. Separate compilation facility. Use modules
instead.

SUBTITLE Series 500 only. Prints a listing subtitle.

SYSPROG Series 200/300 only. Allows use of system programming exten
sions. Equivalent to $STANDARD_LEVEL 'hp_MODCAL'$
on the Series 500.

TITLE Series 500 only. Prints a listing title.

TYPKCOERCION Series 500 only. Relax type checking.

UPSHIFT _LEVELl Series 500 only. Makes all external names uppercase.

VISIBLE Series 500 only. Specifies default entry points.

WIDTH Series 500 only. Equivalent to PAGEWlDTH on Series 200/300.

Differences in Features
Due to the varying origins of the Series 200/300 and Series 500 Pascal compilers, there
are some differences between them. Here is a list of the features that differ between
Series 200/300 and Series 500 HP-UX Pascal.

Type Coercion Series 500 only.

Absolute Addressing Series 200/300 only.

Enumerated Type I/O Series 200/300 only.

20 Language Portability

Sizeof

Try -Recover

Function Types

String Length

Packed Arrays

Series 200/300 Pascal allows using a file variable as a parameter
to the sizeof function; Series 500 does not.

Escape codes for errors differ between the two Series.

Series 500 Pascal has both procedure and function types, while
Series 200/300 has only procedure types. Assignments to pro
cedure variables have a different syntax.

Maximum string length in Series 500 Pascal is 32 767 characters;
on the Series 200/300, it is 255 characters.

On the Series 200/300, elements of packed arrays can be passed
as V AR parameters only if the "ALLOW _PACKED" compiler
option has been used.

Series 200 HP-UX vs. Series 200 Workstation
Since the Series 200 HP-UX Pascal compiler was developed from the HP Pascal work
station, the two implementations are very similar. There are still some differences that
you should be aware of when porting between the two systems. If your programs to be
ported use operating system dependent features like low-level I/O functions, then you
may have a non-trivial porting job.

The information in this section is covered in greater detail (though with different orga
nization) in the HP Pascal Language Reference for Series 200 computers.

Compiler Option Differences
The options available on HP-UX Series 200 Pascal are, with one exception, a subset of
the ones available on the Pascal workstation implementation. The following options are
available only on the Pascal workstation.

CALLABS

COPYRIGHT

DEF

HEAP _DISPOSE

IOCHECK

REF

STACKCHECK

SWITCH_STRPOS

Switches absolute jumps on and off.

Includes copyright information.

Changes size and location of compiler's .DEF file.

Controls garbage collection.

Controls error checking on system I/O routine calls.

Changes size and location of compiler's .REF file.

Controls stack overflow checking.

Switches order of parameters for the STRPOS function.

Language Portability 21

UCSD Allows use of UCSD Pascal extensions.

The one option that is available only on HP-UX Series 200 Pascal and not on the Pascal
Workstation is HP16.

HP16 Enables 16-bit character parsing for Native Language Support.

In addition, there is one compiler option, PARTIAL_EVAL, which is implemented differ
ently on the two machines. Default on the Pascal Workstation is "OFF", but the default
on HP-UX Series 200 Pascal is "ON". This has been done so HP-UX Series 200 Pascal is
compatable with HP-UX Series 500 Pascal. Note that this is different from the previous
release of HP-UX Series 200 Pascal (version 2.1).

Differences in Features
There are some minor semantic differences between the workstation and HP-UX Pascal
implementations.

Module Names

Real Variables

Input

Lastpos

Linepos

Heap Management

File Naming

22 Language Portability

Module names on HP-UX can be up to 12 characters, while on
the Pascal workstation they can be up to 15.

Real variables are 32 bits in HP-UX Pascal and 64 bits on the
workstation. Longreals are 64 bits on both implementations.

Although HP Standard Pascal specifies unbuffered input, on
the HP-UX implementation, input is buffered by default. To
override this, add the following statement to the beginning of
your program:

reset(input.". 'unbuffered');

Not implemented on Series 200 Pascal workstation.

Not implemented on Series 200 Pascal workstation.

The Series 200 HP-UX and Pascal workstation have different
mechanisms for specifying the heap manager. See the HP Pascal
Language Reference for the details of using them.

File naming within Pascal programs (e.g. in $INCLUDE state
ments) on HP-UX must follow HP-UX path naming conven
tions. File names in programs on the Pascal workstation are of
the form: VOL:FILENAME.

Library Differences
The workstation and HP-UX Pascal use different libraries. This manual will not discuss
the differences but refers you to the manuals containing the information on the libraries.

For Pascal workstation library information, see the Pascal Procedure Library manual.HP
UX library information is contained in several HP-UX manuals.For Graphics see the
applicable graphics manuals (e.g. see Concepts f3 Tutorials Vol.6 for Starbase). The
system library is documented in section 3 of HP- UX Reference. The I/O library is
documented in Concepts t'3 Tutorials Vol. 3: Software Developement Tools, chapter 3,
"HP-UX Interfacing Techniques".

Series 200 vs. Series 300 Workstation
This manual does not cover the differences between Series 200 and 300 workstations. The
few differences that exist are documented in the Pascal 3.1 Workstation System Vol. II:
Programming and Configuration Topics, Chapter 20, "Porting to Series 300" .

Calling C Functions From Pascal
HP-UX system calls and subroutines are defined as C functions, so you may need to
call a C function from a Pascal program. Fortunately, Pascal and HP-UX are flexible
enough to make this a simple operation. This section contains a list of concerns and
some examples of calling a C function from a Pascal program.

C Functions
All subprograms in C are functions that return a result. The default type of the returned
value is integer, but real values and pointers may also be returned. Since the C function
will not be defined in the same source file as your Pascal program, you will have to declare
the C function as an external Pascal function within the source file. It is important for
you to make the external declaration correspond to the definition of the C function.

Parameter Passing
Pascal gives you the choice of passing parameters by value or by reference. C passes all
parameters by value, but can emulate pass by reference by declaring a formal parameter
to be a pointer. This relationship is important to understand when writing the external
function declaration through which Pascal "sees" the C function. If the C function you
are calling has a formal parameter declared as a pointer, then in your Pascal external
declaration of the function, the formal parameter should be a var parameter. All C
formal parameters that are not declared as pointers should have corresponding Pascal
non-var parameters. See the example below for clarification.

