
HP-(JX Concepts and Tutorials
Vol. 3: Software Development Tools

r/i~ HEWLETT
~~ PACKARD



HP-UX Concepts and Tutorials
Vol. 3: Software Development Tools

Manual Reorder No. 97089-90040

G) Copyright 1985 Hewlett·Packard Company

This document contains proprietary information which is protected by copyright. An rights are reserved. No part
of this document may be photocopied. reproduced or translated to another language without the prior written
consent of Hewlett-Packard Company. The information contained in this document is subject to change without
notice.

Use of this manual and IIexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations. is expressly prohibited.

Restricted Rights Legend
Use. duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of
the Rights in Technical Data and Software dause in DAR 7-104.9(a).

G) Copyright 1980. BeD Telephone Laboratories. Inc.

Hewlett-Packard Company
3404 East Harmony Road. Fort Collins. Colorado 80525



Printing History
New editions of this manual will incorporate all material updated since the previous ~
edition. Update packages may be issued between editions and contain replacement and }
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1984...First Edition - Part numbered 97089-90004 was 4 volumes and was shipped
with HP-UX 4.0 on Series 500 Computers and with HP-UX 2.1, 2.2, 2.3, and 2.4 on
Series 200 Computers. Each volume did not have an individual part number. This
was obsoleted in April, 1985 and replaced with Manual Kit #97070-87903 which
includes:

Title
Vol. 1: Text Processing and Formatting
Vol. 2: Programming Environment
Vol. 3: Software Development Tools
Vol. 4: Shells and Miscellaneous Tools
Vol. 5: Data Communications
Vol. 6: Graphics

Manual PIN
97089-90020
97089-90030
97089-90040
97089-90050
97089-90060
97089-90070

Binder PIN
9282-1023
9282-1023
9282-1023
9282-1023
9282-1023
9282-1023

April 1985...Edition 1 - Volume 3: Software Development Tools

ii



Contents
The articles contained in HP- UX Concepts and Tutorials are provided to help you use the
commands and utilities provided with HP-UX. The articles have several sources. Some
were written at Hewlett-Packard specifically for HP computers. Others were written at
Bell Laboratories or University of California at Berkeley and have been tailored for HP
computers.

HP- UX Concepts and Tutorials has six volumes:

• Volume 1: Text Processing and Formatting

• Volume 2: Programming Environment

• Volume 3: Software Development Tools

• Volume 4: Shells and Miscellaneous Tools

• Volume 5: Data Communications

• Volume 6: Graphics

This is "Vol. 3: Software Development Tools" and the articles it includes are:

1. Make: A Program for Maintaining Computer Programs

2. SCCS User's Guide

3. Device I/O Library

4. Lex: A Lexical Analyzer Generator

5. Yacc: Yet Another Compiler-Compiler

6. The ADB Debugger

7. The CDB Debugger

iii



Warranty Statement

Hewlett-Packard products are warranted against defects in materials ancl workmanship. For Hewlett-Packard computer system products sold
in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.' Hewlett-Packard will, at its option, repair or
replace equipment which proves to be defective during the warranty period. This warranty fncIudes labor. parts, and surface travel costs, if

any. Equipment returned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs neccessitated by misuse of the equipment,
or by hardware. software, or interfacing not provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions when properly
installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be unintenupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABIL
ITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETI-PACKARED SHAU NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

HP 9000 Series 200
For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day, Retum-to-HP
warranty during which time HP will repair your Model 216. however. the computer must be shipped to an HP Repair Center.

All other Series 200 computers come with a 90-Day On-Sile warranty during which time HP will travel to your site and repair any defects.
The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic programs: 1).5 Mby1e RAM; 2} HP

compatible 3.5"or 5.25"disc drive for loading system functional tests, or a system install device for HP·UX instaDations; 3) system console

consisting of a keyboard and video display to allow interaction with the CPU and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support Services Telemarketing Center

at (BOO) 835-4747 or your local HP SaJes and Support office.

'For other countries, contact your local 5ales and Support Office to determine warranty terms.

iv



Table of Contents

r Make: A Program for Maintaining Computer Programs
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
Basic Features 2
Description Files and Substitutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4
Command Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
Implicit Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
Example 8
Suggestions and Warnings 10
Appendix: Suffixes and Transformation Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11



jj

~•.'J



Make: A Program for
Maintaining Computer Programs

In a programming project, it is easy to lose track of which files need to be reprocessed or recompiled
after a change is made in some part of the source. Make provides a simple mechanism for
maintaining up-to-date versions of programs that result from many operations on a number of files.
It is possible to tell Make the sequence of commands that create certain files, and the list of files that
require other files to be current before the operations can be done. Whenever a change is made in
any part of the program, the Make command will create the proper files simply, correctly, and with
a minimum amount of effort.

The basic operation of Make is to find the name of a needed target in the description, ensure that all
of the files on which it depends exist and are up to date, and then create the target if it has not been
modified since its generators were. The description file really defines the graph of dependencies;
Make does a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to encapsulate commands in
a single file for convenient administration.

Introduction
It is common practice to divide large programs into smaller, more manageable pieces. The pieces
may require quite different treatments: some may need to be run through a macro processor, some
may need to be processed by a sophisticated program generator (such as Yacc or Lex). The outputs
of these generators may then have to be compiled with special options and with certain definitions
and declarations. The code resulting from these transformations may then need to be loaded
together with certain libraries under the control of special options. Related maintenance activities
involve running complicated test scripts and installing validated modules. Unfortunately, it is very
easy for a programmer to forget which files depend on which others, which files have been
modified recently, and the exact sequence of operations needed to make or exercise a new version
of the program. After a long editing session, one may easily lose track of which files have been
changed and which object modules are still valid, since a change to a declaration can obsolete a
dozen other files. Forgetting to compile a routine that has been changed or that uses changed
declarations will result in a program that will not work, and a bug that can be very hard to track
down. On the other hand, recompiling everything in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program development
and maintenance. If the information on inter-file dependences and command sequences is stored in
a file, the simple command make is frequently sufficient to update the interesting files, regardless of
the number that have been edited since the last "make". In most cases, the description file is easy
to write and changes infrequently. It is usually easier to type the make command than to issue even
one of the needed operations, so the typical cycle of program development operations becomes

think ---+ edit ---+ make ---+ test ...

1



Make runs on the HP-UX operating system, and is most useful for medium-sized programming
projects; it does not solve the problems of maintaining multiple-source versions or of describing
huge programs.

Basic Features
The basic operation of Make is to update a target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target if it has not been modified since its
dependents were. Make does a depth-first search of the graph of dependences. The operation of
the command depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is made by compiling and
loading three C-Ianguage files x. c , y. c , and z. c with the IS library. By convention, the output of the
C compilations will be found in files named x. 0, y.o, and z. o. Assume that the files x. c and y. c share
some declarations in a file named defs, but that z.c does not. That is, x.c and y.c have the line:

llinelude "defs"

The following text describes the relationships and operations:

prog: x,o y.o z,o
ee x,o y,O z,o -IS -0 prog

X,o y,o: defs

If this information were stored in a file named Makefi/e, the command:

Make

would perform the operations needed to recreate prog after any changes had been made to any of
the four source files x. c, y. c, z. c, or defs.

Make operates using three sources of information: a user-supplied description file (as above), file
names and "last-modified" times from the file system, and built-in rules to bridge some of the gaps.
In our example, the first line says that progdepends on three ".0" files. Once these object files are
current, the second line describes how to load them to create prog. The third line says that x.o and
y.o depend on the file defs. >From the file system, make discovers that there are three ".c" files
corresponding to the needed ".0" files, and uses built-in information on how to generate an object
from a source file (i.e., issue a "cc -c" command).

The following long-winded description file is eqUivalent to the one above, but takes no advantage
of make's innate knowledge:

pro g : X,D Y,O z.o
ee X,D Y,O z.o -IS -0 prog

~X,D x,e defs
ee -e x,e

y,O Y,e defs
ee -e y,e

z.o z,e
ee -e z,e

2 Make



If none of the source or object files had changed since the last time prog was made, all of the files
would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c (but
not z. c) would be recompiled, and then prog would be created from the new ".0" files. If only the
file y. c had changed, only it would be recompiled, but it would still be necessary to reload prog.

If no target name is given on the make command line, the first target mentioned in the description is
created; otherwise the specified targets are made. The command

make x.o

would recompile X.o if x. c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in further
decisions; otherwise the current time is used. It is often qUite useful to include rules with mnemonic
names and commands that do not actually produce a file with that name. These entries can take
advantage of make's ability to generate files and substitute macros. Thus, an entry "save" might be
included to copy a certain set of files, or an entry "cleanup" might be used to throwaway
unneeded intermediate files. In other cases one may maintain a zero-length file purely to keep track
of the time at which certain actions were performed. This technique is useful for maintaining remote
archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command strings.
Macros are defined by command arguments or description file lines with embedded equal signs. A
macro is invoked by preceding the name by a dollar sign; macro names longer than one character
must be parenthesized. The name of the macro is either the single character after the dollar sign or a
name inside parentheses. The following are valid macro invocations:

$(CFLAGS)
$2
$(XY)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned values
dUring input, as shown below. Four special macros change values dUring the execution of the
command: $*, $@, $?, and $<. They will be discussed later. The following fragment shows the
use:

OBJECTS = x.o y.o z.o
LI BES = -1 S
prall: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -0 prall

Make 3



The command

loads the three object files with the IS library. The command

Make "LIBES= -11 -IS"

loads them with both the Lex ("_II") and the Standard (" -IS") libraries, since macro definitions
on the command line override definitions in the description. (It is necessary to quote arguments
with embedded blanks in HP-UX commands.)

The following sections detail the form of description files and the command line, and discuss
options and built-in rules in more detail.

Description Files and Substitutions
A description file contains three types of information: macro definitions, dependency information,
and executable commands. There is also a comment convention: all characters after a sharp (#) are
ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are totally ignored. If a
non-comment line is too long, it can be continued using a backslash. If the last character of a line is
a backslash, the backslash, newline, and following blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name
(string of letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is ~
assigned the string of characters follOWing the equal sign (leading blanks and tabs are stripped.) The . '.. , )
following are valid macro definitions:

2 = Xyz

abc = -11 -ly -IS
LI BES =

The last definition assigns UBES the null string. A macro that is never explicitly defined has the null
string as value. Macro definitions may also appear on the make command line (see below).

Other lines give information about target files. The general form of an entry is:

target! [target2 ... J : [ : ] [dependent! ... ] [; commands] [# ... ]
[(tab) commands] [# ... ]

Items inside brackets can be omitted. Targets and dependents are strings of letters, digits, periods,
and slashes. (Shell metacharacters "*" and "?" are expanded.) A command is any string of
characters not including a sharp (except in quotes) or newline. Commands may appear either after ~.

a semicolon on a dependency line or on lines beginning with a tab immediately follOWing a )
dependency line.

4 Make



A dependency line may have either a single or a double colon. A target name may appear on more
than one dependency line, but all of those lines must be of the same (single or double colon) type.

1. For the usual Single-colon case, at most one of these dependency lines may have a com
mand sequence associated with it. If the target is out of date with any of the dependents on
any of the lines, and a command sequence is specified (even a null one following a semicol
on or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command line
is printed and then passed to a separate invocation of the Shell after substituting for macros. (The
printing is suppressed in silent mode or if the command line begins with an @ sign). Make normally
stops if any command signals an error by returning a non-zero error code. (Errors are ignored if the
" - i" flags has been specified on the make command line, if the fake target name ".IGNORE"
appears in the description file, or if the command string in the description file begins with a hyphen.
Some HP-UX commands return meaningless status). Because each command line is passed to a
separate invocation of the Shell, care must be taken with certain commands (e.g., cd and Shell
control commands) that have meaning only within a single Shell process; the results are forgotten
before the next line is executed.

Before iSSUing any command, certain macros are set.

- $@ is set to the name of the file to be "made".
- $? is set to the string of names that were found to be younger than the target.

If the command was generated by an implicit rule (see below),

- $< is the name of the related file that caused the action, and
- $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the commands
associated with the name ".DEFAULT" are used. If there is no such name, make prints a message
and stops.

Make 5



Command Usage
The make command takes four kinds of arguments: macro definitions, flags, description file names,
and target file names.

III ake [flags] [ macro definitions ] [ targets ]

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the
assignments made. Command-line macros override corresponding definitions found in the descrip
tion files.

Next, the flag arguments are examined. The permissible flags are

- i Ignore error codes returned by invoked commands. This mode is entered if the fake
target name ".IGNORE" appears in the description file.

- 5 Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ".SILENT' appears in the description file.

- r Do not use the built-in rules.

•.~

-n

-t

-q

-p

-d

-I

No execute mode. Print commands, but do not execute them. Even lines beginning with
an "@" sign are printed.

Touch the target files (causing them to be up to date) rather than issue the usual
commands.

Question. The .IT make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

Print out the complete set of macro definitions and target descriptions

Debug mode. Print out detailed information on files and times examined.

Description file name. The next argument is assumed to be the name of a description file.
A file name of •• -" denotes the standard input. If there are no •. - f' arguments, the file
named makefiJe or MakefiJe in the current directory is read. The contents of the descrip
tion files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are done
in left to right order. If there are no such arguments, the first name in the description files that does
not begin with a period is "made".

6 Make



Implicit Rules
The make program uses a table of interesting suffixes and a set of transformation rules to supply
default dependency information and implied commands. (Descriptions of these tables and means
of overriding them are included at the end of this tutorial.) The default suffix list is:

.0 Object file

~
.C C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.S Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.1 Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths connect
ing a pair of suffixes, the longer one is used only if the intermediate file exists or is named in the
description.

.c

/\
.y .I

~~
.r .e .f.s.y .yr .ye .I .d, \

.yr .ye

If the file X.D were needed and there were an x.c in the description or directory, it would be
compiled. If there were also an x.J, that grammar would be run through Lex before compiling the
result. However, if there were no x.c but there were an x.1, make would discard the intermediate
C-Ianguage file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler names
are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

MaKe CC=newcc

causes the "newcc" command to be used instead of the usual C compiler. The macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued
with optional flags. Thus,

MaKe "CFLAGS=-O"

causes the optimizing C compiler to be used.

Make 7



Example
As an example of the use of make, we will present the description file used to maintain the make
command itself. The code for make is spread over a number of C source files and a Yacc grammar.
The description file contains:

# Description file for the Make command

P = und - 3 opr - r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) - 0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup: -rm *.0 gram.c
-du

install: @size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? $P
touch print

test: make - dp grep - v TIME> lzap
/usr/bin/make - dp grep - v TIME > 2zap
diff lzap 2zap
rm lzap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch: ar uv /sys/source/s2/make.a $(FILES)

8 Make



Make usually prints out each command before issuing it. The following output results from typing
the simple command

make

in a directory containing only the source and description file:

cc - c version.c
cc -c main.c
cc - c doname.c
cc -c misc.c
cc - c files. c
cc - c dosys.c
yacc gram.y
mv y. tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS - 0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits results
from the "size make" command; the printing of the command line itself was suppressed by an @
sign. The @ sign on the size command in the description file suppressed the printing of the
command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print" entry
prints only the files that have been changed since the last "make print" command. A zero-length file
print is maintained to keep track of the time of the printing; the $? macro in the command line then
picks up only the names of the files changed since print was touched. The printed output can be
sent to a different printer or to a file by changing the definition of the P macro:

maKe print "P : opr -sp"

or

maKe print "p: cat )zap"

Make 9



Suggestions and Warnings
The most common difficulties arise from make's specific meaning of dependency. If file x. c has an
#include "defs" line, then the object file x.o depends on defs; the source file x.c does not. (If defs is
changed, it is not necessary to do anything to the file x.c, while it is necessary to recreate x.o.)

To discover what make would do, the" - n" option is very useful. The command

Make -n

orders make to print out the commands it would issue without actually taking the time to execute
them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition to an
include file), the" - t" (touch) option can save a lot of time: instead of issuing a large number of
superfluous recompilations, make updates the modification times on the affected file. Thus, the
command

Make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary, since this
mode of operation subverts the intention of make and destroys all memory of the previous rela
tionships.

The debugging flag (" - d") causes make to print out a very detailed description of what it is doing,
including the file times. The output is verbose, and recommended only as a last resort.

10 Make



Appendix. Suffixes and Transformation Rules
The make program itself does not know what file name suffixes are interesting or how to transform
a file with one suffix into a file with another suffix. This information is stored in an internal table that
has the form of a description file. If the " - r" flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make looks for a file
with any of the suffixes on the list. If such a file exists, and if there is a transformation rule for that
combination, make acts as described earlier. The transformation rule names are the concatenation
of the two suffixes. The name of the rule to transform a ".r' file to a ".0" file is thus ". r. 0". If the
rule is present and no explicit command sequence has been given in the user's description files, the
command sequence for the rule ".r.o" is used. If a command is generated by using one of these
suffixing rules, the macro $* is given the value of the stem (everything but the suffix) of the name of
the file to be made, and the macro $< is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name that is
formed that has both a file and a rule associated with it is used. If new names are to be appended,
the user can just add an entry for ".SUFFIXES" in his own description file; the dependents will be
added to the usual list. A ".SUFFIXES" line without any dependents deletes the current list. (It is
necessary to clear the current list if the order of names is to be changed).

The follOWing is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o:

(CC) $(CFLAGS) - c $<
.e.O .r.O .f.o :

(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) - c $<
.s.o:

.y.o:

.y.c:

(AS) -0 $@ $<

(YACC) $(YFLAGS) $<
(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

(YACC) $(YFLAGS) $<
mv y. tab.c $@

Make 11



12 Make

.~
"',--.



r-
'\

Table of Contents

sees User's Guide 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2
Learning the Lingo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2

S-Files 2
Deltas 2
SID's (Version Numbers) 2
10 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3

Creating SCCS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4
Removing SCCS Files " 5
Getting Files for Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
Changing Files (Creating Deltas) 6

Getting a Copy to Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
Merging the Changes Back Into the S-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
When To Make Deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
What's Going On: The Sact Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
Using 10 Keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
Creating New Releases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9
Cancelling an Editing Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9

Restoring Old Versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11
Reverting to Old Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11
Selectively Excluding Old Deltas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11
Selectively Including Deltas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12
Removing Deltas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13

The Help Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13
Auditing Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14

The Prs Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14
Determining Why Lines Were Inserted 15
Comparing Versions 15

Files Used By SCCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16
S-Files 16
G-Files 17
L-Files 17
P-Files 18
D-Files 18
Q-Files 18
X-Files 19
Z-Files 19

Concurrent Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
Concurrent Edits on Different Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
Concurrent Edits on the Same Version .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20



ii

Saving Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Making Temporary Changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Recovering an Edit File 20
Restoring the S-File 21

Using the Admin Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
Creating SCCS Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
Adding Comments to Initial Delta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
Descriptive Text in Files 22 ""
Setting SCCS File Rags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 ,
Specifying Who Can Edit a File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

Maintaining Different Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26
Creating a Branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26
Retrieving a Branch . . . . . .. 26
Branch Numbering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26
AWaming 27

SCCS's Protection Facilities 28
General File Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28
System Protection Using Admin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29

Using SCCS With Make. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29
To Maintain Groups of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30
To Maintain a Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31
To Maintain a Large Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32

Using SCCS on a Multi-User Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33
How the SCCS Interface Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33
Configuring an SCCS System Using the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

Quick Reference 37 ,
Commands 37
ID Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39



~.

sees User's Guide

Introduction
sccs (Source Code Control System) is simply a set of HP-UX commands which allow you to:

• track all changes made to a text file;

• retrieve the current (latest) version of a file;

• retrieve any previous version of a file, ignoring any changes made to the original after a given
revision;

• control who changes a file;

• keep track of the date and location of each change made to a file along with the name of the
person making the change;

• add comments when each change is made indicating the reason for that change.

One application of SCCS is to keep track of source files during the development and maintenance
of large systems. This article is directed towards this use of sces; however, it can be used in any
project that involves supporting groups of related text files. Object code cannot be maintained
under sees.

Once you store a program's source file under secs, all of its versions, plus additional log informa
tion, are kept in a file called the "s-file". S-files are also referred to as "sccs files" and must have a
"s." prefix on their name. There are three major operations you can perform on the s-file:

1. Get a file for some non-editing purpose, such as compilation. This operation retrieves a
version of the file from the s-file that is read-only. By default, the latest version of the file is
retrieved. This file is specifically NOT intended to be edited or changed in any way; any
changes made to a file retrieved in this way will probably be lost.

2. Get a file for editing. This operation also retrieves a version of the file from the s-file, but this
file is intended to be edited and then incorporated back into the s-file. Only one person may
be editing a particular version of an s-file at a time (unless you have specifically allowed
concurrent edits on the same version).

3. Merge a file back into the s-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

1



Learning the Lingo
There are a number of terms that are worth learning before using sees.

S-files
An s-file is a single file that holds all the different versions of your file. The s-file is stored in
differential format; only the differences between versions are stored, rather than the entire text of
the new version. This saves disk space and allows selective changes to be removed later. Also ~
included in the s-file is some header information for each version, including the comments given by)
the person who created the version explaining why the changes were made. A description of what
this header information includes is presented later in this article.

Deltas
Each set of changes to the s-file (which is approximately equivalent to a version of the file) is called a
delta. Although technically a delta only includes the changes made, in practice it is usual for each
delta to be made with respect to all the deltas that have occurred before. This matches normal
usage, where the previous changes are not saved at all, so all changes are automatically based on
all other changes that have happened through history. However, it is possible to get a version of the
file that has selected deltas removed out of the middle of the list of changes. All of the deltas of a file
maintained under sees are stored in an s-file.

SID's (Version Numbers)
A SID (SeeS 10) is a number that represents a delta. This is normally a two-part number consisting
of a "release" number and a "level" number. The form of two-part SIDs is:

release, level

where "release" and "level" are non-zero, positive integers. Normally the release number stays the
same while the "level" increments with each delta. However, you can move into a new release of a
file if some major change is being made. Since all past deltas are normally applied when version is
retrieved, the SID of the final delta applied is used to represent the version number of the file as a
whole.

Deltas applied to one sees file can be considered nodes of a tree, the initial version of the file
being the root node. The root delta (node) normally has the SID number' '1.1" and the deltas that
follow are "1.2", "1.3", etc. The naming of successor deltas by incrementing the SID level number
is performed automatically by sees when you retrieve a file for editing with get -e, although the
delta itself is not created until you execute delta.

The diagram below illustrates the development of an sees file where each delta depends on all of
the previous deltas.

1.1~ 1.2~ 1.3 -.. 2.1 -.. 2.2

1
A New Release

2 sees



ID Keywords
When you retrieve a version of a file from sees with intent to compile it (or rather, do something
other than edit it), some special keywords are expanded by sees when they are found in the file.
These 10 keywords can be used to include the current version number or other information into the
file. All 10 keywords are of the form %x%, where "x" is an upper case letter. For example, %1% is
the SID of the latest delta applied in retrieving a particular version, %W% includes the module
name, SID, and a string of characters that makes it findable by the what command, and %G% is the
date of the latest delta applied. A list of all of the 10 keywords can be found in the Quick Reference
section at the end of this article and in the entry for get in the HP-UX Reference.

For example, assume that you have a source file stored under sees and it contains the line of
code:

static char Sccsld[] = "IW%"i

When you retrieve the file for editing, the text file will contain the line just as it appears above.
However, when you retrieve the file for compilation the %W% is expanded to indicate the module
name, SID, and the string of characters recognized by what

static char Sccsld[] = "@(U)pro9,c 1.2 05/15/84";

The what command is a valuable tool for quickly finding out information about a particular version
of a program. To use it the program's source code must be contained in sees files. In the sees
files, any string of information that you want to be accessed by what must begin with the 10
keyword %2%. (%W%, mentioned earlier, is actually a combination of several 10 keywords,
including %2%.) When the files are retrieved for compilation, this 10 keyword is expanded to the
string: @(#). When you invoke what on a file, the command prints out anything it finds between
this string and the first ", >, "'-., newline, or null character. Refer to the section "Using 10
Keywords" for more information about what.

When you retrieve a file for editing, the 10 keywords are not expanded; this is so that after you store
the file back into sees, they can still be expanded automatically when the file is retrieved for
compilation. If you edit and store a version of a file in which the 10 keywords are expanded, sees
can no longer control the updating of the 10 keywords' values. For example, if you use the 10
keyword for the file's version and then store the keyword's expanded value, all of the following
versions will indicate that same version number - sees can not increment it. Also, if you compile
a version of the program without expanding a version number 10 keyword that appears in it, it is
impossible to tell what version it is since all that the code will contain is "%1%".

sees 3



Creating SCCS Files
To put source files into sees format, use the admin command. The following stores a file called
"s.fiIe" under sees:

adMin -ifile stfile

The -i keyletter indicates that adrnin is to create a new sees file (called an s-file) and "initialize" its
contents with the contents of the file "file". The "s.file" argument is the name of the s-file. All s-file ~.

names must begin with "5.". The initial version of s.file is a set of changes (delta 1.1) applied to a )
null s-file.

After creating a new s-fiIe, admin returns the message:

No id keywords (cM7)

if you have not included any 10 keywords in it. This is just a warning message and it is discussed
further in a later section.

Since you have stored the contents of "s. file" under sees, you can now remove the original file:

rm fi 1e

Note that if the name of the sees file is the same as the original text file except for the "s." prefix,
then original file must be removed or moved to another directory. This is because when you
retrieve a version of an sees file, the name of the resulting text file is the sees file name with the
"s." removed. If there is already a writeable file with this name in your current directory, sees
does not allow you to retrieve the sees file version in most cases.

Assume that your current HP-UX directory contains several e source files that you want to maintain
under sees. The follOWing shell script stores each under sees with the required "s." prefix
added onto its name and removes the original source files.

for i in *tC
do

adll1in -i$i 5th
rm $i

done

If you want to have 10 keywords in the files, it is best to put them in before you create the s-files. If
you do not, admin prints "No Id Keywords (cm7)" after each s-file is created. If you create an s-file
without 10 keywords and then later decide to add them, merely retrieve the file for editing, add the
10 keywords, store the changes, and then state that 10 keywords have been added when you are
prompted for comments.

4 sees



"./......•

\

Removing SCCS Files
In order to protect s-files, sees does not supply a direct method of removing them from your
system. S-files are protected from accidental deletion in two ways:

• They are created as read-only files.

• There is no sees command that removes them.

Because of this protection, you must make the files writeable before you can remove them. Use
chmod to change the access permission on an s-file:

chmod +w strile

The" +w" indicates that you are adding write access to the file "s. file". Once you have a writeable
s-file, you can remove it with:

rm strile

Getting Files for Compilation
To get a copy of the latest version of the sees file "s.file", type:

get stfile

Get responds, for example, with:

1 t 1
87 lines

indicating that version 1.1 was retrieved and that it has 87 lines. The retrieved text is placed in a file
in the current directory whose name is formed by deleting the "s." prefix. The file is read-only to
remind you that you are not supposed to change it. If you do make changes, they are lost the next
time someone does a get.

To retrieve all of the sees files in a directory so that they can be compiled, specify the directory
name as an argument to get

get directorY

The retrieved text files are place in your current directory and any non-SeeS files (files without the
"s." prefix) in the directory are silently ignored.

Note that if the s-file (or the directory containing s-fiIes) that you want to access is not located in
your current directory you must specify its full pathname.

sees 5



Changing Files (Creating Deltas)

Getting a Copy to Edit
To edit a source file, you must first use get with its -e (e for edit) keyletter to retrieve it:

get -e s.file

Get responds: ~
1 • 1
87 lines
New delta 1.2

The retrieved file "file" (without the "s." prefix) is placed in your current directory and you have
read and write access to it. Edit the file using a standard text editor, for example vi:

vi file

To retrieve all of the SCCS files in a directory for editing, specify the directory name as an argument
to get-e:

get -e directory

Merging the Changes Back Into the S-File
When the desired changes have been made to the text file, you can store the changes in the SCCS
file using the delta command:

delta s.file

assuming that the s-file is located in your current directory. If it is located in a different directory you
must specify a pathname for the s-file. Delta prompts you for "Comments?" before it merges the
changes in. At this time you should type a one-line description of what the changes mean (more
lines can be entered by ending each line except the last with a backslash "'-). De/ta then responds,
for example, with:

1. Z
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created. and it inserted five lines, removed three lines, and left 84 lines
unchanged. (Changes to a line are counted as a line deleted and a line inserted.) Finally, SCCS
removes "file" from your current directory; you can retrieve it again using get.

Note that the comments that you are prompted for are not maintained as part of the text body of
the s-file, but are kept in another section of the s-file that is used internally by SCCS.

6 sees



When To Make Deltas
It is probably unwise to make a delta before every recompilation or test, unless other people may
need to edit the file at the same time. Creating too many deltas may result in unclear comments,
such as "fixed compilation problem in previous delta" or "fixed botch in 1.3". However, it is very
important to delta everything before installing a module for general use. A good technique is to edit
the files you need, make all necessary changes and tests, compiling and editing as often as

~ necessary without making deltas. When you are satisfied that you have a working version, delta
~i" . ..... everything being edited, re-get them, and recompile everything.

Working on a project with several people presents a problem when two people need to modify a
particular version of a file at the same time. sees prevents this by locking the version while it is
being edited (unless concurrent editing of one version has been specifically allowed). This means
that you should not retrieve a file for editing unless you are actually going to edited it at the time,
since you will be preventing other people on the project from making necessary changes. As a
general rule, all source files that you are editing should be stored with delta before being used in
compilations. This gives other users a better chance of being able to edit files when they need to.

What's Going On: The Sact Command
To find out who is currently editing an sees file, use:

sact s.file

For each editing session taking place on the file, sact (SeeS activity) tells you which SID (version)
is being edited, what SID will be assigned to the new delta when editing is done, who is doing the
editing, and the data and time that editing began (when get -e was invoked). If no one is editing
"s.file", sact returns an error message telling you that a p-file does not exist for the file (the "Types
of Files" section later in this tutorial discusses p-files).

You can specify more than one sees file name as arguments to sact, each file is checked one at a
time. You can also specify a directory, in which case sact checks every sees file in that directory
and silently ignores non-SeeS files (files without the "s." prefix).

Using ID Keywords
ID keywords inserted into your file are expanded when you retrieve a file for compilation with get.
They record information about the file, such as the time and date it was created, the version
retrieved, and the module's name. For example, a line in an sees file such as:

static char SccsId(] = "IWI\tIGI"j

is replaced with something like:

static char Sccsld[] = "@(#Jpro~.c 1.2 08/29/80";

in the retrieved source file. This tells you the name and version of the source file and the time the
delta was created. The string "@(#)" is the expanded form of the keyword %2% and is searched
for by the what command. (Note that the %W% ID keyword shown above is shorthand for several
other ID keywords including %2%.) It makes it possible to qUickly locate expanded ID keywords in
text files using what. Note that when you retrieve a file for editing the keywords are not expanded.
This is so that they will still be in their original form when you store the file again with delta.

sees 7



Approximately 20 10 keywords are available for you to use in your sees files. The "Quick
Reference" section at the end of this tutorial contains a list of them and a list can also be found
under the entry for get in the HP-UX Reference.

The What Command
When %2% is used, expanded 10 keywords in files can be located using what. To find out the
current version number of a source file and what version of it is used in an object file and final
program (assuming you have previously inserted the necessary 10 keywords in the sees source
file), use:

what file,c file,o a,out

What prints all strings it finds that begin with "@(#)" in the three files. It works on all types of files,
including binaries and libraries. For example, the above command outputs something like:

file,c:
file,c 1,2 08/29/80

file,o:
file,c 1 • 1 02105179

a,out:
file,c 1 , 1 02/05179

From this you see that the source in "fiIe.c" does not compile into the same version as the binary in
"file.o" and "a.out" .

What searches the given files for all occurrences of the string "@(#)", which is the replacement for
the %Z% 10 keyword, and prints what follows that string until the first double quote ("), greater )
than (», blackslash (""-), newline, or (nonprinting) NUL character. Note that you can locate and
display constant text as well as 10 keywords with what if you precede that text with %2%.

For example, assume an sees file "s.prog.c" contains the following line:

char ide) "ZZZZMZ:ZIZi

Note that the colon (":") is not part of an 10 keyword. It is left unchanged when the 10 keywords
are expanded. Next, the command line:

is executed. The retrieved file "prog.c" is then compiled to produce "prog.o" and "a.out" . The
command:

what prog,c prog,o a,out

produces:

prog,c:
prog,c:1,2

prog.o:
prog,c:1,2

a,out:
prog.c:1,2

indicating that version 1.2 of the file "prog.c" was used in all three files.

8 sees



Where to Put Id Keywords
ID keywords can be inserted anywhere in sees files, including comments. ID keywords that are
compiled into the object module are especially useful, since they let you compare what version of
the object is being run to the current version of the source.

When you put ID keywords into header files, it is important that you assign them to different
variables. For example, you might use:

r' static char AccessSid[] = "7.WI IG'2',";

in the file "access.h" and:

static char OpsysSid[] = "IWZ 7.GZ";

in the file "opsys. h". If you used the same variable name in both, you get compilation errors
because the variable is redefined. You should also be aware that if you place ID keywords in a
header file as code that is eventually compiled and then included that header file in several modules
that are loaded together, the same version information will appear several times in the resulting
object module. A solution is to insert header file's ID keywords as comments.

Creating New Releases
When you want to create a new release of a program, you can specify the new release number
using gefs -r keyletter. For example:

retrieves the release l' s latest version of "s.prog.c" and causes the next delta to be in release 2 (an
SID of 2.1). Future deltas are automatically in release 2.

To assign a new release number for all of the sees files in a directory, use:

~et -e -r2 directory

assuming that the previous release was release 1, and then execute:

delta directory

All of the sees files in the directory are assigned a new delta SID of 2.1

Cancelling an Editing Session
If you retrieve a file for editing with get -e and then decide that you do not want to edit it, cancel the
editing session with:

Unget returns the SID of the cancelled delta. Only the person who began an editing session can
cancel it. Unget can accept more than one file name argument or, alternatively, use:

in which case unget accepts file names from standard input.

sees 9



If you are currently editing a number of sees files in one directory and want to cancel all of the
editing sessions for them, you can specify the directory:

un!let directon

In this case unget checks every sees file in the directory. If one of the files is not currently being
edited, unget returns an error message indicating that its associated p-file does not exist (see "Files
Used by sees" section later in this tutorial).

If you are currently editing more than one version of a file, ungefs -r keyletter allows you to specify
which version's editing session you want to cancel:

un!let -r2.3 5.file

If you find that you retrieved a file for editing when actually you needed for some other purpose,
you would like to cancel the editing session but keep the file in the current directory. Normally when
you cancel an editing session, unget removes the retrieved text file from the current directory. You
can request that it not be removed with the -0 keyletter:

un!let -n 5.file

This leaves the text file "file" still available for inspection or compilation, but any changes made to
the file cannot be stored back in the sees file with delta.

You can request that ungetexecute silently (not print out the file's cancelled delta's SID) using the
command's -s keyletter:

un!let -5 5.file

10 sees



Restoring Old Versions
This section discusses how gets -r, -x, and -i keyletters are used to retrieve various versions of a file.
They can be used in any combination. The -e keyletter can also be used with them to create a new
delta based on particular versions.

Reverting to Old Versions
Normally, get retrieves the latest version of the specified file. However, you can request a particular
version using gets -r keyletter.

Suppose that after delta 1.2 was stable you made and released a delta 1.3. However, this intro
duced a bug, so you made a delta 1.4 to correct it. Then you found that 1.4 was still buggy, and you
decided you wanted to go back to the old version. You can access delta 1.2 by choosing the SID in
a get

get -r1,2 s,pro!l,c

This produces a version of "prog.c" that is delta 1.2. Any changes that you made between delta 1.2
and the most recent delta are ignored.

If you specify a release number but not a level number, the highest level number that exists within
that release is retrieved. Get -r also allows you to retrieve particular branch deltas. Branches are
discussed in the section "Maintaining Different Branches" later in this article.

If you try to retrieve for compilation a particular version that does not exist, sees responds with an
error message. There is one exception: if you specify only a release number and that release
doesn't exist, sees retrieves the delta with the highest release number that does exist, and with the
highest level number within that release.

In some cases you don't know what the SID of the delta you want is. However, get allows you to
revert to the version of the program that was running as of a certain date using its -c (cutoff)
keyletter. For example,

!let -csa0722120000 pro!l,c

retrieves whatever version was current as of July 22, 1984 at 12:00 noon. Trailing components can
be stripped off (defaulting to their highest legal value), and punctuation can be inserted in the
obvious places; for example, the above line is eqUivalently stated with:

!let -c"S4/07/22 12:00:00" pro!l,c

Selectively Excluding Old Deltas
Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3 should be
removed. You could do this with the -x keyletter:

get -e -x1,3 s,pro!l,c

sees 11



When delta 1.5 is made, it includes the changes made in delta 1.4, but excludes the changes made
in delta 1.3. You can exclude a range of deltas using a dash. For example, if you don't want to
include 1.3 and 1.4 you can use:

which excludes all deltas from 1.3 to 1.4. Alternatively,

excludes a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using the -x keyletter (or -i, see below) there are conflicts between versions.
For instance, it may be necessary to both include and delete a particular line, in which case sees
always prints out a message telling the range of lines affected; these lines should then be examined
very carefully to see if the version sees got is correct.

Since each delta (in the sense of "a set of changes") can be excluded at will, it is usually useful to
put each semantically or conceptually distinct change into its own delta.

Selectively Including Deltas
Just as gefs -x keyletter allows you to exclude deltas from a version in which they are normally
included, the -i allows you to include deltas that are not normally included.

For example, assume that you have an sees file containing five deltas, 1.1 through 1.5. To
retrieve a version of a file containing only deltas 1.1, 1.3, and 1.5, request that version 1.1 be
retrieved and force the inclusion of deltas 1.3 and 1.5: ~

get -rl.l -il.31lt5 s.file

To retrieve version 1.5 all of the deltas must be used. All of the following get command lines
accomplish this.

get -rlt5 -il.2 stfile

get -rl.5 stfile

get stfile

Note that the -i keyletter in the first command line has no effect since delta 1.2 is already used to
construct version 1.5. The -r keyletter is not reqUired either since delta 1.5 is the most recent delta
and, by default, get retrieves the version incorporating it.

If there are conflicts between versions when you use the -i keyletter, sees prOVides a message
indicating the range of lines affected, just as it does when the -x keyletter is used. You should
examine these lines in the retrieved file to make sure that they are correct.

12 sees



Removing Deltas
Get -x allows you to exclude deltas from the retrieved file; however, the deltas are not removed
from the sees file and the information they contain is still available and consuming space. To
permanently remove a delta from an sees file, use rmdeJ. RmdeJ requires that you use the -r
keyletter to specify which delta is removed:

rmdel -rl.3 s.file

Before you can use rmdeJ to remove a delta, all of the following requirements must be met:

• the specified version of the file is not currently being edited;

• the SID must be the most recent delta on its branch of the delta chain for the named file: no
other deltas can depend on it;

• you originally created the delta or you are the owner of the sees file and the directory that it is
in.

The Help Command
Error messages returned by the sees commands have the form:

ERROR : messa~e (code)

If it is not clear from "message" why the error occurred, use the associated "code" as an argument
to the help command. Invoking:

help code

often provides a little more explanation about the cause of the error. For example, if you execute
"get program" you could receive the following message:

ERROR[pro~ram]: not an sees file (col)

Executing:

help col

produces:

col :
"not an sees file"
A file that YOU thinK is an sees file
does not be~in with the characters "5.".

sees 13



Auditing Changes

The Prs Command
When you create deltas, you presumably give reasons for the deltas in response to the "com
ments?" prompt. To print out these comments later, use:

prs s.file

Note that prs provides information about each of the deltas used to create the requested version of
the file; therefore, it is a way to list the deltas upon which a particular version depends. It produces a
report for each delta providing the time and date of creation, the user who created the delta, and
the comments associated with the delta. For example, the output of the above command might be:

s.file:

o 1.3 8aloa/12 08:21:35 becKy 3 2 00020/00008/00021
MRs:
COMMENTS:
inserted 20 lines, reMoved 8 lines

o 1.2 saloa/ll 09:21:08 becKy 2 1 00008/00000/00021
MRs:
COMMENTS:
inserted 8 lines

o 1.1 8aloa/l0 06:37:1a becKy 1 0 00021/00000/00000
MRs:
COMMENTS:
date and tiMe created SalOa/l0 OG:37:1a by becKy

The report indicates that the file's initial delta (created with admin -i) inserted 21 lines, delta 1.2
inserted 8 lines and left 21 unchanged, and delta 1.3 inserted 20 lines, removed 8 lines, and left 21
lines unchanged.

You can request information about a particular version of a file using prs's -r keyletter:

prs -r2.3 s.prog.c

Prs can accept multiple file names or directory names as arguments. If you request information
about all of the sees files in a directory, you should probably redirect prs's output to a file and look
at it at your leisure:

prs directorY )output

When a directory is specified, the effect is as if each sees file it contains were named and any
non-SeeS files are ignored.

Prs also allows you to modify the information it provides using its -d keyletter. Refer to the prs entry
in the HP-UX Reference to see how this is done.

14 sees



Determining Why Lines Were Inserted
To find out why you inserted various lines in a file, you can get a copy of the file with each line
preceded by the SID of the delta that created it using:

~et -Ill s.pro~.c

where the retrieved copy is called "prog.c". Once you have determined which delta inserted the
line you are interested in, use prs to find out what that particular delta did by looking at its comment
line.

Another way to find out which lines were inserted by a particular delta (e.g., 1.3) is:

Set -Ill -p s.pro~.c I ~rep '·1.3'

The ~P flag causes get to output the retrieved text to the standard output rather than to a file.

Comparing Versions
To compare two versions of a file, use sccsdiff. For example,

sccsdiff -r1.3 -r1.G s.proS.c

outputs the differences between delta 1.3 and delta 1.6 in a format similar to the format used by the
diffcommand.

You can specify any number of file names with sccsdiff but the same two SID's specify which
versions are compared for all of them. You can not specify a directory as an argument.

sees 15



Files Used by sees
As a user of sees, you do not need to know all of the information covered in this section;
however, it should give you a feel for the inner workings of sees.

There are 8 types of files that are used by sees and all of them are ASeII text files. They are:

S-files

G-files

L-files

P-files

D-files

Q-files

X-files

Z-files

sees files created by admin -i.

Text files containing the "body" of sees files and created by get.

Files containing delta dependency information and created by get -1.

Files created and used by sees to keep track of multiple edits.

Temporary files created and used by sees dUring the execution of delta.

Temporary files created and used by sees to update p-files.

Temporary files created and used by sees to update s-files.

Lock-files created and used by sees to prohibit simultaneous updating of s-files.

Normally, only 4 of these file types are visible to users of sees: s-files, g-files, I-files, and p-files.
The remaining 4 types are temporary files used internally by sees dUring the execution of
particular commands.

S-Files
S-files are often referred to as sees files in this tutorial. They contain all of the versions of files you
are maintaining under sees. You create and name an s-file when you initially enter a file into
sees:

admin -ifile s.file

"s.file" is the new s-file and "file" can now be removed. Accessing a file maintained under sees
using sees commands is done using its s-file name. S-file names must begin with the prefix "s.".

The Contents of the S-File
S-files are composed of lines of ASCII text arranged in the following 6 parts:

Checksum A line containing the "logical" sum of all the characters of the file, not including the
checksum itself.

Delta Table Information about each delta, such as type, SID, data and time of creation, and user
inserted comments.

User Names

Rags

Descriptive
Text

Body

16 sees

A list of login names and/or group IDs of users who are allowed to modify the file by
adding or deleting deltas. You modify it using admin.

Indicators that control certain actions of various sees commands. You modify
them using admin.

Arbitrary text provided by the user; usually a summary of the contents and purpose
of the file. You modify it using admin.

The actual text that is being administered by sees, intermixed with internal sees
control lines. You modify it using get -e and delta.



~
\

You modify the Body section of the s-file whenever you create or delete deltas. You modify the
User Names, Rags, and Descriptive Text sections using the admin command (see the "Using
Admin" section later in this article). The Checksum and Delta Table are modified internally by
sees.

Since the entire contents of an s-file is ASCII, the file can be processed with various HP-UX
commands, such as vi, grep, and cat. This is convenient but somewhat risky in those instances in
which an sees file must be modified manually (e.g. when the time and date of a delta were
recorded incorrectly because the system clock was set incorrectly) or when you simply want to look
at its contents.

Note
If you modify the sces file directly (instead of with SCCS commands),
the Checksum value may be incorrect, causing you to receive an error
whenever you try to rehieve a version of the file. This problem is
discussed in a later section, "Restoring the S-File". You should not edit
an s-file directly unless you completely understand its format.

G-Files
The get command creates a text file that contains a particular version of an s-file, obtained by
applying deltas to the initial version. This text file is called a g-file and its name is formed by
removing the sees file's "s." prefix. It is this file that you use for inspection, compilation, or editing
purposes.

G-files are created in the current directory and are owned by the real user. Their file mode depends
on how get is invoked. If you use:

get 5.fi1e

the resulting g-file "file" has mode 444 (read only) and is produced for inspection or compilation,
but not for editing. Note that any 10 keywords in the file are expanded to their appropriate values.

If you use:

!let -e 5.fi1e

then "file" can be edited. Note that any 10 keywords in the file are not expanded, allowing them to
be stored back in the file when you use delta.

L-Files
When you retrieve an sees file with get, you can request that an I-file be created using the
command's -I keyletter:

~ get -1 s.fi1e

The name of an I-file is formed by replacing the "5." prefix of the sees file with "I.". It contains a
table indicating what deltas were used to create the retrieved version of an sees file. You must
specifically request the creation of I-files with -I; by default get does not create them.

sces 17



To send delta dependency information to standard output instead of placing it in an I-file, use:

get -r2.3 -lp s.file

P-Files
When you retrieve an sees file for editing (get -e), besides creating a writeable g-file containing the
version's text, a p-file is also created. The name of a p-file is formed by replacing the "s." prefix of
an sees file with "p.".

P-files are used internally by sees to keep track of multiple edits on the same sees file (see
"Concurrent Editing"). For each edit that is in progress on a particular sees file (get -e has been
executed but not the associated delta), the file's p-file keeps track of:

• the SID of the retrieved version;

• the SID that will be given to the new delta when delta is executed;

• the login name of the user that executed get -e;

• the date and time that the get -e was executed.

If a p-file is accidentally destroyed, it can be regenerated with:

get -e -f s.file

The "-e -g" combination suppresses the retrieval of a writeable text file (g-file), but the associated
p-file is created. A p-file must exist for an sees file before you can use delta on it.

When you request information with the sact command, you are presented with data from a p-file.

D-Files
D-files are used internally by sees during the execution of delta to hold a temporary copy of the
original retrieved g-file before any editing was done. The name of a d-file is formed by replacing the
"s." prefix of the associated sees file with "d.". When you retrieve an sees file for editing (get
-e) and then invoke delta, sees creates a d-file and compares the edited g-file with the contents of
the d-file to determine what has changed. These changes are then stored in the sees file (s-file).

When you invoke delta, you can request that the differences between the d-file and the g-file (the
file that you retrieved and the file that you are now storing) be sent to standard output using:

delta -p s.file

Once delta is executed, you can request the same information with the sccsdjffcommand.

Q-Files
A q-file is a temporary copy of a p-file that is used internally by sees. Its name is formed by
replacing the "p." prefix of the p-file with "q.". Whenever a p-file needs to be updated (because ~
editing of a version of a file was completed with delta or started with get -e), a q-file is first created. }
The change is made to the q-file and then the p-file is removed and the q-file is renamed to become
the new p-file. This strategy is used to ensure the integrity of the p-file in case there are any
problems adding or deleting entries from the table.

18 sees



X-Files
An x-file is a temporary copy of an s-file that is used internally by sees. All sees commands that
modify an sees file do so by first creating and modifying an x-file. This ensures that the sees file
is not damaged if the processing terminates abnormally. The name of this temporary copy is formed
by replacing the "s." prefix of the sees file with "x.". When processing is complete, the old s-file is
removed and the x-file is renamed to be the s-file.

r Z-Files
Z-files are lock-files sees uses to prevent simultaneous updating of an sees file. They are
discussed later in thiS article in the section "sees Protection Facilities".

Concurrent Editing

Concurrent Edits on Different Versions
sees allows different versions of one sees file to be edited at the same time. This means that a
number of get -e commands can be executed on the same file provided that no two executions
retrieve the same version, unless concurrent edits on the same version are allowed (see the
discussion in the next section).

sees uses a p-file to keep track of the edits that are in progress on one file. The first execution of
get -e causes the creation of a p-file for the specified sees file. Subsequent executions of the
command update the p-file, adding entries in the file for each edit session that is in progress. Each
entry in the p-file specifies the SID of the retrieved version, the SID that will be assigned to the new
delta, and the login name of the person doing the editing. When an editing session is terminated
(with delta or unget), the corresponding entry in the file's p-file is removed. If no other versions of
the file are currently being edited, then the p-file itself is removed.

Before sees allows an editing session on a particular version of an sees file to begin, it makes
sure that if a p-file for the file already exists there is no entry in it specifying that the version has
already been retrieved. If there is no entry with that SID, sees adds an entry for the new editing
session. If there is an entry with the same SID, sees generates an error message and does not
allow the version to be retrieved for editing (unless multiple edits of the same version are allowed).
sees informs you if editing is currently being done on another version of the file you request to
edit.

Note
Multiple executions of get -e must be done from different directories.
This is because each time any version of one file is retrieved, the result
ing g-file (text file) is assigned the same name. As a result, sees
prohibits multiple edits on the same file in the same directory because
the g-file would constantly be overwritten.

In practice, multiple editing sessions are performed by different users
with different working directories; therefore, this restriction normally
does not cause a problem.

sees 19



Concurrent Edits on the Same Version
By default, sees does not permit multiple executions of get -e on the same version of one sees
file. Each editing session on a version begun with get -e must be ended with delta before another
session can begin. However, you can change this and allow concurrent edits on the same version of
a file by setting the file's j flag with the admin command (see the "Using Admin" section later in this
article).

Note that if you do set a file's j flag, multiple editing sessions on the same version must be done in
different directories, just like multiple edits on different versions.

Saving Yourself

Making Temporary Changes
If you use get -e to retrieve a file so that you can edit it, sees requires that you delta the changes
that you make back into the associated s-file. Sometimes, however, it is necessary to make mod
ifications to a file that you do not want saved.

To make temporary changes to a file possible, retrieve it from sees with:

get Stfile

sees does not expect changes to be made to the file; therefore, it gives it read-only access. You
must now change the mode of the file so that you can edit it:

chmod +w file

Chmod +wadds write access to a file. Any changes that you now make to "file" cannot be stored
in sees.

Recovering an Edit File
Sometimes you may find that you have lost a file that you were trying to edit. Unfortunately, you
can't just execute get -e again; sees keeps track of the fact that someone is trying to edit that
version, so it won't let you do it again. Neither can you retrieve it using get, since that would expand
the ID keywords. Instead, you can say:

This retrieves the file and does not expand the ID keywords, so it is safe to do a delta with it.

20 sees

.~.''.'.. j



Restoring the S-File
You may find that the sees file itself is corrupt. The most common way this happens is when
someone edits the file directly, not through the sees commands. sees keeps a checksum that
contains the "logical" sum of all of the characters in the file. If you modify the sees file directly the
checksum may have the wrong value. No sees command will process a corrupted sees file
except admin -h and admin -z as described below.

You should audit all sees files for corruption on a regular basis. The simplest way to do this is to
execute admin with its -h keyletter on all of the sees file:

adMin -h 5.filel s.file2 ff'

or:

adMin -h directorY

This checks to see if each file's checksum is correct. The message "corrupted file (cOS)" is
produced for a file whose checksum is not correct.

If you have a corrupted sees file, you must first determine why its checksum is incorrect. If it is due
to someone having directly modifying the file, the problem is often corrected by merely recomput
ing the checksum. Do this with admin's -z keyletter:

adMin -z prO!l.c

The checksum is recomputed to bring it into agreement with the actual contents of the file.

Note
Before you use admin -z you must find and correct the corruption
problem. This is because once the checksum is recomputed. the corrup
tion is no longer detectable. Admin ·z does not find or fix the problem. it
merely recomputes the checksum.

sees 21



Using the Admin Command
Admin is used to create new sees files and change parameters of existing ones. When an sees
file is created, its parameters are either initialized with keyletters or are assigned default values if no
keyletters are specified.

Newly created sees files are given mode 444 (read-only) and are owned by the effective user.
Only a user with write permission in the directory containing the sees file can use admin on it.

Creating SCCS Files
As discussed earlier, an sees file for a file called "prog" is created with:

The name of the sees file is "s.prog". If no file name is specified with the -i keyletter, the text is
read from standard input:

When the sees file is created, the release number assigned to its initial delta is normally "I" and
the level number is always "1", meaning that the first delta of the file is "1.1". You can assign a
different initial release number using admin's -r keyletter when the file is created:

admin -ipro~ -r3 s.pro~

Here, the initial delta is "3.1".

Adding Comments to Initial Delta ~

When you create an sees file, you can supply a comment stating the reason for the creation of the''t
file. This is done with the -y keyletter:

admin -ifile -y"The reason this file was created" s.file

If you do not specify an initial comment with -y, sees gives the initial delta a comment line with the
form:

date and time created YY/MM/DD HH:MM:SS by lo~name

Descriptive Text in Files
A portion of an sees file is reserved for descriptive text, text that summarizes the content and
pUIpose of the sees file. When you are creating an sees file you can insert descriptive text using
admin's -t keyletter followed by the name of a file containing the text:

admin -ifile -tdescrip s.file

You can either add descriptive text to an existing sees file or replace the descriptive text it already
contains with:

admin -tnew_descrip s.file

22 sees



where "new_descrip" is the name of the file containing the descriptive text. To remove descriptive
text from an sees file, use -t without a file name:

admin -t s.file

To see the descriptive text for an sees file, use prs as follows:

prs -d:FD: s.file

~
\ Prs's -d keyletter allows you to specify what information about the file that you want returned. The

":FD:" indicates that you want to see the file's descriptive text. Refer to the HP-UX Reference
manual entry for prs for more information about the command's -d keyletter.

Setting sees File Flags
sees files have a number of parameters called flags that can be added and deleted using the
admin command. These flags are maintained in a particular section of sees files along with their
associated values where appropriate. Add flags with admin's -f keyletter and delete them with its -d
keyletter. For example:

sets the d flag to the value "2.1". This flag can then be deleted using:

adtnin -dd prog.c

The flags that you can add with admin -for delete with admin -d are:

~" b

dSID

cceiling

ffloor

j

lJist

Allow branches to be made using get -e -b.

Default SID to be used on a get. If this is just a release number, the default is the
highest version number for that release.

Sets the highest release number for a file that can be retrieved with get -e to ceiling.
Ceiling must be a number less than or equal to 9999. The default release ceiling for
a file is 9999.

Sets the lowest release number for a file that can be retrieved with get -e to floor.
Roormust be a number greater than 0 and less than 9999. The default release floor
for a file is 1.

Give a fatal error dUring get or delta if there are no ID keywords in a file. This is
useful to guarantee that a version of the file does not get merged into the s-file that
has the ID keywords inserted as constants instead of internal forms.

Allow concurrent edits on the same version (SID) of the sees file.

A list of releases that cannot be retrieved for editing (get -e). The list has the
following syntax:

<list> ::= <range> : <list>,<range>

<range> ::= REALEASE_NUMBER : a

The character a is equivalent to specifying all of the releases for the names sees
file. If you do not specify a list with the I flag, a is assumed by default.

sees 23



n

qtext

mmodule

ttype

v[pgm]

To delete one or more "locked" releases with admin's -d keyletter you must also use
a list to specify which releases are to be "unlocked". For example, "admin -dla
s.file" unlocks all of the releases of s.file so that they can be edited.

Causes delta to create a "null" delta in each of those releases (if any) being skipped
when a delta is made in a new release (e.g. in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as "anchor points" so that
branch deltas may later be created from them. If this flag is not set for a file, skipped ~
releases are non-existent in the sees file, preventing branch deltas from being '.. ">I'
created from them in the future. . .

Replace all occurrences of the 10 keyword %Q% with the contents of file text when
the sees file is retrieved for inspection or compilation. If the q flag has not been set
for a file, occurrences of %Q% are not replaced with anything.

Replace all occurrences of the 10 keyword %M% with the specified module name
when the sees file is retrieved for inspection or compilation. If the m flag has not
been set for a file, occurrences of %M% are replaced with the name of the sees file
minus the "s." prefix.

Replace all occurrences of the 10 keyword %Y% with the specified type when the
sees file is retrieved for inspection or compilation. If the t flag has not been set for a
file, occurrences of %Y% are not replaced with anything.

Causes delta to prompt for Modification Request (MR) numbers as the reason for
creating a delta. If you set this flag when you create an sees file, admin's -m
keyletter must also be specified, even if its value is null.

You can optionally specify an MR number validation checking program called
"pgm" with admin -fvpgm.

Specifying Who Can Edit a File
Admin's -a keyletter allows you to specify who can edit an sees file. Use it as follows:

admin -alogin s.file

where "login" is a user's login name or an HP-UX group 10. If it is a group 10, the effect is
eqUivalent to specifying all login names common to that group 10. Several -a keyletters may be
used on a single admin command line.

Note that admin can accept one or more sees file names or directory names as arguments. For
example, the command line:

admin -abill -ajane -ajohn directorY

gives HP-UX users bill, jane, and john editing prlviledges to all of the sees files in the directory ~
"directory". The list of users for each sees file in the directory is updated to show this. No one else "
can edit the sees files there unless specifically given the right with admin -a.

24 sees



If no one has been assigned editing priviledges to a file with admin -a, the file's list of users is empty
and anyone can edit the file (as long as they have write access to the file's directory).

A user's ability to edit an sees file is removed with admin's -e keyletter. For example,

adMin -ebill directory

removes bill from the list of users allowed to edit the sees files in "directory".

Note
Before a user can be prohibited from editing a file, the file's list of users
must be non-empty. If the list is empty everyone has editing priviledges
and using admin -e has no effect.

When a file's list of users is non-empty, any user not added to the list
with admin -a is already prohibited from editing the file. Thus, you can
remove a specific user's editing privileges only if you have previously
added him to the list of users with admin -e.

sees 25



Maintaining Different Branches
Sometimes it is convenient to maintain an experimental version of a program for an extended
period while normal maintenance continues on the version in production. This can be done using a
"branch." Normally deltas continue in a straight line, each depending on the delta before. Creating
a branch "forks off' a version of the program.

For example, in the diagram below there is one branch delta having an SID of 2.1.1.1:

1.1~ 1.2~ 2.1~ 3.1

'" 2.1.1.1

The ability to create branches off of the latest main "trunk" delta must be enabled in advance by
setting the file's b flag:

adMin -fb pro~.c

The b flag can also be set when the sees file is first created. It is not necessary to set a file's b flag in
order to create a branch off of an older delta.

Creating a Branch
To create a branch off of the latest main trunk version, use:

If the retrieved version has an SID of 1.5 and no branch was previously created on it, a branch with ~.""'"
SID 1.5.1.1 is created when the file is deltaed. The deltas for this branch are numbered 1.5.1.n J
where "n" increments by 1 with each delta.

If you retrieve an old version of an sees file for editing, sees automatically assigns a branch SID
to the new delta. The file's b flag need not be set to do this. For example, assuming that the latest
delta of prog.c is delta 1.5 you can create a branch off of delta 1.2 using:

~et -e -rl.Z pro~.c

sees will automatically number the new branch delta 1.2.1.1 if it is the first branch off delta 1.2.

Retrieving a Branch
Deltas in a branch are not normally included when you use get. To retrieve these versions, you
have to say:

specifying the requested branch's SID.

Branch Numbering
sees uses the following SID numbering scheme for recognizing branch deltas:

release.level.branch.sequence

26 sees



"Release.level" is the SID of the delta on the main trunk from which the branch descends. A
"branch" number is assigned to each branch path that originates from a particular delta on the
main trunk. A "sequence" number is assigned to each delta on a particular branch. Branch deltas
always have all four of the above components in their SIDs and the release and level numbers are
always those of the ancestral main trunk delta.

When you retrieve a branch, specifying only the release, level, and branch components of the SID
returns the most recent version on a particular branch.

Although sees maintains enough internal information to remember delta dependencies of branch
deltas, the SID number itself does not always indicate all of the deltas between a branch delta and
its main trunk ancestor delta. For example, given delta 1.3.2.2 you know that the main path
ancestor is delta 1.3 and that it is the second delta (sequence = 2) on the second branch
(branch =2) descending from delta 1.3. However, the diagrams below indicate two possible de
velopment paths for delta 1.3.2.2:

DIAGRAM 1:
1.3.1.2

(Branch 1) 1 (Branch 2)
1.3.1.1~ 1.3.2.1~ 1.3.2.2

/
1.1~1.2~1.3~2.1~2.2

DIAGRAM 2:
1.3.1.2

(Branch 1) 1
1.3.1.1

I
1.1~1.2~1.3~2.1~2.2

"x1.3.2.1~1.3.2.2
(Branch 2)

Note that in Diagram 1, version 1.3.2.2 is dependent on deltas 1.1, 1.2, 1.3, 1.3.1.1, and 1.3.2.1,
while in Diagram 2 the delta with the same SID is dependent on 1.1, 1.2, 1.3, and 1.3.2.1.

A Warning
Branches should be kept to a minimum. After the first branch from the main trunk, SID's are
assigned rather haphazardly, and the structure gets complex very qUickly.

sees 27



sees's Protection Facilities
The protection facilities that sees provides for a system fall into two categories:

• general protection of files inherent to sees and that incorporates general HP-UX file system
protection by appropriately setting the modes of various files;

• specific system protection strategies that you control with the admin command.

General File Protection
New sees files created with admin are given mode 444 (read only). This mode prevents any direct
modification of the files by any non-SeeS commands. The mode of the files should not be
changed to allow direct modification.

sees files must have only one link (name) because of the way sees modifies the files. Com
mands that modify sees files (delta, admin) create a copy of the file. The copy, called an x-file, is
modified, the original sees file is removed, and the copy is renamed. If the original sees file has
any links, they are broken when it is removed. sees generates an error message if you try to
process any file under sees that has multiple links.

To prevent simultaneous updates to sees files, when an x-file is created a lock-file, called the
z-file, is also created. A z-file contains the process number of the command that creates it, and its
existence is an indication to other commands that the sees file is being updated. Other sees
commands that modify sees files will not process an sees file if a corresponding z-file exists. For
example, assume that two people are editing two versions of an sees file. When one of them
executes delta, a z-file is created which keeps the second person from successfully invoking delta.
When delta has completed, the z-file is removed and the second person is free to create his own
delta. Z-files are created with mode 444 (read only) in the directory containing the sees files and '~
are owned by the effective user.

sees checks for the corruption of an sees file by maintaining a checksum. Whenever the file is
modified with an sees command, its checksum is updated to reflect the logical sum of the number
of characters the file has. Most sees commands will not allow you to access a file that is corrupted.
The admin command allows you check for corrupted files and to correct them.

sees files should be kept in directories that contain only sees files and any temporary files
created by sees commands. This simplifies protection and auditing of sees files since most of the
commands allow you to operate on all of the sees files in a directory by merely specifying a
directory name. The contents of directories should correspond to convenient logical groupings,
such as subsystems of a large project.

28 sees



r

System Protection Using Admin
Admin allows the system administrator of a project to control five major areas of protection:

1. Prohibit concurrent editing of one version of a file;

2. Specify a list of users that have permission to edit a file;

3. Prohibit editing on particular releases;

4. Set range limits to what releases users can access;

5. Make the recognition of no ID keywords in a file by sees commands a fatal error.

The admin command allows you to use these protection strategies on either a file-by-file basis or on
a directory basis. How this is done is discussed in a previous section "Using Admin" .

Using sees With Make
If you are using make to create and maintain systems and are using sees to maintain the source
files for the systems, you can make the two work together by including sees commands in make's
makefiles. The folloWing discussion assumes that you already know how to use make. You can
refer to its entry in the HP-UX Reference or the article on it in HP-UX Concepts and Tutorials for
information about it.

There are a few basic targets that most makefile should have. These are:

a.out

install

sources

(or whatever the makefile generates.) This target entry regenerates whatever this
makefile is supposed to regenerate. If the makefile regenerates several intermediate
things, this should be called "all" and should in turn have dependencies on every
thing the makefile can generate.

Moves the objects to the final resting place, doing any special chmods or ranlib's as
appropriate.

Creates all the source files from sees files.

clean Removes unneeded files from the directory.

The clean entry should not remove files that can be regenerated from the sees files since it is
sufficiently important to have the source files around at all times.

Note that the examples of makefiles that follow are only partial and do not illustrate all of these
target entries fully. Also note that the example makefiles require that you execute make in the same
directory as the sees files.

sees 29



To Maintain Groups of Programs
Frequently there are directories with several largely unrelated programs (such as simple commands)
and these can often be maintained by one makefile. For example, the makefile below maintains
"prog" and "example":

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -0 prog prog.o

prog.o: prog.c prog.h

example: example.o
$(CC) $(LDFLAGS) -0 example example.o

example.o: example.c

.DEFAULT:
get s.$(

Note that the source for the programs is maintained as sees files and that these files must exist in
the same directory as the makefile for the makefile to be able to retrieve them. The .DEFAULT rule
is called every time something is needed that does not exist, and no other rule exists to make it. The
explicit dependency of the .0 file on the .c file is important. Another way of doing the same thing is:

SRCS= prog.c prog.h example.c

LDFLAGS= -i -s

prog: prog.o
$(CCl $(LDFLAGS) -0 prog prog.o

prog.o: prog.h

example: example.o
$(CC) $(LDFLAGS) -0 example example.o

sources: $(SRCS)
$(SRCS):

get s.$@

There are some advantages to the second approach:

• the explicit dependencies of .0 files on .c files are not needed;

• there is an entry called "sources" so if you just want to get all the sources you can just say
"make sources";

• the makefile is less likely to do confusing things since it won't try to get things that do not exist.

30 sees



To Maintain a Library
Libraries that are largely static are best updated using explicit commands, since make doesn't know
about updating them properly. However, make can adequately handle libraries that are in the
process of being developed. One problem in maintaining libraries is that the object (".0") files must
be kept out of the library as well as in the library.

# configuration inforMation
OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h Y.h z.h
TARG= lusr/lib

# prograMs
GET= get
REL=
AR= -ar
RANLIB= ranlib

lib.a: $(OBJS)
$(AR) rvu lib.a $(OBJSl
$(RANLIB) lib.a

install: lib.a
cp lib.a $(TARGl/lib.a
$(RANLIB) $(TARGl/lib.a

sources: $(SRCSl
$(SRCSl:

$(GETl $(RELl s.$@

print: sources
pr *.h *.[cs]

clean:
rM -f *.0
rM -f core a.out $(LIBl

The "$(REL)" in the $(SReS) entry allows you to retrieve various versions of the sees files. For
example:

MaKe REL=-rl.3

Note that for the install entry to execute properly, no one should be editing any of the sees files
when it is invoked.

sees 31



To Maintain a Large Program
Consider this example makefile:

OBJS= a.o b.o c.o d.D
SRCS= a.c b.c c.y d.s K.h y,h z.h

GET= ge t
REL=

a,out: $(OBJS)
$(CC) $(LOFLAGS) $(OBJS) $(LIBS)

sources: $(SRCS)
$ (SRCS):

$(GET) $(REL) s,$@

(The print and clean entries are identical to the previous case.) This makefile requires copies of the
source and object files to be kept dUring development. It is probably also wise to include lines of the
form:

a. 0: K.h y,h
b. 0: z.h
c. 0: K.h y,h z.h
z. h: K.h

so that modules are recompiled if header files change.

~~~~e make does not do transitive closure on dependencies, you may find in some makefiles lines ~

z.h: K.h
touch z.h

This would be used in cases where file z. h has a line:

#include "K.h"

in order to bring the date of z.h's last modification in line with the date of the last modification of x.h
(or rather, when the system thinks z.h was last modified). Alternatively, the effect of the touch
command can be achieved by doing a get on z. h.

32 sees



~ .•

Using sees on a Multi-User Project
This section describes the how sees is configured to maintain files for a large project that involves
several users. The person that configures and controls the sees files is called the "sees System
Administrator". You only need the information covered in this section if you are your project's
sees System Administrator.

If you plan to use sees on a project that involves several users, you must first develop a system of
controlling access to the sees files and commands. Thus far, this tutorial has only discussed a
one-user system, where that one user has write access to the directory containing the sees files.
The user has full use of all of the sees commands and can modify protected files (by first making
read-only files writeable).

As an sees System Administrator, you should provide an interface program that gives temporary
write access to the sees directory when users execute certain sees commands and and you
should restrict the users to read-only access at all other times. When sees files used on a project,
they are grouped in one directory (or more if necessary). The sees System Administrator is the
owner of the sees directory, has write access to it, and has full use of all of the sees commands.
Other users involved on the project should only have read access to the directory, which means that
they can not directly use the sees commands that require write access.

The sees interface program is a e program that provides a filter for the commands reqUiring that
the user have directory write access. If instead of using the interface program you give all of the
users write access to the sees directory, you greatly restrict the protection facilities sees pro
vides. Use of the interface prOVides users with only temporary write access when they execute one
of the commands. The two sees commands that reqUire directory write access and that must be
available to the users through the interface program are get and delta. RrndeJ, cdc, and unget also
reqUire write access and can also be made available to users through the program. The remaining
sees commands either do not reqUire write access to the sees directory or are usually used only
by the sees System Administrator (for example, admin).

How the sees Interface Works
The sees interface program invokes a specified sees command and causes the command's
process to inherit the privileges of the sees System Administrator for the duration of its execution.
This allows the process to obtain write access to the sees directory.

The names of the commands that you want filtered through the interface program must be linked to
the program so that invoking the command name executes the program. The interface program is
written in e and when a e program is executed, the name that invoked the program is passed as
argument 0 and is followed by any user-supplied arguments. By looking at the value of argument 0,
the program knows which command to execute. Thus, the command name used to invoke the
interface program determines which sees command the program executes. How other argu
ments, such as sees file names, are processed is often system dependent, but they can be passed
directly to the sees command by the program.

sees 33



Configuring an SCCS System Using the Interface
As the sees System Administrator, there are six basic steps that you must carry out before
allowing other users to access sees files:

1. Create and move to an sees directory.

2. Write and compile the interface program.

3. Change the mode of the program.

4. Set up links between the program and the sees command names. ,...,

5. Modify each user's search path so that the directory containing the interface program is
searched before "/usr/bin", the directory containing the sees commands.

6. Create the sees files.

Creating the SCCS Directory
Before you can successfully use the sees interface program, you must create one or more
directories for storing the sees files and the program. You, as the sees System Administrator,
should be the only one with write access to the directory.

For example, to create a directory called "/system/sees" and then restrict write access to yourself,
use:

mKdir /system/sccs

chmod 755 Isystem/sccs

You must now move to the sees directory since you must to write and maintain the sees
interface program there: ')

cd /sYStem/sccs

Writing and Compiling the Program
The sees interface program is written in e and this section assumes that you already know how to
program in that language.

You should write an sees interface program that is customized to the needs of your system. To get
you started, however, a general purpose interface program is provided below.

main(ar9'ct ar9'v)
int ar9'ci
char *argv(li
{

re9'ister int i; I*counts command line ar9'uments*1
character cmdstr(LENGTHli /*holds sees command name*1

/*
Do any required processing of file name arguments that
follow the sees command name (arg'uments that don't begin
with -)

*/

for (i = Ii i<arg'ci iff)
if (ar9'v(il(Ol != '-')

arg'v(il = filearg'(arg'v[il)i

34 sees



/*
Get "siMPle naMe" of naMe used to invoke this prograM
(i.e. strip off directory-prefix naMe, if any).
This step May not be needed in your SysteM.

*/

snaMe(argv[O) i

/*
Invoke actual sees cOMMand, passing arguMents.

*/

sprintf(cMdstr, "/usr/bin/Is", argv[O) i

execv( cMdstr, argv) i
}

This example program calls two routines that you must supply and that allow you to customize the
sees interface. UFilearg" acts as a preprocessor for sees commands. In the program above, it is
used to modify sees file name. This modification often involves appending the path name of an
sees directory to the sees file names so that users can access the files without having to specify
full path names.

The second routine that you must supply is "sname". Its purpose is to modify the name with which
the user invoked the interface program so that it agrees with the name of the associated sees
command. The statement calling this routine is not required when the link names of the interface
program are the same as the names of the sees commands.

Once you have written an sees interface program designed for your system, you must compile it.
Assuming that you source code file is called "interface.c", use the following to compile it:

cc interface.c -0 interface

The name of the resulting executable program is "interface".

Specifying the Mode of the Program
The interface program must be owned by the sees System Administrator, and must be executable
by the other users involved on the project. It must also have its "set user ID on execution" bit on so
that when the program is executed, the user obtains write access to the sees directory. Assign
these necessary characteristics to the program with:

ChMOd 4755 interface

where Uinterface" is the name of the executable interface program.

Assign Name Links to the Program
Now that you have an executable interface program, use the cp command to assign name links to
it. It is convienent for the users if these name links are the same as the sees commands that are
executed by the program.

sees 35



To illustrate, assume that you want to allow users to access the get and delta commands through
the interface program. Create the necessary links with:

CP interface get

CP interface delta

You now have three names that point to the same program: "interface", "get", and "delta". All of
the other sees commands that reqUire write acess to the sees directory will be inaccessible to the ,
users since you have not linked them to the program.

Modifying the Users' Search Path
Once you have linked the appropriate sees command names to the sees interface program,
you must modify each user's HP-UX search path so that the directory containing the the interface
program is found before the actual sees commands. PATH is the HP-UX variable that specifies
where the system looks for a command when a user executes it. When any command is executed,
the system searches for the command in the directories defined by the user's PATH variable. The
directories are searched in the order in which they appear in the variable's list. Your HP-UX system
has a default definition for PATH but it can be redefined by each user in his ".profile" file. Refer to
your system's HP-UX System Administrator Manual for more information about the PATH variable
and the ".profile" file.

Whether you have to change the PATH variable in every user's ".profile" file or just the system's
default definition, you must insert the sees directory name before the appearance of "/usr!bin",
the directory containing the sees commands, in PATH's directory list. For example, if a user's
PATH variable is defined as:

PATH=/bin:/usr/bin

you should change it to:

PATH=/bin:/sYstem/sccs:/usr/bin

where "/system/sccs" is the name of the sees directory containing the sees interface program.
When you execute a command, the system first searches for it in !bin, then in /system/sccs, and
finally in /usr!bin.

Creating sees Files
As sees System Administrator, you are the only user able to execute admin because it requires
write access to the sees directory and you did not specify it as a link name to the sees interface
program. Having sole access to admin means that you can strictly control the creation of sees files
and the setting to their various flags. Refer back to the section "sees's Protection Facilities" in this
tutorial for more information.

Note that in order to make full use of sees for a multi-user project, sees files should be
maintained in a central location and logically grouped into one or more sees directories. ~

36 sees



Quick Reference
Commands
In the discussion of the following SCCS commands, only the most useful keyletter arguments are
discussed. Refer to the HP-UX Reference for complete descriptions of the commands and all of
their keyletters.

get Gets files for compilation (not for editing). ID keywords are expanded. Note that get
-e is listed separately.

-rSID Version to get.

-p Send text to standard output rather than to the actual file.

-k Don't expand ID keywords.

-i1ist List of deltas to include.

-xlist List of deltas to exclude.

-m Precede each line with SID of creating delta.

-cdate Don't apply any deltas created after date.

get -e Gets files for editing. ID keywords are not expanded. Should be matched with a
delta command.

-rSID

-b

Same as get -rSID. If SID specifies a release that does not yet
exist, the highest numbered delta is retrieved and the new delta is
numbered with SID.

Create a branch.

delta

unget

prs

sact

what

-Hist Same as get -iUst.

-xlist Same as get -xlist.

Merge a file retrieved with get -e back into the s-file. Collect comments about why
this delta was made.

Remove a file previously retrieved with get -e without merging the changes into the
s-file.

Print information about the SCCS file.

Determine who is currently editing a file.

Find and print ID keywords that have been expanded. They must be preceded by
@(#) (the expand form of the keyword %Z%).

sees 37



admin Create or set parameters on s-files.

-Hile Create s-file, using file as the initial contents.

-z Rebuild the checksum in case the file has been trashed.

-ff1ag[valuel

-dflag

-tfile

-h

Tum on the flag and optionally give it a value.

Tum off (delete) the flag.

Replace the descriptive text in the s-file with the contents of file. If
file is omitted, the descriptive text is deleted from the s-file. Useful
for storing documentation or "design & implementation" docu
ments to insure they get distributed with the s-file.

Check for corruption in the s-file.

Useful flags are:

b

dSID

sccsdiff

cdc

rmdel

help

38 sees

Allow branches to be made using the -b flag to get -e.

Default SID to be used on a get.

Cause "No ld Keywords" error message to be a fatal error rather
than a warning.

The module "type"; the value of this flag
replaces the %Y% keyword.

Compare two versions of an SCCS file.

Change the comment line or MR number associated with a previously created delta.

Remove a delta from an SCCS file. This delta must be the most recent on its branch ~
or the main trunk-- no other deltas can depend on it.

Supplies additional information about an SCCS error message.



r %F%

%y%

%1%

%W%

%E%

%G%

%U%

%R%

%L%

%8%

%5%

~
%D%

%H%

%T%

%Q%

%C%

ID Keywords
%2% Expands to "@(#)" for the what command to find. Every ID keyword string that

you want what to see must be preceded by this keyword.

%M% The current module name, e.g., "prog.c". Unless set by admin, it defaults to the file
name minus the "s." prefix.

The SCCS file name.

The value of the t flag as set by admin.

The SID of the retrieved text. The highest delta applied.

A shorthand for "%Z%%M% <tab> %1%".

The date of the delta corresponding to the "%1%" keyword (VY/MMlDD).

The date of the delta corresponding to the "%1%" keyword (MMlDDNY).

The time the delta correspnding to the "%1%" keyword was created (HH:MM:SS).

The current release number, i.e., the first component of the "%1%" keyword.

The current level number, i.e., the second component of the "%1%" keyword.

The current branch number, i.e, the third component of the "%1%" keyword, if it
exists.

The current sequence number, Le., the fourth component of the "%1%" keyword, if
it exists.

The current date (VY/MM/DD).

The current date (MM/DDNY).

The current time (HH:MM:SS).

The value of the q flag as set by admin.

The current line number. It is intended for identifying messages output by the
program such as "this shouldn't have happened" type errors. It is not intended to be
used on every line to provide sequence numbers.

sees 39



40 sees

.":;:-

~... \"'" J

I~.···"\.-
.J



Table of Contents
Chapter 1: Interfacing Concepts

Introduction 1
Manual Organization 1

The OIL Interfacing Routines 2
Location of the Interfacing Routines 2
Linking the OIL Routines 2
Calling the OIL Routines From Pascal 2
Calling the OIL Routines From FORTRAN 3

Why Do You Need an Interface? 4
Electrical and Mechanical Compatibility 5
Data Compatibility 5
Timing Compatibility 5
Additional Interface Functions 5

The HP-IB Interface 6
General Structure 6
Handshake Lines 6
Bus Management Control Lines 7

The GPIO Interface 8
Data Lines 8
Handshake Lines 8
Special Purpose Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8

Data Handshake Methods 9
Data-In Clock Source 9

Chapter 2: General Purpose Routines
Computer Communication With an Interface 12

Creating an Interface File 12
Opening the Interface Files 15
Closing the Interface File 16
Reading and Writing 17
Designing Error Checking Routines 18

Using Errno 18
Resetting Interfaces 19
Controlling I/O Parameters 20

Setting the I/O Timeout 20
Setting Data Path Width 21
Setting Transfer Speed 22
Setting Read Termination Character 23
Removing a Read Termination Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

Determining \Vhy a Read Terminated 25
Interrupts 27

Chapter 3: Controlling the HP-IB Interface
Overview of HP-IB Commands 31
Overview of the HP-IB OIL Routines 35

The Computer's Role on the HP-IB 36



Opening the HP-IB Interface File 37
Sending HP-IB Commands 38
The Active Controller 40

Determining Active Controller 40
Setting Up Talkers and Listeners 41
Remote Control of Devices 43
Locking Out Local Control 43
Enabling Local Control 43
Triggering Devices . . . . . . . . .. 44
Transferring Data 44
Clearing HP-IB Devices 45
Servicing Requests 46
Parallel Polling 47
Waiting For a Parallel Poll Response 51
Serial Polling 54
Passing Control 55

The System Controller 56
Determining System Controller 56
System Controller's Duties 57

The Computer As a Non-Active Controller 59
Determining the Controller's Status 59
Requesting Service 60
Responding to Parallel Polls 61
Disabling Parallel Poll Response 63
Accepting Active Control . . . . . . . . . . . . . . . . . . .. 63
Determining When You Are Addressed 65

Buffering I/O Operations 68
lodetail: The I/O Operation Template 68
Allocating Space 70
An Example 71
Locating Errors in Buffered I/O Operations 74

Chapter 4: Controlling the GPIO Interface
Configuring Your GPIO Interface 75

Setting the Interface Switches 75
Creating the GPIO Interface File 75

Limitations on Controlling the Interface 76
Using the OIL Routines 76

Resetting the Interface 77
Performing Data Transfers 77
Using the Special-Purpose Lines 78
Controlling the Data Path Width 79
Controlling the Transfer Speed 79
Read Terminations 80
Interrupts 80

Appendix A: Series 500 Dependencies
Creating the Interface File 81

Determining the Driver 81
Determining the Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81

ii



Determining The Bus Address of the Interface Card 82
Entity Identifiers 82
Restrictions Using the DIL Routines 82

hpib_bus_status 82
hpib_card_ppoll_resp 83
hpib_rqst_srvce 83
hpib_send_cmnd 83
hpib_status_\vait 84
hpib_wait_on_ppoll 84
io_get_terln_reason 84
io_timeout_ctl 85
io_speed_ctl 85
io_width_ctl 85

Performance Tips 86

Appendix B: Character Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89

Index

iii



iv

f~
."J



Interfacing Concepts
Introduction

1
This tutorial illustrates how to access an arbitrary device through HP-IB (Hewlett-Packard
Interface Bus) and GPIO (General Purpose Input/Output) interfaces on your HP-UX system
using the routines in DIL (Device I/O Library). This tutorial covers general inteI facing strate
gies, in addition to strategies designed specifically for HP-IB and GPIO interfaces.

The tutorial assumes that you want to communicate with devices from within a program pro
cess. All OIL routines can be called from C, Pascal, and FORTRAN programs. The examples
illustrating the use of the routines are written in C; however, with a little extra code they can
be accessed from Pascal or FORTRAN programs.

Manual Organization
Chapter 1: Interfacing Concepts presents basic interfacing concepts and a description of the
HP-IB and GPIO interfaces.

Chapter 2: General Routines discusses how the interfaces are accessed in the HP- UX environ
ment and how basic data transfers are implemented.

Chapter 3: Controlling the HP-IB Interface describes interfacing techniques for the HP-IB
interface.

Chapter 4: Controlling the GPIO Interface covers interfacing techniques for the GPIO interface.

Appendix A: Series 500 Dependencies covers hardware and system dependent information.
Check for restrictions on using the OIL routines by referring to the appendix for your system.

Appendix B: Character Codes

Interfacing Concepts 1



The DIL Interfacing Routines

Location of the Interfacing Routines
The OIL routines that provide direct control of your computer's interfaces are contained in the
/usr/lib/libdvio.a library. Some routines are general purpose and can be used with any interface
supported by the library, wbile others provide coutrol of specific interfaces. The Device I/O "...,
Library (OIL) currently supports the HP-IB and GPIO interfaces. ._~

Linking the DIL Routines
You can make calls to the OIL routines from C, Pascal, or FORTRAN programs. However, the
library is not automatically linked with your program when you compile the program with cc,
pc, or fc. You must use the -I flag to specify that the library be linked with the program. To
compile a C program and then link the OIL routines with it, type:

cc program.c -ldvio

To do the same thing with a Pascal program, type:

pc program.p -ldvio

and with a FORTRAN program, type:

fc program.f -ldvio

In all three cases, the -I option is passed to the HP-UX linker, causing it to look for and search a
library named /lib/libxxx.a where xxx is a string of characters specified after the -I option. If the ~
linker fails to find the routine in that library it continues to search for it in /usr/lib/libxxx.a. If )
you do not indicate the /usr/lib/libdvio.a be linked with your program, any calls to OIL routines
are seen as errors by the HP-UX linker.

Calling the DIL Routines From Pascal
External declarations are required for each OIL routine that you want to call from a Pascal
program. This declaration consists of the routine heading, including a formal parameter list
and result type, followed by the pre-defined word EXTERNAL. For example, the C description
of open is:

int open( path. oflag);
char *path;
int of lag;

The external declaration in a Pascal program for the routine looks like:

TYPE
PATHNAME = PACKED ARRAY [0 .. 50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
of lag: INTEGER):
INTEGER;
EXTERNAL;

2 Interfacing Concepts



Note that one of the parameters in the open declaration is type VAR, indicating that the value
be passed by reference. This simulates the passing of a pointer, which is what open expects.
There is generally a straight forward mapping between a routines C declaration and Pascal
equivalent.

Calling the DIL Routines From FORTRAN
C and FORTRAN routine calls are not compatibile because C passes parameters by value while
FORTRAN passes them by reference.

To overcome this incompatibility, you direct the compiler to generate a call by value using
FORTRAN's $ALIAS directive. For example:

$ALIAS close = 'close' (%val)

If your system's FORTRAN compiler does not support this form of $ALIAS, you may need to
solve the parameter passing differences by writing an onionskin routine in either C or Pascal.
An onionskin is a C language function written for the purpose of resolving parameter passing
irregularities between C and other languages.

For example, to access close using an onionskin routine you use:

$ALIAS close = '_my_io_close'

and then write the onionskin routine:

int my_io_close (eid);
/*the compiler will create the external symbol "_my_io_close ll

based on the above declaration*/
int *eid;
{

int real_eid = *eid;
return (close (real_eid»;

}

Interfacing Concepts 3



Why Do You Need an Interface?
The remainder of this chapter presents a brief description of what an interface is and focusses
on the HP-IB and GPIO interfaces in particular. This information is provided for background
purposes only, it is not required before using the OIL routines. You can skip the remainder of
this chapter and go immediately to Chapter 2: General Purpose Routines.

The primary function of an interface is providing a communication path for data and commands ~
between the computer and its resources. Interfaces act as intermediaries between resources by. )
handling part of the bookkeeping work and ensuring that this communication process flows
smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates and
receives electrical signals, the hardware was not designed to be connected directly to external
devices. The electronic backplane hardware was designed with specific electrical logic levels and
drive capability in mind. Exceeding its ratings damages this electronic hardware.

Second, in assuming that connectors and signals are compatible, you have no guarantee data
sent is interpreted properly by the receiving device. Some peripherals expect single-bit serial
data while others expect 8-bit parallel form.

Third, there is no reason to believe that the computer and peripheral are in agreement as to
when data transfer occurs; and when the transfer does begin, the transfer rates probably will
not match. As you can see, interfaces are responsible for overseeing the communication between
computer and its resources. The functions of an interface are shown in the following block
diagram (see Figure 1.1).

Fourth, you cannot be assured that the connectors of the computer and peripheral are compat
ible. In fact, there is good probability the connectors may not mate properly, let alone provide
a one-to-one correspondence between the function of each signal wire.

r---------------
Interface

--,

Computer

Computer
Compatible
Connector

L... _

Logic
Level
Matcher

Interface
Logic

Logic
Level
Matcher

cab~

D~
Compatible
Connector

_ .....J

Peripheral
Device

Figure 1.1: Functional Diagram of an Interface

4 Interfacing Concepts



Electrical and Mechanical Compatibility
Electrical compatibility must be ensured before connecting two devices. Often two devices have
input and output signals that do not match. If so, the interface strives to match the electrical
logic levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly.
All HP computer interfaces have connectors that mate with the computer backplane. The
peripheral end of the interfaces can have unique configurations due to the fact that several
types of peripherals are available. Cables are available for most interfaces that will connect
directly to the device so you don't have to wire the connector yourself.

Data Compatibility
Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating. As a programmer, one of the most
difficult compatibility requirements to fulfill (before exchanging data) is making sure the format
and meaning of the data being sent is identical to that anticipated by the receiving device.
Even though some interfaces format data, most interfaces are not responsible for matching data
formats. Most interfaces merely move agreed upon quantities of data to or from computer
memory. The computer must generally make the necessary changes, if any, so that the receiving
device gets meaningful information.

Timing Compatibility
Since all devices do not have standard data-transfer rates, nor agree to when the transfer will
take place, a consensus between sending and receiving devices must be made. If the sender and
receiver agree on both the transfer rate and beginning point (in time), the transfer can be made
easily.

The data transfer must be started at an agreed-upon time and at a known rate. If not, the
transfer proceeeds one data item at a time with the receiving device acknowledgeing that it
recieved the data and that the sender can transfer the next data time. This process is known
as a handshake. Both types of transfers are utilized with different interfaces.

Additional Interface Functions
Another powerful feature of an interface card is relieving the computer of low-level tasks, such
as performing data transfer handshakes. This distribution of tasks eases some of the computer's
burden and decreases the otherwise stringent response-time requirements of external devices.
The actual tasks performed by each type of interface card varies widely. The next sections
concentrate on the functions of two particular interfaces: the HP-IB and the GPIO.

Interfacing Concepts 5



The HP-IB Interface
The HP-IB (Hewlett-Packard Interface Bus) provides compatibility between the computer and
external devices conforming to the IEEE 488-1978 standard. Electrical, mechanical, and timing
compatibility requirements are satisfied by the bus which allows you to connect up to 15 devices
to one interface.

General Structure
Communications through the HP-IB are made according to a precise set of rules defined by the
IEEE 488-1978 standard. These rules ensure orderly communication.

There are three types of devices on the HP-IB:

• controller

• talker

• listener

These types are actually attributes that exist alone or in combinations in one device. For
example, the HP-IB interface allows a desktop computer to be a controller, talker, and listener.
A device that accepts data from the bus (for example a printer) is usually a listener, while a
device that supplies data to the bus (for example a voltmeter) is usually a talker. At anyone
time, the bus has only one Active Controller and only one talker, but it can have any number
of listeners.

The HP-IB is composed of 16 lines which are divided into 3 groups. 8 lines form a bi-directional ~.

data path which carries data, commands, and device addresses; 3 lines control the transfer of i
data bytes; and the 5 remaining lines control bus management

Handshake Lines
The handshake lines used to synchronize data transfers are:

• DAV - Data valid

• NRFD - Not ready for data

• NDAC - Not data accepted

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated as
active listeners indicate when they are ready for data using the NRFD line. A device that is
not ready to recieve data asserts this line (by pulling it low). Any device that is ready lets the
line float high. Since an active low overrides a passive high, the NRFD line stays low until all
active listeners are ready for data.

When the bus talker senses all devices are ready, it places the next data byte on the data lines
and asserts DAV by pulling it low. This tells the listeners that the information on the data
lines is valid and they can read it. Each listener then accepts the data and lets the NDAC line ~
float high (false). As with NRFD, when all listeners have let NDAC go high the talker senses }
that all listeners have read the data. It can then float DAV (let it go high) and start thc cntire
sequence over again for the next byte of data.

6 Interfacing Concepts



Bus Management Control Lines
There are five bus management control lines:

• ATN - Attention

• IFC - Interface clear

• REN - Remote enable

• EOI - End or identify

• SRQ - Service request

ATN: The Attention Line
Command messages are encoded on the data lines as 7-bit ASCII characters, and are distin
guished from the normal data characters by the attention line's (ATN's) logic state. That is,
when ATN is false, the states of the data lines are interpreted as data. When ATN is true, the
data lines are interpreted as commands.

IFC: The Interface Clear Line
Only the System Controller sets the IFC line true. By asserting IFC, all bus activity is uncon
ditionally terminated, the System Controller becomes the Active Controller, and any current
talker and listeners become unaddressed. Normally, this line is used to terminate all current
operations, or to allow the System Controller to regain control of the bus. It overrides any other
activity currently taking place on the bus.

HEN: The Remote Enable Line
This line allows instruments on the bus to be programmed remotely by the Active Controller.

~ Any device addressed to listen while REN is true is placed in its remote mode of operation.

EOI: The End or Identify Line
The EOI line is used to indicate the end of a data message. Normally, data messages sent
over the HP-IB are sent using standard ASCII code and are terminated by the ASCII line-feed
character. However, certain devices need to send blocks of information containing data bytes
which have the line-feed character bit pattern as part of the data message. Thus, no bit pattern
can be designated as a terminating character, since it could occur anywhere in the data stream.
For this reason, the EOI line is used to mark the end of the data message.

Another function of EOI is that, when it is asserted along with the ATN line, a parallel poll is
taken of the bus.

SRQ: The Service Request Line
The Active Controller is always in charge of ordering events that occur on the HP-IB. If a device
on the bus needs the Active Controller's help, it sets the SRQ line true. The SRQ line sends a
request for service, not a demand, and it is up to the Active Controller to choose when and how
it services the request. However, the device continues to assert SRQ until it has been satisfied.
Exactly what satisfies a service request depends on the requesting device, and is explained in
the device's operating manual.

Interfacing Concepts 7



The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface that
allows communication with a variety of devices. On the Series 500, the interface sends and
receives up to 16 bits of data with a choice of several handshake methods. External interrupt
and user definable signal lines provide additional flexibility.

The GPIO interface is composed of the following lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special purpose lines

Data Lines
There are 32 data lines: 16 for input and 16 for output. These lines normally use negative logic
(0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates true with
the interface's Option Switches. Refer to your GPIO interface manual to see how to do this.

Handshake Lines
Although four lines fall into this group, only three are used for controlling the transfer of data:

• PCTL - Peripheral Control line

• PFLG - Peripheral Flag line

• I/O - Input/Output line ~
The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used to
signal the peripheral's readiness to continue the transfer process. The Input/Output (I/O) line
is used to indicate direction of data flow.

The fourth handshake line is the External Interrupt Request (Em) line. This line is used by a
peripheral to signal service requests to the computer.

Special Purpose Lines
Four lines are available for any purpose you desire; two are controlled by the peripheral de
vice and sensed by the computer, and two are controlled by the computer and sensed by the
peripheral.

8 Interfacing Concepts



Data Handshake Methods
Handshaking is a method of synchronizing transfer of data from the sending device to the
receiving device. In order to use any handshake method, the computer and peripheral device
must be in agreement as to how and when several events occur.

There a.re two handshake methods using PCTL and PFLG to synchronize data transfers: Pulse
Mode Handshakes and Full-Mode. If the peripheral uses pulses to handshake data transfers and
meets certain hardware timing requirements, the Pulse-Mode Handshake is used. The Full-Mode
Handshake should be used if the peripheral does not meet the Pulse-Mode timing requirements.
Refer to the GPIO interface's documentation for a description of these handshake methods.

Data-In Clock Source
Ensuring that data is valid when read by the receiving device differs slightly depending on
what direction the data is flowing. When writing data out from the computer the interface
generally holds data valid while PCTL is in the asserted state, the peripheral must read the
data during this period. When reading data from the peripheral, the peripheral must hold the
data valid until it can signal that the data is valid or until the data is read by the computer.
The peripheral signals that the data is valid using the PFLG line. This clocks the data into the
interface's Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data by setting the FLAG
switches on the interface card. Refer to the card's installation manual to find out how to do
this.

Interfacing Concepts 9



10 Interfacing Concepts



General Purpose Routines 2
The Device I/O Library (OIL) contains eight routines that can be used with any interface
supported by the library. The table below lists them.

~ Routine

io_reset

io_timeouCctl

io_ width_ctl

io_speed_ctl

io_eoLctl

io_geCterm_reason

io_on_interrupt

r io_interrupCctl

Description

Reset the interface associated with the interface file having the spec
ified entity identifier.

Assign a timeout value for data transfers.

Set the width of the data path for the interface associated with the
interface file having the specified entity identifier.

Select a transfer speed for the interface associated with the file having
the specified entity identifier.

Set up a read termination character on an interface file associated
with the specified entity identifier.

Determine how the last read terminated for the file associated with
the specified entity identifier.

Set up interrupt handling for program.

Allow enabling and disabling of interrupts for the associated eid.

This chapter presents some techniques for using these routines in I/O processes, along with four
system routines: open, close, read, and write. However, before you can use them, you must
create a file HP-UX can use to communicate with the interface.

General Purpose Routines 11



Computer Communication With an Interface
HP-UX treats I/O to an interface in the same way it treats I/O to a file. In fact, before your
computer can communicate with an interface, a special file must be created. Normally, this
special file defines the location of a particular device connected to the interface and the manner
in which the computer and the device communicate. However, to use the routines in DIL, you
must set up a special file for the interface, not for a device on the interface.

The general process of creating special files is described in the HP- UX System Administrator
Manual for your system. The following discussion points out specific requirements needed for
a special file associated with an interface. Refer to the Appendix for hardware-dependent
information.

Creating a special file for an interface is the one step in the interfacing process described in this
manual that is not done from within a program process. Special files are created from either
your HP-UX shell or a shell script.

Creating an Interface File
Special files are created with mknod. To use this command, first log onto your system as the
super-user. Next, determine the values of the following parameters required by mknod:

1. Determine a file pathname that identifies the interface itself, not a peripheral on the
interface. Special files are usually kept in the directory /dev. This is basically a HP-UX
convention; some commands expect to find special files in the / dev directory and fail if
they are not there.

2. Determine which driver must be used to talk to the interface. The driver is specified with
a major number. This information can be found in the Appendix for your system and in
the HP- UX System Administrator Manual.

3. On the Series 500, determine a minor number, a hexadecimal value specifying the location
of the interface. It has the following form:

OxScAdUV

where:

Ox specifies that the characters which follow represent hexadecimal values. These two
characters (zero and x) are entered as shown.

Sc a two-digit hexadecimal value specifying the select code of the interface card.

Ad a two-digit hexadecimal value specifying a bus address. If the interface normally
handles automatic addressing to a particular device (e.g. the HP-IB interface),
the value you specify here places the interface in raw mode so it does no automatic
addressing. Refer to the Appendix for your system to find out what value is required.
If only one device can be connected to the interface (e.g. the GPIO interface), the
component of the minor number is ignored.

U a single-digit hexadecimal value specifying a secondary address. The component of
the minor number is ignored when the special file you are creating is for an interface.

V a single-digit hexadecimal value specifying a secondary address, such as the volume
number in a multi-volume drive, which is ignored also.

12 General Purpose Routines

)
..... _.-"



Once you have values for the pathname: major nllmber, and minor number, you can execute
mknod from your HP-UX shell. The command line has the form:

mknod patbname c major minor

Note that c indicates you want to create a character special file. This is required if you plan to
access the interface using DIL routines.

Creating an HP-IB Interface File
Normally, HP-IB device files refer to a specific device or bus. Since the DIL routines are
restricted to working with the interface card, a special device file that refers to the interface
must be used. This device file will be referred to as a raw HP-IB device file. Raw refers to bytes
of data that are uninterpreted, in this case, by the interface.

Assume that you have an HP-IB interface that you want to acccss using DIL routines on a Series
500 computer. To do this you must first create a charactcr special file for it using mknod.

1. Log onto your Series 500 as the super-user.

2. Choose a pathname for the interface. For this example, use /dev/raw_hpib.

3. You must create a charactcr special file so that the DIL routines can be used; therefore,
the file type argument of mknod is c.

4. Referring to Appendix A: Series 500 Dependencies you find that the raw HP-IB interface
must use driver 12 which is built-in. The Series 550 uses driver 37 for the HP-IB interface.
Therefore, the major number argument of mknod is 12 or 37.

5. Determine the minor number argument for mknod. One component of the minor number
depends on the interface's select code. On the Series 500 this code corresponds to the I/O
slot of the interface card. Assume that you have placed the card in the slot with select
code 02. Another component specifies a bus address. To place the HP-IB interface in
raw mode you must use an address of 31. Since the minor number requires hexadecimal
values, this component is if. The last two componcnts of the minor number specifying
secondary addresses are ignored. (They are set to zero in the call to mknod below.)

6. Now invoke mknod with:

mknod Idev/raw_hpib c 12 Ox021fOO

You should now log out as super-user.

If you study the previous procedure, you notice that for all raw HP-IB interface files you create
on a particular computer only two values vary: the pathname of the interface file and the
select code component of the minor number. To illustrate, assume that you have two HP-IB
interface cards installed for Series 500 and you want to access them both using DIL routines.
The commands below set up a special file /dev/raw_hpibi at select code 02 and a special file
/dev/raw_hpib2 at select code 03:

mknod Idev/raw_hpib1 c 12 Ox021fOO

mknod Idev/raw_hpib2 c 12 Ox031fOO

General Purpose Routines 13



Creating a GPIO Interface File
Now assume that you have a GPIO interface that you want to access with the DIL routines on
the same Series 500 computer. Using the following steps, you can create a character special file
for the interface.

1. Log onto your Series 500 as the super-user.

2. Choose a pathname for the interface. For this example, use /dev/raw_ypio.

3. You must create a character special file so that the DIL routines can be used; therefore,
the file type argument of mknod is c.

4. Referring to Appendix A: Series 500 Dependencies you find that the GPIO interface must
use driver 18; therefore, the major number argument of mknod is 18.

5. Because the GPIO interface is not a bus architecture, the usual bus address and secondary
address components of mknod's minor number are ignored and you need only determine
the select code value. Assume that you have placed the interface in the I/O slot on your
Series 500 corresponding to select code 04.

6. Now invoke mknod with:

mknod /dev/raw_gpio c 18 Ox040000

and then log out as super-user. Although the minor number above has its addressing
components set to zeros, any hexadecimal values could have been used.

As with the HP-IB interface, only two values vary for each GPIO interface file you create: the
pathname of the file and the select code component of the minor number.

Note that the last two examples are for the Series 500 computer.

14 General Purpose Routines



Opening the Interface Files
Other than the default standa.rd input, standard output, and standard error files, you must
explicitly open files in order to read and write to them from inside C, FORTRAN, or Pascal
programs. The HP-UX system routine for opening files is open. It is called as follows:

int eid:

eid = open( filename. oflag):

filename is either a character string representing a file's external HP- UX name or a pointer
to a buffer that contains the external name. The integer oflag specifies the access mode for
opening the file. It can have one of three possible values: 0 requests read-only access; 1 requests
write-only access; and 2 requests both read and write access.

The command open returns a non-negative integer (eid) that is the entity identifier for the file
that you are opening. The entity identifier is an internal name for the file. During any reads or
writes to a file you must specify the file by its entity identifier, not its HP-UX file name.

The following code defines an entity identifier called eid and opens an interface file called
/dev/raw_hpib with read and write access:

int eid:
eid = open("/dev/raw_hpib". O_RDWR);

As an alternative to specifying the character string name of the HP-UX file in the call to open,
you can place the name in a buffer and then call open with a pointer to the buffer. O_RDWR
(defined in the include file lentl.h) is an integer (for example, 2) specifying the access mode for
opening the file. For example, the following code also opens the HP-IB interface file:

int eid;
char *buffer;

buffer = "/dev/raw_hpib";
eid = open(buffer. O_RDWR);

If a file is successfully opened, open returns a non-negative integer as the entity identifier.
However, if an error occurs and the file is not opened, a -1 is returned.

General Purpose Routines 15



Closing the Interface File
Just as opening a file gives a program access to that file, closing a file removes access and
disconnects the file from the program. Normally, you do not have to worry about closing the
files that your program opens because when a program terminates (via exit or a return from
the main routine) any open files associated with it are closed automatically. However, HP-UX
limits the number of files one process (or program) can have open at one time to NO_FILE.
NO_FILE is set to the number of open files allowed and is defined in the include file param.h.
As good programming practice, you should use the HP-UX system routine close when you are
through using the interface file in a program.

The command close requires the entity identifier for an open interface file as an argument. The
code below shows how an HP-IB interface can be opened and closed:

#include <fcntl.h>
mainO
{

int eid;
eid = open( "/dev/raw_hpib", O_RDWR);

/*Can now communicate with the interface*/

close(eid);
}

The connection between the entity identifier and the open file is now broken and the entity
identifier is available for the system to assign to another file. A file that is opened on two
separate occasions need not be assigned the same entity identifier both times by the system.

If the routine successfully closes the specified file, it returns a 0; if not, it returns a -1 and errno
is set to indicate the error (see the section Designing Error Checking Routines). A common cause
of failure is using an argument in the routine call that is not a valid entity identifier for an open
interface file.

16 General Purpose Routines



Reading and Writing
The lowest level of I/O in HP-UX provides no buffering or other services; it is a direct entry
into the operating system. Two HP-UX system routines are available that provide low-level
I/O: read and write. Both require three arguments:

• an entity identifier of an open file

• a buffer in your program where the data is to come from during write or go to during
read (write empties a buffer; read fills a buffer)

• the number of bytes to be transferred

The call to read has this form:

#include <fcntl.h>
mainO
{

int eid; I*the entity identifier*1
char buffer [10] ; I*buffer in which the read data will be placed*1
eid:;: open("/dev/raw_hpib ll

• O_RDWR);
read(eid. buffer. 10); I*reads 10 bytes from a previously opened*1

} I*file with the entity identifier "eid". *1

The call to write is very similar:

#include <fcntl.h>
mainO
{

int eid; I*the entity identifier*1
char buffer[10]; 1* the buffer containing data to be written to a file*1
eid = open("/dev/raw_hpib". O_RDWR);
buffer:;: "data message ll

; I*message to be sent*1
write(eid. buffer, 10); 1*10 bytes are written to previously*1

} I*opened file with the entity identifier lIeid ll *1

Although read and write required the number of bytes to be transferred as their third argument,
other parameters, discussed later, associated with the interface file's eid can end the transfer
before the number is reached.

An Example
Assume that you have already created a special file, /dev/raw_hpib, for an HP-IB interface.
Your program must first open the interface file /dev/raw_hpib for reading and writing:

int eid;
eid:;: open(lI/dev/raw_hpib ll

• O_RDWR);

To place data on the bus you use write:

write(eid, "This is a test", 14);

The number of bytes to be sent is 14 because there are 14 characters in the data string. To
receive 10 bytes of data from the bus you use:

char buffer [10] ;
read(eid, buffer. 10);

After read has completed, buffer contains the lO-byte message.

General Purpose Routines 17



Designing Error Checking Routines
All Device I/O Library routines return a -1 to indicate that an error occurred during the
routine's execution. If this happens, the routine sets an external HP-UX variable called errno.

Errno is an integer variable whose value indicates what error caused the failure of a system or
library routine call. It is not reset after successful routine callsj therefore, you should only check )
its value after you have determined an error occurred. Except for this section, most examples
in this manual do not involve checking for the successful completion of routine calls. However,
as good programming practice you should include error checking in your own programs.

To make sure that a particular routine sets errno if it fails, you should refer to the routine's
entry in the HP-UX Reference.

Using Errno
To access errno from your program you must include the following code at the beginning of the
program:

#include <errno.h>
extern int errno;

The file errno.h contains a complete list of error number values for errno and their associated
names. Refer to the errno(2) entry in the HP- UX Reference to see this list and to find out the
meaning associated with each value.

Once you have included the two lines of code shown above, there are two ways you can check
its value if a routine fails. The simplest way is to check to see if the routine failed, and if so, to
print out the value of errno and then exit. The example below illustrates this st.rategy:

#include <errno.h>
#include <fcntl.h>
extern int errno;
main 0
{

int eid:
if «eid :;: open("/dev/raw_hpib". O_RDWR)) :;::;: -1)
{

printf("Error occurred. Errno = %d". errno);
exit (1) ;

}

}

If an error occurs and errno's value is printed, you must then refer to errno's entry in the HP-UX
Reference to find out what the number means.

Another approach is to check for specific values of errno and execute different error routines
depending on that value. Only a limited number of situations can cause the failure of a particular
routine; thus, a routine usually has a small set of values that it can assign to errno. To find out
what this set is, refer to the routine's entry in the HP- UX Reference.

18 General Purpose Routines



For example, in the HP-UX Reference you find that errno is set to ENOENT (defined in the
errno.h include file) when you try to open a file that doesn't exist. Once this is known, you can
incorporate the following code into the program:

#include <errno.h>
#include <fcntl.h>
extern int errno;
mainO
{

int eid;
if «eid = open(lI/dev/raw_hpib ll

, O_RDWR»
{

-1)

if (errno == ENOENT)
printf(IIError occurred because file doesn't exist to open ll

);

else
printf(IIFile exists to open. but still an error occurred ll

);

exit (1) ;
}

}

Notice the print statements in the example above could be replaced with calls to more compli
cated error handling routines such a perror(3) (see HP-UX Reference).

Resetting Interfaces
The DIL routine for resetting an interface card your program is accessing through an open
interface file is io_reset. This routine is used on HP-IB or GPIO interfaces.

If the entity identifier for a previously opened interface file associated with the interface is eid,
the following code resets the interface:

io_reset(eid);

For a HP-IB interface, resetting involves pulsing its Interface Clear line (IFC); for a GPIO
interface the Peripheral Reset line (PRESET) is pulsed. The routine also causes the interface
to self-test. If it fails its test, the routine returns a -1. If the interface successfully resets and
completes its self-test, the routine returns a O.

Assume that after opening an interface file you want to make sure the interface operates cor
rectly. This is done by calling io_reset and looking at its return value:

#include <fcntl.h>
maine)
{

int eid;
eid = open( II/dev/raw_hpib", O_RDWR);
if (io_reset(eid) == -1)
{

printf(IIPossible problem with interface ll
);

exit (1) ;
}

/*program continues if lIio_reset ll was successful*/
}

General Purpose Routines 19



Controlling I/O Parameters
The Device I/O Library provides four routines that allow you to control three different param
eters involved in data transfers between an interface card and the devices connected to it. The
routines and the parameters that they control are listed below.

Routine

io_timeouCctl

io_width_ctl

io_speed_ctl

I/O Parameter

Timeout: Assign a timeout value for data transfers.

Data Path Width: Specify width of the interface's data path.

Transfer Speed: Request a minimum speed for data transfers through
the interface.

Read Termination Character: Assign a character to be recognized as
a read termination character.

When you use one of these four routines, its effect is associated with the open interface file for
the interface. If you close the file the effect is lost and the I/O parameter returns to its default
state the next time the file is opened.

Setting the I/O Timeout
The I/O timeout parameter controls how long an interface spends trying to complete a data
transfer with a device connected to it. When you open the interface file associated with the
interface, the timeout is set at 0 by default, indicating that the system never causes a timeout.

If timeout is zero and an error condition occurs which keeps a data transfer from completing,
your program will hang. It is recommended you set a timeout for the interface. To set or change
the timeout use io_timeouCctl:

#include <fcntl.h>
mainO
{

int eid;
long time;
eid = open( 1I/dev/raw_hpibll. O_RDWR);
time = 1000000; I*set timeout of 1 second*/
io_timeout_ctl(eid. time);

I*data transfers using lIeidll are controlled by the
timeout value lItimell*1

}

eid is the entity identifier for the open interface file and time is a 32-bit long integer specifying
the length of the timeout in microseconds.

If read or write requests do not complete within the time limit specified by the timeout value,
the requests are aborted and an error indication is returned (a return value of -1). If a routine
fails due to the timeout occurring, errno is set to EIO (not to be confused with EOI).

20 General Purpose Routines



Although you specify the timeout value in microseconds when you call io_timeouLctl, the res
olution of the effective timeout is system-dependent. The timeout value is rounded up to your
system's time resolution boundary. For example, if your system's resolution is 10 milliseconds
and you request a timeout of 25000 microseconds (25 milliseconds), the effective timeout is set
at 30 milliseconds. Since the timeout value is always rounded up to the nearest time resolu
tion boundary, it is impossible to have a timeout of zero. The smallest timeout you can have
is determined by your system's resolution. For example, if the system has a resolution of 10
milliseconds you can set the minimum timeout of 10 milliseconds by specifying a value between
zero and 10 milliseconds.

NOTE

Specifying a timeout of zero sets an infinite timeout; the system will
never cause a timeout. Specifying a timeout of zero is not recom
mended.

If your program has used open more than once to open the same interface file, the entity
identifiers returned by open can each have their own timeout associated with them. Using
io_timeouCcll with one entity identifier does not affect the other entity identifiers.

An entity identifier for an interface file obtained with the HP-UX routine dup or inherited by a
fork request shares the same timeout as the original entity identifier for the file obtained with
open. If the child process resulting from a fork inherits an entity identifier and then changes the
timeout, the entity identifier used by the parent process is also affected.

Setting Data Path Width
When you create an interface file and then open it for the first time, the data path width defaults
to 8 bits. Once the file is opened, io_width_ctllets you select a new width. Allowable widths
are system and hardware dependent. You should refer to the Appendix associated with your
system to find out what widths are allowed for various interfaces.

Assuming that the open interface file has the entity identifier eid, io_width_cll is called with:

int eid. width;

where width is the number of bits that are in the new data path. The routine returns a -1 to
indicate an error if the width that you specify is not supported on the specified interface.

General Purpose Routines 21



For example, to change the width of a GPIO data bus from 8 to 16 bits you can use:

#include <fcntl.h>
maine)
{

int eid. width;
width = 16; I*width of new data path *1

eid = open("/dev/raw_gpio". O_RDWR);
io_width_ctl( eid. width); I*assign new width for GPIO bus*1

I*data transfers using "/dev/raw_gpio" will now
use a 16-bit bus*1

}

Changing the data path width of an interface with this routine affects all users of the interface.
Once you change the data path width, it stays at the new value for each future opening of the
file. Either iO_Teset or io_width_ctl can be used to change the path back to the default of 8 bits.

Setting Transfer Speed
You can set the minimum transfer speed that is used on the interface (within the limits of the
hardware) with the routine io_speed_ctl:

io_speed_ctl( eid. speed);

where eid is the entity identifier for the open interface file and speed is an integer indicating
a mimimum speed in k-bytes per second (k is equal to 1024). The routine returns a 0 if it is
successful, and a -1 is an error occurred. For example:

io_speed_ctl( eid. 1);

requests a minimum speed of 1024 bytes per second. The system may use a faster transfer rate,
but you are at least supplied with that speed.

The transfer method (e.g. DMA, fast-handskake) chosen by your system is determined by the
minimum speed that you request. DMA (Direct Memory Access) is the direct transfer of data
between memory and I/O interfaces. If you specify a speed that requires a DMA transfer, the
system waits until a DMA path is available.

The system selects a transfer method that is as fast or faster than the speed you requested. If
you request a speed that is beyond the limitations of the system, the fastest transfer method
possible is used. See the hardware-dependency Appendix for specifics.

22 General Purpose Routines



Setting Read Termination Character
When you perform read operations on an open interface file, certain conditions cause the inter
face to recognize the end of data transfer from a sending device. When you call read, you must
specify how many bytes you expect to read. After the specified number of bytes has been read,
the data transfer halts. Also, the interface you are accessing can be confiqured to recognize
a special read termination condition. For instance, if an HP-IB interface sees the EOI line
asserted, it knows that it has received the last data byte in the transfer and the read operation
halts, whether or not the specified byte count has been reached. Similarly, a read operation
with a GPIO interface halts when the PSTS line is asserted.

The DIL routine io_eoLctl enables you to set an interface to recognize a particular character as
a read termination character, in addition to any other termination conditions already in effect
for the interface. The call to the routine has the form:

int eid. flag. match;

where eid is the entity identifier for the open interface file and flag either enables or disables the
interface's ability to recognize a special read termination character. When flag indicates enable
mode and the interface's data path is 8 bits, the least significant byte of match is the integer
equivalent of the termination character that you want to set. A flag of 0 disables any special
read termination character that you have previously set. If the flag has any other value, then
the match value indicates a new termination character.

Note that if any special read termination condition defined for the interface is still in effect (e.g.
EOI for an HP-IB). Either it or the termination character that you have defined could cause a
read operation to halt. Also note the read termination character you set up is interpreted by
the interface as the last byte of data. In other words, the interface sees it as part of the data
message but does not try to read past it.

If the data path for the interface is set at 16 bits (such as with a GPIO interface), then for most
systems the termination character is also 16 bits. It is taken from the 2 least significant bytes
of the specified match value.

To illustrate using io_eoLctl, assume that you want to set up an HP-IB interface to recognize a
backslash-n ("\n") as a read termination character. First, you must open the HP-IB interface
file and obtain the entity identifier eid. Second, make the call to io_eoLctl in your program
using eid as the entity identifier, ENABLE as the flag, and "\n" as the match:

#include <fcntl.h>
mainO
{

int eid;
eid =open("/dev/raw_hpib". O_RDWR);
io_eoLctl(eid. ENABLE. n\n lt

);

/*data transfers using "eid ll terminate with a lI\n"*/

}

General Purpose Routines 23



Now when data is read from /dev/raw_hpib, the read operation is terminated when anyone of
the following occurs:

• The byte count specified in the call to read is reached.

• The HP-IB's EOI line is asserted. The character on the bus, when the interface sees the
line's assertion, becomes the last byte in the data message.

• A backslash-n ("\n") is read. The backslash-n ("\n") becomes the last byte in the data ~.

message. }

If your program has used open more than once to open the same interface HIe, the entity
identifiers returned by open can each have their own read termination character associated with
them. Using io_eoLctl with one entity identifier does not effect the others. Thus, you can set up
several entity identifiers for the same interface that recognize different termination characters.

An entity identifier for an interface file obtained with the HP-UX system routine dup or inherited
by a fork request shares the same read termination character as the original entity identifier.
If the child process resulting from a fork inherits an entity identifier and then sets a read
termination character for it, the entity identifier used by the parent process is also affected.

Removing a Read Termination Character
There are two ways that your program can disable an interface from intrepreting a read termi
nation character that the program has previously set.

1. Close the interface file and then reopen it. The new entity identifier for the file will not
know about the termination character.

2. Disable the termination character by calling io_eoLctl with a flag of 0:

io_eol_ctl(eid, O. XX);

The XX indicates a don't care value for the match argument. If the flag is 0, then the
match value is not looked at by the routine.

The code below sets up the ASCII"." (46) as a termination character, does a read operation,
and then disables the termination character.

#include <fcntl.h>
maine)
{

int eid;
char buffar[12] ;
aid = open("/dav/raw_hpib". O_RDWR);
io_eol_ctl(eid. 1. 46);
read( eid. buffer. 12); /*Read operation halts when either a

"." is read or when the 12th byte is read*/
io_eol_ctl( eid, 0, 0); /*termination character is removed*/

}

24 General Purpose Routines



Determining Why a Read Terminated
There are several situations which can terminate read operations through an interface. After
your program completes a read, you may want to include code that makes sure the cause of
the read's termination is what you expected. The DIL routine that allows you to do this is
io_ geL term_ reason.

io_geLterm_reason accepts the entity identifier of the interface file as an argument and returns
an integer. The returned value indicates how the last read operation ended, as shown below.

Returned
Value

-1

o

2

4

Meaning

An error occurred while making this routine call.

The last read terminated abnormally (for some reason other than the ones cov
ered below).

The last read terminated by reading the number of bytes requested.

The last read terminated by detecting a previously determined read termination
character.

The last read terminated by detecting some device-imposed termination condi
tion. Examples are the assertion of EOI for an HP-IB, the assertion of PSTS for
a GPIO, or an end-of-record mark 011 a 9-track tape.

If a read terminated for multiple reasons, the bits that are set indicate each of the reasons. The
three least significant bits of the lowest byte have the meanings indicated by their associated
decimal values in the table above. For example, if io_geLterm_reason returns a 7 you know that
the specified number of bytes were read, the last byte read was a read termination character,
and also a device-defined termination condition occurred.

NOTE

If no read is performed on an interface file once it is opened and you
call io_geLterm_reason, the routine returns a O.

All entity identifiers descending from one open request (such as from dup or fork) affect the
status returned by this routine. For example, suppose that an entity identifier is inherited by
a child process through a fork. If the parent process calls io_geLterm_reason, the last read
operation of either the parent or the child is looked at, depending on which is more recent.

An Example
Assume that your system is a Series 500 and that you want to read data from a device on an
HP-IB and need to guarantee that a specific number of bytes are read. The following code reads
50 bytes through an opened interface file and makes sure that read wasn't terminated before all
50 were read.

General Purpose Routines 25



#include <fcntl.h>
mainO
{

int eid. condition;
char buffer[50); /*storage for data*/

eid =open("/dev/raw_hpib". O_RDWR);
read(eid. buffer. 50); /*perform read and put data in "buffer"*/
if «condition = io_get_term_reason(eid» > 1)

/*Terminated due to seeing a read termination character or the
assertion of EOI. However. the event could have occurred at the
same time as the 50th byte was read*/

printf("Possible termination before all of data was read");

else if (condition < 1)
{

if (condition 0)
/*Termination due to some abnormal condition*/
printf ("Last read terminated abnormally");

else
printf ( lI io_get_term_reason call failed");

}
else

/*Termination due to reading the 50th byte*/
printf("All of data was read into buffer");

}

Note that on the Series 500, the value returned by io_yeCterm_reason only indicates the termi
nation cause with the highest value; other causes with lower values could have occurred at the
same time. See Appendix A: Series 500 Dependencies for more information.

26 General Purpose Routines



Interrupts
DIL provides an interrupt mechanism that is similar to HP-UX signal handling. The user is
able to set up interrupt handlers to be invoked when certain conditions occur. DIL currently
supports interrupts for HP-IB and GPIO interfaces.

The following interrupt conditions are available for HP-IB interfaces:

Name

SRQ

TLK

LTN

TCT

IFC

REN

DCL

GET

PPOLL

Meaning

SRQ line has been asserted

The computer has been addressed to talk

The computer has been addressed to listen

The computel' has received control of the bus

The IFC line has been asserted

The remote enable line has been asserted

The computer has received a device clear command

The computer has received a group execution trigger command

A specific parallel poll response occurred

The following interrupt conditions are available for the GPIO interface:

SIEO

SIEI

Status line 0 has been asserted

Status line 1 has been asserted

Check the hardware-dependency Appendix for your system for any restrictions that may apply.

io_on_interrupt
DIL provides two routines for controlling interrupts. The first routine, io_on_interrupt, sets up
the interrupt information and has the form:

io_on_interrupt(eid, cause_vee, handler);

where eid is an entity identifier for a GPIO or raw HP-IB interface. The parameter handler
points to a function to be invoked when the condition occurs. Then cause_vec is a pointer to a
structure of the form:

struct interrupt struct {
int cause;
int mask;

};

The interrupLstruct structure is defined in the include file dvio.h.

The cause parameter is a bit vector specifying which of the interrupt or fault events will cause
the handler routine to be invoked. The interrupt causes are often specific to the type of in
terface being considered. Also, certain exception (error) conditions can be handled using the
io_on_interrupt capability. Specifying a zero-valued cause vector effectively turns off the inter
rupt for that eid.

General Purpose Routines 27



The mask parameter is used when an HP-IB parallel poll interrupt is being defined. The integer
mask specifies which parallel poll response lines are of interest. mask's value is obtained from
an 8-bit binary number, each bit of which corresponds to one of the eight lines. For example, if
you want an interrupt handler invoked for a response on lines 2 or 6, the correct binary number
is 01000100. This converts to a decimal equivalent of 68, which is the number you should assign
to mask.

Upon occurrence of an enabled interrupt condition on the specified eid, the receiving process
executes the interrupt-handler routine pointed to by handler. The entity identifier eid and the
interrupt condition cause are returned as the first and second parameters respectively.

An interrupt for a given eid is implicitly disabled after the event occurs. The interrupt condition
can be re-enabled with io_interrupCctl(9}.

io_on_interrupt returns a pointer to the previous handler if the new handler is successfully
installed, otherwise it returns a -1 and errno is set.

The following example illustrates how an interrupt handler can be set up to handle assertion of
the service request line (SRQ):

#include <dvio.h>
#include <fcntl.h>
#include <stdio.h>
mainO
{

int eid;
struct interrupt_struct cause_vec;
eid = open (II/dev/raw_hpib", O_RDWR);
cause_vec.cause = SRQ;
io_on_interrupt(eid, cause_vec, handler);

}
handler (eid. cause_vec);
int eid;
struct interrupt_struct cause_vec;
{

if (cause_vec.cause == SRQ)
service_routine(); /* user specific routine*/

}

io_interrupLctl
The io_interrupCctl(9D} routine allows the user to enable or disable interrupts on a specific
eid. Since interrupts are automatically disabled when an interrupt occurs, io_interrupCctl is
commonly used when the user wants to repeatedly handle a specific event. io_interrupCctl has
the following form:

io_interrupt_ctl(eid, enable_flag);

where eid is an entity identifier for an open GPIO or raw HP-IB device file. To control enabling
and disabling of the interrupts, enable-flag is used. If enable-flag is non-zero, then interrupts
are enabled on the eid. If enable_flag is zero, then interrupts are disabled on the eid. Note that
attempting to use io_interrupCctl on an eid that has not had an io_on_interrupt applied to it,
fails.

28 General Purpose Routines



~
~ '

The following example modifies the handler from the previous example to re-enable interrupts:

handler (eid, cause_vee):
int eid:
struct interrupt_struct cause_vee;
{

if (cause_vec.cause == SRQ)
{

service routine(); 1* user specific routine*/
iO_interrupt_ctl(eid,1);

}
}

General Purpose Routines 29



30 General Purpose Routines

'~



Controlling the HP-IB Interface 3
To gain a full range of control over your computer's HP-IB interface you must use:

• the general purpose I/O routines in OIL discussed in Chapter 2: General Purpose Routines

• the OIL routines designed specifically for controlling the HP-IB interface that are de
scribed in this chapter

Besides the various routines, you must know about the commands that are interpreted on an
HP-IB. This chapter provides some general information about HP-IB commands and introduces
the OIL routines that specifically control the HP-IB. Then it relates this information to the in
formation provided in Chapter 2: General Purpose Routines to illustrate some HP-IB interfacing
strategies.

Overview of HP-IB Commands
This section discusses the HP-IB commands that are sent over the 8 data lines while the ATN
line is asserted. You can send all of these commands using a OIL routine called hpib_send_cmnd.
This routine takes care of the assertion of ATN and the necessary handshaking between devices.
The computer's interface must be the Active Controller before hpib_send_cmnd is used and any
of the HP-IB commands sent. How hpib_send_cmnd is called from your program is discussed
later in this chapter.

In order for the commands to be interpreted by devices on the HP-IB, the bus's remote enable
line (REN) must be in its enabled state. Only the System Controller changes the state of
this line (see the System Controller's Duties section later in this chapter). By default, REN is
enabled.

Commands sent on the bus's data line form 4 groups:

• Universal commands cause every device, so equipped, to perform a specific interface
operation. The devices do not have to be addressed as listeners.

• Addressed commands are similar to the universal commands, except they affect only those
devices currently addressed as listeners.

• Talk and listen addresses are commands that assign talkers and listeners on the bus.

• Secondary commands are commands that must always be used in conjunction with a
command from one of the above groups.

Controlling the HP-IB Interface 31



The table below lists the commands that you can send with hpib_send_cmnd. Later, when you
use the routine, you may need to refer back to this table for the decimal or ASCII character
value of particular commands.

Table 3.1 Bus Commands

Command Decimal Value ASCII Character

Universal Commands:
UNLISTEN 63 ?
UNTALK 95 -
DEVICE CLEAR 20 DC4
LOCAL LOCKOUT 17 DCl
SERIAL POLL ENABLE 24 CAN
SERIAL POLL DISABLE 25 EM
PARALLEL POLL UNCONFIGURE 21 NAK

Addressed Commands:
TRIGGER 8 DS
SELECTED DEVICE CLEAR 4 EOT
GO TO LOCAL 1 SOH
PARALLEL POLL CONFIGURE 5 ENQ
TAKE CONTROL 9 HT

Talk and Listen Addresses:
Talk Addresses 0-30 64-94 @ thru .

(uppercase ASCII)
Listen Addresscs 0-30 32-62 space thl'll >

(numbcrs and special characters)

Secondary Commands:
(If a sccondary command follows the PARALLEL POLL CONFIGURE command then it. is
interpreted as follows, otherwisc its meaning is device-dependent.)

PARALLEL POLL ENABLE 96-111 • thl'll 0

(lowercase ASCII)
PARALLEL POLL DISABLE 112 p

32 Controlling the HP-IB Interface



UNLISTEN
The UNLISTEN command unaddresses all current listeners on the bus. Single listeners cannot
be unaddressed without unaddressing all listeners. It is necessary to use this command to
guarantee only desired listeners are addressed.

UNTALK
The UNTALK command unaddresses the current talker. Sending an unuscd talk address ac
complishes the same thing. This command is providcd for convenience since addressing one
talker automatically unaddresses others.

DEVICE CLEAR
The DEVICE CLEAR command causes all recognizing devices to return to a pre-defined, device
dependent state. Recognizing deviccs respond whether or not they are addressed. Device
manuals define the reset state for each device that recognizes the command.

LOCAL LOCKOUT
The LOCAL LOCKOUT command disables local control on all devices that recognizc this
command. Recognizing devices respond to the command whether or not they are addressed.

SERIAL POLL ENABLE
The SERIAL POLL ENABLE command establishes serial poll mode for all responding devices
capable of being bus talkers. Rccognizing devices respond to the command whether or not they
are addressed. When a device is addressed to talk, it returns a 8-bit status byte message.

This command is not discussed any further since its function is accomplished by a OIL routine
called hpib_spoll (discussed later in this chapter).

SERIAL POLL DISABLE
The SERIAL POLL DISABLE command terminates scrial poll mode for all responding devices.
Recognizing devices respond to the command whether or not they are addressed.

This command is not discussed any further since its function is accomplished by a OIL routine
called hpib_spoll (discussed latcr in this chapter).

TRIGGER (Group Execute Trigger)
The TRIGGER command causes the devices that are currently addressed as listcners to initiate
a preprogrammed, device-dependent action if they are capable. Device manuals indicate whether
or not a particular device is capable of responding to the TRIGGER command and if it can,
how to program it to do so.

SELECTED DEVICE CLEAR
The SELECTED DEVICE CLEAR command resets devices currently addressed as listeners to
a device-dependent state, if they are capable. A device's documentation indicates whether or
not the device recognizes this command and if so, it defines the reset state.

Controlling the HP-IB Interface 33



GO TO LOCAL
The GO TO LOCAL command causes devices that are currently addressed as listeners to return
to the local control state (exit from the remote state). The devices return to the remote state
the next time they are addressed.

PARALLEL POLL CONFIGURE
The PARALLEL POLL CONFIGURE command tells the devices currently addressed as listen-
ers that a secondary command follows. This secondary command must be either PARALLEL ~
POLL ENABLE or PARALLEL POLL DISABLE. }

PARALLEL POLL ENABLE
The PARALLEL POLL ENABLE command configures devices addressed by the PARALLEL
POLL CONFIGURE command to respond to parallel polls on a particular data line and with
a particular logic level. Some devices implement a local form of this message (for example,
jumpers) that cannot be changed.

This command must be preceded by the PARALLEL POLL CONFIGURE command.

PARALLEL POLL DISABLE
The PARALLEL POLL DISABLE command disables devices addressed by the PARALLEL
POLL CONFIGURE command from responding to parallel polls. This command must be
preceded by the PARALLEL POLL CONFIGURE command.

34 Controlling the HP-IB Interface



Overview of the HP-IB DIL Routines
Besides the general purpose routines described in Chapter 2: General Purpose Routines, OIL
also provides routines that allow you to fully access the capabilities of the HP-IB interface.
There are 14 of these routines:

~
hpib_abort Stops activity on a specified HP-IB select code.

\ hpib_io Performs a mixture of HP-IB read and write activities.

hpib_ppoll Conducts parallel poll on HP-IB.

hpib_spoll Conducts serial poll on HP-IB.

hpib_bus_status Returns status on HP-IB interface.

hpib_eoi_ctl Controls EOI mode for data transfers.

hpib_pass_ctl Changes active controllers on HP-IB.

hpib_card_ppolLresp Configures it owns response to a parallel poll.

hpib_ren_ctl Controls remote enable line (REN) on HP-IB.

hpib_rqsLsrvce Allows interface to generate an SRQ request on HP-IB.

hpib_send_cmnd Sends characters on HP-IB with the attention line (ATN) line
asserted.

hpib_waiLon_ppoll Lets you wait for a particular parallel poll value to occur.

C hpib_status_wait Lets you wait until a particular status condition is true.

hpib_ppolLresp_ctl Defines interface parrallel poll response as yes or no.

Controlling the HP-IB Interface 35



The Computer's Role on the HP-IB
Your computer must currently have one of the following two roles on the HP-IB:

• It is the Active Controller.

• If it isn't the Active Controller, it is a Non-Active Controller.

There can be only one Active Controller on a HP-IB interface at a given time. Since Active
Controller status is passed between bus controller devices, your computer's status can change ""
from active to non-active or from non-active to active. )

In addition to being either an Active or Non-Active Controller, your computer can also be the
bus's System Controller. Once a controller is configured as the System Controller, it cannot be
unconfigured without powering down the system. The System Contwller is eit.her the Active
Controller or a Non-Active Controller. When the System Controller is initially powered up, it
assumes the role of Active Controller.

Which of the OIL routines you can use depends on your computer's role on the HP-IB. Given
the three role designations, the table below (Table 9.2 ) indicates which routines can be used
with them.

Table 3.2 DIL Routine Role Designations

System Active Non-Active
Routine Controller Controller Controller
hpib_abort X
hpib_io X
hpib_ppoll X
hpib_spoll X
hpib_bus_status (X) X X
hpib_eoLctl X
hpib_pass_ctl X
hpib_carcLppoll_resp x* X
hpib_reJl_ctl X
hpib_rqst_srvce X* X
hpib_send_cmnd X
hpib_waiLon_ppoll X
hpib_status_wait (X) X X
hpib_ppoILresp_ctl X* X

* means that the routine can be used if the computer is the Active Controller
but there is no effect nntil it becomes a Non-Active Controller.

(X) means that the X isn't required since the System Controller must be
either active or non-active and both of these roles can use the rout.ine (Le. the
System Controller role is Jlot required to usc the routine).

36 Controlling the HP-IB Interface



Opening the HP-IB Interface File
Chapter 2: General Purpose Routines discusses how the interface file for the HP-IB must be
created so that the DIL routines can be used and this chapter discusses how it is opened.

The following code indicates how to open a raw HP-IB interface file called /dev/hpib:

int aid;
aid = open ("/dev/hpib ll

, O_RDWR);

eid is the entity identifier for the opened file and it is required when you want to specify the file
from program processes. The O_RD WR indicates that you want read and write access to the
interface file.

The code above does not check whether or not the file was opened successfully. To verify that
no errors occurred, your program should contain an error check when the file is opened:

if (( eid = open(l/dev/hpib",O_RDWR» -1)
{

printf("can't open file");
exit(!)

}

Controlling the HP-IB Interface 37



Sending HP-IB Commands
The DIL routine that allows you to place HP-IB commands on the data bus is hpib_send_cmnd.
Your computer must be the Active Controller to use this routine.

One method of using this routine is to first set up a character array containing the commands
that you want to send. You assign the decimal value for the commands to the elements of the
array. The routine call then has the form:

hpib_send_cmnd( eid. command. number);

where eid is the entity identifier for the open interface file, command is a character pointer to
the first element of the array containing the HP-IB commands, and number is the number of
elements (commands) in the array. The routine hpib_send_cmnd places each of the commands
stored in the array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command pointer you can send
subsets of command arrays. Suppose you create an array that contains 10 HP-IB commands,
command[O] through command[9]. You can now specify that only the last 5 commands in the
array be sent using:

hpib_send_cmnd( eid, command + 5, 5);

This method of sending HP-IB commands by storing them in an array uses their decimal values.
Alternatively, the commands' ASCII character values can be used by specifying a character
string. In this case, the routine call has the form:

hpib_send_cmnd( eid. "command_string", number);

where eid and number are the same as above. However, the commands to be sent are now
specified by each character in the string command_string.

To illustrate the two methods, assume that you want to send the HP-IB UNLISTEN and
UNTALK commands. With the decimal array method you first set up an array with two
elements, the decimal values for the commands, and then call hpib_send_cmnd:

#include <fcntl.h>
mainO
{

int eid;
char command[2]; /*command array*/
eid :;;: open("/dev/raw_hpib ll

• O_RDWR);
command[O] =63; /*decimal value for UNLISTEN*/
command[1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd( eid. command. 2);

}

38 Controlling the HP-IB Interface



If the ASCII character string method is used, the same effect is achieved with the code:

#include <fcntl.h>
maine)
{

int eid;

eid = open("/dev/raw_hpib". O_RDWR);
hpib_send_cmnd( eid. "1_". 2); 1*1 is ASCII for UNLISTEN and*1

1*_ is ASCII for UNTALK *1
}

Since the array method allows you to store a list of commands, it should be used if you are
sending a large number of commands or if you are sending the same set of commands several
times in a program. With the string method, the entire set of commands must be specified as
a string in the call to hpib_send_cmnd. It is useful if you are sending only a few commands or
if a particular set of commands is only sent once in a program.

Errors While Sending Commands
Normally, hpib_send_cmnd returns a 0 if it executes successfully. However, it returns a -1 if
anyone of the following error conditions are true:

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, the program should check the value
of errno, an external integer variable used by HP-UX system calls. Chapter 2: General Purpose
Routines discusses how you can design an error checking routine that looks at the value of errno.

The following table indicates the value that errno will have given that one of the above conditions
occurred during the call to hpib_send_cmnd:

Errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file

eid did not refer to a raw interface file

The interface was not the Active Controller

Controlling the HP-IB Interface 39



The Active Controller
Acting as the Active Controller of the bus involves sending the HP-IB commands with
hpib_send_cmnd and making calls to several other DIL routines. The functions of the Active
Controller discussed in this chapter are:

• Setting up devices as talkers and listeners

• Gaining remote control of devices ~
• Locking out local control of devices .

• Enabling local control of devices

• Triggering devices to initiate device-dependent actions

• Transferring data

• Clearing devices

• Servicing requests from devices

• Conducting parallel and serial polls

• Passing active control of the bus to another controller

Determining Active Controller
To carry out the Active Controller's bus management activities, the computer's HP-IB interface
must be the Active Controller of its bus. If other devices on the bus are capable of being
the Active Controller, you can use the hpib_bus_status routine to determine if the interface is
currently the Active Controller.

To find out if the interface is the Active Controller, the call to hpib_bus_status must have the ~
form:

hpib_bus_status( eid,4);

where eid is the entity identifier for the opened HP-IB interface device file and the 4 tells the
routine to determine if the interface is the Active Controller. This routine returns a value that
can be tested, see source code below.

hpib_bus_status returns 0 if the answer is no, 1 if the answer is yes, and -1 if an error occurred.
The code that follows shows a straightforward way of interpreting the returned value:

#include <fcntl.h>
mainO
{

int eid. status;
eid = open(lI/dev/raw_hpib ll

• O_RDWR);

if «status =hpib_bus_status( eid,4» == -1)
/*an error occurred -- insert code that*/
/*flags it. */

else if (status == 0)
/*not Active Controller -- insert code */
/*that requests Active Controller status*/

else
/*is Active Controller -- insert code for*/
/*the bus management routine required */

}

40 Controlling the HP-IB Interface



Setting Up Talkers and Listeners
One talker and one or more listeners must be configured on the bus before data can be trans
ferred. Also, some HP-IB commands effect only those devices currently addressed as listeners,
which means that the Active Controller must specify the listeners before using them. There can
be only one talker at a time on the bus, but there can be any number of listeners.

There are two methods for addressing listeners and talkers on an HP-IB. The first method,
referred to as auto-addressing, instructs the computer to handle addressing for you. The second
method requires using the hpib_send_cmnd function to manually address the bus.

The system performs auto-addressing on normal (non-raw) HP-IB device files. Note that DIL
routines require a raw HP-IB device file. Therefore, while you can open, close, read, and write
from a non-raw HP-IB device file, the DIL functions will fail.

You can create a device file that informs the system to perform auto-addressing using the mknod
command (described in Chapter 2: Creating an Interface File). The following example creates
an HP-IB device file for a specific device on select code 1 at bus address 3. (This assumes we
are using a driver of 12 on a Series 500 with an HP27110A/B card at select code 1.):

mknod /dev/device c 12 Ox010300

The following code illustrates auto-addressing using this device file:

maine)
{

int eid;
eid = open("/dev/device",O_RDWR);
/*Assuming "/dev/device" has the minor number (OxOl0300), the*/
/*system addresses the interface card at select code 1 as a talker*/
/*and the device at bus address 3 as a listener before sending data*/
write(eid. "test data" ,9);

}

Talkers and listeners may be manually configured with the HP-IB commands formed by the talk