Language Portability 23

Data Compatibility
This chart shows equivalent Pascal data types for given C types:

Table 3: C and Pascal Data Types

C Type Equivalent Pascal Type

int integer

char char

float real

double longreal

character array packed array of char

Records and structures can be easily passed between C and Pascal as long as the Pascal
records are unpacked. Packed records introduce problems that are not discussed here.
Both C and Pascal store arrays in row-major order so they may be passed. When
passing character arrays (which are actually pointers to chars), make sure that they are
terminated with chr(O). Always be sure to debug the interface between the two languages.
Don't assume that it works just because the function works when called by a program
in the same language.

Alias
If you want to refer to an external function by a name other than the one it is defined
under, use the alias directive. This technique is shown in Example 2.

24 Language Portability

Example 1
This example illustrates calling a user defined C function from a Pascal program.

{ SHORT PROGRAM TO CALL C FUNCTION }
program call_c(input,output);

const str_length = 50;

type mystring = packed array[1 .. str_length] of char;

var x real;
s mystring;

{ DECLARE THE C FUNCTION AS AN
EXTERNAL PASCAL FUNCTION }

function c_sub (var strng : mystring): real; external;

begin
s:= 'abc';
s[4]:= chr(O);
x:= c_sub(s);
writeln(x)

end.

#include <stdio.h>

{ PUT NULL AT END }
{ CALL THE FUNCTION }

Pascal Source (call_c. p)

/* C FUNCTION TO PRINT A STRING
AND RETURN A REAL VALUE. */

float c_sub(str)

{

}

char *str;

printf("\n %s",str);
return(1.211) ;

C Source (csub. c)

The procedure for compiling and linking these two source files is:

cc -c c_sub.c
pc call_c.p c_sub.o

Then executing the file a. out would produce:

abc 1.211000E+OO

Language Portability 25

Example 2
This example calls the HP-UX system function truncate from a Pascal program. The
alias directive is used to rename the external symbol truncate to chop within the pro
gram. Note the section that inserts a null (chr(0)) into the character array at the end of
the file name. This is necessary because C expects all strings to be terminated by a null.

program chopfile(input,output);
{ PROGRAM TO TRUNCATE A FILE TO A GIVEN LENGTH }

const str_length = 50;

type mystring=packed array[l .. str_length] of char;

var fname: mystring;
lngth, dummy, i : integer;

function $alias 'truncate'$ chop(var path : mystring;
length: integer); integer; external;

begin
writeln('Enter name of file to be chopped: ');
readln(fname) ;

{ PUT NULL IN FIRST SPACE }
i:= 1;
while (fname [i] <> ' ') do

i:= i + 1;
fname[i] := chr(O);

writeln('Enter new length: ,);
readln(lngth) ;

{ CALL THE SYSTEM FUNCTION
WITH ITS ALIASED NAME }

dummy:= chop(fname,lngth);

if dummy <> 0 then
writeln('CALL FAILED')

end. { CHOPFILE }

Use these commands to compile and run this program:

pc chopfile. p
a.out

26 Language Portability

FORTRAN
If you will be porting many FORTRAN programs written under HP-UX then you should
get a copy of the HP publication FORTRAN/9000 Comparison Notes. It extensively
documents the differences between Series 200. Series 500 and ANSI FORTRAN. This
section of this manual covers major environmental differences between the two HP-UX
FORTRAN implementations. such as compiler directives and command line options. The
major language "gotchas" are documented here. though not in fine detail. This section
also describes (with examples) how to call a C function from FORTRAN.

Language Portability 27

Compiler Options
The Series 200/300 and 500 support different compiler command line options. Here is
a list of the options that vary between the two systems. See the HP-UX Reference for
more details.

Table 4: Differences in Fortran Compiler Command Lines

Option Effect Difference

+b Floating point option Series 200/300 only

-D Compile debug lines Series 500 only

+e Write errors to stderr Series 500 only

+f Floating point option Series 200/300 only

+F Enable program analysis Series 500 only

+k Dynamic local arrays Series 200/300 only

-L Listing to stdout Series 500 only

+N Adjust table sizes Series 200/300 only

-0 Assembly code optimizer Series 200/300 only

-p Prepare for profiling Series 200/300 only

+Q Specify option file Series 500 only

-S Compile; don't assemble Series 200/300 only

+T Procedure traceback Series 500 only

-u Implicit typing off Can be overridden in a program unit on
Series 200/300

+U Case is significant Series 200/300 only

~U Uppercase external names Series 500 only

-Vc Virtual COMMONs Series 500 only

-Vd Virtual SAVEs and DATA Series 500 only

-Vf Virtual FORMATs Series 500 only

-w66 Suppress FORTRAN 66 warnings Series 200/300 only

28 Language Portability

Compiler Directives
This section points out some FORTRAN compiler directives that could cause some porta
bility problems. No attempt is made to list which directives are implemented in Series
200/300 and Series 500. For a complete discussion, sec FORTRAN/9000 Comparison
Notes, or consult your language references to see what dircctives are available on each
system.

Since compiler directives are highly implementation dependent, using as few directives as
possible will increase the portability of your codc. Directives can be isolated in separate
files, but accessing the files from your source requires using a directive. This is still the
recommended strategy for handling directives, since (hopefully) most systems you port
to will provide some mechanism for including files.

Here are some directives to beware of:

INCLUDE: This works similarly on both computers, except that each uses a different
search path. On Series 500 machines, the search order is:

1. The current source directory

2. The current working directory

3. /usr /include

On the Series 200/300, the search order is:

1. The current working directory

2. /usr /include

Specify an absolute path name (starting with /) in the INCLUDE line to achieve search
path independence.

ALIAS: The meaning of the ALIAS directive differs slightly between the Series 200/300
and Series 500. On Series 500, ALIAS allows you to specify the parameter passing
mechanism to be used when calling the aliased procedure. This is not supported on Series
200/300; instead, use the "onionskin" technique for foreign language calls described later
in this chapter.