and listen addresses of the devices. First, however, you should remove any previous listeners
from the bus with the UNLISTEN command. To configure the bus's talker and listeners, the
following steps are required:

1. Send the UNLISTEN comma.nd to remove any previous listeners.

2. Send the talk address of the device that will be sending data. There can only be one
talker device.

3. Send the listen address of each device that is to receive the data.

To send the HP-IB commands necessary for this process you can use the hpib_send_cmnd routine.

Controlling the HP-IB Interface 41



Calculating Talk and Listen Addresses
A talker is specified on the bus by sending the talk address for the device and a device is specified
as a listener by sending its listen address. Talk addresses and listen addresses are considered
HP-IB commands, which means you should send them with the hpib_send_cmnd routine.

To calculate either the talk or the listen address for a device, you must know its HP-IB address.
The HP-IB address for the computer's interface card is found with the hpib_bus_status routine:

#include <fcntl.h>
mainO
{

int eid, address;
eid = open (1/dev/raw_hpib", O_RDWR);
address = hpib_bus_status( eid. 7);

}

where eid is the entity identifier for the interface file and 7 indicates that you want the routine
to return the interface's HP-IB address. To find out the bus address of some other device, refer
to its installation and operation documentation.

Once you have the device's HP-IB address, its talk_address (in decimal) is found with the
formula:

talk_address = 64 + bus_address

where bus_address is the HP-IB bus address for the device. Bus addresses range from 0 to 30.
The listen address for a device (in decimal) is found similarly with the formula:

listen_address = 32 + bus_address

Thus, My Talk Address (MTA) for the computer is calculated with:

MTA = hpib_bus_status( eid. 7) + 64;

and My Listen Address (MLA) is calculated with:

MLA = hpib_bus_status( eid. 7) + 32;

An Example Configuration
Assuming that the computer's interface is currently the Active Controller of the HP-IB, the
following code establishes the interface as the bus talker. Two devices at HP-IB addresses 4
and 8 are designated as the bus listeners.

#include <fcntl.h>
mainO
{

int eid. MTA;
char command[4];
eid = open(l/dav/raw_hpib". O_RDWR); '"
MTA = hpib_bus_status( eid, 7) + 64; I*calculate My Talk Address*1 )
command [0] = 63; 1* the UNLISTEN command*1
command [1] = MTA; 1* the talk address for the interface*1
command[2] = 32 + 4; 1* the listen address for device at UP-IS address 4*1
command[3] = 32 + 8; 1* the listen address for device at UP-IS address 8*1
hpib_send_cmnd( aid. command, 4);

}

42 Controlling the HP-IB Interface



Remote Control of Devices
Most HP-IB devices can be controlled either from their front panel or from the bus. If the
device's front-panel controls are currently operational, it is in the local state. If it is being
controlled through the HP-IB, it is in its remote state. Pressing the device's front-panellLOCALI
key returns the device to local control, unless it is in the local lockout state (described in a
subsequent section).

The level of the remote enable (REN) line of the HP-IB bus controls whether or not a device
can respond to remote progralll control. If the REN line is enabled, any device that is addressed
(as either a talker or a listener) is automatically placed in the remote state. Only the System
Controller can change the level of the REN line (see System Controller's Duties later in this
chapter). By default, the line is enabled when the System Controller is powered up.

Locking Out Local Control
The LOCAL LOCKOUT command effectively locks out the local switch present on most HP-IB
front panels, preventing a device's user from interfering with the system operations by pressing
buttons. All devices that recognize this command are affected, whether they are addressed or
not, and cannot be returned to local control from their front panels.

The following code shows one way of sending the LOCAL LOCKOUT command:

command[O] = 17; 1* Decimal value of LOCAL LOCKOUT*I
hpib_send_cmnd( eid, command, 1);

The local lockout state is cancelled by sending a GO TO LOCAL command to a device.

Enabling Local Control
During system operation, it may be necessary for an operator to interact with one or more
devices in the local state. For instance, an operator might need to work from the front panel to
make special tests or to troubleshoot. The GO TO LOCAL command returns all of the devices
currently addressed as listeners to the local state.

For example, the code below places the devices at HP-IB addresses 3 and 5 into their local state.

command[O] = 63;
command[1] = 32 + 3;
command[2] = 32 + 5;
command[3] = 1;
hpib_send_cmnd( eid.

1* the UNLISTEN command*1
1* listen address for device at address 3*1
1* listen address for device at address 5*1
1* the GO TO LOCAL command*1

command. 4);

Controlling the HP-IB Interface 43



Triggering Devices
The HP-IB TRIGGER command tells the devices currently addressed as listeners to initiate
some device-dependent action. For example, it can be used to trigger a digital voltmeter to
perform its measurement cycle. Because the response of a device to a TRIGGER command is
strictly device-dependent, you can not specify with the command what action is to be initiated.

The following code triggers the device at bus address 5 to initiate some action:

command[O] = 63;
command [1] = 32 + 5;

command[2] = 8;
hpib_send_cmnd( eid.

/* the UNLISTEN command*/
/* the listen address for device
/* address 5
/* the TRIGGER command*/

command. 3);

Transferring Data
For the Active Controller to send data to another device it must:

1. Send an UNLISTEN command.

2. Send its own talk address (MTA).

3. Send the listen address of the device that is to receive the data. One listen address is sent
for every device that is to receive the data.

4. Send the data.

The first 3 steps are accomplished using hpib_send_cmnd, while the system routine write takes
care of the fourth.

The following code illustrates how character data can be sent to a device at HP-IB address 5.

#include <fcntl.h>
mainO
{

int eid. MTA;
char command [50] ;

eid =open("/dev/raw_hpib". O_RDWR);
MTA = hpib_bus_status( eid. 7) + 64;
command [0] = 63;
command [1] = MTA;
command [2] = 32 + 5;

/*calculate MTA*/
/*the UNLISTEN command*/
/*talk address of interface*/
/*listen address of device at*/
/*address 5 */

hpib_send_cmnd( eid. command, 3);
write( eid. "data message". 12); /*send the data*/

}

44 Controlling the HP-IB Interface



Now assume that you are expecting to receive 50 bytes of data from another device on the bus.
The code below allows the interface to receive character data from a device at bus address 5.
The integer variable MLA contains the bus address of the interface.

#include <fcntl.h>
maine)
{

int eid, MLA:
char buffer [50] ;

eid = open("/dev/raw_hpib ll
• O_RDWR);

MLA = hpib_bus_status( eid, 7) + 32;
command [0] 63:
command [1] 64 + 5:

command [2] MLA:
hpib_send_cmnd( eid, command. 3);
read( eid. buffer. 50):
printf(IlData read is: %Sll. buffer);

/*storage for data*/

/*calculate MLA*/
/*the UNLISTEN command*/
/*the talk address of device at*/
/*address 5 */
/*the listen address of interface*/

/*store the data in Ilbuffer"*/
/*print message*/

}

Clearing HP-IB Devices
There are two HP-IB commands for resetting devices to their pre-defined, device-dependent
states. The first one is the DEVICE CLEAR command which causes all devices that recognize
the command to be reset, whether they are addressed or not.

Thus, to reset all of the devices on an HP-IB accessed through a interface file with an entity
identifier eid, you can use the following code:

command[O] = 20; /* the DEVICE CLEAR command*/
hpib_send_cmnd( eid, command. 1);

The second command for resetting devices is SELECTED DEVICE CLEAR. This command
resets only those devices that are currently addressed as listeners.

To reset a device with an HP-IB address of 7, you can use the following code:

command [2] 4;
hpib_send_cmnd( eid. command.

command [0]
command [1]

63;
32 + 7;

/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 7 */
/* the SELECTED DEVICE CLEAR command*/
3);

Controlling the HP-IB Interface 45



Servicing Requests
Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers, are capa
ble of generating a service request when they require the Active Controller to take some action.
Service requests are generally made after the device has completed a task (such as taking a
measurement) or when an error condition exists (such as a printer being out of paper). The
operating or programming manual for each device describes the device's capability to request
service and the conditions under which it requests service.

Seeing the SRQ Line
To request service, a device asserts the Service Request (SRQ) line on the bus. To determine
if SRQ is being asserted, you check the status of the line, wait for SRQ, or set up a interrupt
handler for SRQ. The hpib_status_wait routine allows you to write code that waits until the
SRQ line is asserted before it continues. To specify that you want the program to wait until the
SRQ line is asserted, hpib_status_wait must be invoked as follows:

hpib_status_wait( eid, 1);

where eid is the entity identifier for the open interface file and 1 indicates that the event
that you are waiting for is the assertion of the SRQ line. The routine returns a when the
condition requested becomes true or -1 if a timeout or an error occurred. This code illustrates
hpib_status_wait:

#include <fcntl.h>
main()
{

int eid;
eid = open("/dev/raw_hpib". O_RDWR);
io_timeout_ctl(eid.10000000);
if (hpib_status_wait( eid. 1) == 0)

service_routine(); /*SRQ is asserted; service the request*/
else

printf("Either a timeout or an error occurred");
}

Another solution is to periodically check the value of the SRQ line with hpib_bus_status. To
check the SRQ line with hpib_bus_status, the call looks like this:

hpib_bus_status( eid. 1);

where eid is the entity identifier for the open interface file and 1 indicates that you want the
logical value of the SRQ line returned. The routine returns 1 if SRQ is asserted, a if it isn't,
and -1 if an error occurred.

The most practical way to monitor the SRQ line is to set up a interrupt handler for that
condition (see Chapter 2: Interrupts section).

46 Controlling the HP-IB Interface



The Service Routine
Once a device has asserted the SRQ line, it continues to assert the line until its request has
been satisfied. How a service request is satisfied is device-dependent. Serial polling the device
can provide the information as to what kind of service it requires.

In many cases, devices requesting service clear the SRQ line when they are serially polled. They
see the poll as an acknowledgement from the Active Controller to the device that the request
has been seen and the Active Controller is responding.

If there is more than one device on the bus and the SRQ line is asserted, anyone of the devices
could be asserting the line. The Active Controller must then determine which of the devices
needs service. There are two strategies for doing this:

• Serial poll each device until you find the one that is requesting service. This approach is
reasonable if there are only a few devices on the bus.

• Conduct a parallel poll to locate the device requesting service. Normally, each device
(that is capable) is programmed to respond on a different data line. However, since there
can be 15 devices on the bus and there are only 8 data lines, it is sometimes necessary to
have several devices respond on the same line.

If several devices are programmed to respond on the same parallel poll line and the parallel
poll shows that line asserted, the Active Controller must then serially poll each of these
devices until it finds the one that is requesting service.

Thus, the Active Controller usually takes one of two approaches in response to seeing the SRQ
line asserted: it can conduct a serial poll or it can conduct a parallel poll. In some cases the
Active Controller may need to take both types of polls. The OIL routines that conduct these
polls are hpib_ppoll and hpib_spoll. How these routines are used is discussed next.

Parallel Polling
The parallel poll is the fastest means of gathering device status when several devices are con
nected to the bus. Each device (with this capability) can be programmed to respond with one
bit of status when parallel polled, making it possible to obtain the status of several devices
in one operation. If a device responds affirmatively (I need service) to the parallel poll, more
information as to its specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses
Certain devices can be remotely programmed by the Active Controller to respond to a par
allel poll. However, other devices require that the response be configured locally. Refer to
the documentation for the device whose response you want to configure to find out if remote
configuration by the Active Controller is possible.

The Active Controller remotely configures a device's parallel poll response by sending the
HP-IB command PARALLEL POLL CONFIGURE followed by PARALLEL POLL ENABLE.
The combination of these two commands tells devices addressed as listeners to respond to any
future parallel polls on a particular data line and with a particular logic level. Some devices
may implement a local form of this message (for example, jumpers) that can not be changed
remotely by the Active Controller.

Controlling the HP-IB Interface 47



There are 16 different PARALLEL POLL ENABLE commands, each configuring a response on
a specific data line and at a specific level. The 8-bits of the command have the following binary
form:

where:

Decimal Range:

96-111

L indicates the logic sense of the response (e.g. 1 means that the device will
respond with 1 when it needs service)

X indicates the data line on which the device will respond

For example, given that the parallel response lines are labeled DO to D7, a PARALLEL POLL
ENABLE command with a decimal value of 104 (01101000 in binary) tells the addressed device
to respond to parallel polls on data line DO with a 1 when it needs service.

The following code shows how you can configure a device at bus address 5 to respond to a
parallel poll by asserting data line D1 high when it needs service.

#include <fcntl.h>
mainO
{

int eid. MTA;
char command [50] ;

eid =open (lI/dev/raVl_hpib ll
, O_RDWR);

MTA = hpib_bus_status( eid. 7) + 64; /*calculate MTA*/
command[O] = MTA; /*talk address of interface*/
command [1] 63; /* the UNLISTEN command*/
command[2] ; 32 + 5; /* the listen address for device at*/

/* address 5 */
command[3] ; 5; /* the PARALLEL POLL CONFIGURE command*/
command[4] = 105; /* the PARALLEL POLL ENABLE command*/
hpib_send_cmnd( eid, command, 5);

}

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105 used above is:

o o 001

~These 3 bits indicate that the device shollid respond
on D1.

'--- This bit indicates that the device should respond with a
1 to request service. ~

L-_'--------''-----' Thcse bits indicate that this is a PARALLEL POLL
ENABLE command.

48 Controlling the HP-IB Interface



When the interface is the Active Controller, it can configure its own parallel poll response by
addressing itself as both the talker and the listener. However, the configuration has no effect
until the interface is no longer the Active Controller. The Active Controller never responds to
parallel polls.

Disabling Parallel Poll Responses
A device whose parallel poll response can be remotely configured by the Active Controller can
also be disabled from responding.

The Active Controller disables a device from responding to any future parallel polls by first send
ing a PARALLEL POLL CONFIGURE command followed by PARALLEL POLL DISABLE.
All devices that are currently addressed as listeners are disabled.

In the previous example a device at bus address 5 was configured to respond to parallel polls
on D1. To disable the same device from responding you can use:

command[O] = MTA;
command [1] = 63;
command[2] = 32 + 5;

command[3] = 5;
command[4] = 112;
hpib_send_cmnd( eid.

/*talk address of interface*/
/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 5 */
/* the PARALLEL POLL CONFIGURE command*/
/* the PARALLEL POLL DISABLE command*/

command. 5);

Conducting a Parallel Poll
Once the parallel poll responses of devices on the HP-IB have been configured (either remotely
or locally), the Active Controller can conduct a parallel poll with hpib_ppoll.

The hpib_ppoll routine returns an integer whose least significant byte contains the 8-bit response
to the parallel poll. Each device that is enabled to respond to a parallel poll places its status
bit on a previously configured line. If an error occurs while the poll is being taken, a -1 is
returned by the routine.

hpib_ppoll is invoked as follows:

hpib_ppoll( eid);

where eid is the entity identifier for the open interface file connected to the bus.

Controlling the HP-IB Interface 49



The code below indicates how you can interpret the byte returned by hpib_ppoll. Assume that
a device at address 6 was previously configured to respond to a parallel poll by placing a 1 on
DO if it needed service. Assume the device at address 7 was configured to respond similarly on
Dl. If these are the only two devices able to respond to a parallel poll, you only care about the
values of the 2 least significant bits of the integer returned by hpib_ppoll. The actual service
routines have been left out of the example.

#include <fcntl.h>
mainO
{

int eid. status. byte;
eid = open("/dev/raw_hpib". O_RDWR);

if «status = hpib_ppoll( eid» == -1) I*conduct the parallel poll*1
{

printf("error taking ppol1"); I*if -1 returned then error occurred*1
exit(1);

}
byte = status k 3;

switch (byte) {
case 0:

break;
case 1:

break;
case 2:

break;
case 3:

break;
}

}

I*set all but the least significant*1
1*2 bits to zero *1

I*neither device is requesting service*1

I*device at address 6 wants service*1

I*device at address 7 wants service*1

I*both devices want service*1

Errors During Parallel Polling
The hpib_ppoll routine returns a -1 if anyone of the following error conditions are true:

• The timeout defined by io_timeouLctl occurred before all of the devices responded.

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to a raw HP-IB interface file.

• The eid entity identifier does not refer to an open file.

50 Controlling the HP-IB Interface

.~



To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface was not the Active Controller or a timeout occurred.

Waiting For a Parallel Poll Response
The hpib_waiLon_ppoll routine allows you to wait for a specific parallel poll response from one
or more devices. The effect of this is similar to waiting for the assertion of the SRQ line with
hpib_status_wait (see the section Servicing Requests, presented earlier). With hpib_waiLon_ppoll
you can wait for a specific device to request service; while hpib_status_wait is interrupted when
any device requests service.

hpib_waiLon_ppoll is called with the form:

hpib_wait_on_ppoll( eid, mask, sense);

where eid is the entity identifier for the open interface file, mask is an integer whose binary
value indicates on which parallel poll lines you are waiting for a request, and sense is an integer
whose binary value indicates on which of these lines the request will use negative logic (device
responds with 0 when it wants service). The routine returns the response byte XQR-ed with
the sense value and AND-ed with the mask, unless an error occurs, in which case it returns a
-1.

Calculating the mask
The routine hpib_waiLon_ppoll only looks at the least significant byte of the mask integer;
therefore, the integer's remaining bytes can contain anything. For simplicity, the examples in
this discussion set the upper bytes to zeros.

The mask value is determined as follows.

1. Decide which of the parallel poll lines (the 8 data lines) you want to wait for a request
for service on. Assume that the lines are labeled DO-D7.

2. Set up an 8-bit binary number where the bits associated with the lines whose assertion
you want to wait for are set to 1 and all of the other bits are O. (DO is associated with
the least significant bit of the binary number, and D7 with the most significant.)

3. Given the binary number from step 2, calculate its decimal value. This is the mask integer
you should use with hpib_waiLon_ppoll.

Controlling the HP-IB Interface 51



For example, assume that you want to wait for device A and device B to request service. You
know that device A has been configured to respond on the parallel poll line DO and device B
has been configured to respond on line D4. The binary value of the mask that you will usc is:

The decimal value of this number is 17; the mask that you will use is 17.

Now consider a mask of O. It indicates that you do not want to wait for a request on any of the
parallel poIl lines, meaning that a caIl to hpib_waiLon_ppoll using a mask of 0 has no effect.

Calculating the sense
The routine hpib_waiLon_ppoll also only looks at the least significant byte of the sense integer.
For simplicity, the examples in this discussion set the upper bytes to zeros.

The sense value is determined as follows.

1. Decide which of the paraIlel poIl lines (the 8 data lines) you want to wait for a request
for service on. Assume that the lines are labeled DD-D7.

2. Determine which of these lines will indicate a request for service with a O. This means
that you must know the sense with which the associated devices are configured to respond
to paraIlel poIls.

3. Set up an 8-bit binary number where the bits associated with the lines that use a 0 to
indicate a service request are set to 1 and all of the other bits are O. (DO is associated
with the least significant bit of the binary number, and D7 with the most significant.)

4. Given the binary number from step 3, calculate its decimal value. This is the sense integer
you should use with hpib_waiLon_ppoll.

Refer back to the example given for calculating the mask value. You know that device A is
configured to respond on line DO with a 1 when it wants service, but device B is going to
request service with a 0 on line D4. The binary value of the sense that you will use is:

The decimal value of this number is 16; the sense that you will use is 16.

If all of the devices on the bus respond to parallel polls with a 1 to request service, then the
sense value can always be 0, no matter which paraIlel poll lines you are waiting for. If, on
the other hand, all of the devices request service with a 0, then the sense value can always be
255 (11111111 in binary). You need only calculate a different sense value if devices on the bus
respond with different levels.

52 Controlling the HP-IB Interface



An Example
Assume that you want to use hpib_waiLon_ppoli to wait until all of the devices on a bus are
requesting service so that you can service them all at once. Your bus is configured as follows:

Device Bus Address Parallel Poll Requests Service
Response Line With A:

A 5 DO 1
B 7 Dl 0
C 9 D2 0
D 11 D3 1

Begin by calculating the mask value for hpib_waiLon_ppoli. You want to wait for responses on
lines DO, Dl, D2, and D3; therefore, the mask value is:

Binary:

0000111 1

Decimal:

15

Since the four devices on the bus use both positive and negative logic, you must calculate the
sense value. The devices responding on lines Dl and D2 use 0 to request service; therefore, the
sense value is:

Binary:

o 0 0 0 0 1 1 0

Decimal:

15

Now that you have the mask and sense values you can write the code that makes the call to
hpib_waiLon_ppoll:

#include <fcntl.h>
mainO
{

int eid;
eid::: open (II/dev/raw_hpib", O_RDWR);

if (hpib_wait_on_ppoll( eid, 15. 6) =::: -1)
printf("either a timeout or error occurred ll );

else
service_routine();

}

In the code above, for service_routine to be executed all 4 of the devices must be requesting
service with their parallel poll response. SeTvice_ routine should contain code that services all of
the devices, either individually or as a group. See the hardware-dependency Appendix for any
restrictions that may apply to your system.

Controlling the HP-IB Interface 53



Serial Polling
A sequential poll of individual devices on the bus is known as a serial poll. One entire byte
of status is returned by the specified device in response to a serial poll. This byte is called
the status byte message and, depending on the device, may indicate an overload, a request for
service, or a printer being out of paper. The particular response of each device depends on the
device.

Not all devices can respond to a serial poll. To find out if a particular device can be serially ~
polled, consult its documentation. Trying to serially poll a device that cannot respond causes a __ )
timeout or suspends your program indefinitely.

The Active Controller cannot serial poll itself.

Unlike the parallel poll responses, serial poll responses cannot be configured remotely by the
Active Controller. They are device-dependent and you must refer to a device's documentation
to see how it responds.

Conducting a Serial Poll
The hpib_spoll routine performs a serial poll of a specified device. It is called with the form:

hpib_spoll( eid. address);

where eid is the entity identifier for the open interface file and address is the bus address of
the device to be polled. The routine returns an integer, the lowest byte of which contains the
status byte message (the serial poll response) from the addressed device. Only one device can
be polled per call to hpib_spoll.

Although the status byte message supplied by the addressed device is device-dependent, one bit
always supplies the same information. Given that the status byte's bits are labelled DO-D7, D6
always indicates whether or not the device is requesting service by asserting the SRQ line.

The code below illustrates how hpib_spoll can be used to find out if a device at bus address 5 is
requesting service. It does this by asserting SRQ (it only looks at D6).

#include <fcntl.h>
mainO
{

int eid. status;
eid = open("/dev/raw_hpib". O_RDWR);

if «status = hpib_spoll( eid. 5» == -1)
{ printf("error during serial poll");

exit (1) ;

/*conduct serial poll*/

}
if (status & 64)

service_routine();
}

54 Controlling the HP-IB Interface

/*after setting every bit except 06*/
/*to zero; if 06 is set the device*/
/*is requesting service */



Errors During Serial Poll
The hpib_spoll routine returns a -1 indicating an error if any of the following conditions are
true:

• The addressed device did not respond to the serial poll before the timeout defined by
io_limeouLctl occurred.

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file.

eid did not refer to a raw interface file.

The device polled did not respond before the timeout or the interface was not
the Active Controller.

Passing Control
The current Active Controller can pass the active control capabiltiy to a Non-Active Controller
with the hpib_pass_ctl routine. A Non-Active Controller is a device capable of becoming Active
Controller, and in most cases this means it is a computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctl( eid, address);

where eid is the entity identifier for the open interface file (that is currently the Active Controller)
and address is the bus address of a Non-Active Controller. Once the call is completed, the Non
Active Controller is the new Active Controller and the interface is a Non-Active Controller.

The hpib_pass_ctl routine only passes active control capability, it does not pass system control
capability.

What If Control Is Not Accepted?
Your program is not suspended if the Non-Active Controller that you address does not accept
active control of the bus. However, the computer still loses active control. This means the bus
no longer has an Active Controller. If this happens, the System Controller must assume the role
of Active Controller with hpib_abort (see The System Controller's Duties section) or io_reset.

No error is returned by hpib_pass_ctl if the device that you address does not accept active control.
There is also no direct way to determine in advance if a given device can accept active control.
However, if the computer immediately requests service after passing control and a timeout
occurs before the request is acknowledged, possibly the active control wasn't accepted. There
is no way for the computer, after initiating hpib_pass_ctl, to see if active control is accepted.

Controlling the HP-IB Interface 55



Errors While Passing Control
The routine hpib_pass_ctl returns a -1 indicating an error if any of the following error conditions
are true:

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface was not the Active Controller.

The System Controller
When the HP-IB's System Controller is first powered on or is reset, it assumes the role of
Active Controller. An HP-IB can have only one System Controller. The System Controller
cannot pass system control to any other controller (computer) on the bus. However, it can pass
active control to another controller.

Determining System Controller
To find out if your computer's HP-IB interface is the System Controller, use the hpib_bus_status
routine. It must be called as follows:

hpib_bus_status( eid, 3);

where eid is the entity identifier for the open interface file and 9 indicates that you want to find
out if it is the System Controller. The routine returns a 1 if it is the System Controller, a 0 if
it isn't, and a -1 if an error occurs.

The code that follows prints a message indicating if the interface is the System Controller:

#include <fcntl.h>
mainO
{

int eid, status;
eid =open (II/dev/raw_hpib", O_RDWR);

if «status = hpib_bus_status( eid, 3» == -1)
printf("Error occurred during bus status routine");

else if (status == 1)
printf("Interface is the System Controller");

else
printf(lIInterface is not the System Controller ll

);

}

56 Controlling the HP-IB Interface



System Controller's Duties
The System Controller of an HP-IB bus has three major functions:

• It assumes the role of Active Controller whenever it is powered on or reset.

• It can cancel talkers and listeners from the bus and assume the role of Active Controller
by executing hpib_abort.

• It can control the logic level of the remote enable line (REN) with hpib_ren_ctl.

hpib_abort
A call to hpib_abort carries out the following actions:

• It terminates activity on the bus by pulsing the Interface Clear line (IFC). This results
in all talkers and listeners on the bus being unaddressed.

• It sets the REN line so that devices on the bus will be placed in their remote state when
they are addressed.

• It clears the ATN line if it was left set by the previous Active Controller.

• The System Controller then becomes the bus's new Active Controller.

The routine leaves the SRQ line unchanged, which means any device requesting service before
hpib_abort is executed is still requesting service when the routine is finished.

To use hpib_abort on a particular HP-IB , the computer must be the System Controller of that
bus. It does not have to be the Active Controller.

One situation where hpib_abort is useful is when the bus's Active Controller attempts to pass
active control to another device that does not accept active control. This happens if the device
addressed to receive control is not another controller. As a result the bus is left without any
Active Controller and the System Controller must assume that role using hpib_abort.

hpib_abort is called as follows:

hpib_abort(eid);

where eid is the entity identifier for the open interface file.

hpib_ren_ctl
With hpib_ren_ctl you can enable or disable the REN line on the HP-IB. If the line is enabled,
all devices that are capable of remote operation (interpreting HP-IB commands) can be placed
in the remote state by the Active Controller addressing them as talkers or listeners. When REN
is disabled, all devices on the bus return to their local state and cannot be accessed remotely.

When the System Controller is powered on or reset, the REN line is enabled by default. It is
also enabled if the System Controller executes hpib_abort.

Controlling the HP-IB Interface 57



To use hpib_ren_ctl on a particular HP-IB , the computer must be the System Controller of that
bus. It does not have to be the Active Controller.

hpib_ren_ctl is called as follows:

hpib_ren_ctl( eid. flag);

where eid is the file descriptor for the open interface file and flag is an integer. If flag is zero, ~
the REN line is disabled. If it has any other value, then REN is enabled. " )

Errors During hpib_abort and hpib_ren_ctl
hpib_abort and hpib_ren_ctl both return a -1 indicating an error if any of the following error
conditions are true:

• The computer's interface is not the System Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface was not the System Controller.

58 Controlling the HP-IB Interface



Value

0

1

2

3

~
4

5

6

7

~'

The Computer As a Non-Active Controller

Determining the Controller's Status
The hpib_bus_status routine allows you to determine information about the interface card and
the HP-IB. It can be used by any controller on the bus, independent of whether or not it is
the Active Controller or System Controller. In the previous discussions about the Active and
System Controllers, the routine is mentioned briefly. The discussion that follows should give
you a broader look at the routine's uses.

hpib_bus_status is called with the form:

hpib_bus_status< eid, status_question);

where eid is the entity identifier for the open interface file and status_question is an integer that
indicates what question you want answered. The value of status_question must be within the
range 0-7 where the value indicates the following questions:

Status Question

Is the interface in the remote state?

Are there any devices requesting service? (Is SRQ asserted?)

Is there a listener that is not ready for data? (Is NDAC asserted?)

Is the interface the System Controller?

Is the interface the Active Controller?

Is the interface currently addressed as a talker?

Is the interface currently addressed as a listener?

What is the interface's bus address?

If the value of status_question is in the range 0-6, the routine returns a 1 if the answer to the
question is yes or a 0 if the answer is no. If the value of status_question is 7, the routine returns
the bus address of the computer's interface. If status_question has any other value, a -1 is
returned, indicating an error.

For example, to determine if your interface is a Non-Active Controller on the bus, use the routine
call illustrated by the following code:

if «status = hpib_bus_status< eid. 4» == -1)
printf("Error occurred while checking status");

else if (status == 0)
printf(IlComputer is a Non-Active Controller");

else
printf("Computer is the Active Controller");

Controlling the HP-IB Interface 59



Requesting Service
When your computer is a Non-Active Controller it can request service from the current Active
Controller by asserting the SRQ line. This is done with the hpib_rqsCsrvce routine. The routine
is called as follows:

hpib_rqst_srvce( eid. response);

where eid is the entity identifier for the open interface file and the lowest byte of response is the
integer value of the 8-bit response that the computer gives if it is serially polled. The upper
bytes of response are ignored by the routine. Given a bit labeling of DD-D7, D6 of the lower
byte sets the SRQ line. The defined values for the remaining 7 bits are device-dependent. This
section only discusses the setting and clearing of the SRQ line with D6 (integer value of 64).

To request service you can invoke hpib_rqsCsrvce as follows:

#include <fcntl.h>
mainO
{

int eid;

eid = open(lI/dev/raw_hpib". O_RDWR);
hpib_rqst_srvce( eid. 64); I*Bit 6 of serial poll response is set*1

I*and SRQ is asserted *1
}

Note that by setting response to 64 the only information that the Active Controller receives
when it serially polls your computer is that you are asserting the SRQ line.

hpib_rqsCsrvce returns a 0 if it executes correctly or a -1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active Controller serially polls
you or you call hpib_rqsCsrvce again and clear bit 6 (e.g. hpibJqsCsrvce(eid, 0) ). After your
serial poll response is configured, your computer's interface responds automatically to any serial
polls from the Active Controller.

Note that if another device is asserting SRQ also, the line is still asserted after your request is
removed.

If you try to request service and you are the Active Controller, the SRQ line is not set. How
ever, if you then pass active control to another computer, the response that you specified with
hpib_rqsCsrvce is remembered and the SRQ line is set.

When the Active Controller sees the SRQ line asserted, it usually polls the devices on the bus
to find out who is requesting service. To determine which device (or devices) is requesting
service, the Active Controller conducts a parallel poll. Configuring your computer's response to
a parallel poll is discussed in the next section.

60 Controlling the HP-IB Interface



If a device responds to a parallel poll with an I need service message, the Active Controller
can perform a serial poll to determine what service action is required. If several devices are
configured to respond to a parallel poll on the same line and the Active Controller sees that line
is requesting service, it must perform a serial poll of each of the devices to find out which one
is requesting service.

Errors While Requesting Service
The routine hpib_rqsLsrvce returns a -1 indicating an error if either of the following error
conditions are true:

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

eid did not refer to an open file.

eid did not refer to a raw interface file.

Responding to Parallel Polls
Before your computer can respond to a parallel poll from the Active Controller, its response
must be configured. This can be programmed remotely by the Active Controller (see The Active
Controller section) or locally using hpib_card_ppolLresp.

Configuring a parallel poll response of a device involves:

• Specifying the logic sense of the response (Le. whether a 1 means the device does or
doesn't need service).

• Specifying which data line the device responds on. More than one device can be configured
to respond on the same line.

To locally configure how your computer responds to pat·allel polls, call hpib_card_ppoILresp as
follows:

where eid is the entity identifier of the open interface file and flag is an integer whose binary
value configures the response.

Controlling the HP-IB Interface 61



Calculating the Flag
The flag value is found by first forming an 8-bit binary number and then using the decimal
value of that number. The binary number's bits have the following meaning:

where:

S sets the sense of the response if allowed by the hardware. If S is a 1, then the
device responds with a 1 when it requires service.

P is a 3-bit binary number that specifies which of parallel poll response lines (DO
D7) the device re- sponds on if allowed by the hardware.

Limitations of hpib_card_ppoILresp
There are some hardware limitations on using hpib_card_ppolLresp to configure parallel poll
responses. You should refer to the Appendix for your system to find out if any restrictions
apply. If there are restrictions on your system, you may find it easier to configure the interface's
parallel poll response remotely with the Active Controller. Note the Active Controller can
configure its own response, but the response only has effect when it passes active control.

Errors While Configuring Response
The routine hpib_card_ppolLresp returns a -1 indicating an error if any of the following error
conditions are true:

• The interface cannot respond on the line number specified by flag.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EINVAL

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface cannot respond on the line indicated by flag.

62 Controlling the HP-IB Interface



Hpip-ppoILresp_ctl
The hpip_ppolLresp_ctl function allows the user to determine how the computer will respond to
the next parallel poll. There are two ways to respond to a parallel poll. Responding favorably
indicates to the controller that the computer wants to be serviced. Responding unfavorably
indicates the computer does not need the Active Controller's attention.

The parallel poll response is set as follows:

hpib_ppoll_resp_ctl(eid. response_value);

where eid is the entity identifier of an open interface file and the response_value is an integer
that indicates the response to use. If response_value is non-zero then the computer will respond
favorably to the next parallel poll. A zero response_value will respond unfavorably to the next
parallel poll.

Disabling Parallel Poll Response
The function hpib_card_ppolLresp also allows you to disable your interface from responding to
parallel polls made by the Active Controller. This is done by setting bit D4 of the routine's flag
value. When D4 is 0 the interface is enabled to respond to parallel polls, and when it is 1 the
interface's parallel poll response is disabled. Thus, a flag value of 16 disables the response. For
example, the code:

I*disable parallel poll response*1

disables the interface with the entity identifier eid from responding to any parallel polls.

Accepting Active Control
If your computer is a Non-Active Controller, the current Active Controller may pass active
control to you. Your computer's interface accepts active control automatically; however, you
must design an interfacing program to recognize when this happens.

The hpib_bus_status, hpib_status_wait, and io_on_interrupt routines allow recognizing the com
puter has become the Active Controller.

hpib_status_wait has been mentioned in previous discussions about the Active Controller and
System Controller. The following discussion provides a look at its uses.

Controlling the HP-IB Interface 63



hpib_status_wait is called as follows:

hpib_status_wait( eid, status);

where eid is the entity identifier for the open interface file and status is an integer indicating
what condition you want to wait for. The following values for status are defined:

Value

1

4

5

6

Condition Waiting For

Wait until the SRQ line is asserted

Wait until this computer is the Active Controller

Wait until this computer is addressed as a talker

Wait until this computer is addressed as a listener

Now imagine a situation where the current Active Controller is programmed to know that when
your computer requests service it is to pass active control to you. The following code shows
how you can program your computer to request service and then wait until it becomes the bus's
new Active Controller.

#include <fcntl.h>
mainO
{

int eid;
eid = open("/dev/raw_hpib". O_RDWR);
if (hpib_rqst_srvce( eid. 64) == -1) /*set SRQ line to request service*/
{

printf("Error while requesting service");
exit (1) ;

}

if (hpib_status_wait( eid. 4) == -1) /*wait until Active Controller*/
{

printf("Error while waiting for status");
exit (1) ;

}
/*Computer is now the Active Controller*/

}

Notice for hpib_status_wait to have returned a -1 (due to a timeout occurring, you would have
had to set a timeout value, using io_timeouLctl, after opening the interface file. Since this
wasn't done in the example above, no timeout occurs.

64 Controlling the HP-IB Interface



Errors While Waiting on Status
hpib_status_ wait returns a -1 indicating an error if any of the following error conditions are
true:

• A timeout occurred before the condition the routine was waiting for became true.

• The status specified has an undefined value.

• The eid entity identifier does not refer to a raw HP-IB interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for the
following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EINVAL

EIO

eid did not refer to an open file.

eid did not refer to a raw interface file.

status contains an invalid value.

The specified condition did not become true before a timeout occurred.

Determining When You Are Addressed
As a Non-Active Controller you may be addressed by the Active Controller and become a bus
talker or listener for data transfer. The DIL routines hpib_bus_status, hpib_status_wait, and io_
on_interrupt allow you to find out if the computer's interface is currently being addressed.

The following code determines if the interface is currently addressed as a bus talker:

#include <fcntl.h>
MainO
{

int eid;
eid:;: open (II/dev/raw_hpib ll

, O_RDWR);
if (hpib_bus_status( eid, 5) == 1)
{

printf("the interface is addressed as a talker ll
) ;

write( eid. "data message II , 12); /*do the expected data transfer*/
}
else

printf("the interface is not addressed as a talker") :
}

In the above call to hpib_bus_status, eid is the entity identifier for the interface and 5 indicates
that you are asking if it is a bus talker. The routine returns a 1 if the answer is yes and 0 if the
answer is no.

Controlling the HP-IB Interface 65



To find out if the interface is currently addressed as a bus listener use the following:

if (hpib_bus_status( eid, 6) == 1)
{

printf( lI the interface is addressed as a listener ll
);

read( eid, buffer. 12); /*do the data transfer*/
}
else

printf("the interface is not addressed as a listener");

If you need to wait until the interface is addressed as either a talker or listener and then handle
a data transfer, use the DIL routine hpib_status_wait. When you call the routine, you specify
the entity identifier of the interface and the bus condition that you want to wait on:

hpib_status_wait( eid. condition);

As with hpib_bus_status, with a condition value of 5 the routine waits for the interface to be
addressed as a talker. With a condition value of 6 the routine waits until it is a listener. How
long the routine waits for the specified condition is controlled by the timeout value that you
have previously set for the entity identifier with io_timeouCctl (see discussion in Chapter 2:
General Purpose Routines). The routine returns a 0 if the condition became true or a -1 if a
timeout (or an error) occurred first.

In the example below, the program waits for the interface to become a bus listener and then it
reads a 50-byte message.

#include <fcntl.h>
mainO
{

int eid;
char buffer [50] ; /*storage for message*/
eid = open("/dev/raw_hpib ll

• O_RDWR);
io_timeout_ctl( eid. 500);

if (hpib_status_wait( eid. 6) == -1)
{

printf(lIEither a timeout or an error occurred");
exit (1) ;

}

}

read( aid. buffer. 50);
printf("Message is: %s". buffer);

/*read data into buffer*/
/*print data message*/

Note that a timeout value is set for the interface file's entity identifier in the code above so the
program does not hang while waiting for the interface to be addressed as a bus listener.

66 Controlling the HP-IB Interface



The following example illustrates how to use the io_on_intcrTupt routine to set up an interrupt
handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
int eid;
char buffer (50] ;
mainO
{

int eid;
struct interrupt_struct cause_vee;
eid = open("/dev/ra\'1_hpib ll ,O_RDWR);
cause_vec.cause = TLK;
io_on_interrupt(eid, cause_vee, handler);

}
handler (eid, cause_vee);
int eid;
struct interrupt_struct cause_vee;
{

if (cause_vee.cause == TLK)
read(eid, data, 50);

}

Controlling the HP-IB Interface 67



Buffering I/O Operations
The DIL routine hpib_io allows you to perform structures of HP-IB I/O operations for both
sending HP-IB commands and transferring data. The computer's HP-IB interface must be the
bus's Active Controller before this routine can be used.

A call to hpib_io has the form:

#include <dvio.h>
int eid;
struct iodetail *iovec;
int iolen;

hpib_io( eid, iovec. iolen);

where eid is the entity identifier of the open interface file, iovec is a pointer to an array of
I/O operation structures, and iolen is the number of structures in the array. The name of the
template for the I/O operation structures is iodetail and it is defined in the include file dvio.h.

lodetail: The I/O Operation Template
The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;

};

Each of the components of iodetail have the following meanings:

mode Describes what kind of I/O operation the structure contains.

terminator Specifies whether or not there is a read termination character for the I/O oper
ation, and if so it specifies the value.

count How many bytes are to be transferred during the I/O operation.

buf A pointer to an array containing the bytes of data to be transferred.

Components of a particular iodetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of iodetail structures and component is either mode~ termi
nator, count, or buf.

68 Controlling the HP-IB Interface



The Mode Component
The mode describes what type of I/O is to be performed on the data pointed to by the buf
component. You determine its value by OR-ing constants from a set defined in the include file
dvio.h. The constants that you can choose from are:

Name

HPIBREAD

HPIBWRITE

HPIBATN

HPIBEOI

HPIBCHAR

Description

Perform a read operation and place the data into the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with HPIBCHAR.

Perform a write operation using the data in the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with either HPIBATN or
HPIBEOI but not both.

If you are performing a write operation, the data is placed on the bus
with ATN asserted (you are sending a bus command). It only has effect
if you also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted when the
last byte of data is sent. It only has effect if you also specify HPIBWRITE.

If you are performing a read operation, the transfer is halted when the
terminator component value of the iodetail structure is read. The termi
nator component only has effect if you OR HPIBCHAR and HPIBREAD.
The HPIBCHAR constant only has effect if also specify HPIBREAD.

NOTE

When you construct mode, you must use either HPIBREAD or HPIB
WRITE, but not both. Optionally, you can OR one of the other three
constants with either HPIBREAD or HPIBWRITE , but they are not
required. HPIBCHAR only has effect when it is OR-ed with HPI
BREAD, while HPIBATN and HPIBEOI only have effect when they
are OR-ed with HPIBWRITE (but not both at the same time).

The mode component allows you to specify under what conditions an I/O operation termi
nates. All I/O operations terminate when the maximum number of bytes specified by the count
component of the iodetail structure is reached. However, additional termination conditions are
possible:

• If you specify HPIBREAD and HPIBCHAR, the detection of the termination character
determined by the terminator component also causes termination.

• If you specify HPIBWRITE and HPIBEOI, when the count value is reached EOI is
asserted at the time that the last byte of data is sent (unless you also specify HPIBATN).

To illustrate, assume that iovec points to an iodetail structure that you are building and you
want the structure to send several HP-IB commands. The mode component of the structure is
assigned the necessary value as follows:

iovec->mode ~ HPIBWRITE I HPIBATN;

Controlling the HP-IB Interface 69



The Terminator Component
The terminator component of the iodetail structure specifies a character that causes the termi
nation of a read operation when it is detected. The terminator only has effect if HPIBREAD
IHPIBCHAR is specified as the structure's associated mode component.

Assign a value to the terminator of the structure pointed to by iovec with:

iovec->terminator = value;

For example, to make the ASCII period (".") the termination character, use the statement:

iovec->terminator = '.';

The Count Component
The count is an integer determining the maximum number of bytes that will be transferred
during the structure's I/O operation. Reading or writing always terminates when this value is
reached, but additional termination conditions can be set up using the structure's associated
mode component.

Set a maximum number of bytes for a structure's data transfer with:

iovec->count = max_value;

where iovec is a pointer to the structure and max_value is an integer.

The Buf Component
The bufcomponent points to a character array that holds the data that will be transferred during
a read operation (HPIBREAD) or is written to during a write operation (HPIBWRITE). Note '"
the array's size limit is defined by the structure's count component. .'

One way to store a message in the buf array is:

iovec->buf = "data message";

Allocating Space
Before you can build iodetail structures for your I/O operations, you need to allocate space for
them in memory. The easiest way to do this (if you are programming in C) is to write a routine
that allocates space for n iodetail structures and returns a pointer to the first one.

Below is the code for such a routine, io_alloc:

struct iodetail *io_alloc(n);
int n;
{

char *malloc 0 ;
return«struct iodetail *) malloc(sizeof(struct iodetail) * n»;

}

Refer to the HP- UX Reference for a description of malloc(9C).

To use io_alloc to allocate memory space for 10 iodetail structures your program should contain
the statements:

struct iodetail *iovec;
iovec = io_alloc(10);

/*define an iodetail pointer*/
/*allocate space for 10 iodetail structures*/

70 Controlling the HP-IB Interface



~.

,"

An Example
Assume that your computer's HP-IB interface is at HP-IB address 3 and it is the bus's Active
Controller. You want to send a data message to a device at HP-IB address 7 and then receive
a message from the same device using hpib_io. Four iodetail structures are required to do this:

1. The first structure configures the bus so that the interface is the talker and the device at
address 7 is the listener.

2. The second structure sends the data message from the interface to the device.

3. The third structure configures the bus so that the device at address 7 is the talker and
the interface is the listener.

4. The fourth structure receives the data message from the device.

Controlling the HP-IB Interface 71



The code below illustrates how the 4 structures can be built and then implemented.

#include <fcntl.h>
#include <dvio.h> I*contains definitions for iodetail*1
struct iodetail *io_alloc(n);
int n;
{

char *malloc 0 ;
return «struct iodetail *) malloc(sizeof (struct iodetail) *n»;

}
mainO
{

extern int errno;
int eid;
char buffer[4] [12] ;
struct iodetail *iovec. *temp; 1*2 pointers to iodetail structures*1

I*Allocate space for 4 iodetail structures*1
eid = open (1I/dev/raw_hpib ll , O_RDWR);
iovec = io_alloc(4); I*use the routine described earlier*1
temp = iovec;

I*Build structure 1 -- Configuring the bus*1
temp->mode = HPIBWRITE I HPIBATN; I*you want to send commands*1
strcpy(buffer[O],II?~ II); I*address computer to talk and bus address to listen*1
temp->buf = buffer[O];
temp->count = strlen(temp->buf);

I*Build structure 2 -- Sending the data message*1
temp++; I*use temp pointer so that iovec remains pointing to the*1

I*first structure but temp now points to the next one*1

temp->mode = HPIBWRITE I HPIBEOI; I*you want EOI asserted when the
transfer is done*1

strcpy(buffer[l] ,lIdata message");
temp->buf =buffer[l];
temp->count = strlen(temp->buf);

I*Build structure 3 -- Configuring the
temp++;
temp->mode = HPIBWRITE I HPIBATN;
strcpy(buffer[2] ,II?<D>");
temp->buf = buffer[2];
temp->count = strlen(temp->buf);

bus*1
I*increment structure pointer*1
I*you want to send commands*1

I*Build structure 4 -- Receiving data message*1
temp++; I*increment structure pointer*1
temp->mode = HPIBREAD I*read data; reaching count value terminates read*1
temp->count = 10; I*you expect a 10-byte message*1
temp->buf = buffer [3] ;

72 Controlling the HP-IB Interface



I*Implement the 1/0 operations stored in the iodetail structures*1
eid = open(l/dev/raw_hpib". O_RDWR);
hpib_io( eid, iovec. 4);

if (hpib_io(eid, iovec. 4) == -1)
{

printf (lIhpib_io faild\n");
printf (lIerrno %d\n".errno);
exit (1) ;

}

I*Print data message you received from the device. Note temp still*1
I*points to the last iodetail structure and the last structure did the read*1

printf("%s". temp->buf);
}

One comment about the C language; routine parameters are passed by value and not by ref
erence; therefore, after you execute hpib_io the iovec parameter still points to the first iodetail
structure, just as it did before the routine executed. Thus, another way to print out the data
message, read into the buf component of the fourth iodetail structure in the example above, is:

printf("%s". (iovec[3]->buf);

Controlling the HP-IB Interface 73



Locating Errors in Buffered I/O Operations
If all of the I/O operations specified in the array of iodetail structures complete successfully,
hpib_io returns a 0 and updates the count component of each structure to reflect the actual
number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately returns a -1 indicating
the error. To find out during which iodetail structure operation the error occurred, look at the
structures' count components. The hpib_io routine updates the count component of the structure
that caused the error to be a -1. Once you have located a structure with a count of -1, you
know that all of the structures previous to it were completed successfully and all of the structures
after it were not executed at all.

For example, assume that you have built an array of 10 iodetail structures to execute a sequence
of I/O operations. The following code executes the operations and then checks for errors. If an
error occurs, the code prints the number of the structure that caused it (for instance, the first
structure in the array is number 1).

#include <fcntl.h>
#include <dvio.h>
mainO
{

int FOUND, number, eid;
struct iodetail, *iovec. *temp;

I*space is allocated for the 10 structures and then they are*1
I*built. "Iovec" is left pointing to the first structure*1

eid = open("/dev/raw_hpib" , O_RDWR); I*open the interface file*1

if (hpib_io( eid, iovec, 10) == -1) I*execute the operations and if a -1*1
I*is returned then an error occurred*1

I*move pointer to next structure*/
/*increment counter*/

{
number = 1; I*initialize counter*1
FOUND = 0; I*initialize Boolean flag*1
temp = iovec; I*set temporary pointer to first structure*1
while (number <= 10 && FOUND!= 1)

if (temp->count == -1) I*found structure that caused error*1
FOUND = 1;

else
{
temp++;
number++;

}
if (FOUND == 1)

printf(IIStructure number %d caused error II , number);
else

printf("Error but couldn't find structure that caused it");
}
else

printf("No error occurred during execution of hpib_io ll
);

}

74 Controlling the HP-IB Interface



Controlling the GPIO Interface 4
~.""'"\'

r.....

This chapter briefly describes the actions you take to configure your GPIO interface before it
can be accessed from a program using the OIL routines. It then discusses the limitations and
capabilities that OIL provides for controlling the GPIO interface.

Configuring Your GPIO Interface

Setting the Interface Switches
The GPIO interface card has several switches that allow you to configure your interface. These
are fully described in the interface's installation manual. The functions they configure are:

• the data logic sense

• the data handshake mode

• the input data clock source

• whether or not the computer checks the Peripheral Status line (PSTS) before initiating
a data transfer

Set the switches according to the directions found in the GPIO installation manual.

NOTE

On some systems, the GPIO interface's select code is determined by a
switch setting on the interface card. Refer to the Appendix at the end
of this article to see if a switch configuration is required. If a switch
setting is not required, then the select code is determined by the I/O
slot in which you place the interface card.

Creating the GPIO Interface File
Once you have set the necessary switches on your GPIO interface you must install the card in
your computer and create an interface file for it. Chapter 2: General Purpose Routines discusses
using mknod to create a special file for accessing the interface. You must create an interface file
before you can access the interface from HP-UX. Refer to Chapter 2: General Purpose Routines
for information on how to use mknod to create the interface file.

Controlling the GPIO Interface 75



Limitations on Controlling the Interface
The Device I/O Library (DIL) routines allow you to use a GPIO interface to communicate with
devices that are not supported on your HP-UX system. They do not provide you with full
control of the interface and because of this, you are faced with the following limitations:

• You cannot recognize interrupts sent by the peripheral on the External Interrupt Request
line (EIR).

• You do not have direct access to the interface's handshake lines: the Peripheral Control
line (PCTL), the Peripheral Flag line (PFLG), and the Input/Output line (I/O).

• You cannot read the value of the Peripheral Status line (PSTS).

Using the DIL Routines
Several of the DIL routines can be used to control the GPIO interface. These are divided into
two groups:

• general purpose routines used with either an HP-IB or GPIO interface

• GPIO routines; routines specifically designed to be used with a GPIO interface

The general purpose routines are listed and described in Chapter 2: General Purpose Routines
and you should refer there for more information. They are used in this chapter to illustrate
various aspects of controlling the GPIO interface from an HP-UX process.

There are two DIL routines that are restricted to use with a GPIO interface:

• gpio_geCstatus

• gpio_seCctl

On the Series 500, these two routines allow you to use the four special purpose lines that are
available on the interface for any purpose desired. The gpio_geCstatus routine reads the two
lines controlled by the peripheral (STIO and STH) and gpio_seCctl sets the values of the two
lines controlled by the computer (CTLO and CTLl). These two routines are described later in
this chapter in the section Using the Special Purpose Lines.

By using the DIL general purpose routines and these two GPIO-specific routines you can:

• reset the interface

• perform data transfers

• use the interface's 4 special purpose lines

• control the data path width and data transfer speed

• set a timeout for data transfers

• set a read termination character

• get the termination reason

• set up the interrupts

• enable or disable interrupts

76 Controlling the GPIO Interface

.~
/



Resetting the Interface
The interface should always be reset before it is used, to ensure it is in a known state. All
interfaces are automatically reset when your computer is powered on, but you can also reset
them from your I/O process using the io_reset rOlltine. For example, the following code resets
a GPIO interface:

int eid; /*entity identifier*/
eid = open( II/dev/raw_gpio ll

• O_RDWR); /*open GPIO interface file*/
io_reset(eid); /*reset the interface*/

This has the following effect:

• the Peripheral Reset line (PRESET) is pulsed low

• the PCTL line is placed in the clear state

• if the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to logical
0)

The lines that are left unchanged are:

• the CTLO and CTL 1 output lines

• the I/O line

• the Data Out lines, if the DOUT CLEAR jumper is not installed

Performing Data Transfers
Using the DIL routines read and write you can transfer bytes of ASCII data to and from the
GPIO interface. The following code illustrates using these routines to first write 16 bytes of
data and then read 16 bytes.

int eid;
char read_buffer[16]. write_buffer [16] ;
eid = open( II/dev/raw_gpio". O_RDWR);
write_buffer = "message to write";
write( eid.write_buffer. 16);
read( eid. read_buffer. 16);
printf("%s", read_buffer);

/*entity identifier*/
/*buffers to hold data*/
/*open interface file*/
/*data message to send*/
/*send message*/
/*receive message*/
/*print received message*/

Controlling the GPIO Interface 77



Using the Special-Purpose Lines
On the Series 500, four special-purpose signal lines are available for a variety of uses. Two
of the lines are for output (CTLO and CTLl), and two are for input (STIO and STH). The
routine gpio_seLctl allows you to control the values of CTLO and CTLl, while the routine
gpio_geLstatus allows you to read the values of STIO and STH.

Driving CTLO and CTL1
The call to gpio_seLctl has the following form:

gpio_set_ctl(eid. value);

where eid is the entiy identifier for the open GPIO interface file and value is an integer whose
least significant two bits are mapped to CTLO and CTLI.
To illustrate:

int eid; I*entity identifier*1
eid = open("/dev/raw_gpio". O_RDWR); I*open interface file*1
gpio_set_ctl( eid, 3); I*assert eTLO and CTL1*1

Both CTLO and CTLI are asserted low; thus, in the above example both lines are pulled low.
This logic polarity cannot be changed. To raise both of the lines, call gpio_seLctl with:

gpio_set_ctl( eid. 0);

Reading STIO and STI1
The call to gpio_geLstatus has the following form:

int eid, value;
value = gpio_get_status(eid);

where eid is the entity identifier for the open GPIO interface file. The routine returns an integer
whose least significant two bits are the values of STIO and STH.
To illustrate:

int eid; I*entity identifier*1
int value, bits;
eid = open(ll/dev/raw_gpio ll

• O_RDWR); I*open interface file*1
value = gpio_get_status(eid); I*look at ST10 and ST11*1
bits = value & 03 I*clear all but the 2 least significant bits*1
if (bits == 3) I*and see if they're both set*1

I*insert code that handles case when both ST10 and STI1 are asserted*1
else if (bits == 1) I*just STIO is asserted*1

I*insert code that handles case when STIO is asserted*1

else if (bits == 2) I*just STI1 is asserted*1

I*insert code that handles case when STI1 is asserted*1

else I*neither are asserted*1

I*insert code that handles case when neither ST10 nor STI1 is asserted*1

Note that STIO and STH are asserted low; thus, when the value returned by gpio_geLstatus
has one of its two least significant bits set, the associated special-purpose line is low.

78 Controlling the GPIO Interface



Controlling the Data Path Width
The DIL routine io_width_ctl allows you to specify two different data path widths for your GPID
interface: 8 bits and 16 bits. The call has the following form:

io_width_ctl( eid, width);

where eid is the entity identifier for the open GPID interface file and width is either 8 or 16. If a
different width value is specified, the routine returns an error of -1 and errno is set to EINVAL.
The GPID interface defaults to an 8-bit path when its file is first opened.

The code below illustrates data transfers using a 16-bit data path.

int eid:
eid = open(lI/dev/raw_gpio ll

• O_RDWR):
io_width_ctl( eid. 16);
write( eid, IIdata message II , 12);

/*open the interface file*/
/*set path width at 16 bits*1
I*perform data transfer*1

Since the interface's data path is 16 bits, 2 ASCII characters are transfeI\ed for each handshake
cycle involved. In the first 16-bit transfer, d is sent in the upper byte and a is sent in the
lower. The actual logic level of the GPID data output lines depends on how the lines have been
configured.

Controlling the Transfer Speed
You can request a minimum speed for the data transfer across a GPID interface using
io_speed_ctl. Your system rounds the speed that you specify up to the nearest defined speed.
If you specify a speed that is faster than your system allows, the highest allowable speed is
used. Refer to Chapter 2: General Purpose Routines for more information on using this routine.
Again, the Series 500 always provides DMA; therefore, the routine io_speed_ctl is ineffective on
that system.

In Case of a Timeout
If you have previously set a timeout value for the data transfer entity identifier, reaching the
timeout after attempting a transfer will cause an error condition. If a timeout does occur, the
DIL routine that you called to implement the transfer returns -1 and sets errno to EID. When a
timeout occurs you should reset the GPID interface with the io_reset routine before attempting
the transfer again.

Controlling the GPID Interface 79



Read Terminations

Determining Why a Read Operation Terminated
Chapter 2: General Purpose Routines describes a OIL routine called io_geCterm_reason that is
used to find out why the last read, done on a particular entity identifier, terminated. It tells
you which of the following caused the termination:

• the requested number of bytes were read

• a specified read termination character was seen

• the assertion of the PSTS was seen

• some abnormal condition occurred, such as an I/O timeout

Specifying a Read Termination Character
Chapter 2: General Purpose Routines describes the routine io_eoLctl which allows you to specify
a character that when read will terminate the read operation on a particular entity identifier
for the GPIO interface file.

Interrupts
Chapter 2: General Purpose Routines describes io_on_interrupt and io_interrupCctl. These
routines allow you to set up and control interrupt handlers for the GPIO status line or a
particular eid for the GPIO interface file.

80 Controlling the GPIO Interface



Series 500 Dependencies A
There are four areas of Series 500 system dependent information:

• information about creating the special file for the interfaces that you plan to access with
DIL routines

• the relationship between entity identifiers and file descriptors

• the restrictions imposed by the hardware on using the DIL routines

• information about how you can improve the performance of your I/O process

Creating the Interface File
There are two areas of hardware-specific information that you must know before you can create
a special file for an interface:

• the number of the driver that is required to communicate with the interface

• how the select code for the interface is determined

Determining the Driver
You specify the driver that is to be used with an interface in the major number argument of
the mknod command. On the Series 500, the driver numbers that you use are:

Driver Number

12

18

37

Use

HP 27110A/B HP-IB Interface

HP 27110A GPIO Interface

Internal 550 HP-IB Interface

Determining the Select Code
You specify the select code for an interface as a two digit hexadecimal value component of the
minor number argument of mknod. On the Series 500, the select code corresponds to the I/O
slot in which the interface is placed.

Series 500 Dependencies 81



Determining The Bus Address
of the Interface Card
The HP 27110A/B card always assumes bus address 30 when it is the Active Controller. If
control is passed, then it assumes the address specified by the cards switch set.ting. However,
the hpib_bus_status routine always returns the correct bus address.

Entity Identifiers
On the Series 500, an entity identifier for a file used by a DIL routine is equivalent to an HP-UX
file descriptor. This means that you can obtain entity identifiers for your interface files with the
system routines dup, lenti, and pipe, in addition to open.

Restrictions Using the DIL Routines
This section presents some restrictions on using the DIL routines on the Series 500 comput
ers. These restrictions are organized under the routine to which they apply. The routines are
presented in alphabetical order.

hpib_bus_status
A bug in the HP 27110A HP-IB interface card can cause an erroneous report of the state of
the SRQ line. There is a small window when hpib_bus_status(eid, 1) reports that the line is
clear when in reality it is set. Since the routine will never report that the line is set when in
reality it is clear, OR-ing together successive readings of the state of the SRQ line minimizes
the possiblity of error. OR-ing five successive readings gives you a result that is approximately
99% accurate. This bug has been fixed in the HP 27110B card.

On the Series 500, it is possible to look at the SRQ line with hpib_bus_status and not see it
asserted when it actually is. Because of this, you should check the SRQ line at least 5 times
before determining whether or not it is asserted. If it is seen true anyone of the 5 times, then
the line is asserted (it will never be seen asserted when it actually isn't). For example:

#include <fcntl.h>
mainO
{

int eid. value. i:

eid = open("/dev/raw_hpib". O_RDWR):
value = 0;
for ( i=O; i<5; ++i)

value = hpib_bus_status( eid.!) + value;
/*Notice that if SRQ is ever seen true. then "value ll will be
greater than 0*/

if (value>O)
service_routine(); /*SRQ is asserted; service the request*/

else
printf("No one is requesting service ll

);

}

82 Series 500 Dependencies



hpib_card_ppoll_resp
The HP 271lOA/B HP-IB interface cards do not support programmatic configuration of their
parallel poll response. The parallel poll response is set and enabled by the hpib_card_ppolLresp
routine. The default sense of the HP 27110A/B interface's parallel poll response is always 1. If
the interface's address is 7 or less, the address determines the response's line number as follows:
given that the bus data lines are labeled DO through D7, they correspond to addresses 7 through
0, respectively. For instance, the parallel poll response of an HP 2711OA/B with address 0 is a
1 on data line D7. If its address is 7 then it responds with a 1 on line DO. If the address of the
interface is greater than 7, there is no default line for it to respond on. Therefore, unless its
response is configured remotely by the Active Controller, it can not respond at all.

If you want the interface to respond with a sense of 0 or on a different line than HP 2711OA/B
defaults to, you must configure it remotely with the Active Controller

hpib_rqst_srvce
This routine provides the capability of configuring an HP-IB interface's 8-bit response to serial
polls. However, the HP 2711OA/B HP-IB interface only allows you to set bit 6 of the response;
all the other bits are cleared. If you set bit 6 of the serial response (where the response bits
are labeled bit DD-D7) and the interface is not the Active Controller, then the SRQ line is
asserted. The line remains asserted until the interface is serially polled or you clear bit 6
with hpib_rqsCsrvce. If you set bit 6 and the interface is the Active Controller, the interface
remembers the response and asserts SRQ when control passes to another controller.

Since you can only control bit 6 of the serial poll response, only the bit corresponding to 64 in
decimal of hpib_rqsCsrvce's response argument has affect. Thus:

hpib_rqst_srvce( eid. 64);

sets bit 6 of the interface's serial poll response and:

hpib_rqst_srvce( eid. 0);

clears it.

hpib_send_cmnd
The HP 27110A/B HP-IB and Series 550 Internal HP-IB interface cards send all the commands
you specify with this routine, with odd parity. To do this, it overwrites the most significant
bit of each command byte with a parity bit. This should not cause a problem since all HP-IB
commands use only 7 bits, and the eighth is free for use as parity.

Series 500 Dependencies 83



hpib_status_wait
The hpib_status_wait routine, when processing, holds off all other activity on that interface card.
Other processes attempting to access the interface card will hang. It is strongly recommended
that a non-zero timeout be in effect before calling hpib_status_wait.

hpib_waiLon_ppoll
The hpib_waiLon_ppoll routine, also, holds off all other activity on the interface card. Again,
other processes attempting to access the interface card will hang and it is recommended that a
non-zero timeout be in effect before calling hpib_waiLon_ppoll.

iO_geLterm_reason
Normally, this routine can indicate multiple reasons for a read termination by the values of the
least significant three bits in its returned value:

Set Bit Decimal Meaning

(none) 0 Abnormal termination.
Bit 0 1 Number of bytes requested were read.
Bit 1 2 Specified termination character was detected.
Bit 2 4 Device-imposed termination condition was

detected (e.g. EOI on HP-IB).

For example, if io_geLterm_reason returns a 7 you know that the read terminated for three
reasons: the byte count was reached, a termination character was seen, and a termination
condition was detected.

The io_geLterm_reason routine on the Series 500 has a limitation when a read is terminated for
multiple reasons; it can only indicate one termination cause at a time. If a read terminates for
multiple reasons, the value returned by io_geLterm_reason is the value of the highest numbered
reason. Thus, on the Series 500 the routine can only return a 0, 1, 2, or 4 (or a -1 if the
routine itself fails). For instance, if a 4 is returned, you know that a device-imposed termination
condition occurred, but you do not know if the byte count was reached or if a termination
character was read as well.

On the Series 500, if you set a termination character for a GPIO interface that is using a 16-bit
data path, only an 8-bit termination character is set (the least significant byte of the match
value). During read operations, if the termination character is then seen as the lower byte in
a data transfer, everything works correctly; both the upper and lower bytes of the transfer are
received and the count of received bytes is incremented by two. However, if the termination
character is seen as the upper byte of the transfer, both the upper and lower bytes are still read.
The count of received bytes is only incremented by one though, indicating that the termination
character was in the upper byte.

84 Series 500 Dependencies



io_timeouLctl
This routine allows you to set a time limit for I/O operations on an entity identifier associated
with an interface file. The timeout value that you specify is a 32-bit long integer that indicates
the length of the timeout in microseconds. However, the resolution of the effective timeout is
system-dependent. On the Series 500 the timeout is rounded up to the nearest 10 millisecond
boundary. For example, if you specify a timeout of 155000 microseconds (155 milliseconds), the
effective timeout is rounded up to 160 milliseconds.

When an I/O operation is aborted due to a timeout errno is set to EIO. However, EIO is defined
as I/O error and can be set by many other error conditions. On the Series 500, you can obtain
more information by looking at the external HP-UX variable errinfo. When a timeout occurs,
errinfo is set to the value 56.

io_speed_ctl
The Series 500 always provides DMA for the fastest possible I/O speeds. Therefore, io_speed_ctl
has no affect on the Series 500.

io_width_ctl
Although this routine is designed to be used on any interface, the path width that you specify
with it must be supported on the particular interface. On the Series 500, only the GPIO interface
allows you to change data path widths and only two widths are currently supported: 8 bits and
16 bits. The routine returns an error if you access a GPIO interface with any width besides 8
or 16 bits or if you access any other interface with a width other than 8 bits.

Series 500 Dependencies 85



Performance Tips
The performance of your I/O process on a Series 500 that uses OIL routines can be improved
by following the basic guidelines listed below.

• Use buffers to hold data that you write to an interface. Transferring data that you have
previously stored in a buffer is faster than if you specify the data string when you invoke
the transfer. For example, the data transfer performed by the code:

int eid; /*entity identifier descriptor*/
char buffer [12] ; /*buffer to hold data*1

eid:::: io_open(lI/dev/raw_hpib". O_RDWR);
buffer:::: IIdata message"; /*store data in buffer*/
io_write( eid, buffer, 12); /*transfer data*/

is faster than the data transfer performed by the code:

int eid; I*entity identifier descriptor*/
eid:::: io_open("/dev/raw_hpib", O_RDWR);
io_write( eid, "data message", 12); /*transfer data*/

• Make the number of bytes transferred divisible by the number of bytes per word that
your system supports. Data transfers, both reading and writing, are faster if the number
of bytes involved in the transfer falls on a word boundary. The Series 500 supports 4
byte words; therefore, the following code has an optimized performance because the byte
counts are divisble by 4.

io_write( eid. buffer1, 12);
io_read( eid, buffer2, 40);

• If you are the super-user, you can use the memlck routine (see HP-UX Reference: Section
2) to lock your I/O process's address space into physical memory. Data transfer times
are reduced because they are carried out directly from the user area and do not have to
be first moved to the system area. However, you can not lock an arbitrarily large amount
of space for your process since there is a point at which your system's performance will
begin to degrade.

• For processes running with an effective user ID of super-user, it is possible to lock the
process in memory with plock(2) (see HP- UX Reference). This lock is different than
memlck (as mentioned above). int plock(2) informs the system that the process text,
data, or both are not to be swapped out of memory. The following example illustrates
the use of plock:

#include <sys/lock.h>
mainO
{

int plockO;
plock(PROCLOCK); /* lock text and data semnets into memory*/

plock(UNLOCK); /* unlock my process*/
}

• Use auto-addressing for all read and write operations. (See Chapter 3: Setting up Talkers
and Listeners.)

86 Series 500 Dependencies



• Increasing the system priority of an I/O process can be accomplished by using rtprio(2).
rtprio requires the process to be running with an effective user ID of super-user. The
real time priorities available with rtprio are non-degrading priorities. Caution must be
observed when using real time priorities since one can increase their priority above system
processes. This may cause undesirable behavior. For example, requesting a real time
priority in the range of 0-63 places your process in a higher priority than the DIL interrupt
handler system process. This means that interrupts could be lost if there is not sufficient
CPU resource available. The following example places the calling process at the lowest
(least important) real time priority:

#include <sys/rtprio.h>
maine)
{

int rtprio(). my_proc;

my_proc = 0; /* a zero process # tells rtprio to refer to the */
/* calling process. */

rtprio(my_proc. 127); /* priority 127 = lowest real time priority*/

rtprio(my_proc, RTPRIO_RTOFF); /* turn off real time priority*/
}

Series 500 Dependencies 87



88 Series 500 Dependencies

C)

.~



Character Codes
ASCII EQUIVALENT FORMS Hp·IB
Chllr. Dec Binary Oct Hex

NUL 0 00000000 000 00

SOH 1 00000001 001 01 GTL

STX 2 00000010 002 02

ETX 3 00000011 003 03

EOT 4 00000100 004 04 SOC

ENO 5 00000101 005 05 PPC

ACK 6 00000110 006 06

BEL 7 00000111 007 07

BS 8 00001000 010 08 GET

HT 9 00001001 011 09 TCT

LF 10 00001010 012 OA

VT 11 00001011 013 OB

FF 12 00001100 014 OC

CR 13 00001101 015 00

SO 14 00001110 016 OE

SI 15 00001111 017 OF

OLE 16 00010000 020 10

OCI 17 00010001 021 11 llO

OC2 18 00010010 022 12

OC3 19 00010011 023 13

OC4 20 00010100 024 14 OCl

NAK 21 00010101 025 15 PPU

SYNC 22 00010110 026 16

ETB 23 00010111 027 17

CAN 24 00011000 030 18 SPE

EM 25 00011001 031 19 SPO

SUB 26 00011010 032 1A

ESC 27 00011011 033 1B

FS 28 00011100 034 lC

GS 29 00011101 035 10

RS 30 00011110 036 IE

US 31 00011111 037 IF

ASCII EQUIVALENT FORMS HP·IB
Chllr. Dec Blnllry Oct Hex

space 32 00100000 040 20 LAO

! 33 00100001 041 21 LAI

..
34 00100010 042 22 lA2

# 35 00100011 043 23 LA3

S 36 00100100 044 24 LA4

% 37 00100101 045 25 LAS

& 38 00100110 046 26 lA6

39 00100111 047 27 LA7

( 40 00101000 050 28 LA8

) 41 00101001 051 29 LA9

* 42 00101010 052 2A LAl0

+ 43 00101011 053 2B LA 11

I 44 00101100 054 2C lA12

- 45 00101101 055 20 lA13

46 00101110 056 2E lA14

I 47 00101111 057 2F LA15

0 48 00110000 060 30 LA16

1 49 00110001 061 31 LA17

2 50 00110010 062 32 LA18

3 51 00110011 063 33 lA19

4 52 00110100 064 34 LA20

5 53 00110101 065 35 LA21

6 54 00110110 066 36 LA22

7 55 00110111 067 37 LA23

8 58 00111000 070 38 LA24

9 57 00111001 071 39 LA25

58 00111010 072 3A LA26

I 59 00111011 073 38 LA27

< 60 00111100 074 3C LA28

= 61 00111101 075 3D LA29

> 62 00111110 076 3E LA30

? 63 00111111 077 3F UNl

B

Character Codes 89



Character Codes (cont.)

ASCII EQUIVALENT FORMS
Hp·IB

Char. Doc Binary Oct Hox

@ 64 01000000 100 40 TAO

A 65 01000001 101 41 TAl

B 66 01000010 102 42 TA2

C 67 01000011 103 43 TA3

0 68 01000100 104 44 TA4

E 69 01000101 105 45 TAS

F 70 01000110 106 46 TA6

G 71 01000111 107 47 TA7

H 72 01001000 110 48 TAS

I 73 01001001 111 49 TA9

J 74 01001010 112 4A TA10

K 75 01001011 113 48 TAll

L 76 01001100 114 4C TA12

M 77 01001101 115 40 TA13

N 76 01001110 116 4E TA14

0 79 01001111 117 4F TA15

P 80 01010000 120 50 TA16

Q 81 01010001 121 51 TA17

R 82 01010010 122 52 TA18

S 83 01010011 123 53 TA19

T 84 01010100 124 54 TA20

U 85 01010101 125 55 TA21

V 86 01010110 126 58 TA22

W 87 01010111 127 57 TA23

X 88 01011000 130 56 TA24

Y 89 01011001 131 59 TA25

Z 90 01011010 132 SA TA28

[ 91 01011011 133 58 TA27

" 92 01011100 134 5C TA28

1 93 01011101 135 5D TA29

A 94 01011110 136 5E TA30

- 95 01011111 137 SF UNT

90 Character Codes

ASCII EQUIVALENT FORMS HP·IB
Char. Doc Binary Oct Hox

96 01100000 140 60 SCO

a 97 01100001 141 61 SCI

b 98 01100010 142 62 SC2

e 99 01100011 143 63 SC3

d 100 01100100 144 64 SC4

e 101 01100101 145 65 SC5

f 102 01100110 146 68 SC8

9 103 01100111 147 67 SC7

h 104 01101000 150 68 SC8

i 105 01101001 151 69 SC9

j 106 01101010 152 6A SC10

k 107 01101011 153 8B SCll

I 108 01101100 154 6C SC12

m 109 01101101 155 60 SC13

n 110 01101110 156 6E SC14

0 111 01101111 157 6F SC15

p 112 01110000 180 70 SC16

q 113 01110001 161 71 SC17

r 114 01110010 182 72 SC18

s 115 01110011 163 73 SC19

t 116 01110100 164 74 SC20

u 117 01110101 165 75 SC21

v 118 01110110 166 76 SC22

w 119 01110111 167 77 SC23

x 120 01111000 170 78 SC24

Y 121 01111001 171 79 SC25

z 122 01111010 172 7A SC26

( 123 01111011 173 78 SC27

I 124 01111100 174 7C SC28

} 125 01111101 175 70 SC29

- 126 01111110 176 7E SC30

DEL 127 01111111 177 7F SC31



Index

a
Active Controller:

Bus Management 7
Computer Role 36
Determining 40
Functions of 40
Passing Control 55,56

Addressed Commands 31,32
Addresses:

Bus 13,14
Listen 31,32
Talk 31,32

Addressing:
Auto-addressing 41
Listeners and Talkers 41
Manual 41

AND-ing 51
Asserting Lines 6
ATN (Attention) 7,31,57,69
Auto-addressing Bus 41

b
buf 68,70
Buffering I/O Operations 68-76
Bus Address 13,14,82

c
C Routines:

close 3
open 2,3
read 11,17
write 11, 17

C:
Linking DIL 2
Onionskin 3

Call by Reference 3
Call by Value 3
Character Special File 13
Clear 47
close 3,16
Commands:

Addressed 31,32



Secondary 31,32
Sending HP-IB Commands 38-39
Talk and Listen Addesses 31,32
Universal 31,32

Communication Using Special Files 12-14
Compatibility: .~

Data 5
Electrical and Mechanical 5,6
Timing 5,6

Compiling 2
Computer's Role on HP-IB 36
Controller:

Active 36
Description (HP-IB Device) 6
Non-Active 36
System 36

Controlling:
GPIO Interface 77-82
HP-IB Interface 31-74
I/O Parameters 20-25
Interrupts 27
Path Width 79
'Transfer Speed 79

~~:~i~~:""""""""""""""""""""""""""""""""""" 68,70 ~
GPIO Interface File 14,75
HP-IB Interface File 13
Interface Files 12,81

CTLO 76-79
CTL1 76-79

d
Data-In 9
Data:

Compatibility 5
Controlling Path Width 79
Controlling Transfer Speed 79
End of Data 'Transfer 23-24
Handshaking Methods 9 "'.
Holding·Yalid 6,9 J
Performing 'Transfers 77
Reading 9
Setting Path Width 21-22
Setting Transfer Speed 22
Timeout on 'Transfer 20-21
'Transferring by Active Controller .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44
Writing 9

DAY (Data Yalid) 6



DCL 27
Designing Error Checking Routines 18
Determining:

Active Controller 41
Bus Address of the Interface Card 82r' Controller's Status 60

'- System Controller 57
The Driver 81
The Select Code 81
\i\'hen You are Addressed 66
Why a Read Terminated 25-26,80

DEVICE CLEAR 32,33,45
Devices:

Clearing HP-IB 45
Remote Control of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43
Triggering 44

OIL (Device I/O Library):
Introduction to 1,2

OIL Routines:
Calling from C 2
Calling from FORTRAN 3
Calling from Pascal 2
General Purpose 11
GPIO Specific 76
Introduction to 1-3
Library Containing 2
Linking from C, FORTRAN, Pascal 2
Location of 2
Restrictions 82
Role Designations 36
Used to Contol I/O Parameters 20-24

DMA (Direct Memory Access) 22,79,85
DOUT CLEAR (Data Out Lines Clear) 77
Driver 12-14,81
dvio.h 68

e
EBADF 39,51,54,55,58,60,62,65
eid:

Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15
Using 15,19

EINVAL 62,65,79
EIO 2,39,51,54,55,58,64,85
EIR (External Interrupt Request Line) 8,76
Electric Logic Levels 5
Electritical Compatibility 5
Enabling Local Control 44
ENOENT 19



ENOTTY 39,51,54,55,58,60,62,65
Entity Identifier 15,82
EOI (End or Identify) 7,21,29,69
errinfo 85
errno.h 18
errno:

Description of 18
Using 18
Values of 39,51,54,55,58,60,62,65

Errors:
During hpib_abort and hpib_ren_ctl 58
During Parallel Polling 50-51
I/O 85
Locating In Buffered I/O Operations 74
While Configuring Response 62
While Passing Control 56
While Requesting Service 61
While Sending Commands 39
While Waiting on Status 65

f
~~~~.:h 15,16 ~

Closing 3,15
Creating Interface Files 12-14
dvio.h 68
errno.h 18
fcntl.h 15,16
Non-Raw HP-IB Device File 41
Opening 2,15
Raw HP-IB Device File 12-14
Reading and Writing 17,18
Special 12-14

FLAG Switches 9
Floating Lines 6
Fork 21,24,25
FORTRAN:

$Alias Directive 3
Call by Value 3
Calling OIL Routines 3 ,
Linking OIL 2 .

Full-Mode Handshake 9



9
GET 27
GO TO LOCAL 32,34,43
GPIO (General Purpose Input/Output):

Configuring the Interface 75
Controlling Data Path Width 79
Controlling the Interface 76
Creating the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75
Data Lines 8
Handskake Lines 8
HP 27110A Interface 81-83
Interface Description 8
Introduction to 1,8
Performing Data Transfers 77
Resetting the Interface 77
Special Purpose Lines 8,78
Specific DIL Routines 76

gpio_get_status 76,78
gpio_set_ctl 76,78

h
Handshaking:

Description of 5,9
GPIO Lines 8
HP-IB Lines 6
Types of 9

Hanging a Progranl 20,21
HP 27110A GPIO Interface 81-83
HP 27110A/B HP-IB Interface 81-83
HP-IB (Hewlett-Packard Interface Bus):

Bus Commands 31-34
Bus Management Lines 7
Computer's Role 36
Controlling 31-75
Devices 6
DIL Routines 35,36
General Structure 6
Handshake Lines 6
HP 2711OA/B Interface 81-83
Internal 550 HP-IB Interface 81-83
Introduction to 1,6-7
Non-Raw Device Files 41
Raw Device Files 12-14

HPIBATN 69-73
HPIBCHAR 69-73
HPIBEOI 69-73
HPIBREAD 69-73



HPIBWRITE 69-73
hpib_abort 35,36,55,57
hpib_bus_status 35,36,40,42,46,55,58,59,63-66,82
hpib_card_ppoILresp 35,36,61,83
hpib_eoi_ctl 35,36
hpib_io 35,36,68,71-73 .~
hpib_pass_ctl 35,36,55 ", )
hpib_ppoll 35,36,47,49,50
hpib_ppoILresp_ctl 35,36,63
hpib_ren_ctl 35,36,57,58
hpib_rqst_srvce 35,36,60,83
hpib_send_cmnd 31,32,35,36,38-42,44,83
hpib_spoll 35,36,47,54
hpib_status_wait 35,36,46,51,63,65,84
hpib_waiLon_ppoll 35,36,51-53,84

•
I

I/O (Input/Output Line) 8,76,77,80
IFC (Interface Clear Line) 7,19,27,57
Input/Output:

Buffering Operations 68-76 "'.
Controlling Parameters 20-25 _)
Errors 55
Operation Template 68-70
Setting Timeout 20-21

Interface:
Additional Functions 5
Background Information on 4-5
Bus Address 82
Closing Files 16
Compatibilities 5
Creating Interface Files 12-14
Functional Diagram of 4
HP 27110A(GPIO) 81-83
HP 27110A/B(HP-IB) 81-83
Internal 550 HP-IB 81-83
Opening Files 15
Opening HP-IB Interface File 37
Primary Function of 4-5 "'.
Resetting 19,77 , }'
Setting Switches 75
Why Its Needed 4-5

Internal 550 HP-IB Interface 81-83
Interrupts:

Conditions 27
Controlling Routines 27,80
Description of 27-29
Handlers 27,80



,....
\

iodetail:
Allocating Space for Structure 70
Buf 68,70
Count 68,70
Mode 68-69
Template 68-70
Terminator 68,70

io_alloc 70
io_eoLctl 11,20,23,24,80
io_get_term_reason 11,20,25,84
io_interrupt_ctl 11,28,29,80
io_on_interrupt 11,27,28,63,65,67,80
io_reset 11,19,55,77,79
io_speed_ctl 11,20,22,79,85
io_timeout_ctl 11,20,21,46,50,54,64,85
io_width_ctl 11,20-22,79,85

k
k-bytes 22

I
Libraries:

/lib/libXXX.a 2
/usr/lib/libdvio.a 2
/usr/lib/libXXX.a 2
Linking 2
Location of 2

Lines:
Asserting 6
Floating 6
GPIO Data 8
GPIO Handshaking . . . . . . . . . . . . . . . . . . . .. 8
GPIO Special Purpose 8,78
HP-IB Bus Management Contol 7
HP-IB Handshaking 6
Sensing 6

Linking OIL Routines:
To C Progralll 2
To FORTRAN Program 2
To Pascal Program 2

Listeners:
Description (HP-IB Device) 6
Setting up 41

Local Control:
Enabling 43
Locking Out 43



LOCAL LOCKOUT 32,33,43
Local:

State 43
Switch 43

Locking Out Local Control 44
Logic Levels 5
LTN 27

m
Major Number:

Determining 12,81
Using 12-14

Manually Addressing Bus 41
mask:

Calculating 51-53
Parameter Description 27,28

Match 23
Matching Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
Mechanical Compatibility 5
Minor Number:

Determining 12,81
Using 12-14 ~

mknod 12-14,75,81 )
MLA (My Listen Address) 42
mode 68,69
MTA (My Talk Address) 42,44

n
NDAC (Not Data Accepted) 6,59
Non-Active Controller:

Accepting Active Control 64,65
Computer Role 36
Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55
Determining When Addressed 66
Disabling Parrallel Poll Response 64
Errors While Requesting Service 62
Receiving Control 55
Requesting Service 61,62
Responding to Parallel Polls 62,63 ~.:

Non-Raw HP-IB Device File 41
NO_FILE 16
NRFD (Not Ready For Data) 6



o
Onionskin 3
open 2,15
Opening:

HP-IB Interface Files 37
Interface Files 15

OR-ing 51,67,68,82
O_RDWR:

Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15
Using 15

P
PARALLEL POLL CONFIGURE 32,34,47,49
PARALLEL POLL DISABLE 32,34,49
PARALLEL POLL ENABLE 32,34,47,48
PARALLEL POLL UNCONFIGURE 32
Parallel Polling:

Conducting 49,50
Configuring Responses 47-49
Disabling Responses 49,63
Errors During 50,51
Responding to 61
Waiting for Response 51-53

Pascal:
Call by reference 3
Calling DIL Routines 2
Linking OIL 2

Passing Parameters:
By Reference 3
By Value 3

Pathname 12,14
PCTL (Peripheral Control Line) 8,76,77
Performance Tips Series 500 86
PFLG (Peripheral Flag Line) 8,76
PPOLL 27
PRESET (Peripheral Reset Line) 19,77
PSTS (Peripheral Status Line) 75,76,80
Pulse-Mode Handskake 9



r
Raw:

Definition 13
HP-IB Device File 13

Re~~~er~i~'~ti~~ 'Ch~~~~~e'r;"""""""""""""""""""""""""" 12,13 )

Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23
Removing 24
Setting 23,24,80

read:
System Routine 11,17,77
Why Terminated 25,80

Recognizing Devices 33
Remote State 43
Removing Read Termination Characters 24,25
REN (Remote Enable) 7,27,31,43,56,57
Requesting Service 60,61
Resetting Interfaces 19,77
Routines:

C 2,3,11,17
DIL General Purpose 11
Error Checking 18
For Calling I/O Parameters 20 .~.

GPIO Specific 76 }
Service 47
System 11

5
Secondary Commands 31,32
Select Code 13,14,81
SELECTED DEVICE CLEAR 32,33,45
Sending HP-IB Commands 38,39
sense Value 51-53
sense,Calculating 52
Sensing Lines 6
SERIAL POLL DiSABLE 32,33
SERIAL POLL ENABLE 32,33
Serial Polling:

Conducting 54 .~.

Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 }
Errors During . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54

Service Request:
Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46
SRQ Line 46
Using Service Routine 46,47

Service Routine 53
Servicing Requests 46,47



Setting:
Data Path Width 21,22
GPIO Interface 75
I/O Timeout 20
Interface Switches (GPIO Interface) 77
Read Termination Character 23,24
Transfer Speed 22,80
Up Talkers and Listeners 42

SIEO 27
SIE1 27
Special Files:

/ dev/hpib 37
/dev/raw_gpio 14
/dev/raw_hpib 13,15,17,37
/dev/raw_hpibl 14
/dev/raw_hpib2 14
Character 13
Description 12
Directory Containing 12
Non-Raw HP-IB Device File 41
Raw HP-IB Device File 13

Special Purpose Lines 8,78
SRQ (Service Request) 7,27,46,47,51,54,57,59,60,64,82,83
Status Byte Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53
STIO 76,78
STI1 76,78
System Controller:

Bus Management 7
Computer Role 36
Description of 56-58
Determining 56
Duties 56

System Routines 11

t
TAKE CONTROL 32
Talk Address 31,32
Talk and Listen Addesses 31,32
Talkers:

Description (HP-IB Device) 6
Setting up 41

TCT 27
Terminated Read 25,80
Termination Character:

Description of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23
Removing 24
Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23,24,80

terminator 68,70



Timeouts ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20,21,79
Timing Compatibility 5
TLI{ 27
TRIGGER 32,33,44

u
Unaddressing 33
Universal Commands 31,32
UNLISTEN 32,33,38,39,41,44
UNTALI{ 32,33,38,39

v
Valid Data 6,9

VI
write 11,17,77

X
XOR-ed 5



Table of Contents

Lex: A Lexical Analyzer Generator
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
Lex Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3
Lex Regular Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4

Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4
Character classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
Arbitrary character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
Optional expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
Repeated expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
Alternation and Grouping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
Context sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
Repetitions and Definitions 7

Lex Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8
Example 9

Ambiguous Source Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11
Lex Source Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13
Usage 14

HP-UX 14
Lex and Yacc 15
Examples 15
Left Context Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18
Character Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Summary of Source Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21
Caveats and Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22



Ii



Lex
A Lexical Analyzer Generator

Introduction
Lex is a program generator designed for lexical processing of character input streams. It accepts a
high-level, problem oriented specification for character string matching, and produces a program in
a general purpose language which recognizes regular expressions. The regular expressions are
specified by the user in the source specifications given to Lex. The Lex written code recognizes
these expressions in an input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings program sections provided by the user are ex
ecuted. The Lex source file associates the regular expressions and the program fragments. As each
expression appears in the input to the program written by Lex, the corresponding fragment is
executed.

The user supplies the additional code beyond expression matching needed to complete his tasks,
possibly including code written by other generators. The program that recognizes the expressions is
generated in the general purpose programming language employed for the user's program frag
ments. Thus, a high level expression language is provided to write the string expressions to be
matched while the user's freedom to write actions is unimpaired. This avoids forcing the user who
wishes to use a string manipulation language for input analysis to write processing programs in the
same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language feature which
can be added to different programming languages, called "host languages." Just as general pur
pose languages can produce code to run on different computer hardware, Lex can write code in
different host languages. The host language is used for the output code generated by Lex and also
for the program fragments added by the user. Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to different environments and different
users. Each application may be directed to the combination of hardware and host language
appropriate to the task, the user's background, and the properties of local implementations. At
present, the only supported host lan~age is C. Lex itself exists on HP-UX, but the code generated
by Lex may be taken anywhere the appropriate compilers exist.

Lex turns the user's expressions and actions (called source) into the host general-purpose language.
The generated program is named yyJex. The yyJex program will recognize expressions in a stream
(called input) and perform the specified actions for each expression as it is detected. See Figure 1.

Lex

yylex

---.,.~ yylex
'-------r Source • I

Input • I
Figure 1: An overview of Lex

1



For a trivial example, consider a program to delete from the input all blanks or tabs at the ends of
lines.

XI
[\t]+$

is all that is required. The program contains a %% delimiter to mark the beginning of the rules, and
one rule. This rule contains a regular expression which matches one or more instances of the ~
characters blank or tab (written "'-t for visibility, in accordance with the C language convention) just )
prior to the end of a line. The brackets indicate the character class made of blank and tab; the +
indicates "one or more ... "; and the $ indicates "end of line," similar to ED. No action is specified,
so the program generated by Lex (yylex) will ignore these characters. Everything else will be
copied. To change any remaining string of blanks or tabs to a single blank, add another rule:

XI
[\t]+$ ;
[\t]+ printf{" ");

The finite automaton generated for this source will scan for both rules at once, observing at the
termination of the string of blanks or tabs whether or not there is a newline character, and executing
the desired rule action. The first rule matches all strings of blanks or tabs at the end of lines, and the
second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on a lexical
level. Lex can also be used with a parser generator to perform the lexical analysis phase; it is
particularly easy to interface Lex and Yacc. Lex programs recognize only regular expressions; Yacc
writes parsers that accept a large class of context free grammars, but require a lower level analyzer ~
to recognize input tokens. Thus, a combination of Lex and Yacc is often appropriate. When used as )
a preprocessor for a later parser generator, Lex is used to partition the input stream, and the parser
generator assigns structure to the resulting pieces. The flow of control in such a case (which might
be the first half of a compiler, for example) is shown in Figure 2. Additional programs, written by
other generators or by hand, can be added easily to programs written by Lex. Yacc users will realize
that the name yylex is what Yacc expects its lexical analyzer to be named, so that the use of this
name by Lex simplifies interfacing.

lexical grammar
rules rules

r-! ~
Lex yacc

t t
Input---l~~I YY_I_eX -----l~~IL..___YY_p_a_rs_e_--J ---1~~Parsedinput

Figure 2: Lex with Yacc

Lex generates a deterministic finite automaton from the regular expressions in the source. The '"
automaton is interpreted, rather than compiled, in order to save space. The result is still a fast}
analyzer. In particular, the time taken by a Lex program to recognize and partition an input stream
is proportional to the length of the input. The number of Lex rules or the complexity of the rules is
not important in determining speed, unless rules which include fOlWard context reqUire a significant
amount of rescanning. What does increase with the number and complexity of rules is the size of
the finite automaton, and therefore the size of the program generated by Lex.
2 Lex



In the program written by Lex, the user's fragments (representing the actions to be performed as
each regular expression is found) are gathered, as cases of a switch statement in C. The automaton
interpreter directs the control flow. Opportunity is provided for the user to insert either declarations
or additional statements in the routine containing the actions, or to add subroutines outside this
action routine.

Lex is not limited to source which can be interpreted on the basis of one character look-ahead. For
example, if there are two rules, one looking for ab and another for abcdefg, and the input stream is
abcdefh, Lex will recognize ab and leave the input pointer just before "cd. .. "Such backup is more
costly than the processing of simpler languages.

Lex Source
The general format of Lex source is:

{definitions}
U
{ rules}
z:t
{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is optional, but
the first is required to mark the beginning of the rules. The absolute minimum Lex program is thus

n

(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.

In the outline of Lex programs shown above, the rules represent the user's control decisions; they
are a table, in which the left column contains regular expressions (see section 3) and the right
column contains actions, program fragments to be executed when the expressions are recognized.
Thus an individual rule might appear

integer printfl"found keyword INT");

to look for the string integer in the input stream and print the message "found keyword INT"
whenever it appears. In this example the host procedural language is C and the C library function
printf is used to print the string. The end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it can just be given on the right side of the
line; if it is compound, or takes more than a line, it should be enclosed in braces.

As a slightly more useful example, suppose it is desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf(" co l or ") i
printf("mechanize");
printf("gas") i

would be a start. These rules are not quite enough, since the word petroleum would become
gaseum. A way of dealing with this will be described later.

Lex 3



Lex Regular Expressions
The definitions of regular expressions are similar to those in ED. A regular expression specifies a set
of smngs to be matched. It contains text characters (which match the corresponding characters in
the strings being compared) and operator characters (which specify repetitions, choices, and other
features). The letters of the alphabet and the digits are always text characters; thus the regular
expression

inte!l'er

matches the string integer wherever it appears and the expression

aS7D

looks for the string as7D.

Operators
The operator characters are

" \ [ ] A _ ? • * + I ( ) $ / { } % < >

and if they are to be used as text characters, an escape should be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

matches the string xyz + + when it appears. Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary text character; the expression

"lly:z++11

is the same as the one above. Thus by quoting every non-alphanumeric character being used as a
text character, the user can avoid remembering the list above of current operator characters, and is
safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding it with " as in

llY:Z\+\+

which is another, less readable, equivalent of the above expressions. Another use of the quoting
mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs end a
rule. Any blank character not contained within [ ] (see below) must be quoted. Several normal C
escapes with" are recognized: "n is newline, "t is tab, and "b is backspace. To enter" itself,
use"". Since newline is illegal in an expression, "n must be used; it is not required to escape tab
and backspace. Every character but blank, tab, newline and the list above is always a text character.

4 Lex



Character classes
Classes of characters can be specified using the operator pair [ ]. The construction [abc] matches a
single character, which may be a, b, or c. Within square brackets, most operator meanings are
ignored. Only three characters are special: these are ",-, - and ". The - character indicates
ranges. For example,

[a-zO-9< >_l

~ indicates the character class containing all the lower case letters, the digits, the angle brackets, and
underline. Ranges may be given in either order. Using - between any pair of characters which are
not both upper case letters, both lower case letters, or both digits is implementation dependent and
will get a warning message. (E.g., [0 -z] in ASCII is many more characters than it is in EBCDIC.) If
it is desired to include the character - in a character class, it should be first or last; thus

[-+0-9l

matches all the digits and the two signs.

In character classes, the " operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer character set.
Thus

["abcl

matches all characters except a, b, or c, including all special or control characters; or

["a-zA-Zl

is any character which is not a letter. The " character provides the usual escapes within character
class brackets.

Arbitrary character
To match almost any character, the operator character

is the class of all characters except newline. Escaping into octal is possible although non-portable:

[\1I0-\176l

matches all printable characters in the ASCII character set, from octal 40 (blank) to octal 176 (tilde).

Lex 5



Optional expressions
The operator ? indicates an optional element of an expression. Thus

ab?c

matches either ae or abc.

Repeated expressions
Repetitions of classes are indicated by the operators * and +.

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-zl+

is all strings of lower case letters. And

[A-Za-z][A-Za-zO-Sl*

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expression for
recognizing identifiers in computer languages.

Alternation and Grouping
The operator I indicates alternation:

(ablcdl

matches either ab or cd. Note that parentheses are used for grouping, although they are not
necessary on the outside level;

ablcd

would have sufficed. Parentheses can be used for more complex expressions:

(ablcd+)?(ef>*

matches such strings as abefeF, efefeF, cdeF, or cddd; but not abc, abed, or abcdef.

6 Lex



Context Sensitivity
Lex will recognize a small amount of surrounding context. The two simplest operators for this are ,..
and $. If the first character of an expression is "', the expression will only be matched at the
beginning of a line (after a newline character, or at the beginning of the input stream). This can
never conflict with the other meaning of "', complementation of character classes, since that only
applies within the [ ] operators. If the very last character is $, the expression will only be matched at
the end of a line (when immediately followed by newline). The latter operator is a special case of
the I operator character, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

abl\n

Left context is handled in Lex by start conditions as explained in the section on left context
sensitivity. If a rule is only to be executed when the Lex automaton interpreter is in start condition x,
the rule should be prefixed by

<x)

using the angle bracket operator characters. If we considered "being at the beginning of a line" to
be start condition ONE, then the " operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions
The operators { }specify either repetitions (if they enclose numbers) or definition expansion (if they
enclose a name). For example

<diSit}

looks for a predefined string named digit and inserts it at that point in the expression. The definitions
are given in the first part of the Lex input, before the rules. In contrast,

a<l IS}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for Lex source segments.

Lex 7



Lex Actions
When an expression written as above is matched, Lex executes the corresponding action. This
section describes some features of Lex which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb the entire input, without producing
any output, must provide rules to match everything. When Lex is being used with Yacc, this is the
normal situation. One may consider that actions are what is done instead of copying the input to the
output; thus, in general, a rule which merely copies can be omitted. Also, a character combination ~
which is omitted from the rules and which appears as input is likely to be printed on the output, thus -
calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null statement, ";"
as an action causes this result. A frequent rule is

[\t\nJ ;

which causes the three spacing characters (blank, tab, and newline) to be ignored.

Another easy way to avoid writing actions is the action character which indicates that the action for
this rule is the action for the next rule. The previous example could also have been written

"\t"
"\n"

with the same result, although in different style. The quotes around "'-n and "'-t are not reqUired.

In more complex actions, the user will often want to know the actual text that matched some
expression like fa - z] +. Lex leaves this text in an external character array named yytext. Thus, to
print the name found, a rule like

[a-zJ+ printf(IIIs", yytext);

will print the string in yytext. The C function printf accepts a format argument and data to be
printed; in this case, the format is "print string" (% indicating data conversion, and 5 indicating
string type), and the data are the characters in yytext. So this just places the matched string on the
output. This action is so common that it may be written as ECHO:

[a-zJ+ ECHO;

is the same as the above. Since the default action is just to print the characters found, one might ask
why give a rule, like this one, which merely specifies the default action? Such rules are often
reqUired to avoid matching some other rule which is not desired. For example, if there is a rule
which matches read it will normally match the instances of read contained in bread or readjUSt, to
avoid this, a rule of the form fa -z]+ is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also provides
a count yyleng of the number of characters matched. To count both the number of words and the
number of characters in words in the input, the user might write

[a-zA-ZJ+

8 Lex

{words++; chars += yyleng;}



which accumulates in chars the number of characters in the words recognized. The last character in
the string matched can be accessed by

yytextCYYleng-ll

Occasionally, a Lex action may decide that a rule has not recognized the correct span of characters.
Two routines are provided to aid with this situation. First, yyrnore() can be called to indicate that the
next input expression recognized is to be tacked on to the end of this input. Normally, the next input
string would overwrite the current entry in yytext. Second, yyless (n) may be called to indicate that
not all the characters matched by the currently successful expression are wanted right now. The
argument n indicates the number of characters in yytextto be retained. Further characters previous
ly matched are returned to the input. This provides the same sort of look-ahead offered by the /
operator, but in a different form.

Example
Consider a language which defines a string as a set of characters between quotation marks, and
provides that to include a " in a string it must be preceded by a "... The regular expression which
matches that is somewhat confusing, so that it might be preferable to write

\"C""l* {
if (yytextCYYleng-ll == '\\')

yymore();
else

'" normal user processing
}

which will, when faced with a string such as II abc \ "del II first match the five characters II abc \ ;
then the call to yyrnore() will cause the next part of the string, "del, to be tacked on the end. Note
that the final quote terminating the string should be picked up in the code labeled "normal
processing".

The function yyless() might be used to reprocess text in various circumstances. Consider the C
problem of distinguishing the ambiguity of II = - a". Suppose it is desired to treat this as "= - a"
but print a message. A rule might be

=-Ca-zA-Zl {
printf("Operator 1=-) ambiguous\n");
yylesslyyleng-l);

action for =- ".

which prints a message, returns the letter after the operator to the input stream, and treats the
operator as 'I = -". Alternatively it might be desired to treat this as II = - a" . To do this, just return
the minus sign as well as the letter to the input:

=-Ca-zA-Zl {

printfl"Operator 1=-) ambiguous\n");
yylesslyyleng-2) ;

action for = .. ,

Lex 9



will perform the other interpretation. Note that the expressions for the two cases might more easily
be written

=-/[A-Za-zl

in the first case and

=/-[A-Za-zl

in the second; no backup would be required in the rule action. It is not necessary to recognize the
whole identifier to observe the ambiguity. The possibility of "= - 3", however, makes

=-/[A\t\nl

a still better rule.

In addition to these routines, Lex also permits access to the I/O routines it uses. They are:

1. inputO which returns the next input character;

2. output(c) which writes the character c on the output; and

3. unput(c) pushes the character c back onto the'input stream to be read later by inputO.

By default these routines are provided as macro definitions, but the user can override them and
supply private versions. These routines define the relationship between external files and internal
characters, and must all be retained or modified consistently. They may be redefined, to cause
input or output to be transmitted to or from strange places, including other programs or internal
memory; but the character set used must be consistent in all routines; a value of zero returned by ~
input must mean end of file; and the relationship between unput and input must be retained or the }.
Lex look-ahead will not work. -

Lex does not look ahead at all if it does not have to, but every rule ending in +, '"*,?, or $ or
containing / implies look-ahead. Look-ahead is also necessary to match an expression that is a
prefix of another expression. See below for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrap() which is called
whenever Lex reaches an end-of-file. If yywrap returns a 1, Lex continues with the normal wrapup
on end of input. Sometimes, however, it is convenient to arrange for more input to arrive from a
new source. In this case, the user should provide a yywrap which arranges for new input and
returns O. This instructs Lex to continue processing. The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end of a program. Note
that it is not possible to write a normal rule which recognizes end-of-fiIe; the only access to this
condition is through yywrap. In fact, unless a private version of input() is supplied a file containing
nulls cannot be handled, since a value of 0 returned by input is taken to be end-of-file.

10 Lex



Ambiguous Source Rules
Lex can handle ambiguous specifications. When more than one expression can match the current
input, Lex chooses as follows:

1. The longest match is preferred.

2. Among rules which matched the same number of characters, the rule given first is preferred.

Thus, suppose the rules

inte~er keyword action I ";

[a-zJ+ identifier action ",;

to be given in that order. If the input is integers, it is taken as an identifier, because fa - z] + matches
8 characters while integer matches only 7. If the input is integer, both rules match 7 characters, and
the keyword rule is selected because it was given first. Anything shorter (e.g. int) will not match the
expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like.* dangerous.
For example,

might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

'first' quoted strin~ herel 'second' here

~' the above expression will match

'first' quoted strin~ herel 'second'

whiCh is probably not what was wanted. A better rule is of the form

which, on the above input, will stop after 'first'. The consequences of errors like this are mitigated
by the fact that the . operator will not match newline. Thus expressions like .* stop on the current
line. Don't try to defeat this with expressions like [. ,\n]+ or eqUivalents; the Lex generated
program will try to read the entire input file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not searching for all possible matches of
each expression. This means that each character is accounted for once and only once. For exam
ple, suppose it is desired to count occurrences of both she and he in an input text. Some Lex rules
to do this might be

she
he
\n

s++;
h++ i

where the last two rules ignore everything besides he and she. Remember that . does not include
newline. Since she includes he. Lex will normally not recognize the instances of he included in she,
since once it has passed a she those characters are gone.

Lex 11



Sometimes the user would like to override this choice. The action REJECT means "go do the next
alternative." It causes whatever rule was second choice after the current rule to be executed. The
position of the input pointer is adjusted accordingly. Suppose the user really wants to count the
included instances of he:

she
he
\n

{s++; REJECT;}
{h++; REJECT;}

{digraM[yytextCO]][yytext[l]]++; REJECT;}

these rules are one way of changing the previous example to do just that. After counting each
expression, it is rejected; whenever appropriate, the other expression will then be counted. In this
example, of course, the user could note that she includes he but not vice versa, and omit the
REJECT action on he; in other cases, however, it would not be possible a priori to tell which input
characters were in both classes.

Consider the two rules

aCbc]+ { REJECT;}
aCcd]+ { fff ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches. The input string
accb matches the first rule for four characters and then the second rule for three characters. In
contrast, the input aced agrees with the second rule for four characters and then the first rule for
three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream but to ~
detect all examples of some items in the input, and the instances of these items may overlap or
include each other. Suppose a digram table of the input is desired; normally the digrams overlap,
that is the word the is considered to contain both th and he. Assuming a two-dimensional array
named digram to be incremented, the appropriate source is

:n:
[a-zHa-z]

\n

where the REJECT is necessary to pick up a letter pair beginning at every character, rather than at
every other character.

12 Lex



Lex Source Definitions
Remember the format of the Lex source:

{definitions}
'II
{rules}
'II
{user routines}

So far only the rules have been described. The user needs additional options, though, to define
variables for use in his program and for use by Lex. These can go either in the definitions section or
in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is copied
into the generated program. There are three classes of such things.

1. Any line which is not part of a Lex rule or action which begins with a blank or tab is copied
into the Lex generated program. Such source input prior to the first %% delimiter will be
external to any function in the code; if it appears immediately after the first %%, it appears in
an appropriate place for declarations in the function written by Lex which contains the
actions. This material must look like program fragments, and should precede the first Lex
rule.

As a side effect of the above, lines which begin with a blank or tab, and which contain a
comment, are passed through to the generated program. This can be used to include
comments in either the Lex source or the generated code. The comments should follow the
host language convention.

2. Anything included between lines containing only %{ and %} is copied out as above. The
delimiters are discarded. This format permits entering text like preprocessor statements that
must begin in column 1, or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, etc., is copied out after the Lex
output.

Definitions intended for Lex are given before the first %% delimiter. Any line in this section not
contained between %{ and %}, and begining in column 1, is assumed to define Lex substitution
strings. The format of such lines is

naMe translation

and it causes the string given as a translation to be associated with the name. The name and
translation must be separated by at least one blank or tab, and the name must begin with a letter.
The translation can then be called out by the {name} syntax in a rule. Using {O} for the digits and {E}
for an exponent field, for example, might abbreviate rules to recognize numbers:

o
E
II
{O}+
{O}+","{O}*({E})?
{O}*","{O}+({E})?
{O}+{E}

[0-9]
[OEde][-+]?{O}+

printf("integer");

printf("real") ;

Lex 13



Note the first two rules for real numbers; both require a decimal point and contain an optional
exponent field, but the first requires at least one digit before the decimal point and the second
requires at least one digit after the decimal point. To correctly handle the problem posed by a
Fortran expression such as 35.EQ./, which does not contain a real number, a context-sensitive rule
such as

[O-SJ+/"."EQ printf("integer"} ;

could be used in addition to the normal rule for integers.The definitions section may also contain ,
other commands, including the selection of a host language, a character set table, a list of start
conditions, or adjustments to the default size of arrays within Lex itself for larger source programs.
These possibilities are discussed below under "Summary of Source Format," section 12.

Usage
There are two steps in compiling a Lex source program. First, the Lex source must be turned into a
generated program in the host general purpose language. Then this program must be compiled and
loaded, usually with a library of Lex subroutines. The generated program is on a file named
Jex.yy.c. The VO library is defined in terms of the C standard library.

HP-UX
The library is accessed by the loader flag - JJ for C, so an appropriate set of commands is

lex source
cc lex.n.c -11

The resulting program is placed on the usual file a.outfor later execution. To use Lex with Yacc see
below. Although the default Lex I/O routines use the C standard library, the Lex automata them
selves do not do so; if private versions of input, output and unput are given, the library can be
avoided.

14 Lex



~
~.

Lex and Yacc
If you want to use Lex with Yacc, note that what Lex writes is a program named yyJex(), the name
required by Yacc for its analyzer. Normally, the default main program on the Lex library calls this
routine, but if Yacc is loaded, and its main program is used, Yacc will call yyJex{). In this case each
Lex rule should end with

return(token) j

where the appropriate token value is returned. An easy way to get access to Yacc's names for
tokens is to compile the Lex output file as part of the Yacc output file by placing the line

# include "lex,yy,c"

in the last section of Yacc input. Supposing the grammar to be named "good" and the lexical rules
to be named "better" the HP-UX command sequence can just be:

yacc sood
lex better
cc y,tab,c -ly -11

The Yacc library ( -ly) should be loaded before the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex and Yacc programs can be done in either order.

Examples
As a simple example, consider copying an input file while adding 3 to every positive number which
is divisible by 7. Here is a suitable Lex source program

II
int Kj

EO-8l+ {
K = atoi(yytext) j
if (KI7 == 0)

printf( l Id", k+3)j
else

printf("Id" ,k) j
}

to do just that. The rule [0 - 9] + recognizes strings of digits; atoi converts the digits to binary and
stores the result in k. The operator % (remainder) is used to check whether k is divisible by 7; if it is,
it is incremented by 3 as it is written out. It may be objected that this program will alter such input
items as 49.63 or X7. Furthermore, it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules after the active one, as here:

II
int Kj

-nO-8]+

-nO-8. l+
EA-Za-z]EA-Za-zO-9l+

{

k = atoi(yytext)j
printf("Id", KI7 == O? k+3 Kli
}

ECHOi
ECHOj

Lex 15



Numerical strings containing a "." or preceded by a letter will be picked up by one of the last two
rules, and not changed. The if-else has been replaced by a C conditional expression to save space;
the form a?b:c means "if a then b else c."

For an example of statistics gathering, here is a program which histograms the lengths of words,
where a word is defined as a string of letters.

int lenH[lOOli
II
[a-zl+ lengs[yylengl++i

\n
II
yywrap( )
{

int ii
printf("LenHh No. words\n") i
for(i;Oi i<100i i++)

if (lengs[il > 0)
printf("%5d%10d\n" ti tlengs[il) i

re turn (1) i
}

This program accumulates the histogram, while producing no output. At the end of the input it
prints the table. The final statement return(1); indicates that Lex is to perform wrapup. If yywrap
returns zero (false) it implies that further input is available and the program is to continue reading
and processing. To provide a yywrap that never returns true causes an infinite loop.

As a larger example, here are some program fragments which converts double precision Fortran to )
single precision Fortran. Because Fortran does not distinguish upper and lower case letters, this
routine begins by defining a set of classes including both cases of each letter:

a [aAl
b [bB l
e [eCl

[zZl

An additional class recognizes white space:

101 [\tl*

The first rule changes "double precision" to "real", or "DOUBLE PRECISION" to "REAL".

{dHoHuHbHIHeHIoIHpHrHeHeHiHsHiHoHn} {
printf(yytext[Ol;;'d'? "real" : "REAL") i
}

Care is taken throughout this program to preserve the case (upper or lower) of the original
program. The conditional operator is used to select the proper form of the keyword. The next rule
copies continuation card indications to avoid confusing them with constants:

"[A Ol ECHOi

16 Lex



{

In the regular expression, the quotes surround the blanks. It is interpreted as "beginning of line,
then five blanks, then anything but blank or zero." Note the two different meanings of "'. There
follow some rules to change double precision constants to ordinary floating constants.