Language Portability 29

Semantic Differences and Extensions
The HP implementations of FORTRAN are not of the plain vanilla variety. Extensions
have been made to the language that may not be available on other systems. These
extensions are convenient if you plan to run your programs exclusively on one system,
but they can be a real headache to port. When programming, you must balance the
current utility of the extension against its potential for portability problems.

Use of extensions is not a concern if you plan only on porting between Series 200, Series
300 and 500. The differences between the two are minor and are fully documented in
FORTRAN/9000 Comparison Notes. Some important things to be aware of are:

• The Series 200/300 and 500 use different algorithms for real arithmetic.

• Use end of line comments only in columns 1-72 on non-continued lines.

• Series 200/300 string constants may not exceed 255 characters. The Series 500
supports strings of any length.

• Names have 255 significant characters on both machines, but Series 500 names can
be any length.

• Arrays in Series 200/300 FORTRAN can have at most 20 dimensions. Series 500
arrays are limited only by the amount of storage available.

• Statement ordering is more strictly enforced on the Series 500. (See Figure 3-1 of
either FORTRAN 9000 reference manual.)

If you will be porting to a non-HP system, then avoid using language extensions. Inserting
the line

$OPTION ANSI ON

at the beginning of your source will make the compiler include in the listing warnings
for uses of features that are not a part of the ANSI 77 standard.

The HP 9000 implementations of FORTRAN support the Military Standard Definition
(MIL-STD-1753) of extensions to the ANSI 77 Standard. See your language references
for details on what extensions the standard includes.

30 Language Portability

Recursion ?!
One major feature of HP's versions of FORTRAN is that they support recursion. This
means that variable storage for subroutines and functions is dynamic (except for local
arrays on Series 200/300 systems). Hence, variables in subprograms do not retain their
values between invocations. If you are writing code on a Series 200, Series 300, or 500 to
use on another system, do not use recursion. If you are moving FORTRAN code from
another system to an HP machine, use the SAVE statement in all subprograms, or compile
with the -K command line option to achieve the same effect.

Since local arrays are handled differently between Series 200/300 and Series 500, you
must beware when porting recursive programs between them. Either don't use arrays
in recursive subprograms or use the -k option when compiling on the Series 200/300 to
force dynamic allocation of local arrays. Remember that there is a 32K byte limit on
local dynamic storage on the Series 200/300.

Calling C Routines From FORTRAN
Since all the HP-UX system calls and subroutines are accessed as C functions, you may
want to call a C function from a FORTRAN program. There are some basic obstacles
to doing so. The major problem is that C and FORTRAN pass parameters differently
- C by value and FORTRAN by reference. If you are programming on a Series 500
machine, you can use the ALIAS directive to change FORTRAN's passing mechanism.
However, in the following example, we cover the more general (and portable) "onionskin"
technique. The example shows code to call one of the HP-UX bessel functions from a
simple FORTRAN program.

Language Portability 31

Example:

$option ansi on
program callc

integer n
real*8 x, my_jn

n = 4
x = 4.0
print*, my_jn(n,x)

stop
end

CALL C ONIONSKIN FUNCTION

FORTRAN source to call a C function

#include <math.h>

double my_jn (my_n, my_x)
int *my_n;
double *my_x;

{

}

C "onionskin" function

The C function my_jn merely converts FORTRAN's call by reference (pointers) into a call
by value to the desired C routine. Note that if you were writing your own C routine to
call from FORTRAN, you could have declared the parameters as pointers and would not
need an intermediate function. Similarly, if a formal parameter in the called C routine
is declared a pointer, it can be passed through the intermediate routine unchanged.

For the example above, assuming the code is in files callc.f and my_jn.c respectively,
the commands to compile and load the FORTRAN program are:

cc -c my_jn.c
f77 callc.f my_jn.o -1m

The resulting object file would be left in a.out. For the Series 500 substitute fc for f77.

32 Language Portability

Here is some helpful information for calling C functions from FORTRAN:

Logicals

Files

Character Data

C uses integers for logical types. A FORTRAN 2-byte LOGICAL
is equivalent to a C short integer, and a 4-byte LOGICAL by a
long or regular integer. In both C and FORTRAN, zero is false
and any non-zero value is true.

File units and pointers cannot be passed between C and FOR
TRAN. However, a file created by a program written in either
language can be used by a program of the other language if the
file is declared and opened in the latter program.

Passing character data from FORTRAN to C is tricky because these languages represent
character strings in completely different ways. The trick to doing it is to "equivalence"
the character variable to a one-dimensional integer array and then pass the array to the
C function. Since FORTRAN integers are 4 bytes long, the number of elements in the
integer array should be the ceiling of the length of the string divided by four. FORTRAN
passes the array by reference, so the corresponding parameter in the C function should
be declared a pointer to a character.

This technique (illustrated below) works on both Series 200/300 and 500 HP-UX. How
ever, some FORTRAN 77 compilers may not allow you to equivalence character variables
to integers.

Language Portability 33

Example: This example shows passing a character string from a FORTRAN program to
a C function. The function returns the number of characters in the string before a space
or null.

character
integer
external
equivalence

strng*35
tempch(9). chcount
chcount
(strng. tempch)

print*. 'ENTER STRING: '
read 100. strng

100 format (a35)

strng = strng II charCO)
print*. 'THE STRING IS' chcount(tempch). ' LONG'

end

Main FORTRAN Program (main.f)

chcount (str)
char *str;

{

int i 0;

while «str[i] != ' ') && (str[i++] != '\0'»

return (i);
}

C Function (chcount. c)

The commands to compile and link these two files are:

cc -c chcount.c
f77 main.f chcount.o

The resulting object file would be left in a out. On the Series 500, substitute fc for f77.

34 Language Portability

System Calls and Subroutines 3
Introduction
This chapter documents differences in system calls and subroutines between Series
200/300 and Series 500 HP-UX. If you are porting from another UNIX system, be aware
that HP-UX may not support the same set of system calls and subroutines. Absolutely
no attempt is made here to document semantic differences between HP-UX and UNIX
routines of the same name, but it is unlikely that there are any substantial differences.