[O-SJ+{W}{d}{W}[+-J?{W}[O-SJ+
[O-SJ+{W}","{W}{d}{W}[+-J?{W}[O-SJ+
","{W}[O-SJ+{W}{d}{W}[+-J?{W}[O-SJ+

1* convert constants *1
for(p=yytextj *p != Oi p++)

{

if <*p == 'd' I *p == 'D'}
*p=+ 'e'- 'd'j

ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to find the letter d or D.
The program then adds 'e' - 'd' which converts it to the next letter of the alphabet. The modified
constant, now single-precision, is written out again. There follow a series of names which must be
respelled to remove their initial d. By using the array wtext the same action suffices for all the
names (only a sample of a rather long list is given here).

{dHsHiHn}
{dHcHoHs}
{dHsHqH rHt}
{dHaHtHaHn}

{dHfH 1HoHaHt} printf ("1.s" ,yytext+l);

{

yytext[OJ =+ 'a' - 'd'j
ECHOj
}

Another list of names must have initial d changed to initial a:

{dHIHoH!f}
{dHIHoH!f}10
{dHmHiHn}1
{dHmHaHx}1

And one routine must have initial d changed to initial r.

{d}1{mHaHcHh} {yytext[OJ =+ 'r' - 'd'j
ECHO;
}

To avoid such names as dsinx being detected as instances of dsin, some final rules pick up longer
words as identifiers and copy some surviving characters:

[A-Za-zJ[A-Za-zO-9J*
[0-9J+
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing problems in Fortran or with
the use of keywords as identifiers.

Lex 17



Left Context Sensitivity
Sometimes it is desirable to have several sets of lexical rules to be applied at different times in the
input. For example, a compiler preprocessor might distinguish preprocessor statements and analyze
them differently from ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The" operator, for example, is a prior context operator,
recognizing immediately preceding left context just as $ recognizes immediately following right
context. Adjacent left context could be extended, to produce a facility similar to that for adjacent ~.

right context, but it is unlikely to be as useful, since often the relevant left context appeared some ,
time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of flags,
when only a few rules change from one environment to another, the use of start conditions on
rules, and the possibility of making multiple lexical analyzers all run together. In each case, there are
rules which recognize the need to change the environment in which the follOWing input text is
analyzed, and set some parameter to reflect the change. This may be a flag explicitly tested by the
user's action code; such a flag is the simplest way of dealing with the problem, since Lex is not
involved at all. It may be more convenient, however, to have Lex remember the flags as initial
conditions on the rules. Any rule may be associated with a start condition. It will only be recognized
when Lex is in that start condition. The current start condition may be changed at any time. Finally,
if the sets of rules for the different environments are very dissimilar, clarity may be best achieved by
writing several distinct lexical analyzers, and switching from one to another as desired.

Consider the follOWing problem: copy the input to the output, changing the word magic to first on
every line which began with the letter a, changing magic to second on every line which began with
the letter b, and changing magic to third on every line which began with the letter c. All other words ~.

and all other lines are left unchanged. "

These rules are so simple that the easiest way to do this job is with a flag:

int flui
n
Aa {f la~ 'a'i ECHOi}
Ab {flu 'b'i ECHOi}
Ae {f la~ 'e'i ECHOi}
\n {f la~ 0 ; ECHO;}
MUie {

switch (flu)
{

case 'a':
case 'b':
case 'e':
default:
}

}

printf("first"); break;
printf("seeond"); break;
printf("third"); break;

ECHO; break;

should be adequate.

18 Lex



BEGIN AA;}
BEGIN BBD
BEGIN CCD
BEGIN 0 D
printf("first") ;
printf("second") ;
printf("third") ;

r"

To handle the same problem with start conditions, each start condition must be introduced to Lex
in the definitions section with a line reading

lStart naMe1 naMe2 •• 1

where the conditions may be named in any order. The word Start may be abbreviated to 5 or S.
The conditions may be referenced at the head of a rule with the < > brackets:

<naMe1>expression

is a rule which is only recognized when Lex is in the start condition namel. To enter a start
condition, execute the action statement

BEGIN naMe1;

which changes the start condition to namel. To resume the normal state,

BEGIN 0;

resets the initial condition of the Lex automaton interpreter. A rule may be active in several start
conditions:

is a legal prefix. Any rule not beginning with the < > prefix operator is always active.

The same example as before can be written:

ZSTART AA BB CC
'%.%
A a {ECHO;
Ab {ECHO;
A C {ECHO;
\n {ECHO;
<AA>IlIUic
<BB>IlIUic
<CC>Ma!1ic

where the logic is exactly the same as in the previous method of handling the problem, but Lex
does the work rather than the user's code.

Lex 19



Character Set
The programs generated by Lex handle character va only through the routines input, output, and
unput. Thus the character representation provided in these routines is accepted by Lex and
employed to return values in yytext. For internal use, a character is represented as a small integer
which, if the standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is represented as the same
form as the character constant 'a '. If this interpretation is changed, by providing va routines which ~
translate the characters, Lex must be told about it, by giving a translation table. This table must be )
in the definitions section, and must be bracketed by lines containing only "%T". The table contains
lines of the form

<integer} <character string}

which indicate the value associated with each character. Thus the next example maps the lower and
upper case letters together into the integers 1 through 26, newline into 27, + and - into 28 and
29, and the digits into 30 through 39. Note the escape for newline. If a table is supplied, every
character that is to appear either in the rules or in any valid input must be included in the table. No
character may be assigned the number 0, and no character may be assigned a bigger number than
the size of the hardware character set.

IT
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
IT

Sample character table.

20 Lex



Summary of Source Format
The general form of a Lex source file is:

{definitions}
II
{rules}
II
{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form "name space translation".

2. Included code, in the form "space code".

3. Included code, in the form

I{
code
I}

4. Start conditions, given in the form

IS naMe! naMe2 tt.

5. Character set tables, in the form

IT
nUMber space character-string

IT

6. Changes to internal array sizes, in the form

Ix nnn

where nnn is a decimal integer representing an array size and x selects the parameter as
follows:

Letter

p
n
e
a
k
o

Parameter

positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression action" where the action may be continued on
succeeding lines by using braces to delimit it.

Lex 21



Regular expressions in Lex use the following operators:

x
"x"
\x
[xv]

[x-zl
[AX]
AX

(y)X

X$
X?
X*
x+
xlv
(x)

x/Y
{xx}
x{m,n}

the character "X."
an "X", even if x is an operator.
an "X", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, instances of x.
1,2,3, instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x.

Caveats and Bugs
There are pathological expressions which produce exponential growth of the tables when con
verted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT executed, the user must not have
used unput to change the characters forthcoming from the input stream. This is the only restriction
on the user's ability to manipulate the not-yet-processed input.

22 Lex



Table of Contents

Yacc: Yet Another Compiler-Compiler
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2
1: Basic Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4
2: Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
3: Lexical Analysis 8
4: How the Parser Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9
5: Ambiguity and Conflicts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13
6: Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17
7: Error Handling 19
8: The Yacc Environment. 21
9: Hints for Preparing Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22

Input Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
Left Recursion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
Lexical Tie-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23
Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

10: Advanced Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 l l
Simulating Error and Accept in Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24
Accessing Values in Enclosing Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24
Support for Arbitrary Value Types 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26
Appendix A: A Simple Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27
AppendiX B: Yacc Input Syntax 29
Appendix C: An Advanced Example 31
AppendiX D: Old Features Supported but Not Encouraged. . . . . . . . . . . . . . . . . . . . . . . . . .. 36



ii

~',--_J



Yacc: Yet Another
Compiler-Compiler

Computer program input generally has some structure; in fact, every computer program that does
input can be thought of as defining an "input language" which it accepts. An input language may
be as complex as a programming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about checking their inputs for
validity.

Yacc provides a general tool for describing the input to a computer program. The Yacc user
specifies the structures of his input, together with code to be invoked as each such structure is
recognized. Yacc turns such a specification into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of the flow of control in the user's
application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the next basic input
item. Thus, the user can specify his input in terms of individual input characters, or in terms of
higher level constructs such as names and numbers. The user-supplied routine may also handle
idiomatic features such as comment and continuation conventions, which typically defy easy gram
matical specification.

Yacc is written in portable C. The class of specifications accepted is a very general one: LALR(l)
grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been used for less
conventional languages, including a phototypesetter language, several desk calculator languages, a
document retrieval system, and a Fortran debugging system.

1



Introduction
Yacc provides a general tool for imposing structure on the input to a computer program. The Yacc
user prepares a specification of the input process; this includes rules describing the input structure,
code to be invoked when these rules are recognized, and a low-level routine to do the basic input.
Yacc then generates a function to control the input process. This function, called a parser, calls the
user-supplied low-level input routine (the "lexical analyzer") to pick up the basic items (called
tokens) from the input stream. These tokens are organized according to the input structure rules,
called "grammar rules"; when one of these rules has been recognized, then user code supplied for ~
this rule, an action, is invoked; actions have the ability to return values and make use of the values ,
of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C as well.
Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

date Month_nallle day ',' year

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma "," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input

July 4, 177S

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine reads
the input stream, recognizing the lower level structures, and communicates these tokens to the
parser. For historical reasons, a structure recognized by the lexical analyzer is called a "terminal
symbol", while the structure recognized by the parser is called a "nonterminal symbol". To avoid
confUSion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical analyzer
or grammar rules. For example, the rules

month_name
month_nallle

, J' , a' 'n'
'F' , e' 'b'

'0' , e' , c '

might be used in the above example. The lexical analyzer would only need to recognize individual ~
letters, and monthJlame would be a nonterminal symbol. Such low-level rules tend to waste time ,
and space, and may complicate the specification beyond Yacc's ability to deal with it. Usually, the
lexical analyzer would recognize the month names, and return an indication that a month_name
was seen; in this case, month_name would be a token.

2 Yacc



Literal characters such as
considered tokens.

must also be passed through the lexical analyzer, and are also

Specification files are very flexible. It is realively easy to add to the above example the rule

date month 'I' day 'I' year

allowing

7 I a I 1776

as a synonym for

JulY 1I1 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort, and little
danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as early
as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad data can usually be quickly
found. Error handling, provided as part of the input specifications, permits the reentry of bad data,
or the continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example, the
specifications may be self contradictory, or they may require a more powerful recognition mechan
ism than that available to Yacc. The former cases represent design errors; the latter cases can often
be corrected by making the lexical analyzer more powerful, or by rewriting some of the grammar
rules. While Yacc cannot handle all possible specifications, its power compares favorably with
similar systems; moreover, the constructions which are difficult for Yacc to handle are also frequent
ly difficult for human beings to handle. Some users have reported that the discipline of formulating
valid Yacc specifications for their input revealed errors of conception or design early in the program
development.

The theory underlying Yacc has been described elsewhere 234. Yacc has been extensively used in
numerous practical applications, including lint 5, the Portable C Compiler 6, and a system for
typesetting mathematics 7.

The next several sections describe the basic process of preparing a Yacc specification; Section 1
describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions
associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes
the operation of the parser. Section 5 discusses various reasons why Yacc may be unable to
produce a parser from a specification, and what to do about it. Section 6 describes a simple
mechanism for handling operator precedences in arithmetic expressions. Section 7 discusses error
detection and recovery. Section 8 discusses the operating environment and special features of the
parsers Yacc produces. Section 9 gives some suggestions which should improve the style and
efficiency of the specifications. Section 10 discusses some advanced topics. Appendix A has a brief
example, and Appendix B gives a summary of the Yacc input syntax. Appendix C gives an example
using some of the more advanced features of Yacc, and, finally, Appendix D describes mechanisms
and syntax no longer actively supported, but provided for historical continuity with older versions of
Yacc.

Yacc 3



1: Basic Specifications
Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared as
such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical
analyzer as part of the specification file; it may be useful to include other programs as well. Thus,
every specification file consists of three sections: the declarations, "(grammar) rules", and prog
rams. The sections are separated by double percent "%%" marks. (The percent "%" is generally
used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
II
rules
II
prograMs

The declaration section may be empty. Moreover, if the programs section is omitted, the second
%% mark may be omitted also; thus, the smallest legal Yacc specification is

II
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi-character
reserved symbols. Comments may appear wherever a name is legal; they are enclosed in 1* ... *1,
as in C and PUI.

The rules section is made up of one or more grammar rules. A grammar rule has the form:

A BODY

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore "_", and
non-initial digits. Upper and lower case letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes. As in C, the backslash """ is an escape
character within literals, and all the C escapes are recognized. Thus

, \n'
, \ r'
" ,
, \ '
'\t'
'\b'
'\f'
'\xxx'

newline
return
single quote

backslash """
tab
backspace
form feed
"xxx" in octal

For a number of technical reasons, the NUL character ('''-0' or 0) should never be used in
grammar rules.

4 Yacc



If there are several grammar rules with the same left hand side, the vertical bar "I" can be used to
avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped
before a vertical bar. Thus the grammar rules

A B C D
A E F
A G

~ can be given to Yacc as

A B C D
E F
G

It is not necessary that all grammar rules with the same left side appear together in the grammar
rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty :

Names representing tokens must be declared; this is most simply done by writing

Itoken name1 nameZ, • ,

in the declarations section. (See Sections 3,5, and 6 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol. Every nontermin
al symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance. The parser
is designed to recognize the start symbol; thus, this symbol represents the largest, most general
structure described by the grammar rules. By default, the start symbol is taken to be the left hand
side of the first grammar rule in the rules section. It is possible, and in fact desirable, to declare the
start symbol explicitly in the declarations section using the %start keyword:

Istart symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If the tokens
up to, but not including, the endmarker form a structure which matches the start symbol, the parser
function returns to its caller after the endmarker is seen; it accepts the input. If the endmarker is seen
in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see
section 3, below. Usually the endmarker represents some reasonably obvious 110 status, such as
"end-of-file" or "end-of-record".

Yacc 5



2: Actions
With each grammar rule, the user may associate actions to be performed each time the rule is
recognized in the input process. These actions may return values, and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms, and
alter external vectors and variables. An action is specified by one or more statements, enclosed in
curly braces "{" and "}". For example,

A I < I B I) I

{ hello< 1, " abc" I; }

and

xxx yyy ZZZ
{ printf(" a message\n"l;

flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For example,
an action that does nothing but return the value 1 is

$$ = 1;

To obtain the values returned by previous actions and the lexical analyzer, the action may use the
pseudo-variables $1, $2, ..., which refer to the values returned by the components of the right side
of a rule, reading from left to right. Thus, if the rule is

A BCD

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr I < I exp r I) I

The value returned by this rule is usually the value of the expr in parentheses. This can be indicated
by

expr I (I ex pr I I I { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules of the
form

A B

frequently need not have an explicit action.

6 Yacc



In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable to
get control before a rule is fully parsed. Yacc permits an action to be written in the middle of a rule
as well as at the end. This rule is assumed to return a value, accessible through the usual mechan
ism by the actions to the right of it. In tum, it may access the values returned by the symbols to its
left. Thus, in the rule

A B

r"
$$ 1 ;

C
x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new nonter
minal symbol name, and a new rule matching this name to the empty string. The interior action is
the action triggered off by recognizing this added rule. Yacc actually treats the above example as if it
had been written:

$ACT

A

1* empty *1
{ $$ 1 ;

B $ACT C
{ x = $2; y = $3;

In many applications, output is not done directly by the actions; rather, a data structure, such as a
parse tree, is constructed in memory, and transformations are applied to it before output is gener
ated. Parse trees are particularly easy to construct, given routines to build and maintain the tree
structure desired. For example, suppose there is a C function node, written so that the call

node( L, n1, n2 )

creates a node with label L, and descendants n1 and n2, and returns the index of the newly created
node. Then parse tree can be built by supplying actions such as:

expr

in the specification.

expr '+' expr
{ $$ = nod e ( '+ " $1, $3); }

The user may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section, enclosed in the marks "%{" and "%}". These declarations and
definitions have global scope, so they are known to the action statements and the lexical analyzer.
For example,

%{ int variable = 0; 1,}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be found in
Section 10.

Yacc 7



3: Lexical Analysis
The user must supply a lexical analyzer to read the input stream and communicate tokens (with
values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex. The
function returns an integer, the "token number", representing the kind of token read. If there is a
value associated with that token, it should be assigned to the external variable yylvaJ.

The parser and the lexical analyzer must agree on these token numbers in order for communication ""'~",",
between them to take place. The numbers may be chosen by Yacc, or chosen by the user. In either . )
case, the "# define" mechanism of C is used to allow the lexical analyzer to return these numbers
symbolically. For example, suppose that the token name DIGIT has been defined in the declara-
tions section of the Yacc specification file. The relevant portion of the lexical analyzer might look
like:

yylell(){
extern int yyluali
int c;

c = !letchar();

switch< c ) {

case '0':
case'l':

case '9':
yylual = c-'O';
return( DIGIT) i

The intent is to return a token number of DIGIT, and a value equal to the numerical value of the
digit. Provided that the lexical analyzer code is placed in the programs section of the specification
file, the identifier DIGIT will be defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to avoid
using any token names in the grammar that are reserved or significant in C or the parser; for
example, the use of token names ifor while will almost certainly cause severe difficulties when the
lexical analyzer is compiled. The token name error is reserved for error handling, and should not be
used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the default
situation, the numbers are chosen by Yacc. The default token number for a literal character is the
numerical value of the character in the local character set. Other names are assigned token num
bers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name or .~
literal in the declarations section can be immediately followed by a nonnegative integer. This integer J
is taken to be the token number of the name or literal. Names and literals not defined by this
mechanism retain their default definition. It is important that all token numbers be distinct.

8 Yacc



For historical reasons, the endmarker must have token number 0 or negative. This token number
cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or
negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by Mike Lesk8
.

These lexical analyzers are designed to work in close harmony with Yacc parsers. The specifications
for these lexical analyzers use regular expressions instead of grammar rules. Lex can be easily used
to produce quite complicated lexical analyzers, but there remain some languages (such as FOR
TRAN) which do not fit any theoretical framework, and whose lexical analyzers must be crafted by
hand.

4: How the Parser Works
Yacc turns the specification file into a C program, which parses the input according to the specifica
tion given. The algorithm used to go from the specification to the parser is complex, and will not be
discussed here (see the references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will nevertheless make treat
ment of error recovery and ambigUities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also
capable of reading and remembering the next input token (called the lookahead token). The
"current state" is always the one on the top of the stack. The states of the finite state machine are
given small integer labels; initially, the machine is in state 0, the stack contains only state 0, and no
lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A move of
the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or popped off
of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken, there
is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the
stack, and state 34 becomes the current state (on the top of the stack). The lookahead token is
cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate
when the parser has seen the right hand side of a grammar rule, and is prepared to announce that it
has seen an instance of the rule, replacing the right hand side by the left hand side. It may be
necessary to consult the lookahead token to decide whether to reduce, but usually it is not; in fact,
the default action (represented by a ".") is often a reduce action.

Yacc 9



Reduce actions are associated with individual grammar rules. Grammar rules are also given small
integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on
the right hand side (three in this case). To reduce, first pop off the top three states from the stack (In
general, the number of states popped equals the number of symbols on the right side of the rule). In
effect, these states were the ones put on the stack while recognizing x, y, and z, and no longer serve
any useful purpose. After popping these states, a state is uncovered which was the state the parser
was in before beginning to process the rule. Using this uncovered state, and the symbol on the left
side of the rule, perform what is in effect a shift of A. A new state is obtained, pushed onto the stack,
and parsing continues. There are significant differences between the processing of the left hand
symbol and an ordinary shift of a token, however, so this action is called a goto action. In particular,
the lookahead token is cleared by a shift, and is not affected by a goto. In any case, the uncovered
state contains an entry such as:

.~

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the stack to go
back to the state where the right hand side of the rule was first seen. The parser then behaves as if it
had seen the left side at that time. If the right hand side of the rule is empty, no states are popped off
of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a
rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In addition
to the stack holding the states, another stack, running in parallel with it, holds the values returned
from the lexical analyzer and the actions. When a shift takes place, the external variable yylval is
copied onto the value stack. After the return from the user code, the reduction is carried out. When
the goto action is done, the external variable yyval is copied onto the value stack. The pseudo
variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that the
entire input has been seen and that it matches the specification. This action appears only when the
lookahead token is the endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no longer continue parsing
according to the specification. The input tokens it has seen, together with the lookahead token,
cannot be followed by anything that would result in a legal input. The parser reports an error, and
attempts to recover the situation and resume parsing: the error recovery (as opposed to the
detection of error) will be covered in Section 7.

10 Yacc



It is time for an example! Consider the specification

%to~en DING DONG DELL
II
rhYMe sound place

sound

place

DING DONG

DELL

When Yacc is invoked with the -v option, a file called y.output is produced, with a human
readable description of the parser. The y.output file corresponding to the above grammar (with
some statistics stripped off the end) is:

state 0
$accept _ rhYlne $end

DING shi ft 3
e r ro r

rhYMe !loto 1
sound !loto 2

state 1
$accept rhYMe_$end

$end accept
e r ro r

~\ state 2
rhYMe sound_place

DELL shi It 5
e r ro r

place !loto LI

state 3
sound DING_DONG

DONG shi ft S
e r ro r

state 1I

rhYme sound place_ (1)

reduce

state 5

~'
place DELL (3 )

reduce 3

state S
sound DING DONG_ (2)

reduce 2

Yacc 11



Notice that, in addition to the actions for each state, there is a description of the parsing rules being
processed in each state. The _ character is used to indicate what has been seen, and what is yet to
come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in order to decide between ~
the actions available in state 0, so the first token, DING, is read, becoming the lookahead token.
The action in state °on DING is "shift 3", so state 3 is pushed onto the stack, and the lookahead
token is cleared. State 3 becomes the current state. The next token, DONG, is read, becoming the
lookahead token. The action in state 3 on the token DONG is "shift 6", so state 6 is pushed onto
the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 6, without even
consulting the lookahead, the parser reduces by rule 2.

sound DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the stack,
uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto Z

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is pushed onto the
stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the only
action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is popped ~
off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is state 4. Now, the
stack contains 0,2, and 4. In state 4, the only action is to reduce by rule 1. There are two symbols
on the right, so the top two states are popped off, uncovering state°again. In state 0, there is a goto
on rhyme causing the parser to enter state 1. In state 1, the input is read; the endmarker is obtained,
indicated by "$end" in the y. output file. The action in state 1 when the endmarker is seen is to
accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect strings
as "DING DONG DONG", "DING DONG", "DING DONG DELL DELL", etc. A few minutes
spent with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

.~

12 Yacc



5: Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input string that can be structured in two or
more different ways. For example, the grammar rule

expr expr expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two
other expressions together with a minus sign between them. Unfortunately, this grammar rule does
not completely specify the way that all complex inputs should be structured. For example, if the
input is

expr - expr expr

the rule allows this input to be structured as either

or as

expr expr expr

(The first is called "/eft association", the second "right association".)

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to consider
the problem that confronts the parser when it is given an input such as

expr - expr expr

~. When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by applying
this rule; after applying the rule; the input is reduced to expr (the left side of the rule). The parser
would then read the final part of the input:

expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr expr

it could defer the immediate application of the rule, and continue reading the input until it had seen

expr expr expr

~ It could then apply the rule to the rightmost three symbols, redUcing them to expr and leaving

expr expr

Yacc 13



Now the rule can be reduced once more; the effect is to take the right associative interpretation.
Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them.
This is called a "shift / reduce conflict". It may also happen that the parser has a choice of two legal
reductions; this is called a "reduce / reduce conflict". Note that there are never any "Shift/shift" ~
conflicts. ,

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does this by
selecting one of the valid steps wherever it has a choice. A rule describing which choice to make in a
given situation is called a "disambiguating rule".

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input
sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2
gives the user rather crude control over the behavior of the parser in this situation, but reduce/
reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, reqUire a more complex parser than Yacc can construct. The use of actions within rules
can also cause conflicts, if the action must be done before the parser can be sure which rule is being ~
recognized. In these cases, the application of disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, Yacc always reports the number of shift/reduce and reduce/reduce
conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is
also possible to rewrite the grammar rules so that the same inputs are read but there are no
conflicts. For this reason, most previous parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces
slower parsers; thus, Yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an "if-then-else" construction:

stat IF '(' cond 'l' stat_
IF '(' cond 'l' stat-ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will be ~
called the simple-if rule, and the second the if-else rule.

14 Yacc



These two rules form an ambiguous construction, since input of the form

IF C1 IF C2 S1 ELSE S2

S1C2

{

IF I C2 S1
ELSE S2
}

can be structured according to these rules in two ways:

{

IF
}

IF ( C1

~ ELSE S2\

or

IF C1

The second interpretation is the one given in most programming languages having this construct.
Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example, consider the
situation where the parser has seen

IF C1 IF C2 S1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF C1 stat

and then read the remaining input,

ELSE S2

and reduce

IF C1 stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF C1 IF C2 S1 ELSE S2

can be reduced by the if-else rule to get

IF Cl stat

which can be reduced by the Simple-if rule. This leads to the second of the above groupings of the
input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The application of
disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

Yacc 15



This shift/reduce conflict arises only when there is a particular current input symbol, ELSE, and
particular inputs already seen, such as

IF C1 IF C2 51

In general, there may be many conflicts, and each one will be associated with an input symbol and
a set of previously read inputs. The previously read inputs are characterized by the state of the
parser.

The conflict messages of Yacc are best understood by examining the verbose ( - v) option output
file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift as, reduce 18) on EL5E

state 23

stat
stat

IF
IF

cond
cond

stat_ (18)
stat-ELSE stat

ELSE shift as
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall that
the underline marks the portion of the grammar rules which has been seen. Thus in the example, in
state 23 the parser has seen input corresponding to

IF cond stat

and the two grammar rules shown are active at this time. The parser can do two possible things. If
the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of its
description, the line

stat IF cond stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, described
by ".", is to be done if the input symbol is not mentioned explicitly in the above actions; thus, in this
case, if the input symbol is not ELSE, the parser reduces by grammar rule 18:

stat IF 1(1 cond 1)1 stat

Once again, notice that the numbers following "shift" commands refer to other states, while the
numbers following "reduce" commands refer to grammar rule numbers. In the y. outPut file, the
rule numbers are printed after those rules which can be reduced. In most one states, there will be at
most reduce action possible in the state, and this will be the default command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the verbose output to
decide whether the default actions are appropriate. In really tough cases, the user might need to
know more about the behavior and construction of the parser than can be covered here. In this ~
case, one of the theoretical references234 might be consulted; the services of a local guru might also .J
be appropriate.

16 Yacc



6: Precedence
There is one common situation where the rules given above for resolving conflicts are not sufficient;
this is in the parsing of arithmetic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create parsers that are faster and easier to write
than parsers constructed from unambiguous grammars. The basic notion is to write grammar rules
of the form

eXPf eXPf OP eXPf

and

eXPf UNARY eXPf

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of
all the operators, and the associativity of the binary operators. This information is sufficient to allow
Yacc to resolve the parsing conflicts in accordance with these rules, and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is done
by a series of lines beginning with a Yacc keyword: %Ieft, %right, or %nonassoc, followed by a list
of tokens. All of the tokens on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or binding strength. Thus,

%left '+'
%left '*' , I'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left
associative, and have lower precedence than star and slash, which are also left associative. The
keyword %right is used to describe right associative operators, and the keyword %nonassoc is used
to describe operators, like the operator .LT. in Fortran, that may not associate with themselves;
thus,

A .IT. B .IT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in Yacc.
As an example of the behavior of these declarations, the description

Iri!Jht ,- ,
II eft '+' , - ,
II eft '*' , I'

II

expr eXPf ,- , eXPf
eXPf '+ ' expr

eXPf
,- ,

eXPf
eXPf '* ' eXPf
eXPf ' I' eXPf

NAME

Yacc 17



might be used to structure the input

a : b

as follows:

e

a : ( b : ( «c*d)-e) - (f*~) ) )

When this mechanism is used, unary operators must, in general, be given a precedence. Some
times a unary operator and a binary operator have the same symbolic representation, but different
precedences. An example is unary and binary I - '; unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular grammar rule. %prec
appears immediately after the body of the grammar rule, before the action or closing semicolon,
and is followed by a token name or literal. It causes the precedence of the grammar rule to become
that of the following token name or literal. For example, to make unary minus have the same
precedence as multiplication the rules might resemble:

%left '+'
%left '*'

expr

, I'

expr '+' expr
expr , - , expr
expr '* ' expr
expr ' I' expr, - , expr l.prec '* '
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token
as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise to
disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence and
associativity of the last token or literal in the body of the rule. If the %prec construction is
used, it overrides this default. Some grammar rules may have no precedence and associativ
ity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input
symbol or the grammar rule has no precedence and associativity, then the two disambiguat
ing rules given at the beginning of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of the
action (shift or reduce) associated with the higher precedence. If the precedences are the
same, then the associativity is used; left associative implies reduce, right associative implies
shift, and nonassociating implies error.

18 Yacc



~',.

Conflicts resolved by precedence are not counted in the number of shift/reduce and reduce/reduce
conflicts reported by Yacc. This means that mistakes in the specification of precedences may
disguise errors in the input grammar; it is a good idea to be sparing with precedences, and use them
in an essentially "cookbook" fashion, until some experience has been gained. The y. output file is
very useful in deciding whether the parser is actually doing what was intended.

7: Error Handling
Error handling is an extremely difficult area, and many of the problems are semantic ones. When an
error is found, for example, it may be necessary to reclaim parse tree storage, delete or alter symbol
table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue
scanning the input to find further syntax errors. This leads to the problem of getting the parser
"restarted" after an error. A general class of algorithms to do this involves discarding a number of
tokens from the input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably general,
feature. The token name "error" is reserved for error handling. This name can be used in grammar
rules; in effect, it suggests places where errors are expected, and recovery might take place. The
parser pops its stack until it enters a state where the token "error" is legal. It then behaves as if the
token "error" were the current lookahead token, and performs the action encountered. The
lookahead token is then reset to the token that caused the error. If no special error rules have been
specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in error
state until three tokens have been successfully read and shifted. If an error is detected when the
parser is already in error state, no message is given, and the input token is qUietly deleted.

As an example, a rule of the form

stat l! r r 0 r

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in
which the error was seen. More precisely, the parser will scan ahead, looking for three tokens that
might legally follow a statement, and start processing at the first of these; if the beginnings of
statements are not sufficiently distinctive, it may make a false start in the middle of a statement, and
end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize tables,
reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are rules
such as

stat err 0 r
,. ,

I

Yacc 19



Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ';'. All tokens after the error and before the next ';' cannot be shifted, and are
discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associated with
it performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit a
line to be reentered after an error. A possible error rule might be

input error '\n' printf( "Reenter last line: " );
$$ = $4;}

input

There is one potential difficulty with this approach; the parser must correctly process three input
tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens, and gives no
message; this is clearly unacceptable. For this reason, there is a mechanism that can be used to
force the parser to believe that an error has been fully recovered from. The statement

YYerrok i

in an action resets the parser to its normal mode. The last example is better written

input error '\n'

input

YYerrol<i
printf( "Reenter last line: II ) i }

$$ = $4 i

As mentioned above, the token seen immediately after the "error" symbol is the input token at ~
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to resume input. In this case, the
previous lookahead token must be cleared. The statement

yyclearin i

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the input
to the beginning of the next valid statement. After this routine was called, the next token returned
by yylex would presumably be the first token in a legal statement; the old, illegal token must be
discarded, and the error state reset. This could be done by a rule like

stat e r ra r
resynch()i
YYerrol< i
yyclearin i }

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of the "'"
parser from many errors; moreover, the user can get control to deal with the error actions required}
by other portions of the program.

20 Yacc



~.

8: The Yacc Environment
When the user inputs a specification to Yacc, the output is a file of C programs, called y. tab. c on
most systems (due to local file system conventions, the names may differ from installation to
installation). The function produced by Yacc is called wparse; it is an integer valued function.
When it is called, it in tum repeatedly calls yyJex, the lexical analyzer supplied by the user (see
Section 3) to obtain input tokens. Eventually, either an error is detected, in which case (if no error
recovery is possible) yyparse returns the value 1, or the lexical analyzer returns the endmarker
token and the parser accepts. In this case, wparse returns the value O.

The user must provide a certain amount of environment for this parser in order to obtain a working
program. For example, as with every C program, a program called main must be defined, that
eventually calls yyparse. In addition, a routine called yyerrorprints a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To ease the initial effort of
using Yacc, a library has been provided with default versions of main and yyerror. The name of this
library is system dependent; on many systems the library is accessed by a -ly argument to the
loader. To show the triviality of these default programs, the source is given below:

lllain(){
return( yyparse() );
}

and

# include <stdio.h>

yyerror(s) char *s; {
fprintf( stderrl "Is\n", s );
}

The argument to yyerror is a string containing an error message, usually the string "syntax error".
The average application will want to do better than this. Ordinarily, the program should keep track
of the input line number, and print it along with the message when a syntax error is detected. The
external integer variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the main program is
probably supplied by the user (to read arguments, etc.) the Yacc library is useful only in small
projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value, the parser
will output a verbose description of its actions, including a discussion of which input symbols have
been read, and what the parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

Yacc 21



9: Hints for Preparing Specifications
This section contains miscellaneous hints on preparing efficient, easy to change, and clear specifica
tions. The individual subsections are more or less independent.

Input Style
It is difficult to provide rules with substantial actions and still have a readable specification file. The
following style hints owe much to Brian Kernighan.

1. Use all capital letters for token names, all lower case letters for nonterminal names. This rule
comes under the heading of "knowing who to blame when things go wrong."

2. Put grammar rules and actions on separate lines. This allows either to be changed without an
automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand side in only once, and let
all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on a
separate line. This allows new rules to be easily added.

5. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text of this
paper (where space permits). The user must make up his own mind about these stylistic questions;
the central problem, however, is to make the rules visible through the morass of action code.

Left Recursion
The algorithm used by the Yacc parser encourages so called "left recursive" grammar rules: rules of ~
the form )

name name rest_of_rule

These rules frequently arise when writing specifications of sequences and lists:

list item
list 1,1 item

and

seq iteM
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule will be
reduced for the second and all succeeding items.

With right recursive rules, such as

seq

22 Yacc

iteM
i UM seq



the parser would be a bit bigger, and the items would be seen, and reduced, from right to left. More
seriously, an internal stack in the parser would be in danger of overflowing if a very long sequence
were read. Thus, the user should use left recursion wherever reasonable. It is worth considering
whether a sequence with zero elements has any meaning, and if so, consider writing the sequence
specification with an empty rule:

seq 1* eMPty *1: seq iteM

Once again, the first rule would always be reduced exactly once, before the first item was read, and
then the second rule would be reduced once for each item read. Permitting empty sequences often
leads to increased generality. However, conflicts might arise if Yacc is asked to decide which empty
sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins
Some lexical decisions depend on context. For example, the lexical analyzer might want to delete
blanks normally, but not within quoted strings. Or names might be entered into a symbol table in
declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical analyzer,
and set by actions. For example, suppose a program consists of 0 or more declarations, followed by
oor more statements. Consider:

I{

I}

~ U

pro g

decls

stats

int dflHi

other declarations

decls stats

1* eMPty *1
{ dflag 1i

decls declaration

1* eMPty *1
{ dflag Oi

stats statement

other rules •••

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless, it repre
sents a way of doing some things that are difficult, if not impossible, to do otherwise.

Yacc 23



Reserved Words
Some programming languages permit the user to use words like "if', which are normally reserved,
as label or variable names, provided that such use does not conflict with the legal use of these
names in the programming language. This is extremely hard to do in the framework of Yacc; it is
difficult to pass information to the lexical analyzer telling it "this instance of 'if is a keyword, and
that instance is a variable". The user can make a stab at it, using the mechanism described in the
last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the
keywords be reserved; that is, be forbidden for use as variable names. There are powerful stylistic
reasons for preferring this, anyway.

10: Advanced Topics
This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions
The parsing actions of error and accept can be simulated in an action by use of macros YYACCEPT
and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR causes the parser to
behave as if the current input symbol had been a syntax error; yyerroris called, and error recovery
takes place. These mechanisms can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules. ~

An action may refer to values returned by actions to the left of the current rule. The mechanism is
simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the digit
may be 0 or negative. Consider

sent adj noun verb adj noun
{ look at the sentence f

adj

noun

24 Yacc

THE {
YOUNG {

DOG

CRONE

$$ THE; }
$$ YOUNG;

$$ :: DOG;

if( $0 == YOUNG ){
printf( "what?\n" );

$$ :: CRONE;
'~



In the action following the word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about what might precede the
symbol noun in the input. There is also a distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

Support for Arbitrary Value Types
By default, the values returned by actions and the lexical analyzer are integers. Yacc can also
support values of other types, including structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting parser will be strictly type checked.
The Yacc value stack (see Section 4) is declared to be a union of the various types of values desired.
The user declares the union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a $$ or $n construction, Yacc will
automatically insert the appropriate union name, so that no unwanted conversions will take place.
In addition, type checking commands such as Lint' will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the
union; this must be done by the user since other programs, notably the lexical analyzer, must know
about the union member names. Second, there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for describing the type of those few values
where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

Iunion {
body of union tt I

}

This declares the Yacc value stack, and the external variables IvaI and yyval, to have type equal to
this union. IfYacc was invoked with the -d option, the union declaration is copied onto the y.tab.h
file. Alternatively, the union may be declared in a header file, and a typedef used to define the
variable YVSTYPE to represent this union. Thus, the header file might also have said:

typedef union {
body of union
} YYSTYPEi

The header file must be included in the declarations section, by use of %{ and %}.

Once YVSTYPE is defined, the union member names must be associated with the various terminal
and nonterminal names. The construction

< naMe )

is used to indicate a union member name. If this follows one of the keywords %token, %Ieft,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus, saying

Ileft <optype) '+'

Yacc 25



will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action within
a rule, the value returned by this action has no "a priori" type. Similarly, reference to left context ~
values (such as $0 - see the previous subsection) leaves Yacc with no easy way of knowing the'
type. In this case, a type can be imposed on the reference by inserting a union member name,
between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3i } bbb
{ fun< $<intval>2t $<other>O )i

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not triggered until
they are used: in particular, the use of %type will tum on these mechanisms. When they are used,
there is a fairly strict level of checking. For example, use of $n or $$ to refer to something with no
defined type is diagnosed. If these facilities are not triggered, the Yacc value stack is used to hold
int's, as was true historically.

References
1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle

wood Cliffs, New Jersey (1978).

2. A. V. Aho and S. C. Johnson, "LR Parsing," Compo Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous Gram
mars," Comm. Assoc. Compo Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Aho and J. D. Ullman, Principles ofCompiler Design, Addison-Wesley, Reading, Mass.
(1977).

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles ofProgramming Languages, (January 1978).

7. B. W. Kernighan and L. L. Charry, "A System for Typesetting Mathematics," Comm. Assoc.
Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975). (See HP-UX Concepts and TutOrials,
Vol. 1.)

26 Yacc



Appendix A: A Simple Example
This example gives the complete Yacc specification for a small desk calculator; the desk calculator
has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made up of the
operators +, -, *, I, % (mod operator), & (bitwise and), I (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is not printed; otherwise it is. As in C, an
integer that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how
precedences and ambiguities are used, and demonstrating simple error recovery. The major over
simplifications are that the lexical analysis phase is much simpler than for most applications, and the
output is produced immediately, line by line. Note the way that decimal and octal integers are read
in by the grammar rules; This job is probably better done by the lexical analyzer.

I{
# include <stdio.h>
# include <ctype.h>

int reH[26l;
int base;

Zstart list

Itoken DIGIT LETTER

Ileft ': I

Ileft '&:I

Ileft '+ I
, - I

II eft 1* I I I I II'

Ileft UMINUS 1* sUPPlies precedence for una rY mi nus *1

II 1* beginning of rules section *1

, \n I

I \n I

nerrok;

1* empty *1
list stat
list error

{

list

stat expr

LETTER
printf( "Zd\n", $1 );

expr
regs[$1l = $3; }

Yacc 27



expr '( , expr ') ,
{ $$ $2; }

expr '+ ' expr
{ $$ $1 + $3; }

expr ,- , expr
{ $$ $1 $3;

expr '* ' expr
$$ $1 * $3;

expr 'I' expr
$$ $1 $3;

expr 'X' expr
{ $$ $1 % $3; }

expr '& ' expr
$$ $1 & $3;

expr '" exprI

$$ $1 $3; }, - I expr %prec UMINUS
{ $$ $2; }

LETTER
{ $$ re gs [$1] ; }

number

number DIGIT
{ $$ = $1; base ($1==0) ? 8 10; }

number DIGIT
{ $$ base * $1 + $2;

n 1* st a rt of proHams *1

yylex() 1* lexical analysis routine *1
1* returns LETTER for a lower case lettert yylval = 0

th ro ugh 25 *1
1* return DIGIT for a dig itt yylval = 0 th rough S *1
1* all other characters are returned immediatelY *1

int c;

while( (c=getchar(»)

1* c is now nonblanK *1

1* sKip blanKs *1

28 Yacc

if( islower(

if( isdigit(

return( );
}

c {

ydval
return
}

{

yylval
retu rn (
}

c 'a' ;
LETTER );

c '0';
DIGIT );



Appendix B: Yacc Input Syntax
This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context depen
dencies, etc., are not considered. Ironically, the Yacc input specification language is most naturally
specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, im
mediately following an action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise it is a continuation of the current rule, which just happens to have an action embedded in
it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and decide whether
the next token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns the token
C-lDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C_IDENTIFIERs.

1* graMMar for the input to Yacc *1

1* basic entities *1
'Itoken IDENTIFIER 1* includes identifiers and literals *1
%token C_IDENTIFIER 1* identifier (but not literal) followed by
colon *1
'Itoken NUMBER 1* [0-8]+ *1

1* reserved wo rds: 'Itype ::) TYPE, Ileft ::) LEFT , etc. *1

Itoken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

Itoken MARK 1* the 'II Mark *1
Itoken LCURL 1* the 1.{ Mark *1
Itoken RCURL 1* the :0 Mark *1

r 1* ascii character literals stand for theMselves *1

%s tart spec

'I'Z.

spec

tail

defs

defs MARK rules tail

MARK In this action, eat up the rest of the file
1* eMPty: the second MARK is optional *1

1* eMPty *1
defs def

def START
UNION
LCURL
ndefs

IDENTIFIER
{ Copy union definition to output }
{ Copy C code to output file } RCURL
rword tag nlist

rwo rd TOKEN
LEFT
RIGHT
NONASSOC
TYPE

Yacc 29



tall

nl i st

1* empty: union tag is optional *1
'(' IDENTIFIER '>'

nmno
nlist nMOO
nlis t 't ' nmn 0

nmno IDENTIFIER
IDENTIFIER NUMBER

1* rules section *1

1* NOTE:
1* NOTE:

literal
illHal

illegal with %tvpe
with 'hype *1

rules

rule

C_IDENTIFIER
rules rule

C_IDENTIFIER
'1' rbodv

rbody

rbodv
prec

prec

pree

rbod y

act

1* eMPty *1
rbody IDENTIFIER
rbody act

,{' { Copy action, translate $$, etc. '} ,

prec 1*
PREC
PREC

empty *1
IDENTIFI ER
IDENTIFIER ac t

30 Yacc

p ree ' i '



Appendix C: An Advanced Example
This Appendix gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator that
does floating point interval arithmetic. The calculator understands floating point constants, the
arithmetic operations +, -, *, I, unary -, and = (assignment), and has 26 floating point vari
ables, "a" through "z". Moreover, it also understands intervals, written

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z" that may
also be used. The usage is similar to that in Appendix A; assignments return no value, and print
nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are represented by
a structure, consisting of the left and right endpoint values, stored as double's. This structure is
given a type name, INTERVAL, by using typedel The Yacc value stack can also contain floating
point scalars, and integers (used to index into the arrays holding the variable values). Notice that
this entire strategy depends strongly on being able to assign structures and unions in C. In fact,
many of the actions call functions that return structures as well.

It is also worth noting the use of YVERROR to handle error conditions: division by an interval
containing 0, and an interval presented in the wrong order. In effect, the error recovery mechanism
of Yacc is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an interesting
use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expressions. Note that
a scalar can be automatically promoted to an interval if the context demands an interval value. This
causes a large number of conflicts when the grammar is run through Yacc: 18 Shift/Reduce and 26
ReducelReduce. The problem can be seen by looking at the two input lines:

2.5 + ( 3.5 - 4. )

and

2.5 + ( 3.5 I 4. )

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact
is not known until the "","~ is read; by this time, 2.5 is finished, and the parser cannot go back and
change its mind. More generally, it might be necessary to look ahead an arbitrary number of tokens
to decide whether to convert a scalar to an interval. This problem is evaded by having two rules for
each binary interval valued operator: one when the left operand is a scalar, and one when the left
operand is an interval. In the second case, the right operand must be an interval, so the conversion
will be applied automatically. Despite this evasion, there are still many cases where the conversion
may be applied or not, leading to the above conflicts. They are resolved by listing the rules that
yield scalars first in the specification file; in this way, the conflicts will be resolved in the direction of
keeping scalar valued expressions scalar valued until they are forced to become intervals.

Yacc 31



This way of handling multiple types is very instructive, but not very general. If there were many
kinds of expression types, instead of just two, the number of rules needed would increase dramati
cally, and the conflicts even more dramatically. Thus, while this example is instructive, it is better
practice in a more normal programming language environment to keep the type information as part
of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating point
constants. The C library routine atofis used to do the actual conversion from a character string to a ~
double precision value. If the lexical analyzer detects an error, it responds by returning a token that}
is illegal in the grammar, provoking a syntax error in the parser, and thence error recovery.

1.{

o include <stdio.h>
o include <ctype.h>

typedef struct interval {
double 10 t hi j
} INTERVALj

INTERVAL vMulll, vdivllj

double atof()j

double dre~[ 2S lj
INTERVAL vre~[ 2S lj

1.sta rt lines

1.union {

int i val j
doub le dva 1 j
INTERVAL vvalj
}

Itoken <ival> DREG VREG

Itoken <dval> CONST

Itype <dval> dexp

Itype <vval> vexp

1* indices into dre~, vre~ arrays *1

1* floatin~ point constant *1

1* expression *1

1* interval expression *1

.~

1* precedence inforMation about the operators *1

Ileft
Ileft
Ileft

lines

32 Yacc

'+' t t

'* ttl t

UMINUS 1* precedence for unary Minus *1

1* eMPty *1
lines line



line dexp 1 \n 1

printf( IIlS.8f\n", $1 ); }

vexp 1 \n 1

printf( 1I0:15.8f, II5.Bf)\n", $1010' $1. hi ); }

DREG '= 1 dexp '\0'
drelt[$ll $3;

VREG ,_ 1 vexp '\0 '
vrelt[$11 : $3; }

~\
e r ro r '\n'

" nerrol<;

deKP CONST
DREG

{ $$ drelt[$ll; }

deKP '+ I dexp
$$ $1 + $3; }

dexp I - I dexp
{ $$ $1 $3; }

dexp '* I dexp
$$ $1 * $3 ;

dexp '/' dexp
{ $$ $1 / $3; }

I - , dexp l.prec UMINUS
{ $$ - $2;

'( 1 dexp ') ,
{ $$ $2;

~'
veKP dexp

{ $$.hi $$ 010 $1 ;
'( I dexp ',' dexp ') ,

{

$$ 010 $2;
SS. hi $a i
if( $$.10 > SS.hi ){

printf(lIinterval out of order\n") ;
YYERRORi
}

VREG
$$ vru[$lli }

vexp '+ I vexp
$$. hi $1. hi + $3.hi;
$$.10 $1.10 + $3. 10; }

deKP '+ 1 uexp
{ $$.hi $1 + $3.hii

$$.10 $1 + $3.10i }

vexp vexp
$$. hi $1.hi $3.10 i
$$.10 $1.10 $3.hi; }

r' dexp uexp
"-. SS. hi $1 $3.10 ;

$$.10 $1 $3.hii }

ueKP '* I uexp
{ $$ uMu1( $1.101 $1. hi I $3 Ii }

dexp '* ' vexp
{ $$ vmul( $1 I $1 , $3 ) j }

Yacc 33



vexp , I' uexp
{ if ( dcheck( $3 ) ) YYERRORi

$$ vdiu( $1.101 $1. hi, $3 )j }

dexp 'I' uexp
{ if ( dchec.'( $3 ) ) YYERROR;

$$ udiv( $1 , $1 1 $3 ) j }
,-, uexp Iprec UMINUS

{ $$. hi -$2.10i $$.10 -$2.hii }
'( , uexp ') ,

~{ $$ $2i
,---i

II

# define BSZ 50 1* buffer size fo r floating point numbers *1

1* lexical analysis *1

vvlex(){
register ci

while( (c=getchar(») ){ 1* skip over blanks *1

if( isupper(

if( islower(

){

vvlval.iual c
retu rn ( VREG ) j
}

){

vvlval.ival c
return! DREG )i
}

'A' ;

, a';

if( isdigit( c ) II c==' • ' )(

1* gobble UP digits, points) exponents *1

char buftBSZ+lll *CP bun
int dot 01 exp 0;

fo r ( (cp-buf)(BSZ ++cPtc=getchar() ) {

34 Yacc

*cP c;
if( isdi!lit(
if ( c

c )
)(

continue;

if( dotH II exp
1* will cause
continue;
}

) return( '.' );
syntax error *1



if I 'e' I {
if I exp++ return(
1* will cause syntax
continue;
}

, e' I;
error *1

1* end of number *1
breali;
}

*cP '\0';
if«cp-bufl >= BSZI priotfl"constant
else ungetc( c, stdin I; 1* push
yylval.dval atof( buf I;
return( CONST I;
}

return( c );
}

too long: truncated\n"l;
bacK last char read *1

INTERVAL hi 10 ( at b, c, d double at b, c, d; {

1* returns the sMallest interval containing a, b, c, and *1
1* used by *, 1 routines *I
INTERVAL v;

if ( a>b ) { v.hi a; v.lo b;
else { v.hi b; v.lo ai }

if ( c >d {

if I c>v.hi v. hi c;
if ( d<v.lo v.lo d i

~'
}

else {

if ( d>v.hi v.hi d;
if I c<v.lo v. 10 c;
}

return( ) ;
}

INTERVAL Vf1\U 1( at b t V ) double a, b; INTERVAL vi {

return( hi lo I a*v.hi, a*vdot b*v.hi, b*volo )j

}

dcheck( v INTERVAL vi (
if( v.hi )= O. &&

printf(
return(
}

returol 0 );
}

v.lo <=
"divisor

I;

o. ><
interval contains 0.\0"

INTERVAL vdivl
return(
}

a, b,
hi 10 (

v) double a,
a/v.hi, alvolo,

b; INTERVAL
b/v.hi t b/volo

(

) i

Yacc 35



Appendix D: Old Features Supported
but Not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity, but,
for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes "II".