The first part of this chapter lists in alphabetical order all the system calls that have
differences. The second part covers subroutines. If you need more detail than what is
given here, look up the routine in question in the HP- UX Reference. If there are any
hardware dependencies for a routine, they will be listed.

NOTE

The information in this chapter was accurate at the time this book
was printed. Updates and improvements to the HP-UX system
may invalidate some entries in this section. The HP- UX Reference
is the final word on what routines are available on a particular
system.

System Calls and Subroutines 35

System Calls
acct Series 500 only.

brk Due to architectural differences, this has Series 500 hardware
dependencies. See the HP- UX Reference under brk(2).

dup2 Not available on Series 500.

ems Not available on Series 200/300.

errinfo Series 500 only.

errno Two additional erma values are implemented on the Series 500.

exec The System 500 and System 200/300 have different object mod
ule formats that may affect use of exec. Script files are not
supported on Series 500.

exit On Series 200/300, accounting is not currently supported.

fchmod Not available on Series 500.

fchown Not available on Series 500.

fork Fork will fail on the Series 200/300 if there is not enough swap
ping memory to create the new process (ENOSPC). On the
Series 500 it will fail if there is not enough physical memory to
create the new process (ENOMEM). profil is not supported on
Series 500.

ftime Not available on Series 500.

get groups Not available on Series 500.

getitimer, setitimer On Series 500 an error is generated if a call is made to getitimer /
setitimer in the [v fork , exec] window.

getprivgrp, setprivgrp Not available on Series 500.

kill ProcO does not exist on Series 500.

link On the Series 500, for Structured Directory Format (SDF)
discs, if path2 is " .. ", then that directory's i-node will be al
tered such that its " " entry points to the directory specified
by path1.

36 System Calls and Subroutines

lockf

memadvise, memallc,
memfree, memchmd,
memlck, memulck,
memvary

mknod

nice

open

plock

profil

ptrace

On both Series 200/300 and 500, the system's process account
ing routine will ignore any locks put on the process accounting
file.

Series 500 only.

On both the Series 500 and 200/300 there is an additional value
- 0110000 - available under file type that specifies network
special files. HP-UX also allows the value 0150000 to specify
SRM type files.

Some HP-UX process priorities are mapped into the same in
ternal process priority resulting in reduced priority granularity.

The following items pertain to the Series 500:

• Execute and write access are mutually exclusive.

• Shared program files remain open for execution as long
as there is a process executing the program.

• Once a shared program file with its sticky bit set has
been loaded, it appears to be open indefinitely, even if
the number of processes executing the program drops to
zero.

• Demand loaded program files that are not shared remain
open until all of the code and data have been loaded.

On both the Series 200/300 and 500 the call to plock is not
allowed in the [vfork,exec] window.

Not available on the Series 500.

The sampling frequency is 50 Hz. on the Series 200/300. Much
of the functionality of ptrace is dependent on the underlying
hardware. An application which uses this intrinsic should not
be expected to be portable across architectures or implemen
tations.

System Calls and Subroutines 37

readv, writev

reboot

rmdir

rtprio

setgroups

shmop

signal

sigspace

stat

times

trapno

uname

unlink

ustat

Not supported on Series 500.

Series 200/300 only.

On the Series 500 the directory identifiers"" and " .. " are not
recognized by rmdir.

On Series 500 there are some suggestions for the use of rtprio.
See the HP- UX Reference for details.

Not available on the Series 500.

There are extinsive implementation differences between the Se
ries 500 and Series 200/300 involving shmaddr and various vari
ables and constants. See the HP-UX Reference for details.

There are extensive implementation differences between the Se
ries 200/300 and 500. See the HP- UX Reference for details.

On the Series 500 sigspace is ignored as a no-op. The return
value is always o. On the Series 200/300 the guaranteed space
is allocated with maUoc and may interfere with other heap
management mechanisms.

In the case of special files which refer to discs, st_size either
returns the total physical size (in bytes) of the mass storage
volume when appropriate, or -1 otherwise. This is a property of
the physical device, not any directory structure imposed upon
it.

For Series 500 computers with multiple CPUs, the child CPU
times listed can be greater than the actual elapsed real time,
since the CPU time is counted on a per-CPU basis.

Series 500 only.

On both the Series 200/300 and 500 the first character of the
version field is set to "A" for single user, "B" for 16 users. On
the Series 500 the first character of the version field is set to
"C" for 32-user systems and "D" for 64-user systems.

On the Series 500 the last link to a diredtory cannot be unlinked
if the directory is not empty.

On the Series 500, Lfname[6] is the driver name, not the file
system name.

38 System Calls and Subroutines

vfork

vsadv

vson, vsoff

write

Any program which relies upon the differences between fork
and vfork is not portable across HP-UX systems. See the HP
UX Reference for specific differences between Series 500 and
Series 200/300 implementations.

Not implemented on the Series 200/300.

Not implemented on the Series 200/300.

The Series 500 has some anomalies that are listed in the HP
UX reference. The size of a pipe (NPIPE) is 5120 bytes on the
Series 500 and 8192 bytes on the Series 200/300.

System Calls and Subroutines 39

Subroutines
abs

atoi, atol

clock

ctime

end

gpio_geLstatus

gpio_set_ctl

hpi b_ bus_status,
hpib_card_ppoILresp,
hpib_rqsLsrvce,
hpib_send_cmd

hpib_status_ wait,
hpib_ waiLon_ppoll

io_eoLctl,
io_get_term_reason

io_interrupLctl,
io_on_interrupt

On HP-UX, calling abs with the most negative number returns
that number.

On the Series 200/300 and 500 these two subroutines are iden
tical to each other.

clock resolution is 20 milliseconds on the Series 200/300, the
default is 10 milliseconds on the Series 500.

tztab is not supported on the Series 200/300 or 500.

The following items pertain to Series 500 HP-UX:

• etext and edata are not supported

• memallc is more efficient than malloc for setting the pro
gram break

On the Series 500 x is 2 for the current GPIO card.