2. Literals may be more than one character long. If all the characters are alphabetic, numeric, or ~
-, the type number of the literal is defined, just as if the literal did not have the quotes around }
it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash """," may be used. In particular, "","",is the same as
%%, "",left the same as %left, etc.

4. There are a number of other synonyms:

Z< is the same as Zleft
Z> is the same as Zright
Zbinary and Z2 are the same as Znonassoc
ZO and Zterm are the same as Ztoken
Z= is the same as Zprec

5. Actions may also have the form

={ • t t }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well as in 1
the declaration section.

J

36 Yacc



~'

Table of Contents

The ADD Debugger
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1

Invocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
Command Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2
Displaying Information ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3
Debugging C Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5

Debugging A Core Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
Setting Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
Advanced Breakpoint Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11
Other Breakpoint Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13
Maps 14
Variables and Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15
Formatted dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16
Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
Anomalies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Command Summary 20

Formatted Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Breakpoint and Program Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Miscellaneous Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Calling the Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
Assignment to Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

Format Summary 21
Expression Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21

Expression Components 21
Dyadic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21
Monadic Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21



ii



The ADB Debugger

Introduction
ADB is a debugging program that is available on HP-UX. It provides capabilities to look at
"core" files resulting from aborted programs, print output in a variety of formats, patch files,
and run programs with embedded breakpoints. This document provides examples of the more
useful features of ADB.

Invocation
ADB is invoked as:

adb obJfile corefile

where 0 b J f i 1 e is an executable HP-UX file and cor e f i 1e is a core image file. Many times
this will look like:

adb a.out core

or more simply:

adb

where the defaults are a. OIJt and cor e respectively. The filename minus (-) means "ignore
this argument," as in:

adb - core

The 0 b J f i 1 e can be written to if adb is invoked with the - w flag as in:

adb -w a.out -

ADS catches signals, so a user cannot use a quit signal to exit from ADB. The request $ q or $ Q

(or ( CTRL l-o=J) must be used to exit from ADB.

1



Command Format
The general form of a request is:

(address) l,count) (command) (modifier)

ADB maintains a current address, called dot, similar in function to the current pointer in the
HP-UX editor. When address is entered, dot is set to that location. The command is then
executed count times.

Address and count are represented by expressions. Expressions are made up from decimal,
octal, and hexadecimal integers, and symbols from the program under test. These may be
combined with the operators +, -, *, I (integer division), So (bitwise and), I (bitwise inclusive
or), # (round up to the next multiple), and - (not). (All arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type n aM e or _n aM e; ADB will
recognize both forms. The default base for integer input is initialized to hexadecimal, but can be
changed.

The following table illustrates some general ADB commands and meanings:

? Print contents from a • 0 u t file
/ Print contents from cor e file

Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separator
Escape to shell

A ( CTRL l-CO will terminate the execution of any command in ADB.

2 ADB Debugger



Displaying Information
ADB has requests for examining locations in either objfile or corefile. The? request examines
the contents of objfile, the / request examines the corefile.

Following the ? or / command the user specifies a format.

The following are some commonly used format letters:

c one byte as a character
)( two bytes in hexadecimal
}{ four bytes in hexadecimal
d two bytes in decimal
F eight bytes in double floating point

MC68000 instruction
5 a null terminated character string
a print in symbolic form
n print a newline
r print a blank space

backup dot

A command to print the first hexadecimal element of an array of long integers named in t 5 in C
would look like:

ints/}{

This instruction would set the value of dot to the symbol table value of _ i nt s. It would also set
the value of the dot increment to four. The dot increment is the number of bytes printed by the
format.

Let us say that we wanted to print the first four bytes as a hexadecimal number and the next
four as a decimal one. We could do this by:

ints/XD

In this case, dot would still be set to _ i nt 5 and the dot increment would be eight bytes. The dot
increment is the value which is used by the new 1 in e command. New 1 i n e is a special com
mand which repeats the previous command. It does not always have meaning. In this context, it
means to repeat the previous command using a count of one and an address of dot plus dot
increment. In this case, new 1 i n e would set dot to in t 5 + 0)( 8 and type the two long integers it
found there, the first in hex and the second in decimal. The new 1 in e command can be
repeated as often as desired and this can be used to scroll through sections of memory.

Using the above example to illustrate another point, let us say that we wanted to print the first
four bytes in long hex format and the next four bytes in byte hex format. We could do this by:

~ ints/xab

Any format character can be preceded by a decimal repeat character.

ADS Debugger 3



The count field can be used to repeat the entire format as many times as desired. In order to
print three lines using the above format we would type:

ints,3/Xllbn

The n on the end of the format is used to output a carriage return and make the output much
easier to read.

In this case the value of dot will not be _ints. It will rather be _ints+Oxl0. Each time the ~
format was re-executed dot would have been set to dot plus dot increment. Thus the value of
dot would be the value that dot had at the beginning of the last execution of the format. Dot
increment would be the size of the format: eight bytes. A new 1 in e command at this time would
set dot to in t s +0 x 18 and print only one repetition of the format, since the count would have
been reset to one.

In order to see what the value of dot is at this point the command:

.=a
could be typed. =is a command which can be used to print the value of address in any format.
It is also possible to use this command to convert from one base to another:

Ox32=oxd

This will print the value 0 x 32 in octal, hexadecimal and decimal.

Complicated formats are remembered by ADS. One format is remembered for each of the? , I
and = commands. This means that it is possible to type: .~

Ox84=

and have the value 0 xS4 printed out in octal, hex and decimal. And after that, type:

intsl

and have ADS print out four bytes in long hex format and four bytes in byte hex format.

To an observant individual it might seem that the two commands:

ltlain t10?i

and

h1ain?10i

would be the same.

There are two differences. The first is that the numbers are in a different base. The repeat factor
can only be a decimal constant, while the count can be an expression and is therefore, by
default, in a hex base.

The second difference is that a new 1 in e after the first command would print one line, while a
new 1 in e after the second command would print another ten lines.

4 ADS Debugger

~
". .I



Debugging C Programs
Debugging A Core Image
Consider the C program in Figure 1. The program is used to illustrate some of the useful
information that can be gotten from a core file. The object of the program is to calculate the
square of the variable i val by calling the function 5 q r with the address of the integer. The
error is that the value of the integer is being passed rather than the address of the integer.
Executing the program produces a core file because of a bus error.

Figure 1: C program with pointer bug

int ints(]=

int ivaI;
ilia i n ()
(

{I ,2,3,ll ,5,6,7,8,9,0,
l,2,3,ll,5,6,7,8,9,O,
1,2,3,1l,5,6,7,8,9,0,
1 ,2,3 ,ll ,5 ,6 ,7 ,8 ,9 ,O};

register int i;
for(i=O;i<lO;i++)
( ivaI = ints(i];

sqr(ival);
printf("sqr of 'l.d is 'l.d\n",ints[il,ivalli

ADS is invoked by:

adb

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. This request can be used to check
the validity of the parameters passed. As shown in Figure 2 we can see that the value passed on
the stack to the routine 5 q r is a 1. which is not what we are expecting.

ADS Debugger 5



Figure 2: ADB output for program of Figure 1

$c
_Main+0)(30:
__ start+0)(3B:
$r

ps 0)(4
PC OxZOCA

_SQ r
_Main

(0)(1)
(0)(1, O)(FFFDDO)

MOlle.l O)(B(aS) ,-la7)

OxFFFDDB
O)(FFFDDO

OxZ020Z0
0)(0
0)(4EOB
0)(0
0)(31D11111E
Ox30FC1I501

..~

aO 0)(1
a1 O)(FFFDDO
a2 OxO
a3 0)(0
all 0)(0
as OxO
as O)(FFFDAC
sp O)(FFFDAC

O)(B(aSI,aO
laO) ,-la7)
0)(B(aSI,-(a7)
_alMul
#0)(B,a7

MOlle.1
MOlle.1
MOlle,1
Jsr
addq,w

0)(0

0)(1

dO 0)(4800
d1 O)(BOO
dZ 0)(0
d3 0)(0
d4 OxO
dS 0)(0
dB 0)(0
d7 OxO

Isqr+e,S?ia"
_sqr+OxE:
_sqr+0)(1Z:
_sqr+Ox14:
_sqr+0)(1B:
_sQr+0)(1E:
_sQr+O)(ZO:

$e
_ar!l'C_IIalue:
_errno: 0)(0
_enlliron:
_ar!l'II_")alue:
_ints: 0)(1
_illal: 0)(1
__ pfile:
__ i ob: 0)(0
__ ctype:
__ sobuf:
__ lastbuf:
__ sibuf:
tb_pwt4:
tb_pwtB:
tb_bcd: 0)(10Z03
tb_pwt: O)(ZFSZFBAC
tb_au)(pt: O)(ACBOBZB
tb_pwtt: 0)(3ZASOFFD
tb_bin: 0)(10Z03
_end: 0)(0
_edata: 0)(

The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at
that location. The instruction printed for the pc does not always make sense. This is because the
pc has been advanced and is either pointing at the next instruction, or is left at a point part way
through the instruction that failed. In this case the pc points to the next instruction. In order to
find the instruction that failed we could list the instructions and their offsets by the following
command.

s9r+e,5?ia

This would show us that the instruction that failed was:

_s9r+Ox12:lTIove.l (aO) ,-(a7)

6 ADB Debugger



This is the first instruction before the value of the pc. The value printed out for register aD also
indicates that a dereference of its value would fail.

The request:

$e

prints out the values of all external variables at the time the program crashed.

Setting Breakpoints
Consider the C program in Figure 3. This program, which changes tabs into blanks, is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

Figure 3: C program to decode tabs

#include <stdio.h>
#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8

char input[] "data";
FILE *stream;
int tabs[MAXLINEl;
char ibuf[BUFSIZl;

ma i n ()
{

int col, *ptab i
char c;

setbuf(stdout dbuf);
ptab :: tabs;
settab(ptab); I*Set initial tab stops *1
col :: 1;
if«stream = fopeolinput,"r"» == NULL) {

printfl "'l.s : not fouod\\n" ,input);
ex i t l 8) i

}

whilellc = getclstream» != EOF) {
switchlc) {

case '\t': 1* TAB *1
while(tabpos(col) != YES) {

putchar(' '); 1* put BLANK *1
col++ ;

}

b real, ;
case '\n': I*NEWLINE *1

putchar( '\0') i
col = 1;
breal\;

default:
putchar(c) i
col++ i

}

ADS Debugger 7



1* Tabpos return YES if col is a tab stop *1
tabpos(col)
int col;
{

if(col > MAXLINE)
return(YES) ;

else
return(tabs[col]);

1* Settab - Set initial tab stops *1
settab(tabp)
int *tabp;
{

in t i;

for(i = 0; i<= MAXLINE; i++)
(iZTABSP) ? (tabs[i] NO) (tabsCi] YES) ;

We will run this program under the control of ADB (see Figure 4) by:

adb a.out -

Breakpoints are set in the program as:

ad d re 55: b [request]

The requests:

settab+e:b
fopen+e:b
tabpos+e:b

set breakpoints at the starts of these functions. The above addresses are entered as 5 }",I b 0 1 + e
so that they will appear in any C backtrace since the first three instructions of each function is a
standard sequence that links in the new function. Note that one of the functions is from the C
library.

Figure 4: ADB output for C program of Figure 3

adb a.out -
executable file a.out
readY
settab+e:b
fopen+e:b
tabpos+e:b
$b

breakpoints
count bKpt command
Ox1 _tabpos+OxE
Oxl _fopen+OxE
Oxl _settab+OxE

: r
process 11640 created
a.out: running
breaKpoint _settab+OxE:
settab+e:d
: c

8 ADS Debugger

c I r. I -Ox4(aS)



a.out: running
b real,point _fopen+OxE: jsr __ findiop
$c

_lila i n+OxLl8: _fopen (OxllE38, Ox4E3E)
__ start+OxZC: _fila i n (Ox 1 , OxFFFDEO)

tabs/ZLlX
_tabs: Oxl OxO OxO OxO

OxO OxO OxO OxO
Oxl OKO OxO OxO

~\
OKO OxO OxO OxO
Oxl OxO OxO OxO
OxO OxO OxO OxO

: c
a.out: running
breakpoint _tabpos+OxE: cMP.1 uOx50,Ox8(a6)

: s
a.out: runn i n 9
stopped at _tabpos+OxlS: ble.s _tabpos+OKIC
<newline>

a.out: runnin!1
stopped at _tabpos+OKIC: fIlove.1 Ox8(aSI,dO

<newline>
a.out: running
stopped at _tabpos+OKZO: a s I • I UOx2,dO
<newline>

a.out: running
stopped at _tabpos+OxZZ: add.l uOKSBALI,dO

<newline>
a.out: running
stopped at _tabpos+OxZB: Il\ove.l dO,aO
<newline>

a.out: running
stopped at _tabpos+OxZA: Move.1 ( aOl,dO

:d*

~\
: c

a.out: running
process terMinated
settab+e:b settab,5?ia
tabpos+e,3:b ibuf/20c
: r

process 3255 created
a.out: running
settab,5?ia
_settab: link as,uOxFFFFFFFC
_settab+OxLJ: tst.b -Oxl0(a71
_settab+Ox8: Illovelll. I u<>,-Oxll(a81
_settab+OKE: C I r. I -Ox'l(a8)
_sfHtab+OKIZ: cMP.l uOx50,-Ox4(a8)
_settab+OxlA:
brea/{point _settab+OxE: C I r tl -OK4(aS)

: C
a.out: running
ibuf/ZOc
_ibuf: This
ibuf/ZOc
_ibuf: This
ibuf/20c
_ibuf: This
b real,point _tabpos+OxE: CMP.] #Ox50,Ox8(a6)

$q

~\
process 3Z55 /{illed

ADS Debugger 9



To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count-l times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is
encountered. In our example no command fields are present.

By displaying the original instructions at the function 5 e t tab we see that the breakpoint is set /~
after the instruction to save the registers on the stack. We can display the instructions using the
ADB request:

settab ,5?i a

This request displays five instructions starting at 5 e t tab with the addresses of each location
displayed.

To run the program one simply types:

: r

To delete a breakpoint, for instance the entry to the function 5 e t tab, one types:

settab+e:d

To continue execution of the program from the breakpoint type:

: c

Once the program has stopped (in this case at the breakpoint for fop en), ADB requests can be
used to display the contents of memory. For example:

$c

to display a stack trace, or:

tabs,3/BH

to print three lines of 8 locations each from the array called tab s. The format )( is used since
integers are four bytes on the MC68000. By this time (at location fop en) in the C program,
5 e t tab has been called and should have set a one in every eighth location of tab s .

10 ADS Debugger

"

.~
I



Advanced Breakpoint Usage
When we continue the program with:

: c

we hit our first breakpoint at tab po 5 since there is a tab following the "This" word of the data.
We can execute one instruction by:

: 5

and can single step again by hitting "carriage return". Doing this we can qUickly single step
through tab po 5 and get some confidence that it is working. We can look at twenty characters
of the buffer of characters by typing:

>buf/20c

Several breakpoints of tab po s will occur until the program has changed the tab into eqUivalent
blanks. Since we feel that tab po 5 is working, we can remove all the breakpoints by:

:d*

If the program is continued with:

: c

it resumes normal execution and continues to completion after ADB prints the message:

a.out: running

It is possible to add a list of commands we wish to execute as part of a breakpoint. By way of
example let us reset the breakpoint at 5 e t t ab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+e:b settab,5?ia

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only
stop after the third occurrence by typing:

tabpos+e ,3:b ibuf/20c

This request will print twenty character from the buffer of characters at each occurrence of the
breakpoint.

If we wished to print the buffer every time we passed the breakpoint without actually stopping
there we could type:

tabpos+et-l:b ibuf/20c

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

~. settab+e:b settab,5?ia;ptab/o

could be entered after typing the above requests. The semicolon is used to separate multiple
ADB requests on a single line.

ADS Debugger 11



Now the display of breakpoints:

$b

shows the above request for the 5 e t tab breakpoint. When the breakpoint at 5 e t tab is
encountered the ADB requests are executed.

Note
Setting a breakpoint causes the value of dot to be changed; execut
ing the program under ADS does not change dot. Therefore:

settab+e:b • ,5?ia
fopen+e:b

will print the last thing dot was set to (in the example fop en) not the
current location (5 e t t a to) at which the program is executing.

The HP-UX quit and interrupt signals act on ADS itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADS and is passed on to the test program if:

: c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on
to the test program if:

:c 0

is typed.

12 ADS Debugger



Other Breakpoint Facilities
Arguments and change of standard input and output are passed to a program as:

:r ar!fl ar!f2 ... <infile> outfile

This request kills any existing program under test and starts the a • 0 u t afresh. The process will
run until a breakpoint is reached or until the program completes or crashes.

~ If it is desired to start the program without running it the command:

:e ar!fl ar!f2 ... <infile> olltfile

can be executed. This will start the process, and leave it stopped without executing the first
instruction.

If the program is stopped at a subroutine call it is possible to step around the subroutine by:

:5

This sets a temporary breakpoint at the next instruction and continues. This may cause unex
pected results if : 5 is executed at a branch instruction.

ADB allows a program to be entered at a specific address by typing:

address:r

The count field can be used to skip the first n breakpoints as:

,n: r

The request:

,n: c

may also be used for skipping the first n breakpoints when continuing a program.

A program can be continued at an address different from the breakpoint by:

address:c

The program being debugged runs as a separate process and can be killed by:

All of the breakpoints set so far can be deleted by:

:d*

A subroutine may be called by:

: x add res 5 [parameters]

ADS Debugger 13



Maps
HP-UX supports several executable file formats. These are used to tell the loader how to load
the program file. A nonshared text program file is the most common and is generated by a C
compiler invocation such as c c p gCTI. C. A shared text file is produced by a C compiler com
mand of the form c c - n p g CTI • c, ADS interprets these different file formats and provides
access to the different segments through the maps. To print the maps type:

$Itl

In nonshared files, both text (instructions) and data are intermixed. In shared files the instruc
tions are separated from data and ?* accesses the data part of the a. 0 u t file. The ?* request
tells ADB to use the second part of the map in the a. 0 u t file. Accessing data in the cor e file
shows the data after it was modified by the execution of the program. Notice also that the data
segment may have grown during program execution. Figure 5 shows the display of two maps
for the same program linked as a nonshared and shared respectively. The b, e, and f fields are
used by ADB to map addresses into file addresses. The f 1 field is the length of the header at the
beginning of the file (Ox40 bytes for an a. 0 u t file and OxSOO bytes for a cor e file). The f 2
field is the displacement from the beginning of the file to the data. For a nonshared file with
mixed text and data this is the same as the length of the header; for shared files this is the length
of the header plus the size of the text portion.

Figure 5: ADB output for maps

adb a.out.unshared core.unshared
$111

executable file = a.out.unshared
core file = core.unshared
readY
? Illap 'a.out.unshared'
b1 = Ox2000 e1 = Ox20FC f1 Ox40
b2 = Ox2000 eZ = Ox20FC f2 Ox40
I Illap 'core.unshared'
b1 = Ox2000 e1 Ox2400 f1 OxBOO
b2 = OxFFF400 e2 = Ox1000000 f2 OxCOO

$v

variables
b Ox2000
d Ox400
e = Ox2000
III = Ox107
5 = OxCOO

$"1

adb a.out.shared core.shared
$m

executable file = a.out.shared
core file = core.shared
readY
? map 'a.out.shared'
b1 ; Ox2000 e1 ; Ox20FC f1 Ox40
b2 = OxBOOOO e2 = OxBOOOO fZ Ox13C
I map 'core.shared'
b1 ; Ox2400 e1 Ox2BOO f1 OxBOO
b2 ; OxFFF400 eZ; Ox1000000 fZ OxCOO

$v

14 ADB Debugger



variables
b 0)(21100
d 0)(1l00
e 0)(2000
m 0)(108
s O)(COO
t O)(llOO

$ ..

The band e fields are the starting and ending locations for a segment. Given an address, A, the
location in the file (either a. 0 Ij t or cor e) is calculated as:

bl~A~el-+ file address = (A-bl)+fl
b2~A~e2 -+ file address = (A - b2) + f2

Variables and Registers
ADB provides a set of variables which are available to the user. A variable is composed of a
single letter or digit. It can be set by a command such as:

0)(32)5

which sets the variable 5 to hex 32. It can be used by a command such as:

<5=X

which will print the value of the variable 5 in hex format.

Some of these variables are set by ADB itself. These variables are:

o last value printed
b base address of data segment
d length of the data segment
e The entry point
ItI execution type (Oxl07 (nonshared),Oxl08 (shared))
5 length of the stack
t length of the text

These variables are useful to know if the file under examination is an executable or cor e image
file. ADB reads the header of the core image file to find the values for these variables. If the
second file specified does not seem to be a core file, or if it is missing, then the header of the
executable file is used instead.

Variables can be used for such purposes as counting the number of times a routine is called.
Using the example of Figure 3, if we wished to count the number of times the routine tab po 5 is
called we could do that by typing the sequence:

0>5 tabpos+e,-l:b <5+1>5 :r <5=d

The first command will set the variable 5 to zero. The second command will set a breakpoint at
tab po 5 + e. Since the count is -1 the process will never stop there but ADB will execute the
breakpoint command every time the breakpoint is reached. This command will increment the
value of the variable 5 by 1. The : r command will cause the process to run to termination. And
the final command will print the value of the variable.

ADS Debugger 15



$ v can be used to print the values of all non-zero variables.

The values of individual registers can be set and used in the same way as variables. The
command:

Ox32>dO

will set the value of the register dO to hex 32. The command:

<dO=X

will print the value of the register dO in hex format. The command $ r will print the value of all
the registers.

Formatted dumps
It is possible with ADB to combine formatting requests to provide elaborate displays. Below are
some examples.

The line:

<b,-l/l!ol!"'SCn

prints 4 octal words followed by their ASCII interpretation from the data space of the core
image file. Broken down, the various request pieces mean:

<b

<b , - 1

The base address of the data segment.

Print from the base address to the end of file. A negative count is used here and
elsewhere to loop indefinitely or until some error condition (like end of file) is
detected.

The format l! 0 l! ., SCn is broken down as follows:

l! 0 Print 4 octal locations.

l!'" Backup the current address 4 locations (to the original start of the field).

SC Print 8 consecutive characters using an escape convention; each character in
the range 0 to 037 is printed as @ followed by the corresponding character in the
range 0140 to 0177. An @ is printed as @@.

n Print a new line.

The request:

<b,<d/l!ol!"'SCn

could have been used instead to allow the printing to stop at the end of the data segment « d

provides the data segment size in bytes).

16 ADS Debugger



The formatting requests can be combined with ADS's ability to read in a script to produce a
core image dump script. ADS is invoked as:

adb a.out core < dUMP

to read in a script file. d II hI P, of requests. An example of such a script is:

120$w
4085$5
$v

=3n
$m

=3n"C Stac.' Bac.,trace"
$C
=3n"C External l.)ariables"
$e

=3n"Re~isters"

$r

0$5
=3n"Data Se~lTlent"

<b ,-l/Bona

The request 120$1,,1 sets the width of the output to 120 characters (normally, the width is 80
characters). ADS attempts to print addresses as:

symbol + offset

The request 4085$ s increases the maximum permissible offset to the nearest symbolic address
from 255 (default) to 4095. The request =can be used to print literal strings. Thus, headings are
provided in this dUll' P program with requests of the form:

=3n"C Stack Bac.,trace"

that spaces three lines and prints the literal string. The request $ v prints all non-zero ADS
variables. The request 0 $ 5 sets the maximum offset for symbol matches to zero thus suppres
sing the printing of symbolic labels in favor of octal values. Note that this is only done for the
printing of the data segment. The request:

<b,-l/Bona

prints a dump from the base of the data segment to the end of file with an octal address field
and eight octal numbers per line.

Figure 7 shows the results of some formatting requests on the C program of Figure 6.

ADS Debugger 17



Figure 6: Simple C program for Illustrating
Formatting and Patching

char
in t
int
long
float
char
Main()
{

strl[]
one
nUMber
lnuM
fpt
str2[]

"This
1 ;
456i
1234i
1.25 ;
"This

is a character string";

is the second character string";

one 2;
}

Figure 7: ADB output illustrating fancy formats

adb a.out.shared -
executable file a.out.shared
ready
<b,-l?Bona

_strl: 052150 064563 020151 071440 060440 061550 060562 060543

_strl+0xl0: 072145 071040 071564 071151 067147 0 0 01

_nullIbe r:
_nullIber: o 0710 0 02322 037640 0 05Z150 064563

_str2+0x4: 020151 071440 072150 062440 071545 061557 067144 020143

_str2+0x14:
<b,20?404 A BCn

_strl:

064141

052150
060440
072145
067147

071141

064563
061550
071040
o

061564

020151
06056Z
071564
o

062562

071440
060543
071151
01

020163 07216Z

This is
a charac
ter stri
ng@'@'@'@'@'@a

064556 063400

_nUMber: o 0710 o OZ3ZZ @'@'@aH@'@'@dR

? @'@'This
is the

second c
haracter

This is
a charac
ter stri
ng@'@'@'@'@'@a

@'@'@aH@'@'@dR

? @'@'This
is the

second c
haracter

Th
is

i
s
a
ch
ar
ac
te
r

064563
06Z440
020143
08Z582
063400

084583
062440
OZ0143
082582
083400

071440
080543
071151
01

023ZZo

052150
072 150
087144
081564
064556

020151
060582
071564
o

05Z150
072150
067144
081584
064556

Ox6B
Ox73
Ox6S
OxZO
OxZO
Ox6B
Ox72
Ox63
Ox65
Ox20

064563
061550
071040
o

0710

Ox54
Ox6S
OxZO
Ox73
Ox61
Ox63
Ox61
Ox61
Ox74
Ox72

o

037640 0
020151 071440
071545 061557
064141 071141
OZ0163 072162

address not found in a.out file
<b,ZO?404 A BtBCna
_st rl: 052150
_strl+0xB: 060440
_strl+0x10: 072145
_strl+0x1B: 087147
_nulllber:
_nUMber:
_fpt:
_fpt: 037640 0
_strZ+Ox4: OZ0151 071440
_str2+0xC: 071545 081557
_str2+0x14: 064141 071141
_str2+0xlC: 020163 072162
address not found in a.out file

<b,a?2bBt A 2cn
_str1:

$q

18 ADB Debugger



Patching
Patching files with ADS is accomplished with the write, w or W, request (which is not like the ed
editor write command). This is often used in conjunction with the locate, I or L request. In
general, the request syntax for 1 and ware similar as follows:

?l value

The request I is used to match on two bytes, L is used for four bytes. The request wis used to
write two bytes, whereas W writes four bytes. The value field in either 1 0 cat e or wr i t e
requests is an expression. Therefore, decimal and octal numbers, or character strings are
supported.

In order to modify a file, ADS must be called as:

adb -w filel file2

When called with this option. f i 1 e 1 is created if necessary and opened for both reading and
writing. f i 1 e 2 can be opened for reading but not for writing.

For example, consider the C program shown in Figure 6. We can change the word "This" to
"The" in the executable file for this program, ex 7, by using the folloWing requests:

adb -w ex7 
?l 'Th'
?W 'The '

The request? 1 starts at dot and stops at the first match of "Th" having set dot to the address of
the location found. Note the use of ? to write to the a. 0 IJ t file. The form ?* would have been
used for a shared text file.

More frequently the request will be typed as:

?l 'Th'; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADS
request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has an
internal logic flag. The flag could be set by the user through ADS and the program run. For
example:

adb a.out 
:e ar~l arg2
flag/w 1
: c

The: e request is used to start a. 0 ut as a subprocess with arguments a r ~ 1 and a r g2. If there
is a subprocess running ADS writes to it rather than to the file so the wrequest causes f 1 a ~ to
be changed in the memory of the subprocess.

ADS Debugger 19



Anomalies
Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the 1 inK instruction. Putting
breakpoints at the entry point to routines means that the function appears not to have
been called when the breakpoint occurs.

2. If a : S command is executed at a branch instruction, and the branch is taken, the ""/.
command will act as a : c command. This is because a breakpoint is set at the next ,
instruction and if is not reached, the process will not stop.

Command Summary
Formatted Printing
? format print from a. 0 u t file according to format
/format print from cor e file according to format
= format print the value of dot
?w expression write expression into a. 0 u t file
/w expression write expression into cor e file
?l expression locate expression in a. 0 LI t file

Breakpoint and Program Control
:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a. 0 u t file under ADB control
:5 single step

Miscellaneous Printing
$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print ADB segment maps
$q exit from ADB
$r general registers
$5 set offset for symbol match
$v print ADS variables
$w set output line width

Calling the Shell
! call shell to read rest of line

Assignment to Variables
> name assign dot to variable or register name

20 ADS Debugger



a
b
c
d
f

~
i
0

n
r
s
nt
u
x
y

*
%
&
I
#

Format Summary
the value of dot
one byte in hexadecimal
one byte as a character
two bytes in decimal
four bytes in floating point
MC68000 instruction
two bytes in octal
print a newline
print a blank space
a null terminated character string
move to next n space tab
two bytes as unsigned integer
hexadecimal
date
backup dot

print string

Expression Summary
Expression Components
decimal integer e.g. Od256
octal integer e.g. 0277
hexadecimal e. g. Oxff
symbols e. g. flag _main
variables e.g. <b
registers e.g. <pc <dO
(expression) expression grouping

Dyadic Operators
+ add

subtract
multiply
integer division
bitwise and
bitwise or
round up to the next multiple

Monadic Operators
not

* contents of location
integer negate

ADS Debugger 21



22 ADB Debugger



~.,
v.. ,..,·.

.~:

r'

Table of Contents
Getting Started

Introduction 1
Manual Organization 2
Conventions Used In This Manual 3
Using Other HP-UX Manuals 4
Overview of cdb 4
Overview of Interprocess Debugging 5
Compiling Programs 5
Conventions 7

Notational Conventions 7
Variable Name Conventions 8
Expression Conventions 10
Procedure Call Conventions 13

Running cdb 14
Example Program 15

Viewing Commands
File Code Viewing Commands 17

Print Current File, Procedure and Line Number 17
Change Files and Print First Executable Line 18
Print Groups of Lines 18
Print Window of Text 19
Move Forward/Backward from Current Line 20
Miscellaneous File Viewing Commands 21

Stack Viewing Commands 22
Trace Stack for Expr Levels 22
Set Viewing Location 23

Data Viewing Commands 24
Print Variable's Value 24
View Non-current Location Variables 25
List Command 26
Miscellaneous Data Viewing Commands 26

Display Formats 27



Job Control Commands
Run/Terminate the Program 29
Terminate Current Child Process 30
Continue After Breakpoint/Signal 31
Single Step After Breakpoint 32

Breakpoint Commands
Set a Breakpoint 36
List Breakpoints 38
Delete Breakpoints ~...............................................39
Miscellaneous Breakpoint Commands 40

Assertion Control Commands and Signal Handling Commands
Assertion Control Commands 43

Create New Assertion 43
Modify an Assertion 44
Tracing Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45
Toggle the State 46
Delete All Assertions 46

Signal Handling Commands 47
Reverse Handling of Signal 48 ~

Record, Playback and Other cdb Commands
Record and Playback Commands 51

Miscellaneous Record and Playback Commands 54
Other Commands 55

Index

ii



Getting Started
Introduction

1
If you're like most people, reading computer manuals is not your favorite pastime. We
strongly urge you to read the remainder of this chapter. This manual assumes that you
have read these first few pages; if you choose not to do so, you are on your own.

One other note: the best way for us to improve the quality of documentation is through
your feedback. Please use one of the reply cards at the back of this manual to tell us
what was helpful, what was not, and why. Feel free to comment on depth, technical
accuracy, organization, and style. Your comments are appreciated.

Getting Started 1



Manual Organization
Chapter 1: Getting Started
Explains the conventions used in the manual and identifies other manuals referenced
within this one. This chapter then presents an overview of cdb, how to compile and exe
cute programs with cdb, conventions of cdb, and example programs used in this tutorial.

Chapter 2: Viewing Commands
This chapter contains viewing commands: file, stack, data. Viewing commands allow
you to look at code, procedure calling sequences, or the value of variables. There is also
a section on the display formats used with the Data Viewing Commands.

Chapter 3: Job Control Commands
Describes job control commands which let you execute or terminate the program, as well
as, continue or single-step after a breakpoint.

Chapter 4: Breakpoint Commands
Covers the breakpoint commands that are used to stop a program at a user specified
location. The execution commands, that can be specified when that breakpoint is en
countered, are also covered.

Chapter 5: Assertion Control Commands and Signal Handling Commands
Contains the assertion control commands that check user specified conditions after every
statement. It also includes the signal handling commands which give you the ability to
alter how the debugger deals with signals.

Chapter 6: Record, Playback and Miscellaneous Commands
Discusses the record and playback commands used to recreate automatically a program
state and miscellaneous cdb commands which do not really fit into any other catagory.

2 Getting Started



Conventions Used In This Manual
The following naming conventions are used throughout this manual.

• Italics indicate files and HP-UX commands, system calls, and subroutines found
in the HP-UX Reference manual as well as titles of manuals. Italics are also used
for symbolic items either typed by you or displayed by the system as discussed
below. Examples include /usr/lib/nls/american/prog.cat, date(l), and ptY(4). The
parenthetic number shown for commands, system calls, and other items found in
the HP- UX Reference is a convention used in that manual.

• Boldface is used when a word is first defined and for general emphasis.

• Computer font indicates a literal typed by you or displayed by the system. A typical
example is:

cdb main.c

Note that when a command or file name is part of a literal, it is shown in computer
font and not italics. However, if the command or file name is symbolic (but not
literal), it is shown in italics as the following example illustrates:

cdb executable_file

In this case you would type in your own executable_file. If the command has optional
arguments, they are designated by square brackets, [], as the example below shows:

[line]p [count]

• Unless otherwise stated, all references such as "see the ptrace(2) entry for more
details" refer to entries in the HP- UX Reference manual. If you cannot find an
entry where you expect it to be, use the HP-UX Reference manual's Permuted
Index.

Getting Started 3



Using Other HP-UX Manuals
This manual may be used in conjunction with other HP-UX documentation. References
to the manual described next are included, where appropriate, in the text .

• The HP- UX Reference manual contains the syntactic and semantic details of all
commands and application programs, system calls, subroutines, special files, file
formats, miscellaneous facilities, and maintenance procedures available on the Series
200/500 HP-UX Operating System.

Overview of cdb
cdb is a symbolic source-level debugger that provides a controlled execution environment
for C, FORTRAN, and Pascal programs. This tool can be used to debug C, FORTRAN,
or Pascal programs without needing to know internals.

The scenario in which you use cdb is: if you have problems in your program, you re
compile the program and then use cdb to assist in finding and correcting errors.

This tutorial describes the commands needed to use cdb. The tutorial provides a descrip- ~
tion of the commands and each command's syntax. There are programming examples in
which the more important commands are used.

There are certain hardware dependencies, symbol table dependencies, diagnostics, warn
ings, and bugs associated with cdb. The authoritative reference on these items is the
manual page cdb(l) in the HP-UX Reference. Everything else about cdb is detailed or
implied in its pages, along with a quick reference of all the commands presented in this
tutorial.

4 Getting Started



Overview of Interprocess Debugging
Both cdb and adb are interprocess debuggers. Interprocess debuggers run separately from
the programs processes being debugged.

In HP-UX, cdb (and adb) interact with the program being debugged through ptrace{2}.
This intrinsic allows a parent process read and write memory, and register locations in
a child process, as well as causes the child process to machine-instruction step, continue
(free run), and terminate.

The debugger cdb is the parent process and the program being debugged is the child
process. In this document the terms child process, target program, your program, and
program being debugged are synonymous.

Compiling Programs
The C, FORTRAN, and Pascal compilers emit debugging information when you compile
with the -g option. This debug information is massaged by the assembler (Pascal and
FORTRAN bypass the assembler) and the linked output e ends up in the executable
program file. cdb needs this information to be able to debug your program. If you want
to use cdb on a particular procedure, it must be compiled with the -g option. You don't
have to compile your entire program with -g (it's usually easier to do it that way), but
as a minimum, the main procedure must be compiled with -g (otherwise cdb can't debug
your program).

cc -g program

Compiling with -g increases the size of your executable file considerably (for example,
compiling cdb source with -g leads to a 6x increase). However, the memory requirements
will not change appreciably because the debug data is not loaded into memory.

The objectfile is the executable program file which has had one or more of its compo
nent modules compiled with debug option(s) (for example, -g) turned on. The -g op
tion causes the linker to append /usr/lib/end.o to your objectfile. This support module
/usr/lib/end.o must be included as the last object file in the list of those linked, except
for libraries included with the -I option of Id{l}. The /usr/lib/end.o subroutine contains
buffer space used by cdb during command line procedure calls. An increase of 200 bytes
in memory requirements is caused by compiling with -g. (Some systems automate this;
see the cdb{l) "Hardware Dependencies" section.) The default for obJ'ectfile is a.out.

Getting Started 5



The corefile is a core image from a failed execution of ob;"ectfile. The default for corefile
is core. (Note: the Series 500 does not support corefiles.)

The options available are:

-d dir

-r file

-p file

-8 num

names an alternate directory where source files are located. They are
searched in the order given. If a source file is not found in any alternate
directory, the current directory is searched last.

names a record file which is invoked immediately (for overwrite, not for
append). See the section below entitled "Record and Playback Com
mands" for a description of this feature.

names a playback file which is invoked immediately. See the section
below entitled "Record and Playback Commands" for a description of
this feature.

sets the size of the string cache to num bytes. The default num depends
on the symbol table format used. The option is not available for all
formats. The string cache holds data read from ob;"ectfile.

There can only be one obiectfile and one corefile per debugging session (activation of the
debugger). The program (ob;"ectfile) is not invoked as a child process until you give an ~
appropriate command (see the "Job Control Commands" chapter). The same program ..
may be restarted, as different child processes, many times during one debugging session.

This debugger is a complex, interactive tool with many synergistic and combinatorial
features. What you can do with it is often limited only by your imagination. Remember,
however, that the debugger is only a window into the world consisting mostly of the
program being debugged and the system it runs on. If something puzzling happens, you
may need to consult a manual which describes the program or the system, in order to
understand the behavior.

6 Getting Started



Conventions
The debugger remembers the current file, current procedure, current line, and current
data location. They are a function of what you have been viewing (not necessarily
executing) most recently. Many commands use these current locations as defaults; many
commands set them as a side effect. It is important to keep this in mind when deciding
what a command does in any particular situation.

For example, if you stop in procedure asub, then view procedure bsub, then ask for the
value of local variable i, the debugger assumes that the variable belongs to procedure
bsub.

Notational Conventions
Most commands are of the form [modifier] command-letter [options]. Numeric modifiers
before and after commands can be any numeric expression. They need not be just simple
numbers. A blank is required before any numeric option. Multiple commands on one
line must be separated by;.

These are common modifiers and other special notations:

(A I B I C)

[A I B I c]

file

proc

var

number

expr

depth

Anyone of A or B or C is required.

Anyone of A or B or C is optional.

A file name.

A procedure (or function, or subroutine) name.

A variable name.

A specific, constant number (e.g. 9, not 4+5). Floating point (real)
numbers may be used any place a constant is allowed.

Any expression, but with limitations stated below.

A stack depth, as printed by the t command. The top procedure is at
a depth of zero. A negative depth acts like a depth of zero. Stack depth
usually means exactly at the specified depth, not the first instance at
or above the specified depth.

Getting Started 7



fOTmat

commands

A styIe for printing data. See the "Viewing Commands" chapter for
details.

A series of debugger commands, separated by;, entered on the com
mand line, or saved with a breakpoint or assertion. Semicolons are
ignored (as commands) so they can be freely used as command sep
arators. Commands may be grouped with {} for the a, b, if, and!
commands. In all other cases, commands inside {} are ignored.

Variable Name Conventions
Variables are referenced exactly as they are named in your source file(s). Case sensitivity
is controlled by the Z command. Be careful with one letter variable names, since they
can be confused with commands. If an expression begins with a variable that might be
mistaken for a command, just enclose the expression in 0 (e.g. (k)), or eliminate any
white space between the variable and the first operator (use k= 9 instead of k = 9).

If you are interested in the value of some variable vaT, there are a number of ways of
getting it, depending on where and what it is:

vaT

proc.var

pTOC. depth. vaT

:var

8 Getting Started

Search the stack for the most recent instance of the current proce
dure. If found, see if vaT is a parameter or local variable of that
procedure. If not, search outward using scoping rules for vaT.

Search the stack for the most recent instance of pTOC. If found, see
if it has a parameter or local variable named vaT, as before.

Use the instance of proc that is at depth depth (exactly), instead of
the most recent instance. This is very useful for debugging recursive
procedures where there are multiple instances on the stack.

Search for a global (not local) variable named var.



Dot is shorthand for the last thing you viewed (see the "Data Viewing
Commands" section). It has the same size it did when you last
viewed it. For example, if you look at a long as a char, then. is
considered to be one byte long. This is useful for treating things in
unconventional ways, such as changing the second highest byte of a
long without changing the rest of the long. Dot may be treated like
any other variable.

NOTE

The. (dot) is the name of this magic location. If you use it,
it is de-referenced like any other name. If you want the address
of something that is, say, 30 bytes farther on in memory, do not
use .+30. That would take the contents of dot and add 30 to it.
Instead, say &.+30, which adds 30 to the address of dot.

Special variables are names for things that are not normally directly accessible. Special
variables include:

$var

$pc, $fp, $sp, $rO, etc.

$result

$signal

The debugger has room in its own address space for a number
of user-created special variables. They are all of type long,
and do not take on the type of any expression they are as
signed to. Names are defined when they are first seen. For
example, saying $xyz = 3*4 creates special symbol $xyz, and
assigns to it the value 12. Special variables may be used just
like any other variables.

These are the names of the program counter, the frame
pointer, the stack pointer, the registers, etc. To find out
which names are available on your system, use the I r (list
registers) command. All registers act as type integer.

This is used to reference the return value from the last pro
cedure exit. Where possible, it takes on the type of the pro
cedure. $short and $long are available as alternate ways of
looking at $result.

This lets you see and modify the current child process signal
number.

Getting Started 9



$lang

$line

$malloc

$cBad

This lets you see and modify the current language (0 for C, 1
for FORTRAN, or 2 for Pascal).

This lets you see and modify the current source line number,
which can be set with a number of different commands.

This lets you see the current amount of memory (bytes) allo
cated at run-time for use by the debugger itself.

This lets you see and modify the number of machine instruc
tions the debugger will step while in a non-debuggable pro
cedure before setting an up-level breakpoint and free-running
to it. Setting it to a small value can improve debugger per
formance, at the risk of taking off free-running after missing
the up-level break for some reason.

..~

To see all the special variables, including the predefined ones, use the 1s (list specials)
command.

You can also look up code addresses with:

proc#line

which searches for the given procedure name and line number (which must be an ex
ecutable line within proc) and uses the code address of that line. Just referring to a
procedure proc by name uses the code address of the entry point to that procedure.

Expression Conventions
Every expression has a value, even simple assignment statements, as in C. Naked expres
sion values (those which aren't command modifiers) are always printed unless the next
token is ; (command separator) or } (command block terminator). Thus breakpoint and
assertion commands (see the appropriate sections below) are normally silent. To force
an expression result to be printed, follow the expression with In (print in normal format;
see below).

Integer constants may begin with 0 for octal or Ox or OX for hexadecimal. They are int
if they fit in two bytes, long otherwise. If followed immediately by lor L, they are forced
to be of type long (this is useful on systems where int is two bytes).

10 Getting Started



Floating point constants must be of the form:

digits.digits[e I E I diD I L I 1 l+I-] digits]

for example, 1.0, 3. 14e8, or 26. 62D-31. One or more leading digits is required to avoid
confusion with. (dot). A decimal point and one or more following digits is required
to avoid confusion for some command formats. If the exponent doesn't exactly fit the
pattern shown, it is not taken as part of the number, but as separate token(s). The d and
D exponent forms are allowed for compatibility with FORTRAN. The I and L exponent
forms are allowed for compatibility with Pascal. However, all floating point constants
are taken as doubles, regardless.

Character constants must be entered in single quotes (for example, 'n') and are treated
as integers. C string constants must be entered in double quotes (for example, "Hello
World") and are treated like char * (i.e., pointer to char). FORTRAN and Pascal strings
may be enclosed in either single quotes " or double quotes II". Character and string
constants may contain the standard backslashed escapes understood by the C compiler
and the echo(l) command, including \b, \1, \n, \r, \t, \\, \', and \nnn. However, \
IReturnl is not supported, in quotes or at the end of a command line.

Expressions are composed of any combination of variables, constants, and C operators.
If the debugger is invoked as cdb, the C operator sizeol is also available. If the debugger
is invoked as Idb, FORTRAN operators are also available and FORTRAN meanings take
precedence where there is a conflict. The same is true for Pascal if the debugger is
invoked as pdb.

If there is no active child process and no corefile, you can only evaluate expressions
containing constants.

Expressions approximately follow the C rules of promotion, e.g. char, short, and int
become long, and float becomes double. If either operand is a double, floating point
math is used. If either operand is unsigned, unsigned math is used. Otherwise, normal
(integer) math is used. Results are then cast to proper destination types for assignments.

If a floating point number is used with an operator that doesn't normally permit it, the
number is cast to long and used that way. For example, the C binary operator - (bit
invert) applied to the constant 9.14159 is the same as -9.

Getting Started 11



Note that = means assign except in Pascal. In Pascal, = is a comparison operator; use
:= for assignments. For FORTRAN use == or .EQ.. For example, if you invoke the
debugger as cdb, then set Slang = 2 (Pascal), you must say Slang := 0 to return to C.

Use / / for division, instead of /, to distinguish from display formatting (see the "Data ~
Viewing Commands" section).

The special unary operator $in (not to be confused with debugger local variables) evalu
ates to 1 (true) if the operand is an address inside a debuggable procedure and $pc (the
current child process program location) is also in that procedure, else it is 0 (false). For
example, $in main is true if the child process is stopped in main().

If the first expression on a line begins with + or -, use 0 around it to distinguish from
the + and - commands (see the "Data Viewing Commands" section). Parentheses may
also be needed to distinguish an expression from a command it modifies.

You can attempt to dereference any constant, variable, or expression result using the C
• operator. If the address is invalid, an error is given.

Whenever an array variable is referenced without giving all its subscripts, the result is
the address of the lowest element referenced. For example, consider an array declared as ,~

x[6] [6] [7] in C, x(5.6.7) in FORTRAN, or x[1. .5.2 .. 6.3 .. 7] in Pascal. Referencing ,
it simply as x is the same as just x in C, the address of x(1.1.0 in FORTRAN, or the
address of x[1.2,3] in Pascal. Referencing it as x[4] is the same as & (x[4] [0] [0]) in
C, the address of x<t,1.4) in FORTRAN, or the address of x[4 .2.3] in Pascal.

If a not-fully-qualified array reference appears on the left side of an assignment, the value
of the right-hand expression is stored into the element at the address specified.

String constants are stored in a buffer in the file /usT/lib/end.o. The debugger starts
storing strings at the beginning of this buffer, and moves along as more assignments are
made. If the debugger reaches the end of the buffer, it goes back and reuses it from the
beginning. In general this doesn't cause any problems. However, if you use very long
strings, or if you assign a string constant to a global pointer, problems could arise.

12 Getting Started



Procedure Call Conventions
Procedures may be invoked from the command line, even within expressions. For exam
ple:

~ xyz = $abc * (3 + def (ghi - 1, jkl, uHi Mom"»

calls procedure def when its value is needed in the expression.

Any breakpoints encountered during command line procedure invocation are handled as
usual. However, the debugger has only one active command line at a time. If it stops
in a called procedure for any reason, the remainder (if any) of the old command line is
tossed, with notice given.

If you attempt to call a procedure when there is no active child process, one is started
for you as if you gave a single-step command first. Unfortunately, this means that the
data in corefile (if any) may disappear or be reinitialized.

If you send signal SIGINT (e.g., hit the IBreakl key) while in a called procedure, the
debugger aborts the procedure call and returns to the previous stopping point (the start
of the main program for a new process).

~\ You can call any procedure that is in your objectfile, even if it is not debuggable (was not
compiled with the -g option). For example, assume that you reference printf() in your
program, so the code for it is in your objectfile. Then you can enter on the command
line:

printf (IIThis works! %d %c\n ll
, 9, '1');

If you wonder what procedures are available, do a list labels command (/~. If you
want to have some library routines available for debugging, but they aren't referenced
anywhere in your code (so they aren't linked), relink your program with the -u option to
force their inclusion.

Note that procedure name _end_ is declared in end.c.

Getting Started 13



Running cdb
If an a. out file exists, then you invoke cdb by typing:

edb

Otherwise, you need to specify an executable file as shown below.

To invoke the debugger on your C program, type:

edb executable_file

Run the debugger on FORTRAN programs via:

fdb executable_file

and on Pascal programs via:

pdb executable_file

/bin/fdb and /bin/pdb are links to /bin/cdb. The cdb debugger does some language- ,~

dependent processing based on how it was invoked (cdb, fdb, or pdb). Examples of this ,
are:

• FORTRAN arrays (column-major storage)

• FORTRAN CHAR *and Pascal string variables

• Pascal PACKED arrays of CHAR

You may change the current language from within cdb/fdb/pdb with the $lang special
variable (see the "Conventions" section for more details).

Throughout the remainder of this document, cdb will be used as a generic term for
cdb/fdb/pdb.

The cdb debugger needs to be able to access the source files for your program. The
debugger assumes they are in the current directory. If they're not, use the -d command
line option to specify their location. For example:

edb -d srei -d sre2 bin/pgm

runs cdb on ./bin/pgm with source in ./src1 and .jsrc2.

14 Getting Started



The cdb debugger starts up by displaying file and procedure counts and then the first
executable line of your program. At this point your program has not been loaded into
memory.

~ cdb then prompts for commands with the> character.

Example Program
The example program used throughout this tutorial is listed below. Almost all the cdb
commands covered in this tutorial will be illustrated using these two files (main.c and
8ub.c). Type them in exactly as shown, using an appropriate text editor (e.g., m). Then
compile them both and start cdb.

For the purposes of this document, the file main. c must contain the main program:

main ()
{

long i;
i = 6;
asub(i);

}

The file 8ub.c must contain the subroutines:

asub (arg)
long arg;
{

bsub(arg);
}

bsub (myarg)
long myarg;
{

1* do nothing *1
}

Getting Started 15



To compile these program files, use the C compiler and the -g option as shown in the
previous section "Compiling Programs". Type:

cc -g main.c 8ub.c

During compilation, two object files main.o and sub.o will be created and placed in the
current directory. You can use the lsI command to check for them. To start the debugger
on the default executable object file a. out type:

cdb a.out

NOTE

All examples in this tutorial were run on the Series 500, therefore
addresses will differ from those on the Series 200.