On the Series 500 x is 2 for the current GPIO card.

On the Series 500 there exist special cases with the HP 27110A/B
HP-IB interface cards. Refer to the HP-UX Reference.

On the Series 500, when either of these subroutines is in progress
all other bus activity is held off until the subroutine has com
pleted. It is recommended that a timeout be in effect before the
subroutine is called.

Series 500 hardware dependencies. See the HP- UX Reference.

Series 500 only.

N onoperative condition on the Series 500.

On the Series 500 the timeout resolution is 10 msec. If an I/O
operation is aborted due to a timeout and errinfo value of 56 is
returned.

40 System Calls and Subroutines

io_ width_ctl

nlist

perror

setbuf

string

trig

On the Series 500 only widths of 8 and 16 bits are supported.

Not implemented on the Series 500.

The Series 500 provides the additional error indicator errinfo.

On the Series 500 the system call memallc is used instead of
malloc.

On the Series 200/300 the argument N is limited by the process
size; on the 500, it is limited to about 500 Mbytes.

The approximate limit for the values passed to these functions is
2.98E8 for sin and cos, 1.49E8 for tan, 1.29E4 for fsin and fcos,
and 6.43E3 for ftan.

System Calls and Subroutines 41

Notes

42 System Calls and Subroutines

Transporting Files 4
Introduction
Portable source code isn't much good unless· there exists a means of moving it to a
different computer system. Yes, you could just get a listing and then type it in again on
the new computer, but computers should automate such mundane tasks. Unfortunately,
there are more ways of storing files than there are operating systems.

This chapter describes some methods and HP-UX commands for transporting data files
to or from an HP-UX system. There is no way to cover every possible file transporting
situation, but it explains the ones you are likely to encounter. The first four sections
of this chapter discuss moving files between systems not connected by a data communi
cations link. Moving files between computers via modems, phone lines, and datacomm
links is covered in the last section.

For the sake of this discussion, computer systems can be divided into four categories:

• HP -UX systems

• UNIX or UNIX-like systems

,. Other HP systems

• Others (Any system not in one of the above classes)

The table below shows HP-UX commands appropriate for moving files to/from each of
the four categories.

Table 5: HP-UX File Moving Commands

HP-UX Other HP systems UNIX-like Systems Others

teio/epio x - - -

cpio x - x -

tar x - x -

uuep x - x -

lifep x x - -

srmep x x - -

dd x x x x

Transporting Files 43

Moving Between HP-UX Systems
Moving files between HP-UX systems is straightforward whether you're moving between
two systems of the same series or not. It is assumed that the source and destination files
are not on the same file system. If they are, use the cp command to copy the file. If
the source and destination are not on the same file system, and there is not a datacomm
connection between them, you will have to use an intermediate medium (floppy disc,
9-track tape, CS/80 cartridge).

If you're using an intermediate medium, transporting will be a two-stage process:

1. Source --t Temporary medium

2. Temporary medium --t Destination

The same command is used for both stages. The command you use depends on your
intermediate medium.

Using Tar
The tar command can be used to transfer HP-UX files to or from a raw storage medium
such as tape or initialized floppy disc. This example uses the device file for a floppy
disc drive, but is easily adapted to other media by naming a different device file in the
command line. The key (cvf on the first command line shown below) can also be changed
to reflect your particular situation. See the HP- UX Reference for details.

1. To move the files zonk.c and dynamo.c from one HP-UX system to another, put an
initialized floppy disc in the drive corresponding to the device file you will name in
the command line and type:

tar cvf /dev/rfdO zonk.c dynamo.c

Since v (verbose) was specified in the key, tar will echo the names of the files as
they are written to the disc.

2. After the HP-UX prompt appears, remove the disc and insert it into the destination
system's disc drive. On a terminal connected to this system type:

tar xf /dev/rfdO zonk.c dynamo.c

The files will be transferred to the current working directory.

A similar two stage process could be performed with an initialized floppy by using lifcp.
This command is discussed under Trading Files with Other HP Systems.

44 Transporting Files

Trading Files with Other UNIX Systems
Files can be exchanged between HP-UX and other UNIX systems in much the same way
as between two HP-UX systems. The example above using tar could be altered to use
tape drives to move files to or from another UNIX system. Another alternative is cp~·o.

Using Cpio and Tcio
Cpio works similarly to tar. The major differences are that cpio gets the names of files
to be copied from standard input instead of the command line, knows about special files,
and does not automatically recurse through directories. Like tar, what intermediate
medium you use to transfer the files depends on what storage deviees are supported on
your systems. However, if you're using a CS/80 data cartridge, use tcio with cpio to save
wear on the tape and drive. Here is an example that uses a 9-traek tape to transport
some files to an HP-UX system.

1. To write the two files rnud.p and shark.f to the tape (/dev/rmtb), type the following
lines:

cpio -ocv > /dev/rrntb
rnud.p
shark.f
Ctl-D (end of file)

The options following -0 may vary, depending on your particular situation. The
HP- UX Reference details what options are available.

2. To read the tape, mount the tape on the system you are moving the files to and
type:

cpio -icv rnud.p shark.f < /dev/rrntb

It is best to use relative path names (file names that do not start with /) when using
cpio, so you can create a new directory to copy the files into. This will prevent you from
writing over files with the same names on the destination system.

In order to read in a file saved by cpio you must know what options were used when
the tape (or disc) was created. These same options should be used when restoring the
files, except substitute -i for -0. We recommend that you always use the c option for
portability. This option specifies that header information is to be written in ASCII.
Note that cpio archives made with -c still contain a null character, so they cannot be
electronically mailed. If directories need to be created when reading the tape to the
destination system, use the d option.

Transporting Files 45

Tcio is a pre- and post-processor for cpio that buffers data for a CS/80 data cartridge
to reduce wear on the tape and tape head. To use tcio, simply pipe the output of cpio
to it (when saving), or pipe the tcio output to cpio (when restoring). For instance:

Is I epio -oev I teio -ov /dev/rmt
teio -iv /dev/rmt I epio -iev

The first command would create an archive of the current directory on the CS/80 tape.
The second would restore that archive.

Dd is an alternative to cpio and tar that is covered under Trading Files with Other
Systems.

Trading Files with Other HP Systems
HP-UX provides two simple ways of transferring files to or from other HP computers.
If your HP-UX system and the HP system you wish to transfer your files to are both
hooked up to an SRM (Shared Resource Manager), you can use the optional SRM access
utilities to move the files between the systems via the SRM disc. If you do not have an
SRM, you can use the LIF utilities to transfer your files. This more general situation is
covered here.

LIF (Logical Interchange Format) is a Hewlett-Packard standard disc format supported
by almost all HP computers. It is described under LIF(l) in the HP-UX Reference.
HP-UX provides several utilities for manipulating LIF volumes and files.

There are some important things to know about LIF before using it as an exchange
medium. First, the naming conventions for LIF files are different from those for HP-UX.
LIF file and volume names are ten characters long, should be all uppercase and not
contain any of the following characters:

* ? $ < >

Keep these restrictions in mind when copying to a LIF volume. Additionally, the HP
editors that use LIF files handle tab characters differently than you might expect, so you
will have to run your files through expand before copying them into LIF form.

The following examples explain how to use LIF utilities and floppy discs to exchange files
between an HP-UX system and an HP system that uses LIF.

46 Transporting Files

From HP-UX to LlF
Adding Files to a LlF Volume
You can copy HP-UX files directly to a disc using iifcp, but it must have been previously
initialized and have a LIF volume header written on it. The initialization routine is:

• mediainit{l} on Series 200/300 HP-UX.

• Sdfinit(lM) on Series 500 HP-UX

• MEDIAINIT on HP Series 200/300 Pascal Workstations

• INITIALIZE on HP Series 200/300 and 500 BASIC Systems

After initialization, iifinit(l) is the HP-UX command for writing LIF volume headers.

The command:

lifcp hpux_file /dev/rfdO:FILE

translates hpux_file into LIF format and writes it to the flexible disc in disc drive O.
FILE is the name given to the file added to the disc. The previous contents of the disc
are unchanged. If there is not enough room on the disc for the file, lifcp returns an error
message.

If you are moving more than one file from HP-UX to a LIF volume on a relatively slow
mass storage device such as a flexible disc, the process will be faster if you:

1. Create a LIF volume on the HP-UX file system.

2. Use iifcp to copy all the desired files into this volume.

3. Cat the volume to the disc.

Creating a LlF Volume
The command

lifinit -v270336 -d240 -nVOL VOLFILE

creates a LIF volume VOL in an HP-UX file VOLFILE. The option -v270336 specifies the
size in bytes of a 5 % inch mini disc.

Note that the name of the LIF volume (VOL) is in all caps- this is a LIF standard.

Although LIF volume files can exist without problems on HP-UX, the system sees them
as possible bad files and may generate a warning about them during execution of fsck
(file system check). This does not mean that there is anything wrong with these files,
only that HP-UX sees them as not strictly kosher.

Transporting Files 47

Copying HP-UX Files to LlF Volumes
Once you have created a LIF volume, you must copy the files to the volume with li/cp.
If the LIF volume file is VDLFILE use the command

lifcp hpux_file VDLFILE:FILE

to copy hpux_file to the LIF file FILE.

You will receive an error message if there is not enough room on the LIF volume for the
file.

Moving the LlF Volume to Disc
When all of the files are written to the LIF volume file, cat the volume to your floppy
disc.

1. Insert the disc into the drive.

2. Check the current contents of the disc, since step 3 will overwrite it. Do this with

liils /dev/rfdO

where /dev/rfdO is the path name of the disc drive.

3. Cat the LIF volume file to the disc.

cat VDLFILE > /dev/rfdO

4. Remove the volume file from the current directory.

rm VOLFILE

HP-UX to LlF Shell Script
The process described above can be automated with the following shell script. It performs
all the necessary actions (including expanding tabs) except writing the volume file to the
floppy disc. This step is omitted to allow use of different devices. The script assumes:

• The files will fit into a disc-sized volume .

• File names are all caps for LIF compatibility.

48 Transporting Files

If these requirements are not met, lifcp will write an error message to stderr.

if [$# = 0]
then

fi

echo "usage: liffiles FILE1 [FILE2 ...]" > &2
exit 1

if test -s VDLFILE
then

rm VDLFILE
fi

lifinit -v270336 -nVDL -d240 VDLFILE

for i
do

done

expand $i > tempfile
lifcp tempfile VDL:$i
echo "$i copied"
rm tempfile

echo "finished copying files -- now cat VDLFILE to disc"

Shell Script for Copying to LIF Files

Create this file under the name liffiles and change its mode so that it can be executed.

chmod +x liffiles

Now you can copy a number of HP-UX files to a disc by executing

liffiles FILE1 FILE2 FILE3
cat VDLFILE > /dev/rfdO

Just list the names of the files you wish to copy on the command line, and change the
device named in the cat command line to your particular drive.

Transporting Files 49

From LlF to HP-UX
Copying LIF files to HP-UX is straightforward, but there are a few things to be aware
of:

• The LIF files to be copied must be ASCII files. For instance, if you were moving
files created on the Series 200 Pascal editor, you would have to translate these files
from . TEXT to .ASC before attempting to lifcp them to HP _ UX. If you get the
error CONFLICTTYPE when you try to lzjcp them, then the LIF files are not in the
correct form .

• The actual name of your file on the LIF volume may be different than the name
you used to reference it on your HP system. If the file is a .ASC file, the LIF name
would be the name of the file (without .ASC) followed by the letter A and enough
underscores to make the name ten characters long. Use lifts to see exactly how to
reference it for lifcp.

To copy LIF files from a floppy disc to an HP-UX directory:

1. Place the disc in the drive.

2. Use lifts to list the contents of the disc

liils /dev/rfdO

3. Copy the file TESTA _____ from the disc to HP-UX file test.c.

lif cp / dev /rfdO: TESTA _____ test.c

50 Transporting Files

Trading Files with Other Systems
The dd command can be used to transfer files from a general computer system to an
HP-UX system or vice versa. This is a general purpose command for reading from and
writing to mass storage devices. It is designed for use with 9-track tape drives, though
it can be used with any supported mass storage device. Additionally, the mt command
is used to position a tape for reading or writing. Mt can only be used with 9-track tape
drives.