16 Getting Started

.~



VielNing Commands 2
A user can view the source code statically (before the program has executed) or dynam
ically (during execution). The stack and data, on the other hand, are meaningless until
the program is executing and a breakpoint is reached.

File Code Viewing Commands
One must understand the concept of current lines, files, and procedures in order to use
cdb. The cdb debugger interprets everything relative to the current viewing location; this
holds particularly to line numbers and variable names.

Print Current File, Procedure and Line Number
Syntax:

e

Example:
$cdb a.out
Source files: 3
Procedures: 4
main.c: main: 4: i=5;
>e
main.c: main: 4: i=5;

This command prints the line you are presently located at within the file. It shows
the current file, procedure, line number, and source line (main.c: main: 4: i = 5;).
Commands that show the file and procedure with a source line skip (do not print) any
leading white space from the source line.

Viewing Commands 17



Change Files and Print First Executable Line
Syntax:

e file
e proc

This command places you in the file or procedure designated. Entering a file sets the
current line number to 1. Entering a procedure sets the current file and line to the first
executable line of the procedure. You can enter any file and look at it from cdb; it does
not have to be a program source file.

Example:
>e sub.c
sub.c: 1: asub (arg)
>e asub
sub.c: asub: 4: bsub (arg);

Notice that the second e command places you into the sub.c file at the first executable
line of asub(). To return to main. c simply type:

>e main.c
main.c: 1: maine)

Print Groups of Lines
Syntax:

[line]p [count]

The p command can be used several ways. When p is used alone, the current line is
output. Using p with just line prints the line specified by that number. If a count follows
the p, count lines will be printed starting at line. p followed only by count, prints from
the current line forward count lines. If more than one line is printed, the current line is
marked with a = in the leftmost position.

Example:
>p

1 : main 0
>5p

5: asub(i);
>p2

5: asub(i);
6: }

~>2p 3
2: {

3: long i:
4: i = 5;

18 Viewing Commands



~\
\.

Print Window of Text
Syntax:

( l~ne) w (wi.ndow sz:ze)
lme W wtndow szze

Instead of using p to print sections of text, sometimes the w and W commands are more
useful. The window commands are used for Quickly scrolling through source files (or any
file). These commands print blocks of text thereby reducing the need to refer to paper
listings during a debugging session. Window commands (w defaults to 11 lines and W
defualts to 21 lines) print the block of text centered around the current line (or any
specified line). The line parameter specifies the current line number. Then window size
designates how many lines around the current line are printed.

You can cause the previous w or W command to be repeated by pressing IReturnl. This
causes the next successive block of text to be displayed. The cdb debugger remembers
the size and direction of text windowing for the next IReturnl command.

Example:
>e sub.c
sUb.c: 1: asub (arg)
>5 p

5: }
>w

1: asub (arg)
2: long arg;
3: {
4: bsub(arg);
5: }
6:
7: bsub (myarg)
8: long myarg;
9: {

10: 1* do nothing *1
11: }

>4 w
1: asub (arg)
2: long arg;
3: {

4: bsub(arg);
5: }
6:
7: bsub (myarg)
8: long myarg;
9: {

10: 1* do nothing *1
11: }

Viewing Commands 19



1* do nothing *1

bsub(arg);

bsub (myarg)
long myarg;
{

}

long arg;
{

>w 5
2:
3:
4:
5:
6:

>9 w 5
7:
8:
9:

10:
11: }

Move Forward/Backward from Current Line
Syntax:

+(l~nesJ
- lznes

This command moves the cursor lines forward when you use + and lines backward when
you use the -. The default is 1.

Example:
>- 3

6:
>+ 4

10: I*do nothing*1

The window command and these directional commands can be blended to build the +/
W/w commands which are useful for changing direction. The - Wand -w commands
cause the preceding block of text to be displayed. While + Wand +w cause the following
block of text to be displayed.

20 Viewing Commands



Miscellaneous File Viewing Commands
dir directory

L

line

+w[size]
+ W{size]

-w[size]
- W[size]

Add directory to the list of alternate source directories. The effect is
the same as using the -d invocation option. If the file containing the
main procedure does not reside in the current directory, its directory
must be specified with the -d option.

This is a synonym for OE (see the "Set Viewing Location" section").

Print source line number line in the current file.

Print a window of text, of the given or default size, beginning at the
end of the previous window, if the previous command was a window
command, or at the current line otherwise.

Print a window of text, of the given or default size, ending at the begin
ning of the previous window, if the previous command was a window
command, otherwise end at the current line.

n

N

If after any window command you give a wor W command with no line specified, the
debugger prints the following window of source text; or if the previous window command
was -wor - W the previous window is printed, using the given size (or the default if none).
Pressing IReturnl after any window command does the same thing, but uses the previous
size as well.

/[string] Search forward through the current file, from the line after the current line, for
string.

?[string] Search backward for string, from the line before the current line.

Searches wrap around the end or beginning of the file, respectively. If string is not
specified, the previous one is used. Wild cards and regular expressions are not supported;
string must be literal. Case sensitivity is contolled by z; the default is insensitive (see
the section "Other Commands" for details).

Repeat the previous / or ? command using the same string as pre-
viously.

The same as n, but the search goes in the opposite direction as
specified by the previous / or ? command.

r These search commands, /, ?, n, and N work the same as in vi(l).

Viewing Commands 21



Stack Viewing Commands
These commands are only meaningful after the child process stops (e.g on a breakpoint)
because there is nothing on the stack until the child process is running. The procedure
calling chain is displayed with the t and T commands.

A detailed description for using and setting breakpoints is provided in the "Breakpoint
Commands" section. For this example type:

>b
Added:

1: count: 1 asub: 4: bsub(arg);
>r
Starting process 1246: "a.out"

(set the breakpoint)

(run the program)

breakpoint at Ox60180006
sUb.c: asub: 4: bsub(arg);

Trace Stack for Expr Levels
Syntax:

[depth) t
[depth T

The t command traces the stack for the first depth (default 20) level and displays the
procedures on the stack and their parameter values. The T supplements this information
with local variables which are also displayed, using the In format (except that arrays
and pointers are shown as addresses, and only the first word of structures is shown).

Example:

[sub.c: 4]
5]

(Ox1, Oxc0000030, Oxc0000040)

unknown ()

asub (arg = 5)
main () [main.c:

i = 5
2 start +Ox0000001a
3 unknown 0

>t
o asub (arg = 5) [sub.c: 4]
1 main () [main.c: 5]
2 start +Ox0000001a (Ox1, Oxc0000030, Oxc0000040)
3
>T
o
1

Non-debuggable procedures are also displayed but their parameters are displayed in
hexadecimal.

22 Viewing Commands



Set Viewing Location
Syntax:

[depth]E

r The E command sets the current viewing location to the procedure on the stack at depth
depth and prints the current file name, procedure name, and line. The point of suspended
execution is at depth = O. For example, with the above stack trace the command 1E sets
the current viewing line to line 5 in main. c which is the call to asub().

The E command only sets the viewing location. This means that using E to set the
location to a prior instance of a recursive procedure and then querying the value of
variable x will show x in the most recent instance of the procedure. The proc.depth.var
syntax must be used in this case.

The E command is handy for quickly looking at the source code for the calling chain
(perhaps to determine the context of the current procedure call). You use DE or its
synonym L to get back to the point of suspended execution after roaming around setting
breakpoints or viewing other files, etc.

Example:
>E
sub.c: aBub: 4: bsub(arg);
>1E
main.c: main: 6 +OxOOOOOOOc: asub(i);
>OE
sub.c: asub: 4: bsub(arg);

Viewing Commands 23



Data Viewing Commands

Print Variable's Value
Syntax:

expr
expr/ format
expr?format

The expr can be as simple as the name of a variable in a child process; or it can be a
complex combination of variables and arithmetic operators. See the "Expression Con
ventions" section for further discussion. The debugger returns the value of the variable
designated by expr. It is handled as if you had typed expr/n (print expression in normal
format), unless followed by ; or }, in which case nothing is printed.

All the variables in expr must be known in the current viewing location. For example,
if you try to query the value of arg when the current location is not in asub(), you will
recieve the error message Unknown name or command "arg".

If there is a conflict between a variable name and a command, the command name takes
precedence. To query the value of such a variable, either enclose the name in parentheses, ~
or specify a format. For example, i in main() conflicts with the if command:

Example:
>arg
arg = 5
>e main.c
main.c: 1: main()
>i
Missing U{II
>(i)
i = 5

24 Viewing Commands



(',

Sometimes during debugging it is necessary to print the contents of a variable using a
different format than the normal default format (n). In the example below i is printed
out in decimal as an integer. There are a variety of formats available (see "Miscellaneous
Data Viewing Commands" and "Display Formats"). The /specifies printing the value of
the expr and the ? designates printing the address of the expr. Then " indicates backing
up to the preceding location while the • reverses the direction again to forward.

>i/d
i = 5
>i?d
-1073741424
>~/d

Oxc000018c 56
>./d
Oxc000018c 56

View Non-current location Variables
Syntax:

proc.var
proc. depth. expr

With these forms you can view variables in a procedure not containing the current viewing
location or look at a variable at a particular depth on the procedure stack (useful for
recursive programs).

Example:
>asub.arg
arg = 5
>asub.1.arg
Procedure "asub" not found at stack depth 1
>main.1.i
i = 5

Viewing Commands 25



List Command
Syntax:

1[proc[. depth]]
1 (a I bid I z)
1 (f I g I 1 I p I r I s) [string]

This command I lists all parameters and local variables of the current procedure or the
specified proc (if given) at the specified depth (if any). Data is displayed using In fonnat,
except that all arrays and pointers are shown simply as addresses and only the first word
of any structure is shown.

The letters in parentheses stand for assertions, breakpoints, directories (where to search
for files), zignals (signal actions), files (sourcefiles), global variables (known to linker),
labels, procedure names, registers, or special variables. If string is present, only those
things with the same initial characters are listed.

asub: 4: bsub(arg);

Example:
>1 main
i = 5
>1 a
No assertions
>1 b
1: count: 1

>1 f
0: main.c
1: sub.c
2: end.c

>1 p as
1: asub

Ox60100000 to Ox60100019
Ox60180000 to Ox60180023
Ox60200000 to Ox60200007

Ox60180000 to Ox60180015

Miscellaneous Data Viewing Commands
exprlformat Print the contents (value) of expr using format. For example, abc/x

prints the contents of abc as an integer, in hexadecimal.

expr?format

"[[/]format]

Print the address of expr using format. For example, abc?o prints the
address of abc in octal.

Back up to the preceding memory location (based on the size of the last
thing displayed). Use format if supplied, or the previous format if not.
Note that no / is needed after the ". Also note that you can reverse
direction again (e.g., start going forward) by entering. (dot), which is
always an alias for the current location, followed by IReturnl.

26 Viewing Commands



Display Formaits
Display formats are used only with Data Viewing Commands. The format is of the form:

~ [*] [count]formchar[size].

* means use alternate address map (e.g., abc), if maps are supported.

The count is the number of times to apply the format style formchar. It must be a
number not an expression.

The size is the number of bytes to be formatted for each count, and overrides the default
size for the format style. It must be a positive decimal number (except short hand
notations, see below). The size is disallowed with those formchar's where it makes no
sense.

For example, abc/4x2 prints, starting at the memory location of abc, four two-byte num
bers in hexadecimal.

Using an optional upper-case letter with formats that print numbers has the same affect
as appending the I option to the format (see below). For example, 0 prints 4 bytes in
octal (i.e., long). These formats, which are useful on systems where integer is shorter
than long, are noted below. The following formats are available:

n

(d D)

(u U)

(0 0)

(x X)

(b B)

(c C)

~
(e E)

(IF)

(g G)

a

Print in the normal format, based on the type. Arrays of char and pointers
to char are interpreted as strings, and structures are fully dumped.

Print in decimal (as integer or long).

Print in unsigned decimal (as integer or long).

Print in octal (as integer or long).

Print in hexadecimal (as integer or long).

Print a byte in decimal (either way).

Print a character (either way).

Print in e floating point notation (as float or double) (see printf (3) ). Remem
ber that floating point constants are always doubles.

Print in f floating point notation (as float or double).

Print in g floating point notation (as float or double).

Print a string using expr as the address of the first byte.

Viewing Commands 27



s Print a string using expr as the address of a pointer to the first byte. This is
the same as saying *expr/a, except for arrays.

Show the type of expr (usually a variable or procedure name). For true pro- ~
cedure types you must actually call the procedure, (e.g., def (2) It; alone def
is the address of the function, i.e., an integer).

p Print the name of the procedure containing address expr.

S Do a formatted dump of a structure (only with symbol tables which support
it). Note that expr must be the address of a structure, not the address of a
pointer to a structure.

There are some shorthand notations for size:

b 1 byte (char).

s 2 bytes (short).

4 bytes (long).

These can be appended to formchar instead of a numeric size. For example, abe/xb prints
one byte in hexadecimal.

If you view an object with a size (explicitly or implicitly) less than or equal to the size of
a long, the debugger changes the basetype to something appropriate for that size. This
is so. (dot) works correctly for assignments. For example, abele2 sets the type of •
to short. One side effect is that if you look at a double using a float format, dot loses
accuracy or has the wrong value.

28 Viewing Commands



Job Control Commands 3
The parent (cdb debugger) and the child (objectfile) processes take turns running. The
debugger is only active while the child process is stopped due to a signal, including hitting
a breakpoint, or terminated for whatever reason.

Run/Terminate the Program
Syntax

R
r[arguments]

Use R to run a new child process with no argument list and r to run a new child process
with a given argument list (or the previous list if none is given). The existing child
process, if any, is terminated first.

The r command is the most versatile way to begin program execution. The arguments
list can contain < and > for redirecting standard input and standard output. « does an
open(2) of file descriptor 0 for read-only; > does a creat(2) of file descriptor 1 with mode
0666). The arguments list may contain shell variables and metacharacters, quote marks,
or other special syntax. Special shell syntax is expanded by a Bourne shell. Because {}
are shell metacharacters, r cannot be safely saved in a breakpoint or assertion command
list.

If no arguments are given, the ones used with the last r command are used again. No
arguments are used if R was used last. For example, the command line:

>r argl arg2 arg3 >filel <file2

passes argl, arg2, and arg3 as arguments and redirects stdin and stdout. It is equivalent
to running your program from the shell as in:

program argl arg2 arg3 >filel <file2

The r command expands shell variables and meta-characters before passing the argument
string to the child process. Remember, it always kills off an existing child process first.
You can do this manually with the k command, too (see example under the "Terminate"

~. section).

Where the r command starts your program and lets it free run, the R command works
similarly, except no arguments or I/O redirection can be specified.

Job Control Commands 29



Example:
>r
Starting process 942: Cla.out Cl

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);
>r argl arg2
Terminating process 942
Starting process 947: CIa. out argl arg2 C1

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);
>R
Terminating process 947
Starting process 948: CIa. out"

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);

Whenever cdb stops and displays a line of your program, that line has not been executed
yet. So setting a breakpoint (see the "Breakpoint Commands" section) on a line will
cause cdb to stop before executing any code for the statement(s) on that line.

Terminate Current Child Process
Syntax:

k

Terminate (kill) the current child process if one exists.

Example:
>k
Really terminate child process? y
Terminating process 948

30 Job Control Commands



Continue After Breakpoint/Signal
Syntax:

[
count]c [l~ne]
count]c l%ne]

The c command causes execution to continue after a breakpoint or signal, while ignoring
the signal, if any. The C command allows the signal, if any, to be received. This is fatal
to the child process if it does not catch or ignores the signal.

There are two fields associated with a breakpoint: count and command. The count field is
discussed here; the command field is explained later in the "Breakpoint Commands" sec
tion. The count field associated with a breakpoint is the number of times the breakpoint
is encountered prior to recognition. If the count is positive, the breakpoint is permanent
and count decrements with each encounter. When count goes to zero, the breakpoint is
recognized and the count is reset to one. If count is negative, the breakpoint is tempo
rary and count increments with each encounter. Once count is zero, the breakpoint is
recognized, then deleted.

NOTE

Count is set to -1 (temporary) or 1 (permanent) for any new break
point. Only then can it be modified by the continue (c) command.

The line, if given, designates a temporary breakpoint at that line number, with a count
of -1.

Example:
>r
Starting process 942: "a.out"

breakpoint at 060180006
sub.c: asub: 4: bsub(arg);
>c 11 **temporary breakpoint**
Added:

2: count: -1 (temporary) bsub: 11: }

breakpoint at Ox60180022
sub.c: bsub: 11: }
>c
Child process terminated normally
>e main
main.c: main: 4: i = 5;

Job Control Commands 31



>5
5: asub(i);

>b
Added:

2: count: 1 main: 5: asub(i);
>r
Starting process 1029: "a. out"

breakpoint at Ox601000a
main.c: main: 5: asub(i);
>C

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);

Single Step After Breakpoint
Syntax:

(
count]s
count]S

If there is no child process currently active, you can step into your program with the s
and S commands. These commands start your program and then stop before the first ~.

executable line of the main procedure. ,

With these two commands, you can execute your program a source line at a time. The
s command traces debuggable procedure calls and enters the debuggable procedure. It
single steps 1 (or count) statements. Successive IReturnl's repeat with a count of 1. If
count is less than one, the child process is not stepped. Note that the child process
continues with the current signal, if any_ (You can set $signal = 0 to prevent this.)

If you accidently step down into a procedure you don't care about, use the bU command
to set a temporary up-level breakpoint, and then continue using c.

The S command steps over procedure calls because cdb detects the occurrence of a proce
dure call and plants a temporary breakpoint at the point of return, free runs the program
until that breakpoint is hit, then machine-instruction steps to the next source line bound
ary. If a breakpoint is hit during execution of the called procedure, execution stops at
that point and the temporary breakpoint is deleted.

Stepping into a non-debuggable procedure (Le., one that hasn't been compiled with - ~
g) with s will cause behavior equivalent to S. In general, you can't do anything with
non-debuggable code. In the stepping case, cdb recognizes that it has stepped into an
unknown (non-debuggable) procedure, so it sets an invisible up-level breakpoint and free
runs the child.

32 Job Control Commands



You can't specify arguments with sand S. If you need to specify arguments to redirect
I/O, the easiest way is to set a breakpoint on the first line of main() and execute with r.

Example:
>D
All breakpoints deleted.
>s
Starting process 1089: "a. out II

main.c: main: 4: i = 5;
>s
main.c: main: 5: asub(i);
>s
sub.c: asub: 4: bsub(arg);
>S
sub.c: asub: 5: }
>2s
main.c: main: 6: }
Child process terminated normally

The debugger has no knowledge about or control over child processes forked in turn by
the process being debugged. Also, it gets very confused (leading to bad access messages)
if the process being debugged executes a different program via exec{2}.

Child process output may be (and usually is) buffered. Hence it may not appear imme
diately after you step through an output statement such as printf(3}. It may not appear
at all if you kill the process.

Job Control Commands 33



34 Job Control Commands

Notes



Breakpoint Commands 4
The debugger provides a number of commands for setting and deleting breakpoints. A
breakpoint has three attributes associated with it:

• address - All the commands which set a breakpoint are simply alternate ways to
specify the breakpoint address. The breakpoint is then encountered whenever the
instruction address is about to be executed, regardless of the path taken to get
there. Only one breakpoint at a time (of any type or count) may be set at a given
address. Setting a new breakpoint at address replaces the old one, if any.

• count - The number of times the breakpoint is encountered prior to recognition.
If count is positive, the breakpoint is permanent, and count decrements with each
encounter. Each time count goes to zero, the breakpoint is recognized, and count
is reset to one (so it stays there until explicitly set to a different value by a c or C
command).

If count is negative, the breakpoint is temporary, and count increments with each
encounter. Once count goes to zero, the breakpoint is recognized, then deleted.

A count of zero is used internally by the debugger and means that the breakpoint
is deleted when the child process next stops for any reason, whether it hit that
breakpoint or not. Commands saved with such breakpoints are ignored. Normally
you never see this kind of breakpoints.

Note that count is set to either -1 (temporary) or 1 (permanent) for any new
breakpoint. It can then be modified only by the cor C command.

• commands - cdb commands which are executed when a breakpoint is recognized.
These are separated by ; and may be enclosed in {} to delimit the list saved with
the breakpoint from other commands on the same line. If the first character is
anything other than {, or if the matching } is missing, the rest of the line is saved
with the breakpoint.

Remember that the results of expressions followed by ; or } are not printed unless
you specify a print format. You can use In (normal format) to force printing of a
result.

Saved commands are not parsed until the breakpoint is recognized. If commands
does not exist then, after recognition of the breakpoint, the debugger waits for
command input.

Breakpoint Commands 35



The debugger has only one active command line at a time. When it begins to
execute breakpoint commands, the remainder (if any) of the old command line is
tossed, with notice given.

Breakpoints can be set at executable statements only. By definition an executable line ~
is one for which the compiler has emitted an SLT (Source Line Table) entry. The C
compiler emits SLT entries for each logical statement (assignment, while, for, if, etc).
If you put several assignment statement on the same source line, the compiler will emit
several SLT entries for that line. You can set breakpoints only at the first SLT entry for
a line, but stepping through that line with s will repeatedly show the same line. This is
because you are hitting addresses corresponding to successive SLT entries on that line.

Attempting to set a breakpoint on a non-executable line has several possible results. If
the line is before the first executable line in a procedure or after the last executable line
in a file, cdb displays:

nCan't set breakpoint (invalid address)n

If the line is between two executable lines, cdb rounds forward and sets the breakpoint
on the following executable line.

Set a Breakpoint
Syntax:

[line) b [commands]

cdb provides several commands for setting breakpoints. The simplest is b which sets
a permanent breakpoint at the current line. The commands descriptor is a list of cdb
commands, separated by semi-colons, which are executed when the breakpoint is hit.
The line number refers to the current file.If the line number is omitted, the breakpoint
is set on the current line.

When the breakpoint is recognized, commands are executed. If there are none, the
debugger pauses for command input. If immediate continuation is desired, finish the
command list with c.

For example, suppose you want to set a breakpoint in some file or procedure other than
where you are at the moment. First, use the e command to get you to the right file or
procedure. Look around for the line where you want the break to occur (using searches,
or just by printing the lines). Once you are there, you can just say b to set a breakpoint
on that line.

36 Breakpoint Commands



So to set a breakpoint in asub(), you must first set the current file to sub. c. Do this with
the e command previously discussed:

e sub.c

or

e asub

Then set the breakpoint with the b command, possibly specifying a line number.

Example:
>e asub
sub.c: asub: 4: bsub(arg);
>b
Added:

1: count: 1 asub: 4: bsub(arg);
>

or:

asub (arg)
>e sub.c
sUb.c: 1:
>4b
Added:

1: count:
>0

1 asub: 4: bsub(arg);
(to delete the breakpoint)

p"".

"

You can specify commands to be executed when a breakpoint is hit. Consider the fol
lowing example in which b t;c plants a breakpoint in bsub() to print a stack trace, then
continue execution:

>e bsub
sUb.c: bsub: 11: }
>b t;c
Added:

1: count: 1 bsub: 11: }
{t;c}

>r
Starting process 3981: "a. out II

breakpoint at Ox60180022
sub.c: bsub: 11: }
o bsub (myarg = 5) [sub.c: 11]
1 asub (arg = 5) [sub.c: 4]
2 main () [main.c: 5]
3 start +Ox0000001a (Ox1, Oxc0000030, Oxc0000040)
4 unknown ()

Child process terminated normally

Breakpoint Commands 37



You can suppress the printing of the location by using the Q command (quiet) as the
first in the list. If the quiet command appears as the first command in a breakpoint'8
command list, the normal announcement of proc: line: text is not made. This allows
quiet checks of variables, etc.to be made without cluttering up the screen with unwanted ~
output. The Qcommand is ignored if it appears anywhere else. Here's the same example J
as above, except it uses the Q command:

>e bsub
sub.c: bsub: 11: }
>b Q;t;c
Added:

1: count: 1 bsub: 11: }
{Q;t;c}

>r
Starting process 22980: "a. out II

o bsub (myarg = 5) [sub.c: 11]
1 asub (arg = 5) [sub.c: 4]
2 main () [main.c: 5]
3 start +Ox0000001a (Ox1. Oxc0000030. Oxc0000040)
4 unknown 0

Child process terminated normally

There are several more breakpoint setting commands with a variety of uses; they are
listed below in "Miscellaneous Breakpoint Commands" . ~

List Breakpoints
Syntax:

B
1 b

Both forms list all breakpoints in the format num: count: nnn proc: In: contents, fol
lowed by {commands} (see the example). The leftmost number is an index number for
use with the d (delete) command.

Example:
>8

1: count: 1 bsub: 11:}
(Q;t;c)

>1 b
1: count: 1 bsub: 11:}

(Q;t;c)

38 Breakpoint Commands



Delete Breakpoints
Syntax:

D[b]
[expr] d
D P

D deletes all breakpoints including procedure breakpoints. You can delete breakpoints
one-by-one with the d command.

The version d deletes the breakpoint at the current line or the breakpoint number expr.
If expr is absent, delete the breakpoint at the current line, if any. If there is none, the
debugger executes a B command instead. Be careful; the breakpoints may be renumbered
after each d command.

The D p command deletes all procedure breakpoints. All breakpoints set by commands
other than bp will remain set.

Example:
>D
All breakpoints deleted
>4

4: bsub(arg);
>b
Added:

1: count: 1 asub: 4 bsub(arg);
>d
Deleted:

1: count: 1 asub: 4 bsub(arg);
>b
Added:

1: count: 1 asub: 4 bsub(arg);
>11

11: }
>b
Added:

2: count: 1 bsub: 11: }
>2d
Deleted:

2: count: 1 bsub: 11: }
>Dp
No procedure breakpoints

Breakpoint Commands 39



Miscellaneous Breakpoint Commands
bp[commands] Set permanent breakpoints at the beginning (first exe

cutable line) of every debuggable procedure. When any
procedure breakpoint is hit, commands are executed.

It is permissible to set other permanent or temporary
breakpoints at the same locations as these procedure
breakpoints. If a procedure and non-procedure break
point are both hit at the same location, the non-procedure
breakpoint has priority; the effect is the same as if there
were no procedure breakpoint. It is not possible to alter
the count of a procedure breakpoint. Procedure break
points must be activated and deleted as a group; it is not
possible to set or delete individual ones.

Procedure breakpoints are useful for procedure stepping
and tracing. For example, the command:

bp Q; 1t;c

sets up procedure tracing by printing the current proce
dure at each breakpoint.

For the following commands, if the second character is upper case, e.g. bU instead of bu,
then the breakpoint is temporary (count is -1), not permanent (count is 1).

[depth]bb[commands]
[depth]bB [commands]

[depth]bx[commands]
[depth]bx[commands]

[depth]bu [commands]
[depth]bu [commands]

40 Breakpoint Commands

Set a breakpoint at the beginning (first executable line)
of the procedure at the given stack depth. If depth is
not specified, use the currently viewed procedure, which
might not be the same as the one at depth zero.

Set a breakpoint at the exit (last executable line) of the
procedure at the given stack depth. If depth is not speci
fied, use the currently viewed procedure, which might not
be the same as the one at depth zero. The breakpoint is
set at a point such that all returns of any kind go through
it.

Set an up-level breakpoint. The breakpoint is set imme
diately after the return to the procedure at the specified
stack depth (default one, not zero). A depth of zero means
current location, e.g. ObU is a way to set a temporary
breakpoint at the current value of $pc.



(depth]bt [proc] [commands]
[depth]bT[proc] [commands]

Trace current procedure (or procedure at depth, or proc).
This command sets breakpoints at both the entrance and
exit of a procedure. By default, the entry breakpoint
commands are Q; 2t; c, which show the top two procedures
on the stack and continues. The exit breakpoint is always
set to execute Q;L;c, which prints the procedure's return
value and continues.

If depth is given, proc must be absent or it is taken as part
of commands. If depth is missing but proc is specified, the
named procedure is traced. If both depth and proc are
omitted, the current procedure is traced, which might
not be the same as the one at depth zero.

If commands are present, they are used for the entrance
breakpoint, instead of the default shown above.

address batcommands]
address bAtcommands]

Set a breakpoint at the given code address. Note that
address can be the name of a procedure or an expression
containing such a name. Of course, if the child process is
stopped in a non-debuggable procedure, or in prologue
code (before the first executable line of a procedure),
things may seem a little strange.

The next two commands, while not strictly part of the breakpoint group, are used almost
exclusively as arguments to breakpoints (or assertions).

if [expr]
{commands} [{ commands}]

"any string you like"

If expr evaluates to a non-zero value, the first group of
commands (the first {} block) is executed, else it (and
the following {, if any) is skipped. In general, all other {}
blocks are always ignored (skipped), except when given as
an argument to an a, b, or ! command. The if command
is nestable, and may be abbreviated to i.

Print the given string, which may have the standard back
slashed character escapes in it, including \ n for newline.
This command is useful for labelling output from break
point commands.

Breakpoint Commands 41



42 Breakpoint Commands

Notes

.•~



Assertion Control Commands
and Signal Handling Commands
Assertion Control Commands

5
Assertions are lists of commands that are executed before every statement. This means
that, if there is even one active assertion, the program is single stepped at the machine
instruction level. In other words, it runs very slowly. The primary use for assertions is
tracking down nasty bugs, that result from someone corrupting a global variable. Each
assertion is individually activated or suspended, in addition to the overall assertions
mode.

Create New Assertion
Syntax:

a [commands]

To create a new assertion with a given commands list, which is not parsed until it's
executed, use the a command. As with breakpoints, the commands list may be enclosed
in {} to delimit it from other commands on the same line. Use the l a command to list
all current assertions and the overall mode.

The debugger has only one active command line at a time. When it begins to execute
assertion commands, the remainder (if any) of the old command line is tossed, with
notice given.

Example:
>a if (Sin main) {L;i/n}
Overall assertions state: ACTIVE

0: Active {if ($in main) {L; i/n}}

This code sets an assertion that checks if the next executable statement is in main().
If that statement is in main(), then it is displayed, along with the value of i in normal
format. If the next executable statement is not in main(), nothing is displayed.

Assertion Control Commands and Signal Handling Commands 43



i/n}}

i/nl}}
(delete the miBtyped aBBertion above)

Modify an Assertion
Syntax:

[expr] a (a I d I B)

Modify the assertion numbered expr: activate it, delete it, or suspend it. Suspended
assertions continue to exist, but have no effect until reactivated.

Example:
>e main
main.c: main: 4: i = 5;
>a if ($in main) {L;i/nl}
Overall aBBertions state: ACTIVE

0: Active {if ($in main) {L;
>Oad
ABBertion 0 deleted
>1 a
No assertionB
>a if ($in main) {L;i/n}
Overall aBBertionB Btate: ACTIVE

0: Active {if ($in main) {L;
>r
Starting proceBB 27700: lIa.out"
main.c: main: 4: i = 5;
i = 0
main.c: main: 5: aBub(i);
i = 5
main.c: main: 6: }
i = 5
Child proceBB terminated normally
>Oad
ABBertion 0 deleted

The a command can be used to trace variable values. For example, it can be used to
trace the variable i which is in main but not known in asub() or bsub().

Example:
a if (abc != $abc) {$abc = abc; abc/d; if (abc> 9) {x}}

This command sets up an assertion to report the changing value of some global variable
(abc), and to stop if it ever exceeds some value. It uses a debugger local variable ($abc)
to keep track of the value of abc.

44 Assertion Control Commands and Signal Handling Commands



Tracing Program Execution
aL

Syntax:
a L.

This just traces execution a line at a time until something happens (e.g., you hit the
IBreakl key). Output from running program with above assertion. The example below
illustrates setting a flag indicating whether bsub() has been called. It echos the flag value
at every statement.

Example:
>a L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n
Overall assertions state: ACTIVE
0: Active {L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n}

>$bsubcalled=O
$bsubcalled = 0
>r
Starting process 27718: "a. out"
main.c: main: 4: i = 5;
$bsubcalled = 0
main.c: main: 5: asub(i);
$bsubcalled = 0
sub.c: asub: 4: bsub(arg);
$bsubcalled = 0
sub.c: bsub: 11: }
$bsubcalled = 1
sub.c: asub: 5: }
$bsubcalled = 1
main.c: main: 6: }
$bsubcalled = 1
Child process terminated normally

Assertion Control Commands and Signal Handling Commands 45



Toggle the State
Syntax:

A

Toggle the overall state of the assertions mechanism between active and suspended. ,

Example:
>A
Assertions are SUSPENDED
>r
Terminating process 1299
Starting process 1300: "a.out ll

breakpoint at Ox6010000a
main.c: main: 6: asub(i);
>A
Assertions are ACTIVE
>r
Terminating process 1299
Starting process 1300: "a.out"
main.c: main: 4: i = 5;

Delete All Assertions
Syntax:

D a

Delete all assertions.

Example:
>D a
All assertions deleted

Certain commands (r, R, c, C, s, S, and k) are not allowed while assertions are running.
They must appear after the x, if at all (see "Display Formats").

46 Assertion Control Commands and Signal Handling Commands



Signal Handling Commands
The debugger catches all signals bound for the child process before the child process
sees them. (This is a function of the ptrace(2) mechanism.) For many signals, this is
reasonable. Most processes are not set up to handle segmentation errors, etc. Other
processes do quite a bit with signals and the constant need to continue from a signal
catch can be tedious. It is possible to alter this behavior for any or all signals.
There are three signal action attributes in the debugger:

• cdb can have the child process ignore or not ignore a signal. This determines whether
the child process sees the signal.

• cdb can report or not report on when a child process receives a signal. For example,
cdb prints out the line it occurred on.

• cdb can stop or not stop when a child process receives a signal.

Each above attribute is independent of the other two, yet six combinations are legal.

For this section a different program is required since main. c does not send or receive
signals. Type this new program in the file sig. c:

main 0
{

long i,j;
i = 5;
j = i/O;

}

To compile and run the program type:

cc -g -0 Big Big.c
Big

Start the cdb debugger by entering:

cdb Big

Assertion Control Commands and Signal Handling Commands 47



Reverse Handling of Signal
Syntax

[signa4 Z [i][r][s][Q]

The z command maintains the zignal (signal) handling table. The variable signal is a
valid signal number (the default is the current signal). The options (which must be all
one word) toggle the state of the appropriate flag: ignore, report, or stop. If Qis present,
the new state of the signal is not printed.

The sequence I z is used to list the current handling of all signals. The sequence 8 z will
only report on signal 8. Note that just z with no options tells you the state of the current
or selected signal.

To toggle the state of a signal, type signal z and the actions to toggle. For example,
assuming a start up state of: do stop, don't ignore, and do report, the command 8 z sir
tells the debugger to not stop, do ignore and do not report on signal 8. The command 8

z ir toggles Ignore to No and Report to Yes. Doing 8 z ir again toggles the flags back
to the previous state.

When the debugger ignores a signal, the child process does not receive that signal.

Ignore
No
Yes

2
2

4: i = 5;

Example:
cdb sig
Source files:
Procedures:
sig.c: main:
>1 z
Sig Stop

1 Yes
2 Yes

Report
Yes
Yes

Name
hangup
interrupt

8 Yes No Yes floating point exception

19 Yes No Yes
>8 z
Sig Stop Ignore Report

8 Yes No Yes
>r
Starting process 11827: "sig"

power fail
(list current state of signal 8)

Name
floating point exception

floating point exception (no ignore) at Ox6010000e
sig.c: main: 5 +Ox00000004: j = i/O;
>8 z sir (reverse the handling of signal 8)
Sig Stop Ignore Report Name

8 No Yes No floating point exception

48 Assertion Control Commands and Signal Handling Commands



>r
Terminating process 11827
Starting process 11873: II sig ll

Child process terminated normally
>8 z ir
Sig Stop Ignore Report Name

8 No No Yes floating point exception
>r
Starting process 11891: IIsig ll

floating point exception (no stop) (no ignore) at Ox6010000e
sig.c: main: 5 +Ox00000004: j = i/O;
floating point exception (core dumped) (no ignore) at 00000000
(file unknown): unknown: (line unknown)
Child process terminated on signal
>8 z ir
Sig Stop Ignore Report Name

8 No Yes No floating point exception

Assertion Control Commands and Signal Handling Commands 49



Notes

50 Assertion Control Commands and Signal Handling Commands



Record, Playback and
Other cdb Commands 6
Record and Playback Commands
The debugger supports a record-and-playback feature to help re-create program states
and to record all debugger output. It is particularly useful for bugs requiring long setups.
With playback, you can automatically re-create a program state that may take a long
time to re-construct.

The -r (record) and -p (playback) options specify record and playback files that the
debugger will use. The example below sets up a scenario similar to that in the "Trac
ing Program Execution" section, with several other command lines entered after the
command cdb a. out -r record1.

Example:
cdb a.out -r record1
Source files: 3
Procedures: 4
Recording is ON, overwriting !Irecord1"
main.c: main: 4: i=6;
>a L;if ($in bsub) {$bsuhcalled=1}; $bsubcalled/n
Overall assertions state: ACTIVE
0: Active {L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n}

>$bsubcalled=O
$bsubcalled = 0
>r
Starting process 27718: !Ia.out"
main.c: main: 4: i = 6;
$bsubcalled = 0
main.c: main: 6: asub(i);
$bsubcalled = 0
sub.c: asub: 4: bsub(arg);
$bsubcalled = 0
sub.c: bsub: 11: }
$bsubcalled = 1
sub.c: asub: 6: }
$bsubcalled = 1
main.c: main: 6: }
$bsubcalled = 1
Child process terminated normally
>e asub
sub.c: asub: 4: bsub(arg);

Record, Playback and Other cdb Commands 51



>b t;c
Added:

2: count:
{t;c}

>1 b
1: count:
2: count:

{t;c}

1 asub: 4: bsub(arg);

o (temporary) start +Ox00000024: (line unknown)
1 asub: 4: bsub(arg);

>A
Assertions are SUSPENDED
>1 a
Overall assertions state: SUSPENDED
0: Active {L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n}

>q
Really quit? y
$

All these commands are now saved in the file recordl:

a L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n
$bsubcalled=O
r
e asub
b t;c
1 b
A
1 a
q
y

Cdb can then be exited and returned to by:

cdb a.out -p record1

The debugger re-runs all the commands and thereby re-creates the original environment.

You can also save the instructions from inside cdb using the > recordl command as the
first statement of the session. The sequence of commands typed in immediately after is
saved in record1. Now instead of quiting cdb, the record file can be closed and started as
a playback using >c followed by < record1. The commands saved in recordl are then
re-executed and the results printed to the screen. The << command plays back recordl
in single step mode and provides the specialized set of instructions (see the example).

52 Record, Playback and Other cdb Commands



Example:
cdb sig
Source files: 2
Procedures: 2
sig.c main: 4: i = 5;
> > record1
Recording is ON, overwriting "record1 11

>b t;c
Added:

1: count: 1 main: 4: i 5;
{t,c}

>r
Starting Process 13597: lIa.out"

breakpoint at Ox60100006
main.c: main: 4: i = 5;
o main () [main.c: 4]
1 start +Ox0000001a (Ox11 , Oxc0000030, Oxc0000040)
2 unknown 0

Child process terminated normally
> > c
Closing record file "record1 11

> < record1 (start playback from file lIrecord1")
Playing back from lIrecord1"
b t;c
Added:

1: count: 1 main: 4: i 5;
{t,c}

r
Starting Process 13597: "a.out"

breakpoint at Ox60100006
main.c: main: 4: i = 5;
o main () [main.c: 4]
1 start +Ox0000001a (Ox11, Oxc0000030, Oxc0000040)
2 unknown 0

Child process terminated normally
>c
End of playback
> « record1 (single step, with instructions. playback)
Playing back from "record1"
b t;c «cr>, S, <num> , C, Q, or ?): ?
<cr> execute one command line;
S skip one command line;
<num> execute number of command lines;
C continue through all playback;
Q quit playback mode.
1

Record, Playback and Other cdb Commands 53



Deleted:
1: count: 1 main: 4: i = 5;

{t;c}
Added:

1: count: 1 main: 4: i = 5;
{t;c}

r «cr>. S. <num>. C. Q. or 1): Q
End of playback

Miscellaneous Record and Playback Commands
The rest of the record and playback commands are used in the same manner with slight
variations. The syntax and a brief decription of each is listed below:

>file

»file

>(Dfile

»(Dfile

>(t I f I c)

>(D(t I f I c)

>

>(D

This command sets or changes the recordfile to file and turns recording
on. Any previous contents of file are overwritten. Only commands are
recorded to this file.

The same as >file, but appends to file instead of overwriting.

Set or change record-all file to file, for overwriting or appending. The
record-all file may be opened or closed independently of (in parallel
with) the recordfile. All debugger standard output is copied to the
record-all file, including prompts, commands entered, and command
output. However, child process output is not captured.

Thrn recording on (t) or off (f), or close the recording file (c). When
recording is resumed, it appends after commands recorded earlier. In
this context, » is the same as >.

Thrn record-all on, off, or close the record-all file. In this context, »(D
is the same as >(D.

Display the current recording status. » does the same thing.

Display the current record-all status. »<0 does the same thing.

Only command lines read from the keyboard or a playback file are recorded in the
recordfile. For example, if recording is turned on in an assertion, it doesn't take affect ~
until assertion execution stops. Both the commands and resulting output are recorded )
in the record-all file.

54 Record, Playback and Other cdb Commands



Command lines beginning with >, <, or ! are not copied to the current recordfile (but
they are copied to the record-all file). You can override this by beginning the lines with
blanks.

Other Commands
Two options that were not covered previously are:

• -8 - size of cache option sets the size of the string cache to the given number of
bytes, instead of the default.

• -u - unique names option tells the debugger to expect names in the symbol table
to start with an extra underscore.

Each of the following commands are fairly straightforward. Therefore, only the syntax
and a brief description of each is provided:

-D

! [command_line]

f [printf-style-format]

h I help

I

q

Z

~ g line

Repeat the previous command

To repeat one command 10 times use ICTRLI [E]
This shell escape invokes a shell program in the same manner
as vi(l).

Set address printing format (the default is reset), using
printf(9) format specifications (not debugger format styles).

Print the debugger help file (command summary).

Print information (inquire) about the state of the debugger.

Quit the debugger. To be sure you don't lose a valuable
environment, this command requests confirmation.

Toggle case sensitivity in searches. This affects everything:
file names, procedure names, variables, and string searches!
The debugger starts out as not case sensitive.

Go to an address in the procedure on the stack at depth zero
(not necessarily the same as the currently viewed procedure).

Record, Playback and Other cdb Commands 55



Notes

56 Record, Playback and Other cdb Commands



Index

a
a 43-44
A 46
a L 45
a.out 6,14,16
adb 4
Alternate Address Map 27
Assertion Control Commands:

a 43-44
A 46
a L 45
D a 46
Section 43-46,45

asub() 24,37,44

b
b 36-38
Breakpoint Commands:

Address 35
b 36-38
bu,bU,bp,bb,bB,bx,bX,bt,bT,ba,bA 32,40
Commands 35
Count 35
D, d, D p 39
I b, B 38
Miscellaneous 40

Breakpoint:
Permanent 31,35
Temporary 31,35

bsub() 37,44,45
bU,bU,bp,bb,bB,bx,bX,bt,bT,ba,bA 32,40



c
C Language 4,5,10-12,14
C, c 31-32
Case Sensitivity 8
cdb(1) 3,4,5,14
cdb:

Debugger 4,14,21,29,30,31,36,47
Definition 4
Overview 4
Prompt 15
Running 14
Signal Action Attributes 47

Commands:
! 55
+1- 20
+1-, w/W 21
I,? 21
>,»,>@,>file 54-55
a 43-44
A 46
a L 45
adb 5
b 36-38
bu,bU,bp,bb,bB,bx,bX,bt,bT,ba,bA 32,40
C, c 31-32
cdb 4,5,14
D a 46
D, d, D p 39
dir 21
e 17
E 23
f 55
fdb 14
g 55
h help 55
I 55
if 41
k 30
L 21,23
I 26
I b, B 38
line 21



lsf 16
n, N ' 21
OE 23
Other 55
p 18
pdb 14
q 55
R, r 29-30
S, s 32-33
Search 21
t,T 22
w 19-20
z 48-49
Z, 55
AD 55
"any string you like" 41

Compilers:
C 5,47
FORTRAN 5
Pascal 5

Compiling Options 5-6
Compiling Programs 5-6,47
Continue After Breakpoint/Signal 31-32
Conventions:

Expression 10-12
Manual 3
Notational 7-6
Procedure Call 13
Variable Name 8-9

Core 6
Corefile 6,13
count 27
creat(2) 29
Create New Assertion 43



d
D a 46
D, d, D p 39
Data Viewing Commands: ~

Display Formats 27-28
expr 24
I 26
Miscellaneous 26
proc.var, proc.depth.expr 25
Section 25-26

Debugger:
adb 5
cdb 4,5,14
fdb 4,14
pdb 4,14

Delete Assertions 46
Delete Breakpoints 39
depth 22
dir 21
Display Formats 27
Dot (.) 8,26

e
E 23
Editor vi 15
end.c 13
Example Programs 15,47
exec(2) 33
expr 24
Expression Conventions 10-12



f
f 55
fdb 14
File Code Viewing Commands:

+/- 20
e 17
Miscellaneous 21
P 18
Section 17-21
w 19-20

Files:
/usr/lib/end.o 6
a.out 4,14,16
Core 6
Corefile 4,13
end.c 13
O'bjectfile 5,6,13
Playback 6,51
Record 6,51
Record-all File 54
Recordfile 54
sig.c 47
sub.c 37

format 8,26,27
FORTRAN 4,5,10-12,14
Free run 4

9
g 55



h
h help 55
HP-UX Reference 3,4

i
I 55
if 41
Interprocess Debugger 4

j
Job Control Commands:

C, c 31-32
k 30
R, r 29-30
S, s 32-33
Section 29-33

k
k 30



I
L 21,23
I b, B 38
Languages:

C 4,5,10-12
FORTRAN 4,5,10-12,13
Pascal 4,5,10-12

line 21
List Breakpoints 38
List Command 26
lsf 16

m
main() 15,24,33,43
main.c 15-16,47
Manual Page:

cdb(1) 4,5,14
ptrace(2) 5,47

Manual:
Conventions 3
HP-UX Reference 3-4
Organization 1

Miscellaneous:
Breakpoint Commands 40
Data Viewing Commands 26
File Code Viewing Commands 21
Record, Playback Commands 54-55

Modifiers:
command 8
depth 7
expr 7
file 7
format 8,26,27
number 7
proc 7
var 7

Modify Assertion 44
Move Forward/Backward 20



n
n, N 21
Notational Conventions 7-6

o
Objectfile 6,7,13
open(2) 29
Options:

-d 6,14
-g 5,13,16
-1 5
-p 6,51,52
-r 6,51
-s 6
-u 13

p
p 18
Pascal 4,5,10-12,14
pdb 14
Permanent Breakpoint 31,35
Playback File 6,51
Playback Single Step Mode 52-54
Playback the Commands 52-54
Print:

Current File, Procedure, Line# 17
Groups of Lines 18
Variable's Value 24
Window of Text 19-20

printf(3) 13,33
proc.depth.var 23,25
proc.var 8,25
Procedure Call Conventions 13
Program:

main.c 15-16,47
sub.c 15-16

Programs:



Compiling 5-6,47
Example 15,47
Invoking Debugger on 14
main.c 15,47
sig.c 47

ptrace(2) 4,47

q
q 55

r
Record File 6,51
Record the Commands 51-52
Record, Playback Commands:

< recordl 52-54
« 52-54
> recordl 52-54
>,»,>@,>file 54-55
>c 52-54
Miscellaneous 54-55
Options 51
r 51-53
Section 51-55

Record-all File 54
Recordfile 54
Reverse Handling of Signal 48-49
Run/Terminate Program 29-30



5
S, s 32-33
Search Commands 21
Set Breakpoint 36-38 ~
Set Viewing Location 23 .. j
sig.c 47
Signal Handling Commands:

Section 47-49
z 48-49

Single Step After Breakpoint 32-33
SLT (Source Line Table) 36
Special Variables 9
Stack Viewing Commands:

E 23
Section 22-23
t, T 22

stdin 29
stdout 29
sub.c 15-16,37
Subroutine:

asub() 37 ,
bsub() 37,44,45

Subroutines:
asub() 15,24,44
bsub() 15,44,45
printf(3) 13,33
stdin 29
stdout 29

System Call:
creat(2) 29
exec(2) 33
open(2) 29
ptrace(2) 5,47



t
T,t 22
Temporary Breakpoint 31,35
Terminate Current Child Process 30
Toggle State 46
Trace Stack for Expr Level 22
Tracing Program Execution 45

v
Variable Name Conventions 8-9
Variables:

$cBad 10
$lang 10,14
$line 10
$malloc 10
$pc, $fp, $sp, $ro, etc. 9
$result 9
$signal 9,32
$var 9
:var 8
dot(.) 8,26
proc.depth.var 8,25
proc.var 8,25
Special 9
var 8

vi 15
View Non-current Location Variables 25
Viewing Commands:

Data 24-26
File Code 17-21
Stack 22-23

z
z 48-49
Z 55



Notes

o



Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.





Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

97089-90040

HP-UX Concepts and Tutorials
Vol. 3: Software Development Tools

Last Date: _
(See the Printing History in the front of the manual)

April 1985

Name: _

Company: _

Address: _

Phone No: _



- -- - - - - -- --- - - -- - --- -- u -- - -. -- u. - u -- - - - - u • --- - - --- - u -- - -- -- -- -- - u -rr--- ------ u ~l~~;u_

UNITED STATES

//BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525



Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

97089-90040

HP-UX Concepts and Tutorials
Vol. 3: Software Development Tools

Last Date: _
(See the Printing History In the front of the manual)

April 1985

Name: _

Company: _

Address: _

Phone No: _



-----------------------------------------------.--------- --------------11 -~-I-----------~i~~~---

UNITED STATES

//BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525



Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

97089-90040

HP-UX Concepts and Tutorials
Vol. 3: Software Development Tools

Last Date: _
(See the Printing History in the front of the manual)

April 1985

Name: _

Company: _

Address: _

Phone No: _



/BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND. COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

-~-I-I-----------~~~~~:---
IF MAILED

IN THE
UNITED STATES



~..'Z_')



Reorder Number
97089·90040
Printed in U.S.A. 4/85

Flia- HEWLETT
.:~ PACKARD

97089-90602
Mfg. No. Only


	Make
	SCCS
	Device I/O Library
	Lex
	Yacc
	ADB Debugger
	CDB Debgger