9-track tape that is unlabeled with ASCII records and is 1600 bpi phase encoded (7970E)
is preferred. If the tape is blocked, you must know the block size (physical record length)
and the blocking factor (logical record length). The maximum physical record length is
32 768 bytes.

Dd allows you you to specify any of these conversions:

• Change of blocking factor

• EBCDIC to ASCII

• Byte swapping. Bytes of memory are arranged in pairs and for HP-UX computers
the byte with the higher physical address is logically the low order byte. The
computer that produced your tape may not follow this convention.

Before using dd, you may need to re-position the tape so that unwanted files are skipped.
Mt allows you to give directions to the tape drive to:

• Space forward over files or records

• Space backwards over files or records

• Write end-of-file marks

• Rewind the tape

The wide variety of tapes you might encounter makes it impossible to present an all
encompassing example for dd, but hopefully the following will generally illustrate its
use.

dd if=/dev/rmtO of=newfile ibs=800 cbs=80 conv=ascii

This command would read an EBCDIC tape blocked ten 80-byte card images per record
into the ASCII file newfile.

Transporting Files 51

Using Datacomm to Move Files
If the systems you wish to transfer files between are both connected to a modem, then the
files can be moved without using a temporary mass storage volume. The command you
use to send files over the communications link depends on the types of the two systems.

UNIX to UNIX
There are several methods for transferring files between two UNIX systems. Which one
you use depends on the configuration of your system, and your own personal preference.
This section is not intended to be an all-inclusive reference; it presents the commands
that are available, and general guidelines to their use.

UUCP
Uucp is a command for copying files from one UNIX system to another. It is a spooler -
the files you wish to copy are placed in a directory on the local system. When the local
system calls up the destination system, it transmits the file, along with the information
needed to put the file in the proper place.

The syntax for uucp is the same as cp with the addition that file path names can be
preceded by a system name. The file names for uucp have the form:

system-name!path-name

system-name! is optional. If neither the source or destination file name contain
a system name. then uucp works exactly like cpo The system name must be one that
is known to the local system (appears in the file /usr/lib/uucp/L.sys). You can get a list
of the known systems with the command uuname. If you want to get your local system
acquainted with some systems it doesn't already know, see your system administrator
about adding entries to L.sys.

Example: To transfer all the Pascal source files (.p files) in your current directory from
your local system to the system vlsu-cs, execute the command:

uucp -m *.p vlsu-cs!/usr/spool/uucppublic

The -m tells uucp to send you mail when the copy has been made. Note that c-shell
users will have to precede the! with \. For security reasons, you might not be able to
use uucp to copy files from everywhere on the system. If you have problems, see your
system administrator to find out what is allowed.

52 Transporting Files

CU (Call Up)
Most UNIX systems with autodial modems provide cu (call up) to remotely access other
UNIX systems. Once you have remotely logged in to a system, you can move files between
it and your local system. Note that this method requires that you have a user id on both
systems.

For example, suppose you have a file greasy. f on your UNIX system that you want to
move to your new HP-UX system. There are two ways to use cu to do this. You can
call up the UNIX system from your HP-UX system or vice versa. To perform the former
operation, login to HP-UX and type:

eu -s1200 9=5558649
<login sequence to UNIX system>
-~.take greasy. f

The -s1200 option specifies a 1200 baud modem; 9=5558649 tells the modem to dial 9,
wait for a dial tone, and call 555-8649 (the phone number of the UNIX system). If you
have immediate access to an outside phone line, omit 9=.

If you had called up HP-UX from UNIX, then you would have typed

-%put greasy.f

to transfer the file to your HP-UX system. To give the file a new name (in case there's
already a file of that name on the system you're moving to), put the new name after the
old one like:

-%put greasy.f hpux_greasy.f

There is more information on cu in the HP- UX Reference.

Transporting Files 53

Moving Files from Local Storage
You may have files that you've created on a personal computer that you want to move
to your HP-UX system. If you have a modem and terminal emulation software on the
personal computer then you should be able to transfer the files over a datacomm con
nection. The exact procedure depends on your particular computer and communications
software, but here's an example that shows what HP-UX commands you would use.

1. Use your personal computer to login to HP-UX through a dial-up connection.

2. Type

Any data that is sent to HP-UX after this command and before an end-of-file marker
(Ctl-D) will be put into hpux_file.

3. Execute the command on your personal computer that sends the file you wish to
transfer over the communications link.

4. Terminate the cat with Ctl-D (end-of-file). This step may not be necessary (de
pending on your particular communications program).

Cat may not behave as expected if the file being transferred contains special characters.
To transfer such files, replace step 2 above by calling the vi editor as follows:

vi hpux_file
i (to get into insert mode)

54 Transporting Files

Index

a
abs .. 40
absolute addressing ... 3,20
acct ... 36
alias ... 19,24,26,29,31
ALLOW _PACKED .. 19
ANSI FORTRAN ... 27
ANSI ON compiler directive .. 18,30
ANSI Pascal .. 17
arrays ... 19,21,24,26,30,33
atoi .. 40
atol .. 40
AUTOPAGE ... 19

b
bessel function .. 31
bit fields .. 9
brk .. 36
byte swapping .. 51

c
C programming language .. 3,7-17
C programming language:

character data ... 8
compiler command options ... 12
data sizes ... 7
dependencies .. 7-11
foreign language calls .. 13-17
identifiers ... 9
parameters ... 10

Index 55

CALLABS ... 21
cc .. 15,25,32,34
character arrays ... 24
character data:

C .. 8
FORTRAN ... 33

clock .. 40
CODE ... 19
compiler command options:

C ... 12
FORTRAN ... 28
Pascal ... 18

compiler directives ... 5,29
compiler directives:

FORTRAN ... 29
compiler options:

Pascal ... 19-20,21-22
Concepts and TUtorials ... 7,23
conditional compilation ... 7,19
CONFLICTTYPE error ... , 50
COPYRIGHT .. 21
cp ... 44
cpio .. 43,45-46
CS/80 cartridge .. 44,45,46
cu ... 53

d
data sizes:

C .. ' 7
data types ... 7-8,24
datacomm ... 43,44,52-54
dd .. 43,46,51
DEBUG ... 19
DEF ... 21
dependencies:

C .. 7-11
directories .. 11
directory ... 44
disc initialization .. 47
division by zero .. 9
dup2 ... 36

56 Index

e
ems ... 36
end .. 40
enumerated type I/O .. 20
equivalence ... 33
err info ... 36
errno .. 36
exec ... 36
exit .. 36
expand ... 46,49
expression evaluation .. 11
extensions ... 4,5) 7,30

f
f77 .. 32
fc ... 32
fchmod .. 36
fchown ... 36
file transporting ... 43-54
filenames ... 22
floating point numbers .. 3,6,24
floating point options .. 12,19
FLOAT _HDW .. 19
floppy disc ... 44,46,47,48,50
foreign language calls:

from C ... 13-17
from FORTRAN ... 17,31-34
from Pascal .. 13,23-26

fork ... 36
FORTRAN ... 27-34
FORTRAN/9000 Comparison Notes 27,30
FORTRAN:

ANSI .. 27
character data .. 33
compiler command options ... 28
compiler directives .. 29
differences .. 30
extensions .. 30

Index 57

f77 .. 32,34
fc ... 32,34
foreign language calls ... 17,31-34

fsck .. 47
ftime .. 36
function types .. 20
fuzzy compare ... 6

9
get groups .. 36
getitimer ... 36
getprivgrp .. 36
gpio ... 40

h
heap management ... 21,22
HEAP _DISPOSE ... 21
HP Pascal .. 17
HP Pascal Language Reference .. 21,22
HP-UX Reference :.' .. 4,35,45,46,53
HP16 .. 22
hpib, .. 40

.
I

identifiers:
C .. 9

IDSIZE .. 19
IF ... 19
INCLUDE .. 29
initialization of discs ... 47
initialization of variables ... 11
INITIALIZE .. 47
input .. 22
integer overflow .. 9
io ... 40,41
IOCHECK ... 21

58 Index

k
key
kill

.. 44
36

I
language extensions ... 4,5,17,30
languages ... 5
lastpos ... 22
libraries, Pascal ... 23
LIF .. 46
LIF names .. 46,47,48,50
lifcp .. 43,47-50
liffiles .. 49
lifinit .. 47,49
lifts .. 48,50
LINENUM ... 19
linepos ... 22
LINESIZE .. 19
LINE_INFO .. 19
link .. 36
lint ... 7
local storage .. 54
lockf ... 37
Logical Interchange Format ... 46
logical variables:

FORTRAN ... 33

m
machine dependencies .. 3,7,8,35
make ... 5
MEDIAINIT .. 47
memadvise ... 37
memallc .. 37
memchmd .. 37
memfree ... 37
memlck .. 37
memory organization .. 11
memulck ... 37
memvary ... 37

Index 59

Military Standard Definition .. 30
mknod ... 37
modem .. 43,52
Modules ... 22
monitor .. 39
mt .. 51

n
names, see identifiers ... 0
Native Language Support .. 22
nice ... 37
nine-track tape ... 44,45,46,51
nlist ... 41
null pointers ... 9

o
onionskin technique .. 31-32
open ... 37
overflow, integer .. 9
OVFLCHECK .. 19

p
packed arrays ... 20
PAGEWIDTH .. 19
parameters ... 7,lO,31,32
PARTIAL_EVAL .. 22
Pascal ... 17-26
Pascal:

libraries ... 23
ANSI .. 17
compiler command options ... 18
compiler options .. 19-20,21-22
foreign language calls ... 13,23-26
HP Standard ... 17
Workstation .. 21-23

path names ... 22,45
pc .. 15,18,25,26

60 Index

perror ... 40
personal computer ... 54
phone number .. 53
plock .. 37
pointers, null .. 9
profil .. 37
ptrace ... 37

r
RANGE ... 19
ready .. 38
real numbers .. 22,30
reboot ... 38
records ... 24
Recursion .. 31
REF ... 21
register data type .. 8
rmdir .. 38
rtprio .. 38

5
SAVE_CONST .. 20
sdfinit ... 47
SEARCH ... 20
SEARCH_SIZE ... 20
setbuf .. 41
set groups 38
setitimer ... 36
setprivgrp .. 36
Shared Resource Manager .. 46
shell script ... 48
shift operators ... 9
shmop ... 38
signal .. 38
sigspace .. 38
sizeof .. 20
SKIP _TEXT ... 20
SRM .. 46
srmcp .. 43

Index 61

STACKCHECK ... 21
STANDARD _LEVEL .. 20
stat ... 38
STATS ... 20
stderr .. 49
string .. 41
strings .. 20,30,33
structures .. 24
SUBPROGRAM .. 20
subroutines .. 35,40-41
SUBTITLE 20
SWITCH_STRPOS .. 21
SYSPROG ... 20
system calls .. 35-39

t
tar ... 43,44,45,46
tcio ., ... 43,45-46
times .. 38
TITLE ... 20
transporting files .. 43-54
trapno ... 38
trig .. 41
truncate ... 26
try-recover ... 20
typedef .\ .. 8
TYPKCOERCION ... 20

U
UCSD ... 22
uname ... 38
unlink ... 38
unsigned .. 8
UPSHIFT _LEVELl ... 20
ustat .. 38
uucp ... 43,52
uuname .. 52

62 Index

v
variable initialization .. 11
verbose .. 44
version .. 1
vfork .. 39
VISIBLE ... 20
vsadv .. 39
vsoff ... 39
vson ... 39

W
WIDTH .. 20
write .. 39
writev ... 38

Index 63

Notes

64

Reorder Number
98680-90046
Printed in U.S.A. 7/85

FliU- HEWLETT
~~ PACKARD

98680-90603
Mfg. No. Only

